High precision variational calculations of few-electron atoms
NASA Astrophysics Data System (ADS)
Bubin, Sergiy
2015-05-01
High precision calculations of energy levels and other properties of small atoms and ions have been a subject of fruitful interplay between the experiment and theory. However, most calculation of spectroscopic accuracy, until recently, have been possible only for two- and three-electron systems. In this talk I will report on progress toward performing high accuracy calculations of larger atomic systems (up to four-six electrons). The results of benchmark quality are attainable with the use of variational expansions in terms of all-particle explicitly correlated Gaussians, whose nonlinear variational parameters are extensively optimized. I will demonstrate what level of accuracy is available today for few-electron atoms and discuss the issues that must be overcome in order to extend the capability of the method to even larger systems. This work has been supported by the Ministry of Education and Science of Kazakhstan.
A high-precision calculation method for interface normal and curvature on an unstructured grid
NASA Astrophysics Data System (ADS)
Ito, Kei; Kunugi, Tomoaki; Ohno, Shuji; Kamide, Hideki; Ohshima, Hiroyuki
2014-09-01
In the volume-of-fluid algorithm, the calculations of the interface normal and curvature are crucially important for accurately simulating interfacial flows. However, few methods have been proposed for the high-precision interface calculation on an unstructured grid. In this paper, the authors develop a height function method that works appropriately on an unstructured grid. In the process, the definition of the height function is discussed, and the high-precision calculation method of the interface normal is developed to meet the necessary condition for a second-order method. This new method has highly reduced computational cost compared with a conventional high-precision method because the interface normal calculation is completed by solving relatively simple algebraic equations. The curvature calculation method is also discussed and the approximated quadric curve of an interface is employed to calculate the curvature. Following a basic verification, the developed height function method is shown to successfully provide superior calculation accuracy and highly reduced computational cost compared with conventional calculation methods in terms of the interface normal and curvature. In addition, the height function method succeeds in calculating accurately the slotted-disk revolution problem and the oscillating drop on unstructured grids. Therefore, the developed height function method is confirmed to be an efficient technique for the high-precision numerical simulation of interfacial flows on an unstructured grid.
Medvedev, Emile S.; Meshkov, Vladimir V.; Stolyarov, Andrey V.
2015-10-21
In the recent work devoted to the calculation of the rovibrational line list of the CO molecule [G. Li et al., Astrophys. J., Suppl. Ser. 216, 15 (2015)], rigorous validation of the calculated parameters including intensities was carried out. In particular, the Normal Intensity Distribution Law (NIDL) [E. S. Medvedev, J. Chem. Phys. 137, 174307 (2012)] was employed for the validation purposes, and it was found that, in the original CO line list calculated for large changes of the vibrational quantum number up to Δn = 41, intensities with Δn > 11 were unphysical. Therefore, very high overtone transitions were removed from the published list in Li et al. Here, we show how this type of validation is carried out and prove that the quadruple precision is indispensably required to predict the reliable intensities using the conventional 32-bit computers. Based on these calculations, the NIDL is shown to hold up for the 0 → n transitions till the dissociation limit around n = 83, covering 45 orders of magnitude in the intensity. The low-intensity 0 → n transition predicted in the work of Medvedev [Determination of a new molecular constant for diatomic systems. Normal intensity distribution law for overtone spectra of diatomic and polyatomic molecules and anomalies in overtone absorption spectra of diatomic molecules, Institute of Chemical Physics, Russian Academy of Sciences, Chernogolovka, 1984] at n = 5 is confirmed, and two additional “abnormal” intensities are found at n = 14 and 23. Criteria for the appearance of such “anomalies” are formulated. The results could be useful to revise the high-overtone molecular transition probabilities provided in spectroscopic databases.
Computational Calorimetry: High-Precision Calculation of Host-Guest Binding Thermodynamics.
Henriksen, Niel M; Fenley, Andrew T; Gilson, Michael K
2015-09-08
We present a strategy for carrying out high-precision calculations of binding free energy and binding enthalpy values from molecular dynamics simulations with explicit solvent. The approach is used to calculate the thermodynamic profiles for binding of nine small molecule guests to either the cucurbit[7]uril (CB7) or β-cyclodextrin (βCD) host. For these systems, calculations using commodity hardware can yield binding free energy and binding enthalpy values with a precision of ∼0.5 kcal/mol (95% CI) in a matter of days. Crucially, the self-consistency of the approach is established by calculating the binding enthalpy directly, via end point potential energy calculations, and indirectly, via the temperature dependence of the binding free energy, i.e., by the van't Hoff equation. Excellent agreement between the direct and van't Hoff methods is demonstrated for both host-guest systems and an ion-pair model system for which particularly well-converged results are attainable. Additionally, we find that hydrogen mass repartitioning allows marked acceleration of the calculations with no discernible cost in precision or accuracy. Finally, we provide guidance for accurately assessing numerical uncertainty of the results in settings where complex correlations in the time series can pose challenges to statistical analysis. The routine nature and high precision of these binding calculations opens the possibility of including measured binding thermodynamics as target data in force field optimization so that simulations may be used to reliably interpret experimental data and guide molecular design.
Computational Calorimetry: High-Precision Calculation of Host–Guest Binding Thermodynamics
2015-01-01
We present a strategy for carrying out high-precision calculations of binding free energy and binding enthalpy values from molecular dynamics simulations with explicit solvent. The approach is used to calculate the thermodynamic profiles for binding of nine small molecule guests to either the cucurbit[7]uril (CB7) or β-cyclodextrin (βCD) host. For these systems, calculations using commodity hardware can yield binding free energy and binding enthalpy values with a precision of ∼0.5 kcal/mol (95% CI) in a matter of days. Crucially, the self-consistency of the approach is established by calculating the binding enthalpy directly, via end point potential energy calculations, and indirectly, via the temperature dependence of the binding free energy, i.e., by the van’t Hoff equation. Excellent agreement between the direct and van’t Hoff methods is demonstrated for both host–guest systems and an ion-pair model system for which particularly well-converged results are attainable. Additionally, we find that hydrogen mass repartitioning allows marked acceleration of the calculations with no discernible cost in precision or accuracy. Finally, we provide guidance for accurately assessing numerical uncertainty of the results in settings where complex correlations in the time series can pose challenges to statistical analysis. The routine nature and high precision of these binding calculations opens the possibility of including measured binding thermodynamics as target data in force field optimization so that simulations may be used to reliably interpret experimental data and guide molecular design. PMID:26523125
High-precision lattice calculation of the decay constants fB and fBs
NASA Astrophysics Data System (ADS)
Detar, Carleton; Bazavov, Alexei; Bernard, Claude; Bouchard, Christopher; Brown, Nathan; Du, Daping; El Khadra, Aida; Freeland, Elizabeth; Gamiz, Elvira; Gottlieb, Steven; Na, Heechang; Heller, Urs; Komijani, Javad; Kronfeld, Andreas; Laiho, John; MacKenzie, Paul; Neil, Ethan; Simone, James; Sugar, Robert; Toussaint, Douglas; van de Water, Ruth; Zhou, Ran; Fermilab Lattice Collaboration; MILC Collaboration
2016-03-01
We present preliminary, high-precision results for the hadronic decay constants of the B and the Bs mesons from lattice QCD simulations using a highly improved quark formulation for both heavy and light valence quarks. Calculations are carried out with several heavy valence-quark masses on lattice ensembles with 2+1+1 flavors of HISQ sea quarks at five lattice spacings and three light sea quark mass ratios mud /ms , including approximately physical sea quark masses. This range of parameters provides excellent control of the continuum limit and of heavy-quark discretization errors. Present affiliation: Ohio Supercomputer Center.
High Precision Calculations of the Lennard-Jones Lattice Constants for Five Lattices
NASA Astrophysics Data System (ADS)
Stein, Matthew
2017-01-01
The total potential energy of a crystal as described by the Lennard-Jones (L-J) potential depends in part upon the calculation of lattice constants. Knowing these constants to high precision is useful for prediction of the lattice type and simulation of crystals such as rare-gas solids or germanium detectors, but reaching higher precision is computationally costly and challenging. Presented here is the extension of the precision of the lattice constants, Lp, up to 32 decimal digits, and in some cases corrections from previous publication. The Lp terms are given for 4 <= p <= 30 in the simple cubic, face-centered cubic, body-centered cubic, hexagonal-close-pack, and diamond lattices. This precision was obtained through the use of careful parallelization technique, exploitation of the symmetries of each lattice, and the ``onionization'' of the simulated crystal. The results of this computation, along with the tools and algorithm strategies to make this computation possible, are explained in detail graphically.
High-precision calculation of the strange nucleon electromagnetic form factors
Green, Jeremy; Meinel, Stefan; Engelhardt, Michael G.; Krieg, Stefan; Laeuchli, Jesse; Negele, John W.; Orginos, Kostas; Pochinsky, Andrew; Syritsyn, Sergey
2015-08-26
We report a direct lattice QCD calculation of the strange nucleon electromagnetic form factors G^{s}_{E} and G^{s}_{M} in the kinematic range 0 ≤ Q^{2} ≤ 1.2GeV^{2}. For the first time, both G^{s}_{E} and G^{s}_{M} are shown to be nonzero with high significance. This work uses closer-to-physical lattice parameters than previous calculations, and achieves an unprecented statistical precision by implementing a recently proposed variance reduction technique called hierarchical probing. We perform model-independent fits of the form factor shapes using the z-expansion and determine the strange electric and magnetic radii and magnetic moment. As a result, we compare our results to parity-violating electron-proton scattering data and to other theoretical studies.
Development of High Precision Tsunami Runup Calculation Method Coupled with Structure Analysis
NASA Astrophysics Data System (ADS)
Arikawa, Taro; Seki, Katsumi; Chida, Yu; Takagawa, Tomohiro; Shimosako, Kenichiro
2017-04-01
The 2011 Great East Japan Earthquake (GEJE) has shown that tsunami disasters are not limited to inundation damage in a specified region, but may destroy a wide area, causing a major disaster. Evaluating standing land structures and damage to them requires highly precise evaluation of three-dimensional fluid motion - an expensive process. Our research goals were thus to develop a coupling STOC-CADMAS (Arikawa and Tomita, 2016) coupling with the structure analysis (Arikawa et. al., 2009) to efficiently calculate all stages from tsunami source to runup including the deformation of structures and to verify their applicability. We also investigated the stability of breakwaters at Kamaishi Bay. Fig. 1 shows the whole of this calculation system. The STOC-ML simulator approximates pressure by hydrostatic pressure and calculates the wave profiles based on an equation of continuity, thereby lowering calculation cost, primarily calculating from a e epi center to the shallow region. As a simulator, STOC-IC solves pressure based on a Poisson equation to account for a shallower, more complex topography, but reduces computation cost slightly to calculate the area near a port by setting the water surface based on an equation of continuity. CS3D also solves a Navier-Stokes equation and sets the water surface by VOF to deal with the runup area, with its complex surfaces of overflows and bores. STR solves the structure analysis including the geo analysis based on the Biot's formula. By coupling these, it efficiently calculates the tsunami profile from the propagation to the inundation. The numerical results compared with the physical experiments done by Arikawa et. al.,2012. It was good agreement with the experimental ones. Finally, the system applied to the local situation at Kamaishi bay. The almost breakwaters were washed away, whose situation was similar to the damage at Kamaishi bay. REFERENCES T. Arikawa and T. Tomita (2016): "Development of High Precision Tsunami Runup
Precise Higgs mass calculations in (non-)minimal supersymmetry at both high and low scales
NASA Astrophysics Data System (ADS)
Athron, Peter; Park, Jae-hyeon; Steudtner, Tom; Stöckinger, Dominik; Voigt, Alexander
2017-01-01
We present FlexibleEFTHiggs, a method for calculating the SM-like Higgs pole mass in SUSY (and even non-SUSY) models, which combines an effective field theory approach with a diagrammatic calculation. It thus achieves an all order resummation of leading logarithms together with the inclusion of all non-logarithmic 1-loop contributions. We implement this method into FlexibleSUSY and study its properties in the MSSM, NMSSM, E6SSM and MRSSM. In the MSSM, it correctly interpolates between the known results of effective field theory calculations in the literature for a high SUSY scale and fixed- order calculations in the full theory for a sub-TeV SUSY scale. We compare our MSSM results to those from public codes and identify the origin of the most significant deviations between the overline{DR} programs. We then perform a similar comparison in the remaining three non-minimal models. For all four models we estimate the theoretical uncertainty of Flex- ibleEFTHiggs and the fixed-order overline{DR} programs thereby finding that the former becomes more precise than the latter for a SUSY scale above a few TeV. Even for sub-TeV SUSY scales, FlexibleEFTHiggs maintains the uncertainty estimate around 2-3 GeV, remaining a competitive alternative to existing fixed-order computations.
NASA Astrophysics Data System (ADS)
Stepšys, A.; Mickevicius, S.; Germanas, D.; Kalinauskas, R. K.
2014-11-01
This new version of the HOTB program for calculation of the three and four particle harmonic oscillator transformation brackets provides some enhancements and corrections to the earlier version (Germanas et al., 2010) [1]. In particular, new version allows calculations of harmonic oscillator transformation brackets be performed in parallel using MPI parallel communication standard. Moreover, higher precision of intermediate calculations using GNU Quadruple Precision and arbitrary precision library FMLib [2] is done. A package of Fortran code is presented. Calculation time of large matrices can be significantly reduced using effective parallel code. Use of Higher Precision methods in intermediate calculations increases the stability of algorithms and extends the validity of used algorithms for larger input values. Catalogue identifier: AEFQ_v4_0 Program summary URL: http://cpc.cs.qub.ac.uk/summaries/AEFQ_v4_0.html Program obtainable from: CPC Program Library, Queen’s University of Belfast, N. Ireland Licensing provisions: GNU General Public License, version 3 Number of lines in programs, including test data, etc.: 1711 Number of bytes in distributed programs, including test data, etc.: 11667 Distribution format: tar.gz Program language used: FORTRAN 90 with MPI extensions for parallelism Computer: Any computer with FORTRAN 90 compiler Operating system: Windows, Linux, FreeBSD, True64 Unix Has the code been vectorized of parallelized?: Yes, parallelism using MPI extensions. Number of CPUs used: up to 999 RAM(per CPU core): Depending on allocated binomial and trinomial matrices and use of precision; at least 500 MB Catalogue identifier of previous version: AEFQ_v1_0 Journal reference of previous version: Comput. Phys. Comm. 181, Issue 2, (2010) 420-425 Does the new version supersede the previous version? Yes Nature of problem: Calculation of matrices of three-particle harmonic oscillator brackets (3HOB) and four-particle harmonic oscillator brackets (4HOB) in a more
Development of High Precision Tsunami Runup Calculation Method Coupled with Structure Analysis
NASA Astrophysics Data System (ADS)
Arikawa, T.
2016-12-01
The 2011 Great East Japan Earthquake (GEJE) has shown that tsunami disasters are not limited to inundation damage in a specified region, but may destroy a wide area, causing a major disaster. Evaluating standing land structures and damage to them requires highly precise evaluation of three-dimensional fluid motion - an expensive process. Our research goals were thus to develop a coupling STOC-CADMAS (Arikawa and Tomita, 2016) coupling with the structure analysis (Arikawa et. al., 2009) to efficiently calculate all stages from tsunami source to runup including the deformation of structures and to verify their applicability. We also investigated the stability of breakwaters at Kamaishi Bay. Fig. 1 shows the whole of this calculation system. The STOC-ML simulator approximates pressure by hydrostatic pressure and calculates the wave profiles based on an equation of continuity, thereby lowering calculation cost, primarily calculating from a e epi center to the shallow region. As a simulator, STOC-IC solves pressure based on a Poisson equation to account for a shallower, more complex topography, but reduces computation cost slightly to calculate the area near a port by setting the water surface based on an equation of continuity. CS3D also solves a Navier-Stokes equation and sets the water surface by VOF to deal with the runup area, with its complex surfaces of overflows and bores. STR solves the structure analysis including the geo analysis based on the Biot's formula. By coupling these, it efficiently calculates the tsunami profile from the propagation to the inundation. The numerical results compared with the physical experiments done by Arikawa et. al.,2012. It was good agreement with the experimental ones. Finally, the system applied to the local situation at Kamaishi bay. The almost breakwaters were washed away, whose situation was similar to the damage at Kamaishi bay. ACKNOWLEDGEMENTSThis work was supported by Council for Science, Technology and Innovation (CSTI
A high-precision finite element method for shock-tube calculations
NASA Technical Reports Server (NTRS)
Hughes, T. J. R.; Mallet, M.
1985-01-01
A two-pass explicit scheme is developed in order to exploit some of the capabilities of finite difference modeling (FDM) for finite element modeling (FEM), which offers the opportunity to account for any type of geometry in fluid flow modeling. Features of the first-order upwind and the Lax-Wendroff high precision explicit finite difference algorithms are reviewed. A flux limiter is developed for FEM to serve as an analog for the single limiter function which has been defined for the various FDMs. It is shown that an antidiffusive limiter must be introduced into the weighting function which normally multiplies the time-derivative term in the variational equation. The two-pass scheme which results is demonstrated to be the equivalent of FDMs with five-point support. However, the present scheme is valid only for one-dimensional calculations and linear shape functions for shock tube flow phenomena. Further work is required for its use with nonlinear hyperbolic systems.
High-precision calculation of loosely bound states of LiPs+ and NaPs+
NASA Astrophysics Data System (ADS)
Yamashita, Takuma; Kino, Yasushi
2015-06-01
A positronic alkali atom would be the first step to investigate behavior of a positronium(Ps) in an external field from atoms/molecules because the system can be regarded as a simple three-body system using model potentials reflecting electron orbitals of the ion core. In order to precisely determine binding energies and structures of positronic alkali atoms (LiPs+ and NaPs+), we improve the model potential so as to reproduce highly excited atomic energy levels of alkali atoms (Li and Na). The polarization potential included by the model potential is expanded in terms of Gaussian functions to finely determine a short range part of the potential which has been assumed to be a simple form. We find better reproducibility not only of atomic levels of the alkali atoms but also of the dipole polarizability of the core ion than previous works. We construct a model potential between a positron and an ion core based on the model potential between the valence electron and ion core. Binding energies associated with a dissociation of the alkali ion core and positronium, and interparticle distances are recalculated. Our results show slightly deeper bound than other previous studies.
NASA Astrophysics Data System (ADS)
Kállay, Mihály; Nataraj, H. S.; Sahoo, B. K.; Das, B. P.; Visscher, Lucas
2011-03-01
We report the implementation of a general-order relativistic coupled-cluster method for performing high-precision calculations of atomic and molecular properties. As a first application, the black-body radiation shift of the Al+ clock has been estimated precisely. The computed shift relative to the frequency of the 3s21S0e→3s3p3P0o clock transition given by (-3.66±0.60)×10-18 calls for an improvement over the recent measurement with a reported result of (-9±3)×10-18 [Phys. Rev. Lett.PRLTAO0031-900710.1103/PhysRevLett.104.070802 104, 070802 (2010)].
NASA Technical Reports Server (NTRS)
Velez, C. E.
1973-01-01
The development of improved computer algorithms is considered for calculating earth satellite orbital trajectories by optimum selection of the analytical method that minimizes the number of perturbative acceleration computations for a given accuracy. A variation of parameter algorithm considering the equation of motion for a satellite proved superior for the geosynchronous orbit.
Calculation of Geometric Dilution of Precision
NASA Astrophysics Data System (ADS)
Zhu, Jijie
1992-07-01
In this short communication, a very simple closed-form formula for the calculation of the Geometric Dilution of Precision (GDOP) in Global Positioning System (GPS) navigation and in Global Navigation Satellite System (GLONASS) navigation is presented, which requires less than 40 multiplications.
High Precision GPS Measurements
2010-02-28
GNSS Service (IGS) database, and magnetic field vectors from the International Geomagnetic Reference Field (IGRF) model [9]. These combined...Additonal correlations between the higher order range error and geomagnetic activity and seasonal variations are also obtained. Fig. 4 shows...clear correlation between the geomagnetic activity and enhanced higher order error at both sites. High Precision GPS Final Report Page 5 Fig.3
Boettger, J.C.; Wills, J.M.
1992-03-01
High precision electronic band structure calculations for BeO have revealed a large volume discontinuity structural phase transition on the 0 K isotherm at about 1 Mbar. Although, this transition has not been observed experimentally, the accuracy of the calculations is such that the existence of this transition is unambiguous. A transition of this magnitude is likely to have a substantial impact on hydrodynamic simulations involving BeO. Here we report the creation of a new SESAME equations of state for BeO which incorporates the effect of the theoretically determined phase transition. This new EOS will be added to the SESAME library as material number 7612.
Boettger, J.C.; Wills, J.M.
1992-03-01
High precision electronic band structure calculations for BeO have revealed a large volume discontinuity structural phase transition on the 0 K isotherm at about 1 Mbar. Although, this transition has not been observed experimentally, the accuracy of the calculations is such that the existence of this transition is unambiguous. A transition of this magnitude is likely to have a substantial impact on hydrodynamic simulations involving BeO. Here we report the creation of a new SESAME equations of state for BeO which incorporates the effect of the theoretically determined phase transition. This new EOS will be added to the SESAME library as material number 7612.
Kallay, Mihaly; Nataraj, H. S.; Sahoo, B. K.; Das, B. P.; Visscher, Lucas
2011-03-15
We report the implementation of a general-order relativistic coupled-cluster method for performing high-precision calculations of atomic and molecular properties. As a first application, the black-body radiation shift of the Al{sup +} clock has been estimated precisely. The computed shift relative to the frequency of the 3s{sup 2} {sup 1}S{sub 0}{sup e}{yields}3s3p {sup 3}P{sub 0}{sup o} clock transition given by (-3.66{+-}0.60)x10{sup -18} calls for an improvement over the recent measurement with a reported result of (-9{+-}3)x10{sup -18}[Phys. Rev. Lett. 104, 070802 (2010)].
NASA Astrophysics Data System (ADS)
Mauch, Florian; Fleischle, David; Lyda, Wolfram; Osten, Wolfgang; Krug, Torsten; Häring, Reto
2011-05-01
Simulation of grating spectrometers constitutes the problem of propagating a spectrally broad light field through a macroscopic optical system that contains a nanostructured grating surface. The interest of the simulation is to quantify and optimize the stray light behaviour, which is the limiting factor in modern high end spectrometers. In order to accomplish this we present a simulation scheme that combines a RCWA (rigorous coupled wave analysis) simulation of the grating surface with a selfmade GPU (graphics processor unit) accelerated nonsequential raytracer. Using this, we are able to represent the broad spectrum of the light field as a superposition of many monochromatic raysets and handle the huge raynumber in reasonable time.
High precision modeling for fundamental physics experiments
NASA Astrophysics Data System (ADS)
Rievers, Benny; Nesemann, Leo; Costea, Adrian; Andres, Michael; Stephan, Ernst P.; Laemmerzahl, Claus
With growing experimental accuracies and high precision requirements for fundamental physics space missions the needs for accurate numerical modeling techniques are increasing. Motivated by the challenge of length stability in cavities and optical resonators we propose the develop-ment of a high precision modeling tool for the simulation of thermomechanical effects up to a numerical precision of 10-20 . Exemplary calculations for simplified test cases demonstrate the general feasibility of high precision calculations and point out the high complexity of the task. A tool for high precision analysis of complex geometries will have to use new data types, advanced FE solver routines and implement new methods for the evaluation of numerical precision.
Precise calculations of the deuteron quadrupole moment
Gross, Franz L.
2016-06-01
Recently, two calculations of the deuteron quadrupole moment have have given predictions that agree with the measured value to within 1%, resolving a long-standing discrepancy. One of these uses the covariant spectator theory (CST) and the other chiral effective field theory (cEFT). In this talk I will first briefly review the foundations and history of the CST, and then compare these two calculations with emphasis on how the same physical processes are being described using very different language. The comparison of the two methods gives new insights into the dynamics of the low energy NN interaction.
Highly Parallel, High-Precision Numerical Integration
Bailey, David H.; Borwein, Jonathan M.
2005-04-22
This paper describes a scheme for rapidly computing numerical values of definite integrals to very high accuracy, ranging from ordinary machine precision to hundreds or thousands of digits, even for functions with singularities or infinite derivatives at endpoints. Such a scheme is of interest not only in computational physics and computational chemistry, but also in experimental mathematics, where high-precision numerical values of definite integrals can be used to numerically discover new identities. This paper discusses techniques for a parallel implementation of this scheme, then presents performance results for 1-D and 2-D test suites. Results are also given for a certain problem from mathematical physics, which features a difficult singularity, confirming a conjecture to 20,000 digit accuracy. The performance rate for this latter calculation on 1024 CPUs is 690 Gflop/s. We believe that this and one other 20,000-digit integral evaluation that we report are the highest-precision non-trivial numerical integrations performed to date.
High-precision arithmetic in mathematical physics
Bailey, David H.; Borwein, Jonathan M.
2015-05-12
For many scientific calculations, particularly those involving empirical data, IEEE 32-bit floating-point arithmetic produces results of sufficient accuracy, while for other applications IEEE 64-bit floating-point is more appropriate. But for some very demanding applications, even higher levels of precision are often required. Furthermore, this article discusses the challenge of high-precision computation, in the context of mathematical physics, and highlights what facilities are required to support future computation, in light of emerging developments in computer architecture.
Alekseev, N. I.; Kalugin, M. A.; Kulakov, A. S.; Novosel’tsev, A. P.; Sergeev, G. S.; Shkarovskiy, D. A.; Yudkevich, M. S.
2014-12-15
Calculation of 335 critical assemblies (benchmark experiments) with the core of highly enriched uranium and reflectors of various materials is performed. The statistical analysis of the results shows that, for all 16 materials studied, the absolute value of the most probable deviation of the calculated value of K{sub eff} from the experimental one does not exceed 0.005.
High-Precision Computation and Mathematical Physics
Bailey, David H.; Borwein, Jonathan M.
2008-11-03
At the present time, IEEE 64-bit floating-point arithmetic is sufficiently accurate for most scientific applications. However, for a rapidly growing body of important scientific computing applications, a higher level of numeric precision is required. Such calculations are facilitated by high-precision software packages that include high-level language translation modules to minimize the conversion effort. This paper presents a survey of recent applications of these techniques and provides some analysis of their numerical requirements. These applications include supernova simulations, climate modeling, planetary orbit calculations, Coulomb n-body atomic systems, scattering amplitudes of quarks, gluons and bosons, nonlinear oscillator theory, Ising theory, quantum field theory and experimental mathematics. We conclude that high-precision arithmetic facilities are now an indispensable component of a modern large-scale scientific computing environment.
High precision redundant robotic manipulator
Young, Kar-Keung David
1998-01-01
A high precision redundant robotic manipulator for overcoming contents imposed by obstacles or imposed by a highly congested work space. One embodiment of the manipulator has four degrees of freedom and another embodiment has seven degreed of freedom. Each of the embodiments utilize a first selective compliant assembly robot arm (SCARA) configuration to provide high stiffness in the vertical plane, a second SCARA configuration to provide high stiffness in the horizontal plane. The seven degree of freedom embodiment also utilizes kinematic redundancy to provide the capability of avoiding obstacles that lie between the base of the manipulator and the end effector or link of the manipulator. These additional three degrees of freedom are added at the wrist link of the manipulator to provide pitch, yaw and roll. The seven degrees of freedom embodiment uses one revolute point per degree of freedom. For each of the revolute joints, a harmonic gear coupled to an electric motor is introduced, and together with properly designed based servo controllers provide an end point repeatability of less than 10 microns.
High precision redundant robotic manipulator
Young, K.K.D.
1998-09-22
A high precision redundant robotic manipulator for overcoming contents imposed by obstacles or imposed by a highly congested work space is disclosed. One embodiment of the manipulator has four degrees of freedom and another embodiment has seven degrees of freedom. Each of the embodiments utilize a first selective compliant assembly robot arm (SCARA) configuration to provide high stiffness in the vertical plane, a second SCARA configuration to provide high stiffness in the horizontal plane. The seven degree of freedom embodiment also utilizes kinematic redundancy to provide the capability of avoiding obstacles that lie between the base of the manipulator and the end effector or link of the manipulator. These additional three degrees of freedom are added at the wrist link of the manipulator to provide pitch, yaw and roll. The seven degrees of freedom embodiment uses one revolute point per degree of freedom. For each of the revolute joints, a harmonic gear coupled to an electric motor is introduced, and together with properly designed based servo controllers provide an end point repeatability of less than 10 microns. 3 figs.
Precise calculation of the magnetosphere surface for a tilted dipole.
NASA Technical Reports Server (NTRS)
Choe, J. Y.; Beard, D. B.; Sullivan, E. C.
1973-01-01
The shape of the magnetosphere has been calculated self-consistently for inclinations of the earth's magnetic dipole from perpendicular to the solar wind. Inclination angles of 0-35 deg have been chosen in steps of 5 deg and various smooth trends in the surface characteristics with increasing inclination angle noted. The surface points and the complete field at the surface points have been calculated for the entire surfaces. The neutral point region has been given precise study in one degree steps and is found to be tangent to the solar wind velocity and to have a smooth continuous curvature.
High precision tracking method for solar telescopes
NASA Astrophysics Data System (ADS)
Guo, Jingjing; Yang, Yunfei; Feng, Song; Ji, Kanfan; Lin, Jiaben; Zeng, Zhen; Wang, Bingxiang
2016-07-01
A high-precision real-time tracking method for solar telescopes was introduced in this paper based on the barycenter of full-disk solar images algorithm. To make sure the calculation was accurate and reliable, a series of strictly logic limits were set, such as setting gray threshold, judging the displacement of the barycenter and measuring the deviation from a perfect disk. A closed-loop control system was designed in the method. We located the barycenter of the full-disk images which recorded by large array CCD image sensor in real time and eliminate noise caused by bad weather, such as clouds and fog. The displacement of the barycenter was analyzed and transferred into control signal drove the motor to adjust the axis of telescope. An Ethernet interface was also provided for remote control. In the observation, the precision of this new method was better than 1″/30 minutes.
High precision anatomy for MEG.
Troebinger, Luzia; López, José David; Lutti, Antoine; Bradbury, David; Bestmann, Sven; Barnes, Gareth
2014-02-01
Precise MEG estimates of neuronal current flow are undermined by uncertain knowledge of the head location with respect to the MEG sensors. This is either due to head movements within the scanning session or systematic errors in co-registration to anatomy. Here we show how such errors can be minimized using subject-specific head-casts produced using 3D printing technology. The casts fit the scalp of the subject internally and the inside of the MEG dewar externally, reducing within session and between session head movements. Systematic errors in matching to MRI coordinate system are also reduced through the use of MRI-visible fiducial markers placed on the same cast. Bootstrap estimates of absolute co-registration error were of the order of 1mm. Estimates of relative co-registration error were <1.5mm between sessions. We corroborated these scalp based estimates by looking at the MEG data recorded over a 6month period. We found that the between session sensor variability of the subject's evoked response was of the order of the within session noise, showing no appreciable noise due to between-session movement. Simulations suggest that the between-session sensor level amplitude SNR improved by a factor of 5 over conventional strategies. We show that at this level of coregistration accuracy there is strong evidence for anatomical models based on the individual rather than canonical anatomy; but that this advantage disappears for errors of greater than 5mm. This work paves the way for source reconstruction methods which can exploit very high SNR signals and accurate anatomical models; and also significantly increases the sensitivity of longitudinal studies with MEG. © 2013. Published by Elsevier Inc. All rights reserved.
Calculation of precise firing statistics in a neural network model
NASA Astrophysics Data System (ADS)
Cho, Myoung Won
2017-08-01
A precise prediction of neural firing dynamics is requisite to understand the function of and the learning process in a biological neural network which works depending on exact spike timings. Basically, the prediction of firing statistics is a delicate manybody problem because the firing probability of a neuron at a time is determined by the summation over all effects from past firing states. A neural network model with the Feynman path integral formulation is recently introduced. In this paper, we present several methods to calculate firing statistics in the model. We apply the methods to some cases and compare the theoretical predictions with simulation results.
Weighted geometric dilution of precision calculations with matrix multiplication.
Chen, Chien-Sheng
2015-01-05
To enhance the performance of location estimation in wireless positioning systems, the geometric dilution of precision (GDOP) is widely used as a criterion for selecting measurement units. Since GDOP represents the geometric effect on the relationship between measurement error and positioning determination error, the smallest GDOP of the measurement unit subset is usually chosen for positioning. The conventional GDOP calculation using matrix inversion method requires many operations. Because more and more measurement units can be chosen nowadays, an efficient calculation should be designed to decrease the complexity. Since the performance of each measurement unit is different, the weighted GDOP (WGDOP), instead of GDOP, is used to select the measurement units to improve the accuracy of location. To calculate WGDOP effectively and efficiently, the closed-form solution for WGDOP calculation is proposed when more than four measurements are available. In this paper, an efficient WGDOP calculation method applying matrix multiplication that is easy for hardware implementation is proposed. In addition, the proposed method can be used when more than exactly four measurements are available. Even when using all-in-view method for positioning, the proposed method still can reduce the computational overhead. The proposed WGDOP methods with less computation are compatible with global positioning system (GPS), wireless sensor networks (WSN) and cellular communication systems.
Weighted Geometric Dilution of Precision Calculations with Matrix Multiplication
Chen, Chien-Sheng
2015-01-01
To enhance the performance of location estimation in wireless positioning systems, the geometric dilution of precision (GDOP) is widely used as a criterion for selecting measurement units. Since GDOP represents the geometric effect on the relationship between measurement error and positioning determination error, the smallest GDOP of the measurement unit subset is usually chosen for positioning. The conventional GDOP calculation using matrix inversion method requires many operations. Because more and more measurement units can be chosen nowadays, an efficient calculation should be designed to decrease the complexity. Since the performance of each measurement unit is different, the weighted GDOP (WGDOP), instead of GDOP, is used to select the measurement units to improve the accuracy of location. To calculate WGDOP effectively and efficiently, the closed-form solution for WGDOP calculation is proposed when more than four measurements are available. In this paper, an efficient WGDOP calculation method applying matrix multiplication that is easy for hardware implementation is proposed. In addition, the proposed method can be used when more than exactly four measurements are available. Even when using all-in-view method for positioning, the proposed method still can reduce the computational overhead. The proposed WGDOP methods with less computation are compatible with global positioning system (GPS), wireless sensor networks (WSN) and cellular communication systems. PMID:25569755
High precision triangular waveform generator
Mueller, Theodore R.
1983-01-01
An ultra-linear ramp generator having separately programmable ascending and descending ramp rates and voltages is provided. Two constant current sources provide the ramp through an integrator. Switching of the current at current source inputs rather than at the integrator input eliminates switching transients and contributes to the waveform precision. The triangular waveforms produced by the waveform generator are characterized by accurate reproduction and low drift over periods of several hours. The ascending and descending slopes are independently selectable.
NASA Astrophysics Data System (ADS)
Moustafa, Sabry G.; Schultz, Andrew J.; Zurek, Eva; Kofke, David A.
2017-07-01
sampling—results are obtained through post-processing—so established AIMD codes can be employed without modification. Analytical formulas fitted to the results for the variation of the equilibrium c /a ratio and FE components with T are provided. Notably, effects of magnetic excitations are not included and may yet prove important to the overall FE; if so, it is plausible that such contributions can be added perturbatively to the FE values reported here. Notwithstanding these considerations, FE values are obtained with an estimated accuracy and precision of 2 meV/atom, suggesting that the capability to compute the phase diagram of iron at Earth's inner core conditions is within reach.
Exact-to-precision generalized perturbation for neutron transport calculation
Wang, C.; Abdel-Khalik, H. S.
2013-07-01
This manuscript extends the exact-to-precision generalized perturbation theory (E{sub P}GPT), introduced previously, to neutron transport calculation whereby previous developments focused on neutron diffusion calculation only. The E{sub P}GPT collectively denotes new developments in generalized perturbation theory (GPT) that place premium on computational efficiency and defendable accuracy in order to render GPT a standard analysis tool in routine design and safety reactor calculations. EPGPT constructs a surrogate model with quantifiable accuracy which can replace the original neutron transport model for subsequent engineering analysis, e.g. functionalization of the homogenized few-group cross sections in terms of various core conditions, sensitivity analysis and uncertainty quantification. This is achieved by reducing the effective dimensionality of the state variable (i.e. neutron angular flux) by projection onto an active subspace. Confining the state variations to the active subspace allows one to construct a small number of what is referred to as the 'active' responses which are solely dependent on the physics model rather than on the responses of interest, the number of input parameters, or the number of points in the state phase space. (authors)
High Precision Rovibrational Spectroscopy of OH+
NASA Astrophysics Data System (ADS)
Markus, Charles R.; Hodges, James N.; Perry, Adam J.; Kocheril, G. Stephen; Müller, Holger S. P.; McCall, Benjamin J.
2016-02-01
The molecular ion OH+ has long been known to be an important component of the interstellar medium. Its relative abundance can be used to indirectly measure cosmic ray ionization rates of hydrogen, and it is the first intermediate in the interstellar formation of water. To date, only a limited number of pure rotational transitions have been observed in the laboratory making it necessary to indirectly calculate rotational levels from high-precision rovibrational spectroscopy. We have remeasured 30 transitions in the fundamental band with MHz-level precision, in order to enable the prediction of a THz spectrum of OH+. The ions were produced in a water cooled discharge of O2, H2, and He, and the rovibrational transitions were measured with the technique Noise Immune Cavity Enhanced Optical Heterodyne Velocity Modulation Spectroscopy. These values have been included in a global fit of field free data to a 3Σ- linear molecule effective Hamiltonian to determine improved spectroscopic parameters which were used to predict the pure rotational transition frequencies.
High Precision Laser Range Sensor
NASA Technical Reports Server (NTRS)
Dubovitsky, Serge (Inventor); Lay, Oliver P. (Inventor)
2003-01-01
The present invention is an improved distance measuring interferometer that includes high speed phase modulators and additional phase meters to generate and analyze multiple heterodyne signal pairs with distinct frequencies. Modulation sidebands with large frequency separation are generated by the high speed electro-optic phase modulators, requiring only a single frequency stable laser source and eliminating the need for a fist laser to be tuned or stabilized relative to a second laser. The combination of signals produced by the modulated sidebands is separated and processed to give the target distance. The resulting metrology apparatus enables a sensor with submicron accuracy or better over a multi- kilometer ambiguity range.
High precision thermal neutron detectors
Radeka, V.; Schaknowski, N.A.; Smith, G.C.; Yu, B.
1994-12-31
Two-dimensional position sensitive detectors are indispensable in neutron diffraction experiments for determination of molecular and crystal structures in biology, solid-state physics and polymer chemistry. Some performance characteristics of these detectors are elementary and obvious, such as the position resolution, number of resolution elements, neutron detection efficiency, counting rate and sensitivity to gamma-ray background. High performance detectors are distinguished by more subtle characteristics such as the stability of the response (efficiency) versus position, stability of the recorded neutron positions, dynamic range, blooming or halo effects. While relatively few of them are needed around the world, these high performance devices are sophisticated and fairly complex, their development requires very specialized efforts. In this context, we describe here a program of detector development, based on {sup 3}He filled proportional chambers, which has been underway for some years at the Brookhaven National Laboratory. Fundamental approaches and practical considerations are outlined that have resulted in a series of high performance detectors with the best known position resolution, position stability, uniformity of response and reliability over time, for devices of this type.
Calculation of precision satellite orbits with nonsingular elements /VOP formulation/
NASA Technical Reports Server (NTRS)
Velez, C. E.; Cefola, P. J.; Long, A. C.; Nimitz, K. S.
1974-01-01
Review of some results obtained in an effort to develop efficient, high-precision trajectory computation processes for artificial satellites by optimum selection of the form of the equations of motion of the satellite and the numerical integration method. In particular, the matching of a Gaussian variation-of-parameter (VOP) formulation is considered which is expressed in terms of equinoctial orbital elements and partially decouples the motion of the orbital frame from motion within the orbital frame. The performance of the resulting orbit generators is then compared with the popular classical Cowell/Gauss-Jackson formulation/integrator pair for two distinctly different orbit types - namely, the orbit of the ATS satellite at near-geosynchronous conditions and the near-circular orbit of the GEOS-C satellite at 1000 km.
High precision neutron inelastic cross section measurements
NASA Astrophysics Data System (ADS)
Olacel, A.; Belloni, F.; Borcea, C.; Boromiza, M.; Dessagne, Ph.; Henning, G.; Kerveno, M.; Negret, A.; Nyman, M.; Pirovano, E.; Plompen, A.
2017-06-01
High precision neutron inelastic scattering cross section data are very important for the development of the new generation of nuclear reactors (Gen IV). Our experiments, performed using the GELINA neutron source and the GAINS spectrometer of the European Commission Joint Research Center, Geel, produce highly reliable and precise cross section data. We will present the details of the setup and the data analysis technique allowing production of such unique results, and we will show examples of two experimental results.
Precision Crystal Calorimeters in High Energy Physics
Ren-Yuan Zhu
2016-07-12
Precision crystal calorimeters traditionally play an important role in high energy physics experiments. In the last two decades, it faces a challenge to maintain its precision in a hostile radiation environment. This paper reviews the performance of crystal calorimeters constructed for high energy physics experiments and the progress achieved in understanding crystalâs radiation damage as well as in developing high quality scintillating crystals for particle physics. Potential applications of new generation scintillating crystals of high density and high light yield, such as LSO and LYSO, in particle physics experiments is also discussed.
High precision phase-shifting electron holography
Yamamoto; Kawajiri; Tanji; Hibino; Hirayama
2000-01-01
Today's information-oriented society requires high density and high quality magnetic recording media. The quantitative observation of fine magnetic structures by electron holography is greatly anticipated in the development of such new recording materials. However, the magnetic fields around particles <50 nm have not been observed, because the fields are too weak to observe in the usual way. Here we present a highly precise phase measurement technique: improved phase-shifting electron holography. Using this method, the electric field around a charged polystyrene latex particle (100 nm in diameter) and the magnetic field around iron particles (30 nm in diameter) are observed precisely. A precision of the reconstructed phase image of 2pi/300 rad is achieved in the image of the latex particle.
High-precision laser machining of ceramics
NASA Astrophysics Data System (ADS)
Toenshoff, Hans K.; von Alvensleben, Ferdinand; Graumann, Christoph; Willmann, Guido
1998-09-01
The increasing demand for highly developed ceramic materials for various applications calls for innovative machining technologies yielding high accuracy and efficiency. Associated problems with conventional, i.e. mechanical methods, are unacceptable tool wear as well as force induced damages on ceramic components. Furthermore, the established grinding techniques often meet their limits if accurate complex 2D or 3D structures are required. In contrast to insufficient mechanical processes, UV-laser precision machining of ceramics offers not only a valuable technological alternative but a considerable economical aspect as well. In particular, excimer lasers provide a multitude of advantages for applications in high precision and micro technology. Within the UV wavelength range and pulses emitted in the nano-second region, minimal thermal effects on ceramics and polymers are observed. Thus, the ablation geometry can be controlled precisely in the lateral and vertical directions. In this paper, the excimer laser machining technology developed at the Laser Zentrum Hannover is explained. Representing current and future industrial applications, examinations concerning the precision cutting of alumina (Al2O3), and HF-composite materials, the ablation of ferrite ceramics for precision inductors and the structuring of SiC sealing and bearing rings are presented.
High precision, rapid laser hole drilling
Chang, Jim J.; Friedman, Herbert W.; Comaskey, Brian J.
2013-04-02
A laser system produces a first laser beam for rapidly removing the bulk of material in an area to form a ragged hole. The laser system produces a second laser beam for accurately cleaning up the ragged hole so that the final hole has dimensions of high precision.
High-Precision Photometry with the RCT
NASA Astrophysics Data System (ADS)
Everett, M.; Howell, S.; Davis, D.; McGruder, C. H., III; Gelderman, R.; Guinan, E.; Mattox, J. R.; Walter, D. K.
2003-05-01
We plan to conduct a high-precision photometric search for transitting extra-solar planets using the refurbished 1.3 m (50 inch) Robotically-Controlled Telescope (RCT) at Kitt Peak. The photometric capabilities and extra-solar planet search strategy for the RCT are discussed. Refurbishment of the RCT has been made possible by NASA grant NAG58762.
High Precision Pressure Measurement with a Funnel
ERIC Educational Resources Information Center
Lopez-Arias, T.; Gratton, L. M.; Oss, S.
2008-01-01
A simple experimental device for high precision differential pressure measurements is presented. Its working mechanism recalls that of a hydraulic press, where pressure is supplied by insufflating air under a funnel. As an application, we measure air pressure inside a soap bubble. The soap bubble is inflated and connected to a funnel which is…
High precision measurements in crustal dynamic studies
NASA Technical Reports Server (NTRS)
Wyatt, F.; Berger, J.
1984-01-01
The development of high-precision instrumentation for monitoring benchmark stability and evaluating coseismic strain and tilt signals is reviewed. Laser strainmeter and tilt observations are presented. Examples of coseismic deformation in several geographic locations are given. Evidence suggests that the Earth undergoes elastic response to abrupt faulting.
High Precision Pressure Measurement with a Funnel
ERIC Educational Resources Information Center
Lopez-Arias, T.; Gratton, L. M.; Oss, S.
2008-01-01
A simple experimental device for high precision differential pressure measurements is presented. Its working mechanism recalls that of a hydraulic press, where pressure is supplied by insufflating air under a funnel. As an application, we measure air pressure inside a soap bubble. The soap bubble is inflated and connected to a funnel which is…
High precision, rapid laser hole drilling
Chang, Jim J.; Friedman, Herbert W.; Comaskey, Brian J.
2005-03-08
A laser system produces a first laser beam for rapidly removing the bulk of material in an area to form a ragged hole. The laser system produces a second laser beam for accurately cleaning up the ragged hole so that the final hole has dimensions of high precision.
High precision, rapid laser hole drilling
Chang, Jim J.; Friedman, Herbert W.; Comaskey, Brian J.
2007-03-20
A laser system produces a first laser beam for rapidly removing the bulk of material in an area to form a ragged hole. The laser system produces a second laser beam for accurately cleaning up the ragged hole so that the final hole has dimensions of high precision.
High precision detector robot arm system
Shu, Deming; Chu, Yong
2017-01-31
A method and high precision robot arm system are provided, for example, for X-ray nanodiffraction with an X-ray nanoprobe. The robot arm system includes duo-vertical-stages and a kinematic linkage system. A two-dimensional (2D) vertical plane ultra-precision robot arm supporting an X-ray detector provides positioning and manipulating of the X-ray detector. A vertical support for the 2D vertical plane robot arm includes spaced apart rails respectively engaging a first bearing structure and a second bearing structure carried by the 2D vertical plane robot arm.
High precision Woelter optic calibration facility
Morales, R.I.; Remington, B.A.; Schwinn, T. )
1995-01-01
We have developed an off-line facility for very precise characterization of the reflectance and spatial resolution of the grazing incidence Woelter type I x-ray optics used at Nova. The primary component of the facility is a new, very versatile, high brightness x-ray source consisting of a focused DC electron beam incident onto a precision manipulated target-pinhole array. The data are recorded with a selection of detectors. For imaging measurements we use direct exposure x-ray film modules or an x-ray charge-coupled device camera. For energy-resolved reflectance measurements, we use lithium drifted silicon detectors and a proportional counter. An [ital in] [ital situ] laser alignment system allows precise location and rapid periodic alignment verification of the x-ray point source, the statically mounted Woelter optic, and the chosen detector.
High precision Woelter optic calibration facility
Morales, R.I.; Remington, B.A.; Schwinn, T.
1994-05-02
We have developed an off-line facility for very precise characterization of the reflectance and spatial resolution of the grazing incidence Woelter Type 1 x-ray optics used at Nova. The primary component of the facility is a high brightness, ``point`` x-ray source consisting of a focussed DC electron beam incident onto a precision manipulated target/pinhole array. The data are recorded with a selection of detectors. For imaging measurements we use direct exposure x-ray film modules or an x-ray CCD camera. For energy-resolved reflectance measurements, we use lithium drifted silicon detectors and a proportional counter. An in situ laser alignment system allows precise location and rapid periodic alignment verification of the x-ray point source, the statically mounted Woelter optic, and the chosen detector.
Precise Calculation of Traveling-Wave Periodic Structure
Wang, L.; Li, Z.; Seryi, A.; /SLAC
2007-07-06
The effects of the round edge beam hole on the frequency and wake field are studied using variational method, which allows for rounded iris disk hole without any approximation in shape treatment. The frequency and wake field of accelerating mode and dipole mode are studied for different edge radius cases, including the flat edge shape that is often used to approximately represent the actual structure geometry. The edge hole shape has weak effect on the frequency, but much effect on the wake field. Our study shows that the amounts of wake fields are not precise enough with the assumption of the flat edge beam hole instead of round edge.
The advancement of the high precision stress polishing
NASA Astrophysics Data System (ADS)
Li, Chaoqiang; Lei, Baiping; Han, Yu
2016-10-01
The stress polishing is a kind of large-diameter aspheric machining technology with high efficiency. This paper focuses on the principle, application in the processing of large aspheric mirror, and the domestic and foreign research status of stress polishing, aimed at the problem of insufficient precision of mirror surface deformation calculated by some traditional theories and the problem that the output precision and stability of the support device in stress polishing cannot meet the requirements. The improvement methods from these three aspects are put forward, the characterization method of mirror's elastic deformation in stress polishing, the deformation theory of influence function and the calculation of correction force, the design of actuator's mechanical structure. These improve the precision of stress polishing and provide theoretical basis for the further application of stress polishing in large-diameter aspheric machining.
Portable high precision pressure transducer system
NASA Astrophysics Data System (ADS)
Piper, T. C.; Morgan, J. P.; Marchant, N. J.; Bolton, S. M.
A high precision pressure transducer system for checking the reliability of a second pressure transducer system used to monitor the level of a fluid confined in a holding tank is presented. Since the response of the pressure transducer is temperature sensitive, it is continually housed in a battery powered oven which is configured to provide a temperature stable environment at specified temperature for an extended period of time. Further, a high precision temperature stabilized oscillator and counter are coupled to a single board computer to accurately determine the pressure transducer oscillation frequency and convert it to an applied pressure. All of the components are powered by the batteries which during periods of availability of line power are charged by an on-board battery charger. The pressure readings outputs are transmitted to a line printer and a vacuum fluorescent display.
Portable high precision pressure transducer system
Piper, Thomas C.; Morgan, John P.; Marchant, Norman J.; Bolton, Steven M.
1994-01-01
A high precision pressure transducer system for checking the reliability of a second pressure transducer system used to monitor the level of a fluid confined in a holding tank. Since the response of the pressure transducer is temperature sensitive, it is continually housed in an battery powered oven which is configured to provide a temperature stable environment at specified temperature for an extended period of time. Further, a high precision temperature stabilized oscillator and counter are coupled to a single board computer to accurately determine the pressure transducer oscillation frequency and convert it to an applied pressure. All of the components are powered by the batteries which during periods of availability of line power are charged by an on board battery charger. The pressure readings outputs are transmitted to a line printer and a vacuum florescent display.
Portable high precision pressure transducer system
Piper, T.C.; Morgan, J.P.; Marchant, N.J.; Bolton, S.M.
1994-04-26
A high precision pressure transducer system is described for checking the reliability of a second pressure transducer system used to monitor the level of a fluid confined in a holding tank. Since the response of the pressure transducer is temperature sensitive, it is continually housed in an battery powered oven which is configured to provide a temperature stable environment at specified temperature for an extended period of time. Further, a high precision temperature stabilized oscillator and counter are coupled to a single board computer to accurately determine the pressure transducer oscillation frequency and convert it to an applied pressure. All of the components are powered by the batteries which during periods of availability of line power are charged by an on board battery charger. The pressure readings outputs are transmitted to a line printer and a vacuum fluorescent display. 2 figures.
Precrec: fast and accurate precision-recall and ROC curve calculations in R.
Saito, Takaya; Rehmsmeier, Marc
2017-01-01
The precision-recall plot is more informative than the ROC plot when evaluating classifiers on imbalanced datasets, but fast and accurate curve calculation tools for precision-recall plots are currently not available. We have developed Precrec, an R library that aims to overcome this limitation of the plot. Our tool provides fast and accurate precision-recall calculations together with multiple functionalities that work efficiently under different conditions.
Fiber Scrambling for High Precision Spectrographs
NASA Astrophysics Data System (ADS)
Kaplan, Zachary; Spronck, J. F. P.; Fischer, D.
2011-05-01
The detection of Earth-like exoplanets with the radial velocity method requires extreme Doppler precision and long-term stability in order to measure tiny reflex velocities in the host star. Recent planet searches have led to the detection of so called "super-Earths” (up to a few Earth masses) that induce radial velocity changes of about 1 m/s. However, the detection of true Earth analogs requires a precision of 10 cm/s. One of the largest factors limiting Doppler precision is variation in the Point Spread Function (PSF) from observation to observation due to changes in the illumination of the slit and spectrograph optics. Thus, this stability has become a focus of current instrumentation work. Fiber optics have been used since the 1980's to couple telescopes to high-precision spectrographs, initially for simpler mechanical design and control. However, fiber optics are also naturally efficient scramblers. Scrambling refers to a fiber's ability to produce an output beam independent of input. Our research is focused on characterizing the scrambling properties of several types of fibers, including circular, square and octagonal fibers. By measuring the intensity distribution after the fiber as a function of input beam position, we can simulate guiding errors that occur at an observatory. Through this, we can determine which fibers produce the most uniform outputs for the severest guiding errors, improving the PSF and allowing sub-m/s precision. However, extensive testing of fibers of supposedly identical core diameter, length and shape from the same manufacturer has revealed the "personality” of individual fibers. Personality describes differing intensity patterns for supposedly duplicate fibers illuminated identically. Here, we present our results on scrambling characterization as a function of fiber type, while studying individual fiber personality.
Precision decay rate calculations in quantum field theory
NASA Astrophysics Data System (ADS)
Andreassen, Anders; Farhi, David; Frost, William; Schwartz, Matthew D.
2017-04-01
Tunneling in quantum field theory is worth understanding properly, not least because it controls the long-term fate of our Universe. There are, however, a number of features of tunneling rate calculations which lack a desirable transparency, such as the necessity of analytic continuation, the appropriateness of using an effective instead of classical potential, and the sensitivity to short-distance physics. This paper attempts to review in pedagogical detail the physical origin of tunneling and its connection to the path integral. Both the traditional potential-deformation method and a recent, more direct, propagator-based method are discussed. Some new insights from using approximate semiclassical solutions are presented. In addition, we explore the sensitivity of the lifetime of our Universe to short-distance physics, such as quantum gravity, emphasizing a number of important subtleties.
Calculation of molecular final states and their effect on a precision neutrino mass experiment
Fackler, O.; Mugge, M.; Sticker, H.; Winter, N.; Woerner, R.
1984-02-01
An experiment to determine the electron neutrino mass is being performed with the precision of a few electron volts by measuring the tritium beta decay energy distribution near the endpoint. At the few electron volt level, a major consideration in the choice of a tritium source is the effect of excited final atomic or molecular states on the beta decay distribution. It is important to choose a source for which the initial and final states can be accurately calculated. Frozen tritium was chosen as the source since the states of molecular tritium and those of the HeT/sup +/ daughter ion have electronic wavefunctions that can be calculated with high accuracy. The effects of final excited states on the neutrino mass determination and the results of these calculations are described.
High precision radial velocities with GIANO spectra
NASA Astrophysics Data System (ADS)
Carleo, I.; Sanna, N.; Gratton, R.; Benatti, S.; Bonavita, M.; Oliva, E.; Origlia, L.; Desidera, S.; Claudi, R.; Sissa, E.
2016-06-01
Radial velocities (RV) measured from near-infrared (NIR) spectra are a potentially excellent tool to search for extrasolar planets around cool or active stars. High resolution infrared (IR) spectrographs now available are reaching the high precision of visible instruments, with a constant improvement over time. GIANO is an infrared echelle spectrograph at the Telescopio Nazionale Galileo (TNG) and it is a powerful tool to provide high resolution spectra for accurate RV measurements of exoplanets and for chemical and dynamical studies of stellar or extragalactic objects. No other high spectral resolution IR instrument has GIANO's capability to cover the entire NIR wavelength range (0.95-2.45 μm) in a single exposure. In this paper we describe the ensemble of procedures that we have developed to measure high precision RVs on GIANO spectra acquired during the Science Verification (SV) run, using the telluric lines as wavelength reference. We used the Cross Correlation Function (CCF) method to determine the velocity for both the star and the telluric lines. For this purpose, we constructed two suitable digital masks that include about 2000 stellar lines, and a similar number of telluric lines. The method is applied to various targets with different spectral type, from K2V to M8 stars. We reached different precisions mainly depending on the H-magnitudes: for H ˜ 5 we obtain an rms scatter of ˜ 10 m s-1, while for H ˜ 9 the standard deviation increases to ˜ 50 ÷ 80 m s-1. The corresponding theoretical error expectations are ˜ 4 m s-1 and 30 m s-1, respectively. Finally we provide the RVs measured with our procedure for the targets observed during GIANO Science Verification.
Electric Quadrupole Transition Measurements of Hydrogen Molecule with High Precision
NASA Astrophysics Data System (ADS)
Cheng, Cun-Feng; Wang, Jin; Tan, Yan; Liu, An-Wen; Hu, Shui-Ming
2013-06-01
Molecular hydrogen is the most fundamental, and the only neutral molecule expected to be both calculated and measured with extremely high accuracy. High-precision measurements of its spectroscopy, especially the levels at the electric ground state, play an important role in the examination of precise quantum chemistry calculations and some fundamental physical constants. In the infrared region, H_2, being a homonuclear diatomic molecule, only has very weak electric quadrupole transitions. We established a new spectroscopy approach with ultra-high precision and sensitivity as well, based on a laser-locked cavity ring-down spectrometer. An equivalent absorption path-length of thousands of kilometers and a frequency precision of 10^{-5} cm^{-1} have been achieved. Ro-vibrational spectra of the second overtone of H_2 have been recorded. The obtained results will provide a direct examination of the high-accuracy quantum theory. It also shades light on the determination of fundamental physical constants such as the electron/proton mass ratio in a molecular system.
High-precision spectroscopy of hydrogen molecular ions
NASA Astrophysics Data System (ADS)
Zhong, Zhen-Xiang; Tong, Xin; Yan, Zong-Chao; Shi, Ting-Yun
2015-05-01
In this paper, we overview recent advances in high-precision structure calculations of the hydrogen molecular ions ( and HD+), including nonrelativistic energy eigenvalues and relativistic and quantum electrodynamic corrections. In combination with high-precision measurements, it is feasible to precisely determine a molecular-based value of the proton-to-electron mass ratio. An experimental scheme is presented for measuring the rovibrational transition frequency (v,L) : (0,0) → (6,1) in HD+, which is currently underway at the Wuhan Institute of Physics and Mathematics. Project supported by the National Natural Science Foundation of China (Grants Nos. 11474316, 11004221, 10974224, and 11274348), the “Hundred Talent Program” of Chinese Academy of Sciences. Yan Zong-Chao was supported by NSERC, SHARCnet, ACEnet of Canada, and the CAS/SAFEA International Partnership Program for Creative Research Teams.
Note: High precision measurements using high frequency gigahertz signals
NASA Astrophysics Data System (ADS)
Jin, Aohan; Fu, Siyuan; Sakurai, Atsunori; Liu, Liang; Edman, Fredrik; Pullerits, Tõnu; Öwall, Viktor; Karki, Khadga Jung
2014-12-01
Generalized lock-in amplifiers use digital cavities with Q-factors as high as 5 × 108 to measure signals with very high precision. In this Note, we show that generalized lock-in amplifiers can be used to analyze microwave (giga-hertz) signals with a precision of few tens of hertz. We propose that the physical changes in the medium of propagation can be measured precisely by the ultra-high precision measurement of the signal. We provide evidence to our proposition by verifying the Newton's law of cooling by measuring the effect of change in temperature on the phase and amplitude of the signals propagating through two calibrated cables. The technique could be used to precisely measure different physical properties of the propagation medium, for example, the change in length, resistance, etc. Real time implementation of the technique can open up new methodologies of in situ virtual metrology in material design.
Note: High precision measurements using high frequency gigahertz signals.
Jin, Aohan; Fu, Siyuan; Sakurai, Atsunori; Liu, Liang; Edman, Fredrik; Pullerits, Tõnu; Öwall, Viktor; Karki, Khadga Jung
2014-12-01
Generalized lock-in amplifiers use digital cavities with Q-factors as high as 5 × 10(8) to measure signals with very high precision. In this Note, we show that generalized lock-in amplifiers can be used to analyze microwave (giga-hertz) signals with a precision of few tens of hertz. We propose that the physical changes in the medium of propagation can be measured precisely by the ultra-high precision measurement of the signal. We provide evidence to our proposition by verifying the Newton's law of cooling by measuring the effect of change in temperature on the phase and amplitude of the signals propagating through two calibrated cables. The technique could be used to precisely measure different physical properties of the propagation medium, for example, the change in length, resistance, etc. Real time implementation of the technique can open up new methodologies of in situ virtual metrology in material design.
Precision mass measurements of highly charged ions
NASA Astrophysics Data System (ADS)
Kwiatkowski, A. A.; Bale, J. C.; Brunner, T.; Chaudhuri, A.; Chowdhury, U.; Ettenauer, S.; Frekers, D.; Gallant, A. T.; Grossheim, A.; Lennarz, A.; Mane, E.; MacDonald, T. D.; Schultz, B. E.; Simon, M. C.; Simon, V. V.; Dilling, J.
2012-10-01
The reputation of Penning trap mass spectrometry for accuracy and precision was established with singly charged ions (SCI); however, the achievable precision and resolving power can be extended by using highly charged ions (HCI). The TITAN facility has demonstrated these enhancements for long-lived (T1/2>=50 ms) isobars and low-lying isomers, including ^71Ge^21+, ^74Rb^8+, ^78Rb^8+, and ^98Rb^15+. The Q-value of ^71Ge enters into the neutrino cross section, and the use of HCI reduced the resolving power required to distinguish the isobars from 3 x 10^5 to 20. The precision achieved in the measurement of ^74Rb^8+, a superallowed β-emitter and candidate to test the CVC hypothesis, rivaled earlier measurements with SCI in a fraction of the time. The 111.19(22) keV isomeric state in ^78Rb was resolved from the ground state. Mass measurements of neutron-rich Rb and Sr isotopes near A = 100 aid in determining the r-process pathway. Advanced ion manipulation techniques and recent results will be presented.
High Precision Spectroscopy of Neutral Beryllium-9
NASA Astrophysics Data System (ADS)
Lau, Chui Yu; Williams, Will
2015-05-01
We report on the progress of high precision spectroscopy of the 2s2p singlet and triplet states in beryllium-9. Our goal is to improve the experimental precision on the energy levels of the 2s2p triplet J = 0, 1, and 2 states by a factor of 500, 100, and 500 respectively in order to delineate various theoretical predictions. The goal for the 2s2p singlet (J = 1) state is to improve the experimental precision on the energy level by a factor of 600 as a test of quantum electrodynamics. Our experimental setup consists of an oven capable of 1400 C that produces a collimated beam of neutral beryllium-9. The triplet states are probed with a 455 nm ECDL stabilized to a tellurium-210 line. The singlet state is probed with 235nm light from a frequency quadrupled titanium sapphire laser, where the frequency doubled light at 470 nm is stabilized to another tellurium-210 line. We also present our progress on improving the absolute accuracy of our frequency reference by using an ultrastable/low drift fiber coupled cavity.
Precision timing measurements for high energy photons
Anderson, Dustin; Apreysan, Artur; Bornheim, Adi; Duarte, Javier; Newman, Harvey; Pena, Cristian; Ronzhin, Anatoly; Spiropulu, Maria; Trevor, Jason; Xie, Si; Zhu, Ren-Yuan
2014-11-21
Particle colliders operating at high luminosities present challenging environments for high energy physics event reconstruction and analysis. We discuss how timing information, with a precision on the order of 10 ps, can aid in the reconstruction of physics events under such conditions. We present calorimeter based timing measurements from test beam experiments in which we explore the ultimate timing precision achievable for high energy photons or electrons of 10 GeV and above. Using a prototype calorimeter consisting of a 1.7×1.7×1.7 cm^{3} lutetium–yttrium oxyortho-silicate (LYSO) crystal cube, read out by micro-channel plate photomultipliers, we demonstrate a time resolution of 33.5±2.1 ps for an incoming beam energy of 32 GeV. In a second measurement, using a 2.5×2.5×20 cm^{3} LYSO crystal placed perpendicularly to the electron beam, we achieve a time resolution of 59±11 ps using a beam energy of 4 GeV. We also present timing measurements made using a shashlik-style calorimeter cell made of LYSO and tungsten plates, and demonstrate that the apparatus achieves a time resolution of 54±5 ps for an incoming beam energy of 32 GeV.
High-Precision Direct Method for the Radiative Transfer Problems
NASA Astrophysics Data System (ADS)
Zhang, Yan; Hou, Su-Qing; Yang, Ping; Wu, Kai-Su
2013-06-01
It is the main aim of this paper to investigate the numerical methods of the radiative transfer equation. Using the five-point formula to approximate the differential part and the Simpson formula to substitute for integral part respectively, a new high-precision numerical scheme, which has 4-order local truncation error, is obtained. Subsequently, a numerical example for radiative transfer equation is carried out, and the calculation results show that the new numerical scheme is more accurate.
High precision laser photometer for laser optics
NASA Astrophysics Data System (ADS)
Zhao, Yuan'an; Hu, Guohang; Cao, Zhen; Liu, Shijie; Zhu, Meiping; Shao, Jianda
2017-06-01
Development of laser systems requires optical components with high performance, and a high-precision double-beam laser photometer was designed and established to measure the optical performance at 1064nm. Double beam design and lock-in technique was applied to decrease the impact of light energy instability and electric noise. Pairs of samples were placed symmetrically to eliminate beam displacement, and laser scattering imaging technique was applied to determine the influence of surface defect on the optical performance. Based on the above techniques, transmittance and reflection of pairs of optics were obtained, and the measurement precision was improved to 0.06%. Different types of optical loss, such as total loss, volume loss, residual reflection and surface scattering loss, were obtained from the transmittance and reflection measurement of samples with different thickness. Comparison of optical performance of the test points with and without surface defects, the influence of surface defects on optical performance was determined. The optical performance of Nd-glass at 1064nm were measured as an example. Different types of optical loss and the influence of surface defects on the optical loss was determined.
Research about the high precision temperature measurement
NASA Astrophysics Data System (ADS)
Lin, J.; Yu, J.; Zhu, X.; Zeng, Z.; Deng, Y.
2012-12-01
High precision temperature control system is one of most important support conditions for tunable birefringent filter.As the first step,we researched some high precision temperature measurement methods for it. Firstly, circuits with a 24 bit ADC as the sensor's reader were carefully designed; Secondly, an ARM porcessor is used as the centrol processing unit, it provides sufficient reading and procesing ability; Thirdly, three kinds of sensors, PT100, Dale 01T1002-5 thermistor, Wheatstone bridge(constructed by pure copper and manganin) as the senor of the temperature were tested respectively. The resolution of the measurement with these three kinds of sensors are all better than 0.001 that's enough for 0.01 stability temperature control. Comparatively, Dale 01T1002-5 thermistor could get the most accurate temperature of the key point, Wheatstone bridge could get the most accurate mean temperature of the whole layer, both of them will be used in our futrue temperature controll system.
High precision innovative micropump for artificial pancreas
NASA Astrophysics Data System (ADS)
Chappel, E.; Mefti, S.; Lettieri, G.-L.; Proennecke, S.; Conan, C.
2014-03-01
The concept of artificial pancreas, which comprises an insulin pump, a continuous glucose meter and a control algorithm, is a major step forward in managing patient with type 1 diabetes mellitus. The stability of the control algorithm is based on short-term precision micropump to deliver rapid-acting insulin and to specific integrated sensors able to monitor any failure leading to a loss of accuracy. Debiotech's MEMS micropump, based on the membrane pump principle, is made of a stack of 3 silicon wafers. The pumping chamber comprises a pillar check-valve at the inlet, a pumping membrane which is actuated against stop limiters by a piezo cantilever, an anti-free-flow outlet valve and a pressure sensor. The micropump inlet is tightly connected to the insulin reservoir while the outlet is in direct communication with the patient skin via a cannula. To meet the requirement of a pump dedicated to closed-loop application for diabetes care, in addition to the well-controlled displacement of the pumping membrane, the high precision of the micropump is based on specific actuation profiles that balance effect of pump elasticity in low-consumption push-pull mode.
Highly damped kinematic coupling for precision instruments
Hale, Layton C.; Jensen, Steven A.
2001-01-01
A highly damped kinematic coupling for precision instruments. The kinematic coupling provides support while causing essentially no influence to its nature shape, with such influences coming, for example, from manufacturing tolerances, temperature changes, or ground motion. The coupling uses three ball-cone constraints, each combined with a released flexural degree of freedom. This arrangement enables a gain of higher load capacity and stiffness, but can also significantly reduce the friction level in proportion to the ball radius divided by the distance between the ball and the hinge axis. The blade flexures reduces somewhat the stiffness of the coupling and provides an ideal location to apply constrained-layer damping which is accomplished by attaching a viscoelastic layer and a constraining layer on opposite sides of each of the blade flexures. The three identical ball-cone flexures provide a damped coupling mechanism to kinematically support the projection optics system of the extreme ultraviolet lithography (EUVL) system, or other load-sensitive apparatus.
High-Precision Computation: Mathematical Physics and Dynamics
Bailey, D. H.; Barrio, R.; Borwein, J. M.
2010-04-01
At the present time, IEEE 64-bit oating-point arithmetic is suficiently accurate for most scientic applications. However, for a rapidly growing body of important scientic computing applications, a higher level of numeric precision is required. Such calculations are facilitated by high-precision software packages that include high-level language translation modules to minimize the conversion e ort. This pa- per presents a survey of recent applications of these techniques and provides someanalysis of their numerical requirements. These applications include supernova simulations, climate modeling, planetary orbit calculations, Coulomb n-body atomic systems, studies of the one structure constant, scattering amplitudes of quarks, glu- ons and bosons, nonlinear oscillator theory, experimental mathematics, evaluation of orthogonal polynomials, numerical integration of ODEs, computation of periodic orbits, studies of the splitting of separatrices, detection of strange nonchaotic at- tractors, Ising theory, quantum held theory, and discrete dynamical systems. We conclude that high-precision arithmetic facilities are now an indispensable compo- nent of a modern large-scale scientic computing environment.
High Precision Isotopic Reference Material Program
NASA Astrophysics Data System (ADS)
Mann, J. L.; Vocke, R. D.
2007-12-01
Recent developments in thermal ionization and inductively coupled plasma multicollector mass spectrometers have lead to "high precision" isotope ratio measurements with uncertainties approaching a few parts in 106. These new measurement capabilities have revolutionized the study of isotopic variations in nature by increasing the number of elements showing natural variations by almost a factor of two, and new research areas are actively opening up in climate change, health, ecology, geology and forensic studies. Because the isotopic applications are impacting very diverse fields, there is at present little effective coordination between research laboratories over reference materials and the values to apply to those materials. NIST had originally developed the techniques for producing accurate isotopic characterizations, culminating in the NIST Isotopic SRM series. The values on existing materials however are insufficiently precise and, in some cases, may be isotopically heterogeneous. A new generation of isotopic standards is urgently needed and will directly affect the quality and scope of emergent applications and ensure that the results being derived from these diverse fields are comparable. A series of new isotopic reference materials similar to the NIST 3100 single element solution series is being designed for this purpose and twelve elements have been selected as having the most pressing need. In conjunction with other expert users and National Metrology Institutes, an isotopic characterization of the respective 12 selected ampoules from the NIST single element solution series is currently underway. In this presentation the preliminary results of this screening will be discussed as well as the suitability of these materials in terms of homogeneity and purity, long term stability and availability, and isotopic relevance. Approaches to value assignment will also be discussed.
Aerodynamic window for high precision laser drilling
NASA Astrophysics Data System (ADS)
Sommer, Steffen; Dausinger, Friedrich; Berger, Peter; Hügel, Helmuth
2007-05-01
High precision laser drilling is getting more and more interesting for industry. Main applications for such holes are vaporising and injection nozzles. To enhance quality, the energy deposition has to be accurately defined by reducing the pulse duration and thereby reducing the amount of disturbing melting layer. In addition, an appropriate processing technology, for example the helical drilling, yields holes in steel at 1 mm thickness and diameters about 100 μm with correct roundness and thin recast layers. However, the processing times are still not short enough for industrial use. Experiments have shown that the reduction of the atmospheric pressure down to 100 hPa enhances the achievable quality and efficiency, but the use of vacuum chambers in industrial processes is normally quite slow and thus expensive. The possibility of a very fast evacuation is given by the use of an aerodynamic window, which produces the pressure reduction by virtue of its fluid dynamic features. This element, based on a potential vortex, was developed and patented as out-coupling window for high power CO II lasers by IFSW 1, 2, 3. It has excellent tightness and transmission properties, and a beam deflection is not detectable. The working medium is compressed air, only. For the use as vacuum element for laser drilling, several geometrical modifications had to be realized. The prototype is small enough to be integrated in a micromachining station and has a low gas flow. During the laser pulse, which is focussed through the potential flow, a very high fluence is reached, but the measurements have not shown any beam deflection or focal shifting. The evacuation time is below 300 ms so that material treatment with changing ambient pressure is possible, too. Experimental results have proven the positive effect of the reduced ambient pressure on the drilling process for the regime of nano- and picosecond laser pulses. Plasma effects are reduced and, because of the less absorption, the
High precision optical surface metrology using deflectometry
NASA Astrophysics Data System (ADS)
Huang, Run
Software Configurable Optical Test System (SCOTS) developed at University of Arizona is a highly efficient optical metrology technique based on the principle of deflectometry, which can achieve comparable accuracy with interferometry but with low-cost hardware. In a SCOTS test, an LCD display is used to generate structured light pattern to illuminate the test optics and the reflected light is captured by a digital camera. The surface slope of test optics is determined by triangulation of the display pixels, test optics, and the camera. The surface shape is obtained by the integration of the slopes. Comparing to interferometry, which has long served as an accurate non-contact optical metrology technology, SCOTS overcomes the limitation of dynamic range and sensitivity to environment. It is able to achieve high dynamic range slope measurement without requiring null optics. In this dissertation, the sensitivity and performance of the test system have been analyzed comprehensively. Sophisticated calibrations of system components have been investigated and implemented in different metrology projects to push this technology to a higher accuracy including low-order terms. A compact on-axis SCOTS system lowered the testing geometry sensitivity in the metrology of 1-meter highly aspheric secondary mirror of Large Binocular Telescope. Sub-nm accuracy was achieved in testing a high precision elliptical X-ray mirror by using reference calibration. A well-calibrated SCOTS was successfully constructed and is, at the time of writing this dissertation, being used to provide surface metrology feedback for the fabrication of the primary mirror of Daniel K. Inouye Solar Telescope which is a 4-meter off-axis parabola with more than 8 mm aspherical departure.
Precision mechatronics based on high-precision measuring and positioning systems and machines
NASA Astrophysics Data System (ADS)
Jäger, Gerd; Manske, Eberhard; Hausotte, Tino; Mastylo, Rostyslav; Dorozhovets, Natalja; Hofmann, Norbert
2007-06-01
Precision mechatronics is defined in the paper as the science and engineering of a new generation of high precision systems and machines. Nanomeasuring and nanopositioning engineering represents important fields of precision mechatronics. The nanometrology is described as the today's limit of the precision engineering. The problem, how to design nanopositioning machines with uncertainties as small as possible will be discussed. The integration of several optical and tactile nanoprobes makes the 3D-nanopositioning machine suitable for various tasks, such as long range scanning probe microscopy, mask and wafer inspection, nanotribology, nanoindentation, free form surface measurement as well as measurement of microoptics, precision molds, microgears, ring gauges and small holes.
Precision of methods for calculating identity-by-descent matrices using multiple markers
Sørensen, Anders Christian; Pong-Wong, Ricardo; Windig, Jack J; Woolliams, John A
2002-01-01
A rapid, deterministic method (DET) based on a recursive algorithm and a stochastic method based on Markov Chain Monte Carlo (MCMC) for calculating identity-by-descent (IBD) matrices conditional on multiple markers were compared using stochastic simulation. Precision was measured by the mean squared error (MSE) of the relationship coefficients in predicting the true IBD relationships, relative to MSE obtained from using pedigree only. Comparisons were made when varying marker density, allele numbers, allele frequencies, and the size of full-sib families. The precision of DET was 75–99% relative to MCMC, but was not simply related to the informativeness of individual loci. For situations mimicking microsatellite markers or dense SNP, the precision of DET was ≥ 95% relative to MCMC. Relative precision declined for the SNP, but not microsatellites as marker density decreased. Full-sib family size did not affect the precision. The methods were tested in interval mapping and marker assisted selection, and the performance was very largely determined by the MSE. A multi-locus information index considering the type, number, and position of markers was developed to assess precision. It showed a marked empirical relationship with the observed precision for DET and MCMC and explained the complex relationship between relative precision and the informativeness of individual loci. PMID:12427386
High precision flux measurements with ENUBET
NASA Astrophysics Data System (ADS)
Pozzato, M.; ENUBET collaboration
2017-09-01
The challenges of precision neutrino physics (i.e the study of CP violation) require measurements of absolute ν cross sections at the GeV scale with exquisite (O(1)%) precision. Such precision is presently limited to about 10% by the uncertainties on neutrino flux at the source. A reduction of this uncertainty by one order of magnitude can be achieved monitoring the positron production in the decay tunnel originating from the Ke3 decays of charged kaons in a sign and momentum selected narrow band beam. This novel technique enables the measurement of the most relevant cross-sections for CP violation (νe and {\\displaystyle \\bar{ν }}e) with a precision of 1% and requires a special instrumented beam-line. Such non-conventional beam-line will be developed in the framework of the ENUBET Horizon-2020 Consolidator Grant (PI A. Longhin), recently approved by the European Research Council (grant agreement N° 681647). In this poster, we will present the Project and the early experimental results on ultra-compact calorimeters that can embedded in the instrumented decay tunnel.
Describing oscillations of high energy neutrinos in matter precisely.
Akhmedov, E K H; Maltoni, M; Smirnov, A Y U
2005-11-18
We present a formalism for precise description of oscillation phenomena in matter at high energies or high densities, V > Delta m(2)/2E, where V is the matter-induced potential of neutrinos. The accuracy of the approximation is determined by the quantity, where is the mixing angle in matter and is a typical change of the potential over the oscillation length (). We derive simple and physically transparent formulas for the oscillation probabilities, which are valid for arbitrary matter density profiles. They can be applied to oscillations of high-energy accelerator, atmospheric, and cosmic neutrinos in the matter of the Earth, substantially simplifying numerical calculations and providing an insight into the physics of neutrino oscillations in matter. The effect of parametric enhancement of the oscillations of high-energy neutrinos is considered.
High precision attitude determination for Magsat
NASA Astrophysics Data System (ADS)
Abshire, G.; McCutcheon, R.; Summers, G.; Vanlandingham, F.; Meyers, G.
1981-08-01
A two phase approach to attitude determination software development is introduced. The prelaunch planning and software activities connected with the development and testing of the baseline system for processing nominal attitude data for MAGSAT are described and postlaunch analysis and modifications are outlined. Attitude data processing began 5 months after launch so that postlaunch anomalies could be accounted for. Another advantage of the two phase approach is that costs are reduced because the system is not burdened with software dealing with all possible contingencies. A definitive, continuous, time history of the three axis attitude of the spacecraft was generated to a precision of 20 arc sec (one standard deviation), in each axis. Sensor alignment determinations were done continuously because of the deletrious effects of changing alignments on attitude precision.
High-precision triangular-waveform generator
Mueller, T.R.
1981-11-14
An ultra-linear ramp generator having separately programmable ascending and decending ramp rates and voltages is provided. Two constant current sources provide the ramp through an integrator. Switching of the current at current source inputs rather than at the integrator input eliminates switching transients and contributes to the waveform precision. The triangular waveforms produced by the waveform generator are characterized by accurate reproduction and low drift over periods of several hours. The ascending and descending slopes are independently selectable.
High-precision positioning of radar scatterers
NASA Astrophysics Data System (ADS)
Dheenathayalan, Prabu; Small, David; Schubert, Adrian; Hanssen, Ramon F.
2016-05-01
Remote sensing radar satellites cover wide areas and provide spatially dense measurements, with millions of scatterers. Knowledge of the precise position of each radar scatterer is essential to identify the corresponding object and interpret the estimated deformation. The absolute position accuracy of synthetic aperture radar (SAR) scatterers in a 2D radar coordinate system, after compensating for atmosphere and tidal effects, is in the order of centimeters for TerraSAR-X (TSX) spotlight images. However, the absolute positioning in 3D and its quality description are not well known. Here, we exploit time-series interferometric SAR to enhance the positioning capability in three dimensions. The 3D positioning precision is parameterized by a variance-covariance matrix and visualized as an error ellipsoid centered at the estimated position. The intersection of the error ellipsoid with objects in the field is exploited to link radar scatterers to real-world objects. We demonstrate the estimation of scatterer position and its quality using 20 months of TSX stripmap acquisitions over Delft, the Netherlands. Using trihedral corner reflectors (CR) for validation, the accuracy of absolute positioning in 2D is about 7 cm. In 3D, an absolute accuracy of up to ˜ 66 cm is realized, with a cigar-shaped error ellipsoid having centimeter precision in azimuth and range dimensions, and elongated in cross-range dimension with a precision in the order of meters (the ratio of the ellipsoid axis lengths is 1/3/213, respectively). The CR absolute 3D position, along with the associated error ellipsoid, is found to be accurate and agree with the ground truth position at a 99 % confidence level. For other non-CR coherent scatterers, the error ellipsoid concept is validated using 3D building models. In both cases, the error ellipsoid not only serves as a quality descriptor, but can also help to associate radar scatterers to real-world objects.
NASA Astrophysics Data System (ADS)
Artem'ev, V. A.; Nezvanov, A. Yu.; Nesvizhevsky, V. V.
2016-01-01
We discuss properties of the interaction of slow neutrons with nano-dispersed media and their application for neutron reflectors. In order to increase the accuracy of model simulation of the interaction of neutrons with nanopowders, we perform precise quantum mechanical calculation of potential scattering of neutrons on single nanoparticles using the method of phase functions. We compare results of precise calculations with those performed within first Born approximation for nanodiamonds with the radius of 2-5 nm and for neutron energies 3 × 10-7-10-3 eV. Born approximation overestimates the probability of scattering to large angles, while the accuracy of evaluation of integral characteristics (cross sections, albedo) is acceptable. Using Monte-Carlo method, we calculate albedo of neutrons from different layers of piled up diamond nanopowder.
Artem’ev, V. A.; Nezvanov, A. Yu.; Nesvizhevsky, V. V.
2016-01-15
We discuss properties of the interaction of slow neutrons with nano-dispersed media and their application for neutron reflectors. In order to increase the accuracy of model simulation of the interaction of neutrons with nanopowders, we perform precise quantum mechanical calculation of potential scattering of neutrons on single nanoparticles using the method of phase functions. We compare results of precise calculations with those performed within first Born approximation for nanodiamonds with the radius of 2–5 nm and for neutron energies 3 × 10{sup -7}–10{sup -3} eV. Born approximation overestimates the probability of scattering to large angles, while the accuracy of evaluation of integral characteristics (cross sections, albedo) is acceptable. Using Monte-Carlo method, we calculate albedo of neutrons from different layers of piled up diamond nanopowder.
Ultra-high precision white dwarf asteroseismology
NASA Astrophysics Data System (ADS)
Giammichele, Noemi; Charpinet, Stéphane; Fontaine, Gilles; Brassard, Pierre; Zong, Weikai
We present a brief progress report in our quest for deriving seismic models of pulsating white dwarfs that can account simultaneously for all the observed periods at the precision of the observations. We point out that this is possible from a pratical point of view only if parametrized models are used to complement evolutionary models. We adopt a double optimization procedure that insures that the best possible model in parameter space is found objectively and automatically. Our ultimate goal is to be able to account for the exquisite period data gathered with Kepler and Kepler-2 on key pulsating white dwarfs of both the DA (ZZ Ceti) and DB (V777 Her) type.
Vertical high-precision Michelson wavemeter
NASA Astrophysics Data System (ADS)
Morales, A.; de Urquijo, J.; Mendoza, A.
1993-01-01
We have designed and tested a traveling, Michelson-type vertical wavemeter for the wavelength measurement of tunable continuous-wave lasers in the visible part of the spectrum. The interferometer has two movable corner cubes, suspending vertically from a driving setup resembling Atwood's machine. To reduce the fraction-of-fringe error, a vernier-type coincidence circuit was used. Although simple, this wavemeter has a relative precision of 3.2 parts in 109 for an overall fringe count of about 7×106.
Lack of precision of burn surface area calculation by UK Armed Forces medical personnel.
Martin, Niall A J; Lundy, Jonathan B; Rickard, Rory F
2014-03-01
Accurate determination of the severity of burn is essential for the care of thermally injured patients. We aimed to examine the accuracy and precision of TBSA calculation performed by specialist military burn care providers and non-specialist but experienced military clinicians. Using a single case example with photographic montages and a modified Lund and Browder chart, the two cohorts of clinicians were each given 10min to map and calculate the case example TBSA involvement. The accuracy and precision of results from the two cohorts were compared to a set standard %TBSA. The set standard %TBSA involvement was 64.5%. Mean %TBSA mapped by non-specialists (52.53±10.03%) differed significantly from the set standard (p<0.0001). No difference was observed when comparing results from the burn care providers (65.68±10.29%; p=0.622). However, when comparing precision of calculation of TBSA burned, there was no evidence of a difference in heterogeneity of results between the two cohorts (F test, p=0.639; Levene's test, p=0.448). These results indicate that experienced military burn care providers overall more accurately assess %TBSA burned than relatively inexperienced clinicians. However, results demonstrate a lack of precision in both groups. Crown Copyright © 2013. Published by Elsevier Ltd. All rights reserved.
HIGH PRECISION ROVIBRATIONAL SPECTROSCOPY OF OH{sup +}
Markus, Charles R.; Hodges, James N.; Perry, Adam J.; Kocheril, G. Stephen; McCall, Benjamin J.; Müller, Holger S. P.
2016-02-01
The molecular ion OH{sup +} has long been known to be an important component of the interstellar medium. Its relative abundance can be used to indirectly measure cosmic ray ionization rates of hydrogen, and it is the first intermediate in the interstellar formation of water. To date, only a limited number of pure rotational transitions have been observed in the laboratory making it necessary to indirectly calculate rotational levels from high-precision rovibrational spectroscopy. We have remeasured 30 transitions in the fundamental band with MHz-level precision, in order to enable the prediction of a THz spectrum of OH{sup +}. The ions were produced in a water cooled discharge of O{sub 2}, H{sub 2}, and He, and the rovibrational transitions were measured with the technique Noise Immune Cavity Enhanced Optical Heterodyne Velocity Modulation Spectroscopy. These values have been included in a global fit of field free data to a {sup 3}Σ{sup −} linear molecule effective Hamiltonian to determine improved spectroscopic parameters which were used to predict the pure rotational transition frequencies.
Zhao, Jing-Xin; Su, Xiu-Yun; Xiao, Ruo-Xiu; Zhao, Zhe; Zhang, Li-Hai; Zhang, Li-Cheng; Tang, Pei-Fu
2016-11-01
We established a mathematical method to precisely calculate the radiographic anteversion (RA) and radiographic inclination (RI) angles of the acetabular cup based on anterior-posterior (AP) pelvic radiographs after total hip arthroplasty. Using Mathematica software, a mathematical model for an oblique cone was established to simulate how AP pelvic radiographs are obtained and to address the relationship between the two-dimensional and three-dimensional geometry of the opening circle of the cup. In this model, the vertex was the X-ray beam source, and the generatrix was the ellipse in radiographs projected from the opening circle of the acetabular cup. Using this model, we established a series of mathematical formulas to reveal the differences between the true RA and RI cup angles and the measurements results achieved using traditional methods and AP pelvic radiographs and to precisely calculate the RA and RI cup angles based on post-operative AP pelvic radiographs. Statistical analysis indicated that traditional methods should be used with caution if traditional measurements methods are used to calculate the RA and RI cup angles with AP pelvic radiograph. The entire calculation process could be performed by an orthopedic surgeon with mathematical knowledge of basic matrix and vector equations. Copyright © 2016 IPEM. Published by Elsevier Ltd. All rights reserved.
High precision applications of the global positioning system
NASA Technical Reports Server (NTRS)
Lichten, Stephen M.
1991-01-01
The Global Positioning System (GPS) is a constellation of U.S. defense navigation satellites which can be used for military and civilian positioning applications. A wide variety of GPS scientific applications were identified and precise positioning capabilities with GPS were already demonstrated with data available from the present partial satellite constellation. Expected applications include: measurements of Earth crustal motion, particularly in seismically active regions; measurements of the Earth's rotation rate and pole orientation; high-precision Earth orbiter tracking; surveying; measurements of media propagation delays for calibration of deep space radiometric data in support of NASA planetary missions; determination of precise ground station coordinates; and precise time transfer worldwide.
Research on high precision equal-angle scanning method in rotary kiln temperature measurement system
NASA Astrophysics Data System (ADS)
Dai, Shaosheng; Guo, Zhongyuan; You, Changhui; Liu, Jinsong; Cheng, Yang; Tang, Huaming
2016-05-01
Aiming at traditional horizontal equal-angle scanning method's disadvantage of measurement error, a high precision equal-angle scanning method is proposed, the proposed method establishes a tilt scanning model by the following steps: introducing height variable, precisely calculating the viewing angle, building scanning model. The model is used to calculate scanning position on rotary kiln's surface, which helps to locate and track temperature variation. The experiment shows that the proposed method can effectively improve the precision of temperature spots' location on the rotary kiln surface.
Precision Timing Calorimeter for High Energy Physics
Anderson, Dustin; Apresyan, Artur; Bornheim, Adolf; ...
2016-04-01
Here, we present studies on the performance and characterization of the time resolution of LYSO-based calorimeters. Results for an LYSO sampling calorimeter and an LYSO-tungsten Shashlik calorimeter are presented. We also demonstrate that a time resolution of 30 ps is achievable for the LYSO sampling calorimeter. Timing calorimetry is described as a tool for mitigating the effects due to the large number of simultaneous interactions in the high luminosity environment foreseen for the Large Hadron Collider.
High-precision gauging of metal rings
NASA Astrophysics Data System (ADS)
Carlin, Mats; Lillekjendlie, Bjorn
1994-11-01
Raufoss AS designs and produces air brake fittings for trucks and buses on the international market. One of the critical components in the fittings is a small, circular metal ring, which is going through 100% dimension control. This article describes a low-price, high accuracy solution developed at SINTEF Instrumentation based on image metrology and a subpixel resolution algorithm. The measurement system consists of a PC-plugg-in transputer video board, a CCD camera, telecentric optics and a machine vision strobe. We describe the measurement technique in some detail, as well as the robust statistical techniques found to be essential in the real life environment.
High precision mass measurements for wine metabolomics
Roullier-Gall, Chloé; Witting, Michael; Gougeon, Régis D.; Schmitt-Kopplin, Philippe
2014-01-01
An overview of the critical steps for the non-targeted Ultra-High Performance Liquid Chromatography coupled with Quadrupole Time-of-Flight Mass Spectrometry (UPLC-Q-ToF-MS) analysis of wine chemistry is given, ranging from the study design, data preprocessing and statistical analyses, to markers identification. UPLC-Q-ToF-MS data was enhanced by the alignment of exact mass data from FTICR-MS, and marker peaks were identified using UPLC-Q-ToF-MS2. In combination with multivariate statistical tools and the annotation of peaks with metabolites from relevant databases, this analytical process provides a fine description of the chemical complexity of wines, as exemplified in the case of red (Pinot noir) and white (Chardonnay) wines from various geographic origins in Burgundy. PMID:25431760
High precision mass measurements for wine metabolomics
NASA Astrophysics Data System (ADS)
Roullier-Gall, Chloé; Witting, Michael; Gougeon, Régis; Schmitt-Kopplin, Philippe
2014-11-01
An overview of the critical steps for the non-targeted Ultra-High Performance Liquid Chromatography coupled with Quadrupole Time-of-Flight Mass Spectrometry (UPLC-Q-ToF-MS) analysis of wine chemistry is given, ranging from the study design, data preprocessing and statistical analyses, to markers identification. UPLC-Q-ToF-MS data was enhanced by the alignment of exact mass data from FTICR-MS, and marker peaks were identified using UPLC-Q-ToF-MS². In combination with multivariate statistical tools and the annotation of peaks with metabolites from relevant databases, this analytical process provides a fine description of the chemical complexity of wines, as exemplified in the case of red (Pinot noir) and white (Chardonnay) wines from various geographic origins in Burgundy.
Describing Oscillations of High Energy Neutrinos in Matter Precisely
Akhmedov, E.Kh.; Maltoni, M.; Smirnov, A.Yu.
2005-11-18
We present a formalism for precise description of oscillation phenomena in matter at high energies or high densities, V>{delta}m{sup 2}/2E, where V is the matter-induced potential of neutrinos. The accuracy of the approximation is determined by the quantity sin{sup 2}2{theta}{sub m}{delta}V/2{pi}V, where {theta}{sub m} is the mixing angle in matter and {delta}V is a typical change of the potential over the oscillation length (l{approx}2{pi}/V). We derive simple and physically transparent formulas for the oscillation probabilities, which are valid for arbitrary matter density profiles. They can be applied to oscillations of high-energy (E>10 GeV) accelerator, atmospheric, and cosmic neutrinos in the matter of the Earth, substantially simplifying numerical calculations and providing an insight into the physics of neutrino oscillations in matter. The effect of parametric enhancement of the oscillations of high-energy neutrinos is considered.
Precision probes of QCD at high energies
NASA Astrophysics Data System (ADS)
Alioli, Simone; Farina, Marco; Pappadopulo, Duccio; Ruderman, Joshua T.
2017-07-01
New physics, that is too heavy to be produced directly, can leave measurable imprints on the tails of kinematic distributions at the LHC. We use energetic QCD processes to perform novel measurements of the Standard Model (SM) Effective Field Theory. We show that the dijet invariant mass spectrum, and the inclusive jet transverse momentum spectrum, are sensitive to a dimension 6 operator that modifies the gluon propagator at high energies. The dominant effect is constructive or destructive interference with SM jet production. We compare differential next-to-leading order predictions from POWHEG to public 7 TeV jet data, including scale, PDF, and experimental uncertainties and their respective correlations. We constrain a New Physics (NP) scale of 3.5 TeV with current data. We project the reach of future 13 and 100 TeV measurements, which we estimate to be sensitive to NP scales of 8 and 60 TeV, respectively. As an application, we apply our bounds to constrain heavy vector octet colorons that couple to the QCD current. We project that effective operators will surpass bump hunts, in terms of coloron mass reach, even for sequential couplings.
Precision probes of QCD at high energies
Alioli, Simone; Farina, Marco; Pappadopulo, Duccio; ...
2017-07-20
New physics, that is too heavy to be produced directly, can leave measurable imprints on the tails of kinematic distributions at the LHC.We use energetic QCD processes to perform novel measurements of the Standard Model (SM) Effective Field Theory. We show that the dijet invariant mass spectrum, and the inclusive jet transverse momentum spectrum, are sensitive to a dimension 6 operator that modifies the gluon propagator at high energies. The dominant effect is constructive or destructive interference with SM jet production. Here, we compare differential next-to-leading order predictions from POWHEG to public 7TeV jet data, including scale, PDF, and experimentalmore » uncertainties and their respective correlations. Furthermore, we constrain a New Physics (NP) scale of 3.5TeV with current data. We project the reach of future 13 and 100TeV measurements, which we estimate to be sensitive to NP scales of 8 and 60TeV, respectively. As an application, we apply our bounds to constrain heavy vector octet colorons that couple to the QCD current. We conclude that effective operators will surpass bump hunts, in terms of coloron mass reach, even for sequential couplings.« less
Precision timing calorimeter for high energy physics
NASA Astrophysics Data System (ADS)
Anderson, Dustin; Apresyan, Artur; Bornheim, Adolf; Duarte, Javier; Peña, Cristián; Spiropulu, Maria; Trevor, Jason; Xie, Si; Ronzhin, Anatoly
2016-07-01
Scintillator based calorimeter technology is studied with the aim to achieve particle detection with a time resolution on the order of a few 10 ps for photons and electrons at energies of a few GeV and above. We present results from a prototype of a 1.4×1.4×11.4 cm3 sampling calorimeter cell consisting of tungsten absorber plates and Cerium-doped Lutetium Yttrium Orthosilicate (LYSO) crystal scintillator plates. The LYSO plates are read out with wave lengths shifting fibers which are optically coupled to fast photo detectors on both ends of the fibers. The measurements with electrons were performed at the Fermilab Test Beam Facility (FTBF) and the CERN SPS H2 test beam. In addition to the baseline setup plastic scintillation counter and a MCP-PMT were used as trigger and as a reference for a time of flight measurement (TOF). We also present measurements with a fast laser to further characterize the response of the prototype and the photo sensors. All data were recorded using a DRS4 fast sampling digitizer. These measurements are part of an R&D program whose aim is to demonstrate the feasibility of building a large scale electromagnetic calorimeter with a time resolution on the order of 10 ps, to be used in high energy physics experiments.
High precision predictions for exclusive VH production at the LHC
Li, Ye; Liu, Xiaohui
2014-06-04
We present a resummation-improved prediction for pp → VH + 0 jets at the Large Hadron Collider. We focus on highly-boosted final states in the presence of jet veto to suppress the tt¯ background. In this case, conventional fixed-order calculations are plagued by the existence of large Sudakov logarithms αnslogm(pvetoT/Q) for Q ~ mV + mH which lead to unreliable predictions as well as large theoretical uncertainties, and thus limit the accuracy when comparing experimental measurements to the Standard Model. In this work, we show that the resummation of Sudakov logarithms beyond the next-to-next-to-leading-log accuracy, combined with the next-to-next-to-leading ordermore » calculation, reduces the scale uncertainty and stabilizes the perturbative expansion in the region where the vector bosons carry large transverse momentum. Thus, our result improves the precision with which Higgs properties can be determined from LHC measurements using boosted Higgs techniques.« less
Developing and implementing a high precision setup system
NASA Astrophysics Data System (ADS)
Peng, Lee-Cheng
The demand for high-precision radiotherapy (HPRT) was first implemented in stereotactic radiosurgery using a rigid, invasive stereotactic head frame. Fractionated stereotactic radiotherapy (SRT) with a frameless device was developed along a growing interest in sophisticated treatment with a tight margin and high-dose gradient. This dissertation establishes the complete management for HPRT in the process of frameless SRT, including image-guided localization, immobilization, and dose evaluation. The most ideal and precise positioning system can allow for ease of relocation, real-time patient movement assessment, high accuracy, and no additional dose in daily use. A new image-guided stereotactic positioning system (IGSPS), the Align RT3C 3D surface camera system (ART, VisionRT), which combines 3D surface images and uses a real-time tracking technique, was developed to ensure accurate positioning at the first place. The uncertainties of current optical tracking system, which causes patient discomfort due to additional bite plates using the dental impression technique and external markers, are found. The accuracy and feasibility of ART is validated by comparisons with the optical tracking and cone-beam computed tomography (CBCT) systems. Additionally, an effective daily quality assurance (QA) program for the linear accelerator and multiple IGSPSs is the most important factor to ensure system performance in daily use. Currently, systematic errors from the phantom variety and long measurement time caused by switching phantoms were discovered. We investigated the use of a commercially available daily QA device to improve the efficiency and thoroughness. Reasonable action level has been established by considering dosimetric relevance and clinic flow. As for intricate treatments, the effect of dose deviation caused by setup errors remains uncertain on tumor coverage and toxicity on OARs. The lack of adequate dosimetric simulations based on the true treatment coordinates from
Computer-Aided High Precision Verification Of Miniature Spring Structure
NASA Astrophysics Data System (ADS)
Bow, Sing T.; Wang, Da-hao; Chen, Tsung-sheng; Newell, Darrell E.
1990-01-01
A system is proposed for the high precision on-line verification of the minia-ture spring structure, including overall height, diameters of various coils as well as pitches between neighboring coils of the miniature conical springs. High preci-sion measurements without physical contact and short processing time are achieved. Deformations of any kind on the conical springs can be identified even from the worst viewing direction.
System and method for high precision isotope ratio destructive analysis
Bushaw, Bruce A; Anheier, Norman C; Phillips, Jon R
2013-07-02
A system and process are disclosed that provide high accuracy and high precision destructive analysis measurements for isotope ratio determination of relative isotope abundance distributions in liquids, solids, and particulate samples. The invention utilizes a collinear probe beam to interrogate a laser ablated plume. This invention provides enhanced single-shot detection sensitivity approaching the femtogram range, and isotope ratios that can be determined at approximately 1% or better precision and accuracy (relative standard deviation).
Galvanometer deflection: a precision high-speed system.
Jablonowski, D P; Raamot, J
1976-06-01
An X-Y galvanometer deflection system capable of high precision in a random access mode of operation is described. Beam positional information in digitized form is obtained by employing a Ronchi grating with a sophisticated optical detection scheme. This information is used in a control interface to locate the beam to the required precision. The system is characterized by high accuracy at maximum speed and is designed for operation in a variable environment, with particular attention placed on thermal insensitivity.
High-precision camera distortion measurements with a ``calibration harp''
NASA Astrophysics Data System (ADS)
Tang, Zhongwei; Grompone von Gioi, Rafael; Monasse, Pascal; Morel, Jean-Michel
2012-10-01
This paper addresses the high precision measurement of the distortion of a digital camera from photographs. Traditionally, this distortion is measured from photographs of a flat pattern which contains aligned elements. Nevertheless, it is nearly impossible to fabricate a very flat pattern and to validate its flatness. This fact limits the attainable measurable precisions. In contrast, it is much easier to obtain physically very precise straight lines by tightly stretching good quality strings on a frame. Taking literally "plumb-line methods", we built a "calibration harp" instead of the classic flat patterns to obtain a high precision measurement tool, demonstrably reaching 2/100 pixel precisions. The harp is complemented with the algorithms computing automatically from harp photographs two different and complementary lens distortion measurements. The precision of the method is evaluated on images corrected by state-of-the-art distortion correction algorithms, and by popular software. Three applications are shown: first an objective and reliable measurement of the result of any distortion correction. Second, the harp permits to control state-of-the art global camera calibration algorithms: It permits to select the right distortion model, thus avoiding internal compensation errors inherent to these methods. Third, the method replaces manual procedures in other distortion correction methods, makes them fully automatic, and increases their reliability and precision.
High Resolution and High Precision-Spectroscopy with HARPS
NASA Astrophysics Data System (ADS)
Pepe, F.; Lovis, C.
Extra-solar planet search at a level of precision below 1 ms-1 sets strong requirements to the quality and stability of the wavelength solution. It also forces us to understand the effects of instrumental stability, on the one hand, and the quality of the wavelength reference, on the other hand, since both will have an impact, although in a different way, on the short- and long-term precision of the instrument. This chapter presents the calibration principles of HARPS, which lead to its extra-ordinary wavelength solution and, as a direct consequence, to its unique radial-velocity precision. In particular it will focus on the improvements of the thorium-lamp calibrations we made during the past three years, but it willl also discuss the present limitations. Finally, we give an outlook on further possible improvements which can be made in view of the extreme precision required by instruments like CODEX@ELT.
High-Precision Single Photon Timing of Pulsars
NASA Astrophysics Data System (ADS)
Ransom, Scott M.; Ray, Paul S.; Kerr, Matthew
2017-08-01
We have developed a likelihood-based technique, implemented through Markov Chain Monte Carlo, that enables high-precision pulsar timing using individual x-rays or gamma-rays. Our current implementaion leverages the new timing software PINT for timing model details and provides several significant advantages over earlier, more traditional, timing techniques. Our method does not require the integration of an average pulse profile from which a "time of arrival" is computed. This is crucial when the photon count rates are too low to produce a good pulse profile on the timescales of other important timing properties of the system (such as an orbital period of a binary pulsar). Arbitrary weights can be applied to each photon to indicate, for instance, the probability that each event might be a background photon. Many other improvements are being developed, such as simultaneously determining the timing solution and a template profile and parallel calculation of the likelihoods. We have successfully applied the technique to a variety of Fermi pulsars and will be using it extensively for timing analyses during the NICER mission.
High precision spectroscopy and imaging in THz frequency range
NASA Astrophysics Data System (ADS)
Vaks, Vladimir L.
2014-03-01
Application of microwave methods for development of the THz frequency range has resulted in elaboration of high precision THz spectrometers based on nonstationary effects. The spectrometers characteristics (spectral resolution and sensitivity) meet the requirements for high precision analysis. The gas analyzers, based on the high precision spectrometers, have been successfully applied for analytical investigations of gas impurities in high pure substances. These investigations can be carried out both in absorption cell and in reactor. The devices can be used for ecological monitoring, detecting the components of chemical weapons and explosive in the atmosphere. The great field of THz investigations is the medicine application. Using the THz spectrometers developed one can detect markers for some diseases in exhaled air.
High-precision thermal and electrical characterization of thermoelectric modules
Kolodner, Paul
2014-05-15
This paper describes an apparatus for performing high-precision electrical and thermal characterization of thermoelectric modules (TEMs). The apparatus is calibrated for operation between 20 °C and 80 °C and is normally used for measurements of heat currents in the range 0–10 W. Precision thermometry based on miniature thermistor probes enables an absolute temperature accuracy of better than 0.010 °C. The use of vacuum isolation, thermal guarding, and radiation shielding, augmented by a careful accounting of stray heat leaks and uncertainties, allows the heat current through the TEM under test to be determined with a precision of a few mW. The fractional precision of all measured parameters is approximately 0.1%.
Precise Calculations of Astrophysically Important Allowed and Forbidden Transitions of Xe VIII
NASA Astrophysics Data System (ADS)
Bhowmik, Anal; Nath Dutta, Narendra; Roy, Sourav
2017-02-01
The present work reports transition line parameters for Xe viii, which are potentially important for astrophysics in view of recent observations of multiply ionized xenon in hot white dwarfs. The relativistic coupled-cluster method is employed here to calculate the E1, E2, and M1 transition line parameters with high accuracy. The E1 oscillator strengths and probabilities of E2 and M1 transitions are determined using theoretical amplitudes and experimental energy values. The calculated branching ratios and the lifetimes are supplemented to the transition parameters. The accurate presentation of these calculated data is crucial for density estimation in several stellar and interstellar media.
A precise calculation of delayed coincidence selection efficiency and accidental coincidence rate
NASA Astrophysics Data System (ADS)
Yu, Jing-Yi; Wang, Zhe; Chen, Shao-Min
2015-05-01
A precise background evaluation model is proposed to address the complex data structure of the delayed coincidence method, which is widely used in reactor electron-antineutrino oscillation experiments. In this model, effects from the muon veto, uncorrelated random background, and background are all studied analytically, simplifying the estimation of the systematic uncertainties of signal efficiency and accidental background rate. The results of the calculations are validated numerically with a number of simulation studies and also applied and validated in the recent Daya Bay hydrogen-capture based oscillation measurement. Supported by Ministry of Science and Technology of China (2013CB834302), National Natural Science Foundation of China (11235006, 11475093), Tsinghua University Initiative Scientific Research Program (2012Z02161), and Key Laboratory of Particle & Radiation Imaging (Tsinghua University), Ministry of Education.
Mezei, Pál D; Csonka, Gábor I; Ruzsinszky, Adrienn; Sun, Jianwei
2015-01-13
A correct description of the anion-π interaction is essential for the design of selective anion receptors and channels and important for advances in the field of supramolecular chemistry. However, it is challenging to do accurate, precise, and efficient calculations of this interaction, which are lacking in the literature. In this article, by testing sets of 20 binary anion-π complexes of fluoride, chloride, bromide, nitrate, or carbonate ions with hexafluorobenzene, 1,3,5-trifluorobenzene, 2,4,6-trifluoro-1,3,5-triazine, or 1,3,5-triazine and 30 ternary π-anion-π' sandwich complexes composed from the same monomers, we suggest domain-based local-pair natural orbital coupled cluster energies extrapolated to the complete basis-set limit as reference values. We give a detailed explanation of the origin of anion-π interactions, using the permanent quadrupole moments, static dipole polarizabilities, and electrostatic potential maps. We use symmetry-adapted perturbation theory (SAPT) to calculate the components of the anion-π interaction energies. We examine the performance of the direct random phase approximation (dRPA), the second-order screened exchange (SOSEX), local-pair natural-orbital (LPNO) coupled electron pair approximation (CEPA), and several dispersion-corrected density functionals (including generalized gradient approximation (GGA), meta-GGA, and double hybrid density functional). The LPNO-CEPA/1 results show the best agreement with the reference results. The dRPA method is only slightly less accurate and precise than the LPNO-CEPA/1, but it is considerably more efficient (6-17 times faster) for the binary complexes studied in this paper. For 30 ternary π-anion-π' sandwich complexes, we give dRPA interaction energies as reference values. The double hybrid functionals are much more efficient but less accurate and precise than dRPA. The dispersion-corrected double hybrid PWPB95-D3(BJ) and B2PLYP-D3(BJ) functionals perform better than the GGA and meta
Research on high-precision hole measurement based on robot vision method
NASA Astrophysics Data System (ADS)
Song, Li-mei; Li, Da-peng; Qin, Ming-cui; Li, Zong-yan; Chang, Yu-lan; Xi, Jiang-tao
2014-09-01
A high-precision vision detection and measurement system using mobile robot is established for the industry field detection of motorcycle frame hole and its diameter measurement. The robot path planning method is researched, and the non-contact measurement method with high precision based on visual digital image edge extraction and hole spatial circle fitting is presented. The Canny operator is used to extract the edge of captured image, the Lagrange interpolation algorithm is utilized to determine the missing image edge points and calculate the centroid, and the least squares fitting method is adopted to fit the image edge points. Experimental results show that the system can be used for the high-precision real-time measurement of hole on motorcycle frame. The absolute standard deviation of the proposed method is 0.026 7 mm. The proposed method can not only improve the measurement speed and precision, but also reduce the measurement error.
Design and control of a high precision drive mechanism
NASA Astrophysics Data System (ADS)
Pan, Bo; He, Yongqiang; Wang, Haowei; Zhang, Shuyang; Zhang, Donghua; Wei, Xiaorong; Jiang, Zhihong
2017-01-01
This paper summarizes the development of a high precision drive mechanism (HPDM) for space application, such as the directional antenna, the laser communication device, the mobile camera and other pointing mechanisms. In view of the great practical significance of high precision drive system, control technology for permanent magnet synchronous motor (PMSM) servo system is also studied and a PMSM servo controller is designed in this paper. And the software alignment was applied to the controller to eliminate the steady error of the optical encoder, which helps to realize the 1 arcsec (1σ) control precision. To assess its capabilities, the qualification environment testing including the thermal vacuum cycling testing, and the sinusoidal and random vibration were carried out. The testing results show that the performance of the HPDM is almost the same between the former and the end of each testing.
Precision glass molding: an integrative approach for the production of high precision micro-optics
NASA Astrophysics Data System (ADS)
Hünten, Martin; Klocke, Fritz; Dambon, Olaf
2010-02-01
Miniaturization and integration are the dominating factors for the success of numerous optical devices. Conventional manufacturing processes for the fabrication of precise glass optics by means of grinding and polishing cannot cope the increasing demands in terms of precision, volume and costs. Here, precision glass molding is the enabling technology to meet these demands of the future optical products and applications. Since the market requests further miniaturization and integration of the micro optical components the possession of the entire sequence of processes is absolutely essential. With the accomplished and ongoing developments at the Fraunhofer IPT, the replication of double-sided (a)spherical and (a)cylindrical glass lenses with form accuracies of < 150 nm as well as lens arrays and even freeform optics could be realized. Therefore, a sequence of processes needs to be passed. The FEM-simulation of the molding process which was driven to a point capable to simulate even the molding of freeform optics is the first process step. Further on, new mold design concepts were generated to enable the replication of free formed optics. The research works focusing on the mold manufacturing led to sophisticated grinding process strategies able to realized complex mold geometries such as lens arrays. With regard to the coating of the molds, proceedings were developed assuring a defect free and uniform coating which enables the longevity of the molds and therewith helps reducing the final costs per lens. Thus, the precision glass molding becomes more and more interesting even for highly complex mid volume lots, characteristic for European or US optics manufacturer.
High precision radial velocities: the case for NIR.
NASA Astrophysics Data System (ADS)
Carleo, I.; Gratton, R.
In the context of the preparation for the high resolution spectrograph HIRES for E-ELT, we are studying the possibility to derive high-precision radial velocities (RV) on a prototype:GIANO, the near-infrared (NIR) echelle spectrograph now available at the Telescopio Nazionale Galileo. Radial velocities measured from near-infrared spectra are a potential tool to search for extrasolar planets around cool stars. High resolution infrared spectrographs now available are reaching the high precision of visible instruments, with a constant improvement over time. In particular, no other IR instruments have GIANO's capability to cover the entire NIR wavelength range. We have developed an ensemble of IDL procedures to measure high precision radial velocities on GIANO spectra. Taking into account the achieved precisions with GIANO, we constrain the sample of targets for which GIANO is better than HARPS-N, but with the advent of GIARPS (GIANO+HARPS-N), GIANO will improve its performances and include a much larger sample of stars. The NIR range is the future of RV measurements, especially because the jitter due to the star surface activities is reduced in the NIR. As a consequence, HIRES working in NIR range might be very useful, and for a wide range of cases, it will be more efficient than HIRES working in the visible range, for detection and characterization of planets using radial velocity technique.
Ouyang, Qi; Wen, Cong; Song, Yongduan; Dong, Xingchen; Zhang, Xinglan
2015-10-01
In this paper, we propose an approach for designing and developing high-precision integrative systems for strip flatness detection. Algorithms are developed for camera calibration, which are more accurate than the general method calculating all the camera parameters. On the basis of this method, a detection system is developed including an integrative device for easy calculation and repeated usage. On-site experiment results confirm that the proposed method works well under hostile environmental conditions in mills.
VIEW OF MICROMACHINING, HIGH PRECISION EQUIPMENT USED TO CUSTOM MAKE ...
VIEW OF MICRO-MACHINING, HIGH PRECISION EQUIPMENT USED TO CUSTOM MAKE SMALL PARTS. LUMPS OF CLAY; SHOWN IN THE PHOTOGRAPH, WERE USED TO STABILIZE PARTS BEING MACHINED. (11/1/87) - Rocky Flats Plant, Stainless Steel & Non-Nuclear Components Manufacturing, Southeast corner of intersection of Cottonwood & Third Avenues, Golden, Jefferson County, CO
Fabrication and metrology of high-precision freeform surfaces
NASA Astrophysics Data System (ADS)
Supranowitz, Chris; Dumas, Paul; Nitzsche, Tobias; DeGroote Nelson, Jessica; Light, Brandon B.; Medicus, Kate; Smith, Nathan
2013-09-01
Freeform applications are growing and include helmet-mounted displays, conformal optics (e.g. windows integrated into airplane wings), and those requiring the extreme precision of EUV. These non-rotationally symmetric surfaces pose challenges to optical fabrication, mostly in the areas of polishing and metrology. The varying curvature of freeform surfaces drives the need for smaller, more "conformal", tools for polishing and reference beams for interferometry. In this paper, we present fabrication results of a high-precision freeform surface. We will discuss the total manufacturing process, including generation, pre-polishing, MRF®, and metrology, highlighting the capabilities available in today's optical fabrication companies.
GENERATION AND CONTROL OF HIGH PRECISION BEAMS AT LEPTON ACCELERATORS
Yu-Chiu Chao
2007-06-25
Parity violation experiments require precision manipulation of helicity-correlated beam coordinates on target at the nm/nrad-level. Achieving this unprecedented level of control requires a detailed understanding of the particle optics and careful tuning of the beam transport to keep anomalies from compromising the design adiabatic damping. Such efforts are often hindered by machine configuration and instrumentation limitations at the low energy end. A technique has been developed at CEBAF including high precision measurements, Mathematica-based analysis for obtaining corrective solutions, and control hardware/software developments for realizing such level of control at energies up to 5 GeV.
High precision u/th dating of first Polynesian settlement.
Burley, David; Weisler, Marshall I; Zhao, Jian-xin
2012-01-01
Previous studies document Nukuleka in the Kingdom of Tonga as a founder colony for first settlement of Polynesia by Lapita peoples. A limited number of radiocarbon dates are one line of evidence supporting this claim, but they cannot precisely establish when this event occurred, nor can they afford a detailed chronology for sequent occupation. High precision U/Th dates of Acropora coral files (abraders) from Nukuleka give unprecedented resolution, identifying the founder event by 2838±8 BP and documenting site development over the ensuing 250 years. The potential for dating error due to post depositional diagenetic alteration of ancient corals at Nukuleka also is addressed through sample preparation protocols and paired dates on spatially separated samples for individual specimens. Acropora coral files are widely distributed in Lapita sites across Oceania. U/Th dating of these artifacts provides unparalleled opportunities for greater precision and insight into the speed and timing of this final chapter in human settlement of the globe.
High Precision Differential Photometry with CCDs: A Brief History
NASA Astrophysics Data System (ADS)
Howell, Steve B.
I present a brief history of the hunt for high photometric precision using CCDs in astronomy. CCDs were invented in 1969 and only 7 years later they started to appear at the major observatories of the time. The next 10 years constituted a steep learning curve for astronomers as they developed an understanding of CCDs as instruments and analysis techniques for use with digital images. In 1985, differential photometry with CCDs began producing light curves with precisions near 0.01 magnitude. By 2008, ground-based telescopes armed with CCDs and using differential techniques consistently can provide photometric precisions of 1 millimagnitude or better. The challenge now is to continue to improve the photometry using new types of CCD detectors and other advanced digital imagers.
Magnetic fields calculated by INTMAG compared with analytical solutions and precision measurements
NASA Astrophysics Data System (ADS)
Becker, Reinard
1990-12-01
The computer program INTMAG [R. Becker, Nucl. Instr. and Meth. B42 (1989) 303] calculates magnetostatic fields by integrating the contributions of real filaments, which result from splitting up solid windings, and of assumed filaments on the surface of iron pieces, in order to simulate the behaviour of the iron-air interface. The currents of the surface filaments are determined in succeeding steps by an iterative procedures, which saves memory at the expense of computing time, but allows to use as much as 999 filaments in a problem, even on a PC. Due to the integration calculus, the results are more accurate and much more "smooth" than from any finite difference or finite element method program. For the use in trajectory-optics programs such as EGN2 [W.B. Herrmannsfeldt, SLAC-331 (1988)], where radial expansion of axial data is a common procedure, the results of INTMAG do not need any "Maxwellisation", because they are exact solutions of Maxwell's equations. New features added to INTMAG comprise a finite permeability, rectangular coordinates, and mirroring to save numerical work in the case of mirror or angular symmetry as well as an improvement of the integration over the discretised boundary filaments. The PC versions of INTMAG is compiled with MS-Fortran 5.0 (Microsoft Corp., Redmont, WA, USA) which allows to use NAMELIST input, making the input file easy to read and easy to set up. Besides explaining the new features added, the emphasis of this paper is on the comparison of INTMAG calculations with analytical solutions, namely the magnetisation of iron ball and sphere in the case of axisymmetric coordinates and of iron rod and cylinder in rectangular coordinates for different values of permeability. As a further example in rectangular coordinates, a quadrupole is calculated, demonstrating the option of mirroring. Also a comparison is made with precision measurements (B. Langenbeck, private communication) in the gap of a bending magnet of the ESR [B. Franzke
Precision glass molding of high-resolution diffractive optical elements
NASA Astrophysics Data System (ADS)
Prater, Karin; Dukwen, Julia; Scharf, Toralf; Herzig, Hans P.; Plöger, Sven; Hermerschmidt, Andreas
2016-04-01
The demand of high resolution diffractive optical elements (DOE) is growing. Smaller critical dimensions allow higher deflection angles and can fulfill more demanding requirements, which can only be met by using electron-beam lithography. Replication techniques are more economical, since the high cost of the master can be distributed among a larger number of replicas. The lack of a suitable mold material for precision glass molding has so far prevented an industrial use. Glassy Carbon (GC) offers a high mechanical strength and high thermal strength. No anti-adhesion coatings are required in molding processes. This is clearly an advantage for high resolution, high aspect ratio microstructures, where a coating with a thickness between 10 nm and 200 nm would cause a noticeable rounding of the features. Electron-beam lithography was used to fabricate GC molds with highest precision and feature sizes from 250 nm to 2 μm. The master stamps were used for precision glass molding of a low Tg glass L-BAL42 from OHARA. The profile of the replicated glass is compared to the mold with the help of SEM images. This allows discussion of the max. aspect-ratio and min. feature size. To characterize optical performances, beamsplitting elements are fabricated and their characteristics were investigated, which are in excellent agreement to theory.
High Precision Photometry for the K2 Mission
NASA Astrophysics Data System (ADS)
Huang, Xu; Soares-Furtado, Melinda; Penev, Kaloyan; Hartman, Joel; Bakos, Gaspar; Bhatti, Waqas; Domsa, Istvan; de Val-Borro, Miguel
2015-12-01
The two reaction wheel K2 mission brings new challenges for the data reduction processes. We developed a reduction pipeline for extracting high precision photometry from the K2 dataset and we use this pipeline to generate light curves for the K2 Campaign 0 super-stamps and K2 Campaign 1 target pixel dataset. Key to our reduction technique is the derivation of global astrometric solutions from the target stamps from which accurate centroids are passed on for high precision photometry extraction. We also implemented the image subtraction method to reduce the K2 Campaign 0 super-stamps containing open clusters M35 and NGC2158. We extract target light curvesfor sources from a combined UCAC4 and EPIC catalogue -- this includes not only primary targets of the K2 Mission, but also other stars that happen to fall on the pixel stamps. Our astrometric solutions achieve a median residual of ~0.127". For bright stars, our best 6.5 hour precision for raw light curves is ~20 parts per million (ppm). For our detrended light curves, the best 6.5 hour precision achieved is ~15 ppm. We show that our detrended light curves have fewer systematic effects (or trends, or red-noise) than light curves produced by other groups from the same observations. We highlight the measurements of rotation curves using the K2 light curves of stars within open cluster M35 and NGC2158.
Design of high-precision ranging system for laser fuze
NASA Astrophysics Data System (ADS)
Chen, Shanshan; Zhang, He; Xu, Xiaobin
2016-10-01
According to the problem of the high-precision ranging in the circumferential scanning probe laser proximity fuze, a new type of pulsed laser ranging system has been designed. The laser transmitting module, laser receiving module and ranging processing module have been designed respectively. The factors affecting the ranging accuracy are discussed. And the method of improving the ranging accuracy is studied. The high-precision ranging system adopts the general high performance microprocessor C8051FXXX as the core. And the time interval measurement chip TDC-GP21 was used to implement the system. A PCB circuit board was processed to carry on the experiment. The results of the experiment prove that a centimeter level accuracy ranging system has been achieved. The works can offer reference for ranging system design of the circumferential scanning probe laser proximity fuze.
High-precision Photogrammetric Surface Figure Measurements under Cryogenic Environment
NASA Astrophysics Data System (ADS)
Lou, Z.; Qian, Y.; Fan, S. H.; Liu, C. R.; Wang, H. R.; Zuo, Y. X.; Cheng, J. Q.; Yang, J.
2016-01-01
Limited by the working temperature of the measurement equipments, most of the high-precision surface figure measurement techniques cannot be applied under a cryogenic environment. This paper reports the first attempt to measure the surface figure of a high-precision terahertz reflector panel under low temperatures based on photogrammetry. The measurement employs a high resolution industrial camera sitting on an automatic experimental platform which enables photos been taken in an automatic fashion inside a climate chamber. A repeatable accuracy of 2.1 μm rms is achieved under the cryogenic environment. Furthermore, surface figure measured by a three-coordinate measuring machine under room temperature is used to calibrate the thickness variation of the paper targets. By this technique, the surface figure of an aluminum prototype panel of the 5 meter Dome A Terahertz Telescope (DATE5) is measured from room temperature down to -55°C.
Preparation of cold molecules for high-precision measurements
NASA Astrophysics Data System (ADS)
Wall, T. E.
2016-12-01
Molecules can be used to test fundamental physics. Such tests often require cold molecules for detailed spectroscopic analysis. Cooling internal degrees of freedom provides a high level of state-selectivity, with large populations in the molecular states of interest. Cold translational motion allows slow, bright beams to be created, allowing long interaction times. In this tutorial article we describe the common techniques for producing cold molecules for high-precision spectroscopy experiments. For each technique we give examples of its application in experiments that use molecular structure to probe fundamental physics, choosing one experiment in particular as a case study. We then discuss a number of new techniques, some currently under development, others proposed, that promise high flux sources of cold molecules applicable to precise spectroscopic tests of fundamental physics.
High precision NC lathe feeding system rigid-flexible coupling model reduction technology
NASA Astrophysics Data System (ADS)
Xuan, He; Hua, Qingsong; Cheng, Lianjun; Zhang, Hongxin; Zhao, Qinghai; Mao, Xinkai
2017-08-01
This paper proposes the use of dynamic substructure method of reduction of order to achieve effective reduction of feed system for high precision NC lathe feeding system rigid-flexible coupling model, namely the use of ADAMS to establish the rigid flexible coupling simulation model of high precision NC lathe, and then the vibration simulation of the period by using the FD 3D damper is very effective for feed system of bolt connection reduction of multi degree of freedom model. The vibration simulation calculation is more accurate, more quickly.
Highly precise and compact ultrahigh vacuum rotary feedthrough
NASA Astrophysics Data System (ADS)
Aiura, Y.; Kitano, K.
2012-03-01
The precision and rigidity of compact ultrahigh vacuum (UHV) rotary feedthroughs were substantially improved by preparing and installing an optimal crossed roller bearing with mounting holes. Since there are mounting holes on both the outer and inner races, the bearing can be mounted directly to rotary and stationary stages without any fixing plates and housing. As a result, it is possible to increase the thickness of the bearing or the size of the rolling elements in the bearing without increasing the distance between the rotating and fixing International Conflat flanges of the UHV rotary feedthrough. Larger rolling elements enhance the rigidity of the UHV rotary feedthrough. Moreover, owing to the structure having integrated inner and outer races and mounting holes, the performance is almost entirely unaffected by the installation of the bearing, allowing for a precise optical encoder to be installed in the compact UHV rotary feedthrough. Using position feedback via a worm gear system driven by a stepper motor and a precise rotary encoder, the actual angle of the compact UHV rotary feedthrough can be controlled with extremely high precision.
Flight Test Performance of a High Precision Navigation Doppler Lidar
NASA Technical Reports Server (NTRS)
Pierrottet, Diego; Amzajerdian, Farzin; Petway, Larry; Barnes, Bruce; Lockard, George
2009-01-01
A navigation Doppler Lidar (DL) was developed at NASA Langley Research Center (LaRC) for high precision velocity measurements from a lunar or planetary landing vehicle in support of the Autonomous Landing and Hazard Avoidance Technology (ALHAT) project. A unique feature of this DL is that it has the capability to provide a precision velocity vector which can be easily separated into horizontal and vertical velocity components and high accuracy line of sight (LOS) range measurements. This dual mode of operation can provide useful information, such as vehicle orientation relative to the direction of travel, and vehicle attitude relative to the sensor footprint on the ground. System performance was evaluated in a series of helicopter flight tests over the California desert. This paper provides a description of the DL system and presents results obtained from these flight tests.
High-precision buffer circuit for suppression of regenerative oscillation
NASA Technical Reports Server (NTRS)
Tripp, John S.; Hare, David A.; Tcheng, Ping
1995-01-01
Precision analog signal conditioning electronics have been developed for wind tunnel model attitude inertial sensors. This application requires low-noise, stable, microvolt-level DC performance and a high-precision buffered output. Capacitive loading of the operational amplifier output stages due to the wind tunnel analog signal distribution facilities caused regenerative oscillation and consequent rectification bias errors. Oscillation suppression techniques commonly used in audio applications were inadequate to maintain the performance requirements for the measurement of attitude for wind tunnel models. Feedback control theory is applied to develop a suppression technique based on a known compensation (snubber) circuit, which provides superior oscillation suppression with high output isolation and preserves the low-noise low-offset performance of the signal conditioning electronics. A practical design technique is developed to select the parameters for the compensation circuit to suppress regenerative oscillation occurring when typical shielded cable loads are driven.
High Precision Measurement of the ^19Ne Lifetime
NASA Astrophysics Data System (ADS)
Broussard, Leah; Back, H. O.; Boswell, M. S.; Crowell, A. S.; Howell, C. R.; Kidd, M. F.; Pattie, R. W., Jr.; Young, A. R.; Dendooven, P. G.; Giri, G. S.; van der Hoek, D. J.; Jungmann, K.; Kruithof, W. L.; Onderwater, C. J. G.; Santra, B.; Shidling, P. D.; Sohani, M.; Versolota, O. O.; Willmann, L.; Wilschut, H. W.
2009-10-01
Recently, a rigorous review of the T=12 mirror transitions has identified several systems which can contribute to high precision tests exploring deviations from the Standard Model's description of the electroweak interaction. Arguably, one of the best candidates is the &+circ; decay of ^19Ne to ^19F. In this system, the main contribution to the uncertainty of extracted Standard Model parameters is due to the measured value of the lifetime of the decay. In March 2009, a high precision measurement of the lifetime of ^19Ne was made by a collaboration between the Triangle Universities Nuclear Laboratory (TUNL) and the Kernfysisch Versneller Instituut (KVI) at the Trapped Radioactive Isotopes: Microlaboratories for Fundamental Physics (Triμp) facility. An overview of the experiment and preliminary results will be presented.
A high-precision polarimeter for small telescopes
NASA Astrophysics Data System (ADS)
Bailey, Jeremy; Cotton, Daniel V.; Kedziora-Chudczer, Lucyna
2017-02-01
We describe Mini-HIPPI (Miniature HIgh Precision Polarimetric Instrument), a stellar polarimeter weighing just 650 gm but capable of measuring linear polarization to ∼10-5. Mini-HIPPI is based on the use of a Ferroelectric Liquid Crystal modulator. It can easily be mounted on a small telescope and allows us to study the polarization of bright stars at levels of precision which are hitherto largely unexplored. We present results obtained with Mini-HIPPI on a 35-cm telescope. Measurements of polarized standard stars are in good agreement with predicted values. Measurements of a number of bright stars agree well with those from other high-sensitivity polarimeters. Observations of the binary system Spica show polarization variability around the orbital cycle.
High-precision Velocimetry Reveals δ Cephei's Secret Companion
NASA Astrophysics Data System (ADS)
Anderson, Richard I.; Sahlmann, Johannes; Holl, Berry; Eyer, Laurent
2015-08-01
The search for extra-solar planets has driven tremendous improvements in the precision of radial velocities measured with high-resolution echelle spectrographs. However, relatively few studies have as of yet exploited the present-day extreme (m/s) instrumental precision to study Cepheid variable stars.We have been observing the prototype of classical Cepheids, δ Cephei, since September 2011 using the HERMES spectrograph mounted to the Mercator telescope located at the Roque de los Muchachos Observatory on the island of La Palma. Being one of the most-studied variable stars, we originally chose δ Cephei as a maximum-precision reference for other Cepheids in our sample. To our great surprise however, we discovered a clear orbital signature in the homogeneous HERMES data. Adding in radial velocity data from the literature, we then determined δ Cephei's orbit (cf. Anderson et al. 2015, arXiv:1503.04116). The high orbital eccentricity (e=0.647) leads to close pericenter passages (rmin ~ 9.5 RδCep) which suggest an intriguing past that requires further study, since Cepheids are well-known magnifying glasses for stellar evolution (Kippenhahn & Weigert 1994). We furthermore determined a new parallax to δ Cephei (using Hipparcos data) that is in tension with previous estimates and shows that the orbit will have to be accounted for when measuring δ Cephei's parallax with Gaia.While some of our HERMES data are as precise as 9 m/s, we found correlated excess residuals when removing the reference pulsation model and orbital motion from the HERMES radial velocity data, leaving an RMS of 47 m/s. These higher-than-expected residuals are reminiscent of the "period-jitter" or "flickering" observed in high-precision photometry of Cepheids obtained with the Kepler and MOST satellites. This reveals a fortuitous synergy between variable stars studies and the field of exoplanet research and opens the window for a better understanding of Cepheid pulsations via high-precision
Dipole model analysis of high precision HERA data
NASA Astrophysics Data System (ADS)
Luszczak, A.; Kowalski, H.
2014-04-01
We analyze, within a dipole model, the inclusive deep inelastic scattering cross section data, obtained from the combination of the measurements of the H1 and ZEUS experiments performed at the HERA collider. We show that these high precision data are very well described within the dipole model framework, which is complemented with valence quark structure functions. We discuss the properties of the gluon density obtained in this way.
High precision tide spectroscopy. [using the superconducting gravimeter
NASA Technical Reports Server (NTRS)
Goodkind, J. M.
1978-01-01
Diurnal and long period earth tides were measured to high accuracy and precision with the superconducting gravimeter. The results provide new evidence on the geophysical questions which have been attacked through earth tide measurements in the past. In addition, they raise new questions of potential interest. Slow fluctuations in gravity of order 10 micron gal over periods of 3 to 5 months were observed and are discussed.
Design and algorithm research of high precision airborne infrared touch screen
NASA Astrophysics Data System (ADS)
Zhang, Xiao-Bing; Wang, Shuang-Jie; Fu, Yan; Chen, Zhao-Quan
2016-10-01
There are shortcomings of low precision, touch shaking, and sharp decrease of touch precision when emitting and receiving tubes are failure in the infrared touch screen. A high precision positioning algorithm based on extended axis is proposed to solve these problems. First, the unimpeded state of the beam between emitting and receiving tubes is recorded as 0, while the impeded state is recorded as 1. Then, the method of oblique scan is used, in which the light of one emitting tube is used for five receiving tubes. The impeded information of all emitting and receiving tubes is collected as matrix. Finally, according to the method of arithmetic average, the position of the touch object is calculated. The extended axis positioning algorithm is characteristic of high precision in case of failure of individual infrared tube and affects slightly the precision. The experimental result shows that the 90% display area of the touch error is less than 0.25D, where D is the distance between adjacent emitting tubes. The conclusion is gained that the algorithm based on extended axis has advantages of high precision, little impact when individual infrared tube is failure, and using easily.
Dynamic evaluation system for interpolation errors in the encoder of high precision
NASA Astrophysics Data System (ADS)
Wan, Qiu-hua; Wu, Yong-zhi; Zhao, Chang-hai; Liang, Li-hui; Sun, Ying; Jiang, Yong
2009-05-01
In order to measure dynamic interpolation errors of photoelectric encoder of high precision, the dynamic evaluation system of interpolation errors is introduced. Firstly, the fine Moiré signal of encoder which is collected with the high-speed data gathering card into the computer is treated to equiangular data with the method of linear interpolation. Then, the analysis of harmonic wave with the FFT is processed. Compared with the standard signal, the dynamic interpolation errors of the encoder are calculated. Experimental results show that the precision of the dynamic evaluation system of interpolation errors is +/-0.1 %( pitch). The evaluation system is simple, fast, high precision, and can be used in the working field of the encoder.
Photonic systems for high precision radial velocity measurements
NASA Astrophysics Data System (ADS)
Halverson, Samuel P.
The discovery of Earth-like exoplanets has profound implications for our understanding of the origins and diversity of life in our universe. As such, developing new and improved Doppler radial velocity (RV) spectrometers capable of discovering and characterizing these planets is a high priority in the astronomical community. However, detection of true Earth-analogs remains beyond the technical reach of current Doppler RV instruments. This thesis discusses a number of technological developments designed specifically to overcome classical instrumental limitations of high precision Doppler RV measurements. These technologies are essential components of next generation instruments that aim to achieve the RV precision necessary to detect low-mass planets. This instrumentation research is driven by the development of the Habitable-zone Planet Finder (HPF), a near-infrared (NIR) Doppler spectrograph currently under development at Penn State that will detect terrestrial-mass planets orbiting nearby M-dwarfs. Furthermore, many technologies discussed will also be applied to the NASA-NSF Extreme Precision Doppler Spectrometer concept NEID, a Doppler RV instrument for the 3.5 meter WIYN telescope, slated for delivery in 2019. NEID is an ultra-stable, high resolution optical spectrometer also under development at Penn State. This thesis describes new specialized optical fiber delivery systems, designed to significantly improve instrument illumination stability, modal noise suppression systems, which suppress mode interference in optical fibers and allow spectrometers to fully realize the exquisite precision of modern wavelength calibration sources, and new photonic calibration sources, which show significant promise as potential Doppler wavelength references. These technologies represent important steps in enabling next generation instruments to reach precisions sufficient to detect terrestrial-mass planets orbiting in the Habitable-zones of nearby stars. Improving measurement
High precision capacitive beam phase probe for KHIMA project
NASA Astrophysics Data System (ADS)
Hwang, Ji-Gwang; Yang, Tae-Keun; Forck, Peter
2016-11-01
In the medium energy beam transport (MEBT) line of KHIMA project, a high precision beam phase probe monitor is required for a precise tuning of RF phase and amplitude of Radio Frequency Quadrupole (RFQ) accelerator and IH-DTL linac. It is also used for measuring a kinetic energy of ion beam by time-of-flight (TOF) method using two phase probes. The capacitive beam phase probe has been developed. The electromagnetic design of the high precision phase probe was performed to satisfy the phase resolution of 1° (@200 MHz). It was confirmed by the test result using a wire test bench. The measured phase accuracy of the fabricated phase probe is 1.19 ps. The pre-amplifier electronics with the 0.125 ∼ 1.61 GHz broad-band was designed and fabricated for amplifying the signal strength. The results of RF frequency and beam energy measurement using a proton beam from the cyclotron in KIRAMS is presented.
Automated high precision secondary pH measurements
NASA Astrophysics Data System (ADS)
Bastkowski, F.; Jakobsen, P. T.; Stefan, F.; Kristensen, H. B.; Jensen, H. D.; Kawiecki, R.; Wied, C. E.; Kauert, A.; Seidl, B.; Spitzer, P.; Eberhardt, R.; Adel, B.
2013-04-01
A new setup for high precision, automated secondary pH measurements together with a reference measurement procedure has been developed and tested in interlaboratory comparisons using buffers pH 4.005, pH 7.000, and pH 10.012 at 25 °C and 37 °C. Using primary buffers as standards, a standard uncertainty in pH better than 0.005 can be reached. The central measuring device is a one piece, thermostatted cell of PFA (perfluoroalkoxy) with a built-in Hamilton® Single Pore™ Glass electrode. Due to its flow-through principle this device allows pH measurements with low consumption of measurement solutions. The very hydrophobic and smooth PFA as construction material facilitates complete emptying of the cell. Furthermore, the tempering unit affords very precise temperature control and hence contributes to the low target uncertainty of the produced secondary buffer solutions. Use of a symmetric measurement sequence and the two point calibration was sufficient to reach high precision and accuracy.
PHASES High-Precision Differential Astrometry of δ Equulei
NASA Astrophysics Data System (ADS)
Muterspaugh, Matthew W.; Lane, Benjamin F.; Konacki, Maciej; Burke, Bernard F.; Colavita, M. M.; Kulkarni, S. R.; Shao, M.
2005-12-01
Delta Equulei is among the most well-studied nearby binary star systems. Results of its observation have been applied to a wide range of fundamental studies of binary systems and stellar astrophysics. It is widely used to calibrate and constrain theoretical models of the physics of stars. We report 27 high-precision differential astrometry measurements of δ Equ from the Palomar High-precision Astrometric Search for Exoplanet Systems (PHASES). The median size of the minor axes of the uncertainty ellipses for these measurements is 26 μas. These data are combined with previously published radial velocity data and other previously published differential astrometry measurements using other techniques to produce a combined model for the system orbit. The distance to the system is determined to within one twentieth of a parsec, and the component masses are determined at the level of a percent. The constraints on masses and distance are limited by the precisions of the radial velocity data; we outline plans to improve this deficiency and discuss the outlook for further study of this binary.
Bogart, D.
1996-06-01
Although resonance neutron captures for {sup 238}U in water-moderated lattices are known to occur near moderator-fuel interfaces, the sharply attenuated spatial captures here have not been calculated by multigroup transport or Monte Carlo methods. Advances in computer speed and capacity have restored interest in applying Monte Carlo methods to evaluate spatial resonance captures in fueled lattices. Recently published studies have placed complete reliance on the ostensible precision of the Monte Carlo approach without auxiliary confirmation that resonance processes were followed adequately or that the Monte Carlo method was applied appropriately. Other methods of analysis that have evolved from early resonance integral theory have provided a basis for an alternative approach to determine radial resonance captures in fuel rods. A generalized method has been formulated and confirmed by comparison with published experiments of high spatial resolution for radial resonance captures in metallic uranium rods. The same analytical method has been applied to uranium-oxide fuels. The generalized method defined a spatial effective resonance cross section that is a continuous function of distance from the moderator-fuel interface and enables direct calculation of precise radial resonance capture distributions in fuel rods. This generalized method is used as a reference for comparison with two recent independent studies that have employed different Monte Carlo codes and cross-section libraries. Inconsistencies in the Monte Carlo application or in how pointwise cross-section libraries are sampled may exist. It is shown that refined Monte Carlo solutions with improved spatial resolution would not asymptotically approach the reference spatial capture distributions.
Modular Gravitational Reference Sensor for High Precision Astronomical Space Missions
NASA Astrophysics Data System (ADS)
Sun, Ke-Xun; Allen, G.; Buchman, S.; Byer, R. L.; Conklin, J. W.; DeBra, D. B.; Gill, D.; Goh, A.; Higuchi, S.; Lu, P.; Robertson, N.; Swank, A.
2006-12-01
We review the progress in developing the Modular Gravitational Reference Sensor (modular GRS) [1], which was first proposed as a simplified core sensor for space gravitational wave detection missions. In a modular GRS, laser beam from the remote the sensor does not illuminate the proof mass directly. The internal measurement from housing to proof mass is separated from the external interferometry. A double side grating may further simplify the structure and may better preserve the measurement precision. We review the recent progress in developing modular GRS at Stanford. We have further studied optical sensing design that combines advantage of high precision interferometric measurement and robust optical shadow sensing scheme. We have made critical progress in optical measurement of the center of mass position of a spherical proof mass at a precision without costing the dynamic range while spinning. We have successfully demonstrated the feasibility of fabricating localized grating pattern onto the dielectric and gold materials. We have conducted an initial experiment of rf heterodyne of cavity reflection and thus lowered optical power than that in the direct detection. We have further studied UV LED that will be used for AC charge management experiment. The modular GRS will be an in-time, cost effective product for the advanced Laser Interferometric Space Antenna (LISA) and the Big Bang Observatory (BBO). [1] K. Sun, G. Allen, S. Buchman, D. DeBra, and R. L. Byer, “Advanced Architecture for High Precision Space Laser Interferometers”, 5th International LISA Symposium, ESTEC, Noordwijk, The Netherlands, 12-16 July 2004. Class. Quantum Grav. 22 (2005) S287-S296.
High-precision photometry for K2 Campaign 1
NASA Astrophysics Data System (ADS)
Huang, C. X.; Penev, K.; Hartman, J. D.; Bakos, G. Á.; Bhatti, W.; Domsa, I.; de Val-Borro, M.
2015-12-01
The two reaction wheel K2 mission promises and has delivered new discoveries in the stellar and exoplanet fields. However, due to the loss of accurate pointing, it also brings new challenges for the data reduction processes. In this paper, we describe a new reduction pipeline for extracting high-precision photometry from the K2 data set, and present public light curves for the K2 Campaign 1 target pixel data set. Key to our reduction is the derivation of global astrometric solutions from the target stamps, from which accurate centroids are passed on for high-precision photometry extraction. We extract target light curves for sources from a combined UCAC4 and EPIC catalogue - this includes not only primary targets of the K2 campaign 1, but also any other stars that happen to fall on the pixel stamps. We provide the raw light curves, and the products of various detrending processes aimed at removing different types of systematics. Our astrometric solutions achieve a median residual of ˜0.127 arcsec. For bright stars, our best 6.5 h precision for raw light curves is ˜20 parts per million (ppm). For our detrended light curves, the best 6.5 h precision achieved is ˜15 ppm. We show that our detrended light curves have fewer systematic effects (or trends, or red-noise) than light curves produced by other groups from the same observations. Example light curves of transiting planets and a Cepheid variable candidate, are also presented. We make all light curves public, including the raw and detrended photometry, at http://k2.hatsurveys.org.
Strategies for high-precision Global Positioning System orbit determination
NASA Technical Reports Server (NTRS)
Lichten, Stephen M.; Border, James S.
1987-01-01
Various strategies for the high-precision orbit determination of the GPS satellites are explored using data from the 1985 GPS field test. Several refinements to the orbit determination strategies were found to be crucial for achieving high levels of repeatability and accuracy. These include the fine tuning of the GPS solar radiation coefficients and the ground station zenith tropospheric delays. Multiday arcs of 3-6 days provided better orbits and baselines than the 8-hr arcs from single-day passes. Highest-quality orbits and baselines were obtained with combined carrier phase and pseudorange solutions.
High Precision 2-D Grating Groove Density Measurement
NASA Astrophysics Data System (ADS)
Zhang, Ningxiao; McEntaffer, Randall; Tedesco, Ross
2017-08-01
Our research group at Penn State University is working on producing X-ray reflection gratings with high spectral resolving power and high diffraction efficiency. To estimate our fabrication accuracy, we apply a precise 2-D grating groove density measurement to plot groove density distributions of gratings on 6-inch wafers. In addition to plotting a fixed groove density distribution, this method is also sensitive to measuring the variation of the groove density simultaneously. This system can reach a measuring accuracy (ΔN/N) of 10-3. Here we present this groove density measurement and some applications.
Key techniques of the high precision gravity field system
NASA Astrophysics Data System (ADS)
Xu, Weimin; Chen, Shi; Lu, Hongyan; Shi, Lei
2017-04-01
Ground-based gravity time series provide a direct method to monitor all sources of mass changes from local to global scale. But the effectively infinite spatial sensitivity of gravity measurements make it difficult to isolate the signal of interest. The high precision gravity field system is an alternative approach of modeling mass changes under-ground. The field system, consists of absolute gravity, gravity and gravity gradient, GNSS, leveling and climate hydrology measurements, can improve the signal-to-noise ratio for many applications by removing contributions of unwanted signal from elevation changes, air pressure changes, local hydrology, and others. The networks of field system combination, such as field-profile in more than 100 kilometers, can be used in critical zone with high seismic risk for monitoring earth dynamics, volcanic and seismic phenomena. The system is constituted by 9 typical observation stations in 3*3 array (or 4 in 2*2 array) in 60 square meters field, each station is designed for integrated measurements, including absolute gravity, gravity gradient, elevation changes, air pressure and hydrology. Time-lapse gravity changes resulting from absolute gravimeter (FG5 or A10) with standard deviation less than 2 μGal, without the contributions of Earth tides, loading and polar motion. Additional measurements such as air pressure change, local hydrology and soil moisture are indispensable. The elevation changes resulting from GNSS (on the base station) and leveling (between stations) with precision less than 10 mm. The gravity gradient is the significant measurement for delimiting the location of the related mass changes underground the station, which is measured by Scintrex CG-5 gravimeters in different height (80cm in the test field), with precision less than 10 E. It is necessary to improve the precision of gravity gradient measurements by certain method in field experiment for the high precision measurement system. Acknowledgment: This
Thermal design and flight validation for high precision camera
NASA Astrophysics Data System (ADS)
Meng, Henghui; Sun, Lixia; Zhang, Chuanqiang; Geng, Liyin
2015-10-01
High precision camera, designed for advanced optical system, with a wide field of vision, high resolution and fast response, has a wild range of applications. As the main payload for spacecraft, the optical remote sensor is mounted exposed to the space, which means it should have a reliable optical performance in harsh space environment during lifetime. Because of the special optical characteristic, imaging path should be accurate, and less thermal deformation for the optical parts is required in the working process, so the high precision camera has a high level requirement for temperature. High resolution space camera is generally required to own the capability of adapting to space thermal environments. The flexible satellite's change of rolling attitude affects the temperature distribution of the camera and makes a difference to optical performance. The thermal control design of space camera is presented, and analysis the temperature data in orbit to prove the thermal design correct. It is proved that the rolling attitude has more influence on outer parts and less influence on inner parts, and active thermal control can weaken the influence of rolling attitude.
High-Precision Floating-Point Arithmetic in ScientificComputation
Bailey, David H.
2004-12-31
At the present time, IEEE 64-bit floating-point arithmetic is sufficiently accurate for most scientific applications. However, for a rapidly growing body of important scientific computing applications, a higher level of numeric precision is required: some of these applications require roughly twice this level; others require four times; while still others require hundreds or more digits to obtain numerically meaningful results. Such calculations have been facilitated by new high-precision software packages that include high-level language translation modules to minimize the conversion effort. These activities have yielded a number of interesting new scientific results in fields as diverse as quantum theory, climate modeling and experimental mathematics, a few of which are described in this article. Such developments suggest that in the future, the numeric precision used for a scientific computation may be as important to the program design as are the algorithms and data structures.
High-precision rotation angle measurement method based on monocular vision.
Jin, Jing; Zhao, Lingna; Xu, Shengli
2014-07-01
To accurately measure the attitude angles (pitch, roll, and yaw) of a rigid object that rotates in a space, we propose a high-precision rotation angle measurement method based on monocular vision. This method combines camera self-calibration, multiview geometry, and 3D measurement. This monocular vision measuring system consists of an area scan CCD, a prime lens, and a spots array target, which are fixed on the measured object. We can calculate the rotation angle according to the rebuilt rotating spots array target by using this monocular vision measuring system. The measurement precision of rotation angle can reach 1 arc sec in this paper's experiments. This method has high measurement precision and good stability. Therefore we can widely use this method in machinery manufacturing, engineering measurement, aerospace, and the military.
High Precision U/Th Dating of First Polynesian Settlement
Burley, David; Weisler, Marshall I.; Zhao, Jian-xin
2012-01-01
Previous studies document Nukuleka in the Kingdom of Tonga as a founder colony for first settlement of Polynesia by Lapita peoples. A limited number of radiocarbon dates are one line of evidence supporting this claim, but they cannot precisely establish when this event occurred, nor can they afford a detailed chronology for sequent occupation. High precision U/Th dates of Acropora coral files (abraders) from Nukuleka give unprecedented resolution, identifying the founder event by 2838±8 BP and documenting site development over the ensuing 250 years. The potential for dating error due to post depositional diagenetic alteration of ancient corals at Nukuleka also is addressed through sample preparation protocols and paired dates on spatially separated samples for individual specimens. Acropora coral files are widely distributed in Lapita sites across Oceania. U/Th dating of these artifacts provides unparalleled opportunities for greater precision and insight into the speed and timing of this final chapter in human settlement of the globe. PMID:23144962
High-precision ground-based photometry of exoplanets
NASA Astrophysics Data System (ADS)
de Mooij, Ernst J. W.; Jayawardhana, Ray
2013-04-01
High-precision photometry of transiting exoplanet systems has contributed significantly to our understanding of the properties of their atmospheres. The best targets are the bright exoplanet systems, for which the high number of photons allow very high signal-to-noise ratios. Most of the current instruments are not optimised for these high-precision measurements, either they have a large read-out overhead to reduce the readnoise and/or their field-of-view is limited, preventing simultaneous observations of both the target and a reference star. Recently we have proposed a new wide-field imager for the Observatoir de Mont-Megantic optimised for these bright systems (PI: Jayawardhana). The instruments has a dual beam design and a field-of-view of 17' by 17'. The cameras have a read-out time of 2 seconds, significantly reducing read-out overheads. Over the past years we have obtained significant experience with how to reach the high precision required for the characterisation of exoplanet atmospheres. Based on our experience we provide the following advice:
Precise measurement of magnetization characteristics in high pulsed field
NASA Astrophysics Data System (ADS)
Nakahata, Y.; Borkowski, B.; Shimoji, H.; Yamada, K.; Todaka, T.; Enokizono, M.
2012-04-01
Permanent magnets, especially Nd-Fe-B magnets, are very important engineering elements that are widely used in many applications. The detailed design of electrical and electronic equipment using permanent magnets requires the precise measurement of magnetization characteristics. High pulsed magnetic fields can be used to measure the magnetization characteristics of permanent magnets in the easy and hard magnetization directions. Errors influencing the measurements stem from the relationship between the tested material, pick-up sensor configuration, and excitation coil. We present an analysis of the effect of the sensor construction on the accuracy of the measurements of the material's magnetic properties. We investigated the coaxial and series types sensor configurations.
High-precision measurements of global stellar magnetic fields
NASA Astrophysics Data System (ADS)
Plachinda, S. I.
2014-06-01
This paper presents a brief history of the development of devices and techniques for high-precision measurements of stellar magnetic fields. Two main approaches for the processing of spectral-polarimetric observations are described: the method of least-squares deconvolution (LSD), which is used to find a mean-weighted average of the normalized polarization profile using a set of spectral lines, and a method in which each individual spectral line is used to determine the magnetic field, viz., the single line method (SL). The advantages and disadvantages of the LSD and SL methods are discussed.
High precision photon flux determination for photon tagging experiments
Teymurazyan, A.; Ahmidouch, A.; Ambrozewicz, P.; Asratyan, A.; Baker, K.; Benton, L.; Burkert, V.; Clinton, E.; Cole, P.; Collins, P.; Dale, D.; Danagoulian, S.; Davidenko, G.; Demirchyan, R.; Deur, A.; Dolgolenko, A.; Dzyubenko, G.; Ent, R.; Evdokimov, A.; Feng, J.; Gabrielyan, M.; Gan, L.; Gasparian, A.; Glamazdin, A.; Goryachev, V.; Hardy, K.; He, J.; Ito, M.; Jiang, L.; Kashy, D.; Khandaker, M.; Kolarkar, A.; Konchatnyi, M.; Korchin, A.; Korsch, W.; Kosinov, O.; Kowalski, S.; Kubantsev, M.; Kubarovsky, V.; Larin, I.; Lawrence, D.; Li, X.; Martel, P.; Matveev, V.; McNulty, D.; Mecking, B.; Milbrath, B.; Minehart, R.; Miskimen, R.; Mochalov, V.; Nakagawa, I.; Overby, S.; Pasyuk, E.; Payen, M.; Pedroni, R.; Prok, Y.; Ritchie, B.; Salgado, C.; Shahinyan, A.; Sitnikov, A.; Sober, D.; Stepanyan, S.; Stevens, W.; Underwood, J.; Vasiliev, A.; Vishnyakov, V.; Wood, M.; Zhou, S.
2014-12-01
The Jefferson Laboratory PrimEx Collaboration has developed and implemented a method to control the tagged photon flux in photoproduction experiments at the 1% level over the photon energy range from 4.9 to 5.5 GeV. This method has been successfully implemented in a high precision measurement of the neutral pion lifetime. Here, we outline the experimental equipment and the analysis techniques used to accomplish this. These include the use of a total absorption counter for absolute flux calibration, a pair spectrometer for online relative flux monitoring, and a new method for post-bremsstrahlung electron counting.
Multidimensional Image Analysis for High Precision Radiation Therapy.
Arimura, Hidetaka; Soufi, Mazen; Haekal, Mohammad
2017-01-01
High precision radiation therapy (HPRT) has been improved by utilizing conventional image engineering technologies. However, different frameworks are necessary for further improvement of HPRT. This review paper attempted to define the multidimensional image and what multidimensional image analysis is, which may be feasible for increasing the accuracy of HPRT. A number of researches in radiation therapy field have been introduced to understand the multidimensional image analysis. Multidimensional image analysis could greatly assist clinical staffs in radiation therapy planning, treatment, and prediction of treatment outcomes.
Future high precision experiments and new physics beyond Standard Model
Luo, Mingxing
1993-04-01
High precision (< 1%) electroweak experiments that have been done or are likely to be done in this decade are examined on the basis of Standard Model (SM) predictions of fourteen weak neutral current observables and fifteen W and Z properties to the one-loop level, the implications of the corresponding experimental measurements to various types of possible new physics that enter at the tree or loop level were investigated. Certain experiments appear to have special promise as probes of the new physics considered here.
Future high precision experiments and new physics beyond Standard Model
Luo, Mingxing.
1993-01-01
High precision (< 1%) electroweak experiments that have been done or are likely to be done in this decade are examined on the basis of Standard Model (SM) predictions of fourteen weak neutral current observables and fifteen W and Z properties to the one-loop level, the implications of the corresponding experimental measurements to various types of possible new physics that enter at the tree or loop level were investigated. Certain experiments appear to have special promise as probes of the new physics considered here.
High-precision HST proper motions of globular clusters
NASA Astrophysics Data System (ADS)
Bellini, A.
Photometric and spectroscopic studies over the last 15 years have revolutionized our understanding of globular clusters (GCs). We now know that essentially all GCs host multiple stellar populations that can be identified along all evolutionary sequences and are characterized by differences in light elements, He, and sometimes Fe. These findings present a number of formidable challenges for the study of the formation and evolution of GCs. The internal kinematics of multiple stellar populations is a fundamental piece of the puzzle and high-precision proper motions are the key tool to shed light on many open questions regarding GCs.
High-precision micro/nano-scale machining system
Kapoor, Shiv G.; Bourne, Keith Allen; DeVor, Richard E.
2014-08-19
A high precision micro/nanoscale machining system. A multi-axis movement machine provides relative movement along multiple axes between a workpiece and a tool holder. A cutting tool is disposed on a flexible cantilever held by the tool holder, the tool holder being movable to provide at least two of the axes to set the angle and distance of the cutting tool relative to the workpiece. A feedback control system uses measurement of deflection of the cantilever during cutting to maintain a desired cantilever deflection and hence a desired load on the cutting tool.
High precision wavelength meter with Fabry-Perot optics
NASA Astrophysics Data System (ADS)
Konishi, N.; Suzuki, T.; Taira, Y.; Kato, H.; Kasuya, T.
1981-07-01
A high precision wavelength meter in the visible is described, which is based on a Fabry-Perot interferometer with several etalons of different resolution. The interference fringe pattern projected on a photo-diode array detector is computationally processed to give a stepwise refinement of the wavelength value to any adjusted accuracy. The present model intends to provide digital and real-time values of high precision wavelength for dye-laser spectroscopy, and to serve as a monitor or as a pilot for wavelength control of a dye-laser source of nanosecond pulses. The model is, therefore, designed with particular emphasis on its short-pulse capability and on-line mode of operation as well as on its high sensitivity and resolution. Some arrangements of essential necessity are involved therein, such as to avoid an errorneous wavelength readout for a noisy incidence of pulsed field. The ultimate accuracy of wavelength measurement is prescribed by the resolving power of the thickest etalon employed. As applied to the pulsed source, the model determines the wavelength to the accuracy of ±one part in 107 for even a single shot nanosecond incidence of a fraction of μJ energy. The design and performance are described in connection to pulsed dye-laser incidence.
A High Precision Terahertz Wave Image Reconstruction Algorithm
Guo, Qijia; Chang, Tianying; Geng, Guoshuai; Jia, Chengyan; Cui, Hong-Liang
2016-01-01
With the development of terahertz (THz) technology, the applications of this spectrum have become increasingly wide-ranging, in areas such as non-destructive testing, security applications and medical scanning, in which one of the most important methods is imaging. Unlike remote sensing applications, THz imaging features sources of array elements that are almost always supposed to be spherical wave radiators, including single antennae. As such, well-developed methodologies such as Range-Doppler Algorithm (RDA) are not directly applicable in such near-range situations. The Back Projection Algorithm (BPA) can provide products of high precision at the the cost of a high computational burden, while the Range Migration Algorithm (RMA) sacrifices the quality of images for efficiency. The Phase-shift Migration Algorithm (PMA) is a good alternative, the features of which combine both of the classical algorithms mentioned above. In this research, it is used for mechanical scanning, and is extended to array imaging for the first time. In addition, the performances of PMA are studied in detail in contrast to BPA and RMA. It is demonstrated in our simulations and experiments described herein that the algorithm can reconstruct images with high precision. PMID:27455269
High-precision Photogrammetric Surface Figure Measurements under Cryogenic Environment
NASA Astrophysics Data System (ADS)
Zheng, Lou; Yuan, Qian; Sheng-hong, Fan; Chang-ru, Liu; Hai-ren, Wang; Ying-xi, Zuo; Jin-quan, Cheng; Ji, Yang
2017-01-01
Limited by the working temperature of the test equipment, most of high-precision surface figure measurement techniques cannot be put into application under a cryogenic environment. This paper reports the first attempt to measure the surface figure of a high-precision terahertz reflector panel under low temperatures based on photogrammetry. The measurement employs a high-resolution industrial camera sitting on the automatic testing platform which enables photos been taken in an automatic fashion inside a climate chamber. A repeatable accuracy of 2.1 μm (rms) is achieved under the cryogenic environment. Furthermore, the surface figure measured by a three-coordinate measuring machine under the room temperature is used to calibrate the thickness differences of the targets. By this technique, the surface figure of an aluminum prototype panel of the 5 meter Dome A Terahertz Telescope (DATE5) is measured from room temperature down to -55°C to obtain the rule of variation of surface deformation of the panel under low temperatures.
Proton Affinity Calculations with High Level Methods.
Kolboe, Stein
2014-08-12
Proton affinities, stretching from small reference compounds, up to the methylbenzenes and naphthalene and anthracene, have been calculated with high accuracy computational methods, viz. W1BD, G4, G3B3, CBS-QB3, and M06-2X. Computed and the currently accepted reference proton affinities are generally in excellent accord, but there are deviations. The literature value for propene appears to be 6-7 kJ/mol too high. Reported proton affinities for the methylbenzenes seem 4-5 kJ/mol too high. G4 and G3 computations generally give results in good accord with the high level W1BD. Proton affinity values computed with the CBS-QB3 scheme are too low, and the error increases with increasing molecule size, reaching nearly 10 kJ/mol for the xylenes. The functional M06-2X fails markedly for some of the small reference compounds, in particular, for CO and ketene, but calculates methylbenzene proton affinities with high accuracy.
Precision calculation for nucleon capture by deuteron with Effective Field Theory
Bayegan, S.; Sadeghi, H.
2005-05-06
We calculate the cross section for radiative capture of neutron by deuteron n + d {yields} 3H+{gamma} using Effective Field Theory (EFT). The calculation includes N2LO order and we compare our results with available calculated data below E = 0.2 MeV.
The importance of high-precision hadronic calorimetry to physics
NASA Astrophysics Data System (ADS)
Hauptman, John
2016-11-01
The reconstruction and high-precision measurement of the four-vectors of W and Z decays to quarks, which constitute nearly 70% of their decay branching fractions, are critical to a high efficiency and high quality experiment. Furthermore, it is crucial that the energy resolution, and consequently the resolution on the invariant mass of the two fragmenting quarks, is comparable to the energy-momentum resolution on the other particles of the standard model, in particular, electrons, photons, and muons, at energies around 100 GeV. I show that this “unification of resolutions” on all particles of the standard model is now in sight, and will lead to excellent physics at an electron-positron collider.
High precision measurements of the diamond Hugoniot in and above the melt region
Hicks, D; Boehly, T; Celliers, P; Bradley, D; Eggert, J; McWilliams, R S; Collins, G
2008-08-05
High precision laser-driven shock wave measurements of the diamond principal Hugoniot have been made at pressures between 6 and 19 Mbar. Shock velocities were determined with 0.3-1.1% precision using a velocity interferometer. Impedance matching analysis, incorporating systematic errors in the equation-of-state of the quartz standard, was used to determine the Hugoniot with 1.2-2.7% precision in density. The results are in good agreement with published ab initio calculations which predict a small negative melt slope along the Hugoniot, but disagree with previous laser-driven shock wave experiments which had observed a large density increase in the melt region. In the extensive solid-liquid coexistence regime between 6 and 10 Mbar these measurements indicate that the mixed phase may be slightly more dense than would be expected from a simple interpolation between liquid and solid Hugoniots.
New machining method of high precision infrared window part
NASA Astrophysics Data System (ADS)
Yang, Haicheng; Su, Ying; Xu, Zengqi; Guo, Rui; Li, Wenting; Zhang, Feng; Liu, Xuanmin
2016-10-01
Most of the spherical shell of the photoelectric multifunctional instrument was designed as multi optical channel mode to adapt to the different band of the sensor, there were mainly TV, laser and infrared channels. Without affecting the optical diameter, wind resistance and pneumatic performance of the optical system, the overall layout of the spherical shell was optimized to save space and reduce weight. Most of the shape of the optical windows were special-shaped, each optical window directly participated in the high resolution imaging of the corresponding sensor system, and the optical axis parallelism of each sensor needed to meet the accuracy requirement of 0.05mrad.Therefore precision machining of optical window parts quality will directly affect the photoelectric system's pointing accuracy and interchangeability. Processing and testing of the TV and laser window had been very mature, while because of the special nature of the material, transparent and high refractive rate, infrared window parts had the problems of imaging quality and the control of the minimum focal length and second level parallel in the processing. Based on years of practical experience, this paper was focused on how to control the shape and parallel difference precision of infrared window parts in the processing. Single pass rate was increased from 40% to more than 95%, the processing efficiency was significantly enhanced, an effective solution to the bottleneck problem in the actual processing, which effectively solve the bottlenecks in research and production.
High precision measurements of the free form mirror geometries
NASA Astrophysics Data System (ADS)
Dontsov, Denis; Rahneberg, Ilko; Pöschel, Wolfgang; Schott, Walter
2017-06-01
There are many established technologies for precise characterization of the mirror geometries available. The paper presents a high precision measuring setup based on a single beam homodyne laser interferometer. The single beam interferometer is moved by a linear stage between the reference and measuring surfaces and delivers the differences between them. The reference mirror defines an absolute accuracy of the method. This point based method allows a high spatial resolution of the mirror shape and is suitable for measurements of the free form mirror geometries as long as the radius of curvature does not exceed the maximal toleranced tilt. The measuring results have been obtained for optics with dimensions of up to 50 mm and have been verified both for plan mirrors and for mirrors with radii of curvature in the range between 6 m and 10 m. A repeatability of the measuring results in sub-nanometer range can be shown. Especially for mirrors with a very big radius of curvature the knowledge of the exact position of the each measuring point on the surface is important for minimizing the errors of the mathematical fitting algorithms. Therefore a triple beam interferometer has been used for measurements of the stage position. The tight synchronization between all interferometer channels of 0.1 ns allows very fast "on-the-fly" scans of the surface.
High Precision Oxygen Measurements as a Tool for CCS Monitoring
NASA Astrophysics Data System (ADS)
Trugman, A. T.; Dvonch, C.; Clegg, S. M.; Rahn, T.
2011-12-01
CO2 emissions from below ground carbon storage reservoirs can be difficult to discriminate from CO2 produced via natural plant and microbial respiration. However, because respiration produces CO2 and consumes O2 in an approximately 1:1 ratio, it is possible to characterize leakage sources by measurement of simultaneous changes of both O2 and CO2. This approach is complicated by the fact that O2 comprises approximately 21% of the atmosphere, while CO2 is only present in the background atmosphere at ~400 parts per million, making it necessary to accurately measure changes in O2 concentration to six significant figures. Here we describe a portable high precision oxygen measurement system that employs a modified commercial fuel cell analyzer to quantify small changes in O2 concentration. High precision is achieved through precise control of flow and pressure, allowing near part per million precision of O2 and CO2 concentrations. This system has been incorporated into a mobile laboratory and has been deployed to the ZERT controlled release site in Bozeman, Montana and to a natural analog CO2 leak at Soda Springs, Idaho. Samples were collected at ground level, 1 meter, and 3 meters above the CO2 source and are displayed as the ratio of the O2 difference relative to a reference to the CO2 difference in concentration relative to the same reference (ΔO2/ΔCO2). It was observed that at wind speeds ≤ 2 m/s, the ΔO2/ΔCO2 anomaly decreased with height and was still significantly different from background at 3 m. With increasing wind speed, ΔO2/ΔCO2 anomalies decreased to background levels at 1 and 3 m but remained detectable at the ground surface. We will discuss attempts to quantify the CO2 release rate utilizing the measured ΔO2/ΔCO2 elevation profiles and will present complementary eddy covariance data for comparison.
Sample Size Calculations for Precise Interval Estimation of the Eta-Squared Effect Size
ERIC Educational Resources Information Center
Shieh, Gwowen
2015-01-01
Analysis of variance is one of the most frequently used statistical analyses in the behavioral, educational, and social sciences, and special attention has been paid to the selection and use of an appropriate effect size measure of association in analysis of variance. This article presents the sample size procedures for precise interval estimation…
Sample Size Calculations for Precise Interval Estimation of the Eta-Squared Effect Size
ERIC Educational Resources Information Center
Shieh, Gwowen
2015-01-01
Analysis of variance is one of the most frequently used statistical analyses in the behavioral, educational, and social sciences, and special attention has been paid to the selection and use of an appropriate effect size measure of association in analysis of variance. This article presents the sample size procedures for precise interval estimation…
Calculation of the performance of magnetic lenses with limited machining precision.
Sháněl, O; Zlámal, J; Oral, M
2014-02-01
To meet a required STEM resolution, the mechanical precision of the pole pieces of a magnetic lens needs to be determined. A tolerancing plugin in the EOD software is used to determine a configuration which both meets the optical specifications and is cost effective under the constraints of current manufacturing technologies together with a suitable combination of correction elements.
The development of high precision carbon fiber composite mirror
NASA Astrophysics Data System (ADS)
Xu, Liang; Ding, Jiao-teng; Wang, Yong-jie; Xie, Yong-jie; Ma, Zhen; Fan, Xue-wu
2016-10-01
Due to low density, high stiffness, low thermal expansion coefficient, duplicate molding, etc., carbon fiber reinforced polymer (CFRP) is one of the potential materials of the optical mirror. The process developed for Φ300mm high precision CFRP mirror described in this paper. A placement tool used to improve laying accuracy up to ± 0.1°.A special reinforced cell structure designed to increase rigidity and thermal stability. Optical replication process adopted for surface modification of the carbon fiber composite mirror blank. Finally, surface accuracy RMS of Φ300mm CFRP mirror is 0.22μm, surface roughness Ra is about 2nm, and the thermal stability can achieve 13nm /°C from the test result. The research content is of some reference value in the infrared as well as visible light applications.
High Precision Assembly Line Synthesis for Molecules with Tailored Shapes
Burns, Matthew; Essafi, Stephanie; Bame, Jessica R.; Bull, Stephanie P.; Webster, Matthew P.; Balieu, Sebastien; Dale, James W.; Butts, Craig P.; Harvey, Jeremy N.; Aggarwal, Varinder K.
2014-01-01
Molecular assembly lines, where molecules undergo iterative processes involving chain elongation and functional group manipulation are hallmarks of many processes found in Nature. We have sought to emulate Nature in the development of our own molecular assembly line through iterative homologations of boronic esters. Here we report a reagent (α-lithioethyl triispopropylbenzoate) which inserts into carbon-boron bonds with exceptionally high fidelity and stereocontrol. Through repeated iteration we have converted a simple boronic ester into a complex molecule (a carbon chain with ten contiguous methyl groups) with remarkably high precision over its length, its stereochemistry and therefore its shape. Different stereoisomers were targeted and it was found that they adopted different shapes (helical/linear) according to their stereochemistry. This work should now enable scientists to rationally design and create molecules with predictable shape, which could have an impact in all areas of molecular sciences where bespoke molecules are required. PMID:25209797
High-precision analysis of the solar twin HIP 100963
NASA Astrophysics Data System (ADS)
Yana Galarza, Jhon; Meléndez, Jorge; Ramírez, Ivan; Yong, David; Karakas, Amanda I.; Asplund, Martin; Liu, Fan
2016-05-01
Context. HIP 100963 was one of the first solar twins identified. Although some high-precision analyses are available, a comprehensive high-precision study of chemical elements from different nucleosynthetic sources is still lacking from which to obtain potential new insights on planets, stellar evolution, and Galactic chemical evolution (GCE). Aims: We analyze and investigate the origin of the abundance pattern of HIP 100963 in detail, in particular the pattern of the light element Li, the volatile and refractory elements, and heavy elements from the s- and r-processes. Methods: We used the HIRES spectrograph on the Keck I telescope to acquire high-resolution (R ≈ 70 000) spectra with a high signal-to-noise ratio (S/N ≈ 400-650 per pixel) of HIP 100963 and the Sun for a differential abundance analysis. We measured the equivalent widths (EWs) of iron lines to determine the stellar parameters by employing the differential spectroscopic equilibrium. We determined the composition of volatile, refractory, and neutron-capture elements through a differential abundance analysis with respect to the Sun. Results: The stellar parameters we found are Teff = 5818 ± 4 K, log g = 4.49 ± 0.01 dex, vt = 1.03 ± 0.01km s-1, and [Fe/H] = -0.003 ± 0.004 dex. These low errors allow us to compute a precise mass (1.03+0.02-0.01 M⊙) and age (2.0 ± 0.4 Gyr), obtained using Yonsei-Yale isochrones. Using our [Y/Mg] ratio, we have determined an age of 2.1 ± 0.4 Gyr, in agreement with the age computed using isochrones. Our isochronal age also agrees with the age determined from stellar activity (2.4 ± 0.3 Gyr). We study the abundance pattern with condensation temperature (Tcond) taking corrections by the GCE into account. We show that the enhancements of neutron-capture elements are explained by contributions from both the s- and r-process. The lithium abundance follows the tight Li-age correlation seen in other solar twins. Conclusions: We confirm that HIP 100963 is a solar twin
High precision optomechanical assembly using threads as mechanical reference
NASA Astrophysics Data System (ADS)
Lamontagne, Frédéric; Desnoyers, Nichola; Bergeron, Guy; Cantin, Mario
2016-09-01
A convenient method to assemble optomechanical components is to use threaded interface. For example, lenses are often secured inside barrels using threaded rings. In other cases, multiple optical sub-assemblies such as lens barrels can be threaded to each other. Threads have the advantage to provide a simple assembly method, to be easy to manufacture, and to offer a compact mechanical design. On the other hand, threads are not considered to provide accurate centering between parts because of the assembly clearance between the inner and outer threads. For that reason, threads are often used in conjunction with precision cylindrical surfaces to limit the radial clearance between the parts to be centered. Therefore, tight manufacturing tolerances are needed on these pilot diameters, which affect the cost of the optical assembly. This paper presents a new optomechanical approach that uses threads as mechanical reference. This innovative method relies on geometric principles to auto-center parts to each other with a very low centering error that is usually less than 5 μm. The method allows to auto-center an optical group in a main barrel, to perform an axial adjustment of an optical group inside a main barrel, and to perform stacking of multiple barrels. In conjunction with the lens auto-centering method that also used threads as a mechanical reference, this novel solution opens new possibilities to realize a variety of different high precision optomechanical assemblies at lower cost.
Algorithm research of high-precision optical interferometric phase demodulation based on FPGA
NASA Astrophysics Data System (ADS)
Zhi, Chunxiao; Sun, Jinghua
2012-11-01
Optical interferometric phase demodulation algorithm is provided based on the principle of phase generated carrier (PGC), which can realize the optical interference measurement of high-precision signal demodulation, applied to optical fiber displacement, vibration sensor. Modulated photoelectric detection signal is performanced by interval 8 frequency multiplication sampling. The samples calculate the phase modulation depth and phase error through a feedback loop to achieve optimum working point control. On the other hand the results of sampling calculate precision of numerical of the phase. The algorithm uses the addition and subtraction method instead of correlation filtering and other related complex calculation process of the traditional PGC digital demodulation, making full use of FPGA data processing with advantage of high speed and parallel; This method can give full play to the advantage of FPGA performance. Otherwise, the speed at the same time, FPGA can also ensure that the phase demodulation precision, wide dynamic range, and give full play to the advantage of completing the data access by single clock cycle.
On the precision of chiral-dispersive calculations of ππ scattering
NASA Astrophysics Data System (ADS)
Ynduráin, F. J.
2004-01-01
We evaluate two representative crossing sum rules and prove that, contrarily to claims by Ananthanarayan, Colangelo, Gasser and Leutwyler, standard Regge behaviour is perfectly compatible with low energy ππ phase shifts. We then calculate the combination 2 a0(0) - 5 a0(2) (the Olsson sum rule) and the scattering lengths and effective ranges a1, a2( I) and b1, b2( I) dispersively (with the Froissart-Gribov representation) using, at low energy, the phase shifts for ππ scattering obtained by Colangelo, Gasser and Leutwyler (CGL) from the Roy equations and chiral perturbation theory, plus experiment and Regge behaviour at high energy, or directly, using the CGL parameters for as and bs. We find mismatch, both among the CGL phases themselves and with the independent results obtained from the pion form factor. This reaches the level of several (2 to 5) standard deviations. We consider possible reasons for this mismatch, in particular in connection with an alternate set of phase shifts. We also discuss two quantities, a3 and the coefficient cπ in the pion form factor where chiral perturbation theory diverges, thus casting further doubts on the CGL analysis. The details may be found in the article with the same title by J. R. Peláez and F. J. Ynduráin, hep-ph/0304067, to appear in Physical Review D.
Zel, Jana; Gruden, Kristina; Cankar, Katarina; Stebih, Dejan; Blejec, Andrej
2007-01-01
Quantitative characterization of nucleic acids is becoming a frequently used method in routine analysis of biological samples, one use being the detection of genetically modified organisms (GMOs). Measurement uncertainty is an important factor to be considered in these analyses, especially where precise thresholds are set in regulations. Intermediate precision, defined as a measure between repeatability and reproducibility, is a parameter describing the real situation in laboratories dealing with quantitative aspects of molecular biology methods. In this paper, we describe the top-down approach to calculating measurement uncertainty, using intermediate precision, in routine GMO testing of food and feed samples. We illustrate its practicability in defining compliance of results with regulations. The method described is also applicable to other molecular methods for a variety of laboratory diagnostics where quantitative characterization of nucleic acids is needed.
High-precision atomic structure measurements in thallium
NASA Astrophysics Data System (ADS)
Burkhardt, M. H.; Holmes, C. D.; Uhl, R.; Majumder, P. K.
2004-05-01
Using a thallium atomic beam apparatus, we are undertaking a series of laser spectroscopy measurements with the goal of providing precise, independent cross-checks on the accuracy of new calculations of parity nonconservation in thallium(M. Kozlov et al.), Phys Rev. A64, 053107 (2001). In our apparatus, a laser beam interacts transversely with a dense, 2-cm-wide thallium beam and reveals roughly tenfold Doppler narrowing of the absorption profile. Having completed a new 0.4% measurement of the Stark shift within the 378 nm 6P_1/2-7S_1/2 E1 transition, we have now begun to study the weak 1283 nm 6P_1/2-6P_3/2 transition in the atomic beam. We seek to determine both Stark shift components, as well as the various components of the Stark-induced amplitude within this mixed M1/E2 transition. Using these existing laser systems, we have also begun a vapor cell spectroscopy study of the 1301 nm 7S_1/2-7P_1/2 E1 transition by means of a two-step excitation from the ground state. To enhance the visibility of these weak absorption signals, we are employing an FM spectroscopy technique. The demodulated laser transmission spectrum provides a low-noise, zero-background signal, and includes replicas of the absorption spectrum separated by the well-known RF sideband frequency, offering built-in frequency scale calibration.
High Performance and Increased Precision Techniques for Feynman Loop Integrals
NASA Astrophysics Data System (ADS)
Kato, K.; de Doncker, E.; Ishikawa, T.; Kapenga, J.; Olagbemi, O.; Yuasa, F.
2016-10-01
For the investigation of physics within and beyond the Standard Model, a precise evaluation of higher order corrections in perturbative quantum field theory is required. We have worked on the development of a computational method for Feynman loop integrals with a fully numerical approach. It is based on numerical integration and extrapolation techniques. In this paper, we describe the status and new developments in our techniques for the numerical computation of Feynman loop integrals. Separation of ultra-violet divergences is important for the renormalization procedure. In our analyses, the separation can be done numerically. For 2-loop integrals we have performed the calculations for up to 4-point functions, and for 2-point functions we can handle up to 4- loop integrals. We report the status and accuracy of the computations with detailed numerical comparisons to results in the literature, in order to demonstrate that our method will evolve into an important component of automated systems for the study of higher-order radiative corrections.
NASA Astrophysics Data System (ADS)
Zhou, Qian; Li, Yang; Ni, Kai; Xu, Mingfei; Dong, Hao; Wu, Guanhao
2014-11-01
A method using a pair of femtosecond frequency combs can realize ranging at a high precision of 1μm by Fourier Processing. In simulation of this system based on Matlab/Simulink, it is found that the choosing of repeating frequencies has great impact on frequency of the sampled signals, which influences the ranging precision a lot. The sampled signals are analyzed and classified into three types, which can be judgment criteria in system setting. Filter at Nyquist frequency is advised to decrease the edge effect of FFT, and a supplement means of cutting in data processing is proposed to improve precision.
NASA Astrophysics Data System (ADS)
Hardman, K. S.; Everitt, P. J.; McDonald, G. D.; Manju, P.; Wigley, P. B.; Sooriyabandara, M. A.; Kuhn, C. C. N.; Debs, J. E.; Close, J. D.; Robins, N. P.
2016-09-01
A Bose-Einstein condensate is used as an atomic source for a high precision sensor. A 5 ×1 06 atom F =1 spinor condensate of 87Rb is released into free fall for up to 750 ms and probed with a T =130 ms Mach-Zehnder atom interferometer based on Bragg transitions. The Bragg interferometer simultaneously addresses the three magnetic states |mf=1 ,0 ,-1 ⟩, facilitating a simultaneous measurement of the acceleration due to gravity with a 1000 run precision of Δ g /g =1.45 ×10-9 and the magnetic field gradient to a precision of 120 pT /m .
Monolithic interferometer for high precision radial velocity measurements
NASA Astrophysics Data System (ADS)
Wan, Xiaoke; Ge, Jian; Wang, Ji; Lee, Brian
2009-08-01
In high precision radial velocity (RV) measurements for extrasolar planets searching and studies, a stable wide field Michelson interferometer is very critical in Exoplanet Tracker (ET) instruments. Adopting a new design, monolithic interferometers are homogenous and continuous in thermal expansion, and field compensation and thermal compensation are both satisfied. Interferometer design and fabrication are decrypted in details. In performance evaluations, field angle is typically 22° and thermal sensitivity is typically -1.7 x 10-6/°C, which corresponds to ~500 m/s /°C in RV scale. In interferometer stability monitoring using a wavelength stabilized laser source, phase shift data was continuously recorded for nearly seven days. Appling a frequent calibration every 30 minutes as in typical star observations, the interferometer instability contributes less than 1.4 m/s in RV error, in a conservative estimation.
Superconducting Tunnel Junctions for High-Precision EUV Spectroscopy
NASA Astrophysics Data System (ADS)
Ponce, F.; Carpenter, M. H.; Cantor, R.; Friedrich, S.
2016-08-01
We have characterized the photon response of superconducting tunnel junctions in the extreme ultraviolet energy range below 100 eV with a pulsed 355 nm laser. The detectors are operated at rates up to 5000 counts/s, are very linear in energy and have an energy resolution between 0.9 and 2 eV. We observe multiple peaks that correspond to an integer number of photons with a Poissonian probability distribution and that can be used for high-accuracy energy calibration. The uncertainty of the centroid depends on the detector resolution and the counting statistics and can be as low as 1 meV for well-separated peaks with >10^5 counts. We discuss the precision of the peak centroid as a function of detector resolution and total number of counts and the accuracy of the energy calibration.
Thermal-mechanical behavior of high precision composite mirrors
NASA Astrophysics Data System (ADS)
Kuo, C. P.; Lou, M. C.; Rapp, D.
1993-04-01
Composite mirror panels were designed, constructed, analyzed, and tested in the framework of a NASA precision segmented reflector task. The deformations of the reflector surface during the exposure to space enviroments were predicted using a finite element model. The composite mirror panels have graphite-epoxy or graphite-cyanate facesheets, separated by an aluminum or a composite honeycomb core. It is pointed out that in order to carry out detailed modeling of composite mirrors with high accuracy, it is necessary to have temperature dependent properties of the materials involved and the type and magnitude of manufacturing errors and material nonuniformities. The structural modeling and analysis efforts addressed the impact of key design and materials parameters on the performance of mirrors.
A high precision semi-analytic mass function
NASA Astrophysics Data System (ADS)
Del Popolo, Antonino; Pace, Francesco; Le Delliou, Morgan
2017-03-01
In this paper, extending past works of Del Popolo, we show how a high precision mass function (MF) can be obtained using the excursion set approach and an improved barrier taking implicitly into account a non-zero cosmological constant, the angular momentum acquired by tidal interaction of proto-structures and dynamical friction. In the case of the ΛCDM paradigm, we find that our MF is in agreement at the 3% level to Klypin's Bolshoi simulation, in the mass range Mvir = 5 × 109 h‑1Msolar–‑5 × 1014 h‑1Msolar and redshift range 0 lesssim z lesssim 10. For z = 0 we also compared our MF to several fitting formulae, and found in particular agreement with Bhattacharya's within 3% in the mass range 1012–1016 h‑1Msolar. Moreover, we discuss our MF validity for different cosmologies.
Precision Viticulture from Multitemporal, Multispectral Very High Resolution Satellite Data
NASA Astrophysics Data System (ADS)
Kandylakis, Z.; Karantzalos, K.
2016-06-01
In order to exploit efficiently very high resolution satellite multispectral data for precision agriculture applications, validated methodologies should be established which link the observed reflectance spectra with certain crop/plant/fruit biophysical and biochemical quality parameters. To this end, based on concurrent satellite and field campaigns during the veraison period, satellite and in-situ data were collected, along with several grape samples, at specific locations during the harvesting period. These data were collected for a period of three years in two viticultural areas in Northern Greece. After the required data pre-processing, canopy reflectance observations, through the combination of several vegetation indices were correlated with the quantitative results from the grape/must analysis of grape sampling. Results appear quite promising, indicating that certain key quality parameters (like brix levels, total phenolic content, brix to total acidity, anthocyanin levels) which describe the oenological potential, phenolic composition and chromatic characteristics can be efficiently estimated from the satellite data.
Accuracy and precision of free-energy calculations via molecular simulation
NASA Astrophysics Data System (ADS)
Lu, Nandou
A quantitative characterization of the methodologies of free-energy perturbation (FEP) calculations is presented, and optimal implementation of the methods for reliable and efficient calculation is addressed. Some common misunderstandings in the FEP calculations are corrected. The two opposite directions of FEP calculations are uniquely defined as generalized insertion and generalized deletion, according to the entropy change along the perturbation direction. These two calculations are not symmetric; they produce free-energy results differing systematically due to the different capability of each to sample the important phase-space in a finite-length simulation. The FEP calculation errors are quantified by characterizing the simulation sampling process with the help of probability density functions for the potential energy change. While the random error in the FEP calculation is analyzed with a probabilistic approach, the systematic error is characterized as the most-likely inaccuracy, which is modeled considering the poor sampling of low-probability energy distribution tails. Our analysis shows that the entropy difference between the perturbation systems plays a key role in determining the reliability of FEP results, and the perturbation should be carried out in the insertion direction in order to ensure a good sampling and thus a reliable calculation. Easy-to-use heuristics are developed to estimate the simulation errors, as well as the simulation length that ensures a certain accuracy level of the calculation. The fundamental understanding obtained is then applied to tackle the problem of multistage FEP optimization. We provide the first principle of optimal staging: For each substage FEP calculation, the higher entropy system should be used as the reference to govern the sampling, i.e., the calculation should be conducted in the generalized insertion direction for each stage of perturbation. To minimize the simulation error, intermediate states should be
A detector interferometric calibration experiment for high precision astrometry
NASA Astrophysics Data System (ADS)
Crouzier, A.; Malbet, F.; Henault, F.; Léger, A.; Cara, C.; LeDuigou, J. M.; Preis, O.; Kern, P.; Delboulbe, A.; Martin, G.; Feautrier, P.; Stadler, E.; Lafrasse, S.; Rochat, S.; Ketchazo, C.; Donati, M.; Doumayrou, E.; Lagage, P. O.; Shao, M.; Goullioud, R.; Nemati, B.; Zhai, C.; Behar, E.; Potin, S.; Saint-Pe, M.; Dupont, J.
2016-11-01
Context. Exoplanet science has made staggering progress in the last two decades, due to the relentless exploration of new detection methods and refinement of existing ones. Yet astrometry offers a unique and untapped potential of discovery of habitable-zone low-mass planets around all the solar-like stars of the solar neighborhood. To fulfill this goal, astrometry must be paired with high precision calibration of the detector. Aims: We present a way to calibrate a detector for high accuracy astrometry. An experimental testbed combining an astrometric simulator and an interferometric calibration system is used to validate both the hardware needed for the calibration and the signal processing methods. The objective is an accuracy of 5 × 10-6 pixel on the location of a Nyquist sampled polychromatic point spread function. Methods: The interferometric calibration system produced modulated Young fringes on the detector. The Young fringes were parametrized as products of time and space dependent functions, based on various pixel parameters. The minimization of function parameters was done iteratively, until convergence was obtained, revealing the pixel information needed for the calibration of astrometric measurements. Results: The calibration system yielded the pixel positions to an accuracy estimated at 4 × 10-4 pixel. After including the pixel position information, an astrometric accuracy of 6 × 10-5 pixel was obtained, for a PSF motion over more than five pixels. In the static mode (small jitter motion of less than 1 × 10-3 pixel), a photon noise limited precision of 3 × 10-5 pixel was reached.
MultiView High Precision VLBI Astrometry at Low Frequencies
NASA Astrophysics Data System (ADS)
Rioja, María J.; Dodson, Richard; Orosz, Gabor; Imai, Hiroshi; Frey, Sandor
2017-03-01
The arrival of the Square Kilometer Array (SKA) will revitalize all aspects of Very Long Baseline Interferometry (VLBI) astronomy at lower frequencies. In the last decade, there have been huge strides toward routinely achieving high precision VLBI astrometry at frequencies dominated by tropospheric contributions, most notably at 22 GHz, using advanced phase-referencing techniques. Nevertheless, to increase the capability for high precision astrometric measurements at low radio frequencies (<8 GHz), an effective calibration strategy of the systematic ionospheric propagation effects that is widely applicable is required. Observations at low frequencies are dominated by distinct direction-dependent ionospheric propagation errors, which place a very tight limit on the angular separation of a suitable phase-referencing calibrator. The MultiView technique holds the key to compensating for atmospheric spatial-structure errors, by using observations of multiple calibrators and two-dimensional interpolation in the visibility domain. In this paper we present the first demonstration of the power of MultiView using three calibrators, several degrees from the target, along with a comparative study of the astrometric accuracy between MultiView and phase-referencing techniques. MultiView calibration provides an order of magnitude improvement in astrometry with respect to conventional phase referencing, achieving ∼100 μas astrometry errors in a single epoch of observations, effectively reaching the thermal noise limit. MultiView will achieve its full potential with the enhanced sensitivity and multibeam capabilities of SKA and the pathfinders, which will enable simultaneous observations of the target and calibrators. Our demonstration indicates that the 10 μas goal of astrometry at ∼1.6 GHz using VLBI with SKA is feasible using the MultiView technique.
Precision muon tracking detectors for high-energy hadron colliders
NASA Astrophysics Data System (ADS)
Gadow, Ph.; Kortner, O.; Kroha, H.; Richter, R.
2017-02-01
Small-diameter muon drift tube (sMDT) chambers with 15 mm tube diameter are a cost-effective technology for high-precision muon tracking over large areas at high background rates as expected at future high-energy hadron colliders including HL-LHC. The chamber design and construction procedures have been optimised for mass production and provide sense wire positioning accuracy of better than 10 μm. The rate capability of the sMDT chambers has been extensively tested at the CERN Gamma Irradiation Facility. It exceeds the one of the ATLAS muon drift tube (MDT) chambers, which are operated at unprecedentedly high background rates of neutrons and γ-rays, by an order of magnitude, which is sufficient for almost the whole of the muon detector acceptance at FCC-hh at maximum luminosity. sMDT operational and construction experience exists from ATLAS muon spectrometer upgrades which are in progress or under preparation for LHC Phase 1 and 2.
Fast, High-Precision Readout Circuit for Detector Arrays
NASA Technical Reports Server (NTRS)
Rider, David M.; Hancock, Bruce R.; Key, Richard W.; Cunningham, Thomas J.; Wrigley, Chris J.; Seshadri, Suresh; Sander, Stanley P.; Blavier, Jean-Francois L.
2013-01-01
The GEO-CAPE mission described in NASA's Earth Science and Applications Decadal Survey requires high spatial, temporal, and spectral resolution measurements to monitor and characterize the rapidly changing chemistry of the troposphere over North and South Americas. High-frame-rate focal plane arrays (FPAs) with many pixels are needed to enable such measurements. A high-throughput digital detector readout integrated circuit (ROIC) that meets the GEO-CAPE FPA needs has been developed, fabricated, and tested. The ROIC is based on an innovative charge integrating, fast, high-precision analog-to-digital circuit that is built into each pixel. The 128×128-pixel ROIC digitizes all 16,384 pixels simultaneously at frame rates up to 16 kHz to provide a completely digital output on a single integrated circuit at an unprecedented rate of 262 million pixels per second. The approach eliminates the need for off focal plane electronics, greatly reducing volume, mass, and power compared to conventional FPA implementations. A focal plane based on this ROIC will require less than 2 W of power on a 1×1-cm integrated circuit. The ROIC is fabricated of silicon using CMOS technology. It is designed to be indium bump bonded to a variety of detector materials including silicon PIN diodes, indium antimonide (InSb), indium gallium arsenide (In- GaAs), and mercury cadmium telluride (HgCdTe) detector arrays to provide coverage over a broad spectral range in the infrared, visible, and ultraviolet spectral ranges.
NASA Astrophysics Data System (ADS)
Zhirkin, A. V.; Alekseev, P. N.; Batyaev, V. F.; Gurevich, M. I.; Dudnikov, A. A.; Kuteev, B. V.; Pavlov, K. V.; Titarenko, Yu. E.; Titarenko, A. Yu.
2017-06-01
In this report the calculation accuracy requirements of the main parameters of the fusion neutron source, and the thermonuclear blankets with a DT fusion power of more than 10 MW, are formulated. To conduct the benchmark experiments the technical documentation and calculation models were developed for two blanket micro-models: the molten salt and the heavy water solid-state blankets. The calculations of the neutron spectra, and 37 dosimetric reaction rates that are widely used for the registration of thermal, resonance and threshold (0.25-13.45 MeV) neutrons, were performed for each blanket micro-model. The MCNP code and the neutron data library ENDF/B-VII were used for the calculations. All the calculations were performed for two kinds of neutron source: source I is the fusion source, source II is the source of neutrons generated by the 7Li target irradiated by protons with energy 24.6 MeV. The spectral indexes ratios were calculated to describe the spectrum variations from different neutron sources. The obtained results demonstrate the advantage of using the fusion neutron source in future experiments.
Centroiding Experiment for Determining the Positions of Stars with High Precision
NASA Astrophysics Data System (ADS)
Yano, T.; Araki, H.; Hanada, H.; Tazawa, S.; Gouda, N.; Kobayashi, Y.; Yamada, Y.; Niwa, Y.
2010-12-01
We have experimented with the determination of the positions of star images on a detector with high precision such as 10 microarcseconds, required by a space astrometry satellite, JASMINE. In order to accomplish such a precision, we take the following two procedures. (1) We determine the positions of star images on the detector with the precision of about 0.01 pixel for one measurement, using an algorithm for estimating them from photon weighted means of the star images. (2) We determine the positions of star images with the precision of about 0.0001-0.00001 pixel, which corresponds to that of 10 microarcseconds, using a large amount of data over 10000 measurements, that is, the error of the positions decreases according to the amount of data. Here, we note that the procedure 2 is not accomplished when the systematic error in our data is not excluded adequately even if we use a large amount of data. We first show the method to determine the positions of star images on the detector using photon weighted means of star images. This algorithm, used in this experiment, is very useful because it is easy to calculate the photon weighted mean from the data. This is very important in treating a large amount of data. Furthermore, we need not assume the shape of the point spread function in deriving the centroid of star images. Second, we show the results in the laboratory experiment for precision of determining the positions of star images. We obtain that the precision of estimation of positions of star images on the detector is under a variance of 0.01 pixel for one measurement (procedure 1). We also obtain that the precision of the positions of star images becomes a variance of about 0.0001 pixel using about 10000 measurements (procedure 2).
The interferometric method for measuring the generatrix straightness of high precision cone
NASA Astrophysics Data System (ADS)
Kang, Yanhui; Li, Huailu; Diao, Xiaofei; Zhang, Heng
2015-10-01
Cone parts are widely used in advanced manufacturing and precision mechanics, providing air proof, torque transmission and so on. The straightness of generatrix is one of the important parameters, and the required accuracy can be up to submicrometers. In order to realize the rapid and high precision generatrix measurement of smooth surface cone, a laser interferometric method is proposed based on the structure of typical Fizeau interferometer. The high precision optical flat is used for reference standard, and the surface of cone is the measured object. Two cylindrical lenses with different focal lengths realize unidirectional expansion of parallel beam, solving the problem of CCD camera fringe resolution. The interference fringes are curved because of the cone angle, and the peak is the basis for accurate determination of the generatrix. Two fringe processing techniques are described in detail, which are single-frame and phase-shifting methods. Single-frame method includes two steps, i.e. the calculation of integral part and decimal part. The advantage of this method is the simple measurement structure. Phase-shifting method needs piezoelectric transducer (PZT) to generate several steps for phase calculation, with the advantage of high accuracy. The experimental results show that the straightness measurement accuracy can be better than 0.2 μm.
Kawamoto, Hirokazu; Takayasu, Hideki; Jensen, Henrik Jeldtoft; Takayasu, Misako
2015-01-01
Through precise numerical analysis, we reveal a new type of universal loopless percolation transition in randomly removed complex networks. As an example of a real-world network, we apply our analysis to a business relation network consisting of approximately 3,000,000 links among 300,000 firms and observe the transition with critical exponents close to the mean-field values taking into account the finite size effect. We focus on the largest cluster at the critical point, and introduce survival probability as a new measure characterizing the robustness of each node. We also discuss the relation between survival probability and k-shell decomposition.
Precision, high dose radiotherapy: helium ion treatment of uveal melanoma
Saunders, W.M.; Char, D.H.; Quivey, J.M.; Castro, J.R.; Chen, G.T.Y.; Collier, J.M.; Cartigny, A.; Blakely, E.A.; Lyman, J.T.; Zink, S.R.
1985-02-01
The authors report on 75 patients with uveal melanoma who were treated by placing the Bragg peak of a helium ion beam over the tumor volume. The technique localizes the high dose region very tightly around the tumor volume. This allows critical structures, such as the optic disc and the macula, to be excluded from the high dose region as long as they are 3 to 4 mm away from the edge of the tumor. Careful attention to tumor localization, treatment planning, patient immobilization and treatment verification is required. With a mean follow-up of 22 months (3 to 60 months) the authors have had only five patients with a local recurrence, all of whom were salvaged with another treatment. Pretreatment visual acuity has generally been preserved as long as the tumor edge is at least 4 mm away from the macula and optic disc. The only serious complication to date has been an 18% incidence of neovascular glaucoma in the patients treated at our highest dose level. Clinical results and details of the technique are presented to illustrate potential clinical precision in administering high dose radiotherapy with charged particles such as helium ions or protons.
Evaluation of High-Precision Sensors in Structural Monitoring
Erol, Bihter
2010-01-01
One of the most intricate branches of metrology involves the monitoring of displacements and deformations of natural and anthropogenic structures under environmental forces, such as tidal or tectonic phenomena, or ground water level changes. Technological progress has changed the measurement process, and steadily increasing accuracy requirements have led to the continued development of new measuring instruments. The adoption of an appropriate measurement strategy, with proper instruments suited for the characteristics of the observed structure and its environmental conditions, is of high priority in the planning of deformation monitoring processes. This paper describes the use of precise digital inclination sensors in continuous monitoring of structural deformations. The topic is treated from two viewpoints: (i) evaluation of the performance of inclination sensors by comparing them to static and continuous GPS observations in deformation monitoring and (ii) providing a strategy for analyzing the structural deformations. The movements of two case study objects, a tall building and a geodetic monument in Istanbul, were separately monitored using dual-axes micro-radian precision inclination sensors (inclinometers) and GPS. The time series of continuous deformation observations were analyzed using the Least Squares Spectral Analysis Technique (LSSA). Overall, the inclinometers showed good performance for continuous monitoring of structural displacements, even at the sub-millimeter level. Static GPS observations remained insufficient for resolving the deformations to the sub-centimeter level due to the errors that affect GPS signals. With the accuracy advantage of inclination sensors, their use with GPS provides more detailed investigation of deformation phenomena. Using inclinometers and GPS is helpful to be able to identify the components of structural responses to the natural forces as static, quasi-static, or resonant. PMID:22163499
Evaluation of high-precision sensors in structural monitoring.
Erol, Bihter
2010-01-01
One of the most intricate branches of metrology involves the monitoring of displacements and deformations of natural and anthropogenic structures under environmental forces, such as tidal or tectonic phenomena, or ground water level changes. Technological progress has changed the measurement process, and steadily increasing accuracy requirements have led to the continued development of new measuring instruments. The adoption of an appropriate measurement strategy, with proper instruments suited for the characteristics of the observed structure and its environmental conditions, is of high priority in the planning of deformation monitoring processes. This paper describes the use of precise digital inclination sensors in continuous monitoring of structural deformations. The topic is treated from two viewpoints: (i) evaluation of the performance of inclination sensors by comparing them to static and continuous GPS observations in deformation monitoring and (ii) providing a strategy for analyzing the structural deformations. The movements of two case study objects, a tall building and a geodetic monument in Istanbul, were separately monitored using dual-axes micro-radian precision inclination sensors (inclinometers) and GPS. The time series of continuous deformation observations were analyzed using the Least Squares Spectral Analysis Technique (LSSA). Overall, the inclinometers showed good performance for continuous monitoring of structural displacements, even at the sub-millimeter level. Static GPS observations remained insufficient for resolving the deformations to the sub-centimeter level due to the errors that affect GPS signals. With the accuracy advantage of inclination sensors, their use with GPS provides more detailed investigation of deformation phenomena. Using inclinometers and GPS is helpful to be able to identify the components of structural responses to the natural forces as static, quasi-static, or resonant.
Developing Performance Estimates for High Precision Astrometry with TMT
NASA Astrophysics Data System (ADS)
Schoeck, Matthias; Do, Tuan; Ellerbroek, Brent; Herriot, Glen; Meyer, Leo; Suzuki, Ryuji; Wang, Lianqi; Yelda, Sylvana
2013-12-01
Adaptive optics on Extremely Large Telescopes will open up many new science cases or expand existing science into regimes unattainable with the current generation of telescopes. One example of this is high-precision astrometry, which has requirements in the range from 10 to 50 micro-arc-seconds for some instruments and science cases. Achieving these requirements imposes stringent constraints on the design of the entire observatory, but also on the calibration procedures, observing sequences and the data analysis techniques. This paper summarizes our efforts to develop a top down astrometry error budget for TMT. It is predominantly developed for the first-light AO system, NFIRAOS, and the IRIS instrument, but many terms are applicable to other configurations as well. Astrometry error sources are divided into 5 categories: Reference source and catalog errors, atmospheric refraction correction errors, other residual atmospheric effects, opto-mechanical errors and focal plane measurement errors. Results are developed in parametric form whenever possible. However, almost every error term in the error budget depends on the details of the astrometry observations, such as whether absolute or differential astrometry is the goal, whether one observes a sparse or crowded field, what the time scales of interest are, etc. Thus, it is not possible to develop a single error budget that applies to all science cases and separate budgets are developed and detailed for key astrometric observations. Our error budget is consistent with the requirements for differential astrometry of tens of micro-arc-seconds for certain science cases. While no show stoppers have been found, the work has resulted in several modifications to the NFIRAOS optical surface specifications and reference source design that will help improve the achievable astrometry precision even further.
Highly precise and robust packaging of optical components
NASA Astrophysics Data System (ADS)
Leers, Michael; Winzen, Matthias; Liermann, Erik; Faidel, Heinrich; Westphalen, Thomas; Miesner, Jörn; Luttmann, Jörg; Hoffmann, Dieter
2012-03-01
In this paper we present the development of a compact, thermo-optically stable and vibration and mechanical shock resistant mounting technique by soldering of optical components. Based on this technique a new generation of laser sources for aerospace applications is designed. In these laser systems solder technique replaces the glued and bolted connections between optical component, mount and base plate. Alignment precision in the arc second range and realization of long term stability of every single part in the laser system is the main challenge. At the Fraunhofer Institute for Laser Technology ILT a soldering and mounting technique has been developed for high precision packaging. The specified environmental boundary conditions (e.g. a temperature range of -40 °C to +50 °C) and the required degrees of freedom for the alignment of the components have been taken into account for this technique. In general the advantage of soldering compared to gluing is that there is no outgassing. In addition no flux is needed in our special process. The joining process allows multiple alignments by remelting the solder. The alignment is done in the liquid phase of the solder by a 6 axis manipulator with a step width in the nm range and a tilt in the arc second range. In a next step the optical components have to pass the environmental tests. The total misalignment of the component to its adapter after the thermal cycle tests is less than 10 arc seconds. The mechanical stability tests regarding shear, vibration and shock behavior are well within the requirements.
High-precision efficiency calibration of a high-purity co-axial germanium detector
NASA Astrophysics Data System (ADS)
Blank, B.; Souin, J.; Ascher, P.; Audirac, L.; Canchel, G.; Gerbaux, M.; Grévy, S.; Giovinazzo, J.; Guérin, H.; Nieto, T. Kurtukian; Matea, I.; Bouzomita, H.; Delahaye, P.; Grinyer, G. F.; Thomas, J. C.
2015-03-01
A high-purity co-axial germanium detector has been calibrated in efficiency to a precision of about 0.15% over a wide energy range. High-precision scans of the detector crystal and γ-ray source measurements have been compared to Monte-Carlo simulations to adjust the dimensions of a detector model. For this purpose, standard calibration sources and short-lived online sources have been used. The resulting efficiency calibration reaches the precision needed e.g. for branching ratio measurements of super-allowed β decays for tests of the weak-interaction standard model.
A simple high-precision Jacob's staff design for the high-resolution stratigrapher
Elder, W.P.
1989-01-01
The new generation of high-resolution stratigraphic research depends upon detailed bed-by-bed analysis to enhance regional correlation potential. The standard Jacob's staff is not an efficient and precise tool for measuring thin-bedded strata. The high-precision Jacob's staff design presented and illustrated in this paper meets the qualifications required of such an instrument. The prototype of this simple design consists of a sliding bracket that holds a Brunton-type compass at right angles to a ruled-off staff. This instrument provides rapid and accurate measurement of both thick- or thin-bedded sequences, thus decreasing field time and increasing stratigraphic precision. -Author
High-Precision Measurement of the Proton's Atomic Mass
NASA Astrophysics Data System (ADS)
Heiße, F.; Köhler-Langes, F.; Rau, S.; Hou, J.; Junck, S.; Kracke, A.; Mooser, A.; Quint, W.; Ulmer, S.; Werth, G.; Blaum, K.; Sturm, S.
2017-07-01
We report on the precise measurement of the atomic mass of a single proton with a purpose-built Penning-trap system. With a precision of 32 parts per trillion our result not only improves on the current CODATA literature value by a factor of 3, but also disagrees with it at a level of about 3 standard deviations.
Development and simulation of microfluidic Wheatstone bridge for high-precision sensor
NASA Astrophysics Data System (ADS)
Shipulya, N. D.; Konakov, S. A.; Krzhizhanovskaya, V. V.
2016-08-01
In this work we present the results of analytical modeling and 3D computer simulation of microfluidic Wheatstone bridge, which is used for high-accuracy measurements and precision instruments. We propose and simulate a new method of a bridge balancing process by changing the microchannel geometry. This process is based on the “etching in microchannel” technology we developed earlier (doi:10.1088/1742-6596/681/1/012035). Our method ensures a precise control of the flow rate and flow direction in the bridge microchannel. The advantage of our approach is the ability to work without any control valves and other active electronic systems, which are usually used for bridge balancing. The geometrical configuration of microchannels was selected based on the analytical estimations. A detailed 3D numerical model was based on Navier-Stokes equations for a laminar fluid flow at low Reynolds numbers. We investigated the behavior of the Wheatstone bridge under different process conditions; found a relation between the channel resistance and flow rate through the bridge; and calculated the pressure drop across the system under different total flow rates and viscosities. Finally, we describe a high-precision microfluidic pressure sensor that employs the Wheatstone bridge and discuss other applications in complex precision microfluidic systems.
Precise measurement and calculation of coincidence summing corrections for point and linear sources.
Sima, Octavian; Arnold, Dirk
2012-09-01
Point sources of (60)Co, (133)Ba, (134)Cs and (152)Eu, calibrated at Physikalisch-Technische Bundesanstalt were measured in 13 positions on the axis of a 50% relative efficiency p-type detector. The peak and total efficiencies were calibrated using single photon emitting nuclides. Precise experimental values of the coincidence summing corrections were evaluated in each geometry. Synthetic linear source data, as well as the corresponding peak and total efficiency curves, were prepared using the dependence of the count rates on the position of the emitting point. The coincidence summing corrections for the linear sources were computed, analyzed with respect to different approximations and compared with simulations carried out with GESPECOR. Copyright © 2012 Elsevier Ltd. All rights reserved.
High-Precision Studies of Compact Variable Stars
NASA Astrophysics Data System (ADS)
Bloemen, Steven
2014-10-01
This book, which is a reworked and updated version of Steven Bloemen's original PhD thesis, reports on several high-precision studies of compact variable stars. Its strength lies in the large variety of observational, theoretical and instrumentation techniques that are presented and used and paves the way towards new and detailed asteroseismic applications of single and binary subdwarf stars. Close binary stars are studied using high cadence spectroscopic datasets collected with state of the art electron multiplying CCDs and analysed using Doppler tomography visualization techniques. The work touches upon instrumentation, presenting the calibration of a new fast, multi-colour camera installed at the Mercator Telescope on La Palma. The thesis also includes theoretical work on the computation of the temperature range in which stellar oscillations can be driven in subdwarf B-stars. Finally, the highlight of the thesis is the measurement of velocities of stars using only photometric data from NASA's Kepler satellite. Doppler beaming causes stars to appear slightly brighter when they move towards us in their orbits, and this subtle effect can be seen in Kepler's brightness measurements. The thesis presents the first validation of such velocity measurements using independent spectroscopic measurements. Since the detection and validation of this Doppler beaming effect, it has been used in tens of studies to detect and characterize binary star systems, which are key calibrators in stellar astronomy.
High-precision heliostat for long-path light tracking
NASA Astrophysics Data System (ADS)
Hawat, Tom; Stephen, Thomas M.; DeMaziere, Martine M.; Neefs, Eddy
2003-08-01
A heliostat has been designed and built for use in optical remote sensing of the atmosphere. The heliostat uses two flat mirrors to track the sun and direct the sunlight to optical instruments. A stepper motor driven horizontal turntable is used to track the sun in azimuth and support an elevation assembly and a mechanical tower. The stepper motor driven elevation assembly drives an acquisition mirror that tracks the sun in elevation. This mirror directs the solar beam to a secondary mirror fixed on the mechanical tower. The secondary mirror then directs the solar beam along the axis of the tracker for use in measurements. A sensitive, high resolution CCD camera, receives a small part of the solar beam to analyze for fine servo-control. Ground based tests have demonstrated this instrument"s tracking capability for the sun, the moon, stars and for long pathlength sources. Presently, this system is coupled with a high-resolution Brucker 120M spectrometer used to obtain solar absorption spectra. The heliostat directs the solar radiation along the spectrometer optical axis. The pointing precision was measured to be better than 0.5 arcsec. A description of the heliostat is presented, as well as the results of ground tests.
Precision of volumetric assessment of proximal femur microarchitecture from high-resolution 3T MRI.
Hotca, Alexandra; Ravichandra, Shreyas; Mikheev, Artem; Rusinek, Henry; Chang, Gregory
2015-01-01
To evaluate the precision of measures of bone volume and bone volume fraction derived from high-resolution 3T MRI of proximal femur bone microarchitecture using non-uniformity correction. This HIPAA compliant, institutional review board approved study was conducted on six volunteers (mean age 56 ± 13 years), and written informed consent was obtained. All volunteers underwent a 3T FLASH MRI hip scan at three time points: baseline, second scan same day (intra-scans), and third scan one week later (inter-scans). Segmentation of femur images and values for total proximal femur volume (T), bone volume (B), and bone volume fraction (BVF) were calculated using in-house developed software, FireVoxel. Two types of non-uniformity corrections were applied to images (N3 and BiCal). Precision values were calculated using absolute percent error (APE). Statistical analysis was carried out using one-sample one-sided t test to observe the consistency of the precision and paired t test to compare between the various methods and scans. No significant differences in bone volume measurements were observed for intra- and inter-scans. When using non-uniformity correction and assessing all subjects uniformly at the level of the lesser trochanter, precision values overall improved, especially significantly (p < 0.05) when measuring bone volume, B . B values using the combination of N3 or BiCal with CLT had a significant consistent APE values of less than 2.5 %, while BVF values were all consistently and significantly lower than 2.5 % APE. Our results demonstrate the precision of high-resolution 3D MRI measures were comparable to that of dual-energy X-ray absorptiometry. Additional corrections to the analysis technique by cropping at the lesser trochanter or using non-uniformity corrections helped to improve precision. The high precision values from these MRI scans provide evidence for MRI of the proximal femur as a promising tool for osteoporosis diagnosis and treatment.
High-speed high-precision and ultralong-range complex spectral domain dimensional metrology.
Bao, Wen; Shen, Yi; Chen, Tao; Li, Peng; Ding, Zhihua
2015-05-04
A precise, nondestructive dimensional metrological system is crucial to manufacturing and packaging of multi-component optical system. To this end, an orthogonal dispersive spectrometer based complex spectral domain interferometric system for high-speed high-precision and ultralong-range dimensional metrology is developed. An improved complex method based on actual spectral phase shift is proposed to achieve ultrahigh suppression of artifacts. Suppression ratios of 80 dB for DC and 60 dB for mirror images are realized, the highest ratios among existing complex methods. To ensure high-precision in distance determination, an averaged spectral phase measurement algorithm is adopted. A precision of 60 nm within a measurement range of 200 mm without axial movement of the sample is demonstrated. The measurement range is readily extendable if axial movement of the sample and range cascading are involved. The system holds potential applications in various areas for real-time nondestructive testing and evaluation.
Precision cosmology with time delay lenses: high resolution imaging requirements
Meng, Xiao-Lei; Liao, Kai; Treu, Tommaso; Agnello, Adriano; Auger, Matthew W.; Marshall, Philip J. E-mail: tt@astro.ucla.edu E-mail: mauger@ast.cam.ac.uk E-mail: dr.phil.marshall@gmail.com
2015-09-01
Lens time delays are a powerful probe of cosmology, provided that the gravitational potential of the main deflector can be modeled with sufficient precision. Recent work has shown that this can be achieved by detailed modeling of the host galaxies of lensed quasars, which appear as ''Einstein Rings'' in high resolution images. The distortion of these arcs and counter-arcs, as measured over a large number of pixels, provides tight constraints on the difference between the gravitational potential between the quasar image positions, and thus on cosmology in combination with the measured time delay. We carry out a systematic exploration of the high resolution imaging required to exploit the thousands of lensed quasars that will be discovered by current and upcoming surveys with the next decade. Specifically, we simulate realistic lens systems as imaged by the Hubble Space Telescope (HST), James Webb Space Telescope (JWST), and ground based adaptive optics images taken with Keck or the Thirty Meter Telescope (TMT). We compare the performance of these pointed observations with that of images taken by the Euclid (VIS), Wide-Field Infrared Survey Telescope (WFIRST) and Large Synoptic Survey Telescope (LSST) surveys. We use as our metric the precision with which the slope γ' of the total mass density profile ρ{sub tot}∝ r{sup −γ'} for the main deflector can be measured. Ideally, we require that the statistical error on γ' be less than 0.02, such that it is subdominant to other sources of random and systematic uncertainties. We find that survey data will likely have sufficient depth and resolution to meet the target only for the brighter gravitational lens systems, comparable to those discovered by the SDSS survey. For fainter systems, that will be discovered by current and future surveys, targeted follow-up will be required. However, the exposure time required with upcoming facilitites such as JWST, the Keck Next Generation Adaptive Optics System, and TMT, will
Precision cosmology with time delay lenses: High resolution imaging requirements
Meng, Xiao -Lei; Treu, Tommaso; Agnello, Adriano; Auger, Matthew W.; Liao, Kai; Marshall, Philip J.
2015-09-28
Lens time delays are a powerful probe of cosmology, provided that the gravitational potential of the main deflector can be modeled with sufficient precision. Recent work has shown that this can be achieved by detailed modeling of the host galaxies of lensed quasars, which appear as ``Einstein Rings'' in high resolution images. The distortion of these arcs and counter-arcs, as measured over a large number of pixels, provides tight constraints on the difference between the gravitational potential between the quasar image positions, and thus on cosmology in combination with the measured time delay. We carry out a systematic exploration of the high resolution imaging required to exploit the thousands of lensed quasars that will be discovered by current and upcoming surveys with the next decade. Specifically, we simulate realistic lens systems as imaged by the Hubble Space Telescope (HST), James Webb Space Telescope (JWST), and ground based adaptive optics images taken with Keck or the Thirty Meter Telescope (TMT). We compare the performance of these pointed observations with that of images taken by the Euclid (VIS), Wide-Field Infrared Survey Telescope (WFIRST) and Large Synoptic Survey Telescope (LSST) surveys. We use as our metric the precision with which the slope γ' of the total mass density profile ρ_{tot}∝ r–γ' for the main deflector can be measured. Ideally, we require that the statistical error on γ' be less than 0.02, such that it is subdominant to other sources of random and systematic uncertainties. We find that survey data will likely have sufficient depth and resolution to meet the target only for the brighter gravitational lens systems, comparable to those discovered by the SDSS survey. For fainter systems, that will be discovered by current and future surveys, targeted follow-up will be required. Furthermore, the exposure time required with upcoming facilitites such as JWST, the Keck Next Generation Adaptive Optics System, and TMT, will
High Precision Sunphotometer using Wide Dynamic Range (WDR) Camera Tracking
NASA Astrophysics Data System (ADS)
Liss, J.; Dunagan, S. E.; Johnson, R. R.; Chang, C. S.; LeBlanc, S. E.; Shinozuka, Y.; Redemann, J.; Flynn, C. J.; Segal-Rosenhaimer, M.; Pistone, K.; Kacenelenbogen, M. S.; Fahey, L.
2016-12-01
High Precision Sunphotometer using Wide Dynamic Range (WDR) Camera TrackingThe NASA Ames Sun-photometer-Satellite Group, DOE, PNNL Atmospheric Sciences and Global Change Division, and NASA Goddard's AERONET (AErosol RObotic NETwork) team recently collaborated on the development of a new airborne sunphotometry instrument that provides information on gases and aerosols extending far beyond what can be derived from discrete-channel direct-beam measurements, while preserving or enhancing many of the desirable AATS features (e.g., compactness, versatility, automation, reliability). The enhanced instrument combines the sun-tracking ability of the current 14-Channel NASA Ames AATS-14 with the sky-scanning ability of the ground-based AERONET Sun/sky photometers, while extending both AATS-14 and AERONET capabilities by providing full spectral information from the UV (350 nm) to the SWIR (1,700 nm). Strengths of this measurement approach include many more wavelengths (isolated from gas absorption features) that may be used to characterize aerosols and detailed (oversampled) measurements of the absorption features of specific gas constituents. The Sky Scanning Sun Tracking Airborne Radiometer (3STAR) replicates the radiometer functionality of the AATS-14 instrument but incorporates modern COTS technologies for all instruments subsystems. A 19-channel radiometer bundle design is borrowed from a commercial water column radiance instrument manufactured by Biospherical Instruments of San Diego California (ref, Morrow and Hooker)) and developed using NASA funds under the Small Business Innovative Research (SBIR) program. The 3STAR design also incorporates the latest in robotic motor technology embodied in Rotary actuators from Oriental motor Corp. having better than 15 arc seconds of positioning accuracy. Control system was designed, tested and simulated using a Hybrid-Dynamical modeling methodology. The design also replaces the classic quadrant detector tracking sensor with a
Branch, Darren W.
2008-05-01
Recently, the generalized method for calculation of the 16-element Green's function for analysis of surface acoustic waves has proven crucial to develop more sophisticated transducers. The generalized Green's function provides a precise relationship between the acoustic stresses and electric displacement on the three mechanical displacements and electric potential. This generalized method is able to account for mass loading effects which is absent in the effective permittivity approach. However, the calculation is numerically intensive and may lead to numerical instabilities when solving for both the eigenvalues and eigenvectors simultaneously. In this work, the general eigenvalue problem was modified to eliminate the numerical instabilities in the solving procedure. An algorithm is also presented to select the proper eigenvalues rapidly to facilitate analysis for all types of acoustic propagation. The 4 x 4 Green's functions and effective permittivities were calculated for materials supporting Rayleigh, leaky, and leaky longitudinal waves as demonstration of the method.
High-precision Mg isotopic systematics of bulk chondrites
NASA Astrophysics Data System (ADS)
Schiller, Martin; Handler, Monica R.; Baker, Joel A.
2010-08-01
Variations of the mass-independent abundance of 26Mg ( δ26Mg*) and stable Mg ( δ25Mg) isotope composition of chondrites are important because they constrain the homogeneity of 26Al and Mg isotopes in the proto-planetary disc and the validity of the short-lived 26Al-to- 26Mg chronometer applied to meteorites. We present high-precision Mg isotope data and Al/Mg ratios of chondrites representing nearly all major chondrite classes, including a step-leaching experiment on the CM2 chondrite Murchison. δ26Mg* variations in leachates of Murchison representing acid soluble material are ≤ 30 times smaller than reported for neutron-rich isotopes of Ti and Cr and do not reveal resolvable deficits in δ26Mg* (-0.002 to + 0.118‰). Very small variations in δ26Mg* anomalies in bulk chondrites (-0.006 to + 0.019‰) correlate with increasing 27Al/ 24Mg ratios and δ50Ti, reflecting the variable presence of calcium-aluminium-rich inclusions (CAIs) in some types of carbonaceous chondrites. Similarly, release of radiogenic 26Mg produced by 26Al decay from CAI material in the step-leaching of Murchison best explains the high δ26Mg* observed in the last, aggressive, leaching steps of this experiment. Overall, the observed variations in δ26Mg* are small and potential differences beyond that which result from the presence of CAI-like material cannot be detected within the analytical uncertainties of this study (± 0.004‰). The results do not allow radical heterogeneity of 26Al (≥±30%) or measurable Mg nucleosynthetic heterogeneity (≥±0.005‰) to have existed on a planetesimal scale in the proto-planetary disc. Combined with published δ26Mg* data for CAIs, the bulk chondrite data yield a precise initial ( 26Al/ 27Al) 0 = (5.21 ± 0.06) × 10 -5 and δ26Mg* = -0.0340 ± 0.0016‰ for the Solar System. However, it is not possible with the currently available data to determine with certainty whether CAIs and the material from which planetesimals accreted including
Use precise calculation models to operate or design refinery gas treating systems
1996-07-01
Amine simulators using rate-based calculation methodology can show refinery operators how to treat more acid gas with existing equipment. These simulators can rate the performance and design of an existing unit by evaluating tray size, downcomer configuration, column diameter, wier height, tray depth and operation with a particular solvent. In addition, these simulators can optimize plant designers` solvent selection and equipment sizing in grassroots applications.
High precision optical finishing of lightweight silicon carbide aspheric mirror
NASA Astrophysics Data System (ADS)
Kong, John; Young, Kevin
2010-10-01
Critical to the deployment of large surveillance optics into the space environment is the generation of high quality optics. Traditionally, aluminum, glass and beryllium have been used; however, silicon carbide becomes of increasing interest and availability due to its high strength. With the hardness of silicon carbide being similar to diamond, traditional polishing methods suffer from slow material removal rates, difficulty in achieving the desired figure and inherent risk of causing catastrophic damage to the lightweight structure. Rather than increasing structural capacity and mass of the substrate, our proprietary sub-aperture aspheric surface forming technology offers higher material removal rates (comparable to that of Zerodur or Fused Silica), a deterministic approach to achieving the desired figure while minimizing contact area and the resulting load on the optical structure. The technology performed on computer-controlled machines with motion control software providing precise and quick convergence of surface figure, as demonstrated by optically finishing lightweight silicon carbide aspheres. At the same time, it also offers the advantage of ideal pitch finish of low surface micro-roughness and low mid-spatial frequency error. This method provides a solution applicable to all common silicon carbide substrate materials, including substrates with CVD silicon carbide cladding, offered by major silicon carbide material suppliers. This paper discusses a demonstration mirror we polished using this novel technology. The mirror is a lightweight silicon carbide substrate with CVD silicon carbide cladding. It is a convex hyperbolic secondary mirror with 104mm diameter and approximately 20 microns aspheric departure from best-fit sphere. The mirror has been finished with surface irregularity of better than 1/50 wave RMS @632.8 nm and surface micro-roughness of under 2 angstroms RMS. The technology has the potential to be scaled up for manufacturing capabilities of
Progress Towards a High-Precision Infrared Spectroscopic Survey of the H_3^+ Ion
NASA Astrophysics Data System (ADS)
Perry, Adam J.; Hodges, James N.; Markus, Charles R.; Kocheril, G. Stephen; Jenkins, Paul A., II; McCall, Benjamin J.
2015-06-01
The trihydrogen cation, H_3^+, represents one of the most important and fundamental molecular systems. Having only two electrons and three nuclei, H_3^+ is the simplest polyatomic system and is a key testing ground for the development of new techniques for calculating potential energy surfaces and predicting molecular spectra. Corrections that go beyond the Born-Oppenheimer approximation, including adiabatic, non-adiabatic, relativistic, and quantum electrodynamic corrections are becoming more feasible to calculate. As a result, experimental measurements performed on the H_3^+ ion serve as important benchmarks which are used to test the predictive power of new computational methods. By measuring many infrared transitions with precision at the sub-MHz level it is possible to construct a list of the most highly precise experimental rovibrational energy levels for this molecule. Until recently, only a select handful of infrared transitions of this molecule have been measured with high precision (˜ 1 MHz). Using the technique of Noise Immune Cavity Enhanced Optical Heterodyne Velocity Modulation Spectroscopy, we are aiming to produce the largest high-precision spectroscopic dataset for this molecule to date. Presented here are the current results from our survey along with a discussion of the combination differences analysis used to extract the experimentally determined rovibrational energy levels. O. Polyansky, et al., Phil. Trans. R. Soc. A (2012), 370, 5014. M. Pavanello, et al., J. Chem. Phys. (2012), 136, 184303. L. Diniz, et al., Phys. Rev. A (2013), 88, 032506. L. Lodi, et al., Phys. Rev. A (2014), 89, 032505. J. Hodges, et al., J. Chem. Phys (2013), 139, 164201.
High precision refractometry based on Fresnel diffraction from phase plates.
Tavassoly, M Taghi; Naraghi, Roxana Rezvani; Nahal, Arashmid; Hassani, Khosrow
2012-05-01
When a transparent plane-parallel plate is illuminated at a boundary region by a monochromatic parallel beam of light, Fresnel diffraction occurs because of the abrupt change in phase imposed by the finite change in refractive index at the plate boundary. The visibility of the diffraction fringes varies periodically with changes in incident angle. The visibility period depends on the plate thickness and the refractive indices of the plate and the surrounding medium. Plotting the phase change versus incident angle or counting the visibility repetition in an incident-angle interval provides, for a given plate thickness, the refractive index of the plate very accurately. It is shown here that the refractive index of a plate can be determined without knowing the plate thickness. Therefore, the technique can be utilized for measuring plate thickness with high precision. In addition, by installing a plate with known refractive index in a rectangular cell filled with a liquid and following the described procedures, the refractive index of the liquid is obtained. The technique is applied to measure the refractive indices of a glass slide, distilled water, and ethanol. The potential and merits of the technique are also discussed.
Laser interferometric high-precision angle monitor for JASMINE
NASA Astrophysics Data System (ADS)
Niwa, Yoshito; Arai, Koji; Sakagami, Masaaki; Gouda, Naoteru; Kobayashi, Yukiyasu; Yamada, Yoshiyuki; Yano, Taihei
2006-06-01
The JASMINE instrument uses a beam combiner to observe two different fields of view separated by 99.5 degrees simultaneously. This angle is so-called basic angle. The basic angle of JASMINE should be stabilized and fluctuations of the basic angle should be monitored with the accuracy of 10 microarcsec in root-mean-square over the satellite revolution period of 5 hours. For this purpose, a high-precision interferometric laser metrogy system is employed. One of the available techniques for measuring the fluctuations of the basic angle is a method known as the wave front sensing using a Fabry-Perot type laser interferometer. This technique is to detect fluctuations of the basic angle as displacement of optical axis in the Fabry-Perot cavity. One of the advantages of the technique is that the sensor is made to be sensitive only to the relative fluctuations of the basic angle which the JASMINE wants to know and to be insensitive to the common one; in order to make the optical axis displacement caused by relative motion enhanced the Fabry-Perot cavity is formed by two mirrors which have long radius of curvature. To verify the principle of this idea, the experiment was performed using a 0.1m-length Fabry-Perot cavity with the mirror curvature of 20m. The mirrors of the cavity were artificially actuated in either relative way or common way and the resultant outputs from the sensor were compared.
Automated high precision variable aperture for spectrophotometer linearity testing.
Zwinkels, J C; Gignac, D S
1991-05-01
A new automated linearity tester with a single variable aperture has been designed and built. It uses piezoelectric motors to define precisely the apertures required for application of the double aperture method of light addition. This design avoids many of the inherent shortcomings of two fixed physically separated apertures, such as interference and coherence between two separated beams and the need for an averaging sphere to compensate for beam noncoincidence at the photoreceiver. It also permits the assessment of system nonlinearity for arbitrary flux levels over an approximately 70:1 dynamic range without the use of a supplementary means of optical attenuation. The tester was specifically designed for use with the National Research Council of Canada Reference spectrophotometer, but it can be adapted for use with any instrument with a large stable measurement beam. The paper discusses the correct placement and operation of this device. The performance, as evaluated by nonlinearity measurements of a known highly linear silicon photodiode, shows a reliability of <1-3 parts in 10(4) over a 3400:1 dynamic range at a 97% confidence level. Several applications of this linearity tester to both photomultipliers and photodiodes are described. Transmittance results for several reference materials using these linearity corrected photodetectors are compared and show a typical agreement of better than 0.025% of the value.
High-precision target location for industrial metrology
NASA Astrophysics Data System (ADS)
Cosandier, D.; Chapman, Michael A.
1993-02-01
Many industrial metrology applications require accurate and real or near-real time measurement tools in often adverse conditions. Over the past three years, the Industrial Alignment Project (IAP) has been focused on the development of precise measurement techniques for use with large rotating machinery. This paper highlights some results using digital array cameras which have been shown to be well suited for many applications. Limited camera resolution and high accuracy point positioning requirements have required the development of specialized targets. Retro-reflective targets are used to reduce the varying effects of lighting/shadows since this material exhibits maximum reflection in the direction of the light source. Using sub-pixel edge detection techniques with the pre-defined targets, it is possible to obtain accuracies of 1/20th a pixel or better. In addition, employing multiple camera stations with an appropriate imaging geometry, the three dimensional coordinates of the point of interest can be obtained by establishing photogrammetric techniques. The results of test projects are given to illustrate the viability of such a measuring system.
Interferometric apparatus for ultra-high precision displacement measurement
NASA Technical Reports Server (NTRS)
Zhao, Feng (Inventor)
2004-01-01
A high-precision heterodyne interferometer measures relative displacement by creating a thermally-insensitive system generally not subject to polarization leakage. By using first and second light beams separated by a small frequency difference (.DELTA.f), beams of light at the first frequency (f.sub.0) are reflected by co-axial mirrors, the first mirror of which has a central aperture through which the light is transmitted to and reflected by the second mirror. Prior to detection, the light beams from the two mirrors are combined with light of the second and slightly different frequency. The combined light beams are separated according to the light from the mirrors. The change in phase (.DELTA..phi.) with respect to the two signals is proportional to the change in distance of Fiducial B by a factor of wavelength (.lambda.) divided by 4.pi. (.DELTA.L=.lambda..DELTA..phi.1/(4.pi.)). In a second embodiment, a polarizing beam splitting system can be used.
HST high-precision proper motions of globular clusters
NASA Astrophysics Data System (ADS)
Bellini, Andrea; Anderson, Jay; van der marel, roeland p.; piotto, gianpaolo; Watkins, Laura l.; Vesperini, Enrico; Milone, Antonino; Bedin, Luigi R.
2015-08-01
The stable environment of space makes HST an excellent astrometric tool. Its diffraction-limited resolution allows it to distinguish and measure positions and fluxes for stars all the way to the center of most globular clusters. There are now many clusters that have observations in the archive that span 13 years or more, and more observations are being taken all the time. We constructed high-precision proper-motion catalogs for over 20 clusters for which there exist two or more well-separated epochs in the archive, and we are extending the list to over 60 objects, thanks to the new observations taken within the ``HST UV Legacy Survey of Galactic Globular Clusters’’ treasury program. Each catalog contains astrometry and photometry for thousands of stars within two arcmin of the center. The catalogs are focused on the many stars within a few magnitudes of the turnoff and have typical proper-motion errors of 0.1 mas/yr, which translates to 2 km/s for the typical cluster. We are using proper motions to directly measure the clusters' anisotropy, equipartition and rotation on the plane of the sky, as well as to study internal kinematics of the different subpopulations and to probe the presence of an IMBH in their core.
Measuring Crustal Deformation in Europe by High Precision Geodetic VLBI
NASA Astrophysics Data System (ADS)
Campbell, J.; Nothnagel, A.; Vennebusch, M.
2002-06-01
At the western tip of the Eurasian plate, the European continent is besieged by thrusting and receding neighbour plates causing deformations and ruptures of the Earth's crust evidenced by earthquakes and volcanic outbursts. Measuring the extent and progress of crustal deformation has become one of the primary tasks of geodesists and geophysicists. Realizing that Europe enjoys one of the densest networks of radio telescopes especially equipped for high precision, geodetic VLBI has provided the incentive to organise a campaign of regular geodetic VLBI observations in the European network of fixed radio telescopes. The measurements have been carried out since the late eighties at an average rate of six sessions per year. From these data, site coordinates, baseline length changes and station velocity vectors have been derived with steadily increasing accuracy. The overall picture of the observed present-day site motions emulates quite well the pattern of tectonic motions inferred from the geotectonic setting of central Europe and the western Mediterranean. Interesting details are emerging for horizontal motions of the three stations in Italy, which are strongly affected by the complex interactions between the different tectonic regimes in this area. The accuracy of the vertical components is also improving with increasing length of the observational record, allowing to detect significant trends among the relative vertical motions of the sites. The geodetic VLBI network operations have received supportive funding by the European Union under the 2nd and 4th Framework Programmes.
Progress in high-lift aerodynamic calculations
NASA Technical Reports Server (NTRS)
Rogers, Stuart E.
1993-01-01
The current work presents progress in the effort to numerically simulate the flow over high-lift aerodynamic components, namely, multi-element airfoils and wings in either a take-off or a landing configuration. The computational approach utilizes an incompressible flow solver and an overlaid chimera grid approach. A detailed grid resolution study is presented for flow over a three-element airfoil. Two turbulence models, a one-equation Baldwin-Barth model and a two equation k-omega model are compared. Excellent agreement with experiment is obtained for the lift coefficient at all angles of attack, including the prediction of maximum lift when using the two-equation model. Results for two other flap riggings are shown. Three-dimensional results are presented for a wing with a square wing-tip as a validation case. Grid generation and topology is discussed for computing the flow over a T-39 Sabreliner wing with flap deployed and the initial calculations for this geometry are presented.
High Precision 40K/39K Ratio Determination
NASA Astrophysics Data System (ADS)
Naumenko, M. O.; Mezger, K.; Nagler, T. F.; Villa, I. M.
2012-12-01
Potassium is one of the eight most abundant chemical elements in the Earth's crust and a major element in many rock-forming minerals. The isotope 40K is radioactive and undergoes β- decay to 40Ca (ca. 89.3%) and electron capture to 40Ar (ca. 10.7%). Both decays can potentially be used as dating systems. The most commonly used branch is the decay of 40K to 40Ar because it can yield highly precise ages. Both decay schemes rely on the knowledge of the 40K branching ratio and the natural 40K abundance. A 40K abundance of 0.011672±41 % was measured on terrestrial material [1]. The relative uncertainty of 0.35 % has not been improved since. Recent improvements in the precision of mass spectrometric measurements have led to the situation that the uncertainties on the K decay constant and the abundance of 40K are a major source of uncertainty on the measured ages. A more precise definition of the 40K decay constant was attempted by different research groups within the last decade [2-9] but the goal of obtaining 0.1 % relative uncertainty on K-Ar ages for geological materials, as requested by the EARTHtime initiative, has not been achieved yet. In order to improve on this situation we studied the abundances of the K isotopes in terrestrial standards. A ThermoFischer Triton+ thermal ionisation mass spectrometer was used for K isotope ratio measurements of the NIST SRM 918b K standard loaded on Ta filaments with 0.1M phosphoric acid. Three techniques were applied: (A) dynamic measurement with in-run normalisation to the IUPAC value 41K/39K=0.072168; (B) a simple total evaporation procedure; (C) the "NBL-modified" total evaporation [10]. The 40K ion beam was measured in a Faraday cup with a 1E12 Ω resistor; 39K and 41K were collected in Faraday cups with 1E11 Ω resistors. Amplifier gains were intercalibrated by supplying fixed voltages off-line. Different measurement techniques were combined with different loading procedures. We also tested ionisation yields for the
High-precision VLBI astrometry of radio-emitting stars
NASA Astrophysics Data System (ADS)
Lestrade, J.-F.; Preston, R. A.; Jones, D. L.; Phillips, R. B.; Rogers, A. E. E.; Titus, M. A.; Rioja, M. J.; Gabuzda, D. C.
1999-04-01
Multiple-epoch phase-referenced VLBI observations of 11 radio-emitting stars have been conducted as part of an astrometric program to link the Hipparcos optical reference frame to the radio extragalactic reference frame. We present the VLBI positions, proper motions and trigonometric parallaxes from this program in the ICRF (International Celestial Reference Frame). These astrometric parameters are absolute because they are directly measured relative to the distant quasars used as VLBI phase reference calibrators. The mean astrometric precision achieved relative to the calibrators is 0.36 milliarcsecond and the highest precision is for the RS CVn close binary sigma (2) CrB with formal uncertainties of 0.12 milliarcsecond for its relative position, 0.05 milliarcsecond for its annual proper motion and 0.10 milliarcsecond for its trigonometric parallax. In addition to the Hipparcos link, these observations have provided several new results. The distance to the nearby Tau-Auriga star forming region is 148 +/- 5 pc, determined directly through the VLBI trigonometric parallax of the Pre-Main-Sequence star HD283447 of this region. The orthogonality of the 2 orbital planes in the ternary system Algol is supported by new astrometric evidences. The proper motions of HR5110, HR1099 and IM Peg, regarded as possible guide stars for the NASA Gravity Probe B space mission, have formal precisions of 0.16, 0.31 and 0.40 milliarcsecond per year, respectively, and the mission requirement is 0.15 milliarcsecond per year. The close binary UX Ari is the only star that exhibits an acceleration larger than 3sigma and the most plausible cause is the gravitational interaction of a third body. The distances of the stars HD199178, IM Peg and AR Lac were uncertain by as much as 50% before our observations and are now 116 +/- 4, 97 +/- 6, 41.7 +/- 0.6 pc, respectively. The two X-ray binaries in our program, LSI61303 and Cyg X1, exhibit larger than expected post-fit position residuals. The
NASA Technical Reports Server (NTRS)
Prevot, Thomas
2012-01-01
This paper describes the underlying principles and algorithms for computing the primary controller managed spacing (CMS) tools developed at NASA for precisely spacing aircraft along efficient descent paths. The trajectory-based CMS tools include slot markers, delay indications and speed advisories. These tools are one of three core NASA technologies integrated in NASAs ATM technology demonstration-1 (ATD-1) that will operationally demonstrate the feasibility of fuel-efficient, high throughput arrival operations using Automatic Dependent Surveillance Broadcast (ADS-B) and ground-based and airborne NASA technologies for precision scheduling and spacing.
French Meteor Network for High Precision Orbits of Meteoroids
NASA Technical Reports Server (NTRS)
Atreya, P.; Vaubaillon, J.; Colas, F.; Bouley, S.; Gaillard, B.; Sauli, I.; Kwon, M. K.
2011-01-01
There is a lack of precise meteoroids orbit from video observations as most of the meteor stations use off-the-shelf CCD cameras. Few meteoroids orbit with precise semi-major axis are available using film photographic method. Precise orbits are necessary to compute the dust flux in the Earth s vicinity, and to estimate the ejection time of the meteoroids accurately by comparing them with the theoretical evolution model. We investigate the use of large CCD sensors to observe multi-station meteors and to compute precise orbit of these meteoroids. An ideal spatial and temporal resolution to get an accuracy to those similar of photographic plates are discussed. Various problems faced due to the use of large CCD, such as increasing the spatial and the temporal resolution at the same time and computational problems in finding the meteor position are illustrated.
Precision calculation of energy levels for four-valent Si I
NASA Astrophysics Data System (ADS)
Imanbaeva, Raykhan T.; Kozlov, Mikhail G.; Konovalova, Elena A.
2017-05-01
We report the results of our calculation of low-lying levels of neutral Si using a combination of the configuration interaction and many-body perturbation theory (CI+MBPT method). We treat Si I as an atom with four valence electrons, and use two different starting approximations, namely VN-2 and VN-4. We conclude that both approximations provide comparable accuracy, on the level of 1%. Contribution to the Topical Issue "Many Particle Spectroscopy of Atoms, Molecules, Clusters and Surfaces", edited by A.N. Grum-Grzhimailo, E.V. Gryzlova, Yu V. Popov, and A.V. Solov'yov.
Radio emission from Supernovae and High Precision Astrometry
NASA Astrophysics Data System (ADS)
Perez-Torres, M. A.
1999-11-01
The present thesis work makes contributions in two scientific fronts: differential astrometry over the largest angular scales ever attempted (approx. 15 arcdegrees) and numerical simulations of radio emission from very young supernovae. In the first part, we describe the results of the use of very-long-baseline interferometry (VLBI) in one experiment designed to measure with very high precision the angular distance between the radio sources 1150+812 (QSO) and 1803+784 (BL Lac). We observed the radio sources on 19 November 1993 using an intercontinental array of radio telescopes, which simultaneously recorded at 2.3 and 8.4 GHz. VLBI differential astrometry is capable, Nature allowing, of yielding source positions with precisions well below the milliarcsecond level. To achieve this precision, we first had to accurately model the rotation of the interferometric fringes via the most precise models of Earth Orientation Parameters (EOP; precession, polar motion and UT1, nutation). With this model, we successfully connected our phase delay data at both frequencies and, using difference astrometric techniques, determined the coordinates of 1803+784 relative to those of 1150+812-within the IERS reference frame--with an standard error of about 0.6 mas in each coordinate. We then corrected for several effects including propagation medium (mainly the atmosphere and ionosphere), and opacity and source-structure effects within the radio sources. We stress that our dual-frequency measurements allowed us to accurately subtract the ionosphere contribution from our data. We also used GPS-based TEC measurements to independently find the ionosphere contribution, and showed that these contributions agree with our dual-frequency measurements within about 2 standard deviations in the less favorables cases (the longest baselines), but are usually well within one standard deviation. Our estimates of the relative positions, whether using dual-frequency-based or GPS-based ionosphere
High frequency current conveyor precision full-wave rectifier
NASA Astrophysics Data System (ADS)
Toumazou, C.; Lidgey, F. J.; Chattong, S.
1994-05-01
The design of a precision full-wave rectifier using current conveyors is reported. The design uses a voltage reference circuit to clad the voltage excursions at the output of the rectifier during the zero crossings, which ensures that the usual large signal distortion associated with classical precision rectifiers is avoided. Measured rectifier performance using a 100 MHz current conveyor demonstrates good rectifier integrity at an operating frequency of 30 MHz.
Limiting Energy Dissipation Induces Glassy Kinetics in Single-Cell High-Precision Responses.
Das, Jayajit
2016-03-08
Single cells often generate precise responses by involving dissipative out-of-thermodynamic-equilibrium processes in signaling networks. The available free energy to fuel these processes could become limited depending on the metabolic state of an individual cell. How does limiting dissipation affect the kinetics of high-precision responses in single cells? I address this question in the context of a kinetic proofreading scheme used in a simple model of early-time T cell signaling. Using exact analytical calculations and numerical simulations, I show that limiting dissipation qualitatively changes the kinetics in single cells marked by emergence of slow kinetics, large cell-to-cell variations of copy numbers, temporally correlated stochastic events (dynamic facilitation), and ergodicity breaking. Thus, constraints in energy dissipation, in addition to negatively affecting ligand discrimination in T cells, can create a fundamental difficulty in determining single-cell kinetics from cell-population results. Copyright © 2016 Biophysical Society. Published by Elsevier Inc. All rights reserved.
Limiting Energy Dissipation Induces Glassy Kinetics in Single-Cell High-Precision Responses
Das, Jayajit
2016-01-01
Single cells often generate precise responses by involving dissipative out-of-thermodynamic-equilibrium processes in signaling networks. The available free energy to fuel these processes could become limited depending on the metabolic state of an individual cell. How does limiting dissipation affect the kinetics of high-precision responses in single cells? I address this question in the context of a kinetic proofreading scheme used in a simple model of early-time T cell signaling. Using exact analytical calculations and numerical simulations, I show that limiting dissipation qualitatively changes the kinetics in single cells marked by emergence of slow kinetics, large cell-to-cell variations of copy numbers, temporally correlated stochastic events (dynamic facilitation), and ergodicity breaking. Thus, constraints in energy dissipation, in addition to negatively affecting ligand discrimination in T cells, can create a fundamental difficulty in determining single-cell kinetics from cell-population results. PMID:26958894
Results of Propellant Mixing Variable Study Using Precise Pressure-Based Burn Rate Calculations
NASA Technical Reports Server (NTRS)
Stefanski, Philip L.
2014-01-01
A designed experiment was conducted in which three mix processing variables (pre-curative addition mix temperature, pre-curative addition mixing time, and mixer speed) were varied to estimate their effects on within-mix propellant burn rate variability. The chosen discriminator for the experiment was the 2-inch diameter by 4-inch long (2x4) Center-Perforated (CP) ballistic evaluation motor. Motor nozzle throat diameters were sized to produce a common targeted chamber pressure. Initial data analysis did not show a statistically significant effect. Because propellant burn rate must be directly related to chamber pressure, a method was developed that showed statistically significant effects on chamber pressure (either maximum or average) by adjustments to the process settings. Burn rates were calculated from chamber pressures and these were then normalized to a common pressure for comparative purposes. The pressure-based method of burn rate determination showed significant reduction in error when compared to results obtained from the Brooks' modification of the propellant web-bisector burn rate determination method. Analysis of effects using burn rates calculated by the pressure-based method showed a significant correlation of within-mix burn rate dispersion to mixing duration and the quadratic of mixing duration. The findings were confirmed in a series of mixes that examined the effects of mixing time on burn rate variation, which yielded the same results.
Ultra High Precision Laser Monitor for Oxygen Eddy Flux Measurements
NASA Astrophysics Data System (ADS)
Zahniser, M. S.; Nelson, D. D.; Roscioli, J. R.; Herndon, S. C.; McManus, J. B.; Jervis, D.
2015-12-01
Atmospheric oxygen provides one of the most powerful tracers to study the carbon cycle through its close interaction with carbon dioxide. Keeling and co-workers demonstrated this at the global scale by using small variations in atmospheric oxygen content to disentangle oceanic and terrestrial carbon sinks. It would be very exciting to apply similar ideas at the ecosystem level to improve our understanding of biosphere-atmosphere exchange and our ability to predict the response of the biosphere and atmosphere to climate change. The eddy covariance technique is perhaps the most effective approach available to quantify the exchange of gases between these spheres. Therefore, eddy covariance flux measurements of oxygen would be extremely valuable. However, this requires a fast response (0.1 seconds), high relative precision (0.001% or 10 per meg) oxygen sensor. We report recent progress in developing such a sensor using a high resolution visible laser to probe the oxygen A-band electronic transition. This sensor will enable oxygen flux measurements using eddy covariance. In addition, we will incorporate a second laser in this instrument to simultaneously determine the fluxes of oxygen, carbon dioxide and water vapor within the same sampling cell. This will provide a direct, real time measurement of the ratio of the flux of oxygen to that of carbon dioxide. This ratio is expected to vary on short time scales and small spatial scales due to the differing stoichiometry of processes producing and consuming carbon dioxide. Thus measuring the variations in the ratio of oxygen and carbon dioxide fluxes will provide mechanistic information to improve our understanding of the crucial exchange of carbon between the atmosphere and biosphere.
HIGH-PRECISION ASTROMETRY WITH A DIFFRACTIVE PUPIL TELESCOPE
Guyon, Olivier; Eisner, Josh A.; Angel, Roger; Woolf, Neville J.; Bendek, Eduardo A.; Milster, Thomas D.; Mark Ammons, S.; Shao, Michael; Shaklan, Stuart; Levine, Marie; Nemati, Bijan; Pitman, Joe; Woodruff, Robert A.; Belikov, Ruslan
2012-06-01
Astrometric detection and mass determination of Earth-mass exoplanets require sub-{mu}as accuracy, which is theoretically possible with an imaging space telescope using field stars as an astrometric reference. The measurement must, however, overcome astrometric distortions, which are much larger than the photon noise limit. To address this issue, we propose to generate faint stellar diffraction spikes using a two-dimensional grid of regularly spaced small dark spots added to the surface of the primary mirror (PM). Accurate astrometric motion of the host star is obtained by comparing the position of the spikes to the background field stars. The spikes do not contribute to scattered light in the central part of the field and therefore allow unperturbed coronagraphic observation of the star's immediate surroundings. Because the diffraction spikes are created on the PM and imaged on the same focal plane detector as the background stars, astrometric distortions affect equally the diffraction spikes and the background stars and are therefore calibrated. We describe the technique, detail how the data collected by the wide-field camera are used to derive astrometric motion, and identify the main sources of astrometric error using numerical simulations and analytical derivations. We find that the 1.4 m diameter telescope, 0.3 deg{sup 2} field we adopt as a baseline design achieves 0.2 {mu}as single measurement astrometric accuracy. The diffractive pupil concept thus enables sub-{mu}as astrometry without relying on the accurate pointing, external metrology, or high-stability hardware required with previously proposed high-precision astrometry concepts.
High precision metrology based microwave effective linewidth measurement technique
Mo, Nan; Green, Jerome J.; Beitscher, Bailey A.; Patton, Carl E.
2007-11-15
A precision microwave effective linewidth measurement technique for magnetic samples has been developed. The measurement utilizes a high-Q cylindrical cavity that contains the sample of interest, a highly stable and programable static magnetic field source, a computer controlled network analyzer for cavity center frequency {omega}{sub c} and quality factor Q{sub c} determinations, and the standard metrological substitution ABA method for accurate relative {omega}{sub c} and Q{sub c} measurements. Sequential long term ABA measurements show that the time and temperature drifts and random errors are the dominant sources of error, with uncertainties in {omega}{sub c}/2{pi} and Q{sub c} in the range of 50 kHz and 25, respectively. The ABA method is applied to eliminate these drifts and minimize the random errors. For measurements over 25 ABA cycles, accuracy is improved to 0.14 kHz for {omega}{sub c}/2{pi} and 3 for Q{sub c}. The temperature variation over a single ABA cycle is generally on the order of 10{sup -3}-10{sup -5} deg. C and there is no need for any further temperature stabilization or correction measures. The overall uncertainty in the 10 GHz effective linewidth determinations for a 3 mm diam, 0.5 mm thick polycrystalline yttrium iron garnet (YIG) disk is 0.15 Oe or less, well below the intrinsic single crystal YIG linewidth. This represents a factor of 10 improvement in measurement accuracy over previous work.
Injector linac stability requirements for high precision experiments at MESA
NASA Astrophysics Data System (ADS)
Hug, F.; Heine, R.
2017-07-01
MESA is a recirculating superconducting accelerator under construction at Johannes Gutenberg-Universität Mainz. It will be used for high precision particle physics experiments in two different operation modes: external beam (EB) mode and energy recovery (ERL) mode. The operating beam current and energy in EB mode is 0.15 mA with polarized electrons at 155 MeV. In ERL mode an unpolarized beam of 1 mA at 105 MeV will be available. In a later construction stage of MESA the beam current in ERL-mode shall be upgraded to 10 mA. In order to achieve high beam stability and low energy spread in recirculating operation for external beam the acceleration in the main linac sections will be done on a certain phase with respect to the maximum of the accelerating field (off crest) while the return arcs provide longitudinal dispersion. On specific longitudinal working points this can result in a setting where any RF phase or magnitude jitters from main linac do not contribute to the resulting energy spread of the final beam at all. Then the resulting energy spread of the beam at the experiment is mostly determined by the beam properties provided by the injector linac. On the other hand the acceleration in ERL operation mode most likely needs to be done on crest of the accelerating field aiming for the highest efficiency in the energy recovering process albeit we are currently investigating different recirculation schemes for the ERL mode as well. Using on crest acceleration the achievable energy spread is determined by the longitudinal phase space properties behind the injector linac again but mostly by the bunch length of the beam injected to the main linac. Within this contribution we will investigate the requirements on the stability of the MESA injector linac MAMBO for achieving the experimental goals under both operating conditions.
A Novel Algorithm for the Precise Calculation of the Maximal Information Coefficient
Zhang, Yi; Jia, Shili; Huang, Haiyun; Qiu, Jiqing; Zhou, Changjie
2014-01-01
Measuring associations is an important scientific task. A novel measurement method maximal information coefficient (MIC) was proposed to identify a broad class of associations. As foreseen by its authors, MIC implementation algorithm ApproxMaxMI is not always convergent to real MIC values. An algorithm called SG (Simulated annealing and Genetic) was developed to facilitate the optimal calculation of MIC, and the convergence of SG was proved based on Markov theory. When run on fruit fly data set including 1,000,000 pairs of gene expression profiles, the mean squared difference between SG and the exhaustive algorithm is 0.00075499, compared with 0.1834 in the case of ApproxMaxMI. The software SGMIC and its manual are freely available at http://lxy.depart.hebust.edu.cn/SGMIC/SGMIC.htm. PMID:25322794
NASA Astrophysics Data System (ADS)
Schoun, S. B.; Camper, A.; Salières, P.; Lucchese, R. R.; Agostini, P.; DiMauro, L. F.
2017-01-01
We report on spectral intensity and group delay measurements of the highest-occupied molecular-orbital (HOMO) recombination dipole moment of N2 in the molecular-frame using high harmonic spectroscopy. We take advantage of the long-wavelength 1.3 μ m driving laser to isolate the HOMO in the near threshold region, 19-67 eV. The precision of our group delay measurements reveals previously unseen angle-resolved spectral features associated with autoionizing resonances, and allows quantitative comparison with cutting-edge correlated 8-channel photoionization dipole moment calculations.
Derivative properties from high-precision equations of state.
Haghbakhsh, Reza; Konttorp, Morten; Raeissi, Sona; Peters, Cor J; O'Connell, John P
2014-12-11
In this study, the behavior of derivative properties estimated by equations of state, including isochoric heat capacity, isobaric heat capacity, speed of sound, and the Joule-Thomson coefficient for pure compounds and a mixture, has been investigated. The Schmidt-Wagner and Jacobsen-Stewart equations of state were used for predictions of derivative properties of 10 different pure compounds from various nonpolar hydrocarbons, nonpolar cyclic hydrocarbons, polar compounds, and refrigerants. The estimations were compared to experimental data. To evaluate the behavior of mixtures, the extended corresponding states principle (ECS) was studied. Analytical relationships were derived for isochoric heat capacity, isobaric heat capacity, the Joule-Thomson coefficient, and the speed of sound. The ECS calculations were compared to the reference surface data of methane + ethane. The ECS principle was found to generate data of high quality.
Precision optical slit for high heat load or ultra high vacuum
Andresen, N.C.; DiGennaro, R.S.; Swain, T.L.
1995-01-24
This invention relates generally to slits used in optics that must be precisely aligned and adjusted. The optical slits of the present invention are useful in x-ray optics, x-ray beam lines, optical systems in which the entrance slit is critical for high wavelength resolution. The invention is particularly useful in ultra high vacuum systems where lubricants are difficult to use and designs which avoid the movement of metal parts against one another are important, such as monochromators for high wavelength resolution with ultra high vacuum systems. The invention further relates to optical systems in which temperature characteristics of the slit materials is important. The present invention yet additionally relates to precision slits wherein the opposing edges of the slit must be precisely moved relative to a center line between the edges with each edge retaining its parallel orientation with respect to the other edge and/or the center line. 21 figures.
Precision optical slit for high heat load or ultra high vacuum
Andresen, Nord C.; DiGennaro, Richard S.; Swain, Thomas L.
1995-01-01
This invention relates generally to slits used in optics that must be precisely aligned and adjusted. The optical slits of the present invention are useful in x-ray optics, x-ray beam lines, optical systems in which the entrance slit is critical for high wavelength resolution. The invention is particularly useful in ultra high vacuum systems where lubricants are difficult to use and designs which avoid the movement of metal parts against one another are important, such as monochrometers for high wavelength resolution with ultra high vacuum systems. The invention further relates to optical systems in which temperature characteristics of the slit materials is important. The present invention yet additionally relates to precision slits wherein the opposing edges of the slit must be precisely moved relative to a center line between the edges with each edge retaining its parallel orientation with respect to the other edge and/or the center line.
Hardman, K S; Everitt, P J; McDonald, G D; Manju, P; Wigley, P B; Sooriyabandara, M A; Kuhn, C C N; Debs, J E; Close, J D; Robins, N P
2016-09-23
A Bose-Einstein condensate is used as an atomic source for a high precision sensor. A 5×10^{6} atom F=1 spinor condensate of ^{87}Rb is released into free fall for up to 750 ms and probed with a T=130 ms Mach-Zehnder atom interferometer based on Bragg transitions. The Bragg interferometer simultaneously addresses the three magnetic states |m_{f}=1,0,-1⟩, facilitating a simultaneous measurement of the acceleration due to gravity with a 1000 run precision of Δg/g=1.45×10^{-9} and the magnetic field gradient to a precision of 120 pT/m.
High-precision photometry of WASP-12 b transits
NASA Astrophysics Data System (ADS)
Maciejewski, G.; Errmann, R.; Raetz, St.; Seeliger, M.; Spaleniak, I.; Neuhäuser, R.
2011-04-01
Aims: The transiting extrasolar planet WASP-12 b was found to be one of the most intensely irradiated exoplanets. It is unexpectedly bloated and is losing mass that may accrete into the host star. Our aim was to refine the parameters of this intriguing system and search for signs of transit timing variations. Methods: We gathered high-precision light curves for two transits of WASP-12 b. Assuming various limb-darkening laws, we generated best-fitting models and redetermined the parameters of the system. Error estimates were derived by the prayer-bead method and Monte Carlo simulations. Results: System parameters obtained by us are found to agree with previous studies within one sigma. Use of the non-linear limb-darkening laws results in the best-fitting models. With two new mid-transit times, the ephemeris was refined to BJDTDB = (2 454 508.97682 ± 0.00020) + (1.09142245 ± 0.00000033)E. Interestingly, indications of transit timing variation are detected at the level of 3.4 sigma. This signal can be induced by an additional planet in the system. Simplified numerical simulations show that a perturber could be a terrestrial-type planet if both planets are in a low-order orbital resonance. However, we emphasise that further observations are needed to confirm variation and to constrain properties of the perturber. Based on observations collected at the Centro Astronómico Hispano Alemán (CAHA), operated jointly by the Max-Planck Institut für Astronomie and the Instituto de Astrofisica de Andalucia (CSIC).Photometric data are only available in electronic form at the CDS via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/528/A65
High Precision Prediction of Functional Sites in Protein Structures
Buturovic, Ljubomir; Wong, Mike; Tang, Grace W.; Altman, Russ B.; Petkovic, Dragutin
2014-01-01
We address the problem of assigning biological function to solved protein structures. Computational tools play a critical role in identifying potential active sites and informing screening decisions for further lab analysis. A critical parameter in the practical application of computational methods is the precision, or positive predictive value. Precision measures the level of confidence the user should have in a particular computed functional assignment. Low precision annotations lead to futile laboratory investigations and waste scarce research resources. In this paper we describe an advanced version of the protein function annotation system FEATURE, which achieved 99% precision and average recall of 95% across 20 representative functional sites. The system uses a Support Vector Machine classifier operating on the microenvironment of physicochemical features around an amino acid. We also compared performance of our method with state-of-the-art sequence-level annotator Pfam in terms of precision, recall and localization. To our knowledge, no other functional site annotator has been rigorously evaluated against these key criteria. The software and predictive models are incorporated into the WebFEATURE service at http://feature.stanford.edu/wf4.0-beta. PMID:24632601
High-precision evaluation of Wigner's d matrix by exact diagonalization
NASA Astrophysics Data System (ADS)
Feng, X. M.; Wang, P.; Yang, W.; Jin, G. R.
2015-10-01
The precise calculations of Wigner's d matrix are important in various research fields. Due to the presence of large numbers, direct calculations of the matrix using Wigner's formula suffer from a loss of precision. We present a simple method to avoid this problem by expanding the d matrix into a complex Fourier series and calculate the Fourier coefficients by exactly diagonalizing the angular momentum operator Jy in the eigenbasis of Jz. This method allows us to compute the d matrix and its various derivatives for spins up to a few thousand. The precision of the d matrix from our method is about 10-14 for spins up to 100.
A Comparison of three high-precision quadrature schemes
Bailey, David H.; Li, Xiaoye S.
2003-07-01
The authors have implemented three numerical quadrature schemes, using the new Arbitrary Precision (ARPREC) software package, with the objective of seeking a completely ''automatic'' arbitrary precision quadrature facility, namely one that does not rely on a priori information of the function to be integrated. Such a facility is required, for example, to permit the experimental identification of definite integrals based on their numerical values. The performance and accuracy of these three quadrature schemes are compared using a suite of 15 integrals, ranging from continuous, well-behaved functions on finite intervals to functions with vertical derivatives and integrable singularities at endpoints, as well as several integrals on an infinite interval.
High-Precision Coupling Mechanism Operable By Robots
NASA Technical Reports Server (NTRS)
Voellmer, George
1992-01-01
Coupling mechanism has features making it easily operable by hand and suitable for operation by robots: tolerates some initial misalignment, imposes precise final alignment, and protects itself against overtightening. Typically used to mount equipment module on structure. Mechanism includes kinematic mounts, which tolerate small initial misalignment and enforce precise final alignment as two assemblies brought together. Clamping force applied to kinematic mounts via two flexible plates. Bolt and nut tightened on flexible plates to impose spring clamping load. Repeatability of interface tested and found to be better than forty-millionths of inch.
High-Precision Coupling Mechanism Operable By Robots
NASA Technical Reports Server (NTRS)
Voellmer, George
1992-01-01
Coupling mechanism has features making it easily operable by hand and suitable for operation by robots: tolerates some initial misalignment, imposes precise final alignment, and protects itself against overtightening. Typically used to mount equipment module on structure. Mechanism includes kinematic mounts, which tolerate small initial misalignment and enforce precise final alignment as two assemblies brought together. Clamping force applied to kinematic mounts via two flexible plates. Bolt and nut tightened on flexible plates to impose spring clamping load. Repeatability of interface tested and found to be better than forty-millionths of inch.
High precision ages from the Torres del Paine Intrusion, Chile
NASA Astrophysics Data System (ADS)
Michel, J.; Baumgartner, L.; Cosca, M.; Ovtcharova, M.; Putlitz, B.; Schaltegger, U.
2006-12-01
The upper crustal bimodal Torres del Paine Intrusion, southern Chile, consists of the lower Paine-Mafic- Complex and the upper Paine-Granite. Geochronologically this bimodal complex is not well studied except for a few existing data from Halpern (1973) and Sanchez (2006). The aim of this study is to supplement the existing data and to constrain the age relations between the major magmatic pulses by applying high precision U-Pb dating on accessory zircons and 40Ar/39Ar-laser-step-heating-ages on biotites from the Torres del Paine Intrusion. The magmatic rocks from mafic complex are fine to medium-grained and vary in composition from quartz- monzonites to granodiorites and gabbros. Coarse-grained olivine gabbros have intruded these rocks in the west. The granitic body is represented by a peraluminous, biotite-orthoclase-granite and a more evolved leucocratic granite in the outer parts towards the host-rock. Field observations suggest a feeder-zone for the granite in the west and that the granite postdates the mafic complex. Two granite samples of the outermost margins in the Northeast and South were analyzed. The zircons were dated by precise isotope-dilution U-Pb techniques of chemically abraded single grains. The data are concordant within the analytical error and define weighted mean 206/238U ages of 12.59 ± 0.03 Ma and 12.58 ± 0.01 Ma for the two samples respectively. A 40Ar/39Ar-age for the second sample yield a date of 12.37 ± 0.11 Ma. Three 40Ar/39Ar -ages of biotites were obtained for rocks belonging to the mafic complex. A hbl-bio- granodiorite from the central part, approximately 150 m below the subhorizontal contact with the granite, gives an age of 12.81 ± 0.11 Ma. A hbl-bio-granodiorite and an olivine-gabbro west of the feeder-zone date at 12.42 ± 0.14 Ma and 12.49 ± 0.11 Ma, respectively. The obtained older age of 12.81 Ma for the granodiorite in the central part is consistent with structural relationships of brittle fracturing of the mafic
NASA Astrophysics Data System (ADS)
Zheng, Y.; Hussain, Z.; Shirley, D. A.
1993-04-01
The influence of theoretical atomic scattering phase shifts calculated by different methods in the analysis in the analysis of angle-resolved photoemission extended fine structure (ARPEFS) data for structural determination of the c(2×2)S/Ni(001) surface was examined, with the goal of assessing both the precision and accuracy of derived structural parameters. It was found that the values of the SNi bond length obtained from the ARPEFS data analysis with different calculated atomic scattering phase shifts all fall within a total range of 0.02 Å (± 0.01 Å). This result is also in excellent agreement with the currently accepted values obtained from low-energy electron diffraction (LEED) and surface extended X-ray absorption fine structure (SEXAFS), i.e. 2.19-2.20 rA. We conclude that this ARPEFS-derived structural parameter is relatively insensitive to the choice of theoretical atomic scattering phase shifts, and is both precise and accurate.
CUSB-II: a high precision electromagnetic spectrometer
NASA Astrophysics Data System (ADS)
Schamberger, R. D.; Heintz, U.; Lee-Franzini, J.; Lovelock, D. M. J.; Narain, M.; Willins, J.; Yanagisawa, C.; Tuts, P. M.; Franzini, P.; Kanekal, S.; Wu, Q. W.
1991-11-01
The design, construction and performance of a very compact precision electromagnetic spectrometer is described. The CUSB-II detector has been used to study ϒ spectroscopy, search for exotic particles and measure properties of the B and B ∗ mesons at the Cornell Electron Storage Ring.
High-precision Stellar Limb-darkening in Exoplanetary Transits
NASA Astrophysics Data System (ADS)
Morello, G.; Tsiaras, A.; Howarth, I. D.; Homeier, D.
2017-09-01
Characterization of the atmospheres of transiting exoplanets relies on accurate measurements of the extent of the optically thick area of the planet at multiple wavelengths with a precision ≲ 100 parts per million (ppm). Next-generation instruments onboard the James Webb Space Telescope (JWST) are expected to achieve ∼10 ppm precision for several tens of targets. A similar precision can be obtained in modeling only if other astrophysical effects, including the stellar limb-darkening, are properly accounted for. In this paper, we explore the limits on precision due to the mathematical formulas currently adopted to approximate the stellar limb-darkening, and due to the use of limb-darkening coefficients obtained either from stellar-atmosphere models or empirically. We recommend the use of a two-coefficient limb-darkening law, named “power-2,” which outperforms other two-coefficient laws adopted in the exoplanet literature in most cases, and particularly for cool stars. Empirical limb-darkening based on two-coefficient formulas can be significantly biased, even if the light-curve residuals are nearly photon-noise limited. We demonstrate an optimal strategy to fitting for the four-coefficient limb-darkening in the visible, using prior information on the exoplanet orbital parameters to break some of the degeneracies that otherwise would prevent the convergence of the fit. Infrared observations taken with the JWST will provide accurate measurements of the exoplanet orbital parameters with unprecedented precision, which can be used as priors to improve the stellar limb-darkening characterization, and therefore the inferred exoplanet parameters, from observations in the visible, such as those taken with Kepler/K2, the JWST, and other past and future instruments.
NASA Astrophysics Data System (ADS)
Du, Q.; Xie, D.; Sun, Y.
2015-06-01
The integration of digital aerial photogrammetry and Light Detetion And Ranging (LiDAR) is an inevitable trend in Surveying and Mapping field. We calculate the external orientation elements of images which identical with LiDAR coordinate to realize automatic high precision registration between aerial images and LiDAR data. There are two ways to calculate orientation elements. One is single image spatial resection using image matching 3D points that registered to LiDAR. The other one is Position and Orientation System (POS) data supported aerotriangulation. The high precision registration points are selected as Ground Control Points (GCPs) instead of measuring GCPs manually during aerotriangulation. The registration experiments indicate that the method which registering aerial images and LiDAR points has a great advantage in higher automation and precision compare with manual registration.
Preliminary design approach for large high precision segmented reflectors
NASA Technical Reports Server (NTRS)
Mikulas, Martin M., Jr.; Collins, Timothy J.; Hedgepeth, John M.
1990-01-01
A simplified preliminary design capability for erectable precision segmented reflectors is presented. This design capability permits a rapid assessment of a wide range of reflector parameters as well as new structural concepts and materials. The preliminary design approach was applied to a range of precision reflectors from 10 meters to 100 meters in diameter while considering standard design drivers. The design drivers considered were: weight, fundamental frequency, launch packaging volume, part count, and on-orbit assembly time. For the range of parameters considered, on-orbit assembly time was identified as the major design driver. A family of modular panels is introduced which can significantly reduce the number of reflector parts and the on-orbit assembly time.
Joint Estimation of Multiple High-dimensional Precision Matrices
Cai, T. Tony; Li, Hongzhe; Liu, Weidong; Xie, Jichun
2017-01-01
Motivated by analysis of gene expression data measured in different tissues or disease states, we consider joint estimation of multiple precision matrices to effectively utilize the partially shared graphical structures of the corresponding graphs. The procedure is based on a weighted constrained ℓ∞/ℓ1 minimization, which can be effectively implemented by a second-order cone programming. Compared to separate estimation methods, the proposed joint estimation method leads to estimators converging to the true precision matrices faster. Under certain regularity conditions, the proposed procedure leads to an exact graph structure recovery with a probability tending to 1. Simulation studies show that the proposed joint estimation methods outperform other methods in graph structure recovery. The method is illustrated through an analysis of an ovarian cancer gene expression data. The results indicate that the patients with poor prognostic subtype lack some important links among the genes in the apoptosis pathway.
Ion source for high-precision mass spectrometry
Todd, Peter J.; McKown, Henry S.; Smith, David H.
1984-01-01
The invention is directed to a method for increasing the precision of positive-ion relative abundance measurements conducted in a sector mass spectrometer having an ion source for directing a beam of positive ions onto a collimating slit. The method comprises incorporating in the source an electrostatic lens assembly for providing a positive-ion beam of circular cross section for collimation by the slit.
High-precision dynamic orbit integration for spaceborne gravimetry
NASA Astrophysics Data System (ADS)
Ellmer, M.; Mayer-Gürr, T.
2016-12-01
Future gravity missions like GRACE Follow-On and beyond will deliver low-low satellite-to-satellite ranging measurements of much increased precision. To prepare for the new challenges and opportunities involved in processing this new data, it is necessary to perform a systematic review and re-evaluation of current algorithms and assumptions used in gravity field determination from GRACE data. In this context, this study investigates the computation of dynamic orbits from GRACE accelerometer measurements and background models, which are used at multiple steps in gravity recovery. They are, for example, used in computing linearised observation equations for the low-low satellite-to-satellite tracking instruments, or to evaluate potential models like static fields or dealiasing products. It is thus desirable for the precision at which the dynamic orbits are determined to surpass the precision of the ranging observations. We computed dynamic orbits for GRACE, both in a simple simulation and for real observational data. We observed the differences between successive iterations of orbit determination and used these as a benchmark for the quality of the orbit solution. We implemented a numerically stable orbit determination algorithm employing Encke's method, in which we use a novel reference trajectory determined through rigorous optimization. This reference trajectory was parameterised and computed using equinoctial elements to minimize orbit errors resulting from imprecision in the reference motion. We present the effects of these two optimizations on the dynamic orbits, and show that the resulting orbits are self-consistent to below the expected precision of the GRACE Follow-On ranging instruments.
Ion source for high-precision mass spectrometry
Todd, P.J.; McKown, H.S.; Smith, D.H.
1982-04-26
The invention is directed to a method for increasing the precision of positive-ion relative abundance measurements conducted in a sector mass spectrometer having an ion source for directing a beam of positive ions onto a collimating slit. The method comprises incorporating in the source an electrostatic lens assembly for providing a positive-ion beam of circular cross section for collimation by the slit. 2 figures, 3 tables.
Yale High Energy Physics Research: Precision Studies of Reactor Antineutrinos
Heeger, Karsten M.
2014-09-13
This report presents experimental research at the intensity frontier of particle physics with particular focus on the study of reactor antineutrinos and the precision measurement of neutrino oscillations. The experimental neutrino physics group of Professor Heeger and Senior Scientist Band at Yale University has had leading responsibilities in the construction and operation of the Daya Bay Reactor Antineutrino Experiment and made critical contributions to the discovery of non-zero$\\theta_{13}$. Heeger and Band led the Daya Bay detector management team and are now overseeing the operations of the antineutrino detectors. Postdoctoral researchers and students in this group have made leading contributions to the Daya Bay analysis including the prediction of the reactor antineutrino flux and spectrum, the analysis of the oscillation signal, and the precision determination of the target mass yielding unprecedented precision in the relative detector uncertainty. Heeger's group is now leading an R\\&D effort towards a short-baseline oscillation experiment, called PROSPECT, at a US research reactor and the development of antineutrino detectors with advanced background discrimination.
Gauges for Highly Precise Metrology of a Compound Mirror
NASA Technical Reports Server (NTRS)
Gursel, Yekta
2005-01-01
Three optical gauges have been developed for guiding the assembly and measuring precisely the reflecting surfaces of a compound mirror that comprises a corner-cube retroreflector glued in a hole on a flat mirror. In the specific application for which the gauges were developed, the compound mirror is part of a siderostat in a stellar interferometer. The flat-mirror portion of the compound mirror is the siderostat mirror; the retroreflector portion of the compound mirror is to be used, during operation of the interferometer, to monitor the location of the siderostat mirror surface relative to other optical surfaces of the interferometer. Nominally, the optical corner of the retroreflector should lie precisely on the siderostat mirror surface, but this precision cannot be achieved in fabrication: in practice, there remains some distance between the optical corner and the siderostat mirror surface. For proper operation of the interferometer, it is required to make this distance as small as possible and to know this distance within 1 nm. The three gauges make it possible to satisfy these requirements.
NASA Astrophysics Data System (ADS)
Tikhomirov, Georgy; Bahdanovich, Rynat; Pham, Phu
2017-09-01
Precise calculation of energy release in a nuclear reactor is necessary to obtain the correct spatial power distribution and predict characteristics of burned nuclear fuel. In this work, previously developed method for calculation neutron-capture reactions - capture component - contribution in effective energy release in a fuel core of nuclear reactor is discussed. The method was improved and implemented to the different models of VVER-1000 reactor developed for MCU 5 and MCNP 4 computer codes. Different models of equivalent cell and fuel assembly in the beginning of fuel cycle were calculated. These models differ by the geometry, fuel enrichment and presence of burnable absorbers. It is shown, that capture component depends on fuel enrichment and presence of burnable absorbers. Its value varies for different types of hot fuel assemblies from 3.35% to 3.85% of effective energy release. Average capture component contribution in effective energy release for typical serial fresh fuel of VVER-1000 is 3.5%, which is 7 MeV/fission. The method will be used in future to estimate the dependency of capture energy on fuel density, burn-up, etc.
Gravity Compensation Using EGM2008 for High-Precision Long-Term Inertial Navigation Systems.
Wu, Ruonan; Wu, Qiuping; Han, Fengtian; Liu, Tianyi; Hu, Peida; Li, Haixia
2016-12-18
The gravity disturbance vector is one of the major error sources in high-precision and long-term inertial navigation applications. Specific to the inertial navigation systems (INSs) with high-order horizontal damping networks, analyses of the error propagation show that the gravity-induced errors exist almost exclusively in the horizontal channels and are mostly caused by deflections of the vertical (DOV). Low-frequency components of the DOV propagate into the latitude and longitude errors at a ratio of 1:1 and time-varying fluctuations in the DOV excite Schuler oscillation. This paper presents two gravity compensation methods using the Earth Gravitational Model 2008 (EGM2008), namely, interpolation from the off-line database and computing gravity vectors directly using the spherical harmonic model. Particular attention is given to the error contribution of the gravity update interval and computing time delay. It is recommended for the marine navigation that a gravity vector should be calculated within 1 s and updated every 100 s at most. To meet this demand, the time duration of calculating the current gravity vector using EGM2008 has been reduced to less than 1 s by optimizing the calculation procedure. A few off-line experiments were conducted using the data of a shipborne INS collected during an actual sea test. With the aid of EGM2008, most of the low-frequency components of the position errors caused by the gravity disturbance vector have been removed and the Schuler oscillation has been attenuated effectively. In the rugged terrain, the horizontal position error could be reduced at best 48.85% of its regional maximum. The experimental results match with the theoretical analysis and indicate that EGM2008 is suitable for gravity compensation of the high-precision and long-term INSs.
Gravity Compensation Using EGM2008 for High-Precision Long-Term Inertial Navigation Systems
Wu, Ruonan; Wu, Qiuping; Han, Fengtian; Liu, Tianyi; Hu, Peida; Li, Haixia
2016-01-01
The gravity disturbance vector is one of the major error sources in high-precision and long-term inertial navigation applications. Specific to the inertial navigation systems (INSs) with high-order horizontal damping networks, analyses of the error propagation show that the gravity-induced errors exist almost exclusively in the horizontal channels and are mostly caused by deflections of the vertical (DOV). Low-frequency components of the DOV propagate into the latitude and longitude errors at a ratio of 1:1 and time-varying fluctuations in the DOV excite Schuler oscillation. This paper presents two gravity compensation methods using the Earth Gravitational Model 2008 (EGM2008), namely, interpolation from the off-line database and computing gravity vectors directly using the spherical harmonic model. Particular attention is given to the error contribution of the gravity update interval and computing time delay. It is recommended for the marine navigation that a gravity vector should be calculated within 1 s and updated every 100 s at most. To meet this demand, the time duration of calculating the current gravity vector using EGM2008 has been reduced to less than 1 s by optimizing the calculation procedure. A few off-line experiments were conducted using the data of a shipborne INS collected during an actual sea test. With the aid of EGM2008, most of the low-frequency components of the position errors caused by the gravity disturbance vector have been removed and the Schuler oscillation has been attenuated effectively. In the rugged terrain, the horizontal position error could be reduced at best 48.85% of its regional maximum. The experimental results match with the theoretical analysis and indicate that EGM2008 is suitable for gravity compensation of the high-precision and long-term INSs. PMID:27999351
Visual Inspection of Machined Metallic High-Precision Surfaces
NASA Astrophysics Data System (ADS)
Pernkopf, Franz; O'Leary, Paul
2002-12-01
This paper presents a surface inspection prototype of an automatic system for precision ground metallic surfaces, in this case bearing rolls. The surface reflectance properties are modeled and verified with optical experiments. The aim being to determine the optical arrangement for illumination and observation, where the contrast between errors and intact surface is maximized. A new adaptive threshold selection algorithm for segmentation is presented. Additionally, is included an evaluation of a large number of published sequential search algorithms for selection of the best subset of features for the classification with a comparison of their computational requirements. Finally, the results of classification for 540 flaw images are presented.
High Precision Material Study at Near Millimeter Wavelengths.
1983-08-30
Laser, Rexolite, TPX , Dynasil 4000. LQj .~4 20.1 ABSR*ACT ’Cath- do -- e8e11110 if nmwe*my selIdenti by block n"Whe") ’-2 Various quasi-optical...pyroelectric detectors (Laser Precision Rkp-545): L L, and L TPx lens; BS1, wire-mesh beam splitter; BS, mylar-film beam splitter; DPC, double-prism coupler...focused at the entrance to the guide with a waist radius of approximately 0.6435a, where a is the radius of the guide. A lens made from TPX plastic was
Zubkov, Mikhail; Stait-Gardner, Timothy; Price, William S
2014-06-01
Precise NMR diffusion measurements require detailed knowledge of the cumulative dephasing effect caused by the numerous gradient pulses present in most NMR pulse sequences. This effect, which ultimately manifests itself as the diffusion-related NMR signal attenuation, is usually described by the b-value or the b-matrix in the case of multidirectional diffusion weighting, the latter being common in diffusion-weighted NMR imaging. Neglecting some of the gradient pulses introduces an error in the calculated diffusion coefficient reaching in some cases 100% of the expected value. Therefore, ensuring the b-matrix calculation includes all the known gradient pulses leads to significant error reduction. Calculation of the b-matrix for simple gradient waveforms is rather straightforward, yet it grows cumbersome when complexly shaped and/or numerous gradient pulses are introduced. Making three broad assumptions about the gradient pulse arrangement in a sequence results in an efficient framework for calculation of b-matrices as well providing some insight into optimal gradient pulse placement. The framework allows accounting for the diffusion-sensitising effect of complexly shaped gradient waveforms with modest computational time and power. This is achieved by using the b-matrix elements of the simple unmodified pulse sequence and minimising the integration of the complexly shaped gradient waveform in the modified sequence. Such re-evaluation of the b-matrix elements retains all the analytical relevance of the straightforward approach, yet at least halves the amount of symbolic integration required. The application of the framework is demonstrated with the evaluation of the expression describing the diffusion-sensitizing effect, caused by different bipolar gradient pulse modules.
NASA Astrophysics Data System (ADS)
Zubkov, Mikhail; Stait-Gardner, Timothy; Price, William S.
2014-06-01
Precise NMR diffusion measurements require detailed knowledge of the cumulative dephasing effect caused by the numerous gradient pulses present in most NMR pulse sequences. This effect, which ultimately manifests itself as the diffusion-related NMR signal attenuation, is usually described by the b-value or the b-matrix in the case of multidirectional diffusion weighting, the latter being common in diffusion-weighted NMR imaging. Neglecting some of the gradient pulses introduces an error in the calculated diffusion coefficient reaching in some cases 100% of the expected value. Therefore, ensuring the b-matrix calculation includes all the known gradient pulses leads to significant error reduction. Calculation of the b-matrix for simple gradient waveforms is rather straightforward, yet it grows cumbersome when complexly shaped and/or numerous gradient pulses are introduced. Making three broad assumptions about the gradient pulse arrangement in a sequence results in an efficient framework for calculation of b-matrices as well providing some insight into optimal gradient pulse placement. The framework allows accounting for the diffusion-sensitising effect of complexly shaped gradient waveforms with modest computational time and power. This is achieved by using the b-matrix elements of the simple unmodified pulse sequence and minimising the integration of the complexly shaped gradient waveform in the modified sequence. Such re-evaluation of the b-matrix elements retains all the analytical relevance of the straightforward approach, yet at least halves the amount of symbolic integration required. The application of the framework is demonstrated with the evaluation of the expression describing the diffusion-sensitizing effect, caused by different bipolar gradient pulse modules.
An Online Gravity Modeling Method Applied for High Precision Free-INS.
Wang, Jing; Yang, Gongliu; Li, Jing; Zhou, Xiao
2016-09-23
For real-time solution of inertial navigation system (INS), the high-degree spherical harmonic gravity model (SHM) is not applicable because of its time and space complexity, in which traditional normal gravity model (NGM) has been the dominant technique for gravity compensation. In this paper, a two-dimensional second-order polynomial model is derived from SHM according to the approximate linear characteristic of regional disturbing potential. Firstly, deflections of vertical (DOVs) on dense grids are calculated with SHM in an external computer. And then, the polynomial coefficients are obtained using these DOVs. To achieve global navigation, the coefficients and applicable region of polynomial model are both updated synchronously in above computer. Compared with high-degree SHM, the polynomial model takes less storage and computational time at the expense of minor precision. Meanwhile, the model is more accurate than NGM. Finally, numerical test and INS experiment show that the proposed method outperforms traditional gravity models applied for high precision free-INS.
An Online Gravity Modeling Method Applied for High Precision Free-INS
Wang, Jing; Yang, Gongliu; Li, Jing; Zhou, Xiao
2016-01-01
For real-time solution of inertial navigation system (INS), the high-degree spherical harmonic gravity model (SHM) is not applicable because of its time and space complexity, in which traditional normal gravity model (NGM) has been the dominant technique for gravity compensation. In this paper, a two-dimensional second-order polynomial model is derived from SHM according to the approximate linear characteristic of regional disturbing potential. Firstly, deflections of vertical (DOVs) on dense grids are calculated with SHM in an external computer. And then, the polynomial coefficients are obtained using these DOVs. To achieve global navigation, the coefficients and applicable region of polynomial model are both updated synchronously in above computer. Compared with high-degree SHM, the polynomial model takes less storage and computational time at the expense of minor precision. Meanwhile, the model is more accurate than NGM. Finally, numerical test and INS experiment show that the proposed method outperforms traditional gravity models applied for high precision free-INS. PMID:27669261
High-precision gamma-ray spectroscopy for enhancing production and application of medical isotopes
NASA Astrophysics Data System (ADS)
McCutchan, E. A.; Sonzogni, A. A.; Smith, S. V.; Muench, L.; Nino, M.; Greene, J. P.; Carpenter, M. P.; Zhu, S.; Chillery, T.; Chowdhury, P.; Harding, R.; Lister, C. J.
2015-10-01
Nuclear medicine is a field which requires precise decay data for use in planning radionuclide production and in imaging and therapeutic applications. To address deficiencies in decay data, sources of medical isotopes were produced and purified at the Brookhaven Linear Isotope Producer (BLIP) then shipped to Argonne National Laboratory where high-precision, gamma-ray measurements were performed using Gammasphere. New decay schemes for a number of PET isotopes and the impact on dose calculations will be presented. To investigate the production of next-generation theranostic or radiotherapeutic isotopes, cross section measurements with high energy protons have also been explored at BLIP. The 100-200 MeV proton energy regime is relatively unexplored for isotope production, thus offering high discovery potential but at the same time a challenging analysis due to the large number of open channels at these energies. Results of cross sections deduced from Compton-suppressed, coincidence gamma-ray spectroscopy performed at Lowell will be presented, focusing on the production of platinum isotopes by irradiating natural platinum foils with 100 to 200 MeV protons. DOE Isotope Program is acknowledged for funding ST5001030. Work supported by the US DOE under Grant DE-FG02-94ER40848 and Contracts DE-AC02-98CH10946 and DE-AC02-06CH11357.
High precision high voltage divider and its application to electron beam ion traps
Chen, W. D.; Xiao, J.; Shen, Y.; Fu, Y. Q.; Meng, F. C.; Chen, C. Y.; Zou, Y.; Hutton, R.
2008-12-15
A high precision high voltage divider has been developed for the electron beam ion trap in Shanghai. The uncertainty caused by the temperature coefficient of resistance (TCR) and the voltage coefficient of resistance has been studied in detail and was minimized to the level of ppm (10{sup -6}) range. Once the TCR was matched between the resistors, the precision of the dividing ratio finally reached the ppm range also. We measured the delay of the divider caused by the capacitor introduced to minimize voltage ripple to be 2.35 ms. Finally we applied the divider to an experiment to measure resonant energies for some dielectronic recombination processes for highly charged xenon ions. The final energies include corrections for both space charge and fringe field effects are mostly under 0.03%.
A high precision, compact electromechanical ground rotation sensor
Dergachev, V.; DeSalvo, R.; Asadoor, M.; Bhawal, A.; Gong, P.; Kim, C.; Lottarini, A.; Minenkov, Y.; Murphy, C.; O'Toole, A.; Peña Arellano, F. E.; and others
2014-05-15
We present a mechanical rotation sensor consisting of a balance pivoting on a tungsten carbide knife edge. These sensors are important for precision seismic isolation systems, as employed in land-based gravitational wave interferometers and for the new field of rotational seismology. The position sensor used is an air-core linear variable differential transformer with a demonstrated noise floor of 1 × 10{sup −11}m/√( Hz ). We describe the instrument construction and demonstrate low noise operation with a noise floor upper bound of 5.7 × 10{sup −9} rad /√( Hz ) at 10 mHz and 6.4 × 10{sup −10} rad /√( Hz ) at 0.1 Hz. The performance of the knife edge hinge is compatible with a behaviorur free of noise from dislocation self-organized criticality.
Decade-Spanning High-Precision Terahertz Frequency Comb
NASA Astrophysics Data System (ADS)
Finneran, Ian A.; Good, Jacob T.; Holland, Daniel B.; Carroll, P. Brandon; Allodi, Marco A.; Blake, Geoffrey A.
2015-04-01
The generation and detection of a decade-spanning terahertz (THz) frequency comb is reported using two Ti:sapphire femtosecond laser oscillators and asynchronous optical sampling THz time-domain spectroscopy. The comb extends from 0.15 to 2.4 THz, with a tooth spacing of 80 MHz, a linewidth of 3.7 kHz, and a fractional precision of 1.8 ×10-9 . With time-domain detection of the comb, we measure three transitions of water vapor at 10 mTorr between 1-2 THz with an average Doppler-limited fractional accuracy of 6.1 ×10-8 . Significant improvements in bandwidth, resolution, and sensitivity are possible with existing technologies.
A high precision, compact electromechanical ground rotation sensor.
Dergachev, V; DeSalvo, R; Asadoor, M; Bhawal, A; Gong, P; Kim, C; Lottarini, A; Minenkov, Y; Murphy, C; O'Toole, A; Peña Arellano, F E; Rodionov, A V; Shaner, M; Sobacchi, E
2014-05-01
We present a mechanical rotation sensor consisting of a balance pivoting on a tungsten carbide knife edge. These sensors are important for precision seismic isolation systems, as employed in land-based gravitational wave interferometers and for the new field of rotational seismology. The position sensor used is an air-core linear variable differential transformer with a demonstrated noise floor of 1 × 10⁻¹¹ m/√Hz. We describe the instrument construction and demonstrate low noise operation with a noise floor upper bound of 5.7 × 10⁻⁹ rad/√Hz at 10 mHz and 6.4 × 10⁻¹⁰ rad/√Hz at 0.1 Hz. The performance of the knife edge hinge is compatible with a behaviorur free of noise from dislocation self-organized criticality.
Aerospace Laser Ignition/Ablation Variable High Precision Thruster
NASA Technical Reports Server (NTRS)
Campbell, Jonathan W. (Inventor); Edwards, David L. (Inventor); Campbell, Jason J. (Inventor)
2015-01-01
A laser ignition/ablation propulsion system that captures the advantages of both liquid and solid propulsion. A reel system is used to move a propellant tape containing a plurality of propellant material targets through an ignition chamber. When a propellant target is in the ignition chamber, a laser beam from a laser positioned above the ignition chamber strikes the propellant target, igniting the propellant material and resulting in a thrust impulse. The propellant tape is advanced, carrying another propellant target into the ignition chamber. The propellant tape and ignition chamber are designed to ensure that each ignition event is isolated from the remaining propellant targets. Thrust and specific impulse may by precisely controlled by varying the synchronized propellant tape/laser speed. The laser ignition/ablation propulsion system may be scaled for use in small and large applications.
Decade-spanning high-precision terahertz frequency comb.
Finneran, Ian A; Good, Jacob T; Holland, Daniel B; Carroll, P Brandon; Allodi, Marco A; Blake, Geoffrey A
2015-04-24
The generation and detection of a decade-spanning terahertz (THz) frequency comb is reported using two Ti:sapphire femtosecond laser oscillators and asynchronous optical sampling THz time-domain spectroscopy. The comb extends from 0.15 to 2.4 THz, with a tooth spacing of 80 MHz, a linewidth of 3.7 kHz, and a fractional precision of 1.8×10^{-9}. With time-domain detection of the comb, we measure three transitions of water vapor at 10 mTorr between 1-2 THz with an average Doppler-limited fractional accuracy of 6.1×10^{-8}. Significant improvements in bandwidth, resolution, and sensitivity are possible with existing technologies.
A high precision, compact electromechanical ground rotation sensor
NASA Astrophysics Data System (ADS)
Dergachev, V.; DeSalvo, R.; Asadoor, M.; Bhawal, A.; Gong, P.; Kim, C.; Lottarini, A.; Minenkov, Y.; Murphy, C.; O'Toole, A.; Peña Arellano, F. E.; Rodionov, A. V.; Shaner, M.; Sobacchi, E.
2014-05-01
We present a mechanical rotation sensor consisting of a balance pivoting on a tungsten carbide knife edge. These sensors are important for precision seismic isolation systems, as employed in land-based gravitational wave interferometers and for the new field of rotational seismology. The position sensor used is an air-core linear variable differential transformer with a demonstrated noise floor of {1}{ × 10^{-11}}textrm { m}/sqrt{textrm {Hz}}. We describe the instrument construction and demonstrate low noise operation with a noise floor upper bound of {5.7}{ × 10^{-9}}textrm { rad}/sqrt{textrm {Hz}} at 10 mHz and {6.4}{ × 10^{-10}}textrm { rad}/sqrt{textrm {Hz}} at 0.1 Hz. The performance of the knife edge hinge is compatible with a behaviorur free of noise from dislocation self-organized criticality.
HIGH-PRECISION DYNAMICAL MASSES OF VERY LOW MASS BINARIES
Konopacky, Q. M.; Ghez, A. M.; McLean, I. S.; Barman, T. S.; Rice, E. L.; Bailey, J. I.; White, R. J.; Duchene, G. E-mail: ghez@astro.ucla.ed E-mail: barman@lowell.ed E-mail: white@chara.gsu.ed
2010-03-10
We present the results of a three year monitoring program of a sample of very low mass (VLM) field binaries using both astrometric and spectroscopic data obtained in conjunction with the laser guide star adaptive optics system on the W. M. Keck II 10 m telescope. Among the 24 systems studied, 15 have undergone sufficient orbital motion, allowing us to derive their relative orbital parameters and hence their total system mass. These measurements more than double the number of mass measurements for VLM objects, and include the most precise mass measurement to date (<2%). Among the 11 systems with both astrometric and spectroscopic measurements, six have sufficient radial velocity variations to allow us to obtain individual component masses. This is the first derivation of the component masses for five of these systems. Altogether, the orbital solutions of these low mass systems show a correlation between eccentricity and orbital period, consistent with their higher mass counterparts. In our primary analysis, we find that there are systematic discrepancies between our dynamical mass measurements and the predictions of theoretical evolutionary models (TUCSON and LYON) with both models either underpredicting or overpredicting the most precisely determined dynamical masses. These discrepancies are a function of spectral type, with late-M through mid-L systems tending to have their masses underpredicted, while one T-type system has its mass overpredicted. These discrepancies imply that either the temperatures predicted by evolutionary and atmosphere models are inconsistent for an object of a given mass, or the mass-radius relationship or cooling timescales predicted by the evolutionary models are incorrect. If these spectral-type trends are correct and hold into the planetary mass regime, the implication is that the masses of directly imaged extrasolar planets are overpredicted by the evolutionary models.
Calculation of the vacuum Green's function valid for high toroidal mode number in tokamaks.
NASA Astrophysics Data System (ADS)
Chance, Morrell; Turnbull, Alan
2005-10-01
The present evaluation of the Green's function used for the magmetic scalar potential in vacuum calculations for axisymmetric geometry in the vacuum segments of gato, pest and other mhd stability codes has been found to be deficient for moderately high toroidal mode numbers. This was due to the loss of numerical precision arising from the upward recursion relation used for generating the functions to high mode numbers. The recursion is initiated from the complete elliptic integrals of the first and second kinds. To ameliorate this, a direct integration of the integral representation of the function was crafted to achieve the necessary high accuracy for moderately high mode numbers. At very high mode numbers the loss of numerical precision due to the oscillatory behavior of the integrand is further avoided by judiciously deforming the integration contour in the complex plane. Machine precision, roughly 14 -- 16 digits, accuracy can be achieved by using a combination of both these techniques.
Usvyat, Denis
2015-09-14
A multilevel hierarchical ab initio protocol for calculating adsorption on non-conducting surfaces is presented. It employs fully periodic treatment, which reaches local Møller-Plesset perturbation theory of second order (MP2) with correction for the basis set incompleteness via the local F12 technique. Post-MP2 corrections are calculated using finite clusters. That includes the coupled cluster treatment in the local and canonical frameworks (up to perturbative quadruples) and correlated core (with MP2). Using this protocol, the potential surface of hydrogen molecules adsorbed on graphane was computed. According to the calculations, hydrogen molecules are adsorbed on graphane in a perpendicular to the surface orientation with the minimum of the potential surface of around −3.6 kJ/mol located at the distance of 3.85 Å between the bond center of the hydrogen molecule and the mid-plane of graphane. The adsorption sites along the path from the downward-pointing carbon to the ring center of the graphane are energetically virtually equally preferable, which can enable nearly free translations of hydrogen molecules along these paths. Consequently, the hydrogen molecules on graphane most likely form a non-commensurate monolayer. The analysis of the remaining errors reveals a very high accuracy of the computed potential surface with an error bar of a few tenths of a kJ/mol. The obtained results are a high-precision benchmark for further theoretical and experimental studies of hydrogen molecules interacting with graphane.
Usvyat, Denis
2015-09-14
A multilevel hierarchical ab initio protocol for calculating adsorption on non-conducting surfaces is presented. It employs fully periodic treatment, which reaches local Møller-Plesset perturbation theory of second order (MP2) with correction for the basis set incompleteness via the local F12 technique. Post-MP2 corrections are calculated using finite clusters. That includes the coupled cluster treatment in the local and canonical frameworks (up to perturbative quadruples) and correlated core (with MP2). Using this protocol, the potential surface of hydrogen molecules adsorbed on graphane was computed. According to the calculations, hydrogen molecules are adsorbed on graphane in a perpendicular to the surface orientation with the minimum of the potential surface of around -3.6 kJ/mol located at the distance of 3.85 Å between the bond center of the hydrogen molecule and the mid-plane of graphane. The adsorption sites along the path from the downward-pointing carbon to the ring center of the graphane are energetically virtually equally preferable, which can enable nearly free translations of hydrogen molecules along these paths. Consequently, the hydrogen molecules on graphane most likely form a non-commensurate monolayer. The analysis of the remaining errors reveals a very high accuracy of the computed potential surface with an error bar of a few tenths of a kJ/mol. The obtained results are a high-precision benchmark for further theoretical and experimental studies of hydrogen molecules interacting with graphane.
NASA Astrophysics Data System (ADS)
Usvyat, Denis
2015-09-01
A multilevel hierarchical ab initio protocol for calculating adsorption on non-conducting surfaces is presented. It employs fully periodic treatment, which reaches local Møller-Plesset perturbation theory of second order (MP2) with correction for the basis set incompleteness via the local F12 technique. Post-MP2 corrections are calculated using finite clusters. That includes the coupled cluster treatment in the local and canonical frameworks (up to perturbative quadruples) and correlated core (with MP2). Using this protocol, the potential surface of hydrogen molecules adsorbed on graphane was computed. According to the calculations, hydrogen molecules are adsorbed on graphane in a perpendicular to the surface orientation with the minimum of the potential surface of around -3.6 kJ/mol located at the distance of 3.85 Å between the bond center of the hydrogen molecule and the mid-plane of graphane. The adsorption sites along the path from the downward-pointing carbon to the ring center of the graphane are energetically virtually equally preferable, which can enable nearly free translations of hydrogen molecules along these paths. Consequently, the hydrogen molecules on graphane most likely form a non-commensurate monolayer. The analysis of the remaining errors reveals a very high accuracy of the computed potential surface with an error bar of a few tenths of a kJ/mol. The obtained results are a high-precision benchmark for further theoretical and experimental studies of hydrogen molecules interacting with graphane.
Study on manufacturing method of optical surface with high precision in angle and surface
NASA Astrophysics Data System (ADS)
Yu, Xin; Li, Xin; Yu, Ze; Zhao, Bin; Zhang, Xuebin; Sun, Lipeng; Tong, Yi
2016-10-01
This paper studied a manufacturing processing of optical surface with high precision in angel and surface. By theoretical analysis of the relationships between the angel precision and surface, the measurement conversion of the technical indicators, optical-cement method application, the optical-cement tooling design, the experiment has been finished successfully, the processing method has been verified, which can be also used in the manufacturing of the optical surface with similar high precision in angle and surface.
NASA Astrophysics Data System (ADS)
Subramaniam, E. T.; Jain, Mamta; Bhowmik, R. K.; Tripon, Michel
2008-10-01
Nuclear and particle physics experiments with large number of detectors require signal processing and data collection strategies that call for the ability to collect large amount of data while not sacrificing the precision and accuracy of the data being collected. This paper deals with the development of a high precision pulse peak detection, analog to digital converter (ADC) module with eight independent channels in plug-in daughter card motherboard model, best suited for spectroscopy experiments. This module provides multiple channels without cross-talk and of 14 bit resolution, while maintaining high density (each daughter card has an area of just 4.2″×0.51″) and exhibiting excellent integral nonlinearity (≤±2 mV or ±0.02% full scale reading) and differential nonlinearity (≤±1%). It was designed, developed and tested, in house, and gives added advantages of cost effectiveness and ease of maintenance.
Subramaniam, E T; Jain, Mamta; Bhowmik, R K; Tripon, Michel
2008-10-01
Nuclear and particle physics experiments with large number of detectors require signal processing and data collection strategies that call for the ability to collect large amount of data while not sacrificing the precision and accuracy of the data being collected. This paper deals with the development of a high precision pulse peak detection, analog to digital converter (ADC) module with eight independent channels in plug-in daughter card motherboard model, best suited for spectroscopy experiments. This module provides multiple channels without cross-talk and of 14 bit resolution, while maintaining high density (each daughter card has an area of just 4.2(")x0.51(")) and exhibiting excellent integral nonlinearity (< or = +/-2 mV or +/-0.02% full scale reading) and differential nonlinearity (< or = +/-1%). It was designed, developed and tested, in house, and gives added advantages of cost effectiveness and ease of maintenance.
A high precision position sensor design and its signal processing algorithm for a maglev train.
Xue, Song; Long, Zhiqiang; He, Ning; Chang, Wensen
2012-01-01
High precision positioning technology for a kind of high speed maglev train with an electromagnetic suspension (EMS) system is studied. At first, the basic structure and functions of the position sensor are introduced and some key techniques to enhance the positioning precision are designed. Then, in order to further improve the positioning signal quality and the fault-tolerant ability of the sensor, a new kind of discrete-time tracking differentiator (TD) is proposed based on nonlinear optimal control theory. This new TD has good filtering and differentiating performances and a small calculation load. It is suitable for real-time signal processing. The stability, convergence property and frequency characteristics of the TD are studied and analyzed thoroughly. The delay constant of the TD is figured out and an effective time delay compensation algorithm is proposed. Based on the TD technology, a filtering process is introduced in to improve the positioning signal waveform when the sensor is under bad working conditions, and a two-sensor switching algorithm is designed to eliminate the positioning errors caused by the joint gaps of the long stator. The effectiveness and stability of the sensor and its signal processing algorithms are proved by the experiments on a test train during a long-term test run.
A High Precision Position Sensor Design and Its Signal Processing Algorithm for a Maglev Train
Xue, Song; Long, Zhiqiang; He, Ning; Chang, Wensen
2012-01-01
High precision positioning technology for a kind of high speed maglev train with an electromagnetic suspension (EMS) system is studied. At first, the basic structure and functions of the position sensor are introduced and some key techniques to enhance the positioning precision are designed. Then, in order to further improve the positioning signal quality and the fault-tolerant ability of the sensor, a new kind of discrete-time tracking differentiator (TD) is proposed based on nonlinear optimal control theory. This new TD has good filtering and differentiating performances and a small calculation load. It is suitable for real-time signal processing. The stability, convergence property and frequency characteristics of the TD are studied and analyzed thoroughly. The delay constant of the TD is figured out and an effective time delay compensation algorithm is proposed. Based on the TD technology, a filtering process is introduced in to improve the positioning signal waveform when the sensor is under bad working conditions, and a two-sensor switching algorithm is designed to eliminate the positioning errors caused by the joint gaps of the long stator. The effectiveness and stability of the sensor and its signal processing algorithms are proved by the experiments on a test train during a long-term test run. PMID:22778582
Sergio Alexandre Pinto; Stadler, Alfred; Gross, Franz L.
2010-01-01
The electromagnetic form factors of the three-nucleon bound states were calculated in Complete Impulse Approximation in the framework of the Covariant Spectator Theory for the new high-precision two-nucleon interaction models WJC-1 and WJC-2. The calculations use an approximation for the three-nucleon vertex functions with two nucleons off mass shell. The form factors with WJC-2 are close to the ones obtained with the older model W16 and to nonrelativistic potential calculations with lowest-order relativistic corrections, while the form factors with the most precise two-nucleon model WJC-1 exhibit larger differences. These results can be understood when the effect of the different types of pion-nucleon coupling used in the various models is examined.
High-Precision Nucleation Rate Measurements for Higher Melting Metals
NASA Astrophysics Data System (ADS)
Bokeloh, Joachim; Wilde, Gerhard
2014-08-01
Nucleation of a crystal in undercooled melts of higher melting face-centered-cubic-metals has often been studied in the past. However, the data available were not of sufficient accuracy and only covered nucleation rates in too small of a range to allow precise conclusions concerning the nature of the underlying process as well as concerning important parameters such as the solid-liquid interface free energy that can in principle be deducted from such analyses. One way to circumvent ambiguities and analyze nucleation kinetics under well-defined conditions experimentally is given by performing statistically significant numbers of repeated single droplet experiments. Application of proper statistics analyses yields nucleation rates that are independent of a specific nucleation model. The first studies that were conducted in accordance with this approach on pure model materials revealed that the approach is valid. The results are comparable to those obtained by classic nucleation theory applied to experimental data, and it was shown that one might need to rethink the common assumption that heterogeneous nucleation is almost always responsible for solidification initiation. The current results also show that often-used models for the solid-liquid interface free energy might lead to overestimated values.
High Precision Photometry of Bright Transiting Exoplanet Hosts
NASA Astrophysics Data System (ADS)
Wilson, Maurice; Eastman, Jason; Johnson, John A.
2016-01-01
Within the past two decades, the successful search for exoplanets and the characterization of their physical properties have shown the immense progress that has been made towards finding planets with characteristics similar to Earth. For most exoplanets with a radius about the size of Earth, evaluating their physical properties, such as the mass, radius and equilibrium temperature, cannot be determined with satisfactory precision. The MINiature Exoplanet Radial Velocity Array (MINERVA) was recently built to obtain spectroscopic and photometric measurements to find, confirm, and characterize Earth-like exoplanets. MINERVA's spectroscopic survey targets the brightest, nearby stars which are well-suited to the array's capabilities, while its primary photometric goal is to search for transits around these bright targets. Typically, it is difficult to find satisfactory comparison stars within a telescope's field of view when the primary target is very bright. This issue is resolved by using one of MINERVA's telescopes to observe the primary bright star while the other telescopes observe a distinct field of view that contains satisfactory bright comparison stars. We describe the code used to identify nearby comparison stars, schedule the four telescopes, produce differential photometry from multiple telescopes, and show the first results from this effort.This work has been funded by the Ronald E. McNair Post-Baccalaureate Achievement Program, the ERAU Honors Program, the ERAU Undergraduate Research Spark Fund, and the Banneker Institute at the Harvard-Smithsonian Center for Astrophysics.
High precision silicon piezo resistive SMART pressure sensor
NASA Astrophysics Data System (ADS)
Brown, Rod
2005-01-01
Instruments for test and calibration require a pressure sensor that is precise and stable. Market forces also dictate a move away from single measurand test equipment and, certainly in the case of pressure, away from single range equipment. A pressure `module' is required which excels in pressure measurement but is interchangble with sensors for other measurands. A communications interface for such a sensor has been specified. Instrument Digital Output Sensor (IDOS) that permits this interchanagability and allows the sensor to be inside or outside the measuring instrument. This paper covers the design and specification of a silicon diaphragm piezo resistive SMART sensor using this interface. A brief history of instrument sensors will be given to establish the background to this development. Design choices of the silicon doping, bridge energisation method, temperature sensing, signal conversion, data processing, compensation method, communications interface will be discussed. The physical format of the `in-instrument' version will be shown and then extended to the packaging design for the external version. Test results will show the accuracy achieved exceeds the target of 0.01%FS over a range of temperatures.
Design of a high-precision β-telescope
NASA Astrophysics Data System (ADS)
Terbeek, R. H.; Behling, S.; Melconian, D.
2009-10-01
The question is raised of whether or not parity is maximally violated in the weak interaction, focusing on β decay. Efforts to measure the neutrino asymmetry parameter, Bν, and how it will provide limits on the existence of a new right-handed W boson are described. In this experiment, a magneto-optical trap is used to laser-cool and confine ^37K atoms, which are then polarized using optical pumping techniques. A β-telescope will be used to detect the energy and direction of the e^+s emitted from the decay. This detector will be used in coincidence with a microchannel plate which observes the momentum of the recoiling ^37Ar nucleus. The kinematics of the decay allow us to deduce the neutrino's momentum event-by-event, and so by correlating the neutrino's momentum with the initial nuclear spin, we will be able to make a precision measurement of Bν. The physics of positron detection and constraints on β-telescope design are covered in detail, as well as research into computer simulation methods for the analysis of response functions and the optimization of certain parameters of a β-telescope.
High-speed precision weighing of pharmaceutical capsules
NASA Astrophysics Data System (ADS)
Bürmen, Miran; Pernuš, Franjo; Likar, Boštjan
2009-11-01
In this paper, we present a cost-effective method for fast and accurate in-line weighing of hard gelatin capsules based on the optimized capacitance sensor and real-time processing of the capsule capacitance profile resulting from 5000 capacitance measurements per second. First, the effect of the shape and size of the capacitive sensor on the sensitivity and stability of the measurements was investigated in order to optimize the performance of the system. The method was tested on two types of hard gelatin capsules weighing from 50 mg to 650 mg. The results showed that the capacitance profile was exceptionally well correlated with the capsule weight with the correlation coefficient exceeding 0.999. The mean precision of the measurements was in the range from 1 mg to 3 mg, depending on the size of the capsule and was significantly lower than the 5% weight tolerances usually used by the pharmaceutical industry. Therefore, the method was found feasible for weighing pharmaceutical hard gelatin capsules as long as certain conditions are met regarding the capsule fill properties and environment stability. The proposed measurement system can be calibrated by using only two or three sets of capsules with known weight. However, for most applications it is sufficient to use only empty and nominally filled capsules for calibration. Finally, a practical application of the proposed method showed that a single system is capable of weighing around 75 000 capsules per hour, while using multiple systems could easily increase the inspection rate to meet almost any requirements.
High-precision timeline for Earth's most severe extinction.
Burgess, Seth D; Bowring, Samuel; Shen, Shu-zhong
2014-03-04
The end-Permian mass extinction was the most severe loss of marine and terrestrial biota in the last 542 My. Understanding its cause and the controls on extinction/recovery dynamics depends on an accurate and precise age model. U-Pb zircon dates for five volcanic ash beds from the Global Stratotype Section and Point for the Permian-Triassic boundary at Meishan, China, define an age model for the extinction and allow exploration of the links between global environmental perturbation, carbon cycle disruption, mass extinction, and recovery at millennial timescales. The extinction occurred between 251.941 ± 0.037 and 251.880 ± 0.031 Mya, an interval of 60 ± 48 ka. Onset of a major reorganization of the carbon cycle immediately precedes the initiation of extinction and is punctuated by a sharp (3‰), short-lived negative spike in the isotopic composition of carbonate carbon. Carbon cycle volatility persists for ∼500 ka before a return to near preextinction values. Decamillenial to millennial level resolution of the mass extinction and its aftermath will permit a refined evaluation of the relative roles of rate-dependent processes contributing to the extinction, allowing insight into postextinction ecosystem expansion, and establish an accurate time point for evaluating the plausibility of trigger and kill mechanisms.
Application of GPS in a high precision engineering survey network
Ruland, R.; Leick, A.
1985-04-01
A GPS satellite survey was carried out with the Macrometer to support construction at the Stanford Linear Accelerator Center (SLAC). The network consists of 16 stations of which 9 stations were part of the Macrometer network. The horizontal and vertical accuracy of the GPS survey is estimated to be 1 to 2 mm and 2 to 3 mm respectively. The horizontal accuracy of the terrestrial survey, consisting of angles and distances, equals that of the GPS survey only in the ''loop'' portion of the network. All stations are part of a precise level network. The ellipsoidal heights obtained from the GPS survey and the orthometric heights of the level network are used to compute geoid undulations. A geoid profile along the linac was computed by the National Geodetic Survey in 1963. This profile agreed with the observed geoid within the standard deviation of the GPS survey. Angles and distances were adjusted together (TERRA), and all terrestrial observations were combined with the GPS vector observations in a combination adjustment (COMB). A comparison of COMB and TERRA revealed systematic errors in the terrestrial solution. A scale factor of 1.5 ppM +- .8 ppM was estimated. This value is of the same magnitude as the over-all horizontal accuracy of both networks. 10 refs., 3 figs., 5 tabs.
High-precision steering of multipleholographic optical traps
NASA Astrophysics Data System (ADS)
Schmitz, Christian H. J.; Spatz, Joachim P.; Curtis, Jennifer E.
2005-10-01
Locating and steering entire ensembles of microscopic objects has become extremely practical with the emergence of holographic optical tweezers. Application of this technology to single molecule experiments requires great accuracy in the spatial positioning of optical traps. This paper calculates the theoretical position resolution of a single holographic beam, predicting that sub-nanometer resolution is easily achieved. Experimental corroboration of the spatial resolution's inverse dependence on the hologram's number of pixels and phase levels is presented. To at least a nanometer range position resolution, multiple optical tweezers created by complex superposition holograms also follow the theoretical predictions for a single beam.
Electronic solar compass for high precision orientation on any planet
NASA Astrophysics Data System (ADS)
Flora, F.; Bollanti, S.; De Meis, D.; Di Lazzaro, P.; Gallerano, G. P.; Mezi, L.; Murra, D.; Torre, A.; Vicca, D.
2016-07-01
A compact, fully automatic electronic solar compass has been developed at the ENEA Frascati Laboratories. The compass is inspired to ``camera obscura'' sundials like those inside churches. Sun ephemerides are calculated using an approximate but effective analytical solution of Kepler's laws, where the Earth (or other planets) orbit main parameters are introduced. The instrument is light, cheap and it has an accuracy better than 1 arcmin. Some examples of application of the device as well as the possibility to use it on Mars are presented.
Li, D; Rosenstein, B
2001-04-16
A new systematic calculation of magnetization and specific heat contributions of vortex liquids and solids is presented. We develop an optimized perturbation theory for the Ginzburg-Landau description of thermal fluctuations effects in the vortex liquids. The expansion is convergent in contrast to the conventional high temperature expansion which is asymptotic. In the solid phase we calculate the first two orders which are already quite accurate. The results are in good agreement with existing Monte Carlo simulations and experiments. Limitations of various nonperturbative and phenomenological approaches are noted. In particular, we show that there is no exact intersection point of the magnetization curves.
High Precision Measurement of the Proton Elastic Form Factor Ratio at Low Q2
Xiaohui Zhan
2009-12-01
A high precision measurement of the proton elastic form factor ratio µpGEp/GMp in the range Q2 = 0.3–0.7 GeV2/c2 was performed using recoil polarimetry in Jefferson Lab Hall A. In this low Q2 range, previous data from LEDEX [5] along with many fits and calculations [2, 3, 4] indicate substantial deviations of the ratio from unity. In this new measurement, with 80% polarized electron beam for 24 days, we are able to achieve <1% statistical uncertainty. Preliminary results are a few percent lower than expected from previous world data and fits, indicating a smaller GEp at this region. Beyond the intrinsic interest in nucleon structure, the improved form factor measurements also have implications for DVCS, determinations of the proton Zemach radius and strangeness form factors through parity violation experiments.
High precision atomic data as a measurement tool for halo nuclei: Theory
NASA Astrophysics Data System (ADS)
Drake, G. W. F.; Yan, Zong-Chao
2013-07-01
As a result of recent advances in both atomic theory and experiment, The isotope shift method now stands as the method of choice for the determination of nuclear charge radii in light few-electron atoms, and it provides a unique measurement tool for the study of exotic "halo" nuclei. This paper reviews the high precision variational techniques used to solve the nonrelativistic Schrödinger equation for two- and three-electron atoms, and the calculation of relativistic and quantum electrodynamic (QED) contributions to the isotope shift. Sample results are given for the isotopes 3He and 6He relative to 4He, and 11Li relative to 7Li. A remarkably simple systematic behavior of the QED shift (Bethe logarithm) is discussed. A companion paper by W. Nörtershäuser discusses further the experimental techniques and results for the charge radius of halo nuclei.
New linear piezomotors for high-force precise positioning applications
NASA Astrophysics Data System (ADS)
Le Letty, Ronan; Claeyssen, Frank; Barillot, Francois; Six, Marc F.; Bouchilloux, Philippe
1998-07-01
Piezomotors are an increasingly competitive alternative to electromagnetic stepper motors, especially in applications where large bandwidths and/or precise positioning control are desired. Piezomotors use a combination of electromechanical and frictional forces and, compared to conventional electromagnetic motors, have the advantages that no power supply is required to maintain the motor in position and no lubrication is necessary in the device. The operating principle of these motors relies on the use of an ultrasonic vibration, which is created via the piezoelectric effect (at resonance in most cases), in order to generate vibration forces at the `stator/rotor' contact interface. A mechanical preload is also applied at this contact interface and is responsible for the motor's holding force at rest. To meet the specifications of an aerospace application, we developed a new design of Linear PiezoMotors (LPMs). The first prototype we built shows very promising results, and makes the LPM a serious candidate to replace conventional stepper motors. The LPM features the following characteristics: a standing force of 100 N, a blocked force of 37 N, a maximum actuation speed of 23 mm/s, a maximum run of 10 mm, a mass of 500 g, an electrical power of 2.2 W, and a position accuracy superior to 1 micrometers . To our knowledge, the driving force delivered by the LPM has never before been achieved in resonant devices. This paper describes the physical operating principles of the LPM, as well as the modeling tools and experimental techniques we used for its development. Several implementation schemes are also presented and show the wide range of possible applications offered by the linear piezomotor.
High-precision structure fabrication based on an etching resistance layer
NASA Astrophysics Data System (ADS)
Zhang, Man; Deng, Qiling; Shi, Lifang; Cao, Axiu; Pang, Hui; Liu, Xin; Wang, Jiazhou; Hu, Song
2016-10-01
The high-precision fabrication of micro-/nano-structure is a challenge. In this paper, we proposed a new fabrication method of high-precision structure based on an etching resistance layer. The high-precision features were fabricated by photolithography technique, followed by the etching process to transfer the features to the substrate. During this process, the etching uniformity and error lead to the feature distortion. We introduced an etching resistance layer between feature layer and substrate. The etching process will stop when arriving at the resistance layer. Due to the high precision of the plating film, the high-precision structure depth was achieved. In our experiment, we introduced aluminum trioxide as the etching resistance layer. The structures with low depth error of less than 5% were fabricated.
High-precision evaluation of Wigner's d matrix by exact diagonalization.
Feng, X M; Wang, P; Yang, W; Jin, G R
2015-10-01
The precise calculations of Wigner's d matrix are important in various research fields. Due to the presence of large numbers, direct calculations of the matrix using Wigner's formula suffer from a loss of precision. We present a simple method to avoid this problem by expanding the d matrix into a complex Fourier series and calculate the Fourier coefficients by exactly diagonalizing the angular momentum operator J(y) in the eigenbasis of J(z). This method allows us to compute the d matrix and its various derivatives for spins up to a few thousand. The precision of the d matrix from our method is about 10(-14) for spins up to 100.
Design and development of a high-precision, high-payload telescope dual-drive system
NASA Astrophysics Data System (ADS)
Worthington, Michael S.; Beets, Timothy A.; Beno, Joseph H.; Mock, Jason R.; Murphy, Brian T.; South, Brian J.; Good, John M.
2010-07-01
A high precision, dual drive system has been designed and developed for the Wide Field Upgrade to the Hobby-Eberly Telescope* at McDonald Observatory in support of the Hobby-Eberly Telescope Dark Energy Experiment. Analysis, design and controls details will be of interest to designers of large scale, high precision robotic motion devices. The drive system positions the 19,000 kg star tracker to a precision of less than 5 microns along its 4-meter travel. While positioning requirements remain essentially equal to the existing HET, tracker mass increases by a factor greater than 5. The 10.5-meter long tracker is driven at each end by planetary roller screws, each having two distinct drive sources dictated by the desired operation: one slowly rotates the screw when tracking celestial objects and the second rotates the nut for rapid displacements. Key results of the roller screw rotordynamics analysis are presented. A description of the complex bearing arrangement providing required degrees of freedom as well as the impact of a detailed Failure Modes and Effects Analysis addressing necessary safety systems is also presented. Finite element analysis results demonstrate how mechanical springs increase the telescope's natural frequency response by 22 percent. The critical analysis and resulting design is provided.
A novel power source for high-precision, highly efficient micro w-EDM
NASA Astrophysics Data System (ADS)
Chen, Shun-Tong; Chen, Chi-Hung
2015-07-01
The study presents the development of a novel power source for high-precision, highly efficient machining of micropart microstructures using micro wire electrical discharge machining (w-EDM). A novel power source based on a pluri resistance-capacitance (pRC) circuit that can generate a high-frequency, high-peak current with a short pulse train is proposed and designed to enhance the performance of micro w-EDM processes. Switching between transistors is precisely controlled in the designed power source to create a high-frequency short-pulse train current. Various microslot cutting tests in both aluminum and copper alloys are conducted. Experimental results demonstrate that the pRC power source creates instant spark erosion resulting in markedly less material for removal, diminishing discharge crater size, and consequently an improved surface finish. A new evaluation approach for spark erosion ability (SEA) to assess the merits of micro EDM power sources is also proposed. In addition to increasing the speed of micro w-EDM by increasing wire feed rates by 1.6 times the original feed rate, the power source is more appropriate for machining micropart microstructures since there is less thermal breaking. Satisfactory cutting of an elaborate miniature hook-shaped structure and a high-aspect ratio microstructure with a squared-pillar array also reveal that the developed pRC power source is effective, and should be very useful in the manufacture of intricate microparts.
High precision study of muon catalyzed fusion in D2 and HD gas
NASA Astrophysics Data System (ADS)
Balin, D. V.; Ganzha, V. A.; Kozlov, S. M.; Maev, E. M.; Petrov, G. E.; Soroka, M. A.; Schapkin, G. N.; Semenchuk, G. G.; Trofimov, V. A.; Vasiliev, A. A.; Vorobyov, A. A.; Voropaev, N. I.; Petitjean, C.; Gartner, B.; Lauss, B.; Marton, J.; Zmeskal, J.; Case, T.; Crowe, K. M.; Kammel, P.; Hartmann, F. J.; Faifman, M. P.
2011-03-01
Muon catalyzed dd fusion in D2 and HD gases in the temperature range from 28 to 350 K was investigated in a series of experiments based on a time-projection ionization chamber operating with pure hydrogen. All main observables in this reaction chain were measured with high absolute precision including the resonant and non-resonant ddμ formation rates, the rate for hyperfine transitions in dμ atoms, the branching ratio of the two charge symmetric fusion channels 3He + n and t + p and the muon sticking probability. The report presents the final analysis of the data together with a comprehensive comparison with calculations based on recent μCF theories. The energy of the loosely bound ddμ state with quantum numbers J = 1, ν = 1, which is central to the mechanism of resonant molecule formation, is extracted with precision ɛ11(fit) = -1.9651(7) eV. in impressive agreement with the latest theoretical results ɛ11(theory) = -1.9646 eV.
Evaluation of a 202Pb-205Pb double spike for high - precision lead isotope analysis
NASA Astrophysics Data System (ADS)
Todt, W.; Cliff, R. A.; Hanser, A.; Hofmann, A. W.
A highly enriched 202Pb +205Pb double-spike (202Pb/204Pb = 41000) has been prepared and used to make measurements of lead isotopic composition with internal correction for fractionation. The ratio of 205Pb/202Pb = 0.227388 in the double spike was calibrated against the certificate abundances of 208Pb and 206Pb in NBS standard SRM-982. The effectiveness of the double spike in improving the precision of lead isotopic analysis was tested by a series of measurements of double-spiked SRM 981. These demonstrate substantial improvements in precision with standard deviations ranging from 70 to 150 ppm. Measurements were made in static mode using a Finnigan MAT-261 mass spectrometer, recently fitted with 9 new faraday cups, which allows simultaneous monitoring of all lead peaks plus the reference masses (203 and 201) for isobaric interference from thallium and BaPO2. New mutually consistent calibrations of the lead isotopic composition of the NBS lead standards SRM 981 and SRM 982 have been calculated from the double spiked measurements. In general, the new results agree closely with the certificate values, but a small difference in 208Pb abundance in SRM 981, previously observed by others and ourselves, has been confirmed.
A Precise Calibration Technique for Measuring High Gas Temperatures
NASA Technical Reports Server (NTRS)
Gokoglu, Suleyman A.; Schultz, Donald F.
2000-01-01
A technique was developed for direct measurement of gas temperatures in the range of 2050 K 2700 K with improved accuracy and reproducibility. The technique utilized the low-emittance of certain fibrous materials, and the uncertainty of the technique was United by the uncertainty in the melting points of the materials, i.e., +/-15 K. The materials were pure, thin, metal-oxide fibers whose diameters varied from 60 microns to 400 microns in the experiments. The sharp increase in the emittance of the fibers upon melting was utilized as indication of reaching a known gas temperature. The accuracy of the technique was confirmed by both calculated low emittance values of transparent fibers, of order 0.01, up to a few degrees below their melting point and by the fiber-diameter independence of the results. This melting-point temperature was approached by increments not larger than 4 K, which was accomplished by controlled increases of reactant flow rates in hydrogen-air and/or hydrogen-oxygen flames. As examples of the applications of the technique, the gas-temperature measurements were used: (a) for assessing the uncertainty in inferring gas temperatures from thermocouple measurements, and (b) for calibrating an IR camera to measure gas temperatures. The technique offers an excellent calibration reference for other gas-temperature measurement methods to improve their accuracy and reliably extending their temperature range of applicability.
A Precise Calibration Technique for Measuring High Gas Temperatures
NASA Technical Reports Server (NTRS)
Gokoglu, Suleyman A.; Schultz, Donald F.
1999-01-01
A technique was developed for direct measurement of gas temperatures in the range of 2050 K - 2700 K with improved accuracy and reproducibility. The technique utilized the low-emittance of certain fibrous Materials, and the uncertainty of the technique was limited by the uncertainty in the melting points of the materials, i.e., +/- 15 K. The materials were pure, thin, metal-oxide fibers whose diameters varied from 60 mm to 400 mm in the experiments. The sharp increase in the emittance of the fibers upon melting was utilized as indication of reaching a known gas temperature. The accuracy of the technique was confirmed by both calculated low emittance values of transparent fibers, of order 0.01, up to a few degrees below their melting point and by the fiber-diameter independence of the results. This melting-point temperature was approached by increments not larger than 4 K, which was accomplished by controlled increases of reactant flow rates in hydrogen-air and/or hydrogen- oxygen flames. As examples of the applications of the technique, the gas-temperature measurements were used (a) for assessing the uncertainty in infering gas temperatures from thermocouple measurements, and (b) for calibrating an IR camera to measure gas temperatures. The technique offers an excellent calibration reference for other gas-temperature measurement methods to improve their accuracy and reliably extending their temperature range of applicability.
High-precision scale setting in lattice QCD
NASA Astrophysics Data System (ADS)
Borsányi, Szabolcs; Dürr, Stephan; Fodor, Zoltán; Hoelbling, Christian; Katz, Sándor D.; Krieg, Stefan; Kurth, Thorsten; Lellouch, Laurent; Lippert, Thomas; McNeile, Craig; Szabó, Kálmán K.
2012-09-01
Scale setting is of central importance in lattice QCD. It is required to predict dimensional quantities in physical units. Moreover, it determines the relative lattice spacings of computations performed at different values of the bare coupling, and this is needed for extrapolating results into the continuum. Thus, we calculate a new quantity, w 0, for setting the scale in lattice QCD, which is based on the Wilson flow like the scale t 0 (M. Luscher, JHEP 08 (2010) 071). It is cheap and straightforward to implement and compute. In particular, it does not involve the delicate fitting of correlation functions at asymptotic times. It typically can be determined on the few per-mil level. We compute its continuum extrapolated value in 2 + 1-flavor QCD for physical and non-physical pion and kaon masses, to allow for mass-independent scale setting even away from the physical mass point. We demonstrate its robustness by computing it with two very different actions (one of them with staggered, the other with Wilson fermions) and by showing that the results agree for physical quark masses in the continuum limit.
HYDRA: High Speed Simulation Architecture for Precision Spacecraft Formation Flying
NASA Technical Reports Server (NTRS)
Martin, Bryan J.; Sohl, Garett A.
2003-01-01
This viewgraph presentation describes HYDRA, which is architecture to facilitate high-fidelity and real-time simulation of formation flying missions. The contents include: 1) Motivation; 2) Objective; 3) HYDRA-Description and Overview; 4) HYDRA-Hierarchy; 5) Communication in HYDRA; 6) Simulation Specific Concerns in HYDRA; 7) Example application (Formation Acquisition); and 8) Sample Problem Results.
Pointing Control System for a High Precision Flight Telescope
BENTLEY,ANTHONY E.; WILCOXEN,JEFFREY LEE
2000-12-01
A pointing control system is developed and tested for a flying gimbaled telescope. The two-axis pointing system is capable of sub-microradian pointing stability and high accuracy in the presence of large host vehicle jitter. The telescope also has high agility--it is capable of a 50-degree retarget (in both axes simultaneously) in less than 2 seconds. To achieve the design specifications, high-accuracy, high-resolution, two-speed resolvers were used, resulting in gimbal-angle measurements stable to 1.5 microradians. In addition, on-axis inertial angle displacement sensors were mounted on the telescope to provide host-vehicle jitter cancellation. The inertial angle sensors are accurate to about 100 nanoradians, but do not measure low frequency displacements below 2 Hz. The gimbal command signal includes host-vehicle attitude information, which is band-limited. This provides jitter data below 20 Hz, but includes a variable latency between 15 and 25 milliseconds. One of the most challenging aspects of this design was to combine the inertial-angle-sensor data with the less perfect information in the command signal to achieve maximum jitter reduction. The optimum blending of these two signals, along with the feedback compensation were designed using Quantitative Feedback Theory.
High-Precision Registration of Point Clouds Based on Sphere Feature Constraints.
Huang, Junhui; Wang, Zhao; Gao, Jianmin; Huang, Youping; Towers, David Peter
2016-12-30
Point cloud registration is a key process in multi-view 3D measurements. Its precision affects the measurement precision directly. However, in the case of the point clouds with non-overlapping areas or curvature invariant surface, it is difficult to achieve a high precision. A high precision registration method based on sphere feature constraint is presented to overcome the difficulty in the paper. Some known sphere features with constraints are used to construct virtual overlapping areas. The virtual overlapping areas provide more accurate corresponding point pairs and reduce the influence of noise. Then the transformation parameters between the registered point clouds are solved by an optimization method with weight function. In that case, the impact of large noise in point clouds can be reduced and a high precision registration is achieved. Simulation and experiments validate the proposed method.
High-Precision Registration of Point Clouds Based on Sphere Feature Constraints
Huang, Junhui; Wang, Zhao; Gao, Jianmin; Huang, Youping; Towers, David Peter
2016-01-01
Point cloud registration is a key process in multi-view 3D measurements. Its precision affects the measurement precision directly. However, in the case of the point clouds with non-overlapping areas or curvature invariant surface, it is difficult to achieve a high precision. A high precision registration method based on sphere feature constraint is presented to overcome the difficulty in the paper. Some known sphere features with constraints are used to construct virtual overlapping areas. The virtual overlapping areas provide more accurate corresponding point pairs and reduce the influence of noise. Then the transformation parameters between the registered point clouds are solved by an optimization method with weight function. In that case, the impact of large noise in point clouds can be reduced and a high precision registration is achieved. Simulation and experiments validate the proposed method. PMID:28042846
High-Precision Sub-Doppler Infrared Spectroscopy of HeH^+
NASA Astrophysics Data System (ADS)
Perry, Adam J.; Hodges, James N.; Markus, Charles; Kocheril, G. Stephen; Jenkins, Paul A., II; McCall, Benjamin J.
2014-06-01
The helium hydride ion, HeH^+, is the simplest heteronuclear diatomic, and is composed of the two most abundant elements in the universe. It is widely believed that this ion was among the first molecules to be formed; thus it has been of great interest to scientists studying the chemistry of the early universe. HeH^+ is also isoelectronic to H_2 which makes it a great target ion for theorists to include adiabatic and non-adiabatic corrections to its Born-Oppenheimer potential energy surface. The accuracy of such calculations is further improved by incorporating electron relativistic and quantum electrodynamic effects. Using the highly sensitive spectroscopic technique of Noise Immune Cavity Enhanced Optical Heterodyne Velocity Modulation Spectroscopy (NICE-OHVMS) we are able to perform sub-Doppler spectroscopy on ions of interest. When combined with frequency calibration from an optical frequency comb we fit line centers with sub-MHz precision as has previously been shown for the H3^+, HCO+, and CH5+ ions. Here we report a list of the most precisely measured rovibrational transitions of HeH^+ to date. These measurements should allow theorists to continue to push the boundaries of ab initio calculations in order to further study this important fundamental species. S. Lepp, P. C. Stancil, A. Dalgarno J. Phys. B (2002), 35, R57. S. Lepp, Astrophys. Space Sci. (2003), 285, 737. K. Pachucki, J. Komasa, J. Chem. Phys (2012), 137, 204314. J. N. Hodges, A. J. Perry, P. A. Jenkins II, B. M. Siller, B. J. McCall J. Chem. Phys. (2013), 139, 164201.
Coating-free mirrors for high precision interferometric experiments
Gossler, Stefan; Cumpston, Jeff; McKenzie, Kirk; Mow-Lowry, Conor M.; Gray, Malcolm B.; McClelland, David E.
2007-11-15
Thermal noise in mirror optical coatings may not only limit the sensitivity of future gravitational-wave detectors in their most sensitive frequency band but is also a major impediment for experiments that aim to reach the standard quantum limit or cool mechanical systems to their quantum ground state. We present the design and experimental characterization of a highly reflecting mirror without any optical coating. This coating-free mirror is based on total internal reflection and Brewster-angle coupling. In order to characterize its performance, the coating-free mirror was incorporated into a triangular ring cavity together with a high quality conventional mirror. The finesse of this cavity was measured using an amplitude transfer function to be about F{approx_equal}4000. This finesse corresponds to a reflectivity of the coating-free mirror of about R{approx_equal}99.89%. In addition, the dependence of the reflectivity on rotation was mapped out.
NASA Astrophysics Data System (ADS)
Feng, Zhao; Ling, Jie; Ming, Min; Xiao, Xiao-Hui
2017-08-01
For precision motion, high-bandwidth and flexible tracking are the two important issues for significant performance improvement. Iterative learning control (ILC) is an effective feedforward control method only for systems that operate strictly repetitively. Although projection ILC can track varying references, the performance is still limited by the fixed-bandwidth Q-filter, especially for triangular waves tracking commonly used in a piezo nanopositioner. In this paper, a wavelet transform-based linear time-varying (LTV) Q-filter design for projection ILC is proposed to compensate high-frequency errors and improve the ability to tracking varying references simultaneously. The LVT Q-filter is designed based on the modulus maximum of wavelet detail coefficients calculated by wavelet transform to determine the high-frequency locations of each iteration with the advantages of avoiding cross-terms and segmenting manually. The proposed approach was verified on a piezo nanopositioner. Experimental results indicate that the proposed approach can locate the high-frequency regions accurately and achieve the best performance under varying references compared with traditional frequency-domain and projection ILC with a fixed-bandwidth Q-filter, which validates that through implementing the LTV filter on projection ILC, high-bandwidth and flexible tracking can be achieved simultaneously by the proposed approach.
NASA Astrophysics Data System (ADS)
Rennick, Chris; Bausi, Francesco; Arnold, Tim
2017-04-01
On the global scale methane (CH4) concentrations have more than doubled over the last 150 years, and the contribution to the enhanced greenhouse effect is almost half of that due to the increase in carbon dioxide (CO2) over the same period. Microbial, fossil fuel, biomass burning and landfill are dominant methane sources with differing annual variabilities; however, in the UK for example, mixing ratio measurements from a tall tower network and regional scale inversion modelling have thus far been unable to disaggregate emissions from specific source categories with any significant certainty. Measurement of the methane isotopologue ratios will provide the additional information needed for more robust sector attribution, which will be important for directing policy action Here we explore the potential for isotope ratio measurements to improve the interpretation of atmospheric mixing ratios beyond calculation of total UK emissions, and describe current analytical work at the National Physical Laboratory that will realise deployment of such measurements. We simulate isotopic variations at the four UK greenhouse gas tall tower network sites to understand where deployment of the first isotope analyser would be best situated. We calculate the levels of precision needed in both δ-13C and δ-D in order to detect particular scenarios of emissions. Spectroscopic measurement in the infrared by quantum cascade laser (QCL) absorption is a well-established technique to quantify the mixing ratios of trace species in atmospheric samples and, as has been demonstrated in 2016, if coupled to a suitable preconcentrator then high-precision measurements are possible. The current preconcentration system under development at NPL is designed to make the highest precision measurements yet of the standard isotope ratios via a new large-volume cryogenic trap design and controlled thermal desorption into a QCL spectrometer. Finally we explore the potential for the measurement of clumped
High speed precision motion strategies for lightweight structures
NASA Technical Reports Server (NTRS)
Book, Wayne J.
1987-01-01
Work during the recording period proceeded along the lines of the proposal, i.e., three aspects of high speed motion planning and control of flexible structures were explored: fine motion control, gross motion planning and control, and automation using light weight arms. In addition, modeling the large manipulator arm to be used in experiments and theory has lead to some contributions in that area. These aspects are reported below. Conference, workshop and journal submissions, and presentations related to this work were seven in number, and are listed. Copies of written papers and abstracts are included.
Spectral band passes for a high precision satellite sounder
NASA Technical Reports Server (NTRS)
Kaplan, L. D.; Chahine, M. T.; Susskind, J.; Searl, J. E.
1977-01-01
Atmospheric temperature soundings with significantly improved vertical resolution can be obtained from carefully chosen narrow band-pass measurements in the 4.3-micron band of CO2 by taking advantage of the variation of the absorption coefficients, and thereby the weighting functions, with pressure and temperature. A set of channels has been found in the 4.2-micron region that is capable of yielding about 2-km vertical resolution in the troposphere. The concept of a complete system is presented for obtaining high resolution retrievals of temperature and water vapor distribution, as well as surface and cloud top temperatures, even in the presence of broken clouds.
Combination spindle-drive system for high precision machining
Gerth, Howard L.
1977-07-26
A combination spindle-drive is provided for fabrication of optical quality surface finishes. Both the spindle-and-drive utilize the spindle bearings for support, thereby removing the conventional drive-means bearings as a source of vibration. An airbearing spindle is modified to carry at the drive end a highly conductive cup-shaped rotor which is aligned with a stationary stator to produce torque in the cup-shaped rotor through the reaction of eddy currents induced in the rotor. This arrangement eliminates magnetic attraction forces and all force is in the form of torque on the cup-shaped rotor.
Decentralized high precision telemetry and telecommand system for sounding rockets
NASA Astrophysics Data System (ADS)
Heyer, Heinz-Volker; Schmitt, Günter; Pfeuffer, Horst; Voss, Bernhard
2005-08-01
TEXUS and MAXUS payloads are currently providing 12 bit analog channel accuracy for their data acquisition chains with different signal conditioning elements such as temperature measurement, strain gauge, pressure measurement channels, and general purpose amplifiers. Transient recording functions are rather seldom as all data is directly transmitted via PCM to the ground station. However, the user requirements are steadily increasing in terms of accuracy, data security, and high data throughput rate with an ever increasing number of telemetry channels. The newly developed Kayser-Threde telemetry and telecommand system CTS 3000 (Compact Telemetry System) fulfils these requirements by providing up to 16 bit accuracy for its analog channels with a sampling rate up to 2 kHz (at this accuracy), on-board transient memory to protect against data loss and provides an integrated telecommand decoder at the same time, reducing the necessary amount of equipment used for instrumentation. The equipment further reduces the necessary effort for refurbishment because of its internal self calibration over the full environment temperature range. On top of its IRIG PCM interface the system is equipped with a USB bus, a well-known and commonly used PC standard high performance interface. This interface is used for configuration, testing, and monitoring of the CTS 3000 providing a simple and easy to use user environment for the new equipment. The paper will introduce the new equipment and will show the application in the TEXUS/MAXUS project.
High precision moving magnet chopper for variable operation conditions
NASA Technical Reports Server (NTRS)
Aicher, Winfried; Schmid, Manfred
1994-01-01
In the context of an ESTEC technology contract, a Chopping Mechanism was developed and built with the Far Infrared and Submillimeter Telescope (FIRST) astronomy mission as a reference. The task of the mechanism is to tilt the subreflector of the telescope with an assumed mass of 2.5 kg about one chopping axis at nominal frequencies of up to 5 Hz and chopping angles of up to +/- 11.25 mrad with high efficiency (minimum time for position change). The chopping axis is required to run through the subreflector vertex. After performing a concept trade-off also considering the low operational temperatures in the 130 K range, a design using moving magnet actuators was found to be the favorite one. In addition, a bearing concept using flexible pivots was chosen to meet the high chopping accuracy required. With this approach, a very reliable design could be realized, since the actuators work without any mechanical contact between its moving and fixed parts, and the only bearings used are two flexible pivots supporting the subreflector mounting interface. The mechanism was completely built in titanium in a lightweight and stiff design. The moving magnet actuators were designed to meet the stringent requirements for minimum risetime (time necessary to move from one angular position to a new one) in the 20 msec range. The angular position and the corresponding chopping frequency as well can be arbitrarily selected by the user.
Unraveling high precision stereocontrol in a triple cascade organocatalytic reaction.
Shinisha, C B; Sunoj, Raghavan B
2008-11-07
The mechanism and stereoselectivity in an organocatalyzed triple cascade reaction between an aldehyde, electron deficient olefin and an alpha,beta-unsaturated aldehyde are investigated for the first time using density functional theory. The factors responsible for high levels of observed stereoselectivity (Enders et al., Nature, 2006, 441, 861) towards the generation of cyclohexene carbaldehyde with four contiguous stereocentres are unravelled. The triple cascade reaction, comprising a Michael, Michael and aldol sequence as the key elementary reactions, is studied by identifying the corresponding transition states for the stereoselective C-C bond-formation. In the first Michael addition step between the enamine (derived from the chiral catalyst and propanal) and nitrostyrene, energetically the most preferred mode of addition is found to be between the si-face of (E)-anti-enamine on the si-face of nitrostyrene. The addition of the si-face of the nitroalkane anion on the re-face of the iminium ion (formed between the enal and the catalyst) is the lowest energy pathway for the second Michael addition step. The high level of asymmetric induction is rationalized with the help of relative activation barriers associated with the competitive diastereomeric pathways. Interesting weak interactions, along with the steric effects offered by the bulky alpha-substituent on the pyrrolidine ring, are identified as critical to the stereoselectivity in this triple cascade reaction. The predicted stereoselectivities using computed energetics are found to be in perfect harmony with the experimental stereoselectivities.
High integrity GPS/INS filter for precise relative navigation
NASA Astrophysics Data System (ADS)
Abdel-Hafez, Mamoun F.
A GPS/INS filter design for absolute and relative state estimation is discussed. The GPS code and Doppler measurements are used for absolute state estimation while the GPS carrier phase and Doppler measurements are used for relative state estimation. Real-time results obtained from a Hardware-in-the-Loop Simulation and actual F-18 flight tests are presented. To ensure accurate state estimation, the observability of the GPS/INS system is analyzed analytically when the system is at rest and during maneuvers. The system observability enhancement during two different maneuvers is discussed. Simulation results illustrating the observability of the system during the different stages of the GPS/INS system operation are also presented. To allow successful use of the high-accuracy carrier phase measurements, two methods for resolving GPS integer ambiguity are introduced. The first combines an efficient method for obtaining the admissible integer ambiguity hypotheses within a probabilistic volume with an integer hypothesis testing method to reduce the convergence time with high probability to the GPS carrier phase integers. The second GPS integer ambiguity resolution method is based on a log-formulation of the Multiple Hypothesis Wald Sequential Probability Test (MHWSPT). The computational time requirement of the latter method is shown to be smaller than the former method. Real-time results are presented to show the performance of the two methods introduced.
NASA Astrophysics Data System (ADS)
Fasanella, G.
2017-01-01
The CMS Electromagnetic Calorimeter utilizes scintillation lead tungstate crystals, with avalanche photodiodes (APD) as photo-detectors in the barrel part. 1224 HV channels bias groups of 50 APD pairs, each at a voltage of about 380 V. The APD gain dependence on the voltage is 3%/V. A stability of better than 60 mV is needed to have negligible impact on the calorimeter energy resolution. Until 2015 manual calibrations were performed yearly. A new calibration system was deployed recently, which satisfies the requirement of low disturbance and high precision. The system is discussed in detail and first operational experience is presented.
High-precision metrology of highly charged ions via relativistic resonance fluorescence.
Postavaru, O; Harman, Z; Keitel, C H
2011-01-21
Resonance fluorescence of laser-driven highly charged ions is investigated with regard to precisely measuring atomic properties. For this purpose an ab initio approach based on the Dirac equation is employed that allows for studying relativistic ions. These systems provide a sensitive means to test correlated relativistic dynamics, quantum electrodynamic phenomena and nuclear effects by applying x-ray lasers. We show how the narrowing of sidebands in the x-ray fluorescence spectrum by interference due to an additional optical driving can be exploited to determine atomic dipole or multipole moments to unprecedented accuracy.
High precision, medium flux rate CZT spectroscopy for coherent scatter imaging
NASA Astrophysics Data System (ADS)
Greenberg, Joel A.; Hassan, Mehadi; Brady, David J.; Iniewski, Kris
2016-05-01
CZT detectors are primary candidates for many next-generation X-ray imaging systems. These detectors are typically operated in either a high precision, low flux spectroscopy mode or a low precision, high flux photon counting mode. We demonstrate a new detector configuration that enables operation in a high precision, medium flux spectroscopy mode, which opens the potential for a variety of new applications in medical imaging, non-destructive testing and baggage scanning. In particular, we describe the requirements of a coded aperture coherent scattering X-ray system that can perform fast imaging with accurate material discrimination.
Stellar Astrophysics Using Ultra-High Precision CCD Time Series Photometry
NASA Astrophysics Data System (ADS)
Howell, S.; Everett, M.; Huber, M.; Ciardi, D.; van Belle, G.
2001-05-01
Using time-series CCD photometry and a wide-field imager, we have extended the techniques of differential photometry to provide robust photometric precisions for each star over the entire field of view. Reaching photometric precisions of 2 milli-magnitudes, we produced high cadence light curves for over 12,000 stars at mid- and high galactic latitude. The fraction of stars seen to be variable is higher than the canonical wisdom, being 10-14 will present the details of our techniques, sample light curves, methods to access the data, and a summary of astrophysical uses of such high precision data.
High Precision Assembly of Thin Mirror X-ray Telescopes
NASA Astrophysics Data System (ADS)
Schattenburg, Mark
Lightweight high resolution x-ray telescope optics are one of the key technologies under development for next-generation x-ray telescopes. The ultimate goal of this effort is to realize optics with spatial resolution rivaling Chandra (<1 arc-sec) but with collecting areas that are larger by orders of magnitude. In the USA several institutions, including GSFC, MSFC, Harvard-SAO, MIT and Northwest University are working on a variety of approaches to this problem. An excellent example is the NuSTAR x-ray telescope, which teamed Cal Tech, GSFC, Columbia University and LLNL to produce a superb set of hard x-ray optics. The telescope was composed of thousands of 0.2 mm-thick glass mirrors which were epoxied into place around a spindle structure. While very light weight, this process resulted in ~1 arc min resolution. We want to achieve ~100 times better with similar mass. A group at NASA GSFC has recently demonstrated an alternative thin-glass assembly procedure that has achieved ~7 arc sec resolution with x-ray tests. Further progress towards 1 arc-sec will require mirrors with improved figure, lower stress coatings, improved alignment, better metrology, and low stress bonding. Many of the difficulties with current mirror assembly practice stem from the use of epoxy as a bonding agent. Epoxy has many disadvantages, including high shrinkage, large CTE and creep, resin aging effects, water absorption, outgassing, low tensile strength, exothermicity, and requiring large amounts of time and/or heat to cure. These effects can cause errors that become â€oefrozen inâ€• to the bond with no possibility of correction. We propose to investigate replacing epoxy with low temperature, low shrinkage solder alloys. We use these solders in conjunction with high power, millisec-long pulses from a fiber IR laser to deliver controlled amounts of heat into the bond area. We have demonstrated that laser pulses can be used to actuate carefully designed bonds by permanently compressing
Calibration, registration, and synchronization for high precision augmented reality haptics.
Harders, Matthias; Bianchi, Gérald; Knoerlein, Benjamin; Székely, Gábor
2009-01-01
In our current research we examine the application of visuo-haptic augmented reality setups in medical training. To this end, highly accurate calibration, system stability, and low latency are indispensable prerequisites. These are necessary to maintain user immersion and avoid breaks in presence which potentially diminish the training outcome. In this paper we describe the developed calibration methods for visuo-haptic integration, the hybrid tracking technique for stable alignment of the augmentation, and the distributed framework ensuring low latency and component synchronization. Finally, we outline an early prototype system based on the multimodal augmented reality framework. The latter allows colocated visuo-haptic interaction with real and virtual scene components in a simplified open surgery setting.
High Precision SC Cavity Diagnostics with HOM Measurements
Frisch, Josef; Hendrickson, Linda; McCormick, Douglas; May, Justin; Molloy, Stephen; Ross, Marc; /SLAC
2006-08-18
Experiments at the FLASH linac at DESY have demonstrated that the Higher Order Modes induced in Superconducting Cavities can be used to provide a variety of beam and cavity diagnostics. The centers of the cavities can be determined from the beam orbit which produces minimum power in the dipole HOM modes. The phase and amplitude of the dipole modes can be used as a high resolution beam position monitor, and the phase of the monopole modes to measure the beam phase relative to the accelerator RF. Beam orbit feedback which minimizes the dipole HOM power in a set of structures has been demonstrated. For most SC accelerators, the existing HOM couplers provide the necessary signals, and the down mix and digitizing electronics are straightforward, similar to those for a conventional BPM.
Development of Large Current High Precision Pulse Power Supply
NASA Astrophysics Data System (ADS)
Takayanagi, Tomohiro; Koseki, Shoichiro; Kubo, Hiroshi; Katoh, Shuji; Ogawa, Shinichi
JAEA and KEK are jointly constructing a high intensity proton accelerator project J-PARC. Its main accelerator is 3GeV synchrotron. Its injection bump magnets, especially horizontal paint bump magnets, are excited by large pulse currents. Their rated currents are over 10kA and pulse widths are about 1ms. Tracking errors are required to be less than 1%. Multiple connected two-quadrant IGBT choppers are adopted for their power supplies. Their output currents are controlled by feedback control with minor loop voltage control (m-AVR). When output current of a chopper intermits at small current, its output voltage rises up and current control becomes difficult. In this paper response of m-AVR and output voltage characteristics at current intermittent region are studied and an improved control scheme is proposed. The performance is confirmed by a test.
Precision high energy liner implosion experiments PHELIX [1
Reass, William A; Baca, David M; Griego, Jeffrey R; Reinovsky, Robert E; Rousculp, Christopher L; Turchi, Peter J
2009-01-01
This paper describes the hardware design of a small megajoule sized transformer coupled pulse power system utilized to drive hydrodynamic liner experiments with a nominal current capability of 10 megAmperes. The resulting liner velocities and characteristics provide properties of physics interest. The capacitor banks utilize the ''Atlas'' plastic cased 60 kV, 60 kJ capacitors [2] and railgaps [3]. The air insulated marx'S are configured to dive a multi-filar toroidal transformer. The 4:1 multi-filar toroidal transformer is mechanically part of a circular disc line and this feature results in an attractive inductance budget. Because of the compact size, re-usable transformer, and resulting low maintenance cost, shot rates can be high compared to other ''large'' machines or explosively driven hydrodynamic methods. The PHELIX modeling, construction status, and test results will also be provided.
A high precision calorimeter for the SOX experiment
NASA Astrophysics Data System (ADS)
Papp, L.; Agostini, M.; Altenmüller, K.; Appel, S.; Caminata, A.; Cereseto, R.; Di Noto, L.; Farinon, S.; Musenich, R.; Neumair, B.; Oberauer, L.; Pallavicini, M.; Schönert, S.; Testera, G.; Zavatarelli, S.
2016-07-01
The SOX (Short distance neutrino Oscillations with BoreXino) experiment is being built to discover or reject eV-scale sterile neutrinos by observing short baseline oscillations of active-to-sterile neutrinos [1]. For this purpose, a 100 kCi 144Ce-144Pr antineutrino generator (CeSOX) will be placed under the BOREXINO detector at the Laboratori Nazionali del Gran Sasso. Thanks to its large size and very low background, BOREXINO is an ideal detector to discover or reject eV-scale sterile neutrinos. To reach the maximal sensitivity, we aim at determining the neutrino flux emitted by the antineutrino generator with a < 1 % accuracy. With this goal, TU München and INFN Genova are developing a vacuum calorimeter, which is designed to measure the source-generated heat with high accuracy.
High precision pointing with a multiline spectrometer at the VTT
NASA Astrophysics Data System (ADS)
Staiger, J.
2012-12-01
We are investigating the pointing quality of the VTT, Tenerife under the aspect of suitability for long-term heliosesimological observations. Tests have shown that thermal and mechanical loads within the telescope may create spurious image drifts with shift rates of up to 5 arcsec per hour. During daylong recordings this will reduce significantly the effective size of the field-of-view and may infer artificial lateral movements into the data. The underlying problem that not all image position offsets developing during a measurement may be compensated for is common to most high-resolution solar telescopes independently of the type of pointing system used. We are developing new approaches to address this problem which are to be tested in the near future at the VTT. The simulations established so far show that the problem may be reduced by more than 90 %.
Creating high-stability high-precision bipolar trim power supply
Chen, Zhe; Merz, William A.
2012-07-01
Thomas Jefferson National Accelerator Facility (TJNAF) is founded by the US Department of Energy (DOE) office of science for the technology advancement and physics research in electron beam accelerator. This facility has the state of the art technology to carry out world-class cutting-edge experiments for the nucleus composition and atomic characteristics identification and exploration for the nature of the matter in the universe. A continuous wave electron beam is featured for such experiments, thus precise and stable trim power supply is required to meet such purpose. This paper demonstrates the challenges and solutions to design, assemble, fabrication and test such high-precision high-stability power supplies. This paper presents the novel design and first article test of the ±20A ±75V bipolar, 100ppm stability level current-regulated high-power trim power supplies for the beam manipulation. This special design can provide valuable documentation and reference values for future designs and special applications in particle accelerator power supply creation.
High Precision Ti stable Isotope Measurement of Terrestrial Rocks
NASA Astrophysics Data System (ADS)
Millet, M. A.; Dauphas, N.; Williams, H. M.; Burton, K. W.; Nowell, G. M.
2014-12-01
Advances in multi-collection plasma source mass spectrometry have allowed the determination of stable isotope composition of transition metals to address questions relevant to both high and low temperature geochemistry. However, titanium has received only very limited attention. Here we present a new technique allowing the determination of the stable isotope composition of titanium in geological samples (d49Ti or deviation of the 49Ti/47Ti ratio from the OL-Ti in-house standard of reference) using double-spike methodology and high-resolution MC-ICP-MS. We have carried out a range analytical tests for a wide spectrum of samples matrices to demonstrate a external reproducibility of ±0.02‰ on the d49Ti while using as little as 150ng of natural Ti for a single analysis. We have analysed a comprehensive selection of mantle-derived samples covering a range of geodynamic contexts (MORB, IAB, OIB, adakites, eclogites, serpentines) and geographical distribution (MORB: Mid-Atlantic Ridge, Southwest Indian Ridge and Eastern Pacific Ridge; IAB: New Britain reference suite and Marianas Arc). The samples show a very limited range from -0.06‰ to +0.04‰ with a main mode at +0.004‰ relative to the OL-Ti standard. Average values for MORB, IAB and eclogites are similar within uncertainty and thus argue for limited mobility of Ti during subduction zone processes and homogeneity of the Ti stable isotope composition of the upper mantle. However, preliminary data for more evolved igneous rocks suggest that they display heavier Ti stable isotope compositions, which may reflect the removal of isotopically light Ti as a function of Fe-Ti oxide crystallisation. This is in good agreement with Ti being present in 5-fold and 6-fold coordination in basaltic melts and preferential uptake of 6-folded Ti by Ti-bearing oxides [1]. This dataset will be complemented by analysis of abyssal peridotites to confirm the homogeneity of the mantle as well as data for a range of ferromanganese crusts
Coello Pérez, Eduardo A.; Papenbrock, Thomas F.
2015-07-27
In this paper, we present a model-independent approach to electric quadrupole transitions of deformed nuclei. Based on an effective theory for axially symmetric systems, the leading interactions with electromagnetic fields enter as minimal couplings to gauge potentials, while subleading corrections employ gauge-invariant nonminimal couplings. This approach yields transition operators that are consistent with the Hamiltonian, and the power counting of the effective theory provides us with theoretical uncertainty estimates. We successfully test the effective theory in homonuclear molecules that exhibit a large separation of scales. For ground-state band transitions of rotational nuclei, the effective theory describes data well within theoreticalmore » uncertainties at leading order. To probe the theory at subleading order, data with higher precision would be valuable. For transitional nuclei, next-to-leading-order calculations and the high-precision data are consistent within the theoretical uncertainty estimates. In addition, we study the faint interband transitions within the effective theory and focus on the E2 transitions from the 02+ band (the “β band”) to the ground-state band. Here the predictions from the effective theory are consistent with data for several nuclei, thereby proposing a solution to a long-standing challenge.« less
Coello Pérez, Eduardo A.; Papenbrock, Thomas F.
2015-07-27
In this paper, we present a model-independent approach to electric quadrupole transitions of deformed nuclei. Based on an effective theory for axially symmetric systems, the leading interactions with electromagnetic fields enter as minimal couplings to gauge potentials, while subleading corrections employ gauge-invariant nonminimal couplings. This approach yields transition operators that are consistent with the Hamiltonian, and the power counting of the effective theory provides us with theoretical uncertainty estimates. We successfully test the effective theory in homonuclear molecules that exhibit a large separation of scales. For ground-state band transitions of rotational nuclei, the effective theory describes data well within theoretical uncertainties at leading order. To probe the theory at subleading order, data with higher precision would be valuable. For transitional nuclei, next-to-leading-order calculations and the high-precision data are consistent within the theoretical uncertainty estimates. In addition, we study the faint interband transitions within the effective theory and focus on the E2 transitions from the 0_{2}^{+} band (the “β band”) to the ground-state band. Here the predictions from the effective theory are consistent with data for several nuclei, thereby proposing a solution to a long-standing challenge.
Proton radii of {sup 4,6,8}He isotopes from high-precision nucleon-nucleon interactions
Caurier, E.; Navratil, P.
2006-02-15
Recently, precision laser spectroscopy on {sup 6}He atoms determined accurately the isotope shift between {sup 4}He and {sup 6}He and, consequently, the charge radius of {sup 6}He. A similar experiment for {sup 8}He is under way. We have performed large-scale ab initio calculations for {sup 4,6,8}He isotopes using high-precision nucleon-nucleon (NN) interactions within the no-core shell model (NCSM) approach. With the CD-Bonn 2000 NN potential we found point-proton root-mean-square (rms) radii of {sup 4}He and {sup 6}He 1.45(1) fm and 1.89(4), respectively, in agreement with experiment and predict the {sup 8}He point-proton rms radius to be 1.88(6) fm. At the same time, our calculations show that the recently developed nonlocal INOY NN potential gives binding energies closer to experiment, but underestimates the charge radii.
High Resolution Airborne Digital Imagery for Precision Agriculture
NASA Technical Reports Server (NTRS)
Herwitz, Stanley R.
1998-01-01
The Environmental Research Aircraft and Sensor Technology (ERAST) program is a NASA initiative that seeks to demonstrate the application of cost-effective aircraft and sensor technology to private commercial ventures. In 1997-98, a series of flight-demonstrations and image acquisition efforts were conducted over the Hawaiian Islands using a remotely-piloted solar- powered platform (Pathfinder) and a fixed-wing piloted aircraft (Navajo) equipped with a Kodak DCS450 CIR (color infrared) digital camera. As an ERAST Science Team Member, I defined a set of flight lines over the largest coffee plantation in Hawaii: the Kauai Coffee Company's 4,000 acre Koloa Estate. Past studies have demonstrated the applications of airborne digital imaging to agricultural management. Few studies have examined the usefulness of high resolution airborne multispectral imagery with 10 cm pixel sizes. The Kodak digital camera integrated with ERAST's Airborne Real Time Imaging System (ARTIS) which generated multiband CCD images consisting of 6 x 106 pixel elements. At the designated flight altitude of 1,000 feet over the coffee plantation, pixel size was 10 cm. The study involved the analysis of imagery acquired on 5 March 1998 for the detection of anomalous reflectance values and for the definition of spectral signatures as indicators of tree vigor and treatment effectiveness (e.g., drip irrigation; fertilizer application).
A research of a high precision multichannel data acquisition system
NASA Astrophysics Data System (ADS)
Zhong, Ling-na; Tang, Xiao-ping; Yan, Wei
2013-08-01
The output signals of the focusing system in lithography are analog. To convert the analog signals into digital ones which are more flexible and stable to process, a desirable data acquisition system is required. The resolution of data acquisition, to some extent, affects the accuracy of focusing. In this article, we first compared performance between the various kinds of analog-to-digital converters (ADC) available on the market at the moment. Combined with the specific requirements (sampling frequency, converting accuracy, numbers of channels etc) and the characteristics (polarization, amplitude range etc) of the analog signals, the model of the ADC to be used as the core chip in our hardware design was determined. On this basis, we chose other chips needed in the hardware circuit that would well match with ADC, then the overall hardware design was obtained. Validation of our data acquisition system was verified through experiments and it can be demonstrated that the system can effectively realize the high resolution conversion of the multi-channel analog signals and give the accurate focusing information in lithography.
High-Precision Measurements of the Brightness Variation of Nereid
NASA Astrophysics Data System (ADS)
Terai, Tsuyoshi; Itoh, Yoichi
2013-04-01
Nereid, the outer satellite of Neptune, has a highly eccentric prograde orbit with a semimajor axis of larger than 200 in units of Neptune's radius, and is classified as an irregular satellite. Although the capture origin of irregular satellites has been widely accepted, several previous studies suggest that Nereid was formed in the circumplanetary disk of Neptune and ejected outward to the present location by Triton. A series of our photometric observations confirm that Nereid's rotation period, 11.5 hr, is stable and nonchaotic, as indicated by Grav, Holman, and Kavelaars (2003, ApJ, 591, L71). The optical colors of Nereid are indistinguishable from those of trans-Neptunian objects and Centaurs, especially from these objects with neutral colors. We also found the consistency of Nereid's rotation period based on the size-rotation distribution of small outer bodies. It is likely that Nereid originated as an immigrant body captured from the heliocentric orbit that was 4-5 AU away from Neptune's orbit.
High Resolution Airborne Digital Imagery for Precision Agriculture
NASA Technical Reports Server (NTRS)
Herwitz, Stanley R.
1998-01-01
The Environmental Research Aircraft and Sensor Technology (ERAST) program is a NASA initiative that seeks to demonstrate the application of cost-effective aircraft and sensor technology to private commercial ventures. In 1997-98, a series of flight-demonstrations and image acquisition efforts were conducted over the Hawaiian Islands using a remotely-piloted solar- powered platform (Pathfinder) and a fixed-wing piloted aircraft (Navajo) equipped with a Kodak DCS450 CIR (color infrared) digital camera. As an ERAST Science Team Member, I defined a set of flight lines over the largest coffee plantation in Hawaii: the Kauai Coffee Company's 4,000 acre Koloa Estate. Past studies have demonstrated the applications of airborne digital imaging to agricultural management. Few studies have examined the usefulness of high resolution airborne multispectral imagery with 10 cm pixel sizes. The Kodak digital camera integrated with ERAST's Airborne Real Time Imaging System (ARTIS) which generated multiband CCD images consisting of 6 x 106 pixel elements. At the designated flight altitude of 1,000 feet over the coffee plantation, pixel size was 10 cm. The study involved the analysis of imagery acquired on 5 March 1998 for the detection of anomalous reflectance values and for the definition of spectral signatures as indicators of tree vigor and treatment effectiveness (e.g., drip irrigation; fertilizer application).
High Precision Cosmology with the Cosmic Background Radiation
NASA Astrophysics Data System (ADS)
Farhang, Marzieh
around the fiducial model of the standard recombination scenario. Though theoretically well studied, the detailed assumptions in the recombination history, based on standard atomic physics, have never been directly tested. However, for our CMB-based cosmological inferences to be reliable, the recombination scenario needs to be observationally verified. We approach this problem in a model-independent way and construct rank-ordered parameter eigen-modes with the highest power to probe Xe. We study various properties of these modes, including their convergence, fiducial model-dependence, dataset dependence, and the eigen-modes response to marginalization over different standard parameters. We demonstrate that, if enough modes are included, the eigen-modes form a practically complete set of basis function for expanding different physically motivated Xe perturbations. We also develop an information-based criterion to truncate the eigen-mode hierarchy, which can be used in similar hierarchical model selections as well. We show how our measurements of cosmic parameters will be affected if possible deviations in the recombination history are ignored. The method is applied to simulations of Planck+ACTPol and a cosmic variance limited survey with differing simulated recombination histories and the recovered Xe trajectories are constructed. We also apply the method to the best currently available CMB datasets, WMAP9+ACT/SPT. The first constructed eigen-mode turns out to be a direct measure of the damping envelope. Its current measurement with SPT slightly indicates a damping tail anomaly, while ACT data agree well with the standard scenario. High resolution Planck data will resolve this tension with high significance.
High Precision Pulsar Timing: Effects of ISM Correction Schemes
NASA Astrophysics Data System (ADS)
Kunert, Willie; Verbiest, J. P. W.; Shannon, R.; Stinebring, D.
2012-01-01
Pulsar timing arrays are one of the leading methods in the search for gravitational waves (GWs). However a significant issue facing this method is the effect of the interstellar medium (ISM). There are multiple methodologies being used to correct for these effects but their efficacy has not been carefully studied. We conducted an initial study of biases induced by correcting for the interstellar medium. We simulated times of arrival (TOAs) with white noise and added ISM delays. We measure the ISM effects as is done with normal data, and created a model of these effects using polynomial fitting. This modeling method is most commonly used in the European Pulsar Timing Array. We then remove these measured ISM effects and compare final and initial TOAs. Ideally they should be the same; however, the differences between the 'corrected' TOAs and original TOAs reveal the weaknesses of this method. In preliminary results we concluded that the higher order polynomials do a better job, yet there is a limit as to how high an order one can use. We also found no significant systematic parameter bias induced by using this method. However, it is clear that certain parameters are more affected by this process of correction. The parameters most affected were the frequency and frequency derivative of the pulsar, but biases in these parameters are not important because the power due to them gets removed in the standard timing analysis. We are continuing this research by comparing and contrasting ISM correction schemes, as well as studying the actual behavior of the ISM in more detail. This research is supported by an NSF-PIRE and an NSF-AST grant.
Flexible head-casts for high spatial precision MEG.
Meyer, Sofie S; Bonaiuto, James; Lim, Mark; Rossiter, Holly; Waters, Sheena; Bradbury, David; Bestmann, Sven; Brookes, Matthew; Callaghan, Martina F; Weiskopf, Nikolaus; Barnes, Gareth R
2017-01-30
In combination with magnetoencephalographic (MEG) data, accurate knowledge of the brain's structure and location provide a principled way of reconstructing neural activity with high temporal resolution. However, measuring the brain's location is compromised by head movement during scanning, and by fiducial-based co-registration with magnetic resonance imaging (MRI) data. The uncertainty from these two factors introduces errors into the forward model and limit the spatial resolution of the data. We present a method for stabilizing and reliably repositioning the head during scanning, and for co-registering MRI and MEG data with low error. Using this new flexible and comfortable subject-specific head-cast prototype, we find within-session movements of <0.25mm and between-session repositioning errors around 1mm. This method is an improvement over existing methods for stabilizing the head or correcting for location shifts on- or off-line, which still introduce approximately 5mm of uncertainty at best (Adjamian et al., 2004; Stolk et al., 2013; Whalen et al., 2008). Further, the head-cast design presented here is more comfortable, safer, and easier to use than the earlier 3D printed prototype, and give slightly lower co-registration errors (Troebinger et al., 2014b). We provide an empirical example of how these head-casts impact on source level reproducibility. Employment of the individual flexible head-casts for MEG recordings provide a reliable method of safely stabilizing the head during MEG recordings, and for co-registering MRI anatomical images to MEG functional data. Copyright © 2016 The Author(s). Published by Elsevier B.V. All rights reserved.
High precision predictions for exclusive VH production at the LHC
Li, Ye; Liu, Xiaohui
2014-06-04
We present a resummation-improved prediction for pp → VH + 0 jets at the Large Hadron Collider. We focus on highly-boosted final states in the presence of jet veto to suppress the tt¯ background. In this case, conventional fixed-order calculations are plagued by the existence of large Sudakov logarithms α^{n}_{s}log^{m}(p^{veto}_{T}/Q) for Q ~ m_{V} + m_{H} which lead to unreliable predictions as well as large theoretical uncertainties, and thus limit the accuracy when comparing experimental measurements to the Standard Model. In this work, we show that the resummation of Sudakov logarithms beyond the next-to-next-to-leading-log accuracy, combined with the next-to-next-to-leading order calculation, reduces the scale uncertainty and stabilizes the perturbative expansion in the region where the vector bosons carry large transverse momentum. Thus, our result improves the precision with which Higgs properties can be determined from LHC measurements using boosted Higgs techniques.
Small Scale Landscape Evolution: Rainfall Simulations On High Precision Dtms
NASA Astrophysics Data System (ADS)
Catani, F.; Moretti, S.
Processes characterizing the evolution of relief have recently been recognized as hav- ing scaling properties both in their physical behavior and in their effects on the shape of landscape. Sophisticated evolutionary models have been devised so far, which takes also into account fractal properties, self-similarity and self-organized criticality, espe- cially in the organization of river networks inside catchments. Despite these efforts, which are generally successful from a theoretical point of view, few attempts have been made to actually test these hypotheses in the field. This is due mainly to the dif- ficulties connected with the practical realization of suitable physical models as well as with the problem of the time scale of such processes when dealing with whole river basins. This paper, that presents experimental data on the geometric and morphometric evolution of small scale soil parcels after simulated cycles of rainfall, could contribute to partially fill this gap giving insight on the spatial patterns of newly formed valleys and ridges as well as on the most stable geomorphological configurations. Starting from chosen parcels on crops or bare soils in central Italy, rainfall simulations have been undertaken over repeating cycles of storms. At the beginning of the experiment and after each event, a high resolution DTM of the parcel was automatically generated by means of a recently developed digital stereo-photogrammetric ground-based tech- nique. At the same time, sediment yield and runoff were measured. All the studied parcels were initially characterized by the absence of an internal channel system. Ini- tial topographies could basically be considered as random space functions with quasi- isotropic distribution of the elevations. Each DTM sequence can thus be regarded as an example of channel building process, from sheet flow erosion to the convergence and intersection of small flows to the full development of the surface, with a system of valleys and
Spectral Unmixing Plate Reader: High-Throughput, High-Precision FRET Assays in Living Cells.
Schaaf, Tory M; Peterson, Kurt C; Grant, Benjamin D; Thomas, David D; Gillispie, Gregory D
2017-03-01
We have developed a microplate reader that records a complete high-quality fluorescence emission spectrum on a well-by-well basis under true high-throughput screening (HTS) conditions. The read time for an entire 384-well plate is less than 3 min. This instrument is particularly well suited for assays based on fluorescence resonance energy transfer (FRET). Intramolecular protein biosensors with genetically encoded green fluorescent protein (GFP) donor and red fluorescent protein (RFP) acceptor tags at positions sensitive to structural changes were stably expressed and studied in living HEK cells. Accurate quantitation of FRET was achieved by decomposing each observed spectrum into a linear combination of four component (basis) spectra (GFP emission, RFP emission, water Raman, and cell autofluorescence). Excitation and detection are both conducted from the top, allowing for thermoelectric control of the sample temperature from below. This spectral unmixing plate reader (SUPR) delivers an unprecedented combination of speed, precision, and accuracy for studying ensemble-averaged FRET in living cells. It complements our previously reported fluorescence lifetime plate reader, which offers the feature of resolving multiple FRET populations within the ensemble. The combination of these two direct waveform-recording technologies greatly enhances the precision and information content for HTS in drug discovery.
NASA Astrophysics Data System (ADS)
Hannes, M.; Wollschlager, U.; Schrader, F.; Durner, W.; Gebler, S.; Putz, T.; Fank, J.; von Unold, G.; Vogel, H.-J.
2015-08-01
Large weighing lysimeters are currently the most precise method to directly measure all components of the terrestrial water balance in parallel via the built-in weighing system. As lysimeters are exposed to several external forces such as management practices or wind influencing the weighing data, the calculated fluxes of precipitation and evapotranspiration can be altered considerably without having applied appropriate corrections to the raw data. Therefore, adequate filtering schemes for obtaining most accurate estimates of the water balance components are required. In this study, we use data from the TERENO (TERrestrial ENvironmental Observatories) SoilCan research site in Bad Lauchstadt to develop a comprehensive filtering procedure for high-precision lysimeter data, which is designed to deal with various kinds of possible errors starting from the elimination of large disturbances in the raw data resulting e.g., from management practices all the way to the reduction of noise caused e.g., by moderate wind. Furthermore, we analyze the influence of averaging times and thresholds required by some of the filtering steps on the calculated water balance and investigate the ability of two adaptive filtering methods (the adaptive window and adaptive threshold filter (AWAT filter; Peters et al., 2014), and a new synchro filter applicable to the data from a set of several lysimeters) to further reduce the filtering error. Finally, we take advantage of the data sets of all 18 lysimeters running in parallel at the Bad Lauchstadt site to evaluate the performance and accuracy of the proposed filtering scheme. For the tested time interval of 2 months, we show that the estimation of the water balance with high temporal resolution and good accuracy is possible. The filtering code can be downloaded from the journal website as Supplement to this publication.
Kang, Dongwoo; Lee, Moon G; Gweon, Daegab
2007-07-01
Many application areas such as semiconductor manufacture, precision optics alignment, and microbiological cell manipulation require ultraprecision positioning systems with a high positioning resolution and large motion range. This article describes the development of a compact high precision linear piezoelectric stepping positioner for precision alignment of optical elements. The positioner is designed to have a compact and symmetric structure, high positioning resolution, large motion range, high force density, adequate dynamic range, and power-off hold. The positioner is fabricated according to these specifications and performance evaluation tests are carried out. A resolution of 10 nm, speed of 1 mms, push force of 25 N, and stiffness of 10.4 N/microm are attained while maintaining a compact size of 32x42x60 mm(3). The required power consumption is 52.33 W. The test results confirm that the developed positioner could be successfully applied to the precision alignment of optical elements.
High precision ultrasonic guided wave technique for inspection of power transmission line
NASA Astrophysics Data System (ADS)
Cheng, Jun; Qiu, Jinhao; Ji, Hongli; Wang, Enrong; Takagi, Toshiyuki; Uchimoto, Tetsuya
2017-01-01
Due to the merits of high inspection speed and long detecting distance, Ultrasonic Guided Wave(UGW) method has been commonly applied to the on-line maintenance of power transmission line. However, the guided wave propagation in this structure is very complicated, leading to the unfavorable defect localization accuracy. Aiming at this situation, a high precision UGW technique for inspection of local surface defect in power transmission line is proposed. The technique is realized by adopting a novel segmental piezoelectric ring transducer and transducer mounting scheme, combining with the comprehensive characterization of wave propagation and circumferential defect positioning with multiple piezoelectric elements. Firstly, the propagation path of guided waves in the multi-wires of transmission line under the proposed technique condition is investigated experimentally. Next, the wave velocities are calculated by dispersion curves and experiment test respectively, and from comparing of the two results, the guided wave mode propagated in transmission line is confirmed to be F(1,1) mode. Finally, the axial and circumferential positioning of local defective wires in transmission line are both achieved, by using multiple piezoelectric elements to surround the stands and send elastic waves into every single wire. The proposed research can play a role of guiding the development of highly effective UGW method and detecting system for multi-wire transmission line.
Research on the high-precision non-contact optical detection technology for banknotes
NASA Astrophysics Data System (ADS)
Jin, Xiaofeng; Liang, Tiancai; Luo, Pengfeng; Sun, Jianfeng
2015-09-01
The technology of high-precision laser interferometry was introduced for optical measurement of the banknotes in this paper. Taking advantage of laser short wavelength and high sensitivity, information of adhesive tape and cavity about the banknotes could be checked efficiently. Compared with current measurement devices, including mechanical wheel measurement device, Infrared measurement device, ultrasonic measurement device, the laser interferometry measurement has higher precision and reliability. This will improve the ability of banknotes feature information in financial electronic equipment.
NASA Astrophysics Data System (ADS)
Ling, Xiang; Zhang, Yu
2017-07-01
The motion performance of the high acceleration high precision air suspension platform is affected by the electromechanical characteristics of the drive system, the fluid characteristics of the air suspension guide rail and the load disturbance. The mathematical model of the system is established, and the controller performance is designed based on the optimal objective function value. The ideal controller performance is proposed as the evaluation benchmark. The performance of the system is evaluated by the ratio of the optimal objective value and the evaluation benchmark. Based on the established evaluation index, the influence of noise disturbance and estimation vector on the stability and robustness of the system is evaluated, and the system performance is further optimized.
SOLARIS 3-axis high load, low profile, high precision motorized positioner
Acome, Eric; Van Every, Eric; Deyhim, Alex; Zajac, Marcin
2016-07-27
A 3-axis optical table, shown in Figure 1, was designed, fabricated, and assembled for the SOLARIS synchrotron facility at the Jagiellonian University in Krakow, Poland. To accommodate the facility, the table was designed to be very low profile, as seen in Figure 2, and bear a high load. The platform has degrees of freedom in the vertical (Z) direction as well as horizontal transversal (X and Y) directions. The table is intended to sustain loads as large as 1500 kg which will be sufficient to support a variety of equipment to measure and facilitate synchrotron radiation. After assembly, the table was tested and calibrated to find its position error in the vertical direction. ADC has extensive experience designing and building custom complex high precision motion systems [1,2].
NASA Astrophysics Data System (ADS)
MacDonald, T. D.; Simon, M. C.; Bale, J. C.; Chowdhury, U.; Eibach, M.; Gallant, A. T.; Lennarz, A.; Simon, V. V.; Chaudhuri, A.; Grossheim, A.; Kwiatkowski, A. A.; Schultz, B. E.; Dilling, J.
2012-10-01
Penning trap mass spectrometry is the most accurate and precise method available for performing atomic mass measurements. TRIUMF's Ion Trap for Atomic and Nuclear science is currently the only facility to couple its Penning trap to a rare isotope facility and an electron beam ion trap (EBIT). The EBIT is a valuable tool for beam preparation: since the precision scales linearly with the charge state, it takes advantage of the precision gained by using highly charged ions. However, this precision gain is contingent on fast and efficient charge breeding. An optimization algorithm has been developed to identify the optimal conditions for running the EBIT. Taking only the mass number and half-life of the isotope of interest as inputs, the electron beam current density, charge breeding time, charge state, and electron beam energy are all specified to maximize this precision. An overview of the TITAN charge breeding program, and the results of charge breeding simulations will be presented.
New tools for high-precision positioning of optical elements in high-NA microscope objectives
NASA Astrophysics Data System (ADS)
Heil, Joachim; Bauer, Tobias; Mueller, Willi; Sure, Thomas; Wesner, Joachim
2004-02-01
The precise positioning of the individual optical elements is essential for attaining diffraction limited performance in high-numerical-aperture (high-NA) microscope objectives. Tolerances are in the micron range or lower for high-end objectives, e.g. for broad-band scanning confocal applications, metrology objectives in general, and especially for deep ultraviolet (DUV) applications. The ever increasing demands on imaging performance ask for the continuous development and improvement of specialized measurement equipment for the production line. Our award-winning 150x/0.90-DUV-AT-infinity/0 objective for wafer inspection and metrology at 248nm employs air spacings in its doublets because of the instability of optical cements against DUV radiation. This comes however at the cost of a higher number of surfaces and even higher precision demands on their geometry, orientation and positioning. We present several tools enabling us to meet these requirements. A Fourier transform fringe analysis scheme is adapted to high-NA Fizeau interferometry for surface characterization. A white light Mirau interferometer for dimensional measurements on lens groups with sub-μm resolution enables us to keep surface distance errors lower than 2 μm. Residual aberrations of the objective are compensated for by translating special correction elements under observation of the wave-front using a DUV-Twyman-Green interferometer, which also incorporates a 903nm branch for the parfocal adjustment of the infrared (IR) autofocus feature of the objective. To adjust the shifting element for the elimination of on-axis coma, we compute an artificial (real-time) star test from the interferogram, allowing interactive manipulations of the element while monitoring their influence on the point spread function (PSF).
Classification of LIDAR Data for Generating a High-Precision Roadway Map
NASA Astrophysics Data System (ADS)
Jeong, J.; Lee, I.
2016-06-01
Generating of a highly precise map grows up with development of autonomous driving vehicles. The highly precise map includes a precision of centimetres level unlike an existing commercial map with the precision of meters level. It is important to understand road environments and make a decision for autonomous driving since a robust localization is one of the critical challenges for the autonomous driving car. The one of source data is from a Lidar because it provides highly dense point cloud data with three dimensional position, intensities and ranges from the sensor to target. In this paper, we focus on how to segment point cloud data from a Lidar on a vehicle and classify objects on the road for the highly precise map. In particular, we propose the combination with a feature descriptor and a classification algorithm in machine learning. Objects can be distinguish by geometrical features based on a surface normal of each point. To achieve correct classification using limited point cloud data sets, a Support Vector Machine algorithm in machine learning are used. Final step is to evaluate accuracies of obtained results by comparing them to reference data The results show sufficient accuracy and it will be utilized to generate a highly precise road map.
High Sensitive Precise 3D Accelerometer for Solar System Exploration with Unmanned Spacecrafts
NASA Astrophysics Data System (ADS)
Savenko, Y. V.; Demyanenko, P. O.; Zinkovskiy, Y. F.
Solutions of several space and geophysical tasks require creating high sensitive precise accelerometers with sensitivity in order of 10 -13 g. These several tasks are following: inertial navigation of the Earth and Space; gravimetry nearby the Earth and into Space; geology; geophysics; seismology etc. Accelerometers (gravimeters and gradientmeters) with required sensitivity are not available now. The best accelerometers in the world have sensitivity worth on 4-5 orders. It has been developed a new class of fiber-optical sensors (FOS) with light pulse modulation. These sensors have super high threshold sensitivity and wide (up to 10 orders) dynamic range, and can be used as a base for creating of measurement units of physical values as 3D superhigh sensitive precise accelerometers of linear accelerations that is suitable for highest requirements. The principle of operation of the FOS is organically combined with a digital signal processing. It allows decreasing hardware of the accelerometer due to using a usual air-borne or space-borne computer; correcting the influence of natural, design, technological drawbacks of FOS on measured results; neutralising the influence of extraordinary situations available during using of FOS; decreasing the influence of internal and external destabilising factors (as for FOS), such as oscillation of environment temperature, instability of pendulum cycle frequency of sensitive element of the accelerometer etc. We were conducted a quantitative estimation of precise opportunities of analogue FOS in structure of fiber optical measuring devices (FOMD) for elementary FOMD with analogue FOS built on modern element basis of fiber optics (FO), at following assumptions: absolute parameter stability of devices of FOS measuring path; single transmission band of registration path; maximum possible inserted in optical fiber (OF) a radiated power. Even at such idealized assumptions, a calculated value in limit reached minimum inaccuracy of
A rugged, high precision capacitance diaphragm low pressure gauge for cryogenic use
NASA Astrophysics Data System (ADS)
Lago, Leatitia; Herbeaux, Christian; Bol, Marc; Roy, Pascale; Manceron, Laurent
2014-01-01
In order to carry out precise laboratory measurements of infrared absorption intensities, line profiles of molecules and organic volatile compounds for atmospheric chemistry in planetary and upper earth atmospheric layers, precise gas pressure measurement between 10-3 and a few mbars in the 77-300 K temperature range is necessary. A prototype, rugged, precision capacitive pressure gauge for cryogenic use has been designed, built at SOLEIL and tested down to 77 K. The design includes corrosion-resistant materials and has been tailored to operate on a differential measurement scheme based on a simple, precision capacitance-to-digital converter chip, instead of high precision floating capacitive bridges, as are used in other designs. The designs conception and performance specifications are presented here, illustrated by a precision of better than 1% in the 0.2-40 mbar range, with a resolution of 2 × 10-3 mbar. The gauge is tunable and can be adjusted for higher precision and a better resolution, at the expense of the maximum high-pressure range.
High Precision Temperature Insensitive Strain Sensor Based on Fiber-Optic Delay
Yang, Ning; Su, Jun; Fan, Zhiqiang; Qiu, Qi
2017-01-01
A fiber-optic delay based strain sensor with high precision and temperature insensitivity was reported, which works on detecting the delay induced by strain instead of spectrum. In order to analyze the working principle of this sensor, the elastic property of fiber-optic delay was theoretically researched and the elastic coefficient was measured as 3.78 ps/km·με. In this sensor, an extra reference path was introduced to simplify the measurement of delay and resist the cross-effect of environmental temperature. Utilizing an optical fiber stretcher driven by piezoelectric ceramics, the performance of this strain sensor was tested. The experimental results demonstrate that temperature fluctuations contribute little to the strain error and that the calculated strain sensitivity is as high as 4.75 με in the range of 350 με. As a result, this strain sensor is proved to be feasible and practical, which is appropriate for strain measurement in a simple and economical way. Furthermore, on basis of this sensor, the quasi-distributed measurement could be also easily realized by wavelength division multiplexing and wavelength addressing for long-distance structure health and security monitoring. PMID:28468323
Measurement device for high-precision spectral transmittance of solar blind filter
NASA Astrophysics Data System (ADS)
Wang, Yan; Qian, Yunsheng; Lv, Yang; Feng, Cheng; Liu, Jian
2017-02-01
In order to measure spectral transmittance of solar-blind filter ranging from ultraviolet to visible light accurately, a high-precision filter transmittance measuring system based on the ultraviolet photomultiplier is developed. The calibration method is mainly used to measure transmittance in this system, which mainly consists of an ultraviolet photomultiplier as core of the system and a lock-in amplifier combined with an optical modulator as the aided measurement for the system. The ultraviolet photomultiplier can amplify the current signal through the filter and have the characteristics of low dark current and high luminance gain. The optical modulator and the lock-in amplifier can obtain the signal from the photomultiplier and inhibit dark noise and spurious signal effectively. Through these two parts, the low light passing through the filters can be detected and we can calculate the transmittance by the optical power detected. Based on the proposed system, the limit detection of the transmittance can reach 10-12, while the result of the conventional approach is merely 10-6. Therefore, the system can make an effective assessment of solar blind ultraviolet filters.
Proposed design for high precision refractive index sensor using integrated planar lightwave circuit
NASA Astrophysics Data System (ADS)
Maru, Koichi; Fujii, Yusaku; Zhang, Shulian; Hou, Wenmei
2009-07-01
A high precision and compact refractive index sensor is proposed. The combination of coarse measurement utilizing the change of the angle of refraction and fine measurement utilizing the phase change is newly proposed to measure absolute refractive index precisely. The proposed method does not need expensive optical measurement equipment such as an optical spectrum analyzer. The integrated planar lightwave circuit (PLC) technology enables us to obtain a compact sensor that is preferable for the practical use. The principle, design, and some configurations for precise refractive index measurement are described.
Precision Spectroscopy on Highly-Excited Vibrational Levels of H_2
NASA Astrophysics Data System (ADS)
Niu, Ming Li; Salumbides, Edcel John; Ubachs, Wim
2015-06-01
The ground electronic energy levels of H_2 have been used as a benchmark system for the most precise comparisons between ab initio calculations and experimental investigations. Recent examples include the determinations of the ionization energy [1], fundamental vibrational energy splitting [2], and rotational energy progression extending to J=16 [3]. In general, the experimental and theoretical values are in excellent agreement with each other. The energy calculations, however, reduce in accuracy with the increase in rotational and vibrational excitation, limited by the accuracy of non-Born Oppenheimer corrections, as well as the higher-order QED effects. While on the experimental side, it remains difficult to sufficiently populate these excited levels in the ground electronic state. We present here our high-resolution spectroscopic study on the X ^1σ^+_g electronic ground state levels with very high vibrational quanta (ν=10,11,12). Vibrationally-excited H_2 are produced from the photodissociation of H_2S [4], and subsequently probed by a narrowband pulsed dye laser system. The experimental results are consistent with and more accurate than the best theoretical values [5]. These vibrationally-excited level energies are also of interest to studies that extract constraints on the possible new interactions that extend beyond the Standard Model [6]. [1] J. Liu et al., J. Chem. Phys. 130, 174306 (2009). [2] G. Dickenson et al., Phys. Rev. Lett. 110, 193601 (2013). [3] E.J. Salumbides et al., Phys. Rev. Lett. 107, 143005 (2011). [4] J. Steadman and T. Baer, J. Chem. Phys. 91, 6113 (1989). [5] J. Komasa et al., J. Chem. Theory Comp. 7, 3105 (2011). [6] E.J. Salumbides et al., Phys. Rev. D 87, 112008 (2013).
NASA Astrophysics Data System (ADS)
Ishii, Tetsuyuki; Sato, Ritsuko; Choi, Sungwoo; Chiba, Yasuo; Masuda, Atsushi
2017-08-01
The purpose of this study is to develop a method of estimating the electric power from various photovoltaic technologies with high precision. The actual outdoor performance of eight kinds (12 types) of photovoltaic (PV) modules has been measured since January 2012 in order to verify the precision of the method. Using ambient climatic datasets including solar irradiance, module temperature, and solar spectrum, the performance of these PV modules is corrected to the performance under standard test conditions (STC), which should be constant ideally. The results indicate that the performance of bulk crystalline silicon (c-Si) and copper indium gallium diselenide (CIGS) PV modules can be estimated with high precision (approximately less than ±2%). However, the estimation precision of thin-film Si and cadmium telluride (CdTe) PV modules is low because of the initial light-induced degradation and seasonal variation due to metastability.
A High-Precision, Optical Polarimeter to Measure Inclinations of High Mass X-Ray Binaries
NASA Astrophysics Data System (ADS)
Wiktorowicz, Sloane; Matthews, K.; Kulkarni, S. R.
2007-12-01
While most astrophysical objects require many parameters in order to be fully described, black holes are unique in that only three parameters are required: mass, spin, and charge. Of these, mass and spin are enough to describe the black hole's gravitational field and event horizon location. Therefore, theory and observation may jointly pursue one or two quantities to uncover the progenitor star's history. Constraints on black hole mass exist for high mass X-ray binaries, such as Cygnus X-1, which is thought to consist of a 40 ± 10 solar mass O9.7Iab star and a 13.5-29 solar mass black hole (Ziolkowski 2005). While the constraints on the mass of the compact object are tight enough to declare that it is a black hole, they are sufficiently loose as to prohibit precise modeling of the progenitor star's mass. We have built an optical polarimeter for the Hale 5-m telescope at Mt. Palomar to provide an independent method for determining black hole mass. Degree of polarization will vary for an edge-on system, while position angle of net polarization will vary for a face-on system. Therefore, by monitoring the linear polarimetric variability of the binary, inclination can be estimated. Coupled with the known mass function of the binary from radial velocity work (Gies et al. 2003), inclination estimates constrain the mass of the black hole. Our polarimeter, POLISH (POLarimeter for Inclination Studies of High mass x-ray binaries), has achieved linear polarimetric precision of less than 10 parts per million on bright, unpolarized standard stars. We will also present results for polarized standard stars and Cygnus X-1 itself. This instrument has been funded by an endowment from the Moore Foundation.
FOTOMCAp: a new quasi-automatic code for high-precision photometry
NASA Astrophysics Data System (ADS)
Petrucci, R.; Jofré, J. E.
2016-08-01
The search for Earth-like planets using the transit technique has encouraged the development of strategies to obtain light curves with increasing precision. In this context we developed the fotomcap program. This is an iraf quasi-automatic code which employs the aperture correction method and allows to obtain high-precision light curves. In this contribution we describe how this code works and show the results obtained for planetary transits light curves.
Sampson, Jason S; Hawkridge, Adam M; Muddiman, David C
2008-10-01
The design and construction of a high precision ambient ionization source matrix-assisted laser desorption electrospray ionization (MALDESI) are described in full detail, including a complete parts list. The computer controlled high precision motion control system and high repetition rate Explorer laser are demonstrated during MALDESI-FT-ICR analysis of peptides and proteins ranging from 1 to 17 kDa. The high stability ionization source platform described herein demonstrates both the advantages of the new MALDESI source and versatility for application to numerous desorption and ionization techniques.
Use of Terrestrial Laser Scanning Technology for Long Term High Precision Deformation Monitoring
Vezočnik, Rok; Ambrožič, Tomaž; Sterle, Oskar; Bilban, Gregor; Pfeifer, Norbert; Stopar, Bojan
2009-01-01
The paper presents a new methodology for high precision monitoring of deformations with a long term perspective using terrestrial laser scanning technology. In order to solve the problem of a stable reference system and to assure the high quality of possible position changes of point clouds, scanning is integrated with two complementary surveying techniques, i.e., high quality static GNSS positioning and precise tacheometry. The case study object where the proposed methodology was tested is a high pressure underground pipeline situated in an area which is geologically unstable. PMID:22303152
Bradshaw, R.C.; Schmidt, D.P.; Rogers, J.R.; Kelton, K.F.; Hyers, R.W.
2005-12-15
By combining the best practices in optical dilatometry with numerical methods, a high-speed and high-precision technique has been developed to measure the volume of levitated, containerlessly processed samples with subpixel resolution. Containerless processing provides the ability to study highly reactive materials without the possibility of contamination affecting thermophysical properties. Levitation is a common technique used to isolate a sample as it is being processed. Noncontact optical measurement of thermophysical properties is very important as traditional measuring methods cannot be used. Modern, digitally recorded images require advanced numerical routines to recover the subpixel locations of sample edges and, in turn, produce high-precision measurements.
Accurate calculation of the p Ka of trifluoroacetic acid using high-level ab initio calculations
NASA Astrophysics Data System (ADS)
Namazian, Mansoor; Zakery, Maryam; Noorbala, Mohammad R.; Coote, Michelle L.
2008-01-01
The p Ka value of trifluoroacetic acid has been successfully calculated using high-level ab initio methods such as G3 and CBS-QB3. Solvation energies have been calculated using CPCM continuum model of solvation at the HF and B3-LYP levels of theory with various basis sets. Excellent agreement with experiment (to within 0.4 p Ka units) was obtained using CPCM solvation energies at the B3-LYP/6-31+G(d) level (or larger) in conjunction with CBS-QB3 or G3 gas-phase energies of trifluoroacetic acid and its anion.
Automated Transition State Theory Calculations for High-Throughput Kinetics.
Bhoorasingh, Pierre L; Slakman, Belinda L; Seyedzadeh Khanshan, Fariba; Cain, Jason Y; West, Richard H
2017-09-21
A scarcity of known chemical kinetic parameters leads to the use of many reaction rate estimates, which are not always sufficiently accurate, in the construction of detailed kinetic models. To reduce the reliance on these estimates and improve the accuracy of predictive kinetic models, we have developed a high-throughput, fully automated, reaction rate calculation method, AutoTST. The algorithm integrates automated saddle-point geometry search methods and a canonical transition state theory kinetics calculator. The automatically calculated reaction rates compare favorably to existing estimated rates. Comparison against high level theoretical calculations show the new automated method performs better than rate estimates when the estimate is made by a poor analogy. The method will improve by accounting for internal rotor contributions and by improving methods to determine molecular symmetry.
Calculation of heating values for the high flux isotope reactor
Peterson, J.; Ilas, G.
2012-07-01
Calculating the amount of energy released by a fission reaction (fission Q value) and the heating rate distribution in a nuclear reactor is an important part of the safety analysis. However, these calculations can become very complex. One of the codes that can be used for this type of analyses is the Monte Carlo transport code MCNP5. Currently it is impossible to calculate the Q value and heating rate disposition for delayed beta and delayed gamma particles directly from MCNP5. The purpose of this paper is to outline a rigorous method for indirectly calculating the Q values and heating rates in the High Flux Isotope Reactor (HFIR), based on previous similar studies carried out for very high-temperature reactor configurations. This method has been applied in this study to calculate heating rates for the beginning of cycle (BOC) and end-of-cycle (EOC) states of HFIR. In addition, the BOC results obtained for HFIR are compared with corresponding results for the Advanced Test Reactor. The fission Q value for HFIR was calculated as 200.2 MeV for the BOC and 201.3 MeV for the EOC. It was also determined that 95.1% and 95.4% of the heat was deposited within the HFIR fuel plates for the BOC and EOC models, respectively. This methodology can also be used for heating rate calculations for HFIR experiments. (authors)
NASA Astrophysics Data System (ADS)
Ivanov, Sergey V.; Buzykin, Oleg G.
2013-04-01
The accuracies of the classical and semiclassical methods currently used in collisional spectral line broadening calculations of molecules are compared. The primary goal is to elucidate the validity of each particular method applied to linear molecules that have different rotational constants but which are perturbed by the same atom. Vibration-rotational electric dipole absorption spectra of CO2, C2H2, CO, HCl and HF molecules perturbed by an Ar atom are examined at room temperature. The most accurate vibrationally independent potential energy surfaces (PESs) are applied to all molecular pairs. The following theoretical approaches are involved in cross-examination: two classical schemes (exact C3D and C3Diso) and four semiclassical formalisms (NG—of Neilsen and Gordon, PA—peaking approximation, SGC—of Smith, Giraud and Cooper, and RB—of Robert and Bonamy). Identical “exact” isotropic trajectories, driven by only the isotropic part of the PES, are used in C3Diso and in all semiclassical calculations. The comparison is made with experimental data as well as with benchmark quantum dynamical results obtained in the same conditions within close coupling and coupled states schemes. Quantum results reproduced the experimental data excellently in all cases considered, which is as it should be if the interaction PES is accurate. An exact classical C3D approach displays good results for all molecules. By contrast, NG, PA and SGC semiclassical formalisms seriously underestimate line broadening for molecules with small rotational constants (CO2, C2H2 and, to a lesser extent, CO), mainly due to the use of isotropic trajectories in these schemes. The RB method strongly overestimates line broadening for the majority of values of the rotational quantum number J for all molecules studied. The only exception is the case of HF molecules at high J values, where PA, SGC and RB semiclassical schemes provide good results, coinciding well with quantum CC calculations for J>3
Proton Diffusion Model for High-Throughput Calculations
NASA Astrophysics Data System (ADS)
Wisesa, Pandu; Mueller, Tim
2013-03-01
Solid oxide fuel cells (SOFCs) have many advantages over other fuel cells with high efficiency, myriad fuel choices, and low cost. The main issue however is the high operating temperature of SOFCs, which can be lowered by using an electrolyte material with high ionic conductivity, such as proton conducting oxides. Our goal is to identify promising proton-conducting materials in a manner that is time and cost efficient through the utilization of high-throughput calculations. We present a model for proton diffusion developed using machine learning techniques with training data that consists of density functional theory (DFT) calculations on various metal oxides. The built model is tested against other DFT results to see how it performs. The results of the DFT calculations and how the model fares are discussed, with focus on hydrogen diffusion pathways inside the bulk material.
Error analysis of high-rate GNSS precise point positioning for seismic wave measurement
NASA Astrophysics Data System (ADS)
Shu, Yuanming; Shi, Yun; Xu, Peiliang; Niu, Xiaoji; Liu, Jingnan
2017-06-01
High-rate GNSS precise point positioning (PPP) has been playing a more and more important role in providing precise positioning information in fast time-varying environments. Although kinematic PPP is commonly known to have a precision of a few centimeters, the precision of high-rate PPP within a short period of time has been reported recently with experiments to reach a few millimeters in the horizontal components and sub-centimeters in the vertical component to measure seismic motion, which is several times better than the conventional kinematic PPP practice. To fully understand the mechanism of mystified excellent performance of high-rate PPP within a short period of time, we have carried out a theoretical error analysis of PPP and conducted the corresponding simulations within a short period of time. The theoretical analysis has clearly indicated that the high-rate PPP errors consist of two types: the residual systematic errors at the starting epoch, which affect high-rate PPP through the change of satellite geometry, and the time-varying systematic errors between the starting epoch and the current epoch. Both the theoretical error analysis and simulated results are fully consistent with and thus have unambiguously confirmed the reported high precision of high-rate PPP, which has been further affirmed here by the real data experiments, indicating that high-rate PPP can indeed achieve the millimeter level of precision in the horizontal components and the sub-centimeter level of precision in the vertical component to measure motion within a short period of time. The simulation results have clearly shown that the random noise of carrier phases and higher order ionospheric errors are two major factors to affect the precision of high-rate PPP within a short period of time. The experiments with real data have also indicated that the precision of PPP solutions can degrade to the cm level in both the horizontal and vertical components, if the geometry of satellites is
High-precision diode-laser-based temperature measurement for air refractive index compensation
Hieta, Tuomas; Merimaa, Mikko; Vainio, Markku; Seppae, Jeremias; Lassila, Antti
2011-11-01
We present a laser-based system to measure the refractive index of air over a long path length. In optical distance measurements, it is essential to know the refractive index of air with high accuracy. Commonly, the refractive index of air is calculated from the properties of the ambient air using either Ciddor or Edlen equations, where the dominant uncertainty component is in most cases the air temperature. The method developed in this work utilizes direct absorption spectroscopy of oxygen to measure the average temperature of air and of water vapor to measure relative humidity. The method allows measurement of temperature and humidity over the same beam path as in optical distance measurement, providing spatially well-matching data. Indoor and outdoor measurements demonstrate the effectiveness of the method. In particular, we demonstrate an effective compensation of the refractive index of air in an interferometric length measurement at a time-variant and spatially nonhomogeneous temperature over a long time period. Further, we were able to demonstrate 7 mK RMS noise over a 67 m path length using a 120 s sample time. To our knowledge, this is the best temperature precision reported for a spectroscopic temperature measurement.
A high-precision earth sensor with three separated FOVs for aircraft application
NASA Astrophysics Data System (ADS)
Wang, Hongjian; Xing, Fei; Fan, Peirong; Wang, Chong; You, Zheng
2013-08-01
The earth sensors are currently used in spacecrafts. Most of them with a single field of view (FOV) for earth observation are not applied to aircrafts in the atmosphere. For the use of the aircraft at 70 ~ 100km in the atmosphere, this paper proposes a separate triple-FOV earth sensor based on infrared detectors. By sensing the earth-horizon, the triple-FOV earth sensor obtains the geocentric vector, and calculates the altitude of the aircraft at the same time. The earth sensor uses three pieces of infrared detectors at 14 ~ 16μm. To sense the infrared light could ensure that the earth sensor does the same operation at night and day regardless of the weather and the light impact of the sun and the moon. The optical axes of the three fields of view are positioned at 120° from each other in the horizontal plane, and the angle between the optical axes and the vertical direction is 82.86°. Considering the model of the surface of the earth's atmosphere, the earth's radius and so on, the mathematical model of the triple-FOV earth sensor is established. From 70km to 100km, the result of simulation shows that the altitude measurement accuracy is better than 100m and the angle measurement error is 3.8". The earth sensor can provide high-precision position information, and make data fusion with additional sensors to achieve autonomous navigation of aircrafts.
NASA Astrophysics Data System (ADS)
Nie, Xuqing; Li, Shengyi; Song, Ci; Hu, Hao
2014-08-01
Due to the different curvature everywhere, the aspheric surface is hard to achieve high-precision accuracy by the traditional polishing process. Controlling of the mid-spatial frequency errors (MSFR), in particular, is almost unapproachable. In this paper, the combined fabrication process based on the smoothing polishing (SP) and magnetorheological finishing (MRF) is proposed. The pressure distribution of the rigid polishing lap and semi-flexible polishing lap is calculated. The shape preserving capacity and smoothing effect are compared. The feasibility of smoothing aspheric surface with the semi-flexible polishing lap is verified, and the key technologies in the SP process are discussed. Then, A K4 parabolic surface with the diameter of 500mm is fabricated based on the combined fabrication process. A Φ150 mm semi-flexible lap is used in the SP process to control the MSFR, and the deterministic MRF process is applied to figure the surface error. The root mean square (RMS) error of the aspheric surface converges from 0.083λ (λ=632.8 nm) to 0.008λ. The power spectral density (PSD) result shows that the MSFR are well restrained while the surface error has a great convergence.
High-precision thermodynamic and critical properties from tensor renormalization-group flows.
Hinczewski, Michael; Berker, A Nihat
2008-01-01
The recently developed tensor renormalization-group (TRG) method provides a highly precise technique for deriving thermodynamic and critical properties of lattice Hamiltonians. The TRG is a local coarse-graining transformation, with the elements of the tensor at each lattice site playing the part of the interactions that undergo the renormalization-group flows. These tensor flows are directly related to the phase diagram structure of the infinite system, with each phase flowing to a distinct surface of fixed points. Fixed-point analysis and summation along the flows give the critical exponents, as well as thermodynamic functions along the entire temperature range. Thus, for the ferromagnetic triangular lattice Ising model, the free energy is calculated to better than 10(-5) along the entire temperature range. Unlike previous position-space renormalization-group methods, the truncation (of the tensor index range D) in this general method converges under straightforward and systematic improvements. Our best results are easily obtained with D=24, corresponding to 4624-dimensional renormalization-group flows.
High-precision thermodynamic and critical properties from tensor renormalization-group flows
NASA Astrophysics Data System (ADS)
Hinczewski, Michael; Berker, A. Nihat
2008-01-01
The recently developed tensor renormalization-group (TRG) method provides a highly precise technique for deriving thermodynamic and critical properties of lattice Hamiltonians. The TRG is a local coarse-graining transformation, with the elements of the tensor at each lattice site playing the part of the interactions that undergo the renormalization-group flows. These tensor flows are directly related to the phase diagram structure of the infinite system, with each phase flowing to a distinct surface of fixed points. Fixed-point analysis and summation along the flows give the critical exponents, as well as thermodynamic functions along the entire temperature range. Thus, for the ferromagnetic triangular lattice Ising model, the free energy is calculated to better than 10-5 along the entire temperature range. Unlike previous position-space renormalization-group methods, the truncation (of the tensor index range D ) in this general method converges under straightforward and systematic improvements. Our best results are easily obtained with D=24 , corresponding to 4624-dimensional renormalization-group flows.
High-Precision Thermodynamic and Critical Properties from Tensor Renormalization-Group Flows
NASA Astrophysics Data System (ADS)
Hinczewski, Michael; Berker, A. Nihat
2008-03-01
The recently developed tensor renormalization-group (TRG) method [1] provides a highly precise technique for deriving thermodynamic and critical properties of lattice Hamiltonians. The TRG is a local coarse-graining transformation, with the elements of the tensor at each lattice site playing the part of the interactions that undergo the renormalization-group flows. These tensor flows are directly related [2] to the phase diagram structure of the infinite system, with each phase flowing to a distinct surface of fixed points. Fixed-point analysis and summation along the flows give the critical exponents, as well as thermodynamic functions along the entire temperature range. Thus, for the ferromagnetic triangular lattice Ising model, the free energy is calculated to better than 10-5 along the entire temperature range. Unlike previous position-space renormalization-group methods, the truncation (of the tensor index range D) in this general method converges under straightforward and systematic improvements. Our best results are easily obtained with D=24, corresponding to 4624-dimensional renormalization-group flows. [1] M. Levin and C.P. Nave, Phys. Rev. Lett. 99, 120601 (2007). [2] M. Hinczewski and A.N. Berker, arXiv:0709.2803v1 [cond-mat.stat-mech], Phys. Rev. E, in press.
Molecular calipers for highly precise and accurate measurements of single-protein mechanics.
Wang, Yanyan; Hu, Xiaodong; Bu, Tianjia; Hu, Chunguang; Hu, Xiaotang; Li, Hongbin
2014-03-18
Single-molecule atomic force spectroscopy (AFM) has evolved into a powerful technique toward elucidating conformational changes in proteins when exposed to applied force. AFM technologies that are currently available allow for precise measurements of proteins length changes during conformational transitions. However, because of systematic errors in piezo calibration as well as errors originating from fitting experimental data using a worm-like chain model of polymer elasticity, high-precision measurements of length changes do not necessarily translate into highly accurate measurements of length changes, resulting in uncertainty in obtaining structural information about protein conformational changes. Actually achieving highly precise and accurate force spectroscopy measurements remains a challenge. Here, we report a protein caliper method that eliminates systematic errors that occur during single-protein force spectroscopy measurements, and thus achieves highly precise and accurate length change measurements in protein mechanics studies. To do this, a series of loop elongation variants of the small protein GB1, which differ by 2, 5, 10, 15, and 24 amino acid residues, were engineered. Differential measurements of amino acid residue length obtained from different AFM setups result in a precise measure of the length of a single amino acid residue, which varies within different AFM setups because of systematic error between individual AFM piezoelectric calibrations. The measured length of a single amino acid residue from a given AFM setup is then used as a caliper for the given setup to eliminate systematic error, leading to highly accurate and precise measurements of the number of amino acid residues that are involved in a conformation change of a polypeptide chain. We further developed a more precise, robust, and model-free method to determine the apparent size of single amino acid residues and conformational changes of proteins. This method improves the accuracy of
HIGH-PRECISION MACLAURIN-BASED MODELS OF ROTATING LIQUID PLANETS
Hubbard, W. B.
2012-09-01
We present an efficient numerical self-consistent field method for calculating a gravitational model of a rotating liquid planet to spherical harmonic degree {approx}30 and a precision {approx}10{sup -12} in the external gravity field. The method's accuracy is validated by comparing results, for Jupiter rotation parameters, with the exact Maclaurin constant-density solution. The method can be generalized to non-constant density.
Research on high-precision laser displacement sensor-based error compensation model
NASA Astrophysics Data System (ADS)
Zhang, Zhifeng; Zhai, Yusheng; Su, Zhan; Qiao, Lin; Tang, Yiming; Wang, Xinjie; Su, Yuling; Song, Zhijun
2015-08-01
The triangulation measurement is a kind of active vision measurement. The laser triangulation displacement is widely used with advantages of non-contact, high precision, high sensitivity. The measuring error will increase with the nonlinear and noise disturbance when sensors work in large distance. The paper introduces the principle of laser triangulation measurement and analyzes the measuring error and establishes the compensation error. Spot centroid is extracted with digital image processing technology to increase noise-signal ratio. Results of simulation and experiment show the method can meet requirement of large distance and high precision.
Methods for high precision 14C AMS measurement of atmospheric CO2 at LLNL
Graven, H D; Guilderson, T P; Keeling, R F
2006-10-18
Development of {sup 14}C analysis with precision better than 2{per_thousand} has the potential to expand the utility of {sup 14}CO{sub 2} measurements for carbon cycle investigations as atmospheric gradients currently approach traditional measurement precision of 2-5{per_thousand}. The AMS facility at the Center for Accelerator Mass Spectrometry, Lawrence Livermore National Laboratory, produces high and stable beam currents that enable efficient acquisition times for large numbers of {sup 14}C counts. One million {sup 14}C atoms can be detected in approximately 25 minutes, suggesting that near 1{per_thousand} counting precision is economically feasible at LLNL. The overall uncertainty in measured values is ultimately determined by the variation between measured ratios in several sputtering periods of the same sample and by the reproducibility of replicate samples. Experiments on the collection of one million counts on replicate samples of CO{sub 2} extracted from a whole air cylinder show a standard deviation of 1.7{per_thousand} in 36 samples measured over several wheels. This precision may be limited by the reproducibility of Oxalic Acid I standard samples, which is considerably poorer. We outline the procedures for high-precision sample handling and analysis that have enabled reproducibility in the cylinder extraction samples at the <2{per_thousand} level and describe future directions to continue increasing measurement precision at LLNL.
Flexible, non-contact and high-precision measurements of optical components
NASA Astrophysics Data System (ADS)
Beutler, A.
2016-06-01
A high-accuracy cylindrical coordinate measuring instrument developed for the measurement of optical components is presented. It is equipped with an optical point sensor system including a high aperture probe. This setup allows measurements to be performed with high accuracy in a flexible way. Applications include the measurement of the topography of high-precision aspheric and freeform lenses and diffractive structures. High measuring speeds guarantee the implementation in a closed-loop production process.
Highly Accurate and Precise Infrared Transition Frequencies of the H_3^+ Cation
NASA Astrophysics Data System (ADS)
Perry, Adam J.; Markus, Charles R.; Hodges, James N.; Kocheril, G. Stephen; McCall, Benjamin J.
2016-06-01
Calculation of ab initio potential energy surfaces for molecules to high accuracy is only manageable for a handful of molecular systems. Among them is the simplest polyatomic molecule, the H_3^+ cation. In order to achieve a high degree of accuracy (<1 wn) corrections must be made to the to the traditional Born-Oppenheimer approximation that take into account not only adiabatic and non-adiabatic couplings, but quantum electrodynamic corrections as well. For the lowest rovibrational levels the agreement between theory and experiment is approaching 0.001 wn, whereas the agreement is on the order of 0.01 - 0.1 wn for higher levels which are closely rivaling the uncertainties on the experimental data. As method development for calculating these various corrections progresses it becomes necessary for the uncertainties on the experimental data to be improved in order to properly benchmark the calculations. Previously we have measured 20 rovibrational transitions of H_3^+ with MHz-level precision, all of which have arisen from low lying rotational levels. Here we present new measurements of rovibrational transitions arising from higher rotational and vibrational levels. These transitions not only allow for probing higher energies on the potential energy surface, but through the use of combination differences, will ultimately lead to prediction of the "forbidden" rotational transitions with MHz-level accuracy. L.G. Diniz, J.R. Mohallem, A. Alijah, M. Pavanello, L. Adamowicz, O.L. Polyansky, J. Tennyson Phys. Rev. A (2013), 88, 032506 O.L. Polyansky, A. Alijah, N.F. Zobov, I.I. Mizus, R.I. Ovsyannikov, J. Tennyson, L. Lodi, T. Szidarovszky, A.G. Császár Phil. Trans. R. Soc. A (2012), 370, 5014 J.N. Hodges, A.J. Perry, P.A. Jenkins II, B.M. Siller, B.J. McCall J. Chem. Phys. (2013), 139, 164201 A.J. Perry, J.N. Hodges, C.R. Markus, G.S. Kocheril, B.J. McCall J. Molec. Spectrosc. (2015), 317, 71-73.
High Throughput, High Precision Hot Testing Tool for HBLED Wafer Level Testing
Solarz, Richard; McCord, Mark
2015-12-31
The Socrates research effort developed an in depth understanding and demonstrated in a prototype tool new precise methods for teh characterization of color characteristics and flux from individual LEDs for the production of uniform quality lighting. This effort was focused on improving the color quality and consistency of solid state lighting and potentially reducing characterization costs for all LED product types. The patented laser hot testing method was demonstrated to be far more accurate than all current state of the art color and flux characterization methods in use by the solid state lighting industry today. A seperately patented LED grouping method (statistical binning) was demonstrated to be a useful approach to improving utilization of entire lots of large color and flux distributions of manufactured LEDs for high quality color solid-state lighting. At the conclusion of the research in late 2015 the solid-state lighting industry was however generally satisfied with its existing production methods for high quality color products for the small segment of customers that demand it, albeit with added costs.
High precision locating control system based on VCM for Talbot lithography
NASA Astrophysics Data System (ADS)
Yao, Jingwei; Zhao, Lixin; Deng, Qian; Hu, Song
2016-10-01
Aiming at the high precision and efficiency requirements of Z-direction locating in Talbot lithography, a control system based on Voice Coil Motor (VCM) was designed. In this paper, we built a math model of VCM and its moving characteristic was analyzed. A double-closed loop control strategy including position loop and current loop were accomplished. The current loop was implemented by driver, in order to achieve the rapid follow of the system current. The position loop was completed by the digital signal processor (DSP) and the position feedback was achieved by high precision linear scales. Feed forward control and position feedback Proportion Integration Differentiation (PID) control were applied in order to compensate for dynamic lag and improve the response speed of the system. And the high precision and efficiency of the system were verified by simulation and experiments. The results demonstrated that the performance of Z-direction gantry was obviously improved, having high precision, quick responses, strong real-time and easily to expend for higher precision.
Barnes, M.D.; Lermer, N.; Whitten, W.B.; Ramsey, J.M.
1997-06-01
We describe a fast and convenient method of high precision size and refractive index determination of electrodynamically levitated microdroplets using Fraunhofer diffraction. The diffraction data were obtained with a 16-bit, unintensified charge coupled device (CCD) camera, and converted into angle-resolved elastic scattering intensity patterns by means of a carefully determined set of transformation parameters. The angular scattering patterns were analyzed without any {ital a priori} estimate of the droplet size and only a nominal estimate ({approx}2{percent}) of the refractive index. Experimental angular scattering patterns were fit to calculated patterns from Mie theory using a graded step-size and scaling algorithm and optimized with respect to both droplet diameter and refractive index (real part only) with a precision of {le}3 parts in 10{sup 4} and 1 part in 10{sup 3}, respectively. Potential application to quantitative fluorescence and Raman spectroscopy, as well as mixture analysis in microdroplets is discussed. {copyright} {ital 1997 American Institute of Physics.}
High-Precision Probe of the Fully Sequential Decay Width of the Hoyle State in 12C
NASA Astrophysics Data System (ADS)
Dell'Aquila, D.; Lombardo, I.; Verde, G.; Vigilante, M.; Acosta, L.; Agodi, C.; Cappuzzello, F.; Carbone, D.; Cavallaro, M.; Cherubini, S.; Cvetinovic, A.; D'Agata, G.; Francalanza, L.; Guardo, G. L.; Gulino, M.; Indelicato, I.; La Cognata, M.; Lamia, L.; Ordine, A.; Pizzone, R. G.; Puglia, S. M. R.; Rapisarda, G. G.; Romano, S.; Santagati, G.; Spartà, R.; Spadaccini, G.; Spitaleri, C.; Tumino, A.
2017-09-01
The decay path of the Hoyle state in 12C (Ex=7.654 MeV ) has been studied with the 14N (d ,α2)12C (7.654 ) reaction induced at 10.5 MeV. High resolution invariant mass spectroscopy techniques have allowed us to unambiguously disentangle direct and sequential decays of the state passing through the ground state of 8Be. Thanks to the almost total absence of background and the attained resolution, a fully sequential decay contribution to the width of the state has been observed. The direct decay width is negligible, with an upper limit of 0.043% (95% C.L.). The precision of this result is about a factor 5 higher than previous studies. This has significant implications on nuclear structure, as it provides constraints to 3 α cluster model calculations, where higher precision limits are needed.
Introducing SummerTime: A package for high-precision computation of sums appearing in DRA1 method
NASA Astrophysics Data System (ADS)
Lee, Roman N.; Mingulov, Kirill T.
2016-06-01
We present the Mathematica package SummerTime for arbitrary-precision computation of sums appearing in the results of DRA method (Lee, 2010). So far these results include the following families of the integrals: 3-loop onshell massless vertices, 3-loop onshell mass operator type integrals, 4-loop QED-type tadpoles, 4-loop massless propagators (Lee et al., 2010; Lee and Smirnov, 2011; Lee et al., 2011, 2012). The package can be used for high-precision numerical computation of the expansion of the integrals from the above families around arbitrary space-time dimension. In addition, this package contains convenient tools for the calculation of multiple zeta values, harmonic polylogarithms and other transcendental numbers expressed in terms of nested sums with factorized summand.
Precision of FLEET Velocimetry Using High-speed CMOS Camera Systems
NASA Technical Reports Server (NTRS)
Peters, Christopher J.; Danehy, Paul M.; Bathel, Brett F.; Jiang, Naibo; Calvert, Nathan D.; Miles, Richard B.
2015-01-01
Femtosecond laser electronic excitation tagging (FLEET) is an optical measurement technique that permits quantitative velocimetry of unseeded air or nitrogen using a single laser and a single camera. In this paper, we seek to determine the fundamental precision of the FLEET technique using high-speed complementary metal-oxide semiconductor (CMOS) cameras. Also, we compare the performance of several different high-speed CMOS camera systems for acquiring FLEET velocimetry data in air and nitrogen free-jet flows. The precision was defined as the standard deviation of a set of several hundred single-shot velocity measurements. Methods of enhancing the precision of the measurement were explored such as digital binning (similar in concept to on-sensor binning, but done in post-processing), row-wise digital binning of the signal in adjacent pixels and increasing the time delay between successive exposures. These techniques generally improved precision; however, binning provided the greatest improvement to the un-intensified camera systems which had low signal-to-noise ratio. When binning row-wise by 8 pixels (about the thickness of the tagged region) and using an inter-frame delay of 65 micro sec, precisions of 0.5 m/s in air and 0.2 m/s in nitrogen were achieved. The camera comparison included a pco.dimax HD, a LaVision Imager scientific CMOS (sCMOS) and a Photron FASTCAM SA-X2, along with a two-stage LaVision High Speed IRO intensifier. Excluding the LaVision Imager sCMOS, the cameras were tested with and without intensification and with both short and long inter-frame delays. Use of intensification and longer inter-frame delay generally improved precision. Overall, the Photron FASTCAM SA-X2 exhibited the best performance in terms of greatest precision and highest signal-to-noise ratio primarily because it had the largest pixels.
Precision of FLEET Velocimetry Using High-Speed CMOS Camera Systems
NASA Technical Reports Server (NTRS)
Peters, Christopher J.; Danehy, Paul M.; Bathel, Brett F.; Jiang, Naibo; Calvert, Nathan D.; Miles, Richard B.
2015-01-01
Femtosecond laser electronic excitation tagging (FLEET) is an optical measurement technique that permits quantitative velocimetry of unseeded air or nitrogen using a single laser and a single camera. In this paper, we seek to determine the fundamental precision of the FLEET technique using high-speed complementary metal-oxide semiconductor (CMOS) cameras. Also, we compare the performance of several different high-speed CMOS camera systems for acquiring FLEET velocimetry data in air and nitrogen free-jet flows. The precision was defined as the standard deviation of a set of several hundred single-shot velocity measurements. Methods of enhancing the precision of the measurement were explored such as digital binning (similar in concept to on-sensor binning, but done in post-processing), row-wise digital binning of the signal in adjacent pixels and increasing the time delay between successive exposures. These techniques generally improved precision; however, binning provided the greatest improvement to the un-intensified camera systems which had low signal-to-noise ratio. When binning row-wise by 8 pixels (about the thickness of the tagged region) and using an inter-frame delay of 65 microseconds, precisions of 0.5 meters per second in air and 0.2 meters per second in nitrogen were achieved. The camera comparison included a pco.dimax HD, a LaVision Imager scientific CMOS (sCMOS) and a Photron FASTCAM SA-X2, along with a two-stage LaVision HighSpeed IRO intensifier. Excluding the LaVision Imager sCMOS, the cameras were tested with and without intensification and with both short and long inter-frame delays. Use of intensification and longer inter-frame delay generally improved precision. Overall, the Photron FASTCAM SA-X2 exhibited the best performance in terms of greatest precision and highest signal-to-noise ratio primarily because it had the largest pixels.
Challenges in mold manufacturing for high precision molded diffractive optical elements
NASA Astrophysics Data System (ADS)
Pongs, Guido; Bresseler, Bernd; Schweizer, Klaus; Bergs, Thomas
2016-09-01
Isothermal precision glass molding of imaging optics is the key technology for mass production of precise optical elements. Especially for numerous consumer applications (e.g. digital cameras, smart phones, …), high precision glass molding is applied for the manufacturing of aspherical lenses. The usage of diffractive optical elements (DOEs) can help to further reduce the number of lenses in the optical systems which will lead to a reduced weight of hand-held optical devices. But today the application of molded glass DOEs is limited due to the technological challenges in structuring the mold surfaces. Depending on the application submicrometer structures are required on the mold surface. Furthermore these structures have to be replicated very precisely to the glass lens surface. Especially the micro structuring of hard and brittle mold materials such as Tungsten Carbide is very difficult and not established. Thus a multitude of innovative approaches using diffractive optical elements cannot be realized. Aixtooling has investigated in different mold materials and different suitable machining technologies for the micro- and sub-micrometer structuring of mold surfaces. The focus of the work lays on ultra-precision grinding to generate the diffractive pattern on the mold surfaces. This paper presents the latest achievements in diffractive structuring of Tungsten Carbide mold surfaces by ultra-precision grinding.
Tan, Sovira; Yao, Jianhua; Yao, Lawrence; Ward, Michael M
2012-01-01
The measurement of vertebral heights is necessary for the evaluation of many disorders affecting the spine. High precision is particularly important for longitudinal studies where subtle changes are to be detected. Computed tomography (CT) is the modality of choice for high precision studies. Radiography and dual emission X-ray absorptiometry (DXA) use 2D images to assess 3D structures, which can result in poor visualization due to the superimposition of extraneous anatomical objects on the same 2D space. We present a semi-automated computer algorithm to measure vertebral heights in the 3D space of a CT scan. The algorithm segments the vertebral bodies, extracts their end plates and computes vertebral heights as the mean distance between end plates. We evaluated the precision of our algorithm using repeat scans of an anthropomorphic vertebral phantom. Our method has high precision, with a coefficient of variation of only 0.197% and Bland-Altmann 95% limits of agreement of [-0.11, 0.13] mm. For local heights (anterior, middle, posterior) the algorithm was up to 4.2 times more precise than a manual mid-sagittal plane method.
High precision measurement of the proton charge radius: The PRad experiment
Meziane, Mehdi
2013-11-01
The recent high precision measurements of the proton charge radius performed at PSI from muonic hydrogen Lamb shift puzzled the hadronic physics community. A value of 0.8418 {+-} 0.0007 fm was extracted which is 7{sigma} smaller than the previous determinations obtained from electron-proton scattering experiments and based on precision spectroscopy of electronic hydrogen. An additional extraction of the proton charge radius from electron scattering at Mainz is also in good agreement with these "electronic" determinations. An independent measurement of the proton charge radius from unpolarized elastic ep scattering using a magnetic spectrometer free method was proposed and fully approved at Jefferson Laboratory in June 2012. This novel technique uses the high precision calorimeter HyCal and a windowless hydrogen gas target which makes possible the extraction of the charge radius at very forward angles and thus very low momentum transfer Q{sup 2} up to 10{sup -4} (GeV/c){sup 2} with an unprecedented sub-percent precision for this type of experiment. In this paper, after a review of the recent progress on the proton charge radius extraction and the new high precision experiment PRad will be presented.
High precision measurement of the proton charge radius: The PRad experiment
Meziane, Mehdi; Collaboration: PRad Collaboration
2013-11-07
The recent high precision measurements of the proton charge radius performed at PSI from muonic hydrogen Lamb shift puzzled the hadronic physics community. A value of 0.8418 ± 0.0007 fm was extracted which is 7σ smaller than the previous determinations obtained from electron-proton scattering experiments and based on precision spectroscopy of electronic hydrogen. An additional extraction of the proton charge radius from electron scattering at Mainz is also in good agreement with these 'electronic' determinations. An independent measurement of the proton charge radius from unpolarized elastic ep scattering using a magnetic spectrometer free method was proposed and fully approved at Jefferson Laboratory in June 2012. This novel technique uses the high precision calorimeter HyCal and a windowless hydrogen gas target which makes possible the extraction of the charge radius at very forward angles and thus very low momentum transfer Q{sup 2} up to 10{sup −4} (GeV/c){sup 2} with an unprecedented sub-percent precision for this type of experiment. In this paper, after a review of the recent progress on the proton charge radius extraction and the new high precision experiment PRad will be presented.
Performance calculation and simulation system of high energy laser weapon
NASA Astrophysics Data System (ADS)
Wang, Pei; Liu, Min; Su, Yu; Zhang, Ke
2014-12-01
High energy laser weapons are ready for some of today's most challenging military applications. Based on the analysis of the main tactical/technical index and combating process of high energy laser weapon, a performance calculation and simulation system of high energy laser weapon was established. Firstly, the index decomposition and workflow of high energy laser weapon was proposed. The entire system was composed of six parts, including classical target, platform of laser weapon, detect sensor, tracking and pointing control, laser atmosphere propagation and damage assessment module. Then, the index calculation modules were designed. Finally, anti-missile interception simulation was performed. The system can provide reference and basis for the analysis and evaluation of high energy laser weapon efficiency.
CHEOPS: a space telescope for ultra-high precision photometry of exoplanet transits
NASA Astrophysics Data System (ADS)
Fortier, Andrea; Beck, Thomas; Benz, Willy; Broeg, Christopher; Cessa, Virginie; Ehrenreich, David; Thomas, Nicolas
2014-08-01
The CHaracterising ExOPlanet Satellite (CHEOPS) is a joint ESA-Switzerland space mission (expected to launch in 2017) dedicated to search for exoplanet transits by means of ultra-high precision photometry. CHEOPS will provide accurate radii for planets down to Earth size. Targets will mainly come from radial velocity surveys. The CHEOPS instrument is an optical space telescope of 30 cm clear aperture with a single focal plane CCD detector. The tube assembly is passively cooled and thermally controlled to support high precision, low noise photometry. The telescope feeds a re-imaging optic, which supports the straylight suppression concept to achieve the required Signal to Noise.
Fabrication and Assembly of High-Precision Hinge and Latch Joints for Deployable Optical Instruments
NASA Technical Reports Server (NTRS)
Phelps, James E.
1999-01-01
Descriptions are presented of high-precision hinge and latch joints that have been co-developed, for application to deployable optical instruments, by NASA Langley Research Center and Nyma/ADF. Page-sized versions of engineering drawings are included in two appendices to describe all mechanical components of both joints. Procedures for assembling the mechanical components of both joints are also presented. The information herein is intended to facilitate the fabrication and assembly of the high-precision hinge and latch joints, and enable the incorporation of these joints into the design of deployable optical instrument systems.
A high precision attitude determination and control system for the UYS-1 nanosatellite
NASA Astrophysics Data System (ADS)
Chaurais, J. R.; Ferreira, H. C.; Ishihara, J. Y.; Borges, R. A.; Kulabukhov, A. M.; Larin, V. A.; Belikov, V. V.
This paper presents the design of a high precision attitude determination and control system for the UYS-1 Ukrainian nanosatellite. Its main task is the 3-axis stabilization with less than 0.5° angle errors, so the satellite may take high precision photos of Earth's surface. To accomplish this task, this system comprises a star tracker and three reaction wheels. To avoid external disturbances and actuators faults, a PD-type and a PID-type robust controllers are simulated and the results are compared to an empirically adjusted PD controller.
High-precision self-adaptive phase-calibration method for wavelength-tuning interferometry
NASA Astrophysics Data System (ADS)
Zhu, Xueliang; Zhao, Huiying; Dong, Longchao; Wang, Hongjun; Liu, Bingcai; Yuan, Daocheng; Tian, Ailing; Wang, Fangjie; Zhang, Chupeng; Ban, Xinxing
2017-03-01
We introduce a high-precision self-adaptive phase-calibration method for performing wavelength-tuning interferometry. Our method is insensitive to the nonlinearity of the phase shifter, even under random control. Intensity errors derived from laser voltage changes can be restrained by adopting this approach. Furthermore, this method can effectively overcome the influences from the background and modulation intensities in the interferogram, regardless of the phase structure. Numerical simulations and experiments are implemented to verify the validity of this high-precision calibration method.
Towards high precision measurements of nuclear g-factors for the Be isotopes
NASA Astrophysics Data System (ADS)
Takamine, A.; Wada, M.; Okada, K.; Ito, Y.; Schury, P.; Arai, F.; Katayama, I.; Imamura, K.; Ichikawa, Y.; Ueno, H.; Wollnik, H.; Schuessler, H. A.
2016-06-01
We describe the present status of future high-precision measurements of nuclear g-factors utilizing laser-microwave double and laser-microwave-rf triple resonance methods for online-trapped, laser-cooled radioactive beryllium isotope ions. These methods have applicability to other suitably chosen isotopes and for beryllium show promise in deducing the hyperfine anomaly of 11Be with a sufficiently high precision to study the nuclear magnetization distribution of this one-neutron halo nucleus in a nuclear-model-independent manner.
High-resolution estimation of the water balance components from high-precision lysimeters
NASA Astrophysics Data System (ADS)
Hannes, M.; Wollschläger, U.; Schrader, F.; Durner, W.; Gebler, S.; Pütz, T.; Fank, J.; von Unold, G.; Vogel, H.-J.
2015-01-01
Lysimeters offer the opportunity to determine precipitation, evapotranspiration and groundwater-recharge with high accuracy. In contrast to other techniques, like Eddy-flux systems or evaporation pans, lysimeters provide a direct measurement of evapotranspiration from a clearly defined surface area at the scale of a soil profile via the built-in weighing system. In particular the estimation of precipitation can benefit from the much higher surface area compared to typical raingauge systems. Nevertheless, lysimeters are exposed to several external influences that could falsify the calculated fluxes. Therefore, the estimation of the relevant fluxes requires an appropriate data processing with respect to various error sources. Most lysimeter studies account for noise in the data by averaging. However, the effects of smoothing by averaging on the accuracy of the estimated water balance is rarely investigated. In this study, we present a filtering scheme, which is designed to deal with the various kinds of possible errors. We analyze the influence of averaging times and thresholds on the calculated water balance. We further investigate the ability of two adaptive filtering methods (the Adaptive Window and Adaptive Threshold filter (AWAT-filter) (Peters et al., 2014) and the consecutively described synchro-filter) in further reducing the filtering error. On the basis of the data sets of 18 simultanously running lysimeters of the TERENO SoilCan research site in Bad Lauchstädt, we show that the estimation of the water balance with high temporal resolution and good accuracy is possible.
Assessing the effect of biochar on erosion by using a high precision rainfall simulator
NASA Astrophysics Data System (ADS)
Goldman, Nina; Mayer, Marius; Fister, Wolfgang
2017-04-01
Numerus studies have explored the effect of biochar as a soil amendment and its beneficial effects on different soil properties. Adding biochar to soils might also act as a long-term carbon sink, which would mitigate the anthropogenic climate change. However, there are limitations regarding the current process knowledge on the effects of biochar on soil erosion and its erodibility. First test results point towards lower erosion rates of the substrates, which were enriched with biochar. In contrast, biochar concurrently shows relatively high erosion rates due to its lower bulk density, which makes it more susceptible to erosion. However, the number of conducted experiments does not yet allow quantitative statements. The overall objectives of this study are to gain insight into the process knowledge of erodibility of soils with incorporated biochar, and to develop new techniques for their observation. A drip type rainfall simulator is used on a microscale flume (0.2m2) to be able to control and monitor the thin surface flows and rainfall characteristics precisely. Two different types of biochars (high and low temperature pyrolysis) are used in combination with different substrates ranging from pure sand to naturally developed soils. Depending on the particle size and density of the biochar, different erosion rates can be observed. Particle analysis of the eroded material produces insights into which particle sizes and forms are preferably eroded. Since differentiation between eroded soil organic matter and biochar is very difficult without the use of heavy acids, two new methods are being developed and tested to monitor erosion rates of biochar. Comparing the original substrate with the eroded sediment by means of photogrammetry and isotope analysis, it should be possible to infer how much biochar was discharged and to assess the actual particle movement on the erosion flume. The results of this study could provide guidelines for the types of biochar that should be
High-precision absolute distance and vibration measurement with frequency scanned interferometry
Yang, H.-J.; Deibel, Jason; Nyberg, Sven; Riles, Keith
2005-07-01
We report high-precision absolute distance and vibration measurements performed with frequency scanned interferometry using a pair of single-mode optical fibers. Absolute distance was determined by counting the interference fringes produced while scanning the laser frequency. A high-finesse Fabry-Perot interferometer was used to determine frequency changes during scanning. Two multiple-distance-measurement analysis techniques were developed to improve distance precision and to extract the amplitude and frequency of vibrations. Under laboratory conditions, measurement precision of {approx}50 nm was achieved for absolute distances ranging from 0.1 to 0.7 m by use of the first multiple-distance-measurement technique. The second analysis technique has the capability to measure vibration frequencies ranging from 0.1 to 100 Hz with an amplitude as small as a few nanometers without a priori knowledge.
High-precision absolute distance and vibration measurement with frequency scanned interferometry.
Yang, Hai-Jun; Deibel, Jason; Nyberg, Sven; Riles, Keith
2005-07-01
We report high-precision absolute distance and vibration measurements performed with frequency scanned interferometry using a pair of single-mode optical fibers. Absolute distance was determined by counting the interference fringes produced while scanning the laser frequency. A high-finesse Fabry-Perot interferometer was used to determine frequency changes during scanning. Two multiple-distance-measurement analysis techniques were developed to improve distance precision and to extract the amplitude and frequency of vibrations. Under laboratory conditions, measurement precision of approximately 50 nm was achieved for absolute distances ranging from 0.1 to 0.7 m by use of the first multiple-distance-measurement technique. The second analysis technique has the capability to measure vibration frequencies ranging from 0.1 to 100 Hz with an amplitude as small as a few nanometers without a priori knowledge.
A high-precision K-band LFMCW radar for range measurement
NASA Astrophysics Data System (ADS)
Jia, Yingzhuo; Chen, Xiuwei; Zou, Yongliao
2016-11-01
K-band LFMCW radar may be applied in high-precision range measurement, if its range resolution is made be close to mm magnitude, good performance is not only needed in hardware design, algorithm selection and optimization is but also needed. In K-band LFMCW radar system, CZT algorithm is modified according to practical radar echo signal, its simulation model is built in the System Generator tool software, the corresponding algorithm is implemented in FPGA. K-band LFMCW radar may be applied in range measurement of great volume storage tank, the outfield experiment was done according to application, experiment result shows that range measurement precision may reach mm magnitude, the system can meet the requirement of remote high-precision measurement.
NASA Astrophysics Data System (ADS)
Zhao, Xi-ting; Jiao, Wen-chun; Liao, Zhi-bo
2012-10-01
High precision of mapping camera boresight directly affects the positioning accuracy of geographical location and photogrammetry. Although it can fulfill the request of good performance for unobscured TMA optical system, which adopted computer aided alignment method, single lens was unobscured which unable ascertain boresight by using lens centering technology, and boresight is randomicity as a result of compensating relation of multivariables. A novel method using the measurement of theodolite space intersection was proposed to rapidly and high accurately complete establish the relation between boresight and a cube in precision alignment stage, simultaneously, the relation of component deflexion and boresight have been simulated by computer model reverse optimization. Thus, the image quality and precision of boresight was effective operated according to the request of satellite assembly.
High-precision tracking with non-blinking quantum dots resolves nanoscale vertical displacement.
Marchuk, Kyle; Guo, Yijun; Sun, Wei; Vela, Javier; Fang, Ning
2012-04-11
Novel non-blinking quantum dots (NBQDs) were utilized in three-dimensional super-localization, high-precision tracking applications under an automated scanning-angle total internal reflection fluorescence microscope (SA-TIRFM). NBQDs were randomly attached to stationary microtubules along the radial axis under gliding assay conditions. By automatically scanning through a wide range of incident angles with different evanescent-field layer thicknesses, the fluorescence intensity decay curves were obtained. Fit with theoretical decay functions, the absolute vertical positions were determined with sub-10-nm localization precision. The emission intensity profile of the NBQDs attached to kinesin-propelled microtubules was used to resolve the self-rotation of gliding microtubules within a small vertical distance of ~50 nm. We demonstrate the applicability of NBQDs in high-precision fluorescence imaging experiments. © 2012 American Chemical Society
High Resolution Mass Spectra Analysis with a Programmable Calculator.
ERIC Educational Resources Information Center
Holdsworth, David K.
1980-01-01
Highlighted are characteristics of programs written for a pocket-sized programmable calculator to analyze mass spectra data (such as displaying high resolution masses for formulas, predicting whether formulas are stable molecules or molecular ions, determining formulas by isotopic abundance measurement) in a laboratory or classroom. (CS)
Figures deduction method for mast valuating interpolation errors of encoder with high precision
NASA Astrophysics Data System (ADS)
Yi, Jie; An, Li-min; Liu, Chun-xia
2011-08-01
With the development of technology, especially the need of fast accurately running after and orientating the aim of horizon and air, the photoelectrical rotary encoder with high precision has become the research hotspot in the fields of international spaceflight and avigation, the errors evaluation of encoder with high precision is the one of the key technology that must to be resolved. For the encoder with high precision, the interpolation errors is the main factor which affects its precision. Existing interpolation errors detection adopts accurate apparatus such as little angle measurement apparatus and optics polyhedron, requesting under the strict laboratory condition to carry on. The detection method is also time-consuming, hard to tackle and easy to introduce detect errors. This paper mainly studies the fast evaluation method of interpolation errors of encoder with high precision which is applied to the working field. Taking the Lissajou's figure produced by moiré fringe as foundation, the paper sets up the radius vector's mathematical model to represent figure's form deviation, analyses the implied parameters information of moiré fringe, the relation of the radius vector deviation and interpolation errors in the figures and puts forward the method of interpolation errors figures evaluation. Adopting figure deduction method, and directly from harmonic component of radius vector deviation toward harmonic component of interpolation errors, the interpolation errors can be gotten in the paper. Through data collecting card, the Moiré fringe signal is transmitted into the computer, then, the computer storages the data, using figures evaluation method to analyses the data, drawing the curve of interpolation errors. Comparing with interpolation errors drawing from traditional detect method, the change trend of the interpolation errors curve is similar, peak-peak value is almost equality. The result of experiment indicates: the method of the paper can be applied to
High precision position control of voice coil motor based on single neuron PID
NASA Astrophysics Data System (ADS)
Li, Liyi; Chen, Qiming; Tan, Guangjun; Zhu, He
2013-01-01
Voice coil motor(VCM) is widely used in high-speed and high-precision positioning control system in recent years. However, there are system uncertainty, nonlinear, modeling error, and external disturbances in the high-precision positioning control system, traditional PID control method is difficult to achieve precise positioning control. In this paper, a new position control strategy with a single neuron controller which has the capability of self-studying and self-adapting composed with PID controller is put forward, and the feedforward compensator is added to improve the dynamic response of the system in the position loop. Moreover, the disturbance observer is designed to suppress model parameter uncertainty and external disturbance signal in the current loop. In addition, the problem of high precision position control of VCM under the influence of significant disturbances is addressed, which including the gas-lubricated damping, the spring, the back EMF and ripple forces, on the basis, the mathematical model of VCM is established accurately. The simulation results show that this kind of controller can improve the dynamic characteristic and strengthen the robustness of the system, and the current loop with disturbance observer can also restrain disturbance and high frequency.
NASA Astrophysics Data System (ADS)
Wang, Yunzhi; Xie, Fang; Ma, Sen; Chen, Liang
2015-03-01
An optical fiber multiplexing low coherence and high coherence interferometric system, which includes a Fizeau interferometer as the sensing element and a Michelson interferometer as the demodulating element, is designed for remote and high precision step height measurement. The Fizeau interferometer is placed in the remote field for sensing the measurand, while the Michelson interferometer which works in both modes of low coherence interferometry and high coherence interferometry is employed for demodulating the measurand. The range of the step height is determined by the low coherence interferometry and the value of it is measured precisely by the high coherence interferometry. High precision has been obtained by searching precisely the peak of the low coherence interferogram symmetrically from two sides of the low coherence interferogram and stabilizing the Michelson interferometer with a feedback loop. The maximum step height that could be measured is 6 mm while the measurement resolution is less than 1 nm. The standard deviation of 10 times measurement results of a step height of 1 mm configurated with two gauge blocks is 0.5 nm.
Aeroelastic Calculations of Quiet High- Speed Fan Performed
NASA Technical Reports Server (NTRS)
Bakhle, Milind A.; Srivastava, Rakesh; Mehmed, Oral; Min, James B.
2002-01-01
An advanced high-speed fan was recently designed under a cooperative effort between the NASA Glenn Research Center and Honeywell Engines & Systems. The principal design goals were to improve performance and to reduce fan noise at takeoff. Scale models of the Quiet High-Speed Fan were tested for operability, performance, and acoustics. During testing, the fan showed significantly improved noise characteristics, but a self-excited aeroelastic vibration known as flutter was encountered in the operating range. Flutter calculations were carried out for the Quiet High-Speed Fan using a three-dimensional, unsteady aerodynamic, Reynolds-averaged Navier-Stokes turbomachinery code named "TURBO." The TURBO code can accurately model the viscous flow effects that can play an important role in various aeroelastic problems such as flutter with flow separation, flutter at high loading conditions near the stall line (stall flutter), and flutter in the presence of shock and boundary-layer interaction. Initially, calculations were performed with no blade vibrations. These calculations were at a constant rotational speed and a varying mass flow rate. The mass flow rate was varied by changing the backpressure at the exit boundary of the computational domain. These initial steady calculations were followed by aeroelastic calculations in which the blades were prescribed to vibrate harmonically in a natural mode, at a natural frequency, and with a fixed interblade phase angle between adjacent blades. The AE-prep preprocessor was used to interpolate the in-vacuum mode shapes from the structural dynamics mesh onto the computational fluid dynamics mesh and to smoothly propagate the grid deformations from the blade surface to the interior points of the grid. The aeroelastic calculations provided the unsteady aerodynamic forces on the blade surface due to blade vibrations. These forces were vector multiplied with the structural dynamic mode shape to calculate the work done on the blade during
Active-passive hybrid piezoelectric actuators for high-precision hard disk drive servo systems
NASA Astrophysics Data System (ADS)
Chan, Kwong Wah; Liao, Wei-Hsin
2006-03-01
Positioning precision is crucial to today's increasingly high-speed, high-capacity, high data density, and miniaturized hard disk drives (HDDs). The demand for higher bandwidth servo systems that can quickly and precisely position the read/write head on a high track density becomes more pressing. Recently, the idea of applying dual-stage actuators to track servo systems has been studied. The push-pull piezoelectric actuated devices have been developed as micro actuators for fine and fast positioning, while the voice coil motor functions as a large but coarse seeking. However, the current dual-stage actuator design uses piezoelectric patches only without passive damping. In this paper, we propose a dual-stage servo system using enhanced active-passive hybrid piezoelectric actuators. The proposed actuators will improve the existing dual-stage actuators for higher precision and shock resistance, due to the incorporation of passive damping in the design. We aim to develop this hybrid servo system not only to increase speed of track seeking but also to improve precision of track following servos in HDDs. New piezoelectrically actuated suspensions with passive damping have been designed and fabricated. In order to evaluate positioning and track following performances for the dual-stage track servo systems, experimental efforts are carried out to implement the synthesized active-passive suspension structure with enhanced piezoelectric actuators using a composite nonlinear feedback controller.
NASA Astrophysics Data System (ADS)
Wang, Yunzhi; Xie, Fang; Ma, Sen; Chen, Liang
2015-02-01
In this paper, an optical fiber multiplexing interferometric system including a Fizeau interferometer and a Michelson interferometer is designed for remote and high precision step height measurement. The Fizeau interferometer which is inserted in the remote sensing field is used for sensing the measurand, while the Michelson interferometer which is stabilized by a feedback loop works in both modes of low coherence interferometry and high coherence interferometry to demodulate the measurand. The range of the step height is determined by the low coherence interferometry and the value of it is measured precisely by the high coherence interferometry. High precision has been obtained by using the symmetrical peak-searching method to address the peak of the low coherence interferogram precisely and stabilizing the Michelson interferometer with a feedback loop. The maximum step height that could be measured is 6 mm while the measurement resolution is less than 1 nm. The standard deviation of 10 times measurement results of a step height of 1 mm configurated with two gauge blocks is 0.5 nm.
High-Precision Calibration of a Weld-On-The-Fly-System
NASA Astrophysics Data System (ADS)
Emmelmann, Claus; Schenk, Kerstin; Wollnack, Jörg; Kirchhoff, Marc
Since 20 years the importance of laser based material processing increases constantly due to its significant higher process speed in comparison to conventional processing technologies. A scanner system for laser-remote-welding mounted on a robot hand to achieve more freedom in positioning the laser spot has been investigated. Additionally the scanner head contains two fixed cameras for measurements and process monitoring. To perform required measurements with maximum accuracy the allover system has to be calibrated precise. Therefore a combination of video metric measurement system and a laser tracker has been used. This paper depict this high-precision calibration process and shows reachable accuracies.
Development and Utilization of High Precision Digital Elevation Data taken by Airborne Laser Scanner
NASA Astrophysics Data System (ADS)
Akutsu, Osamu; Ohta, Masataka; Isobe, Tamio; Ando, Hisamitsu, Noguchi, Takahiro; Shimizu, Masayuki
2005-03-01
Disasters caused by heavy rain in urban areas bring a damage such as chaos in the road and railway transport systems, power failure, breakdown of the telephone system and submersion of built up areas, subways and underground shopping arcades, etc. It is important to obtain high precision elevation data which shows the detailed landform because a slight height difference affects damages by flood very considerably. Therefore, The Geographical Survey Institute (GSI) is preparing 5m grid digital terrain model (DTM) based on precise ground elevation data taken by using airborne laser scanner. This paper describes the process and an example of the use of a 5m grid digital data set.
Microplasma patterning of bonded microchannels using high-precision "injected" electrodes.
Priest, Craig; Gruner, Philipp J; Szili, Endre J; Al-Bataineh, Sameer A; Bradley, James W; Ralston, John; Steele, David A; Short, Robert D
2011-02-07
A rapid, high-precision method for localised plasma-treatment of bonded PDMS microchannels is demonstrated. Patterned electrodes were prepared by injection of molten gallium into preformed microchannel guides. The electrode guides were prepared without any additional fabrication steps compared to conventional microchannel fabrication. Alignment of the "injected" electrodes is precisely controlled by the photomask design, rather than positioning accuracy of alignment tools. Surface modification is detected using a fluorescent dye (Rhodamine B), revealing a well-defined micropattern with regions less than 100 µm along the length of the microchannel.
High-voltage plasma interactions calculations using NASCAP/LEO
NASA Technical Reports Server (NTRS)
Mandell, M. J.; Katz, I.
1990-01-01
This paper reviews four previous simulations (two laboratory and two space-flight) of interactions of a high-voltage spacecraft with a plasma under low-earth orbit conditions, performed using a three-dimensional computer code NASCAP/LEO. Results show that NASCAP/LEO can perform meaningful simulations of high-voltage plasma interactions taking into account three-dimensional effects of geometry, spacecraft motion, and magnetic field. Two new calculations are presented: (1) for current collection by 1-mm pinholes in wires (showing that a pinhole in a wire can collect far more current than a similar pinhole in a flat plate); and (2) current collection by Charge-2 mother vehicle launched in December 1985. It is shown that the Charge-2 calculations predicted successfully ion collection at negative bias, the floating potential of a probe outside or inside the sheath under negative bias conditions, and magnetically limited electron collection under electron beam operation at high altitude.
High-voltage plasma interactions calculations using NASCAP/LEO
NASA Technical Reports Server (NTRS)
Mandell, M. J.; Katz, I.
1990-01-01
This paper reviews four previous simulations (two laboratory and two space-flight) of interactions of a high-voltage spacecraft with a plasma under low-earth orbit conditions, performed using a three-dimensional computer code NASCAP/LEO. Results show that NASCAP/LEO can perform meaningful simulations of high-voltage plasma interactions taking into account three-dimensional effects of geometry, spacecraft motion, and magnetic field. Two new calculations are presented: (1) for current collection by 1-mm pinholes in wires (showing that a pinhole in a wire can collect far more current than a similar pinhole in a flat plate); and (2) current collection by Charge-2 mother vehicle launched in December 1985. It is shown that the Charge-2 calculations predicted successfully ion collection at negative bias, the floating potential of a probe outside or inside the sheath under negative bias conditions, and magnetically limited electron collection under electron beam operation at high altitude.
NASA Astrophysics Data System (ADS)
Komura, Yukihiro; Okabe, Yutaka
2016-04-01
We study the Ising models on the Penrose lattice and the dual Penrose lattice by means of the high-precision Monte Carlo simulation. Simulating systems up to the total system size N = 20633239, we estimate the critical temperatures on those lattices with high accuracy. For high-speed calculation, we use the generalized method of the single-GPU-based computation for the Swendsen-Wang multi-cluster algorithm of Monte Carlo simulation. As a result, we estimate the critical temperature on the Penrose lattice as Tc/J = 2.39781 ± 0.00005 and that of the dual Penrose lattice as Tc*/J = 2.14987 ± 0.00005. Moreover, we definitely confirm the duality relation between the critical temperatures on the dual pair of quasilattices with a high degree of accuracy, sinh (2J/Tc)sinh (2J/Tc*) = 1.00000 ± 0.00004.
von Wilmowsky, Cornelius; Bergauer, Bastian; Nkenke, Emeka; Neukam, Friedrich Wilhelm; Neuhuber, Winfried; Lell, Michael; Keller, Andrea; Eitner, Stephan; Matta, Ragai-Edward
2015-10-01
Three-dimensional radiological imaging data play an increasingly role in planning, simulation, and navigation in oral and maxillofacial surgery. The aim of this study was to establish a new, highly precise, in vitro measurement technology for the evaluation of the geometric accuracy down to the micrometric range of digital imaging data. A macerated human mandible was scanned optically with an industrial, non-contact, white light scanner, and a three-dimensional (3D) model was obtained, which served as a master model. The mandible was then scanned 10 times by cone beam computed tomography (CBCT), and the generated 3D surface bone model was virtually compared with the master model. To evaluate the accuracy of the CBCT scans, the standard deviation and the intraclass coefficient were determined. A total of 19 measurement points in 10 CBCT scans were investigated, and showed an average value of 0.2676 mm with a standard deviation of 0.0593 mm. The standard error of the mean was 0.0043 mm. The intraclass correlation coefficient (ICC) within the 10 CBCT scans was 0.9416. This highly precise measuring technology was demonstrated to be appropriate for the evaluation of the accuracy of digital imaging data, down to the micrometric scale. This method is able to exclude human measurement errors, as the software calculates the superimposition and deviation. Thus inaccuracies caused by measurement errors can be avoided. This method provides a highly precise determination of deviations of different CBCT parameters and 3D models for surgical, navigational, and diagnostic purposes. Thus, surgical procedures and the post-operative outcomes can be precisely simulated to benefit the patient. Copyright © 2015 European Association for Cranio-Maxillo-Facial Surgery. Published by Elsevier Ltd. All rights reserved.
High-dose, high-precision treatment options for boosting cancer of the nasopharynx.
Levendag, Peter C; Lagerwaard, Frank J; de Pan, Connie; Noever, Inge; van Nimwegen, Arent; Wijers, Oda; Nowak, Peter J C M
2002-04-01
The aim of the study is to define the role and type of high-dose, high-precision radiation therapy for boosting early staged T1,2a, but in particular locally advanced, T2b-4, nasopharyngeal cancer (NPC). Ninety-one patients with primary stage I-IVB NPC, were treated between 1991 and 2000 with 60-70Gy external beam radiation therapy (ERT) followed by 11-18Gy endocavitary brachytherapy (ECBT) boost. In 1996, for stage III-IVB disease, cisplatinum (CDDP)-based neoadjuvant chemotherapy (CHT) was introduced per protocol. Patients were analyzed for local control and overall survival. For a subset of 18 patients, a magnetic resonance imaging (MRI) scan at 46Gy was obtained. After matching with pre-treatment computed tomogram, patients (response) were graded into four categories; i.e. LD (T1,2a, with limited disease, i.e. disease confined to nasopharynx), LRD (T2b, with limited residual disease), ERD (T2b, with extensive residual disease), or patients initially diagnosed with T3,4 tumors. Dose distributions for ECBT (Plato-BPS v. 13.3, Nucletron) were compared to parallel-opposed three-dimensional conformal radiation therapy (Cadplan, Varian Dosetek v. 3.1), intensity modulated radiation therapy (IMRT) (Helios, Varian) and stereotactic radiotherapy (SRT) (X-plan, Radionics v. 2.02). For stage T1,2N0,1 tumors, at 2 years local control of 96% and overall survival of 80% were observed. For the poorest subset of patients, well/moderate/poorly differentiated T3,4 tumors, local control and overall survival at 2 years with CHT were 67 and 67%, respectively, vs. local control of 20% and overall survival of 12% without CHT. For LD and LRD, conformal target coverage and optimal sparing can be obtained with brachytherapy. For T2b-ERD and T3,4 tumors, these planning goals are better achieved with SRT and/or IMRT. The dosimetric findings, ease of application of the brachytherapy procedure, and the clinical results in early staged NPC, necessitates ERT combined with brachytherapy boost
High precision tuning of state for memristive devices by adaptable variation-tolerant algorithm
NASA Astrophysics Data System (ADS)
Alibart, Fabien; Gao, Ligang; Hoskins, Brian D.; Strukov, Dmitri B.
2012-02-01
Using memristive properties common for titanium dioxide thin film devices, we designed a simple write algorithm to tune device conductance at a specific bias point to 1% relative accuracy (which is roughly equivalent to seven-bit precision) within its dynamic range even in the presence of large variations in switching behavior. The high precision state is nonvolatile and the results are likely to be sustained for nanoscale memristive devices because of the inherent filamentary nature of the resistive switching. The proposed functionality of memristive devices is especially attractive for analog computing with low precision data. As one representative example we demonstrate hybrid circuitry consisting of an integrated circuit summing amplifier and two memristive devices to perform the analog multiply-and-add (dot-product) computation, which is a typical bottleneck operation in information processing.
Yin, Xuebing; Zhao, Huijie; Zeng, Junyu; Qu, Yufu
2007-05-20
A new acoustic grating fringe projector (AGFP) was developed for high-speed and high-precision 3D measurement. A new acoustic grating fringe projection theory is also proposed to describe the optical system. The AGFP instrument can adjust the spatial phase and period of fringes with unprecedented speed and accuracy. Using rf power proportional-integral-derivative (PID) control and CCD synchronous control, we obtain fringes with fine sinusoidal characteristics and realize high-speed acquisition of image data. Using the device, we obtained a precise phase map for a 3D profile. In addition, the AGFP can work in running fringe mode, which could be applied in other measurement fields.
High-precision branching ratio measurement for the superallowed {beta}{sup +} emitter {sup 62}Ga
Finlay, P.; Svensson, C. E.; Bandyopadhyay, D.; Grinyer, G. F.; Hyland, B.; Leach, K. G.; Phillips, A. A.; Schumaker, M. A.; Wong, J.; Ball, G. C.; Chakrawarthy, R. S.; Hackman, G.; Kanungo, R.; Morton, A. C.; Pearson, C. J.; Savajols, H.; Leslie, J. R.; Towner, I. S.; Austin, R. A. E.; Chaffey, A.
2008-08-15
A high-precision branching ratio measurement for the superallowed {beta}{sup +} decay of {sup 62}Ga was performed at the Isotope Separator and Accelerator (ISAC) radioactive ion beam facility. The 8{pi} spectrometer, an array of 20 high-purity germanium detectors, was employed to detect the {gamma} rays emitted following Gamow-Teller and nonanalog Fermi {beta}{sup +} decays of {sup 62}Ga, and the SCEPTAR plastic scintillator array was used to detect the emitted {beta} particles. Thirty {gamma} rays were identified following {sup 62}Ga decay, establishing the superallowed branching ratio to be 99.858(8)%. Combined with the world-average half-life and a recent high-precision Q-value measurement for {sup 62}Ga, this branching ratio yields an ft value of 3074.3{+-}1.1 s, making {sup 62}Ga among the most precisely determined superallowed ft values. Comparison between the superallowed ft value determined in this work and the world-average corrected Ft value allows the large nuclear-structure-dependent correction for {sup 62}Ga decay to be experimentally determined from the CVC hypothesis to better than 7% of its own value, the most precise experimental determination for any superallowed emitter. These results provide a benchmark for the refinement of the theoretical description of isospin-symmetry breaking in A{>=}62 superallowed decays.
Development of high precision laser measurement to Space Debris and Applications in SHAO
NASA Astrophysics Data System (ADS)
Zhang, Zhongping; Chen, Juping; Xiong, Yaoheng; Han, Xingwei
2016-07-01
Artificial space debris has become the focus during the space exploration because of producing the damage for the future active spacecrafts and high precision measurement for space debris are required for debris surveillance and collision avoidance. Laser ranging technology is inherently high accurate and will play an important role in precise orbit determination, accurate catalog of space debris. Shanghai Astronomical Observatory (SHAO) of CAS, has been developing the technology of laser measurement to space debris for several years. According to characteristics of laser echoes from space debris and the experiences of relevant activities, high repetition rate, high power laser system and low dark noise APD detector with high quantum efficiency and high transmissivity of narrow bandwidth spectral filter are applied to laser measurement to space debris in SHAO. With these configurations, great achievements of laser measurement to space debris are made with hundreds of passes of laser data from space debris in the distance between 500km and 2500km with Radar Cross Section (RCS) of more than 10 m^{2} to less than 0.5m^{2} at the measuring precision of less than 1m (RMS). For better application of laser ranging technology, Chinese Space Debris Observation network, consisting of Shanghai, Changchun and Kunming station, has been preliminary developed and the coordinated observation has been performed to increase the measuring efficiency for space debris. It is referred from data that laser ranging technology can be as the essential high accuracy measurement technology in the study of space debris.
A high-precision method for measurement of paleoatmospheric CO2 in small polar ice samples
NASA Astrophysics Data System (ADS)
Ahn, Jinho; Brook, Edward J.; Howell, Kate
We describe a high-precision method, now in use in our laboratory, for measuring the CO2 mixing ratio of ancient air trapped in polar ice cores. Occluded air in ice samples weighing ˜8-15 g is liberated by crushing with steel pins at -35°C and trapped at -263°C in a cryogenic cold trap. CO2 in the extracted air is analyzed using gas chromatography. Replicate measurements for several samples of high-quality ice from the Siple Dome and Taylor Dome Antarctic ice cores have pooled standard deviations of <0.9 ppm. This high-precision technique is directly applicable to high-temporal-resolution studies for detection of small CO2 variations, for example CO2 variations of a few parts per million on millennial to decadal scales.
A high-precision tunable millimeter-wave photonic LO reference for the ALMA telescope
NASA Astrophysics Data System (ADS)
Shillue, W.; Grammer, W.; Jacques, C.; Meadows, H.; Castro, J.; Banda, J.; Treacy, R.; Masui, Y.; Brito, R.; Huggard, P.; Ellison, B.; Cliche, J.-F.; Ayotte, S.; Babin, A.; Costin, F.; Latrasse, C.; Pelletier, F.; Picard, M.-J.; Poulin, M.; Poulin, P.
2013-06-01
The Atacama Large Millimeter Array is a radio telescope array of 66 antennas designed for high performance scientific imaging, covering a frequency range of 27-950 GHz. Each antenna has a front end with ten receiving bands, and each band has a local oscillator which is synchronized between all antennas. We describe a high precision tunable millimeter-wave photonic local oscillator reference system, which is used as the synchronizing reference for all ten bands on each receiver.
Development of the Portable Synchrotron MIRRORCLE-CV for High Precision Non-Destructive Testing
Hasegawa, Daisuke; Toyosugi, Norio; Noh, Young Deok; Yamada, Takanori; Morita, Masaki; Mantey, Edward; Masaoka, Sei; Yamada, Hironari
2007-01-19
We started the development of the portable synchrotron MIRRORCLE-CV series, which provides a high quality x-ray beam for high precision non-destructive testing (NDT). Computer simulations for the magnetic field design and electron dynamics reveal that the outer diameter of the synchrotron magnet can be as small as 30 cm. This synchrotron size approaches that of a conventional x-ray tube.
High speed inlet calculations with real gas effects
NASA Technical Reports Server (NTRS)
Coirier, William J.
1988-01-01
A 2-D steady-state Navier-Stokes solver has been upgraded to include the effects of frozen and equilibrium air chemistry for applications to high speed flight vehicles. To provide a computationally economical first order approximation to the high temperature physics, variable thermodynamic data is used for the chemically frozen mode to allow for a variation with temperature of the air specific heats and enthalpy. For calculations involving air in chemical equilibrium, a specially modified version of the NASA Lewis Chemical Equilibrium Code, CEC, is used to compute the chemical composition and resultant thermochemical properties. The upgraded solver is demonstrated by comparing results from calorically perfect (C sub p=constant), thermally perfect (frozen) and equilibrium air calculations for a variety of geometries, and flight Mach numbers.
High-Precision 40Ar/39Ar dating of the Deccan Traps
NASA Astrophysics Data System (ADS)
Sprain, C. J.; Renne, P. R.; Richards, M. A.; Self, S.; Vanderkluysen, L.; Pande, K.; Morgan, L. E.; Cosca, M. A.
2015-12-01
The Deccan Traps (DT) have been strongly implicated over the past thirty years as a potential cause of the mass extinctions at the Cretaceous-Paleogene boundary (KPB). While a broad coincidence between the DT eruptions and the KPB is increasingly clear, variables such as tempo, volume of eruptions, and amount of associated climate-modifying volatiles, are too poorly constrained to properly assess causality. In order to appropriately test whether the DT played a role in the mass extinctions a high-precision geochronologic framework defining the timing and tempo of volcanic eruptions is needed. Recent high-precision U/Pb dating of zircons from inferred paleosols (red boles) and melt segregation horizons is the only available geochronology of the DT that is sufficiently precise to resolve age differences of less than 100 ka (Schoene et al., 2015). While this technique can achieve high-precision dates for individual zircon crystals, protracted age distributions may not include the actual eruption age. Moreover, the applicability of U/Pb dating in the DT is limited as suitable material is only sporadically present and therefore the technique is unlikely to achieve the resolution necessary to assess the tempo of DT eruptions. To mediate these limitations, we present new high-precision 40Ar/39Ar ages for plagioclase separated from the lava flows sampled from each of ten chemostratigraphically-defined formations within the Western Ghats. Multiple (N = 1-4) plateau ages from each sample and detailed neutron fluence monitoring during irradiation yield ages with precision commonly better than 100 ka (1 sigma). Results provide the first precise location of the KPB within the DT eruption sequence, which approximately coincides with major changes in eruption frequency, flow-field volumes, extent of crustal contamination, and degree of fractionation. Collectively, these results suggest that a state shift occurred in the DT magma system within ~50 ka of the Chicxulub impact
NASA Astrophysics Data System (ADS)
Winrow, Edward G.; Chavez, Victor H.
2011-09-01
High-precision opto-mechanical structures have historically been plagued by high costs for both hardware and the associated alignment and assembly process. This problem is especially true for space applications where only a few production units are produced. A methodology for optical alignment and optical structure design is presented which shifts the mechanism of maintaining precision from tightly toleranced, machined flight hardware to reusable, modular tooling. Using the proposed methodology, optical alignment error sources are reduced by the direct alignment of optics through their surface retroreflections (pips) as seen through a theodolite. Optical alignment adjustments are actualized through motorized, sub-micron precision actuators in 5 degrees of freedom. Optical structure hardware costs are reduced through the use of simple shapes (tubes, plates) and repeated components. This approach produces significantly cheaper hardware and more efficient assembly without sacrificing alignment precision or optical structure stability. The design, alignment plan and assembly of a 4" aperture, carbon fiber composite, Schmidt-Cassegrain concept telescope is presented.
High precision mobile location framework and its service based on virtual reference station of GPS
NASA Astrophysics Data System (ADS)
Liu, Chun; Sun, Liangyu; Yao, Lianbi
2008-10-01
The wireless communication technology and space technology are synchronously developed in recent years, which bring up the development of location based service (LBS). At present, many location technology methods were developed. However, all these methods can only provide a relative poor location precision and depend on high cost. The technology of Virtual Reference Station (VRS) of GPS is then involved in this paper. One of the objective in this paper is aim to give the LBS position structure to improve the mobile location position when a mobile position instrument is connected with VRS network. The cheaper GPS built-in Personal Designer Aid (PDA) is then used to achieve a higher precision by using RTCM data from existing VRS network. In order to obtain a high precision position when using the low-cost GPS receiver as a rover, the infrusture of the mobile differential correction system is then put forward. According to network transportation of RTCM via internet protocol (NTRIP), the message is communicated through wireless network, such as GPRS, CDMA and so on. The rough coordinate information is sent to VRS control center continuously, and then the VRS correction information is replied to rover in the data format of RTCM3.1. So the position will be updated based on mathematic solution after the decoding of RTCM3.1 data. The thought of LBS position can improve the precision, and can speed the LBS.
A study on using image serving technology for high precision mechanical positioning
NASA Astrophysics Data System (ADS)
Lin, Chuen-Horng; Hsiao, Muh-Don; Lai, Kuo-Jung
2016-12-01
This paper focused on using image server technology for high precision mechanical positioning. Rapid and precise positioning systems depend on the correct positions of CCD (Charge Coupled Device) video cameras, as well as on pattern matching modes. This study deals with four different positions captured by an automatic detection system employing a CCD video camera. According to a variety of hybrid image registration systems, this study proposes an entire set of methods for achieving optimal hybrid pattern matching. First, the four different position detections captured by the CCD video camera in low-resolution were examined. Next, the original position detection was carried out in high-resolution, in order to derive a precise set of CCD video camera positions. The fiducial mark (FM) was then divided into two types in the optimal option for pattern matching: the "fiducial mark" and "non-fiducial mark", which were then used for sampling. The automatic detection method is able to achieve the first pattern matching detection for recognized images. Unrecognized images or images that cannot have an FM were subjected to fine pattern matching detection. When it is not possible to find more than one FM after the proposed detection method, this suggests that the position of the CCD video camera should be reset. In this paper, the results of the experiment regarding the CCD camera precision location and the segmentation of fiducial patterns or insignificant fiducial patterns can detect and segment more unique areas and areas with unique features.
Process influences and correction possibilities for high precision injection molded freeform optics
NASA Astrophysics Data System (ADS)
Dick, Lars; Risse, Stefan; Tünnermann, Andreas
2016-08-01
Modern injection molding processes offer a cost-efficient method for manufacturing high precision plastic optics for high volume applications. Besides form deviation of molded freeform optics, internal material stress is a relevant influencing factor for the functionality of a freeform optics in an optical system. This paper illustrates dominant influence parameters of an injection molding process relating to form deviation and internal material stress based on a freeform demonstrator geometry. Furthermore, a deterministic and efficient way for 3D mold correcting of systematic, asymmetrical shrinkage errors is shown to reach micrometer range shape accuracy at diameters up to 40 mm. In a second case, a stress-optimized parameter combination using unusual molding conditions was 3D corrected to reach high precision and low stress freeform polymer optics.
High Precision Magnetic Field Scanning System for the New Muon g-2 Experiment
NASA Astrophysics Data System (ADS)
Hong, Ran; Muon g-2 collaboration Collaboration
2017-01-01
The New Muon g-2 Experiment (E989) at Fermilab will measure the anomalous magnetic moment of muon aμ aiming at a precision of 140 ppb. This new experiment will shed light on the long-standing 3.5 standard deviation between the previous muon g-2 measurement (E821) at Brookhaven National Laboratory and the Standard Model calculation, and potentially discover new physics. The New Muon g-2 Experiment measures the precession frequency of muon in a uniform magnetic field, and the magnetic field experienced by the muons needs to be measured with a precision better than 70 ppb. For the measurement of the magnetic field in the muon storage region, the former trolley system from E821 with 17 NMR probes was refurbished and upgraded with new electronics, probes and a modern motion control system. A test solenoid magnet was set up at Argonne National Laboratory for calibrating the NMR probes and the precision studies of systematic uncertainties. In this presentation, we will describe the trolley motion control scheme, the trolley position measurement methods, the electronic system for activating and reading the NMR probes and the test solenoid facility.
Real-space method for highly parallelizable electronic transport calculations
NASA Astrophysics Data System (ADS)
Feldman, Baruch; Seideman, Tamar; Hod, Oded; Kronik, Leeor
2014-07-01
We present a real-space method for first-principles nanoscale electronic transport calculations. We use the nonequilibrium Green's function method with density functional theory and implement absorbing boundary conditions (ABCs, also known as complex absorbing potentials, or CAPs) to represent the effects of the semi-infinite leads. In real space, the Kohn-Sham Hamiltonian matrix is highly sparse. As a result, the transport problem parallelizes naturally and can scale favorably with system size, enabling the computation of conductance in relatively large molecular junction models. Our use of ABCs circumvents the demanding task of explicitly calculating the leads' self-energies from surface Green's functions, and is expected to be more accurate than the use of the jellium approximation. In addition, we take advantage of the sparsity in real space to solve efficiently for the Green's function over the entire energy range relevant to low-bias transport. We illustrate the advantages of our method with calculations on several challenging test systems and find good agreement with reference calculation results.
Calculated phonon spectra of plutonium at high temperatures.
Dai, X; Savrasov, S Y; Kotliar, G; Migliori, A; Ledbetter, H; Abrahams, E
2003-05-09
We constructed computer-based simulations of the lattice dynamical properties of plutonium using an electronic structure method, which incorporates correlation effects among the f-shell electrons and calculates phonon spectra at arbitrary wavelengths. Our predicted spectrum for the face-centered cubic delta phase agrees well with experiments in the elastic limit and explains unusually large shear anisotropy of this material. The spectrum of the body-centered cubic phase shows an instability at zero temperature over a broad region of the wave vectors, indicating that this phase is highly anharmonic and can be stabilized at high temperatures by its phonon entropy.
Calculated thermochemistry of aminonitroacetylene: a new high-energy material?
Mathews, Kelly Y; Ball, David W
2009-04-30
As part of an increased interest in amino- and nitro-substituted high-energy-density materials (as exemplified by FOX-7, 1,1-diamino-2,2-dinitroethylene), here we present calculated properties of aminonitroacetylene, NH(2)-CC-NO(2). Our results indicate that while the specific enthalpy of combustion is less than that of acetylene, its specific enthalpy of decomposition is greater than that of TNT, and its predicted density is large enough to predict substantial high-energy-density properties for this substance.
Calculation of injection forces for highly concentrated protein solutions.
Fischer, Ingo; Schmidt, Astrid; Bryant, Andrew; Besheer, Ahmed
2015-09-30
Protein solutions often manifest a high viscosity at high solution concentrations, thus impairing injectability. Accordingly, accurate prediction of the injection force based on solution viscosity can greatly support protein formulation and device development. In this study, the shear-dependent viscosity of three concentrated protein solutions is reported, and calculated injection forces obtained by two different mathematical models are compared against measured values. The results show that accurate determination of the needle dimensions and the shear-thinning behavior of the protein solutions is vital for injection force prediction. Additionally, one model delivered more accurate results, particularly for solutions with prominent shear-thinning behavior.
NASA Astrophysics Data System (ADS)
Maj, P.
2014-07-01
An important trend in the design of readout electronics working in the single photon counting mode for hybrid pixel detectors is to minimize the single pixel area without sacrificing its functionality. This is the reason why many digital and analog blocks are made with the smallest, or next to smallest, transistors possible. This causes a problem with matching among the whole pixel matrix which is acceptable by designers and, of course, it should be corrected with the use of dedicated circuitry, which, by the same rule of minimizing devices, suffers from the mismatch. Therefore, the output of such a correction circuit, controlled by an ultra-small area DAC, is not only a non-linear function, but it is also often non-monotonic. As long as it can be used for proper correction of the DC operation points inside each pixel, it is acceptable, but the time required for correction plays an important role for both chip verification and the design of a big, multi-chip system. Therefore, we present two algorithms: a precise one and a fast one. The first algorithm is based on the noise hits profiles obtained during so called threshold scan procedures. The fast correction procedure is based on the trim DACs scan and it takes less than a minute in a SPC detector systems consisting of several thousands of pixels.
Granton, Patrick V; Podesta, Mark; Landry, Guillaume; Nijsten, Sebastiaan; Bootsma, Gregory; Verhaegen, Frank
2012-07-01
Novel small animal precision microirradiators (micro-IR) are becoming available for preclinical use and are often equipped with onboard imaging (OBI) devices. We investigated the use of OBI as a means to infer the accuracy of the delivered treatment plan. Monte Carlo modeling of the micro-IR including an elliptical Gaussian electron beam incident on the x-ray tube was used to score dose and to continue photon transport to the plane of the OBI device. A model of the OBI detector response was used to generate simulated onboard images. Experimental OBI was performed at 225 kVp, gain/offset and scatter-glare were corrected. Simulated and experimentally obtained onboard images of phantoms and a mouse specimen were compared for a range of photon beam sizes from 2.5 cm down to 0.1 cm. Simulated OBI can be used in small animal radiotherapy to determine if a treatment plan was delivered according to the prescription within an uncertainty of 5% for beams as small as 4 mm in diameter. For collimated beams smaller than 4 mm, beam profile differences remain primarily in the penumbra region of the smallest beams, which may be tolerable for specific preclinical micro-IR investigations. Comparing simulated to acquired OBI during small animal treatment radiotherapy represents a useful treatment delivery tool. © 2012 American Association of Physicists in Medicine.
NASA Astrophysics Data System (ADS)
Kita, N. T.; Ushikubo, T.; Valley, J. W.
2008-05-01
The CAMECA IMS-1280 large radius, multicollector ion microprobe at the Wisc-SIMS National Facility is capable of high accuracy and precision for in situ analysis of isotope ratios. With improved hardware stability and software capability, high precision isotope analyses are routinely performed, typically 5 min per spot. We have developed analytical protocols for stable isotope analyses of oxygen, carbon, Mg, Si and Sulfur using multi-collector Faraday Cups (MCFC) and achieved precision of 0.1-0.2 ‰ (1SD) from a typically 10μm spot analyses. A number of isotopically homogeneous mineral standards have been prepared and calibrated in order to certify the accuracy of analyses in the same level. When spatial resolution is critical, spot size is reduced down to sub- μm for δ 18O to obtain better than 0.5‰ (1SD) precision by using electron multiplier (EM) on multi-collection system. Multi-collection EM analysis is also applied at 10 ppm level to Li isotope ratios in zircon with precision better than 2‰ (1SD). A few applications will be presented. (1) Oxygen three isotope analyses of chondrules in ordinary chondrites revealed both mass dependent and mass independent oxygen isotope fractionations among chondrules as well as within individual chondrules. The results give constraints on the process of chondrule formation and origin of isotope reservoirs in the early solar system. (2) High precision 26Al-26Mg (half life of 0.73 Ma) chronology is applied to zoned melilite and anorthite from Ca, Al-rich inclusions (CAI) in Leoville meteorite, and a well-defined internal isochron is obtained. The results indicate the Al- Mg system was remained closed within 40ky of the crystallization of melilite and anorthite in this CAI. (3) Sub- μm spot analyses of δ18O in isotopically zoned zircon from high-grade metamorphism reveals a diffusion profile of ~6‰ over 2μm, indicating slow diffusion of oxygen in zircon. This result also implies that old Archean detrital zircons (> 4
NASA Astrophysics Data System (ADS)
2015-11-01
The H 3+molecular ion has served as a long-standing benchmark for state-of-the-art ab initio calculations of molecular potentials and variational calculations of rovibrational energy levels. However, the accuracy of such calculations would not have been confirmed if not for the wealth of spectroscopic data that has been made available for this molecule. Recently, a new high-precision ion spectroscopy technique was demonstrated by Hodges et al., which led to the first highly accurate and precise (∼MHz) H 3+transition frequencies. As an extension of this work, we present ten additional R-branch transitions measured to similar precision as a next step toward the ultimate goal of producing a comprehensive high-precision survey of this molecule, from which rovibrational energy levels can be calculated.
Accelerating experimental high-order spatial statistics calculations using GPUs
NASA Astrophysics Data System (ADS)
Li, Xue; Huang, Tao; Lu, De-Tang; Niu, Cong
2014-09-01
High-order spatial statistics have been widely used to describe the spatial phenomena in the field of geology science. Spatial statistics are subject to extremely heavy computational burden for large geostatistical models. To improve the computational efficiency, a parallel approach based on GPU (Graphics Processing Unit) is proposed for the calculation of high-order spatial statistics. The parallel scheme is achieved by utilizing a two-stage method to calculate the replicate of a moment for a given template simultaneously termed as the node-stage parallelism, and transform the spatial moments to cumulants for all lags of a template simultaneously termed as the template-stage parallelism. Also, a series of optimization strategies are proposed to take full advantage of the computational capabilities of GPUs, including the appropriate task allocation to the CUDA (Compute Unified Device Architecture) threads, proper organization of the GPU physical memory, and optimal improvement of the existed parallel routines. Tests are carried out on two training images to compare the performance of the GPU-based method with that of the serial implementation. Error analysis results indicate that the proposed parallel method can generate accurate cumulant maps, and the performance comparisons on various examples show that all the speedups for third-order, fourth-order and fifth-order cumulants calculation are over 17 times.
Calculating and scoring high quality multiple flexible protein structure alignments.
Ritchie, David W
2016-09-01
Calculating multiple protein structure alignments (MSAs) is important for understanding functional and evolutionary relationships between protein families, and for modeling protein structures by homology. While incorporating backbone flexibility promises to circumvent many of the limitations of rigid MSA algorithms, very few flexible MSA algorithms exist today. This article describes several novel improvements to the Kpax algorithm which allow high quality flexible MSAs to be calculated. This article also introduces a new Gaussian-based MSA quality measure called 'M-score', which circumvents the pitfalls of RMSD-based quality measures. As well as calculating flexible MSAs, the new version of Kpax can also score MSAs from other aligners and from previously aligned reference datasets. Results are presented for a large-scale evaluation of the Homstrad, SABmark and SISY benchmark sets using Kpax and Matt as examples of state-of-the-art flexible aligners and 3DCOMB as an example of a state-of-the-art rigid aligner. These results demonstrate the utility of the M-score as a measure of MSA quality and show that high quality MSAs may be achieved when structural flexibility is properly taken into account. Kpax 5.0 may be downloaded for academic use at http://kpax.loria.fr/ dave.ritchie@inria.fr Supplementary data are available at Bioinformatics online. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.
High-precision reflectometry of multilayer coatings for extreme ultraviolet lithography
Wedowski, M; Underwood, J H; Gullikson, E M; Bajt, S; Folta, J A; Kearney, P A; Montcalm, C; Spiller, E
1999-12-29
Synchrotron-based reflectometry is an important technique for the precise determination of optical properties of reflective multilayer coatings for Extreme Ultraviolet Lithography (EUVL). Multilayer coatings enable normal incidence reflectances of more than 65% in the wavelength range between 11 and 15 nm. In order to achieve high resolution and throughput of EUVL systems, stringent requirements not only apply to their mechanical and optical layout, but also apply to the optical properties of the multilayer coatings. Therefore, multilayer deposition on near-normal incidence optical surfaces of projection optics, condenser optics and reflective masks requires suitable high-precision metrology. Most important, due to their small bandpass on the order of only 0.5 nm, all reflective multilayer coatings in EUVL systems must be wavelength-matched to within {+-}0.05 nm. In some cases, a gradient of the coating thickness is necessary for wavelength matching at variable average angle of incidence in different locations on the optical surfaces. Furthermore, in order to preserve the geometrical figure of the optical substrates, reflective multilayer coatings need to be uniform to within 0.01 nm in their center wavelength. This requirement can only be fulfilled with suitable metrology, which provides a precision of a fraction of this value. In addition, for the detailed understanding and the further development of reflective multilayer coatings a precision in the determination of peak reflectances is desirable on the order of 0.1%. Substrates up to 200 mm in diameter and 15 kg in mass need to be accommodated. Above requirements are fulfilled at beamline 6.3.2 of the Advanced Light Source (ALS) in Berkeley. This beamline proved to be precise within 0.2% (ms) for reflectance and 0.002 nm (rms) for wavelength.
High-Precision Superallowed Fermi β Decay Measurements at TRIUMF-ISAC
NASA Astrophysics Data System (ADS)
Svensson, C. E.
2016-09-01
High-precision measurements of the ft -values for superallowed Fermi β decays between nuclear isobaric analogue states provide demanding tests of the electroweak Standard Model, including confirmation of the Conserved Vector Current hypothesis at the level of 1 . 2 ×10-4 , the most stringent limits on weak scalar currents, and the most precise determination of the Vud element of the CKM quark-mixing matrix. The Isotope Separator and Accelerator (ISAC) facility at TRIUMF produces high-quality beams of several of the superallowed emitters with world-record intensities and hosts a suite of state-of-the-art spectrometers for the measurement of superallowed half-lives, branching ratios, QEC values, and charge-radii. Recent highlights from the superallowed program at ISAC, including high-precision half-life measurements for the light superallowed emitters 10C, 14O, 18Ne, and 26mAl and branching-ratio measurements for the heavy superallowed emitters 62Ga and 74Rb will be presented. The impact of these measurements on tests of the Standard Model, and future developments in the superallowed program at ISAC with the new high-efficiency GRIFFIN γ - ray spectrometer, will be discussed. Research supported by the Natural Sciences and Engineering Research Council of Canada, the Canada Foundation for Innovation, and the Canada Research Chairs Program. TRIUMF receives federal funding via the National Research Council of Canada.
A high-precision instrument for analyzing nonlinear dynamic behavior of bearing cage.
Yang, Z; Chen, H; Yu, T; Li, B
2016-08-01
The high-precision ball bearing is fundamental to the performance of complex mechanical systems. As the speed increases, the cage behavior becomes a key factor in influencing the bearing performance, especially life and reliability. This paper develops a high-precision instrument for analyzing nonlinear dynamic behavior of the bearing cage. The trajectory of the rotational center and non-repetitive run-out (NRRO) of the cage are used to evaluate the instability of cage motion. This instrument applied an aerostatic spindle to support and spin test the bearing to decrease the influence of system error. Then, a high-speed camera is used to capture images when the bearing works at high speeds. A 3D trajectory tracking software tema Motion is used to track the spot which marked the cage surface. Finally, by developing the matlab program, a Lissajous' figure was used to evaluate the nonlinear dynamic behavior of the cage with different speeds. The trajectory of rotational center and NRRO of the cage with various speeds are analyzed. The results can be used to predict the initial failure and optimize cage structural parameters. In addition, the repeatability precision of instrument is also validated. In the future, the motorized spindle will be applied to increase testing speed and image processing algorithms will be developed to analyze the trajectory of the cage.
A high-precision instrument for analyzing nonlinear dynamic behavior of bearing cage
NASA Astrophysics Data System (ADS)
Yang, Z.; Chen, H.; Yu, T.; Li, B.
2016-08-01
The high-precision ball bearing is fundamental to the performance of complex mechanical systems. As the speed increases, the cage behavior becomes a key factor in influencing the bearing performance, especially life and reliability. This paper develops a high-precision instrument for analyzing nonlinear dynamic behavior of the bearing cage. The trajectory of the rotational center and non-repetitive run-out (NRRO) of the cage are used to evaluate the instability of cage motion. This instrument applied an aerostatic spindle to support and spin test the bearing to decrease the influence of system error. Then, a high-speed camera is used to capture images when the bearing works at high speeds. A 3D trajectory tracking software tema Motion is used to track the spot which marked the cage surface. Finally, by developing the matlab program, a Lissajous' figure was used to evaluate the nonlinear dynamic behavior of the cage with different speeds. The trajectory of rotational center and NRRO of the cage with various speeds are analyzed. The results can be used to predict the initial failure and optimize cage structural parameters. In addition, the repeatability precision of instrument is also validated. In the future, the motorized spindle will be applied to increase testing speed and image processing algorithms will be developed to analyze the trajectory of the cage.
A high-precision instrument for analyzing nonlinear dynamic behavior of bearing cage
Yang, Z. Yu, T.; Chen, H.; Li, B.
2016-08-15
The high-precision ball bearing is fundamental to the performance of complex mechanical systems. As the speed increases, the cage behavior becomes a key factor in influencing the bearing performance, especially life and reliability. This paper develops a high-precision instrument for analyzing nonlinear dynamic behavior of the bearing cage. The trajectory of the rotational center and non-repetitive run-out (NRRO) of the cage are used to evaluate the instability of cage motion. This instrument applied an aerostatic spindle to support and spin test the bearing to decrease the influence of system error. Then, a high-speed camera is used to capture images when the bearing works at high speeds. A 3D trajectory tracking software TEMA Motion is used to track the spot which marked the cage surface. Finally, by developing the MATLAB program, a Lissajous’ figure was used to evaluate the nonlinear dynamic behavior of the cage with different speeds. The trajectory of rotational center and NRRO of the cage with various speeds are analyzed. The results can be used to predict the initial failure and optimize cage structural parameters. In addition, the repeatability precision of instrument is also validated. In the future, the motorized spindle will be applied to increase testing speed and image processing algorithms will be developed to analyze the trajectory of the cage.
Direct high-precision measurement of the magnetic moment of the proton.
Mooser, A; Ulmer, S; Blaum, K; Franke, K; Kracke, H; Leiteritz, C; Quint, W; Rodegheri, C C; Smorra, C; Walz, J
2014-05-29
One of the fundamental properties of the proton is its magnetic moment, µp. So far µp has been measured only indirectly, by analysing the spectrum of an atomic hydrogen maser in a magnetic field. Here we report the direct high-precision measurement of the magnetic moment of a single proton using the double Penning-trap technique. We drive proton-spin quantum jumps by a magnetic radio-frequency field in a Penning trap with a homogeneous magnetic field. The induced spin transitions are detected in a second trap with a strong superimposed magnetic inhomogeneity. This enables the measurement of the spin-flip probability as a function of the drive frequency. In each measurement the proton's cyclotron frequency is used to determine the magnetic field of the trap. From the normalized resonance curve, we extract the particle's magnetic moment in terms of the nuclear magneton: μp = 2.792847350(9)μN. This measurement outperforms previous Penning-trap measurements in terms of precision by a factor of about 760. It improves the precision of the forty-year-old indirect measurement, in which significant theoretical bound state corrections were required to obtain µp, by a factor of 3. By application of this method to the antiproton magnetic moment, the fractional precision of the recently reported value can be improved by a factor of at least 1,000. Combined with the present result, this will provide a stringent test of matter/antimatter symmetry with baryons.
Direct high-precision measurement of the magnetic moment of the proton
NASA Astrophysics Data System (ADS)
Mooser, A.; Ulmer, S.; Blaum, K.; Franke, K.; Kracke, H.; Leiteritz, C.; Quint, W.; Rodegheri, C. C.; Smorra, C.; Walz, J.
2014-05-01
One of the fundamental properties of the proton is its magnetic moment, µp. So far µp has been measured only indirectly, by analysing the spectrum of an atomic hydrogen maser in a magnetic field. Here we report the direct high-precision measurement of the magnetic moment of a single proton using the double Penning-trap technique. We drive proton-spin quantum jumps by a magnetic radio-frequency field in a Penning trap with a homogeneous magnetic field. The induced spin transitions are detected in a second trap with a strong superimposed magnetic inhomogeneity. This enables the measurement of the spin-flip probability as a function of the drive frequency. In each measurement the proton's cyclotron frequency is used to determine the magnetic field of the trap. From the normalized resonance curve, we extract the particle's magnetic moment in terms of the nuclear magneton: μp = 2.792847350(9)μN. This measurement outperforms previous Penning-trap measurements in terms of precision by a factor of about 760. It improves the precision of the forty-year-old indirect measurement, in which significant theoretical bound state corrections were required to obtain µp, by a factor of 3. By application of this method to the antiproton magnetic moment, the fractional precision of the recently reported value can be improved by a factor of at least 1,000. Combined with the present result, this will provide a stringent test of matter/antimatter symmetry with baryons.
Efficacious calculation of Raman spectra in high pressure hydrogen
NASA Astrophysics Data System (ADS)
Ackland, G. J.; Magdau, I. B.
2014-04-01
We present and evaluate an efficient method for simulating Raman spectra from molecular dynamics calculations without defining normal modes. We apply the method to high pressure hydrogen in the high-temperature "Phase IV": a plastic crystal in which the conventional picture of fixed phonon eigenmodes breaks down. Projecting trajectories onto in-phase molecular stretches is shown to be many orders of magnitude faster than polarisability calculations, allowing statistical averaging at high-temperature. The simulations are extended into metastable regimes and identify several regimes associated with symmetry-breaking on different timescales, which are shown to exhibit features in the Raman spectra at the current experimental limit of resolvability. In this paper we have concentrated on the methodology, a fuller description of the structure of Phase IV hydrogen is given in a previous paper [Magdau IB, Ackland GJ. Identification of high-pressure phases III and IV in hydrogen: simulating Raman spectra using molecular dynamics. Phys Rev B. 2013;87:174110].
Jiang, Weiping; Wang, Li; Niu, Xiaoji; Zhang, Quan; Zhang, Hui; Tang, Min; Hu, Xiangyun
2014-10-17
A high-precision image-aided inertial navigation system (INS) is proposed as an alternative to the carrier-phase-based differential Global Navigation Satellite Systems (CDGNSSs) when satellite-based navigation systems are unavailable. In this paper, the image/INS integrated algorithm is modeled by a tightly-coupled iterative extended Kalman filter (IEKF). Tightly-coupled integration ensures that the integrated system is reliable, even if few known feature points (i.e., less than three) are observed in the images. A new global observability analysis of this tightly-coupled integration is presented to guarantee that the system is observable under the necessary conditions. The analysis conclusions were verified by simulations and field tests. The field tests also indicate that high-precision position (centimeter-level) and attitude (half-degree-level)-integrated solutions can be achieved in a global reference.
Jiang, Weiping; Wang, Li; Niu, Xiaoji; Zhang, Quan; Zhang, Hui; Tang, Min; Hu, Xiangyun
2014-01-01
A high-precision image-aided inertial navigation system (INS) is proposed as an alternative to the carrier-phase-based differential Global Navigation Satellite Systems (CDGNSSs) when satellite-based navigation systems are unavailable. In this paper, the image/INS integrated algorithm is modeled by a tightly-coupled iterative extended Kalman filter (IEKF). Tightly-coupled integration ensures that the integrated system is reliable, even if few known feature points (i.e., less than three) are observed in the images. A new global observability analysis of this tightly-coupled integration is presented to guarantee that the system is observable under the necessary conditions. The analysis conclusions were verified by simulations and field tests. The field tests also indicate that high-precision position (centimeter-level) and attitude (half-degree-level)-integrated solutions can be achieved in a global reference. PMID:25330046
Determination of the half-life of 213Fr with high precision
NASA Astrophysics Data System (ADS)
Fisichella, M.; Musumarra, A.; Farinon, F.; Nociforo, C.; Del Zoppo, A.; Figuera, P.; La Cognata, M.; Pellegriti, M. G.; Scuderi, V.; Torresi, D.; Strano, E.
2013-07-01
High-precision measurement of half-life and Qα value of neutral and highly charged α emitters is a major subject of investigation currently. In this framework, we recently pushed half-life measurements of neutral emitters to a precision of a few per mil. This result was achieved by using different techniques and apparatuses at Istituto Nazionale di Fisica Nucleare Laboratori Nazionali del Sud (INFN-LNS) and GSI Darmstadt. Here we report on 213Fr half-life determination [T1/2(213Fr) = 34.14±0.06 s] at INFN-LNS, detailing the measurement protocol used. Direct comparison with the accepted value in the literature shows a discrepancy of more than three sigma. We propose this new value as a reference, discussing previous experiments.
Geometrical aspects of laser-drilled high precision holes for flow control applications
NASA Astrophysics Data System (ADS)
Giedl, Roswitha; Helml, H.-J.; Wagner, F. X.; Wild, Michael J.
2003-11-01
Laser drilling has become a valuable tool for the manufacture of high precision micro holes in a variety of materials. Laser drilled precision holes have applications in the automotive, aerospace, medical and sensor industry for flow control applications. The technology is competing with conventional machining micro electro-discharge machining in the field of fuel injection nozzle for combustion engines. Depending on the application, laser and optics have to be chosen which suits the requirements. In this paper, the results achieved with different lasers and drilling techniques will be compared to the hole specifications in flow control applications. The issue of geometry control of high aspect ratio laser drilled holes in metals will be investigated. The comparison of flow measurement results to microscopic hole dimension measurement show that flow characteristics strongly depend on cavitation number during flow.
NASA Technical Reports Server (NTRS)
Leskovar, B.; Turko, B.
1977-01-01
The development of a high precision time interval digitizer is described. The time digitizer is a 10 psec resolution stop watch covering a range of up to 340 msec. The measured time interval is determined as a separation between leading edges of a pair of pulses applied externally to the start input and the stop input of the digitizer. Employing an interpolation techniques and a 50 MHz high precision master oscillator, the equivalent of a 100 GHz clock frequency standard is achieved. Absolute accuracy and stability of the digitizer are determined by the external 50 MHz master oscillator, which serves as a standard time marker. The start and stop pulses are fast 1 nsec rise time signals, according to the Nuclear Instrument means of tunnel diode discriminators. Firing level of the discriminator define start and stop points between which the time interval is digitized.
2016-09-16
and ANal- ysis ( OCEAN ) tool to evaluate solution accuracy and predictive capabilities of each combination. In all test cases examined, using either the...Orbit Covariance Estimation and ANalysis ( OCEAN ) high precision orbit deter- mination tool in order to determine the suitability of each model for...the National Oceanic and Atmospheric Administration (NOAA) Space Weather Prediction Center (SWPC). There is an extensive body of work studying the
Laser interferometric high-precision geometry (angle and length) monitor for JASMINE
NASA Astrophysics Data System (ADS)
Niwa, Y.; Arai, K.; Ueda, A.; Sakagami, M.; Gouda, N.; Kobayashi, Y.; Yamada, Y.; Yano, T.
2008-07-01
The telescope geometry of JASMINE should be stabilized and monitored with the accuracy of about 10 to 100 pm or 10 to 100 prad of rms over about 10 hours. For this purpose, a high-precision interferometric laser metrology system is employed. Useful techniques for measuring displacements on extremely small scales are the wave-front sensing method and the heterodyne interferometrical method. Experiments for verification of measurement principles are well advanced.
VizieR Online Data Catalog: High-precision abundances for stars with planets (Ramirez+, 2014)
NASA Astrophysics Data System (ADS)
Ramirez, I.; Melendez, J.; Asplund, M.
2013-11-01
High-precision stellar parameters and chemical abundances are presented for 111 stars; 52 of them are late-F type dwarfs and 59 are metal-rich solar analogs. The atomic linelist employed in the derivation of chemical abundances is also given. This linelist includes hyperfine structure parameters for some species. The stars' isochrone masses and ages are also reported, along with estimates of chromospheric activity. (5 data files).
Usefulness of precise time stamping for exposing network characteristics on high-speed links
NASA Astrophysics Data System (ADS)
Kitatsuji, Yoshinori; Tsuru, Masato; Katsuno, Satoshi; Oie, Yuji
2004-09-01
To expose network characteristics by active/passive measurements, measuring some timing issues such as one-way delay, one-way queuing delay, and inter-packet time is essential, and is conducted by time-stamping for packets passing through an observation point. However, emerging high-speed networks require very high precision of time-stamping, far beyond the precision of conventional software-based time-stamping systems such as 'tcpdump'. For example, the inter-packet time of two consecutive 64-byte length packets on a giga-bit link can be less than 0.001 msec. In this paper, to demonstrate the usefulness and strong necessity of precise time-stamping on high-speed links, experiments of network measurements over a nation-wide IPv6 testbed in Japan have been performed, using a hardware-based time-stamping system that can synchronize to GPS with a high resolution of 0.0001 msec and within a small error of 0.0003 msec. In our experiments, several interesting results are seen, e.g., i) the distribution of one-way queuing delay exhibits a considerable difference depending on the size and the type (UDP/ICMP) of packets; ii) the minimal one-way delays for various sizes of UDP/ICMP packets give an accurate estimate of the transmission delay and the propagation delay; iii) the correlation between interpacket times at the sender and the receiver sides in a sequence of TCP ACK packets clearly shows the degree of ACK compression; iv) the inter-packet time in a UDP stream generated by a DV streaming application shows three dominant sending rates and a very rare peak rate, which might provide crucial information to bandwidth dimensioning; all of which would indicate the usefulness of precise time-stamping.
A highly efficient, compact Yb:KYW laser for mobile precision systems
Kuznetsov, S A; Pivtsov, V S
2014-05-30
We have developed a promising scheme of a multimodediode-pumped ytterbium laser. The Yb:KYW laser in the cw regime demonstrates record-high differential (40%) and total optical (35%) efficiencies. Mode locking is realised, which allows the scheme to be used for the development of compact laser systems, such as mobile femtosecond precision synthesisers. The peculiarities of the laser operation and ways of further improving its efficiency are discussed. (lasers)
A high precision gamma-ray spectrometer for the Mars-94 mission
Mitrofanov, I.G.; Anfimov, D.S.; Chernenko, A.M.
1994-06-01
The high precision gamma-ray spectrometer (PGS) is scheduled to be launched on the Mars-94 mission in October 1994, and to go into an elliptical polar orbit around Mars. The PGS consists of two high-purity germanium (Ge) detectors, associated electronics, and a passive cooler and will be mounted on one of the solar panels. The PGS will measure nuclear gamma-ray emissions from the martian surface, cosmic gamma-ray bursts, and the high-energy component of solar flares in the broad energy range from 50 KeV to 8 MeV using 4096 energy channels.
A Novel Gravity Compensation Method for High Precision Free-INS Based on "Extreme Learning Machine".
Zhou, Xiao; Yang, Gongliu; Cai, Qingzhong; Wang, Jing
2016-11-29
In recent years, with the emergency of high precision inertial sensors (accelerometers and gyros), gravity compensation has become a major source influencing the navigation accuracy in inertial navigation systems (INS), especially for high-precision INS. This paper presents preliminary results concerning the effect of gravity disturbance on INS. Meanwhile, this paper proposes a novel gravity compensation method for high-precision INS, which estimates the gravity disturbance on the track using the extreme learning machine (ELM) method based on measured gravity data on the geoid and processes the gravity disturbance to the height where INS has an upward continuation, then compensates the obtained gravity disturbance into the error equations of INS to restrain the INS error propagation. The estimation accuracy of the gravity disturbance data is verified by numerical tests. The root mean square error (RMSE) of the ELM estimation method can be improved by 23% and 44% compared with the bilinear interpolation method in plain and mountain areas, respectively. To further validate the proposed gravity compensation method, field experiments with an experimental vehicle were carried out in two regions. Test 1 was carried out in a plain area and Test 2 in a mountain area. The field experiment results also prove that the proposed gravity compensation method can significantly improve the positioning accuracy. During the 2-h field experiments, the positioning accuracy can be improved by 13% and 29% respectively, in Tests 1 and 2, when the navigation scheme is compensated by the proposed gravity compensation method.
Next generation KATRIN high precision voltage divider for voltages up to 65kV
NASA Astrophysics Data System (ADS)
Bauer, S.; Berendes, R.; Hochschulz, F.; Ortjohann, H.-W.; Rosendahl, S.; Thümmler, T.; Schmidt, M.; Weinheimer, C.
2013-10-01
The KATRIN (KArlsruhe TRItium Neutrino) experiment aims to determine the mass of the electron antineutrino with a sensitivity of 200 meV by precisely measuring the electron spectrum of the tritium beta decay. This will be done by the use of a retarding spectrometer of the MAC-E-Filter type. To achieve the desired sensitivity the stability of the retarding potential of -18.6 kV has to be monitored with a precision of 3 ppm over at least two months. Since this is not feasible with commercial devices, two ppm-class high voltage dividers were developed, following the concept of the standard divider for DC voltages of up to 100 kV of the Physikalisch-Technische Bundesanstalt (PTB). In order to reach such high accuracies different effects have to be considered. The two most important ones are the temperature dependence of resistance and leakage currents, caused by insulators or corona discharges. For the second divider improvements were made concerning the high-precision resistors and the thermal design of the divider. The improved resistors are the result of a cooperation with the manufacturer. The design improvements, the investigation and the selection of the resistors, the built-in ripple probe and the calibrations at PTB will be reported here. The latter demonstrated a stability of about 0.1 ppm/month over a period of two years.
NASA Technical Reports Server (NTRS)
Davis, D. W.; Corfu, F.; Krogh, T. E.
1986-01-01
The underlying mechanisms of Archean tectonics and the degree to which modern plate tectonic models are applicable early in Earth's history continue to be a subject of considerable debate. A precise knowledge of the timing of geological events is of the utmost importance in studying this problem. The high precision U-Pb method has been applied in recent years to rock units in many areas of the Superior Province. Most of these data have precisions of about + or - 2-3 Ma. The resulting detailed chronologies of local igneous development and the regional age relationships furnish tight constraints on any Archean tectonic model. Superior province terrains can be classified into 3 types: (1) low grade areas dominated by meta-volcanic rocks (greenstone belts); (2) high grade, largely metaplutonic areas with abundant orthogneiss and foliated to massive I-type granitoid bodies; and (3) high grade areas with abundant metasediments, paragneiss and S-type plutons. Most of the U-Pb age determinations have been done on type 1 terrains with very few having been done in type 3 terrains. A compilation of over 120 ages indicates that the major part of igneous activity took place in the period 2760-2670 Ma, known as the Kenoran event. This event was ubiquitous throughout the Superior Province.
Accurate time delay technology in simulated test for high precision laser range finder
NASA Astrophysics Data System (ADS)
Chen, Zhibin; Xiao, Wenjian; Wang, Weiming; Xue, Mingxi
2015-10-01
With the continuous development of technology, the ranging accuracy of pulsed laser range finder (LRF) is higher and higher, so the maintenance demand of LRF is also rising. According to the dominant ideology of "time analog spatial distance" in simulated test for pulsed range finder, the key of distance simulation precision lies in the adjustable time delay. By analyzing and comparing the advantages and disadvantages of fiber and circuit delay, a method was proposed to improve the accuracy of the circuit delay without increasing the count frequency of the circuit. A high precision controllable delay circuit was designed by combining the internal delay circuit and external delay circuit which could compensate the delay error in real time. And then the circuit delay accuracy could be increased. The accuracy of the novel circuit delay methods proposed in this paper was actually measured by a high sampling rate oscilloscope actual measurement. The measurement result shows that the accuracy of the distance simulated by the circuit delay is increased from +/- 0.75m up to +/- 0.15m. The accuracy of the simulated distance is greatly improved in simulated test for high precision pulsed range finder.
Direct high-precision measurement of the magnetic moment of the proton
NASA Astrophysics Data System (ADS)
Quint, Wolfgang
2015-05-01
The challenge to measure the properties of the proton with great precision inspires very different branches of physics. The magnetic moment of the proton is a fundamental property of this particle. So far it has only been measured indirectly, by analyzing the spectrum of an atomic hydrogen maser in a magnetic field. Here we report the direct high-precision measurement of the magnetic moment of a single proton using the double Penning-trap technique. We drive proton-spin quantum jumps by a radio-frequency field in a Penning trap with a homogeneous magnetic field. The induced spin transitions are detected in a second trap with a strong superimposed magnetic inhomogeneity. This enables the measurement of the spin-flip probability as a function of the drive frequency. In each measurement the proton's cyclotron frequency is used to determine the magnetic field of the trap. From the normalized resonance curve, we extract the particle's magnetic moment in terms of the nuclear magneton: μp = 2.792 847 350 (9) μN. This measurement outperforms previous Penning-trap measurements in terms of precision by a factor of about 760. It improves the precision of the forty year-old indirect measurement by D. Kleppner et al., in which significant theoretical bound-state corrections were required to obtain μp, by a factor of 3. By application of this method to the antiproton magnetic moment, the fractional precision of the recently reported value can be improved by a factor of at least 1,000. Combined with the present result, this will provide a stringent test of matter/antimatter symmetry with baryons. Deutsche Forschungsgemeinschaft, grant QU122/3.
Very high resolution calculations of very young supernova remnants
Jones, E.M.; Smith, B.W.
1982-01-01
After the supernova shock wave has swepted up about 8 to 10 stellar masses of interstellar material, the SNR structure is well described by blast wave theory. In fact, both numerical calculations of the early phases and small scale, laboratory simulations show transition to blast wave at 8 to 10 masses. In hindsight, we now know that the transition region between the photosphere (roughly 10/sup -9/ g/cm/sup 3/) and the circumstellar medium (10/sup -24/ g/cm/sup 3/) plays a crucial role. The shock wave is strongly accelerated down the density gradient, putting the shocked material behind into free expansion. When the shock encounters circumstellar material, it begins to decelerate. A second, reverse shock propagates into the stellar material that plows into the shocked circumstellar gas. All this happens on a timescale of days. The first attempts to include a description of the outer stellar envelop were aimed at analysis of the uv and X-Ray bursts produced when the shock wave reaches the photosphere. Falk and Arnett terminated their calculations before the shock reached the circumstellar gas. Chevalier mentions a reverse shock forming early but did not go into any details. We noticed and described the double-shock structure but, in hindsight, lacked sufficient resolution to produce the detailed structure between the shocks. Chevalier derived a similarity solution for the intershock region. In this paper we describe very high resolution calculations which reproduce and confirm the Chevalier similarity solution.
Development of a mobile and high-precision atmospheric CO2 monitoring station
NASA Astrophysics Data System (ADS)
Molnár, M.; Haszpra, L.; Major, I.; Svingor, É.; Veres, M.
2009-04-01
consisting of 2 min flushing and 20 sec signal integration. The usual change of the response function is below 0.2 ppm after 2 hours following a previous calibration. The analyser measures the CO2 mixing ratio in the sample gas in every 3 seconds. Output data are registered by a data logger developed for this application (Special Control Devices). The overall uncertainty of our atmospheric CO2 mixing ratio measurements is < 0.5 ppm (< 0,2 %). This level of error is acceptable for fossil fuel CO2 calculations as the uncertainty of the other required parameter radiocarbon content of atmospheric CO2 is usually 0.3-0.5%. Using the developed mobile and high-precision atmospheric CO2 monitoring station we plan to determine the fossil fuel CO2 amount in the air of different cities and other average industrial regions in Hungary. This research project was supported by Hungarian NSF (Ref No. F69029).
On high-order perturbative calculations at finite density
NASA Astrophysics Data System (ADS)
Ghişoiu, Ioan; Gorda, Tyler; Kurkela, Aleksi; Romatschke, Paul; Säppi, Matias; Vuorinen, Aleksi
2017-02-01
We discuss the prospects of performing high-order perturbative calculations in systems characterized by a vanishing temperature but finite density. In particular, we show that the determination of generic Feynman integrals containing fermionic chemical potentials can be reduced to the evaluation of three-dimensional phase space integrals over vacuum on-shell amplitudes - a result reminiscent of a previously proposed "naive real-time formalism" for vacuum diagrams. Applications of these rules are discussed in the context of the thermodynamics of cold and dense QCD, where it is argued that they facilitate an extension of the Equation of State of cold quark matter to higher perturbative orders.
NASA Astrophysics Data System (ADS)
Lee, Taehwa; Luo, Wei; Li, Qiaochu; Guo, L. Jay
2017-03-01
Laser-generated focused ultrasound has shown great promise in precisely treating cells and tissues by producing controlled micro-cavitation within the acoustic focal volume (<100 um). However, the previous demonstration used cells and tissues cultured on glass substrates. The glass substrates were found to be critical to cavitation, because ultrasound amplitude doubles due to the reflection from the substrate, thus allowing for reaching pressure amplitude to cavitation threshold. In other words, without the sound reflecting substrate, pressure amplitude may not be strong enough to create cavitation, thus limiting its application to only cultured biomaterials on the rigid substrates. By using laser-generated focused ultrasound without relying on sound-reflecting substrates, we demonstrate free-field cavitation in water and its application to high-precision cutting of tissue-mimicking gels. In the absence of a rigid boundary, strong pressure for cavitation was enabled by recently optimized photoacoustic lens with increased focal gain (>30 MPa, negative pressure amplitude). By moving cavitation spots along pre-defined paths through a motorized stage, tissue-mimicking gels of different elastic moduli were cut into different shapes (rectangle, triangle, and circle), leaving behind the same shape of holes, whose sizes are less than 1 mm. The cut line width is estimated to be less than 50 um (corresponding to localized cavitation region), allowing for accurate cutting. This novel approach could open new possibility for in-vivo treatment of diseased tissues in a high-precision manner (i.e., high-precision invisible sonic scalpel).
High-precision comparison of the antiproton-to-proton charge-to-mass ratio
NASA Astrophysics Data System (ADS)
Ulmer, S.; Smorra, C.; Mooser, A.; Franke, K.; Nagahama, H.; Schneider, G.; Higuchi, T.; van Gorp, S.; Blaum, K.; Matsuda, Y.; Quint, W.; Walz, J.; Yamazaki, Y.
2015-08-01
Invariance under the charge, parity, time-reversal (CPT) transformation is one of the fundamental symmetries of the standard model of particle physics. This CPT invariance implies that the fundamental properties of antiparticles and their matter-conjugates are identical, apart from signs. There is a deep link between CPT invariance and Lorentz symmetry--that is, the laws of nature seem to be invariant under the symmetry transformation of spacetime--although it is model dependent. A number of high-precision CPT and Lorentz invariance tests--using a co-magnetometer, a torsion pendulum and a maser, among others--have been performed, but only a few direct high-precision CPT tests that compare the fundamental properties of matter and antimatter are available. Here we report high-precision cyclotron frequency comparisons of a single antiproton and a negatively charged hydrogen ion (H-) carried out in a Penning trap system. From 13,000 frequency measurements we compare the charge-to-mass ratio for the antiproton to that for the proton and obtain . The measurements were performed at cyclotron frequencies of 29.6 megahertz, so our result shows that the CPT theorem holds at the atto-electronvolt scale. Our precision of 69 parts per trillion exceeds the energy resolution of previous antiproton-to-proton mass comparisons as well as the respective figure of merit of the standard model extension by a factor of four. In addition, we give a limit on sidereal variations in the measured ratio of <720 parts per trillion. By following the arguments of ref. 11, our result can be interpreted as a stringent test of the weak equivalence principle of general relativity using baryonic antimatter, and it sets a new limit on the gravitational anomaly parameter of < 8.7 × 10-7.
High-precision comparison of the antiproton-to-proton charge-to-mass ratio.
Ulmer, S; Smorra, C; Mooser, A; Franke, K; Nagahama, H; Schneider, G; Higuchi, T; Van Gorp, S; Blaum, K; Matsuda, Y; Quint, W; Walz, J; Yamazaki, Y
2015-08-13
Invariance under the charge, parity, time-reversal (CPT) transformation is one of the fundamental symmetries of the standard model of particle physics. This CPT invariance implies that the fundamental properties of antiparticles and their matter-conjugates are identical, apart from signs. There is a deep link between CPT invariance and Lorentz symmetry--that is, the laws of nature seem to be invariant under the symmetry transformation of spacetime--although it is model dependent. A number of high-precision CPT and Lorentz invariance tests--using a co-magnetometer, a torsion pendulum and a maser, among others--have been performed, but only a few direct high-precision CPT tests that compare the fundamental properties of matter and antimatter are available. Here we report high-precision cyclotron frequency comparisons of a single antiproton and a negatively charged hydrogen ion (H(-)) carried out in a Penning trap system. From 13,000 frequency measurements we compare the charge-to-mass ratio for the antiproton (q/m)p- to that for the proton (q/m)p and obtain (q/m)p-/(q/m)p − 1 =1(69) × 10(-12). The measurements were performed at cyclotron frequencies of 29.6 megahertz, so our result shows that the CPT theorem holds at the atto-electronvolt scale. Our precision of 69 parts per trillion exceeds the energy resolution of previous antiproton-to-proton mass comparisons as well as the respective figure of merit of the standard model extension by a factor of four. In addition, we give a limit on sidereal variations in the measured ratio of <720 parts per trillion. By following the arguments of ref. 11, our result can be interpreted as a stringent test of the weak equivalence principle of general relativity using baryonic antimatter, and it sets a new limit on the gravitational anomaly parameter of |α − 1| < 8.7 × 10(-7).
Precision calculation of threshold πd scattering, πN scattering lengths, and the GMO sum rule
NASA Astrophysics Data System (ADS)
Baru, V.; Hanhart, C.; Hoferichter, M.; Kubis, B.; Nogga, A.; Phillips, D. R.
2011-12-01
We use chiral perturbation theory (ChPT) to calculate the πd scattering length with an accuracy of a few percent, including isospin-violating corrections in both the two- and three-body sectors. In particular, we provide the technical details of a recent letter (Baru et al., 2011) [1], where we used data on pionic deuterium and pionic hydrogen atoms to extract the isoscalar and isovector pion-nucleon scattering lengths a and a. We study isospin-breaking contributions to the three-body part of a due to mass differences, isospin violation in the πN scattering lengths, and virtual photons. This last class of effects is ostensibly infrared enhanced due to the smallness of the deuteron binding energy. However, we show that the leading virtual-photon effects that might undergo such enhancement cancel, and hence the standard ChPT counting provides a reliable estimate of isospin violation in a due to virtual photons. Finally, we discuss the validity of the Goldberger-Miyazawa-Oehme sum rule in the presence of isospin violation, and use it to determine the charged-pion-nucleon coupling constant.