Design of a self-calibration high precision micro-angle deformation optical monitoring scheme
NASA Astrophysics Data System (ADS)
Gu, Yingying; Wang, Li; Guo, Shaogang; Wu, Yun; Liu, Da
2018-03-01
In order to meet the requirement of high precision and micro-angle measurement on orbit, a self-calibrated optical non-contact real-time monitoring device is designed. Within three meters, the micro-angle variable of target relative to measuring basis can be measured in real-time. The range of angle measurement is +/-50'', the angle measurement accuracy is less than 2''. The equipment can realize high precision real-time monitoring the micro-angle deformation, which caused by high strength vibration and shock of rock launching, sun radiation and heat conduction on orbit and so on.
Apparatus and method for variable angle slant hole collimator
Lee, Seung Joon; Kross, Brian J.; McKisson, John E.
2017-07-18
A variable angle slant hole (VASH) collimator for providing collimation of high energy photons such as gamma rays during radiological imaging of humans. The VASH collimator includes a stack of multiple collimator leaves and a means of quickly aligning each leaf to provide various projection angles. Rather than rotate the detector around the subject, the VASH collimator enables the detector to remain stationary while the projection angle of the collimator is varied for tomographic acquisition. High collimator efficiency is achieved by maintaining the leaves in accurate alignment through the various projection angles. Individual leaves include unique angled cuts to maintain a precise target collimation angle. Matching wedge blocks driven by two actuators with twin-lead screws accurately position each leaf in the stack resulting in the precise target collimation angle. A computer interface with the actuators enables precise control of the projection angle of the collimator.
NASA Astrophysics Data System (ADS)
Jiang, Shanchao; Wang, Jing; Sui, Qingmei
2018-03-01
In order to achieve rotation angle measurement, one novel type of miniaturization fiber Bragg grating (FBG) rotation angle sensor with high measurement precision and temperature self-compensation is proposed and studied in this paper. The FBG rotation angle sensor mainly contains two core sensitivity elements (FBG1 and FBG2), triangular cantilever beam, and rotation angle transfer element. In theory, the proposed sensor can achieve temperature self-compensation by complementation of the two core sensitivity elements (FBG1 and FBG2), and it has a boundless angel measurement range with 2π rad period duo to the function of the rotation angle transfer element. Based on introducing the joint working processes, the theory calculation model of the FBG rotation angel sensor is established, and the calibration experiment on one prototype is also carried out to obtain its measurement performance. After experimental data analyses, the measurement precision of the FBG rotation angle sensor prototype is 0.2 ° with excellent linearity, and the temperature sensitivities of FBG1 and FBG2 are 10 pm/° and 10.1 pm/°, correspondingly. All these experimental results confirm that the FBG rotation angle sensor can achieve large-range angle measurement with high precision and temperature self-compensation.
Feng, Qiang; Jiang, Chongmin; Zhou, Yu; Huang, Yun; Zhang, Ming
2017-01-01
Non-specific back pain has become a public health problem affecting adolescent health. To examine the relationships between abnormalities in spinal morphology and non-specific back pain among adolescents. Cross-sectional study. Junior and senior high schools. Participants were screened using a questionnaire regarding back pain. Students in the pain group (n= 273, 121 boys and 152 girls) reported experiencing upper and/or lower back pain within the previous month, and those who did not report pain were assigned to the group without pain (n= 127, 63 boys and 64 girls). Participants who had experienced acute upper and/or lower back injuries within the previous month or received a definitive diagnose of disease were excluded. The SpinalMouse® was used to measure the thoracic kyphosis angle (TKA), lumbar lordosis angle (LLA), sacrum/hip angle (SA), and incline angle (INA) in both the standing position and sitting position. The SpinalMouse® also was used to measure the sacral, thoracic, and lumbar range of motion (ROM) in the fully flexed position and fully extended position in the sagittal plane. The thoracic and lumbar ROM in left/right lateral flexion was recorded. The Matthiass test was used to assess changes in the measured angles upon loading. Among junior high school students, 47.0% of boys and 53% of girls had an abnormal TKA. Among senior high school students, 52.6% of boys and 46.99% of girls had an abnormal TKA. The incidence of LLA abnormality was significantly higher among junior high boys than girls (p< 0.05), as was the incidence of hypolordosis (p< 0.05). Significantly fewer senior high boys than girls had a normal LLA value (p< 0.05). An excessive TKA (p< 0.05, odds ratio = 1.236) and limited lumbar ROM (p< 0.01, odds ratio = 0.975) were correlated with back pain in adolescents. The incidences of TKA and LLA abnormality are high among Chinese adolescents, and an excessive TKA and insufficient total lumbar ROM may be risk factors for non-specific back pain in adolescents.
Study on manufacturing method of optical surface with high precision in angle and surface
NASA Astrophysics Data System (ADS)
Yu, Xin; Li, Xin; Yu, Ze; Zhao, Bin; Zhang, Xuebin; Sun, Lipeng; Tong, Yi
2016-10-01
This paper studied a manufacturing processing of optical surface with high precision in angel and surface. By theoretical analysis of the relationships between the angel precision and surface, the measurement conversion of the technical indicators, optical-cement method application, the optical-cement tooling design, the experiment has been finished successfully, the processing method has been verified, which can be also used in the manufacturing of the optical surface with similar high precision in angle and surface.
Hackenberg, Lars; Hierholzer, Eberhard; Bullmann, Viola; Liljenqvist, Ulf; Götze, Christian
2006-07-01
The forward bending test according to Adams and rib hump quantification by scoliometer are common clinical examination techniques in idiopathic scoliosis, although precise data about the change of axial surface rotation in forward bending posture are not available. In a pilot study the influence of leg length inequalities on the back shape of five normal subjects was clarified. Then 91 patients with idiopathic scoliosis with Cobb-angles between 20 degrees and 82 degrees were examined by rasterstereography, a 3D back surface analysis system. The axial back surface rotation in standing posture was compared with that in forward bending posture and additionally with a scoliometer measurement in forward bending posture. The changes of back shape in forward bending posture were correlated with the Cobb-angle, the level of the apex of the scoliotic primary curve and the age of the patient. Averaged over all patients, the back surface rotation amplitude increased from 23.1 degrees in standing to 26.3 degrees in forward bending posture. The standard deviation of this difference was high (6.1 degrees ). The correlation of back surface rotation amplitude in standing with that in forward bending posture was poor (R (2)=0.41) as was the correlation of back surface rotation in standing posture with the scoliometer in forward bending posture measured rotation (R (2)=0.35). No significant correlation could be found between the change of back shape in forward bending and the degree of deformity (R (2)=0.07), likewise no correlation with the height of the apex of the scoliosis (R (2)=0.005) and the age of the patient (R (2)=0.001). Before forward bending test leg length inequalities have to be compensated accurately. Compared to the standing posture, forward bending changes back surface rotation. However, this change varies greatly between patients, and is independent of the type and degree of scoliosis. Furthermore remarkable differences were found between scoliometer measurement of the rib hump and rasterstereographic measurement of the vertebral rotation. Therefore the forward bending test and the identification of idiopathic scoliosis rotation by scoliometer can be markedly different compared to rasterstereographic surface measurement in the standing posture.
Fat fraction bias correction using T1 estimates and flip angle mapping.
Yang, Issac Y; Cui, Yifan; Wiens, Curtis N; Wade, Trevor P; Friesen-Waldner, Lanette J; McKenzie, Charles A
2014-01-01
To develop a new method of reducing T1 bias in proton density fat fraction (PDFF) measured with iterative decomposition of water and fat with echo asymmetry and least-squares estimation (IDEAL). PDFF maps reconstructed from high flip angle IDEAL measurements were simulated and acquired from phantoms and volunteer L4 vertebrae. T1 bias was corrected using a priori T1 values for water and fat, both with and without flip angle correction. Signal-to-noise ratio (SNR) maps were used to measure precision of the reconstructed PDFF maps. PDFF measurements acquired using small flip angles were then compared to both sets of corrected large flip angle measurements for accuracy and precision. Simulations show similar results in PDFF error between small flip angle measurements and corrected large flip angle measurements as long as T1 estimates were within one standard deviation from the true value. Compared to low flip angle measurements, phantom and in vivo measurements demonstrate better precision and accuracy in PDFF measurements if images were acquired at a high flip angle, with T1 bias corrected using T1 estimates and flip angle mapping. T1 bias correction of large flip angle acquisitions using estimated T1 values with flip angle mapping yields fat fraction measurements of similar accuracy and superior precision compared to low flip angle acquisitions. Copyright © 2013 Wiley Periodicals, Inc.
NASA Astrophysics Data System (ADS)
Di, K.; Liu, Y.; Liu, B.; Peng, M.
2012-07-01
Chang'E-1(CE-1) and Chang'E-2(CE-2) are the two lunar orbiters of China's lunar exploration program. Topographic mapping using CE-1 and CE-2 images is of great importance for scientific research as well as for preparation of landing and surface operation of Chang'E-3 lunar rover. In this research, we developed rigorous sensor models of CE-1 and CE-2 CCD cameras based on push-broom imaging principle with interior and exterior orientation parameters. Based on the rigorous sensor model, the 3D coordinate of a ground point in lunar body-fixed (LBF) coordinate system can be calculated by space intersection from the image coordinates of con-jugate points in stereo images, and the image coordinates can be calculated from 3D coordinates by back-projection. Due to uncer-tainties of the orbit and the camera, the back-projected image points are different from the measured points. In order to reduce these inconsistencies and improve precision, we proposed two methods to refine the rigorous sensor model: 1) refining EOPs by correcting the attitude angle bias, 2) refining the interior orientation model by calibration of the relative position of the two linear CCD arrays. Experimental results show that the mean back-projection residuals of CE-1 images are reduced to better than 1/100 pixel by method 1 and the mean back-projection residuals of CE-2 images are reduced from over 20 pixels to 0.02 pixel by method 2. Consequently, high precision DEM (Digital Elevation Model) and DOM (Digital Ortho Map) are automatically generated.
Investigations of interpolation errors of angle encoders for high precision angle metrology
NASA Astrophysics Data System (ADS)
Yandayan, Tanfer; Geckeler, Ralf D.; Just, Andreas; Krause, Michael; Asli Akgoz, S.; Aksulu, Murat; Grubert, Bernd; Watanabe, Tsukasa
2018-06-01
Interpolation errors at small angular scales are caused by the subdivision of the angular interval between adjacent grating lines into smaller intervals when radial gratings are used in angle encoders. They are often a major error source in precision angle metrology and better approaches for determining them at low levels of uncertainty are needed. Extensive investigations of interpolation errors of different angle encoders with various interpolators and interpolation schemes were carried out by adapting the shearing method to the calibration of autocollimators with angle encoders. The results of the laboratories with advanced angle metrology capabilities are presented which were acquired by the use of four different high precision angle encoders/interpolators/rotary tables. State of the art uncertainties down to 1 milliarcsec (5 nrad) were achieved for the determination of the interpolation errors using the shearing method which provides simultaneous access to the angle deviations of the autocollimator and of the angle encoder. Compared to the calibration and measurement capabilities (CMC) of the participants for autocollimators, the use of the shearing technique represents a substantial improvement in the uncertainty by a factor of up to 5 in addition to the precise determination of interpolation errors or their residuals (when compensated). A discussion of the results is carried out in conjunction with the equipment used.
PRECISE ANGLE MONITOR BASED ON THE CONCEPT OF PENCIL-BEAM INTERFEROMETRY
DOE Office of Scientific and Technical Information (OSTI.GOV)
QIAN,S.; TAKACS,P.
2000-07-30
The precise angle monitoring is a very important metrology task for research, development and industrial applications. Autocollimator is one of the most powerful and widely applied instruments for small angle monitoring, which is based on the principle of geometric optics. In this paper the authors introduce a new precise angle monitoring system, Pencil-beam Angle Monitor (PAM), base on pencil beam interferometry. Its principle of operation is a combination of physical and geometrical optics. The angle calculation method is similar to the autocollimator. However, the autocollimator creates a cross image but the precise pencil-beam angle monitoring system produces an interference fringemore » on the focal plane. The advantages of the PAM are: high angular sensitivity, long-term stability character making angle monitoring over long time periods possible, high measurement accuracy in the order of sub-microradian, simultaneous measurement ability in two perpendicular directions or on two different objects, dynamic measurement possibility, insensitive to the vibration and air turbulence, automatic display, storage and analysis by use of the computer, small beam diameter making the alignment extremely easy and longer test distance. Some test examples are presented.« less
Kim, Jong-Ahn; Kim, Jae Wan; Kang, Chu-Shik; Jin, Jonghan; Eom, Tae Bong
2011-11-01
We present an angle generator with high resolution and accuracy, which uses multiple ultrasonic motors and a self-calibratable encoder. A cylindrical air bearing guides a rotational motion, and the ultrasonic motors achieve high resolution over the full circle range with a simple configuration. The self-calibratable encoder can compensate the scale error of a divided circle (signal period: 20") effectively by applying the equal-division-averaged method. The angle generator configures a position feedback control loop using the readout of the encoder. By combining the ac and dc operation mode, the angle generator produced stepwise angular motion with 0.005" resolution. We also evaluated the performance of the angle generator using a precision angle encoder and an autocollimator. The expanded uncertainty (k = 2) in the angle generation was estimated less than 0.03", which included the calibrated scale error and the nonlinearity error. © 2011 American Institute of Physics
A new fitting method for measurement of the curvature radius of a short arc with high precision
NASA Astrophysics Data System (ADS)
Tao, Wei; Zhong, Hong; Chen, Xiao; Selami, Yassine; Zhao, Hui
2018-07-01
The measurement of an object with a short arc is widely encountered in scientific research and industrial production. As the most classic method of arc fitting, the least squares fitting method suffers from low precision when it is used for measurement of arcs with smaller central angles and fewer sampling points. The shorter the arc, the lower is the measurement accuracy. In order to improve the measurement precision of short arcs, a parameter constrained fitting method based on a four-parameter circle equation is proposed in this paper. The generalized Lagrange function was introduced together with the optimization by gradient descent method to reduce the influence from noise. The simulation and experimental results showed that the proposed method has high precision even when the central angle drops below 4° and it has good robustness when the noise standard deviation rises to 0.4 mm. This new fitting method is suitable for the high precision measurement of short arcs with smaller central angles without any prior information.
Trunk imbalance in adolescent idiopathic scoliosis.
Fortin, Carole; Grunstein, Erin; Labelle, Hubert; Parent, Stefan; Ehrmann Feldman, Debbie
2016-06-01
Trunk imbalance (ie, frontal trunk shift measured with a plumb line from C7 to S1) is part of the clinical evaluation in adolescent idiopathic scoliosis (AIS), but its prevalence and relationship with scoliosis, back pain, and health-related factors are not well documented. The principal objectives are to document trunk imbalance prevalence and to explore the association between trunk imbalance and the following factors: Cobb angle, type of scoliosis, back pain, function, mental health, and self-image. The secondary objective is to determine back pain prevalence and the relationship between back pain and each of the following: Cobb angle, function, mental health, and self-image. This is a cross-sectional study in a scoliosis clinic of a tertiary university hospital center. The sample includes youth with AIS (N=55). The outcome measures were trunk imbalance prevalence and magnitude, and back pain prevalence and intensity using the Numeric Pain Rating Scale (NPRS) and the Scoliosis Research Society-22 (SRS-22) pain score, and the function, self-image, and mental health domains of the SRS-22. Trunk imbalance and back pain were assessed in 55 patients with AIS (Cobb angle: 10-60°). Patients completed the SRS-22 questionnaire and the NPRS. Correlations were done between trunk imbalance and scoliosis (Cobb angle, type of scoliosis), back pain (NPRS and SRS-22 pain score), and health-related factors using Pearson correlation coefficients (r) and logistic regression models. Trunk imbalance prevalence is 85% and back pain prevalence is 73%. We found fair to moderate significant positive correlation between trunk imbalance and Cobb angle (r=0.32-0.66, p<.05) but not with back pain, function, mental health, self-image, or type of scoliosis. Lower self-reported pain significantly correlated with lower Cobb angles (r=0.29, p=.03), higher function (r=0.55, p=.000), higher self-image (r=0.44, p=.001), and better mental health (r=0.48, p=.000). There was a trend for trunk imbalance to be related with lower pain in logistic regression models. The high prevalence of trunk imbalance in AIS highlights the importance of screening for this clinical sign in growing adolescents. Further research should be done with regard to the treatment of trunk imbalance and its implication on both Cobb angle and back pain. Copyright © 2016 Elsevier Inc. All rights reserved.
Kim, Min-Hee; Yoo, Won-Gyu
2014-06-01
[Purpose] This study investigated the effects of inclined treadmill walking on pelvic anterior tilt angle, hamstring muscle length, and back muscle endurance of seated workers with flat-back syndrome. [Subjects] Eight seated workers with flat-back syndrome who complained of low-back pain in the L3-5 region participated in this study. [Methods] The subjects performed a walking exercise on a 30° inclined treadmill. We measured the pelvic anterior tilt angle, hamstring muscle length, and back muscle endurance before and after inclined treadmill walking. [Results] Anterior pelvic tilt angle and active knee extension angle significantly increased after inclined treadmill walking. Trunk extensor and flexor muscle endurance times were also significantly increased compared to the baseline. [Conclusion] Inclined treadmill walking may be an effective approach for the prevention or treatment of low-back pain in flat-back syndrome.
Discussion on back-to-back two-stage centrifugal compressor compact design techniques
NASA Astrophysics Data System (ADS)
Huo, Lei; Liu, Huoxing
2013-12-01
Design a small flow back-to-back two-stage centrifugal compressor in the aviation turbocharger, the compressor is compact structure, small axial length, light weighted. Stationary parts have a great influence on their overall performance decline. Therefore, the stationary part of the back-to-back two-stage centrifugal compressor should pay full attention to the diffuser, bend, return vane and volute design. Volute also impact downstream return vane, making the flow in circumferential direction is not uniformed, and several blade angle of attack is drastically changed in downstream of the volute with the airflow can not be rotated to required angle. Loading of high-pressure rotor blades change due to non-uniformed of flow in circumferential direction, which makes individual blade load distribution changed, and affected blade passage load decreased to reduce the capability of work, the tip low speed range increases.
NASA Astrophysics Data System (ADS)
Meng, Lixin; Meng, Lingchen; Zhang, Yiqun; Zhang, Lizhong; Liu, Ming; Li, Xiaoming
2018-01-01
In the satellite to earth laser communication link, large-aperture ground laser communication terminals usually are used in order to realize the requirement of high rate and long distance communication and restrain the power fluctuation by atmospheric scintillation. With the increasing of the laser communication terminal caliber, the primary mirror weight should also be increased, and selfweight, thermal deformation and environment will affect the surface accuracy of the primary mirror surface. A high precision vehicular laser communication telescope unit with an effective aperture of 600mm was considered in this paper. The primary mirror is positioned with center hole, which back is supported by 9 floats and the side is supported by a mercury band. The secondary mirror adopts a spherical adjusting mechanism. Through simulation analysis, the system wave difference is better than λ/20 when the primary mirror is in different dip angle, which meets the requirements of laser communication.
Development of Human Posture Simulation Method for Assessing Posture Angles and Spinal Loads
Lu, Ming-Lun; Waters, Thomas; Werren, Dwight
2015-01-01
Video-based posture analysis employing a biomechanical model is gaining a growing popularity for ergonomic assessments. A human posture simulation method of estimating multiple body postural angles and spinal loads from a video record was developed to expedite ergonomic assessments. The method was evaluated by a repeated measures study design with three trunk flexion levels, two lift asymmetry levels, three viewing angles and three trial repetitions as experimental factors. The study comprised two phases evaluating the accuracy of simulating self and other people’s lifting posture via a proxy of a computer-generated humanoid. The mean values of the accuracy of simulating self and humanoid postures were 12° and 15°, respectively. The repeatability of the method for the same lifting condition was excellent (~2°). The least simulation error was associated with side viewing angle. The estimated back compressive force and moment, calculated by a three dimensional biomechanical model, exhibited a range of 5% underestimation. The posture simulation method enables researchers to simultaneously quantify body posture angles and spinal loading variables with accuracy and precision comparable to on-screen posture matching methods. PMID:26361435
Precision controllability of the F-15 airplane
NASA Technical Reports Server (NTRS)
Sisk, T. R.; Matheny, N. W.
1979-01-01
A flying qualities evaluation conducted on a preproduction F-15 airplane permitted an assessment to be made of its precision controllability in the high subsonic and low transonic flight regime over the allowable angle of attack range. Precision controllability, or gunsight tracking, studies were conducted in windup turn maneuvers with the gunsight in the caged pipper mode and depressed 70 mils. This evaluation showed the F-15 airplane to experience severe buffet and mild-to-moderate wing rock at the higher angles of attack. It showed the F-15 airplane radial tracking precision to vary from approximately 6 to 20 mils over the load factor range tested. Tracking in the presence of wing rock essentially doubled the radial tracking error generated at the lower angles of attack. The stability augmentation system affected the tracking precision of the F-15 airplane more than it did that of previous aircraft studied.
NASA Astrophysics Data System (ADS)
Ye, Dong; Sun, Zhaowei; Wu, Shunan
2012-08-01
The quaternion-based, high precision, large angle rapid reorientation of rigid spacecraft is the main problem investigated in this study. The operation is accomplished via a hybrid thrusters and reaction wheels strategy where thrusters are engaged in providing a primary maneuver torque in open loop, while reaction wheels provide fine control torque to achieve high precision in closed-loop control. The inaccuracy of thrusters is handled by a variable structure control (VSC). In addition, a signum function is mixed in the switching surface in VSC to produce a maneuver to the reference attitude trajectory in a shortest distance. Detailed proofs and numerical simulation examples are presented to illustrate all the technical aspects of this work.
Precision controllability of the YF-17 airplane
NASA Technical Reports Server (NTRS)
Sisk, T. R.; Mataeny, N. W.
1980-01-01
A flying qualities evaluation conducted on the YF-17 airplane permitted assessment of its precision controllability in the transonic flight regime over the allowable angle of attack range. The precision controllability (tailchase tracking) study was conducted in constant-g and windup turn tracking maneuvers with the command augmentation system (CAS) on, automatic maneuver flaps, and the caged pipper gunsight depressed 70 mils. This study showed that the YF-17 airplane tracks essentially as well at 7 g's to 8 g's as earlier fighters did at 4 g's to 5 g's before they encountered wing rock. The pilots considered the YF-17 airplane one of the best tracking airplanes they had flown. Wing rock at the higher angles of attack degraded tracking precision, and lack of control harmony made precision controllability more difficult. The revised automatic maneuver flap schedule incorporated in the airplane at the time of the tests did not appear to be optimum. The largest tracking errors and greatest pilot workload occurred at high normal load factors at low angles of attack. The pilots reported that the high-g maneuvers caused some tunnel vision and that they found it difficult to think clearly after repeated maneuvers.
Alania, M; Lobato, I; Van Aert, S
2018-01-01
In this paper, both the frozen lattice (FL) and the absorptive potential (AP) approximation models are compared in terms of the integrated intensity and the precision with which atomic columns can be located from an image acquired using high angle annular dark field (HAADF) scanning transmission electron microscopy (STEM). The comparison is made for atoms of Cu, Ag, and Au. The integrated intensity is computed for both an isolated atomic column and an atomic column inside an FCC structure. The precision has been computed using the so-called Cramér-Rao Lower Bound (CRLB), which provides a theoretical lower bound on the variance with which parameters can be estimated. It is shown that the AP model results into accurate measurements for the integrated intensity only for small detector ranges under relatively low angles and for small thicknesses. In terms of the attainable precision, both methods show similar results indicating picometer range precision under realistic experimental conditions. Copyright © 2017 Elsevier B.V. All rights reserved.
Spatial orientation and mechanical properties of the human trachea: a computed tomography study.
Zanella, Alberto; Cressoni, Massimo; Ferlicca, Daniela; Chiurazzi, Chiara; Epp, Myra; Rovati, Cristina; Chiumello, Davide; Pesenti, Antonio; Gattinoni, Luciano; Kolobow, Theodor
2015-04-01
The literature generally describes the trachea as oriented toward the right and back, but there is very little detailed characterization. Therefore, the aim of this study was to precisely determine the spatial orientation and to better characterize the physical properties of the human trachea. We analyzed lung computed tomography scans of 68 intubated and mechanically ventilated subjects suffering from acute lung injury/ARDS at airway pressures (Paw) of 5, 15, and 45 cm H2O. At each Paw, the inner edge of the trachea from the subglottal space to the carina was captured. Tracheal length and diameter were measured. Tracheal orientation and compliance were estimated from processing barycenter and surface tracheal sections. Tracheal orientation at a Paw of 5 cm H2O showed a 4.2 ± 5.3° angle toward the right and a 20.6 ± 6.9° angle downward toward the back, which decreased significantly while increasing Paw (19.4 ± 6.9° at 15 cm H2O and 17.1 ± 6.8° at 45 cm H2O, P < .001). Tracheal compliance was 0.0113 ± 0.0131 mL/cm H2O/cm of trachea length from 5 to 15 cm H2O and 0.004 ± 0.0041 mL/cm H2O/cm of trachea length from 15 to 45 cm H2O (P < .001). Tracheal diameter was 19.6 ± 3.4 mm on the medial-lateral axis and 21.0 ± 4.3 mm on the sternal-vertebral axis. The trachea is oriented downward toward the back at a 20.6 ± 6.9° angle and slightly toward the right at a 4.2 ± 5.3° angle. Understanding tracheal orientation may help in enhancing postural drainage and respiratory physiotherapy, and knowing the physical properties of the trachea may aid in endotracheal tube cuff design. Copyright © 2015 by Daedalus Enterprises.
Adler, C; Ahammed, Z; Allgower, C; Amonett, J; Anderson, B D; Anderson, M; Averichev, G S; Balewski, J; Barannikova, O; Barnby, L S; Baudot, J; Bekele, S; Belaga, V V; Bellwied, R; Berger, J; Bichsel, H; Billmeier, A; Bland, L C; Blyth, C O; Bonner, B E; Boucham, A; Brandin, A; Bravar, A; Cadman, R V; Caines, H; Calderón de la Barca Sánchez, M; Cardenas, A; Carroll, J; Castillo, J; Castro, M; Cebra, D; Chaloupka, P; Chattopadhyay, S; Chen, Y; Chernenko, S P; Cherney, M; Chikanian, A; Choi, B; Christie, W; Coffin, J P; Cormier, T M; Corral, M M; Cramer, J G; Crawford, H J; Derevschikov, A A; Didenko, L; Dietel, T; Draper, J E; Dunin, V B; Dunlop, J C; Eckardt, V; Efimov, L G; Emelianov, V; Engelage, J; Eppley, G; Erazmus, B; Fachini, P; Faine, V; Faivre, J; Fatemi, R; Filimonov, K; Finch, E; Fisyak, Y; Flierl, D; Foley, K J; Fu, J; Gagliardi, C A; Gagunashvili, N; Gans, J; Gaudichet, L; Germain, M; Geurts, F; Ghazikhanian, V; Grachov, O; Grigoriev, V; Guedon, M; Gushin, E; Hallman, T J; Hardtke, D; Harris, J W; Henry, T W; Heppelmann, S; Herston, T; Hippolyte, B; Hirsch, A; Hjort, E; Hoffmann, G W; Horsley, M; Huang, H Z; Humanic, T J; Igo, G; Ishihara, A; Ivanshin, Yu I; Jacobs, P; Jacobs, W W; Janik, M; Johnson, I; Jones, P G; Judd, E G; Kaneta, M; Kaplan, M; Keane, D; Kiryluk, J; Kisiel, A; Klay, J; Klein, S R; Klyachko, A; Kollegger, T; Konstantinov, A S; Kopytine, M; Kotchenda, L; Kovalenko, A D; Kramer, M; Kravtsov, P; Krueger, K; Kuhn, C; Kulikov, A I; Kunde, G J; Kunz, C L; Kutuev, R Kh; Kuznetsov, A A; Lakehal-Ayat, L; Lamont, M A C; Landgraf, J M; Lange, S; Lansdell, C P; Lasiuk, B; Laue, F; Lauret, J; Lebedev, A; Lednický, R; Leontiev, V M; LeVine, M J; Li, Q; Lindenbaum, S J; Lisa, M A; Liu, F; Liu, L; Liu, Z; Liu, Q J; Ljubicic, T; Llope, W J; LoCurto, G; Long, H; Longacre, R S; Lopez-Noriega, M; Love, W A; Ludlam, T; Lynn, D; Ma, J; Magestro, D; Majka, R; Margetis, S; Markert, C; Martin, L; Marx, J; Matis, H S; Matulenko, Yu A; McShane, T S; Meissner, F; Melnick, Yu; Meschanin, A; Messer, M; Miller, M L; Milosevich, Z; Minaev, N G; Mitchell, J; Moore, C F; Morozov, V; de Moura, M M; Munhoz, M G; Nelson, J M; Nevski, P; Nikitin, V A; Nogach, L V; Norman, B; Nurushev, S B; Odyniec, G; Ogawa, A; Okorokov, V; Oldenburg, M; Olson, D; Paic, G; Pandey, S U; Panebratsev, Y; Panitkin, S Y; Pavlinov, A I; Pawlak, T; Perevoztchikov, V; Peryt, W; Petrov, V A; Planinic, M; Pluta, J; Porile, N; Porter, J; Poskanzer, A M; Potrebenikova, E; Prindle, D; Pruneau, C; Putschke, J; Rai, G; Rakness, G; Ravel, O; Ray, R L; Razin, S V; Reichhold, D; Reid, J G; Renault, G; Retiere, F; Ridiger, A; Ritter, H G; Roberts, J B; Rogachevski, O V; Romero, J L; Rose, A; Roy, C; Rykov, V; Sakrejda, I; Salur, S; Sandweiss, J; Savin, I; Schambach, J; Scharenberg, R P; Schmitz, N; Schroeder, L S; Schüttauf, A; Schweda, K; Seger, J; Seliverstov, D; Seyboth, P; Shahaliev, E; Shestermanov, K E; Shimanskii, S S; Simon, F; Skoro, G; Smirnov, N; Snellings, R; Sorensen, P; Sowinski, J; Spinka, H M; Srivastava, B; Stephenson, E J; Stock, R; Stolpovsky, A; Strikhanov, M; Stringfellow, B; Struck, C; Suaide, A A P; Sugarbaker, E; Suire, C; Sumbera, M; Surrow, B; Symons, T J M; Szanto de Toledo, A; Szarwas, P; Tai, A; Takahashi, J; Tang, A H; Thein, D; Thomas, J H; Thompson, M; Tikhomirov, V; Tokarev, M; Tonjes, M B; Trainor, T A; Trentalange, S; Tribble, R E; Trofimov, V; Tsai, O; Ullrich, T; Underwood, D G; Van Buren, G; VanderMolen, A M; Vasilevski, I M; Vasiliev, A N; Vigdor, S E; Voloshin, S A; Wang, F; Ward, H; Watson, J W; Wells, R; Westfall, G D; Whitten, C; Wieman, H; Willson, R; Wissink, S W; Witt, R; Wood, J; Xu, N; Xu, Z; Yakutin, A E; Yamamoto, E; Yang, J; Yepes, P; Yurevich, V I; Zanevski, Y V; Zborovský, I; Zhang, H; Zhang, W M; Zoulkarneev, R; Zubarev, A N
2003-02-28
Azimuthal correlations for large transverse momentum charged hadrons have been measured over a wide pseudorapidity range and full azimuth in Au+Au and p+p collisions at sqrt[s(NN)]=200 GeV. The small-angle correlations observed in p+p collisions and at all centralities of Au+Au collisions are characteristic of hard-scattering processes previously observed in high-energy collisions. A strong back-to-back correlation exists for p+p and peripheral Au+Au. In contrast, the back-to-back correlations are reduced considerably in the most central Au+Au collisions, indicating substantial interaction as the hard-scattered partons or their fragmentation products traverse the medium.
High-Speed Measurements on a Swept-Back Wing (Sweepback Angle phi = 35 Deg)
NASA Technical Reports Server (NTRS)
Goethert, B.
1947-01-01
In the following, high-speed measurements on a swept-back wing are reported. The curves of lift, moment, and drag have been determined up to Mach numbers of M = 0.87, and they are compared to a rectangular wing. Through measurements of the total-head loss behind the wing and through schlieren pictures, an insight into the formation of the compression shock at high Mach numbers has been obtained.
NASA Astrophysics Data System (ADS)
Giannoglou, V.; Stylianidis, E.
2016-06-01
Scoliosis is a 3D deformity of the human spinal column that is caused from the bending of the latter, causing pain, aesthetic and respiratory problems. This internal deformation is reflected in the outer shape of the human back. The golden standard for diagnosis and monitoring of scoliosis is the Cobb angle, which refers to the internal curvature of the trunk. This work is the first part of a post-doctoral research, presenting the most important researches that have been done in the field of scoliosis, concerning its digital visualisation, in order to provide a more precise and robust identification and monitoring of scoliosis. The research is divided in four fields, namely, the X-ray processing, the automatic Cobb angle(s) calculation, the 3D modelling of the spine that provides a more accurate representation of the trunk and the reduction of X-ray radiation exposure throughout the monitoring of scoliosis. Despite the fact that many researchers have been working on the field for the last decade at least, there is no reliable and universal tool to automatically calculate the Cobb angle(s) and successfully perform proper 3D modelling of the spinal column that would assist a more accurate detection and monitoring of scoliosis.
Back-illuminate fiber system research for multi-object fiber spectroscopic telescope
NASA Astrophysics Data System (ADS)
Zhou, Zengxiang; Liu, Zhigang; Hu, Hongzhuan; Wang, Jianping; Zhai, Chao; Chu, Jiaru
2016-07-01
In the telescope observation, the position of fiber will highly influence the spectra efficient input in the fiber to the spectrograph. When the fibers were back illuminated on the spectra end, they would export light on the positioner end, so the CCD cameras could capture the photo of fiber tip position covered the focal plane, calculates the precise position information by light centroid method and feeds back to control system. A set of fiber back illuminated system was developed which combined to the low revolution spectro instruments in LAMOST. It could provide uniform light output to the fibers, meet the requirements for the CCD camera measurement. The paper was introduced the back illuminated system design and different test for the light resource. After optimization, the effect illuminated system could compare with the integrating sphere, meet the conditions of fiber position measurement.Using parallel controlled fiber positioner as the spectroscopic receiver is an efficiency observation system for spectra survey, has been used in LAMOST recently, and will be proposed in CFHT and rebuilt telescope Mayall. In the telescope observation, the position of fiber will highly influence the spectra efficient input in the fiber to the spectrograph. When the fibers were back illuminated on the spectra end, they would export light on the positioner end, so the CCD cameras could capture the photo of fiber tip position covered the focal plane, calculates the precise position information by light centroid method and feeds back to control system. After many years on these research, the back illuminated fiber measurement was the best method to acquire the precision position of fibers. In LAMOST, a set of fiber back illuminated system was developed which combined to the low revolution spectro instruments in LAMOST. It could provide uniform light output to the fibers, meet the requirements for the CCD camera measurement and was controlled by high-level observation system which could shut down during the telescope observation. The paper was introduced the back illuminated system design and different test for the light resource. After optimization, the effect illuminated system could compare the integrating sphere, meet the conditions of fiber position measurement.
Oshikawa, Tomoki; Morimoto, Yasuhiro; Kaneoka, Koji
2018-03-01
[Purpose] To compare the lumbar lordosis angle and electromyographic activities of the trunk and lower-limb muscles in the hip neutral position and external rotation during back squats. [Subjects and Methods] Ten healthy males without severe low back pain or lower-limb injury participated in this study. The lumbar lordosis angle and electromyographic activities were measured using three-dimensional motion-capture systems and surface electrodes during four back squats: parallel back squats in the hip neutral position and external rotation and full back squats in the hip neutral position and external rotation. A paired t-test was used to compare parallel and full back squats measurements in the hip neutral position and external rotation, respectively. [Results] During parallel back squats, the average lumbar lordosis angle was significantly larger in hip external rotation than in the hip neutral position. During full back squats, lumbar erector spinae and multifidus activities were significantly lower in hip external rotation than in the hip neutral position, whereas gluteus maximus activity was significantly higher in hip external rotation than in the hip neutral position. [Conclusion] The back squat in hip external rotation induced improvement of lumbar kyphosis, an increasing of the gluteus maximus activity and a decrease of both lumbar erector spinae and multifidus activities.
Yoo, Won-Gyu
2013-10-01
[Purpose] The purpose of this paper is to report the effect of individual strengthening exercises for the anterior pelvic tilt muscles on back pain, pelvic tilt angle, and lumbar ROM of a low back pain (LBP) patient with flat back. [Subject] A 37 year-old male, who complained of LBP pain at L3-5 levels with flat back, participated. [Methods] He performed the individual strengthening exercises for anterior pelvic tilt muscles (erector spinae,iliopsoas, rectus femoris). [Results] Pelvic tilt angles of the right and left sides were recovered to normal ranges. His lumbar ROMs increased, and low back pain decreased. [Conclusion] We suggest that individual resistance exercises are a necessary approach for effective and fast strengthening of pelvic anterior tilt muscles in LBP with flat back.
Modified sine bar device measures small angles with high accuracy
NASA Technical Reports Server (NTRS)
Thekaekara, M.
1968-01-01
Modified sine bar device measures small angles with enough accuracy to calibrate precision optical autocollimators. The sine bar is a massive bar of steel supported by two cylindrical rods at one end and one at the other.
Construction of a 1 MeV Electron Accelerator for High Precision Beta Decay Studies
NASA Astrophysics Data System (ADS)
Longfellow, Brenden
2014-09-01
Beta decay energy calibration for detectors is typically established using conversion sources. However, the calibration points from conversion sources are not evenly distributed over the beta energy spectrum and the foil backing of the conversion sources produces perturbations in the calibration spectrum. To improve this, an external, tunable electron beam coupled by a magnetic field can be used to calibrate the detector. The 1 MeV electron accelerator in development at Triangle Universities Nuclear Laboratory (TUNL) utilizes a pelletron charging system. The electron gun shoots 104 electrons per second with an energy range of 50 keV to 1 MeV and is pulsed at a 10 kHz rate with a few ns width. The magnetic field in the spectrometer is 1 T and guiding fields of 0.01 to 0.05 T for the electron gun are used to produce a range of pitch angles. This accelerator can be used to calibrate detectors evenly over its energy range and determine the detector response over a range of pitch angles. Beta decay energy calibration for detectors is typically established using conversion sources. However, the calibration points from conversion sources are not evenly distributed over the beta energy spectrum and the foil backing of the conversion sources produces perturbations in the calibration spectrum. To improve this, an external, tunable electron beam coupled by a magnetic field can be used to calibrate the detector. The 1 MeV electron accelerator in development at Triangle Universities Nuclear Laboratory (TUNL) utilizes a pelletron charging system. The electron gun shoots 104 electrons per second with an energy range of 50 keV to 1 MeV and is pulsed at a 10 kHz rate with a few ns width. The magnetic field in the spectrometer is 1 T and guiding fields of 0.01 to 0.05 T for the electron gun are used to produce a range of pitch angles. This accelerator can be used to calibrate detectors evenly over its energy range and determine the detector response over a range of pitch angles. TUNL REU Program.
Low back pain and lumbar angles in Turkish coal miners
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sarikaya, S.; Ozdolap, S.; Gumustas, S.
This study was designed to assess the incidence of low back pain among Turkish coal miners and to investigate the relationship between angles of the lumbar spine and low back pain in coal miners. Fifty underground workers (Group I) and 38 age-matched surface workers (Group II) were included in the study. All the subjects were asked about low back pain in the past 5 years. The prevalence of low back pain was higher in Group I than in Group II (78.0%, 32.4%, respectively, P {lt} 0.001). The results of the study showed that low back pain occurred in 78.0% ofmore » Turkish coal miners. Although the nature of the occupation may have influenced coal miners' lumbar spinal curvature, lumbar angles are not a determinant for low back pain in this population. Further extensive studies involving ergonomic measurements are needed to validate our results for Turkish coal mining industry.« less
Oshikawa, Tomoki; Morimoto, Yasuhiro; Kaneoka, Koji
2018-01-01
[Purpose] To compare the lumbar lordosis angle and electromyographic activities of the trunk and lower-limb muscles in the hip neutral position and external rotation during back squats. [Subjects and Methods] Ten healthy males without severe low back pain or lower-limb injury participated in this study. The lumbar lordosis angle and electromyographic activities were measured using three-dimensional motion-capture systems and surface electrodes during four back squats: parallel back squats in the hip neutral position and external rotation and full back squats in the hip neutral position and external rotation. A paired t-test was used to compare parallel and full back squats measurements in the hip neutral position and external rotation, respectively. [Results] During parallel back squats, the average lumbar lordosis angle was significantly larger in hip external rotation than in the hip neutral position. During full back squats, lumbar erector spinae and multifidus activities were significantly lower in hip external rotation than in the hip neutral position, whereas gluteus maximus activity was significantly higher in hip external rotation than in the hip neutral position. [Conclusion] The back squat in hip external rotation induced improvement of lumbar kyphosis, an increasing of the gluteus maximus activity and a decrease of both lumbar erector spinae and multifidus activities. PMID:29581666
Overview of the new capabilities of TORIC-v6 and comparison with TORIC-v5
NASA Astrophysics Data System (ADS)
Bilato, R.; Brambilla, M.; Bertelli, N.
2016-10-01
Since its release, version 5 (v5) of the full-wave TORIC code, characterized by an optimized parallelized solver for its routinely use in TRANSP package, has been ameliorated in many technical issues, e.g. the plasma-vacuum transition and the full-spectrum antenna modeling. For the WPCD-benchmark cases a good agreement between the new version, v6, and v5 is found. The major improvement, however, has been done in interfacing TORIC-v6 with the Fokker-Planck SSFPQL solver to account for the back-reaction of ICRF and NBI heating on the wave propagation and absorption. Special algorithms have been developed for SSFPQL for the numerical precision at high pitch-angle resolution and to evaluate the generalized dispersion function directly from the numerical solution. Care has been spent in automatizing the non-linear loop between TORIC-v6 and SSFPQL. In v6 the description of wave absorption at high-harmonics has been revised and applied to DEMO. For high-harmonic regimes there is an ongoing activity on the comparison with AORSA.
Research on Precision Tracking on Fast Steering Mirror and Control Strategy
NASA Astrophysics Data System (ADS)
Di, Lin; Yi-ming, Wu; Fan, Zhu
2018-01-01
Fast steering mirror is a device used for controlling the beam direction precisely. Due to the short travel of the push-pull FSM, a compound fast steering mirror system driven by both limited-angle voice coil motor and push-pull FSM together is proposed. In the compound FSM system, limited-angle voice coil motor quickly swings at wide angle, while the push-pull FSM do high frequency movement in a small range, which provides the system with the high bandwidth and long travel. In the control strategy, the method of combining feed-forward control in Kalman filtering with auto-disturbance rejection control is used to improve trajectory tracking accuracy. The simulation result shows that tracking accuracy measured by the compound method can be improved by more than 5 times than that of the conventional PID.
Back focal plane microscopic ellipsometer with internal reflection geometry
NASA Astrophysics Data System (ADS)
Otsuki, Soichi; Murase, Norio; Kano, Hiroshi
2013-05-01
A back focal plane (BFP) ellipsometer is presented to measure a thin film on a cover glass using an oil-immersion high-numerical-aperture objective lens. The internal reflection geometry lowers the pseudo Brewster angle (ϕB) to the range over which the light distribution is observed in BFP of the objective. A calculation based on Mueller matrix was developed to compute ellipsometric parameters from the intensity distribution on BFP. The center and radius of the partial reflection region below the critical angle were determined and used to define a polar coordinate on BFP. Harmonic components were computed from the intensities along the azimuth direction and transformed to ellipsometric parameters at multiple incident angles around ϕB. The refractive index and thickness of the film and the contributions of the objective effect were estimated at the same time by fitting.
Time-of-flight SIMS/MSRI reflectron mass analyzer and method
Smentkowski, Vincent S.; Gruen, Dieter M.; Krauss, Alan R.; Schultz, J. Albert; Holecek, John C.
1999-12-28
A method and apparatus for analyzing the surface characteristics of a sample by Secondary Ion Mass Spectroscopy (SIMS) and Mass Spectroscopy of Recoiled Ions (MSRI) is provided. The method includes detecting back scattered primary ions, low energy ejected species, and high energy ejected species by ion beam surface analysis techniques comprising positioning a ToF SIMS/MSRI mass analyzer at a predetermined angle .theta., where .theta. is the angle between the horizontal axis of the mass analyzer and the undeflected primary ion beam line, and applying a specific voltage to the back ring of the analyzer. Preferably, .theta. is less than or equal to about 120.degree. and, more preferably, equal to 74.degree.. For positive ion analysis, the extractor, lens, and front ring of the reflectron are set at negative high voltages (-HV). The back ring of the reflectron is set at greater than about +700V for MSRI measurements and between the range of about +15 V and about +50V for SIMS measurements. The method further comprises inverting the polarity of the potentials applied to the extractor, lens, front ring, and back ring to obtain negative ion SIMS and/or MSRI data.
Pose measurement method and experiments for high-speed rolling targets in a wind tunnel.
Jia, Zhenyuan; Ma, Xin; Liu, Wei; Lu, Wenbo; Li, Xiao; Chen, Ling; Wang, Zhengqu; Cui, Xiaochun
2014-12-12
High-precision wind tunnel simulation tests play an important role in aircraft design and manufacture. In this study, a high-speed pose vision measurement method is proposed for high-speed and rolling targets in a supersonic wind tunnel. To obtain images with high signal-to-noise ratio and avoid impacts on the aerodynamic shape of the rolling targets, a high-speed image acquisition method based on ultrathin retro-reflection markers is presented. Since markers are small-sized and some of them may be lost when the target is rolling, a novel markers layout with which markers are distributed evenly on the surface is proposed based on a spatial coding method to achieve highly accurate pose information. Additionally, a pose acquisition is carried out according to the mentioned markers layout after removing mismatching points by Case Deletion Diagnostics. Finally, experiments on measuring the pose parameters of high-speed targets in the laboratory and in a supersonic wind tunnel are conducted to verify the feasibility and effectiveness of the proposed method. Experimental results indicate that the position measurement precision is less than 0.16 mm, the pitching and yaw angle precision less than 0.132° and the roll angle precision 0.712°.
Pose Measurement Method and Experiments for High-Speed Rolling Targets in a Wind Tunnel
Jia, Zhenyuan; Ma, Xin; Liu, Wei; Lu, Wenbo; Li, Xiao; Chen, Ling; Wang, Zhengqu; Cui, Xiaochun
2014-01-01
High-precision wind tunnel simulation tests play an important role in aircraft design and manufacture. In this study, a high-speed pose vision measurement method is proposed for high-speed and rolling targets in a supersonic wind tunnel. To obtain images with high signal-to-noise ratio and avoid impacts on the aerodynamic shape of the rolling targets, a high-speed image acquisition method based on ultrathin retro-reflection markers is presented. Since markers are small-sized and some of them may be lost when the target is rolling, a novel markers layout with which markers are distributed evenly on the surface is proposed based on a spatial coding method to achieve highly accurate pose information. Additionally, a pose acquisition is carried out according to the mentioned markers layout after removing mismatching points by Case Deletion Diagnostics. Finally, experiments on measuring the pose parameters of high-speed targets in the laboratory and in a supersonic wind tunnel are conducted to verify the feasibility and effectiveness of the proposed method. Experimental results indicate that the position measurement precision is less than 0.16 mm, the pitching and yaw angle precision less than 0.132° and the roll angle precision 0.712°. PMID:25615732
Störmer, M; Gabrisch, H; Horstmann, C; Heidorn, U; Hertlein, F; Wiesmann, J; Siewert, F; Rack, A
2016-05-01
X-ray mirrors are needed for beam shaping and monochromatization at advanced research light sources, for instance, free-electron lasers and synchrotron sources. Such mirrors consist of a substrate and a coating. The shape accuracy of the substrate and the layer precision of the coating are the crucial parameters that determine the beam properties required for various applications. In principal, the selection of the layer materials determines the mirror reflectivity. A single layer mirror offers high reflectivity in the range of total external reflection, whereas the reflectivity is reduced considerably above the critical angle. A periodic multilayer can enhance the reflectivity at higher angles due to Bragg reflection. Here, the selection of a suitable combination of layer materials is essential to achieve a high flux at distinct photon energies, which is often required for applications such as microtomography, diffraction, or protein crystallography. This contribution presents the current development of a Ru/C multilayer mirror prepared by magnetron sputtering with a sputtering facility that was designed in-house at the Helmholtz-Zentrum Geesthacht. The deposition conditions were optimized in order to achieve ultra-high precision and high flux in future mirrors. Input for the improved deposition parameters came from investigations by transmission electron microscopy. The X-ray optical properties were investigated by means of X-ray reflectometry using Cu- and Mo-radiation. The change of the multilayer d-spacing over the mirror dimensions and the variation of the Bragg angles were determined. The results demonstrate the ability to precisely control the variation in thickness over the whole mirror length of 500 mm thus achieving picometer-precision in the meter-range.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Störmer, M., E-mail: michael.stoermer@hzg.de; Gabrisch, H.; Horstmann, C.
2016-05-15
X-ray mirrors are needed for beam shaping and monochromatization at advanced research light sources, for instance, free-electron lasers and synchrotron sources. Such mirrors consist of a substrate and a coating. The shape accuracy of the substrate and the layer precision of the coating are the crucial parameters that determine the beam properties required for various applications. In principal, the selection of the layer materials determines the mirror reflectivity. A single layer mirror offers high reflectivity in the range of total external reflection, whereas the reflectivity is reduced considerably above the critical angle. A periodic multilayer can enhance the reflectivity atmore » higher angles due to Bragg reflection. Here, the selection of a suitable combination of layer materials is essential to achieve a high flux at distinct photon energies, which is often required for applications such as microtomography, diffraction, or protein crystallography. This contribution presents the current development of a Ru/C multilayer mirror prepared by magnetron sputtering with a sputtering facility that was designed in-house at the Helmholtz-Zentrum Geesthacht. The deposition conditions were optimized in order to achieve ultra-high precision and high flux in future mirrors. Input for the improved deposition parameters came from investigations by transmission electron microscopy. The X-ray optical properties were investigated by means of X-ray reflectometry using Cu- and Mo-radiation. The change of the multilayer d-spacing over the mirror dimensions and the variation of the Bragg angles were determined. The results demonstrate the ability to precisely control the variation in thickness over the whole mirror length of 500 mm thus achieving picometer-precision in the meter-range.« less
Eliminating Deadbands In Resistive Angle Sensors
NASA Technical Reports Server (NTRS)
Salomon, Phil M.; Allen, Russell O.; Marchetto, Carl A.
1992-01-01
Proposed shaft-angle-measuring circuit provides continuous indication of angle of rotation from 0 degree to 360 degrees. Sensing elements are two continuous-rotation potentiometers, and associated circuitry eliminates deadband that occurs when wiper contact of potentiometer crosses end contacts near 0 degree position of circular resistive element. Used in valve-position indicator or similar device in which long operating life and high angular precision not required.
[Effect of BMI and WHR on lumbar lordosis and sacrum slant angle in middle and elderly women].
Guo, Jin-Ming; Zhang, Guo-Quan; Alimujiang
2008-01-01
To investigate the effect of body mass index (BMI) and waist hip ratio (WHR) on lumbar lordosis and sacrum slant angle in the patients with low back pain, and to discuss the theory of low back pain induced by obesity. The Roland Disability Questionnaire (RDQ) was answered by 98 middle and elderly women with low back pain, whose body height, body weight, waist circumference, and hip circumference were measured and used to calculate their MBI and WHR. According to BMI, all the cases were divided into normal, overweight and obesity groups. These cases were also divided into noncentral and central obesity groups according to WHR. The lateral X-ray films of the lumbar spine were studied by measuring LCI, Cobb angle, and SSA. The data of all groups were analyzed statistically. LCI, Cobb angle, SSA and RDQ scores in the overweight and obesity groups are significantly higher than those in the normal group. LCI, Cobb angle, SSA, and RDQ scores in the central obesity group are significantly higher than those in the noncentral obesity group. BMI exceeding 24 kg/m2 or WHR exceeding 0.85 may increase the measurements of Cobb angle, SSA and RDQ scores. Low back pain may occur because of overweight, obesity, or central obesity. The anatomy foundation of the increasing lumbar lordosis and sacrum slant angle may be the one of reasons of low back pain in obese person.
Mechanically robust microfluidics and bulk wave acoustics to sort microparticles
NASA Astrophysics Data System (ADS)
Dauson, Erin R.; Gregory, Kelvin B.; Greve, David W.; Healy, Gregory P.; Oppenheim, Irving J.
2016-04-01
Sorting microparticles (or cells, or bacteria) is significant for scientific, medical and industrial purposes. Research groups have used lithium niobate SAW devices to produce standing waves, and then to align microparticles at the node lines in polydimethylsiloxane (PDMS, silicone) microfluidic channels. The "tilted angle" (skewed) configuration is a recent breakthrough producing particle trajectories that cross multiple node lines, making it practical to sort particles. However, lithium niobate wafers and PDMS microfluidic channels are not mechanically robust. We demonstrate "tilted angle" microparticle sorting in novel devices that are robust, rapidly prototyped, and manufacturable. We form our microfluidic system in a rigid polymethyl methacrylate (PMMA, acrylic) prism, sandwiched by lead-zirconium-titanate (PZT) wafers, operating in through-thickness mode with inertial backing, that produce standing bulk waves. The overall configuration is compact and mechanically robust, and actuating PZT wafers in through-thickness mode is highly efficient. Moving to this novel configuration introduced new acoustics questions involving internal reflections, but we show experimental images confirming the intended nodal geometry. Microparticles in "tilted angle" devices display undulating trajectories, where deviation from the straight path increases with particle diameter and with excitation voltage to create the mechanism by which particles are sorted. We show a simplified analytical model by which a "phase space" is constructed to characterize effective particle sorting, and we compare our experimental data to the predictions from that simplified model; precise correlation is not expected and is not observed, but the important physical trends from the model are paralleled in the measured particle trajectories.
Research on the precision measurement of super-low reflectivity
NASA Astrophysics Data System (ADS)
Yuan, Hao-yu; Lu, Zong-gui; Xia, Yan-wen; Peng, Zhi-tao; Liu, Hua; Xu, Long-bo; Sun, Zhi-hong; Tang, Jun
2010-10-01
Introduced a high-precision measurement of measured the super-low reflectivity and small sampling angle. Using single reflect way measured, and compare with re-swatch. Testing the reflectance of the sampling mirror which be used on TIL, and analyze the error. Research results indicate, the main factor which affect result is energy detector error and energy detector linearity. This methods is easy and have high-precision, it can be used to measure the super-low reflectivity sampling mirror reflectance.
High-precision tracking of brownian boomerang colloidal particles confined in quasi two dimensions.
Chakrabarty, Ayan; Wang, Feng; Fan, Chun-Zhen; Sun, Kai; Wei, Qi-Huo
2013-11-26
In this article, we present a high-precision image-processing algorithm for tracking the translational and rotational Brownian motion of boomerang-shaped colloidal particles confined in quasi-two-dimensional geometry. By measuring mean square displacements of an immobilized particle, we demonstrate that the positional and angular precision of our imaging and image-processing system can achieve 13 nm and 0.004 rad, respectively. By analyzing computer-simulated images, we demonstrate that the positional and angular accuracies of our image-processing algorithm can achieve 32 nm and 0.006 rad. Because of zero correlations between the displacements in neighboring time intervals, trajectories of different videos of the same particle can be merged into a very long time trajectory, allowing for long-time averaging of different physical variables. We apply this image-processing algorithm to measure the diffusion coefficients of boomerang particles of three different apex angles and discuss the angle dependence of these diffusion coefficients.
Johnson, Jared M; Im, Soohyun; Windl, Wolfgang; Hwang, Jinwoo
2017-01-01
We propose a new scanning transmission electron microscopy (STEM) technique that can realize the three-dimensional (3D) characterization of vacancies, lighter and heavier dopants with high precision. Using multislice STEM imaging and diffraction simulations of β-Ga 2 O 3 and SrTiO 3 , we show that selecting a small range of low scattering angles can make the contrast of the defect-containing atomic columns substantially more depth-dependent. The origin of the depth-dependence is the de-channeling of electrons due to the existence of a point defect in the atomic column, which creates extra "ripples" at low scattering angles. The highest contrast of the point defect can be achieved when the de-channeling signal is captured using the 20-40mrad detection angle range. The effect of sample thickness, crystal orientation, local strain, probe convergence angle, and experimental uncertainty to the depth-dependent contrast of the point defect will also be discussed. The proposed technique therefore opens new possibilities for highly precise 3D structural characterization of individual point defects in functional materials. Copyright © 2016 Elsevier B.V. All rights reserved.
Study of multi-functional precision optical measuring system for large scale equipment
NASA Astrophysics Data System (ADS)
Jiang, Wei; Lao, Dabao; Zhou, Weihu; Zhang, Wenying; Jiang, Xingjian; Wang, Yongxi
2017-10-01
The effective application of high performance measurement technology can greatly improve the large-scale equipment manufacturing ability. Therefore, the geometric parameters measurement, such as size, attitude and position, requires the measurement system with high precision, multi-function, portability and other characteristics. However, the existing measuring instruments, such as laser tracker, total station, photogrammetry system, mostly has single function, station moving and other shortcomings. Laser tracker needs to work with cooperative target, but it can hardly meet the requirement of measurement in extreme environment. Total station is mainly used for outdoor surveying and mapping, it is hard to achieve the demand of accuracy in industrial measurement. Photogrammetry system can achieve a wide range of multi-point measurement, but the measuring range is limited and need to repeatedly move station. The paper presents a non-contact opto-electronic measuring instrument, not only it can work by scanning the measurement path but also measuring the cooperative target by tracking measurement. The system is based on some key technologies, such as absolute distance measurement, two-dimensional angle measurement, automatically target recognition and accurate aiming, precision control, assembly of complex mechanical system and multi-functional 3D visualization software. Among them, the absolute distance measurement module ensures measurement with high accuracy, and the twodimensional angle measuring module provides precision angle measurement. The system is suitable for the case of noncontact measurement of large-scale equipment, it can ensure the quality and performance of large-scale equipment throughout the process of manufacturing and improve the manufacturing ability of large-scale and high-end equipment.
Crash tests of four identical high-wing single-engine airplanes
NASA Technical Reports Server (NTRS)
Vaughan, V. L., Jr.; Hayduk, R. J.
1980-01-01
Four identical four place, high wing, single engine airplane specimens with nominal masses of 1043 kg were crash tested at the Langley Impact Dynamics Research Facility under controlled free flight conditions. These tests were conducted with nominal velocities of 25 m/sec along the flight path angles, ground contact pitch angles, and roll angles. Three of the airplane specimens were crashed on a concrete surface; one was crashed on soil. Crash tests revealed that on a hard landing, the main landing gear absorbed about twice the energy for which the gear was designed but sprang back, tending to tip the airplane up to its nose. On concrete surfaces, the airplane impacted and remained in the impact attitude. On soil, the airplane flipped over on its back. The crash impact on the nose of the airplane, whether on soil or concrete, caused massive structural crushing of the forward fuselage. The liveable volume was maintained in both the hard landing and the nose down specimens but was not maintained in the roll impact and nose down on soil specimens.
NASA Astrophysics Data System (ADS)
Staier, Florian; Eipel, Heinz; Matula, Petr; Evsikov, Alexei V.; Kozubek, Michal; Cremer, Christoph; Hausmann, Michael
2011-09-01
With the development of novel fluorescence techniques, high resolution light microscopy has become a challenging technique for investigations of the three-dimensional (3D) micro-cosmos in cells and sub-cellular components. So far, all fluorescence microscopes applied for 3D imaging in biosciences show a spatially anisotropic point spread function resulting in an anisotropic optical resolution or point localization precision. To overcome this shortcoming, micro axial tomography was suggested which allows object tilting on the microscopic stage and leads to an improvement in localization precision and spatial resolution. Here, we present a miniaturized device which can be implemented in a motor driven microscope stage. The footprint of this device corresponds to a standard microscope slide. A special glass fiber can manually be adjusted in the object space of the microscope lens. A stepwise fiber rotation can be controlled by a miniaturized stepping motor incorporated into the device. By means of a special mounting device, test particles were fixed onto glass fibers, optically localized with high precision, and automatically rotated to obtain views from different perspective angles under which distances of corresponding pairs of objects were determined. From these angle dependent distance values, the real 3D distance was calculated with a precision in the ten nanometer range (corresponding here to an optical resolution of 10-30 nm) using standard microscopic equipment. As a proof of concept, the spindle apparatus of a mature mouse oocyte was imaged during metaphase II meiotic arrest under different perspectives. Only very few images registered under different rotation angles are sufficient for full 3D reconstruction. The results indicate the principal advantage of the micro axial tomography approach for many microscopic setups therein and also those of improved resolutions as obtained by high precision localization determination.
Laser interferometric high-precision angle monitor for JASMINE
NASA Astrophysics Data System (ADS)
Niwa, Yoshito; Arai, Koji; Sakagami, Masaaki; Gouda, Naoteru; Kobayashi, Yukiyasu; Yamada, Yoshiyuki; Yano, Taihei
2006-06-01
The JASMINE instrument uses a beam combiner to observe two different fields of view separated by 99.5 degrees simultaneously. This angle is so-called basic angle. The basic angle of JASMINE should be stabilized and fluctuations of the basic angle should be monitored with the accuracy of 10 microarcsec in root-mean-square over the satellite revolution period of 5 hours. For this purpose, a high-precision interferometric laser metrogy system is employed. One of the available techniques for measuring the fluctuations of the basic angle is a method known as the wave front sensing using a Fabry-Perot type laser interferometer. This technique is to detect fluctuations of the basic angle as displacement of optical axis in the Fabry-Perot cavity. One of the advantages of the technique is that the sensor is made to be sensitive only to the relative fluctuations of the basic angle which the JASMINE wants to know and to be insensitive to the common one; in order to make the optical axis displacement caused by relative motion enhanced the Fabry-Perot cavity is formed by two mirrors which have long radius of curvature. To verify the principle of this idea, the experiment was performed using a 0.1m-length Fabry-Perot cavity with the mirror curvature of 20m. The mirrors of the cavity were artificially actuated in either relative way or common way and the resultant outputs from the sensor were compared.
In Vivo Spinal Posture during Upright and Reclined Sitting in an Office Chair
Zemp, Roland; Taylor, William R.; Lorenzetti, Silvio
2013-01-01
Increasing numbers of people spend the majority of their working lives seated in an office chair. Musculoskeletal disorders, in particular low back pain, resulting from prolonged static sitting are ubiquitous, but regularly changing sitting position throughout the day is thought to reduce back problems. Nearly all currently available office chairs offer the possibility to alter the backrest reclination angles, but the influence of changing seating positions on the spinal column remains unknown. In an attempt to better understand the potential to adjust or correct spine posture using adjustable seating, five healthy subjects were analysed in an upright and reclined sitting position conducted in an open, upright MRI scanner. The shape of the spine, as described using the vertebral bodies' coordinates, wedge angles, and curvature angles, showed high inter-subject variability between the two seating positions. The mean lumbar, thoracic, and cervical curvature angles were 29 ± 15°, −29 ± 4°, and 13 ± 8° for the upright and 33 ± 12°, −31 ± 7°, and 7 ± 7° for the reclined sitting positions. Thus, a wide range of seating adaptation is possible through modification of chair posture, and dynamic seating options may therefore provide a key feature in reducing or even preventing back pain caused by prolonged static sitting. PMID:24175307
Alar setback technique: a controlled method of nasal tip deprojection.
Foda, H M
2001-11-01
To describe an alar cartilage-modifying technique aimed at decreasing nasal tip projection in cases with overdeveloped alar cartilages and to compare it with other deprojection techniques used to correct such deformity. Selected case series. University and private practice settings in Alexandria, Egypt. Twenty patients presenting for rhinoplasty who had overprojected nasal tips primarily due to overdeveloped alar cartilages. All cases were primary cases except for one patient, who had undergone 2 previous rhinoplasties. An external rhinoplasty approach was used to set back the alar cartilages by shortening their medial and lateral crura. The choice of performing a high or low setback depended on the preexisting lobule-to-columella ratio. Following the setback, the alar cartilages were reconstructed in a fashion that increased the strength and stability of the tip complex. Subjective evaluation included clinical examination, analysis of preoperative and postoperative photographs, and patient satisfaction. Objective evaluation of nasal tip projection, using the Goode ratio and the nasofacial angle, was performed preoperatively and repeated at least 6 months postoperatively. A low setback was performed in 16 cases (80%) and a high setback in 4 (20%). The mean follow-up period was 18 months (range, 6-36 months). The technique effectively deprojected the nasal tip as evidenced by the considerable postoperative decrease in values of the Goode ratio and the nasofacial angle. No complications were encountered and no revision surgical procedures were required. The alar setback technique has many advantages; it results in precise predictable amounts of deprojection, controls the degree of tip rotation, preserves the natural contour of the nasal tip, respects the tip support mechanisms, increases the strength and stability of nasal tip complex, preserves or restores the normal lobule-to-columella proportion, and does not lead to alar flaring. However, the technique requires an external rhinoplasty approach and fine technical precision.
Non-rigid Earth rotation series
NASA Astrophysics Data System (ADS)
Pashkevich, V. V.
2008-04-01
The last years a lot of attempts to derive a high-precision theory of the non-rigid Earth rotation was carried out. For these purposes the different transfer functions are used. Usually these transfer func- tions are applied to the series representing the nutation in longitude and in obliquity of the rigid Earth rotation with respect to the ecliptic of date. The aim of this investigation is a construction of the new high- precision non-rigid Earth rotation series (SN9000), dynamically adequate to the DE404/LE404 ephemeris over 2000 years, which are expressed as a function of Euler angles ψ, θ and φ with respect to the fixed ecliptic plane and equinox J2000.0. The early stages of the previous investigation: 1. The high-precision numerical solution of the rigid Earth rotation have been constructed (V.V.Pashkevich, G.I.Eroshkin and A.Brzezinski, 2004), (V.V.Pashkevich and G.I.Eroshkin, Proceedings of Journees 2004). The initial con- ditions have been calculated from SMART97 (P.Bretagnon, G.Francou, P.Rocher, J.L.Simon,1998). The discrepancies between the numerical solution and the semi-analytical solution SMART97 were obtained in Euler angles over 2000 years with one-day spacing. 2. Investigation of the discrepancies is carried out by the least squares and by the spectral analysis algorithms (V.V.Pashkevich and G.I.Eroshkin, Proceedings of Journees 2005). The high-precision rigid Earth rotation series S9000 are determined (V.V.Pashkevich and G.I.Eroshkin, 2005 ). The next stage of this investigation: 3. The new high-precision non-rigid Earth rotation series (SN9000), which are expressed as a function of Euler angles, are constructed by using the method (P.Bretagnon, P.M.Mathews, J.-L.Simon: 1999) and the transfer function MHB2002 (Mathews, P. M., Herring, T. A., and Buffett B. A., 2002).
Fang, Ning; Sun, Wei
2015-04-21
A method, apparatus, and system for improved VA-TIRFM microscopy. The method comprises automatically controlled calibration of one or more laser sources by precise control of presentation of each laser relative a sample for small incremental changes of incident angle over a range of critical TIR angles. The calibration then allows precise scanning of the sample for any of those calibrated angles for higher and more accurate resolution, and better reconstruction of the scans for super resolution reconstruction of the sample. Optionally the system can be controlled for incident angles of the excitation laser at sub-critical angles for pseudo TIRFM. Optionally both above-critical angle and sub critical angle measurements can be accomplished with the same system.
Design of automatic leveling and centering system of theodolite
NASA Astrophysics Data System (ADS)
Liu, Chun-tong; He, Zhen-Xin; Huang, Xian-xiang; Zhan, Ying
2012-09-01
To realize the theodolite automation and improve the azimuth Angle measurement instrument, the theodolite automatic leveling and centering system with the function of leveling error compensation is designed, which includes the system solution, key components selection, the mechanical structure of leveling and centering, and system software solution. The redesigned leveling feet are driven by the DC servo motor; and the electronic control center device is installed. Using high precision of tilt sensors as horizontal skew detection sensors ensures the effectiveness of the leveling error compensation. Aiming round mark center is located using digital image processing through surface array CCD; and leveling measurement precision can reach the pixel level, which makes the theodolite accurate centering possible. Finally, experiments are conducted using the automatic leveling and centering system of the theodolite. The results show the leveling and centering system can realize automatic operation with high centering accuracy of 0.04mm.The measurement precision of the orientation angle after leveling error compensation is improved, compared with that of in the traditional method. Automatic leveling and centering system of theodolite can satisfy the requirements of the measuring precision and its automation.
Homer, Michael D.; Peterson, James T.; Jennings, Cecil A.
2015-01-01
Back-calculation of length-at-age from otoliths and spines is a common technique employed in fisheries biology, but few studies have compared the precision of data collected with this method for catfish populations. We compared precision of back-calculated lengths-at-age for an introducedIctalurus furcatus (Blue Catfish) population among 3 commonly used cross-sectioning techniques. We used gillnets to collect Blue Catfish (n = 153) from Lake Oconee, GA. We estimated ages from a basal recess, articulating process, and otolith cross-section from each fish. We employed the Frasier-Lee method to back-calculate length-at-age for each fish, and compared the precision of back-calculated lengths among techniques using hierarchical linear models. Precision in age assignments was highest for otoliths (83.5%) and lowest for basal recesses (71.4%). Back-calculated lengths were variable among fish ages 1–3 for the techniques compared; otoliths and basal recesses yielded variable lengths at age 8. We concluded that otoliths and articulating processes are adequate for age estimation of Blue Catfish.
Method for measuring tri-axial lumbar motion angles using wearable sheet stretch sensors
Nakamoto, Hiroyuki; Yamaji, Tokiya; Ootaka, Hideo; Bessho, Yusuke; Nakamura, Ryo; Ono, Rei
2017-01-01
Background Body movements, such as trunk flexion and rotation, are risk factors for low back pain in occupational settings, especially in healthcare workers. Wearable motion capture systems are potentially useful to monitor lower back movement in healthcare workers to help avoid the risk factors. In this study, we propose a novel system using sheet stretch sensors and investigate the system validity for estimating lower back movement. Methods Six volunteers (female:male = 1:1, mean age: 24.8 ± 4.0 years, height 166.7 ± 5.6 cm, weight 56.3 ± 7.6 kg) participated in test protocols that involved executing seven types of movements. The movements were three uniaxial trunk movements (i.e., trunk flexion-extension, trunk side-bending, and trunk rotation) and four multiaxial trunk movements (i.e., flexion + rotation, flexion + side-bending, side-bending + rotation, and moving around the cranial–caudal axis). Each trial lasted for approximately 30 s. Four stretch sensors were attached to each participant’s lower back. The lumbar motion angles were estimated using simple linear regression analysis based on the stretch sensor outputs and compared with those obtained by the optical motion capture system. Results The estimated lumbar motion angles showed a good correlation with the actual angles, with correlation values of r = 0.68 (SD = 0.35), r = 0.60 (SD = 0.19), and r = 0.72 (SD = 0.18) for the flexion-extension, side bending, and rotation movements, respectively (all P < 0.05). The estimation errors in all three directions were less than 3°. Conclusion The stretch sensors mounted on the back provided reasonable estimates of the lumbar motion angles. The novel motion capture system provided three directional angles without capture space limits. The wearable system possessed great potential to monitor the lower back movement in healthcare workers and helping prevent low back pain. PMID:29020053
Trails of Kilovolt Ions Created by Subsurface Channeling
DOE Office of Scientific and Technical Information (OSTI.GOV)
Redinger, Alex; Standop, Sebastian; Michely, Thomas
2010-02-19
Using scanning tunneling microscopy, we observe the damage trails produced by keV noble-gas ions incident at glancing angles onto Pt(111). Surface vacancies and adatoms aligned along the ion trajectory constitute the ion trails. Atomistic simulations reveal that these straight trails are produced by nuclear (elastic) collisions with surface layer atoms during subsurface channeling of the projectiles. In a small energy window around 5 keV, Xe{sup +} ions create vacancy grooves that mark the ion trajectory with atomic precision. The asymmetry of the adatom production on the two sides of the projectile path is traced back to the asymmetry of themore » ion's subsurface channel.« less
High brightness angled cavity quantum cascade lasers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Heydari, D.; Bai, Y.; Bandyopadhyay, N.
2015-03-02
A quantum cascade laser (QCL) with an output power of 203 W is demonstrated in pulsed mode at 283 K with an angled cavity. The device has a ridge width of 300 μm, a cavity length of 5.8 mm, and a tilt angle of 12°. The back facet is high reflection coated, and the front facet is anti-reflection coated. The emitting wavelength is around 4.8 μm. In distinct contrast to a straight cavity broad area QCL, the lateral far field is single lobed with a divergence angle of only 3°. An ultrahigh brightness value of 156 MW cm{sup −2 }sr{sup −1} is obtained, which marks the brightestmore » QCL to date.« less
Self-Assembly of Hierarchical DNA Nanotube Architectures with Well-Defined Geometries.
Jorgenson, Tyler D; Mohammed, Abdul M; Agrawal, Deepak K; Schulman, Rebecca
2017-02-28
An essential motif for the assembly of biological materials such as actin at the scale of hundreds of nanometers and beyond is a network of one-dimensional fibers with well-defined geometry. Here, we demonstrate the programmed organization of DNA filaments into micron-scale architectures where component filaments are oriented at preprogrammed angles. We assemble L-, T-, and Y-shaped DNA origami junctions that nucleate two or three micron length DNA nanotubes at high yields. The angles between the nanotubes mirror the angles between the templates on the junctions, demonstrating that nanoscale structures can control precisely how micron-scale architectures form. The ability to precisely program filament orientation could allow the assembly of complex filament architectures in two and three dimensions, including circuit structures, bundles, and extended materials.
Measurement of the $$b\\bar{b}$$ di-jet cross section at CDF
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vallecorsa, Sofia
The dominant b production mechanism at the Tevatron is pair production through strong interactions. The lowest order QCD diagrams contain only b andmore » $$\\bar{b}$$ quarks in the final state, for which momentum conservation requires the quarks to be produced back-to-back in azimuthal opening angle. When higher order QCD processes are considered, the presence of additional light quarks and gluons in the final state allows the azimuthal angle difference, Δφ, to spread. The next to leading order QCD calculation includes diagrams up to O(α$$3\\atop{s}$$) some of which, commonly known as flavor excitation and gluon splitting, provide a contribution of approximately the same magnitude as the lowest order diagrams. The study of b$$\\bar{b}$$ angular correlation gives predictions on the effective b quark production mechanisms and on the different contributions of the leading order and next-to-leading order terms. The first experimental results on inclusive bottom production at the Tevatron were strongly underestimated by the exact NLO QCD prediction. Later on this disagreement had been explained and reduced by theoretical and experimental improvements: new QCD calculations that implement the Fixed Order with Next-to- Leading-Logarithms calculation (FONLL); updated parton distribution functions and fragmentation functions; and more precise measurements. Previous measurements of b$$\\bar{b}$$ azimuthal angle correlation have, instead, reached various level of agreement with parton shower Monte Carlo and NLO predictions. Here we present a measurement of the b$$\\bar{b}$$ jet cross section and azimuthal angle correlation performed on about 260 pb -1 of data collected by the CDF II detector at Fermilab from March 2002 to September 2004. This study extends the energy range investigated by previous analyses, measuring jet transverse energies (E T) up to values of about 220 GeV. It relies on the good tracking capabilities of the CDF detector both at the trigger level and offline. Events with heavy quarks are selected online using the Secondary Vertex Trigger (SVT), which can measure in real time the impact parameter of the tracks, in particular those originated from the decay of long-lived particles. The SVT represents the key element for all the heavy flavor measurement performed by CDF, and this analysis describes one of the first cases in which the SVT trigger is used to study high pT physics. The total cross section is mesured together with the di-jet differential cross sections as a function of the highest energy jet ET and the di-jet invariant mass. The azimuthal angular correlation (Δφ) between the two jets is also measured. As expected this distribution proves that the largest contribution to b$$\\bar{b}$$ production is due to lowest order QCD diagrams, corresponding to a back to back configuration of the two b-jets (large Δφ values). The most interesting fact is, however, that the low Δφ region also results highly populated, suggesting an important role played by higher order production terms. To verify this conclusion, results are compared to Monte Carlo predictions at leading order and next to leading order QCD. When technical details are correctly taken into account, as the contribution of the underlying event for example, it is possible to conclude that the data are in agreement with a next to leading order model. Nevertheless the agreement is not perfect and the data present some excess with respect to theoretical predictions. This thesis describes the analysis steps in details as support to the PRL paper forseen to be published soon.« less
A high precision dual feedback discrete control system designed for satellite trajectory simulator
NASA Astrophysics Data System (ADS)
Liu, Ximin; Liu, Liren; Sun, Jianfeng; Xu, Nan
2005-08-01
Cooperating with the free-space laser communication terminals, the satellite trajectory simulator is used to test the acquisition, pointing, tracking and communicating performances of the terminals. So the satellite trajectory simulator plays an important role in terminal ground test and verification. Using the double-prism, Sun etc in our group designed a satellite trajectory simulator. In this paper, a high precision dual feedback discrete control system designed for the simulator is given and a digital fabrication of the simulator is made correspondingly. In the dual feedback discrete control system, Proportional- Integral controller is used in velocity feedback loop and Proportional- Integral- Derivative controller is used in position feedback loop. In the controller design, simplex method is introduced and an improvement to the method is made. According to the transfer function of the control system in Z domain, the digital fabrication of the simulator is given when it is exposed to mechanism error and moment disturbance. Typically, when the mechanism error is 100urad, the residual standard error of pitching angle, azimuth angle, x-coordinate position and y-coordinate position are 0.49urad, 6.12urad, 4.56urad, 4.09urad respectively. When the moment disturbance is 0.1rad, the residual standard error of pitching angle, azimuth angle, x-coordinate position and y-coordinate position are 0.26urad, 0.22urad, 0.16urad, 0.15urad respectively. The digital fabrication results demonstrate that the dual feedback discrete control system designed for the simulator can achieve the anticipated high precision performance.
Jarbas da Silva, Josinaldo; Jon Schoenfeld, Brad; Nardi, Priscyla Silva Monteiro; Pecoraro, Silvio Luis; D'Andréa Greve, Julia Maria; Hartigan, Erin
2016-01-01
The purpose of this study was to compare muscle activation of the lower limb muscles when performing a maximal isometric back squat exercise over three different positions. Fifteen young, healthy, resistance-trained men performed an isometric back squat at three knee joint angles (20°, 90°, and 140°) in a randomized, counterbalanced fashion. Surface electromyography was used to measure muscle activation of the vastus lateralis (VL), vastus medialis (VM), rectus femoris (RF), biceps femoris (BF), semitendinosus (ST), and gluteus maximus (GM). In general, muscle activity was the highest at 90° for the three quadriceps muscles, yet differences in muscle activation between knee angles were muscle specific. Activity of the GM was significantly greater at 20° and 90° compared to 140°. The BF and ST displayed similar activation at all joint angles. In conclusion, knee position alters muscles activation of the quadriceps and gluteus maximus muscles. An isometric back squat at 90° generates the highest overall muscle activation, yet an isometric back squat at 140° generates the lowest overall muscle activation of the VL and GM only. PMID:27504484
NASA Astrophysics Data System (ADS)
Shui, Tao; Yang, Wen-Xing; Chen, Ai-Xi; Liu, Shaopeng; Li, Ling; Zhu, Zhonghu
2018-03-01
We propose a scheme for high-precision two-dimensional (2D) atom localization via the four-wave mixing (FWM) in a four-level double-Λ atomic system. Due to the position-dependent atom-field interaction, the 2D position information of the atoms can be directly determined by the measurement of the normalized light intensity of output FWM-generated field. We further show that, when the position-dependent generated FWM field has become sufficiently intense, efficient back-coupling to the FWM generating state becomes important. This back-coupling pathway leads to competitive multiphoton destructive interference of the FWM generating state by three supplied and one internally generated fields. We find that the precision of 2D atom localization can be improved significantly by the multiphoton destructive interference and depends sensitively on the frequency detunings and the pump field intensity. Interestingly enough, we show that adjusting the frequency detunings and the pump field intensity can modify significantly the FWM efficiency, and consequently lead to a redistribution of the atoms. As a result, the atom can be localized in one of four quadrants with holding the precision of atom localization.
NASA Astrophysics Data System (ADS)
Kostogryz, Nadiia; Berdyugina, Svetlana; Gisler, Daniel; Berkefeld, Thomas
2017-04-01
In planetary atmospheres, main sources of opacity are molecular absorption and scattering on molecules, hazes and aerosols. Hence, light reflected from a planetary atmosphere can be linearly polarized. Polarization study of inner solar system planets and exoplanets is a powerful method to characterize their atmospheres, because of a wide range of observable phase angles. For outer solar system planets, observable phase angles are very limited. For instance, Uranus can only be observed up to 3.2 degrees away from conjunctions, and its disk-integrated polarization is close to zero due to the back-scattering geometry. However, resolving the disk of Uranus and measuring the center-to-limb polarization can help constraining the vertical atmospheric structure and the nature of scattering aerosols and particles. In October 2016, we carried out polarization measurements of Uranus in narrow-band filters centered at methane bands and the adjacent continuum using the GREGOR Planet Polarimeter (GPP). The GPP is a high-precision polarimeter and is mounted at the 1.5-m GREGOR solar telescope, which is suitable for observing at night. In order to reach a high spatial resolution, the instrument uses an adaptive-optics system of the telescope. To interpret our measurements, we solve the polarized radiative transfer problem taking into account different scattering and absorption opacities. We calculate the center-to-limb variation of polarization of Uranus' disk in the continuum spectrum and in methane bands. By varying the vertical distribution of haze and cloud layers, we derive the vertical structure of the best-fit Uranus atmosphere.
NASA Astrophysics Data System (ADS)
Yang, Bo; Wang, Dehui; Zhou, Lin; Wu, Shuang; Xiang, Rong; Zhang, Wenhua; Gui, Huaqiao; Liu, Jianguo; Wang, Huanqing; Lu, Liang; Yu, Benli
2017-06-01
The self-mixing technique based on the traditional reflecting mirror has been demonstrated with great merit for angle sensing applications. Here we demonstrate a modified self-reflection-mixing angle measurement system by combine a right-angle prism to self-mixing angle measurement. In our system, the wavelength is crucial to the angle measurement resolution. For a microchip solid-state laser, the measurement resolution can reach 0.49 mrad, while the resolution for the He-Ne laser is 0.53 mrad. In addition, the ranges in the system with the microchip solid-state laser and He-Ne laser are up to 22 mrad and 24.9 mrad respectively. This modified angle measurement system effectively combines the advantage of self-mixing measurement system with a compact structure, providing interesting features such as of high requisition of resolution and precision.
Lee, Ju-hyun; Kim, Tae-ho
2017-01-01
[Purpose] In this paper, hamstring stretching and nerve mobilization are conducted on patients with radicular lower back pain, and changes to pain levels, pressure thresholds, angles of knee joint extension, and disorder levels of lower back pain were studied. [Subjects and Methods] The subjects were divided into two groups: one group conducted hamstring stretches and was comprised of 6 male and 5 female subjects, and the other group received nerve mobilization treatment and was comprised of 5 male and 6 female subjects. [Results] Pain level and the disorder index of lower back pain were significantly alleviated after the intervention in both groups. Pressure threshold and angles of knee extension were significantly increased after the intervention in both groups. Comparing the two groups, the alleviation of pain was more significant in the nerve mobilization group. [Conclusion] Patients with radicular lower back pain showed significant differences in pain level, pressure threshold, knee extension angle, and disorder index of lower back pain for both the hamstring stretching group and nerve mobilization group after the treatment. Hamstring stretching and nerve mobilization can be usefully applied for the therapy of patients with radicular lower back pain. PMID:28931991
Köhn, J; Licher, J; Mielke, M; Loutfi-Krauss, B; Blümer, N; Heine, B; Rödel, C; Scherf, C; Ramm, U
2017-02-01
The use of Electronic Portal Imaging Devices (EPIDs) to acquire dosimetric information, especially for 3D-back-projection, has been increasingly extended. For a precise back-projection, the accurate knowledge of the movement characteristics of the EPID during gantry rotation is an essential requirement. Measurements were conducted with different alignments of steel balls, which were mounted on the treatment table to avoid secondary effects such as the mechanical sag of gantry or jaws. The image movement of the EPID was determined by comparing the predicted projections of the phantoms with the EPID acquired image. Effects on dosimetric verifications were evaluated by γ-evaluation. The measurement results showed that the shift of the EPID image is larger in Y direction than in X direction. A maximum rotation of 0.3° and nodding of 2.4° of the detector was calculated. Changes in SDD were found up to 10mm. The angles of nodding are overall higher at discrete gantry angles in comparison to images detected for continuous rotation. Using these results we were able to correct the EPID images used for verification measurements. γ-evaluation revealed a significantly improved agreement between planned and measured EPID signal values. The measurement methods and algorithms introduced in this study are simple and comprehensive. Using these methods and algorithms we were able to quantify the major effects on geometrical and dosimetric characteristics. This allows the correction of EPID signal measurements for these effects related to the gantry angle, leading to an improved γ-evaluation for treatment plans. Copyright © 2017 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.
The high-bar and low-bar back-squats: A biomechanical analysis.
Glassbrook, Daniel J; Brown, Scott R; Helms, Eric R; Duncan, J Scott; Storey, Adam G
2017-02-08
No prior study has compared the joint angle and ground reaction force (Fv) differences between the high-bar back-squat (HBBS) and low-bar back-squat (LBBS) above 90% 1RM. Six male powerlifters (height: 179.2 ± 7.8 cm; bodyweight: 87.1 ± 8.0 kg; age: 27.3 ± 4.2 years) of international level, six male Olympic weightlifters (height: 176.7 ± 7.7 cm; bodyweight: 83.1 ± 13 kg; age: 25.3 ± 3.1 years) of national level, and six recreationally trained male athletes (height: 181.9 ± 8.7 cm; bodyweight: 87.9 ± 15.3 kg; age: 27.7 ± 3.8 years) performed the LBBS, HBBS, and both LBBS and HBBS (respectively) up to and including 100% 1RM. Small to moderate (d = 0.2-0.5) effect size differences were observed between the powerlifters and Olympic weightlifters in joint angles and Fv, although none were statistically significant. However, significant joint angle results were observed between the experienced powerlifters/weightlifters and the recreationally trained group. Our findings suggest that practitioners seeking to place emphasis on the stronger hip musculature should consider the LBBS. Also, when the goal is to lift the greatest load possible, the LBBS may be preferable. Conversely, the HBBS is more suited to replicate movements that exhibit a more upright torso position, such as the snatch and clean, or to place more emphasis on the associated musculature of the knee joint.
Laser interferometric high-precision geometry (angle and length) monitor for JASMINE
NASA Astrophysics Data System (ADS)
Niwa, Y.; Arai, K.; Ueda, A.; Sakagami, M.; Gouda, N.; Kobayashi, Y.; Yamada, Y.; Yano, T.
2008-07-01
The telescope geometry of JASMINE should be stabilized and monitored with the accuracy of about 10 to 100 pm or 10 to 100 prad of rms over about 10 hours. For this purpose, a high-precision interferometric laser metrology system is employed. Useful techniques for measuring displacements on extremely small scales are the wave-front sensing method and the heterodyne interferometrical method. Experiments for verification of measurement principles are well advanced.
NASA Astrophysics Data System (ADS)
Zhou, Shudao; Ma, Zhongliang; Wang, Min; Peng, Shuling
2018-05-01
This paper proposes a novel alignment system based on the measurement of optical path using a light beam scanning mode in a transmissometer. The system controls both the probe beam and the receiving field of view while scanning in two vertical directions. The system then calculates the azimuth angle of the transmitter and the receiver to determine the precise alignment of the optical path. Experiments show that this method can determine the alignment angles in less than 10 min with errors smaller than 66 μrad in the azimuth. This system also features high collimation precision, process automation and simple installation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tang, Shanzhi, E-mail: shanzhit@gmail.com; School of Mechanical Engineering, Xi'an Jiaotong University, Xi'an 710049; Wang, Zhao
The roll angle measurement is difficult to be achieved directly using a typical commercial interferometer due to its low sensitivity in axial direction, where the axial direction is orthogonal to the plane of the roll angular displacement. A roll angle measurement method combined diffraction gratings with a laser heterodyne interferometer is discussed in this paper. The diffraction grating placed in the plane of a roll angular displacement and the interferometer arranged in the plane's orthogonal direction, constitute the measurement pattern for the roll angle with high resolution. The roll angular displacement, considered as the linear, can be tested precisely whenmore » the corresponding angle is very small. Using the proposed method, the angle roll measurement obtains the high resolution of 0.002{sup ″}. Experiment has proved its feasibility and practicability.« less
Sweeping Jet Actuators - A New Design Tool for High Lift Generation
NASA Technical Reports Server (NTRS)
Graff, Emilio; Seele, Roman; Lin, John C.; Wygnanski, Israel
2013-01-01
Active Flow Control (AFC) experiments performed at the Caltech Lucas Wind Tunnel on a generic airplane vertical tail model proved the effectiveness of sweeping jets in improving the control authority of a rudder. The results indicated that a momentum coefficient (C(sub u)) of approximately 2% increased the side force in excess of 50% at the maximum conventional rudder deflection angle in the absence of yaw. However, sparsely distributed actuators providing a collective C(sub u) approx. = 0.1% were able to increase the side force in excess of 20%. This result is achieved by reducing the spanwise flow along the swept back rudder and its success is attributed to the large sweep back angle of the vertical tail. This current effort was sponsored by the NASA Environmentally Responsible Aviation (ERA) project.
Scattering measurements on natural and model trees
NASA Technical Reports Server (NTRS)
Rogers, James C.; Lee, Sung M.
1990-01-01
The acoustical back scattering from a simple scale model of a tree has been experimentally measured. The model consisted of a trunk and six limbs, each with 4 branches; no foliage or twigs were included. The data from the anechoic chamber measurements were then mathematically combined to construct the effective back scattering from groups of trees. Also, initial measurements have been conducted out-of-doors on a single tree in an open field in order to characterize its acoustic scattering as a function of azimuth angle. These measurements were performed in the spring, prior to leaf development. The data support a statistical model of forest scattering; the scattered signal spectrum is highly irregular but with a remarkable general resemblance to the incident signal spectrum. Also, the scattered signal's spectra showed little dependence upon scattering angle.
Temporal Control and Hand Movement Efficiency in Skilled Music Performance
Goebl, Werner; Palmer, Caroline
2013-01-01
Skilled piano performance requires considerable movement control to accomplish the high levels of timing and force precision common among professional musicians, who acquire piano technique over decades of practice. Finger movement efficiency in particular is an important factor when pianists perform at very fast tempi. We document the finger movement kinematics of highly skilled pianists as they performed a five-finger melody at very fast tempi. A three-dimensional motion-capture system tracked the movements of finger joints, the hand, and the forearm of twelve pianists who performed on a digital piano at successively faster tempi (7–16 tones/s) until they decided to stop. Joint angle trajectories computed for all adjacent finger phalanges, the hand, and the forearm (wrist angle) indicated that the metacarpophalangeal joint contributed most to the vertical fingertip motion while the proximal and distal interphalangeal joints moved slightly opposite to the movement goal (finger extension). An efficiency measure of the combined finger joint angles corresponded to the temporal accuracy and precision of the pianists’ performances: Pianists with more efficient keystroke movements showed higher precision in timing and force measures. Keystroke efficiency and individual joint contributions remained stable across tempo conditions. Individual differences among pianists supported the view that keystroke efficiency is required for successful fast performance. PMID:23300946
Wan, Q; Masters, R C; Lidzey, D; Abrams, K J; Dapor, M; Plenderleith, R A; Rimmer, S; Claeyssens, F; Rodenburg, C
2016-12-01
Recently developed detectors can deliver high resolution and high contrast images of nanostructured carbon based materials in low voltage scanning electron microscopes (LVSEM) with beam deceleration. Monte Carlo Simulations are also used to predict under which exact imaging conditions purely compositional contrast can be obtained and optimised. This allows the prediction of the electron signal intensity in angle selective conditions for back-scattered electron (BSE) imaging in LVSEM and compares it to experimental signals. Angle selective detection with a concentric back scattered (CBS) detector is considered in the model in the absence and presence of a deceleration field, respectively. The validity of the model prediction for both cases was tested experimentally for amorphous C and Cu and applied to complex nanostructured carbon based materials, namely a Poly(N-isopropylacrylamide)/Poly(ethylene glycol) Diacrylate (PNIPAM/PEGDA) semi-interpenetration network (IPN) and a Poly(3-hexylthiophene-2,5-diyl) (P3HT) film, to map nano-scale composition and crystallinity distribution by avoiding experimental imaging conditions that lead to a mixed topographical and compositional contrast. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.
Optima XE Single Wafer High Energy Ion Implanter
DOE Office of Scientific and Technical Information (OSTI.GOV)
Satoh, Shu; Ferrara, Joseph; Bell, Edward
2008-11-03
The Optima XE is the first production worthy single wafer high energy implanter. The new system combines a state-of-art single wafer endstation capable of throughputs in excess of 400 wafers/hour with a production-proven RF linear accelerator technology. Axcelis has been evolving and refining RF Linac technology since the introduction of the NV1000 in 1986. The Optima XE provides production worthy beam currents up to energies of 1.2 MeV for P{sup +}, 2.9 MeV for P{sup ++}, and 1.5 MeV for B{sup +}. Energies as low as 10 keV and tilt angles as high as 45 degrees are also available., allowingmore » the implanter to be used for a wide variety of traditional medium current implants to ensure high equipment utilization. The single wafer endstation provides precise implant angle control across wafer and wafer to wafer. In addition, Optima XE's unique dose control system allows compensation of photoresist outgassing effects without relying on traditional pressure-based methods. We describe the specific features, angle control and dosimetry of the Optima XE and their applications in addressing the ever-tightening demands for more precise process controls and higher productivity.« less
Mainenti, Míriam Raquel Meira; Felicio, Lilian Ramiro; Rodrigues, Erika de Carvalho; Ribeiro da Silva, Dalila Terrinha; Vigário Dos Santos, Patrícia
2014-04-01
[Purpose] Complaint of pain is common in computer workers, encouraging the investigation of pain-related workplace factors. This study investigated the relationship among work-related characteristics, psychosocial factors, and pain among computer workers from a university center. [Subjects and Methods] Fifteen subjects (median age, 32.0 years; interquartile range, 26.8-34.5 years) were subjected to measurement of bioelectrical impedance; photogrammetry; workplace measurements; and pain complaint, quality of life, and motivation questionnaires. [Results] The low back was the most prevalent region of complaint (76.9%). The number of body regions for which subjects complained of pain was greater in the no rest breaks group, which also presented higher prevalences of neck (62.5%) and low back (100%) pain. There were also observed associations between neck complaint and quality of life; neck complaint and head protrusion; wrist complaint and shoulder angle; and use of a chair back and thoracic pain. [Conclusion] Complaint of pain was associated with no short rest breaks, no use of a chair back, poor quality of life, high head protrusion, and shoulder angle while using the mouse of a computer.
Yoo, Won-Gyu
2014-02-01
[Purpose] The purpose of this study was to document the effect of individual strengthening exercises for posterior pelvic tilt muscles on back pain, pelvic tilt angle, and lumbar ROM of a low back pain (LBP) patient with excessive lordosis. [Subjects] The subject was a 28 year-old male with excessive lordosis who complained of severe LBP at the L3 level. [Methods] He performed individual strengthening exercises for the posterior pelvic tilt muscles (rectus abdominis, gluteus maximus, hamstring). [Results] Pelvic tilt angles on the right and left sides recovered to his normal ranges. Limited lumbar ROM increased, and low back pain decreased. [Conclusion] We suggest that an approach of individual resistance exercises is necessary for the effective and fast strengthening of the pelvic posterior tilt muscles in case of LBP with excessive lordosis.
NASA Astrophysics Data System (ADS)
Zhou, Zengxiang; Jin, Yi; Zhai, Chao; Xing, Xiaozheng
2008-07-01
In the LAMOST project, the unit-holes on the Focal Plane Plate are the final installation location of the optical fiber positioning system. Theirs precision will influence the observation efficiency of the LAMOST. For the unique requirements, the unit-holes on the Focal Plane Plate are composed by a series of tiny angle dimensional holes which dimensional angle are between 16' to 2.5°. According to these requirements, the measurement of the tiny angle dimensional holes for the unit-holes needs to less than 3'. And all the unit-holes point to the virtual sphere center of the Focal Plane Plate. To that end, the angle departure of the unit-holes axis is changed to the distance from the virtual sphere center of Focal Plane Plate to the unit-holes axis. That is the better way to evaluate the technical requirements of the dimensional angle errors. In the measuring process, common measuring methods do not fit for the tiny angle dimensional hole by CMM(coordinate measurement machine). An extraordinary way to solve this problem is to insert a measuring stick into a unit-hole, with a target ball on the stick. Then measure the low point of the ball center and pull out the stick for the high station of center. Finally, calculate the two points for the unit-hole axis to get the angle departure. But on the other hand, use this methods will bring extra errors for the measuring stick and the target ball. For better analysis this question, a series experiments are mentioned in this paper, which testify that the influence of the measure implement is little. With increasing the distance between the low point and the high point position in the measuring process should enhance the accuracy of dimensional angle measurement.
Refraction corrections for surveying
NASA Technical Reports Server (NTRS)
Lear, W. M.
1979-01-01
Optical measurements of range and elevation angle are distorted by the earth's atmosphere. High precision refraction correction equations are presented which are ideally suited for surveying because their inputs are optically measured range and optically measured elevation angle. The outputs are true straight line range and true geometric elevation angle. The 'short distances' used in surveying allow the calculations of true range and true elevation angle to be quickly made using a programmable pocket calculator. Topics covered include the spherical form of Snell's Law; ray path equations; and integrating the equations. Short-, medium-, and long-range refraction corrections are presented in tables.
Wave Turning and Flow Angle in the E-Region Ionosphere
NASA Astrophysics Data System (ADS)
Young, M.; Oppenheim, M. M.; Dimant, Y. S.
2016-12-01
This work presents results of particle-in-cell (PIC) simulations of Farley-Buneman (FB) turbulence at various altitudes in the high-latitude E-region ionosphere. In that region, the FB instability regularly produces meter-scale plasma irregularities. VHF radars observe coherent echoes via Bragg scatter from wave fronts parallel or anti-parallel to the radar line of sight (LoS) but do not necessarily measure the mean direction of wave propagation. Haldoupis (1984) conducted a study of diffuse radar aurora and found that the spectral width of back-scattered power depends critically on the angle between the radar LoS and the true flow direction, called the flow angle. Knowledge of the flow angle will allow researchers to better interpret observations of coherent back-scatter. Experiments designed to observe meter-scale irregularities in the E-region ionosphere created by the FB instability typically assume that the predominant flow direction is the E×B direction. However, linear theory of Dimant and Oppenheim (2004) showed that FB waves should turn away from E×B and particle-in-cell simulations by Oppenheim and Dimant (2013) support the theory. The present study comprises a quantitative analysis of the dependence of back-scattered power, flow velocity, and spectral width as functions of the flow angle. It also demonstrates that the mean direction of meter-scale wave propagation may differ from the E×B direction by tens of degrees. The analysis includes 2-D and 3-D simulations at a range of altitudes in the auroral ionosphere. Comparison between 2-D and 3-D simulations illustrates the relative importance to the irregularity spectrum of a small but finite component in the direction parallel to B. Previous work has shown this small parallel component to be important to turbulent electron heating and nonlinear transport.
Adaptive reference voltage generator for firing angle control of line-commutated inverters
NASA Technical Reports Server (NTRS)
Dolland, C. R. (Inventor)
1983-01-01
A control system for a permanent-magnet motor driven by a multiphase line-commulated inverter is described. It is provided with integrators for integrating the back EMF of each phase of the motor for use in generating system control signals for an inverter gate logic using a sync and firing angle control generator connected to the outputs of the integrators. The firing angle control signals are produced by the control generator by means for combining 120 deg segments of the integrated back EMF signals symmetrical about their maxima into composite positive and negative waveforms, and means for sampling the maxima of each waveform every 120 deg. These samples are then used as positive and negative firing angle control signals. Whereby any change in amplitude of the integrated back EMF signals will not affect a change in the operating power factor of the motor and inverter.
Pino-Almero, Laura; Mínguez-Rey, María Fe; Cibrián-Ortiz de Anda, Rosa María; Salvador-Palmer, María Rosario; Sentamans-Segarra, Salvador
2017-04-01
Optical cross-sectional study. To study the correlation between asymmetry of the back (measured by means of surface topography) and deformity of the spine (quantified by the Cobb angle). The Cobb angle is considered the gold standard in diagnosis and follow-up of scoliosis but does not correctly characterize the three-dimensional deformity of scoliosis. Furthermore, the exposure to ionizing radiation may cause harmful effects particularly during the growth stage, including breast cancer and other tumors. Patients aged 13.15±1.96 years (range, 7-17 years; n=88) with Cobb angle greater than 10° were evaluated with X-rays and our back surface topography method through three variables: axial plane (DHOPI), coronal plane (POTSI), and profile plane (PC). Pearson's correlation was applied to determine the correlation between topographic and radiographic variables. One-way analysis of variance and Bonferroni correction were used to compare groups with different grades of scoliosis. Significance was set at p <0.01 and, in some cases, at p <0.05. We detected a positive, statistically significant correlation between Cobb angle with DHOPI ( r =0.810) and POTSI ( r =0.629) and between PC variables with thoracic kyphosis angle ( r =0.453) and lordosis lumbar angle ( r =0.275). In addition, we found statistically significant differences for DHOPI and POTSI variables according to the grade of scoliosis. Although the back surface topography method cannot substitute for radiographs in the diagnosis of scoliosis, correlations between radiographic and topographic parameters suggest that it offers additional quantitative data that may complement radiologic study.
The Orbital Workshop Waste Management Compartment
NASA Technical Reports Server (NTRS)
1972-01-01
This image is a wide-angle view of the Orbital Workshop waste management compartment. The waste management facilities presented a unique challenge to spacecraft designers. In addition to collection of liquid and solid human wastes, there was a medical requirement to dry all solid human waste products and to return the residue to Earth for examination. Liquid human waste (urine) was frozen for return to Earth. Total quantities of each astronaut's liquid and solid wastes were precisely measured. Cabin air was drawn into the toilet, shown on the wall at right in this photograph, and over the waste products to generate a flow of the waste in the desired direction. The air was then filtered for odor control and antiseptic purposes prior to being discharged back into the cabin.
1972-05-01
This image is a wide-angle view of the Orbital Workshop waste management compartment. The waste management facilities presented a unique challenge to spacecraft designers. In addition to collection of liquid and solid human wastes, there was a medical requirement to dry all solid human waste products and to return the residue to Earth for examination. Liquid human waste (urine) was frozen for return to Earth. Total quantities of each astronaut's liquid and solid wastes were precisely measured. Cabin air was drawn into the toilet, shown on the wall at right in this photograph, and over the waste products to generate a flow of the waste in the desired direction. The air was then filtered for odor control and antiseptic purposes prior to being discharged back into the cabin.
NASA Technical Reports Server (NTRS)
Sullivan, R. J.
1992-01-01
Back-analysis (reconstruction) of the stability of thirty avalanche chutes was performed in the very limited areas where high resolution imaging overlapped with available 1:500 K topographic map coverage. A new technique was developed to incorporate the third dimension (width) of an avalanche chute in stability back-analysis in order to yield unambiguous values of cohesion and angle of internal friction. The procedure is based upon extending the ordinary method of slices to three dimensions, in order to construct avalanche chute cross-sections whose widths and depths vary as a function of gradient, gravity, density of material, and phi and c. Applying the technique to the well documented slide at Lodalen, Norway as a test produces excellent correspondence with reality. Generally, the technique reveals that the width:depth ratio of any avalanche chute decreases with increasing contrast between the average slope angle and the angle of internal friction. Applying this technique to the martian avalanche chute yields results consistent with indications from earlier work, but with greater certainty. Values of cohesion and angle of internal friction identify the materials at the time of failure as moderately cohesive debris. If Sharp's identification of these features as avalanche chutes is correct, then the results here imply that weathering processes have had a significant effect to depths of tens of meters (where failure has occured) below the martian surface. It is also implied that on relatively steep slopes within Valles Marineris, sizable, unaltered, unmantled bedrock exposures for high resolution spectral and spatial scanning by Mars Observer may be scarce.
High mobility work station restraint support
NASA Technical Reports Server (NTRS)
Schermerhorn, R. S.
1971-01-01
Chair holds man in semistanding posture enabling astronauts to work comfortably with minimum restriction in weightless environment. Seat, angled at 130 deg to back support, twists and swivels up to 20 deg in all directions but forward. Two flexible thigh clips prevent occupant from slipping off.
Brault, C; Gil, C; Boboc, A; Spuig, P
2011-04-01
On the Tore Supra tokamak, a far infrared polarimeter diagnostic has been routinely used for diagnosing the current density by measuring the Faraday rotation angle. A high precision of measurement is needed to correctly reconstruct the current profile. To reach this precision, electronics used to compute the phase and the amplitude of the detected signals must have a good resilience to the noise in the measurement. In this article, the analogue card's response to the noise coming from the detectors and their impact on the Faraday angle measurements are analyzed, and we present numerical methods to calculate the phase and the amplitude. These validations have been done using real signals acquired by Tore Supra and JET experiments. These methods have been developed to be used in real-time in the future numerical cards that will replace the Tore Supra present analogue ones. © 2011 American Institute of Physics
Techniques for deriving tissue structure from multiple projection dual-energy x-ray absorptiometry
NASA Technical Reports Server (NTRS)
Feldmesser, Howard S. (Inventor); Charles, Jr., Harry K. (Inventor); Beck, Thomas J. (Inventor); Magee, Thomas C. (Inventor)
2004-01-01
Techniques for deriving bone properties from images generated by a dual-energy x-ray absorptiometry apparatus include receiving first image data having pixels indicating bone mineral density projected at a first angle of a plurality of projection angles. Second image data and third image data are also received. The second image data indicates bone mineral density projected at a different second angle. The third image data indicates bone mineral density projected at a third angle. The third angle is different from the first angle and the second angle. Principal moments of inertia for a bone in the subject are computed based on the first image data, the second image data and the third image data. The techniques allow high-precision, high-resolution dual-energy x-ray attenuation images to be used for computing principal moments of inertia and strength moduli of individual bones, plus risk of injury and changes in risk of injury to a patient.
Study on the Ag Nanowire/PDMS Pressure Sensors with Three-Layer and Back-to-Back Structures
NASA Astrophysics Data System (ADS)
Wu, Jianhao; Lan, Qiuming; Yang, Weijia; He, Xin; Yue, Yunting; Jiang, Jiayi; Jiang, Tinghui
2018-01-01
Ag nanowire (NW)/polydimethylsiloxane (PDMS) pressure sensors with the three-layer and back-to-back structures were fabricated by a coating-peeling method. The bending and pressing responses of the sensors were comparably investigated. The results reveal that two kinds of pressure sensors show similar response linearity in the bending test with a bending angle of 0-180°. However, the response sensitivity of the three-layer structured pressure sensor is superior to that of the back-to-back structural one, which exhibits that the relationship between the capacitance value (Y) and the bending angle (X) is: Y = 0.01244X + 2.9763. On the contrary, in the pressing test, the response sensitivity of the back-to-back structural sensor is better than that of the three-layer structural one. The relationship between capacitance value (Y) and the number of paper clips (pressure, X2) is Y = 0.09241X2 + 88.03597.
De Korvin, G; Randriaminahisoa, T; Cugy, E; Cheze, L; de Sèze, M
2014-12-01
The progression of adolescent idiopathic scoliosis is typically monitored via regular radiographic follow-up. The Cobb angle (as measured on whole-spine radiographs) is considered as the gold standard in scoliosis monitoring. To determine the sensitivity and specificity of back surface topography parameters, with a view to detecting changes in the Cobb angle. One hundred patients (mean age: 13.3) with Cobb angles greater than 10 degrees were included. Topographic parameters were measured in a standard position and in a position with hunched shoulders. Gibbosities and spinal curvatures were evaluated. An increase of more than 2 degrees in any one gibbosity or in the sum of the gibbosities (in either of the two examination positions) enabled the detection of a five-degree increase in the Cobb angle with a sensitivity of 86% and a specificity of 50%. If the present results are confirmed by other studies, analysis with back surface topography parameters may reduce the number of X-ray examinations required to detect increases in the Cobb angle. Copyright © 2014 Elsevier Masson SAS. All rights reserved.
Universal precision sine bar attachment
NASA Technical Reports Server (NTRS)
Mann, Franklin D. (Inventor)
1989-01-01
This invention relates to an attachment for a sine bar which can be used to perform measurements during lathe operations or other types of machining operations. The attachment can be used for setting precision angles on vises, dividing heads, rotary tables and angle plates. It can also be used in the inspection of machined parts, when close tolerances are required, and in the layout of precision hardware. The novelty of the invention is believed to reside in a specific versatile sine bar attachment for measuring a variety of angles on a number of different types of equipment.
Precise Aperture-Dependent Motion Compensation with Frequency Domain Fast Back-Projection Algorithm.
Zhang, Man; Wang, Guanyong; Zhang, Lei
2017-10-26
Precise azimuth-variant motion compensation (MOCO) is an essential and difficult task for high-resolution synthetic aperture radar (SAR) imagery. In conventional post-filtering approaches, residual azimuth-variant motion errors are generally compensated through a set of spatial post-filters, where the coarse-focused image is segmented into overlapped blocks concerning the azimuth-dependent residual errors. However, image domain post-filtering approaches, such as precise topography- and aperture-dependent motion compensation algorithm (PTA), have difficulty of robustness in declining, when strong motion errors are involved in the coarse-focused image. In this case, in order to capture the complete motion blurring function within each image block, both the block size and the overlapped part need necessary extension leading to degeneration of efficiency and robustness inevitably. Herein, a frequency domain fast back-projection algorithm (FDFBPA) is introduced to deal with strong azimuth-variant motion errors. FDFBPA disposes of the azimuth-variant motion errors based on a precise azimuth spectrum expression in the azimuth wavenumber domain. First, a wavenumber domain sub-aperture processing strategy is introduced to accelerate computation. After that, the azimuth wavenumber spectrum is partitioned into a set of wavenumber blocks, and each block is formed into a sub-aperture coarse resolution image via the back-projection integral. Then, the sub-aperture images are straightforwardly fused together in azimuth wavenumber domain to obtain a full resolution image. Moreover, chirp-Z transform (CZT) is also introduced to implement the sub-aperture back-projection integral, increasing the efficiency of the algorithm. By disusing the image domain post-filtering strategy, robustness of the proposed algorithm is improved. Both simulation and real-measured data experiments demonstrate the effectiveness and superiority of the proposal.
Comment on de-averaged back-angle heavy-ion elastic scattering excitation functions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hussein, M.S.; Canto, L.F.; Donangelo, R.
1984-06-01
It is suggested that the de-averaged 180/sup 0/ excitation function of /sup 16/O+ /sup 28/Si, recently considered by Frahn and Kaufmann, is strongly model dependent. Within a multistep ..cap alpha..-transfer description of the back-angle anomaly, we obtain a de-averaged 180/sup 0/ excitation function that exhibits a more regular gross structure.
Comparative Study on a Solving Model and Algorithm for a Flush Air Data Sensing System
Liu, Yanbin; Xiao, Dibo; Lu, Yuping
2014-01-01
With the development of high-performance aircraft, precise air data are necessary to complete challenging tasks such as flight maneuvering with large angles of attack and high speed. As a result, the flush air data sensing system (FADS) was developed to satisfy the stricter control demands. In this paper, comparative stuides on the solving model and algorithm for FADS are conducted. First, the basic principles of FADS are given to elucidate the nonlinear relations between the inputs and the outputs. Then, several different solving models and algorithms of FADS are provided to compute the air data, including the angle of attck, sideslip angle, dynamic pressure and static pressure. Afterwards, the evaluation criteria of the resulting models and algorithms are discussed to satisfy the real design demands. Futhermore, a simulation using these algorithms is performed to identify the properites of the distinct models and algorithms such as the measuring precision and real-time features. The advantages of these models and algorithms corresponding to the different flight conditions are also analyzed, furthermore, some suggestions on their engineering applications are proposed to help future research. PMID:24859025
Comparative study on a solving model and algorithm for a flush air data sensing system.
Liu, Yanbin; Xiao, Dibo; Lu, Yuping
2014-05-23
With the development of high-performance aircraft, precise air data are necessary to complete challenging tasks such as flight maneuvering with large angles of attack and high speed. As a result, the flush air data sensing system (FADS) was developed to satisfy the stricter control demands. In this paper, comparative stuides on the solving model and algorithm for FADS are conducted. First, the basic principles of FADS are given to elucidate the nonlinear relations between the inputs and the outputs. Then, several different solving models and algorithms of FADS are provided to compute the air data, including the angle of attck, sideslip angle, dynamic pressure and static pressure. Afterwards, the evaluation criteria of the resulting models and algorithms are discussed to satisfy the real design demands. Futhermore, a simulation using these algorithms is performed to identify the properites of the distinct models and algorithms such as the measuring precision and real-time features. The advantages of these models and algorithms corresponding to the different flight conditions are also analyzed, furthermore, some suggestions on their engineering applications are proposed to help future research.
Dornacher, Daniel; Trubrich, Angela; Guelke, Joachim; Reichel, Heiko; Kappe, Thomas
2017-08-01
Regarding TT-TG in knee realignment surgery, two aspects have to be considered: first, there might be flaws in using absolute values for TT-TG, ignoring the knee size of the individual. Second, in high-grade trochlear dysplasia with a dome-shaped trochlea, measurement of TT-TG has proven to lack precision and reliability. The purpose of this examination was to establish a knee rotation angle, independent of the size of the individual knee and unaffected by a dysplastic trochlea. A total of 114 consecutive MRI scans of knee joints were analysed by two observers, retrospectively. Of these, 59 were obtained from patients with trochlear dysplasia, and another 55 were obtained from patients presenting with a different pathology of the knee joint. Trochlear dysplasia was classified into low grade and high grade. TT-TG was measured according to the method described by Schoettle et al. In addition, a modified knee rotation angle was assessed. Interobserver reliability of the knee rotation angle and its correlation with TT-TG was calculated. The knee rotation angle showed good correlation with TT-TG in the readings of observer 1 and observer 2. Interobserver correlation of the parameter showed excellent values for the scans with normal trochlea, low-grade and high-grade trochlear dysplasia, respectively. All calculations were statistically significant (p < 0.05). The knee rotation angle might meet the requirements for precise diagnostics in knee realignment surgery. Unlike TT-TG, this parameter seems not to be affected by a dysplastic trochlea. In addition, the dimensionless parameter is independent of the knee size of the individual. II.
Three Dimensional Cross-Sectional Properties From Bone Densitometry
NASA Technical Reports Server (NTRS)
Cleek, Tammy M.; Whalen, Robert T.; Dalton, Bonnie P. (Technical Monitor)
2001-01-01
Bone densitometry has previously been used to obtain cross-sectional properties of bone in a single scan plane. Using three non-coplanar scans, we have extended the method to obtain the principal area Moments of inertia and orientations of the principal axes at each cross-section along the length of the scan. Various 5 aluminum phantoms were used to examine scanner characteristics to develop the highest accuracy possible for in vitro non-invasive analysis of mass distribution. Factors considered included X-ray photon energy, initial scan orientation, the included angle of the 3 scans, and Imin/Imax ratios. Principal moments of inertia were accurate to within 3.1% and principal angles were within 1 deg. of the expected value for phantoms scanned with included angles of 60 deg. and 90 deg. at the higher X-ray photon energy. Low standard deviations in error also 10 indicate high precision of calculated measurements with these included angles. Accuracy and precision decreased slightly when the included angle was reduced to 30 deg. The method was then successfully applied to a pair of excised cadaveric tibiae. The accuracy and insensitivity of the algorithms to cross-sectional shape and changing isotropy (Imin/Imax) values when various included angles are used make this technique viable for future in vivo studies.
Angle dependent antireflection property of TiO2 inspired by cicada wings
NASA Astrophysics Data System (ADS)
Zada, Imran; Zhang, Wang; Li, Yao; Sun, Peng; Cai, Nianjin; Gu, Jiajun; Liu, Qinglei; Su, Huilan; Zhang, Di
2016-10-01
Inspired by cicada wings, biomorphic TiO2 with antireflective structures (ARSs) was precisely fabricated using a simple, inexpensive, and highly effective sol-gel process combined with subsequent calcination. It was confirmed that the fabricated biomorphic TiO2 not only effectively inherited the ARS but also exhibited high-performance angle dependent antireflective properties ranging from normal to 45°. Reflectance spectra demonstrated that the reflectivity of the biomorphic TiO2 with ARSs gradually changed from 1.4% to 7.8% with the increasing incidence angle over a large visible wavelength range. This angle dependent antireflective property is attributed to an optimized gradient refractive index between air and TiO2 via ARSs on the surface. Such surfaces with ARSs may have potential application in solar cells.
Numerical analysis on temperature field in single-wire flux-aided backing-submerged arc welding
NASA Astrophysics Data System (ADS)
Pu, Juan; Wu, Ming Fang; Pan, Haichao
2017-07-01
Single-wire flux-aided backing-submerged arc welding (FAB-SAW) technology has been widely used to weld thick steel plate due to its easy assembly and high heat input. The microstructure and property of welded joint are closely related to the thermal field of FAB-SAW process. In this research, the feature of thermal field for single-wire FAB-SAW was investigated. Based on the heat transfer mechanism, a three-dimensional transient model for thermal field was developed based on the influence of steel thickness, groove angle and ceramic backing. The temperature profile in single-wire FAB-SAW of D36 steel under different welding conditions was simulated by ANSYS. The characteristic of thermal field was analyzed and the influences of groove angle on temperature field for different plate thicknesses were discussed. The calculated geometries and dimensions of weld cross-section under different conditions show a good agreement with the experimental results. This newly built model can describe the thermal field accurately, which would be helpful to understanding the thermophysical mechanism of FAB-SAW and optimizing the welding process.
The line integral approach to radarclinometry
Wildey, R.L.
1987-01-01
Radarclinometry, the invention of which has been previously reported, is a technique for deriving a topographic map from a single radar image by using the dependence upon terrain-surface orientation of the integrated signal of an individual image pixel. The radiometric calibration required for precise operation and testing does not yet exist, but the imminence of important applications justifies parallel, rather than serial, development of radarclinometry and radiometrically calibrated radar. The present investigation reports three developmental advances: (1) The solid angle of integration of back-scattered specific intensity constituting a pixel signal is more accurately accounted for in its dependence on surface orientation than in previous work. (2) The local curvature hypothesis, which removes the requirement of a ground-truth profile as a boundary condition and enables the formulation of the theory in terms of a line integral, has been expanded to include the three possibilities of Local Cylindricity, Local Biaxial Ellipsoidal Hyperbolicity, and Least-Squares Local Sphericity. (3) The theory is integrated in the cross-ground-range direction, which is ill-conditioned compared to the ground-range direction, whereas the original formulation was based on enforced isotropy in the two-dimensional power spectrum of the topography. It was found necessary to prohibit the hypothesis of Local Biaxial Ellipsoidal Hyperbolicity in the cross-range stepping, for reasons not completely clear. Variation in the proportioning between curvature assumptions had produced topographic maps that are in good mutual agreement but not realistic in appearance. They are severely banded parallel to the ground-range direction, most especially at small radar zenith angles. Numerical experimentation with the falsification of topography through incorrect decalibration as performed on a Gaussian hill suggests that the banding and its exaggeration at high radar incidence angles could easily be due to our lack of radiometric calibration. ?? 1987 D. Reidel Publishing Company.
Tunable hard X-ray spectrometer utilizing asymmetric planes of a quartz transmission crystal
DOE Office of Scientific and Technical Information (OSTI.GOV)
Seely, John F., E-mail: seelyjf@gmail.com; Feldman, Uri; Henins, Albert
2016-05-15
A Cauchois type hard x-ray spectrometer was developed that utilizes the (301) diffraction planes at an asymmetric angle of 23.51° to the normal to the surface of a cylindrically curved quartz transmission crystal. The energy coverage is tunable by rotating the crystal and the detector arm, and spectra were recorded in the 8 keV to 20 keV range with greater than 2000 resolving power. The high resolution results from low aberrations enabled by the nearly perpendicular angle of the diffracted rays with the back surface of the crystal. By using other asymmetric planes of the same crystal and rotating tomore » selected angles, the spectrometer can operate with high resolution up to 50 keV.« less
Cross-sectional structural parameters from densitometry
NASA Technical Reports Server (NTRS)
Cleek, Tammy M.; Whalen, Robert T.
2002-01-01
Bone densitometry has previously been used to obtain cross-sectional properties of bone from a single X-ray projection across the bone width. Using three unique projections, we have extended the method to obtain the principal area moments of inertia and orientations of the principal axes at each scan cross-section along the length of the scan. Various aluminum phantoms were used to examine scanner characteristics to develop the highest accuracy possible for in vitro non-invasive analysis of cross-sectional properties. Factors considered included X-ray photon energy, initial scan orientation, the angle spanned by the three scans (included angle), and I(min)/I(max) ratios. Principal moments of inertia were accurate to within +/-3.1% and principal angles were within +/-1 degrees of the expected value for phantoms scanned with included angles of 60 degrees and 90 degrees at the higher X-ray photon energy (140 kVp). Low standard deviations in the error (0.68-1.84%) also indicate high precision of calculated measurements with these included angles. Accuracy and precision decreased slightly when the included angle was reduced to 30 degrees. The method was then successfully applied to a pair of excised cadaveric tibiae. The accuracy and insensitivity of the algorithms to cross-sectional shape and changing isotropy (I(min)/I(max)) values when various included angles are used make this technique viable for future in vivo studies.
Angle-selective optical filter for highly sensitive reflection photoplethysmogram
Hwang, Chan-Sol; Yang, Sung-Pyo; Jang, Kyung-Won; Park, Jung-Woo; Jeong, Ki-Hun
2017-01-01
We report an angle-selective optical filter (ASOF) for highly sensitive reflection photoplethysmography (PPG) sensors. The ASOF features slanted aluminum (Al) micromirror arrays embedded in transparent polymer resin, which effectively block scattered light under human tissue. The device microfabrication was done by using geometry-guided resist reflow of polymer micropatterns, polydimethylsiloxane replica molding, and oblique angle deposition of thin Al film. The angular transmittance through the ASOF is precisely controlled by the angle of micromirrors. For the mirror angle of 30 degrees, the ASOF accepts an incident light between - 90 to + 50 degrees and the maximum transmittance at - 55 degrees. The ASOF exhibits the substantial reduction of both the in-band noise of PPG signals over a factor of two and the low-frequency noise by three times. Consequently, this filter allows distinguishing the diastolic peak that allows miscellaneous parameters with diverse vascular information. This optical filter provides a new opportunity for highly sensitive PPG monitoring or miscellaneous optical tomography. PMID:29082070
NASA Astrophysics Data System (ADS)
Burvall, Anna; Goncharov, Alexander; Dainty, Chris
2005-09-01
The axicon is an optical element which creates a narrow focal line along the optical axis, unlike the single focal point produced by a lens. The long and precisely defined axicon focal line is used e.g. in alignment, or to extend the depth of focus of existing methods such as optical coherence tomography or light sectioning. Axicons are generally manufactured as refractive cones or diffractive circular gratings. They are also made as lens systems or doublet lenses, which are easier to produce. We present a design in the form of a reflective-refractive single-element device with annular aperture. This very compact system has only two surfaces, which can be spherical or aspheric depending on the quality required of the focal line. Both surfaces have reflective coatings at specific zones, providing an annular beam suitable for generating extended focal lines. One draw-back of a normal axicon is its sensitivity to the angle of illumination. Even for relatively small angles, astigmatism will broaden the focus and give it an asteroid shape. For our design, with spherical surfaces concentric about the center of the entrance pupil, the focal line remains unchanged in off-axis illumination.
Moir, Gavin L; Mergy, David; Witmer, Ca; Davis, Shala E
2011-06-01
The acute effects of manipulating the volume and load of back squats on subsequent countermovement vertical jump performance were investigated in the present study. Eleven National Collegiate Athletic Association division II female volleyball players performed 10 countermovement vertical jumps (CMJs) on a force platform 2 minutes after the last squat repetition of a high-load (HL) or high-volume (HV) squat protocol. Two minutes of rest was provided between each CMJ. The HL protocol culminated in the subjects having to perform 3 repetitions with a load equivalent to 90% 1 repetition maximum (1RM) back squat, whereas 12 repetitions with a load equivalent to 37% 1RM were performed in the HV protocol. During an initial familiarization session, knee angles were recorded during a series of CMJs, and these angles were used to control the depth of descent during all subsequent back squats. Jump height (JH) and vertical stiffness (VStiff) were calculated during each of the 10 CMJ, and the change in these variables after the 2 squat protocols was assessed using an analysis of variance model with repeated measures on 2 factors (Protocol [2-levels]; Time [2-levels]). There was no significant difference in JH after the HL and HV protocols (p > 0.05). A significant Protocol × Time interaction for VStiff resulted from the increase after the HL protocol being greater than that after the HV protocol (p = 0.03). The knee angles before the HL and HV protocols were significantly greater than those measured during the initial familiarization session (p = 0.001). Although neither squat protocol provided any benefit in improving JH, the heavy squat protocol produced greater increases in VStiff during the CMJ. Because of the increased VStiff caused by the HL protocol, volleyball coaches may consider using such protocols with their players to improve performance in jumps performed from a run such as the spike and on-court agility.
Tan, Xinran; Zhu, Fan; Wang, Chao; Yu, Yang; Shi, Jian; Qi, Xue; Yuan, Feng; Tan, Jiubin
2017-11-19
This study presents a two-dimensional micro-/nanoradian angle generator (2D-MNAG) that achieves high angular displacement resolution and repeatability using a piezo-driven flexure hinge for two-dimensional deflections and three capacitive sensors for output angle monitoring and feedback control. The principal error of the capacitive sensor for precision microangle measurement is analyzed and compensated for; so as to achieve a high angle output resolution of 10 nrad (0.002 arcsec) and positioning repeatability of 120 nrad (0.024 arcsec) over a large angular range of ±4363 μrad (±900 arcsec) for the 2D-MNAG. The impact of each error component, together with the synthetic error of the 2D-MNAG after principal error compensation are determined using Monte Carlo simulation for further improvement of the 2D-MNAG.
Tan, Xinran; Zhu, Fan; Wang, Chao; Yu, Yang; Shi, Jian; Qi, Xue; Yuan, Feng; Tan, Jiubin
2017-01-01
This study presents a two-dimensional micro-/nanoradian angle generator (2D-MNAG) that achieves high angular displacement resolution and repeatability using a piezo-driven flexure hinge for two-dimensional deflections and three capacitive sensors for output angle monitoring and feedback control. The principal error of the capacitive sensor for precision microangle measurement is analyzed and compensated for; so as to achieve a high angle output resolution of 10 nrad (0.002 arcsec) and positioning repeatability of 120 nrad (0.024 arcsec) over a large angular range of ±4363 μrad (±900 arcsec) for the 2D-MNAG. The impact of each error component, together with the synthetic error of the 2D-MNAG after principal error compensation are determined using Monte Carlo simulation for further improvement of the 2D-MNAG. PMID:29156595
Effects of general principles of person transfer techniques on low back joint extension moment.
Katsuhira, Junji; Yamasaki, Syun; Yamamoto, Sumiko; Maruyama, Hitoshi
2010-01-01
The purpose of this study was to examine the effects of general principles of person transfer techniques specifically on the low back joint extension moment. These effects were examined by the following measurable quantitative parameters: 1) trunk bending angle, 2) knee flexion angle, 3) distance between the centers of gravity (COGs) of the caregiver and patient, representing the distance between the caregiver and patient, and 4) the vertical component of the ground reaction force representing the amount of the weight-bearing load on the caregiver's low back during transfers with and without assistive devices. Twenty students each took the role of caregiver, and one healthy adult simulated a patient. The participants performed three different transfer tasks: without any assistive device, with the patient wearing a low back belt, and with the caregiver using a transfer board. We found that the distance between the COGs and the vertical component of the ground reaction force, but not the trunk bending and knee flexion angles, were the variables that affected the low back joint extension moment. Our results suggest that the general principle of decreasing the distance between COGs is most effective for decreasing the low back joint extension moment during transfers under all conditions.
Study on verifying the angle measurement performance of the rotary-laser system
NASA Astrophysics Data System (ADS)
Zhao, Jin; Ren, Yongjie; Lin, Jiarui; Yin, Shibin; Zhu, Jigui
2018-04-01
An angle verification method to verify the angle measurement performance of the rotary-laser system was developed. Angle measurement performance has a great impact on measuring accuracy. Although there is some previous research on the verification of angle measuring uncertainty for the rotary-laser system, there are still some limitations. High-precision reference angles are used in the study of the method, and an integrated verification platform is set up to evaluate the performance of the system. This paper also probes the error that has biggest influence on the verification system. Some errors of the verification system are avoided via the experimental method, and some are compensated through the computational formula and curve fitting. Experimental results show that the angle measurement performance meets the requirement for coordinate measurement. The verification platform can evaluate the uncertainty of angle measurement for the rotary-laser system efficiently.
Comparison of Lumbosacral Alignment in Geriatric and Non-Geriatric patients suffering low back pain.
Kocyigit, Burhan Fatih; Berk, Ejder
2018-01-01
Lumbosacral alignment is a crucial factor for an appropriate spinal function. Changes in spinal alignment lead to diminished body biomechanics. Additionally, lumbosacral alignment may affect quality of life, sagittal balance and fall risk in elderly. In this study, we aimed to compare lumbosacral alignment in geriatric and non-geriatric patients suffering from low back pain. A total of 202 (120 male and 82 female) patients who visited to physical medicine and rehabilitation clinic with low back pain between January 2017 and August 2017 were enrolled in this study. Standing lateral lumbar radiographs were obtained from the electronic hospital database. Lumbar lordosis angle, sacral tilt, lumbosacral angle and lumbosacral disc angle were calculated on lateral standing lumbar radiographs. The mean age of the non-geriatric group was 43.02 ± 13.20 years, the geriatric group was 71.61 ± 6.42 years. In geriatric patients, lumbar lordosis angle, sacral tilt and lumbosacral disc angle were significantly smaller (p = 0.042, p = 0.017 and p = 0.017). No significant differences were observed in lumbosacral angle between the groups (p = 0.508). Our study indicates the specific changes in lumbosacral alignment with aging. Identifying these changes in lumbosacral alignment in the geriatric population will enable to create proper rehabilitation strategies.
Satellite-Tracking Millimeter-Wave Reflector Antenna System For Mobile Satellite-Tracking
NASA Technical Reports Server (NTRS)
Densmore, Arthur C. (Inventor); Jamnejad, Vahraz (Inventor); Woo, Kenneth E. (Inventor)
2001-01-01
A miniature dual-band two-way mobile satellite-tracking antenna system mounted on a movable vehicle includes a miniature parabolic reflector dish having an elliptical aperture with major and minor elliptical axes aligned horizontally and vertically, respectively, to maximize azimuthal directionality and minimize elevational directionality to an extent corresponding to expected pitch excursions of the movable ground vehicle. A feed-horn has a back end and an open front end facing the reflector dish and has vertical side walls opening out from the back end to the front end at a lesser horn angle and horizontal top and bottom walls opening out from the back end to the front end at a greater horn angle. An RF circuit couples two different signal bands between the feed-horn and the user. An antenna attitude controller maintains an antenna azimuth direction relative to the satellite by rotating it in azimuth in response to sensed yaw motions of the movable ground vehicle so as to compensate for the yaw motions to within a pointing error angle. The controller sinusoidally dithers the antenna through a small azimuth dither angle greater than the pointing error angle while sensing a signal from the satellite received at the reflector dish, and deduces the pointing angle error from dither-induced fluctuations in the received signal.
A satellite-tracking millimeter-wave reflector antenna system for mobile satellite-tracking
NASA Technical Reports Server (NTRS)
Densmore, Arthur C. (Inventor); Jamnejad, Vahraz (Inventor); Woo, Kenneth E. (Inventor)
1995-01-01
A miniature dual-band two-way mobile satellite tracking antenna system mounted on a movable ground vehicle includes a miniature parabolic reflector dish having an elliptical aperture with major and minor elliptical axes aligned horizontally and vertically, respectively, to maximize azimuthal directionality and minimize elevational directionality to an extent corresponding to expected pitch excursions of the movable ground vehicle. A feed-horn has a back end and an open front end facing the reflector dish and has vertical side walls opening out from the back end to the front end at a lesser horn angle and horizontal top and bottom walls opening out from the back end to the front end at a greater horn angle. An RF circuit couples two different signal bands between the feed-horn and the user. An antenna attitude controller maintains an antenna azimuth direction relative to the satellite by rotating it in azimuth in response to sensed yaw motions of the movable ground vehicle so as to compensate for the yaw motions to within a pointing error angle. The controller sinusoidally dithers the antenna through a small azimuth dither angle greater than the pointing error angle while sensing a signal from the satellite received at the reflector dish, and deduces the pointing angle error from dither-induced fluctuations in the received signal.
Tool holder for preparation and inspection of a radiused edge cutting tool
Asmanes, Charles
1979-01-01
A tool holding fixture is provided for removably holding a radiused edge cutting tool in a tool edge lapping apparatus. The fixture allows the operator to preset the lapping radius and angle before the tool holder is placed in the fixture and the holder may be removed from the lapping apparatus to inspect the tool and simply replaced in the fixture to continue lapping in accordance with a precise alignment without realignment of the tool relative to the lap. The tool holder includes a pair of self aligning bearings in the form of precision formed steel balls connected together by a rigid shaft. The tool is held by an arm extending from the shaft and the balls set in fixed position bearing cups and the holder is oscillated back and forth about a fixed axis of rotation to lap the tool radius by means of a reversibly driven belt-pulley arrangement coupled to the shaft between the bearings. To temporarily remove the holder, the drive belt is slipped over the rearward end of the holder and the holder is lifted out of the bearing cups.
Adaptive control system for line-commutated inverters
NASA Technical Reports Server (NTRS)
Dolland, C. R.; Bailey, D. A. (Inventor)
1983-01-01
A control system for a permanent magnet motor driven by a multiphase line commutated inverter is provided with integration for integrating the back EMF of each phase of the motor. This is used in generating system control signals for an inverter gate logic using a sync and firing angle (alpha) control generator connected to the outputs of the integrators. A precision full wave rectifier provides a speed control feedback signal to a phase delay rectifier via a gain and loop compensation circuit and to the integrators for adaptive control of the attenuation of low frequencies by the integrators as a function of motor speed. As the motor speed increases, the attenuation of low frequency components by the integrators is increased to offset the gain of the integrators to spurious low frequencies.
NASA Astrophysics Data System (ADS)
Li, Xinji; Hui, Mei; Zhao, Zhu; Liu, Ming; Dong, Liquan; Kong, Lingqin; Zhao, Yuejin
2018-05-01
A differential computation method is presented to improve the precision of calibration for coaxial reverse Hartmann test (RHT). In the calibration, the accuracy of the distance measurement greatly influences the surface shape test, as demonstrated in the mathematical analyses. However, high-precision absolute distance measurement is difficult in the calibration. Thus, a differential computation method that only requires the relative distance was developed. In the proposed method, a liquid crystal display screen successively displayed two regular dot matrix patterns with different dot spacing. In a special case, images on the detector exhibited similar centroid distributions during the reflector translation. Thus, the critical value of the relative displacement distance and the centroid distributions of the dots on the detector were utilized to establish the relationship between the rays at certain angles and the detector coordinates. Experiments revealed the approximately linear behavior of the centroid variation with the relative displacement distance. With the differential computation method, we increased the precision of traditional calibration 10-5 rad root mean square. The precision of the RHT was increased by approximately 100 nm.
A portable device for calibration of autocollimators with nanoradian precision
NASA Astrophysics Data System (ADS)
Yandayan, Tanfer
2017-09-01
A portable device has been developed in TUBITAK UME to calibrate high precision autocollimators with nanoradian precision. The device can operate in the range of +/-4500" which is far enough for the calibration of the available autocollimators and can generate ultra-small angles in measurement steps of 0.0005" (2.5 nrad). Description of the device with the performance tests using the calibrated precise autocollimators and novel methods will be reported. The test results indicate that the device is a good candidate for application to on-site/in-situ calibration of autocollimators with expanded uncertainties of 0.01" (50 nrad) particularly those used in slope measuring profilers.
Atypical spatiotemporal signatures of working memory brain processes in autism.
Urbain, C M; Pang, E W; Taylor, M J
2015-08-11
Working memory (WM) impairments may contribute to the profound behavioural manifestations in children with autism spectrum disorder (ASD). However, previous behavioural results are discrepant as are the few functional magnetic resonance imaging (fMRI) results collected in adults and adolescents with ASD. Here we investigate the precise temporal dynamics of WM-related brain activity using magnetoencephalography (MEG) in 20 children with ASD and matched controls during an n-back WM task across different load levels (1-back vs 2-back). Although behavioural results were similar between ASD and typically developing (TD) children, the between-group comparison performed on functional brain activity showed atypical WM-related brain processes in children with ASD compared with TD children. These atypical responses were observed in the ASD group from 200 to 600 ms post stimulus in both the low- (1-back) and high- (2-back) memory load conditions. During the 1-back condition, children with ASD showed reduced WM-related activations in the right hippocampus and the cingulate gyrus compared with TD children who showed more activation in the left dorso-lateral prefrontal cortex and the insulae. In the 2-back condition, children with ASD showed less activity in the left insula and midcingulate gyrus and more activity in the left precuneus than TD children. In addition, reduced activity in the anterior cingulate cortex was correlated with symptom severity in children with ASD. Thus, this MEG study identified the precise timing and sources of atypical WM-related activity in frontal, temporal and parietal regions in children with ASD. The potential impacts of such atypicalities on social deficits of autism are discussed.
High-precision micro/nano-scale machining system
Kapoor, Shiv G.; Bourne, Keith Allen; DeVor, Richard E.
2014-08-19
A high precision micro/nanoscale machining system. A multi-axis movement machine provides relative movement along multiple axes between a workpiece and a tool holder. A cutting tool is disposed on a flexible cantilever held by the tool holder, the tool holder being movable to provide at least two of the axes to set the angle and distance of the cutting tool relative to the workpiece. A feedback control system uses measurement of deflection of the cantilever during cutting to maintain a desired cantilever deflection and hence a desired load on the cutting tool.
A classification model of Hyperion image base on SAM combined decision tree
NASA Astrophysics Data System (ADS)
Wang, Zhenghai; Hu, Guangdao; Zhou, YongZhang; Liu, Xin
2009-10-01
Monitoring the Earth using imaging spectrometers has necessitated more accurate analyses and new applications to remote sensing. A very high dimensional input space requires an exponentially large amount of data to adequately and reliably represent the classes in that space. On the other hand, with increase in the input dimensionality the hypothesis space grows exponentially, which makes the classification performance highly unreliable. Traditional classification algorithms Classification of hyperspectral images is challenging. New algorithms have to be developed for hyperspectral data classification. The Spectral Angle Mapper (SAM) is a physically-based spectral classification that uses an ndimensional angle to match pixels to reference spectra. The algorithm determines the spectral similarity between two spectra by calculating the angle between the spectra, treating them as vectors in a space with dimensionality equal to the number of bands. The key and difficulty is that we should artificial defining the threshold of SAM. The classification precision depends on the rationality of the threshold of SAM. In order to resolve this problem, this paper proposes a new automatic classification model of remote sensing image using SAM combined with decision tree. It can automatic choose the appropriate threshold of SAM and improve the classify precision of SAM base on the analyze of field spectrum. The test area located in Heqing Yunnan was imaged by EO_1 Hyperion imaging spectrometer using 224 bands in visual and near infrared. The area included limestone areas, rock fields, soil and forests. The area was classified into four different vegetation and soil types. The results show that this method choose the appropriate threshold of SAM and eliminates the disturbance and influence of unwanted objects effectively, so as to improve the classification precision. Compared with the likelihood classification by field survey data, the classification precision of this model heightens 9.9%.
Reducing Bolt Preload Variation with Angle-of-Twist Bolt Loading
NASA Technical Reports Server (NTRS)
Thompson, Bryce; Nayate, Pramod; Smith, Doug; McCool, Alex (Technical Monitor)
2001-01-01
Critical high-pressure sealing joints on the Space Shuttle reusable solid rocket motor require precise control of bolt preload to ensure proper joint function. As the reusable solid rocket motor experiences rapid internal pressurization, correct bolt preloads maintain the sealing capability and structural integrity of the hardware. The angle-of-twist process provides the right combination of preload accuracy, reliability, process control, and assembly-friendly design. It improves significantly over previous methods. The sophisticated angle-of-twist process controls have yielded answers to all discrepancies encountered while the simplicity of the root process has assured joint preload reliability.
NASA Astrophysics Data System (ADS)
Frankiewicz, Christophe; Zoueshtiagh, Farzam; Talbi, Abdelkrim; Streque, Jérémy; Pernod, Philippe; Merlen, Alain
2014-11-01
A fluorine-based reactive ion etching (RIE) process has been applied on a new family of silicone elastomers named ‘Silastic S’ for the first time. Excellent mechanical properties are the principal advantage of this elastomer. The main objective of this study was (i) to develop a new process with an electrodeposited thin Nickel (Ni) layer as a mask to obtain a more precise pattern transfer for deep etching (ii) to investigate the etch rates and the etch profiles obtained under various plasma conditions (gas mixture ratios and pressure). The resulting process exhibits etch rates that range from 20 µm h-1 to 40 µm h-1. The process was optimized to obtain anisotropic profiles of the edges. Finally, it is shown that (iii) the wetting contact angle could be easily modified with this process from 103° to 162°, with a hysteresis that ranges from 2° to 140°. The process is, at present, the only reported solution to reproduce the ‘petal effect’ (high contact angle hysteresis value) on a highly flexible substrate. A possibility to control the contact angle hysteresis from the ‘petal effect’ to the ‘lotus effect’ (low contact angle hysteresis value) has been investigated to allow a precise control on the required energy to pin or unpin the contact line of water droplets. This opens multiple possibilities to exploit this elastomer in many microfluidics applications.
Correcting Thermal Deformations in an Active Composite Reflector
NASA Technical Reports Server (NTRS)
Bradford, Samuel C.; Agnes, Gregory S.; Wilkie, William K.
2011-01-01
Large, high-precision composite reflectors for future space missions are costly to manufacture, and heavy. An active composite reflector capable of adjusting shape in situ to maintain required tolerances can be lighter and cheaper to manufacture. An active composite reflector testbed was developed that uses an array of piezoelectric composite actuators embedded in the back face sheet of a 0.8-m reflector panel. Each individually addressable actuator can be commanded from 500 to +1,500 V, and the flatness of the panel can be controlled to tolerances of 100 nm. Measuring the surface flatness at this resolution required the use of a speckle holography interferometer system in the Precision Environmental Test Enclosure (PETE) at JPL. The existing testbed combines the PETE for test environment stability, the speckle holography system for measuring out-of-plane deformations, the active panel including an array of individually addressable actuators, a FLIR thermal camera to measure thermal profiles across the reflector, and a heat source. Use of an array of flat piezoelectric actuators to correct thermal deformations is a promising new application for these actuators, as is the use of this actuator technology for surface flatness and wavefront control. An isogrid of these actuators is moving one step closer to a fully active face sheet, with the significant advantage of ease in manufacturing. No extensive rib structure or other actuation backing structure is required, as these actuators can be applied directly to an easy-to-manufacture flat surface. Any mission with a surface flatness requirement for a panel or reflector structure could adopt this actuator array concept to create lighter structures and enable improved performance on orbit. The thermal environment on orbit tends to include variations in temperature during shadowing or changes in angle. Because of this, a purely passive system is not an effective way to maintain flatness at the scale of microns over several meters. This technology is specifically referring to correcting thermal deformations of a large, flat structure to a specified tolerance. However, the underlying concept (an array of actuators on the back face of a panel for correcting the flatness of the front face) could be extended to many applications, including energy harvesting, changing the wavefront of an optical system, and correcting the flatness of an array of segmented deployable panels.
Effects of Different Angles of the Traction Table on Lumbar Spine Ligaments: A Finite Element Study.
Farajpour, Hekmat; Jamshidi, Nima
2017-12-01
The traction bed is a noninvasive device for treating lower back pain caused by herniated intervertebral discs. In this study, we investigated the impact of the traction bed on the lower back as a means of increasing the disc height and creating a gap between facet joints. Computed tomography (CT) images were obtained from a female volunteer and a three-dimensional (3D) model was created using software package MIMICs 17.0. Afterwards, the 3D model was analyzed in an analytical software (Abaqus 6.14). The study was conducted under the following traction loads: 25%, 45%, 55%, and 85% of the whole body weight in different angles. Results indicated that the loading angle in the L3-4 area had 36.8%, 57.4%, 55.32%, 49.8%, and 52.15% effect on the anterior longitudinal ligament, posterior longitudinal ligament, intertransverse ligament, interspinous ligament, and supraspinous ligament, respectively. The respective values for the L4-5 area were 32.3%, 10.6%, 53.4%, 56.58%, and 57.35%. Also, the body weight had 63.2%, 42.6%, 44.68%, 50.2%, and 47.85% effect on the anterior longitudinal ligament, posterior longitudinal ligament, intertransverse ligament, interspinous ligament, and supraspinous ligament, respectively. The respective values for the L4-5 area were 67.7%, 89.4%, 46.6%, 43.42% and 42.65%. The authenticity of results was checked by comparing with the experimental data. The results show that traction beds are highly effective for disc movement and lower back pain relief. Also, an optimal angle for traction can be obtained in a 3D model analysis using CT or magnetic resonance imaging images. The optimal angle would be different for different patients and thus should be determined based on the decreased height of the intervertebral disc, weight and height of patients.
Kim, Dae-Hun; Park, Jin-Kyu; Jeong, Myeong-Kyun
2014-01-01
In patients with chronic low back pain, the center of gravity (COG) is abnormally located posterior to the center in most cases. The purpose of this study was to examine the effects of posterior-located COG on the functions (lumbar extension strength, and static and dynamic balance) and structure (lumbar lordosis angle and lumbosacral angle) of the lumbar spine. In this study, the COG of chronic low back pain patients who complained of only low back pain were examined using dynamic body balance equipment. A total of 164 subjects participated in the study (74 males and 90 females), and they were divided into two groups of 82 patients each. One group (n=82) consisted of patients whose COG was located at the center (C-COG); the other group (n=82) consisted of patients whose COG was located posterior to the center (P-COG). The following measures assessed the lumber functions and structures of the two groups: lumbar extension strength, moving speed of static and dynamic COGs, movement distance of the static and dynamic COGs, lumbar lordosis angle, and lumbosacral angle. The measured values were analyzed using independent t-tests. The group of patients with P-COG showed more decreases in lumbar extension strength, lumbar lordosis angle, and lumbosacral angle compared to the group of patients with C-COG. Also this group showed increases in moving speed and movement distance of the static COG. However, there were no differences in moving speed and movement distance of the dynamic COG between the two groups. These findings suggest that chronic LBP patients with P-COG have some disadvantages to establish lumbar extension strength and static and dynamic balance, which require specific efforts to maintain a neutral position and to control posture.
Characterization and Processing of Non-Uniformities in Back-Illuminated CCDs
NASA Astrophysics Data System (ADS)
Lemm, Alia D.; Della-Rose, Devin J.; Maddocks, Sally
2018-01-01
In astronomical photometry, Charged Coupled Device (CCD) detectors are used to achieve high precision photometry and must be properly calibrated to correct for noise and pixel non-uniformities. Uncalibrated images may contain bias offset, dark current, bias structure and uneven illumination. In addition, standard data reduction is often not sufficient to “normalize” imagery to single-digit millimagnitude (mmag) precision. We are investigating an apparent non-uniformity, or interference pattern, in a back-illuminated sensor, the Alta U-47, attached to a DFM Engineering 41-cm Ritchey-Chrétien f/8 telescope. Based on the amplitude of this effect, we estimate that instrument magnitude peak-to-valley deviations of 50 mmag or more may result. Our initial testing strongly suggests that reflected skylight from high pressure sodium city lights may be the cause of this interference pattern. Our research goals are twofold: to fully characterize this non-uniformity and to determine the best method to remove this interference pattern from our reduced CCD images.
The Effect of Incidence Angle on Stereo DTM Quality: Simulations in Support of Europa Clipper
NASA Astrophysics Data System (ADS)
Kirk, R. L.; Howington-Kraus, E.; Hare, T. M.; Jorda, L.
2014-12-01
Many quality factors for digital topographic models (DTMs) from stereo imaging can be predicted geometrically. For example, pixel scale is related to instantaneous field of view and to range. DTM resolution can be no better than a few times this pixel scale. Even vertical precision is a known function of the pixel scale and convergence angle, providedthe image quality is high enough that automated image matching reaches its optimal precision (~0.2 pixel). The influence of incidence angle is harder to predict. Reduced quality is expected both at low incidence (where topographic shading disappears) and high incidence (where signal/noise ratio is low and shadows occur). This problem is of general interest, but especially critical for the Europa Clipper mission profile. Clipper would obtain a radar sounding profile on each Europa flyby. Stereo images collected simultaneously would be used to produce a DTM needed to distinguish off-nadir surface echos (clutter) from subsurface features. The question is, how much of this DTM strip will be useful, given that incidence angle will vary substantially? We are using simulations to answer this question. We produced a 210 m/post DTM of the Castalia Macula region of Europa from 6 Galileo images by photoclinometry. A low-incidence image was used to correct for albedo variations before photoclinometry. We are using the image simulation software OASIS to generate synthetic stereopairs of the region at a full range of incidence angles. These images will be realistic in terms of image resolution, noise, photometry including albedo variations (based on the low incidence image), and cast shadows. The pairs will then be analyzed with the commercial stereomapping software SOCET SET (® BAE Systems), which we have used for a wide variety of planetary mapping projects. Comparing the stereo-derived DTMs to the input ("truth") DTM will allow us to quantify the dependence of true DTM resolution and vertical precision on illumination, and to document the qualitative ways that DTMs degrade at high and low incidence angles. This methodology is immediately applicable to other planetary targets, and in particular can be used to address how much difference in illumination can be tolerated in stereopairs that are not (as for Clipper) acquired simultaneously.
Processing of high-precision ceramic balls with a spiral V-groove plate
NASA Astrophysics Data System (ADS)
Feng, Ming; Wu, Yongbo; Yuan, Julong; Ping, Zhao
2017-03-01
As the demand for high-performance bearings gradually increases, ceramic balls with excellent properties, such as high accuracy, high reliability, and high chemical durability used, are extensively used for highperformance bearings. In this study, a spiral V-groove plate method is employed in processing high-precision ceramic balls. After the kinematic analysis of the ball-spin angle and enveloped lapping trajectories, an experimental rig is constructed and experiments are conducted to confirm the feasibility of this method. Kinematic analysis results indicate that the method not only allows for the control of the ball-spin angle but also uniformly distributes the enveloped lapping trajectories over the entire ball surface. Experimental results demonstrate that the novel spiral Vgroove plate method performs better than the conventional concentric V-groove plate method in terms of roundness, surface roughness, diameter difference, and diameter decrease rate. Ceramic balls with a G3-level accuracy are achieved, and their typical roundness, minimum surface roughness, and diameter difference are 0.05, 0.0045, and 0.105 μm, respectively. These findings confirm that the proposed method can be applied to high-accuracy and high-consistency ceramic ball processing.
NASA Astrophysics Data System (ADS)
Nasir, M. N. M.; Mezeix, L.; Aminanda, Y.; Seman, M. A.; Rivai, A.; Ali, K. M.
2016-02-01
This paper presents an original method in predicting the spring-back for composite aircraft structures using non-linear Finite Element Analysis (FEA) and is an extension of the previous accompanying study on flat geometry samples. Firstly, unidirectional prepreg lay-up samples are fabricated on moulds with different corner angles (30°, 45° and 90°) and the effect on spring-back deformation are observed. Then, the FEA model that was developed in the previous study on flat samples is utilized. The model maintains the physical mechanisms of spring-back such as ply stretching and tool-part interface properties with the additional mechanism in the corner effect and geometrical changes in the tool, part and the tool-part interface components. The comparative study between the experimental data and FEA results show that the FEA model predicts adequately the spring-back deformation within the range of corner angle tested.
Spörri, Jörg; Kröll, Josef; Fasel, Benedikt; Aminian, Kamiar; Müller, Erich
2018-01-01
Background: In alpine ski racing, typical loading patterns of the back include a combined occurrence of spinal bending, torsion, and high peak loads. These factors are known to be associated with high spinal disc loading and have been suggested to be attributable to different types of spine deterioration. However, little is known about the effect of standing height (ie, the distance between the bottom of the running surface of the ski and the ski boot sole) on the aforementioned back loading patterns. Purpose: To investigate the effect of reduced standing height on the skier’s overall trunk kinematics and the acting ground-reaction forces in giant slalom (GS) from an overuse injury prevention perspective. Study Design: Controlled laboratory study. Methods: Seven European Cup–level athletes skied a total of 224 GS turns with 2 different pairs of skis varying in standing height. Their overall trunk movement (frontal bending, lateral bending, and torsion angles) was measured based on 2 inertial measurement units located at the sacrum and sternum. Pressure insoles were used to determine the total ground-reaction force. Results: During the turn phase in which the greatest spinal disc loading is expected to occur, significantly lower total ground-reaction forces were observed for skis with a decreased standing height. Simultaneously, the skier’s overall trunk movement (ie, frontal bending, lateral bending, and torsion angles) remained unwaveringly high. Conclusion: Standing height is a reasonable measure to reduce the skier’s overall back loading in GS. Yet, when compared with the effects achievable by increased gate offsets in slalom, for instance, the preventative benefits of decreased standing height seem to be rather small. Clinical Relevance: To reduce the magnitude of overall back loading in GS and to prevent overuse injuries of the back, decreasing standing height might be an efficient approach. Nevertheless, the clinical relevance of the current findings, as well as the effectiveness of the measure “reduced standing height,” must be verified by epidemiological studies before its preventative potential can be judged as conclusive. PMID:29344540
Mirrors for High Resolution X-Ray Optics---Figure Preserving IR/PT Coating
NASA Technical Reports Server (NTRS)
Chan, Kai-Wing; Olsen, Lawrence; Sharpe, Marton; Numata, Ai; McClelland, Ryan; Saha, Timo; Zhang, Will
2016-01-01
Coating stress of 10 - 20 nm of Ir is sufficiently high to distort the figure of arc-second thin lightweight mirrors. For iridium: --Stress sigma 4 GPa for 15 nm film implies 60 Nm integrated stress-- Need less than 3 N/m (or stress less than 200 MPa) for sub-arcsecond optics. Basic Approaches for Mitigation. A. Annealing the film-- Glass can be heat up to 400 C without distortion. Silicon is even more resistant.-- It was found that recovery is limited by residual thermal stress from taking the mirror down from high T. B. Coating bi-layer films with compressive stress with tensile stress. C. Front-and-back coating with magnetron sputtering or atomic layer deposition-- Sputtering involve spanning of substrates. Geometric difference in setup (convexness/concaveness of curved mirrors) does not permit precise front-and-back matching-- Atomic layer deposition can provide a uniform deposition front and back simultaneously.
Specifications of the High-Flux Solar Furnace | Concentrating Solar Power |
Non-imaging compound parabolic Acceptance angle: 14 degrees Entrance diameter: 6 cm Exit diameter secondary concentrator configurations are possible depending on the experimental needs. Back to top XYZ controllers ranging from 2,000 to 30,000 sccm Exhaust hood above experimental area Drill press and hand tools
High precision refractometry based on Fresnel diffraction from phase plates.
Tavassoly, M Taghi; Naraghi, Roxana Rezvani; Nahal, Arashmid; Hassani, Khosrow
2012-05-01
When a transparent plane-parallel plate is illuminated at a boundary region by a monochromatic parallel beam of light, Fresnel diffraction occurs because of the abrupt change in phase imposed by the finite change in refractive index at the plate boundary. The visibility of the diffraction fringes varies periodically with changes in incident angle. The visibility period depends on the plate thickness and the refractive indices of the plate and the surrounding medium. Plotting the phase change versus incident angle or counting the visibility repetition in an incident-angle interval provides, for a given plate thickness, the refractive index of the plate very accurately. It is shown here that the refractive index of a plate can be determined without knowing the plate thickness. Therefore, the technique can be utilized for measuring plate thickness with high precision. In addition, by installing a plate with known refractive index in a rectangular cell filled with a liquid and following the described procedures, the refractive index of the liquid is obtained. The technique is applied to measure the refractive indices of a glass slide, distilled water, and ethanol. The potential and merits of the technique are also discussed.
FLEET Velocimetry Measurements on a Transonic Airfoil
NASA Technical Reports Server (NTRS)
Burns, Ross A.; Danehy, Paul M.
2017-01-01
Femtosecond laser electronic excitation tagging (FLEET) velocimetry was used to study the flowfield around a symmetric, transonic airfoil in the NASA Langley 0.3-m TCT facility. A nominal Mach number of 0.85 was investigated with a total pressure of 125 kPa and total temperature of 280 K. Two-components of velocity were measured along vertical profiles at different locations above, below, and aft of the airfoil at angles of attack of 0 deg, 3.5 deg, and 7deg. Measurements were assessed for their accuracy, precision, dynamic range, spatial resolution, and overall measurement uncertainty in the context of the applied flowfield. Measurement precisions as low as 1 m/s were observed, while overall uncertainties ranged from 4 to 5 percent. Velocity profiles within the wake showed sufficient accuracy, precision, and sensitivity to resolve both the mean and fluctuating velocities and general flow physics such as shear layer growth. Evidence of flow separation is found at high angles of attack.
Search for CP violation effects in the h→ τ τ decay with e^+e^- colliders
NASA Astrophysics Data System (ADS)
Chen, Xin; Wu, Yongcheng
2017-10-01
A new method is proposed to reconstruct the neutrinos in the e^+e^-→ Zh process followed by the h→ τ τ decay. With the help of a refined Higgs momentum reconstruction from the recoiling system and the impact parameters, high precision in the determination of the momentum of neutrinos can be achieved. The prospect of measuring the Higgs CP mixing angle with the h→ τ τ decay at e^+e^- colliders is studied with the new method. The analysis is based on a detailed detector simulation of the signal and backgrounds. The fully reconstructed neutrinos and also other visible products from the tau decay are used to build matrix element (ME)-based CP observables. With 5 ab^{-1} of data at E_{ {CM}}=250 GeV, a precision of 2.9° can be achieved for the CP mixing angle with three main one-prong decay modes of the taus. The precision is found to be about 35% better than the other methods.
Optimization design and analysis of the pavement planer scraper structure
NASA Astrophysics Data System (ADS)
Fang, Yuanbin; Sha, Hongwei; Yuan, Dajun; Xie, Xiaobing; Yang, Shibo
2018-03-01
By LS-DYNA, it establishes the finite element model of road milling machine scraper, and analyses the dynamic simulation. Through the optimization of the scraper structure and scraper angle, obtain the optimal structure of milling machine scraper. At the same time, the simulation results are verified. The results show that the scraper structure is improved that cemented carbide is located in the front part of the scraper substrate. Compared with the working resistance before improvement, it tends to be gentle and the peak value is smaller. The cutting front angle and the cutting back angle are optimized. The cutting front angle is 6 degrees and the cutting back angle is 9 degrees. The resultant of forces which contains the working resistance and the impact force is the least. It proves accuracy of the simulation results and provides guidance for further optimization work.
Schroeder, Jan; Hollander, Karsten
2018-01-01
There is still conflicting evidence about the effect of high-heeled footwear on posture, especially if methodological confounders are taken into account. The purpose of this study was to investigate the effect of high-heeled footwear on lumbopelvic parameters in experienced younger and middle-aged women while standing and walking. Thirty-seven experienced younger (n=19:18-25 years) and middle-aged (n=18:26-56 years) women were included in this randomized crossover study. Using a non-invasive back shape reconstruction device (rasterstereography), static (pelvic tilt and lumbar lordosis angle) and dynamic (pelvic rotation, median lumbar lordosis angle and range of motion) parameters representing pelvis position and lumbar curvature were measured. In order to analyse standing and walking on a treadmill (0.83m/s), the effects of high-heels (7-11cm) were compared to standard control shoes. There were no effects on the lumbar lordosis angle or range of motion under static or dynamic conditions (p>0.05, d≤0.06). But there was a small effect for a reduced pelvic tilt (p=0.003, d=0.24) and a moderate effect for an increased transversal pelvic rotation (p=0.001, d=0.63) due to high heel shoed standing or walking, respectively. There were no significant age-group or interaction effects (p>0.05). Altered pelvic parameters may be interpreted as compensatory adaptations to high-heeled footwear rather than lumbar lordosis adaptations in experienced wearers. The impact of these findings on back complaints should be revisited carefully, because muscular overuse as well as postural load relieving may contribute to chronic consequences. Further research is necessary to examine clinically relevant outcomes corresponding to postural alterations. Copyright © 2017 Elsevier B.V. All rights reserved.
Nondestructive hydrogen analysis of steam-oxidized Zircaloy-4 by wide-angle neutron scattering
NASA Astrophysics Data System (ADS)
Yan, Yong; Qian, Shuo; Garrison, Ben; Smith, Tyler; Kim, Peter
2018-04-01
A nondestructive neutron scattering method to precisely measure the hydrogen content in high-temperature steam-oxidized Zircaloy-4 cladding was developed. Zircaloy-4 cladding was used to produce hydrided specimens with hydrogen content up to ≈500 wppm. Following hydrogen charging, the hydrogen content of the hydrided specimens was measured using the vacuum hot extraction method, by which the samples with desired hydrogen concentrations were selected for the neutron study. The hydrided samples were then oxidized in steam up to ≈6.0 wt. % at 1100 °C. Optical microscopy shows that our hydriding procedure results in uniform distribution of circumferential hydrides across the wall thickness, and uniform oxide layers were formed on the sample surfaces by the steam oxidation. Small- and wide-angle neutron scattering were simultaneously performed to provide a quick (less than an hour per sample) measurement of the hydrogen content in various types of hydrided and oxidized Zircaloy-4. Our study demonstrates that the hydrogen in pre-oxidized Zircaloy-4 cladding can be measured very accurately by both small- and wide-angle neutron scattering. For steam-oxidized samples, the small-angle neutron scattering is contaminated with coherent scattering from additional structural features induced by the steam oxidation. However, the scattering intensity of the wide-angle neutron scattering increases proportionally with the hydrogen charged in the samples. The hydrogen content and wide-angle neutron scattering intensity are highly linearly correlated for the oxidized cladding samples examined in this work, and can be used to precisely determine the hydrogen content in steam-oxidized Zircaloy-4 samples. Hydrogen contents determined by neutron scattering of oxidation samples were also found to be consistent with the results of chemical analysis within acceptable margins for error.
Nondestructive hydrogen analysis of steam-oxidized Zircaloy-4 by wide-angle neutron scattering
Yan, Yong; Qian, Shuo; Garrison, Ben; ...
2018-04-15
In this study, a nondestructive neutron scattering method to precisely measure the hydrogen content in high-temperature steam-oxidized Zircaloy-4 cladding was developed. Zircaloy-4 cladding was used to produce hydrided specimens with hydrogen content up to ≈500 wppm. Following hydrogen charging, the hydrogen content of the hydrided specimens was measured using the vacuum hot extraction method, by which the samples with desired hydrogen concentrations were selected for the neutron study. The hydrided samples were then oxidized in steam up to ≈6.0wt. % at 1100°C. Optical microscopy shows that our hydriding procedure results in uniform distribution of circumferential hydrides across the wall thickness,more » and uniform oxide layers were formed on the sample surfaces by the steam oxidation. Small- and wide-angle neutron scattering were simultaneously performed to provide a quick (less than an hour per sample) measurement of the hydrogen content in various types of hydrided and oxidized Zircaloy-4. Our study demonstrates that the hydrogen in pre-oxidized Zircaloy-4 cladding can be measured very accurately by both small- and wide-angle neutron scattering. For steam-oxidized samples, the small-angle neutron scattering is contaminated with coherent scattering from additional structural features induced by the steam oxidation. However, the scattering intensity of the wide-angle neutron scattering increases proportionally with the hydrogen charged in the samples. The hydrogen content and wide-angle neutron scattering intensity are highly linearly correlated for the oxidized cladding samples examined in this work, and can be used to precisely determine the hydrogen content in steam-oxidized Zircaloy-4 samples. Hydrogen contents determined by neutron scattering of oxidation samples were also found to be consistent with the results of chemical analysis within acceptable margins for error.« less
Nondestructive hydrogen analysis of steam-oxidized Zircaloy-4 by wide-angle neutron scattering
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yan, Yong; Qian, Shuo; Garrison, Ben
In this study, a nondestructive neutron scattering method to precisely measure the hydrogen content in high-temperature steam-oxidized Zircaloy-4 cladding was developed. Zircaloy-4 cladding was used to produce hydrided specimens with hydrogen content up to ≈500 wppm. Following hydrogen charging, the hydrogen content of the hydrided specimens was measured using the vacuum hot extraction method, by which the samples with desired hydrogen concentrations were selected for the neutron study. The hydrided samples were then oxidized in steam up to ≈6.0wt. % at 1100°C. Optical microscopy shows that our hydriding procedure results in uniform distribution of circumferential hydrides across the wall thickness,more » and uniform oxide layers were formed on the sample surfaces by the steam oxidation. Small- and wide-angle neutron scattering were simultaneously performed to provide a quick (less than an hour per sample) measurement of the hydrogen content in various types of hydrided and oxidized Zircaloy-4. Our study demonstrates that the hydrogen in pre-oxidized Zircaloy-4 cladding can be measured very accurately by both small- and wide-angle neutron scattering. For steam-oxidized samples, the small-angle neutron scattering is contaminated with coherent scattering from additional structural features induced by the steam oxidation. However, the scattering intensity of the wide-angle neutron scattering increases proportionally with the hydrogen charged in the samples. The hydrogen content and wide-angle neutron scattering intensity are highly linearly correlated for the oxidized cladding samples examined in this work, and can be used to precisely determine the hydrogen content in steam-oxidized Zircaloy-4 samples. Hydrogen contents determined by neutron scattering of oxidation samples were also found to be consistent with the results of chemical analysis within acceptable margins for error.« less
High precision measurement of the proton charge radius: The PRad experiment
DOE Office of Scientific and Technical Information (OSTI.GOV)
Meziane, Mehdi
2013-11-01
The recent high precision measurements of the proton charge radius performed at PSI from muonic hydrogen Lamb shift puzzled the hadronic physics community. A value of 0.8418 {+-} 0.0007 fm was extracted which is 7{sigma} smaller than the previous determinations obtained from electron-proton scattering experiments and based on precision spectroscopy of electronic hydrogen. An additional extraction of the proton charge radius from electron scattering at Mainz is also in good agreement with these "electronic" determinations. An independent measurement of the proton charge radius from unpolarized elastic ep scattering using a magnetic spectrometer free method was proposed and fully approved atmore » Jefferson Laboratory in June 2012. This novel technique uses the high precision calorimeter HyCal and a windowless hydrogen gas target which makes possible the extraction of the charge radius at very forward angles and thus very low momentum transfer Q{sup 2} up to 10{sup -4} (GeV/c){sup 2} with an unprecedented sub-percent precision for this type of experiment. In this paper, after a review of the recent progress on the proton charge radius extraction and the new high precision experiment PRad will be presented.« less
NASA Technical Reports Server (NTRS)
1953-01-01
Boeing B-47A (NACA 150) shown on the ramp near NACA High-Speed Flight Research Station at South Base of Edwards Air Force Base, California, in 1953. The B-47A Stratojet's wing is mounted high on the fuselage with a sweep back of 36 degrees and a span of 116 feet, with wing vortex generators installed. A two engine pod under each wing, and an additional engine pod at each wing tip using General Electric J-47-GE-23 turbojets. The airplane is fitted with a nose boom for measuring airspeed, altitude, angle-of-attack and angle-of-sideslip, and an optigraph for measuring the movements of target lights on the wing and tail.
Nanoscale cellular imaging with scanning angle interference microscopy.
DuFort, Christopher; Paszek, Matthew
2014-01-01
Fluorescence microscopy is among the most widely utilized tools in cell and molecular biology due to its ability to noninvasively obtain time-resolved images of live cells with molecule-specific contrast. In this chapter, we describe a simple high-resolution technique, scanning angle interference microscopy (SAIM), for the imaging and localization of fluorescent molecules with nanometer precision along the optical axis. In SAIM, samples above a reflective surface are sequentially scanned with an excitation laser at varying angles of incidence. Interference patterns generated between the incident and reflected lights result in an emission intensity that depends on the height of a fluorophore above the silicon surface and the angle of the incident radiation. The measured fluorescence intensities are then fit to an optical model to localize the labeled molecules along the z-axis with 5-10 nm precision and diffraction-limited lateral resolution. SAIM is easily implemented on widely available commercial total internal reflection fluorescence microscopes, offering potential for widespread use in cell biology. Here, we describe the setup of SAIM and its application for imaging cellular structures near (<1 μm) the sample substrate. © 2014 Elsevier Inc. All rights reserved.
Buendía, Mateo; Cibrián, Rosa M.; Salvador, Rosario; Laguía, Manuel; Martín, Antonio; Gomar, Francisco
2006-01-01
New noninvasive techniques, amongst them structured light methods, have been applied to study rachis deformities, providing a way to evaluate external back deformities in the three planes of space. These methods are aimed at reducing the number of radiographic examinations necessary to diagnose and follow-up patients with scoliosis. By projecting a grid over the patient’s back, the corresponding software for image treatment provides a topography of the back in a color or gray scale. Visual inspection of back topographic images using this method immediately provides information about back deformity, but it is important to determine quantifier variables of the deformity to establish diagnostic criteria. In this paper, two topographic variables [deformity in the axial plane index (DAPI) and posterior trunk symmetry index (POTSI)] that quantify deformity in two different planes are analyzed. Although other authors have reported the POTSI variable, the DAPI variable proposed in this paper is innovative. The upper normality limit of these variables in a nonpathological group was determined. These two variables have different and complementary diagnostic characteristics, therefore we devised a combined diagnostic criterion: cases with normal DAPI and POTSI (DAPI ≤ 3.9% and POTSI ≤ 27.5%) were diagnosed as nonpathologic, but cases with high DAPI or POTSI were diagnosed as pathologic. When we used this criterion to analyze all the cases in the sample (56 nonpathologic and 30 with idiopathic scoliosis), we obtained 76.6% sensitivity, 91% specificity, and a positive predictive value of 82%. The interobserver, intraobserver, and interassay variability were studied by determining the variation coefficient. There was good correlation between topographic variables (DAPI and POTSI) and clinical variables (Cobb’s angle and vertebral rotation angle). PMID:16609858
Viggiani, Daniel; Gallagher, Kaitlin M; Sehl, Michael; Callaghan, Jack P
2017-11-01
Lumbar lordosis measures are poorly related to clinical low back pain, however using a controlled exposure such as prolonged standing to identify pain groups may clarify this relationship. The purpose of this study was to determine the distribution of lumbar intervertebral angles in asymptomatic persons who do (pain developers) and do not (non-pain developers) develop low back pain during standing. Sagittal plane lumbar spine radiographs of eight pain developers and eight non-pain developers were taken in three poses: upright standing, full extension and full flexion. Measures of vertebral end plate orientations from L1 to S1 were taken in each pose to compute: intervertebral angles, contribution of each level to the total curve, total lordosis, ranges of motion, relative pose positioning within the range of motion, vertebral shape, and lumbar spine recurve. Measures were compared between pain groups and lumbar levels. Pain group differences in intervertebral angles and level contributions were greatest in the full extension pose, with pain developers having greater contributions from higher lumbar levels and fewer contributions from lower levels than non-pain developers. Pain group differences in intervertebral angle distributions were less pronounced in upright standing and non-existent in full flexion. No other measures differentiated pain groups. Although participants had similar gross-lumbar spine curvature characteristics, non-pain developers have more curvature at lower levels in upright standing and full extension. These differences in regional vertebral kinematics may partially be responsible for standing-induced low back pain. Copyright © 2017 Elsevier Ltd. All rights reserved.
Koh, Eun-Kyung; Park, Kyue-Nam; Jung, Do-Young
2016-11-01
This study was conducted in order to determine the effect of feedback tools on activities of the gluteus maximus (Gmax) and oblique abdominal muscles and the angle of pelvic rotation during clam exercise (CE). Comparative study using repeated measures. University laboratory. Sixteen subjects with lower back pain. Each subject performed the CE without feedback, the CE using a pressure biofeedback unit (CE-PBU), and the CE with palpation and visual feedback (CE-PVF). Electromyographic (EMG) activity and the angles of pelvic rotation were measured using surface EMG and a three-dimensional motion-analysis system, respectively. One-way repeated-measures ANOVA followed by the Bonferroni post hoc test were used to compare the EMG activity in each muscle as well as the angle of pelvic rotation during the CE, CE-PBU, and CE-PVF. The results of post-hoc testing showed a significantly reduced angle of pelvic rotation and significantly more Gmax EMG activity during the CE-PVF compared with during the CE and CE-PBU. These findings suggest that palpation and visual feedback is effective for activating the Gmax and controlling pelvic rotation during the CE in subjects with lower back pain. Copyright © 2016 Elsevier Ltd. All rights reserved.
Glinkowski, Wojciech; Michoński, Jakub; Glinkowska, Bożena; Zukowska, Agnieszka; Sitnik, Robert; Górecki, Andrzej
2012-01-01
Several studies consider the school scoliosis screening as controversial. Many authors postulate to improve its clinical effectiveness. Authors assumed that three dimensional telediagnostic surface topography measurements allowing measuring several postural deformity indexes and angles of curvatures in sagittal plane may enhance current practice. The study was designed to determine usefulness of school screening back evaluation performed utilizing the three dimensional telediagnostic measurement system. The measurement module is based on structured light method using "3D Orthoscreen" system. The technique for 3D image acquisition of back shape is based on temporal phase shifting and Gray codes. Measurement data was securely archived for remote access by investigator over the secure Internet connection. Acquired "images" were transferred to Telediagnostic Center for clinical evaluation. Spine parameters and deformation indexes like Posterior Trunk Symmetry Index (POTSI), Deformity in the Axial Plane Index (DAPI), kyphosis and lordosis angle were measured. The preliminary study was performed in 2 selected schools (basic and middle schools). The study was approved by Bioethical Committee. Clouds of points representing back topography of assessed subjects were acquired at schools in March and May 2011 and stored for remote evaluation and analysis. 758 children averagely aged 11.1 years (from 5 to 16), 387 females and 371 males, were examined. Their average body mass was 45.13 kg [16-105; STD 16.4] and average height was 151.43 cm, [110-192; STD 18.3]. The average values of back assessment parameters were as follows: POTSI 15.97% [0-73.4; STD 10.3]; DAPI 0.88% [0-5.9; STD 0.76]; kyphosis angle 10.19° [0-32; STD 5.82]; and lordosis angle 32,82° [0-56; STD 9.86]. Technical and clinical issues of the practical implementation allowed to elaborate preliminary protocol for cohort studies addressed to subject (i.e. parents acceptance of examination of undressed back) and technical issues (i.e. upload data and retrieval, network transfer velocity). Postural telediagnostics was found sufficiently feasible for further implementation of remote, cohort 3D back shape evaluations including school screening. Permanently saved 3D data allow monitoring back surface of the individual subjects.
Back-support large laser mirror unit: mounting modeling and analysis
NASA Astrophysics Data System (ADS)
Wang, Hui; Zhang, Zheng; Long, Kai; Liu, Tianye; Li, Jun; Liu, Changchun; Xiong, Zhao; Yuan, Xiaodong
2018-01-01
In high-power laser system, the surface wavefront of large optics has a close link with its structure design and mounting method. The back-support transport mirror design is presently being investigated as a means in China's high-power laser system to hold the optical component firmly while minimizing the distortion of its reflecting surface. We have proposed a comprehensive analytical framework integrated numerical modeling and precise metrology for the mirror's mounting performance evaluation while treating the surface distortion as a key decision variable. The combination of numerical simulation and field tests demonstrates that the comprehensive analytical framework provides a detailed and accurate approach to evaluate the performance of the transport mirror. It is also verified that the back-support transport mirror is effectively compatible with state-of-the-art optical quality specifications. This study will pave the way for future research to solidify the design of back-support large laser optics in China's next generation inertial confinement fusion facility.
PSF estimation for defocus blurred image based on quantum back-propagation neural network
NASA Astrophysics Data System (ADS)
Gao, Kun; Zhang, Yan; Shao, Xiao-guang; Liu, Ying-hui; Ni, Guoqiang
2010-11-01
Images obtained by an aberration-free system are defocused blur due to motion in depth and/or zooming. The precondition of restoring the degraded image is to estimate point spread function (PSF) of the imaging system as precisely as possible. But it is difficult to identify the analytic model of PSF precisely due to the complexity of the degradation process. Inspired by the similarity between the quantum process and imaging process in the probability and statistics fields, one reformed multilayer quantum neural network (QNN) is proposed to estimate PSF of the defocus blurred image. Different from the conventional artificial neural network (ANN), an improved quantum neuron model is used in the hidden layer instead, which introduces a 2-bit controlled NOT quantum gate to control output and adopts 2 texture and edge features as the input vectors. The supervised back-propagation learning rule is adopted to train network based on training sets from the historical images. Test results show that this method owns excellent features of high precision and strong generalization ability.
Foil Panel Mirrors for Nonimaging Applications
NASA Technical Reports Server (NTRS)
Kuyper, D. J.; Castillo, A. A.
1984-01-01
Large durable, lightweight mirrors made by bonding thick aluminum foil to honeycomb panels or other rigid, flat backings. Mirrors suitable for use as infrared shields, telescope doors, solar-furnance doors, advertising displays, or other reflectors that require low thermal emissivity and high specularity but do not require precise surface figure necessary for imaging.
Sampling Error in a Particulate Mixture: An Analytical Chemistry Experiment.
ERIC Educational Resources Information Center
Kratochvil, Byron
1980-01-01
Presents an undergraduate experiment demonstrating sampling error. Selected as the sampling system is a mixture of potassium hydrogen phthalate and sucrose; using a self-zeroing, automatically refillable buret to minimize titration time of multiple samples and employing a dilute back-titrant to obtain high end-point precision. (CS)
Apparatus for precision micromachining with lasers
Chang, J.J.; Dragon, E.P.; Warner, B.E.
1998-04-28
A new material processing apparatus using a short-pulsed, high-repetition-rate visible laser for precision micromachining utilizes a near diffraction limited laser, a high-speed precision two-axis tilt-mirror for steering the laser beam, an optical system for either focusing or imaging the laser beam on the part, and a part holder that may consist of a cover plate and a back plate. The system is generally useful for precision drilling, cutting, milling and polishing of metals and ceramics, and has broad application in manufacturing precision components. Precision machining has been demonstrated through percussion drilling and trepanning using this system. With a 30 W copper vapor laser running at multi-kHz pulse repetition frequency, straight parallel holes with size varying from 500 microns to less than 25 microns and with aspect ratios up to 1:40 have been consistently drilled with good surface finish on a variety of metals. Micromilling and microdrilling on ceramics using a 250 W copper vapor laser have also been demonstrated with good results. Materialographic sections of machined parts show little (submicron scale) recast layer and heat affected zone. 1 fig.
Apparatus for precision micromachining with lasers
Chang, Jim J.; Dragon, Ernest P.; Warner, Bruce E.
1998-01-01
A new material processing apparatus using a short-pulsed, high-repetition-rate visible laser for precision micromachining utilizes a near diffraction limited laser, a high-speed precision two-axis tilt-mirror for steering the laser beam, an optical system for either focusing or imaging the laser beam on the part, and a part holder that may consist of a cover plate and a back plate. The system is generally useful for precision drilling, cutting, milling and polishing of metals and ceramics, and has broad application in manufacturing precision components. Precision machining has been demonstrated through percussion drilling and trepanning using this system. With a 30 W copper vapor laser running at multi-kHz pulse repetition frequency, straight parallel holes with size varying from 500 microns to less than 25 microns and with aspect ratios up to 1:40 have been consistently drilled with good surface finish on a variety of metals. Micromilling and microdrilling on ceramics using a 250 W copper vapor laser have also been demonstrated with good results. Materialogroaphic sections of machined parts show little (submicron scale) recast layer and heat affected zone.
Michoński, Jakub; Walesiak, Katarzyna; Pakuła, Anna; Glinkowski, Wojciech; Sitnik, Robert
2016-01-01
Low back and pelvic pain is one of the most frequently reported disorders in pregnancy, however etiology and pathology of this problem have not been fully determined. The relationship between back pain experienced during pregnancy and posture remains unclear. It is challenging to measure reliably postural and spinal changes at the time of pregnancy, since most imaging studies cannot be used due to the radiation burden. 3D shape measurement, or surface topography (ST), systems designed for posture evaluation could potentially fill this void. A pilot study was conducted to test the potential of monitoring the change of spine curvatures and posture during pregnancy using surface topography. A single case was studied to test the methodology and preliminarily assess the usefulness of the procedure before performing a randomized trial. The apparatus used in this study was metrologically tested and utilized earlier in scoliosis screening. The subject was measured using a custom-made structured light illumination scanner with accuracy of 0.2 mm. Measurement was taken every 2 weeks, between 17th and 37th week of pregnancy, 11 measurements in total. From the measurement the thoracic kyphosis and lumbar lordosis angles, and vertical balance angle were extracted automatically. Custom-written software was used for analysis. Oswestry Low Back Pain Disability Questionnaire (ODI) was done with every measurement. The values were correctly extracted from the measurement. The results were: 50.9 ± 2.4° for kyphosis angle, 58.1 ± 2.1° for lordosis angle and 4.7 ± 1.7° for vertical balance angle. The registered change was 7.4° in kyphosis angle, 8.4° in lordosis angle and 5.5° in vertical balance angle. The calculated ODI values were between moderate disability and severe disability (22 to 58 %). This case study presents that surface topography may be suitable for monitoring of spinal curvature and posture change in pregnant women. The ionizing radiation studies are contraindicated during pregnancy. Surface topography data connected with information from pain level questionnaires allows to investigate the connection between changes in posture and back pain.
Passi, Vikram; Gahoi, Amit; Senkovskiy, Boris V; Haberer, Danny; Fischer, Felix R; Grüneis, Alexander; Lemme, Max C
2018-03-28
We report on the experimental demonstration and electrical characterization of N = 7 armchair graphene nanoribbon (7-AGNR) field effect transistors. The back-gated transistors are fabricated from atomically precise and highly aligned 7-AGNRs, synthesized with a bottom-up approach. The large area transfer process holds the promise of scalable device fabrication with atomically precise nanoribbons. The channels of the FETs are approximately 30 times longer than the average nanoribbon length of 30 nm to 40 nm. The density of the GNRs is high, so that transport can be assumed well-above the percolation threshold. The long channel transistors exhibit a maximum I ON / I OFF current ratio of 87.5.
Zhang, Enzheng; Chen, Benyong; Zheng, Hao; Teng, Xueying; Yan, Liping
2018-04-01
A laser heterodyne interferometer for angle measurement based on the Faraday effect is proposed. A novel optical configuration, designed by using the orthogonal return method for a linearly polarized beam based on the Faraday effect, guarantees that the measurement beam can return effectively even though an angular reflector has a large lateral displacement movement. The optical configuration and measurement principle are presented in detail. Two verification experiments were performed; the experimental results show that the proposed interferometer can achieve a large lateral displacement tolerance of 7.4 mm and also can realize high precision angle measurement with a large measurement range.
NASA Astrophysics Data System (ADS)
Zhang, Enzheng; Chen, Benyong; Zheng, Hao; Teng, Xueying; Yan, Liping
2018-04-01
A laser heterodyne interferometer for angle measurement based on the Faraday effect is proposed. A novel optical configuration, designed by using the orthogonal return method for a linearly polarized beam based on the Faraday effect, guarantees that the measurement beam can return effectively even though an angular reflector has a large lateral displacement movement. The optical configuration and measurement principle are presented in detail. Two verification experiments were performed; the experimental results show that the proposed interferometer can achieve a large lateral displacement tolerance of 7.4 mm and also can realize high precision angle measurement with a large measurement range.
2007-02-28
upset, latch -up or failure of systems of digital components. A digital system can be in many different states, depending on its internal functioning...the Interface between Isorefractive Half-spaces A Y,A0 + B I (c). Cavity-Backed Gap in a Corner (d). A Right-Angle Isorefractive Wedge Structure z LL...ikjI I E2,:, (e) . A +-l l(ii (c). e Ca ity-Backedfraptive MatCoeria (d. BeRgt-Angl Isorefractive Wedge -Structur B V-T A.. D .F V-0 G x V-:x C E Y’-2
Code of Federal Regulations, 2011 CFR
2011-10-01
... restraints in rear outboard seats. Measure the height of the top of a rear seat back or the top of any independently adjustable seat component attached to or adjacent to the rear seat back in its highest position of... seat back inclination position less than the design seat back angle. (a)(1) For head restraints in...
Advanced Photonic Sensors Enabled by Semiconductor Bonding
2010-05-31
a dry scroll backing pump to maintain the high differential pressure between the UV gun and the sample/analysis chamber. We also replaced the...semiconductor materials in an ultra-high vacuum (UHV) environment where the properties of the interface can be controlled with atomic-level precision. Such...year research program, we designed and constructed a unique system capable of fusion bonding two wafers in an ultra-high vacuum environment. This system
Effect of unilateral exercises on low back pain in an urban driver
Yoo, Won-gyu
2016-01-01
[Purpose] This study aimed to develop unilateral exercises for urban drivers and investigate the effect of these exercises on low back pain (LBP). [Subject and Methods] A 40-year-old male driver, who complained of LBP on the left side at L3–5 levels, participated in this study. A two-session program was conducted, and LBP, pelvic tilt angle, and trunk range of motion were measured after each session. [Results] After the unilateral exercises, the anterior pelvic tilt angle was improved and the visual analog scale score of back pain decreased. [Conclusion] Analyzing car features and performing individual approaches are necessary in providing treatment for urban drivers with LBP. PMID:27942161
Techniques for Strength Measurement at High Pressures and Strain-Rates Using Transverse Waves
NASA Astrophysics Data System (ADS)
Richmond, Victoria Stolyar
The study of the strength of a material is relevant to a variety of applications including automobile collisions, armor penetration and inertial confinement fusion. Although dynamic behavior of materials at high pressures and strain-rates has been studied extensively using plate impact experiments, the results provide measurements in one direction only. Material behavior that is dependent on strength is unaccounted for. The research in this study proposes two novel configurations to mitigate this problem. The first configuration introduced is the oblique wedge experiment, which is comprised of a driver material, an angled target of interest and a backing material used to measure in-situ velocities. Upon impact, a shock wave is generated in the driver material. As the shock encounters the angled target, it is reflected back into the driver and transmitted into the target. Due to the angle of obliquity of the incident wave, a transverse wave is generated that allows the target to be subjected to shear while being compressed by the initial longitudinal shock such that the material does not slip. Using numerical simulations, this study shows that a variety of oblique wedge configurations can be used to study the shear response of materials and this can be extended to strength measurement as well. Experiments were performed on an oblique wedge setup with a copper impactor, polymethylmethacrylate driver, aluminum 6061-t6 target, and a lithium fluoride window. Particle velocities were measured using laser interferometry and results agree well with the simulations. The second novel configuration is the y-cut quartz sandwich design, which uses the anisotropic properties of y-cut quartz to generate a shear wave that is transmitted into a thin sample. By using an anvil material to back the thin sample, particle velocities measured at the rear surface of the backing plate can be implemented to calculate the shear stress in the material and subsequently the strength. Numerical simulations were conducted to show that this configuration has the ability to measure the strength for a variety of materials.
Fabrication of high wettability gradient on copper substrate
NASA Astrophysics Data System (ADS)
Huang, Ding-Jun; Leu, Tzong-Shyng
2013-09-01
Copper is one of the most widely used materials in condensation heat transfer. Recently there has been great interest in improving the condensation heat transfer efficiency through copper surface modification. In this study, we describe the fabrication processes of how copper surfaces were modified to be superhydrophilic (CA ≤ 10°) and superhydrophobic (CA > 150°) by means of H2O2 immersion and fluorination with Teflon. The wettability gradient of copper surfaces with contact angles (CA) changing from superhydrophilic to superhydrophobic are also demonstrated. Unlike previous studies on gradient surfaces in which the wettability gradient is controlled either non-precisely or entirely uncontrolled, in this study, the contact angles along wettability gradient copper surfaces vary with a precisely designed gradient. It is demonstrated that a high wettability gradient copper surface can be successfully fabricated using photolithography to define the area ratios between superhydrophilic and superhydrophobic patterns within a short distance. The fabricated wettability gradient of copper surfaces is expected to be able to enhance the condensation heat transfer efficiency.
Zhang, Pei-feng; Hu, Yuan-man; He, Hong-shi
2010-05-01
The demand for accurate and up-to-date spatial information of urban buildings is becoming more and more important for urban planning, environmental protection, and other vocations. Today's commercial high-resolution satellite imagery offers the potential to extract the three-dimensional information of urban buildings. This paper extracted the three-dimensional information of urban buildings from QuickBird imagery, and validated the precision of the extraction based on Barista software. It was shown that the extraction of three-dimensional information of the buildings from high-resolution satellite imagery based on Barista software had the advantages of low professional level demand, powerful universality, simple operation, and high precision. One pixel level of point positioning and height determination accuracy could be achieved if the digital elevation model (DEM) and sensor orientation model had higher precision and the off-Nadir View Angle was relatively perfect.
Simulation of proportional control of hydraulic actuator using digital hydraulic valves
NASA Astrophysics Data System (ADS)
Raghuraman, D. R. S.; Senthil Kumar, S.; Kalaiarasan, G.
2017-11-01
Fluid power systems using oil hydraulics in earth moving and construction equipment have been using proportional and servo control valves for a long time to achieve precise and accurate position control backed by system performance. Such valves are having feedback control in them and exhibit good response, sensitivity and fine control of the actuators. Servo valves and proportional valves are possessing less hysteresis when compared to on-off type valves, but when the servo valve spools get stuck in one position, a high frequency called as jitter is employed to bring the spool back, whereas in on-off type valves it requires lesser technology to retract the spool. Hence on-off type valves are used in a technology known as digital valve technology, which caters to precise control on slow moving loads with fast switching times and with good flow and pressure control mimicking the performance of an equivalent “proportional valve” or “servo valve”.
View planetary differentiation process through high-resolution 3D imaging
NASA Astrophysics Data System (ADS)
Fei, Y.
2011-12-01
Core-mantle separation is one of the most important processes in planetary evolution, defining the structure and chemical distribution in the planets. Iron-dominated core materials could migrate through silicate mantle to the core by efficient liquid-liquid separation and/or by percolation of liquid metal through solid silicate matrix. We can experimentally simulate these processes to examine the efficiency and time of core formation and its geochemical signatures. The quantitative measure of the efficiency of percolation is usually the dihedral angle, related to the interfacial energies of the liquid and solid phases. To determine the true dihedral angle at high pressure and temperatures, it is necessary to measure the relative frequency distributions of apparent dihedral angles between the quenched liquid metal and silicate grains for each experiment. Here I present a new imaging technique to visualize the distribution of liquid metal in silicate matrix in 3D by combination of focus ion beam (FIB) milling and high-resolution SEM image. The 3D volume rendering provides precise determination of the dihedral angle and quantitative measure of volume fraction and connectivity. I have conducted a series of experiments using mixtures of San Carlos olivine and Fe-S (10wt%S) metal with different metal-silicate ratios, up to 25 GPa and at temperatures above 1800C. High-quality 3D volume renderings were reconstructed from FIB serial sectioning and imaging with 10-nm slice thickness and 14-nm image resolution for each quenched sample. The unprecedented spatial resolution at nano scale allows detailed examination of textural features and precise determination of the dihedral angle as a function of pressure, temperature and composition. The 3D reconstruction also allows direct assessment of connectivity in multi-phase matrix, providing a new way to investigate the efficiency of metal percolation in a real silicate mantle.
Yandayan, T; Geckeler, R D; Aksulu, M; Akgoz, S A; Ozgur, B
2016-05-01
The application of advanced error-separating shearing techniques to the precise calibration of autocollimators with Small Angle Generators (SAGs) was carried out for the first time. The experimental realization was achieved using the High Precision Small Angle Generator (HPSAG) of TUBITAK UME under classical dimensional metrology laboratory environmental conditions. The standard uncertainty value of 5 mas (24.2 nrad) reached by classical calibration method was improved to the level of 1.38 mas (6.7 nrad). Shearing techniques, which offer a unique opportunity to separate the errors of devices without recourse to any external standard, were first adapted by Physikalisch-Technische Bundesanstalt (PTB) to the calibration of autocollimators with angle encoders. It has been demonstrated experimentally in a clean room environment using the primary angle standard of PTB (WMT 220). The application of the technique to a different type of angle measurement system extends the range of the shearing technique further and reveals other advantages. For example, the angular scales of the SAGs are based on linear measurement systems (e.g., capacitive nanosensors for the HPSAG). Therefore, SAGs show different systematic errors when compared to angle encoders. In addition to the error-separation of HPSAG and the autocollimator, detailed investigations on error sources were carried out. Apart from determination of the systematic errors of the capacitive sensor used in the HPSAG, it was also demonstrated that the shearing method enables the unique opportunity to characterize other error sources such as errors due to temperature drift in long term measurements. This proves that the shearing technique is a very powerful method for investigating angle measuring systems, for their improvement, and for specifying precautions to be taken during the measurements.
Solar axion search technique with correlated signals from multiple detectors
Xu, Wenqin; Elliott, Steven R.
2017-01-25
The coherent Bragg scattering of photons converted from solar axions inside crystals would boost the signal for axion-photon coupling enhancing experimental sensitivity for these hypothetical particles. Knowledge of the scattering angle of solar axions with respect to the crystal lattice is required to make theoretical predications of signal strength. Hence, both the lattice axis angle within a crystal and the absolute angle between the crystal and the Sun must be known. In this paper, we examine how the experimental sensitivity changes with respect to various experimental parameters. We also demonstrate that, in a multiple-crystal setup, knowledge of the relative axismore » orientation between multiple crystals can improve the experimental sensitivity, or equivalently, relax the precision on the absolute solar angle measurement. However, if absolute angles of all crystal axes are measured, we find that a precision of 2°–4° will suffice for an energy resolution of σ E = 0.04E and a flat background. Lastly, we also show that, given a minimum number of detectors, a signal model averaged over angles can substitute for precise crystal angular measurements, with some loss of sensitivity.« less
NASA Technical Reports Server (NTRS)
Schulderfrei, Marvin; Comisarow, Paul; Goodson, Kenneth W
1951-01-01
An investigation has been made of a complete airplane model having a wing with the quarter-chord line swept back 40 degrees, aspect ratio 2.50, and taper ratio 0.42 to determine its low-speed stability and control characteristics. The longitudinal stability investigation included stabilizer and tail-off tests with different wing dihedral angles (Gamma = 0 degrees and Gamma = -10 degrees) over an angle-of-attack range for the cruising and landing configurations and tests. with a high horizontal-tail location (Gamma = -10 degrees) for the cruising configuration. Tests were made of the wing alone and to determine the effect of wing end plates in pitch. Lateral stability characteristics were determined for the airplane with different geometric wing dihedrals, with end plates, and with several dorsal modifications. Tests were made with ailerons and spoilers to determine control characteristics.
NASA Astrophysics Data System (ADS)
Kingston, Andrew M.; Myers, Glenn R.; Latham, Shane J.; Li, Heyang; Veldkamp, Jan P.; Sheppard, Adrian P.
2016-10-01
With the GPU computing becoming main-stream, iterative tomographic reconstruction (IR) is becoming a com- putationally viable alternative to traditional single-shot analytical methods such as filtered back-projection. IR liberates one from the continuous X-ray source trajectories required for analytical reconstruction. We present a family of novel X-ray source trajectories for large-angle CBCT. These discrete (sparsely sampled) trajectories optimally fill the space of possible source locations by maximising the degree of mutually independent information. They satisfy a discrete equivalent of Tuy's sufficiency condition and allow high cone-angle (high-flux) tomog- raphy. The highly isotropic nature of the trajectory has several advantages: (1) The average source distance is approximately constant throughout the reconstruction volume, thus avoiding the differential-magnification artefacts that plague high cone-angle helical computed tomography; (2) Reduced streaking artifacts due to e.g. X-ray beam-hardening; (3) Misalignment and component motion manifests as blur in the tomogram rather than double-edges, which is easier to automatically correct; (4) An approximately shift-invariant point-spread-function which enables filtering as a pre-conditioner to speed IR convergence. We describe these space-filling trajectories and demonstrate their above-mentioned properties compared with a traditional helical trajectories.
NASA Astrophysics Data System (ADS)
Zada, Imran; Zhang, Wang; Sun, Peng; Imtiaz, Muhammad; Abbas, Waseem; Zhang, Di
2017-10-01
Inspired by the multifunctional properties of cicada wings, we have precisely replicated biomorphic SiO2 with antireflective structures (ARSs) using a simple, inexpensive, and highly effective sol-gel ultrasonic method. The biomorphic replica of SiO2 was directly achieved from a cicada template at high calcination. The biomorphic SiO2 not only inherited the ARS effectively but also exhibited the excellent angle dependent antireflective properties over a wide range of incident angles (10°-60°). The change in reflectance spectra (visible wavelength) of biomorphic SiO2 was observed from 0.3% to 3.3% with the increasing incident angles. The smooth surface of the SiO2 crystal without nanostructures showed a high reflection of 9.2% compared to the biomorphic SiO2 with ARS. These excellent antireflective properties of biomorphic SiO2 can be attributed to the nanoscale structures which introduce a gradient in the refractive index between air and the material surface via ARS. In the meantime, biomorphic SiO2 demonstrates high hydrophilic properties due to the existence of nanostructures on its surface. These multifunctional properties of biomorphic SiO2, angle dependent antireflective properties, and hydrophilicity with high thermal stability may have potential applications in solar cells and antifogging optical materials.
NASA Astrophysics Data System (ADS)
Lu, Yanfang; Shen, Changyu; Chen, Debao; Chu, Jinlei; Wang, Qiang; Dong, Xinyong
2014-10-01
The transmission intensity of the tilted fiber Bragg grating (TFBG) is strongly dependent on the polarization properties of the TFBG. The polarization characteristic of the cladding modes can be used for twist measuring. In this paper, a highly sensitive fiber twist sensor is proposed. The transmission intensity on the strong loss wavelength showed a quasi-sin θ changing with the twist angle ranging from 0° to 180° for S- or P-polarized input. A high sensitivity of 0.299 dB/° is achieved, which is almost 17.9 times higher than that of the current similar existing twist sensor. The twist angle can be measured precisely with the matrix.
Lü, Chun-guang; Wang, Wei-he; Yang, Wen-bo; Tian, Qing-iju; Lu, Shan; Chen, Yun
2015-11-01
New hyperspectral sensor to detect total ozone is considered to be carried on geostationary orbit platform in the future, because local troposphere ozone pollution and diurnal variation of ozone receive more and more attention. Sensors carried on geostationary satellites frequently obtain images on the condition of larger observation angles so that it has higher requirements of total ozone retrieval on these observation geometries. TOMS V8 algorithm is developing and widely used in low orbit ozone detecting sensors, but it still lack of accuracy on big observation geometry, therefore, how to improve the accuracy of total ozone retrieval is still an urgent problem that demands immediate solution. Using moderate resolution atmospheric transmission, MODT-RAN, synthetic UV backscatter radiance in the spectra region from 305 to 360 nm is simulated, which refers to clear sky, multi angles (12 solar zenith angles and view zenith angles) and 26 standard profiles, moreover, the correlation and trends between atmospheric total ozone and backward scattering of the earth UV radiation are analyzed based on the result data. According to these result data, a new modified initial total ozone estimation model in TOMS V8 algorithm is considered to be constructed in order to improve the initial total ozone estimating accuracy on big observation geometries. The analysis results about total ozone and simulated UV backscatter radiance shows: Radiance in 317.5 nm (R₃₁₇.₅) decreased as the total ozone rise. Under the small solar zenith Angle (SZA) and the same total ozone, R₃₁₇.₅ decreased with the increase of view zenith Angle (VZA) but increased on the large SZA. Comparison of two fit models shows: without the condition that both SZA and VZA are large (> 80°), exponential fitting model and logarithm fitting model all show high fitting precision (R² > 0.90), and precision of the two decreased as the SZA and VZA rise. In most cases, the precision of logarithm fitting mode is about 0.9% higher than exponential fitting model. With the increasing of VZA or SZA, the fitting precision gradually lower, and the fall is more in the larger VZA or SZA. In addition, the precision of fitting mode exist a plateau in the small SZA range. The modified initial total ozone estimating model (ln(I) vs. Ω) is established based on logarithm fitting mode, and compared with traditional estimating model (I vs. ln(Ω)), that shows: the RMSE of ln(I) vs. Ω and I vs. ln(Ω) all have the down trend with the rise of total ozone. In the low region of total ozone (175-275 DU), the RMSE is obvious higher than high region (425-525 DU), moreover, a RMSE peak and a trough exist in 225 and 475 DU respectively. With the increase of VZA and SZA, the RMSE of two initial estimating models are overall rise, and the upraising degree is ln(I) vs. Ω obvious with the growing of SZA and VZA. The estimating result by modified model is better than traditional model on the whole total ozone range (RMSE is 0.087%-0.537% lower than traditional model), especially on lower total ozone region and large observation geometries. Traditional estimating model relies on the precision of exponential fitting model, and modified estimating model relies on the precision of logarithm fitting model. The improvement of the estimation accuracy by modified initial total ozone estimating model expand the application range of TOMS V8 algorithm. For sensor carried on geostationary orbit platform, there is no doubt that the modified estimating model can help improve the inversion accuracy on wide spatial and time range This modified model could give support and reference to TOMS algorithm update in the future.
NASA Astrophysics Data System (ADS)
Ona, Toshihiro; Nishijima, Hiroshi; Kosaihira, Atsushi; Shibata, Junko
2008-04-01
In vitro rapid and quantitative cell-based assay is demanded to verify the efficacy prediction of cancer drugs since a cancer patient may have unconventional aspects of tumor development. Here, we show the rapid and non-label quantitative verifying method and instrumentation of apoptosis for cell cycle-arrest type cancer drugs (Roscovitine and D-allose) by reaction analysis of living liver cancer cells cultured on a sensor chip with a newly developed high precision (50 ndeg s -1 average fluctuation) surface plasmon resonance (SPR) sensor. The time-course cell reaction as the SPR angle change rate for 10 min from 30 min cell culture with a drug was significantly related to cell viability. By the simultaneous detection of differential SPR angle change and fluorescence by specific probes using the new instrument, the SPR angle was related to the nano-order potential decrease in inner mitochondrial membrane potential. The results obtained are universally valid for the cell cycle-arrest type cancer drugs, which mediate apoptosis through different cell-signaling pathways, by a liver cancer cell line of Hep G2 (P<0.001). This system towards the application to evaluate personal therapeutic potentials of drugs using cancer cells from patients in clinical use.
Viscoelastic Response of the Human Lower Back to Passive Flexion: The Effects of Age.
Shojaei, Iman; Allen-Bryant, Kacy; Bazrgari, Babak
2016-09-01
Low back pain is a leading cause of disability in the elderly. The potential role of spinal instability in increasing risk of low back pain with aging was indirectly investigated via assessment of age-related differences in viscoelastic response of lower back to passive deformation. The passive deformation tests were conducted in upright standing posture to account for the effects of gravity load and corresponding internal tissues responses on the lower back viscoelastic response. Average bending stiffness, viscoelastic relaxation, and dissipated energy were quantified to characterize viscoelastic response of the lower back. Larger average bending stiffness, viscoelastic relaxation and dissipated energy were observed among older vs. younger participants. Furthermore, average bending stiffness of the lower back was found to be the highest around the neutral standing posture and to decrease with increasing the lower back flexion angle. Larger bending stiffness of the lower back at flexion angles where passive contribution of lower back tissues to its bending stiffness was minimal (i.e., around neutral standing posture) highlighted the important role of active vs. passive contribution of tissues to lower back bending stiffness and spinal stability. As a whole our results suggested that a diminishing contribution of passive and volitional active subsystems to spinal stability may not be a reason for higher severity of low back pain in older population. The role of other contributing elements to spinal stability (e.g., active reflexive) as well as equilibrium-based parameters (e.g., compression and shear forces under various activities) in increasing severity of low back pain with aging should be investigated in future.
Trimble, Morgan J.; van Aarde, Rudi J.; Ferreira, Sam M.; Nørgaard, Camilla F.; Fourie, Johan; Lee, Phyllis C.; Moss, Cynthia J.
2011-01-01
Determining the age of individuals in a population can lead to a better understanding of population dynamics through age structure analysis and estimation of age-specific fecundity and survival rates. Shoulder height has been used to accurately assign age to free-ranging African savanna elephants. However, back length may provide an analog measurable in aerial-based surveys. We assessed the relationship between back length and age for known-age elephants in Amboseli National Park, Kenya, and Addo Elephant National Park, South Africa. We also compared age- and sex-specific back lengths between these populations and compared adult female back lengths across 11 widely dispersed populations in five African countries. Sex-specific Von Bertalanffy growth curves provided a good fit to the back length data of known-age individuals. Based on back length, accurate ages could be assigned relatively precisely for females up to 23 years of age and males up to 17. The female back length curve allowed more precise age assignment to older females than the curve for shoulder height does, probably because of divergence between the respective growth curves. However, this did not appear to be the case for males, but the sample of known-age males was limited to ≤27 years. Age- and sex-specific back lengths were similar in Amboseli National Park and Addo Elephant National Park. Furthermore, while adult female back lengths in the three Zambian populations were generally shorter than in other populations, back lengths in the remaining eight populations did not differ significantly, in support of claims that growth patterns of African savanna elephants are similar over wide geographic regions. Thus, the growth curves presented here should allow researchers to use aerial-based surveys to assign ages to elephants with greater precision than previously possible and, therefore, to estimate population variables. PMID:22028925
Radar sensitivity to human heartbeats and respiration
NASA Astrophysics Data System (ADS)
Aardal, Øyvind; Brovoll, Sverre; Paichard, Yoann; Berger, Tor; Lande, Tor Sverre; Hamran, Svein-Erik
2015-05-01
Human heartbeats and respiration can be detected from a distance using radar. This can be used for medical applications and human being detection. It is useful to have a system independent measure of how detectable the vital signs are. In radar applications, the Radar Cross Section (RCS) is normally used to characterize the detectability of an object. Since the human vital signs are seen by the radar as movements of the torso, the modulations in the person RCS can be used as a system independent measure of the vital signs detectability. In this paper, measurements of persons seated in an anechoic chamber are presented. The measurements were calibrated using empty room and a metallic calibration sphere. A narrowband radar operating at frequencies from 500 MHz to 18 GHz in discrete steps was used. A turntable provided measurements at precise aspect angles all around the person under test. In an I & Q receiver, the heartbeat and respiration modulation is a combination of amplitude and phase mod- modulations. The measurements were filtered, leaving the modulations from the vital signs in the radar recordings. The procedure for RCS computation was applied to these filtered data, capturing the complex signatures. It was found that both the heartbeat and respiration detectability increase with increasing frequency. The heartbeat signatures are almost equal from the front and the back, while being almost undetectable from the sides of the person. The respiration signatures are slightly higher from the front than from the back, and smaller from the sides. The signature measurements presented in this paper provide an objective system independent measure of the detectability of human vital signs as a function of frequency and aspect angle. These measures are useful for example in system design and in assessing real measurement scenarios.
Chain-loaded variable resistance warm-up improves free-weight maximal back squat performance.
Mina, Minas A; Blazevich, Anthony J; Giakas, Giannis; Seitz, Laurent B; Kay, Anthony D
2016-11-01
The acute influence of chain-loaded variable resistance exercise on subsequent free-weight one-repetition maximum (1-RM) back squat performance was examined in 16 recreationally active men. The participants performed either a free-weight resistance (FWR) or chain-loaded resistance (CLR) back squat warm-up at 85% 1-RM on two separate occasions. After a 5-min rest, the participants attempted a free-weight 1-RM back squat; if successful, subsequent 5% load additions were made until participants failed to complete the lift. During the 1-RM trials, 3D knee joint kinematics and knee extensor and flexor electromyograms (EMG) were recorded simultaneously. Significantly greater 1-RM (6.2 ± 5.0%; p < .01) and mean eccentric knee extensor EMG (32.2 ± 6.7%; p < .01) were found after the CLR warm-up compared to the FWR condition. However, no difference (p > .05) was found in concentric EMG, eccentric or concentric knee angular velocity, or peak knee flexion angle. Performing a CLR warm-up enhanced subsequent free-weight 1-RM performance without changes in knee flexion angle or eccentric and concentric knee angular velocities; thus a real 1-RM increase was achieved as the mechanics of the lift were not altered. These results are indicative of a potentiating effect of CLR in a warm-up, which may benefit athletes in tasks where high-level strength is required.
Uncertainty of Videogrammetric Techniques used for Aerodynamic Testing
NASA Technical Reports Server (NTRS)
Burner, A. W.; Liu, Tianshu; DeLoach, Richard
2002-01-01
The uncertainty of videogrammetric techniques used for the measurement of static aeroelastic wind tunnel model deformation and wind tunnel model pitch angle is discussed. Sensitivity analyses and geometrical considerations of uncertainty are augmented by analyses of experimental data in which videogrammetric angle measurements were taken simultaneously with precision servo accelerometers corrected for dynamics. An analysis of variance (ANOVA) to examine error dependence on angle of attack, sensor used (inertial or optical). and on tunnel state variables such as Mach number is presented. Experimental comparisons with a high-accuracy indexing table are presented. Small roll angles are found to introduce a zero-shift in the measured angles. It is shown experimentally that. provided the proper constraints necessary for a solution are met, a single- camera solution can he comparable to a 2-camera intersection result. The relative immunity of optical techniques to dynamics is illustrated.
A Measuring System for Well Logging Attitude and a Method of Sensor Calibration
Ren, Yong; Wang, Yangdong; Wang, Mijian; Wu, Sheng; Wei, Biao
2014-01-01
This paper proposes an approach for measuring the azimuth angle and tilt angle of underground drilling tools with a MEMS three-axis accelerometer and a three-axis fluxgate sensor. A mathematical model of well logging attitude angle is deduced based on combining space coordinate transformations and algebraic equations. In addition, a system implementation plan of the inclinometer is given in this paper, which features low cost, small volume and integration. Aiming at the sensor and assembly errors, this paper analyses the sources of errors, and establishes two mathematical models of errors and calculates related parameters to achieve sensor calibration. The results show that this scheme can obtain a stable and high precision azimuth angle and tilt angle of drilling tools, with the deviation of the former less than ±1.4° and the deviation of the latter less than ±0.1°. PMID:24859028
A measuring system for well logging attitude and a method of sensor calibration.
Ren, Yong; Wang, Yangdong; Wang, Mijian; Wu, Sheng; Wei, Biao
2014-05-23
This paper proposes an approach for measuring the azimuth angle and tilt angle of underground drilling tools with a MEMS three-axis accelerometer and a three-axis fluxgate sensor. A mathematical model of well logging attitude angle is deduced based on combining space coordinate transformations and algebraic equations. In addition, a system implementation plan of the inclinometer is given in this paper, which features low cost, small volume and integration. Aiming at the sensor and assembly errors, this paper analyses the sources of errors, and establishes two mathematical models of errors and calculates related parameters to achieve sensor calibration. The results show that this scheme can obtain a stable and high precision azimuth angle and tilt angle of drilling tools, with the deviation of the former less than ±1.4° and the deviation of the latter less than ±0.1°.
Roll Angle System (RAS) for the High-Energy Solar Spectroscopic Imager HESSI
NASA Astrophysics Data System (ADS)
Henneck, Reinhold; Bialkowski, Jacek; Burri, F.; Fivian, M.; Hajdas, W.; Mchedlishvili, A.; Ming, P.; Thomsen, Knud; Welte, J.; Zehnder, Alex; Dettwyler, M.; Buerki, F.; Hurford, Gordon J.; Curtis, Dave W.; Pankow, Dave
1999-10-01
The purpose of the HESSI RAS is to provide information on the roll angle of the rotation spacecraft. Precise knowledge of the roll angle is a necessary ingredient for image reconstruction. The RAS is a continuously operating star scanner that points out radially and observes stars at 75 degrees from the Sun direction using a commercial lens and a fast CCD. The passage of a star image over the CCD charges one or several pixels above threshold and the timing of this signal defines the roll angle, once the star has been identified by comparing its pixel position and amplitude with a star map. Roll angles at intermediate times are inferred by assuming uniform rotation. With a limiting star magnitude of mv equals 3 we expect to observe at least 1 star per revolution over 1 year; on the average we will detect about 10 stars/revolution.
Modeling and Implementation of Multi-Position Non-Continuous Rotation Gyroscope North Finder.
Luo, Jun; Wang, Zhiqian; Shen, Chengwu; Kuijper, Arjan; Wen, Zhuoman; Liu, Shaojin
2016-09-20
Even when the Global Positioning System (GPS) signal is blocked, a rate gyroscope (gyro) north finder is capable of providing the required azimuth reference information to a certain extent. In order to measure the azimuth between the observer and the north direction very accurately, we propose a multi-position non-continuous rotation gyro north finding scheme. Our new generalized mathematical model analyzes the elements that affect the azimuth measurement precision and can thus provide high precision azimuth reference information. Based on the gyro's principle of detecting a projection of the earth rotation rate on its sensitive axis and the proposed north finding scheme, we are able to deduct an accurate mathematical model of the gyro outputs against azimuth with the gyro and shaft misalignments. Combining the gyro outputs model and the theory of propagation of uncertainty, some approaches to optimize north finding are provided, including reducing the gyro bias error, constraining the gyro random error, increasing the number of rotation points, improving rotation angle measurement precision, decreasing the gyro and the shaft misalignment angles. According them, a north finder setup is built and the azimuth uncertainty of 18" is obtained. This paper provides systematic theory for analyzing the details of the gyro north finder scheme from simulation to implementation. The proposed theory can guide both applied researchers in academia and advanced practitioners in industry for designing high precision robust north finder based on different types of rate gyroscopes.
Fast wavelength tuning techniques for external cavity lasers
Wysocki, Gerard [Princeton, NJ; Tittel, Frank K [Houston, TX
2011-01-11
An apparatus comprising a laser source configured to emit a light beam along a first path, an optical beam steering component configured to steer the light beam from the first path to a second path at an angle to the first path, and a diffraction grating configured to reflect back at least a portion of the light beam along the second path, wherein the angle determines an external cavity length. Included is an apparatus comprising a laser source configured to emit a light beam along a first path, a beam steering component configured to redirect the light beam to a second path at an angle to the first path, wherein the optical beam steering component is configured to change the angle at a rate of at least about one Kilohertz, and a diffraction grating configured to reflect back at least a portion of the light beam along the second path.
Parameter optimization of flux-aided backing-submerged arc welding by using Taguchi method
NASA Astrophysics Data System (ADS)
Pu, Juan; Yu, Shengfu; Li, Yuanyuan
2017-07-01
Flux-aided backing-submerged arc welding has been conducted on D36 steel with thickness of 20 mm. The effects of processing parameters such as welding current, voltage, welding speed and groove angle on welding quality were investigated by Taguchi method. The optimal welding parameters were predicted and the individual importance of each parameter on welding quality was evaluated by examining the signal-to-noise ratio and analysis of variance (ANOVA) results. The importance order of the welding parameters for the welding quality of weld bead was: welding current > welding speed > groove angle > welding voltage. The welding quality of weld bead increased gradually with increasing welding current and welding speed and decreasing groove angle. The optimum values of the welding current, welding speed, groove angle and welding voltage were found to be 1050 A, 27 cm/min, 40∘ and 34 V, respectively.
Investigation of an optical sensor for small tilt angle detection of a precision linear stage
NASA Astrophysics Data System (ADS)
Saito, Yusuke; Arai, Yoshikazu; Gao, Wei
2010-05-01
This paper presents evaluation results of the characteristics of the angle sensor based on the laser autocollimation method for small tilt angle detection of a precision linear stage. The sensor consists of a laser diode (LD) as the light source, and a quadrant photodiode (QPD) as the position-sensing detector. A small plane mirror is mounted on the moving table of the stage as a target mirror for the sensor. This optical system has advantages of high sensitivity, fast response speed and the ability for two-axis angle detection. On the other hand, the sensitivity of the sensor is determined by the size of the optical spot focused on the QPD, which is a function of the diameter of the laser beam projected onto the target mirror. Because the diameter is influenced by the divergence of the laser beam, this paper focuses on the relationship between the sensor sensitivity and the moving position of the target mirror (sensor working distance) over the moving stroke of the stage. The main error components that influence the sensor sensitivity are discussed and the optimal conditions of the optical system of the sensor are analyzed. The experimental result about evaluation of the effective working distance is also presented.
TFSSRA - THICK FREQUENCY SELECTIVE SURFACE WITH RECTANGULAR APERTURES
NASA Technical Reports Server (NTRS)
Chen, J. C.
1994-01-01
Thick Frequency Selective Surface with Rectangular Apertures (TFSSRA) was developed to calculate the scattering parameters for a thick frequency selective surface with rectangular apertures on a skew grid at oblique angle of incidence. The method of moments is used to transform the integral equation into a matrix equation suitable for evaluation on a digital computer. TFSSRA predicts the reflection and transmission characteristics of a thick frequency selective surface for both TE and TM orthogonal linearly polarized plane waves. A model of a half-space infinite array is used in the analysis. A complete set of basis functions with unknown coefficients is developed for the waveguide region (waveguide modes) and for the free space region (Floquet modes) in order to represent the electromagnetic fields. To ensure the convergence of the solutions, the number of waveguide modes is adjustable. The method of moments is used to compute the unknown mode coefficients. Then, the scattering matrix of the half-space infinite array is calculated. Next, the reference plane of the scattering matrix is moved half a plate thickness in the negative z-direction, and a frequency selective surface of finite thickness is synthesized by positioning two plates of half-thickness back-to-back. The total scattering matrix is obtained by cascading the scattering matrices of the two half-space infinite arrays. TFSSRA is written in FORTRAN 77 with single precision. It has been successfully implemented on a Sun4 series computer running SunOS, an IBM PC compatible running MS-DOS, and a CRAY series computer running UNICOS, and should run on other systems with slight modifications. Double precision is recommended for running on a PC if many modes are used or if high accuracy is required. This package requires the LINPACK math library, which is included. TFSSRA requires 1Mb of RAM for execution. The standard distribution medium for this program is one 5.25 inch 360K MS-DOS format diskette. It is also available on a .25 inch streaming magnetic tape cartridge (Sun QIC-24) in UNIX tar format. This program was developed in 1992 and is a copyrighted work with all copyright vested in NASA.
High precision position sensor based on CPA in a composite multi-layered system.
Dey, Sanjeeb; Singh, Suneel; Rao, Desai Narayana
2018-04-16
We propose a scheme for high precision position sensing based on coherent perfect absorption (CPA) in a five-layered structure comprising three layers of metal-dielectric composites and two spacer (air) layers. Both the outermost interfaces of the five layered medium are irradiated by two identical coherent light waves at the same angle of incidence. We first investigate the occurrence of CPA in a symmetric layered structure as a function of different system parameters for oblique incidence. Thereafter, by shifting the middle layer, beginning from one end of the structure to the other, we observe the periodic occurrence of extremely narrow CPA resonances at several positions of the middle layer. Moreover this phenomenon is seen to recur even at many other wavelengths. We discuss how the position sensitivity of this phenomenon can be utilized for designing a CPA based high precision position sensing device.
Dynamic tailoring of surface plasmon polaritons through incident angle modulation.
Qiu, Peizhen; Zhang, Dawei; Jing, Ming; Lu, Taiguo; Yu, Binbin; Zhan, Qiwen; Zhuang, Songlin
2018-04-16
Dynamic tailoring of the propagating surface plasmon polaritons (SPPs) through incident angle modulation is proposed and numerically demonstrated. The generation and tailoring mechanism of the SPPs are discussed. The relationship formula between the incident angle and the generated SPP wave vector direction is theoretically derived. The correctness of the formula is verified with three different approaches using finite difference time domain method. Using this formula, the generated SPP wave vector direction can be precisely modulated by changing the incident angle. The precise modulation results of two dimensional Bessel-like SPP beam and SPP bottle beam array are given. The results can deepen the understanding of the generation and modulation mechanism of the SPPs.
Ground-based Photon Path Measurements from Solar Absorption Spectra of the O2 A-band
NASA Technical Reports Server (NTRS)
Yang, Z.; Wennberg, P. O.; Cageao, R. P.; Pongetti, T. J.; Toon, G. C.; Sander, S. P.
2005-01-01
High-resolution solar absorption spectra obtained from Table Mountain Facility (TMF, 34.38degN, 117.68degW, 2286 m elevation) have been analyzed in the region of the O2 A-band. The photon paths of direct sunlight in clear sky cases are retrieved from the O2 absorption lines and compared with ray-tracing calculations based on the solar zenith angle and surface pressure. At a given zenith angle, the ratios of retrieved to geometrically derived photon paths are highly precise (approx.0.2%), but they vary as the zenith angle changes. This is because current models of the spectral lineshape in this band do not properly account for the significant absorption that exists far from the centers of saturated lines. For example, use of a Voigt function with Lorentzian far wings results in an error in the retrieved photon path of as much as 5%, highly correlated with solar zenith angle. Adopting a super-Lorentz function reduces, but does not completely eliminate this problem. New lab measurements of the lineshape are required to make further progress.
John F. Kennedy Space Center's Wireless Hang Angle Instrumentation System
NASA Technical Reports Server (NTRS)
Kohler, Jeff
2009-01-01
The technology is a high-precision, wireless inclinometer. The system was designed for monitoring the suspension angle of the Orbiter vehicle during loading onto the Solid Rocket Boosters of the Space Shuttle. Originally, operators manually measured the alignment of the Orbiter with a hand-held inclinometer on a nonrigid surface. The measurement was open to interpretation by the loader. If the Orbiter is misaligned, it can crush ball joints and delay the loading while repairs are made. With this system, the Orbiter can be loaded without damage and without manual measurement.
Accurate guide wire of lag screw placement in the intertrochanteric fractures: a technical note.
Li, Jiang; Wang, Liao; Li, Xiaodong; Feng, Kai; Tang, Jian; Wang, Xiaoqing
2017-09-01
Cephalomedullary fixations are commonly used in the treatment of intertrochanteric fractures. In clinical practice, one of the difficulties is when we exit the guide wire in a wrong position of femoral neck and insert near the hole again, the guide wire often flow into the previous track. This study develops a surgical technique to direct the guide wire to slip away the previous track and slip into a right position. When guide wire is exited to the cortex of femoral, we let the wire in and out at the cortical layer for several times to enlarge the entry hole. After that, electric drill is inverted, rubbed and entered slowly at a right angle. When guide wire encountered new resistance, the electric drill is turned back instantly. This technique can help trauma and orthopedic surgeons to obtain precision placement of the lag screw after the first try is failed.
3D reconstruction of microminiature objects based on contour line
NASA Astrophysics Data System (ADS)
Li, Cailin; Wang, Qiang; Guo, Baoyun
2009-10-01
A new 3D automatic reconstruction method of micro solid of revolution is presented in this paper. In the implementation procedure of this method, image sequence of the solid of revolution of 360° is obtained, which rotation speed is controlled by motor precisely, in the rotate photographic mode of back light. Firstly, we need calibrate the height of turntable, the size of pixel and rotation axis of turntable. Then according to the calibration result of rotation axis, the height of turntable, rotation angle and the pixel size, the contour points of each image can be transformed into 3D points in the reference coordinate system to generate the point cloud model. Finally, the surface geometrical model of solid of revolution is obtained by using the relationship of two adjacent contours. Experimental results on real images are presented, which demonstrate the effectiveness of the Approach.
Laminar Instability and Transition on the X-51A
2009-08-01
AIM15 controller. Surface thermocouples are affixed to the contraction by hose clamps and are used by the controllers to determine when each heater...installed in the model. One 20- gauge, braided , high-voltage wire is soldered to the inner electrode. This wire then passes through the model, angle...and another 20-gauge, braided , high-voltage wire leading from the sting to the ground of the glow electronics. From the back of the sting to the glow
Watanabe, Kei; Hasegawa, Kazuhiro; Hirano, Toru; Uchiyama, Seiji; Endo, Naoto
2005-05-15
This study clarifies the relation between the results of the Scoliosis Research Society Outcomes Instrument (SRS-24) and radiographic parameters of back deformity in Japanese idiopathic scoliosis patients. To investigate the relation between magnitude of back deformity and results of the SRS-24 in untreated patients. In idiopathic scoliosis, it is necessary to clarify the relation between patient-perceived outcomes of the deformity and magnitude of back deformity before considering treatment. The relation between the magnitude of spinal deformity and outcomes of untreated patients, however, has not been fully investigated. Patients (n = 166) under 30 years of age with untreated scoliosis were evaluated. Radiologic examination included Cobb angle, rotation angle of apical vertebrae, and translation of C7 vertebra from the central sacral line (C7 translation) on the coronal plane. Patient evaluation using section 1 (15 questions) of the SRS-24 was compared with radiologic findings using Spearman's correlation coefficient by rank (rs). The average pain domain score was 27.0 +/- 2.2 points, general self-image 9.9 +/- 1.7 points, general function 12.7 +/- 1.1 points, and overall level of activity 14.9 +/- 0.6 points. In radiologic deformity, the average Cobb angle and rotation angle of the thoracic curve were 35.8 degrees +/- 12.1 degrees (range, 17 degrees-73 degrees) and 13.9 degrees +/- 8.2 degrees (range, 0 degrees-38 degrees), respectively. The average Cobb and rotation angle of the lumbar curve were 31.4 degrees +/- 9.3 degrees (range, 13 degrees-56 degrees) and 15.4 degrees +/- 9.7 degrees (range, 2 degrees-36 degrees), respectively. The mean C7 translation was 12.4 +/- 9.7 mm (range, 0-48 mm). Comparison between individual domains and radiologic measurements revealed that the total pain (rs = -0.33; P < 0.0001) and general self-image (rs = -0.25; P = 0.0024) domain scores had a significant inverse correlation with thoracic curve Cobb angle. Comparison between the scores of individual questions and radiologic measurements revealed that the scores of question 3 (total pain domain) had a significant inverse correlation with thoracic curve Cobb angle (rs = -0.36; P < 0.0001). The scores of question 5 (general self-image domain) had a significant inverse correlation with thoracic curve Cobb angle (rs = -0.41; P < 0.0001) and rotation angle (rs = -0.30; P = 0.0006). The patients did not have negative self-image regarding back appearance when the thoracic curve Cobb angle was less than 30 degrees but had a negative self-image when the thoracic curve Cobb angle was more than 40 degrees and the rotation angle was more than 20 degrees. On the other hand, the lumbar curve Cobb angle and the rotation angle did not correlate with patient self-image. The results of the present study will help to define the parameters for the initiation of active treatment and physicians should maintain or reduce scoliotic deformity so that the thoracic curve Cobb angle is less than 40 degrees and the rotation angle is less than 20 degrees in idiopathic scoliosis.
A precise goniometer/tensiometer using a low cost single-board computer
NASA Astrophysics Data System (ADS)
Favier, Benoit; Chamakos, Nikolaos T.; Papathanasiou, Athanasios G.
2017-12-01
Measuring the surface tension and the Young contact angle of a droplet is extremely important for many industrial applications. Here, considering the booming interest for small and cheap but precise experimental instruments, we have constructed a low-cost contact angle goniometer/tensiometer, based on a single-board computer (Raspberry Pi). The device runs an axisymmetric drop shape analysis (ADSA) algorithm written in Python. The code, here named DropToolKit, was developed in-house. We initially present the mathematical framework of our algorithm and then we validate our software tool against other well-established ADSA packages, including the commercial ramé-hart DROPimage Advanced as well as the DropAnalysis plugin in ImageJ. After successfully testing for various combinations of liquids and solid surfaces, we concluded that our prototype device would be highly beneficial for industrial applications as well as for scientific research in wetting phenomena compared to the commercial solutions.
NASA Astrophysics Data System (ADS)
Liu, Guodong; Wang, Chenlu; Zhang, Yan; Hu, Bingfeng; Mou, Daixiang; Yu, Li; Zhao, Lin; Zhou, Xingjiang; Wang, Nanlin; Chen, Chuangtian; Xu, Zuyan
We performed high-resolution angle-resolved photoemission spectroscopy (ARPES) measurement on high quality crystal of HoTe3, an intriguing quasi-two-dimensional rare-earth-element tritelluride charge-density-wave (CDW) compound. The main features of the electronic structure in this compound are established by employing a quasi-CW laser (7eV) and a helium discharging lamp (21.22 eV) as excitation light sources. It reveals many bands back folded according to the CDW periodicity and two incommensurate CDW gaps created by perpendicular Fermi surface (FS) nesting vectors. A large gap is found to open in well nested regions of the Fermi surface sheets, whereas other Fermi surface sections with poor nesting remain ungapped. In particular, some peculiar features are identified by using our ultra-high resolution and bulk sensitive laser-ARPES.
Lumbosacral pain in ballet school students. Pilot study.
Drężewska, Marlena; Śliwiński, Zbigniew
2013-01-01
The unique biomechanical demands placed on ballet students predispose to injury and pain. The aim of this study was to evaluate the prevalence of lumbosacral pain in ballet school students and to identify possible risk factors for the pain. The study group comprised 71 ballet school students, including 45 females and 26 males, aged 15-18 years (mean 16.5 years). In order to identify possible risk factors for pain, a survey was conducted, the angle of sacral bone inclination was measured using a mechanical inclinometer and the BMI was calculated. A VAS scale was used for a subjective assessment of pain intensity. Low back pain was reported by 44 patients (62%). A comparison of sacral inclination angles in a position with the feet placed parallel and in the turnout position showed statistically significant changes in the angle among respondents reporting pain (p <0.05). 1. Compensation in the turnout position by increas ed anterior tilt of the pelvis may increase the risk of low back pain. 2. An angle of sacral bone inclination in turnout above or equal to 30° can increase the intensity of low back pain. 3. A BMI below 18.5 in female ballet school stu dents can increase the risk of lumbosacral pain.
Precision and repeatability of the Optotrak 3020 motion measurement system.
States, R A; Pappas, E
2006-01-01
Several motion analysis systems are used by researchers to quantify human motion and to perform accurate surgical procedures. The Optotrak 3020 is one of these systems and despite its widespread use there is not any published information on its precision and repeatability. We used a repeated measures design study to evaluate the precision and repeatability of the Optotrak 3020 by measuring distance and angle in three sessions, four distances and three conditions (motion, static vertical, and static tilted). Precision and repeatability were found to be excellent for both angle and distance although they decreased with increasing distance from the sensors and with tilt from the plane of the sensors. Motion did not have a significant effect on the precision of the measurements. In conclusion, the measurement error of the Optotrak is minimal. Further studies are needed to evaluate its precision and repeatability under human motion conditions.
Zhou, Qifa; Wu, Dawei; Jin, Jing; Hu, Chang-hong; Xu, Xiaochen; Williams, Jay; Cannata, Jonathan M; Lim, Leongchew; Shung, K Kirk
2008-01-01
A high-frequency angled needle ultrasound transducer with an aperture size of 0.4 x 0.56 mm2 was fabricated using a lead zinc niobate-lead titanate (PZN- 7%PT) single crystal as the active piezoelectric material. The single crystal was bonded to a conductive silver particle matching layer and a conductive epoxy backing material through direct contact curing. A parylene outer matching layer was formed by vapor deposition. Angled needle probe configuration was achieved by dicing at 45 degrees to the single crystal poling direction to satisfy a clinical request for blood flow measurement in the posterior portion of the eye. The electrical impedance magnitude and phase of the transducer were 42 Omega and -63 degrees , respectively. The measured center frequency and the fractional bandwidth at -6 dB were 43 MHz and 45%, respectively. The two-way insertion loss was approximately 17 dB. Wire phantom imaging using fabricated PZN-7%PT single crystal transducers was obtained and spatial resolutions were assessed.
Lee, Jung-hoon; Yoo, Won-gyu
2012-11-01
Kinesio Taping (KT) is a therapeutic method used by physical therapists and athletic trainers in combination with other treatment techniques for various musculoskeletal and neuromuscular problems. However, no research has evaluated the effect of KT in patients with low back pain (LBP). The purpose of this case was to describe the application of posterior pelvic tilt taping (PPTT) with Kinesio tape as a treatment for chronic LBP and to reduce the anterior pelvic tilt angle. Case report. The patien was a 20-year-old female amateur swimmer with a Cobb's angle (L1-S1) of 68°, a sacral horizontal angle of 45°, and pain in both medial buttock areas and sacroiliac joints. We performed PPTT with Kinesio tape for 2 weeks (six times per week for an average of 9 h each time). The patient’s radiographs showed that the Cobb's angle (L1-S1) had decreased from 68° to 47° and that the sacral horizontal angle had decreased from 45° to 31°. Reductions in hypomobility or motion asymmetry, as assessed by the motion palpation test, and in pain, as measured by the pain-provocation tests, were observed. On palpation for both medial buttock areas in the prone position, the patient felt no pain. The patient experienced no pain or stiffness in the low back area while performing forward flexion in the standing position with knees fully extended when washing dishes in the sink. The case study demonstrated that PPTT intervention favourably affected the pelvic inclination and sacral horizontal angle, leading to beneficial effects on sacroiliac joint dysfunction (SIJD) and medial buttock pain. Additional research on the clinical effects of this taping procedure requires greater numbers of athletes with SIJD or LBP who have inappropriate anterior pelvic tilt angles and hyperlordosis.
Process Performance of Optima XEx Single Wafer High Energy Implanter
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kim, J. H.; Yoon, Jongyoon; Kondratenko, S.
2011-01-07
To meet the process requirements for well formation in future CMOS memory production, high energy implanters require more robust angle, dose, and energy control while maintaining high productivity. The Optima XEx high energy implanter meets these requirements by integrating a traditional LINAC beamline with a robust single wafer handling system. To achieve beam angle control, Optima XEx can control both the horizontal and vertical beam angles to within 0.1 degrees using advanced beam angle measurement and correction. Accurate energy calibration and energy trim functions accelerate process matching by eliminating energy calibration errors. The large volume process chamber and UDC (upstreammore » dose control) using faraday cups outside of the process chamber precisely control implant dose regardless of any chamber pressure increase due to PR (photoresist) outgassing. An optimized RF LINAC accelerator improves reliability and enables singly charged phosphorus and boron energies up to 1200 keV and 1500 keV respectively with higher beam currents. A new single wafer endstation combined with increased beam performance leads to overall increased productivity. We report on the advanced performance of Optima XEx observed during tool installation and volume production at an advanced memory fab.« less
Camber Angle Inspection for Vehicle Wheel Alignments
Young, Jieh-Shian; Hsu, Hong-Yi; Chuang, Chih-Yuan
2017-01-01
This paper introduces an alternative approach to the camber angle measurement for vehicle wheel alignment. Instead of current commercial approaches that apply computation vision techniques, this study aims at realizing a micro-control-unit (MCU)-based camber inspection system with a 3-axis accelerometer. We analyze the precision of the inspection system for the axis misalignments of the accelerometer. The results show that the axes of the accelerometer can be aligned to the axes of the camber inspection system imperfectly. The calibrations that can amend these axis misalignments between the camber inspection system and the accelerometer are also originally proposed since misalignments will usually happen in fabrications of the inspection systems. During camber angle measurements, the x-axis or z-axis of the camber inspection system and the wheel need not be perfectly aligned in the proposed approach. We accomplished two typical authentic camber angle measurements. The results show that the proposed approach is applicable with a precision of ±0.015∘ and therefore facilitates the camber measurement process without downgrading the precision by employing an appropriate 3-axis accelerometer. In addition, the measured results of camber angles can be transmitted via the medium such as RS232, Bluetooth, and Wi-Fi. PMID:28165365
A Dynamic Precision Evaluation Method for the Star Sensor in the Stellar-Inertial Navigation System.
Lu, Jiazhen; Lei, Chaohua; Yang, Yanqiang
2017-06-28
Integrating the advantages of INS (inertial navigation system) and the star sensor, the stellar-inertial navigation system has been used for a wide variety of applications. The star sensor is a high-precision attitude measurement instrument; therefore, determining how to validate its accuracy is critical in guaranteeing its practical precision. The dynamic precision evaluation of the star sensor is more difficult than a static precision evaluation because of dynamic reference values and other impacts. This paper proposes a dynamic precision verification method of star sensor with the aid of inertial navigation device to realize real-time attitude accuracy measurement. Based on the gold-standard reference generated by the star simulator, the altitude and azimuth angle errors of the star sensor are calculated for evaluation criteria. With the goal of diminishing the impacts of factors such as the sensors' drift and devices, the innovative aspect of this method is to employ static accuracy for comparison. If the dynamic results are as good as the static results, which have accuracy comparable to the single star sensor's precision, the practical precision of the star sensor is sufficiently high to meet the requirements of the system specification. The experiments demonstrate the feasibility and effectiveness of the proposed method.
NASA Astrophysics Data System (ADS)
Chen, Hao; Zhang, Xinggan; Bai, Yechao; Tang, Lan
2017-01-01
In inverse synthetic aperture radar (ISAR) imaging, the migration through resolution cells (MTRCs) will occur when the rotation angle of the moving target is large, thereby degrading image resolution. To solve this problem, an ISAR imaging method based on segmented preprocessing is proposed. In this method, the echoes of large rotating target are divided into several small segments, and every segment can generate a low-resolution image without MTRCs. Then, each low-resolution image is rotated back to the original position. After image registration and phase compensation, a high-resolution image can be obtained. Simulation and real experiments show that the proposed algorithm can deal with the radar system with different range and cross-range resolutions and significantly compensate the MTRCs.
Error measuring system of rotary Inductosyn
NASA Astrophysics Data System (ADS)
Liu, Chengjun; Zou, Jibin; Fu, Xinghe
2008-10-01
The inductosyn is a kind of high-precision angle-position sensor. It has important applications in servo table, precision machine tool and other products. The precision of inductosyn is calibrated by its error. It's an important problem about the error measurement in the process of production and application of the inductosyn. At present, it mainly depends on the method of artificial measurement to obtain the error of inductosyn. Therefore, the disadvantages can't be ignored such as the high labour intensity of the operator, the occurrent error which is easy occurred and the poor repeatability, and so on. In order to solve these problems, a new automatic measurement method is put forward in this paper which based on a high precision optical dividing head. Error signal can be obtained by processing the output signal of inductosyn and optical dividing head precisely. When inductosyn rotating continuously, its zero position error can be measured dynamically, and zero error curves can be output automatically. The measuring and calculating errors caused by man-made factor can be overcome by this method, and it makes measuring process more quickly, exactly and reliably. Experiment proves that the accuracy of error measuring system is 1.1 arc-second (peak - peak value).
Sohn, Martin Y; Barnes, Bryan M; Silver, Richard M
2018-03-01
Accurate optics-based dimensional measurements of features sized well-below the diffraction limit require a thorough understanding of the illumination within the optical column and of the three-dimensional scattered fields that contain the information required for quantitative metrology. Scatterfield microscopy can pair simulations with angle-resolved tool characterization to improve agreement between the experiment and calculated libraries, yielding sub-nanometer parametric uncertainties. Optimized angle-resolved illumination requires bi-telecentric optics in which a telecentric sample plane defined by a Köhler illumination configuration and a telecentric conjugate back focal plane (CBFP) of the objective lens; scanning an aperture or an aperture source at the CBFP allows control of the illumination beam angle at the sample plane with minimal distortion. A bi-telecentric illumination optics have been designed enabling angle-resolved illumination for both aperture and source scanning modes while yielding low distortion and chief ray parallelism. The optimized design features a maximum chief ray angle at the CBFP of 0.002° and maximum wavefront deviations of less than 0.06 λ for angle-resolved illumination beams at the sample plane, holding promise for high quality angle-resolved illumination for improved measurements of deep-subwavelength structures using deep-ultraviolet light.
NASA Astrophysics Data System (ADS)
Busonero, D.; Gai, M.
The goals of 21st century high angular precision experiments rely on the limiting performance associated to the selected instrumental configuration and observational strategy. Both global and narrow angle micro-arcsec space astrometry require that the instrument contributions to the overall error budget has to be less than the desired micro-arcsec level precision. Appropriate modelling of the astrometric response is required for optimal definition of the data reduction and calibration algorithms, in order to ensure high sensitivity to the astrophysical source parameters and in general high accuracy. We will refer to the framework of the SIM-Lite and the Gaia mission, the most challenging space missions of the next decade in the narrow angle and global astrometry field, respectively. We will focus our dissertation on the Gaia data reduction issues and instrument calibration implications. We describe selected topics in the framework of the Astrometric Instrument Modelling for the Gaia mission, evidencing their role in the data reduction chain and we give a brief overview of the Astrometric Instrument Model Data Analysis Software System, a Java-based pipeline under development by our team.
Highly precise and compact ultrahigh vacuum rotary feedthrough.
Aiura, Y; Kitano, K
2012-03-01
The precision and rigidity of compact ultrahigh vacuum (UHV) rotary feedthroughs were substantially improved by preparing and installing an optimal crossed roller bearing with mounting holes. Since there are mounting holes on both the outer and inner races, the bearing can be mounted directly to rotary and stationary stages without any fixing plates and housing. As a result, it is possible to increase the thickness of the bearing or the size of the rolling elements in the bearing without increasing the distance between the rotating and fixing International Conflat flanges of the UHV rotary feedthrough. Larger rolling elements enhance the rigidity of the UHV rotary feedthrough. Moreover, owing to the structure having integrated inner and outer races and mounting holes, the performance is almost entirely unaffected by the installation of the bearing, allowing for a precise optical encoder to be installed in the compact UHV rotary feedthrough. Using position feedback via a worm gear system driven by a stepper motor and a precise rotary encoder, the actual angle of the compact UHV rotary feedthrough can be controlled with extremely high precision.
Highly precise and compact ultrahigh vacuum rotary feedthrough
NASA Astrophysics Data System (ADS)
Aiura, Y.; Kitano, K.
2012-03-01
The precision and rigidity of compact ultrahigh vacuum (UHV) rotary feedthroughs were substantially improved by preparing and installing an optimal crossed roller bearing with mounting holes. Since there are mounting holes on both the outer and inner races, the bearing can be mounted directly to rotary and stationary stages without any fixing plates and housing. As a result, it is possible to increase the thickness of the bearing or the size of the rolling elements in the bearing without increasing the distance between the rotating and fixing International Conflat flanges of the UHV rotary feedthrough. Larger rolling elements enhance the rigidity of the UHV rotary feedthrough. Moreover, owing to the structure having integrated inner and outer races and mounting holes, the performance is almost entirely unaffected by the installation of the bearing, allowing for a precise optical encoder to be installed in the compact UHV rotary feedthrough. Using position feedback via a worm gear system driven by a stepper motor and a precise rotary encoder, the actual angle of the compact UHV rotary feedthrough can be controlled with extremely high precision.
NASA Astrophysics Data System (ADS)
Irsal, I. L.; Jupri, A.; Prabawanto, S.
2017-09-01
Line and angles is important topics to learn to develop the geometry skills and also mathematics skills such as understanding and problem solving skills. But, the fact was given by Indonesian researcher show that Indonesian students’ understanding and problem solving skills still low in this topics. This fact be a background to investigate students’ understanding and problem solving skills in line and angles topics. To investigate these skills, this study used descriptive-qualitative approach. Individual written test (essay) and interview was used in this study. 72 students grade 8th from one of Junior High School in Lembang, worked the written test and 18 of them were interviewed. Based on result, almost of student were have a good instrumental understanding in line and angles topic in same area, but almost all student have a low instrumental understanding in line and angles topic in different area. Almost all student have a low relational understanding. Also, almost all student have a low problem solving skills especially in make and use strategy to solve the problem and looking back their answer. Based on result there is need a meaningfulness learning strategy, which can make students build their understanding and develop their problem solving skill independently.
The Impact of Estimating High-Resolution Tropospheric Gradients on Multi-GNSS Precise Positioning
Zhou, Feng; Li, Xingxing; Li, Weiwei; Chen, Wen; Dong, Danan; Wickert, Jens; Schuh, Harald
2017-01-01
Benefits from the modernized US Global Positioning System (GPS), the revitalized Russian GLObal NAvigation Satellite System (GLONASS), and the newly-developed Chinese BeiDou Navigation Satellite System (BDS) and European Galileo, multi-constellation Global Navigation Satellite System (GNSS) has emerged as a powerful tool not only in positioning, navigation, and timing (PNT), but also in remote sensing of the atmosphere and ionosphere. Both precise positioning and the derivation of atmospheric parameters can benefit from multi-GNSS observations. In this contribution, extensive evaluations are conducted with multi-GNSS datasets collected from 134 globally-distributed ground stations of the International GNSS Service (IGS) Multi-GNSS Experiment (MGEX) network in July 2016. The datasets are processed in six different constellation combinations, i.e., GPS-, GLONASS-, BDS-only, GPS + GLONASS, GPS + BDS, and GPS + GLONASS + BDS + Galileo precise point positioning (PPP). Tropospheric gradients are estimated with eight different temporal resolutions, from 1 h to 24 h, to investigate the impact of estimating high-resolution gradients on position estimates. The standard deviation (STD) is used as an indicator of positioning repeatability. The results show that estimating tropospheric gradients with high temporal resolution can achieve better positioning performance than the traditional strategy in which tropospheric gradients are estimated on a daily basis. Moreover, the impact of estimating tropospheric gradients with different temporal resolutions at various elevation cutoff angles (from 3° to 20°) is investigated. It can be observed that with increasing elevation cutoff angles, the improvement in positioning repeatability is decreased. PMID:28368346
The Impact of Estimating High-Resolution Tropospheric Gradients on Multi-GNSS Precise Positioning.
Zhou, Feng; Li, Xingxing; Li, Weiwei; Chen, Wen; Dong, Danan; Wickert, Jens; Schuh, Harald
2017-04-03
Benefits from the modernized US Global Positioning System (GPS), the revitalized Russian GLObal NAvigation Satellite System (GLONASS), and the newly-developed Chinese BeiDou Navigation Satellite System (BDS) and European Galileo, multi-constellation Global Navigation Satellite System (GNSS) has emerged as a powerful tool not only in positioning, navigation, and timing (PNT), but also in remote sensing of the atmosphere and ionosphere. Both precise positioning and the derivation of atmospheric parameters can benefit from multi-GNSS observations. In this contribution, extensive evaluations are conducted with multi-GNSS datasets collected from 134 globally-distributed ground stations of the International GNSS Service (IGS) Multi-GNSS Experiment (MGEX) network in July 2016. The datasets are processed in six different constellation combinations, i.e., GPS-, GLONASS-, BDS-only, GPS + GLONASS, GPS + BDS, and GPS + GLONASS + BDS + Galileo precise point positioning (PPP). Tropospheric gradients are estimated with eight different temporal resolutions, from 1 h to 24 h, to investigate the impact of estimating high-resolution gradients on position estimates. The standard deviation (STD) is used as an indicator of positioning repeatability. The results show that estimating tropospheric gradients with high temporal resolution can achieve better positioning performance than the traditional strategy in which tropospheric gradients are estimated on a daily basis. Moreover, the impact of estimating tropospheric gradients with different temporal resolutions at various elevation cutoff angles (from 3° to 20°) is investigated. It can be observed that with increasing elevation cutoff angles, the improvement in positioning repeatability is decreased.
Bok, Tae-Hoon; Kim, Juho; Bae, Jinho; Lee, Chong Hyun; Paeng, Dong-Guk
2014-09-24
The mechanical scanning of a single element transducer has been mostly utilized for high-frequency ultrasound imaging. However, it requires space for the mechanical motion of the transducer. In this paper, a rotational scanning ultrasound biomicroscopy (UBM) system equipped with a high-frequency angled needle transducer is designed and implemented in order to minimize the space required. It was applied to ex vivo ultrasound imaging of porcine posterior ocular tissues through a minimal incision hole of 1 mm in diameter. The retina and sclera for the one eye were visualized in the relative rotating angle range of 270°~330° and at a distance range of 6~7 mm, whereas the tissues of the other eye were observed in relative angle range of 160°~220° and at a distance range of 7.5~9 mm. The layer between retina and sclera seemed to be bent because the distance between the transducer tip and the layer was varied while the transducer was rotated. Certin features of the rotation system such as the optimal scanning angle, step angle and data length need to be improved for ensure higher accuracy and precision. Moreover, the focal length should be considered for the image quality. This implementation represents the first report of a rotational scanning UBM system.
Bok, Tae-Hoon; Kim, Juho; Bae, Jinho; Lee, Chong Hyun; Paeng, Dong-Guk
2014-01-01
The mechanical scanning of a single element transducer has been mostly utilized for high-frequency ultrasound imaging. However, it requires space for the mechanical motion of the transducer. In this paper, a rotational scanning ultrasound biomicroscopy (UBM) system equipped with a high-frequency angled needle transducer is designed and implemented in order to minimize the space required. It was applied to ex vivo ultrasound imaging of porcine posterior ocular tissues through a minimal incision hole of 1 mm in diameter. The retina and sclera for the one eye were visualized in the relative rotating angle range of 270° ∼ 330° and at a distance range of 6 ∼ 7 mm, whereas the tissues of the other eye were observed in relative angle range of 160° ∼ 220° and at a distance range of 7.5 ∼ 9 mm. The layer between retina and sclera seemed to be bent because the distance between the transducer tip and the layer was varied while the transducer was rotated. Certin features of the rotation system such as the optimal scanning angle, step angle and data length need to be improved for ensure higher accuracy and precision. Moreover, the focal length should be considered for the image quality. This implementation represents the first report of a rotational scanning UBM system. PMID:25254305
Zhao, Anbang; Ma, Lin; Ma, Xuefei; Hui, Juan
2017-02-20
In this paper, an improved azimuth angle estimation method with a single acoustic vector sensor (AVS) is proposed based on matched filtering theory. The proposed method is mainly applied in an active sonar detection system. According to the conventional passive method based on complex acoustic intensity measurement, the mathematical and physical model of this proposed method is described in detail. The computer simulation and lake experiments results indicate that this method can realize the azimuth angle estimation with high precision by using only a single AVS. Compared with the conventional method, the proposed method achieves better estimation performance. Moreover, the proposed method does not require complex operations in frequencydomain and achieves computational complexity reduction.
NASA Astrophysics Data System (ADS)
Hu, H.; Wu, B.
2017-07-01
The Narrow-Angle Camera (NAC) on board the Lunar Reconnaissance Orbiter (LRO) comprises of a pair of closely attached high-resolution push-broom sensors, in order to improve the swath coverage. However, the two image sensors do not share the same lenses and cannot be modelled geometrically using a single physical model. Thus, previous works on dense matching of stereo pairs of NAC images would generally create two to four stereo models, each with an irregular and overlapping region of varying size. Semi-Global Matching (SGM) is a well-known dense matching method and has been widely used for image-based 3D surface reconstruction. SGM is a global matching algorithm relying on global inference in a larger context rather than individual pixels to establish stable correspondences. The stereo configuration of LRO NAC images causes severe problem for image matching methods such as SGM, which emphasizes global matching strategy. Aiming at using SGM for image matching of LRO NAC stereo pairs for precision 3D surface reconstruction, this paper presents a coupled epipolar rectification methods for LRO NAC stereo images, which merges the image pair in the disparity space and in this way, only one stereo model will be estimated. For a stereo pair (four) of NAC images, the method starts with the boresight calibration by finding correspondence in the small overlapping stripe between each pair of NAC images and bundle adjustment of the stereo pair, in order to clean the vertical disparities. Then, the dominate direction of the images are estimated by project the center of the coverage area to the reference image and back-projected to the bounding box plane determined by the image orientation parameters iteratively. The dominate direction will determine an affine model, by which the pair of NAC images are warped onto the object space with a given ground resolution and in the meantime, a mask is produced indicating the owner of each pixel. SGM is then used to generate a disparity map for the stereo pair and each correspondence is transformed back to the owner and 3D points are derived through photogrammetric space intersection. Experimental results reveal that the proposed method is able to reduce gaps and inconsistencies caused by the inaccurate boresight offsets between the two NAC cameras and the irregular overlapping regions, and finally generate precise and consistent 3D surface models from the NAC stereo images automatically.
Liu, Miao; Yang, Shourui; Wang, Zhangying; Huang, Shujun; Liu, Yue; Niu, Zhenqi; Zhang, Xiaoxuan; Zhu, Jigui; Zhang, Zonghua
2016-05-30
Augmented reality system can be applied to provide precise guidance for various kinds of manual works. The adaptability and guiding accuracy of such systems are decided by the computational model and the corresponding calibration method. In this paper, a novel type of augmented reality guiding system and the corresponding designing scheme are proposed. Guided by external positioning equipment, the proposed system can achieve high relative indication accuracy in a large working space. Meanwhile, the proposed system is realized with a digital projector and the general back projection model is derived with geometry relationship between digitized 3D model and the projector in free space. The corresponding calibration method is also designed for the proposed system to obtain the parameters of projector. To validate the proposed back projection model, the coordinate data collected by a 3D positioning equipment is used to calculate and optimize the extrinsic parameters. The final projecting indication accuracy of the system is verified with subpixel pattern projecting technique.
Hudson, Sean; Cooke, Carlton; Davies, Simeon; West, Sacha; Gamieldien, Raeeq; Low, Chris; Lloyd, Ray
2018-05-14
It has been suggested that freedom of movement in the trunk could influence load carriage economy. This study aimed to compare the economy and sagittal plane trunk movements associated with three load carriage methods that constrain posture differently. Eighteen females walked at 3 km.h -1 with loads of 0, 3, 6, 9, 12, 15 and 20 kg carried on the back, back/front and head. Load carriage economy was assessed using the Extra Load Index (ELI). Change in sagittal plane trunk forward lean and trunk angle excursion from unloaded to loaded walking were assessed. Results show no difference in economy between methods (p = 0.483), despite differences in the change in trunk forward lean (p = 0.001) and trunk angle excursion (p = 0.021) from unloaded to loaded walking. We conclude that economy is not different among the three methods of load carriage, despite significant differences in sagittal plane trunk movements.
Impact of back muscle strength and aging on locomotive syndrome in community living Japanese women.
Hirano, Kenichi; Imagama, Shiro; Hasegawa, Yukiharu; Wakao, Norimitsu; Muramoto, Akio; Ishiguro, Naoki
2013-02-01
The Japanese Orthopaedic Association has proposed the term locomotive syndrome (LS) to designate a condition of individuals in high-risk groups with musculoskeletal disease who are highly likely to require nursing care. This study investigates the influence of spinal factors on LS in Japanese females. A total of 187 women > or =50 years old were enrolled in the study. Those answering yes to least one of the 7 categories in the self-assessment checklist for LS were defined as having LS. We evaluated lateral lumbar radiographs, sagittal parameters, sagittal balance using the spinal inclination angle (SIA) as an index, spinal range of motion (ROM) as determined with SpinalMouse, back muscle strength (BMS), and body mass index (BMI). Age, BMI, BMS, SIA, sacral slope angle (SSA), and lumbar spinal ROM showed significant correlations with LS. Multiple logistic regression analysis indicated that an increase in age (OR 1.054, p<0.05) and a decrease in BMS (OR 0.968, p<0.01) were significantly associated with LS. Age had significant negative correlations with BMS, SSA, thoracic and lumbar spinal ROM, and it had positive correlations with BMI, SIA, and lumbar kyphosis. BMS had significant negative correlations with age, SIA, thoracic and lumbar kyphosis, and it had positive correlations with SSA, lumbar and total spinal ROM. An increase in age and a decrease in BMS may be the most important risk factors for LS in Japanese women. Back muscle strengthening and spinal ROM exercises could be useful for improving the status of an individual suffering from LS.
2015-02-09
The exterior of this unnamed crater is in shadow, while the inner wall and terraces bask in the sunshine. Terraces form just after the crater has been excavated, when oversteepened slopes slump back down. This image was acquired as part of the MDIS low-altitude imaging campaign. During MESSENGER's second extended mission, the spacecraft makes a progressively closer approach to Mercury's surface than at any previous point in the mission, enabling the acquisition of high-spatial-resolution data. For spacecraft altitudes below 350 kilometers, NAC images are acquired with pixel scales ranging from 20 meters to as little as 2 meters. Date acquired: January 23, 2015 Image Mission Elapsed Time (MET): 64352478 Image ID: 7849599 Instrument: Narrow Angle Camera (NAC) of the Mercury Dual Imaging System (MDIS) Center Latitude: 31.48° Center Longitude: 81.89° E Resolution: 6 meters/pixel Scale: This scene is approximately 6.3 km (3.9 miles) from top to bottom Incidence Angle: 82.6° Emission Angle: 0.1° Phase Angle: 82.7° http://photojournal.jpl.nasa.gov/catalog/PIA19196
Vacuum-polarization effects in global monopole space-times
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mazzitelli, F.D.; Lousto, C.O.
1991-01-15
The gravitational effect produced by a global monopole may be approximated by a solid deficit angle. As a consequence, the energy-momentum tensor of a quantum field will have a nonzero vacuum expectation value. Here we study this vacuum-polarization effect'' around the monopole. We find explicit expressions for both {l angle}{phi}{sup 2}{r angle}{sub ren} and {l angle}{ital T}{sub {mu}{nu}}{r angle}{sub ren} for a massless scalar field. The back reaction of the quantum field on the monopole metric is also investigated.
Liu, Jinpeng; Horimai, Hideyoshi; Lin, Xiao; Liu, Jinyan; Huang, Yong; Tan, Xiaodi
2017-06-01
The collinear holographic data storage system (CHDSS) is a very promising storage system due to its large storage capacities and high transfer rates in the era of big data. The digital micro-mirror device (DMD) as a spatial light modulator is the key device of the CHDSS due to its high speed, high precision, and broadband working range. To improve the system stability and performance, an optimal micro-mirror tilt angle was theoretically calculated and experimentally confirmed by analyzing the relationship between the tilt angle of the micro-mirror on the DMD and the power profiles of diffraction patterns of the DMD at the Fourier plane. In addition, we proposed a novel chess board sync mark design in the data page to reduce the system bit error rate in circumstances of reduced aperture required to decrease noise and median exposure amount. It will provide practical guidance for future DMD based CHDSS development.
The influence of a seated break on prolonged standing induced low back pain development.
Gallagher, Kaitlin M; Campbell, Troy; Callaghan, Jack P
2014-01-01
With the recent attention to 'sitting disease', health practitioners and scientists are promoting standing in the workplace to decrease sedentary time, despite a high prevalence of low back pain (LBP) development during prolonged standing. The purpose of this study was to assess how a seated break inserted between bouts of prolonged standing would influence LBP development, posture and movement. A total of 20 participants stood for 45 minutes, sat for 15 minutes and repeated this sequence while lumbar and thoracic angles were measured, and LBP visual analogue scale reports were taken. Of the sample, 55% participants reported LBP in standing. A stand to sit ratio of 3:1 did not provide lasting recovery of LBP from standing and pain developers utilised a limited range of their lumbar spine angle and increased thoracic extension, resulting in static postures that caused tissue aggravation that was not resolved after 15 minutes of sitting. Prolonged standing in the workplace has the potential to result in LBP for some workers and alternate ways to reduce sedentary time should be investigated.
Artificial phototropism based on a photo-thermo-responsive hydrogel
NASA Astrophysics Data System (ADS)
Gopalakrishna, Hamsini
Solar energy is leading in renewable energy sources and the aspects surrounding the efforts to harvest light are gaining importance. One such aspect is increasing the light absorption, where heliotropism comes into play. Heliotropism, the ability to track the sun across the sky, can be integrated with solar cells for more efficient photon collection and other optoelectronic systems. Inspired by plants, which optimize incident sunlight in nature, several researchers have made artificial heliotropic and phototropic systems. This project aims to design, synthesize and characterize a material system and evaluate its application in a phototropic system. A gold nanoparticle (Au NP) incorporated poly(N-isopropylacrylamide) (PNIPAAm) hydrogel was synthesized as a photo-thermo-responsive material in our phototropic system. The Au NPs generate heat from the incident via plasmonic resonance to induce a volume phase change of the thermo-responsive hydrogel PNIPAAm. PNIPAAm shrinks or swells at temperature above or below 32°C. Upon irradiation, the Au NP-PNIPAAm micropillar actuates, specifically bending toward the incident light and precisely following the varying incident angle. Swelling ratio tests, bending angle tests with a static incident light and bending tests with varying angles were carried out on hydrogel samples with varying Au NP concentrations. Swelling ratios ranging from 1.45 to 2.9 were recorded for pure hydrogel samples and samples with very low Au NP concentrations. Swelling ratios of 2.41 and 3.37 were calculated for samples with low and high concentrations of Au NPs, respectively. A bending of up to 88° was observed in Au NP-hydrogel pillars with a low Au NP concentration with a 90° incident angle. The light tracking performance was assessed by the slope of the pillar Bending angle (response angle) vs. Incident light angle plot. A slope of 1 indicates ideal tracking with top of the pillar being normal to the incident light, maximizing the photon absorption. Slopes of 0.82 and 0.56 were observed for the low and high Au NP concentration samples. The rapid and precise incident light tracking of our system has shown the promise in phototropic applications.
Schmitt, Michael; Heib, Florian
2013-10-07
Drop shape analysis is one of the most important and frequently used methods to characterise surfaces in the scientific and industrial communities. An especially large number of studies, which use contact angle measurements to analyse surfaces, are characterised by incorrect or misdirected conclusions such as the determination of surface energies from poorly performed contact angle determinations. In particular, the characterisation of surfaces, which leads to correlations between the contact angle and other effects, must be critically validated for some publications. A large number of works exist concerning the theoretical and thermodynamic aspects of two- and tri-phase boundaries. The linkage between theory and experiment is generally performed by an axisymmetric drop shape analysis, that is, simulations of the theoretical drop profiles by numerical integration onto a number of points of the drop meniscus (approximately 20). These methods work very well for axisymmetric profiles such as those obtained by pendant drop measurements, but in the case of a sessile drop onto real surfaces, additional unknown and misunderstood effects on the dependence of the surface must be considered. We present a special experimental and practical investigation as another way to transition from experiment to theory. This procedure was developed to be especially sensitive to small variations in the dependence of the dynamic contact angle on the surface; as a result, this procedure will allow the properties of the surface to be monitored with a higher precession and sensitivity. In this context, water drops onto a 111 silicon wafer are dynamically measured by video recording and by inclining the surface, which results in a sequence of non-axisymmetric drops. The drop profiles are analysed by commercial software and by the developed and presented high-precision drop shape analysis. In addition to the enhanced sensitivity for contact angle determination, this analysis technique, in combination with innovative fit algorithms and data presentations, can result in enhanced reproducibility and comparability of the contact angle measurements in terms of the material characterisation in a comprehensible way.
NASA Astrophysics Data System (ADS)
Schmitt, Michael; Heib, Florian
2013-10-01
Drop shape analysis is one of the most important and frequently used methods to characterise surfaces in the scientific and industrial communities. An especially large number of studies, which use contact angle measurements to analyse surfaces, are characterised by incorrect or misdirected conclusions such as the determination of surface energies from poorly performed contact angle determinations. In particular, the characterisation of surfaces, which leads to correlations between the contact angle and other effects, must be critically validated for some publications. A large number of works exist concerning the theoretical and thermodynamic aspects of two- and tri-phase boundaries. The linkage between theory and experiment is generally performed by an axisymmetric drop shape analysis, that is, simulations of the theoretical drop profiles by numerical integration onto a number of points of the drop meniscus (approximately 20). These methods work very well for axisymmetric profiles such as those obtained by pendant drop measurements, but in the case of a sessile drop onto real surfaces, additional unknown and misunderstood effects on the dependence of the surface must be considered. We present a special experimental and practical investigation as another way to transition from experiment to theory. This procedure was developed to be especially sensitive to small variations in the dependence of the dynamic contact angle on the surface; as a result, this procedure will allow the properties of the surface to be monitored with a higher precession and sensitivity. In this context, water drops onto a 111 silicon wafer are dynamically measured by video recording and by inclining the surface, which results in a sequence of non-axisymmetric drops. The drop profiles are analysed by commercial software and by the developed and presented high-precision drop shape analysis. In addition to the enhanced sensitivity for contact angle determination, this analysis technique, in combination with innovative fit algorithms and data presentations, can result in enhanced reproducibility and comparability of the contact angle measurements in terms of the material characterisation in a comprehensible way.
Precision glass molding of high-resolution diffractive optical elements
NASA Astrophysics Data System (ADS)
Prater, Karin; Dukwen, Julia; Scharf, Toralf; Herzig, Hans P.; Plöger, Sven; Hermerschmidt, Andreas
2016-04-01
The demand of high resolution diffractive optical elements (DOE) is growing. Smaller critical dimensions allow higher deflection angles and can fulfill more demanding requirements, which can only be met by using electron-beam lithography. Replication techniques are more economical, since the high cost of the master can be distributed among a larger number of replicas. The lack of a suitable mold material for precision glass molding has so far prevented an industrial use. Glassy Carbon (GC) offers a high mechanical strength and high thermal strength. No anti-adhesion coatings are required in molding processes. This is clearly an advantage for high resolution, high aspect ratio microstructures, where a coating with a thickness between 10 nm and 200 nm would cause a noticeable rounding of the features. Electron-beam lithography was used to fabricate GC molds with highest precision and feature sizes from 250 nm to 2 μm. The master stamps were used for precision glass molding of a low Tg glass L-BAL42 from OHARA. The profile of the replicated glass is compared to the mold with the help of SEM images. This allows discussion of the max. aspect-ratio and min. feature size. To characterize optical performances, beamsplitting elements are fabricated and their characteristics were investigated, which are in excellent agreement to theory.
Space-based infrared scanning sensor LOS determination and calibration using star observation
NASA Astrophysics Data System (ADS)
Chen, Jun; Xu, Zhan; An, Wei; Deng, Xin-Pu; Yang, Jun-Gang
2015-10-01
This paper provides a novel methodology for removing sensor bias from a space based infrared (IR) system (SBIRS) through the use of stars detected in the background field of the sensor. Space based IR system uses the LOS (line of sight) of target for target location. LOS determination and calibration is the key precondition of accurate location and tracking of targets in Space based IR system and the LOS calibration of scanning sensor is one of the difficulties. The subsequent changes of sensor bias are not been taking into account in the conventional LOS determination and calibration process. Based on the analysis of the imaging process of scanning sensor, a theoretical model based on the estimation of bias angles using star observation is proposed. By establishing the process model of the bias angles and the observation model of stars, using an extended Kalman filter (EKF) to estimate the bias angles, and then calibrating the sensor LOS. Time domain simulations results indicate that the proposed method has a high precision and smooth performance for sensor LOS determination and calibration. The timeliness and precision of target tracking process in the space based infrared (IR) tracking system could be met with the proposed algorithm.
Space based optical staring sensor LOS determination and calibration using GCPs observation
NASA Astrophysics Data System (ADS)
Chen, Jun; An, Wei; Deng, Xinpu; Yang, Jungang; Sha, Zhichao
2016-10-01
Line of sight (LOS) attitude determination and calibration is the key prerequisite of tracking and location of targets in space based infrared (IR) surveillance systems (SBIRS) and the LOS determination and calibration of staring sensor is one of the difficulties. This paper provides a novel methodology for removing staring sensor bias through the use of Ground Control Points (GCPs) detected in the background field of the sensor. Based on researching the imaging model and characteristics of the staring sensor of SBIRS geostationary earth orbit part (GEO), the real time LOS attitude determination and calibration algorithm using landmark control point is proposed. The influential factors (including the thermal distortions error, assemble error, and so on) of staring sensor LOS attitude error are equivalent to bias angle of LOS attitude. By establishing the observation equation of GCPs and the state transition equation of bias angle, and using an extend Kalman filter (EKF), the real time estimation of bias angle and the high precision sensor LOS attitude determination and calibration are achieved. The simulation results show that the precision and timeliness of the proposed algorithm meet the request of target tracking and location process in space based infrared surveillance system.
Construction of the Non-Rigid Earth Rotation Series
NASA Astrophysics Data System (ADS)
Pashkevich, V. V.
2007-01-01
Last years a lot of attempts to derive a high-precision theory of the non-rigid Earth rotation are carried out. For these purposes different transfer functions are used. Usually these transfer functions are applied to the series representing the nutation in the longitude and the obliquity of the rigid Earth rotation with respect to the ecliptic of date. The aim of this investigation is a construction of new high-precision non-rigid Earth rotation series (SN9000), dynamically adequate to the DE404/LE404 ephemeris over 2000 time span years, which are presented as functions of the Euler angles Ψ, θ and φ with respect to the fixed ecliptic plane and equinox J2000.0.
Mobile Robot Localization by Remote Viewing of a Colored Cylinder
NASA Technical Reports Server (NTRS)
Volpe, R.; Litwin, T.; Matthies, L.
1995-01-01
A system was developed for the Mars Pathfinder rover in which the rover checks its position by viewing the angle back to a colored cylinder with different colors for different angles. The rover determines distance by the apparent size of the cylinder.
Lorenzetti, Silvio; Gülay, Turgut; Stoop, Mirjam; List, Renate; Gerber, Hans; Schellenberg, Florian; Stüssi, Edgar
2012-10-01
The aim of this study was to compare the angles and corresponding moments in the knee and hip during squats. Twenty subjects performed restricted and unrestricted squats with barbell loads that were 0, ¼, and ½ their body weight. The experimental setup consisted of a motion capture system and 2 force plates. The moments were calculated using inverse dynamics. During the unrestricted squats, the maximum moments in the knee were significantly higher, and those in the hip were significantly lower than during restricted squats. At the lowest position, the maximum knee flexion angles were approximately 86° for the restricted and approximately 106° for the unrestricted techniques, whereas the maximum hip flexion angle was between 95° and 100°. The higher moments in the hip during restricted squats suggest a higher load of the lower back. Athletes who aim to strengthen their quadriceps should consider unrestricted squats because of the larger knee load and smaller back load.
High-precision angle sensor based on a Köster’s prism with absolute zero-point
NASA Astrophysics Data System (ADS)
Ullmann, V.; Oertel, E.; Manske, E.
2018-06-01
In this publication, a novel approach will be presented to use a compact white-light interferometer based on a Köster’s prism for angle measurements. Experiments show that the resolution of this angle interferometer is in the range of a commercial digital autocollimator, with a focal length of f = 300 mm, but with clearly reduced signal noise and without overshoot artifacts in the signal caused by digital filters. The angle detection of the reference mirror in the Köster’s interferometer is based on analysing the rotation angle of the fringe pattern, which is projected on a CMOS-matrix. The fringe pattern is generated by two displaced spherical wave fronts coming from one fiber-coupled white-light source and getting divided into a reference and a measurement beam by the Köster’s prism. The displacement correlates with the reference angle mirror in one linear direction and with the angle aberrations of the prism in the other orthogonal direction on the CMOS sensor. We will present the experimental and optical setup, the method and algorithms for the image-to-angle processing as well as the experimental results obtained in calibration and long-term measurements.
The Development of using the digital projection method to measure the contact angle of ball screw
NASA Astrophysics Data System (ADS)
Chen, Chun-Jen; Jywe, Wenyuh; Liu, Yu-Chun; Jwo, Hsin-Hong
The ball screw frequently used to drive or translate the parts on the precision machine, such as machine tool and motorized stage. Therefore they were most frequently used on the precision machine, semiconductor equipment, medical instrument and aero industry. The main parts of ball screw are screw, ball and nut. The contact angle between the screw, ball and nut will affect the performance (include loading and noise) and lifecycle of a ball screw. If the actual contact angle and the designed contact angle are not the same, the friction between the ball, screw and nut will increase and it will result in the thermal increase and lifecycle decrease. This paper combines the traditional profile projector and commercial digital camera to build an imaging based and noncontact measurements system. It can implement the contact angle measurement quickly and accurately. Three different pitch angles of ball screws were completed tests in this paper. The angle resolution of this measurement system is about 0.001 degree and its accuracy is about 0.05 degree.
Effect of phase advance on the brushless dc motor torque speed respond
NASA Astrophysics Data System (ADS)
Mohd, M. S.; Karsiti, M. N.; Mohd, M. S.
2015-12-01
Brushless direct current (BLDC) motor is widely used in small and medium sized electric vehicles as it exhibit highest specific power and thermal efficiency as compared to the induction motor. Permanent magnets BLDC rotor create a constant magnetic flux, which limit the motor top speed. As the back electromotive force (EMF) voltage increases proportionally with motor rotational speed and it approaches the amplitude of the input voltage, the phase current amplitude will reach zero. By advancing the phase current, it is possible to extend the maximum speed of the BLDC motor beyond the rated top speed. This will allow smaller BLDC motor to be used in small electric vehicles (EV) and in larger applications will allow the use of BLDC motor without the use of multispeed transmission unit for high speed operation. However, increasing the speed of BLDC will affect the torque speed response. The torque output will decrease as speed increases. Adjusting the phase angle will affect the speed of the motor as each coil is energized earlier than the corresponding rise in the back emf of the coil. This paper discusses the phase advance strategy of Brushless DC motor by phase angle manipulation approaches using external hall sensors. Tests have been performed at different phase advance angles in advance and retard positions for different voltage levels applied. The objective is to create the external hall sensor system to commutate the BLDC motor, to establish the phase advance of the BLDC by varying the phase angle through external hall sensor manipulation, observe the respond of the motor while applying the phase advance by hall sensor adjustment.
A Two-Dimensional Micro Scanner Integrated with a Piezoelectric Actuator and Piezoresistors
Zhang, Chi; Zhang, Gaofei; You, Zheng
2009-01-01
A compact two-dimensional micro scanner with small volume, large deflection angles and high frequency is presented and the two-dimensional laser scanning is achieved by specular reflection. To achieve large deflection angles, the micro scanner excited by a piezoelectric actuator operates in the resonance mode. The scanning frequencies and the maximum scanning angles of the two degrees of freedom are analyzed by modeling and simulation of the structure. For the deflection angle measurement, piezoresistors are integrated in the micro scanner. The appropriate directions and crystal orientations of the piezoresistors are designed to obtain the large piezoresistive coefficients for the high sensitivities. Wheatstone bridges are used to measure the deflection angles of each direction independently and precisely. The scanner is fabricated and packaged with the piezoelectric actuator and the piezoresistors detection circuits in a size of 28 mm×20 mm×18 mm. The experiment shows that the two scanning frequencies are 216.8 Hz and 464.8 Hz, respectively. By an actuation displacement of 10 μm, the scanning range of the two-dimensional micro scanner is above 26° × 23°. The deflection angle measurement sensitivities for two directions are 59 mV/deg and 30 mV/deg, respectively. PMID:22389621
Azad, Rajvardhan; Arora, Tarun; Sihota, Ramanjit; Chandra, Parijat; Mahajan, Deepankur; Sain, Siddarth; Sharma, Yograj
2013-10-01
To evaluate the role of Retcam fluorescein gonioangiography in detecting neovascularization of the angle and correlate the same with gonioscopy in diabetic retinopathy. One hundred and fifty eyes of 150 patients (25 each of mild, moderate, severe, very severe nonproliferative diabetic retinopathy (NPDR) proliferative diabetic retinopathy (PDR); and PDR with high-risk characteristics) were recruited. They underwent complete ocular examination including applanation tonometry, gonioscopy, Retcam fluorescein gonioangiography, and fundus fluorescein angiography. Using Retcam fluorescein gonioangiography, of 150 eyes neovascularization of the angle was detected in 37 eyes (24.66%) compared with 22 eyes (14.66%) on gonioscopy (P = 0.04). Small newly formed vessels were evident only with Retcam fluorescein gonioangiography. In 10 of 50 patients (20%) with severe/very severe NPDR, angle neovascularization was appreciable on Retcam fluorescein angiography compared with 5 patients (10%) on gonioscopy. Similarly, 25 of 50 patients (50%) with PDR/PDR with high-risk characteristics had neovascularization of the angle on Retcam gonioangiography compared with 17 (34%) on gonioscopy. Retcam fluorescein gonioangiography is a novel technique for early detection of angle neovascularization in diabetic retinopathy and hence preventing progression to neovascular glaucoma. The objective nature of this test helps in precise decision making compared with gonioscopy for early intervention especially in cases of pre-PDR.
A two-dimensional micro scanner integrated with a piezoelectric actuator and piezoresistors.
Zhang, Chi; Zhang, Gaofei; You, Zheng
2009-01-01
A compact two-dimensional micro scanner with small volume, large deflection angles and high frequency is presented and the two-dimensional laser scanning is achieved by specular reflection. To achieve large deflection angles, the micro scanner excited by a piezoelectric actuator operates in the resonance mode. The scanning frequencies and the maximum scanning angles of the two degrees of freedom are analyzed by modeling and simulation of the structure. For the deflection angle measurement, piezoresistors are integrated in the micro scanner. The appropriate directions and crystal orientations of the piezoresistors are designed to obtain the large piezoresistive coefficients for the high sensitivities. Wheatstone bridges are used to measure the deflection angles of each direction independently and precisely. The scanner is fabricated and packaged with the piezoelectric actuator and the piezoresistors detection circuits in a size of 28 mm×20 mm×18 mm. The experiment shows that the two scanning frequencies are 216.8 Hz and 464.8 Hz, respectively. By an actuation displacement of 10 μm, the scanning range of the two-dimensional micro scanner is above 26° × 23°. The deflection angle measurement sensitivities for two directions are 59 mV/deg and 30 mV/deg, respectively.
Machining of Silicon-Ribbon-Forming Dies
NASA Technical Reports Server (NTRS)
Menna, A. A.
1985-01-01
Carbon extension for dies used in forming silicon ribbon crystals machined precisely with help of special tool. Die extension has edges beveled toward narrow flats at top, with slot precisely oriented and centered between flats and bevels. Cutting tool assembled from standard angle cutter and circular saw or saws. Angle cutters cuts bevels while slot saw cuts slot between them. In alternative version, custom-ground edges or additional circular saws also cut flats simultaneously.
Comparative study of two precision overdenture attachment designs.
Cohen, B I; Pagnillo, M; Condos, S; Deutsch, A S
1996-08-01
In this study two precision overdenture attachment designs were tested for retention--a nylon overdenture cap system and a new cap and keeper system. The new cap and keeper system was designed to reduce the time involved in replacing a cap worn by the conditions of the oral environment. Six groups were tested at two different angles and retentive failure was examined at two different angles (26 and 0 degrees). Failure was measured in pounds with a force gauge over a 2000 pull cycle. The amount of force required to remove caps for two overdenture caps and a replaced cap for the metal keeper system was determined. Two dependent variables were absolute force and relative force. Repeated measures analysis of variance (RMANOVA) was used to compare the between-subjects effects of cap and angle, and the within-subjects effect of pull. The results indicated a significant difference between cap types (p < 0.0001) with respect to the relative force required to remove the cap. There was no effect of angle. For absolute force, RMANOVA revealed a highly significant interaction between pull and cap (p < 0.0001). Thus, the way that force changed over pulls depended on which cap was used (no effect of angle). For relative force, RMANOVA revealed no interaction between pull and cap, but there was a main effect of cap type (p < 0.0001) (no effect of angle). The nylon cap design required less force for removal but showed more consistency in the force required over the course of the 2000 pulls when compared with the keeper with cap insert. The results obtained in this study were consistent with similar studies in literature.
Sensitivity study and parameter optimization of OCD tool for 14nm finFET process
NASA Astrophysics Data System (ADS)
Zhang, Zhensheng; Chen, Huiping; Cheng, Shiqiu; Zhan, Yunkun; Huang, Kun; Shi, Yaoming; Xu, Yiping
2016-03-01
Optical critical dimension (OCD) measurement has been widely demonstrated as an essential metrology method for monitoring advanced IC process in the technology node of 90 nm and beyond. However, the rapidly shrunk critical dimensions of the semiconductor devices and the increasing complexity of the manufacturing process bring more challenges to OCD. The measurement precision of OCD technology highly relies on the optical hardware configuration, spectral types, and inherently interactions between the incidence of light and various materials with various topological structures, therefore sensitivity analysis and parameter optimization are very critical in the OCD applications. This paper presents a method for seeking the optimum sensitive measurement configuration to enhance the metrology precision and reduce the noise impact to the greatest extent. In this work, the sensitivity of different types of spectra with a series of hardware configurations of incidence angles and azimuth angles were investigated. The optimum hardware measurement configuration and spectrum parameter can be identified. The FinFET structures in the technology node of 14 nm were constructed to validate the algorithm. This method provides guidance to estimate the measurement precision before measuring actual device features and will be beneficial for OCD hardware configuration.
Nanometric edge profile measurement of cutting tools on a diamond turning machine
NASA Astrophysics Data System (ADS)
Asai, Takemi; Arai, Yoshikazu; Cui, Yuguo; Gao, Wei
2008-10-01
Single crystal diamond tools are used for fabrication of precision parts [1-5]. Although there are many types of tools that are supplied, the tools with round nose are popular for machining very smooth surfaces. Tools with small nose radii, small wedge angles and included angles are also being utilized for fabrication of micro structured surfaces such as microlens arrays [6], diffractive optical elements and so on. In ultra precision machining, tools are very important as a part of the machining equipment. The roughness or profile of machined surface may become out of desired tolerance. It is thus necessary to know the state of the tool edge accurately. To meet these requirements, an atomic force microscope (AFM) for measuring the 3D edge profiles of tools having nanometer-scale cutting edge radii with high resolution has been developed [7-8]. Although the AFM probe unit is combined with an optical sensor for aligning the measurement probe with the tools edge top to be measured in short time in this system, this time only the AFM probe unit was used. During the measurement time, that was attached onto the ultra precision turning machine to confirm the possibility of profile measurement system.
76 FR 52880 - Federal Motor Vehicle Safety Standards; Side Impact Protection
Federal Register 2010, 2011, 2012, 2013, 2014
2011-08-24
... backs). The instruction that was in S12.3.2(a)(10) (to ``minimize the angle'') has not been deleted but... position that the head restraint is in when it is in contact with the top of the seat back and below the... provisions specified in S8.3.3.2 and S10.3.2.2 are unnecessary in the test procedure since the seat back is...
NASA Technical Reports Server (NTRS)
Hollis, Brian R.; Berry, Scott A.; Hollingsworth, Kevin E.; Wright, Sheila A.
2017-01-01
A wind tunnel test program has been conducted to define convective heating environments on the back-face of a Hypersonic Inflatable Aerodynamic Decelerator aeroshell. Wind tunnel testing was conducted at Mach 6 and Mach 10 at unit Reynolds numbers from 0.5×10(exp 6)/ft to 3.9×10(exp 6)/ft on a 6.3088 in diameter aeroshell model. Global heating data were obtained through phosphor thermography on the aeroshell back face, as well as on the payload and the aeroshell front face. For all test conditions, laminar flow was produced on the aeroshell front face, while the separated wake shear layer and aeroshell back-face boundary layer were transitional or turbulent. Along the leeward centerline of the aeroshell back face and payload centerbody, heating levels increased with both free stream Reynolds number and angle of attack. The Reynolds number dependency was due to increasing strength of wake turbulence with Reynolds number. The angle-of-attack dependency was due to movement of the wake-vortex reattachment point on the aeroshell back face. The maximum heating levels on the aeroshell back face and payload were approximately 5% to 6%, respectively, of the aeroshell front-face stagnation point. To allow for extrapolation of the ground test data to flight conditions, the back face and payload heating levels were correlated as a function of aeroshell front-face peak momentum thickness Reynolds numbers.
NASA Technical Reports Server (NTRS)
Schepis, Joseph; Woodard, Timothy; Hakun, Claef; Bergandy, Konrad; Church, Joseph; Ward, Peter; Lee, Michael; Conti, Alfred; Guzek, Jeffrey
2018-01-01
A high precision, high-resolution Ocean Color Imaging (OCI) instrument is under development for the Plankton, Aerosol, Cloud, ocean Ecosystem (PACE) mission which requires a pair of medium speed mechanisms to scan the ocean surface continuously. The design of the rotating telescope (RT) mechanism operating at 360 RPM and the half-angle mirror (HAM) mechanism synchronized at 180 RPM was concern for maintaining pointing precision over the required life and continuous operations. An effort was undertaken with the manufacturer to design and analyze a special bearing configuration to minimize axial and radial runout, minimize torque, and maintain nominal contact stresses and stiffness over the operating temperature range and to maximize life. The bearing design, development effort, analysis and testing will be discussed as will the technical challenges that this specific design imposed upon the mechanism engineers. Bearing performance, runout as achieved and verified during encoder installation and operating torque will be described.
Recirculating Etalon Spectrometer
NASA Technical Reports Server (NTRS)
Stephen, Mark A. (Inventor); Fahey, Molly E. (Inventor); Krainak, Michael A. (Inventor)
2017-01-01
Systems, methods, and devices may provide an optical scheme that achieves simultaneous wavelength channels and maintains the resolution and luminosity of an etalon. Various embodiments may provide a method to optically recirculate the light reflected from the etalon back through the same etalon at new angles. Various embodiments create an etalon spectrometer based on angular dispersion without moving parts and without losing the light that is not initially transmitted. Various embodiments may provide a spectrally-resolved receiver and/or transmitter. Various embodiments may provide a system including a retro-reflector, a detector or transmitter array, and an etalon disposed between the retro-reflector and the detector or transmitter array, wherein the retro-reflector is configured to redirect light reflected by the etalon back to the etalon at a different angle of incidence than an original angle of incidence on the etalon of the light reflected by the etalon.
NASA Astrophysics Data System (ADS)
Rockenschaub, M.; Grasemann, B.; Iglseder, C.; Rice, A. H. N.; Schneider, D.; Zamolyi, A.
2010-05-01
Roll-back of the African Plate within the Eurasian-African collision zone since the Oligocene/Miocene led to extension in the Cyclades along low-angle normal fault zones and exhumation of rocks from near the brittle-ductile transition zone. On the island of Kea (W Cyclades), which represents such a crustal scale low-angle fault zone with top-to-SSW kinematics, remote sensing analysis of brittle fault lineaments in the Pissis area (W Kea) demonstrates two dominant strike directions: ca. NE-SW and NW-SE. From the north of Pisses southwards, the angle between the two main fault directions changes gradually from a rhombohedral geometry (ca. 50°/130° angle between faults, with the acute angle facing westwards) to an orthogonal geometry. The aim of this study is the development of this fault system. We investigate, if this fault system is related to the Miocene extension or if it is related to a later overprinting event (e.g. the opening of the Corinth) Field observations revealed that the investigated lineaments are high-angle (50-90° dip) brittle/ductile conjugate, faults. Due to the lack of marker layers offsets could only rarely be estimated. Locally centimetre thick marble layers in the greenschists suggest a displacement gradient along the faults with a maximum offset of less than 60 cm. Large displacement gradients are associated with a pronounced ductile fault drag in the host rocks. In some instances, high-angle normal faults were observed to link kinematically with low-angle, top-to-SSW brittle/ductile shear bands. Both the high- and the low-angle faults have a component of ductile shear, which is overprinted by brittle deformation mechanisms. In thin-section, polyphase mode-2 cracks are filled mainly with calcite and quartz (ultra)cataclasites, sometimes followed by further opening with fluid-related iron-rich carbonate (ankeritic) precipitation. CL analysis reveals several generations of cements, indicating multiple phases of cataclastic deformation and fluid infiltration. Ar/Ar white mica data from Pisses constrain ductile deformation to ca. 20 Ma. Since the high-angle faults show a continuum from ductile to brittle deformation, the Ar/Ar cooling ages suggest that faulting must have occurred in the Miocene. Consequently the high-angle faulting was genetically related to the SSW-directed low-angle extensional event and does not represent a later overprint related to a different kinematic event.
Digital Pitch-And-Roll Monitor
NASA Technical Reports Server (NTRS)
Finley, Tom D.; Brown, Jeff; Campbell, Ryland
1991-01-01
Highly accurate inclinometer developed. Monitors both pitch and roll simultaneously and provides printed output on demand. Includes three mutually perpendicular accelerometers and signal-conditioning circuitry converting outputs of sensors to digital values of pitch and roll. In addition to wind-tunnel applications, system useful in any application involving steady-state, precise sensing of angles, such as calibration of robotic devices and positioners.
Zhao, Jing-Xin; Su, Xiu-Yun; Xiao, Ruo-Xiu; Zhao, Zhe; Zhang, Li-Hai; Zhang, Li-Cheng; Tang, Pei-Fu
2016-11-01
We established a mathematical method to precisely calculate the radiographic anteversion (RA) and radiographic inclination (RI) angles of the acetabular cup based on anterior-posterior (AP) pelvic radiographs after total hip arthroplasty. Using Mathematica software, a mathematical model for an oblique cone was established to simulate how AP pelvic radiographs are obtained and to address the relationship between the two-dimensional and three-dimensional geometry of the opening circle of the cup. In this model, the vertex was the X-ray beam source, and the generatrix was the ellipse in radiographs projected from the opening circle of the acetabular cup. Using this model, we established a series of mathematical formulas to reveal the differences between the true RA and RI cup angles and the measurements results achieved using traditional methods and AP pelvic radiographs and to precisely calculate the RA and RI cup angles based on post-operative AP pelvic radiographs. Statistical analysis indicated that traditional methods should be used with caution if traditional measurements methods are used to calculate the RA and RI cup angles with AP pelvic radiograph. The entire calculation process could be performed by an orthopedic surgeon with mathematical knowledge of basic matrix and vector equations. Copyright © 2016 IPEM. Published by Elsevier Ltd. All rights reserved.
X-ray Photoelectron Spectroscopy (XPS), Rutherford Back Scattering (RBS) studies
NASA Technical Reports Server (NTRS)
Neely, W. C.; Bozak, M. J.; Williams, J. R.
1993-01-01
X-ray photoelectron spectroscopy (XPS), Rutherford Back Scattering (RBS) studies of each of sample received were completed. Since low angle X-ray could not be performed because of instrumentation problems, Auger spectrometry was employed instead. The results of these measurements for each of the samples is discussed in turn.
NASA Astrophysics Data System (ADS)
Nishi, T.; Itahashi, K.; Berg, G. P. A.; Fujioka, H.; Fukuda, N.; Fukunishi, N.; Geissel, H.; Hayano, R. S.; Hirenzaki, S.; Ichikawa, K.; Ikeno, N.; Inabe, N.; Itoh, S.; Iwasaki, M.; Kameda, D.; Kawase, S.; Kubo, T.; Kusaka, K.; Matsubara, H.; Michimasa, S.; Miki, K.; Mishima, G.; Miya, H.; Nagahiro, H.; Nakamura, M.; Noji, S.; Okochi, K.; Ota, S.; Sakamoto, N.; Suzuki, K.; Takeda, H.; Tanaka, Y. K.; Todoroki, K.; Tsukada, K.; Uesaka, T.; Watanabe, Y. N.; Weick, H.; Yamakami, H.; Yoshida, K.; piAF Collaboration
2018-04-01
We observed the atomic 1 s and 2 p states of π- bound to 121Sn nuclei as distinct peak structures in the missing mass spectra of the 122Sn(d ,3He) nuclear reaction. A very intense deuteron beam and a spectrometer with a large angular acceptance let us achieve a potential of discovery, which includes the capability of determining the angle-dependent cross sections with high statistics. The 2 p state in a Sn nucleus was observed for the first time. The binding energies and widths of the pionic states are determined and found to be consistent with previous experimental results of other Sn isotopes. The spectrum is measured at finite reaction angles for the first time. The formation cross sections at the reaction angles between 0° and 2° are determined. The observed reaction-angle dependence of each state is reproduced by theoretical calculations. However, the quantitative comparison with our high-precision data reveals a significant discrepancy between the measured and calculated formation cross sections of the pionic 1 s state.
Mohanraj, A. P.; Elango, A.; Reddy, Mutra Chanakya
2016-01-01
Omnidirectional robots can move in all directions without steering their wheels and it can rotate clockwise and counterclockwise with reference to their axis. In this paper, we focused only on front and back movement, to analyse the square- and triangle-structured omnidirectional robot movements. An omnidirectional mobile robot shows different performances with the different number of wheels and the omnidirectional mobile robot's chassis design. Research is going on in this field to improve the accurate movement capability of omnidirectional mobile robots. This paper presents a design of a unique device of Angle Variable Chassis (AVC) for linear movement analysis of a three-wheeled omnidirectional mobile robot (TWOMR), at various angles (θ) between the wheels. Basic mobility algorithm is developed by varying the angles between the two selected omnidirectional wheels in TWOMR. The experiment is carried out by varying the angles (θ = 30°, 45°, 60°, 90°, and 120°) between the two selected omniwheels and analysing the movement of TWOMR in forward direction and reverse direction on a smooth cement surface. Respectively, it is compared to itself for various angles (θ), to get its advantages and weaknesses. The conclusion of the paper provides effective movement of TWOMR at a particular angle (θ) and also the application of TWOMR in different situations. PMID:26981585
Mohanraj, A P; Elango, A; Reddy, Mutra Chanakya
2016-01-01
Omnidirectional robots can move in all directions without steering their wheels and it can rotate clockwise and counterclockwise with reference to their axis. In this paper, we focused only on front and back movement, to analyse the square- and triangle-structured omnidirectional robot movements. An omnidirectional mobile robot shows different performances with the different number of wheels and the omnidirectional mobile robot's chassis design. Research is going on in this field to improve the accurate movement capability of omnidirectional mobile robots. This paper presents a design of a unique device of Angle Variable Chassis (AVC) for linear movement analysis of a three-wheeled omnidirectional mobile robot (TWOMR), at various angles (θ) between the wheels. Basic mobility algorithm is developed by varying the angles between the two selected omnidirectional wheels in TWOMR. The experiment is carried out by varying the angles (θ = 30°, 45°, 60°, 90°, and 120°) between the two selected omniwheels and analysing the movement of TWOMR in forward direction and reverse direction on a smooth cement surface. Respectively, it is compared to itself for various angles (θ), to get its advantages and weaknesses. The conclusion of the paper provides effective movement of TWOMR at a particular angle (θ) and also the application of TWOMR in different situations.
A novel double fine guide sensor design on space telescope
NASA Astrophysics Data System (ADS)
Zhang, Xu-xu; Yin, Da-yi
2018-02-01
To get high precision attitude for space telescope, a double marginal FOV (field of view) FGS (Fine Guide Sensor) is proposed. It is composed of two large area APS CMOS sensors and both share the same lens in main light of sight. More star vectors can be get by two FGS and be used for high precision attitude determination. To improve star identification speed, the vector cross product in inter-star angles for small marginal FOV different from traditional way is elaborated and parallel processing method is applied to pyramid algorithm. The star vectors from two sensors are then used to attitude fusion with traditional QUEST algorithm. The simulation results show that the system can get high accuracy three axis attitudes and the scheme is feasibility.
Where is your arm? Variations in proprioception across space and tasks.
Fuentes, Christina T; Bastian, Amy J
2010-01-01
The sense of limb position is crucial for movement control and environmental interactions. Our understanding of this fundamental proprioceptive process, however, is limited. For example, little is known about the accuracy of arm proprioception: Does it vary with changes in arm configuration, since some peripheral receptors are engaged only when joints move toward extreme angles? Are these variations consistent across different tasks? Does proprioceptive ability change depending on what we try to localize (e.g., fingertip position vs. elbow angle)? We used a robot exoskeleton to study proprioception in 14 arm configurations across three tasks, asking healthy subjects to 1) match a pointer to elbow angles after passive movements, 2) match a pointer to fingertip positions after passive movements, and 3) actively match their elbow angle to a pointer. Across all three tasks, subjects overestimated more extreme joint positions; this may be due to peripheral sensory signals biasing estimates as a safety mechanism to prevent injury. We also found that elbow angle estimates were more precise when used to judge fingertip position versus directly reported, suggesting that the brain has better access to limb endpoint position than joint angles. Finally, precision of elbow angle estimates improved in active versus passive movements, corroborating work showing that efference copies of motor commands and alpha-gamma motor neuron coactivation contribute to proprioceptive estimates. In sum, we have uncovered fundamental aspects of normal proprioceptive processing, demonstrating not only predictable biases that are dependent on joint configuration and independent of task but also improved precision when integrating information across joints.
Bullet trajectory reconstruction - Methods, accuracy and precision.
Mattijssen, Erwin J A T; Kerkhoff, Wim
2016-05-01
Based on the spatial relation between a primary and secondary bullet defect or on the shape and dimensions of the primary bullet defect, a bullet's trajectory prior to impact can be estimated for a shooting scene reconstruction. The accuracy and precision of the estimated trajectories will vary depending on variables such as, the applied method of reconstruction, the (true) angle of incidence, the properties of the target material and the properties of the bullet upon impact. This study focused on the accuracy and precision of estimated bullet trajectories when different variants of the probing method, ellipse method, and lead-in method are applied on bullet defects resulting from shots at various angles of incidence on drywall, MDF and sheet metal. The results show that in most situations the best performance (accuracy and precision) is seen when the probing method is applied. Only for the lowest angles of incidence the performance was better when either the ellipse or lead-in method was applied. The data provided in this paper can be used to select the appropriate method(s) for reconstruction and to correct for systematic errors (accuracy) and to provide a value of the precision, by means of a confidence interval of the specific measurement. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
Borges, Cláudia Dos Santos; Fernandes, Luciane Fernanda Rodrigues Martinho; Bertoncello, Dernival
2013-05-01
: Evaluate the probable relationship among plantar arch, lumbar curvature, and low back pain. : Fifteen healthy women were assessed taking in account personal data and anthropometric measurements, photopodoscopic evaluation of the plantar arch, and biophotogrammetric postural analysis of the patient (both using the SAPO software), as well as evaluation of lumbar pain using a Visual Analog Scale (VAS). The average age of the participants was 30.45 (±6.25) years. : Of the feet evaluated, there were six individuals with flat feet, five with high arch, and four with normal feet. All reported algic syndrome in the lumbar spine, with the highest VAS values for the volunteers with high arch. Correlation was observed between the plantar arch and the angle of the lumbar spine (r = -0.71, p = 0.004) CONCLUSION: High arch was correlated with more intense algic syndrome, while there was moderate positive correlation between flat foot and increased lumbar curvature, and between high arch and lumbar correction. Level of Evidence IV. Case Series .
Zhao, Anbang; Ma, Lin; Ma, Xuefei; Hui, Juan
2017-01-01
In this paper, an improved azimuth angle estimation method with a single acoustic vector sensor (AVS) is proposed based on matched filtering theory. The proposed method is mainly applied in an active sonar detection system. According to the conventional passive method based on complex acoustic intensity measurement, the mathematical and physical model of this proposed method is described in detail. The computer simulation and lake experiments results indicate that this method can realize the azimuth angle estimation with high precision by using only a single AVS. Compared with the conventional method, the proposed method achieves better estimation performance. Moreover, the proposed method does not require complex operations in frequency-domain and achieves computational complexity reduction. PMID:28230763
A Review of the Biomechanical Differences Between the High-Bar and Low-Bar Back-Squat.
Glassbrook, Daniel J; Helms, Eric R; Brown, Scott R; Storey, Adam G
2017-09-01
Glassbrook, DJ, Helms, ER, Brown, SR, and Storey, AG. A review of the biomechanical differences between the high-bar and low-bar back-squat. J Strength Cond Res 31(9): 2618-2634, 2017-The back-squat is a common exercise in strength and conditioning for a variety of sports. It is widely regarded as a fundamental movement to increase and measure lower-body and trunk function, as well as an effective injury rehabilitation exercise. There are typically 2 different bar positions used when performing the back-squat: the traditional "high-bar" back-squat (HBBS) and the "low-bar" back-squat (LBBS). Different movement strategies are used to ensure that the center of mass remains in the base of support for balance during the execution of these lifts. These movement strategies manifest as differences in (a) joint angles, (b) vertical ground reaction forces, and (c) the activity of key muscles. This review showed that the HBBS is characterized by greater knee flexion, lesser hip flexion, a more upright torso, and a deeper squat. The LBBS is characterized by greater hip flexion and, therefore, a greater forward lean. However, there are limited differences in vertical ground reaction forces between the HBBS and LBBS. The LBBS can also be characterized by a greater muscle activity of the erector spinae, adductors, and gluteal muscles, whereas the HBBS can be characterized by greater quadriceps muscle activity. Practitioners seeking to develop the posterior-chain hip musculature (i.e., gluteal, hamstring, and erector muscle groups) may seek to use the LBBS. In comparison, those seeking to replicate movements with a more upright torso and contribution from the quadriceps may rather seek to use the HBBS in training.
NASA Astrophysics Data System (ADS)
Fontaine, Norman Henry
1997-10-01
Techniques which can be used to obtain depth-resolved information on the thermodynamics at polymer-polymer and polymer-wall interfaces, and of small molecule diffusion in polymers, are of particular interest to industry. Optical methods which are sensitive to molecular vibrations (such as internal reflection Raman spectroscopy) are advantageous because they can non- destructively probe molecular content, orientation, and polarity of the local environment in a sample. However, while optical internal reflection depth-profiling methods have been reported, they have never progressed beyond the demonstration stage. In this work, the theory and methodology of internal reflection spectroscopy are developed and optimized into a rigorous field-controlled spectroscopic technique. A novel asymmetric internal reflection element (IRE) is introduced which traps back-reflections, allowing precise evanescent and standing wave probe-field control in the sample for all angles of incidence. It is demonstrated that a Gaussian laser beam will best approximate an infinite homogeneous plane wave when the IRE/sample interface lies in the paraxial-Fraunhofer region (far- field) of the beam path. Calibration methods are presented, sources of systematic errors are identified, and the angular resolution limit (ARL) is introduced as a measure of the field control developed in a sample by any internal reflection method. A general model of Raman scattering and photon detection from multi-layer thin films is developed. A new and generalized operator based transfer matrix method is developed and applied to electromagnetic field and diffusion computations in multi-layer systems. Total internal reflection spectroscopy is extended to include sub-critical angles of incidence, where resonant field enhancements generate large and selective amplification of the probe-field intensity within the layers of the sample. Fitting these resonances to the model spectral intensities allows unique determination of the location of buried interfaces in micron-sized polymer multi-layers with nanometer scale precision and the refractive indices of the layers with precision of /Delta n/approx/pm 0.0001. The Raman active molecular content of each optically distinct layer of the film is determinable simultaneously with the optical properties. Resonant mode VAIRRS studies of poly(methyl methacrylate) films spun-cast from toluene and then dried under ambient conditions have shown evidence for toluene diffusion concurrent with a rotationally hindered relaxation of oriented ester side groups about the polymer backbone. Low temperature annealing (≈87oC) has shown evidence that this hindered rotational relaxation may be reversible. VAIRRS study of a polystyrene/poly(methyl methacrylate) bi-layer has detected evidence for toluene diffusion across the buried polymer-polymer interface.
NASA Astrophysics Data System (ADS)
Cardoso Dos Santos, Marcelina; Vézy, Cyrille; Jaffiol, Rodolphe
2016-02-01
Total Internal Reflection Fluorescence Microscopy (TIRFM) is a widespread technique to study cellular process occurring near the contact region with the glass substrate. In this field, determination of the accurate distance from the surface to the plasma membrane constitutes a crucial issue to investigate the physical basis of cellular adhesion process. However, quantitative interpretation of TIRF pictures regarding the distance z between a labeled membrane and the substrate is not trivial. Indeed, the contrast of TIRF images depends on several parameters more and less well known (local concentration of dyes, absorption cross section, angular emission pattern…). The strategy to get around this problem is to exploit a series of TIRF pictures recorded at different incident angles in evanescent regime. This technique called variable-angle TIRF microscopy (vaTIRFM), allowing to map the membrane-substrate separation distance with a nanometric resolution (10-20 nm). vaTIRFM was developed by Burmeister, Truskey and Reichert in the early 1990s with a prism-based TIRF setup [Journal of Microscopy 173, 39-51 (1994)]. We propose a more convenient prismless setup, which uses only a rotatable mirror to adjust precisely the laser beam on the back focal plane of the oil immersion objective (no azimuthal scanning is needed). The series of TIRF images permit us to calculate accurately membrane-surface distances in each pixel. We demonstrate that vaTIRFM are useful to quantify the adhesion of living cells for specific and unspecific membrane-surface interactions, achieved on various functionalized substrates with polymers (BSA, poly-L-lysin) or extracellular matrix proteins (collagen and fibronectin).
Highlights from High Energy Neutrino Experiments at CERN
NASA Astrophysics Data System (ADS)
Schlatter, W.-D.
2015-07-01
Experiments with high energy neutrino beams at CERN provided early quantitative tests of the Standard Model. This article describes results from studies of the nucleon quark structure and of the weak current, together with the precise measurement of the weak mixing angle. These results have established a new quality for tests of the electroweak model. In addition, the measurements of the nucleon structure functions in deep inelastic neutrino scattering allowed first quantitative tests of QCD.
The Origin of High-angle Dip-slip Earthquakes at Geothermal Fields in California
NASA Astrophysics Data System (ADS)
Barbour, A. J.; Schoenball, M.; Martínez-Garzón, P.; Kwiatek, G.
2016-12-01
We examine the source mechanisms of earthquakes occurring in three California geothermal fields: The Geysers, Salton Sea, and Coso. We find source mechanisms ranging from strike slip faulting, consistent with the tectonic settings, to dip slip with unusually steep dip angles which are inconsistent with local structures. For example, we identify a fault zone in the Salton Sea Geothermal Field imaged using precisely-relocated hypocenters with a dip angle of 60° yet double-couple focal mechanisms indicate higher-angle dip-slip on ≥75° dipping planes. We observe considerable temporal variability in the distribution of source mechanisms. For example, at the Salton Sea we find that the number of high angle dip-slip events increased after 1989, when net-extraction rates were highest. There is a concurrent decline in strike-slip and strike-slip-normal faulting, the mechanisms expected from regional tectonics. These unusual focal mechanisms and their spatio-temporal patterns are enigmatic in terms of our understanding of faulting in geothermal regions. While near-vertical fault planes are expected to slip in a strike-slip sense, and dip slip is expected to occur on moderately dipping faults, we observe dip slip on near-vertical fault planes. However, for plausible stress states and accounting for geothermal production, the resolved fault planes should be stable. We systematically analyze the source mechanisms of these earthquakes using full moment tensor inversion to understand the constraints imposed by assuming a double-couple source. Applied to The Geysers field, we find a significant reduction in the number of high-angle dip-slip mechanisms using the full moment tensor. The remaining mechanisms displaying high-angle dip-slip could be consistent with faults accommodating subsidence and compaction associated with volumetric strain changes in the geothermal reservoir.
Influence of the air’s refractive index on precision angle metrology with autocollimators
NASA Astrophysics Data System (ADS)
Geckeler, Ralf D.; Křen, Petr; Just, Andreas; Schumann, Matthias; Krause, Michael
2018-07-01
In this paper, we discuss a substantial—though previously neglected—error source in precision metrology with autocollimators, specifically, changes in the air’s refractive index, with a focus on the dominant impact of pressure changes. Pressure decreases with increasing elevation above sea level and is subject to substantial variation due to weather changes. It causes changes in an autocollimator’s angle response which are proportional to the measured angle and which increase linearly with the beam length and air pressure. We characterise this important influence in detail by using extended theoretical and experimental investigations and derive strategies for correcting it. We discuss its implications for the comparison of autocollimator calibrations performed at different metrology institutes which is crucial for validating their calibration capabilities. This work aims at approaching fundamental limits in angle metrology with autocollimators.
New results from RENO and prospects with RENO-50
NASA Astrophysics Data System (ADS)
Kim, Soo-Bong
2015-08-01
RENO (Reactor Experiment for Neutrino Oscillation) has made a definitive measurement of the smallest mixing angle θ13 in 2012, based on the disappearance of electron antineutrinos. More precise measurements have been obtained and presented on the mixing angle and the reactor neutrino spectrum, using ˜800 days of data. We have observed an excess of inverse-beta-decay (IBD) prompt spectrum near 5 MeV with respect to the most commonly used models. The excess is found to be consistent with coming from reactors. We have also successfully measured the reactor neutrino flux with a delayed signal of neutron capture on hydrogen. A future reactor neutrino experiment of RENO-50 is proposed to determine the neutrino mass hierarchy and to make highly precise measurements of θ12, Δm212, and Δ m312. Physics goals and sensitivities of RENO-50 are presented with a strategy of obtaining an extremely good energy resolution toward the neutrino mass hierarchy.
Local texture and grain boundary misorientations in high H(C) oxide superconductors
NASA Astrophysics Data System (ADS)
Kroeger, D. M.; Goyal, A.; Specht, E. D.; Tkaczyk, J. E.; Sutliff, J.; Deluca, J. A.; Wang, Z. L.; Riley, G. N., Jr.
The orientations of hundreds of contiguous grains in high J(C) TlBa2Ca2Cu3O(x) deposits and (Bi, Pb)2 Sr2Ca2Cu3O(y) powder-in-tube tapes have been determined from electron back scatter diffraction patterns (EBSP). The misorientation angles and axes of rotation (angle/axis pairs) for grain boundaries connecting these grains were calculated. For both materials the population of low angle boundaries was found to be much larger than expected from calculations based on the macroscopic texture. The TlBa2Ca2Cu3O(x) deposits exhibit pronounced local texture which has been defined by EBSP and x-ray diffraction. Locally grains show significant in-plane (a-axis) alignment even though macroscopically a-axes are random, indicating the presence of colonies of grains with similar a-axis orientations. In (Bi, Pb)2 Sr2Ca2Cu3O(x) tapes no local texture was observed. In both materials the existence of connected networks of small angle grain boundaries can be inferred. Coincident site lattice (CSL) grain boundaries are also present in higher than expected numbers. Grain boundary energy thus appears to play a significant role in enhancing the population of potentially strongly-linked boundaries. We propose that long range strongly-linked conduction occurs through a percolative network small angle (and perhaps CSL) grain boundaries.
Lower trunk kinematics and muscle activity during different types of tennis serves
Chow, John W; Park, Soo-An; Tillman, Mark D
2009-01-01
Background To better understand the underlying mechanisms involved in trunk motion during a tennis serve, this study aimed to examine the (1) relative motion of the middle and lower trunk and (2) lower trunk muscle activity during three different types of tennis serves - flat, topspin, and slice. Methods Tennis serves performed by 11 advanced (AV) and 8 advanced intermediate (AI) male tennis players were videorecorded with markers placed on the back of the subject used to estimate the anatomical joint (AJ) angles between the middle and lower trunk for four trunk motions (extension, left lateral flexion, and left and right twisting). Surface electromyographic (EMG) techniques were used to monitor the left and right rectus abdominis (LRA and RRA), external oblique (LEO and REO), internal oblique (LIO and RIO), and erector spinae (LES and RES). The maximal AJ angles for different trunk motions during a serve and the average EMG levels for different muscles during different phases (ascending and descending windup, acceleration, and follow-through) of a tennis serve were evaluated. Results The repeated measures Skill × Serve Type × Trunk Motion ANOVA for maximal AJ angle indicated no significant main effects for serve type or skill level. However, the AV group had significantly smaller extension (p = 0.018) and greater left lateral flexion (p = 0.038) angles than the AI group. The repeated measures Skill × Serve Type × Phase MANOVA revealed significant phase main effects in all muscles (p < 0.001) and the average EMG of the AV group for LRA was significantly higher than that of the AI group (p = 0.008). All muscles showed their highest EMG values during the acceleration phase. LRA and LEO muscles also exhibited high activations during the descending windup phase, and RES muscle was very active during the follow-through phase. Conclusion Subjects in the AI group may be more susceptible to back injury than the AV group because of the significantly greater trunk hyperextension, and relatively large lumbar spinal loads are expected during the acceleration phase because of the hyperextension posture and profound front-back and bilateral co-activations in lower trunk muscles. PMID:19825184
Novel Tiltmeter for Monitoring Angle Shift In Incident Waves
2008-12-01
40th Annual Precise Time and Time Interval (PTTI) Meeting 559 NOVEL TILTMETER FOR MONITORING ANGLE SHIFT IN INCIDENT WAVES S... Tiltmeter For Monitoring Angle Shift In Incident Waves 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) 5d. PROJECT...up, any angle change of the incident beam ’θ results in a change of the intensity transmission of the resonator. A NOVEL ANGLE TILTMETER
Creation of the precision magnetic spectrometer SCAN-3
NASA Astrophysics Data System (ADS)
Afanasiev, S. V.; Anisimov, Yu. S.; Baldin, A. A.; Berlev, A. I.; Dryablov, D. K.; Dubinchik, B. V.; Elishev, A. F.; Fateev, O. V.; Igamkulov, Z. A.; Krechetov, Yu. F.; Kudashkin, I. V.; Kuznechov, S. N.; Malakhov, A. I.; Smirnov, V. A.; Shimansky, S. S.; Kliman, J.; Matousek, V.; Gmutsa, S.; Turzo, I.; Cruceru, I.; Cruceru, M.; Constantin, F.; Niolescu, G.; Ciolacu, L.; Paraipan, M.; Vokál, S.; Vrláková, J.; Baskov, V. A.; Lebedev, A. I.; L'vov, A. I.; Pavlyuchenko, L. N.; Polyansky, V. V.; Rzhanov, E. V.; Sidorin, S. S.; Sokol, G. A.; Glavanakov, I. V.; Tabachenko, A. N.; Jomurodov, D. M.; Bekmirzaev, R. N.; Ibadov, R. M.; Sultanov, M. U.
2017-03-01
The new JINR project [1] is aimed at studies of highly excited nuclear matter created in nuclei by a high-energy deuteron beam. The matter is studied through observation of its particular decay products - pairs of energetic particles with a wide opening angle, close to 180°. The new precision hybrid magnetic spectrometer SCAN-3 is to be built for detecting charged (π±, K±, p) and neutral (n) particles produced at the JINR Nuclotron internal target in dA collisions. One of the main and complex tasks is a study of low-energy ηA interaction and a search for η-bound states (η-mesic nuclei). Basic elements of the spectrometer and its characteristics are discussed in the article.
Spherical grating monochromator with interferometer control and in-vacuum reference
NASA Astrophysics Data System (ADS)
Holly, D. J.; Mason, W. P.; Sailor, T.; Smith, R. E.; Wahl, D.
2002-03-01
Physical Science Laboratory's new generation of spherical grating monochromators incorporates a laser interferometer to control scan angle and an in-vacuum absolute angle reference, as well as other improvements. The design accommodates up to six gratings which can be moved axially (under motor control, with encoder position readback) at any scan angle. The gratings are cooled by means of spring-loaded clamps which conduct heat to a water-cooled plate. The instruments feature hollow roller bearings on the scan axis to minimize bearing runout, and a pseudosine-bar drive for precise control of grating angle. The interferometer angle-measuring optics are mounted inside the vacuum chamber and measure the angle between the grating scan axis and the instrument's granite base. The laser interferometer measures the grating angle with a resolution of approximately 0.02 arcsec over the entire scan range of 40°. To provide a reference for the interferometer angle measurement, we have built an in-vacuum optical reference which uses custom chrome-on-glass reticles mounted inside the vacuum chamber. Collimated light from a source outside the vacuum passes through the reticles to yield quadrature signals which precisely define an absolute reference angle for the interferometer. Repeatability of the grating angle is within a range of ±0.05 arcsec. Two of these instruments are in operation at SRRC (Taiwan) and a third instrument has been delivered to NSLS (Brookhaven).
Solar module having reflector between cells
Kardauskas, Michael J.
1999-01-01
A photovoltaic module comprising an array of electrically interconnected photovoltaic cells disposed in a planar and mutually spaced relationship between a light-transparent front cover member in sheet form and a back sheet structure is provided with a novel light-reflecting means disposed between adjacent cells for reflecting light falling in the areas between cells back toward said transparent cover member for further internal reflection onto the solar cells. The light-reflecting comprises a flexible plastic film that has been embossed so as to have a plurality of small V-shaped grooves in its front surface, and a thin light-reflecting coating on said front surface, the portions of said coating along the sides of said grooves forming light-reflecting facets, said grooves being formed so that said facets will reflect light impinging thereon back into said transparent cover sheet with an angle of incidence greater than the critical angle, whereby substantially all of the reflected light will be internally reflected from said cover sheet back to said solar modules, thereby increasing the current output of the module.
NASA Astrophysics Data System (ADS)
Mao, Yao; Deng, Chao; Liu, Qiong; Cao, Zheng
2016-10-01
As laser has narrow transmitting beam and small divergence angle, the LOS (Line of Sight) stabilization of optical communication system is a primary precondition of laser communication links. Compound axis control is usually adopted in LOS stabilization of optical communication system, in which coarse tracking and fine tracking are included. Rejection against high frequency disturbance mainly depends on fine tracking LOS stabilization platform. Limited by different factors such as mechanical characteristic of the stabilization platform and bandwidth/noise of the sensor, the control bandwidth of LOS stabilization platform is restricted so that effective rejection of high frequency disturbance cannot be achieved as it mainly depends on the isolation characteristic of the platform itself. It is proposed by this paper that current loop may reject the effect of back-EMF. By adopting the method of electric control, high frequency isolation characteristic of the platform can be improved. The improvement effect is similar to increasing passive vibration reduction devices. Adopting the double closed loop control structure of velocity and current with the combining of the rejection effect of back-EMF caused by current loop is equivalent to reducing back-EMF coefficient, which can enhance the isolation ability of the LOS stabilization platform to high frequency disturbance.
NASA Technical Reports Server (NTRS)
Whitmore, Stephen A.; Moes, Timothy R.; Larson, Terry J.
1990-01-01
A nonintrusive high angle-of-attack flush airdata sensing (HI-FADS) system was installed and flight-tested on the F-18 high alpha research flight vehicle. The system is a matrix of 25 pressure orifices in concentric circles on the nose of the vehicle. The orifices determine angles of attack and sideslip, Mach number, and pressure altitude. Pressure was transmitted from the orifices to an electronically scanned pressure module by lines of pneumatic tubing. The HI-FADS system was calibrated and demonstrated using dutch roll flight maneuvers covering large Mach, angle-of-attack, and sideslip ranges. Reference airdata for system calibration were generated by a minimum variance estimation technique blending measurements from two wingtip airdata booms with inertial velocities, aircraft angular rates and attitudes, precision radar tracking, and meteorological analyses. The pressure orifice calibration was based on identifying empirical adjustments to modified Newtonian flow on a hemisphere. Calibration results are presented. Flight test results used all 25 orifices or used a subset of 9 orifices. Under moderate maneuvering conditions, the HI-FADS system gave excellent results over the entire subsonic Mach number range up to 55 deg angle of attack. The internal pneumatic frequency response of the system is accurate to beyond 10 Hz. Aerodynamic lags in the aircraft flow field caused some performance degradation during heavy maneuvering.
Research on application of photoelectric rotary encoder in space optical remote sensor
NASA Astrophysics Data System (ADS)
Zheng, Jun; Qi, Shao-fan; Wang, Yuan-yuan; Zhang, Zhan-dong
2016-11-01
For space optical remote sensor, especially wide swath detecting sensor, the focusing control system for the focal plane should be well designed to obtain the best image quality. The crucial part of this system is the measuring instrument. For previous implements, the potentiometer, which is essentially a voltage divider, is usually introduced to conduct the position in feedback closed-loop control process system. However, the performances of both electro-mechanical and digital potentiometers is limited in accuracy, temperature coefficients, and scale range. To have a better performance of focal plane moving detection, this article presents a new measuring implement with photoelectric rotary encoder, which consists of the photoelectric conversion system and the signal process system. In this novel focusing control system, the photoelectric conversion system is fixed on main axis, which can transform the angle information into a certain analog signal. Through the signal process system, after analog-to-digital converting and data format processing of the certain analog signal, the focusing control system can receive the digital precision angle position which can be used to deduct the current moving position of the focal plane. For utilization of space optical remote sensor in aerospace areas, the reliability design of photoelectric rotary encoder system should be considered with highest priority. As mentioned above, this photoelectric digital precision angle measurement device is well designed for this real-time control and dynamic measurement system, because its characters of high resolution, high accuracy, long endurance, and easy to maintain.
Construction and Design of a full size sTGC prototype for the ATLAS New Small Wheel upgrade
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
For the forthcoming Phase-I upgrade to the LHC (2018/19), the first station of the ATLAS muon end-cap system, Small Wheel, will need to be replaced. The New Small Wheel (NSW) will have to operate in a high background radiation region while reconstructing muon tracks with high precision as well as furnishing information for the Level-1 trigger. In particular, the precision reconstruction of tracks requires a spatial resolution of about 100 μm, and the Level-1 trigger track segments have to be reconstructed with an angular resolution of approximately 1 mrad. The NSW will have two chamber technologies, one primarily devoted tomore » the Level-1 trigger function the small-strip Thin Gap Chambers (sTGC) and one dedicated to precision tracking, Micromegas detectors, (MM). The single sTGC planes of a quadruplet consists of an anode layer of 50 μm gold plated tungsten wire sandwiched between two resistive cathode layers. Behind one of the resistive cathode layers, a PCB with precise machined strips (thus the name sTGC's) spaced every 3.2 mm allows to achieve the position resolution that ranges from 70 to 150 μm, depending on the incident particle angle. Behind the second cathode, a PCB that contains an arrangement of pads, allows for a fast coincidence between successive sTGC layers to tag the passage of a track and reads only the corresponding strips for triggering. To be able to profit from the high accuracy of each of the sTGC planes for trigger purposes, their relative geometrical position between planes has to be controlled to within a precision of about 40 μm in their parallelism, as well (due to the various incident angles), to within a precision of 80 μm in the relative distance between the planes to achieve the overall angular resolution of 1 mrad. The needed accuracy in the position and parallelism of the strips is achieved by machining brass inserts together when machining the strip patterns into the cathode boards in a single step. The inserts can then be used as external references on a granite table. Precision methods are used to maintain high accuracy when combining four single detector gaps first into two doublets and then into a quadruplet. We will present results on the ongoing construction of full size (∼1 x 1 m) sTGC quadruplet prototypes before full construction starts in 2015. (authors)« less
Restoration of Lumbar Lordosis in Flat Back Deformity: Optimal Degree of Correction
Kim, Ki-Tack; Lee, Sang-Hun; Kim, Hyo-Jong; Kim, Jung-Youn; Lee, Jung-Hee
2015-01-01
Study Design A retrospective comparative study. Purpose To provide an ideal correction angle of lumbar lordosis (LL) in degenerative flat back deformity. Overview of Literature The degree of correction in degenerative flat back in relation to pelvic incidence (PI) remains controversial. Methods Forty-nine patients with flat back deformity who underwent corrective surgery were enrolled. Posterior-anterior-posterior sequential operation was performed. Mean age and mean follow-up period was 65.6 years and 24.2 months, respectively. We divided the patients into two groups based on immediate postoperative radiographs-optimal correction (OC) group (PI-9°≤LL
New diamond cell for single-crystal x-ray diffraction
NASA Astrophysics Data System (ADS)
Boehler, Reinhard
2006-11-01
A new design for a high-precision diamond cell is described. Two kinematically mounted steel disks are elastically deflected to generate pressure. This principle provides higher precision in the diamond anvil alignment than most sliding piston-cylinder or guide-pin devices at significantly lower cost. With this new diamond cell conical diamond anvils with an x-ray aperture of 85° were successfully tested to over 50GPa using helium as a pressure medium. Anvil thickness of less than 1.4mm provides high x-ray transmission and low background, a significant improvement compared to beryllium or diamond-disk backing plates. Because the diamond anvils are supported by tungsten carbide seats, samples and pressure media can be annealed by external or laser heating to provide hydrostatic pressure conditions.
Portent of Heine's Reciprocal Square Root Identity
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cohl, H W
Precise efforts in theoretical astrophysics are needed to fully understand the mechanisms that govern the structure, stability, dynamics, formation, and evolution of differentially rotating stars. Direct computation of the physical attributes of a star can be facilitated by the use of highly compact azimuthal and separation angle Fourier formulations of the Green's functions for the linear partial differential equations of mathematical physics.
Gao, Yongchang; Chen, Zhenxian; Zhang, Zhifeng; Chen, Shibin; Jin, Zhongmin
2018-06-12
Steep inclination and excessive anteversion angles of acetabular cups could result in adverse edge-loading. This, in turn, increases contact pressure and impingement risk for traditional artificial hip joints. However, the influence of high inclination and anteversion angles on both the kinematics and contact mechanics of dual mobility hip implants has rarely been examined. This study focuses on investigating both the kinematics and contact mechanics of a dual mobility hip implant under different inclination and anteversion angles using a dynamic explicit finite element method developed in a previous study. The results showed that an inclination angle of both the back shell and liner ranging from 30° to 70° had little influence on the maximum contact pressure and the accumulated sliding distance of inner and outer surfaces of the liner under normal walking gait. The same results were obtained for an anteversion angle of the liner varying between -20° and +20°. However, when the anteversion angle of the liner was beyond this range, the contact between the femoral neck and the inner rim of the liner occurred. Consequently, this caused a relative rotation at the outer articulation. This suggests that both inclination and modest anteversion angles have little influence on the kinematics and contact mechanics of dual mobility hip implants. However, too excessive anteversion angle could result in a rotation for this kind of hip implant at both articulations. Copyright © 2018 Elsevier Ltd. All rights reserved.
Energy calibration of organic scintillation detectors for. gamma. rays
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gu Jiahui; Xiao Genlai; Liu Jingyi
1988-10-01
An experimental method of calibrating organic detectors is described. A NaI(T1) detector has some advantages of high detection efficiency, good energy resolution, and definite position of the back-scattering peak. The precise position of the Compton edge can be determined by coincidence measurement between the pulse of an organic scintillation detector and the pulse of the back-scattering peak from NaI(T1) detector. It can be used to calibrate various sizes and shapes of organic scintillation detectors simply and reliably. The home-made plastic and organic liquid scintillation detectors are calibrated and positions of the Compton edge as a function of ..gamma..-ray energies aremore » obtained.« less
The theory precision analyse of RFM localization of satellite remote sensing imagery
NASA Astrophysics Data System (ADS)
Zhang, Jianqing; Xv, Biao
2009-11-01
The tradition method of detecting precision of Rational Function Model(RFM) is to make use of a great deal check points, and it calculates mean square error through comparing calculational coordinate with known coordinate. This method is from theory of probability, through a large number of samples to statistic estimate value of mean square error, we can think its estimate value approaches in its true when samples are well enough. This paper is from angle of survey adjustment, take law of propagation of error as the theory basis, and it calculates theory precision of RFM localization. Then take the SPOT5 three array imagery as experiment data, and the result of traditional method and narrated method in the paper are compared, while has confirmed tradition method feasible, and answered its theory precision question from the angle of survey adjustment.
The MINOS Experiment: Results and Prospects
Evans, J. J.
2013-01-01
Tmore » he MINOS experiment has used the world’s most powerful neutrino beam to make precision neutrino oscillation measurements. By observing the disappearance of muon neutrinos, MINOS has made the world’s most precise measurement of the larger neutrino mass splitting and has measured the neutrino mixing angle θ 23 . Using a dedicated antineutrino beam, MINOS has made the first direct precision measurements of the corresponding antineutrino parameters. A search for ν e and ν - e appearance has enabled a measurement of the mixing angle θ 13 . A measurement of the neutral-current interaction rate has confirmed oscillation between three active neutrino flavours. MINOS will continue as MINOS+ in an upgraded beam with higher energy and intensity, allowing precision tests of the three-flavour neutrino oscillation picture, in particular a very sensitive search for the existence of sterile neutrinos.« less
NASA Astrophysics Data System (ADS)
Rohdjeß, H.; Albers, D.; Bisplinghoff, J.; Bollmann, R.; Büßer, K.; Diehl, O.; Dohrmann, F.; Engelhardt, H.-P.; Eversheim, P. D.; Gasthuber, M.; Greiff, J.; Groß, A.; Groß-Hardt, R.; Hinterberger, F.; Igelbrink, M.; Langkau, R.; Maier, R.; Mosel, F.; Müller, M.; Münstermann, M.; Prasuhn, D.; von Rossen, P.; Scheid, H.; Schirm, N.; Schwandt, F.; Scobel, W.; Trelle, H. J.; Wellinghausen, A.; Wiedmann, W.; Woller, K.; Ziegler, R.
2006-01-01
The EDDA-detector at the cooler-synchrotron COSY/Jülich has been operated with an internal CH2 fiber target to measure proton-proton elastic scattering differential cross-sections. For data analysis knowledge of beam parameters, like position, width and angle, are indispensable. We have developed a method to obtain these values with high precision from the azimuthal and polar angles of the ejectiles only, by exploiting the coplanarity of the two final-state protons with the beam and the kinematic correlation. The formalism is described and results for beam parameters obtained during beam acceleration are given.
Ding, Weifu; Zhang, Jiangshe; Leung, Yee
2016-10-01
In this paper, we predict air pollutant concentration using a feedforward artificial neural network inspired by the mechanism of the human brain as a useful alternative to traditional statistical modeling techniques. The neural network is trained based on sparse response back-propagation in which only a small number of neurons respond to the specified stimulus simultaneously and provide a high convergence rate for the trained network, in addition to low energy consumption and greater generalization. Our method is evaluated on Hong Kong air monitoring station data and corresponding meteorological variables for which five air quality parameters were gathered at four monitoring stations in Hong Kong over 4 years (2012-2015). Our results show that our training method has more advantages in terms of the precision of the prediction, effectiveness, and generalization of traditional linear regression algorithms when compared with a feedforward artificial neural network trained using traditional back-propagation.
An Emprical Point Error Model for Tls Derived Point Clouds
NASA Astrophysics Data System (ADS)
Ozendi, Mustafa; Akca, Devrim; Topan, Hüseyin
2016-06-01
The random error pattern of point clouds has significant effect on the quality of final 3D model. The magnitude and distribution of random errors should be modelled numerically. This work aims at developing such an anisotropic point error model, specifically for the terrestrial laser scanner (TLS) acquired 3D point clouds. A priori precisions of basic TLS observations, which are the range, horizontal angle and vertical angle, are determined by predefined and practical measurement configurations, performed at real-world test environments. A priori precision of horizontal (𝜎𝜃) and vertical (𝜎𝛼) angles are constant for each point of a data set, and can directly be determined through the repetitive scanning of the same environment. In our practical tests, precisions of the horizontal and vertical angles were found as 𝜎𝜃=±36.6𝑐𝑐 and 𝜎𝛼=±17.8𝑐𝑐, respectively. On the other hand, a priori precision of the range observation (𝜎𝜌) is assumed to be a function of range, incidence angle of the incoming laser ray, and reflectivity of object surface. Hence, it is a variable, and computed for each point individually by employing an empirically developed formula varying as 𝜎𝜌=±2-12 𝑚𝑚 for a FARO Focus X330 laser scanner. This procedure was followed by the computation of error ellipsoids of each point using the law of variance-covariance propagation. The direction and size of the error ellipsoids were computed by the principal components transformation. The usability and feasibility of the model was investigated in real world scenarios. These investigations validated the suitability and practicality of the proposed method.
Magnetic-field-induced rotation of light with orbital angular momentum
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shi, Shuai; Ding, Dong-Sheng, E-mail: dds@ustc.edu.cn; Zhou, Zhi-Yuan
Light carrying orbital angular momentum (OAM) has attractive applications in the fields of precise optical measurements and high capacity optical communications. We study the rotation of a light beam propagating in warm {sup 87}Rb atomic vapor using a method based on magnetic-field-induced circular birefringence. The dependence of the rotation angle on the magnetic field makes it appropriate for weak magnetic field measurements. We quote a detailed theoretical description that agrees well with the experimental observations. The experiment shown here provides a method to measure the magnetic field intensity precisely and expands the application of OAM-carrying light. This technique has advantagemore » in measurement of magnetic field weaker than 0.5 G, and the precision we achieved is 0.8 mG.« less
Application of photogrammetry to work in nuclear power plants in operation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Abella, A.P.; Balsalobre, F.S.
1987-01-01
In the evolution of requirements applicable to nuclear safety-related components and the obtainment of as-built data for a great variety of jobs performed in nuclear power plants, photogrammetry proves to be a very useful tool for design, manufacture, erection, maintenance, and operation. The METADAT data acquisition system developed by Empresarios Agrupados has a wide range of applications, depending on the degree of precision required. The F-3 system is capable of obtaining a precision of 1:10.000, to 0.10 mm in determined zones, through the use of wide-angle lenses without optical distortions or aberrations. In cases where such a high degree ofmore » precision is not necessary, as in piping run modifications, conduits, or cable trays, the F-2 system can be used.« less
Havn, T B; Uglem, I; Solem, Ø; Cooke, S J; Whoriskey, F G; Thorstad, E B
2015-08-01
In this study, behaviour and survival following catch-and-release (C&R) angling was investigated in wild Atlantic salmon Salmo salar (n = 75) angled on sport fishing gear in the River Otra in southern Norway at water temperatures of 16.3-21.1 °C. Salmo salar were tagged externally with radio transmitters and immediately released back into the river to simulate a realistic C&R situation. The majority of S. salar (91%) survived C&R. Most S. salar that were present in the River Otra during the spawning period 3-4 months later were located at known spawning grounds. Downstream movements (median furthest position: 0.5 km, range: 0.1-11.0 km) during the first 4 days after release were recorded for 72% of S. salar, presumably stress-induced fallback associated with C&R. Individuals that fell back spent a median of 15 days before commencing their first upstream movement after release, and 34 days before they returned to or were located above their release site. Mortality appeared to be somewhat elevated at the higher end of the temperature range (14% at 18-21 °C), although sample sizes were low. In conclusion, C&R at water temperatures up to 18 °C had small behavioural consequences and was associated with low mortality (7%). Nevertheless, low levels of mortality occur due to C&R angling and these losses should be accounted for by management authorities in rivers where C&R is practised. Refinement of best practices for C&R may help to reduce mortality, particularly at warmer temperatures. © 2015 The Fisheries Society of the British Isles.
NASA Astrophysics Data System (ADS)
Wang, Zhiguo; Liang, Yingchun; Chen, Mingjun; Tong, Zhen; Chen, Jiaxuan
2010-10-01
Tool wear not only changes its geometry accuracy and integrity, but also decrease machining precision and surface integrity of workpiece that affect using performance and service life of workpiece in ultra-precision machining. Scholars made a lot of experimental researches and stimulant analyses, but there is a great difference on the wear mechanism, especially on the nano-scale wear mechanism. In this paper, the three-dimensional simulation model is built to simulate nano-metric cutting of a single crystal silicon with a non-rigid right-angle diamond tool with 0 rake angle and 0 clearance angle by the molecular dynamics (MD) simulation approach, which is used to investigate the diamond tool wear during the nano-metric cutting process. A Tersoff potential is employed for the interaction between carbon-carbon atoms, silicon-silicon atoms and carbon-silicon atoms. The tool gets the high alternating shear stress, the tool wear firstly presents at the cutting edge where intension is low. At the corner the tool is splitted along the {1 1 1} crystal plane, which forms the tipping. The wear at the flank face is the structure transformation of diamond that the diamond structure transforms into the sheet graphite structure. Owing to the tool wear the cutting force increases.
Large eddy simulation of shock train in a convergent-divergent nozzle
NASA Astrophysics Data System (ADS)
Mousavi, Seyed Mahmood; Roohi, Ehsan
2014-12-01
This paper discusses the suitability of the Large Eddy Simulation (LES) turbulence modeling for the accurate simulation of the shock train phenomena in a convergent-divergent nozzle. To this aim, we selected an experimentally tested geometry and performed LES simulation for the same geometry. The structure and pressure recovery inside the shock train in the nozzle captured by LES model are compared with the experimental data, analytical expressions and numerical solutions obtained using various alternative turbulence models, including k-ɛ RNG, k-ω SST, and Reynolds stress model (RSM). Comparing with the experimental data, we observed that the LES solution not only predicts the "locations of the first shock" precisely, but also its results are quite accurate before and after the shock train. After validating the LES solution, we investigate the effects of the inlet total pressure on the shock train starting point and length. The effects of changes in the back pressure, nozzle inlet angle (NIA) and wall temperature on the behavior of the shock train are investigated by details.
NASA Astrophysics Data System (ADS)
Catala, L.; Ziad, A.; Fanteï-Caujolle, Y.; Crawford, S. M.; Buckley, D. A. H.; Borgnino, J.; Blary, F.; Nickola, M.; Pickering, T.
2017-05-01
With the prospect of the next generation of ground-based telescopes, the extremely large telescopes, increasingly complex and demanding adaptive optics systems are needed. This is to compensate for image distortion caused by atmospheric turbulence and fully take advantage of mirrors with diameters of 30-40 m. This requires a more precise characterization of the turbulence. The Profiler of Moon Limb (PML) was developed within this context. The PML aims to provide high-resolution altitude profiles of the turbulence using differential measurements of the Moon limb position to calculate the transverse spatio-angular covariance of the angle of arrival fluctuations. The covariance of differential image motion for different separation angles is sensitive to the altitude distribution of the seeing. The use of the continuous Moon limb provides a large number of separation angles allowing for the high-resolution altitude of the profiles. The method is presented and tested with simulated data. Moreover, a PML instrument was deployed at the Sutherland Observatory in South Africa in 2011 August. We present here the results of this measurement campaign.
Lee, Kyu-Tae; Jang, Ji-Yun; Park, Sang Jin; Ok, Song Ah; Park, Hui Joon
2017-09-28
See-through perovskite solar cells with high efficiency and iridescent colors are demonstrated by employing a multilayer dielectric mirror. A certain amount of visible light is used for wide color gamut semitransparent color generation, which can be easily tuned by changing an angle of incidence, and a wide range of visible light is efficiently reflected back toward a photoactive layer of the perovskite solar cells by the dielectric mirror for highly efficient light-harvesting performance, thus achieving 10.12% power conversion efficiency. We also rigorously examine how the number of pairs in the multilayer dielectric mirror affects optical properties of the colored semitransparent perovskite solar cells. The described approach can open the door to a large number of applications such as building-integrated photovoltaics, self-powered wearable electronics and power-generating color filters for energy-efficient display systems.
Quantity and quality assessment of randomized controlled trials on orthodontic practice in PubMed.
Shimada, Tatsuo; Takayama, Hisako; Nakamura, Yoshiki
2010-07-01
To find current high-quality evidence for orthodontic practice within a reasonable time, we tested the performance of a PubMed search. PubMed was searched using publication type randomized controlled trial and medical subject heading term "orthodontics" for articles published between 2003 and 2007. The PubMed search results were compared with those from a hand search of four orthodontic journals to determine the sensitivity of PubMed search. We evaluated the precision of the PubMed search result and assessed the quality of individual randomized controlled trials using the Jadad scale. Sensitivity and precision were 97.46% and 58.12%, respectively. In PubMed, of the 277 articles retrieved, 161 (58.12%) were randomized controlled trials on orthodontic practice, and 115 of the 161 articles (71.42%) were published in four orthodontic journals: American Journal of Orthodontics and Dentofacial Orthopedics, The Angle Orthodontist, the European Journal of Orthodontics, and the Journal of Orthodontics. Assessment by the Jadad scale revealed 60 high-quality randomized controlled trials on orthodontic practice, of which 45 (75%) were published in these four journals. PubMed is a highly desirable search engine for evidence-based orthodontic practice. To stay current and get high-quality evidence, it is reasonable to look through four orthodontic journals: American Journal of Orthodontics and Dentofacial Orthopedics, The Angle Orthodontist, the European Journal of Orthodontics, and the Journal of Orthodontics.
An Overview of Magnetic Bearing Technology for Gas Turbine Engines
NASA Technical Reports Server (NTRS)
Clark, Daniel J.; Jansen, Mark J.; Montague, Gerald T.
2004-01-01
The idea of the magnetic bearing and its use in exotic applications has been conceptualized for many years, over a century, in fact. Patented, passive systems using permanent magnets date back over 150 years. More recently, scientists of the 1930s began investigating active systems using electromagnets for high-speed ultracentrifuges. However, passive magnetic bearings are physically unstable and active systems only provide proper stiffness and damping through sophisticated controllers and algorithms. This is precisely why, until the last decade, magnetic bearings did not become a practical alternative to rolling element bearings. Today, magnetic bearing technology has become viable because of advances in micro-processing controllers that allow for confident and robust active control. Further advances in the following areas: rotor and stator materials and designs which maximize flux, minimize energy losses, and minimize stress limitations; wire materials and coatings for high temperature operation; high-speed micro processing for advanced controller designs and extremely robust capabilities; back-up bearing technology for providing a viable touchdown surface; and precision sensor technology; have put magnetic bearings on the forefront of advanced, lubrication free support systems. This paper will discuss a specific joint program for the advancement of gas turbine engines and how it implies the vitality of magnetic bearings, a brief comparison between magnetic bearings and other bearing technologies in both their advantages and limitations, and an examination of foreseeable solutions to historically perceived limitations to magnetic bearing.
Lumbar Corsets Can Decrease Lumbar Motion in Golf Swing
Hashimoto, Koji; Miyamoto, Kei; Yanagawa, Takashi; Hattori, Ryo; Aoki, Takaaki; Matsuoka, Toshio; Ohno, Takatoshi; Shimizu, Katsuji
2013-01-01
Swinging a golf club includes the rotation and extension of the lumbar spine. Golf-related low back pain has been associated with degeneration of the lumbar facet and intervertebral discs, and with spondylolysis. Reflective markers were placed directly onto the skin of 11young male amateur golfers without a previous history of back pain. Using a VICON system (Oxford Metrics, U.K.), full golf swings were monitored without a corset (WOC), with a soft corset (SC), and with a hard corset (HC), with each subject taking 3 swings. Changes in the angle between the pelvis and the thorax (maximum range of motion and angular velocity) in 3 dimensions (lumbar rotation, flexion-extension, and lateral tilt) were analyzed, as was rotation of the hip joint. Peak changes in lumbar extension and rotation occurred just after impact with the ball. The extension angle of the lumbar spine at finish was significantly lower under SC (38°) or HC (28°) than under WOC (44°) conditions (p < 0.05). The maximum angular velocity after impact was significantly smaller under HC (94°/sec) than under SC (177°/sec) and WOC (191° /sec) conditions, as were the lumbar rotation angles at top and finish. In contrast, right hip rotation angles at top showed a compensatory increase under HC conditions. Wearing a lumbar corset while swinging a golf club can effectively decrease lumbar extension and rotation angles from impact until the end of the swing. These effects were significantly enhanced while wearing an HC. Key points Rotational and extension forces on the lumbar spine may cause golf-related low back pain Wearing lumbar corsets during a golf swing can effectively decrease lumbar extension and rotation angles and angular velocity. Wearing lumbar corsets increased the rotational motion of the hip joint while reducing the rotation of the lumbar spine. PMID:24149729
Lumbar corsets can decrease lumbar motion in golf swing.
Hashimoto, Koji; Miyamoto, Kei; Yanagawa, Takashi; Hattori, Ryo; Aoki, Takaaki; Matsuoka, Toshio; Ohno, Takatoshi; Shimizu, Katsuji
2013-01-01
Swinging a golf club includes the rotation and extension of the lumbar spine. Golf-related low back pain has been associated with degeneration of the lumbar facet and intervertebral discs, and with spondylolysis. Reflective markers were placed directly onto the skin of 11young male amateur golfers without a previous history of back pain. Using a VICON system (Oxford Metrics, U.K.), full golf swings were monitored without a corset (WOC), with a soft corset (SC), and with a hard corset (HC), with each subject taking 3 swings. Changes in the angle between the pelvis and the thorax (maximum range of motion and angular velocity) in 3 dimensions (lumbar rotation, flexion-extension, and lateral tilt) were analyzed, as was rotation of the hip joint. Peak changes in lumbar extension and rotation occurred just after impact with the ball. The extension angle of the lumbar spine at finish was significantly lower under SC (38°) or HC (28°) than under WOC (44°) conditions (p < 0.05). The maximum angular velocity after impact was significantly smaller under HC (94°/sec) than under SC (177°/sec) and WOC (191° /sec) conditions, as were the lumbar rotation angles at top and finish. In contrast, right hip rotation angles at top showed a compensatory increase under HC conditions. Wearing a lumbar corset while swinging a golf club can effectively decrease lumbar extension and rotation angles from impact until the end of the swing. These effects were significantly enhanced while wearing an HC. Key pointsRotational and extension forces on the lumbar spine may cause golf-related low back painWearing lumbar corsets during a golf swing can effectively decrease lumbar extension and rotation angles and angular velocity.Wearing lumbar corsets increased the rotational motion of the hip joint while reducing the rotation of the lumbar spine.
NASA Astrophysics Data System (ADS)
Mesbah, Mohsen; Faraji, Ghader; Bushroa, A. R.
2016-03-01
Microstructural evolution and mechanical properties of nanostructured 1060 aluminum alloy tubes processed by tubular-channel angular pressing (TCAP) process were investigated using electron back-scattered diffraction (EBSD), transmission electron microscopy (TEM) and nanoindentation analyzes. EBSD scans revealed a homogeneous ultrafine grained microstructure after the third passes of the TCAP process. Apart from that the mean grain sizes of the TCAP processed tubes were refined to 566 nm, 500 nm and 480 nm respectively after the first, second and third passes. The results showed that after the three TCAP passes, the grain boundaries with a high angle comprised 78% of all the boundaries. This is in comparison to the first pass processed sample that includes approximately 20% HAGBs. The TEM inspection afforded an appreciation of the role of very low-angle misorientation boundaries in the process of refining microstructure. Nanoindentation results showed that hardness was the smallest form of an unprocessed sample while the largest form of the processed sample after the three passes of TCAP indicated the highest resistant of the material. In addition, the module of elasticity of the TCAP processed samples was greater from that of the unprocessed sample.
High-throughput accurate-wavelength lens-based visible spectrometer.
Bell, Ronald E; Scotti, Filippo
2010-10-01
A scanning visible spectrometer has been prototyped to complement fixed-wavelength transmission grating spectrometers for charge exchange recombination spectroscopy. Fast f/1.8 200 mm commercial lenses are used with a large 2160 mm(-1) grating for high throughput. A stepping-motor controlled sine drive positions the grating, which is mounted on a precision rotary table. A high-resolution optical encoder on the grating stage allows the grating angle to be measured with an absolute accuracy of 0.075 arc sec, corresponding to a wavelength error ≤0.005 Å. At this precision, changes in grating groove density due to thermal expansion and variations in the refractive index of air are important. An automated calibration procedure determines all the relevant spectrometer parameters to high accuracy. Changes in bulk grating temperature, atmospheric temperature, and pressure are monitored between the time of calibration and the time of measurement to ensure a persistent wavelength calibration.
Optical and thermal simulation for wide acceptance angle CPV module
NASA Astrophysics Data System (ADS)
Ahmad, Nawwar; Ota, Yasuyuki; Araki, Kenji; Lee, Kan-Hua; Yamaguchi, Masafumi; Nishioka, Kensuke
2017-09-01
Concentrator photovoltaic (CPV) technology has the potential to decrease the cost of systems in the near future by using less expensive optical elements in the system which replace the receiving surface aperture and concentrate the sunlight onto small solar cells. One of the main concerns of CPV is the need for high precision tracking system and the relation to the acceptance angle. In this paper, we proposed a CPV module with concentration ratio larger than 100 times and wide acceptance angle. An optical simulation for the module with S-TIM2 glass as a lens material was conducted to estimate the optical performance of the module. Thermal and electrical simulation was also conducted using COMSOL Multiphysics and SPICE respectively to evaluate the working temperature and electrical characteristics of the multijunction solar cell under concentration conditions.
Evaluation of Work-Related Musculoskeletal Disorders and Postural Stress of Female "Jari" Workers.
Pal, Amitava; Dhara, Prakash C
2017-01-01
The present investigation was aimed to assess the postural stress and the prevalence of musculoskeletal disorders (MSDs) of the "Jari" (golden thread) workers. This cross-sectional study was carried out on 156 female workers in different areas of the Purba Medinipur, Paschim Medinipur, and Howrah districts of West Bengal, India. The MSDs of the workers were evaluated by modified Nordic questionnaire method. The postural pattern during work was assessed by direct observation method. The posture of Jari workers has been analyzed by OWAS, REBA, and RULA methods. The joint angle in normal and working posture was observed. The prevalence of MSDs was very high among the workers. The major locations of body pains in Jari workers were lower back, upper back, neck, wrist, thigh, and shoulder. The occurrence of MSDs was higher in lower and higher age group than that of the middle age group. The total work shift of the workers was approximately 13 h including rest pause. The dominant postures adopted by the workers were sitting on the floor with stretched legs, sitting on the floor with folded knees, and kneeling posture. From the results of the postural analysis, the postures of the Jari workers had been categorized as stressful. There were a significant deviation between normal standing angles and working angles. From the overall study, it may be concluded that adoption of stressful postures for longer duration might be the cause of MSDs in different body parts of the Jari workers.
Instrument Pointing Control System for the Stellar Interferometry Mission - Planet Quest
NASA Technical Reports Server (NTRS)
Brugarolas, Paul B.; Kang, Bryan
2006-01-01
This paper describes the high precision Instrument Pointing Control System (PCS) for the Stellar Interferometry Mission (SIM) - Planet Quest. The PCS system provides front-end pointing, compensation for spacecraft motion, and feedforward stabilization, which are needed for proper interference. Optical interferometric measurements require very precise pointing (0.03 as, 1-(sigma) radial) for maximizing the interference pattern visibility. This requirement is achieved by fine pointing control of articulating pointing mirrors with feedback from angle tracking cameras. The overall pointing system design concept is presentcd. Functional requirements and an acquisition concept are given. Guide and Science pointing control loops are discussed. Simulation analyses demonstrate the feasibility of the design.
NASA Astrophysics Data System (ADS)
Makimura, Tetsuya; Urai, Hikari; Niino, Hiroyuki
2017-03-01
Polydimethylsiloxane (PDMS) is a material used for cell culture substrates / bio-chips and micro total analysis systems / lab-on-chips due to its flexibility, chemical / thermo-dynamic stability, bio-compatibility, transparency and moldability. For further development, it is inevitable to develop a technique to fabricate precise three dimensional structures on micrometer-scale at high aspect ratio. In the previous works, we reported a technique for high-quality micromachining of PDMS without chemical modification, by means of photo direct machining using laser plasma EUV sources. In the present work, we have investigated fabrication of through holes. The EUV radiations around 10 nm were generated by irradiation of Ta targets with Nd:YAG laser light (10 ns, 500 mJ/pulse). The generated EUV radiations were focused using an ellipsoidal mirror. It has a narrower incident angle than those in the previous works in order to form a EUV beam with higher directivity, so that higher aspect structures can be fabricated. The focused EUV beam was incident on PDMS sheets with a thickness of 15 micrometers, through holes in a contact mask placed on top of them. Using a contact mask with holes with a diameter of three micrometers, complete through holes with a diameter of two micrometers are fabricated in the PDMS sheet. Using a contact mask with two micrometer holes, however, ablation holes almost reaches to the back side of the PDMS sheet. The fabricated structures can be explained in terms of geometrical optics. Thus, we have developed a technique for micromachining of PDMS sheets at high aspect ratios.
NASA Technical Reports Server (NTRS)
Dieriam, Todd A.
1990-01-01
Future missions to Mars may require pin-point landing precision, possibly on the order of tens of meters. The ability to reach a target while meeting a dynamic pressure constraint to ensure safe parachute deployment is complicated at Mars by low atmospheric density, high atmospheric uncertainty, and the desire to employ only bank angle control. The vehicle aerodynamic performance requirements and guidance necessary for 0.5 to 1.5 lift drag ratio vehicle to maximize the achievable footprint while meeting the constraints are examined. A parametric study of the various factors related to entry vehicle performance in the Mars environment is undertaken to develop general vehicle aerodynamic design requirements. The combination of low lift drag ratio and low atmospheric density at Mars result in a large phugoid motion involving the dynamic pressure which complicates trajectory control. Vehicle ballistic coefficient is demonstrated to be the predominant characteristic affecting final dynamic pressure. Additionally, a speed brake is shown to be ineffective at reducing the final dynamic pressure. An adaptive precision entry atmospheric guidance scheme is presented. The guidance uses a numeric predictor-corrector algorithm to control downrange, an azimuth controller to govern crossrange, and analytic control law to reduce the final dynamic pressure. Guidance performance is tested against a variety of dispersions, and the results from selected tests are presented. Precision entry using bank angle control only is demonstrated to be feasible at Mars.
Baad-Hansen, Thomas; Kold, Søren; Kaptein, Bart L; Søballe, Kjeld
2007-08-01
In RSA, tantalum markers attached to metal-backed acetabular cups are often difficult to detect on stereo radiographs due to the high density of the metal shell. This results in occlusion of the prosthesis markers and may lead to inconclusive migration results. Within the last few years, new software systems have been developed to solve this problem. We compared the precision of 3 RSA systems in migration analysis of the acetabular component. A hemispherical and a non-hemispherical acetabular component were mounted in a phantom. Both acetabular components underwent migration analyses with 3 different RSA systems: conventional RSA using tantalum markers, an RSA system using a hemispherical cup algorithm, and a novel model-based RSA system. We found narrow confidence intervals, indicating high precision of the conventional marker system and model-based RSA with regard to migration and rotation. The confidence intervals of conventional RSA and model-based RSA were narrower than those of the hemispherical cup algorithm-based system regarding cup migration and rotation. The model-based RSA software combines the precision of the conventional RSA software with the convenience of the hemispherical cup algorithm-based system. Based on our findings, we believe that these new tools offer an improvement in the measurement of acetabular component migration.
Detection for flatness of large surface based on structured light
NASA Astrophysics Data System (ADS)
He, Wenyan; Cao, Xuedong; Long, Kuang; Peng, Zhang
2016-09-01
In order to get flatness of a large plane, this paper set up a measurement system, composed by Line Structured Light, imaging system, CCD, etc. Line Structured Light transmits parallel fringes at a proper angle onto the plane which is measured; the imaging system and CCD locate above the plane to catch the fringes. When the plane is perfect, CCD will catch straight fringes; however, the real plane is not perfect; according to the theory of projection, the fringes caught by CCD will be distorted by convex and concave. Extract the center of line fringes to obtain the distortion of the fringe, according to the functional relationship between the distortion of fringes and the height which is measured, then we will get flatness of the entire surface. Data from experiment approached the analysis of theory. In the simulation, the vertical resolution is 0.0075 mm per pixel when measuring a plane of 400mm×400mm, choosing the size of CCD 4096×4096, at the angle 85°. Helped by sub-pixel, the precision will get the level of submicron. There are two obvious advantages: method of surface sampling can increase the efficiency for auto-repairing of machines; considering the center of fringe is required mainly in this system, as a consequence, there is no serious demand for back light.
NASA Astrophysics Data System (ADS)
Imai, Yasuhiko; Yoda, Yoshitaka; Kitao, Shinji; Masuda, Ryo; Higashitaniguchi, Satoshi; Inaba, Chika; Seto, Makoto
2007-09-01
We have developed a high-resolution monochromator (HRM) for the measurement of nuclear resonant scattering (NRS) of synchrotron radiation by Te-125 at 35.49 keV using the backscattering of sapphire (9 1 -10 68). HRMs for nuclei with excitation energies less than 30 keV have been successfully developed using high angle diffractions by silicon crystals. Nearly perfect silicon crystal, however, is not suitable for high efficient HRMs at higher energy regions because the symmetry of the crystal structure is high and the Debye-temperature is low. Therefore, we used high quality synthetic sapphire crystal, which has low symmetry of crystal structure and high Debye-temperature. The temperature of the crystal was precisely controlled around 218 K to diffract synchrotron radiation with a Bragg angle of π/2 - 0.52 mrad. Energy was tuned by changing the crystal temperature under the condition of constant diffraction angle. Energy resolution was measured by detecting nuclear forward scattering by Te-125 in enriched TeO II. The relative energy resolution of 2.1×10 -7 is achieved, that is 7.5 meV in energy bandwidth. This HRM opens studies on element-specific dynamics and electronic state of substances containing Te-125.
Cancellation control law for lateral-directional dynamics of a supermaneuverable aircraft
NASA Technical Reports Server (NTRS)
Snell, Antony
1993-01-01
Cancellation control laws are designed which reduce the high levels of lateral acceleration encountered during aggressive rolling maneuvers executed at high angle of attack. Two independent problem are examined. One is to reduce lateral acceleration at the mass center, while the other focuses on lateral acceleration at the pilot's station, located 7.0 m forward of the mass center. Both of these problems are challenging and somewhat different in their limitations. In each case the design is based on a linearization of the lateral-directional dynamics about a high angle of attack condition. The controllers incorporate dynamic inversion inner loops to provide control of stability-axis roll- and yaw-rates and then employ cancellation filters in both feed-forward and feed-back signal paths. The relative simplicity of the control laws should allow nonlinear generalizations to be devised. Although it is shown that lateral acceleration can be reduced substantially by such control laws, this is at the cost of slowed roll response, poor dutch-roll damping or a combination of the two.
Two-dimensional grating guided-mode resonance tunable filter.
Kuo, Wen-Kai; Hsu, Che-Jung
2017-11-27
A two-dimensional (2D) grating guided-mode resonance (GMR) tunable filter is experimentally demonstrated using a low-cost two-step nanoimprinting technology with a one-dimensional (1D) grating polydimethylsiloxane mold. For the first nanoimprinting, we precisely control the UV LED irradiation dosage and demold the device when the UV glue is partially cured and the 1D grating mold is then rotated by three different angles, 30°, 60°, and 90°, for the second nanoimprinting to obtain 2D grating structures with different crossing angles. A high-refractive-index film ZnO is then coated on the surface of the grating structure to form the GMR filter devices. The simulation and experimental results demonstrate that the passband central wavelength of the filter can be tuned by rotating the device to change azimuth angle of the incident light. We compare these three 2D GMR filters with differential crossing angles and find that the filter device with a crossing angle of 60° exhibits the best performance. The tunable range of its central wavelength is 668-742 nm when the azimuth angle varies from 30° to 90°.
NASA Astrophysics Data System (ADS)
Jouybari, A.; Ardalan, A. A.; Rezvani, M.-H.
2017-09-01
The accurate measurement of platform orientation plays a critical role in a range of applications including marine, aerospace, robotics, navigation, human motion analysis, and machine interaction. We used Mahoney filter, Complementary filter and Xsens Kalman filter for achieving Euler angle of a dynamic platform by integration of gyroscope, accelerometer, and magnetometer measurements. The field test has been performed in Kish Island using an IMU sensor (Xsens MTi-G-700) that installed onboard a buoy so as to provide raw data of gyroscopes, accelerometers, magnetometer measurements about 25 minutes. These raw data were used to calculate the Euler angles by Mahoney filter and Complementary filter, while the Euler angles collected by XSense IMU sensor become the reference of the Euler angle estimations. We then compared Euler angles which calculated by Mahoney Filter and Complementary Filter with reference to the Euler angles recorded by the XSense IMU sensor. The standard deviations of the differences between the Mahoney Filter, Complementary Filter Euler angles and XSense IMU sensor Euler angles were about 0.5644, 0.3872, 0.4990 degrees and 0.6349, 0.2621, 2.3778 degrees for roll, pitch, and heading, respectively, so the numerical result assert that Mahoney filter is precise for roll and heading angles determination and Complementary filter is precise only for pitch determination, it should be noted that heading angle determination by Complementary filter has more error than Mahoney filter.
X-ray diffraction gratings: Precise control of ultra-low blaze angle via anisotropic wet etching
DOE Office of Scientific and Technical Information (OSTI.GOV)
Voronov, Dmitriy L.; Naulleau, Patrick; Gullikson, Eric M.
2016-07-25
Diffraction gratings are used from micron to nanometer wavelengths as dispersing elements in optical instruments. At shorter wavelengths, crystals can be used as diffracting elements, but due to the 3D nature of the interaction with light are wavelength selective rather than wavelength dispersing. There is an urgent need to extend grating technology into the x-ray domain of wavelengths from 1 to 0.1 nm, but this requires the use of gratings that have a faceted surface in which the facet angles are very small, typically less than 1°. Small facet angles are also required in the extreme ultra-violet and soft x-ray energymore » ranges in free electron laser applications, in order to reduce power density below a critical damage threshold. In this work, we demonstrate a technique based on anisotropic etching of silicon designed to produce very small angle facets with a high degree of perfection.« less
Zhang, Zhengyan; Zhang, Jianyun; Zhou, Qingsong; Li, Xiaobo
2018-01-01
In this paper, we consider the problem of tracking the direction of arrivals (DOA) and the direction of departure (DOD) of multiple targets for bistatic multiple-input multiple-output (MIMO) radar. A high-precision tracking algorithm for target angle is proposed. First, the linear relationship between the covariance matrix difference and the angle difference of the adjacent moment was obtained through three approximate relations. Then, the proposed algorithm obtained the relationship between the elements in the covariance matrix difference. On this basis, the performance of the algorithm was improved by averaging the covariance matrix element. Finally, the least square method was used to estimate the DOD and DOA. The algorithm realized the automatic correlation of the angle and provided better performance when compared with the adaptive asymmetric joint diagonalization (AAJD) algorithm. The simulation results demonstrated the effectiveness of the proposed algorithm. The algorithm provides the technical support for the practical application of MIMO radar. PMID:29518957
Zhang, Zhengyan; Zhang, Jianyun; Zhou, Qingsong; Li, Xiaobo
2018-03-07
In this paper, we consider the problem of tracking the direction of arrivals (DOA) and the direction of departure (DOD) of multiple targets for bistatic multiple-input multiple-output (MIMO) radar. A high-precision tracking algorithm for target angle is proposed. First, the linear relationship between the covariance matrix difference and the angle difference of the adjacent moment was obtained through three approximate relations. Then, the proposed algorithm obtained the relationship between the elements in the covariance matrix difference. On this basis, the performance of the algorithm was improved by averaging the covariance matrix element. Finally, the least square method was used to estimate the DOD and DOA. The algorithm realized the automatic correlation of the angle and provided better performance when compared with the adaptive asymmetric joint diagonalization (AAJD) algorithm. The simulation results demonstrated the effectiveness of the proposed algorithm. The algorithm provides the technical support for the practical application of MIMO radar.
Familiar route loyalty implies visual pilotage in the homing pigeon
Biro, Dora; Meade, Jessica; Guilford, Tim
2004-01-01
Wide-ranging animals, such as birds, regularly traverse large areas of the landscape efficiently in the course of their local movement patterns, which raises fundamental questions about the cognitive mechanisms involved. By using precision global-positioning-system loggers, we show that homing pigeons (Columba livia) not only come to rely on highly stereotyped yet surprisingly inefficient routes within the local area but are attracted directly back to their individually preferred routes even when released from novel sites off-route. This precise route loyalty demonstrates a reliance on familiar landmarks throughout the flight, which was unexpected under current models of avian navigation. We discuss how visual landmarks may be encoded as waypoints within familiar route maps. PMID:15572457
Development of a phenotyping platform for high throughput screening of nodal root angle in sorghum.
Joshi, Dinesh C; Singh, Vijaya; Hunt, Colleen; Mace, Emma; van Oosterom, Erik; Sulman, Richard; Jordan, David; Hammer, Graeme
2017-01-01
In sorghum, the growth angle of nodal roots is a major component of root system architecture. It strongly influences the spatial distribution of roots of mature plants in the soil profile, which can impact drought adaptation. However, selection for nodal root angle in sorghum breeding programs has been restricted by the absence of a suitable high throughput phenotyping platform. The aim of this study was to develop a phenotyping platform for the rapid, non-destructive and digital measurement of nodal root angle of sorghum at the seedling stage. The phenotyping platform comprises of 500 soil filled root chambers (50 × 45 × 0.3 cm in size), made of transparent perspex sheets that were placed in metal tubs and covered with polycarbonate sheets. Around 3 weeks after sowing, once the first flush of nodal roots was visible, roots were imaged in situ using an imaging box that included two digital cameras that were remotely controlled by two android tablets. Free software ( openGelPhoto.tcl ) allowed precise measurement of nodal root angle from the digital images. The reliability and efficiency of the platform was evaluated by screening a large nested association mapping population of sorghum and a set of hybrids in six independent experimental runs that included up to 500 plants each. The platform revealed extensive genetic variation and high heritability (repeatability) for nodal root angle. High genetic correlations and consistent ranking of genotypes across experimental runs confirmed the reproducibility of the platform. This low cost, high throughput root phenotyping platform requires no sophisticated equipment, is adaptable to most glasshouse environments and is well suited to dissect the genetic control of nodal root angle of sorghum. The platform is suitable for use in sorghum breeding programs aiming to improve drought adaptation through root system architecture manipulation.
Kim, M-J; Park, J H; Kojima, Y; Tai, K; Chae, J-M
2018-02-01
To estimate the optimal bending angles in the running loop for mesial translation of a mandibular second molar using indirect skeletal anchorage and to clarify the mechanics of tipping and rotating the molar. A three-dimensional finite element model was developed for predicting tooth movement, and a mechanical model based on the beam theory was constructed for clarifying the force systems. When using a running loop without bends, the molar tipped mesially 14.4° and lingually 0.6°, rotated counterclockwise 4.1°, and the incisors retracted 0.02 mm and intruded 0.05 mm. These angles were about the same as those estimated by the beam theory. When the amount of tip back and toe-in angles was 11.0°, mesial translation of the molar was achieved, and incisors retracted 0.10 mm and intruded 0.30 mm. Mesial translation of a mandibular second molar without any significant movement of anterior teeth was achieved during protraction by controlling the tip back and toe-in angles and enhancing anterior anchorage with the combined use of a running loop and indirect skeletal anchorage. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Statistical contact angle analyses; "slow moving" drops on a horizontal silicon-oxide surface.
Schmitt, M; Grub, J; Heib, F
2015-06-01
Sessile drop experiments on horizontal surfaces are commonly used to characterise surface properties in science and in industry. The advancing angle and the receding angle are measurable on every solid. Specially on horizontal surfaces even the notions themselves are critically questioned by some authors. Building a standard, reproducible and valid method of measuring and defining specific (advancing/receding) contact angles is an important challenge of surface science. Recently we have developed two/three approaches, by sigmoid fitting, by independent and by dependent statistical analyses, which are practicable for the determination of specific angles/slopes if inclining the sample surface. These approaches lead to contact angle data which are independent on "user-skills" and subjectivity of the operator which is also of urgent need to evaluate dynamic measurements of contact angles. We will show in this contribution that the slightly modified procedures are also applicable to find specific angles for experiments on horizontal surfaces. As an example droplets on a flat freshly cleaned silicon-oxide surface (wafer) are dynamically measured by sessile drop technique while the volume of the liquid is increased/decreased. The triple points, the time, the contact angles during the advancing and the receding of the drop obtained by high-precision drop shape analysis are statistically analysed. As stated in the previous contribution the procedure is called "slow movement" analysis due to the small covered distance and the dominance of data points with low velocity. Even smallest variations in velocity such as the minimal advancing motion during the withdrawing of the liquid are identifiable which confirms the flatness and the chemical homogeneity of the sample surface and the high sensitivity of the presented approaches. Copyright © 2014 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Ostermayr, T. M.; Gebhard, J.; Haffa, D.; Kiefer, D.; Kreuzer, C.; Allinger, K.; Bömer, C.; Braenzel, J.; Schnürer, M.; Cermak, I.; Schreiber, J.; Hilz, P.
2018-01-01
We report on a Paul-trap system with large access angles that allows positioning of fully isolated micrometer-scale particles with micrometer precision as targets in high-intensity laser-plasma interactions. This paper summarizes theoretical and experimental concepts of the apparatus as well as supporting measurements that were performed for the trapping process of single particles.
Schroeder, J; Reer, R; Braumann, K M
2015-02-01
As reliability of raster stereography was proved only for sagittal plane parameters with repeated measures on the same day, the present study was aiming at investigating variability and reliability of back shape reconstruction for all dimensions (sagittal, frontal, transversal) and for different intervals. For a sample of 20 healthy volunteers, intra-individual variability (SEM and CV%) and reliability (ICC ± 95% CI) were proved for sagittal (thoracic kyphosis, lumbar lordosis, pelvis tilt angle, and trunk inclination), frontal (pelvis torsion, pelvis and trunk imbalance, vertebral side deviation, and scoliosis angle), transversal (vertebral rotation), and functional (hyperextension) spine shape reconstruction parameters for different test-retest intervals (on the same day, between-day, between-week) by means of video raster stereography. Reliability was high for the sagittal plane (pelvis tilt, kyphosis and lordosis angle, and trunk inclination: ICC > 0.90), and good to high for lumbar mobility (0.86 < ICC < 0.97). Apart from sagittal plane spinal alignment, there was a lack of certainty for a high reproducibility indicated by wider ICC confidence intervals. So, reliability was fair to high for vertebral side deviation and the scoliosis angle (0.71 < ICC < 0.95), and poor to good for vertebral rotation values as well as for frontal plane upper body and pelvis position parameters (0.65 < ICC < 0.92). Coefficients for the between-day and between-week interval were a little lower than for repeated measures on the same day. Variability (SEM) was less than 1.5° or 1.5 mm, except for trunk inclination. Relative variability (CV) was greater in global trunk position and pelvis parameters (35-98%) than in scoliosis (14-20%) or sagittal sway parameters (4-8 %). Although we found a lower reproducibility for the frontal plane, raster stereography is considered to be a reliable method for the non-invasive, three-dimensional assessment of spinal alignment in normal non-scoliotic individuals in the sagittal plane and partly for scoliosis parameters, which fulfils scientific as well as practical recommendations for spine shape screening and monitoring, but cross-sectional or follow-up effect analyses should take into account the degree of reliability differing in various spine shape parameters. Further investigations should be conducted to analyse reliability in scoliosis patients with differing spinal deformities.
A radiographic assessment of lumbar spine posture in four different upright standing positions.
Gallagher, Kaitlin M; Sehl, Michael; Callaghan, Jack P
2016-08-01
Approximately 50% of a sample population will develop prolonged standing induced low back pain. The cause of this pain may be due to their lumbar spine posture. The purpose of this study was to investigate differences in lumbar posture between 17 participants categorized as a pain or non-pain developers during level ground standing. A secondary purpose was to evaluate the influence of two standing aids (an elevated surface to act as a foot rest and declined sloped surface) on lumbopelvic posture. Four sagittal plane radiographs were taken: a normal standing position on level ground, when using an elevated foot rest, using a declined sloped surface, and maximum lumbar spine extension as a reference posture. Lumbosacral lordosis, total lumbar lordosis, and L1/L2 and L5/S1 intervertebral joint angles were measured on each radiograph. There was a significant difference between the lumbosacral lordosis angle and L5/S1 angles in upright versus maximum extension; however, this was independent of pain group. The elevated surface was most effective at causing lumbosacral spine flexion. Potentially successful postures for eliminating low back pain during prolonged standing mainly influence the lower lumbar lordosis. Future work should assess the influence of hip posture on low back pain development during standing. Copyright © 2016 Elsevier Ltd. All rights reserved.
Maezawa, S; Hayashi, Y; Nakae, T; Ishii, J; Kameyama, K; Takagi, T
1983-09-28
An assessment study was carried out to evaluate the performance of the low-angle laser light scattering technique combined with high-performance gel chromatography in the presence of a nonionic surfactant, octaethyleneglycol n-dodecyl ether, precision differential refractometry and ultraviolet photometry. It was found that the combined technique is highly promising as a method for the determination of the molecular weight of a membrane protein solubilized by the surfactant. For trial, molecular weights of the following membrane proteins of Escherichia coli, both solubilized in oligomeric forms, were measured; porin that forms the transmembrane diffusion pore in the outer membrane, and lambda-receptor protein that facilitates the diffusion of maltose-maltodextrins across the outer membrane. The result obtained indicates that both porin and lambda-receptor protein exist as trimers in the surfactant solution.
Superconducting thin-film gyroscope readout for Gravity Probe-B
NASA Technical Reports Server (NTRS)
Lockhart, James M.; Cheung, W. Stephen; Gill, Dale K.
1987-01-01
The high-resolution gyroscope readout system for the Stanford Gravity Probe-B experiment, whose purpose is to measure two general relativistic precessions of gyroscopes in earth orbit, is described. In order to achieve the required resolution in angle (0.001 arcsec), the readout system combines high-precision mechanical fabrication and measurement techniques with superconducting thin-film technology, ultralow magnetic fields, and SQUID detectors. The system design, performance limits achievable with current technology, and the results of fabrication and laboratory testing to date are discussed.
Angle classification revisited 2: a modified Angle classification.
Katz, M I
1992-09-01
Edward Angle, in his classification of malocclusions, appears to have made Class I a range of abnormality, not a point of ideal occlusion. Current goals of orthodontic treatment, however, strive for the designation "Class I occlusion" to be synonymous with the point of ideal intermeshing and not a broad range. If contemporary orthodontists are to continue to use Class I as a goal, then it is appropriate that Dr. Angle's century-old classification, be modified to be more precise.
Huang, Haoqian; Chen, Xiyuan; Zhou, Zhikai; Xu, Yuan; Lv, Caiping
2014-01-01
High accuracy attitude and position determination is very important for underwater gliders. The cross-coupling among three attitude angles (heading angle, pitch angle and roll angle) becomes more serious when pitch or roll motion occurs. This cross-coupling makes attitude angles inaccurate or even erroneous. Therefore, the high accuracy attitude and position determination becomes a difficult problem for a practical underwater glider. To solve this problem, this paper proposes backing decoupling and adaptive extended Kalman filter (EKF) based on the quaternion expanded to the state variable (BD-AEKF). The backtracking decoupling can eliminate effectively the cross-coupling among the three attitudes when pitch or roll motion occurs. After decoupling, the adaptive extended Kalman filter (AEKF) based on quaternion expanded to the state variable further smoothes the filtering output to improve the accuracy and stability of attitude and position determination. In order to evaluate the performance of the proposed BD-AEKF method, the pitch and roll motion are simulated and the proposed method performance is analyzed and compared with the traditional method. Simulation results demonstrate the proposed BD-AEKF performs better. Furthermore, for further verification, a new underwater navigation system is designed, and the three-axis non-magnetic turn table experiments and the vehicle experiments are done. The results show that the proposed BD-AEKF is effective in eliminating cross-coupling and reducing the errors compared with the conventional method. PMID:25479331
Huang, Haoqian; Chen, Xiyuan; Zhou, Zhikai; Xu, Yuan; Lv, Caiping
2014-12-03
High accuracy attitude and position determination is very important for underwater gliders. The cross-coupling among three attitude angles (heading angle, pitch angle and roll angle) becomes more serious when pitch or roll motion occurs. This cross-coupling makes attitude angles inaccurate or even erroneous. Therefore, the high accuracy attitude and position determination becomes a difficult problem for a practical underwater glider. To solve this problem, this paper proposes backing decoupling and adaptive extended Kalman filter (EKF) based on the quaternion expanded to the state variable (BD-AEKF). The backtracking decoupling can eliminate effectively the cross-coupling among the three attitudes when pitch or roll motion occurs. After decoupling, the adaptive extended Kalman filter (AEKF) based on quaternion expanded to the state variable further smoothes the filtering output to improve the accuracy and stability of attitude and position determination. In order to evaluate the performance of the proposed BD-AEKF method, the pitch and roll motion are simulated and the proposed method performance is analyzed and compared with the traditional method. Simulation results demonstrate the proposed BD-AEKF performs better. Furthermore, for further verification, a new underwater navigation system is designed, and the three-axis non-magnetic turn table experiments and the vehicle experiments are done. The results show that the proposed BD-AEKF is effective in eliminating cross-coupling and reducing the errors compared with the conventional method.
Investigating the effects of PDC cutters geometry on ROP using the Taguchi technique
NASA Astrophysics Data System (ADS)
Jamaludin, A. A.; Mehat, N. M.; Kamaruddin, S.
2017-10-01
At times, the polycrystalline diamond compact (PDC) bit’s performance dropped and affects the rate of penetration (ROP). The objective of this project is to investigate the effect of PDC cutter geometry and optimize them. An intensive study in cutter geometry would further enhance the ROP performance. The relatively extended analysis was carried out and four significant geometry factors have been identified that directly improved the ROP. Cutter size, back rake angle, side rake angle and chamfer angle are the stated geometry factors. An appropriate optimization technique that effectively controls all influential geometry factors during cutters manufacturing is introduced and adopted in this project. By adopting L9 Taguchi OA, simulation experiment is conducted by using explicit dynamics finite element analysis. Through a structure Taguchi analysis, ANOVA confirms that the most significant geometry to improve ROP is cutter size (99.16% percentage contribution). The optimized cutter is expected to drill with high ROP that can reduce the rig time, which in its turn, may reduce the total drilling cost.
NASA Astrophysics Data System (ADS)
Buttinelli, M.; Improta, L.; Bagh, S.; Chiarabba, C.
2016-11-01
Since 2006 wastewater has been injected below the Val d’Agri Quaternary basin, the largest on-land oilfield in Europe, inducing micro-seismicity in the proximity of a high-rate injection well. In this study, we have the rare opportunity to revise a massive set of 2D/3D seismic and deep borehole data in order to investigate the relationship between the active faults that bound the basin and the induced earthquakes. Below the injection site we identify a Pliocene thrusts and back-thrusts system inherited by the Apennines compression, with no relation with faults bounding the basin. The induced seismicity is mostly confined within the injection reservoir, and aligns coherently with a NE-dipping back-thrust favorably oriented within the current extensional stress field. Earthquakes spread upwards from the back-thrust deep portion activating a 2.5-km wide patch. Focal mechanisms show a predominant extensional kinematic testifying to an on-going inversion of the back-thrust, while a minor strike-slip compound suggests a control exerted by a high angle inherited transverse fault developed within the compressional system, possibly at the intersection between the two fault sets. We stress that where wastewater injection is active, understanding the complex interaction between injection-linked seismicity and pre-existing faults is a strong requisite for safe oilfield exploitation.
Farrokhi, Hamid; Rohith, Thazhe Madam; Boonruangkan, Jeeranan; Han, Seunghwoi; Kim, Hyunwoong; Kim, Seung-Woo; Kim, Young-Jin
2017-11-10
High coherence of lasers is desirable in high-speed, high-resolution, and wide-field imaging. However, it also causes unavoidable background speckle noise thus degrades the image quality in traditional microscopy and more significantly in interferometric quantitative phase imaging (QPI). QPI utilizes optical interference for high-precision measurement of the optical properties where the speckle can severely distort the information. To overcome this, we demonstrated a light source system having a wide tunability in the spatial coherence over 43% by controlling the illumination angle, scatterer's size, and the rotational speed of an electroactive-polymer rotational micro-optic diffuser. Spatially random phase modulation was implemented for the lower speckle imaging with over a 50% speckle reduction without a significant degradation in the temporal coherence. Our coherence control technique will provide a unique solution for a low-speckle, full-field, and coherent imaging in optically scattering media in the fields of healthcare sciences, material sciences and high-precision engineering.
Borges, Cláudia dos Santos; Fernandes, Luciane Fernanda Rodrigues Martinho; Bertoncello, Dernival
2013-01-01
OBJECTIVE : Evaluate the probable relationship among plantar arch, lumbar curvature, and low back pain. METHODS : Fifteen healthy women were assessed taking in account personal data and anthropometric measurements, photopodoscopic evaluation of the plantar arch, and biophotogrammetric postural analysis of the patient (both using the SAPO software), as well as evaluation of lumbar pain using a Visual Analog Scale (VAS). The average age of the participants was 30.45 (±6.25) years. RESULTS : Of the feet evaluated, there were six individuals with flat feet, five with high arch, and four with normal feet. All reported algic syndrome in the lumbar spine, with the highest VAS values for the volunteers with high arch. Correlation was observed between the plantar arch and the angle of the lumbar spine (r = -0.71, p = 0.004) Conclusion: High arch was correlated with more intense algic syndrome, while there was moderate positive correlation between flat foot and increased lumbar curvature, and between high arch and lumbar correction. Level of Evidence IV. Case Series. PMID:24453656
Ultrasonic transducer with laminated coupling wedge
Karplus, Henry H. B.
1976-08-03
An ultrasonic transducer capable of use in a high-temperature environment incorporates a laminated metal coupling wedge including a reflecting edge shaped as a double sloping roof and a transducer crystal backed by a laminated metal sound absorber disposed so as to direct sound waves through the coupling wedge and into a work piece, reflections from the interface between the coupling wedge and the work piece passing to the reflecting edge. Preferably the angle of inclination of the two halves of the reflecting edge are different.
2000-08-01
34Cervical Spinal Injury all other respects to the HP aviators studied. Methods: from Repeated Exposures to Sustained Acceleration" An anonymous survey...articles have reported anecdotal these groups were matched for all relevant spinal injuries in aviators of high-performance aircraft demographic and...symptoms or disease in the neck or lower back climbing turn and suffered a C5-6 ligamentous injury . were reported in the HP group as compared to the NHP
High G Physiological Protection Training (Acceleratio;s Elevees: Protection par l’Entrainement)
1990-12-01
Generally, their maximum of 50 mmHg at9 G. The seat back angle was 30 effect is negligible. A list of tested drugs includes: analep- degrees. In relaxed...equipment test ofn ienus and display overlays. This system is based on an and animal research. The center of this fixture is approxi- IBM PCcompatible...centrifuge which he used to study the effect of tages for offense or defense. Low-G periods represent acceleration on the physiology of animals . By this
NASA Astrophysics Data System (ADS)
Ohkura, Hiroshi
Full polarimetric SAR images of ALOS PALSAR of Shinmoe-dake volcano in Japan were analyzed. The volcano erupted in January, 2011 and volcano ash deposited more than 10 cm in 12 km (2) and 1 m in 2 km (2) . Two images before and after the eruption were compared based on a point view of the four-component scattering model to detect changes of polarimetric scattering characteristics. The main detected changes are as follows. Total power of the four-component scattering model decreased on a farslope after the eruption. An incident angle on a farslope is larger than the angle on a foreslope. Decrease of surface roughness due to deposited volcanic ashes makes back-scattering smaller in the area of a larger incidence angle. However the rate of the double-bounce component got higher in a forest at the foot of a mountain slope and on a plain, where the ground surface is almost horizontal and the incident angle is relatively-large. Decrease of roughness of the forest floor increases forward scattering on the floor of the larger incident angle. This increases the double-bounced scattering due to bouncing back between the forest floor and trunks which stand "perpendicularly" on the almost horizontal forest floor. The rate of the surface scattering component got higher around an area where layover occurred. In the study area, most of layovers occurred at a ridge where an incidence angle was small. Decrease of surface roughness due to the ash deposit increases the surface scattering power in the area of the small incidence angle.
A 72 × 60 Angle-Sensitive SPAD Imaging Array for Lens-less FLIM.
Lee, Changhyuk; Johnson, Ben; Jung, TaeSung; Molnar, Alyosha
2016-09-02
We present a 72 × 60, angle-sensitive single photon avalanche diode (A-SPAD) array for lens-less 3D fluorescence lifetime imaging. An A-SPAD pixel consists of (1) a SPAD to provide precise photon arrival time where a time-resolved operation is utilized to avoid stimulus-induced saturation, and (2) integrated diffraction gratings on top of the SPAD to extract incident angles of the incoming light. The combination enables mapping of fluorescent sources with different lifetimes in 3D space down to micrometer scale. Futhermore, the chip presented herein integrates pixel-level counters to reduce output data-rate and to enable a precise timing control. The array is implemented in standard 180 nm complementary metal-oxide-semiconductor (CMOS) technology and characterized without any post-processing.
A 72 × 60 Angle-Sensitive SPAD Imaging Array for Lens-less FLIM
Lee, Changhyuk; Johnson, Ben; Jung, TaeSung; Molnar, Alyosha
2016-01-01
We present a 72 × 60, angle-sensitive single photon avalanche diode (A-SPAD) array for lens-less 3D fluorescence lifetime imaging. An A-SPAD pixel consists of (1) a SPAD to provide precise photon arrival time where a time-resolved operation is utilized to avoid stimulus-induced saturation, and (2) integrated diffraction gratings on top of the SPAD to extract incident angles of the incoming light. The combination enables mapping of fluorescent sources with different lifetimes in 3D space down to micrometer scale. Futhermore, the chip presented herein integrates pixel-level counters to reduce output data-rate and to enable a precise timing control. The array is implemented in standard 180 nm complementary metal-oxide-semiconductor (CMOS) technology and characterized without any post-processing. PMID:27598170
Yin, Xiu-xing; Lin, Yong-gang; Li, Wei; Liu, Hong-wei; Gu, Ya-jing
2015-09-01
A variable-displacement pump controlled pitch system is proposed to mitigate generator power and flap-wise load fluctuations for wind turbines. The pitch system mainly consists of a variable-displacement hydraulic pump, a fixed-displacement hydraulic motor and a gear set. The hydraulic motor can be accurately regulated by controlling the pump displacement and fluid flows to change the pitch angle through the gear set. The detailed mathematical representation and dynamic characteristics of the proposed pitch system are thoroughly analyzed. An adaptive sliding mode pump displacement controller and a back-stepping stroke piston controller are designed for the proposed pitch system such that the resulting pitch angle tracks its desired value regardless of external disturbances and uncertainties. The effectiveness and control efficiency of the proposed pitch system and controllers have been verified by using realistic dataset of a 750 kW research wind turbine. Copyright © 2015 ISA. Published by Elsevier Ltd. All rights reserved.
A Macintosh-Based Scientific Images Video Analysis System
NASA Technical Reports Server (NTRS)
Groleau, Nicolas; Friedland, Peter (Technical Monitor)
1994-01-01
A set of experiments was designed at MIT's Man-Vehicle Laboratory in order to evaluate the effects of zero gravity on the human orientation system. During many of these experiments, the movements of the eyes are recorded on high quality video cassettes. The images must be analyzed off-line to calculate the position of the eyes at every moment in time. To this aim, I have implemented a simple inexpensive computerized system which measures the angle of rotation of the eye from digitized video images. The system is implemented on a desktop Macintosh computer, processes one play-back frame per second and exhibits adequate levels of accuracy and precision. The system uses LabVIEW, a digital output board, and a video input board to control a VCR, digitize video images, analyze them, and provide a user friendly interface for the various phases of the process. The system uses the Concept Vi LabVIEW library (Graftek's Image, Meudon la Foret, France) for image grabbing and displaying as well as translation to and from LabVIEW arrays. Graftek's software layer drives an Image Grabber board from Neotech (Eastleigh, United Kingdom). A Colour Adapter box from Neotech provides adequate video signal synchronization. The system also requires a LabVIEW driven digital output board (MacADIOS II from GW Instruments, Cambridge, MA) controlling a slightly modified VCR remote control used mainly to advance the video tape frame by frame.
Understanding deformation with high angular resolution electron backscatter diffraction (HR-EBSD)
NASA Astrophysics Data System (ADS)
Britton, T. B.; Hickey, J. L. R.
2018-01-01
High angular resolution electron backscatter diffraction (HR-EBSD) affords an increase in angular resolution, as compared to ‘conventional’ Hough transform based EBSD, of two orders of magnitude, enabling measurements of relative misorientations of 1 x 10-4 rads (~ 0.006°) and changes in (deviatoric) lattice strain with a precision of 1 x 10-4. This is achieved through direct comparison of two or more diffraction patterns using sophisticated cross-correlation based image analysis routines. Image shifts between zone axes in the two-correlated diffraction pattern are measured with sub-pixel precision and this realises the ability to measure changes in interplanar angles and lattice orientation with a high degree of sensitivity. These shifts are linked to strains and lattice rotations through simple geometry. In this manuscript, we outline the basis of the technique and two case studies that highlight its potential to tackle real materials science challenges, such as deformation patterning in polycrystalline alloys.
Shaping of Rack Cutter Original Profile for Fine-module Ratchet Teeth Cutting
NASA Astrophysics Data System (ADS)
Sharkov, O. V.; Koryagin, S. I.; Velikanov, N. L.
2018-05-01
The design models and the process of shaping the cutting edges of the rack cutter for cutting fine-module ratchet teeth are considered in the article. The use of fine-module ratchet teeth can reduce the noise and impact loads during operation of the freewheel mechanisms. Mathematical dependencies for calculating the coordinates determining the geometric position of the points of the front and back edges of the cutting profile of the rack cutter, the workpiece angle of rotation during cutting the ratchet teeth were obtained. When applying the developed method, the initial data are: the radii of the workpiece circumferences passing through the dedendum of the external and internal cut teeth; gradient angles of the front and back edges of the rail.
Differential cross sections and recoil polarizations for the reaction γ p → K + Σ 0
Dey, B.; Meyer, C. A.; Bellis, M.; ...
2010-08-06
Here, high-statistics measurements of differential cross sections and recoil polarizations for the reactionmore » $$\\gamma p \\rightarrow K^+ \\Sigma^0$$ have been obtained using the CLAS detector at Jefferson Lab. We cover center-of-mass energies ($$\\sqrt{s}$$) from 1.69 to 2.84 GeV, with an extensive coverage in the $K^+$ production angle. Independent measurements were made using the $$K^{+}p\\pi^{-}$$($$\\gamma$$) and $$K^{+}p$$($$\\pi^-,\\gamma$$) final-state topologies, and were found to exhibit good agreement. Our differential cross sections show good agreement with earlier CLAS, SAPHIR and LEPS results, while offering better statistical precision and a 300-MeV increase in $$\\sqrt{s}$$ coverage. Above $$\\sqrt{s} \\approx 2.5$$ GeV, $t$- and $u$-channel Regge scaling behavior can be seen at forward- and backward-angles, respectively. Our recoil polarization ($$P_\\Sigma$$) measurements represent a substantial increase in kinematic coverage and enhanced precision over previous world data. At forward angles we find that $$P_\\Sigma$$ is of the same magnitude but opposite sign as $$P_\\Lambda$$, in agreement with the static SU(6) quark model prediction of $$P_\\Sigma \\approx -P_\\Lambda$$. This expectation is violated in some mid- and backward-angle kinematic regimes, where $$P_\\Sigma$$ and $$P_\\Lambda$$ are of similar magnitudes but also have the same signs. In conjunction with several other meson photoproduction results recently published by CLAS, the present data will help constrain the partial wave analyses being performed to search for missing baryon resonances.« less
Barczyk-Pawelec, Katarzyna; Sipko, Tomasz
2017-10-01
Evidence is limited regarding the regional changes in spinal posture after self-correction. The aim of the present study was to evaluate whether active self-correction improved standing and sitting spinal posture. Photogrammetry was used to assess regional spinal curvatures and vertical global spine orientation (GSO) in 42 asymptotic women aged 20-24 years. Upper thoracic spine angle and GSO increased in response to self-correction, while the thoracolumbar and lumbosacral angles decreased. Self-correction in the standing position resulted in decreased inclination of the upper thoracic and thoracolumbar spinal angles. Correction of sitting posture reduced the angle of the upper thoracic spine and GSO. The effects of active self-correction on spinal curvature and GSO were different for the standing versus sitting position; the greatest effects of active correction were noted in the thoracic spine. Balanced and lordotic postures were most prevalent in the habitual and actively self-corrected standing positions, whereas the kyphotic posture was most prevalent in the habitual sitting position, indicative that self-correction back posture in the standing position could be an important health-related daily activity, especially during prolonged sitting.
Maximum life spiral bevel reduction design
NASA Technical Reports Server (NTRS)
Savage, M.; Prasanna, M. G.; Coe, H. H.
1992-01-01
Optimization is applied to the design of a spiral bevel gear reduction for maximum life at a given size. A modified feasible directions search algorithm permits a wide variety of inequality constraints and exact design requirements to be met with low sensitivity to initial values. Gear tooth bending strength and minimum contact ratio under load are included in the active constraints. The optimal design of the spiral bevel gear reduction includes the selection of bearing and shaft proportions in addition to gear mesh parameters. System life is maximized subject to a fixed back-cone distance of the spiral bevel gear set for a specified speed ratio, shaft angle, input torque, and power. Significant parameters in the design are: the spiral angle, the pressure angle, the numbers of teeth on the pinion and gear, and the location and size of the four support bearings. Interpolated polynomials expand the discrete bearing properties and proportions into continuous variables for gradient optimization. After finding the continuous optimum, a designer can analyze near optimal designs for comparison and selection. Design examples show the influence of the bearing lives on the gear parameters in the optimal configurations. For a fixed back-cone distance, optimal designs with larger shaft angles have larger service lives.
NASA Astrophysics Data System (ADS)
Behr, Bradford
2005-09-01
Tycho Brahe lived and worked in the late 1500s before the telescope was invented. He made highly accurate observations of the positions of planets, stars, and comets using large angle-measuring devices of his own design. You can use his techniques to observe the sky as well. For example, the degree, a common unit of measurement in astronomy, can be measured by holding your fist at arm's length up to the sky. Open your fist and observe the distance across the sky covered by the width of your pinky fingernail. That is, roughly, a degree! After some practice, and knowing that one degree equals four minutes, you can measure elapsed time by measuring the angle of the distance that the Moon appears to have moved and multiplying that number by four. You can also figure distances and sizes of things. These are not precise measurements, but rough estimates that can give you a "close-enough" answer.
Three-dimensional super-resolved live cell imaging through polarized multi-angle TIRF.
Zheng, Cheng; Zhao, Guangyuan; Liu, Wenjie; Chen, Youhua; Zhang, Zhimin; Jin, Luhong; Xu, Yingke; Kuang, Cuifang; Liu, Xu
2018-04-01
Measuring three-dimensional nanoscale cellular structures is challenging, especially when the structure is dynamic. Owing to the informative total internal reflection fluorescence (TIRF) imaging under varied illumination angles, multi-angle (MA) TIRF has been examined to offer a nanoscale axial and a subsecond temporal resolution. However, conventional MA-TIRF still performs badly in lateral resolution and fails to characterize the depth image in densely distributed regions. Here, we emphasize the lateral super-resolution in the MA-TIRF, exampled by simply introducing polarization modulation into the illumination procedure. Equipped with a sparsity and accelerated proximal algorithm, we examine a more precise 3D sample structure compared with previous methods, enabling live cell imaging with a temporal resolution of 2 s and recovering high-resolution mitochondria fission and fusion processes. We also shared the recovery program, which is the first open-source recovery code for MA-TIRF, to the best of our knowledge.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Choi, Daniel S.; Singh, Manpreet; Zhou, Hebing
2015-10-12
We report the characteristic optical responses of one-dimensional semiconducting oxide nanomaterials by examining the individual nanorods (NRs) of ZnO, SnO{sub 2}, indium tin oxide, and zinc tin oxide under precisely controlled, light-matter interaction geometry. Scattering signals from a large set of NRs of the different types are evaluated spatially along the NR length while varying the NR tilt angle, incident light polarization, and analyzer rotation. Subsequently, we identify material-indiscriminate, NR tilt angle- and incident polarization-dependent scattering behaviors exhibiting continuous, intermittent, and discrete responses. The insight gained from this study can advance our fundamental understanding of the optical behaviors of themore » technologically useful nanomaterials and, at the same time, promote the development of highly miniaturized, photonic and bio-optical devices utilizing the spatially controllable, optical responses of the individual semiconducting oxide NRs.« less
NASA Technical Reports Server (NTRS)
Jung, Tae-Won; Lindholm, Fredrik A.; Neugroschel, Arnost
1987-01-01
An improved measurement system for electrical short-circuit current decay is presented that extends applicability of the method to silicon solar cells having an effective lifetime as low as 1 microsec. The system uses metal/oxide/semiconductor transistors as voltage-controlled switches. Advances in theory developed here increase precision and sensitivity in the determination of the minority-carrier recombination lifetime and recombination velocity. A variation of the method, which exploits measurements made on related back-surface field and back-ohmic contact devices, further improves precision and sensitivity. The improvements are illustrated by application to 15 different silicon solar cells.
High-definition and low-noise muography of the Sakurajima volcano with gaseous tracking detectors.
Oláh, László; Tanaka, Hiroyuki K M; Ohminato, Takao; Varga, Dezső
2018-02-16
Muography is a novel method to highly resolve the internal structure of active volcanoes by taking advantage of the cosmic muon's strong penetration power. In this paper, we present the first high-definition image in the vicinity of craters of an erupting volcano called Sakurajima, Kyushu, Japan. The muography observation system based on the technique of multi-wire proportional chamber (mMOS) has been operated reliably during the data taking period of 157 days. The mMOS measured precisely the flux of muons up to the thickness of 5,000 meter-water-equivalent. It was shown that high-definition density maps around the Craters A, B and Showa could be determined with a precision of less than 7.5 × 7.5 m 2 which earlier had not yet been achieved. The observed density distribution suggests that the fall back deposits filled the magma pathway and increased their density underneath Craters A and B.
Xu, Z N
2014-12-01
In this study, an error analysis is performed to study real water drop images and the corresponding numerically generated water drop profiles for three widely used static contact angle algorithms: the circle- and ellipse-fitting algorithms and the axisymmetric drop shape analysis-profile (ADSA-P) algorithm. The results demonstrate the accuracy of the numerically generated drop profiles based on the Laplace equation. A significant number of water drop profiles with different volumes, contact angles, and noise levels are generated, and the influences of the three factors on the accuracies of the three algorithms are systematically investigated. The results reveal that the above-mentioned three algorithms are complementary. In fact, the circle- and ellipse-fitting algorithms show low errors and are highly resistant to noise for water drops with small/medium volumes and contact angles, while for water drop with large volumes and contact angles just the ADSA-P algorithm can meet accuracy requirement. However, this algorithm introduces significant errors in the case of small volumes and contact angles because of its high sensitivity to noise. The critical water drop volumes of the circle- and ellipse-fitting algorithms corresponding to a certain contact angle error are obtained through a significant amount of computation. To improve the precision of the static contact angle measurement, a more accurate algorithm based on a combination of the three algorithms is proposed. Following a systematic investigation, the algorithm selection rule is described in detail, while maintaining the advantages of the three algorithms and overcoming their deficiencies. In general, static contact angles over the entire hydrophobicity range can be accurately evaluated using the proposed algorithm. The ease of erroneous judgment in static contact angle measurements is avoided. The proposed algorithm is validated by a static contact angle evaluation of real and numerically generated water drop images with different hydrophobicity values and volumes.
Aerodynamic Characteristics of Airfoils at High Speeds
NASA Technical Reports Server (NTRS)
Briggs, L J; Hull, G F; Dryden, H L
1925-01-01
This report deals with an experimental investigation of the aerodynamical characteristics of airfoils at high speeds. Lift, drag, and center of pressure measurements were made on six airfoils of the type used by the air service in propeller design, at speeds ranging from 550 to 1,000 feet per second. The results show a definite limit to the speed at which airfoils may efficiently be used to produce lift, the lift coefficient decreasing and the drag coefficient increasing as the speed approaches the speed of sound. The change in lift coefficient is large for thick airfoil sections (camber ratio 0.14 to 0.20) and for high angles of attack. The change is not marked for thin sections (camber ratio 0.10) at low angles of attack, for the speed range employed. At high speeds the center of pressure moves back toward the trailing edge of the airfoil as the speed increases. The results indicate that the use of tip speeds approaching the speed of sound for propellers of customary design involves a serious loss in efficiency.
Sinterable Powders from Laser Driven Reactions
1982-03-01
using several shaping techniques. The Si powders were densified to precisely controlled levels designed to yield high density reaction bonded silicon...nitride (RBSN). -Nitriding kinetics were rapid at low temperatures because of the small particle sizes. Characteristic dimensions of RBSN micro ...b. Dispersion Test 90 c. Contact Angle Measurements 94 vi TABLE OF C014E1TS (cont.) PAGE 2. Results of Dispersion Test 94 a. Screening Tests 94 b
Seismic Motion Stability, Measurement and Precision Control.
1979-12-01
tiltmeter . Tilt was corrected by changing air pressure in one bank of isolators to maintain the reference tiltmeter at null well within the 0.1 arcsecond...frequency rotations (0-0.1 Hz), a high quality, two-axis tiltmeter is used. The azimuth orientation angle could be measured with a four-position gyro...compassing system with considerably less accuracy than the tiltmeters . However, it would provide a continuous automatic azimuth determination update every
NASA Technical Reports Server (NTRS)
Pollmeier, Vincent M.; Kallemeyn, Pieter H.; Thurman, Sam W.
1993-01-01
The application of high-accuracy S/S-band (2.1 GHz uplink/2.3 GHz downlink) ranging to orbit determination with relatively short data arcs is investigated for the approach phase of each of the Galileo spacecraft's two Earth encounters (8 December 1990 and 8 December 1992). Analysis of S-band ranging data from Galileo indicated that under favorable signal levels, meter-level precision was attainable. It is shown that ranginging data of sufficient accuracy, when acquired from multiple stations, can sense the geocentric angular position of a distant spacecraft. Explicit modeling of ranging bias parameters for each station pass is used to largely remove systematic ground system calibration errors and transmission media effects from the Galileo range measurements, which would otherwise corrupt the angle finding capabilities of the data. The accuracy achieved using the precision range filtering strategy proved markedly better when compared to post-flyby reconstructions than did solutions utilizing a traditional Doppler/range filter strategy. In addition, the navigation accuracy achieved with precision ranging was comparable to that obtained using delta-Differenced One-Way Range, an interferometric measurement of spacecraft angular position relative to a natural radio source, which was also used operationally.
NASA Technical Reports Server (NTRS)
Raju, B. B.; Camarda, C. J.; Cooper, P. A.
1979-01-01
Seventy-nine graphite/polyimide compression specimens were tested to investigate experimentally the IITRI test method for determining compressive properties of composite materials at room and elevated temperatures (589 K (600 F)). Minor modifications were made to the standard IITRI fixture and a high degree of precision was maintained in specimen fabrication and load alignment. Specimens included four symmetric laminate orientations. Various widths were tested to evaluate the effect of width on measured modulus and strength. In most cases three specimens of each width were tested at room and elevated temperature and a polynomial regression analysis was used to reduce the data. Scatter of replicate tests and back-to-back strain variations were low, and no specimens failed by instability. Variation of specimen width had a negligible effect on the measured ultimate strengths and initial moduli of the specimens. Measured compressive strength and stiffness values were sufficiently high for the material to be considered a usable structural material at temperatures as high as 589 K (600 F).
Flare angles measured with ball gage
NASA Technical Reports Server (NTRS)
Cleghorn, D.; Wall, W. A.
1968-01-01
Precision tungsten carbide balls measure the internal angle of flared joints. Measurements from small and large balls in the flare throat to an external reference point are made. The difference in distances and diameters determine the average slope of the flare between the points of ball contact.
Flight Performance of a Man Portable Guided Projectile Concept
2014-02-01
include precision guided technologies. The focus of this study is maneuvering projectiles launched from man portable weapon systems . A novel guided...5 Figure 5. Body-fixed coordinate system and aerodynamic angles...20 Figure 20. Earth and body-fixed coordinate systems and Euler angles. ........................................24
Note: A three-dimensional calibration device for the confocal microscope.
Jensen, K E; Weitz, D A; Spaepen, F
2013-01-01
Modern confocal microscopes enable high-precision measurement in three dimensions by collecting stacks of 2D (x-y) images that can be assembled digitally into a 3D image. It is difficult, however, to ensure position accuracy, particularly along the optical (z) axis where scanning is performed by a different physical mechanism than in x-y. We describe a simple device to calibrate simultaneously the x, y, and z pixel-to-micrometer conversion factors for a confocal microscope. By taking a known 2D pattern and positioning it at a precise angle with respect to the microscope axes, we created a 3D reference standard. The device is straightforward to construct and easy to use.
Murray, Amanda M; Gaffney, Brecca M; Davidson, Bradley S; Christiansen, Cory L
2017-11-01
Lower extremity movement compensations following transtibial amputation are well-documented and are likely influenced by trunk posture and movement. However, the biomechanical compensations of the trunk and lower extremities, especially during high-demand tasks such as step ascent and descent, remain unclear. Kinematic and kinetic data were collected during step ascent and descent tasks for three groups of individuals: diabetic/transtibial amputation, diabetic, and healthy. An ANCOVA was used to compare peak trunk, hip and knee joint angles and moments in the sagittal and frontal planes between groups. Paired t-tests were used to compare peak joint angles and moments between amputated and intact limbs of the diabetic/transtibial amputation group. During step ascent and descent, the transtibial amputation group exhibited greater trunk forward flexion and lateral flexion compared to the other two groups (P<0.016), which resulted in greater low back moments and asymmetric loading patterns in the lower extremity joints. The diabetic group exhibited similar knee joint loading patterns compared to the amputation group (P<0.016), during step descent. This study highlights the biomechanical compensations of the trunk and lower extremities in individuals with dysvascular transtibial amputation, by identifying low back, hip, and knee joint moment patterns unique to transtibial amputation during stepping tasks. In addition, the results suggest that some movement compensations may be confounded by the presence of diabetes and precede limb amputation. The increased and asymmetrical loading patterns identified may predispose individuals with transtibial amputation to the development of secondary pain conditions, such as low back pain or osteoarthritis. Copyright © 2017 Elsevier Ltd. All rights reserved.
NASA Technical Reports Server (NTRS)
Shaklan, Stuart; Pan, Xiaopei
2004-01-01
The Space Interferometry Mission (SIM) is capable of detecting and measuring the mass of terrestrial planets around stars other than our own. It can measure the mass of black holes and the visual orbits of radio and x-ray binary sources. SIM makes possible a new level of understanding of complex astrophysical processes. SIM achieves its high precision in the so-called narrow-angle regime. This is defined by a 1 degree diameter field in which the position of a target star is measured with respect to a set of reference stars. The observation is performed in two parts: first, SIM observes a grid of stars that spans the full sky. After a few years, repeated observations of the grid allow one to determine the orientation of the interferometer baseline. Second, throughout the mission, SIM periodically observes in the narrow-angle mode. Every narrow-angle observation is linked to the grid to determine the precise attitude and length of the baseline. The narrow angle process demands patience. It is not until five years after launch that SIM achieves its ultimate accuracy of 1 microarcsecond. The accuracy is degraded by a factor of approx. 2 at mid-mission. Our work proposes a technique for narrow angle astrometry that does not rely on the measurement of grid stars. This technique, called Gridless Narrow Angle Astrometry (GNAA) can obtain microarcsecond accuracy and can detect extra-solar planets and other exciting objects with a few days of observation. It can be applied as early as during the first six months of in-orbit calibration (IOC). The motivations for doing this are strong. First, and obviously, it is an insurance policy against a catastrophic mid-mission failure. Second, at the start of the mission, with several space-based interferometers in the planning or implementation phase, NASA will be eager to capture the public's imagination with interferometric science. Third, early results and a technique that can duplicate those results throughout the mission will give the analysts important experience in the proper use and calibration of SIM.
NASA Technical Reports Server (NTRS)
Vranish, John
2009-01-01
T-slide linear actuators use gear bearing differential epicyclical transmissions (GBDETs) to directly drive a linear rack, which, in turn, performs the actuation. Conventional systems use a rotary power source in conjunction with a nut and screw to provide linear motion. Non-back-drive properties of GBDETs make the new actuator more direct and simpler. Versions of this approach will serve as a long-stroke, ultra-precision, position actuator for NASA science instruments, and as a rugged, linear actuator for NASA deployment duties. The T slide can operate effectively in the presence of side forces and torques. Versions of the actuator can perform ultra-precision positioning. A basic T-slide actuator is a long-stroke, rack-and-pinion linear actuator that, typically, consists of a T-slide, several idlers, a transmission to drive the slide (powered by an electric motor) and a housing that holds the entire assembly. The actuator is driven by gear action on its top surface, and is guided and constrained by gear-bearing idlers on its other two parallel surfaces. The geometry, implemented with gear-bearing technology, is particularly effective. An electronic motor operating through a GBDET can directly drive the T slide against large loads, as a rack and pinion linear actuator, with no break and no danger of back driving. The actuator drives the slide into position and stops. The slide holes position with power off and no brake, regardless of load. With the T slide configuration, this GBDET has an entire T-gear surface on which to operate. The GB idlers coupling the other two T slide parallel surfaces to their housing counterpart surfaces provide constraints in five degrees-of-freedom and rolling friction in the direction of actuation. Multiple GB idlers provide roller bearing strength sufficient to support efficient, rolling friction movement, even in the presence of large, resisting forces. T-slide actuators can be controlled using the combination of an off-the-shelf, electric servomotor, a motor angle resolution sensor (typically an encoder or resolver), and microprocessor-based intelligent software. In applications requiring precision positioning, it may be necessary to add strain gauges to the T-slide housing. Existing sensory- interactive motion control art will work for T slides. For open-loop positioning, a stepping motor emulation technique can be used.
Quantifying the Precision of Single-Molecule Torque and Twist Measurements Using Allan Variance.
van Oene, Maarten M; Ha, Seungkyu; Jager, Tessa; Lee, Mina; Pedaci, Francesco; Lipfert, Jan; Dekker, Nynke H
2018-04-24
Single-molecule manipulation techniques have provided unprecedented insights into the structure, function, interactions, and mechanical properties of biological macromolecules. Recently, the single-molecule toolbox has been expanded by techniques that enable measurements of rotation and torque, such as the optical torque wrench (OTW) and several different implementations of magnetic (torque) tweezers. Although systematic analyses of the position and force precision of single-molecule techniques have attracted considerable attention, their angle and torque precision have been treated in much less detail. Here, we propose Allan deviation as a tool to systematically quantitate angle and torque precision in single-molecule measurements. We apply the Allan variance method to experimental data from our implementations of (electro)magnetic torque tweezers and an OTW and find that both approaches can achieve a torque precision better than 1 pN · nm. The OTW, capable of measuring torque on (sub)millisecond timescales, provides the best torque precision for measurement times ≲10 s, after which drift becomes a limiting factor. For longer measurement times, magnetic torque tweezers with their superior stability provide the best torque precision. Use of the Allan deviation enables critical assessments of the torque precision as a function of measurement time across different measurement modalities and provides a tool to optimize measurement protocols for a given instrument and application. Copyright © 2018 Biophysical Society. Published by Elsevier Inc. All rights reserved.
Shaking Takete and Flowing Maluma. Non-Sense Words Are Associated with Motion Patterns
Koppensteiner, Markus; Stephan, Pia; Jäschke, Johannes Paul Michael
2016-01-01
People assign the artificial words takete and kiki to spiky, angular figures and the artificial words maluma and bouba to rounded figures. We examined whether such a cross-modal correspondence could also be found for human body motion. We transferred the body movements of speakers onto two-dimensional coordinates and created animated stick-figures based on this data. Then we invited people to judge these stimuli using the words takete-maluma, bouba-kiki, and several verbal descriptors that served as measures of angularity/smoothness. In addition to this we extracted the quantity of motion, the velocity of motion and the average angle between motion vectors from the coordinate data. Judgments of takete (and kiki) were related to verbal descriptors of angularity, a high quantity of motion, high velocity and sharper angles. Judgments of maluma (or bouba) were related to smooth movements, a low velocity, a lower quantity of motion and blunter angles. A forced-choice experiment during which we presented subsets with low and high rankers on our motion measures revealed that people preferably assigned stimuli displaying fast movements with sharp angles in motion vectors to takete and stimuli displaying slow movements with blunter angles in motion vectors to maluma. Results indicated that body movements share features with information inherent in words such as takete and maluma and that people perceive the body movements of speakers on the level of changes in motion direction (e.g., body moves to the left and then back to the right). Follow-up studies are needed to clarify whether impressions of angularity and smoothness have similar communicative values across different modalities and how this affects social judgments and person perception. PMID:26939013
Optical Links and RF Distribution for Antenna Arrays
NASA Technical Reports Server (NTRS)
Huang, Shouhua; Calhoun, Malcolm; Tjoelker, Robert
2006-01-01
An array of three antennas has recently been developed at the NASA Jet Propulsion Laboratory capable of detecting signals at X and Ka band. The array requires a common frequency reference and high precision phase alignment to correlate received signals. Frequency and timing references are presently provided from a remotely located hydrogen maser and clock through a combination of commercially and custom developed optical links. The selected laser, photodetector, and fiber components have been tested under anticipated thermal and simulated antenna rotation conditions. The resulting stability limitations due to thermal perturbations or induced stress on the optical fiber have been characterized. Distribution of the X band local oscillator includes a loop back and precision phase monitor to enable correlation of signals received from each antenna.
Liu, Xiaodong; Huang, Wanwei; Du, Lifu
2017-01-01
A new robust three-dimensional integrated guidance and control (3D-IGC) approach is investigated for sliding-to-turn (STT) hypersonic missile, which encounters high uncertainties and strict impact angle constraints. First, a nonlinear state-space model with more generality is established facing to the design of 3D-IGC law. With regard to the as-built nonlinear system, a robust dynamic inversion control (RDIC) approach is proposed to overcome the robustness deficiency of traditional DIC, and then it is applied to construct the basic 3D-IGC law combining with backstepping method. In order to avoid the problems of "explosion of terms" and high-frequency chattering, an improved 3D-IGC law is further proposed by introducing dynamic surface control and continuous approximation approaches. From the computer simulation on a hypersonic missile, the proposed 3D-IGC law not only guarantees the stable flight, but also presents the precise control on terminal locations and impact angles. Moreover, it possesses smooth control output and strong robustness. Copyright © 2016 ISA. Published by Elsevier Ltd. All rights reserved.
High-precision micro-displacement optical-fiber sensor based on surface plasmon resonance.
Zhu, Zongda; Liu, Lu; Liu, Zhihai; Zhang, Yu; Zhang, Yaxun
2017-05-15
We propose and demonstrate a novel optical-fiber micro-displacement sensor based on surface plasmon resonance (SPR) by fabricating a Kretschmann configuration on graded-index multimode fiber (GIMMF). We employ a single-mode fiber to change the radial position of the incident beam as the displacement. In the GIMMF, the angle between the light beam and fiber axis, which is closely related to the resonance angle, is changed by the displacement; thus, the resonance wavelength of the fiber SPR shifts. This micro-displacement fiber sensor has a wide detection range of 0-25 μm, a high sensitivity with maximum up to 10.32 nm/μm, and a nanometer resolution with minimum to 2 nm, which transcends almost all of other optical-fiber micro-displacement sensors. In addition, we also research that increasing the fiber polishing angle or medium refractive index can improve the sensitivity. This micro-displacement sensor will have a great significance in many industrial applications and provide a neoteric, rapid, and accurate optical measurement method in micro-displacement.
Evaluation of Work-Related Musculoskeletal Disorders and Postural Stress of Female “Jari” Workers
Pal, Amitava; Dhara, Prakash C.
2017-01-01
Aims: The present investigation was aimed to assess the postural stress and the prevalence of musculoskeletal disorders (MSDs) of the “Jari” (golden thread) workers. Settings and Design: This cross-sectional study was carried out on 156 female workers in different areas of the Purba Medinipur, Paschim Medinipur, and Howrah districts of West Bengal, India. Materials and Methods: The MSDs of the workers were evaluated by modified Nordic questionnaire method. The postural pattern during work was assessed by direct observation method. The posture of Jari workers has been analyzed by OWAS, REBA, and RULA methods. The joint angle in normal and working posture was observed. Results and Conclusions: The prevalence of MSDs was very high among the workers. The major locations of body pains in Jari workers were lower back, upper back, neck, wrist, thigh, and shoulder. The occurrence of MSDs was higher in lower and higher age group than that of the middle age group. The total work shift of the workers was approximately 13 h including rest pause. The dominant postures adopted by the workers were sitting on the floor with stretched legs, sitting on the floor with folded knees, and kneeling posture. From the results of the postural analysis, the postures of the Jari workers had been categorized as stressful. There were a significant deviation between normal standing angles and working angles. From the overall study, it may be concluded that adoption of stressful postures for longer duration might be the cause of MSDs in different body parts of the Jari workers. PMID:29618913
Herberstein, Marie E.
2017-01-01
The anchorage of structures is a crucial element of construction, both for humans and animals. Spiders use adhesive plaques to attach silk threads to substrates. Both biological and artificial adhesive structures usually have an optimal loading angle, and are prone to varying loading situations. Silk anchorages, however, must cope with loading in highly variable directions. Here we show that the detachment forces of thread anchorages of orb-web spiders are highly robust against pulling in different directions. This is gained by a two-step back-and-forth spinning pattern during the rapid production of the adhesive plaque, which shifts the thread insertion point towards the plaque centre and forms a flexible tree root-like network of branching fibres around the loading point. Using a morphometric approach and a tape-and-thread model we show that neither area, nor width of the plaque, but the shift of the loading point towards the plaque centre has the highest effect on pull-off resistance. This is explained by a circular propagation of the delamination crack with a low peeling angle. We further show that silken attachment discs are highly directional and adjusted to provide maximal performance in the upstream dragline. These results show that the way the glue is applied, crucially enhances the toughness of the anchorage without the need of additional material intake. This work is a starting point to study the evolution of tough and universal thread anchorages among spiders, and to develop bioinspired ‘instant’ anchorages of thread- and cable-like structures to a broad bandwidth of substrates. PMID:28228539
Wolff, Jonas O; Herberstein, Marie E
2017-02-01
The anchorage of structures is a crucial element of construction, both for humans and animals. Spiders use adhesive plaques to attach silk threads to substrates. Both biological and artificial adhesive structures usually have an optimal loading angle, and are prone to varying loading situations. Silk anchorages, however, must cope with loading in highly variable directions. Here we show that the detachment forces of thread anchorages of orb-web spiders are highly robust against pulling in different directions. This is gained by a two-step back-and-forth spinning pattern during the rapid production of the adhesive plaque, which shifts the thread insertion point towards the plaque centre and forms a flexible tree root-like network of branching fibres around the loading point. Using a morphometric approach and a tape-and-thread model we show that neither area, nor width of the plaque, but the shift of the loading point towards the plaque centre has the highest effect on pull-off resistance. This is explained by a circular propagation of the delamination crack with a low peeling angle. We further show that silken attachment discs are highly directional and adjusted to provide maximal performance in the upstream dragline. These results show that the way the glue is applied, crucially enhances the toughness of the anchorage without the need of additional material intake. This work is a starting point to study the evolution of tough and universal thread anchorages among spiders, and to develop bioinspired 'instant' anchorages of thread- and cable-like structures to a broad bandwidth of substrates. © 2017 The Author(s).
Numerical simulations of novel high-power high-brightness diode laser structures
NASA Astrophysics Data System (ADS)
Boucke, Konstantin; Rogg, Joseph; Kelemen, Marc T.; Poprawe, Reinhart; Weimann, Guenter
2001-07-01
One of the key topics in today's semiconductor laser development activities is to increase the brightness of high-power diode lasers. Although structures showing an increased brightness have been developed specific draw-backs of these structures lead to a still strong demand for investigation of alternative concepts. Especially for the investigation of basically novel structures easy-to-use and fast simulation tools are essential to avoid unnecessary, cost and time consuming experiments. A diode laser simulation tool based on finite difference representations of the Helmholtz equation in 'wide-angle' approximation and the carrier diffusion equation has been developed. An optimized numerical algorithm leads to short execution times of a few seconds per resonator round-trip on a standard PC. After each round-trip characteristics like optical output power, beam profile and beam parameters are calculated. A graphical user interface allows online monitoring of the simulation results. The simulation tool is used to investigate a novel high-power, high-brightness diode laser structure, the so-called 'Z-Structure'. In this structure an increased brightness is achieved by reducing the divergency angle of the beam by angular filtering: The round trip path of the beam is two times folded using internal total reflection at surfaces defined by a small index step in the semiconductor material, forming a stretched 'Z'. The sharp decrease of the reflectivity for angles of incidence above the angle of total reflection leads to a narrowing of the angular spectrum of the beam. The simulations of the 'Z-Structure' indicate an increase of the beam quality by a factor of five to ten compared to standard broad-area lasers.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Guo Baonian; Gossmann, Hans-Joachim; Toh, Terry
Angle control has been widely accepted as the key requirement for ion implantation in semiconductor device processing. From an ion implanter point of view, the incident ion direction should be measured and corrected by suitable techniques, such as XP-VPS for the VIISta implanter platform, to ensure precision ion placement in device structures. So called V-curves have been adopted to generate the wafer-based calibration using channeling effects as the Si lattice steer ions into a channeling direction. Thermal Wave (TW) or sheet resistance (Rs) can be used to determine the minimum of the angle response curve. Normally it is expected thatmore » the TW and Rs have their respective minima at identical angles. However, the TW and Rs response to the angle variations does depend on factors such as implant species, dose, and wafer temperature. Implant damage accumulation effects have to be considered for data interpretation especially for some 'abnormal' V-curve data. In this paper we will discuss some observed 'abnormal' angle responses, such as a) TW/Rs reverse trend for Arsenic beam, 2) 'W' shape of Rs Boron, and 3) apparent TW/Rs minimum difference for high tilt characterization, along with experimental data and TCAD simulations.« less
Instrument for underwater high-angular resolution volume scattering function measurements
NASA Astrophysics Data System (ADS)
Dueweke, Paul W.; Bolstad, Jay; Leonard, Donald A.; Sweeney, Harold E.; Boyer, Philip A.; Winkler, Erik M.
1997-02-01
A prototype instrument for in situ measurements of the volume scattering function (VSF) and the beam attenuation of water has been built and tested in the EOO laboratory. The intended application of the instrument is the enhancement of Navy operational optical systems for finding and imaging underwater objects such as mines. A description of the apparatus that was built and preliminary laboratory data will be presented. The instrument measures the VSF, (beta) ((theta) ), near the optical axis in both the forward and back directions from approximately 0.2 degrees off axis to approximately 5 degrees in 0.1 degree steps and at side angles of 45 degrees, 90 degrees, and 135 degrees. A diode- pumped, frequency-doubled, Nd:YAG laser provides the 532 nm light. This is the most used wavelength for underwater optical systems. The forward and back scattered light is collected and focused to a plane where scattering angles in the water are mapped onto concentric rings. At this focal plane, a conical reflector compresses the annular optical data onto a line along the cone axis where it is read by a MOS linear image array providing over 500 separate angular measurements. The beam attenuation coefficient, c, is also measured by means of a unique dual path configuration.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yang, Siqi
2016-01-01
We present a measurement of the fundamental parameter of the standard model, the weak mixing angle, in pp¯→Z/γ∗→e+e− events at a center of mass energy of 1.96 TeV, using data corresponding to 9.7 fb−1 of integrated luminosity collected by the D0 detector at the Fermilab Tevatron. The effective weak mixing angle is extracted from the forward-backward charge asymmetry as a function of the invariant mass around the Z boson pole. The measured value of sin2θℓeff=0.23147±0.00047 is the most precise measurement from light quark interactions to date, with a precision close to the best LEP and SLD results.
Precise determination of lattice phase shifts and mixing angles
Lu, Bing -Nan; Lähde, Timo A.; Lee, Dean; ...
2016-07-09
Here, we introduce a general and accurate method for determining lattice phase shifts and mixing angles, which is applicable to arbitrary, non-cubic lattices. Our method combines angular momentum projection, spherical wall boundaries and an adjustable auxiliary potential. This allows us to construct radial lattice wave functions and to determine phase shifts at arbitrary energies. For coupled partial waves, we use a complex-valued auxiliary potential that breaks time-reversal invariance. We benchmark our method using a system of two spin-1/2 particles interacting through a finite-range potential with a strong tensor component. We are able to extract phase shifts and mixing angles formore » all angular momenta and energies, with precision greater than that of extant methods. We discuss a wide range of applications from nuclear lattice simulations to optical lattice experiments.« less
NASA Astrophysics Data System (ADS)
Vorobel, Vit; Daya Bay Collaboration
2017-07-01
The Daya Bay Reactor Neutrino Experiment was designed to measure θ 13, the smallest mixing angle in the three-neutrino mixing framework, with unprecedented precision. The experiment consists of eight functionally identical detectors placed underground at different baselines from three pairs of nuclear reactors in South China. Since Dec. 2011, the experiment has been running stably for more than 4 years, and has collected the largest reactor anti-neutrino sample to date. Daya Bay is able to greatly improve the precision on θ 13 and to make an independent measurement of the effective mass splitting in the electron antineutrino disappearance channel. Daya Bay can also perform a number of other precise measurements, such as a high-statistics determination of the absolute reactor antineutrino flux and spectrum, as well as a search for sterile neutrino mixing, among others. The most recent results from Daya Bay are discussed in this paper, as well as the current status and future prospects of the experiment.
NASA Astrophysics Data System (ADS)
Mills, M. W.; Hutchinson, Matthew J.
2005-05-01
A variety of consumer applications, eg cellphone camera lenses, optical storage devices, digital cameras, etc, are driving the demand for small, high aspheric departure rotationally-symmetric moulded optics, manufactured both in polymer and glass materials. The mould tools for such components are manufactured by ultra-high precision techniques such as single point diamond turning and ultra-precision grinding, and must be accurate to <1/10μm levels for form, and exhibit nanometric surface finish quality. The aspheric forms of such components' optical surfaces exhibit high departure from best-fit sphere towards their outer edge, which renders this outer region especially critical for optical performance. The high slope of these components at the clear aperture has caused some restrictions on the use of profilometry in the measurement of form across their full diameter. Taylor Hobson designs and manufactures a range of ultra-precision profilometers for use in such industries as aspheric optics fabrication. In order to address the issues described, a new measurement system, Taylor Hobson Form Talysurf PGI 1250, has been developed, which contains new Aspheric Data Fusion Software, as well as Asphero-Diffractive Analysis Software, allowing the entire diametric profile to be analysed to the desired level of accuracy. This development removes the previous limitation of maximum slope for this type of measurement, thus enabling better quality control of high slope, high aspheric departure optics. Measurement data from the Form Talysurf PGI 1250 can be fed back directly to the machine tool, in order to optimize the form of the optical mould.
NASA Astrophysics Data System (ADS)
Mills, M. W.; Hutchinson, Matthew J.
2005-05-01
A variety of consumer applications, eg cellphone camera lenses, optical storage devices, digital cameras, etc, are driving the demand for small, high aspheric departure rotationally-symmetric moulded optics, manufactured both in polymer and glass materials. The mould tools for such components are manufactured by ultra-high precision techniques such as single point diamond turning and ultra-precision grinding, and must be accurate to <1/10μm levels for form, and exhibit nanometric surface finish quality. The aspheric forms of such components" optical surfaces exhibit high departure from best-fit sphere towards their outer edge, which renders this outer region especially critical for optical performance. The high slope of these components at the clear aperture has caused some restrictions on the use of profilometry in the measurement of form across their full diameter. Taylor Hobson designs and manufactures a range of ultra-precision profilometers for use in such industries as aspheric optics fabrication. In order to address the issues described, a new measurement system, Taylor Hobson Form Talysurf PGI 1250, has been developed, which contains new Aspheric Data Fusion Software, as well as Asphero-Diffractive Analysis Software, allowing the entire diametric profile to be analysed to the desired level of accuracy. This development removes the previous limitation of maximum slope for this type of measurement, thus enabling better quality control of high slope, high aspheric departure optics. Measurement data from the Form Talysurf PGI 1250 can be fed back directly to the machine tool, in order to optimize the form of the optical mould.
Creel survey sampling designs for estimating effort in short-duration Chinook salmon fisheries
McCormick, Joshua L.; Quist, Michael C.; Schill, Daniel J.
2013-01-01
Chinook Salmon Oncorhynchus tshawytscha sport fisheries in the Columbia River basin are commonly monitored using roving creel survey designs and require precise, unbiased catch estimates. The objective of this study was to examine the relative bias and precision of total catch estimates using various sampling designs to estimate angling effort under the assumption that mean catch rate was known. We obtained information on angling populations based on direct visual observations of portions of Chinook Salmon fisheries in three Idaho river systems over a 23-d period. Based on the angling population, Monte Carlo simulations were used to evaluate the properties of effort and catch estimates for each sampling design. All sampling designs evaluated were relatively unbiased. Systematic random sampling (SYS) resulted in the most precise estimates. The SYS and simple random sampling designs had mean square error (MSE) estimates that were generally half of those observed with cluster sampling designs. The SYS design was more efficient (i.e., higher accuracy per unit cost) than a two-cluster design. Increasing the number of clusters available for sampling within a day decreased the MSE of estimates of daily angling effort, but the MSE of total catch estimates was variable depending on the fishery. The results of our simulations provide guidelines on the relative influence of sample sizes and sampling designs on parameters of interest in short-duration Chinook Salmon fisheries.
Simulation of the planetary interior differentiation processes in the laboratory.
Fei, Yingwei
2013-11-15
A planetary interior is under high-pressure and high-temperature conditions and it has a layered structure. There are two important processes that led to that layered structure, (1) percolation of liquid metal in a solid silicate matrix by planet differentiation, and (2) inner core crystallization by subsequent planet cooling. We conduct high-pressure and high-temperature experiments to simulate both processes in the laboratory. Formation of percolative planetary core depends on the efficiency of melt percolation, which is controlled by the dihedral (wetting) angle. The percolation simulation includes heating the sample at high pressure to a target temperature at which iron-sulfur alloy is molten while the silicate remains solid, and then determining the true dihedral angle to evaluate the style of liquid migration in a crystalline matrix by 3D visualization. The 3D volume rendering is achieved by slicing the recovered sample with a focused ion beam (FIB) and taking SEM image of each slice with a FIB/SEM crossbeam instrument. The second set of experiments is designed to understand the inner core crystallization and element distribution between the liquid outer core and solid inner core by determining the melting temperature and element partitioning at high pressure. The melting experiments are conducted in the multi-anvil apparatus up to 27 GPa and extended to higher pressure in the diamond-anvil cell with laser-heating. We have developed techniques to recover small heated samples by precision FIB milling and obtain high-resolution images of the laser-heated spot that show melting texture at high pressure. By analyzing the chemical compositions of the coexisting liquid and solid phases, we precisely determine the liquidus curve, providing necessary data to understand the inner core crystallization process.
Simulation of the Planetary Interior Differentiation Processes in the Laboratory
Fei, Yingwei
2013-01-01
A planetary interior is under high-pressure and high-temperature conditions and it has a layered structure. There are two important processes that led to that layered structure, (1) percolation of liquid metal in a solid silicate matrix by planet differentiation, and (2) inner core crystallization by subsequent planet cooling. We conduct high-pressure and high-temperature experiments to simulate both processes in the laboratory. Formation of percolative planetary core depends on the efficiency of melt percolation, which is controlled by the dihedral (wetting) angle. The percolation simulation includes heating the sample at high pressure to a target temperature at which iron-sulfur alloy is molten while the silicate remains solid, and then determining the true dihedral angle to evaluate the style of liquid migration in a crystalline matrix by 3D visualization. The 3D volume rendering is achieved by slicing the recovered sample with a focused ion beam (FIB) and taking SEM image of each slice with a FIB/SEM crossbeam instrument. The second set of experiments is designed to understand the inner core crystallization and element distribution between the liquid outer core and solid inner core by determining the melting temperature and element partitioning at high pressure. The melting experiments are conducted in the multi-anvil apparatus up to 27 GPa and extended to higher pressure in the diamond-anvil cell with laser-heating. We have developed techniques to recover small heated samples by precision FIB milling and obtain high-resolution images of the laser-heated spot that show melting texture at high pressure. By analyzing the chemical compositions of the coexisting liquid and solid phases, we precisely determine the liquidus curve, providing necessary data to understand the inner core crystallization process. PMID:24326245
Master-slave micromanipulator apparatus
Morimoto, A.K.; Kozlowski, D.M.; Charles, S.T.; Spalding, J.A.
1999-08-31
An apparatus is disclosed based on precision X-Y stages that are stacked. Attached to arms projecting from each X-Y stage are a set of two axis gimbals. Attached to the gimbals is a rod, which provides motion along the axis of the rod and rotation around its axis. A dual-planar apparatus that provides six degrees of freedom of motion precise to within microns of motion. Precision linear stages along with precision linear motors, encoders, and controls provide a robotics system. The motors can be positioned in a remote location by incorporating a set of bellows on the motors and can be connected through a computer controller that will allow one to be a master and the other one to be a slave. Position information from the master can be used to control the slave. Forces of interaction of the slave with its environment can be reflected back to the motor control of the master to provide a sense of force sensed by the slave. Forces import onto the master by the operator can be fed back into the control of the slave to reduce the forces required to move it. 12 figs.
Master-slave micromanipulator method
Morimoto, Alan K.; Kozlowski, David M.; Charles, Steven T.; Spalding, James A.
1999-01-01
A method based on precision X-Y stages that are stacked. Attached to arms projecting from each X-Y stage are a set of two axis gimbals. Attached to the gimbals is a rod, which provides motion along the axis of the rod and rotation around its axis. A dual-planar apparatus that provides six degrees of freedom of motion precise to within microns of motion. Precision linear stages along with precision linear motors, encoders, and controls provide a robotics system. The motors can be remotized by incorporating a set of bellows on the motors and can be connected through a computer controller that will allow one to be a master and the other one to be a slave. Position information from the master can be used to control the slave. Forces of interaction of the slave with its environment can be reflected back to the motor control of the master to provide a sense of force sensed by the slave. Forces import onto the master by the operator can be fed back into the control of the slave to reduce the forces required to move it.
Master-slave micromanipulator apparatus
Morimoto, Alan K.; Kozlowski, David M.; Charles, Steven T.; Spalding, James A.
1999-01-01
An apparatus based on precision X-Y stages that are stacked. Attached to arms projecting from each X-Y stage are a set of two axis gimbals. Attached to the gimbals is a rod, which provides motion along the axis of the rod and rotation around its axis. A dual-planar apparatus that provides six degrees of freedom of motion precise to within microns of motion. Precision linear stages along with precision linear motors, encoders, and controls provide a robotics system. The motors can be positioned in a remote location by incorporating a set of bellows on the motors and can be connected through a computer controller that will allow one to be a master and the other one to be a slave. Position information from the master can be used to control the slave. Forces of interaction of the slave with its environment can be reflected back to the motor control of the master to provide a sense of force sensed by the slave. Forces import onto the master by the operator can be fed back into the control of the slave to reduce the forces required to move it.
Optimisation of Substrate Angles for Multi-material and Multi-functional Inkjet Printing.
Vaithilingam, Jayasheelan; Saleh, Ehab; Wildman, Ricky D; Hague, Richard J M; Tuck, Christopher J
2018-06-13
Three dimensional inkjet printing of multiple materials for electronics applications are challenging due to the limited material availability, inconsistencies in layer thickness between dissimilar materials and the need to expose the printed tracks of metal nanoparticles to temperature above 100 °C for sintering. It is envisaged that instead of printing a dielectric and a conductive material on the same plane, by printing conductive tracks on an angled dielectric surface, the required number of silver layers and consequently, the exposure of the polymer to high temperature and the build time of the component can be significantly reduced. Conductive tracks printed with a fixed print height (FH) showed significantly better resolution for all angles than the fixed slope (FS) sample where the print height varied to maintain the slope length. The electrical resistance of the tracks remained under 10Ω up to 60° for FH; whereas for the FS samples, the resistance remained under 10Ω for samples up to 45°. Thus by fixing the print height to 4 mm, precise tracks with low resistance can be printed at substrate angles up to 60°. By adopting this approach, the build height "Z" can be quickly attained with less exposure of the polymer to high temperature.
The Effect of Illumination on Stereo DTM Quality: Simulations in Support of Europa Exploration
NASA Astrophysics Data System (ADS)
Kirk, R. L.; Howington-Kraus, E.; Hare, T. M.; Jorda, L.
2016-06-01
We have investigated how the quality of stereoscopically measured topography degrades with varying illumination, in particular the ranges of incidence angles and illumination differences over which useful digital topographic models (DTMs) can be recovered. Our approach is to make high-fidelity simulated image pairs of known topography and compare DTMs from stereoanalysis of these images with the input data. Well-known rules of thumb for horizontal resolution (>3-5 pixels) and matching precision (~0.2-0.3 pixels) are generally confirmed, but the best achievable resolution at high incidence angles is ~15 pixels, probably as a result of smoothing internal to the matching algorithm. Single-pass stereo imaging of Europa is likely to yield DTMs of consistent (optimal) quality for all incidence angles ≤85°, and certainly for incidence angles between 40° and 85°. Simulations with pairs of images in which the illumination is not consistent support the utility of shadow tip distance (STD) as a measure of illumination difference, but also suggest new and simpler criteria for evaluating the suitability of stereopairs based on illumination geometry. Our study was motivated by the needs of a mission to Europa, but the approach and (to first order) the results described here are relevant to a wide range of planetary investigations.
Effect of total lumbar disc replacement on lumbosacral lordosis.
Kasliwal, Manish K; Deutsch, Harel
2012-10-01
Original article : To study effect of lumbar disc replacement on lumbosacral lordosis. There has been a growing interest in total disc replacement (TDR) for back pain with the rising concern of adjacent segment degeneration. Lumbar fusion surgery has been shown to lead to decrease in lumbar lordosis, which may account for postfusion pain resulting in less acceptable clinical outcome after successful fusion. TDR has recently emerged as an alternative treatment for back pain. There have been very few studies reporting lumbar sagittal outcome after TDR. Retrospective study of radiographic data of 17 patients who underwent TDR for single level degenerative disc disease at the author's institution was carried out. Study included measurement of preoperative and postoperative segmental and global lumbar lordosis and angle of lordosis. Patients age varied from 19 to 54 (mean, 35) years. Follow-up ranged from 12 to 24 months. TDR was performed at L4-5 level in 3 patients and L5-S1 level in 14 patients. The average values for segmental lordosis, global lordosis, and angle of lordosis at the operated level before and after surgery were 17.3, 49.7, and 8.6 degrees and 21.6, 54, and 9.5 degrees, respectively. There was a trend toward significant (P=0.02) and near significant (P=0.057) increase in segmental and global lordosis, respectively after TDR. Although prosthesis increased angle of lordosis at the level implanted in majority of the patients, the difference in preoperative and postoperative angle of lordosis was not significant (P=0.438). In addition, there was no correlation between the angle of implant of chosen and postoperative angle of lordosis at the operated level. The effect of TDR on sagittal balance appears favorable with an increase in global and segmental lumbar lordosis after single level TDR for degenerative disc disease. The degree of postoperative angle of lordosis was not affected by the angle of implant chosen at the operated level and varied independently of the implant angle.
MONDO: A neutron tracker for particle therapy secondary emission fluxes measurements
NASA Astrophysics Data System (ADS)
Marafini, M.; Patera, V.; Pinci, D.; Sarti, A.; Sciubba, A.; Spiriti, E.
2016-07-01
Cancer treatment is performed, in Particle Therapy, using accelerated charged particles whose high irradiation precision and conformity allows the tumor destruction while sparing the surrounding healthy tissues. Dose release monitoring devices using photons and charged particles produced by the beam interaction with the patient body have already been proposed, but no attempt based on the detection of the abundant secondary radiation neutron component has been made yet. The reduced attenuation length of neutrons yields a secondary particle sample that is larger in number when compared to photons and charged particles. Furthermore, neutrons allow for a backtracking of the emission point that is not affected by multiple scattering. Since neutrons can release a significant dose far away from the tumor region, a precise measurement of their flux, production energy and angle distributions is eagerly needed in order to improve the Treatment Planning Systems (TPS) software, so to predict not only the normal tissue toxicity in the target region but also the risk of late complications in the whole body. All the aforementioned issues underline the importance for an experimental effort devoted to the precise characterization of the neutron production gaining experimental access both to the emission point and production energy. The technical challenges posed by a neutron detector aiming for a high detection efficiency and good backtracking precision will be addressed within the MONDO (MOnitor for Neutron Dose in hadrOntherapy) project. The MONDO's main goal is to develop a tracking detector targeting fast and ultrafast secondary neutrons. The tracker is composed by a scintillating fiber matrix (4 × 4 × 8cm3). The full reconstruction of protons, produced in elastic interactions, will be used to measure energy and direction of the impinging neutron. The neutron tracker will measure the neutron production yields, as a function of production angle and energy, using different therapeutic beams at CNAO in Pavia (protons, 12C ions and possibly 4He and 16O ions).
Kobluk, C N; Schnurr, D; Horney, F D; Sumner-Smith, G; Willoughby, R A; Dekleer, V; Hearn, T C
1989-01-01
High-speed cinematography with computer aided analysis was used to study equine hindlimb kinematics. Eight horses were filmed at the trot or the pace. Filming was done from the side (lateral) and the back (caudal). Parameters measured from the lateral filming included the heights of the tuber coxae and tailhead, protraction and retraction of the hoof and angular changes of the tarsus and stifle. Abduction and adduction of the limb and tarsal height changes were measured from the caudal filming. The maximum and minimum values plus the standard deviations and coefficients of variations are presented in tabular form. Three gait diagrams were constructed to represent stifle angle versus tarsal angle, metatarsophalangeal height versus protraction-retraction (fetlock height diagram) and tuber coxae and tailhead height versus stride (pelvic height diagram). Application of the technique to the group of horses revealed good repeatability of the gait diagrams within a limb and the diagrams appeared to be sensitive indicators of left/right asymmetries.
NASA Technical Reports Server (NTRS)
Bozeman, Richard J., Jr. (Inventor); Akkerman, James W. (Inventor); Aber, Gregory S. (Inventor); VanDamm, George Arthur (Inventor); Bacak, James W. (Inventor); Svejkovsky, Paul A. (Inventor); Benkowski, Robert J. (Inventor)
1997-01-01
A rotary blood pump includes a pump housing for receiving a flow straightener, a rotor mounted on rotor bearings and having an inducer portion and an impeller portion, and a diffuser. The entrance angle, outlet angle, axial and radial clearances of blades associated with the flow straightener, inducer portion, impeller portion and diffuser are optimized to minimize hemolysis while maintaining pump efficiency. The rotor bearing includes a bearing chamber that is filled with cross-linked blood or other bio-compatible material. A back emf integrated circuit regulates rotor operation and a microcomputer may be used to control one or more back emf integrated circuits. A plurality of magnets are disposed in each of a plurality of impeller blades with a small air gap. A stator may be axially adjusted on the pump housing to absorb bearing load and maximize pump efficiency.
Experimental Phase Functions of Millimeter-sized Cosmic Dust Grains
NASA Astrophysics Data System (ADS)
Muñoz, O.; Moreno, F.; Vargas-Martín, F.; Guirado, D.; Escobar-Cerezo, J.; Min, M.; Hovenier, J. W.
2017-09-01
We present the experimental phase functions of three types of millimeter-sized dust grains consisting of enstatite, quartz, and volcanic material from Mount Etna, respectively. The three grains present similar sizes but different absorbing properties. The measurements are performed at 527 nm covering the scattering angle range from 3° to 170°. The measured phase functions show two well-defined regions: (I) soft forward peaks and (II) a continuous increase with the scattering angle at side- and back-scattering regions. This behavior at side- and back-scattering regions is in agreement with the observed phase functions of the Fomalhaut and HR 4796A dust rings. Further computations and measurements (including polarization) for millimeter-sized grains are needed to draw some conclusions about the fluffy or compact structure of the dust grains.
Woody, Michael S; Capitanio, Marco; Ostap, E Michael; Goldman, Yale E
2018-04-30
We characterized experimental artifacts arising from the non-linear response of acousto-optical deflectors (AODs) in an ultra-fast force-clamp optical trap and have shown that using electro-optical deflectors (EODs) instead eliminates these artifacts. We give an example of the effects of these artifacts in our ultra-fast force clamp studies of the interaction of myosin with actin filaments. The experimental setup, based on the concept of Capitanio et al. [Nat. Methods 9, 1013-1019 (2012)] utilizes a bead-actin-bead dumbbell held in two force-clamped optical traps which apply a load to the dumbbell to move it at a constant velocity. When myosin binds to actin, the filament motion stops quickly as the total force from the optical traps is transferred to the actomyosin attachment. We found that in our setup, AODs were unsuitable for beam steering due to non-linear variations in beam intensity and deflection angle as a function of driving frequency, likely caused by low-amplitude standing acoustic waves in the deflectors. These aberrations caused instability in the force feedback loops leading to artifactual jumps in the trap position. We demonstrate that beam steering with EODs improves the performance of our instrument. Combining the superior beam-steering capability of the EODs, force acquisition via back-focal-plane interferometry, and dual high-speed FPGA-based feedback loops, we apply precise and constant loads to study the dynamics of interactions between actin and myosin. The same concept applies to studies of other biomolecular interactions.
Recent developments in heterodyne laser interferometry at Harbin Institute of Technology
NASA Astrophysics Data System (ADS)
Hu, P. C.; Tan, J. B. B.; Yang, H. X. X.; Fu, H. J. J.; Wang, Q.
2013-01-01
In order to fulfill the requirements for high-resolution and high-precision heterodyne interferometric technologies and instruments, the laser interferometry group of HIT has developed some novel techniques for high-resolution and high-precision heterodyne interferometers, such as high accuracy laser frequency stabilization, dynamic sub-nanometer resolution phase interpolation and dynamic nonlinearity measurement. Based on a novel lock point correction method and an asymmetric thermal structure, the frequency stabilized laser achieves a long term stability of 1.2×10-8, and it can be steadily stabilized even in the air flowing up to 1 m/s. In order to achieve dynamic sub-nanometer resolution of laser heterodyne interferometers, a novel phase interpolation method based on digital delay line is proposed. Experimental results show that, the proposed 0.62 nm, phase interpolator built with a 64 multiple PLL and an 8-tap digital delay line achieves a static accuracy better than 0.31nm and a dynamic accuracy better than 0.62 nm over the velocity ranging from -2 m/s to 2 m/s. Meanwhile, an accuracy beam polarization measuring setup is proposed to check and ensure the light's polarization state of the dual frequency laser head, and a dynamic optical nonlinearity measuring setup is built to measure the optical nonlinearity of the heterodyne system accurately and quickly. Analysis and experimental results show that, the beam polarization measuring setup can achieve an accuracy of 0.03° in ellipticity angles and an accuracy of 0.04° in the non-orthogonality angle respectively, and the optical nonlinearity measuring setup can achieve an accuracy of 0.13°.
NASA Astrophysics Data System (ADS)
Huang, Kuo-Ting; Chen, Hsi-Chao; Lin, Ssu-Fan; Lin, Ke-Ming; Syue, Hong-Ye
2012-09-01
While tin-doped indium oxide (ITO) has been extensively applied in flexible electronics, the problem of the residual stress has many obstacles to overcome. This study investigated the residual stress of flexible electronics by the double beam shadow moiré interferometer, and focused on the precision improvement with phase shifting interferometry (PSI). According to the out-of-plane displacement equation, the theoretical error depends on the grating pitch and the angle between incident light and CCD. The angle error could be reduced to 0.03% by the angle shift of 10° as a result of the double beam interferometer was a symmetrical system. But the experimental error of the double beam moiré interferometer still reached to 2.2% by the noise of the vibration and interferograms. In order to improve the measurement precision, PSI was introduced to the double shadow moiré interferometer. Wavefront phase was reconstructed by the five interferograms with the Hariharan algorithm. The measurement results of standard cylinder indicating the error could be reduced from 2.2% to less than 1% with PSI. The deformation of flexible electronic could be reconstructed fast and calculated the residual stress with the Stoney correction formula. This shadow moiré interferometer with PSI could improve the precision of residual stress for flexible electronics.
Consistency of Lower-Body Dimensions Using Surface Landmarks and Simple Measurement Tools.
Caia, Johnpaul; Weiss, Lawrence W; Chiu, Loren Z F; Schilling, Brian K; Paquette, Max R
2016-09-01
Caia, J, Weiss, LW, Chiu, LZF, Schilling, BK, and Paquette, MR. Consistency of lower-body dimensions using surface landmarks and simple measurement tools. J Strength Cond Res 30(9): 2600-2608, 2016-Body dimensions may influence various types of physical performance. This study was designed to establish the reliability and precision of bilateral lower-body dimensions using surface anatomic landmarks and either sliding calipers or goniometry. Fifty university students (25 men and 25 women) were measured on 2 separate occasions separated by 48 or 72 hours. A small digital caliper was used to acquire longitudinal dimensions of the feet, whereas a larger broad-blade caliper was used to measure lower-limb, hip, and pelvic dimensions. Quadriceps angle (Q-angle) was determined through surface goniometry. Data for all foot and lower-limb dimensions were both reliable and precise (intraclass correlation coefficient (ICC) ≥0.72, SEM 0.1-0.5 cm). Measures of Q-angle were also reliable and precise (ICC ≥0.85, SEM 0.2-0.4°). Findings from this investigation demonstrate that lower-body dimensions may be reliably and precisely measured through simple practical tests, when surface anatomic landmarks and standardized procedures are used. Although intertester reliability remains to be established, meticulous adherence to specific measurement protocols is likely to yield viable output for lower-body dimensions when more sophisticated methods are unavailable or inappropriate.
NASA Astrophysics Data System (ADS)
Chua, Ming-chung
2016-11-01
Utilizing powerful nuclear reactors as antineutrino sources, high mountains to provide ample shielding from cosmic rays in the vicinity, and functionally identical detectors with large target volume for near-far relative measurement, the Daya Bay Reactor Neutrino Experiment has achieved unprecedented precision in measuring the neutrino mixing angle θ13 and the neutrino mass squared difference |Δm2ee|. I will report the latest Daya Bay results on neutrino oscillations and light sterile neutrino search.
Control integration concept for hypersonic cruise-turn maneuvers
NASA Technical Reports Server (NTRS)
Raney, David L.; Lallman, Frederick J.
1992-01-01
Piloting difficulties associated with conducting aircraft maneuvers in hypersonic flight are caused in part by the nonintuitive nature of the aircraft response and the stringent constraints anticipated on allowable angle of attack and dynamic pressure variations. An approach is documented that provides precise, coordinated maneuver control during excursions from a hypersonic cruise flight path and the necessary flight condition constraints. The approach is to achieve specified guidance commands by resolving altitude and cross range errors into a load factor and bank angle command by using a coordinate transformation that acts as an interface between outer and inner loop flight controls. This interface, referred to as a 'resolver', applies constraints on angle of attack and dynamic pressure perturbations while prioritizing altitude regulation over cross range. An unpiloted test simulation, in which the resolver was used to drive inner loop flight controls, produced time histories of responses to guidance commands and atmospheric disturbances at Mach numbers of 6, 10, 15, and 20. Angle of attack and throttle perturbation constraints, combined with high speed flight effects and the desire to maintain constant dynamic pressure, significantly impact the maneuver envelope for a hypersonic vehicle.
Cui, Peiling; Zhang, Huijuan; Yan, Ning; Fang, Jiancheng
2012-01-01
Integrating the advantage of magnetic bearings with a double gimble control moment gyroscope (DGCMG), a magnetically suspended DGCMG (MSDGCMG) is an ideal actuator in high-precision, long life, and rapid maneuver attitude control systems. The work presented here mainly focuses on performance testing of a MSDGCMG independently developed by Beihang University, based on the single axis air bearing table. In this paper, taking into sufficient consideration to the moving-gimbal effects and the response bandwidth limit of the gimbal, a special MSDGCMG steering law is proposed subject to the limits of gimbal angle rate and angle acceleration. Finally, multiple experiments are carried out, with different MSDGCMG angular momenta as well as different desired attitude angles. The experimental results indicate that the MSDGCMG has a good gimbal angle rate and output torque tracking capabilities, and that the attitude stability with MSDGCMG as actuator is superior to 10−3°/s. The MSDGCMG performance testing in this paper, carried out under moving-base condition, will offer a technique base for the future research and application of MSDGCMGs. PMID:23012536
Automation of Precise Time Reference Stations (PTRS)
NASA Astrophysics Data System (ADS)
Wheeler, P. J.
1985-04-01
The U.S. Naval Observatory is presently engaged in a program of automating precise time stations (PTS) and precise time reference stations (PTBS) by using a versatile mini-computer controlled data acquisition system (DAS). The data acquisition system is configured to monitor locally available PTTI signals such as LORAN-C, OMEGA, and/or the Global Positioning System. In addition, the DAS performs local standard intercomparison. Computer telephone communications provide automatic data transfer to the Naval Observatory. Subsequently, after analysis of the data, results and information can be sent back to the precise time reference station to provide automatic control of remote station timing. The DAS configuration is designed around state of the art standard industrial high reliability modules. The system integration and software are standardized but allow considerable flexibility to satisfy special local requirements such as stability measurements, performance evaluation and printing of messages and certificates. The DAS operates completely independently and may be queried or controlled at any time with a computer or terminal device (control is protected for use by authorized personnel only). Such DAS equipped PTS are operational in Hawaii, California, Texas and Florida.
Spinning angle optical calibration apparatus
Beer, Stephen K.; Pratt, II, Harold R.
1991-01-01
An optical calibration apparatus is provided for calibrating and reproducing spinning angles in cross-polarization, nuclear magnetic resonance spectroscopy. An illuminated magnifying apparatus enables optical setting an accurate reproducing of spinning "magic angles" in cross-polarization, nuclear magnetic resonance spectroscopy experiments. A reference mark scribed on an edge of a spinning angle test sample holder is illuminated by a light source and viewed through a magnifying scope. When the "magic angle" of a sample material used as a standard is attained by varying the angular position of the sample holder, the coordinate position of the reference mark relative to a graduation or graduations on a reticle in the magnifying scope is noted. Thereafter, the spinning "magic angle" of a test material having similar nuclear properties to the standard is attained by returning the sample holder back to the originally noted coordinate position.
One-dimensional angular-measurement-based stitching interferometry
DOE Office of Scientific and Technical Information (OSTI.GOV)
Huang, Lei; Xue, Junpeng; Gao, Bo
In this paper, we present one-dimensional stitching interferometry based on the angular measurement for high-precision mirror metrology. The tilt error introduced by the stage motion during the stitching process is measured by an extra angular measurement device. The local profile measured by the interferometer in a single field of view is corrected using the measured angle before the piston adjustment in the stitching process. Comparing to the classical software stitching technique, the angle measuring stitching technique is more reliable and accurate in profiling mirror surface at the nanometer level. Experimental results demonstrate the feasibility of the proposed stitching technique. Basedmore » on our measurements, the typical repeatability within 200 mm scanning range is 0.5 nm RMS or less.« less
One-dimensional angular-measurement-based stitching interferometry
Huang, Lei; Xue, Junpeng; Gao, Bo; ...
2018-04-05
In this paper, we present one-dimensional stitching interferometry based on the angular measurement for high-precision mirror metrology. The tilt error introduced by the stage motion during the stitching process is measured by an extra angular measurement device. The local profile measured by the interferometer in a single field of view is corrected using the measured angle before the piston adjustment in the stitching process. Comparing to the classical software stitching technique, the angle measuring stitching technique is more reliable and accurate in profiling mirror surface at the nanometer level. Experimental results demonstrate the feasibility of the proposed stitching technique. Basedmore » on our measurements, the typical repeatability within 200 mm scanning range is 0.5 nm RMS or less.« less
Are Planetary Regolith Particles Back Scattering? Response to a Paper by M. Mishchenko
NASA Technical Reports Server (NTRS)
Hapke, Bruce
1996-01-01
In a recent paper Mishchenko asserts that soil particles are strongly forward scattering, whereas particles on the surfaces of objects in the solar system have been inferred to be back scattering. Mishchenko suggests that this apparent discrepancy is an artifact caused by using an approximate light scattering model to analyse the data, and that planetary regolith particles are actually strong forward scatterers. The purpose of the present paper is to point out the errors in Mishchenko's paper and to show from both theoretical arguments and experimental data that inhomogencous composite particles which are large compared to the wavelength of visible light, such as rock fragments and agglutinates, can be strongly back scattering and are the fundamental scatterers in media composed of them. Such particles appear to be abundant in planetary regoliths and can account for the back scattering character of the surfaces of many bodies in the solar system. If the range of phase angles covered by a data set is insufficient, serious errors in retrieving the particle scattering properties can result whether an exact or approximate scattering model is used. However, if the data set includes both large and small phase angles, approximate regolith scattering models can correctly retrieve the sign of the particle scattering asymmetry.
Controllable High-Speed Rotation of Nanowires
NASA Astrophysics Data System (ADS)
Fan, D. L.; Zhu, F. Q.; Cammarata, R. C.; Chien, C. L.
2005-06-01
We report a versatile method for executing controllable high-speed rotation of nanowires by ac voltages applied to multiple electrodes. The rotation of the nanowires can be instantly switched on or off with precisely controlled rotation speed (to at least 1800 rpm), definite chirality, and total angle of rotation. We have determined the torque due to the fluidic drag force on nanowire of different lengths. We also demonstrate a micromotor using a rotating nanowire driving a dust particle into circular motion. This method has been used to rotate magnetic and nonmagnetic nanowires as well as carbon nanotubes.
Continental Extensional Tectonics in the Basins and Ranges and Aegean Regions: A Review
NASA Astrophysics Data System (ADS)
Cemen, I.
2017-12-01
The Basins and Ranges of North America and the Aegean Region of Eastern Europe and Asia Minor have been long considered as the two best developed examples of continental extension. The two regions contain well-developed normal faults which were considered almost vertical in the 1950s and 1960s. By the mid 1980s, however, overwhelming field evidence emerged to conclude that the dip angle normal faults in the two regions may range from almost vertical to almost horizontal. This led to the discovery that high-grade metamorphic rocks could be brought to surface by the exhumation of mid-crustal rocks along major low-angle normal faults (detachment faults) which were previously either mapped as thrust faults or unconformity. Within the last three decades, our understanding of continental extensional tectonics in the Basins and Ranges and the Aegean Region have improved substantially based on fieldwork, geochemical analysis, analog and computer modeling, detailed radiometric age determinations and thermokinematic modelling. It is now widely accepted that a) Basin and Range extension is controlled by the movement along the San Andreas fault zone as the North American plate moved southeastward with respect to the northwestward movement of the Pacific plate; b) Aegean extension is controlled by subduction roll-back associated with the Hellenic subduction zone; and c) the two regions contain best examples of detachment faulting, extensional folding, and extensional basins. However, there are still many important questions of continental extensional tectonics in the two regions that remain poorly understood. These include determining a) precise amount and percentage of cumulative extension; b) role of strike-slip faulting in the extensional processes; c) exhumation history along detachment surfaces using multimethod geochronology; d) geometry and nature of extensional features in the middle and lower crust; e) the nature of upper mantle and asthenospheric flow; f) evolutions of sedimentary basins associated with dip-slip and strike-slip faults; g) seismic hazards; and i) economic significance of extensional basins.
Power flow controller with a fractionally rated back-to-back converter
Divan, Deepakraj M.; Kandula, Rajendra Prasad; Prasai, Anish
2016-03-08
A power flow controller with a fractionally rated back-to-back (BTB) converter is provided. The power flow controller provide dynamic control of both active and reactive power of a power system. The power flow controller inserts a voltage with controllable magnitude and phase between two AC sources at the same frequency; thereby effecting control of active and reactive power flows between the two AC sources. A transformer may be augmented with a fractionally rated bi-directional Back to Back (BTB) converter. The fractionally rated BTB converter comprises a transformer side converter (TSC), a direct-current (DC) link, and a line side converter (LSC). By controlling the switches of the BTB converter, the effective phase angle between the two AC source voltages may be regulated, and the amplitude of the voltage inserted by the power flow controller may be adjusted with respect to the AC source voltages.
Aerodynamic Characteristics and Glide-Back Performance of Langley Glide-Back Booster
NASA Technical Reports Server (NTRS)
Pamadi, Bandu N.; Covell, Peter F.; Tartabini, Paul V.; Murphy, Kelly J.
2004-01-01
NASA-Langley Research Center is conducting system level studies on an-house concept of a small launch vehicle to address NASA's needs for rapid deployment of small payloads to Low Earth Orbit. The vehicle concept is a three-stage system with a reusable first stage and expendable upper stages. The reusable first stage booster, which glides back to launch site after staging around Mach 3 is named the Langley Glide-Back Booster (LGBB). This paper discusses the aerodynamic characteristics of the LGBB from subsonic to supersonic speeds, development of the aerodynamic database and application of this database to evaluate the glide back performance of the LGBB. The aerodynamic database was assembled using a combination of wind tunnel test data and engineering level analysis. The glide back performance of the LGBB was evaluated using a trajectory optimization code and subject to constraints on angle of attack, dynamic pressure and normal acceleration.
NASA Technical Reports Server (NTRS)
Nikzad, Shouleh; Hoenk, M. E.; Carver, A. G.; Jones, T. J.; Greer, F.; Hamden, E.; Goodsall, T.
2013-01-01
In this paper we discuss the high throughput end-to-end post fabrication processing of high performance delta-doped and superlattice-doped silicon imagers for UV, visible, and NIR applications. As an example, we present our results on far ultraviolet and ultraviolet quantum efficiency (QE) in a photon counting, detector array. We have improved the QE by nearly an order of magnitude over microchannel plates (MCPs) that are the state-of-the-art UV detectors for many NASA space missions as well as defense applications. These achievements are made possible by precision interface band engineering of Molecular Beam Epitaxy (MBE) and Atomic Layer Deposition (ALD).
Astrophysical Adaptation of Points, the Precision Optical Interferometer in Space
NASA Technical Reports Server (NTRS)
Reasenberg, Robert D.; Babcock, Robert W.; Murison, Marc A.; Noecker, M. Charles; Phillips, James D.; Schumaker, Bonny L.; Ulvestad, James S.; McKinley, William; Zielinski, Robert J.; Lillie, Charles F.
1996-01-01
POINTS (Precision Optical INTerferometer in Space) would perform microarcsecond optical astrometric measurements from space, yielding submicroarcsecond astrometric results from the mission. It comprises a pair of independent Michelson stellar interferometers and a laser metrology system that measures both the critical starlight paths and the angle between the baselines. The instrument has two baselines of 2 m, each with two subapertures of 35 cm; by articulating the angle between the baselines, it observes targets separated by 87 to 93 deg. POINTS does global astrometry, i.e., it measures widely separated targets, which yields closure calibration, numerous bright reference stars, and absolute parallax. Simplicity, stability, and the mitigation of systematic error are the central design themes. The instrument has only three moving-part mechanisms, and only one of these must move with sub-milliradian precision; the other two can tolerate a precision of several tenths of a degree. Optical surfaces preceding the beamsplitter or its fold flat are interferometrically critical; on each side of the interferometer, there are only three such. Thus, light loss and wavefront distortion are minimized. POINTS represents a minimalistic design developed ab initio for space. Since it is intended for astrometry, and therefore does not require the u-v-plane coverage of an imaging, instrument, each interferometer need have only two subapertures. The design relies on articulation of the angle between the interferometers and body pointing to select targets; the observations are restricted to the 'instrument plane.' That plane, which is fixed in the pointed instrument, is defined by the sensitive direction for the two interferometers. Thus, there is no need for siderostats and moving delay lines, which would have added many precision mechanisms with rolling and sliding parts that would be required to function throughout the mission. Further, there is no need for a third interferometer, as is required when out-of-plane observations are made. An instrument for astrometry, unlike those for imaging, can be compact and yet scientifically productive. The POINTS instrument is compact and therefore requires no deployment of precision structures, has no low-frequency (i.e., under 100 Hz) vibration modes, and is relatively easy to control thermally. Because of its small size and mass, it is easily and quickly repointed between observations. Further, because of the low mass, it can be economically launched into high Earth orbit which, in conjunction with a solar shield, yields nearly unrestricted sky coverage and a stable thermal environment.
Wasser, Joseph G; Chen, Cong; Vincent, Heather K
2016-07-01
Low back pain (LBP) and motion alterations can occur in athletes who engage in high-speed throwing motions. The relationship between LBP and shooting motion in lacrosse players is not yet known. To quantify the effects of LBP on key kinematic parameters of the lacrosse shot and determine the contribution of the severity of LBP on specific kinematic parameters of the shooting motion. Controlled laboratory study. High school and collegiate players (N = 24) were stratified into 2 groups based on back pain symptoms (LBP or no pain). Three-dimensional motion capture of overhead throws was used to collect data on knee, pelvis, trunk, and shoulder kinematics as well as crosse stick (the stick capped with a strung net) and ball speed. Mean low back numeric pain rating scale (NRSpain) score was 2.9. Knee flexion at ball release was greater in the LBP than no pain group, indicating a more bent knee (P = .04). The LBP group demonstrated less angular velocity transfer from pelvis to trunk than the no pain group (P = .05). Total range of motion of the pelvis and shoulders during the shot and follow-through were less in the LBP group than the no pain group (83.6° ± 24.5° vs 75.9° ± 24.5°, P = .05). Age- and sex-adjusted regression analyses revealed that the low back NRSpain rating contributed 6.3% to 25.0% of the variance to the models of shoulder transverse rotation range of motion, trunk and shoulder rotation angular velocities, and knee flexion angle (P < .05). LBP severity significantly contributes to trunk and shoulder motion restriction during lacrosse shooting. Inclusion of lumbopelvic and core training and prehabilitation programs for high school and collegiate players may reduce pain in affected players as well as help them to attain appropriate motion parameters and avoid secondary musculoskeletal injuries. This research identified a prehabilitation need in the understudied lacrosse population. Therapeutic strategies can be developed to strengthen the throwing motion, which could control mechanical loading patterns on the low back and minimize pain symptoms in players with chronic LBP.
Kolb, Gregory J [Albuquerque, NM
2012-02-07
A suction-recirculation device for stabilizing the flow of a curtain of blackened heat absorption particles falling inside of a solar receiver with an open aperture. The curtain of particles absorbs the concentrated heat from a solar mirror array reflected up to the receiver on a solar power tower. External winds entering the receiver at an oblique angle can destabilize the particle curtain and eject particles. A fan and ductwork is located behind the back wall of the receiver and sucks air out through an array of small holes in the back wall. Any entrained particles are separated out by a conventional cyclone device. Then, the air is recirculated back to the top of the receiver by injecting the recycled air through an array of small holes in the receiver's ceiling and upper aperture front wall. Since internal air is recirculated, heat losses are minimized and high receiver efficiency is maintained. Suction-recirculation velocities in the range of 1-5 m/s are sufficient to stabilize the particle curtain against external wind speeds in excess of 10 m/s.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tsai, Hai-En; Swanson, Kelly K.; Barber, Sam K.
The injection physics in a shock-induced density down-ramp injector was characterized, demonstrating precise control of a laser-plasma accelerator (LPA). Using a jet-blade assembly, experiments systematically v aried the shock injector profile, including shock angle, shock position, up-ramp width, and acceleration length. Our work demonstrates that beam energy, energy spread, and pointing can be controlled by adjusting these parameters. As a result, an electron beam that was highly tunable from 25 to 300 MeV with 8% energy spread (ΔE FWHM/E), 1.5 mrad divergence, and 0.35 mrad pointing fluctuation was produced. Particle-in-cell simulation characterized how variation in the shock angle and up-rampmore » width impacted the injection process. This highly controllable LPA represents a suitable, compact electron beam source for LPA applications such as Thomson sources and free-electron lasers.« less
Tsai, Hai-En; Swanson, Kelly K.; Barber, Sam K.; ...
2018-04-13
The injection physics in a shock-induced density down-ramp injector was characterized, demonstrating precise control of a laser-plasma accelerator (LPA). Using a jet-blade assembly, experiments systematically v aried the shock injector profile, including shock angle, shock position, up-ramp width, and acceleration length. Our work demonstrates that beam energy, energy spread, and pointing can be controlled by adjusting these parameters. As a result, an electron beam that was highly tunable from 25 to 300 MeV with 8% energy spread (ΔE FWHM/E), 1.5 mrad divergence, and 0.35 mrad pointing fluctuation was produced. Particle-in-cell simulation characterized how variation in the shock angle and up-rampmore » width impacted the injection process. This highly controllable LPA represents a suitable, compact electron beam source for LPA applications such as Thomson sources and free-electron lasers.« less
Investigation of the polarization state of dual APPLE-II undulators.
Hand, Matthew; Wang, Hongchang; Dhesi, Sarnjeet S; Sawhney, Kawal
2016-01-01
The use of an APPLE II undulator is extremely important for providing a high-brilliance X-ray beam with the capability to switch between various photon beam polarization states. A high-precision soft X-ray polarimeter has been used to systematically investigate the polarization characteristics of the two helical APPLE II undulators installed on beamline I06 at Diamond Light Source. A simple data acquisition and processing procedure has been developed to determine the Stokes polarization parameters for light polarized at arbitrary linear angles emitted from a single undulator, and for circularly polarized light emitted from both undulators in conjunction with a single-period undulator phasing unit. The purity of linear polarization is found to deteriorate as the polarization angle moves away from the horizontal and vertical modes. Importantly, a negative correlation between the degree of circular polarization and the photon flux has been found when the phasing unit is used.
Effects of drilling variables on burr properties
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gillespie, L.K.
1976-09-01
An investigation utilizing 303Se stainless steel, 17-4PH stainless steel, 1018 steel, and 6061-T6 aluminum was conducted to determine the influence of drilling variables in controlling burr size to minimize burr-removal cost and improve the quality and reliability of parts for small precision mechanisms. Burr thickness can be minimized by reducing feedrate and cutting velocity, and by using drills having high helix angles. High helix angles reduce burr thickness, length, and radius, while most other variables reduce only one of these properties. Radial-lip drills minimize burrs from 303Se stainless steel when large numbers of holes are drilled; this material stretches 10more » percent before drill-breakthrough. Entrance burrs can be minimized by the use of subland drills at a greatly increased tool cost. Backup-rods used in cross-drilled holes may be difficult to remove and may scratch the hole walls.« less
NASA Astrophysics Data System (ADS)
Tsai, Hai-En; Swanson, Kelly K.; Barber, Sam K.; Lehe, Remi; Mao, Hann-Shin; Mittelberger, Daniel E.; Steinke, Sven; Nakamura, Kei; van Tilborg, Jeroen; Schroeder, Carl; Esarey, Eric; Geddes, Cameron G. R.; Leemans, Wim
2018-04-01
The injection physics in a shock-induced density down-ramp injector was characterized, demonstrating precise control of a laser-plasma accelerator (LPA). Using a jet-blade assembly, experiments systematically varied the shock injector profile, including shock angle, shock position, up-ramp width, and acceleration length. Our work demonstrates that beam energy, energy spread, and pointing can be controlled by adjusting these parameters. As a result, an electron beam that was highly tunable from 25 to 300 MeV with 8% energy spread (ΔEFWHM/E), 1.5 mrad divergence, and 0.35 mrad pointing fluctuation was produced. Particle-in-cell simulation characterized how variation in the shock angle and up-ramp width impacted the injection process. This highly controllable LPA represents a suitable, compact electron beam source for LPA applications such as Thomson sources and free-electron lasers.
NASA Astrophysics Data System (ADS)
Dellong, David; Klingelhoefer, Frauke; Kopp, Heidrun; Graindorge, David; Margheriti, Lucia; Moretti, Milena; Murphy, Shane; Gutscher, Marc-Andre
2018-03-01
In the Ionian Sea (central Mediterranean) the slow convergence between Africa and Eurasia results in the formation of a narrow subduction zone. The nature of the crust of the subducting plate remains debated and could represent the last remnants of the Neo-Tethys ocean. The origin of the Ionian basin is also under discussion, especially concerning the rifting mechanisms as the Malta Escarpment could represent a remnant of this opening. This subduction retreats toward the south-east (motion occurring since the last 35 Ma) but is confined to the narrow Ionian basin. A major lateral slab tear fault is required to accommodate the slab roll-back. This fault is thought to propagate along the eastern Sicily margin but its precise location remains controversial. This study focuses on the deep crustal structure of the eastern Sicily margin and the Malta Escarpment. We present two two-dimensional P wave velocity models obtained from forward modeling of wide-angle seismic data acquired onboard the R/V Meteor during the DIONYSUS cruise in 2014. The results image an oceanic crust within the Ionian basin as well as the deep structure of the Malta Escarpment, which presents characteristics of a transform margin. A deep and asymmetrical sedimentary basin is imaged south of the Messina strait and seems to have opened between the Calabrian and Peloritan continental terranes. The interpretation of the velocity models suggests that the tear fault is located east of the Malta Escarpment, along the Alfeo fault system.
Effects of volitional spine stabilization on lifting task in recurrent low back pain population.
Haddas, Ram; Yang, James; Lieberman, Isador
2016-09-01
To examine the influence of volitional preemptive abdominal contraction (VPAC) and recurrent low back pain (rLBP) on trunk mechanics and neuromuscular control during a symmetric lifting task. A 2 × 2 crossover mixed design was used to examine the effects of VPAC and group. Thirty-seven healthy individuals and 32 rLBP individuals performed symmetric box lifting trials with and without VPAC to a 1-m height table 3D trunk, pelvis, and hip joint angle and electromyographic magnitude variables were obtained. Selected variables were analyzed using ANOVA. The VPAC induced differences in joint kinematics and muscle activity in rLBP and healthy subjects during symmetric lifting. A significant two-way interaction effect was observed for the semitendinosus activity. The VPAC increased external oblique muscle activity, reduced erector spinae and multifidus muscles activity, and induced greater trunk flexion angle, greater trunk side flexion angle, and greater hip flexion angle, and decreased pelvis obliquity angle in both groups. In addition, the rLBP subjects presented with a reduced external oblique and gluteus maximus muscle activity, greater erector spinae and multifidus muscles activity, and greater pelvis posterior tilt angle. Our results provide evidence that a VPAC strategy performed during symmetric lifting may potentially reduce exposure to biomechanical factors that can contribute to lumbar spine injury. The hamstring muscles may play an important role in achieving pelvic balance during the lifting maneuver. Incorporating the VPAC during dynamic stressful activities appears to help improve sensorimotor control and facilitate positioning of the lower extremities and the pelvis, while protecting the lumbar spine.
Cenozoic extensional tectonics of the Western Anatolia Extended Terrane, Turkey
NASA Astrophysics Data System (ADS)
Çemen, I.; Catlos, E. J.; Gogus, O.; Diniz, E.; Hancer, M.
2008-07-01
The Western Anatolia Extended Terrane in Turkey is located on the eastern side of the Aegean Extended Terrane and contains one of the largest metamorphic core complexes in the world, the Menderes massif. It has experienced a series of continental collisions from the Late Cretaceous to the Eocene during the formation of the Izmir-Ankara-Erzincan suture zone. Based our field work and monazite ages, we suggest that the north-directed postcollisional Cenozoic extension in the region is the product of three consecutive stages, triggered by three different mechanisms. The first stage was initiated about 30 Ma ago, in the Oligocene by the Orogenic Collapse the thermally weakened continental crust along the north-dipping Southwest Anatolian shear zone. The shear zone was formed as an extensional simple-shear zone with listric geometry at depth and exhibits predominantly normal-slip along its southwestern end. But, it becomes a high-angle oblique-slip shear zone along its northeastern termination. Evidence for the presence of the shear zone includes (1) the dominant top to the north-northeast shear sense indicators throughout the Menderes massif, such as stretching lineations trending N10E to N30E; and (2) a series of Oligocene extensional basins located adjacent to the shear zone that contain only carbonate and ophiolitic rock fragments, but no high grade metamorphic rock fragments. During this stage, erosion and extensional unroofing brought high-grade metamorphic rocks of the Central Menderes massif to the surface by the early Miocene. The second stage of the extension was triggered by subduction roll-back and associated back-arc extension in the early Miocene and produced the north-dipping Alaşehir and the south-dipping Büyük Menderes detachments of the central Menderes massif and the north-dipping Simav detachment of the northern Menderes massif. The detachments control the Miocene sedimentation in the Alaşehir, Büyük Menderes, and Simav grabens, containing high-grade metamorphic rock fragments. The third stage of the extension was triggered by the lateral extrusion (tectonic escape) of the Anatolian plate when the North Anatolian fault was initiated at about 5 Ma. This extensional phase produced the high-angle faults in the Alaşehir, Büyük Menderes and Simav grabens and the high-angle faults controlling the Küçük Menderes graben.
NASA Astrophysics Data System (ADS)
Cemen, I.; Catlos, E. J.; Diniz, E.; Gogus, O.; Ozerdem, C.; Baker, C.; Kohn, M. J.; Goncuoglu, C.; Hancer, M.
2006-12-01
The Western Anatolia Extended Terrane in Turkey is one of the best-developed examples of post-collisional extended terranes and contains one of the largest metamorphic core complexes in the world, the Menderes massif. It has experienced a series of continental collisions from the Late Cretaceous to the Eocene as the Neotethys Ocean closed and the Izmir-Ankara-Erzincan suture zone was formed. Based our field work and monazite ages, we suggest that the north-directed postcollisional Cenozoic extension in the region is the product of three consecutive, uninterrupted stages, triggered by three different mechanisms. The first stage was initiated about 30 Ma ago, in the Oligocene by the Orogenic Collapse the thermally weakened continental crust along the north-dipping Southwest Anatolian shear zone. The shear zone was formed as an extensional simple-shear zone with listric geometry at depth and exhibits predominantly normal- slip along its southwestern end. But, it becomes a high-angle oblique-slip shear zone along its northeastern termination. Evidence for the presence of the shear zone includes (1) the dominant top to the north-northeast shear sense indicators throughout the Menderes massif, such as stretching lineations trending N10E to N30E; and (2) a series of Oligocene extensional basins located adjacent to the shear zone that contain only carbonate and ophiolitic rock fragments, but no high grade metamorphic rock fragments. During this stage, erosion and extensional unroofing brought high-grade metamorphic rocks of the central Menderes massif to the surface by the early Miocene. The second stage of the extension was triggered by subduction roll-back and associated back-arc extension in the early Miocene and produced the north-dipping Alasehir and the south-dipping Buyuk Menderes detachments of the central Menderes massif and the north-dipping Simav detachment of the northern Menderes massif. The detachments control the Miocene sedimentation in the Alasehir, Buyuk Menderes, and Simav grabens, containing high-grade metamorphic rock fragments. The third stage of the extension was triggered by the lateral extrusion (tectonic escape) of the Anatolian plate when the North Anatolian fault was initiated at about 5 Ma. This extensional phase produced the high- angle faults in the Alasehir, Buyuk Menderes and Simav grabens and the high-angle faults controlling the Kucuk Menderes graben.
NASA Astrophysics Data System (ADS)
Wang, Guochao; Xie, Xuedong; Yan, Shuhua
2010-10-01
Principle of the dual-wavelength single grating nanometer displacement measuring system, with a long range, high precision, and good stability, is presented. As a result of the nano-level high-precision displacement measurement, the error caused by a variety of adverse factors must be taken into account. In this paper, errors, due to the non-ideal performance of the dual-frequency laser, including linear error caused by wavelength instability and non-linear error caused by elliptic polarization of the laser, are mainly discussed and analyzed. On the basis of theoretical modeling, the corresponding error formulas are derived as well. Through simulation, the limit value of linear error caused by wavelength instability is 2nm, and on the assumption that 0.85 x T = , 1 Ty = of the polarizing beam splitter(PBS), the limit values of nonlinear-error caused by elliptic polarization are 1.49nm, 2.99nm, 4.49nm while the non-orthogonal angle is selected correspondingly at 1°, 2°, 3° respectively. The law of the error change is analyzed based on different values of Tx and Ty .
1990-12-01
nadir radiometer viewing angle. The reference standard was a 25.4 cm x 25.4 cm x 1.0 cm pressed Halon "Spectralon" plate that was backed by a 0.5 cm...against the sphere’s sample port. Light transmitted through the leaf was trapped in the sample chamber and did not pass back into the integrating sphere...leaf layers. The leaves were added to the back of the stack, so leaf #1 was always the first leaf in the stack. Each spectrum was taken in the lower 1
A Prospective Study of Injuries and Injury Risk Factors Among Army Wheel Vehicle Mechanics
2006-08-01
metacarpalphalangeal joint and 110* at the proximal interphalangeal joint of the third finger . While keeping the forearm on the padded table surface...ground, then return to the starting point with elbows fully extended. For sit-up, the Soldier bent his knees at a 90’ angle, interlocked his fingers ...Wrist 5 5.4 Hand 2 2.2 Finger 3 3.3 Upper Back 1 1.1 Lower Back Lower Back 16 17.4 Pelvic Area 1 1.1 Anterior Thigh 1 1.1 Knee 17 18.5 Lower Body Calf 1
Mun, Frederick; Suh, Seung Woo; Park, Hyun-Joon; Choi, Ahnryul
2015-05-14
Understanding the kinematics of the lumbar spine and hip joints during a golf swing is a basic step for identifying swing-specific factors associated with low back pain. The objective of this study was to examine the kinematic relationship between rotational movement of the lumbar spine and hip joints during a golf swing. Fifteen professional golfers participated in this study with employment of six infrared cameras to record their golf swings. Anatomical reference system of the upper torso, pelvis and thigh segments, and the location of each hip and knee joint were defined by the protocols of the kinematic model of previous studies. Lumbar spine and hip joint rotational angle was calculated utilizing the Euler angle method. Cross-correlation and angle-angle plot was used to examine the degree of kinematic relationship between joints. A fairly strong coupling relationship was shown between the lumbar spine and hip rotational movements with an average correlation of 0.81. Leading hip contribution to overall rotation was markedly high in the early stage of the downswing, while the lumbar spine contributed greater towards the end of the downswing; however, the relative contributions of the trailing hip and lumbar spine were nearly equal during the entire downswing. Most of the professional golfers participated in this study used a similar coordination strategy when moving their hips and lumbar spine during golf swings. The rotation of hips was observed to be more efficient in producing the overall rotation during the downswing when compared to the backswing. These results provide quantitative information to better understand the lumbar spine and hip joint kinematic characteristics of professional golfers. This study will have great potential to be used as a normal control data for the comparison with kinematic information among golfers with low back pain and for further investigation of golf swing-specific factors associated with injury.
Precision Medicine-Nobody Is Average.
Vinks, A A
2017-03-01
Medicine gets personal and tailor-made treatments are underway. Hospitals have started to advertise their advanced genomic testing capabilities and even their disruptive technologies to help foster a culture of innovation. The prediction in the lay press is that in decades from now we may look back and see 2017 as the year precision medicine blossomed. It is all part of the Precision Medicine Initiative that takes into account individual differences in people's genes, environments, and lifestyles. © 2017 ASCPT.
Probabilistic metrology or how some measurement outcomes render ultra-precise estimates
NASA Astrophysics Data System (ADS)
Calsamiglia, J.; Gendra, B.; Muñoz-Tapia, R.; Bagan, E.
2016-10-01
We show on theoretical grounds that, even in the presence of noise, probabilistic measurement strategies (which have a certain probability of failure or abstention) can provide, upon a heralded successful outcome, estimates with a precision that exceeds the deterministic bounds for the average precision. This establishes a new ultimate bound on the phase estimation precision of particular measurement outcomes (or sequence of outcomes). For probe systems subject to local dephasing, we quantify such precision limit as a function of the probability of failure that can be tolerated. Our results show that the possibility of abstaining can set back the detrimental effects of noise.
NASA Astrophysics Data System (ADS)
Bu, Xiangwei; Wu, Xiaoyan; Huang, Jiaqi; Wei, Daozhi
2016-11-01
This paper investigates the design of a novel estimation-free prescribed performance non-affine control strategy for the longitudinal dynamics of an air-breathing hypersonic vehicle (AHV) via back-stepping. The proposed control scheme is capable of guaranteeing tracking errors of velocity, altitude, flight-path angle, pitch angle and pitch rate with prescribed performance. By prescribed performance, we mean that the tracking error is limited to a predefined arbitrarily small residual set, with convergence rate no less than a certain constant, exhibiting maximum overshoot less than a given value. Unlike traditional back-stepping designs, there is no need of an affine model in this paper. Moreover, both the tedious analytic and numerical computations of time derivatives of virtual control laws are completely avoided. In contrast to estimation-based strategies, the presented estimation-free controller possesses much lower computational costs, while successfully eliminating the potential problem of parameter drifting. Owing to its independence on an accurate AHV model, the studied methodology exhibits excellent robustness against system uncertainties. Finally, simulation results from a fully nonlinear model clarify and verify the design.
Effects of wind velocity and slope on flame properties
David R. Weise; Gregory S. Biging
1996-01-01
Abstract: The combined effects of wind velocity and percent slope on flame length and angle were measured in an open-topped, tilting wind tunnel by burning fuel beds composed of vertical birch sticks and aspen excelsior. Mean flame length ranged from 0.08 to 1.69 m; 0.25 m was the maximum observed flame length for most backing fires. Flame angle ranged from -46o to 50o...
NASA Technical Reports Server (NTRS)
Arbabi, Amir (Inventor); Faraon, Andrei (Inventor)
2018-01-01
A retroreflector device is described, which includes a lens component operable for focusing radiation, which is incident thereto at an angle of incidence. The retroreflector also includes a mirror component operable for reflecting the radiation focused by the lens component back along the angle of incidence. The lens component and/or the mirror component includes a quasi-periodic array of elements, each of which comprises a dimension smaller than a wavelength of the radiation.
NASA Technical Reports Server (NTRS)
Arbabi, Amir (Inventor); Faraon, Andrei (Inventor)
2016-01-01
A retroreflector device is described, which includes a lens component operable for focusing radiation, which is incident thereto at an angle of incidence. The retroreflector also includes a mirror component operable for reflecting the radiation focused by the lens component back along the angle of incidence. The lens component and/or the mirror component includes a quasi-periodic array of elements, each of which comprises a dimension smaller than a wavelength of the radiation.
RCS tests utilize ground-plane effects
NASA Astrophysics Data System (ADS)
Knott, E. F.
1984-03-01
It is noted that the ground effects must be thoroughly understood to attain the proper radar cross section (RCS) configurations for a specific test. If the ground is sufficiently smooth, it acts as a mirror. Ground reflections then serve to enhance the incident field strength. If an asphalt or concrete ground plane has not been constructed, the soil must be kept free of vegetation and must be graded and leveled to exploit the effect. To elucidate the role of the ground plane, the various ways that energy propagates to the target and back are considered. In implementing a ground-plane RCS measurement program, it is important that the target height, antenna height, target range, and radar wavelength be chosen so as to place the target at a peak in the interference pattern. It is pointed out that in order to maximize the received signal, the antenna should be depressed below the bisector of the angle between the direct and indirect paths subtended at the radar receiving antenna. The precise amount of depression depends on the antenna radiation pattern.
Design of ultrathin dual-resonant reflective polarization converter with customized bandwidths
NASA Astrophysics Data System (ADS)
Kundu, Debidas; Mohan, Akhilesh; Chakrabarty, Ajay
2017-10-01
In this paper, an ultrathin dual-resonant reflective polarization converter is proposed to obtain customized bandwidths using precise space-filling technique to its top geometry. The unit cell of the dual-resonant prototype consists of conductive square ring with two diagonally arranged slits, supported by metal-backed thin dielectric layer. It offers two narrow bands with fractional bandwidths of 3.98 and 6.65% and polarization conversion ratio (PCR) of 97.16 and 98.87% at 4.52 and 6.97 GHz, respectively. The resonances are brought in proximity to each other by changing the length of surface current paths of the two resonances. By virtue of this mechanism, two polarization converters with two different types of bandwidths are obtained. One polarization converter produces a full-width at half-maxima PCR bandwidth of 34%, whereas another polarization converter produces a 90% PCR bandwidth of 19%. All the proposed polarization converters are insensitive to wide variations of incident angle for both TE- and TM-polarized incident waves. Measured results show good agreement with the numerically simulated results.
5D-Tracking of a nanorod in a focused laser beam--a theoretical concept.
Griesshammer, Markus; Rohrbach, Alexander
2014-03-10
Back-focal plane (BFP) interferometry is a very fast and precise method to track the 3D position of a sphere within a focused laser beam using a simple quadrant photo diode (QPD). Here we present a concept of how to track and recover the 5D state of a cylindrical nanorod (3D position and 2 tilt angles) in a laser focus by analyzing the interference of unscattered light and light scattered at the cylinder. The analytical theoretical approach is based on Rayleigh-Gans scattering together with a local field approximation for an infinitely thin cylinder. The approximated BFP intensities compare well with those from a more rigorous numerical approach. It turns out that a displacement of the cylinder results in a modulation of the BFP intensity pattern, whereas a tilt of the cylinder results in a shift of this pattern. We therefore propose the concept of a local QPD in the BFP of a detection lens, where the QPD center is shifted by the angular coordinates of the cylinder tilt.
Ultrasonic Ranging System With Increased Resolution
NASA Technical Reports Server (NTRS)
Meyer, William E.; Johnson, William G.
1987-01-01
Master-oscillator frequency increased. Ultrasonic range-measuring system with 0.1-in. resolution provides continuous digital display of four distance readings, each updated four times per second. Four rangefinder modules in system are modified versions of rangefinder used for automatic focusing in commercial series of cameras. Ultrasonic pulses emitted by system innocuous to both people and equipment. Provides economical solutions to such distance-measurement problems as posed by boats approaching docks, truck backing toward loading platform, runway-clearance readout for tail of airplane with high angle attack, or burglar alarm.
Evaluation of lens distortion errors in video-based motion analysis
NASA Technical Reports Server (NTRS)
Poliner, Jeffrey; Wilmington, Robert; Klute, Glenn K.; Micocci, Angelo
1993-01-01
In an effort to study lens distortion errors, a grid of points of known dimensions was constructed and videotaped using a standard and a wide-angle lens. Recorded images were played back on a VCR and stored on a personal computer. Using these stored images, two experiments were conducted. Errors were calculated as the difference in distance from the known coordinates of the points to the calculated coordinates. The purposes of this project were as follows: (1) to develop the methodology to evaluate errors introduced by lens distortion; (2) to quantify and compare errors introduced by use of both a 'standard' and a wide-angle lens; (3) to investigate techniques to minimize lens-induced errors; and (4) to determine the most effective use of calibration points when using a wide-angle lens with a significant amount of distortion. It was seen that when using a wide-angle lens, errors from lens distortion could be as high as 10 percent of the size of the entire field of view. Even with a standard lens, there was a small amount of lens distortion. It was also found that the choice of calibration points influenced the lens distortion error. By properly selecting the calibration points and avoidance of the outermost regions of a wide-angle lens, the error from lens distortion can be kept below approximately 0.5 percent with a standard lens and 1.5 percent with a wide-angle lens.
NASA Technical Reports Server (NTRS)
Balasubramanian, Kunjithapatham; Cady, Eric; Pueyo, Laurent; Ana, Xin; Shaklan, Stuart; Guyon, Olivier; Belikov, Ruslan
2011-01-01
Off-axis, high-sag PIAA optics for high contrast imaging present challenges in manufacturing and testing. With smaller form factors and consequently smaller surface deformations (< 80 microns), diamond turned fabrication of these mirrors becomes feasible. Though such a design reduces the system throughput, it still provides 2(lambda)D inner working angle. We report on the design, fabrication, measurements, and initial assessment of the novel PIAA optics in a coronagraph testbed. We also describe, for the first time, a four mirror PIAA coronagraph that relaxes apodizer requirements and significantly improves throughput while preserving the low-cost benefits.
The effect of dynamic stretching on hamstrings flexibility with respect to the spino-pelvic rhythm.
Hasebe, Kiyotaka; Okubo, Yu; Kaneoka, Koji; Takada, Kohei; Suzuki, Daisuke; Sairyo, Koichi
2016-01-01
To ascertain the dynamic stretch effects of flexibility of the hamstrings on lumbar spine and pelvic kinematics. Tight hamstrings are positively correlated with low back pain. However, it is unclear how flexibility of the hamstrings affects spino-pelvic rhythm. Twelve healthy men participated in the study. The straight leg raising (SLR) angle, finger floor distance (FFD), and spino-pelvic rhythm was measured before and after the 6-week stretching protocol. The forward bending task was divided into 4 phases. The paired t-test was used to determine significant differences before and after the FFD, SLR angle, lumbar motion, and pelvic motion, and spino-pelvic rhythm in each phase (p<0.05). After 6 weeks of stretching, significant improvements were seen in the FFD with maximum forward bending and in the SLR angle. Total pelvic rotation was also significantly increased in contrast to total lumbar flexion. A decreased spino-pelvic ratio was seen in the final phase. Dynamic stretching could change the spino-pelvic rhythm to a pelvis-dominant motion, indicating that flexible hamstrings are important for preventing low back pain.
Nanophotonic particle simulation and inverse design using artificial neural networks.
Peurifoy, John; Shen, Yichen; Jing, Li; Yang, Yi; Cano-Renteria, Fidel; DeLacy, Brendan G; Joannopoulos, John D; Tegmark, Max; Soljačić, Marin
2018-06-01
We propose a method to use artificial neural networks to approximate light scattering by multilayer nanoparticles. We find that the network needs to be trained on only a small sampling of the data to approximate the simulation to high precision. Once the neural network is trained, it can simulate such optical processes orders of magnitude faster than conventional simulations. Furthermore, the trained neural network can be used to solve nanophotonic inverse design problems by using back propagation, where the gradient is analytical, not numerical.
Compatibility of booster seats and vehicles in the U.S. market.
Bing, Julie A; Agnew, Amanda M; Bolte, John H
2018-05-19
The objective of this study was to analyze booster and rear vehicle seat dimensions to identify the most frequent compatibility problems. Measurements were collected from 40 high-back and backless boosters and 95 left rear and center rear row seating positions in 50 modern vehicles. Dimensions were compared for 3,800 booster/vehicle seat combinations. For validation and estimation of tolerance and correction factors, 72 booster installations were physically completed and compared with measurement-based compatibility predictions. Dimensions were also compared to the International Organization for Standardization (ISO) volumetric envelopes of forward-facing child restraints and boosters. Seat belt buckles in outboard positions accommodated the width of boosters better than center positions (success rates of 85.4 and 34.7%, respectively). Adequate head restraint clearance occurred in 71.9 to 77.2% of combinations, depending on the booster's head support setting. Booster recline angles aligned properly with vehicle seat cushion angles in 71.5% of combinations. In cases of poor angle alignment, booster angles were more obtuse than the vehicle seat angles 97.7% of the time. Head restraint interference exacerbated angle alignment issues. Data indicate success rates above 90% for boosters being fully supported by the length of the seat cushion and for adequate height clearance with the vehicle roofline. Comparison to ISO envelopes indicates that most boosters on the U.S. market are taller and angled more obtusely than ISO target envelopes. This study quantifies some of the common interferences between boosters and vehicles that may complicate booster usage. Data are useful for design and to prioritize specific problem areas.
Technology and techniques for parity experiments at Mainz: Past, Present and Future
NASA Astrophysics Data System (ADS)
Diefenbach, Juergen
2016-03-01
For almost 20 years the Mainz accelerator facility MAMI delivered polarized electron beam to the parity violation experiment A4 that measured the contributions of strange sea quarks to the proton electromagnetic factors. Parity violation asymmetries were of the order of A ~5 ppm. Currently the A1 collaboration carries out single spin asymmetry measurements at MAMI (A ~20 ppm) to prepare for a measurement of neutron skin depth on lead (A ~1 ppm). For such high precision experiments active stabilization and precise determination of beam parameters like current, energy, position, and angle are essential requirements in addition to precision electron beam polarimetry. For the future P2 experiment at the planned superconducting accelerator MESA in Mainz the requirements for beam quality will be even higher. P2 will measure the weak mixing angle with 0.15 percent total uncertainty and, in addition, the neutron skin depth of lead as well as parity violation in electron scattering off 12C. A tiny asymmetry of only -0.03 ppm creates the needs to combine digital feedback with feedforward stabilizations along with new polarimetry developments like a hydro-Moller and a double-Mott polarimeter to meet the goals for systematic uncertainty. This talk gives an overview of our experience with polarimetry, analog feedbacks and compensation techniques for apparative asymmetries at the A4 experiment. It finally leads to the requirements and new techniques for the pioneering P2 experiment at MESA. First results from beam tests currently carried out at the existing MAMI accelerator, employing high speed analog/digital conversion and FPGAs for control of beam parameters, will be presented. Supported by the cluster of excellence PRISMA and the Deutsche Forschungsgemeinschaft in the framework of the SFB1044.
Measurement of the Effective Weak Mixing Angle in p p ¯ → Z / γ * → e + e - Events
Abazov, V. M.; Abbott, B.; Acharya, B. S.; ...
2015-07-22
We present a measurement of the fundamental parameter of the standard model, the weak mixing angle sin 2θ ℓ eff which determines the relative strength of weak and electromagnetic interactions, in pp¯→Z/γ*→e +e - events at a center of mass energy of 1.96 TeV, using data corresponding to 9.7 fb -1 of integrated luminosity collected by the D0 detector at the Fermilab Tevatron. The effective weak mixing angle is extracted from the forward-backward charge asymmetry as a function of the invariant mass around the Z boson pole. The measured value of sin 2θ ℓ eff=0.23147±0.00047 is the most precise measurementmore » from light quark interactions to date, with a precision close to the best LEP and SLD results.« less
Measurement of the Effective Weak Mixing Angle in p p ¯ → Z / γ * → e + e - Events
DOE Office of Scientific and Technical Information (OSTI.GOV)
Abazov, V. M.; Abbott, B.; Acharya, B. S.
2015-07-22
We present a measurement of the fundamental parameter of the standard model, the weak mixing angle sin 2θ ℓ eff which determines the relative strength of weak and electromagnetic interactions, in pp¯→Z/γ*→e +e - events at a center of mass energy of 1.96 TeV, using data corresponding to 9.7 fb -1 of integrated luminosity collected by the D0 detector at the Fermilab Tevatron. The effective weak mixing angle is extracted from the forward-backward charge asymmetry as a function of the invariant mass around the Z boson pole. The measured value of sin 2θ ℓ eff=0.23147±0.00047 is the most precise measurementmore » from light quark interactions to date, with a precision close to the best LEP and SLD results.« less
Design and fabrication of a high-precision cylinder beam expander
NASA Astrophysics Data System (ADS)
Zhang, Yong-hong; Yan, Hong; Xie, Bing; Li, Jian-ming; Luo, Zhong-xiang
2018-03-01
In order to compress the beam divergence angle and reduce the energy density, beam expansion system is widely used to expand the beam in laser system. Cylinder beam expander belongs to one-dimension expander, which expands the laser beam in only one direction (X direction or Y direction), a refraction cylinder expander whose beam diameter is 180mm×120mm and magnitude ratio is 12 is designed in this paper, the working wavelength is 1058nm. To solve the problem of inequality of the working wavelength and the testing wavelength, compensation method of using parallel plate to test the system aberration is proposed. By rough grinding (precision grinding) polish and the system grinding, the final system aberration is 0.24λ(peak-valley value)
Martinez, G T; Rosenauer, A; De Backer, A; Verbeeck, J; Van Aert, S
2014-02-01
High angle annular dark field scanning transmission electron microscopy (HAADF STEM) images provide sample information which is sensitive to the chemical composition. The image intensities indeed scale with the mean atomic number Z. To some extent, chemically different atomic column types can therefore be visually distinguished. However, in order to quantify the atomic column composition with high accuracy and precision, model-based methods are necessary. Therefore, an empirical incoherent parametric imaging model can be used of which the unknown parameters are determined using statistical parameter estimation theory (Van Aert et al., 2009, [1]). In this paper, it will be shown how this method can be combined with frozen lattice multislice simulations in order to evolve from a relative toward an absolute quantification of the composition of single atomic columns with mixed atom types. Furthermore, the validity of the model assumptions are explored and discussed. © 2013 Published by Elsevier B.V. All rights reserved.
A wide angle low coherence interferometry based eye length optometer
NASA Astrophysics Data System (ADS)
Meadway, Alexander; Siegwart, John; Wildsoet, Christine; Norton, Thomas; Zhang, Yuhua
2015-03-01
Interest in eye growth regulation has burgeoned with the rise in myopia prevalence world-wide. Eye length and eye shape are fundamental metrics for related research, but current in vivo measurement techniques are generally limited to the optical axis of the eye. We describe a high resolution, time domain low coherence interferometry based optometer for measuring the eye length of small animals over a wide field of view. The system is based upon a Michelson interferometer using a superluminescent diode as a source, including a sample arm and a reference arm. The sample arm is split into two paths by a polarisation beam splitter; one focuses the light on the cornea and the other focuses the light on the retina. This method has a high efficiency of detection for reflections from both surfaces. The reference arm contains a custom high speed linear motor with 25 mm stroke and equipped with a precision displacement encoder. Light reflected from the cornea and the retina is combined with the reference beam to generate low coherence interferograms. Two galvo scanners are employed to steer the light to different angles so that the eye length over a field of view of 20° × 20° can be measured. The system has an axial resolution of 6.8 μm (in air) and the motor provides accurate movement, allowing for precise and repeatable measurement of coherence peak positions. Example scans from a tree shrew are presented.
Schwesig, René; Hermassi, Souhail; Fieseler, Georg; Irlenbusch, Lars; Noack, Frank; Delank, Karl-Stefan; Shephard, Roy J; Chelly, Mohamed-Souhaiel
2017-11-01
The aims of the study were to examine the anthropometric and physical performance characteristics of professional handball players classified by playing position. Twenty-one competitors (age: 25.2±5.1 years) were categorized as backs, pivots, wings or goalkeepers. Measures included anthropometrics (body height and mass), scores on the Yo-Yo Intermittent Recovery Test (total distance covered, TD), repeated-sprint ability (6 repetitions of 2x15-m shuttle sprints with recording of best time for a single trial, RSAbest) and performance on a complex handball test (HBKT) of throw slap (TS) and throw jump (TJ) with and without precision. The anthropometric data revealed a significantly lower body height for wings and pivots than for goalkeepers. Wings, pivots and goalkeepers were significantly shorter than backs, but had a similar BMI. The TD was greater for the wings (2.400 m) than for backs (1.832 m) and pivots (2.067m). Wings also achieved a better RSAbest (5.41 s) than backs (5.68 s) or pivots (5.82 s). Body height was significantly related to throw slap (TS) and jump (JT) (r=0.53, P<0.01; r=0.51, P<0.01 respectively). No significant difference (P=0.675; η2=0.009) was seen between JT with precision and JT without precision. Substantial differences of body build and physical performance between playing positions underline the importance of a careful assignment of such positions and the development of position-specific training for professional handball players by modifying both intermittent aerobic and anaerobic endurance components of training sessions.
High numerical aperture multilayer Laue lenses
Morgan, Andrew J.; Prasciolu, Mauro; Andrejczuk, Andrzej; ...
2015-06-01
The ever-increasing brightness of synchrotron radiation sources demands improved X-ray optics to utilise their capability for imaging and probing biological cells, nanodevices, and functional matter on the nanometer scale with chemical sensitivity. Here we demonstrate focusing a hard X-ray beam to an 8 nm focus using a volume zone plate (also referred to as a wedged multilayer Laue lens). This lens was constructed using a new deposition technique that enabled the independent control of the angle and thickness of diffracting layers to microradian and nanometer precision, respectively. This ensured that the Bragg condition is satisfied at each point along themore » lens, leading to a high numerical aperture that is limited only by its extent. We developed a phase-shifting interferometric method based on ptychography to characterise the lens focus. The precision of the fabrication and characterisation demonstrated here provides the path to efficient X-ray optics for imaging at 1 nm resolution.« less
STEREO TRansiting Exoplanet and Stellar Survey (STRESS) - I. Introduction and data pipeline
NASA Astrophysics Data System (ADS)
Sangaralingam, Vinothini; Stevens, Ian R.
2011-12-01
The Solar TErrestrial RElations Observatory (STEREO) is a system of two identical spacecraft in heliocentric Earth orbit. We use the two heliospheric imagers (HI), which are wide-angle imagers with multibaffle systems, to perform high-precision stellar photometry in order to search for exoplanetary transits and understand stellar variables. The large cadence (40 min for HI-1 and 2 h for HI-2), high precision, wide magnitude range (R mag: 4-12) and broad sky coverage (nearly 20 per cent for HI-1A alone and 60 per cent of the sky in the zodiacal region for all instruments combined) of this instrument place it in a region left largely devoid by other current projects. In this paper, we describe the semi-automated pipeline devised for reduction of the data, some of the interesting characteristics of the data obtained and data-analysis methods used, along with some early results.
A new type industrial total station based on target automatic collimation
NASA Astrophysics Data System (ADS)
Lao, Dabao; Zhou, Weihu; Ji, Rongyi; Dong, Dengfeng; Xiong, Zhi; Wei, Jiang
2018-01-01
In the case of industrial field measurement, the present measuring instruments work with manual operation and collimation, which give rise to low efficiency for field measurement. In order to solve the problem, a new type industrial total station is presented in this paper. The new instrument can identify and trace cooperative target automatically, in the mean time, coordinate of the target is measured in real time. For realizing the system, key technology including high precision absolutely distance measurement, small high accuracy angle measurement, target automatic collimation with vision, and quick precise controlling should be worked out. After customized system assemblage and adjustment, the new type industrial total station will be established. As the experiments demonstrated, the coordinate accuracy of the instrument is under 15ppm in the distance of 60m, which proved that the measuring system is feasible. The result showed that the total station can satisfy most industrial field measurement requirements.
Microstructure, Texture and Mechanical Properties of Titanium Grade 2 Processed by ECAP (Route C)
NASA Astrophysics Data System (ADS)
Wroński, M.; Wierzbanowski, K.; Wojtas, D.; Szyfner, E.; Valiev, R. Z.; Kawałko, J.; Berent, K.; Sztwiertnia, K.
2018-03-01
In the present work the properties of titanium grade 2 after ECAP processing with original route and regimes (route C, channel angle Φ= 120°, deformation temperature 300 °C, number of passes up to 8) were examined. Texture development and microstructure parameters after ECAP processing and after recrystallization were determined using electron back scatter diffraction and analysed. A significant increase of the mechanical strength accompanied by some increase of ductility was observed in the deformed samples. The kernel average misorientation and average grain orientation spread were strongly increased after deformation, which confirms the material refinement and fragmentation. The proportion of low angle boundaries increased after four ECAP passes, but after four consecutive passes high angle grain boundaries became predominant. No deformation twins were observed after four and eight ECAP passes. The material recrystallized after deformation retained a fine grain microstructure. The textures of deformed and recrystallized samples were determined. It was found that texture after 8 passes is more homogeneous that that after 4 passes, which partly explains higher ductility of this first sample.
A Novel Method for Reconstructing Broken Contour Lines Extracted from Scanned Topographic Maps
NASA Astrophysics Data System (ADS)
Wang, Feng; Liu, Pingzhi; Yang, Yun; Wei, Haiping; An, Xiaoya
2018-05-01
It is known that after segmentation and morphological operations on scanned topographic maps, gaps occur in contour lines. It is also well known that filling these gaps and reconstruction of contour lines with high accuracy and completeness is not an easy problem. In this paper, a novel method is proposed dedicated in automatic or semiautomatic filling up caps and reconstructing broken contour lines in binary images. The key part of end points' auto-matching and reconnecting is deeply discussed after introducing the procedure of reconstruction, in which some key algorithms and mechanisms are presented and realized, including multiple incremental backing trace to get weighted average direction angle of end points, the max constraint angle control mechanism based on the multiple gradient ranks, combination of weighted Euclidean distance and deviation angle to determine the optimum matching end point, bidirectional parabola control, etc. Lastly, experimental comparisons based on typically samples are complemented between proposed method and the other representative method, the results indicate that the former holds higher accuracy and completeness, better stability and applicability.
NASA Astrophysics Data System (ADS)
He, Qiuwei; Lv, Xingming; Wang, Xin; Qu, Xingtian; Zhao, Ji
2017-01-01
Blade is the key component in the energy power equipment of turbine, aircraft engines and so on. Researches on the process and equipment for blade finishing become one of important and difficult point. To control precisely tool system of developed hybrid grinding and polishing machine tool for blade finishing, the tool system with changeable wheel for belt polishing is analyzed in this paper. Firstly, the belt length and wrap angle of each wheel in different position of tension wheel swing angle in the process of changing wheel is analyzed. The reasonable belt length is calculated by using MATLAB, and relationships between wrap angle of each wheel and cylinder expansion amount of contact wheel are obtained. Then, the control system for changeable wheel tool structure is developed. Lastly, the surface roughness of blade finishing is verified by experiments. Theoretical analysis and experimental results show that reasonable belt length and wheel wrap angle can be obtained by proposed analysis method, the changeable wheel tool system can be controlled precisely, and the surface roughness of blade after grinding meets the design requirements.
Influence of Lumbar Muscle Fatigue on Trunk Adaptations during Sudden External Perturbations
Abboud, Jacques; Nougarou, François; Lardon, Arnaud; Dugas, Claude; Descarreaux, Martin
2016-01-01
Introduction: When the spine is subjected to perturbations, neuromuscular responses such as reflex muscle contractions contribute to the overall balance control and spinal stabilization mechanisms. These responses are influenced by muscle fatigue, which has been shown to trigger changes in muscle recruitment patterns. Neuromuscular adaptations, e.g., attenuation of reflex activation and/or postural oscillations following repeated unexpected external perturbations, have also been described. However, the characterization of these adaptations still remains unclear. Using high-density electromyography (EMG) may help understand how the nervous system chooses to deal with an unknown perturbation in different physiological and/or mechanical perturbation environments. Aim: To characterize trunk neuromuscular adaptations following repeated sudden external perturbations after a back muscle fatigue task using high-density EMG. Methods: Twenty-five healthy participants experienced a series of 15 sudden external perturbations before and after back muscle fatigue. Erector spinae muscle activity was recorded using high-density EMG. Trunk kinematics during perturbation trials were collected using a 3-D motion analysis system. A two-way repeated measure ANOVA was conducted to assess: (1) the adaptation effect across trials; (2) the fatigue effect; and (3) the interaction effect (fatigue × adaptation) for the baseline activity, the reflex latency, the reflex peak and trunk kinematic variables (flexion angle, velocity and time to peak velocity). Muscle activity spatial distribution before and following the fatigue task was also compared using t-tests for dependent samples. Results: An attenuation of muscle reflex peak was observed across perturbation trials before the fatigue task, but not after. The spatial distribution of muscle activity was significantly higher before the fatigue task compared to post-fatigue trials. Baseline activity showed a trend to higher values after muscle fatigue, as well as reduction through perturbation trials. Main effects of fatigue and adaptation were found for time to peak velocity. No adaptation nor fatigue effect were identified for reflex latency, flexion angle or trunk velocity. Conclusion: The results show that muscle fatigue leads to reduced spatial distribution of back muscle activity and suggest a limited ability to use across-trial redundancy to adapt EMG reflex peak and optimize spinal stabilization using retroactive control. PMID:27895569
The Orbiter camera payload system's large-format camera and attitude reference system
NASA Technical Reports Server (NTRS)
Schardt, B. B.; Mollberg, B. H.
1985-01-01
The Orbiter camera payload system (OCPS) is an integrated photographic system carried into earth orbit as a payload in the Space Transportation System (STS) Orbiter vehicle's cargo bay. The major component of the OCPS is a large-format camera (LFC), a precision wide-angle cartographic instrument capable of producing high-resolution stereophotography of great geometric fidelity in multiple base-to-height ratios. A secondary and supporting system to the LFC is the attitude reference system (ARS), a dual-lens stellar camera array (SCA) and camera support structure. The SCA is a 70 mm film system that is rigidly mounted to the LFC lens support structure and, through the simultaneous acquisition of two star fields with each earth viewing LFC frame, makes it possible to precisely determine the pointing of the LFC optical axis with reference to the earth nadir point. Other components complete the current OCPS configuration as a high-precision cartographic data acquisition system. The primary design objective for the OCPS was to maximize system performance characteristics while maintaining a high level of reliability compatible with rocket launch conditions and the on-orbit environment. The full OCPS configuration was launched on a highly successful maiden voyage aboard the STS Orbiter vehicle Challenger on Oct. 5, 1984, as a major payload aboard the STS-41G mission.
The Prediction of Length-of-day Variations Based on Gaussian Processes
NASA Astrophysics Data System (ADS)
Lei, Y.; Zhao, D. N.; Gao, Y. P.; Cai, H. B.
2015-01-01
Due to the complicated time-varying characteristics of the length-of-day (LOD) variations, the accuracies of traditional strategies for the prediction of the LOD variations such as the least squares extrapolation model, the time-series analysis model, and so on, have not met the requirements for real-time and high-precision applications. In this paper, a new machine learning algorithm --- the Gaussian process (GP) model is employed to forecast the LOD variations. Its prediction precisions are analyzed and compared with those of the back propagation neural networks (BPNN), general regression neural networks (GRNN) models, and the Earth Orientation Parameters Prediction Comparison Campaign (EOP PCC). The results demonstrate that the application of the GP model to the prediction of the LOD variations is efficient and feasible.
NASA Astrophysics Data System (ADS)
Ye, Qing; Mei, Lianfu; Shi, Hesheng; Shu, Yu; Camanni, Giovanni; Wu, Jing
2018-04-01
The basement structure of the Cenozoic Enping Sag, within the Pearl River Mouth Basin on the northern margin of South China Sea, is revealed by borehole-constrained high-quality 3D seismic reflection data. Such data suggest that the Enping Sag is bounded in the north by a low-angle normal fault. We interpret this low-angle normal fault to have developed as the result of the reactivation of a pre-existing thrust fault part of a pre-Cenozoic thrust system. This is demonstrated by the selective reactivation of the pre-existing thrust and by diffuse contractional deformation recognized from the accurate analysis of basement reflections. Another significant result of this study is the finding of some residual rift basins within the basement of the Enping Sag. Both the thrust system and the residual basins are interpreted to have developed after the emplacement of continental margin arc-related granitoids (J3-K1) that define the basement within the study area. Furthermore, seismic sections show that the pre-existing residual rift basins are offset by the main thrust fault and they are both truncated by the Tg unconformity. These structural relationships, interpreted in the frame of previous studies, help us to reconstruct a six-event structural evolution model for the Enping Sag from the late Mesozoic to the early Cenozoic. In particular, we interpret the residual rift basins to have formed as the result of back-arc extension due to the slab roll-back of the Paleo-Pacific Plate subduction in the early K2. The thrust system has recorded a compressional event in the late K2 that followed the back-arc extension in the SCS area. The mechanism of this compressional event is still to be clarified, and might be related to continuous subduction of the Paleo-Pacific Plate or to the continent-continent collision between a micro-continental block and the South China margin.
NASA Astrophysics Data System (ADS)
Gordon, Craig A.
This thesis examines the ability of a small, single-engine airplane to return to the runway following an engine failure shortly after takeoff. Two sets of trajectories are examined. One set of trajectories has the airplane fly a straight climb on the runway heading until engine failure. The other set of trajectories has the airplane perform a 90° turn at an altitude of 500 feet and continue until engine failure. Various combinations of wind speed, wind direction, and engine failure times are examined. The runway length required to complete the entire flight from the beginning of the takeoff roll to wheels stop following the return to the runway after engine failure is calculated for each case. The optimal trajectories following engine failure consist of three distinct segments: a turn back toward the runway using a large bank angle and angle of attack; a straight glide; and a reversal turn to align the airplane with the runway. The 90° turn results in much shorter required runway lengths at lower headwind speeds. At higher headwind speeds, both sets of trajectories are limited by the length of runway required for the landing rollout, but the straight climb cases generally require a lower angle of attack to complete the flight. The glide back to the runway is performed at an airspeed below the best glide speed of the airplane due to the need to conserve potential energy after the completion of the turn back toward the runway. The results are highly dependent on the rate of climb of the airplane during powered flight. The results of this study can aid the pilot in determining whether or not a return to the runway could be performed in the event of an engine failure given the specific wind conditions and runway length at the time of takeoff. The results can also guide the pilot in determining the takeoff profile that would offer the greatest advantage in returning to the runway.
NASA Astrophysics Data System (ADS)
Jean-Frederic, L.; Lallemand, S.; Marcaillou, B.; Klingelhoefer, F.; Agranier, A.; Arcay, D.; Audemard, F. A.; Bassetti, M. A.; Beslier, M. O.; Boucard, M.; Cornée, J. J.; Fabre, M.; Gay, A.; Graindorge, D.; Heuret, A.; Laigle, M.; Léticée, J. L.; Malengros, D.; Mercier de Lepinay, B.; Morena, P.; Münch, P.; Oliot, E.; Oregioni, D.; Padron, C.; Philippon, M. M.; Quillevere, F.; Ratzov, G.; Schenini, L.; Yates, B.; Zami, F.
2017-12-01
The Grenada Basin, a crescent-shape basin forming a back-arc relative to the Lesser Antilles arc, separate Aves Ridge, a remnant early paleogene arc, from Eocene-Oligocene and Late Miocene - actual Lesser Antilles arcs. In its northern part the shallowness and rough topography of the basin basement call into questioned the relevance of opening of a back arc basin for the northern Grenada Basin. During the GARANTI survey (May-June 2017 french R/V L'Atalante), we acquired two transversal (EW) and one basin parallel (NS), ca. 300km long, combined wide-angle seismic (WAS) and multichannel seismic reflection (MCS) lines, plus ca. 3500km of MCS together with multibeam bathymetric data and dredged 14 sites across Grenada basin. Part of these profiles are located in the northern Grenada Basin, north and south of Saba Bank carbonate plateform. South of Saba Bank, the existence of buried crustal faults extending across Aves Ridge and the basin suggest continuity of inherited structures between the two domains. Preliminary modeling of the WAS data along the northern line shows an about 35km thick crust across the Lesser Antilles arc and in the Grenada basin at that latitude, suggesting no or only little extension in the back arc. Along the western side of Saba Bank the north trending Aves Ridge is cut at low angle by steeply dipping reverse faults that vanish southward. North of Saba Bank our data merged with seismic profiles from the AntiTheSis project reveal transpressive deformation south of the Anegada passage, trending N40° to N110° extending toward the Lesser Antilles Eo-Oligocene outer-arc. Only few N90° trending faults extend toward the active arc. These faults trend at high angle with N140-160° intra-arc fault system observed further south. Dredge samples from transpressive ridges west of the outer arc provided mix arc volcanic rocks in foraminifers rich carbonate limestones of possibly mid-Cenozoic age. Our new data call into question the mechanisms that led to arc migration in the Lesser Antilles during mid Cenozoic.
First aircraft experiment results with the wide-angle airborne laser ranging system
NASA Astrophysics Data System (ADS)
Bock, Olivier; Thom, Christian; Kasser, Michel
1999-12-01
The first aircraft experiment with the Wide-Angle Airborne Laser Ranging System has been conducted in May 1998 over an air base in France equipped with a network of 64 cub-corner retroreflectors. The ranging system was operated from the Avion de Recherche Atmospherique et de Teledetection of CNES/IGN/INSU. Data have been collected during two 4-hour flights. The paper describes the data processing methods and presents the first experimental results. The precision is of 2 cm on the difference of vertical coordinates from two sets of 3 X 103 distance measurements, which is consistent with simulations and a posteriori covariance. The precision is mainly limited by the smallness of the number of efficient measurements remaining after a drastic data sorting for outliers. Higher precision is expected for future experiments after some instrumental improvements (achieving higher link budget) and measurement of aircraft attitude during the flight.
Technologies for precision manufacture of current and future windows and domes
NASA Astrophysics Data System (ADS)
Hallock, Bob; Shorey, Aric
2009-05-01
The final finish and characterization of windows and domes presents a number of challenges in achieving desired precision with acceptable cost and schedule. This becomes more difficult with advanced materials and as window and dome shapes and requirements become more complex, including acute angle corners, transmitted wavefront specifications, aspheric geometries and trending toward conformal surfaces. Magnetorheological Finishing (MRF®) and Magnetorheological Jet (MR Jet®), along with metrology provided by Sub-aperture Stitching Interferometry (SSI®) have several unique attributes that provide them advantages in enhancing fabrication of current and next generation windows and domes. The advantages that MRF brings to the precision finishing of a wide range of shapes such as flats, spheres (including hemispheres), cylinders, aspheres and even freeform optics, has been well documented. Recent advancements include the ability to finish freeform shapes up to 2-meters in size as well as progress in finishing challenging IR materials. Due to its shear-based removal mechanism in contrast to the pressure-based process of other techniques, edges are not typically rolled, in particular on parts with acute angle corners. MR Jet provides additional benefits, particularly in the finishing of the inside of steep concave domes and other irregular shapes. The ability of MR Jet to correct the figure of conformal domes deterministically and to high precision has been demonstrated. Combining these technologies with metrology techniques, such as SSI provides a solution for finishing current and future windows and domes in a reliable, deterministic and cost-effective way. The ability to use the SSI to characterize a range of shapes such as domes and aspheres, as well as progress in using MRF and MR Jet for finishing conventional and conformal windows and domes with increasing size and complexity of design will be presented.
Spinning angle optical calibration apparatus
DOE Office of Scientific and Technical Information (OSTI.GOV)
Beer, S.K.; Pratt, H.R. II.
1989-09-12
An optical calibration apparatus is provided for calibrating and reproducing spinning angles in cross-polarization, nuclear magnetic resonance spectroscopy. An illuminated magnifying apparatus enables optical setting and accurate reproducing of spinning magic angles in cross-polarization, nuclear magnetic resonance spectroscopy experiments. A reference mark scribed on an edge of a spinning angle test sample holder is illuminated by a light source and viewed through a magnifying scope. When the magic angle of a sample material used as a standard is attained by varying the angular position of the sample holder, the coordinate position of the reference mark relative to a graduation ormore » graduations on a reticle in the magnifying scope is noted. Thereafter, the spinning magic angle of a test material having similar nuclear properties to the standard is attained by returning the sample holder back to the originally noted coordinate position. 2 figs.« less
Binary collision model for neon Auger spectra from neon ion bombardment of the aluminum surface
NASA Technical Reports Server (NTRS)
Pepper, S. V.
1986-01-01
A model is developed to account for the angle-resolved Auger spectra from neon ion bombardment of the aluminum surface recently obtained by Pepper and Aron. The neon is assumed to be excited in a single asymmetric neon-aluminum-collision and scattered back into the vacuum where it emits an Auger electron. The velocity of the Auger electron acquires a Doppler shift by virtue of the emission from a moving source. The dependence of the Auger peak shape and energy on the incident ion energy, angle of incidence and on the angle of Auger electron emission with respect to the surface is presented. Satisfactory agreement with the angle resolved experimental observations is obtained. The dependence of the angle-integrated Auger yield on the incident ion energy and angle of incidence is also obtained and shown to be in satisfactory agreement with available experimental evidence.
Modification and performance evaluation of a mono-valve engine
NASA Astrophysics Data System (ADS)
Behrens, Justin W.
A four-stroke engine utilizing one tappet valve for both the intake and exhaust gas exchange processes has been built and evaluated. The engine operates under its own power, but has a reduced power capacity than the conventional 2-valve engine. The reduction in power is traced to higher than expected amounts of exhaust gases flowing back into the intake system. Design changes to the cylinder head will fix the back flow problems, but the future capacity of mono-valve engine technology cannot be estimated. The back flow of exhaust gases increases the exhaust gas recirculation (EGR) rate and deteriorates combustion. Intake pressure data shows the mono-valve engine requires an advanced intake valve closing (IVC) time to prevent back flow of charge air. A single actuation camshaft with advanced IVC was tested in the mono-valve engine, and was found to improve exhaust scavenging at TDC and nearly eliminated all charge air back flow at IVC. The optimum IVC timing is shown to be approximately 30 crank angle degrees after BDC. The mono-valve cylinder head utilizes a rotary valve positioned above the tappet valve. The open spaces inside the rotary valveand between the rotary valve and tappet valve represent a common volume that needs to be reduced in order to reduce the base EGR rate. Multiple rotary valve configurations were tested, and the size of the common volume was found to have no effect on back flow but a direct effect on the EGR rate and engine performance. The position of the rotary valve with respect to crank angle has a direct effect on the scavenging process. Optimum scavenging occurs when the intake port is opened just after TDC.
Non-contact measurement of rotation angle with solo camera
NASA Astrophysics Data System (ADS)
Gan, Xiaochuan; Sun, Anbin; Ye, Xin; Ma, Liqun
2015-02-01
For the purpose to measure a rotation angle around the axis of an object, a non-contact rotation angle measurement method based on solo camera was promoted. The intrinsic parameters of camera were calibrated using chessboard on principle of plane calibration theory. The translation matrix and rotation matrix between the object coordinate and the camera coordinate were calculated according to the relationship between the corners' position on object and their coordinates on image. Then the rotation angle between the measured object and the camera could be resolved from the rotation matrix. A precise angle dividing table (PADT) was chosen as the reference to verify the angle measurement error of this method. Test results indicated that the rotation angle measurement error of this method did not exceed +/- 0.01 degree.
High-Resolution Coarse-Grained Modeling Using Oriented Coarse-Grained Sites.
Haxton, Thomas K
2015-03-10
We introduce a method to bring nearly atomistic resolution to coarse-grained models, and we apply the method to proteins. Using a small number of coarse-grained sites (about one per eight atoms) but assigning an independent three-dimensional orientation to each site, we preferentially integrate out stiff degrees of freedom (bond lengths and angles, as well as dihedral angles in rings) that are accurately approximated by their average values, while retaining soft degrees of freedom (unconstrained dihedral angles) mostly responsible for conformational variability. We demonstrate that our scheme retains nearly atomistic resolution by mapping all experimental protein configurations in the Protein Data Bank onto coarse-grained configurations and then analytically backmapping those configurations back to all-atom configurations. This roundtrip mapping throws away all information associated with the eliminated (stiff) degrees of freedom except for their average values, which we use to construct optimal backmapping functions. Despite the 4:1 reduction in the number of degrees of freedom, we find that heavy atoms move only 0.051 Å on average during the roundtrip mapping, while hydrogens move 0.179 Å on average, an unprecedented combination of efficiency and accuracy among coarse-grained protein models. We discuss the advantages of such a high-resolution model for parametrizing effective interactions and accurately calculating observables through direct or multiscale simulations.
NASA Astrophysics Data System (ADS)
Hou, Ligang; Luo, Rengui; Wu, Wuchen
2006-11-01
This paper forwards a low power grating detection chip (EYAS) on length and angle precision measurement. Traditional grating detection method, such as resister chain divide or phase locked divide circuit are difficult to design and tune. The need of an additional CPU for control and display makes these methods' implementation more complex and costly. Traditional methods also suffer low sampling speed for the complex divide circuit scheme and CPU software compensation. EYAS is an application specific integrated circuit (ASIC). It integrates micro controller unit (MCU), power management unit (PMU), LCD controller, Keyboard interface, grating detection unit and other peripherals. Working at 10MHz, EYAS can afford 5MHz internal sampling rate and can handle 1.25MHz orthogonal signal from grating sensor. With a simple control interface by keyboard, sensor parameter, data processing and system working mode can be configured. Two LCD controllers can adapt to dot array LCD or segment bit LCD, which comprised output interface. PMU alters system between working and standby mode by clock gating technique to save power. EYAS in test mode (system action are more frequently than real world use) consumes 0.9mw, while 0.2mw in real world use. EYAS achieved the whole grating detection system function, high-speed orthogonal signal handling in a single chip with very low power consumption.
Ergonomic design and evaluation of the handle for an endoscopic dissector.
Shimomura, Yoshihiro; Minowa, Keita; Kawahira, Hiroshi; Katsuura, Tetsuo
2016-05-01
The purpose of this study was to design an endoscopic dissector handle and objectively assess its usability. The handles were designed with increased contact area between the fingers and thumb and the eye rings, and the eye rings were modified to have a more perpendicular insertion angle to the finger midline. Four different handle models were compared, including a conventional product. Subjects performed dissection, exclusion, grasping, precision manipulation and precision handling tasks. Electromyography and subjective evaluations were measured. Compared to conventional handles, the designated handle reduced the muscle load in the extensor and flexor muscles of the forearm and increased subjective stability. The activity of the first dorsal interosseous muscle was sometimes influenced by the shape of the other parts. The ergonomically designed endoscopic dissector handle used in this study achieved high usability. Medical instrument designs based on ergonomic concepts should be assessed with objective indices. Practitioner Summary: The endoscopic dissector handles were designed with increased contact area and more suitable insertion angle between the fingers and thumb and the eye rings. Compared to conventional handles, the designated handle reduced the muscle load in the extensor and flexor muscles of the forearm and increased subjective stability.
Bundle Block Adjustment of Airborne Three-Line Array Imagery Based on Rotation Angles
Zhang, Yongjun; Zheng, Maoteng; Huang, Xu; Xiong, Jinxin
2014-01-01
In the midst of the rapid developments in electronic instruments and remote sensing technologies, airborne three-line array sensors and their applications are being widely promoted and plentiful research related to data processing and high precision geo-referencing technologies is under way. The exterior orientation parameters (EOPs), which are measured by the integrated positioning and orientation system (POS) of airborne three-line sensors, however, have inevitable systematic errors, so the level of precision of direct geo-referencing is not sufficiently accurate for surveying and mapping applications. Consequently, a few ground control points are necessary to refine the exterior orientation parameters, and this paper will discuss bundle block adjustment models based on the systematic error compensation and the orientation image, considering the principle of an image sensor and the characteristics of the integrated POS. Unlike the models available in the literature, which mainly use a quaternion to represent the rotation matrix of exterior orientation, three rotation angles are directly used in order to effectively model and eliminate the systematic errors of the POS observations. Very good experimental results have been achieved with several real datasets that verify the correctness and effectiveness of the proposed adjustment models. PMID:24811075
Bundle block adjustment of airborne three-line array imagery based on rotation angles.
Zhang, Yongjun; Zheng, Maoteng; Huang, Xu; Xiong, Jinxin
2014-05-07
In the midst of the rapid developments in electronic instruments and remote sensing technologies, airborne three-line array sensors and their applications are being widely promoted and plentiful research related to data processing and high precision geo-referencing technologies is under way. The exterior orientation parameters (EOPs), which are measured by the integrated positioning and orientation system (POS) of airborne three-line sensors, however, have inevitable systematic errors, so the level of precision of direct geo-referencing is not sufficiently accurate for surveying and mapping applications. Consequently, a few ground control points are necessary to refine the exterior orientation parameters, and this paper will discuss bundle block adjustment models based on the systematic error compensation and the orientation image, considering the principle of an image sensor and the characteristics of the integrated POS. Unlike the models available in the literature, which mainly use a quaternion to represent the rotation matrix of exterior orientation, three rotation angles are directly used in order to effectively model and eliminate the systematic errors of the POS observations. Very good experimental results have been achieved with several real datasets that verify the correctness and effectiveness of the proposed adjustment models.
NASA Technical Reports Server (NTRS)
Bozeman, Richard J., Jr. (Inventor); Akkerman, James W. (Inventor); Aber, Gregory S. (Inventor); VanDamm, George A. (Inventor); Bacak, James W. (Inventor); Svejkovsky, Paul A. (Inventor); Benkowski, Robert J. (Inventor)
1996-01-01
A rotary blood pump includes a pump housing for receiving a flow straightener, a rotor mounted on rotor bearings and having an inducer portion and an impeller portion, and a diffuser. The entrance angle, outlet angle, axial and radial clearances of blades associated with the flow straightener, inducer portion, impeller portion and diffuser are optimized to minimize hemolysis while maintaining pump efficiency. The rotor bearing includes a bearing chamber that is filled with cross-linked blood or other bio-compatible material. A back emf integrated circuit regulates rotor operation and a microcomputer may be used to control one or more back emf integrated circuits. A plurality of magnets are disposed in each of a plurality of impeller blades with a small air gap. A stator may be axially adjusted on the pump housing to absorb bearing load and maximize pump efficiency.
NASA Astrophysics Data System (ADS)
Bozeman, Richard J.; Akkerman, James W.; Aber, Greg S.; Vandamm, George A.; Bacak, James W.; Svejkovsky, Paul A.; Benkowski, Robert J.
1993-11-01
A rotary blood pump is presented. The pump includes a pump housing for receiving a flow straightener, a rotor mounted on rotor bearings and having an inducer portion and an impeller portion, and a diffuser. The entrance angle, outlet angle, axial, and radial clearances of the blades associated with the flow straightener, inducer portion, impeller portion, and diffuser are optimized to minimize hemolysis while maintaining pump efficiency. The rotor bearing includes a bearing chamber that is filled with crosslinked blood or other bio-compatible material. A back emf integrated circuit regulates rotor operation and a microcomputer may be used to control one or more back emf integrated circuits. A plurality of magnets are disposed in each of a plurality of impeller blades with a small air gap. A stator may be axially adjusted on the pump housing to absorb bearing load and maximize pump efficiency.
Automated CFD Database Generation for a 2nd Generation Glide-Back-Booster
NASA Technical Reports Server (NTRS)
Chaderjian, Neal M.; Rogers, Stuart E.; Aftosmis, Michael J.; Pandya, Shishir A.; Ahmad, Jasim U.; Tejmil, Edward
2003-01-01
A new software tool, AeroDB, is used to compute thousands of Euler and Navier-Stokes solutions for a 2nd generation glide-back booster in one week. The solution process exploits a common job-submission grid environment using 13 computers located at 4 different geographical sites. Process automation and web-based access to the database greatly reduces the user workload, removing much of the tedium and tendency for user input errors. The database consists of forces, moments, and solution files obtained by varying the Mach number, angle of attack, and sideslip angle. The forces and moments compare well with experimental data. Stability derivatives are also computed using a monotone cubic spline procedure. Flow visualization and three-dimensional surface plots are used to interpret and characterize the nature of computed flow fields.
NASA Technical Reports Server (NTRS)
Bozeman, Richard J. (Inventor); Akkerman, James W. (Inventor); Aber, Greg S. (Inventor); Vandamm, George A. (Inventor); Bacak, James W. (Inventor); Svejkovsky, Paul A. (Inventor); Benkowski, Robert J. (Inventor)
1993-01-01
A rotary blood pump is presented. The pump includes a pump housing for receiving a flow straightener, a rotor mounted on rotor bearings and having an inducer portion and an impeller portion, and a diffuser. The entrance angle, outlet angle, axial, and radial clearances of the blades associated with the flow straightener, inducer portion, impeller portion, and diffuser are optimized to minimize hemolysis while maintaining pump efficiency. The rotor bearing includes a bearing chamber that is filled with crosslinked blood or other bio-compatible material. A back emf integrated circuit regulates rotor operation and a microcomputer may be used to control one or more back emf integrated circuits. A plurality of magnets are disposed in each of a plurality of impeller blades with a small air gap. A stator may be axially adjusted on the pump housing to absorb bearing load and maximize pump efficiency.
Experimental Phase Functions of Millimeter-sized Cosmic Dust Grains
DOE Office of Scientific and Technical Information (OSTI.GOV)
Muñoz, O.; Moreno, F.; Guirado, D.
We present the experimental phase functions of three types of millimeter-sized dust grains consisting of enstatite, quartz, and volcanic material from Mount Etna, respectively. The three grains present similar sizes but different absorbing properties. The measurements are performed at 527 nm covering the scattering angle range from 3° to 170°. The measured phase functions show two well-defined regions: (i) soft forward peaks and (ii) a continuous increase with the scattering angle at side- and back-scattering regions. This behavior at side- and back-scattering regions is in agreement with the observed phase functions of the Fomalhaut and HR 4796A dust rings. Furthermore » computations and measurements (including polarization) for millimeter-sized grains are needed to draw some conclusions about the fluffy or compact structure of the dust grains.« less
Biomechanical effects of mobile computer location in a vehicle cab.
Saginus, Kyle A; Marklin, Richard W; Seeley, Patricia; Simoneau, Guy G; Freier, Stephen
2011-10-01
The objective of this research is to determine the best location to place a conventional mobile computer supported by a commercially available mount in a light truck cab. U.S. and Canadian electric utility companies are in the process of integrating mobile computers into their fleet vehicle cabs. There are no publications on the effect of mobile computer location in a vehicle cab on biomechanical loading, performance, and subjective assessment. The authors tested four locations of mobile computers in a light truck cab in a laboratory study to determine how location affected muscle activity of the lower back and shoulders; joint angles of the shoulders, elbows, and wrist; user performance; and subjective assessment. A total of 22 participants were tested in this study. Placing the mobile computer closer to the steering wheel reduced low back and shoulder muscle activity. Joint angles of the shoulders, elbows, and wrists were also closer to neutral angle. Biomechanical modeling revealed substantially less spinal compression and trunk muscle force. In general, there were no practical differences in performance between the locations. Subjective assessment indicated that users preferred the mobile computer to be as close as possible to the steering wheel. Locating the mobile computer close to the steering wheel reduces risk of injuries, such as low back pain and shoulder tendonitis. Results from the study can guide electric utility companies in the installation of mobile computers into vehicle cabs. Results may also be generalized to other industries that use trucklike vehicles, such as construction.
McNulty, Jason D; Klann, Tyler; Sha, Jin; Salick, Max; Knight, Gavin T; Turng, Lih-Sheng; Ashton, Randolph S
2014-06-07
Increased realization of the spatial heterogeneity found within in vivo tissue microenvironments has prompted the desire to engineer similar complexities into in vitro culture substrates. Microcontact printing (μCP) is a versatile technique for engineering such complexities onto cell culture substrates because it permits microscale control of the relative positioning of molecules and cells over large surface areas. However, challenges associated with precisely aligning and superimposing multiple μCP steps severely limits the extent of substrate modification that can be achieved using this method. Thus, we investigated the feasibility of using a vision guided selectively compliant articulated robotic arm (SCARA) for μCP applications. SCARAs are routinely used to perform high precision, repetitive tasks in manufacturing, and even low-end models are capable of achieving microscale precision. Here, we present customization of a SCARA to execute robotic-μCP (R-μCP) onto gold-coated microscope coverslips. The system not only possesses the ability to align multiple polydimethylsiloxane (PDMS) stamps but also has the capability to do so even after the substrates have been removed, reacted to graft polymer brushes, and replaced back into the system. Plus, non-biased computerized analysis shows that the system performs such sequential patterning with <10 μm precision and accuracy, which is equivalent to the repeatability specifications of the employed SCARA model. R-μCP should facilitate the engineering of complex in vivo-like complexities onto culture substrates and their integration with microfluidic devices.
Epidemiology in wonderland: Big Data and precision medicine.
Saracci, Rodolfo
2018-03-01
Big Data and precision medicine, two major contemporary challenges for epidemiology, are critically examined from two different angles. In Part 1 Big Data collected for research purposes (Big research Data) and Big Data used for research although collected for other primary purposes (Big secondary Data) are discussed in the light of the fundamental common requirement of data validity, prevailing over "bigness". Precision medicine is treated developing the key point that high relative risks are as a rule required to make a variable or combination of variables suitable for prediction of disease occurrence, outcome or response to treatment; the commercial proliferation of allegedly predictive tests of unknown or poor validity is commented. Part 2 proposes a "wise epidemiology" approach to: (a) choosing in a context imprinted by Big Data and precision medicine-epidemiological research projects actually relevant to population health, (b) training epidemiologists, (c) investigating the impact on clinical practices and doctor-patient relation of the influx of Big Data and computerized medicine and (d) clarifying whether today "health" may be redefined-as some maintain in purely technological terms.
Electron Scattering by High-Frequency Whistler Waves at Earth's Bow Shock
NASA Technical Reports Server (NTRS)
Oka, M.; Wilson, L. B., III; Phan, T. D.; Hull, A. J.; Amano, T.; Hoshino, M.; Argall, M. R.; Le Contel, O.; Agapitov, O.; Gersham, D. J.;
2017-01-01
Electrons are accelerated to non-thermal energies at shocks in space and astrophysical environments. While different mechanisms of electron acceleration have been proposed, it remains unclear how non-thermal electrons are produced out of the thermal plasma pool. Here, we report in situ evidence of pitch-angle scattering of non-thermal electrons by whistler waves at Earths bow shock. On 2015 November 4, the Magnetospheric Multiscale (MMS) mission crossed the bow shock with an Alfvn Mach number is approximately 11 and a shock angle of approximately 84deg. In the ramp and overshoot regions, MMS revealed bursty enhancements of non-thermal (0.52 keV) electron flux, correlated with high-frequency (0.2 - 0.4 Omega(sub ce), where Omega(sub ce) is the cyclotron frequency) parallel-propagating whistler waves. The electron velocity distribution (measured at 30 ms cadence) showed an enhanced gradient of phase-space density at and around the region where the electron velocity component parallel to the magnetic field matched the resonant energy inferred from the wave frequency range. The flux of 0.5 keV electrons (measured at 1ms cadence) showed fluctuations with the same frequency. These features indicate that non-thermal electrons were pitch-angle scattered by cyclotron resonance with the high-frequency whistler waves. However, the precise role of the pitch-angle scattering by the higher-frequency whistler waves and possible nonlinear effects in the electron acceleration process remains unclear.
Measurement configuration optimization for dynamic metrology using Stokes polarimetry
NASA Astrophysics Data System (ADS)
Liu, Jiamin; Zhang, Chuanwei; Zhong, Zhicheng; Gu, Honggang; Chen, Xiuguo; Jiang, Hao; Liu, Shiyuan
2018-05-01
As dynamic loading experiments such as a shock compression test are usually characterized by short duration, unrepeatability and high costs, high temporal resolution and precise accuracy of the measurements is required. Due to high temporal resolution up to a ten-nanosecond-scale, a Stokes polarimeter with six parallel channels has been developed to capture such instantaneous changes in optical properties in this paper. Since the measurement accuracy heavily depends on the configuration of the probing beam incident angle and the polarizer azimuth angle, it is important to select an optimal combination from the numerous options. In this paper, a systematic error propagation-based measurement configuration optimization method corresponding to the Stokes polarimeter was proposed. The maximal Frobenius norm of the combinatorial matrix of the configuration error propagating matrix and the intrinsic error propagating matrix is introduced to assess the measurement accuracy. The optimal configuration for thickness measurement of a SiO2 thin film deposited on a Si substrate has been achieved by minimizing the merit function. Simulation and experimental results show a good agreement between the optimal measurement configuration achieved experimentally using the polarimeter and the theoretical prediction. In particular, the experimental result shows that the relative error in the thickness measurement can be reduced from 6% to 1% by using the optimal polarizer azimuth angle when the incident angle is 45°. Furthermore, the optimal configuration for the dynamic metrology of a nickel foil under quasi-dynamic loading is investigated using the proposed optimization method.
Bok, Jin Mo; Bae, Jong Ju; Choi, Han-Yong; Varma, Chandra M.; Zhang, Wentao; He, Junfeng; Zhang, Yuxiao; Yu, Li; Zhou, X. J.
2016-01-01
A profound problem in modern condensed matter physics is discovering and understanding the nature of fluctuations and their coupling to fermions in cuprates, which lead to high-temperature superconductivity and the invariably associated strange metal state. We report the quantitative determination of normal and pairing self-energies, made possible by laser-based angle-resolved photoemission measurements of unprecedented accuracy and stability. Through a precise inversion procedure, both the effective interactions in the attractive d-wave symmetry and the repulsive part in the full symmetry are determined. The latter is nearly angle-independent. Near Tc, both interactions are nearly independent of frequency and have almost the same magnitude over the complete energy range of up to about 0.4 eV, except for a low-energy feature at around 50 meV that is present only in the repulsive part, which has less than 10% of the total spectral weight. Well below Tc, they both change similarly, with superconductivity-induced features at low energies. Besides finding the pairing self-energy and the attractive interactions for the first time, these results expose the central paradox of the problem of high Tc: how the same frequency-independent fluctuations can dominantly scatter at angles ±π/2 in the attractive channel to give d-wave pairing and lead to angle-independent repulsive scattering. The experimental results are compared with available theoretical calculations based on antiferromagnetic fluctuations, the Hubbard model, and quantum-critical fluctuations of the loop-current order. PMID:26973872
Electron Scattering by High-frequency Whistler Waves at Earth’s Bow Shock
NASA Astrophysics Data System (ADS)
Oka, M.; Wilson, L. B., III; Phan, T. D.; Hull, A. J.; Amano, T.; Hoshino, M.; Argall, M. R.; Le Contel, O.; Agapitov, O.; Gershman, D. J.; Khotyaintsev, Y. V.; Burch, J. L.; Torbert, R. B.; Pollock, C.; Dorelli, J. C.; Giles, B. L.; Moore, T. E.; Saito, Y.; Avanov, L. A.; Paterson, W.; Ergun, R. E.; Strangeway, R. J.; Russell, C. T.; Lindqvist, P. A.
2017-06-01
Electrons are accelerated to non-thermal energies at shocks in space and astrophysical environments. While different mechanisms of electron acceleration have been proposed, it remains unclear how non-thermal electrons are produced out of the thermal plasma pool. Here, we report in situ evidence of pitch-angle scattering of non-thermal electrons by whistler waves at Earth’s bow shock. On 2015 November 4, the Magnetospheric Multiscale (MMS) mission crossed the bow shock with an Alfvén Mach number ˜11 and a shock angle ˜84°. In the ramp and overshoot regions, MMS revealed bursty enhancements of non-thermal (0.5-2 keV) electron flux, correlated with high-frequency (0.2-0.4 {{{Ω }}}{ce}, where {{{Ω }}}{ce} is the cyclotron frequency) parallel-propagating whistler waves. The electron velocity distribution (measured at 30 ms cadence) showed an enhanced gradient of phase-space density at and around the region where the electron velocity component parallel to the magnetic field matched the resonant energy inferred from the wave frequency range. The flux of 0.5 keV electrons (measured at 1 ms cadence) showed fluctuations with the same frequency. These features indicate that non-thermal electrons were pitch-angle scattered by cyclotron resonance with the high-frequency whistler waves. However, the precise role of the pitch-angle scattering by the higher-frequency whistler waves and possible nonlinear effects in the electron acceleration process remains unclear.
Vandergrift, Jonathan L; Gold, Judith E; Hanlon, Alexandra; Punnett, Laura
2012-01-01
To examine the association between ergonomic physical and psychosocial exposures and the risk of prevalent and incident low back pain (LBP) in a longitudinal cohort of automobile manufacturing workers. Ergonomic exposure intensity and LBP presence were determined through questionnaires at baseline (n=1181) and to workers in the same job 1 year later (n=505). Models were constructed using log-binomial regression with special attention to interactions between ergonomic exposures. Awkward back posture (prevalence ratio (PR) 1.12, 95% CI 1.07 to 1.17), hand force (PR 1.06, 95% CI 1.02 to 1.10), physical effort (PR 1.10, 95% CI 1.04 to 1.16) and whole body vibration (PR 1.04, 95% CI 1.01 to 1.08) were each associated cross-sectionally with LBP. Awkward back posture (RR 1.13, 95% CI 0.98 to 1.31) and hand force (RR 1.07, 95% CI 0.93 to 1.22) also predicted incident LBP, although estimates were statistically less precise. Neither job control, psychological demands, nor job strain was independently related to risk of incident LBP. Among participants reporting high physical ergonomic exposures and moderate to high job control, increasing job demands was associated with a reduced LBP risk (RR 0.72, 95% CI 0.52 to 1.00). Among participants reporting high physical exposures and low job control, psychological demands was associated with an increased LBP risk (RR 1.30, 95% CI 1.02 to 1.66). Psychosocial workplace interventions for LBP should prioritise jobs in which there are high physical ergonomic exposures. Future studies of LBP should examine the interactions between physical ergonomic risk factors.
Katsumi, Keiichi; Hirano, Toru; Watanabe, Kei; Ohashi, Masayuki; Yamazaki, Akiyoshi; Ito, Takui; Sawakami, Kimihiko; Sano, Atsuki; Kikuchi, Ren; Endo, Naoto
2016-11-01
The study aimed to investigate the clinical outcomes and limitations after vertebroplasty with posterior spinal fusion (VP+PSF) without neural decompression for osteoporotic vertebral collapse. We conducted a prospective multicenter study including 45 patients (12 men and 33 women, mean age: 77.0 years) evaluated between 2008 and 2012. Operation time, blood loss, visual analog scale (VAS) of back pain, neurological status, kyphosis angle in the fused area, and vertebral union of the collapsed vertebra were evaluated. The mean operation time was 162 min and blood loss was 381 mL. The postoperative VAS score significantly improved, and the neurological status improved in 35 patients (83 %), and none of the remaining patients demonstrated a deteriorating neurological status at two years post-operatively. The mean kyphosis angle pre-operatively, immediately post-operatively, and two years post-operatively was 23.8°, 10.7°, and 24.3°, respectively, and there was no significant difference between the angles pre-operatively and two years post-operatively. The extensive correction of kyphosis >16° was a risk factor for a higher correction loss and subsequent fracture. Union of the collapsed vertebra was observed in 43 patients (95 %) at two years post-operatively. The present study suggests that spinal stabilization rather than neural decompression is essential to treat OVC. Short-segment VP+PSF can achieve a high union rate of collapsed vertebra and provide a significant improvement in back pain or neurological status with less invasive surgery, but has a limit of kyphosis correction more than 16°.
An OKQPSK modem incorporating numerically controlled carrier synthesis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Oetken, R.E.
1988-04-04
The feasibility of incorporating numerically controlled oscillators (NCO) in communication related applications is evaluated. NCO generation of sinusoids may prove useful in systems requiring precise frequency control, tuning linearity, and orthogonality versus frequency. An OKQPSK modem operating at a data rate of 200 kb/s was fabricated. The modem operates in a back to back hardwired channel and thus does not incorporate carrier or symbol timing recovery. Spectra of the NCO generated sinusoids are presented along with waveforms from the modulation and demodulation process. Generation of sinusoids in the digital domain is a viable alternative to analog oscillators. Implementation of anmore » NCO should be considered when frequency allocation, tuning bandwidth, or frequency hopped transmission requires precise frequency synthesis. 24 figs.« less
Precision measurements of g1 of the proton and of the deuteron with 6 GeV electrons
NASA Astrophysics Data System (ADS)
Prok, Y.; Bosted, P.; Kvaltine, N.; Adhikari, K. P.; Adikaram, D.; Aghasyan, M.; Amaryan, M. J.; Anderson, M. D.; Anefalos Pereira, S.; Avakian, H.; Baghdasaryan, H.; Ball, J.; Baltzell, N. A.; Battaglieri, M.; Biselli, A. S.; Bono, J.; Briscoe, W. J.; Brock, J.; Brooks, W. K.; Bültmann, S.; Burkert, V. D.; Carlin, C.; Carman, D. S.; Celentano, A.; Chandavar, S.; Colaneri, L.; Cole, P. L.; Contalbrigo, M.; Cortes, O.; Crabb, D.; Crede, V.; D'Angelo, A.; Dashyan, N.; De Vita, R.; De Sanctis, E.; Deur, A.; Djalali, C.; Dodge, G. E.; Doughty, D.; Dupre, R.; El Alaoui, A.; El Fassi, L.; Elouadrhiri, L.; Fedotov, G.; Fegan, S.; Fersch, R.; Fleming, J. A.; Forest, T. A.; Garçon, M.; Garillon, B.; Gevorgyan, N.; Ghandilyan, Y.; Gilfoyle, G. P.; Girod, F. X.; Giovanetti, K. L.; Goetz, J. T.; Gohn, W.; Gothe, R. W.; Griffioen, K. A.; Guegan, B.; Guler, N.; Hafidi, K.; Hanretty, C.; Harrison, N.; Hattawy, M.; Hicks, K.; Ho, D.; Holtrop, M.; Ilieva, Y.; Ireland, D. G.; Ishkhanov, B. S.; Isupov, E. L.; Jawalkar, S.; Jiang, X.; Jo, H. S.; Joo, K.; Kalantarians, N.; Keith, C.; Keller, D.; Khandaker, M.; Kim, A.; Kim, W.; Klein, A.; Klein, F. J.; Koirala, S.; Kubarovsky, V.; Kuhn, S. E.; Kuleshov, S. V.; Lenisa, P.; Livingston, K.; Lu, H. Y.; MacGregor, I. J. D.; Markov, N.; Mayer, M.; McKinnon, B.; Meekins, D.; Mineeva, T.; Mirazita, M.; Mokeev, V.; Montgomery, R. A.; Moutarde, H.; Movsisyan, A.; Munevar, E.; Munoz Camacho, C.; Nadel-Turonski, P.; Niccolai, S.; Niculescu, G.; Niculescu, I.; Osipenko, M.; Ostrovidov, A. I.; Pappalardo, L. L.; Paremuzyan, R.; Park, K.; Peng, P.; Phillips, J. J.; Pierce, J.; Pisano, S.; Pogorelko, O.; Pozdniakov, S.; Price, J. W.; Procureur, S.; Protopopescu, D.; Puckett, A. J. R.; Raue, B. A.; Rimal, D.; Ripani, M.; Rizzo, A.; Rosner, G.; Rossi, P.; Roy, P.; Sabatié, F.; Saini, M. S.; Salgado, C.; Schott, D.; Schumacher, R. A.; Seder, E.; Sharabian, Y. G.; Simonyan, A.; Smith, C.; Smith, G.; Sober, D. I.; Sokhan, D.; Stepanyan, S. S.; Stepanyan, S.; Strakovsky, I. I.; Strauch, S.; Sytnik, V.; Taiuti, M.; Tang, W.; Tkachenko, S.; Ungaro, M.; Vernarsky, B.; Vlassov, A. V.; Voskanyan, H.; Voutier, E.; Walford, N. K.; Watts, D. P.; Weinstein, L. B.; Zachariou, N.; Zana, L.; Zhang, J.; Zhao, B.; Zhao, Z. W.; Zonta, I.; CLAS Collaboration
2014-08-01
The inclusive polarized structure functions of the proton and deuteron, g1p and g1d, were measured with high statistical precision using polarized 6 GeV electrons incident on a polarized ammonia target in Hall B at Jefferson Laboratory. Electrons scattered at laboratory angles between 18 and 45 degrees were detected using the CEBAF Large Acceptance Spectrometer (CLAS). For the usual deep inelastic region kinematics, Q2>1 GeV2 and the final-state invariant mass W >2 GeV, the ratio of polarized to unpolarized structure functions g1/F1 is found to be nearly independent of Q2 at fixed x. Significant resonant structure is apparent at values of W up to 2.3 GeV. In the framework of perturbative quantum chromodynamics, the high-W results can be used to better constrain the polarization of quarks and gluons in the nucleon, as well as high-twist contributions.
Precision measurements of g1 of the proton and the deuteron with 6 GeV electrons
DOE Office of Scientific and Technical Information (OSTI.GOV)
Prok, Yelena; Bosted, Peter; Kvaltine, Nicholas
2014-08-01
The inclusive polarized structure functions of the proton and deuteron, g1p and g1d, were measured with high statistical precision using polarized 6 GeV electrons incident on a polarized ammonia target in Hall B at Jefferson Laboratory. Electrons scattered at lab angles between 18 and 45 degrees were detected using the CEBAF Large Acceptance Spectrometer (CLAS). For the usual DIS kinematics, Q^2>1 GeV^2 and the final-state invariant mass W>2 GeV, the ratio of polarized to unpolarized structure functions g1/F1 is found to be nearly independent of Q^2 at fixed x. Significant resonant structure is apparent at values of W up tomore » 2.3 GeV. In the framework of perturbative QCD, the high-W results can be used to better constrain the polarization of quarks and gluons in the nucleon, as well as high-twist contributions.« less
First spaceborne phase altimetry over sea ice using TechDemoSat-1 GNSS-R signals
NASA Astrophysics Data System (ADS)
Li, Weiqiang; Cardellach, Estel; Fabra, Fran; Rius, Antonio; Ribó, Serni; Martín-Neira, Manuel
2017-08-01
A track of sea ice reflected Global Navigation Satellite System (GNSS) signal collected by the TechDemoSat-1 mission is processed to perform phase altimetry over sea ice. High-precision carrier phase measurements are extracted from coherent GNSS reflections at a high angle of elevation (>57°). The altimetric results show good consistency with a mean sea surface (MSS) model, and the root-mean-square difference is 4.7 cm with an along-track sampling distance of ˜140 m and a spatial resolution of ˜400 m. The difference observed between the altimetric results and the MSS shows good correlation with the colocated sea ice thickness data from Soil Moisture and Ocean Salinity. This is consistent with the reflecting surface aligned with the bottom of the ice-water interface, due to the penetration of the GNSS signal into the sea ice. Therefore, these high-precision altimetric results have potential to be used for determination of sea ice thickness.
Experimental study of the flight envelope and research of safety requirements for hang-gliders
NASA Technical Reports Server (NTRS)
Laburthe, C.
1979-01-01
The flight mechanic computations were computed, providing both the flight envelopes with all sorts of limits and a fairly precise idea of the influence of several parameters, such as pilot's weight, wing settings, aeroelasticity, etc... The particular problem of luffing dives was thoroughly analyzed, and two kinds of causes were exhibited in both the rules of luffing and aeroelastic effects. The general analysis of longitudinal stability showed a strong link with fabric tension, as expected through Nielsen's and Twaites' theory. Fabric tension strongly depending upon aeroelasticity, that parameter was found to be the most effective design one for positive stability. Lateral stability was found to be very similar in all gliders except perhaps the cylindro-conical. The loss of stability happens in roll at low angle of attack, whereas it happens in yaw at high angle. Turning performance was a bit suprising, with a common maximum value of approximately 55 deg of bank angle for a steady turn.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ekşi, K. Y.; Andaç, I. C.; Çıkıntoğlu, S.
The recently discovered rotationally powered pulsar PSR J1640–4631 is the first to have a braking index measured, with high enough precision, that is greater than 3. An inclined magnetic rotator in vacuum or plasma would be subject not only to spin-down but also to an alignment torque. The vacuum model can address the braking index only for an almost orthogonal rotator, which is incompatible with the single-peaked pulse profile. The magnetic dipole model with the corotating plasma predicts braking indices between 3 and 3.25. We find that the braking index of 3.15 is consistent with two different inclination angles, 18.°5more » ± 3° and 56° ± 4°. The smaller angle is preferred given that the pulse profile has a single peak and the radio output of the source is weak. We infer the change in the inclination angle to be at the rate −0.°23 per century, three times smaller in absolute value than the rate recently observed for the Crab pulsar.« less
72-directional display having VGA resolution for high-appearance image generation
NASA Astrophysics Data System (ADS)
Takaki, Yasuhiro; Dairiki, Takeshi
2006-02-01
The high-density directional display, which was originally developed in order to realize a natural 3D display, is not only a 3D display but also a high-appearance display. The appearances of objects, such as glare and transparency, are the results of the reflection and the refraction of rays. The faithful reproduction of such appearances of objects is impossible using conventional 2D displays because rays diffuse on the display screen. The high-density directional display precisely controls the horizontal ray directions so that it can reproduce the appearances of objects. The fidelity of the reproduction of object appearances depends on the ray angle sampling pitch. The angle sampling pitch is determined by considering the human eye imaging system. In the present study the high-appearance display which has the resolution of 640×400 and emits rays in 72 different horizontal directions with the angle pitch of 0.38° was constructed. Two 72-directional displays were combined, each of which consisted of a high-resolution LCD panel (3,840×2,400) and a slanted lenticular sheet. Two images produced by two displays were superimposed by a half mirror. A slit array was placed at the focal plane of the lenticular sheet for each display to reduce the horizontal image crosstalk in the combined image. The impression analysis shows that the high-appearance display provides higher appearances and presence than the conventional 2D displays do.
Holm, René; Borkenfelt, Simon; Allesø, Morten; Andersen, Jens Enevold Thaulov; Beato, Stefania; Holm, Per
2016-02-10
Compounds wettability is critical for a number of central processes including disintegration, dispersion, solubilisation and dissolution. It is therefore an important optimisation parameter both in drug discovery but also as guidance for formulation selection and optimisation. Wettability for a compound is determined by its contact angle to a liquid, which in the present study was measured using the sessile drop method applied to a disc compact of the compound. Precise determination of the contact angle is important should it be used to either rank compounds or selected excipients to e.g. increase the wetting from a solid dosage form. Since surface roughness of the compact has been suggested to influence the measurement this study investigated if the surface quality, in terms of surface porosity, had an influence on the measured contact angle. A correlation to surface porosity was observed, however for six out of seven compounds similar results were obtained by applying a standard pressure (866 MPa) to the discs in their preparation. The data presented in the present work therefore suggest that a constant high pressure should be sufficient for most compounds when determining the contact angle. Only for special cases where compounds have poor compressibility would there be a need for a surface-quality-control step before the contact angle determination. Copyright © 2015 Elsevier B.V. All rights reserved.
X-ray polarimeter with a transmission multilayer
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kitamoto, Shunji; Murakami, Hiroshi; Shishido, Youich
2010-02-15
We fabricated a novel x-ray polarimeter with a transmission multilayer and measured its performance with synchrotron radiation. A self standing multilayer with seven Mo/Si bilayers was installed with an incident angle of 45 deg. in front of a back-illuminated CCD. The multilayer can be rotated around the normal direction of the CCD keeping an incident angle of 45 deg. This polarimeter can be easily installed along the optical axis of x-ray optics. By using the CCD as a photon counting detector with a moderate energy resolution, the polarization of photons in a designed energy band can be measured along withmore » the image. At high photon energies, where the multilayer is transparent, the polarimeter can be used for imaging and spectroscopic observations. We confirmed a modulation factor of 45% with 45% and 17% transmission for P- and S-polarization, respectively.« less
High voltage plasma sheath analysis related to TSS-1
NASA Technical Reports Server (NTRS)
Sheldon, John W.
1991-01-01
On the first mission of the Tethered Satellite System (TSS-1), a 1.8 m diameter spherical satellite will be deployed a distance of 20 km above the space shuttle Orbiter on an insulated conducting tether. The satellite will be held at electric potentials up to 5000 volts positive with respect to the ambient plasma. Due to the passage of the conducting tether through the Earth's magnetic field, an emf will be created, driving electrons down the tether to the orbiter, out through an electron gun into the ionosphere and back into the positive biased satellite. Instrumentation on the satellite will measure electron flow to the surface at several locations, but these detectors have a limited range of acceptance angle. The problem addressed herein is the determination of the electron current distribution over the satellite surface and the angle of incidence of the incoming electrons relative to the surface normal.
Warping Armchair Graphene Nanoribbon Curvature Effect on Sensing Properties: A Computational Study
NASA Astrophysics Data System (ADS)
Sakina, S. H.; Johari, Zaharah; Auzar, Zuriana; Alias, N. Ezaila; Mohamad, Azam; Zakaria, N. Aini
2018-02-01
The aim of this paper is to investigate the interaction between gas molecules and warped armchair graphene nanoribbons (AGNRs) using Extended-Huckel Theory. There are two types of warping known as inward and upward. The sensing properties including binding energy, charge transfer and sensitivity were examined for both warped AGNR cases for 3m+1 configuration and were compared with previous work. Through simulation, it was found that a substantial increase in binding energy by more than 50% was achieved when warped at a higher angle. It is also showed that there was a significant difference in sensitivity for both warping cases when reacting with O2 and NH3 molecules. Interestingly, the ability of the inward warped in sensing O2 and NH3 considerably increases upon warping angle. By applying back gate bias, this shows that current conductivity of the inward warped is twice as high as the upward warped AGNR.
Precision engineering: an evolutionary perspective.
Evans, Chris J
2012-08-28
Precision engineering is a relatively new name for a technology with roots going back over a thousand years; those roots span astronomy, metrology, fundamental standards, manufacturing and money-making (literally). Throughout that history, precision engineers have created links across disparate disciplines to generate innovative responses to society's needs and wants. This review combines historical and technological perspectives to illuminate precision engineering's current character and directions. It first provides us a working definition of precision engineering and then reviews the subject's roots. Examples will be given showing the contributions of the technology to society, while simultaneously showing the creative tension between the technological convergence that spurs new directions and the vertical disintegration that optimizes manufacturing economics.
Reentry Motion and Aerodynamics of the MUSES-C Sample Return Capsule
NASA Astrophysics Data System (ADS)
Ishii, Nobuaki; Yamada, Tetsuya; Hiraki, Koju; Inatani, Yoshifumi
The Hayabusa spacecraft (MUSES-C) carries a small capsule for bringing asteroid samples back to the earth. The initial spin rate of the reentry capsule together with the flight path angle of the reentry trajectory is a key parameter for the aerodynamic motion during the reentry flight. The initial spin rate is given by the spin-release mechanism attached between the capsule and the mother spacecraft, and the flight path angle can be modified by adjusting the earth approach orbit. To determine the desired values of both parameters, the attitude motion during atmospheric flight must be clarified, and angles of attack at the maximum dynamic pressure and the parachute deployment must be assessed. In previous studies, to characterize the aerodynamic effects of the reentry capsule, several wind-tunnel tests were conducted using the ISAS high-speed flow test facilities. In addition to the ground test data, the aerodynamic properties in hypersonic flows were analyzed numerically. Moreover, these data were made more accurate using the results of balloon drop tests. This paper summarized the aerodynamic properties of the reentry capsule and simulates the attitude motion of the full-configuration capsule during atmospheric flight in three dimensions with six degrees of freedom. The results show the best conditions for the initial spin rates and flight path angles of the reentry trajectory.
Multi-walled boron nitride nanotubes as self-excited launchers.
Li, Yifan; Zhou, Yi; Wu, Yan; Huang, Chengchi; Wang, Long; Zhou, Xuyan; Zhao, Zhenyang; Li, Hui
2017-07-27
A self-excited launcher consisting of multi-walled boron nitride nanotubes (BNNTs) has been investigated using molecular dynamics simulation. The results show that, after a period of high frequency oscillation, the innermost BNNT can be spontaneously ejected along its central axis at a relatively fast speed. The launching is caused by the energy transfer between the nanotubes and without absorbing energy from the external environment. Most self-excited launchers could launch their innermost nanotube, although an inappropriate structure of the nanotubes contributes to a blocked or failed launch. In addition, a launch angle corrector and a nanotube receiver associated with a self-excited launcher are also manufactured to precisely control the launch angle and distance of the BNNTs. This study provides the possibility to fabricate and design self-excited launchers using multi-walled nanotubes.
NASA Astrophysics Data System (ADS)
Zhao, Guihua; Chen, Hong; Li, Xingquan; Zou, Xiaoliang
The paper presents the concept of lever arm and boresight angle, the design requirements of calibration sites and the integrated calibration method of boresight angles of digital camera or laser scanner. Taking test data collected by Applanix's LandMark system as an example, the camera calibration method is introduced to be piling three consecutive stereo images and OTF-Calibration method using ground control points. The laser calibration of boresight angle is proposed to use a manual and automatic method with ground control points. Integrated calibration between digital camera and laser scanner is introduced to improve the systemic precision of two sensors. By analyzing the measurement value between ground control points and its corresponding image points in sequence images, a conclusion is that position objects between camera and images are within about 15cm in relative errors and 20cm in absolute errors. By comparing the difference value between ground control points and its corresponding laser point clouds, the errors is less than 20cm. From achieved results of these experiments in analysis, mobile mapping system is efficient and reliable system for generating high-accuracy and high-density road spatial data more rapidly.
Dynamic Measurement of Low Contact Angles by Optical Microscopy.
Campbell, James M; Christenson, Hugo K
2018-05-16
Precise measurement of contact angles is an important challenge in surface science, in the design and characterization of materials and in many crystallization experiments. Here we present a novel technique for measuring the contact angles of droplets between about 2° and 30°, with the lowest experimental uncertainty at the lower end of this range, typically ±0.1°. The lensing effect of a droplet interface produces the appearance of bright circles in low-aperture light, whose diameter is related to the contact angle. The technique requires no specialized equipment beyond an ordinary optical microscope, and may be used to study the dynamic evolution of the contact angle in situ during an experiment.
Shear Bond Strength of Bracket Bases to Adhesives Based on Bracket Base Design
2016-04-13
moving in the right direction. And to my wife, Allyson, I’m forever grateful for your patience and support, enabling me to pursue dreams as we begin... intrusion and extrusion in Angle and post Angle eras. As a result, the strength and precision of systems to apply forces through teeth have also
Multibeam collimator uses prism stack
NASA Technical Reports Server (NTRS)
Minott, P. O.
1981-01-01
Optical instrument creates many divergent light beams for surveying and machine element alignment applications. Angles and refractive indices of stack of prisms are selected to divert incoming laser beam by small increments, different for each prism. Angles of emerging beams thus differ by small, precisely-controlled amounts. Instrument is nearly immune to vibration, changes in gravitational force, temperature variations, and mechanical distortion.
NASA Technical Reports Server (NTRS)
Page, Norman A.; Tubbs, Eldred F.
1994-01-01
Retroreflectors made of concentric spherical optical elements developed for use in interferometric metrological systems. Used to provide reference point on structure to be aligned precisely in two or three dimensions by use of intersecting laser beams. Acceptance angle much larger than that of cat's-eye or corner-cube retroreflector: Simultaneously reflects laser beams separated by angles as large as 180 degrees.