Sample records for high precision linear

  1. Double Arm Linkage precision Linear motion (DALL) Carriage, a simplified, rugged, high performance linear motion stage for the moving mirror of an Fourier Transform Spectrometer or other system requiring precision linear motion

    NASA Astrophysics Data System (ADS)

    Johnson, Kendall B.; Hopkins, Greg

    2017-08-01

    The Double Arm Linkage precision Linear motion (DALL) carriage has been developed as a simplified, rugged, high performance linear motion stage. Initially conceived as a moving mirror stage for the moving mirror of a Fourier Transform Spectrometer (FTS), it is applicable to any system requiring high performance linear motion. It is based on rigid double arm linkages connecting a base to a moving carriage through flexures. It is a monolithic design. The system is fabricated from one piece of material including the flexural elements, using high precision machining. The monolithic design has many advantages. There are no joints to slip or creep and there are no CTE (coefficient of thermal expansion) issues. This provides a stable, robust design, both mechanically and thermally and is expected to provide a wide operating temperature range, including cryogenic temperatures, and high tolerance to vibration and shock. Furthermore, it provides simplicity and ease of implementation, as there is no assembly or alignment of the mechanism. It comes out of the machining operation aligned and there are no adjustments. A prototype has been fabricated and tested, showing superb shear performance and very promising tilt performance. This makes it applicable to both corner cube and flat mirror FTS systems respectively.

  2. Weighted linear least squares estimation of diffusion MRI parameters: strengths, limitations, and pitfalls.

    PubMed

    Veraart, Jelle; Sijbers, Jan; Sunaert, Stefan; Leemans, Alexander; Jeurissen, Ben

    2013-11-01

    Linear least squares estimators are widely used in diffusion MRI for the estimation of diffusion parameters. Although adding proper weights is necessary to increase the precision of these linear estimators, there is no consensus on how to practically define them. In this study, the impact of the commonly used weighting strategies on the accuracy and precision of linear diffusion parameter estimators is evaluated and compared with the nonlinear least squares estimation approach. Simulation and real data experiments were done to study the performance of the weighted linear least squares estimators with weights defined by (a) the squares of the respective noisy diffusion-weighted signals; and (b) the squares of the predicted signals, which are reconstructed from a previous estimate of the diffusion model parameters. The negative effect of weighting strategy (a) on the accuracy of the estimator was surprisingly high. Multi-step weighting strategies yield better performance and, in some cases, even outperformed the nonlinear least squares estimator. If proper weighting strategies are applied, the weighted linear least squares approach shows high performance characteristics in terms of accuracy/precision and may even be preferred over nonlinear estimation methods. Copyright © 2013 Elsevier Inc. All rights reserved.

  3. Precision linear ramp function generator

    DOEpatents

    Jatko, W.B.; McNeilly, D.R.; Thacker, L.H.

    1984-08-01

    A ramp function generator is provided which produces a precise linear ramp function which is repeatable and highly stable. A derivative feedback loop is used to stabilize the output of an integrator in the forward loop and control the ramp rate. The ramp may be started from a selected baseline voltage level and the desired ramp rate is selected by applying an appropriate constant voltage to the input of the integrator.

  4. Precision linear ramp function generator

    DOEpatents

    Jatko, W. Bruce; McNeilly, David R.; Thacker, Louis H.

    1986-01-01

    A ramp function generator is provided which produces a precise linear ramp unction which is repeatable and highly stable. A derivative feedback loop is used to stabilize the output of an integrator in the forward loop and control the ramp rate. The ramp may be started from a selected baseline voltage level and the desired ramp rate is selected by applying an appropriate constant voltage to the input of the integrator.

  5. An accuracy improvement method for the topology measurement of an atomic force microscope using a 2D wavelet transform.

    PubMed

    Yoon, Yeomin; Noh, Suwoo; Jeong, Jiseong; Park, Kyihwan

    2018-05-01

    The topology image is constructed from the 2D matrix (XY directions) of heights Z captured from the force-feedback loop controller. For small height variations, nonlinear effects such as hysteresis or creep of the PZT-driven Z nano scanner can be neglected and its calibration is quite straightforward. For large height variations, the linear approximation of the PZT-driven Z nano scanner fail and nonlinear behaviors must be considered because this would cause inaccuracies in the measurement image. In order to avoid such inaccuracies, an additional strain gauge sensor is used to directly measure displacement of the PZT-driven Z nano scanner. However, this approach also has a disadvantage in its relatively low precision. In order to obtain high precision data with good linearity, we propose a method of overcoming the low precision problem of the strain gauge while its feature of good linearity is maintained. We expect that the topology image obtained from the strain gauge sensor showing significant noise at high frequencies. On the other hand, the topology image obtained from the controller output showing low noise at high frequencies. If the low and high frequency signals are separable from both topology images, the image can be constructed so that it is represented with high accuracy and low noise. In order to separate the low frequencies from high frequencies, a 2D Haar wavelet transform is used. Our proposed method use the 2D wavelet transform for obtaining good linearity from strain gauge sensor and good precision from controller output. The advantages of the proposed method are experimentally validated by using topology images. Copyright © 2018 Elsevier B.V. All rights reserved.

  6. Precision Control of Multiple Quantum Cascade Lasers for Calibration Systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Taubman, Matthew S.; Myers, Tanya L.; Pratt, Richard M.

    We present a precision, digitally interfaced current controller for quantum cascade lasers, with demonstrated DC and modulated temperature coefficients of 1- 2 ppm/ºC and 15 ppm/ºC respectively. High linearity digital to analog converters (DACs) together with an ultra-precision voltage reference, produce highly stable, precision voltages. These are in turn selected by a low charge-injection multiplexer (MUX) chip, which are then used to set output currents via a linear current regulator. The controller is operated in conjunction with a power multiplexing unit, allowing one of three lasers to be driven by the controller while ensuring protection of controller and all lasersmore » during operation, standby and switching. Simple ASCII commands sent over a USB connection to a microprocessor located in the current controller operate both the controller (via the DACs and MUX chip) and the power multiplexer.« less

  7. High efficiency machining technology and equipment for edge chamfer of KDP crystals

    NASA Astrophysics Data System (ADS)

    Chen, Dongsheng; Wang, Baorui; Chen, Jihong

    2016-10-01

    Potassium dihydrogen phosphate (KDP) is a type of nonlinear optical crystal material. To Inhibit the transverse stimulated Raman scattering of laser beam and then enhance the optical performance of the optics, the edges of the large-sized KDP crystal needs to be removed to form chamfered faces with high surface quality (RMS<5 nm). However, as the depth of cut (DOC) of fly cutting is usually several, its machining efficiency is too low to be accepted for chamfering of the KDP crystal as the amount of materials to be removed is in the order of millimeter. This paper proposes a novel hybrid machining method, which combines precision grinding with fly cutting, for crackless and high efficiency chamfer of KDP crystal. A specialized machine tool, which adopts aerostatic bearing linear slide and aerostatic bearing spindle, was developed for chamfer of the KDP crystal. The aerostatic bearing linear slide consists of an aerostatic bearing guide with linearity of 0.1 μm/100mm and a linear motor to achieve linear feeding with high precision and high dynamic performance. The vertical spindle consists of an aerostatic bearing spindle with the rotation accuracy (axial) of 0.05 microns and Fork type flexible connection precision driving mechanism. The machining experiment on flying and grinding was carried out, the optimize machining parameters was gained by a series of experiment. Surface roughness of 2.4 nm has been obtained. The machining efficiency can be improved by six times using the combined method to produce the same machined surface quality.

  8. Research on the precision measurement of super-low reflectivity

    NASA Astrophysics Data System (ADS)

    Yuan, Hao-yu; Lu, Zong-gui; Xia, Yan-wen; Peng, Zhi-tao; Liu, Hua; Xu, Long-bo; Sun, Zhi-hong; Tang, Jun

    2010-10-01

    Introduced a high-precision measurement of measured the super-low reflectivity and small sampling angle. Using single reflect way measured, and compare with re-swatch. Testing the reflectance of the sampling mirror which be used on TIL, and analyze the error. Research results indicate, the main factor which affect result is energy detector error and energy detector linearity. This methods is easy and have high-precision, it can be used to measure the super-low reflectivity sampling mirror reflectance.

  9. Precise measurement of coupling strength and high temperature quantum effect in a nonlinearly coupled qubit-oscillator system

    NASA Astrophysics Data System (ADS)

    Ge, Li; Zhao, Nan

    2018-04-01

    We study the coherence dynamics of a qubit coupled to a harmonic oscillator with both linear and quadratic interactions. As long as the linear coupling strength is much smaller than the oscillator frequency, the long time behavior of the coherence is dominated by the quadratic coupling strength g 2. The coherence decays and revives at a period , with the width of coherence peak decreasing as the temperature increases, hence providing a way to measure g 2 precisely without cooling. Unlike the case of linear coupling, here the coherence dynamics never reduces to the classical limit in which the oscillator is classical. Finally, the validity of linear coupling approximation is discussed and the coherence under Hahn-echo is evaluated.

  10. Research on precise pneumatic-electric displacement sensor with large measurement range

    NASA Astrophysics Data System (ADS)

    Yin, Zhehao; Yuan, Yibao; Liu, Baoshuai

    2017-10-01

    This research mainly focuses on precise pneumatic-electric displacement sensor which has large measurement range. Under the high precision, measurement range can be expanded so that the need of high precision as well as large range can be satisfied in the field of machining inspection technology. This research was started by the analysis of pneumatic-measuring theory. Then, an gas circuit measuring system which is based on differential pressure was designed. This designed system can reach two aims: Firstly, to convert displacement signal into gas signal; Secondly, to reduce the measurement error which caused by pressure and environmental turbulence. Furthermore, in consideration of the high requirement for linearity, sensitivity and stability, the project studied the pneumatic-electric transducer which puts the SCX series pressure sensor as a key part. The main purpose of this pneumatic-electric transducer is to convert gas signal to suitable electrical signal. Lastly, a broken line subsection linearization circuit was designed, which can nonlinear correct the output characteristic curve so as to enlarge the linear measurement range. The final result could be briefly described like this: under the condition that measuring error is less than 1μm, measurement range could be extended to approximately 200μm which is much higher than the measurement range of traditional pneumatic measuring instrument. Meanwhile, it can reach higher exchangeability and stability in order to become more suitable to engineering application.

  11. Detector Outline Document for the Fourth Concept Detector ("4th") at the International Linear Collider

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barbareschi, Daniele; et al.

    We describe a general purpose detector ( "Fourth Concept") at the International Linear Collider (ILC) that can measure with high precision all the fundamental fermions and bosons of the standard model, and thereby access all known physics processes. The 4th concept consists of four basic subsystems: a pixel vertex detector for high precision vertex definitions, impact parameter tagging and near-beam occupancy reduction; a Time Projection Chamber for robust pattern recognition augmented with three high-precision pad rows for precision momentum measurement; a high precision multiple-readout fiber calorimeter, complemented with an EM dual-readout crystal calorimeter, for the energy measurement of hadrons, jets,more » electrons, photons, missing momentum, and the tagging of muons; and, an iron-free dual-solenoid muon system for the inverse direction bending of muons in a gas volume to achieve high acceptance and good muon momentum resolution. The pixel vertex chamber, TPC and calorimeter are inside the solenoidal magnetic field. All four subsytems separately achieve the important scientific goal to be 2-to-10 times better than the already excellent LEP detectors, ALEPH, DELPHI, L3 and OPAL. All four basic subsystems contribute to the identification of standard model partons, some in unique ways, such that consequent physics studies are cogent. As an integrated detector concept, we achieve comprehensive physics capabilities that puts all conceivable physics at the ILC within reach.« less

  12. Development and Preliminary Testing of a High Precision Long Stroke Slit Change Mechanism for the SPICE Instrument

    NASA Technical Reports Server (NTRS)

    Paciotti, Gabriel; Humphries, Martin; Rottmeier, Fabrice; Blecha, Luc

    2014-01-01

    In the frame of ESA's Solar Orbiter scientific mission, Almatech has been selected to design, develop and test the Slit Change Mechanism of the SPICE (SPectral Imaging of the Coronal Environment) instrument. In order to guaranty optical cleanliness level while fulfilling stringent positioning accuracies and repeatability requirements for slit positioning in the optical path of the instrument, a linear guiding system based on a double flexible blade arrangement has been selected. The four different slits to be used for the SPICE instrument resulted in a total stroke of 16.5 mm in this linear slit changer arrangement. The combination of long stroke and high precision positioning requirements has been identified as the main design challenge to be validated through breadboard models testing. This paper presents the development of SPICE's Slit Change Mechanism (SCM) and the two-step validation tests successfully performed on breadboard models of its flexible blade support system. The validation test results have demonstrated the full adequacy of the flexible blade guiding system implemented in SPICE's Slit Change Mechanism in a stand-alone configuration. Further breadboard test results, studying the influence of the compliant connection to the SCM linear actuator on an enhanced flexible guiding system design have shown significant enhancements in the positioning accuracy and repeatability of the selected flexible guiding system. Preliminary evaluation of the linear actuator design, including a detailed tolerance analyses, has shown the suitability of this satellite roller screw based mechanism for the actuation of the tested flexible guiding system and compliant connection. The presented development and preliminary testing of the high-precision long-stroke Slit Change Mechanism for the SPICE Instrument are considered fully successful such that future tests considering the full Slit Change Mechanism can be performed, with the gained confidence, directly on a Qualification Model. The selected linear Slit Change Mechanism design concept, consisting of a flexible guiding system driven by a hermetically sealed linear drive mechanism, is considered validated for the specific application of the SPICE instrument, with great potential for other special applications where contamination and high precision positioning are dominant design drivers.

  13. Influence of non-ideal performance of lasers on displacement precision in single-grating heterodyne interferometry

    NASA Astrophysics Data System (ADS)

    Wang, Guochao; Xie, Xuedong; Yan, Shuhua

    2010-10-01

    Principle of the dual-wavelength single grating nanometer displacement measuring system, with a long range, high precision, and good stability, is presented. As a result of the nano-level high-precision displacement measurement, the error caused by a variety of adverse factors must be taken into account. In this paper, errors, due to the non-ideal performance of the dual-frequency laser, including linear error caused by wavelength instability and non-linear error caused by elliptic polarization of the laser, are mainly discussed and analyzed. On the basis of theoretical modeling, the corresponding error formulas are derived as well. Through simulation, the limit value of linear error caused by wavelength instability is 2nm, and on the assumption that 0.85 x T = , 1 Ty = of the polarizing beam splitter(PBS), the limit values of nonlinear-error caused by elliptic polarization are 1.49nm, 2.99nm, 4.49nm while the non-orthogonal angle is selected correspondingly at 1°, 2°, 3° respectively. The law of the error change is analyzed based on different values of Tx and Ty .

  14. High precision locating control system based on VCM for Talbot lithography

    NASA Astrophysics Data System (ADS)

    Yao, Jingwei; Zhao, Lixin; Deng, Qian; Hu, Song

    2016-10-01

    Aiming at the high precision and efficiency requirements of Z-direction locating in Talbot lithography, a control system based on Voice Coil Motor (VCM) was designed. In this paper, we built a math model of VCM and its moving characteristic was analyzed. A double-closed loop control strategy including position loop and current loop were accomplished. The current loop was implemented by driver, in order to achieve the rapid follow of the system current. The position loop was completed by the digital signal processor (DSP) and the position feedback was achieved by high precision linear scales. Feed forward control and position feedback Proportion Integration Differentiation (PID) control were applied in order to compensate for dynamic lag and improve the response speed of the system. And the high precision and efficiency of the system were verified by simulation and experiments. The results demonstrated that the performance of Z-direction gantry was obviously improved, having high precision, quick responses, strong real-time and easily to expend for higher precision.

  15. Precision-feeding dairy heifers a high rumen-undegradable protein diet with different proportions of dietary fiber and forage-to-concentrate ratios.

    PubMed

    Koch, L E; Gomez, N A; Bowyer, A; Lascano, G J

    2017-12-01

    The addition of dietary fiber can alter nutrient and N utilization in precision-fed dairy heifers and may further benefit from higher inclusion levels of RUP. The objective of this experiment was to determine the effects of feeding a high-RUP diet when dietary fiber content was manipulated within differing forage-to-concentrate ratios (F:C) on nutrient utilization of precision-fed dairy heifers. Six rumen-cannulated Holstein heifers (555.4 ± 31.4 kg BW; 17.4 ± 0.1 mo) were randomly assigned to 2 levels of forage, high forage (HF; 60% forage) or low forage (LF; 45% forage), and to a fiber proportion sequence (low fiber: 100% oat hay and silage [OA], 0% wheat straw [WS]; medium fiber: 83.4% OA, 16.6% WS; and high fiber: 66.7% OA, 33.3% WS) administered according to a split-plot 3 × 3 Latin square design (21-d periods). Similar levels of N intake (1.70 g N/kg BW) and RUP (55% of CP) were provided. Data were analyzed as a split-plot, 3 × 3 Latin square design using a mixed model with fixed effects of period and treatment. A repeated measures model was used with data that had multiple measurements over time. No differences were observed for DM, OM, NDF, or ADF apparent digestibility coefficients (dC) between HF- and LF-fed heifers. Heifers receiving LF diets had greater starch dC compared to HF heifers. Increasing the fiber level through WS addition resulted in a linear reduction of OM dC. There was a linear interaction for DM dC with a concurrent linear interaction in NDF dC. Nitrogen intake, dC, and retention did not differ; however, urine and total N excretion increased linearly with added fiber. Predicted microbial CP flow (MP) linearly decreased with WS inclusion mainly in LF heifers, as indicated by a significant interaction between F:C and WS. Rumen pH linearly increased with WS addition, although no F:C effect was detected. Ruminal ammonia concentration had an opposite linear effect with respect to MP as WS increased. Diets with the higher proportion of fiber benefited the most from a high RUP supply, complementing the substantial reduction in predicted MP caused by the incremental dietary fiber concentration. These results suggest that RUP supplementation is a practical method for reestablishing optimal ruminal N balance in the event of increased dietary fiber through forage inclusion in precision-fed dairy heifer diets.

  16. The fastclime Package for Linear Programming and Large-Scale Precision Matrix Estimation in R.

    PubMed

    Pang, Haotian; Liu, Han; Vanderbei, Robert

    2014-02-01

    We develop an R package fastclime for solving a family of regularized linear programming (LP) problems. Our package efficiently implements the parametric simplex algorithm, which provides a scalable and sophisticated tool for solving large-scale linear programs. As an illustrative example, one use of our LP solver is to implement an important sparse precision matrix estimation method called CLIME (Constrained L 1 Minimization Estimator). Compared with existing packages for this problem such as clime and flare, our package has three advantages: (1) it efficiently calculates the full piecewise-linear regularization path; (2) it provides an accurate dual certificate as stopping criterion; (3) it is completely coded in C and is highly portable. This package is designed to be useful to statisticians and machine learning researchers for solving a wide range of problems.

  17. High Bandwidth Rotary Fast Tool Servos and a Hybrid Rotary/Linear Electromagnetic Actuator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Montesanti, Richard Clement

    2005-09-01

    This thesis describes the development of two high bandwidth short-stroke rotary fast tool servos and the hybrid rotary/linear electromagnetic actuator developed for one of them. Design insights, trade-o® methodologies, and analytical tools are developed for precision mechanical systems, power and signal electronic systems, control systems, normal-stress electromagnetic actuators, and the dynamics of the combined systems.

  18. Development and validity of an instrumented handbike: initial results of propulsion kinetics.

    PubMed

    van Drongelen, Stefan; van den Berg, Jos; Arnet, Ursina; Veeger, Dirkjan H E J; van der Woude, Lucas H V

    2011-11-01

    To develop an instrumented handbike system to measure the forces applied to the handgrip during handbiking. A 6 degrees of freedom force sensor was built into the handgrip of an attach-unit handbike, together with two optical encoders to measure the orientation of the handgrip and crank in space. Linearity, precision, and percent error were determined for static and dynamic tests. High linearity was demonstrated for both the static and the dynamic condition (r=1.01). Precision was high under the static condition (standard deviation of 0.2N), however the precision decreased with higher loads during the dynamic condition. Percent error values were between 0.3 and 5.1%. This is the first instrumented handbike system that can register 3-dimensional forces. It can be concluded that the instrumented handbike system allows for an accurate force analysis based on forces registered at the handle bars. Copyright © 2011 IPEM. Published by Elsevier Ltd. All rights reserved.

  19. Five degree-of-freedom control of an ultra-precision magnetically-suspended linear bearing. Ph.D. Thesis - MIT

    NASA Technical Reports Server (NTRS)

    Trumper, David L.; Slocum, A. H.

    1991-01-01

    The authors constructed a high precision linear bearing. A 10.7 kg platen measuring 125 mm by 125 mm by 350 mm is suspended and controlled in five degrees of freedom by seven electromagnets. The position of the platen is measured by five capacitive probes which have nanometer resolution. The suspension acts as a linear bearing, allowing linear travel of 50 mm in the sixth degree of freedom. In the laboratory, this bearing system has demonstrated position stability of 5 nm peak-to-peak. This is believed to be the highest position stability yet demonstrated in a magnetic suspension system. Performance at this level confirms that magnetic suspensions can address motion control requirements at the nanometer level. The experimental effort associated with this linear bearing system is described. Major topics are the development of models for the suspension, implementation of control algorithms, and measurement of the actual bearing performance. Suggestions for the future improvement of the bearing system are given.

  20. Design of Feedforward Controller to Reduce Force Ripple for Linear Motor using Halbach Magnet Array with T Shape Magnet

    NASA Astrophysics Data System (ADS)

    Kim, Moojong; Kim, Jinyoung; Lee, Moon G.

    Recently, in micro/nano fabrication equipments, linear motors are widely used as an actuator to position workpiece, machining tool and measurement head. To control them faster and more precise, the motor should have high actuating force and small force ripple. High actuating force enable us to more workpiece with high acceleration. Eventually, it may provide higher throughput. Force ripple gives detrimental effect on the precision and tracking performance of the equipments. In order to accomplish more precise motion, it is important to make lower the force ripple. Force ripple is categorized into cogging and mutual ripple. First is dependent on the shape of magnets and/or core. The second is not dependent on them but dependent on current commutation. In this work, coreless mover i.e. coil winding is applied to the linear motor to avoid the cogging ripple. Therefore, the mutual ripple is only considered to be minimized. Ideal Halbach magnet array has continuously varying magnetization. The THMA (Halbach magnet array with T shape magnets) is proposed to approximate the ideal one. The THMA can not produce ideal sinusoidal flux, therefore, the linear motor with THMA and sinusoidal commutation of current generates the mutual force ripple. In this paper, in order to compensate mutual force ripple by feedforward(FF) controller, we calculate the optimized commutation of input current. The ripple is lower than 1.17% of actuating force if the commutation current agree with the magnetic flux from THMA. The performance of feedforward(FF) controller is verified by experiment.

  1. Accuracy of active chirp linearization for broadband frequency modulated continuous wave ladar.

    PubMed

    Barber, Zeb W; Babbitt, Wm Randall; Kaylor, Brant; Reibel, Randy R; Roos, Peter A

    2010-01-10

    As the bandwidth and linearity of frequency modulated continuous wave chirp ladar increase, the resulting range resolution, precisions, and accuracy are improved correspondingly. An analysis of a very broadband (several THz) and linear (<1 ppm) chirped ladar system based on active chirp linearization is presented. Residual chirp nonlinearity and material dispersion are analyzed as to their effect on the dynamic range, precision, and accuracy of the system. Measurement precision and accuracy approaching the part per billion level is predicted.

  2. Precision-feeding dairy heifers a high rumen-degradable protein diet with different proportions of dietary fiber and forage-to-concentrate ratios.

    PubMed

    Lascano, G J; Koch, L E; Heinrichs, A J

    2016-09-01

    The objective of this experiment was to determine the effects of feeding a high-rumen-degradable protein (RDP) diet when dietary fiber content is manipulated within differing forage-to-concentrate ratio (F:C) on nutrient utilization of precision-fed dairy heifers. Six cannulated Holstein heifers (486.98±15.07kg of body weight) were randomly assigned to 2 F:C, low- (45% forage; LF) and high-forage (90% forage; HF) diets and to a fiber proportion sequence [33% grass hay and wheat straw (HS), 67% corn silage (CS; low fiber); 50% HS, 50% CS (medium fiber); and 67% HS, 33% CS (high fiber)] within forage proportion administered according to a split-plot, 3×3 Latin square design (16-d periods). Heifers fed LF had greater apparent total-tract organic matter digestibility coefficients (dC), neutral detergent fiber, and cellulose than those fed LC diets. Substituting CS with HS resulted in a linear reduction in dry matter, organic matter, and cellulose dC. Nitrogen dC was not different between F:C or with increasing proportions of HS in diets, but N retention tended to decrease linearly as HS was increased in the diets. Predicted microbial protein flow to the duodenum decreased linearly with HS addition and protozoa numbers HS interacted linearly, exhibiting a decrease as HS increased for LF, whereas no effects were observed for HF. Blood urea N increased linearly as HS was incorporated. The LF-fed heifers had a greater ruminal volatile fatty acids concentration. We noted a tendency for a greater dry matter, and a significantly higher liquid fraction turnover rate for HF diets. There was a linear numerical increase in the liquid and solid fraction turnover rate as fiber was added to the diets. Rumen fermentation parameters and fractional passages (solid and liquid) rates support the reduction in dC, N retention, and microbial protein synthesis observed as more dietary fiber is added to the rations of dairy heifers precision-fed a constant proportion of rumen-degradable protein. Copyright © 2016 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  3. High-precision radius automatic measurement using laser differential confocal technology

    NASA Astrophysics Data System (ADS)

    Jiang, Hongwei; Zhao, Weiqian; Yang, Jiamiao; Guo, Yongkui; Xiao, Yang

    2015-02-01

    A high precision radius automatic measurement method using laser differential confocal technology is proposed. Based on the property of an axial intensity curve that the null point precisely corresponds to the focus of the objective and the bipolar property, the method uses the composite PID (proportional-integral-derivative) control to ensure the steady movement of the motor for process of quick-trigger scanning, and uses least-squares linear fitting to obtain the position of the cat-eye and confocal positions, then calculates the radius of curvature of lens. By setting the number of measure times, precision auto-repeat measurement of the radius of curvature is achieved. The experiment indicates that the method has the measurement accuracy of better than 2 ppm, and the measuring repeatability is better than 0.05 μm. In comparison with the existing manual-single measurement, this method has a high measurement precision, a strong environment anti-interference capability, a better measuring repeatability which is only tenth of former's.

  4. Linear FMCW Laser Radar for Precision Range and Vector Velocity Measurements

    NASA Technical Reports Server (NTRS)

    Pierrottet, Diego; Amzajerdian, Farzin; Petway, Larry; Barnes, Bruce; Lockhard, George; Rubio, Manuel

    2008-01-01

    An all fiber linear frequency modulated continuous wave (FMCW) coherent laser radar system is under development with a goal to aide NASA s new Space Exploration initiative for manned and robotic missions to the Moon and Mars. By employing a combination of optical heterodyne and linear frequency modulation techniques and utilizing state-of-the-art fiber optic technologies, highly efficient, compact and reliable laser radar suitable for operation in a space environment is being developed. Linear FMCW lidar has the capability of high-resolution range measurements, and when configured into a multi-channel receiver system it has the capability of obtaining high precision horizontal and vertical velocity measurements. Precision range and vector velocity data are beneficial to navigating planetary landing pods to the preselected site and achieving autonomous, safe soft-landing. The all-fiber coherent laser radar has several important advantages over more conventional pulsed laser altimeters or range finders. One of the advantages of the coherent laser radar is its ability to measure directly the platform velocity by extracting the Doppler shift generated from the motion, as opposed to time of flight range finders where terrain features such as hills, cliffs, or slopes add error to the velocity measurement. Doppler measurements are about two orders of magnitude more accurate than the velocity estimates obtained by pulsed laser altimeters. In addition, most of the components of the device are efficient and reliable commercial off-the-shelf fiber optic telecommunication components. This paper discusses the design and performance of a second-generation brassboard system under development at NASA Langley Research Center as part of the Autonomous Landing and Hazard Avoidance (ALHAT) project.

  5. Precision control of multiple quantum cascade lasers for calibration systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Taubman, Matthew S., E-mail: Matthew.Taubman@pnnl.gov; Myers, Tanya L.; Pratt, Richard M.

    We present a precision, 1-A, digitally interfaced current controller for quantum cascade lasers, with demonstrated temperature coefficients for continuous and 40-kHz full-depth square-wave modulated operation, of 1–2 ppm/ °C and 15 ppm/ °C, respectively. High precision digital to analog converters (DACs) together with an ultra-precision voltage reference produce highly stable, precision voltages, which are selected by a multiplexer (MUX) chip to set output currents via a linear current regulator. The controller is operated in conjunction with a power multiplexing unit, allowing one of three lasers to be driven by the controller, while ensuring protection of controller and all lasers during operation, standby,more » and switching. Simple ASCII commands sent over a USB connection to a microprocessor located in the current controller operate both the controller (via the DACs and MUX chip) and the power multiplexer.« less

  6. High Precision Piezoelectric Linear Motors for Operations at Cryogenic Temperatures and Vacuum

    NASA Technical Reports Server (NTRS)

    Wong, D.; Carman, G.; Stam, M.; Bar-Cohen, Y.; Sen, A.; Henry, P.; Bearman, G.; Moacanin, J.

    1995-01-01

    The use of an electromechanical device for optically positioning a mirror system during the pre-project phase of the Pluto Fast Flyby mission was evaluated at JPL. The device under consideration was a piezoelectric driven linear motor functionally dependent upon a time varying electric field which induces displacements ranging from submicrons to millimeters with positioning accuracy within nanometers.

  7. Comparison of linear and nonlinear implementation of the compartmental tissue uptake model for dynamic contrast-enhanced MRI.

    PubMed

    Kallehauge, Jesper F; Sourbron, Steven; Irving, Benjamin; Tanderup, Kari; Schnabel, Julia A; Chappell, Michael A

    2017-06-01

    Fitting tracer kinetic models using linear methods is much faster than using their nonlinear counterparts, although this comes often at the expense of reduced accuracy and precision. The aim of this study was to derive and compare the performance of the linear compartmental tissue uptake (CTU) model with its nonlinear version with respect to their percentage error and precision. The linear and nonlinear CTU models were initially compared using simulations with varying noise and temporal sampling. Subsequently, the clinical applicability of the linear model was demonstrated on 14 patients with locally advanced cervical cancer examined with dynamic contrast-enhanced magnetic resonance imaging. Simulations revealed equal percentage error and precision when noise was within clinical achievable ranges (contrast-to-noise ratio >10). The linear method was significantly faster than the nonlinear method, with a minimum speedup of around 230 across all tested sampling rates. Clinical analysis revealed that parameters estimated using the linear and nonlinear CTU model were highly correlated (ρ ≥ 0.95). The linear CTU model is computationally more efficient and more stable against temporal downsampling, whereas the nonlinear method is more robust to variations in noise. The two methods may be used interchangeably within clinical achievable ranges of temporal sampling and noise. Magn Reson Med 77:2414-2423, 2017. © 2016 The Authors Magnetic Resonance in Medicine published by Wiley Periodicals, Inc. on behalf of International Society for Magnetic Resonance in Medicine. This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. © 2016 The Authors Magnetic Resonance in Medicine published by Wiley Periodicals, Inc. on behalf of International Society for Magnetic Resonance in Medicine.

  8. Estimation of suspended-sediment rating curves and mean suspended-sediment loads

    USGS Publications Warehouse

    Crawford, Charles G.

    1991-01-01

    A simulation study was done to evaluate: (1) the accuracy and precision of parameter estimates for the bias-corrected, transformed-linear and non-linear models obtained by the method of least squares; (2) the accuracy of mean suspended-sediment loads calculated by the flow-duration, rating-curve method using model parameters obtained by the alternative methods. Parameter estimates obtained by least squares for the bias-corrected, transformed-linear model were considerably more precise than those obtained for the non-linear or weighted non-linear model. The accuracy of parameter estimates obtained for the biascorrected, transformed-linear and weighted non-linear model was similar and was much greater than the accuracy obtained by non-linear least squares. The improved parameter estimates obtained by the biascorrected, transformed-linear or weighted non-linear model yield estimates of mean suspended-sediment load calculated by the flow-duration, rating-curve method that are more accurate and precise than those obtained for the non-linear model.

  9. Performance characteristics of two bioassays and high-performance liquid chromatography for determination of flucytosine in serum.

    PubMed Central

    St-Germain, G; Lapierre, S; Tessier, D

    1989-01-01

    We compared the accuracy and precision of two microbiological methods and one high-pressure liquid chromatography (HPLC) procedure used to measure the concentrations of flucytosine in serum. On the basis of an analysis of six standards, all methods were judged reliable within acceptable limits for clinical use. With the biological methods, a slight loss of linearity was observed in the 75- to 100-micrograms/ml range. Compared with the bioassays, the HPLC method did not present linearity problems and was more precise and accurate in the critical zone of 100 micrograms/ml. On average, results obtained with patient sera containing 50 to 100 micrograms of flucytosine per ml were 10.6% higher with the HPLC method than with the bioassays. Standards for the biological assays may be prepared in serum or water. PMID:2802566

  10. A validated ultra high-pressure liquid chromatography method for separation of candesartan cilexetil impurities and its degradents in drug product

    PubMed Central

    Kumar, Namala Durga Atchuta; Babu, K. Sudhakar; Gosada, Ullas; Sharma, Nitish

    2012-01-01

    Introduction: A selective, specific, and sensitive “Ultra High-Pressure Liquid Chromatography” (UPLC) method was developed for determination of candesartan cilexetil impurities as well asits degradent in tablet formulation. Materials and Methods: The chromatographic separation was performed on Waters Acquity UPLC system and BEH Shield RP18 column using gradient elution of mobile phase A and B. 0.01 M phosphate buffer adjusted pH 3.0 with Orthophosphoric acid was used as mobile phase A and 95% acetonitrile with 5% Milli Q Water was used as mobile phase B. Ultraviolet (UV) detection was performed at 254 nm and 210 nm, where (CDS-6), (CDS-5), (CDS-7), (Ethyl Candesartan), (Desethyl CCX), (N-Ethyl), (CCX-1), (1 N Ethyl Oxo CCX), (2 N Ethyl Oxo CCX), (2 N Ethyl) and any unknown impurity were monitored at 254 nm wavelength, and two process-related impurities, trityl alcohol and MTE impurity, were estimated at 210 nm. Candesartan cilexetil andimpurities were chromatographed with a total run time of 20 min. Results: Calibration showed that the response of impurity was a linear function of concentration over the range limit of quantification to 2 μg/mL (r2≥0.999) and the method was validated over this range for precision, intermediate precision, accuracy, linearity, and specificity. For the precision study, percentage relative standard deviation of each impurity was <15% (n=6). Conclusion: The method was found to be precise, accurate, linear, and specific. The proposed method was successfully employed for estimation of candesartan cilexetil impurities in pharmaceutical preparations. PMID:23781475

  11. Amesos2 and Belos: Direct and Iterative Solvers for Large Sparse Linear Systems

    DOE PAGES

    Bavier, Eric; Hoemmen, Mark; Rajamanickam, Sivasankaran; ...

    2012-01-01

    Solvers for large sparse linear systems come in two categories: direct and iterative. Amesos2, a package in the Trilinos software project, provides direct methods, and Belos, another Trilinos package, provides iterative methods. Amesos2 offers a common interface to many different sparse matrix factorization codes, and can handle any implementation of sparse matrices and vectors, via an easy-to-extend C++ traits interface. It can also factor matrices whose entries have arbitrary “Scalar” type, enabling extended-precision and mixed-precision algorithms. Belos includes many different iterative methods for solving large sparse linear systems and least-squares problems. Unlike competing iterative solver libraries, Belos completely decouples themore » algorithms from the implementations of the underlying linear algebra objects. This lets Belos exploit the latest hardware without changes to the code. Belos favors algorithms that solve higher-level problems, such as multiple simultaneous linear systems and sequences of related linear systems, faster than standard algorithms. The package also supports extended-precision and mixed-precision algorithms. Together, Amesos2 and Belos form a complete suite of sparse linear solvers.« less

  12. Lawrence Livermore National Laboratory ULTRA-350 Test Bed

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hopkins, D J; Wulff, T A; Carlisle, K

    2001-04-10

    LLNL has many in-house designed high precision machine tools. Some of these tools include the Large Optics Diamond Turning Machine (LODTM) [1], Diamond Turning Machine No.3 (DTM-3) and two Precision Engineering Research Lathes (PERL-1 and PERL-11). These machines have accuracy in the sub-micron range and in most cases position resolution in the couple of nanometers range. All of these machines are built with similar underlying technologies. The machines use capstan drive technology, laser interferometer position feedback, tachometer velocity feedback, permanent magnet (PM) brush motors and analog velocity and position loop servo compensation [2]. The machine controller does not perform anymore » servo compensation it simply computes the differences between the commanded position and the actual position (the following error) and sends this to a D/A for the analog servo position loop. LLNL is designing a new high precision diamond turning machine. The machine is called the ULTRA 350 [3]. In contrast to many of the proven technologies discussed above, the plan for the new machine is to use brushless linear motors, high precision linear scales, machine controller motor commutation and digital servo compensation for the velocity and position loops. Although none of these technologies are new and have been in use in industry, applications of these technologies to high precision diamond turning is limited. To minimize the risks of these technologies in the new machine design, LLNL has established a test bed to evaluate these technologies for application in high precision diamond turning. The test bed is primarily composed of commercially available components. This includes the slide with opposed hydrostatic bearings, the oil system, the brushless PM linear motor, the two-phase input three-phase output linear motor amplifier and the system controller. The linear scales are not yet commercially available but use a common electronic output format. As of this writing, the final verdict for the use of these technologies is still out but the first part of the work has been completed with promising results. The goal of this part of the work was to close a servo position loop around a slide incorporating these technologies and to measure the performance. This paper discusses the tests that were setup for system evaluation and the results of the measurements made. Some very promising results include; slide positioning to nanometer level and slow speed slide direction reversal at less than 100nm/min with no observed discontinuities. This is very important for machine contouring in diamond turning. As a point of reference, at 100 nm/min it would take the slide almost 7 years to complete the full designed travel of 350 mm. This speed has been demonstrated without the use of a velocity sensor. The velocity is derived from the position sensor. With what has been learned on the test bed, the paper finishes with a brief comparison of the old and new technologies. The emphasis of this comparison will be on the servo performance as illustrated with bode plot diagrams.« less

  13. Lawrence Livermore National Laboratory ULTRA-350 Test Bed

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hopkins, D J; Wulff, T A; Carlisle, K

    2001-04-10

    LLNL has many in-house designed high precision machine tools. Some of these tools include the Large Optics Diamond Turning Machine (LODTM) [1], Diamond Turning Machine No.3 (DTM-3) and two Precision Engineering Research Lathes (PERL-I and PERL-II). These machines have accuracy in the sub-micron range and in most cases position resolution in the couple of nanometers range. All of these machines are built with similar underlying technologies. The machines use capstan drive technology, laser interferometer position feedback, tachometer velocity feedback, permanent magnet (PM) brush motors and analog velocity and position loop servo compensation [2]. The machine controller does not perform anymore » servo compensation it simply computes the differences between the commanded position and the actual position (the following error) and sends this to a D/A for the analog servo position loop. LLNL is designing a new high precision diamond turning machine. The machine is called the ULTRA 350 [3]. In contrast to many of the proven technologies discussed above, the plan for the new machine is to use brushless linear motors, high precision linear scales, machine controller motor commutation and digital servo compensation for the velocity and position loops. Although none of these technologies are new and have been in use in industry, applications of these technologies to high precision diamond turning is limited. To minimize the risks of these technologies in the new machine design, LLNL has established a test bed to evaluate these technologies for application in high precision diamond turning. The test bed is primarily composed of commercially available components. This includes the slide with opposed hydrostatic bearings, the oil system, the brushless PM linear motor, the two-phase input three-phase output linear motor amplifier and the system controller. The linear scales are not yet commercially available but use a common electronic output format. As of this writing, the final verdict for the use of these technologies is still out but the first part of the work has been completed with promising results. The goal of this part of the work was to close a servo position loop around a slide incorporating these technologies and to measure the performance. This paper discusses the tests that were setup for system evaluation and the results of the measurements made. Some very promising results include; slide positioning to nanometer level and slow speed slide direction reversal at less than 100nm/min with no observed discontinuities. This is very important for machine contouring in diamond turning. As a point of reference, at 100 nm/min it would take the slide almost 7 years to complete the full designed travel of 350 mm. This speed has been demonstrated without the use of a velocity sensor. The velocity is derived from the position sensor. With what has been learned on the test bed, the paper finishes with a brief comparison of the old and new technologies. The emphasis of this comparison will be on the servo performance as illustrated with bode plot diagrams.« less

  14. Precision Linear Actuator for Space Interferometry Mission (SIM) Siderostat Pointing

    NASA Technical Reports Server (NTRS)

    Cook, Brant; Braun, David; Hankins, Steve; Koenig, John; Moore, Don

    2008-01-01

    'SIM PlanetQuest will exploit the classical measuring tool of astrometry (interferometry) with unprecedented precision to make dramatic advances in many areas of astronomy and astrophysics'(1). In order to obtain interferometric data two large steerable mirrors, or Siderostats, are used to direct starlight into the interferometer. A gimbaled mechanism actuated by linear actuators is chosen to meet the unprecedented pointing and angle tracking requirements of SIM. A group of JPL engineers designed, built, and tested a linear ballscrew actuator capable of performing submicron incremental steps for 10 years of continuous operation. Precise, zero backlash, closed loop pointing control requirements, lead the team to implement a ballscrew actuator with a direct drive DC motor and a precision piezo brake. Motor control commutation using feedback from a precision linear encoder on the ballscrew output produced an unexpected incremental step size of 20 nm over a range of 120 mm, yielding a dynamic range of 6,000,000:1. The results prove linear nanometer positioning requires no gears, levers, or hydraulic converters. Along the way many lessons have been learned and will subsequently be shared.

  15. Strategy for Realizing High-Precision VUV Spectro-Polarimeter

    NASA Astrophysics Data System (ADS)

    Ishikawa, R.; Narukage, N.; Kubo, M.; Ishikawa, S.; Kano, R.; Tsuneta, S.

    2014-12-01

    Spectro-polarimetric observations in the vacuum ultraviolet (VUV) range are currently the only means to measure magnetic fields in the upper chromosphere and transition region of the solar atmosphere. The Chromospheric Lyman-Alpha Spectro-Polarimeter (CLASP) aims to measure linear polarization at the hydrogen Lyman- α line (121.6 nm). This measurement requires a polarization sensitivity better than 0.1 %, which is unprecedented in the VUV range. We here present a strategy with which to realize such high-precision spectro-polarimetry. This involves the optimization of instrument design, testing of optical components, extensive analyses of polarization errors, polarization calibration of the instrument, and calibration with onboard data. We expect that this strategy will aid the development of other advanced high-precision polarimeters in the UV as well as in other wavelength ranges.

  16. Analog-to-digital conversion techniques for precision photometry

    NASA Technical Reports Server (NTRS)

    Opal, Chet B.

    1988-01-01

    Three types of analog-to-digital converters are described: parallel, successive-approximation, and integrating. The functioning of comparators and sample-and-hold amplifiers is explained. Differential and integral linearity are defined, and good and bad examples are illustrated. The applicability and relative advantages of the three types of converters for precision astronomical photometric measurements are discussed. For most measurements, integral linearity is more important than differential linearity. Successive-approximation converters should be used with multielement solid state detectors because of their high speed, but dual slope integrating converters may be superior for use with single element solid state detectors where speed of digitization is not a factor. In all cases, the input signal should be tailored so that they occupy the upper part of the converter's dynamic range; this can be achieved by providing adjustable gain, or better by varying the integration time of the observation if possible.

  17. Video-rate or high-precision: a flexible range imaging camera

    NASA Astrophysics Data System (ADS)

    Dorrington, Adrian A.; Cree, Michael J.; Carnegie, Dale A.; Payne, Andrew D.; Conroy, Richard M.; Godbaz, John P.; Jongenelen, Adrian P. P.

    2008-02-01

    A range imaging camera produces an output similar to a digital photograph, but every pixel in the image contains distance information as well as intensity. This is useful for measuring the shape, size and location of objects in a scene, hence is well suited to certain machine vision applications. Previously we demonstrated a heterodyne range imaging system operating in a relatively high resolution (512-by-512) pixels and high precision (0.4 mm best case) configuration, but with a slow measurement rate (one every 10 s). Although this high precision range imaging is useful for some applications, the low acquisition speed is limiting in many situations. The system's frame rate and length of acquisition is fully configurable in software, which means the measurement rate can be increased by compromising precision and image resolution. In this paper we demonstrate the flexibility of our range imaging system by showing examples of high precision ranging at slow acquisition speeds and video-rate ranging with reduced ranging precision and image resolution. We also show that the heterodyne approach and the use of more than four samples per beat cycle provides better linearity than the traditional homodyne quadrature detection approach. Finally, we comment on practical issues of frame rate and beat signal frequency selection.

  18. Novel linear piezoelectric motor for precision position stage

    NASA Astrophysics Data System (ADS)

    Chen, Chao; Shi, Yunlai; Zhang, Jun; Wang, Junshan

    2016-03-01

    Conventional servomotor and stepping motor face challenges in nanometer positioning stages due to the complex structure, motion transformation mechanism, and slow dynamic response, especially directly driven by linear motor. A new butterfly-shaped linear piezoelectric motor for linear motion is presented. A two-degree precision position stage driven by the proposed linear ultrasonic motor possesses a simple and compact configuration, which makes the system obtain shorter driving chain. Firstly, the working principle of the linear ultrasonic motor is analyzed. The oscillation orbits of two driving feet on the stator are produced successively by using the anti-symmetric and symmetric vibration modes of the piezoelectric composite structure, and the slider pressed on the driving feet can be propelled twice in only one vibration cycle. Then with the derivation of the dynamic equation of the piezoelectric actuator and transient response model, start-upstart-up and settling state characteristics of the proposed linear actuator is investigated theoretically and experimentally, and is applicable to evaluate step resolution of the precision platform driven by the actuator. Moreover the structure of the two-degree position stage system is described and a special precision displacement measurement system is built. Finally, the characteristics of the two-degree position stage are studied. In the closed-loop condition the positioning accuracy of plus or minus <0.5 μm is experimentally obtained for the stage propelled by the piezoelectric motor. A precision position stage based the proposed butterfly-shaped linear piezoelectric is theoretically and experimentally investigated.

  19. Aircraft MSS data registration and vegetation classification of wetland change detection

    USGS Publications Warehouse

    Christensen, E.J.; Jensen, J.R.; Ramsey, Elijah W.; Mackey, H.E.

    1988-01-01

    Portions of the Savannah River floodplain swamp were evaluated for vegetation change using high resolution (5a??6 m) aircraft multispectral scanner (MSS) data. Image distortion from aircraft movement prevented precise image-to-image registration in some areas. However, when small scenes were used (200-250 ha), a first-order linear transformation provided registration accuracies of less than or equal to one pixel. A larger area was registered using a piecewise linear method. Five major wetland classes were identified and evaluated for change. Phenological differences and the variable distribution of vegetation limited wetland type discrimination. Using unsupervised methods and ground-collected vegetation data, overall classification accuracies ranged from 84 per cent to 87 per cent for each scene. Results suggest that high-resolution aircraft MSS data can be precisely registered, if small areas are used, and that wetland vegetation change can be accurately detected and monitored.

  20. Linearity, Bias, and Precision of Hepatic Proton Density Fat Fraction Measurements by Using MR Imaging: A Meta-Analysis.

    PubMed

    Yokoo, Takeshi; Serai, Suraj D; Pirasteh, Ali; Bashir, Mustafa R; Hamilton, Gavin; Hernando, Diego; Hu, Houchun H; Hetterich, Holger; Kühn, Jens-Peter; Kukuk, Guido M; Loomba, Rohit; Middleton, Michael S; Obuchowski, Nancy A; Song, Ji Soo; Tang, An; Wu, Xinhuai; Reeder, Scott B; Sirlin, Claude B

    2018-02-01

    Purpose To determine the linearity, bias, and precision of hepatic proton density fat fraction (PDFF) measurements by using magnetic resonance (MR) imaging across different field strengths, imager manufacturers, and reconstruction methods. Materials and Methods This meta-analysis was performed in accordance with Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines. A systematic literature search identified studies that evaluated the linearity and/or bias of hepatic PDFF measurements by using MR imaging (hereafter, MR imaging-PDFF) against PDFF measurements by using colocalized MR spectroscopy (hereafter, MR spectroscopy-PDFF) or the precision of MR imaging-PDFF. The quality of each study was evaluated by using the Quality Assessment of Studies of Diagnostic Accuracy 2 tool. De-identified original data sets from the selected studies were pooled. Linearity was evaluated by using linear regression between MR imaging-PDFF and MR spectroscopy-PDFF measurements. Bias, defined as the mean difference between MR imaging-PDFF and MR spectroscopy-PDFF measurements, was evaluated by using Bland-Altman analysis. Precision, defined as the agreement between repeated MR imaging-PDFF measurements, was evaluated by using a linear mixed-effects model, with field strength, imager manufacturer, reconstruction method, and region of interest as random effects. Results Twenty-three studies (1679 participants) were selected for linearity and bias analyses and 11 studies (425 participants) were selected for precision analyses. MR imaging-PDFF was linear with MR spectroscopy-PDFF (R 2 = 0.96). Regression slope (0.97; P < .001) and mean Bland-Altman bias (-0.13%; 95% limits of agreement: -3.95%, 3.40%) indicated minimal underestimation by using MR imaging-PDFF. MR imaging-PDFF was precise at the region-of-interest level, with repeatability and reproducibility coefficients of 2.99% and 4.12%, respectively. Field strength, imager manufacturer, and reconstruction method each had minimal effects on reproducibility. Conclusion MR imaging-PDFF has excellent linearity, bias, and precision across different field strengths, imager manufacturers, and reconstruction methods. © RSNA, 2017 Online supplemental material is available for this article. An earlier incorrect version of this article appeared online. This article was corrected on October 2, 2017.

  1. Engineering tough, highly compressible, biodegradable hydrogels by tuning the network architecture.

    PubMed

    Gu, Dunyin; Tan, Shereen; Xu, Chenglong; O'Connor, Andrea J; Qiao, Greg G

    2017-06-20

    By precisely tuning the network architecture, tough, highly compressible hydrogels were engineered. The hydrogels were made by interconnecting high-functionality hydrophobic domains through linear tri-block chains, consisting of soft hydrophilic middle blocks, flanked with flexible hydrophobic blocks. In showing their applicability, the efficient encapsulation and prolonged release of hydrophobic drugs were achieved.

  2. Generalized Nonlinear Chirp Scaling Algorithm for High-Resolution Highly Squint SAR Imaging.

    PubMed

    Yi, Tianzhu; He, Zhihua; He, Feng; Dong, Zhen; Wu, Manqing

    2017-11-07

    This paper presents a modified approach for high-resolution, highly squint synthetic aperture radar (SAR) data processing. Several nonlinear chirp scaling (NLCS) algorithms have been proposed to solve the azimuth variance of the frequency modulation rates that are caused by the linear range walk correction (LRWC). However, the azimuth depth of focusing (ADOF) is not handled well by these algorithms. The generalized nonlinear chirp scaling (GNLCS) algorithm that is proposed in this paper uses the method of series reverse (MSR) to improve the ADOF and focusing precision. It also introduces a high order processing kernel to avoid the range block processing. Simulation results show that the GNLCS algorithm can enlarge the ADOF and focusing precision for high-resolution highly squint SAR data.

  3. Influence of a high vacuum on the precise positioning using an ultrasonic linear motor.

    PubMed

    Kim, Wan-Soo; Lee, Dong-Jin; Lee, Sun-Kyu

    2011-01-01

    This paper presents an investigation of the ultrasonic linear motor stage for use in a high vacuum environment. The slider table is driven by the hybrid bolt-clamped Langevin-type ultrasonic linear motor, which is excited with its different modes of natural frequencies in both lateral and longitudinal directions. In general, the friction behavior in a vacuum environment becomes different from that in an environment of atmospheric pressure and this difference significantly affects the performance of the ultrasonic linear motor. In this paper, to consistently provide stable and high power of output in a high vacuum, frequency matching was conducted. Moreover, to achieve the fine control performance in the vacuum environment, a modified nominal characteristic trajectory following control method was adopted. Finally, the stage was operated under high vacuum condition, and the operating performances were investigated compared with that of a conventional PI compensator. As a result, robustness of positioning was accomplished in a high vacuum condition with nanometer-level accuracy.

  4. Influence of Waveform Characteristics on LiDAR Ranging Accuracy and Precision

    PubMed Central

    Yang, Bingwei; Xie, Xinhao; Li, Duan

    2018-01-01

    Time of flight (TOF) based light detection and ranging (LiDAR) is a technology for calculating distance between start/stop signals of time of flight. In lab-built LiDAR, two ranging systems for measuring flying time between start/stop signals include time-to-digital converter (TDC) that counts time between trigger signals and analog-to-digital converter (ADC) that processes the sampled start/stop pulses waveform for time estimation. We study the influence of waveform characteristics on range accuracy and precision of two kinds of ranging system. Comparing waveform based ranging (WR) with analog discrete return system based ranging (AR), a peak detection method (WR-PK) shows the best ranging performance because of less execution time, high ranging accuracy, and stable precision. Based on a novel statistic mathematical method maximal information coefficient (MIC), WR-PK precision has a high linear relationship with the received pulse width standard deviation. Thus keeping the received pulse width of measuring a constant distance as stable as possible can improve ranging precision. PMID:29642639

  5. High precision triangular waveform generator

    DOEpatents

    Mueller, Theodore R.

    1983-01-01

    An ultra-linear ramp generator having separately programmable ascending and descending ramp rates and voltages is provided. Two constant current sources provide the ramp through an integrator. Switching of the current at current source inputs rather than at the integrator input eliminates switching transients and contributes to the waveform precision. The triangular waveforms produced by the waveform generator are characterized by accurate reproduction and low drift over periods of several hours. The ascending and descending slopes are independently selectable.

  6. High-precision triangular-waveform generator

    DOEpatents

    Mueller, T.R.

    1981-11-14

    An ultra-linear ramp generator having separately programmable ascending and decending ramp rates and voltages is provided. Two constant current sources provide the ramp through an integrator. Switching of the current at current source inputs rather than at the integrator input eliminates switching transients and contributes to the waveform precision. The triangular waveforms produced by the waveform generator are characterized by accurate reproduction and low drift over periods of several hours. The ascending and descending slopes are independently selectable.

  7. Quantitative analysis of three chiral pesticide enantiomers by high-performance column liquid chromatography.

    PubMed

    Wang, Peng; Liu, Donghui; Gu, Xu; Jiang, Shuren; Zhou, Zhiqiang

    2008-01-01

    Methods for the enantiomeric quantitative determination of 3 chiral pesticides, paclobutrazol, myclobutanil, and uniconazole, and their residues in soil and water are reported. An effective chiral high-performance liquid chromatographic (HPLC)-UV method using an amylose-tris(3,5-dimethylphenylcarbamate; AD) column was developed for resolving the enantiomers and quantitative determination. The enantiomers were identified by a circular dichroism detector. Validation involved complete resolution of each of the 2 enantiomers, plus determination of linearity, precision, and limit of detection (LOD). The pesticide enantiomers were isolated by solvent extraction from soil and C18 solid-phase extraction from water. The 2 enantiomers of the 3 pesticides could be completely separated on the AD column using n-hexane isopropanol mobile phase. The linearity and precision results indicated that the method was reliable for the quantitative analysis of the enantiomers. LODs were 0.025, 0.05, and 0.05 mg/kg for each enantiomer of paclobutrazol, myclobutanil, and uniconazole, respectively. Recovery and precision data showed that the pretreatment procedures were satisfactory for enantiomer extraction and cleanup. This method can be used for optical purity determination of technical material and analysis of environmental residues.

  8. A novel methodology for non-linear system identification of battery cells used in non-road hybrid electric vehicles

    NASA Astrophysics Data System (ADS)

    Unger, Johannes; Hametner, Christoph; Jakubek, Stefan; Quasthoff, Marcus

    2014-12-01

    An accurate state of charge (SoC) estimation of a traction battery in hybrid electric non-road vehicles, which possess higher dynamics and power densities than on-road vehicles, requires a precise battery cell terminal voltage model. This paper presents a novel methodology for non-linear system identification of battery cells to obtain precise battery models. The methodology comprises the architecture of local model networks (LMN) and optimal model based design of experiments (DoE). Three main novelties are proposed: 1) Optimal model based DoE, which aims to high dynamically excite the battery cells at load ranges frequently used in operation. 2) The integration of corresponding inputs in the LMN to regard the non-linearities SoC, relaxation, hysteresis as well as temperature effects. 3) Enhancements to the local linear model tree (LOLIMOT) construction algorithm, to achieve a physical appropriate interpretation of the LMN. The framework is applicable for different battery cell chemistries and different temperatures, and is real time capable, which is shown on an industrial PC. The accuracy of the obtained non-linear battery model is demonstrated on cells with different chemistries and temperatures. The results show significant improvement due to optimal experiment design and integration of the battery non-linearities within the LMN structure.

  9. Development of high resolution linear-cut beam position monitor for heavy-ion synchrotron of KHIMA project

    NASA Astrophysics Data System (ADS)

    Hwang, Ji-Gwang; Yang, Tae-Keun; Forck, Peter; Noh, Seon Yeong; Hahn, Garam; Choi, Minkyoo

    2017-04-01

    A beam position monitor with high precision and resolution is required to control the beam trajectory for matching to the injection orbit and acceleration in a heavy-ion synchrotron. It will be also used for measuring the beta function, tune, and chromaticity. Since the bunch length at heavy ion synchrotron is relatively long, a few meters, a boxlike device with plates of typically 20 cm length is used to enhance the signal strength and to get a precise linear dependence with respect to the beam displacement. Especially, the linear-cut beam position monitor is adopted to satisfy the position resolution of 100 μm and accuracy of 200 μm for a nominal beam intensity in the KHIMA synchrotron of ∼ 7 ×108 particles for the carbon beams and ∼ 2 ×1010 for the proton beams. In this paper, we show the electromagnetic design of the electrode and surroundings to satisfy the resolution of 100 μm, the criteria for mechanical aspect to satisfy the position accuracy of 200 μm, the measurement results by using wire test-bench, design and measurement of a high input impedance pre-amplifier, and the beam-test results with long (∼1.6 μs) electron beam in Pohang accelerator laboratory (PAL).

  10. Generalized Nonlinear Chirp Scaling Algorithm for High-Resolution Highly Squint SAR Imaging

    PubMed Central

    He, Zhihua; He, Feng; Dong, Zhen; Wu, Manqing

    2017-01-01

    This paper presents a modified approach for high-resolution, highly squint synthetic aperture radar (SAR) data processing. Several nonlinear chirp scaling (NLCS) algorithms have been proposed to solve the azimuth variance of the frequency modulation rates that are caused by the linear range walk correction (LRWC). However, the azimuth depth of focusing (ADOF) is not handled well by these algorithms. The generalized nonlinear chirp scaling (GNLCS) algorithm that is proposed in this paper uses the method of series reverse (MSR) to improve the ADOF and focusing precision. It also introduces a high order processing kernel to avoid the range block processing. Simulation results show that the GNLCS algorithm can enlarge the ADOF and focusing precision for high-resolution highly squint SAR data. PMID:29112151

  11. Novel AC Servo Rotating and Linear Composite Driving Device for Plastic Forming Equipment

    NASA Astrophysics Data System (ADS)

    Liang, Jin-Tao; Zhao, Sheng-Dun; Li, Yong-Yi; Zhu, Mu-Zhi

    2017-07-01

    The existing plastic forming equipment are mostly driven by traditional AC motors with long transmission chains, low efficiency, large size, low precision and poor dynamic response are the common disadvantages. In order to realize high performance forming processes, the driving device should be improved, especially for complicated processing motions. Based on electric servo direct drive technology, a novel AC servo rotating and linear composite driving device is proposed, which features implementing both spindle rotation and feed motion without transmission, so that compact structure and precise control can be achieved. Flux switching topology is employed in the rotating drive component for strong robustness, and fractional slot is employed in the linear direct drive component for large force capability. Then the mechanical structure for compositing rotation and linear motion is designed. A device prototype is manufactured, machining of each component and the whole assembly are presented respectively. Commercial servo amplifiers are utilized to construct the control system of the proposed device. To validate the effectiveness of the proposed composite driving device, experimental study on the dynamic test benches are conducted. The results indicate that the output torque can attain to 420 N·m and the dynamic tracking errors are less than about 0.3 rad in the rotating drive. the dynamic tracking errors are less than about 1.6 mm in the linear feed. The proposed research provides a method to construct high efficiency and accuracy direct driving device in plastic forming equipment.

  12. Analysis on the multi-dimensional spectrum of the thrust force for the linear motor feed drive system in machine tools

    NASA Astrophysics Data System (ADS)

    Yang, Xiaojun; Lu, Dun; Ma, Chengfang; Zhang, Jun; Zhao, Wanhua

    2017-01-01

    The motor thrust force has lots of harmonic components due to the nonlinearity of drive circuit and motor itself in the linear motor feed drive system. What is more, in the motion process, these thrust force harmonics may vary with the position, velocity, acceleration and load, which affects the displacement fluctuation of the feed drive system. Therefore, in this paper, on the basis of the thrust force spectrum obtained by the Maxwell equation and the electromagnetic energy method, the multi-dimensional variation of each thrust harmonic is analyzed under different motion parameters. Then the model of the servo system is established oriented to the dynamic precision. The influence of the variation of the thrust force spectrum on the displacement fluctuation is discussed. At last the experiments are carried out to verify the theoretical analysis above. It can be found that the thrust harmonics show multi-dimensional spectrum characteristics under different motion parameters and loads, which should be considered to choose the motion parameters and optimize the servo control parameters in the high-speed and high-precision machine tools equipped with the linear motor feed drive system.

  13. UV Spectrophotometric Method for Estimation of Polypeptide-K in Bulk and Tablet Dosage Forms

    NASA Astrophysics Data System (ADS)

    Kaur, P.; Singh, S. Kumar; Gulati, M.; Vaidya, Y.

    2016-01-01

    An analytical method for estimation of polypeptide-k using UV spectrophotometry has been developed and validated for bulk as well as tablet dosage form. The developed method was validated for linearity, precision, accuracy, specificity, robustness, detection, and quantitation limits. The method has shown good linearity over the range from 100.0 to 300.0 μg/ml with a correlation coefficient of 0.9943. The percentage recovery of 99.88% showed that the method was highly accurate. The precision demonstrated relative standard deviation of less than 2.0%. The LOD and LOQ of the method were found to be 4.4 and 13.33, respectively. The study established that the proposed method is reliable, specific, reproducible, and cost-effective for the determination of polypeptide-k.

  14. Sustained modelling ability of artificial neural networks in the analysis of two pharmaceuticals (dextropropoxyphene and dipyrone) present in unequal concentrations.

    PubMed

    Cámara, María S; Ferroni, Félix M; De Zan, Mercedes; Goicoechea, Héctor C

    2003-07-01

    An improvement is presented on the simultaneous determination of two active ingredients present in unequal concentrations in injections. The analysis was carried out with spectrophotometric data and non-linear multivariate calibration methods, in particular artificial neural networks (ANNs). The presence of non-linearities caused by the major analyte concentrations which deviate from Beer's law was confirmed by plotting actual vs. predicted concentrations, and observing curvatures in the residuals for the estimated concentrations with linear methods. Mixtures of dextropropoxyphene and dipyrone have been analysed by using linear and non-linear partial least-squares (PLS and NPLSs) and ANNs. Notwithstanding the high degree of spectral overlap and the occurrence of non-linearities, rapid and simultaneous analysis has been achieved, with reasonably good accuracy and precision. A commercial sample was analysed by using the present methodology, and the obtained results show reasonably good agreement with those obtained by using high-performance liquid chromatography (HPLC) and a UV-spectrophotometric comparative methods.

  15. High precision during food recruitment of experienced (reactivated) foragers in the stingless bee Scaptotrigona mexicana (Apidae, Meliponini)

    NASA Astrophysics Data System (ADS)

    Sánchez, Daniel; Nieh, James C.; Hénaut, Yann; Cruz, Leopoldo; Vandame, Rémy

    Several studies have examined the existence of recruitment communication mechanisms in stingless bees. However, the spatial accuracy of location-specific recruitment has not been examined. Moreover, the location-specific recruitment of reactivated foragers, i.e., foragers that have previously experienced the same food source at a different location and time, has not been explicitly examined. However, such foragers may also play a significant role in colony foraging, particularly in small colonies. Here we report that reactivated Scaptotrigona mexicana foragers can recruit with high precision to a specific food location. The recruitment precision of reactivated foragers was evaluated by placing control feeders to the left and the right of the training feeder (direction-precision tests) and between the nest and the training feeder and beyond it (distance-precision tests). Reactivated foragers arrived at the correct location with high precision: 98.44% arrived at the training feeder in the direction trials (five-feeder fan-shaped array, accuracy of at least +/-6° of azimuth at 50 m from the nest), and 88.62% arrived at the training feeder in the distance trials (five-feeder linear array, accuracy of at least +/-5 m or +/-10% at 50 m from the nest). Thus, S. mexicana reactivated foragers can find the indicated food source at a specific distance and direction with high precision, higher than that shown by honeybees, Apis mellifera, which do not communicate food location at such close distances to the nest.

  16. RP-HPLC method development and validation for simultaneous estimation of atorvastatin calcium and pioglitazone hydrochloride in pharmaceutical dosage form.

    PubMed

    Peraman, Ramalingam; Mallikarjuna, Sasikala; Ammineni, Pravalika; Kondreddy, Vinod kumar

    2014-10-01

    A simple, selective, rapid, precise and economical reversed-phase high-performance liquid chromatographic (RP-HPLC) method has been developed for simultaneous estimation of atorvastatin calcium (ATV) and pioglitazone hydrochloride (PIO) from pharmaceutical formulation. The method is carried out on a C8 (25 cm × 4.6 mm i.d., 5 μm) column with a mobile phase consisting of acetonitrile (ACN):water (pH adjusted to 6.2 using o-phosphoric acid) in the ratio of 45:55 (v/v). The retention time of ATV and PIO is 4.1 and 8.1 min, respectively, with the flow rate of 1 mL/min with diode array detector detection at 232 nm. The linear regression analysis data from the linearity plot showed good linear relationship with a correlation coefficient (R(2)) value for ATV and PIO of 0.9998 and 0.9997 in the concentration range of 10-80 µg mL(-1), respectively. The relative standard deviation for intraday precision has been found to be <2.0%. The method is validated according to the ICH guidelines. The developed method is validated in terms of specificity, selectivity, accuracy, precision, linearity, limit of detection, limit of quantitation and solution stability. The proposed method can be used for simultaneous estimation of these drugs in marketed dosage forms. © The Author [2013]. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  17. A Miniaturized Colorimeter with a Novel Design and High Precision for Photometric Detection.

    PubMed

    Yan, Jun-Chao; Chen, Yan; Pang, Yu; Slavik, Jan; Zhao, Yun-Fei; Wu, Xiao-Ming; Yang, Yi; Yang, Si-Fan; Ren, Tian-Ling

    2018-03-08

    Water quality detection plays an increasingly important role in environmental protection. In this work, a novel colorimeter based on the Beer-Lambert law was designed for chemical element detection in water with high precision and miniaturized structure. As an example, the colorimeter can detect phosphorus, which was accomplished in this article to evaluate the performance. Simultaneously, a modified algorithm was applied to extend the linear measurable range. The colorimeter encompassed a near infrared laser source, a microflow cell based on microfluidic technology and a light-sensitive detector, then Micro-Electro-Mechanical System (MEMS) processing technology was used to form a stable integrated structure. Experiments were performed based on the ammonium molybdate spectrophotometric method, including the preparation of phosphorus standard solution, reducing agent, chromogenic agent and color reaction. The device can obtain a wide linear response range (0.05 mg/L up to 7.60 mg/L), a wide reliable measuring range up to 10.16 mg/L after using a novel algorithm, and a low limit of detection (0.02 mg/L). The size of flow cell in this design is 18 mm × 2.0 mm × 800 μm, obtaining a low reagent consumption of 0.004 mg ascorbic acid and 0.011 mg ammonium molybdate per determination. Achieving these advantages of miniaturized volume, high precision and low cost, the design can also be used in automated in situ detection.

  18. A Miniaturized Colorimeter with a Novel Design and High Precision for Photometric Detection

    PubMed Central

    Chen, Yan; Pang, Yu; Slavik, Jan; Zhao, Yun-Fei; Wu, Xiao-Ming; Yang, Yi; Yang, Si-Fan; Ren, Tian-Ling

    2018-01-01

    Water quality detection plays an increasingly important role in environmental protection. In this work, a novel colorimeter based on the Beer-Lambert law was designed for chemical element detection in water with high precision and miniaturized structure. As an example, the colorimeter can detect phosphorus, which was accomplished in this article to evaluate the performance. Simultaneously, a modified algorithm was applied to extend the linear measurable range. The colorimeter encompassed a near infrared laser source, a microflow cell based on microfluidic technology and a light-sensitive detector, then Micro-Electro-Mechanical System (MEMS) processing technology was used to form a stable integrated structure. Experiments were performed based on the ammonium molybdate spectrophotometric method, including the preparation of phosphorus standard solution, reducing agent, chromogenic agent and color reaction. The device can obtain a wide linear response range (0.05 mg/L up to 7.60 mg/L), a wide reliable measuring range up to 10.16 mg/L after using a novel algorithm, and a low limit of detection (0.02 mg/L). The size of flow cell in this design is 18 mm × 2.0 mm × 800 μm, obtaining a low reagent consumption of 0.004 mg ascorbic acid and 0.011 mg ammonium molybdate per determination. Achieving these advantages of miniaturized volume, high precision and low cost, the design can also be used in automated in situ detection. PMID:29518059

  19. Determination of three steroidal saponins from Ophiopogon japonicus (Liliaceae) via high-performance liquid chromatography with mass spectrometry.

    PubMed

    Wang, Yongyi; Xu, Jinzhong; Qu, Haibin

    2013-01-01

    A simple and accurate analytical method was developed for simultaneous quantification of three steroidal saponins in the roots of Ophiopogon japonicus via high-performance liquid chromatography (HPLC) with mass spectrometry (MS) in this study. Separation was performed on a Tigerkin C(18) column and detection was performed by mass spectrometry. A mobile phase consisted of 0.02% formic acid in water (v/v) and 0.02% formic acid in acetonitrile (v/v) was used with a flow rate of 0.5 mL min(-1). The quantitative HPLC-MS method was validated for linearity, precision, repeatability, stability, recovery, limits of detection and quantification. This developed method provides good linearity (r >0.9993), intra- and inter-day precisions (RSD <4.18%), repeatability (RSD <5.05%), stability (RSD <2.08%) and recovery (93.82-102.84%) for three steroidal saponins. It could be considered as a suitable quality control method for O. japonicus.

  20. Simultaneous Determination of Soyasaponins and Isoflavones in Soy (Glycine max L.) Products by HPTLC-densitometry-Multiple Detection.

    PubMed

    Shawky, Eman; Sallam, Shaimaa M

    2017-11-01

    A new high-throughput method was developed for the simultaneous analysis of isoflavones and soyasaponnins in Soy (Glycine max L.) products by high-performance thin-layer chromatography with densitometry and multiple detection. Silica gel was used as the stationary phase and ethyl acetate:methanol:water:acetic acid (100:20:16:1, v/v/v/v) as the mobile phase. After chromatographic development, multi-wavelength scanning was carried out by: (i) UV-absorbance measurement at 265 nm for genistin, daidzin and glycitin, (ii) Vis-absorbance measurement at 650 nm for Soyasaponins I and III, after post-chromatographic derivatization with anisaldehyde/sulfuric acid reagent. Validation of the developed method was found to meet the acceptance criteria delineated by ICH guidelines with respect to linearity, accuracy, precision, specificity and robustness. Calibrations were linear with correlation coefficients of >0.994. Intra-day precisions relative standard deviation (RSD)% of all substances in matrix were determined to be between 0.7 and 0.9%, while inter-day precisions (RSD%) ranged between 1.2 and 1.8%. The validated method was successfully applied for determination of the studied analytes in soy-based infant formula and soybean products. The new method compares favorably to other reported methods in being as accurate and precise and in the same time more feasible and cost-effective. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  1. An Online Gravity Modeling Method Applied for High Precision Free-INS

    PubMed Central

    Wang, Jing; Yang, Gongliu; Li, Jing; Zhou, Xiao

    2016-01-01

    For real-time solution of inertial navigation system (INS), the high-degree spherical harmonic gravity model (SHM) is not applicable because of its time and space complexity, in which traditional normal gravity model (NGM) has been the dominant technique for gravity compensation. In this paper, a two-dimensional second-order polynomial model is derived from SHM according to the approximate linear characteristic of regional disturbing potential. Firstly, deflections of vertical (DOVs) on dense grids are calculated with SHM in an external computer. And then, the polynomial coefficients are obtained using these DOVs. To achieve global navigation, the coefficients and applicable region of polynomial model are both updated synchronously in above computer. Compared with high-degree SHM, the polynomial model takes less storage and computational time at the expense of minor precision. Meanwhile, the model is more accurate than NGM. Finally, numerical test and INS experiment show that the proposed method outperforms traditional gravity models applied for high precision free-INS. PMID:27669261

  2. An Online Gravity Modeling Method Applied for High Precision Free-INS.

    PubMed

    Wang, Jing; Yang, Gongliu; Li, Jing; Zhou, Xiao

    2016-09-23

    For real-time solution of inertial navigation system (INS), the high-degree spherical harmonic gravity model (SHM) is not applicable because of its time and space complexity, in which traditional normal gravity model (NGM) has been the dominant technique for gravity compensation. In this paper, a two-dimensional second-order polynomial model is derived from SHM according to the approximate linear characteristic of regional disturbing potential. Firstly, deflections of vertical (DOVs) on dense grids are calculated with SHM in an external computer. And then, the polynomial coefficients are obtained using these DOVs. To achieve global navigation, the coefficients and applicable region of polynomial model are both updated synchronously in above computer. Compared with high-degree SHM, the polynomial model takes less storage and computational time at the expense of minor precision. Meanwhile, the model is more accurate than NGM. Finally, numerical test and INS experiment show that the proposed method outperforms traditional gravity models applied for high precision free-INS.

  3. High-resolution imaging optomechatronics for precise liquid crystal display module bonding automated optical inspection

    NASA Astrophysics Data System (ADS)

    Ni, Guangming; Liu, Lin; Zhang, Jing; Liu, Juanxiu; Liu, Yong

    2018-01-01

    With the development of the liquid crystal display (LCD) module industry, LCD modules become more and more precise with larger sizes, which demands harsh imaging requirements for automated optical inspection (AOI). Here, we report a high-resolution and clearly focused imaging optomechatronics for precise LCD module bonding AOI inspection. It first presents and achieves high-resolution imaging for LCD module bonding AOI inspection using a line scan camera (LSC) triggered by a linear optical encoder, self-adaptive focusing for the whole large imaging region using LSC, and a laser displacement sensor, which reduces the requirements of machining, assembly, and motion control of AOI devices. Results show that this system can directly achieve clearly focused imaging for AOI inspection of large LCD module bonding with 0.8 μm image resolution, 2.65-mm scan imaging width, and no limited imaging width theoretically. All of these are significant for AOI inspection in the LCD module industry and other fields that require imaging large regions with high resolution.

  4. Precision digital control systems

    NASA Astrophysics Data System (ADS)

    Vyskub, V. G.; Rozov, B. S.; Savelev, V. I.

    This book is concerned with the characteristics of digital control systems of great accuracy. A classification of such systems is considered along with aspects of stabilization, programmable control applications, digital tracking systems and servomechanisms, and precision systems for the control of a scanning laser beam. Other topics explored are related to systems of proportional control, linear devices and methods for increasing precision, approaches for further decreasing the response time in the case of high-speed operation, possibilities for the implementation of a logical control law, and methods for the study of precision digital control systems. A description is presented of precision automatic control systems which make use of electronic computers, taking into account the existing possibilities for an employment of computers in automatic control systems, approaches and studies required for including a computer in such control systems, and an analysis of the structure of automatic control systems with computers. Attention is also given to functional blocks in the considered systems.

  5. Physics with e{sup +}e{sup -} Linear Colliders

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barklow, Timothy L

    2003-05-05

    We describe the physics potential of e{sup +}e{sup -} linear colliders in this report. These machines are planned to operate in the first phase at a center-of-mass energy of 500 GeV, before being scaled up to about 1 TeV. In the second phase of the operation, a final energy of about 2 TeV is expected. The machines will allow us to perform precision tests of the heavy particles in the Standard Model, the top quark and the electroweak bosons. They are ideal facilities for exploring the properties of Higgs particles, in particular in the intermediate mass range. New vector bosonsmore » and novel matter particles in extended gauge theories can be searched for and studied thoroughly. The machines provide unique opportunities for the discovery of particles in supersymmetric extensions of the Standard Model, the spectrum of Higgs particles, the supersymmetric partners of the electroweak gauge and Higgs bosons, and of the matter particles. High precision analyses of their properties and interactions will allow for extrapolations to energy scales close to the Planck scale where gravity becomes significant. In alternative scenarios, like compositeness models, novel matter particles and interactions can be discovered and investigated in the energy range above the existing colliders up to the TeV scale. Whatever scenario is realized in Nature, the discovery potential of e{sup +}e{sup -} linear colliders and the high-precision with which the properties of particles and their interactions can be analyzed, define an exciting physics programme complementary to hadron machines.« less

  6. High Precision Motion Control System for the Two-Stage Light Gas Gun at the Dynamic Compression Sector

    NASA Astrophysics Data System (ADS)

    Zdanowicz, E.; Guarino, V.; Konrad, C.; Williams, B.; Capatina, D.; D'Amico, K.; Arganbright, N.; Zimmerman, K.; Turneaure, S.; Gupta, Y. M.

    2017-06-01

    The Dynamic Compression Sector (DCS) at the Advanced Photon Source (APS), located at Argonne National Laboratory (ANL), has a diverse set of dynamic compression drivers to obtain time resolved x-ray data in single event, dynamic compression experiments. Because the APS x-ray beam direction is fixed, each driver at DCS must have the capability to move through a large range of linear and angular motions with high precision to accommodate a wide variety of scientific needs. Particularly challenging was the design and implementation of the motion control system for the two-stage light gas gun, which rests on a 26' long structure and weighs over 2 tons. The target must be precisely positioned in the x-ray beam while remaining perpendicular to the gun barrel axis to ensure one-dimensional loading of samples. To accommodate these requirements, the entire structure can pivot through 60° of angular motion and move 10's of inches along four independent linear directions with 0.01° and 10 μm resolution, respectively. This presentation will provide details of how this system was constructed, how it is controlled, and provide examples of the wide range of x-ray/sample geometries that can be accommodated. Work supported by DOE/NNSA.

  7. Research on a high-precision calibration method for tunable lasers

    NASA Astrophysics Data System (ADS)

    Xiang, Na; Li, Zhengying; Gui, Xin; Wang, Fan; Hou, Yarong; Wang, Honghai

    2018-03-01

    Tunable lasers are widely used in the field of optical fiber sensing, but nonlinear tuning exists even for zero external disturbance and limits the accuracy of the demodulation. In this paper, a high-precision calibration method for tunable lasers is proposed. A comb filter is introduced and the real-time output wavelength and scanning rate of the laser are calibrated by linear fitting several time-frequency reference points obtained from it, while the beat signal generated by the auxiliary interferometer is interpolated and frequency multiplied to find more accurate zero crossing points, with these points being used as wavelength counters to resample the comb signal to correct the nonlinear effect, which ensures that the time-frequency reference points of the comb filter are linear. A stability experiment and a strain sensing experiment verify the calibration precision of this method. The experimental result shows that the stability and wavelength resolution of the FBG demodulation can reach 0.088 pm and 0.030 pm, respectively, using a tunable laser calibrated by the proposed method. We have also compared the demodulation accuracy in the presence or absence of the comb filter, with the result showing that the introduction of the comb filter results to a 15-fold wavelength resolution enhancement.

  8. Fourier Series and Elliptic Functions

    ERIC Educational Resources Information Center

    Fay, Temple H.

    2003-01-01

    Non-linear second-order differential equations whose solutions are the elliptic functions "sn"("t, k"), "cn"("t, k") and "dn"("t, k") are investigated. Using "Mathematica", high precision numerical solutions are generated. From these data, Fourier coefficients are determined yielding approximate formulas for these non-elementary functions that are…

  9. Determination of some phenolic compounds in red wine by RP-HPLC: method development and validation.

    PubMed

    Burin, Vívian Maria; Arcari, Stefany Grützmann; Costa, Léa Luzia Freitas; Bordignon-Luiz, Marilde T

    2011-09-01

    A methodology employing reversed-phase high-performance liquid chromatography (RP-HPLC) was developed and validated for simultaneous determination of five phenolic compounds in red wine. The chromatographic separation was carried out in a C(18) column with water acidify with acetic acid (pH 2.6) (solvent A) and 20% solvent A and 80% acetonitrile (solvent B) as the mobile phase. The validation parameters included: selectivity, linearity, range, limits of detection and quantitation, precision and accuracy, using an internal standard. All calibration curves were linear (R(2) > 0.999) within the range, and good precision (RSD < 2.6%) and recovery (80-120%) was obtained for all compounds. This method was applied to quantify phenolics in red wine samples from Santa Catarina State, Brazil, and good separation peaks for phenolic compounds in these wines were observed.

  10. HPTLC Determination of Artemisinin and Its Derivatives in Bulk and Pharmaceutical Dosage

    NASA Astrophysics Data System (ADS)

    Agarwal, Suraj P.; Ahuja, Shipra

    A simple, selective, accurate, and precise high-performance thin-layer chromatographic (HPTLC) method has been established and validated for the analysis of artemisinin and its derivatives (artesunate, artemether, and arteether) in the bulk drugs and formulations. The artemisinin, artesunate, artemether, and arteether were separated on aluminum-backed silica gel 60 F254 plates with toluene:ethyl acetate (10:1), toluene: ethyl acetate: acetic acid (2:8:0.2), toluene:butanol (10:1), and toluene:dichloro methane (0.5:10) mobile phase, respectively. The linear detector response for concentrations between 100 and 600 ng/spot showed good linear relationship with r value 0.9967, 0.9989, 0.9981 and 0.9989 for artemisinin, artesunate, artemether, and arteether, respectively. Statistical analysis proves that the method is precise, accurate, and reproducible and hence can be employed for the routine analysis.

  11. Design tradeoffs for a Multispectral Linear Array (MLA) instrument

    NASA Technical Reports Server (NTRS)

    Mika, A. M.

    1982-01-01

    The heart of the multispectral linear array (MLA) design problem is to develop an instrument concept which concurrently provides a wide field-of-view with high resolution, spectral separation with precise band-to band registration, and excellent radiometric accuracy. Often, these requirements have conflicting design implications which can only be resolved by careful tradeoffs that consider performance, cost, fabrication feasibility and development risk. The key design tradeoffs for an MLA instrument are addressed, and elements of a baseline instrument concept are presented.

  12. A low noise and high precision linear power supply with thermal foldback protection.

    PubMed

    Carniti, P; Cassina, L; Gotti, C; Maino, M; Pessina, G

    2016-05-01

    A low noise and high precision linear power supply was designed for use in rare event search experiments with macrobolometers. The circuit accepts at the input a "noisy" dual supply voltage up to ±15 V and gives at the output precise, low noise, and stable voltages that can be set between ±3.75 V and ±12.5 V in eight 1.25 V steps. Particular care in circuit design, component selection, and proper filtering results in a noise spectral density of 50nV/Hz at 1 Hz and 20nV/Hz white when the output is set to ±5 V. This corresponds to 125 nV RMS (0.8 μV peak to peak) between 0.1 Hz and 10 Hz, and 240 nV RMS (1.6 μV peak to peak) between 0.1 Hz and 100 Hz. The power supply rejection ratio (PSRR) of the circuit is 100 dB at low frequency, and larger than 40 dB up to high frequency, thanks to a proper compensation design. Calibration allows to reach a precision in the absolute value of the output voltage of ±70 ppm, or ±350 μV at ±5 V, and to reduce thermal drifts below ±1 ppm/(∘)C in the expected operating range. The maximum peak output current is about 6 A from each output. An original foldback protection scheme was developed that dynamically limits the maximum output current to keep the temperature of the output transistors within their safe operating range. An add-on card based on an ARM Cortex-M3 microcontroller is devoted to the monitoring and control of all circuit functionalities and provides remote communication via CAN bus.

  13. A Linear Variable-[theta] Model for Measuring Individual Differences in Response Precision

    ERIC Educational Resources Information Center

    Ferrando, Pere J.

    2011-01-01

    Models for measuring individual response precision have been proposed for binary and graded responses. However, more continuous formats are quite common in personality measurement and are usually analyzed with the linear factor analysis model. This study extends the general Gaussian person-fluctuation model to the continuous-response case and…

  14. Simultaneous quantification of coumarins, flavonoids and limonoids in Fructus Citri Sarcodactylis by high performance liquid chromatography coupled with diode array detector.

    PubMed

    Chu, Jun; Li, Song-Lin; Yin, Zhi-Qi; Ye, Wen-Cai; Zhang, Qing-Wen

    2012-07-01

    A high performance liquid chromatography coupled with diode array detector (HPLC-DAD) method was developed for simultaneous quantification of eleven major bioactive components including six coumarins, three flavonoids and two limonoids in Fructus Citri Sarcodactylis. The analysis was performed on a Cosmosil 5 C(18)-MS-II column (4.6 mm × 250 mm, 5 μm) with water-acetonitrile gradient elution. The method was validated in terms of linearity, sensitivity, precision, stability and accuracy. It was found that the calibration curves for all analytes showed good linearity (R(2)>0.9993) within the test ranges. The overall limit of detection (LOD) and limit of quantification (LOQ) were less than 3.0 and 10.2 ng. The relative standard deviations (RSDs) for intra- and inter-day repeatability were not more than 4.99% and 4.92%, respectively. The sample was stable for at least 48 h. The spike recoveries of eleven components were 95.1-104.9%. The established method was successfully applied to determine eleven components in three samples from different locations. The results showed that the newly developed HPLC-DAD method was linear, sensitive, precise and accurate, and could be used for quality control of Fructus Citri Sarcodactylis. Copyright © 2012 Elsevier B.V. All rights reserved.

  15. The International Linear Collider

    NASA Astrophysics Data System (ADS)

    List, Benno

    2014-04-01

    The International Linear Collider (ILC) is a proposed e+e- linear collider with a centre-of-mass energy of 200-500 GeV, based on superconducting RF cavities. The ILC would be an ideal machine for precision studies of a light Higgs boson and the top quark, and would have a discovery potential for new particles that is complementary to that of LHC. The clean experimental conditions would allow the operation of detectors with extremely good performance; two such detectors, ILD and SiD, are currently being designed. Both make use of novel concepts for tracking and calorimetry. The Japanese High Energy Physics community has recently recommended to build the ILC in Japan.

  16. Relationship between tribology and optics in thin films of mechanically oriented nanocrystals.

    PubMed

    Wong, Liana; Hu, Chunhua; Paradise, Ruthanne; Zhu, Zina; Shtukenberg, Alexander; Kahr, Bart

    2012-07-25

    Many crystalline dyes, when rubbed unidirectionally with cotton on glass slides, can be organized as thin films of highly aligned nanocrystals. Commonly, the linear birefringence and linear dichroism of these films resemble the optical properties of single crystals, indicating precisely oriented particles. Of 186 colored compounds, 122 showed sharp extinction and 50 were distinctly linearly dichroic. Of the latter 50 compounds, 88% were more optically dense when linearly polarized light was aligned with the rubbing axis. The mechanical properties of crystals that underlie the nonstatistical correlation between tribological processes and the direction of electron oscillations in absorption bands are discussed. The features that give rise to the orientation of dye crystallites naturally extend to colorless molecular crystals.

  17. A linearly frequency-swept high-speed-rate multi-wavelength laser for optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Wang, Qiyu; Wang, Zhaoying; Yuan, Quan; Ma, Rui; Du, Tao; Yang, Tianxin

    2017-02-01

    We proposed and demonstrated a linearly frequency-swept multi-wavelength laser source for optical coherence tomography (OCT) eliminating the need of wavenumber space resampling in the postprocessing progress. The source consists of a multi-wavelength fiber laser source (MFS) and an optical sweeping loop. In this novel laser source, an equally spaced multi-wavelength laser is swept simultaneously by a certain step each time in the frequency domain in the optical sweeping loop. The sweeping step is determined by radio frequency (RF) signal which can be precisely controlled. Thus the sweeping behavior strictly maintains a linear relationship between time and frequency. We experimentally achieved linear time-frequency sweeping at a sweeping rate of 400 kHz with our laser source.

  18. New method of writing long-period fiber gratings using high-frequency CO2 laser

    NASA Astrophysics Data System (ADS)

    Guo, Gao-Ran; Song, Ying; Zhang, Wen-Tao; Jiang, Yue; Li, Fang

    2016-11-01

    In the paper, the Long period fiber gratings (LPFG) were fabricated in a single-mode fiber using a high frequency CO2 laser system with the point-to-point technique. The experimental setup consists of a CO2 laser controlling system, a focusing system located at a motorized linear stage, a fiber alignment stage, and an optical spectrum analyzer to monitor the transmission spectrum of the LPFG. The period of the LPFG is precisely inscribed by periodically turning on/off the laser shutter while the motorized linear stage is driven to move at a constant speed. The efficiency of fiber writing process is improved.

  19. The Too-Much-Precision Effect.

    PubMed

    Loschelder, David D; Friese, Malte; Schaerer, Michael; Galinsky, Adam D

    2016-12-01

    Past research has suggested a fundamental principle of price precision: The more precise an opening price, the more it anchors counteroffers. The present research challenges this principle by demonstrating a too-much-precision effect. Five experiments (involving 1,320 experts and amateurs in real-estate, jewelry, car, and human-resources negotiations) showed that increasing the precision of an opening offer had positive linear effects for amateurs but inverted-U-shaped effects for experts. Anchor precision backfired because experts saw too much precision as reflecting a lack of competence. This negative effect held unless first movers gave rationales that boosted experts' perception of their competence. Statistical mediation and experimental moderation established the critical role of competence attributions. This research disentangles competing theoretical accounts (attribution of competence vs. scale granularity) and qualifies two putative truisms: that anchors affect experts and amateurs equally, and that more precise prices are linearly more potent anchors. The results refine current theoretical understanding of anchoring and have significant implications for everyday life.

  20. 3D Ta/TaO x /TiO2/Ti synaptic array and linearity tuning of weight update for hardware neural network applications

    NASA Astrophysics Data System (ADS)

    Wang, I.-Ting; Chang, Chih-Cheng; Chiu, Li-Wen; Chou, Teyuh; Hou, Tuo-Hung

    2016-09-01

    The implementation of highly anticipated hardware neural networks (HNNs) hinges largely on the successful development of a low-power, high-density, and reliable analog electronic synaptic array. In this study, we demonstrate a two-layer Ta/TaO x /TiO2/Ti cross-point synaptic array that emulates the high-density three-dimensional network architecture of human brains. Excellent uniformity and reproducibility among intralayer and interlayer cells were realized. Moreover, at least 50 analog synaptic weight states could be precisely controlled with minimal drifting during a cycling endurance test of 5000 training pulses at an operating voltage of 3 V. We also propose a new state-independent bipolar-pulse-training scheme to improve the linearity of weight updates. The improved linearity considerably enhances the fault tolerance of HNNs, thus improving the training accuracy.

  1. Stability indicating high performance thin-layer chromatographic method for simultaneous estimation of pantoprazole sodium and itopride hydrochloride in combined dosage form

    PubMed Central

    Bageshwar, Deepak; Khanvilkar, Vineeta; Kadam, Vilasrao

    2011-01-01

    A specific, precise and stability indicating high-performance thin-layer chromatographic method for simultaneous estimation of pantoprazole sodium and itopride hydrochloride in pharmaceutical formulations was developed and validated. The method employed TLC aluminium plates precoated with silica gel 60F254 as the stationary phase. The solvent system consisted of methanol:water:ammonium acetate; 4.0:1.0:0.5 (v/v/v). This system was found to give compact and dense spots for both itopride hydrochloride (Rf value of 0.55±0.02) and pantoprazole sodium (Rf value of 0.85±0.04). Densitometric analysis of both drugs was carried out in the reflectance–absorbance mode at 289 nm. The linear regression analysis data for the calibration plots showed a good linear relationship with R2=0.9988±0.0012 in the concentration range of 100–400 ng for pantoprazole sodium. Also, the linear regression analysis data for the calibration plots showed a good linear relationship with R2=0.9990±0.0008 in the concentration range of 200–1200 ng for itopride hydrochloride. The method was validated for specificity, precision, robustness and recovery. Statistical analysis proves that the method is repeatable and selective for the estimation of both the said drugs. As the method could effectively separate the drug from its degradation products, it can be employed as a stability indicating method. PMID:29403710

  2. Stability indicating high performance thin-layer chromatographic method for simultaneous estimation of pantoprazole sodium and itopride hydrochloride in combined dosage form.

    PubMed

    Bageshwar, Deepak; Khanvilkar, Vineeta; Kadam, Vilasrao

    2011-11-01

    A specific, precise and stability indicating high-performance thin-layer chromatographic method for simultaneous estimation of pantoprazole sodium and itopride hydrochloride in pharmaceutical formulations was developed and validated. The method employed TLC aluminium plates precoated with silica gel 60F 254 as the stationary phase. The solvent system consisted of methanol:water:ammonium acetate; 4.0:1.0:0.5 (v/v/v). This system was found to give compact and dense spots for both itopride hydrochloride ( R f value of 0.55±0.02) and pantoprazole sodium ( R f value of 0.85±0.04). Densitometric analysis of both drugs was carried out in the reflectance-absorbance mode at 289 nm. The linear regression analysis data for the calibration plots showed a good linear relationship with R 2 =0.9988±0.0012 in the concentration range of 100-400 ng for pantoprazole sodium. Also, the linear regression analysis data for the calibration plots showed a good linear relationship with R 2 =0.9990±0.0008 in the concentration range of 200-1200 ng for itopride hydrochloride. The method was validated for specificity, precision, robustness and recovery. Statistical analysis proves that the method is repeatable and selective for the estimation of both the said drugs. As the method could effectively separate the drug from its degradation products, it can be employed as a stability indicating method.

  3. An electron beam linear scanning mode for industrial limited-angle nano-computed tomography.

    PubMed

    Wang, Chengxiang; Zeng, Li; Yu, Wei; Zhang, Lingli; Guo, Yumeng; Gong, Changcheng

    2018-01-01

    Nano-computed tomography (nano-CT), which utilizes X-rays to research the inner structure of some small objects and has been widely utilized in biomedical research, electronic technology, geology, material sciences, etc., is a high spatial resolution and non-destructive research technique. A traditional nano-CT scanning model with a very high mechanical precision and stability of object manipulator, which is difficult to reach when the scanned object is continuously rotated, is required for high resolution imaging. To reduce the scanning time and attain a stable and high resolution imaging in industrial non-destructive testing, we study an electron beam linear scanning mode of nano-CT system that can avoid mechanical vibration and object movement caused by the continuously rotated object. Furthermore, to further save the scanning time and study how small the scanning range could be considered with acceptable spatial resolution, an alternating iterative algorithm based on ℓ 0 minimization is utilized to limited-angle nano-CT reconstruction problem with the electron beam linear scanning mode. The experimental results confirm the feasibility of the electron beam linear scanning mode of nano-CT system.

  4. An electron beam linear scanning mode for industrial limited-angle nano-computed tomography

    NASA Astrophysics Data System (ADS)

    Wang, Chengxiang; Zeng, Li; Yu, Wei; Zhang, Lingli; Guo, Yumeng; Gong, Changcheng

    2018-01-01

    Nano-computed tomography (nano-CT), which utilizes X-rays to research the inner structure of some small objects and has been widely utilized in biomedical research, electronic technology, geology, material sciences, etc., is a high spatial resolution and non-destructive research technique. A traditional nano-CT scanning model with a very high mechanical precision and stability of object manipulator, which is difficult to reach when the scanned object is continuously rotated, is required for high resolution imaging. To reduce the scanning time and attain a stable and high resolution imaging in industrial non-destructive testing, we study an electron beam linear scanning mode of nano-CT system that can avoid mechanical vibration and object movement caused by the continuously rotated object. Furthermore, to further save the scanning time and study how small the scanning range could be considered with acceptable spatial resolution, an alternating iterative algorithm based on ℓ0 minimization is utilized to limited-angle nano-CT reconstruction problem with the electron beam linear scanning mode. The experimental results confirm the feasibility of the electron beam linear scanning mode of nano-CT system.

  5. Development and Validation of High Performance Liquid Chromatography Method for Determination Atorvastatin in Tablet

    NASA Astrophysics Data System (ADS)

    Yugatama, A.; Rohmani, S.; Dewangga, A.

    2018-03-01

    Atorvastatin is the primary choice for dyslipidemia treatment. Due to patent expiration of atorvastatin, the pharmaceutical industry makes copy of the drug. Therefore, the development methods for tablet quality tests involving atorvastatin concentration on tablets needs to be performed. The purpose of this research was to develop and validate the simple atorvastatin tablet analytical method by HPLC. HPLC system used in this experiment consisted of column Cosmosil C18 (150 x 4,6 mm, 5 µm) as the stationary reverse phase chomatography, a mixture of methanol-water at pH 3 (80:20 v/v) as the mobile phase, flow rate of 1 mL/min, and UV detector at wavelength of 245 nm. Validation methods were including: selectivity, linearity, accuracy, precision, limit of detection (LOD), and limit of quantitation (LOQ). The results of this study indicate that the developed method had good validation including selectivity, linearity, accuracy, precision, LOD, and LOQ for analysis of atorvastatin tablet content. LOD and LOQ were 0.2 and 0.7 ng/mL, and the linearity range were 20 - 120 ng/mL.

  6. Validation of high throughput screening of human sera for detection of anti-PA IgG by Enzyme-Linked Immunosorbent Assay (ELISA) as an emergency response to an anthrax incident

    PubMed Central

    Semenova, Vera A.; Steward-Clark, Evelene; Maniatis, Panagiotis; Epperson, Monica; Sabnis, Amit; Schiffer, Jarad

    2017-01-01

    To improve surge testing capability for a response to a release of Bacillus anthracis, the CDC anti-Protective Antigen (PA) IgG Enzyme-Linked Immunosorbent Assay (ELISA) was re-designed into a high throughput screening format. The following assay performance parameters were evaluated: goodness of fit (measured as the mean reference standard r2), accuracy (measured as percent error), precision (measured as coefficient of variance (CV)), lower limit of detection (LLOD), lower limit of quantification (LLOQ), dilutional linearity, diagnostic sensitivity (DSN) and diagnostic specificity (DSP). The paired sets of data for each sample were evaluated by Concordance Correlation Coefficient (CCC) analysis. The goodness of fit was 0.999; percent error between the expected and observed concentration for each sample ranged from −4.6% to 14.4%. The coefficient of variance ranged from 9.0% to 21.2%. The assay LLOQ was 2.6 μg/mL. The regression analysis results for dilutional linearity data were r2 = 0.952, slope = 1.02 and intercept = −0.03. CCC between assays was 0.974 for the median concentration of serum samples. The accuracy and precision components of CCC were 0.997 and 0.977, respectively. This high throughput screening assay is precise, accurate, sensitive and specific. Anti-PA IgG concentrations determined using two different assays proved high levels of agreement. The method will improve surge testing capability 18-fold from 4 to 72 sera per assay plate. PMID:27814939

  7. Validation of high throughput screening of human sera for detection of anti-PA IgG by Enzyme-Linked Immunosorbent Assay (ELISA) as an emergency response to an anthrax incident.

    PubMed

    Semenova, Vera A; Steward-Clark, Evelene; Maniatis, Panagiotis; Epperson, Monica; Sabnis, Amit; Schiffer, Jarad

    2017-01-01

    To improve surge testing capability for a response to a release of Bacillus anthracis, the CDC anti-Protective Antigen (PA) IgG Enzyme-Linked Immunosorbent Assay (ELISA) was re-designed into a high throughput screening format. The following assay performance parameters were evaluated: goodness of fit (measured as the mean reference standard r 2 ), accuracy (measured as percent error), precision (measured as coefficient of variance (CV)), lower limit of detection (LLOD), lower limit of quantification (LLOQ), dilutional linearity, diagnostic sensitivity (DSN) and diagnostic specificity (DSP). The paired sets of data for each sample were evaluated by Concordance Correlation Coefficient (CCC) analysis. The goodness of fit was 0.999; percent error between the expected and observed concentration for each sample ranged from -4.6% to 14.4%. The coefficient of variance ranged from 9.0% to 21.2%. The assay LLOQ was 2.6 μg/mL. The regression analysis results for dilutional linearity data were r 2  = 0.952, slope = 1.02 and intercept = -0.03. CCC between assays was 0.974 for the median concentration of serum samples. The accuracy and precision components of CCC were 0.997 and 0.977, respectively. This high throughput screening assay is precise, accurate, sensitive and specific. Anti-PA IgG concentrations determined using two different assays proved high levels of agreement. The method will improve surge testing capability 18-fold from 4 to 72 sera per assay plate. Published by Elsevier Ltd.

  8. Propagation and stability characteristics of a 500-m-long laser-based fiducial line for high-precision alignment of long-distance linear accelerators.

    PubMed

    Suwada, Tsuyoshi; Satoh, Masanori; Telada, Souichi; Minoshima, Kaoru

    2013-09-01

    A laser-based alignment system with a He-Ne laser has been newly developed in order to precisely align accelerator units at the KEKB injector linac. The laser beam was first implemented as a 500-m-long fiducial straight line for alignment measurements. We experimentally investigated the propagation and stability characteristics of the laser beam passing through laser pipes in vacuum. The pointing stability at the last fiducial point was successfully obtained with the transverse displacements of ±40 μm level in one standard deviation by applying a feedback control. This pointing stability corresponds to an angle of ±0.08 μrad. This report contains a detailed description of the experimental investigation for the propagation and stability characteristics of the laser beam in the laser-based alignment system for long-distance linear accelerators.

  9. Simultaneous Determination of Piperine, Capsaicin, and Dihydrocapsaicin in Korean Instant-Noodle (Ramyun) Soup Base Using High-Performance Liquid Chromatography with Ultraviolet Detection.

    PubMed

    Shim, You-Shin; Kim, Jong-Chan; Jeong, Seung-Weon

    2016-01-01

    A simultaneous analytical method for piperine, capsaicin, and dihydrocapsaicin in Korean instant-noodle soup base using HPLC was validated in terms of precision, accuracy, sensitivity, and linearity. The HPLC separation was performed on a reversed-phase C18 column (5 μm particle size, 4.6 mm id, 250 mm length) using a UV detector fixed at 280 nm. The LOD and LOQ of the HPLC analyses ranged from 0.25 to 1.03 mg/kg. The intraday and interday precisions of the individual piperine, capsaicin, and dihydrocapsaicin were <10.55%, and the recovery values ranged from 85.43 to 94.68%. The calibration curves exhibited good linearity (r(2) = 0.999) within the tested ranges. These results suggest that the analytical method in this study can be used to classify Korean instant noodles based on their levels of spiciness.

  10. Propagation and stability characteristics of a 500-m-long laser-based fiducial line for high-precision alignment of long-distance linear accelerators

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Suwada, Tsuyoshi; Satoh, Masanori; Telada, Souichi

    2013-09-15

    A laser-based alignment system with a He-Ne laser has been newly developed in order to precisely align accelerator units at the KEKB injector linac. The laser beam was first implemented as a 500-m-long fiducial straight line for alignment measurements. We experimentally investigated the propagation and stability characteristics of the laser beam passing through laser pipes in vacuum. The pointing stability at the last fiducial point was successfully obtained with the transverse displacements of ±40 μm level in one standard deviation by applying a feedback control. This pointing stability corresponds to an angle of ±0.08 μrad. This report contains a detailedmore » description of the experimental investigation for the propagation and stability characteristics of the laser beam in the laser-based alignment system for long-distance linear accelerators.« less

  11. A comparative study of first-derivative spectrophotometry and column high-performance liquid chromatography applied to the determination of repaglinide in tablets and for dissolution testing.

    PubMed

    AlKhalidi, Bashar A; Shtaiwi, Majed; AlKhatib, Hatim S; Mohammad, Mohammad; Bustanji, Yasser

    2008-01-01

    A fast and reliable method for the determination of repaglinide is highly desirable to support formulation screening and quality control. A first-derivative UV spectroscopic method was developed for the determination of repaglinide in tablet dosage form and for dissolution testing. First-derivative UV absorbance was measured at 253 nm. The developed method was validated for linearity, accuracy, precision, limit of detection (LOD), and limit of quantitation (LOQ) in comparison to the U.S. Pharmacopeia (USP) column high-performance liquid chromatographic (HPLC) method. The first-derivative UV spectrophotometric method showed excellent linearity [correlation coefficient (r) = 0.9999] in the concentration range of 1-35 microg/mL and precision (relative standard deviation < 1.5%). The LOD and LOQ were 0.23 and 0.72 microg/mL, respectively, and good recoveries were achieved (98-101.8%). Statistical comparison of results of the first-derivative UV spectrophotometric and the USP HPLC methods using the t-test showed that there was no significant difference between the 2 methods. Additionally, the method was successfully used for the dissolution test of repaglinide and was found to be reliable, simple, fast, and inexpensive.

  12. Real-time polarization imaging algorithm for camera-based polarization navigation sensors.

    PubMed

    Lu, Hao; Zhao, Kaichun; You, Zheng; Huang, Kaoli

    2017-04-10

    Biologically inspired polarization navigation is a promising approach due to its autonomous nature, high precision, and robustness. Many researchers have built point source-based and camera-based polarization navigation prototypes in recent years. Camera-based prototypes can benefit from their high spatial resolution but incur a heavy computation load. The pattern recognition algorithm in most polarization imaging algorithms involves several nonlinear calculations that impose a significant computation burden. In this paper, the polarization imaging and pattern recognition algorithms are optimized through reduction to several linear calculations by exploiting the orthogonality of the Stokes parameters without affecting precision according to the features of the solar meridian and the patterns of the polarized skylight. The algorithm contains a pattern recognition algorithm with a Hough transform as well as orientation measurement algorithms. The algorithm was loaded and run on a digital signal processing system to test its computational complexity. The test showed that the running time decreased to several tens of milliseconds from several thousand milliseconds. Through simulations and experiments, it was found that the algorithm can measure orientation without reducing precision. It can hence satisfy the practical demands of low computational load and high precision for use in embedded systems.

  13. Simultaneous Determination of Withanolide A and Bacoside A in Spansules by High-Performance Thin-Layer Chromatography

    PubMed Central

    Shinde, P B; Aragade, P D; Agrawal, M R; Deokate, U A; Khadabadi, S S

    2011-01-01

    The objective of this work was to develop and validate a simple, rapid, precise, and accurate high performance thin layer chromatography method for simultaneous determination of withanolide A and bacoside A in combined dosage form. The stationary phase used was silica gel G60F254. The mobile phase used was mixture of ethyl acetate: methanol: toluene: water (4:1:1:0.5 v/v/v/v). The detection of spots was carried out at 320 nm using absorbance reflectance mode. The method was validated in terms of linearity, accuracy, precision and specificity. The calibration curve was found to be linear between 200 to 800 ng/spot for withanolide A and 50 to 350 ng/spot for bacoside A. The limit of detection and limit of quantification for the withanolide A were found to be 3.05 and 10.06 ng/spot, respectively and for bacoside A 8.3 and 27.39 ng/spot, respectively. The proposed method can be successfully used to determine the drug content of marketed formulation. PMID:22303073

  14. Simultaneous determination of withanolide a and bacoside a in spansules by high-performance thin-layer chromatography.

    PubMed

    Shinde, P B; Aragade, P D; Agrawal, M R; Deokate, U A; Khadabadi, S S

    2011-03-01

    The objective of this work was to develop and validate a simple, rapid, precise, and accurate high performance thin layer chromatography method for simultaneous determination of withanolide A and bacoside A in combined dosage form. The stationary phase used was silica gel G60F(254). The mobile phase used was mixture of ethyl acetate: methanol: toluene: water (4:1:1:0.5 v/v/v/v). The detection of spots was carried out at 320 nm using absorbance reflectance mode. The method was validated in terms of linearity, accuracy, precision and specificity. The calibration curve was found to be linear between 200 to 800 ng/spot for withanolide A and 50 to 350 ng/spot for bacoside A. The limit of detection and limit of quantification for the withanolide A were found to be 3.05 and 10.06 ng/spot, respectively and for bacoside A 8.3 and 27.39 ng/spot, respectively. The proposed method can be successfully used to determine the drug content of marketed formulation.

  15. Electron kinetic effects on interferometry, polarimetry and Thomson scattering measurements in burning plasmas (invited).

    PubMed

    Mirnov, V V; Brower, D L; Den Hartog, D J; Ding, W X; Duff, J; Parke, E

    2014-11-01

    At anticipated high electron temperatures in ITER, the effects of electron thermal motion on Thomson scattering (TS), toroidal interferometer/polarimeter (TIP), and poloidal polarimeter (PoPola) diagnostics will be significant and must be accurately treated. The precision of the previous lowest order linear in τ = Te/mec(2) model may be insufficient; we present a more precise model with τ(2)-order corrections to satisfy the high accuracy required for ITER TIP and PoPola diagnostics. The linear model is extended from Maxwellian to a more general class of anisotropic electron distributions that allows us to take into account distortions caused by equilibrium current, ECRH, and RF current drive effects. The classical problem of the degree of polarization of incoherent Thomson scattered radiation is solved analytically exactly without any approximations for the full range of incident polarizations, scattering angles, and electron thermal motion from non-relativistic to ultra-relativistic. The results are discussed in the context of the possible use of the polarization properties of Thomson scattered light as a method of Te measurement relevant to ITER operational scenarios.

  16. Precision measurements of linear scattering density using muon tomography

    NASA Astrophysics Data System (ADS)

    Åström, E.; Bonomi, G.; Calliari, I.; Calvini, P.; Checchia, P.; Donzella, A.; Faraci, E.; Forsberg, F.; Gonella, F.; Hu, X.; Klinger, J.; Sundqvist Ökvist, L.; Pagano, D.; Rigoni, A.; Ramous, E.; Urbani, M.; Vanini, S.; Zenoni, A.; Zumerle, G.

    2016-07-01

    We demonstrate that muon tomography can be used to precisely measure the properties of various materials. The materials which have been considered have been extracted from an experimental blast furnace, including carbon (coke) and iron oxides, for which measurements of the linear scattering density relative to the mass density have been performed with an absolute precision of 10%. We report the procedures that are used in order to obtain such precision, and a discussion is presented to address the expected performance of the technique when applied to heavier materials. The results we obtain do not depend on the specific type of material considered and therefore they can be extended to any application.

  17. GARLIC: GAmma Reconstruction at a LInear Collider experiment

    NASA Astrophysics Data System (ADS)

    Jeans, D.; Brient, J.-C.; Reinhard, M.

    2012-06-01

    The precise measurement of hadronic jet energy is crucial to maximise the physics reach of a future Linear Collider. An important ingredient required to achieve this is the efficient identification of photons within hadronic showers. One configuration of the ILD detector concept employs a highly granular silicon-tungsten sampling calorimeter to identify and measure photons, and the GARLIC algorithm described in this paper has been developed to identify photons in such a calorimeter. We describe the algorithm and characterise its performance using events fully simulated in a model of the ILD detector.

  18. Variable-Delay Polarization Modulators for Cryogenic Millimeter-Wave Applications

    NASA Technical Reports Server (NTRS)

    Chuss, D. T.; Eimer, J. R.; Fixsen, D. J.; Hinderks, J.; Kogut, A. J.; Lazear, J.; Mirel, P.; Switzer, E.; Voellmer, G. M.; Wollack, E. J..

    2014-01-01

    We describe the design, construction, and initial validation of the variable-delay polarization modulator (VPM) designed for the PIPER cosmic microwave background polarimeter. The VPM modulates between linear and circular polarization by introducing a variable phase delay between orthogonal linear polarizations. Each VPM has a diameter of 39 cm and is engineered to operate in a cryogenic environment (1.5 K). We describe the mechanical design and performance of the kinematic double-blade flexure and drive mechanism along with the construction of the high precision wire grid polarizers.

  19. On the reliability of computed chaotic solutions of non-linear differential equations

    NASA Astrophysics Data System (ADS)

    Liao, Shijun

    2009-08-01

    A new concept, namely the critical predictable time Tc, is introduced to give a more precise description of computed chaotic solutions of non-linear differential equations: it is suggested that computed chaotic solutions are unreliable and doubtable when t > Tc. This provides us a strategy to detect reliable solution from a given computed result. In this way, the computational phenomena, such as computational chaos (CC), computational periodicity (CP) and computational prediction uncertainty, which are mainly based on long-term properties of computed time-series, can be completely avoided. Using this concept, the famous conclusion `accurate long-term prediction of chaos is impossible' should be replaced by a more precise conclusion that `accurate prediction of chaos beyond the critical predictable time Tc is impossible'. So, this concept also provides us a timescale to determine whether or not a particular time is long enough for a given non-linear dynamic system. Besides, the influence of data inaccuracy and various numerical schemes on the critical predictable time is investigated in details by using symbolic computation software as a tool. A reliable chaotic solution of Lorenz equation in a rather large interval 0 <= t < 1200 non-dimensional Lorenz time units is obtained for the first time. It is found that the precision of the initial condition and the computed data at each time step, which is mathematically necessary to get such a reliable chaotic solution in such a long time, is so high that it is physically impossible due to the Heisenberg uncertainty principle in quantum physics. This, however, provides us a so-called `precision paradox of chaos', which suggests that the prediction uncertainty of chaos is physically unavoidable, and that even the macroscopical phenomena might be essentially stochastic and thus could be described by probability more economically.

  20. A novel stability-indicating UPLC method development and validation for the determination of seven impurities in various diclofenac pharmaceutical dosage forms.

    PubMed

    Azougagh, M; Elkarbane, M; Bakhous, K; Issmaili, S; Skalli, A; Iben Moussad, S; Benaji, B

    2016-09-01

    An innovative simple, fast, precise and accurate ultra-high performance liquid chromatography (UPLC) method was developed for the determination of diclofenac (Dic) along with its impurities including the new dimer impurity in various pharmaceutical dosage forms. An Acquity HSS T3 (C18, 100×2.1mm, 1.8μm) column in gradient mode was used with mobile phase comprising of phosphoric acid, which has a pH value of 2.3 and methanol. The flow rate and the injection volume were set at 0.35ml·min(-1) and 1μl, respectively, and the UV detection was carried out at 254nm by using photodiode array detector. Dic was subjected to stress conditions from acid, base, hydrolytic, thermal, oxidative and photolytic degradation. The new developed method was successfully validated in accordance to the International Conference on Harmonization (ICH) guidelines with respect to specificity, limit of detection, limit of quantitation, precision, linearity, accuracy and robustness. The degradation products were well resolved from main peak and its seven impurities, proving the specificity power of the method. The method showed good linearity with consistent recoveries for Dic content and its impurities. The relative percentage of standard deviation obtained for the repeatability and intermediate precision experiments was less than 3% and LOQ was less than 0.5μg·ml(-1) for all compounds. The new proposed method was found to be accurate, precise, specific, linear and robust. In addition, the method was successfully applied for the assay determination of Dic and its impurities in the several pharmaceutical dosage forms. Copyright © 2016 Académie Nationale de Pharmacie. Published by Elsevier Masson SAS. All rights reserved.

  1. Singlet-catalyzed electroweak phase transitions and precision Higgs boson studies

    NASA Astrophysics Data System (ADS)

    Profumo, Stefano; Ramsey-Musolf, Michael J.; Wainwright, Carroll L.; Winslow, Peter

    2015-02-01

    We update the phenomenology of gauge-singlet extensions of the Standard Model scalar sector and their implications for the electroweak phase transition. Considering the introduction of one real scalar singlet to the scalar potential, we analyze present constraints on the potential parameters from Higgs coupling measurements at the Large Hadron Collider (LHC) and electroweak precision observables for the kinematic regime in which no new scalar decay modes arise. We then show how future precision measurements of Higgs boson signal strengths and the Higgs self-coupling could probe the scalar potential parameter space associated with a strong first-order electroweak phase transition. We illustrate using benchmark precision for several future collider options, including the high-luminosity LHC, the International Linear Collider, Triple-Large Electron-Positron collider, the China Electron-Positron Collider, and a 100 TeV proton-proton collider, such as the Very High Energy LHC or the Super Proton-Proton Collider. For the regions of parameter space leading to a strong first-order electroweak phase transition, we find that there exists considerable potential for observable deviations from purely Standard Model Higgs properties at these prospective future colliders.

  2. The Magsat precision vector magnetometer

    NASA Technical Reports Server (NTRS)

    Acuna, M. H.

    1980-01-01

    This paper examines the Magsat precision vector magnetometer which is designed to measure projections of the ambient field in three orthogonal directions. The system contains a highly stable and linear triaxial fluxgate magnetometer with a dynamic range of + or - 2000 nT (1 nT = 10 to the -9 weber per sq m). The magnetometer electronics, analog-to-digital converter, and digitally controlled current sources are implemented with redundant designs to avoid a loss of data in case of failures. Measurements are carried out with an accuracy of + or - 1 part in 64,000 in magnitude and 5 arcsec in orientation (1 arcsec = 0.00028 deg).

  3. Continuous monitoring of blood volume changes in humans

    NASA Technical Reports Server (NTRS)

    Hinghofer-Szalkay, H.; Greenleaf, J. E.

    1987-01-01

    Use of on-line high-precision mass densitometry for the continuous monitoring of blood volume changes in humans was demonstrated by recording short-term blood volume alterations produced by changes in body position. The mass density of antecubital venous blood was measured continuously for 80 min per session with 0.1 g/l precision at a flow rate of 1.5 ml/min. Additional discrete plasma density and hematocrit measurements gave linear relations between all possible combinations of blood density, plasma density, and hematocrit. Transient filtration phenomena were revealed that are not amenable to discontinuous measurements.

  4. Linear CCD attitude measurement system based on the identification of the auxiliary array CCD

    NASA Astrophysics Data System (ADS)

    Hu, Yinghui; Yuan, Feng; Li, Kai; Wang, Yan

    2015-10-01

    Object to the high precision flying target attitude measurement issues of a large space and large field of view, comparing existing measurement methods, the idea is proposed of using two array CCD to assist in identifying the three linear CCD with multi-cooperative target attitude measurement system, and to address the existing nonlinear system errors and calibration parameters and more problems with nine linear CCD spectroscopic test system of too complicated constraints among camera position caused by excessive. The mathematical model of binocular vision and three linear CCD test system are established, co-spot composition triangle utilize three red LED position light, three points' coordinates are given in advance by Cooperate Measuring Machine, the red LED in the composition of the three sides of a triangle adds three blue LED light points as an auxiliary, so that array CCD is easier to identify three red LED light points, and linear CCD camera is installed of a red filter to filter out the blue LED light points while reducing stray light. Using array CCD to measure the spot, identifying and calculating the spatial coordinates solutions of red LED light points, while utilizing linear CCD to measure three red LED spot for solving linear CCD test system, which can be drawn from 27 solution. Measured with array CCD coordinates auxiliary linear CCD has achieved spot identification, and has solved the difficult problems of multi-objective linear CCD identification. Unique combination of linear CCD imaging features, linear CCD special cylindrical lens system is developed using telecentric optical design, the energy center of the spot position in the depth range of convergence in the direction is perpendicular to the optical axis of the small changes ensuring highprecision image quality, and the entire test system improves spatial object attitude measurement speed and precision.

  5. A methodology based on reduced complexity algorithm for system applications using microprocessors

    NASA Technical Reports Server (NTRS)

    Yan, T. Y.; Yao, K.

    1988-01-01

    The paper considers a methodology on the analysis and design of a minimum mean-square error criterion linear system incorporating a tapped delay line (TDL) where all the full-precision multiplications in the TDL are constrained to be powers of two. A linear equalizer based on the dispersive and additive noise channel is presented. This microprocessor implementation with optimized power of two TDL coefficients achieves a system performance comparable to the optimum linear equalization with full-precision multiplications for an input data rate of 300 baud.

  6. Determination of perfluorinated compounds in fish fillet homogenates: method validation and application to fillet homogenates from the Mississippi River.

    PubMed

    Malinsky, Michelle Duval; Jacoby, Cliffton B; Reagen, William K

    2011-01-10

    We report herein a simple protein precipitation extraction-liquid chromatography tandem mass spectrometry (LC/MS/MS) method, validation, and application for the analysis of perfluorinated carboxylic acids (C7-C12), perfluorinated sulfonic acids (C4, C6, and C8), and perfluorooctane sulfonamide (FOSA) in fish fillet tissue. The method combines a rapid homogenization and protein precipitation tissue extraction procedure using stable-isotope internal standard (IS) calibration. Method validation in bluegill (Lepomis macrochirus) fillet tissue evaluated the following: (1) method accuracy and precision in both extracted matrix-matched calibration and solvent (unextracted) calibration, (2) quantitation of mixed branched and linear isomers of perfluorooctanoate (PFOA) and perfluorooctanesulfonate (PFOS) with linear isomer calibration, (3) quantitation of low level (ppb) perfluorinated compounds (PFCs) in the presence of high level (ppm) PFOS, and (4) specificity from matrix interferences. Both calibration techniques produced method accuracy of at least 100±13% with a precision (%RSD) ≤18% for all target analytes. Method accuracy and precision results for fillet samples from nine different fish species taken from the Mississippi River in 2008 and 2009 are also presented. Copyright © 2010 Elsevier B.V. All rights reserved.

  7. Higgs physics at the CLIC electron-positron linear collider.

    PubMed

    Abramowicz, H; Abusleme, A; Afanaciev, K; Alipour Tehrani, N; Balázs, C; Benhammou, Y; Benoit, M; Bilki, B; Blaising, J-J; Boland, M J; Boronat, M; Borysov, O; Božović-Jelisavčić, I; Buckland, M; Bugiel, S; Burrows, P N; Charles, T K; Daniluk, W; Dannheim, D; Dasgupta, R; Demarteau, M; Díaz Gutierrez, M A; Eigen, G; Elsener, K; Felzmann, U; Firlej, M; Firu, E; Fiutowski, T; Fuster, J; Gabriel, M; Gaede, F; García, I; Ghenescu, V; Goldstein, J; Green, S; Grefe, C; Hauschild, M; Hawkes, C; Hynds, D; Idzik, M; Kačarević, G; Kalinowski, J; Kananov, S; Klempt, W; Kopec, M; Krawczyk, M; Krupa, B; Kucharczyk, M; Kulis, S; Laštovička, T; Lesiak, T; Levy, A; Levy, I; Linssen, L; Lukić, S; Maier, A A; Makarenko, V; Marshall, J S; Martin, V J; Mei, K; Milutinović-Dumbelović, G; Moroń, J; Moszczyński, A; Moya, D; Münker, R M; Münnich, A; Neagu, A T; Nikiforou, N; Nikolopoulos, K; Nürnberg, A; Pandurović, M; Pawlik, B; Perez Codina, E; Peric, I; Petric, M; Pitters, F; Poss, S G; Preda, T; Protopopescu, D; Rassool, R; Redford, S; Repond, J; Robson, A; Roloff, P; Ros, E; Rosenblat, O; Ruiz-Jimeno, A; Sailer, A; Schlatter, D; Schulte, D; Shumeiko, N; Sicking, E; Simon, F; Simoniello, R; Sopicki, P; Stapnes, S; Ström, R; Strube, J; Świentek, K P; Szalay, M; Tesař, M; Thomson, M A; Trenado, J; Uggerhøj, U I; van der Kolk, N; van der Kraaij, E; Vicente Barreto Pinto, M; Vila, I; Vogel Gonzalez, M; Vos, M; Vossebeld, J; Watson, M; Watson, N; Weber, M A; Weerts, H; Wells, J D; Weuste, L; Winter, A; Wojtoń, T; Xia, L; Xu, B; Żarnecki, A F; Zawiejski, L; Zgura, I-S

    2017-01-01

    The Compact Linear Collider (CLIC) is an option for a future [Formula: see text] collider operating at centre-of-mass energies up to [Formula: see text], providing sensitivity to a wide range of new physics phenomena and precision physics measurements at the energy frontier. This paper is the first comprehensive presentation of the Higgs physics reach of CLIC operating at three energy stages: [Formula: see text], 1.4 and [Formula: see text]. The initial stage of operation allows the study of Higgs boson production in Higgsstrahlung ([Formula: see text]) and [Formula: see text]-fusion ([Formula: see text]), resulting in precise measurements of the production cross sections, the Higgs total decay width [Formula: see text], and model-independent determinations of the Higgs couplings. Operation at [Formula: see text] provides high-statistics samples of Higgs bosons produced through [Formula: see text]-fusion, enabling tight constraints on the Higgs boson couplings. Studies of the rarer processes [Formula: see text] and [Formula: see text] allow measurements of the top Yukawa coupling and the Higgs boson self-coupling. This paper presents detailed studies of the precision achievable with Higgs measurements at CLIC and describes the interpretation of these measurements in a global fit.

  8. Smartphone application for mechanical quality assurance of medical linear accelerators

    NASA Astrophysics Data System (ADS)

    Kim, Hwiyoung; Lee, Hyunseok; In Park, Jong; Choi, Chang Heon; Park, So-Yeon; Kim, Hee Jung; Kim, Young Suk; Ye, Sung-Joon

    2017-06-01

    Mechanical quality assurance (QA) of medical linear accelerators consists of time-consuming and human-error-prone procedures. We developed a smartphone application system for mechanical QA. The system consists of two smartphones: one attached to a gantry for obtaining real-time information on the mechanical parameters of the medical linear accelerator, and another displaying real-time information via a Bluetooth connection with the former. Motion sensors embedded in the smartphone were used to measure gantry and collimator rotations. Images taken by the smartphone’s high-resolution camera were processed to evaluate accuracies of jaw-positioning, crosshair centering and source-to-surface distance (SSD). The application was developed using Android software development kit and OpenCV library. The accuracy and precision of the system was validated against an optical rotation stage and digital calipers, prior to routine QA measurements of five medical linear accelerators. The system accuracy and precision in measuring angles and lengths were determined to be 0.05  ±  0.05° and 0.25  ±  0.14 mm, respectively. The mean absolute errors (MAEs) in QA measurements of gantry and collimator rotation were 0.05  ±  0.04° and 0.05  ±  0.04°, respectively. The MAE in QA measurements of light field was 0.39  ±  0.36 mm. The MAEs in QA measurements of crosshair centering and SSD were 0.40  ±  0.35 mm and 0.41  ±  0.32 mm, respectively. In conclusion, most routine mechanical QA procedures could be performed using the smartphone application system with improved precision and within a shorter time-frame, while eliminating potential human errors.

  9. Smartphone application for mechanical quality assurance of medical linear accelerators.

    PubMed

    Kim, Hwiyoung; Lee, Hyunseok; Park, Jong In; Choi, Chang Heon; Park, So-Yeon; Kim, Hee Jung; Kim, Young Suk; Ye, Sung-Joon

    2017-06-07

    Mechanical quality assurance (QA) of medical linear accelerators consists of time-consuming and human-error-prone procedures. We developed a smartphone application system for mechanical QA. The system consists of two smartphones: one attached to a gantry for obtaining real-time information on the mechanical parameters of the medical linear accelerator, and another displaying real-time information via a Bluetooth connection with the former. Motion sensors embedded in the smartphone were used to measure gantry and collimator rotations. Images taken by the smartphone's high-resolution camera were processed to evaluate accuracies of jaw-positioning, crosshair centering and source-to-surface distance (SSD). The application was developed using Android software development kit and OpenCV library. The accuracy and precision of the system was validated against an optical rotation stage and digital calipers, prior to routine QA measurements of five medical linear accelerators. The system accuracy and precision in measuring angles and lengths were determined to be 0.05  ±  0.05° and 0.25  ±  0.14 mm, respectively. The mean absolute errors (MAEs) in QA measurements of gantry and collimator rotation were 0.05  ±  0.04° and 0.05  ±  0.04°, respectively. The MAE in QA measurements of light field was 0.39  ±  0.36 mm. The MAEs in QA measurements of crosshair centering and SSD were 0.40  ±  0.35 mm and 0.41  ±  0.32 mm, respectively. In conclusion, most routine mechanical QA procedures could be performed using the smartphone application system with improved precision and within a shorter time-frame, while eliminating potential human errors.

  10. High-precision control of LSRM based X-Y table for industrial applications.

    PubMed

    Pan, J F; Cheung, Norbert C; Zou, Yu

    2013-01-01

    The design of an X-Y table applying direct-drive linear switched reluctance motor (LSRM) principle is proposed in this paper. The proposed X-Y table has the characteristics of low cost, simple and stable mechanical structure. After the design procedure is introduced, an adaptive position control method based on online parameter identification and pole-placement regulation scheme is developed for the X-Y table. Experimental results prove the feasibility and its priority over a traditional PID controller with better dynamic response, static performance and robustness to disturbances. It is expected that the novel two-dimensional direct-drive system find its applications in high-precision manufacture area. Copyright © 2012 ISA. Published by Elsevier Ltd. All rights reserved.

  11. A linear refractive photovoltaic concentrator solar array flight experiment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jones, P.A.; Murphy, D.M.; Piszczor, M.F.

    1995-12-31

    Concentrator arrays deliver a number of generic benefits for space including high array efficiency, protection from space radiation effects, and minimized plasma interactions. The line focus concentrator concept delivers two added advantages: (1) low-cost mass production of the lens material and, (2) relaxation of precise array tracking requirements to only a single axis. New array designs emphasize lightweight, high stiffness, stow-ability and ease of manufacture and assembly. The linear refractive concentrator can be designed to provide an essentially flat response over a wide range of longitudinal pointing errors for satellites having only single-axis tracking capability. In this paper the authorsmore » address the current status of the SCARLET linear concentrator program with special emphasis on hardware development of an array-level linear refractive concentrator flight experiment. An aggressive, 6-month development and flight validation program, sponsored by the Ballistic Missile Defense Organization (BMDO) and NASA Lewis Research Center, will quantify and verify SCARLET benefits with in-orbit performance measurements.« less

  12. Formation Control for the MAXIM Mission

    NASA Technical Reports Server (NTRS)

    Luquette, Richard J.; Leitner, Jesse; Gendreau, Keith; Sanner, Robert M.

    2004-01-01

    Over the next twenty years, a wave of change is occurring in the space-based scientific remote sensing community. While the fundamental limits in the spatial and angular resolution achievable in spacecraft have been reached, based on today s technology, an expansive new technology base has appeared over the past decade in the area of Distributed Space Systems (DSS). A key subset of the DSS technology area is that which covers precision formation flying of space vehicles. Through precision formation flying, the baselines, previously defined by the largest monolithic structure which could fit in the largest launch vehicle fairing, are now virtually unlimited. Several missions including the Micro-Arcsecond X-ray Imaging Mission (MAXIM), and the Stellar Imager will drive the formation flying challenges to achieve unprecedented baselines for high resolution, extended-scene, interferometry in the ultraviolet and X-ray regimes. This paper focuses on establishing the feasibility for the formation control of the MAXIM mission. MAXIM formation flying requirements are on the order of microns, while Stellar Imager mission requirements are on the order of nanometers. This paper specifically addresses: (1) high-level science requirements for these missions and how they evolve into engineering requirements; and (2) the development of linearized equations of relative motion for a formation operating in an n-body gravitational field. Linearized equations of motion provide the ground work for linear formation control designs.

  13. Fabrication of an infrared Shack-Hartmann sensor by combining high-speed single-point diamond milling and precision compression molding processes.

    PubMed

    Zhang, Lin; Zhou, Wenchen; Naples, Neil J; Yi, Allen Y

    2018-05-01

    A novel fabrication method by combining high-speed single-point diamond milling and precision compression molding processes for fabrication of discontinuous freeform microlens arrays was proposed. Compared with slow tool servo diamond broaching, high-speed single-point diamond milling was selected for its flexibility in the fabrication of true 3D optical surfaces with discontinuous features. The advantage of single-point diamond milling is that the surface features can be constructed sequentially by spacing the axes of a virtual spindle at arbitrary positions based on the combination of rotational and translational motions of both the high-speed spindle and linear slides. By employing this method, each micro-lenslet was regarded as a microstructure cell by passing the axis of the virtual spindle through the vertex of each cell. An optimization arithmetic based on minimum-area fabrication was introduced to the machining process to further increase the machining efficiency. After the mold insert was machined, it was employed to replicate the microlens array onto chalcogenide glass. In the ensuing optical measurement, the self-built Shack-Hartmann wavefront sensor was proven to be accurate in detecting an infrared wavefront by both experiments and numerical simulation. The combined results showed that precision compression molding of chalcogenide glasses could be an economic and precision optical fabrication technology for high-volume production of infrared optics.

  14. A phase match based frequency estimation method for sinusoidal signals

    NASA Astrophysics Data System (ADS)

    Shen, Yan-Lin; Tu, Ya-Qing; Chen, Lin-Jun; Shen, Ting-Ao

    2015-04-01

    Accurate frequency estimation affects the ranging precision of linear frequency modulated continuous wave (LFMCW) radars significantly. To improve the ranging precision of LFMCW radars, a phase match based frequency estimation method is proposed. To obtain frequency estimation, linear prediction property, autocorrelation, and cross correlation of sinusoidal signals are utilized. The analysis of computational complex shows that the computational load of the proposed method is smaller than those of two-stage autocorrelation (TSA) and maximum likelihood. Simulations and field experiments are performed to validate the proposed method, and the results demonstrate the proposed method has better performance in terms of frequency estimation precision than methods of Pisarenko harmonic decomposition, modified covariance, and TSA, which contribute to improving the precision of LFMCW radars effectively.

  15. Precision Interval Estimation of the Response Surface by Means of an Integrated Algorithm of Neural Network and Linear Regression

    NASA Technical Reports Server (NTRS)

    Lo, Ching F.

    1999-01-01

    The integration of Radial Basis Function Networks and Back Propagation Neural Networks with the Multiple Linear Regression has been accomplished to map nonlinear response surfaces over a wide range of independent variables in the process of the Modem Design of Experiments. The integrated method is capable to estimate the precision intervals including confidence and predicted intervals. The power of the innovative method has been demonstrated by applying to a set of wind tunnel test data in construction of response surface and estimation of precision interval.

  16. Pore-Environment Engineering with Multiple Metal Sites in Rare-Earth Porphyrinic Metal-Organic Frameworks.

    PubMed

    Zhang, Liangliang; Yuan, Shuai; Feng, Liang; Guo, Bingbing; Qin, Jun-Sheng; Xu, Ben; Lollar, Christina; Sun, Daofeng; Zhou, Hong-Cai

    2018-04-23

    Multi-component metal-organic frameworks (MOFs) with precisely controlled pore environments are highly desired owing to their potential applications in gas adsorption, separation, cooperative catalysis, and biomimetics. A series of multi-component MOFs, namely PCN-900(RE), were constructed from a combination of tetratopic porphyrinic linkers, linear linkers, and rare-earth hexanuclear clusters (RE 6 ) under the guidance of thermodynamics. These MOFs exhibit high surface areas (up to 2523 cm 2  g -1 ) and unlimited tunability by modification of metal nodes and/or linker components. Post-synthetic exchange of linear linkers and metalation of two organic linkers were realized, allowing the incorporation of a wide range of functional moieties. Two different metal sites were sequentially placed on the linear linker and the tetratopic porphyrinic linker, respectively, giving rise to an ideal platform for heterogeneous catalysis. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Rapid Development and Validation of Improved Reversed-Phase High-performance Liquid Chromatography Method for the Quantification of Mangiferin, a Polyphenol Xanthone Glycoside in Mangifera indica

    PubMed Central

    Naveen, P.; Lingaraju, H. B.; Prasad, K. Shyam

    2017-01-01

    Mangiferin, a polyphenolic xanthone glycoside from Mangifera indica, is used as traditional medicine for the treatment of numerous diseases. The present study was aimed to develop and validate a reversed-phase high-performance liquid chromatography (RP-HPLC) method for the quantification of mangiferin from the bark extract of M. indica. RP-HPLC analysis was performed by isocratic elution with a low-pressure gradient using 0.1% formic acid: acetonitrile (87:13) as a mobile phase with a flow rate of 1.5 ml/min. The separation was done at 26°C using a Kinetex XB-C18 column as stationary phase and the detection wavelength at 256 nm. The proposed method was validated for linearity, precision, accuracy, limit of detection, limit of quantification, and robustness by the International Conference on Harmonisation guidelines. In linearity, the excellent correlation coefficient more than 0.999 indicated good fitting of the curve and also good linearity. The intra- and inter-day precision showed < 1% of relative standard deviation of peak area indicated high reliability and reproducibility of the method. The recovery values at three different levels (50%, 100%, and 150%) of spiked samples were found to be 100.47, 100.89, and 100.99, respectively, and low standard deviation value < 1% shows high accuracy of the method. In robustness, the results remain unaffected by small variation in the analytical parameters, which shows the robustness of the method. Liquid chromatography–mass spectrometry analysis confirmed the presence of mangiferin with M/Z value of 421. The assay developed by HPLC method is a simple, rapid, and reliable for the determination of mangiferin from M. indica. SUMMARY The present study was intended to develop and validate an RP-HPLC method for the quantification of mangiferin from the bark extract of M. indica. The developed method was validated for linearity, precision, accuracy, limit of detection, limit of quantification and robustness by International Conference on Harmonization guidelines. This study proved that the developed assay by HPLC method is a simple, rapid and reliable for the quantification of the mangiferin from M. indica. Abbreviations Used: M. indica: Mangifera indica, RP-HPLC: Reversed-phase high-performance liquid chromatography, M/Z: Mass to charge ratio, ICH: International conference on harmonization, % RSD: Percentage of relative standard deviation, ppm: Parts per million, LOD: Limit of detection, LOQ: Limit of quantification. PMID:28539748

  18. Rapid Development and Validation of Improved Reversed-Phase High-performance Liquid Chromatography Method for the Quantification of Mangiferin, a Polyphenol Xanthone Glycoside in Mangifera indica.

    PubMed

    Naveen, P; Lingaraju, H B; Prasad, K Shyam

    2017-01-01

    Mangiferin, a polyphenolic xanthone glycoside from Mangifera indica , is used as traditional medicine for the treatment of numerous diseases. The present study was aimed to develop and validate a reversed-phase high-performance liquid chromatography (RP-HPLC) method for the quantification of mangiferin from the bark extract of M. indica . RP-HPLC analysis was performed by isocratic elution with a low-pressure gradient using 0.1% formic acid: acetonitrile (87:13) as a mobile phase with a flow rate of 1.5 ml/min. The separation was done at 26°C using a Kinetex XB-C18 column as stationary phase and the detection wavelength at 256 nm. The proposed method was validated for linearity, precision, accuracy, limit of detection, limit of quantification, and robustness by the International Conference on Harmonisation guidelines. In linearity, the excellent correlation coefficient more than 0.999 indicated good fitting of the curve and also good linearity. The intra- and inter-day precision showed < 1% of relative standard deviation of peak area indicated high reliability and reproducibility of the method. The recovery values at three different levels (50%, 100%, and 150%) of spiked samples were found to be 100.47, 100.89, and 100.99, respectively, and low standard deviation value < 1% shows high accuracy of the method. In robustness, the results remain unaffected by small variation in the analytical parameters, which shows the robustness of the method. Liquid chromatography-mass spectrometry analysis confirmed the presence of mangiferin with M/Z value of 421. The assay developed by HPLC method is a simple, rapid, and reliable for the determination of mangiferin from M. indica . The present study was intended to develop and validate an RP-HPLC method for the quantification of mangiferin from the bark extract of M. indica . The developed method was validated for linearity, precision, accuracy, limit of detection, limit of quantification and robustness by International Conference on Harmonization guidelines. This study proved that the developed assay by HPLC method is a simple, rapid and reliable for the quantification of the mangiferin from M. indica . Abbreviations Used: M. indica : Mangifera indica , RP-HPLC: Reversed-phase high-performance liquid chromatography, M/Z: Mass to charge ratio, ICH: International conference on harmonization, % RSD: Percentage of relative standard deviation, ppm: Parts per million, LOD: Limit of detection, LOQ: Limit of quantification.

  19. Very high frequency (beyond 100 MHz) PZT kerfless linear arrays.

    PubMed

    Wu, Da-Wei; Zhou, Qifa; Geng, Xuecang; Liu, Chang-Geng; Djuth, Frank; Shung, K Kirk

    2009-10-01

    This paper presents the design, fabrication, and measurements of very high frequency kerfless linear arrays prepared from PZT film and PZT bulk material. A 12-microm PZT thick film fabricated from PZT-5H powder/solution composite and a piece of 15-microm PZT-5H sheet were used to fabricate 32-element kerfless high-frequency linear arrays with photolithography. The PZT thick film was prepared by spin-coating of PZT sol-gel composite solution. The thin PZT-5H sheet sample was prepared by lapping a PZT-5H ceramic with a precision lapping machine. The measured results of the 2 arrays were compared. The PZT film array had a center frequency of 120 MHz, a bandwidth of 60% with a parylene matching layer, and an insertion loss of 41 dB. The PZT ceramic sheet array was found to have a center frequency of 128 MHz with a poorer bandwidth (40% with a parylene matching layer) but a better sensitivity (28 dB insertion loss).

  20. Very High Frequency (Beyond 100 MHz) PZT Kerfless Linear Arrays

    PubMed Central

    Wu, Da-Wei; Zhou, Qifa; Geng, Xuecang; Liu, Chang-Geng; Djuth, Frank; Shung, K. Kirk

    2010-01-01

    This paper presents the design, fabrication, and measurements of very high frequency kerfless linear arrays prepared from PZT film and PZT bulk material. A 12-µm PZT thick film fabricated from PZT-5H powder/solution composite and a piece of 15-µm PZT-5H sheet were used to fabricate 32-element kerfless high-frequency linear arrays with photolithography. The PZT thick film was prepared by spin-coating of PZT sol-gel composite solution. The thin PZT-5H sheet sample was prepared by lapping a PZT-5H ceramic with a precision lapping machine. The measured results of the 2 arrays were compared. The PZT film array had a center frequency of 120 MHz, a bandwidth of 60% with a parylene matching layer, and an insertion loss of 41 dB. The PZT ceramic sheet array was found to have a center frequency of 128 MHz with a poorer bandwidth (40% with a parylene matching layer) but a better sensitivity (28 dB insertion loss). PMID:19942516

  1. High Precision Rovibrational Spectroscopy of OH+

    NASA Astrophysics Data System (ADS)

    Markus, Charles R.; Hodges, James N.; Perry, Adam J.; Kocheril, G. Stephen; Müller, Holger S. P.; McCall, Benjamin J.

    2016-02-01

    The molecular ion OH+ has long been known to be an important component of the interstellar medium. Its relative abundance can be used to indirectly measure cosmic ray ionization rates of hydrogen, and it is the first intermediate in the interstellar formation of water. To date, only a limited number of pure rotational transitions have been observed in the laboratory making it necessary to indirectly calculate rotational levels from high-precision rovibrational spectroscopy. We have remeasured 30 transitions in the fundamental band with MHz-level precision, in order to enable the prediction of a THz spectrum of OH+. The ions were produced in a water cooled discharge of O2, H2, and He, and the rovibrational transitions were measured with the technique Noise Immune Cavity Enhanced Optical Heterodyne Velocity Modulation Spectroscopy. These values have been included in a global fit of field free data to a 3Σ- linear molecule effective Hamiltonian to determine improved spectroscopic parameters which were used to predict the pure rotational transition frequencies.

  2. Time-resolved optical spectrometer based on a monolithic array of high-precision TDCs and SPADs

    NASA Astrophysics Data System (ADS)

    Tamborini, Davide; Markovic, Bojan; Di Sieno, Laura; Contini, Davide; Bassi, Andrea; Tisa, Simone; Tosi, Alberto; Zappa, Franco

    2013-12-01

    We present a compact time-resolved spectrometer suitable for optical spectroscopy from 400 nm to 1 μm wavelengths. The detector consists of a monolithic array of 16 high-precision Time-to-Digital Converters (TDC) and Single-Photon Avalanche Diodes (SPAD). The instrument has 10 ps resolution and reaches 70 ps (FWHM) timing precision over a 160 ns full-scale range with a Differential Non-Linearity (DNL) better than 1.5 % LSB. The core of the spectrometer is the application-specific integrated chip composed of 16 pixels with 250 μm pitch, containing a 20 μm diameter SPAD and an independent TDC each, fabricated in a 0.35 μm CMOS technology. In front of this array a monochromator is used to focus different wavelengths into different pixels. The spectrometer has been used for fluorescence lifetime spectroscopy: 5 nm spectral resolution over an 80 nm bandwidth is achieved. Lifetime spectroscopy of Nile blue is demonstrated.

  3. Precision comparison of the power spectrum in the EFTofLSS with simulations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Foreman, Simon; Senatore, Leonardo; Perrier, Hideki, E-mail: sfore@stanford.edu, E-mail: senatore@stanford.edu, E-mail: hideki.perrier@unige.ch

    2016-05-01

    We study the prediction of the dark matter power spectrum at two-loop order in the Effective Field Theory of Large Scale Structures (EFTofLSS) using high precision numerical simulations. In our universe, short distance non-linear fluctuations, not under perturbative control, affect long distance fluctuations through an effective stress tensor that needs to be parametrized in terms of counterterms that are functions of the long distance fluctuating fields. We find that at two-loop order it is necessary to include three counterterms: a linear term in the overdensity, δ, a quadratic term, δ{sup 2}, and a higher derivative term, ∂{sup 2}δ. After themore » inclusion of these three terms, the EFTofLSS at two-loop order matches simulation data up to k ≅ 0.34 h Mpc{sup −1} at redshift z = 0, up to k ≅ 0.55 h Mpc{sup −1} at z = 1, and up to k ≅ 1.1 h Mpc{sup −1} at z = 2. At these wavenumbers, the cosmic variance of the simulation is at least as small as 10{sup −3}, providing for the first time a high precision comparison between theory and data. The actual reach of the theory is affected by theoretical uncertainties associated to not having included higher order terms in perturbation theory, for which we provide an estimate, and by potentially overfitting the data, which we also try to address. Since in the EFTofLSS the coupling constants associated with the counterterms are unknown functions of time, we show how a simple parametrization gives a sensible description of their time-dependence. Overall, the k -reach of the EFTofLSS is much larger than previous analytical techniques, showing that the amount of cosmological information amenable to high-precision analytical control might be much larger than previously believed.« less

  4. The compression–error trade-off for large gridded data sets

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Silver, Jeremy D.; Zender, Charles S.

    The netCDF-4 format is widely used for large gridded scientific data sets and includes several compression methods: lossy linear scaling and the non-lossy deflate and shuffle algorithms. Many multidimensional geoscientific data sets exhibit considerable variation over one or several spatial dimensions (e.g., vertically) with less variation in the remaining dimensions (e.g., horizontally). On such data sets, linear scaling with a single pair of scale and offset parameters often entails considerable loss of precision. We introduce an alternative compression method called "layer-packing" that simultaneously exploits lossy linear scaling and lossless compression. Layer-packing stores arrays (instead of a scalar pair) of scalemore » and offset parameters. An implementation of this method is compared with lossless compression, storing data at fixed relative precision (bit-grooming) and scalar linear packing in terms of compression ratio, accuracy and speed. When viewed as a trade-off between compression and error, layer-packing yields similar results to bit-grooming (storing between 3 and 4 significant figures). Bit-grooming and layer-packing offer significantly better control of precision than scalar linear packing. Relative performance, in terms of compression and errors, of bit-groomed and layer-packed data were strongly predicted by the entropy of the exponent array, and lossless compression was well predicted by entropy of the original data array. Layer-packed data files must be "unpacked" to be readily usable. The compression and precision characteristics make layer-packing a competitive archive format for many scientific data sets.« less

  5. The compression–error trade-off for large gridded data sets

    DOE PAGES

    Silver, Jeremy D.; Zender, Charles S.

    2017-01-27

    The netCDF-4 format is widely used for large gridded scientific data sets and includes several compression methods: lossy linear scaling and the non-lossy deflate and shuffle algorithms. Many multidimensional geoscientific data sets exhibit considerable variation over one or several spatial dimensions (e.g., vertically) with less variation in the remaining dimensions (e.g., horizontally). On such data sets, linear scaling with a single pair of scale and offset parameters often entails considerable loss of precision. We introduce an alternative compression method called "layer-packing" that simultaneously exploits lossy linear scaling and lossless compression. Layer-packing stores arrays (instead of a scalar pair) of scalemore » and offset parameters. An implementation of this method is compared with lossless compression, storing data at fixed relative precision (bit-grooming) and scalar linear packing in terms of compression ratio, accuracy and speed. When viewed as a trade-off between compression and error, layer-packing yields similar results to bit-grooming (storing between 3 and 4 significant figures). Bit-grooming and layer-packing offer significantly better control of precision than scalar linear packing. Relative performance, in terms of compression and errors, of bit-groomed and layer-packed data were strongly predicted by the entropy of the exponent array, and lossless compression was well predicted by entropy of the original data array. Layer-packed data files must be "unpacked" to be readily usable. The compression and precision characteristics make layer-packing a competitive archive format for many scientific data sets.« less

  6. One novel type of miniaturization FBG rotation angle sensor with high measurement precision and temperature self-compensation

    NASA Astrophysics Data System (ADS)

    Jiang, Shanchao; Wang, Jing; Sui, Qingmei

    2018-03-01

    In order to achieve rotation angle measurement, one novel type of miniaturization fiber Bragg grating (FBG) rotation angle sensor with high measurement precision and temperature self-compensation is proposed and studied in this paper. The FBG rotation angle sensor mainly contains two core sensitivity elements (FBG1 and FBG2), triangular cantilever beam, and rotation angle transfer element. In theory, the proposed sensor can achieve temperature self-compensation by complementation of the two core sensitivity elements (FBG1 and FBG2), and it has a boundless angel measurement range with 2π rad period duo to the function of the rotation angle transfer element. Based on introducing the joint working processes, the theory calculation model of the FBG rotation angel sensor is established, and the calibration experiment on one prototype is also carried out to obtain its measurement performance. After experimental data analyses, the measurement precision of the FBG rotation angle sensor prototype is 0.2 ° with excellent linearity, and the temperature sensitivities of FBG1 and FBG2 are 10 pm/° and 10.1 pm/°, correspondingly. All these experimental results confirm that the FBG rotation angle sensor can achieve large-range angle measurement with high precision and temperature self-compensation.

  7. The characterization and application of a low resource FPGA-based time to digital converter

    NASA Astrophysics Data System (ADS)

    Balla, Alessandro; Mario Beretta, Matteo; Ciambrone, Paolo; Gatta, Maurizio; Gonnella, Francesco; Iafolla, Lorenzo; Mascolo, Matteo; Messi, Roberto; Moricciani, Dario; Riondino, Domenico

    2014-03-01

    Time to Digital Converters (TDCs) are very common devices in particles physics experiments. A lot of "off-the-shelf" TDCs can be employed but the necessity of a custom DAta acQuisition (DAQ) system makes the TDCs implemented on the Field-Programmable Gate Arrays (FPGAs) desirable. Most of the architectures developed so far are based on the tapped delay lines with precision down to 10 ps, obtained with high FPGA resources usage and non-linearity issues to be managed. Often such precision is not necessary; in this case TDC architectures with low resources occupancy are preferable allowing the implementation of data processing systems and of other utilities on the same device. In order to reconstruct γγ physics events tagged with High Energy Tagger (HET) in the KLOE-2 (K LOng Experiment 2), we need to measure the Time Of Flight (TOF) of the electrons and positrons from the KLOE-2 Interaction Point (IP) to our tagging stations (11 m apart). The required resolution must be better than the bunch spacing (2.7 ns). We have developed and implemented on a Xilinx Virtex-5 FPGA a 32 channel TDC with a precision of 255 ps and low non-linearity effects along with an embedded data acquisition system and the interface to the online FARM of KLOE-2. The TDC is based on a low resources occupancy technique: the 4×Oversampling technique which, in this work, is pushed to its best resolution and its performances were exhaustively measured.

  8. A rapid method for the simultaneous determination of 25 anti-hypertensive compounds in dietary supplements using ultra-high-pressure liquid chromatography.

    PubMed

    Heo, Seok; Yoo, Geum Joo; Choi, Ji Yeon; Park, Hyoung Joon; Park, Sung-Kwan; Baek, Sun Young

    2016-11-01

    A novel, stable, simple and specific ultra-performance liquid chromatography method with ultraviolet detection (205 nm) for the simultaneous analysis of 25 anti-hypertensive substances was developed. The method was validated according to the International Conference of Harmonisation guidelines with respect to linearity, accuracy, precision, limit of detection (LOD), limit of quantitation (LOQ) and stability. From the ultra-performance liquid chromatography results, we identified the LOD and LOQ of solid samples to be 0.20-1.00 and 0.60-3.00 μg ml -1 , respectively, while those of liquid samples were 0.30-1.20 and 0.90-3.60 μg ml -1 , respectively. The linearity exceeded 0.9999, and the intra- and inter-day precisions were 0.15-6.48% and 0.28-8.67%, respectively. The intra- and inter-day accuracies were 82.25-111.42% and 80.70-115.64%, respectively, and the stability was lower than 12.9% (relative standard deviation). This method was applied to the monitoring of 97 commercially available dietary supplements obtained in Korea, such as pills, soft capsules, hard capsules, liquids, powders and tablets. The proposed method is accurate, precise and of high quality, and can be used for the routine, reproducible analysis and control of 25 anti-hypertensive substances in various dietary supplements. The work presented herein may help to prevent incidents related to food adulteration and restrict the illegal food market.

  9. Microhartree precision in density functional theory calculations

    NASA Astrophysics Data System (ADS)

    Gulans, Andris; Kozhevnikov, Anton; Draxl, Claudia

    2018-04-01

    To address ultimate precision in density functional theory calculations we employ the full-potential linearized augmented plane-wave + local-orbital (LAPW + lo) method and justify its usage as a benchmark method. LAPW + lo and two completely unrelated numerical approaches, the multiresolution analysis (MRA) and the linear combination of atomic orbitals, yield total energies of atoms with mean deviations of 0.9 and 0.2 μ Ha , respectively. Spectacular agreement with the MRA is reached also for total and atomization energies of the G2-1 set consisting of 55 molecules. With the example of α iron we demonstrate the capability of LAPW + lo to reach μ Ha /atom precision also for periodic systems, which allows also for the distinction between the numerical precision and the accuracy of a given functional.

  10. Method of high-precision microsampled blood and plasma mass densitometry

    NASA Technical Reports Server (NTRS)

    Hinghofer-Szalkay, H.

    1986-01-01

    The reliability of the mechanical oscillator technique for blood and plasma density measurements on samples of volumes less than 0.1 ml is examined, and a precision of 0.001 g/l is found if plasma-isodensic heparin solution and siliconized densitometers are employed. Sources of measurement errors in the density determinations include storage of plasma samples, inhomogeneity of blood samples, and density reading before adequate temperature equilibration. In tests of plasma sample storage, the best reproducibility was obtained with samples kept at 4 C. Linear correlations were found between plasma density and plasma protein concentration, blood density and blood hemoglobin concentration, and erythrocyte density and MCHC.

  11. Evaluation of the Aptima HBV Quant assay vs. the COBAS TaqMan HBV test using the high pure system for the quantitation of HBV DNA in plasma and serum samples.

    PubMed

    Schalasta, Gunnar; Börner, Anna; Speicher, Andrea; Enders, Martin

    2018-03-28

    Proper management of patients with chronic hepatitis B virus (HBV) infection requires monitoring of plasma or serum HBV DNA levels using a highly sensitive nucleic acid amplification test. Because commercially available assays differ in performance, we compared herein the performance of the Hologic Aptima HBV Quant assay (Aptima) to that of the Roche Cobas TaqMan HBV test for use with the high pure system (HPS/CTM). Assay performance was assessed using HBV reference panels as well as plasma and serum samples from chronically HBV-infected patients. Method correlation, analytical sensitivity, precision/reproducibility, linearity, bias and influence of genotype were evaluated. Data analysis was performed using linear regression, Deming correlation analysis and Bland-Altman analysis. Agreement between the assays for the two reference panels was good, with a difference in assay values vs. target <0.5 log. Qualitative assay results for 159 clinical samples showed good concordance (88.1%; κ=0.75; 95% confidence interval: 0.651-0.845). For the 106 samples quantitated by both assays, viral load results were highly correlated (R=0.92) and differed on average by 0.09 log, with 95.3% of the samples being within the 95% limit of agreement of the assays. Linearity for viral loads 1-7 log was excellent for both assays (R2>0.98). The two assays had similar bias and precision across the different genotypes tested at low viral loads (25-1000 IU/mL). Aptima has a performance comparable with that of HPS/CTM, making it suitable for use for HBV infection monitoring. Aptima runs on a fully automated platform (the Panther system) and therefore offers a significantly improved workflow compared with HPS/CTM.

  12. Evaluation of Piecewise Polynomial Equations for Two Types of Thermocouples

    PubMed Central

    Chen, Andrew; Chen, Chiachung

    2013-01-01

    Thermocouples are the most frequently used sensors for temperature measurement because of their wide applicability, long-term stability and high reliability. However, one of the major utilization problems is the linearization of the transfer relation between temperature and output voltage of thermocouples. The linear calibration equation and its modules could be improved by using regression analysis to help solve this problem. In this study, two types of thermocouple and five temperature ranges were selected to evaluate the fitting agreement of different-order polynomial equations. Two quantitative criteria, the average of the absolute error values |e|ave and the standard deviation of calibration equation estd, were used to evaluate the accuracy and precision of these calibrations equations. The optimal order of polynomial equations differed with the temperature range. The accuracy and precision of the calibration equation could be improved significantly with an adequate higher degree polynomial equation. The technique could be applied with hardware modules to serve as an intelligent sensor for temperature measurement. PMID:24351627

  13. Low-Amplitude Topographic Features and Textures on the Moon: Initial Results from Detrended Lunar Orbiter Laser Altimeter (LOLA) Topography

    NASA Technical Reports Server (NTRS)

    Kreslavsky, Mikhail A.; Head, James W.; Neumann, Gregory A.; Zuber, Maria T.; Smith, David E.

    2016-01-01

    Global lunar topographic data derived from ranging measurements by the Lunar Orbiter Laser Altimeter (LOLA) onboard LRO mission to the Moon have extremely high vertical precision. We use detrended topography as a means for utilization of this precision in geomorphological analysis. The detrended topography was calculated as a difference between actual topography and a trend surface defined as a median topography in a circular sliding window. We found that despite complicated distortions caused by the non-linear nature of the detrending procedure, visual inspection of these data facilitates identification of low-amplitude gently-sloping geomorphic features. We present specific examples of patterns of lava flows forming the lunar maria and revealing compound flow fields, a new class of lava flow complex on the Moon. We also highlight the identification of linear tectonic features that otherwise are obscured in the images and topographic data processed in a more traditional manner.

  14. Vacuum ultraviolet spectropolarimeter design for precise polarization measurements.

    PubMed

    Narukage, Noriyuki; Auchère, Frédéric; Ishikawa, Ryohko; Kano, Ryouhei; Tsuneta, Saku; Winebarger, Amy R; Kobayashi, Ken

    2015-03-10

    Precise polarization measurements in the vacuum ultraviolet (VUV) region provide a new means for inferring weak magnetic fields in the upper atmosphere of the Sun and stars. We propose a VUV spectropolarimeter design ideally suited for this purpose. This design is proposed and adopted for the NASA-JAXA chromospheric lyman-alpha spectropolarimeter (CLASP), which will record the linear polarization (Stokes Q and U) of the hydrogen Lyman-α line (121.567 nm) profile. The expected degree of polarization is on the order of 0.1%. Our spectropolarimeter has two optically symmetric channels to simultaneously measure orthogonal linear polarization states with a single concave diffraction grating that serves both as the spectral dispersion element and beam splitter. This design has a minimal number of reflective components with a high VUV throughput. Consequently, these design features allow us to minimize the polarization errors caused by possible time variation of the VUV flux during the polarization modulation and by statistical photon noise.

  15. High Accuracy Passive Magnetic Field-Based Localization for Feedback Control Using Principal Component Analysis.

    PubMed

    Foong, Shaohui; Sun, Zhenglong

    2016-08-12

    In this paper, a novel magnetic field-based sensing system employing statistically optimized concurrent multiple sensor outputs for precise field-position association and localization is presented. This method capitalizes on the independence between simultaneous spatial field measurements at multiple locations to induce unique correspondences between field and position. This single-source-multi-sensor configuration is able to achieve accurate and precise localization and tracking of translational motion without contact over large travel distances for feedback control. Principal component analysis (PCA) is used as a pseudo-linear filter to optimally reduce the dimensions of the multi-sensor output space for computationally efficient field-position mapping with artificial neural networks (ANNs). Numerical simulations are employed to investigate the effects of geometric parameters and Gaussian noise corruption on PCA assisted ANN mapping performance. Using a 9-sensor network, the sensing accuracy and closed-loop tracking performance of the proposed optimal field-based sensing system is experimentally evaluated on a linear actuator with a significantly more expensive optical encoder as a comparison.

  16. Rapid method for the determination of 14 isoflavones in food using UHPLC coupled to photo diode array detection.

    PubMed

    Shim, You-Shin; Yoon, Won-Jin; Hwang, Jin-Bong; Park, Hyun-Jin; Seo, Dongwon; Ha, Jaeho

    2015-11-15

    A rapid method for the determination of 14 types of isoflavones in food using ultra-high performance liquid chromatography (UHPLC) was validated in terms of precision, accuracy, sensitivity and linearity. The UHPLC separation was performed on a reverse-phase C18 column (particle size 2 μm, i.d. 2 mm, length 100 mm) using a photo diode array detector that was fixed to 260 nm. The limits of detection and quantification of the UHPLC analyses ranged from 0.03 to 0.33 mg kg(-1). The intra-day and inter-day precision of the individual isoflavones were less than 11.77% and calibration curves exhibited good linearity (r(2) = 0.99) within the tested ranges. These results suggest that the rapid method used in this study could be available to determine of 14 types of isoflavones in a variety of food such as soy bean, black bean, red bean and soybean paste. Copyright © 2015 Elsevier Ltd. All rights reserved.

  17. 5-HMF and carbohydrates content in stingless bee honey by CE before and after thermal treatment.

    PubMed

    Biluca, Fabíola C; Della Betta, Fabiana; de Oliveira, Gabriela Pirassol; Pereira, Lais Morilla; Gonzaga, Luciano Valdemiro; Costa, Ana Carolina Oliveira; Fett, Roseane

    2014-09-15

    This study aimed to assess 5-hydroximethylfurfural and carbohydrates (fructose, glucose, and sucrose) in 13 stingless bee honey samples before and after thermal treatment using a capillary electrophoresis method. The methods were validated for the parameters of linearity, matrix effects, precision, and accuracy. A factorial design was implemented to determine optimal thermal treatment conditions and then verify the postprocedural 5-HMF formation, but once 5-HMF were

  18. CP-violating top quark couplings at future linear e^+e^- colliders

    NASA Astrophysics Data System (ADS)

    Bernreuther, W.; Chen, L.; García, I.; Perelló, M.; Poeschl, R.; Richard, F.; Ros, E.; Vos, M.

    2018-02-01

    We study the potential of future lepton colliders to probe violation of the CP symmetry in the top quark sector. In certain extensions of the Standard Model, such as the two-Higgs-doublet model (2HDM), sizeable anomalous top quark dipole moments can arise, which may be revealed by a precise measurement of top quark pair production. We present results from detailed Monte Carlo studies for the ILC at 500 GeV and CLIC at 380 GeV and use parton-level simulations to explore the potential of high-energy operation. We find that precise measurements in e^+e^- → t\\bar{t} production with subsequent decay to lepton plus jets final states can provide sufficient sensitivity to detect Higgs-boson-induced CP violation in a viable two-Higgs-doublet model. The potential of a linear e^+e^- collider to detect CP-violating electric and weak dipole form factors of the top quark exceeds the prospects of the HL-LHC by over an order of magnitude.

  19. Portent of Heine's Reciprocal Square Root Identity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cohl, H W

    Precise efforts in theoretical astrophysics are needed to fully understand the mechanisms that govern the structure, stability, dynamics, formation, and evolution of differentially rotating stars. Direct computation of the physical attributes of a star can be facilitated by the use of highly compact azimuthal and separation angle Fourier formulations of the Green's functions for the linear partial differential equations of mathematical physics.

  20. The Effects of Baseline Estimation on the Reliability, Validity, and Precision of CBM-R Growth Estimates

    ERIC Educational Resources Information Center

    Van Norman, Ethan R.; Christ, Theodore J.; Zopluoglu, Cengiz

    2013-01-01

    This study examined the effect of baseline estimation on the quality of trend estimates derived from Curriculum Based Measurement of Oral Reading (CBM-R) progress monitoring data. The authors used a linear mixed effects regression (LMER) model to simulate progress monitoring data for schedules ranging from 6-20 weeks for datasets with high and low…

  1. Electron kinetic effects on interferometry, polarimetry and Thomson scattering measurements in burning plasmas (invited)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mirnov, V. V.; Hartog, D. J. Den; Duff, J.

    2014-11-15

    At anticipated high electron temperatures in ITER, the effects of electron thermal motion on Thomson scattering (TS), toroidal interferometer/polarimeter (TIP), and poloidal polarimeter (PoPola) diagnostics will be significant and must be accurately treated. The precision of the previous lowest order linear in τ = T{sub e}/m{sub e}c{sup 2} model may be insufficient; we present a more precise model with τ{sup 2}-order corrections to satisfy the high accuracy required for ITER TIP and PoPola diagnostics. The linear model is extended from Maxwellian to a more general class of anisotropic electron distributions that allows us to take into account distortions caused bymore » equilibrium current, ECRH, and RF current drive effects. The classical problem of the degree of polarization of incoherent Thomson scattered radiation is solved analytically exactly without any approximations for the full range of incident polarizations, scattering angles, and electron thermal motion from non-relativistic to ultra-relativistic. The results are discussed in the context of the possible use of the polarization properties of Thomson scattered light as a method of T{sub e} measurement relevant to ITER operational scenarios.« less

  2. Validating data analysis of broadband laser ranging

    NASA Astrophysics Data System (ADS)

    Rhodes, M.; Catenacci, J.; Howard, M.; La Lone, B.; Kostinski, N.; Perry, D.; Bennett, C.; Patterson, J.

    2018-03-01

    Broadband laser ranging combines spectral interferometry and a dispersive Fourier transform to achieve high-repetition-rate measurements of the position of a moving surface. Telecommunications fiber is a convenient tool for generating the large linear dispersions required for a dispersive Fourier transform, but standard fiber also has higher-order dispersion that distorts the Fourier transform. Imperfections in the dispersive Fourier transform significantly complicate the ranging signal and must be dealt with to make high-precision measurements. We describe in detail an analysis process for interpreting ranging data when standard telecommunications fiber is used to perform an imperfect dispersive Fourier transform. This analysis process is experimentally validated over a 27-cm scan of static positions, showing an accuracy of 50 μm and a root-mean-square precision of 4.7 μm.

  3. Latest R&D news and beam test performance of the highly granular SiW-ECAL technological prototype for the ILC

    NASA Astrophysics Data System (ADS)

    Irles, A.

    2018-02-01

    High precision physics at future colliders as the International Linear Collider (ILC) require unprecedented high precision in the determination of the energy of final state particles. The needed precision will be achieved thanks to the Particle Flow algorithms (PF) which require highly granular and hermetic calorimeters systems. The physical proof of concept of the PF was performed in the previous campaign of beam tests of physic prototypes within the CALICE collaboration. One of these prototypes was the physics prototype of the Silicon-Tungsten Electromagnetic Calorimeter (SiW-ECAL) for the ILC. In this document we present the latest news on R&D of the next generation prototype, the technological prototype with fully embedded very front-end (VFE) electronics, of the SiW-ECAL. Special emphasis is given to the presentation and discussion of the first results from the beam test done at DESY in June 2017. The physics program for such beam test consisted in the calibration and commissioning of the current set of available SiW ECAL modules; the test of performance of individual slabs under 1T magnetic fields; and the study of electromagnetic showers events.

  4. Linear vs non-linear QCD evolution in the neutrino-nucleon cross section

    NASA Astrophysics Data System (ADS)

    Albacete, Javier L.; Illana, José I.; Soto-Ontoso, Alba

    2016-03-01

    Evidence for an extraterrestrial flux of ultra-high-energy neutrinos, in the order of PeV, has opened a new era in Neutrino Astronomy. An essential ingredient for the determination of neutrino fluxes from the number of observed events is the precise knowledge of the neutrino-nucleon cross section. In this work, based on [1], we present a quantitative study of σνN in the neutrino energy range 104 < Eν < 1014 GeV within two transversal QCD approaches: NLO DGLAP evolution using different sets of PDFs and BK small-x evolution with running coupling and kinematical corrections. Further, we translate this theoretical uncertainty into upper bounds for the ultra-high-energy neutrino flux for different experiments.

  5. Molecular weight distribution of polysaccharides from edible seaweeds by high-performance size-exclusion chromatography (HPSEC).

    PubMed

    Gómez-Ordóñez, Eva; Jiménez-Escrig, Antonio; Rupérez, Pilar

    2012-05-15

    Biological properties of polysaccharides from seaweeds are related to their composition and structure. Many factors such as the kind of sugar, type of linkage or sulfate content of algal biopolymers exert an influence in the relationship between structure and function. Besides, the molecular weight (MW) also plays an important role. Thus, a simple, reliable and fast HPSEC method with refractive index detection was developed and optimized for the MW estimation of soluble algal polysaccharides. Chromatogram shape and repeatability of retention time was considerably improved when sodium nitrate was used instead of ultrapure water as mobile phase. Pullulan and dextran standards of different MW were used for method calibration and validation. Also, main polysaccharide standards from brown (alginate, fucoidan, laminaran) and red seaweeds (kappa- and iota-carrageenan) were used for quantification and method precision and accuracy. Relative standard deviation (RSD) of repeatability for retention time, peak areas and inter-day precision was below 0.7%, 2.5% and 2.6%, respectively, which indicated good repeatability and precision. Recoveries (96.3-109.8%) also showed its fairly good accuracy. Regarding linearity, main polysaccharide standards from brown or red seaweeds showed a highly satisfactory correlation coefficient (r>0.999). Moreover, a good sensitivity was shown, with corresponding limits of detection and quantitation in mg/mL of 0.05-0.21 and 0.16-0.31, respectively. The method was applied to the MW estimation of standard algal polysaccharides, as well as to the soluble polysaccharide fractions from the brown seaweed Saccharina latissima and the red Mastocarpus stellatus, respectively. Although distribution of molecular weight was broad, the good repeatability for retention time provided a good precision in MW estimation of polysaccharides. Water- and alkali-soluble fractions from S. latissima ranged from very high (>2400 kDa) to low MW compounds (<6 kDa); this high heterogeneity could be attributable to the complex polysaccharide composition of brown algae. Regarding M. stellatus, sulfated galactans followed a descending order of MW (>1400 kDa to <10 kDa), related to the different solubility of carrageenans in red seaweeds. In summary, the method developed allows for the molecular weight analysis of seaweed polysaccharides with very good precision, accuracy, linearity and sensitivity within a short time. Copyright © 2012 Elsevier B.V. All rights reserved.

  6. Determination of illegal adulteration of dietary supplements with synthetic hair-growth compounds by UPLC and LC-Q-TOF/MS.

    PubMed

    Lee, Ji Hyun; Kang, Gihaeng; Park, Han Na; Kim, Jihee; Kim, Nam Sook; Park, Seongsoo; Park, Sung-Kwan; Baek, Sun Young; Kang, Hoil

    2018-02-01

    In this study, we developed a UPLC-PDA and LC-Q-TOF/MS method to identify and measure the following prohibited substances that may be found in dietary supplements:triaminodil, minoxidil, bimatoprost, alimemazine, diphenylcyclopropenone, α-tradiol, finasteride, methyltestosterone, spironolatone, flutamide, cyproterone, dutasteride, and testosterone 17-propionate.The method was validated according to International Conference on Harmonization guidelines in terms of specificity, linearity, accuracy, precision, LOD, LOQ, recovery, and stability. The method was completely validated showing satisfactory data for all method validation parameters. The linearity was good (R 2  > 0.999) with intra- and inter-day precision values of 0.2-3.4% and 0.3-2.9%, respectively. Moreover, the intra- and inter-day accuracies were 87-102% and 86-103%, respectively, and the precision was better than 9.4% (relative standard deviation).Hence, the proposed method is precise and has high quality,and can be utilised to comprehensively and continually monitor illegal drug adulteration in various forms of dietary supplements. Furthermore, to evaluate the applicability of the proposed method, we analysed 13 hair-growth compounds in 78 samples including food and dietary supplements. Minoxidil and triaminodil were detected in capsules at concentrations of 4.69 mg/g and 6.54 mg/g. In addition, finasteride was detected in a tablet at 13.45 mg/g. In addition, the major characteristic fragment ions were confirmed once again using LC-Q-TOF/MS for higher accuracy.

  7. Highly entangled states with almost no secrecy.

    PubMed

    Christandl, Matthias; Schuch, Norbert; Winter, Andreas

    2010-06-18

    In this Letter we illuminate the relation between entanglement and secrecy by providing the first example of a quantum state that is highly entangled, but from which, nevertheless, almost no secrecy can be extracted. More precisely, we provide two bounds on the bipartite entanglement of the totally antisymmetric state in dimension d×d. First, we show that the amount of secrecy that can be extracted from the state is low; to be precise it is bounded by O(1/d). Second, we show that the state is highly entangled in the sense that we need a large amount of singlets to create the state: entanglement cost is larger than a constant, independent of d. In order to obtain our results we use representation theory, linear programming, and the entanglement measure known as squashed entanglement. Our findings also clarify the relation between the squashed entanglement and the relative entropy of entanglement.

  8. High-performance time-resolved fluorescence by direct waveform recording.

    PubMed

    Muretta, Joseph M; Kyrychenko, Alexander; Ladokhin, Alexey S; Kast, David J; Gillispie, Gregory D; Thomas, David D

    2010-10-01

    We describe a high-performance time-resolved fluorescence (HPTRF) spectrometer that dramatically increases the rate at which precise and accurate subnanosecond-resolved fluorescence emission waveforms can be acquired in response to pulsed excitation. The key features of this instrument are an intense (1 μJ/pulse), high-repetition rate (10 kHz), and short (1 ns full width at half maximum) laser excitation source and a transient digitizer (0.125 ns per time point) that records a complete and accurate fluorescence decay curve for every laser pulse. For a typical fluorescent sample containing a few nanomoles of dye, a waveform with a signal/noise of about 100 can be acquired in response to a single laser pulse every 0.1 ms, at least 10(5) times faster than the conventional method of time-correlated single photon counting, with equal accuracy and precision in lifetime determination for lifetimes as short as 100 ps. Using standard single-lifetime samples, the detected signals are extremely reproducible, with waveform precision and linearity to within 1% error for single-pulse experiments. Waveforms acquired in 0.1 s (1000 pulses) with the HPTRF instrument were of sufficient precision to analyze two samples having different lifetimes, resolving minor components with high accuracy with respect to both lifetime and mole fraction. The instrument makes possible a new class of high-throughput time-resolved fluorescence experiments that should be especially powerful for biological applications, including transient kinetics, multidimensional fluorescence, and microplate formats.

  9. CPU time optimization and precise adjustment of the Geant4 physics parameters for a VARIAN 2100 C/D gamma radiotherapy linear accelerator simulation using GAMOS.

    PubMed

    Arce, Pedro; Lagares, Juan Ignacio

    2018-01-25

    We have verified the GAMOS/Geant4 simulation model of a 6 MV VARIAN Clinac 2100 C/D linear accelerator by the procedure of adjusting the initial beam parameters to fit the percentage depth dose and cross-profile dose experimental data at different depths in a water phantom. Thanks to the use of a wide range of field sizes, from 2  ×  2 cm 2 to 40  ×  40 cm 2 , a small phantom voxel size and high statistics, fine precision in the determination of the beam parameters has been achieved. This precision has allowed us to make a thorough study of the different physics models and parameters that Geant4 offers. The three Geant4 electromagnetic physics sets of models, i.e. Standard, Livermore and Penelope, have been compared to the experiment, testing the four different models of angular bremsstrahlung distributions as well as the three available multiple-scattering models, and optimizing the most relevant Geant4 electromagnetic physics parameters. Before the fitting, a comprehensive CPU time optimization has been done, using several of the Geant4 efficiency improvement techniques plus a few more developed in GAMOS.

  10. Development and Validation of RP-HPLC Method for the Estimation of Ivabradine Hydrochloride in Tablets

    PubMed Central

    Seerapu, Sunitha; Srinivasan, B. P.

    2010-01-01

    A simple, sensitive, precise and robust reverse–phase high-performance liquid chromatographic method for analysis of ivabradine hydrochloride in pharmaceutical formulations was developed and validated as per ICH guidelines. The separation was performed on SS Wakosil C18AR, 250×4.6 mm, 5 μm column with methanol:25 mM phosphate buffer (60:40 v/v), adjusted to pH 6.5 with orthophosphoric acid, added drop wise, as mobile phase. A well defined chromatographic peak of Ivabradine hydrochloride was exhibited with a retention time of 6.55±0.05 min and tailing factor of 1.14 at the flow rate of 0.8 ml/min and at ambient temperature, when monitored at 285 nm. The linear regression analysis data for calibration plots showed good linear relationship with R=0.9998 in the concentration range of 30-210 μg/ml. The method was validated for precision, recovery and robustness. Intra and Inter-day precision (% relative standard deviation) were always less than 2%. The method showed the mean % recovery of 99.00 and 98.55 % for Ivabrad and Inapure tablets, respectively. The proposed method has been successfully applied to the commercial tablets without any interference of excipients. PMID:21695008

  11. Validation of the sperm class analyser CASA system for sperm counting in a busy diagnostic semen analysis laboratory.

    PubMed

    Dearing, Chey G; Kilburn, Sally; Lindsay, Kevin S

    2014-03-01

    Sperm counts have been linked to several fertility outcomes making them an essential parameter of semen analysis. It has become increasingly recognised that Computer-Assisted Semen Analysis (CASA) provides improved precision over manual methods but that systems are seldom validated robustly for use. The objective of this study was to gather the evidence to validate or reject the Sperm Class Analyser (SCA) as a tool for routine sperm counting in a busy laboratory setting. The criteria examined were comparison with the Improved Neubauer and Leja 20-μm chambers, within and between field precision, sperm concentration linearity from a stock diluted in semen and media, accuracy against internal and external quality material, assessment of uneven flow effects and a receiver operating characteristic (ROC) analysis to predict fertility in comparison with the Neubauer method. This work demonstrates that SCA CASA technology is not a standalone 'black box', but rather a tool for well-trained staff that allows rapid, high-number sperm counting providing errors are identified and corrected. The system will produce accurate, linear, precise results, with less analytical variance than manual methods that correlate well against the Improved Neubauer chamber. The system provides superior predictive potential for diagnosing fertility problems.

  12. Simultaneous quantification and semi-quantification of ginkgolic acids and their metabolites in rat plasma by UHPLC-LTQ-Orbitrap-MS and its application to pharmacokinetics study.

    PubMed

    Qian, Yiyun; Zhu, Zhenhua; Duan, Jin-Ao; Guo, Sheng; Shang, Erxin; Tao, Jinhua; Su, Shulan; Guo, Jianming

    2017-01-15

    A highly sensitive method using ultra-high-pressure liquid chromatography coupled with linear ion trap-Orbitrap tandem mass spectrometry (UHPLC-LTQ-Orbitrap-MS) has been developed and validated for the simultaneous identification and quantification of ginkgolic acids and semi-quantification of their metabolites in rat plasma. For the five selected ginkgolic acids, the method was found to be with good linearities (r>0.9991), good intra- and inter-day precisions (RSD<15%), and good accuracies (RE, from -10.33% to 4.92%) as well. Extraction recoveries, matrix effects and stabilities for rat plasm samples were within the required limits. The validated method was successfully applied to investigate the pharmacokinetics of the five ginkgolic acids in rat plasma after oral administration of 3 dosage groups (900mg/kg, 300mg/kg and 100mg/kg). Meanwhile, six metabolites of GA (15:1) and GA (17:1) were identified by comparison of MS data with reported values. The results of validation in terms of linear ranges, precisions and stabilities were established for semi-quantification of metabolites. The curves of relative changes of these metabolites during the metabolic process were constructed by plotting the peak area ratios of metabolites to salicylic acid (internal standard, IS), respectively. Double peaks were observed in all 3 dose groups. Different type of metabolites and different dosage of each metabolite both resulted in different T max . Copyright © 2016 Elsevier B.V. All rights reserved.

  13. voom: precision weights unlock linear model analysis tools for RNA-seq read counts

    PubMed Central

    2014-01-01

    New normal linear modeling strategies are presented for analyzing read counts from RNA-seq experiments. The voom method estimates the mean-variance relationship of the log-counts, generates a precision weight for each observation and enters these into the limma empirical Bayes analysis pipeline. This opens access for RNA-seq analysts to a large body of methodology developed for microarrays. Simulation studies show that voom performs as well or better than count-based RNA-seq methods even when the data are generated according to the assumptions of the earlier methods. Two case studies illustrate the use of linear modeling and gene set testing methods. PMID:24485249

  14. voom: Precision weights unlock linear model analysis tools for RNA-seq read counts.

    PubMed

    Law, Charity W; Chen, Yunshun; Shi, Wei; Smyth, Gordon K

    2014-02-03

    New normal linear modeling strategies are presented for analyzing read counts from RNA-seq experiments. The voom method estimates the mean-variance relationship of the log-counts, generates a precision weight for each observation and enters these into the limma empirical Bayes analysis pipeline. This opens access for RNA-seq analysts to a large body of methodology developed for microarrays. Simulation studies show that voom performs as well or better than count-based RNA-seq methods even when the data are generated according to the assumptions of the earlier methods. Two case studies illustrate the use of linear modeling and gene set testing methods.

  15. The research of radar target tracking observed information linear filter method

    NASA Astrophysics Data System (ADS)

    Chen, Zheng; Zhao, Xuanzhi; Zhang, Wen

    2018-05-01

    Aiming at the problems of low precision or even precision divergent is caused by nonlinear observation equation in radar target tracking, a new filtering algorithm is proposed in this paper. In this algorithm, local linearization is carried out on the observed data of the distance and angle respectively. Then the kalman filter is performed on the linearized data. After getting filtered data, a mapping operation will provide the posteriori estimation of target state. A large number of simulation results show that this algorithm can solve above problems effectively, and performance is better than the traditional filtering algorithm for nonlinear dynamic systems.

  16. Linear signal noise summer accurately determines and controls S/N ratio

    NASA Technical Reports Server (NTRS)

    Sundry, J. L.

    1966-01-01

    Linear signal noise summer precisely controls the relative power levels of signal and noise, and mixes them linearly in accurately known ratios. The S/N ratio accuracy and stability are greatly improved by this technique and are attained simultaneously.

  17. Fabrication of micro-lens array on convex surface by meaning of micro-milling

    NASA Astrophysics Data System (ADS)

    Zhang, Peng; Du, Yunlong; Wang, Bo; Shan, Debin

    2014-08-01

    In order to develop the application of the micro-milling technology, and to fabricate ultra-precision optical surface with complex microstructure, in this paper, the primary experimental research on micro-milling complex microstructure array is carried out. A complex microstructure array surface with vary parameters is designed, and the mathematic model of the surface is set up and simulated. For the fabrication of the designed microstructure array surface, a micro three-axis ultra-precision milling machine tool is developed, aerostatic guideway drove directly by linear motor is adopted in order to guarantee the enough stiffness of the machine, and novel numerical control strategy with linear encoders of 5nm resolution used as the feedback of the control system is employed to ensure the extremely high motion control accuracy. With the help of CAD/CAM technology, convex micro lens array on convex spherical surface with different scales on material of polyvinyl chloride (PVC) and pure copper is fabricated using micro tungsten carbide ball end milling tool based on the ultra-precision micro-milling machine. Excellent nanometer-level micro-movement performance of the axis is proved by motion control experiment. The fabrication is nearly as the same as the design, the characteristic scale of the microstructure is less than 200μm and the accuracy is better than 1μm. It prove that ultra-precision micro-milling technology based on micro ultra-precision machine tool is a suitable and optional method for micro manufacture of microstructure array surface on different kinds of materials, and with the development of micro milling cutter, ultraprecision micro-milling complex microstructure surface will be achieved in future.

  18. Validation of a method for quantitation of the clopidogrel active metabolite, clopidogrel, clopidogrel carboxylic acid, and 2-oxo-clopidogrel in feline plasma.

    PubMed

    Lyngby, Janne G; Court, Michael H; Lee, Pamela M

    2017-08-01

    The clopidogrel active metabolite (CAM) is unstable and challenging to quantitate. The objective was to validate a new method for stabilization and quantitation of CAM, clopidogrel, and the inactive metabolites clopidogrel carboxylic acid and 2-oxo-clopiodgrel in feline plasma. Two healthy cats administered clopidogrel to demonstrate assay in vivo utility. Stabilization of CAM was achieved by adding 2-bromo-3'methoxyacetophenone to blood tubes to form a derivatized CAM (CAM-D). Method validation included evaluation of calibration curve linearity, accuracy, and precision; within and between assay precision and accuracy; and compound stability using spiked blank feline plasma. Analytes were measured by high performance liquid chromatography with tandem mass spectrometry. In vivo utility was demonstrated by a pharmacokinetic study of cats given a single oral dose of 18.75mg clopidogrel. The 2-oxo-clopidogrel metabolite was unstable. Clopidogrel, CAM-D, and clopidogrel carboxylic acid appear stable for 1 week at room temperature and 9 months at -80°C. Standard curves showed linearity for CAM-D, clopidogrel, and clopidogrel carboxylic acid (r > 0.99). Between assay accuracy and precision was ≤2.6% and ≤7.1% for CAM-D and ≤17.9% and ≤11.3% for clopidogrel and clopidogrel carboxylic acid. Within assay precision for all three compounds was ≤7%. All three compounds were detected in plasma from healthy cats receiving clopidogrel. This methodology is accurate and precise for simultaneous quantitation of CAM-D, clopidogrel, and clopidogrel carboxylic acid in feline plasma but not 2-oxo-clopidogrel. Validation of this assay is the first step to more fully understanding the use of clopidogrel in cats. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Sample Introduction Using the Hildebrand Grid Nebulizer for Plasma Spectrometry

    DTIC Science & Technology

    1988-01-01

    linear dynamic ranges, precision, and peak width were de- termined for elements in methanol and acetonitrile solutions. , (1)> The grid nebulizer was...FIA) with ICP-OES detection were evaluated. Detec- tion limits, linear dynamic ranges, precision, and peak width were de- termined for elements in...Concentration vs. Log Peak Area for Mn, 59 Cd, Zn, Au, Ni in Methanol (CMSC) 3-28 Log Concentration vs. Log Peak Area for Mn, 60 Cd, Au, Ni in

  20. Linear Covariance Analysis for a Lunar Lander

    NASA Technical Reports Server (NTRS)

    Jang, Jiann-Woei; Bhatt, Sagar; Fritz, Matthew; Woffinden, David; May, Darryl; Braden, Ellen; Hannan, Michael

    2017-01-01

    A next-generation lunar lander Guidance, Navigation, and Control (GNC) system, which includes a state-of-the-art optical sensor suite, is proposed in a concept design cycle. The design goal is to allow the lander to softly land within the prescribed landing precision. The achievement of this precision landing requirement depends on proper selection of the sensor suite. In this paper, a robust sensor selection procedure is demonstrated using a Linear Covariance (LinCov) analysis tool developed by Draper.

  1. Fractal geometry of music.

    PubMed Central

    Hsü, K J; Hsü, A J

    1990-01-01

    Music critics have compared Bach's music to the precision of mathematics. What "mathematics" and what "precision" are the questions for a curious scientist. The purpose of this short note is to suggest that the mathematics is, at least in part, Mandelbrot's fractal geometry and the precision is the deviation from a log-log linear plot. PMID:11607061

  2. Development and Validation of High-performance Thin Layer Chromatographic Method for Ursolic Acid in Malus domestica Peel

    PubMed Central

    Nikam, P. H.; Kareparamban, J. A.; Jadhav, A. P.; Kadam, V. J.

    2013-01-01

    Ursolic acid, a pentacyclic triterpenoid possess a wide range of pharmacological activities. It shows hypoglycemic, antiandrogenic, antibacterial, antiinflammatory, antioxidant, diuretic and cynogenic activity. It is commonly present in plants especially coating of leaves and fruits, such as apple fruit, vinca leaves, rosemary leaves, and eucalyptus leaves. A simple high-performance thin layer chromatographic method has been developed for the quantification of ursolic acid from apple peel (Malus domestica). The samples dissolved in methanol and linear ascending development was carried out in twin trough glass chamber. The mobile phase was selected as toluene:ethyl acetate:glacial acetic acid (70:30:2). The linear regression analysis data for the calibration plots showed good linear relationship with r2=0.9982 in the concentration range 0.2-7 μg/spot with respect to peak area. According to the ICH guidelines the method was validated for linearity, accuracy, precision, and robustness. Statistical analysis of the data showed that the method is reproducible and selective for the estimation of ursolic acid. PMID:24302805

  3. Positioner with long travel in two dimensions

    DOEpatents

    Trumper, David L.; Williams, Mark E.

    1997-12-23

    A precision positioning system is provided which provides long travel in two of the linear dimensions, while using non-contact bearings for both a first subassembly which provides long travel in one of the linear dimension and a second subassembly which provides long travel in the second linear dimension. The first or upper subassembly is preferably a magnetic subassembly which, in addition to providing long travel, also compensates or positions in three rotary dimensions and in the third linear dimension. The second subassembly is preferably either an air bearing or magnetic subassembly and is normally used only to provide long travel. Angled surfaces may be provided for magnetic bearings and capacitive or other gap sensing probes may be mounted to the stage and ground flush with the bearing actuators to provide more precise gap measurements.

  4. Verification of spectrophotometric method for nitrate analysis in water samples

    NASA Astrophysics Data System (ADS)

    Kurniawati, Puji; Gusrianti, Reny; Dwisiwi, Bledug Bernanti; Purbaningtias, Tri Esti; Wiyantoko, Bayu

    2017-12-01

    The aim of this research was to verify the spectrophotometric method to analyze nitrate in water samples using APHA 2012 Section 4500 NO3-B method. The verification parameters used were: linearity, method detection limit, level of quantitation, level of linearity, accuracy and precision. Linearity was obtained by using 0 to 50 mg/L nitrate standard solution and the correlation coefficient of standard calibration linear regression equation was 0.9981. The method detection limit (MDL) was defined as 0,1294 mg/L and limit of quantitation (LOQ) was 0,4117 mg/L. The result of a level of linearity (LOL) was 50 mg/L and nitrate concentration 10 to 50 mg/L was linear with a level of confidence was 99%. The accuracy was determined through recovery value was 109.1907%. The precision value was observed using % relative standard deviation (%RSD) from repeatability and its result was 1.0886%. The tested performance criteria showed that the methodology was verified under the laboratory conditions.

  5. Asymmetric Multilevel Outphasing (AMO): A New Architecture for All-Silicon mm-Wave Transmitter ICs

    DTIC Science & Technology

    2015-06-12

    power-amplifiers for mobile basestation infrastructure and handsets. NanoSemi Inc. designs linearization solutions for analog front-ends such as...ward flexible, multi-standard radio chips, increases the need for high-precision, high-throughput and energy-efficient backend processing. The desire...peak PAE is affected by less than 1% (46 mW/(46 mW 1.8 W/0.4)) by this 64-QAM capable AMO SCS backend . 378 IEEE JOURNAL OF SOLID-STATE CIRCUITS, VOL. 48

  6. GHM method for obtaining rationalsolutions of nonlinear differential equations.

    PubMed

    Vazquez-Leal, Hector; Sarmiento-Reyes, Arturo

    2015-01-01

    In this paper, we propose the application of the general homotopy method (GHM) to obtain rational solutions of nonlinear differential equations. It delivers a high precision representation of the nonlinear differential equation using a few linear algebraic terms. In order to assess the benefits of this proposal, three nonlinear problems are solved and compared against other semi-analytic methods or numerical methods. The obtained results show that GHM is a powerful tool, capable to generate highly accurate rational solutions. AMS subject classification 34L30.

  7. High Productivity Computing Systems Analysis and Performance

    DTIC Science & Technology

    2005-07-01

    cubic grid Discrete Math Global Updates per second (GUP/S) RandomAccess Paper & Pencil Contact Bob Lucas (ISI) Multiple Precision none...can be found at the web site. One of the HPCchallenge codes, RandomAccess, is derived from the HPCS discrete math benchmarks that we released, and...Kernels Discrete Math … Graph Analysis … Linear Solvers … Signal Processi ng Execution Bounds Execution Indicators 6 Scalable Compact

  8. High Precision Piezoelectric Linear Motors for Operations at Cryogenic Temperatures and Vacuum

    NASA Technical Reports Server (NTRS)

    Wong, D.; Carman, G.; Stam, M.; Bar-Cohen, Y.; Sen, A.; Henry, P.; Bearman, G.; Moacanin, J.

    1995-01-01

    The Jet Propulsion Laboratory evaluated the use of an electromechanical device for optically positioning a mirror system during the pre-project phase of the Pluto-Fast-Flyby (PFF) mission. The device under consideration was a piezoelectric driven linear motor functionally dependent upon a time varying electric field which induces displacements ranging from submicrons to millimeters with positioning accuracy within nanometers. Using a control package, the mirror system provides image motion compensation and mosaicking capabilities. While this device offers unique advantages, there were concerns pertaining to its operational capabilities for the PFF mission. The issues include irradiation effects and thermal concerns. A literature study indicated that irradiation effects will not significantly impact the linear motor's operational characteristics. On the other hand, thermal concerns necessitated an in depth study.

  9. Off-line data reduction

    NASA Astrophysics Data System (ADS)

    Gutowski, Marek W.

    1992-12-01

    Presented is a novel, heuristic algorithm, based on fuzzy set theory, allowing for significant off-line data reduction. Given the equidistant data, the algorithm discards some points while retaining others with their original values. The fraction of original data points retained is typically {1}/{6} of the initial value. The reduced data set preserves all the essential features of the input curve. It is possible to reconstruct the original information to high degree of precision by means of natural cubic splines, rational cubic splines or even linear interpolation. Main fields of application should be non-linear data fitting (substantial savings in CPU time) and graphics (storage space savings).

  10. Phase-locking and coherent power combining of broadband linearly chirped optical waves.

    PubMed

    Satyan, Naresh; Vasilyev, Arseny; Rakuljic, George; White, Jeffrey O; Yariv, Amnon

    2012-11-05

    We propose, analyze and demonstrate the optoelectronic phase-locking of optical waves whose frequencies are chirped continuously and rapidly with time. The optical waves are derived from a common optoelectronic swept-frequency laser based on a semiconductor laser in a negative feedback loop, with a precisely linear frequency chirp of 400 GHz in 2 ms. In contrast to monochromatic waves, a differential delay between two linearly chirped optical waves results in a mutual frequency difference, and an acoustooptic frequency shifter is therefore used to phase-lock the two waves. We demonstrate and characterize homodyne and heterodyne optical phase-locked loops with rapidly chirped waves, and show the ability to precisely control the phase of the chirped optical waveform using a digital electronic oscillator. A loop bandwidth of ~ 60 kHz, and a residual phase error variance of < 0.01 rad(2) between the chirped waves is obtained. Further, we demonstrate the simultaneous phase-locking of two optical paths to a common master waveform, and the ability to electronically control the resultant two-element optical phased array. The results of this work enable coherent power combining of high-power fiber amplifiers-where a rapidly chirping seed laser reduces stimulated Brillouin scattering-and electronic beam steering of chirped optical waves.

  11. Parameter estimation using weighted total least squares in the two-compartment exchange model.

    PubMed

    Garpebring, Anders; Löfstedt, Tommy

    2018-01-01

    The linear least squares (LLS) estimator provides a fast approach to parameter estimation in the linearized two-compartment exchange model. However, the LLS method may introduce a bias through correlated noise in the system matrix of the model. The purpose of this work is to present a new estimator for the linearized two-compartment exchange model that takes this noise into account. To account for the noise in the system matrix, we developed an estimator based on the weighted total least squares (WTLS) method. Using simulations, the proposed WTLS estimator was compared, in terms of accuracy and precision, to an LLS estimator and a nonlinear least squares (NLLS) estimator. The WTLS method improved the accuracy compared to the LLS method to levels comparable to the NLLS method. This improvement was at the expense of increased computational time; however, the WTLS was still faster than the NLLS method. At high signal-to-noise ratio all methods provided similar precisions while inconclusive results were observed at low signal-to-noise ratio. The proposed method provides improvements in accuracy compared to the LLS method, however, at an increased computational cost. Magn Reson Med 79:561-567, 2017. © 2017 International Society for Magnetic Resonance in Medicine. © 2017 International Society for Magnetic Resonance in Medicine.

  12. A Very Fast and Angular Momentum Conserving Tree Code

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Marcello, Dominic C., E-mail: dmarce504@gmail.com

    There are many methods used to compute the classical gravitational field in astrophysical simulation codes. With the exception of the typically impractical method of direct computation, none ensure conservation of angular momentum to machine precision. Under uniform time-stepping, the Cartesian fast multipole method of Dehnen (also known as the very fast tree code) conserves linear momentum to machine precision. We show that it is possible to modify this method in a way that conserves both angular and linear momenta.

  13. Relations between basic and specific motor abilities and player quality of young basketball players.

    PubMed

    Marić, Kristijan; Katić, Ratko; Jelicić, Mario

    2013-05-01

    Subjects from 5 first league clubs from Herzegovina were tested with the purpose of determining the relations of basic and specific motor abilities, as well as the effect of specific abilities on player efficiency in young basketball players (cadets). A battery of 12 tests assessing basic motor abilities and 5 specific tests assessing basketball efficiency were used on a sample of 83 basketball players. Two significant canonical correlations, i.e. linear combinations explained the relation between the set of twelve variables of basic motor space and five variables of situational motor abilities. Underlying the first canonical linear combination is the positive effect of the general motor factor, predominantly defined by jumping explosive power, movement speed of the arms, static strength of the arms and coordination, on specific basketball abilities: movement efficiency, the power of the overarm throw, shooting and passing precision, and the skill of handling the ball. The impact of basic motor abilities of precision and balance on specific abilities of passing and shooting precision and ball handling is underlying the second linear combination. The results of regression correlation analysis between the variable set of specific motor abilities and game efficiency have shown that the ability of ball handling has the largest impact on player quality in basketball cadets, followed by shooting precision and passing precision, and the power of the overarm throw.

  14. Spectrophotometric method development and validation for determination of chlorpheniramine maleate in bulk and controlled release tablets.

    PubMed

    Ashfaq, Maria; Sial, Ali Akber; Bushra, Rabia; Rehman, Atta-Ur; Baig, Mirza Tasawur; Huma, Ambreen; Ahmed, Maryam

    2018-01-01

    Spectrophotometric technique is considered to be the simplest and operator friendly among other available analytical methods for pharmaceutical analysis. The objective of the study was to develop a precise, accurate and rapid UV-spectrophotometric method for the estimation of chlorpheniramine maleate (CPM) in pure and solid pharmaceutical formulation. Drug absorption was measured in various solvent systems including 0.1N HCl (pH 1.2), acetate buffer (pH 4.5), phosphate buffer (pH 6.8) and distil water (pH 7.0). Method validation was performed as per official guidelines of ICH, 2005. High drug absorption was observed in 0.1N HCl medium with λ max of 261nm. The drug showed the good linearity from 20 to 60μg/mL solution concentration with the correlation coefficient linear regression equation Y= 0.1853 X + 0.1098 presenting R 2 value of 0.9998. The method accuracy was evaluated by the percent drug recovery, presents more than 99% drug recovery at three different levels assessed. The % RSD value <1 was computed for inter and intraday analysis indicating the high accuracy and precision of the developed technique. The developed method is robust because it shows no any significant variation in with minute changes. The LOD and LOQ values were assessed to be 2.2μg/mL and 6.6μg/mL respectively. The investigated method proved its sensitivity, precision and accuracy hence could be successfully used to estimate the CPM content in bulk and pharmaceutical matrix tablets.

  15. Coating Thin Mirror Segments for Lightweight X-ray Optics

    NASA Technical Reports Server (NTRS)

    Chan, Kai-Wing; Sharpe, Marton V.; Zhang, William; Kolosc, Linette; Hong, Melinda; McClelland, Ryan; Hohl, Bruce R.; Saha, Timo; Mazzarellam, James

    2013-01-01

    Next generations lightweight, high resolution, high throughput optics for x-ray astronomy requires integration of very thin mirror segments into a lightweight telescope housing without distortion. Thin glass substrates with linear dimension of 200 mm and thickness as small as 0.4 mm can now be fabricated to a precision of a few arc-seconds for grazing incidence optics. Subsequent implementation requires a distortion-free deposition of metals such as iridium or platinum. These depositions, however, generally have high coating stresses that cause mirror distortion. In this paper, we discuss the coating stress on these thin glass mirrors and the effort to eliminate their induced distortion. It is shown that balancing the coating distortion either by coating films with tensile and compressive stresses, or on both sides of the mirrors is not sufficient. Heating the mirror in a moderately high temperature turns out to relax the coated films reasonably well to a precision of about a second of arc and therefore provide a practical solution to the coating problem.

  16. Development of a real-time, high-frequency ultrasound digital beamformer for high-frequency linear array transducers.

    PubMed

    Hu, Chang-Hong; Xu, Xiao-Chen; Cannata, Jonathan M; Yen, Jesse T; Shung, K Kirk

    2006-02-01

    A real-time digital beamformer for high-frequency (>20 MHz) linear ultrasonic arrays has been developed. The system can handle up to 64-element linear array transducers and excite 16 channels and receive simultaneously at 100 MHz sampling frequency with 8-bit precision. Radio frequency (RF) signals are digitized, delayed, and summed through a real-time digital beamformer, which is implemented using a field programmable gate array (FPGA). Using fractional delay filters, fine delays as small as 2 ns can be implemented. A frame rate of 30 frames per second is achieved. Wire phantom (20 microm tungsten) images were obtained and -6 dB axial and lateral widths were measured. The results showed that, using a 30 MHz, 48-element array with a pitch of 100 microm produced a -6 dB width of 68 microm in the axial and 370 microm in the lateral direction at 6.4 mm range. Images from an excised rabbit eye sample also were acquired, and fine anatomical structures, such as the cornea and lens, were resolved.

  17. Improved measurement linearity and precision for AMCW time-of-flight range imaging cameras.

    PubMed

    Payne, Andrew D; Dorrington, Adrian A; Cree, Michael J; Carnegie, Dale A

    2010-08-10

    Time-of-flight range imaging systems utilizing the amplitude modulated continuous wave (AMCW) technique often suffer from measurement nonlinearity due to the presence of aliased harmonics within the amplitude modulation signals. Typically a calibration is performed to correct these errors. We demonstrate an alternative phase encoding approach that attenuates the harmonics during the sampling process, thereby improving measurement linearity in the raw measurements. This mitigates the need to measure the system's response or calibrate for environmental changes. In conjunction with improved linearity, we demonstrate that measurement precision can also be increased by reducing the duty cycle of the amplitude modulated illumination source (while maintaining overall illumination power).

  18. Superelasticity and cryogenic linear shape memory effects of CaFe 2As 2

    DOE PAGES

    Sypek, John T.; Yu, Hang; Dusoe, Keith J.; ...

    2017-10-20

    Shape memory materials have the ability to recover their original shape after a significant amount of deformation when they are subjected to certain stimuli, for instance, heat or magnetic fields. But, their performance is often limited by the energetics and geometry of the martensitic-austenitic phase transformation. We report a unique shape memory behavior in CaFe 2As 2, which exhibits superelasticity with over 13% recoverable strain, over 3 GPa yield strength, repeatable stress–strain response even at the micrometer scale, and cryogenic linear shape memory effects near 50 K. These properties are acheived through a reversible uni-axial phase transformation mechanism, the tetragonal/orthorhombic-to-collapsed-tetragonalmore » phase transformation. These results offer the possibility of developing cryogenic linear actuation technologies with a high precision and high actuation power per unit volume for deep space exploration, and more broadly, suggest a mechanistic path to a class of shape memory materials, ThCr 2Si 2-structured intermetallic compounds.« less

  19. Integrated Analytic and Linearized Inverse Kinematics for Precise Full Body Interactions

    NASA Astrophysics Data System (ADS)

    Boulic, Ronan; Raunhardt, Daniel

    Despite the large success of games grounded on movement-based interactions the current state of full body motion capture technologies still prevents the exploitation of precise interactions with complex environments. This paper focuses on ensuring a precise spatial correspondence between the user and the avatar. We build upon our past effort in human postural control with a Prioritized Inverse Kinematics framework. One of its key advantage is to ease the dynamic combination of postural and collision avoidance constraints. However its reliance on a linearized approximation of the problem makes it vulnerable to the well-known full extension singularity of the limbs. In such context the tracking performance is reduced and/or less believable intermediate postural solutions are produced. We address this issue by introducing a new type of analytic constraint that smoothly integrates within the prioritized Inverse Kinematics framework. The paper first recalls the background of full body 3D interactions and the advantages and drawbacks of the linearized IK solution. Then the Flexion-EXTension constraint (FLEXT in short) is introduced for the partial position control of limb-like articulated structures. Comparative results illustrate the interest of this new type of integrated analytical and linearized IK control.

  20. High Performance Thin layer Chromatography: Densitometry Method for Determination of Rubraxanthone in the Stem Bark Extract of Garcinia cowa Roxb.

    PubMed

    Hamidi, Dachriyanus; Aulia, Hilyatul; Susanti, Meri

    2017-01-01

    Garcinia cowa is a medicinal plant widely grown in Southeast Asia and tropical countries. Various parts of this plant have been used in traditional folk medicine. The bark, latex, and root have been used as an antipyretic agent, while fruit and leaves have been used as an expectorant, for indigestion and improvement of blood circulation. This study aims to determine the concentration of rubraxanthone found in ethyl acetate extract of the stem bark of G. cowa by the high-performance thin-layer chromatography (HPTLC). HPTLC method was performed on precoated silica gel G 60 F254 plates using an HPTLC system with a developed mobile-phase system of chloroform: ethyl acetate: methanol: formic acid (86:6:3:5). A volume of 5 μL of standard and sample solutions was applied to the chromatographic plates. The plates were developed in saturated mode of twin trough chamber at room temperature. The method was validated based on linearity, accuracy, precision, limit of detection (LOD), limit of quantification (LOQ), and specificity. The spots were observed at ultraviolet 243 nm. The linearity of rubraxanthone was obtained between 52.5 and 157.5 ppm/spot. The LOD and LOQ were found to be 4.03 and 13.42 ppm/spot, respectively. The proposed method showed good linearity, precision, accuracy, and high sensitivity. Therefore, it may be applied for the quantification of rubraxanthone in ethyl acetate extract of the stem bark of G. cowa . High performance thin layer chromatography (HPTLC) method provides rapid qualitative and quantitative estimation of rubraxanthone as a marker com¬pound in G. cowa extract used for commercial productRubraxanthone found in ethyl acetate extracts of G. cowa was successfully quantified using HPTLC method. Abbreviations Used : TLC: Thin-layer chromatography, HPTLC: High-performance thin-layer chromatography, LOD: Limit of detection, LOQ: Limit of quantification, ICH: International Conference on Harmonization.

  1. Information's role in the estimation of chaotic signals

    NASA Astrophysics Data System (ADS)

    Drake, Daniel Fred

    1998-11-01

    Researchers have proposed several methods designed to recover chaotic signals from noise-corrupted observations. While the methods vary, their qualitative performance does not: in low levels of noise all methods effectively recover the underlying signal; in high levels of noise no method can recover the underlying signal to any meaningful degree of accuracy. Of the methods proposed to date, all represent sub-optimal estimators. So: Is the inability to recover the signal in high noise levels simply a consequence of estimator sub-optimality? Or is estimator failure actually a manifestation of some intrinsic property of chaos itself? These questions are answered by deriving an optimal estimator for a class of chaotic systems and noting that it, too, fails in high levels of noise. An exact, closed- form expression for the estimator is obtained for a class of chaotic systems whose signals are solutions to a set of linear (but noncausal) difference equations. The existence of this linear description circumvents the difficulties normally encountered when manipulating the nonlinear (but causal) expressions that govern. chaotic behavior. The reason why even the optimal estimator fails to recover underlying chaotic signals in high levels of noise has its roots in information theory. At such noise levels, the mutual information linking the corrupted observations to the underlying signal is essentially nil, reducing the estimator to a simple guessing strategy based solely on a priori statistics. Entropy, long the common bond between information theory and dynamical systems, is actually one aspect of a far more complete characterization of information sources: the rate distortion function. Determining the rate distortion function associated with the class of chaotic systems considered in this work provides bounds on estimator performance in high levels of noise. Finally, a slight modification of the linear description leads to a method of synthesizing on limited precision platforms ``pseudo-chaotic'' sequences that mimic true chaotic behavior to any finite degree of precision and duration. The use of such a technique in spread-spectrum communications is considered.

  2. Rigorous high-precision enclosures of fixed points and their invariant manifolds

    NASA Astrophysics Data System (ADS)

    Wittig, Alexander N.

    The well established concept of Taylor Models is introduced, which offer highly accurate C0 enclosures of functional dependencies, combining high-order polynomial approximation of functions and rigorous estimates of the truncation error, performed using verified arithmetic. The focus of this work is on the application of Taylor Models in algorithms for strongly non-linear dynamical systems. A method is proposed to extend the existing implementation of Taylor Models in COSY INFINITY from double precision coefficients to arbitrary precision coefficients. Great care is taken to maintain the highest efficiency possible by adaptively adjusting the precision of higher order coefficients in the polynomial expansion. High precision operations are based on clever combinations of elementary floating point operations yielding exact values for round-off errors. An experimental high precision interval data type is developed and implemented. Algorithms for the verified computation of intrinsic functions based on the High Precision Interval datatype are developed and described in detail. The application of these operations in the implementation of High Precision Taylor Models is discussed. An application of Taylor Model methods to the verification of fixed points is presented by verifying the existence of a period 15 fixed point in a near standard Henon map. Verification is performed using different verified methods such as double precision Taylor Models, High Precision intervals and High Precision Taylor Models. Results and performance of each method are compared. An automated rigorous fixed point finder is implemented, allowing the fully automated search for all fixed points of a function within a given domain. It returns a list of verified enclosures of each fixed point, optionally verifying uniqueness within these enclosures. An application of the fixed point finder to the rigorous analysis of beam transfer maps in accelerator physics is presented. Previous work done by Johannes Grote is extended to compute very accurate polynomial approximations to invariant manifolds of discrete maps of arbitrary dimension around hyperbolic fixed points. The algorithm presented allows for automatic removal of resonances occurring during construction. A method for the rigorous enclosure of invariant manifolds of continuous systems is introduced. Using methods developed for discrete maps, polynomial approximations of invariant manifolds of hyperbolic fixed points of ODEs are obtained. These approximations are outfit with a sharp error bound which is verified to rigorously contain the manifolds. While we focus on the three dimensional case, verification in higher dimensions is possible using similar techniques. Integrating the resulting enclosures using the verified COSY VI integrator, the initial manifold enclosures are expanded to yield sharp enclosures of large parts of the stable and unstable manifolds. To demonstrate the effectiveness of this method, we construct enclosures of the invariant manifolds of the Lorenz system and show pictures of the resulting manifold enclosures. To the best of our knowledge, these enclosures are the largest verified enclosures of manifolds in the Lorenz system in existence.

  3. First patients treated with a 1.5 T MRI-Linac: clinical proof of concept of a high-precision, high-field MRI guided radiotherapy treatment

    NASA Astrophysics Data System (ADS)

    Raaymakers, B. W.; Jürgenliemk-Schulz, I. M.; Bol, G. H.; Glitzner, M.; Kotte, A. N. T. J.; van Asselen, B.; de Boer, J. C. J.; Bluemink, J. J.; Hackett, S. L.; Moerland, M. A.; Woodings, S. J.; Wolthaus, J. W. H.; van Zijp, H. M.; Philippens, M. E. P.; Tijssen, R.; Kok, J. G. M.; de Groot-van Breugel, E. N.; Kiekebosch, I.; Meijers, L. T. C.; Nomden, C. N.; Sikkes, G. G.; Doornaert, P. A. H.; Eppinga, W. S. C.; Kasperts, N.; Kerkmeijer, L. G. W.; Tersteeg, J. H. A.; Brown, K. J.; Pais, B.; Woodhead, P.; Lagendijk, J. J. W.

    2017-12-01

    The integration of 1.5 T MRI functionality with a radiotherapy linear accelerator (linac) has been pursued since 1999 by the UMC Utrecht in close collaboration with Elekta and Philips. The idea behind this integrated device is to offer unrivalled, online and real-time, soft-tissue visualization of the tumour and the surroundings for more precise radiation delivery. The proof of concept of this device was given in 2009 by demonstrating simultaneous irradiation and MR imaging on phantoms, since then the device has been further developed and commercialized by Elekta. The aim of this work is to demonstrate the clinical feasibility of online, high-precision, high-field MRI guidance of radiotherapy using the first clinical prototype MRI-Linac. Four patients with lumbar spine bone metastases were treated with a 3 or 5 beam step-and-shoot IMRT plan. The IMRT plan was created while the patient was on the treatment table and based on the online 1.5 T MR images; pre-treatment CT was deformably registered to the online MRI to obtain Hounsfield values. Bone metastases were chosen as the first site as these tumors can be clearly visualized on MRI and the surrounding spine bone can be detected on the integrated portal imager. This way the portal images served as an independent verification of the MRI based guidance to quantify the geometric precision of radiation delivery. Dosimetric accuracy was assessed post-treatment from phantom measurements with an ionization chamber and film. Absolute doses were found to be highly accurate, with deviations ranging from 0.0% to 1.7% in the isocenter. The geometrical, MRI based targeting as confirmed using portal images was better than 0.5 mm, ranging from 0.2 mm to 0.4 mm. In conclusion, high precision, high-field, 1.5 T MRI guided radiotherapy is clinically feasible.

  4. Simultaneous determination of naringenin and hesperetin in rats after oral administration of Da-Cheng-Qi decoction by high-performance liquid chromatography-tandem mass spectrometry.

    PubMed

    Liu, Ying; Xu, Fengguo; Zhang, Zunjian; Song, Rui; Tian, Yuan

    2008-07-01

    To quantify naringenin and hesperetin in rat plasma after oral administration of Da-Cheng-Qi decoction, a famous purgative traditional Chinese medicine, a high-performance liquid chromatography-tandem mass spectrometry method was developed and validated. The HPLC separation was carried out on a Zorbax SB-C(18) column using 0.1% formic acid-methanol as mobile phase and estazolam as internal standard after the sample of rat plasma had been cleaned up with one-step protein precipitation using methanol. Atmospheric pressure chemical ionization in the positive ion mode and selected reaction monitoring method was developed to determine the active components. This method was validated in terms of recovery, linearity, accuracy and precision (intra- and inter-batch variation). The recoveries of naringenin and hesperetin were 72.8-76.6 and 75.7-77.2%, respectively. Linearity in rat plasma was observed over the range of 0.5-250 ng/mL (r2 > 0.99) for both naringenin and hesperetin. The accuracy and precision were well within the acceptable range and the relative standard deviation of the measured rat plasma samples was less than 15% (n = 5). The validated method was successfully applied for the evaluation of the pharmacokinetics of naringenin and hesperetin administered to six rats.

  5. High precision relocation of earthquakes at Iliamna Volcano, Alaska

    USGS Publications Warehouse

    Statz-Boyer, P.; Thurber, C.; Pesicek, J.; Prejean, S.

    2009-01-01

    In August 1996, a period of elevated seismicity commenced beneath Iliamna Volcano, Alaska. This activity lasted until early 1997, consisted of over 3000 earthquakes, and was accompanied by elevated emissions of volcanic gases. No eruption occurred and seismicity returned to background levels where it has remained since. We use waveform alignment with bispectrum-verified cross-correlation and double-difference methods to relocate over 2000 earthquakes from 1996 to 2005 with high precision (~ 100??m). The results of this analysis greatly clarify the distribution of seismic activity, revealing distinct features previously hidden by location scatter. A set of linear earthquake clusters diverges upward and southward from the main group of earthquakes. The events in these linear clusters show a clear southward migration with time. We suggest that these earthquakes represent either a response to degassing of the magma body, circulation of fluids due to exsolution from magma or heating of ground water, or possibly the intrusion of new dikes beneath Iliamna's southern flank. In addition, we speculate that the deeper, somewhat diffuse cluster of seismicity near and south of Iliamna's summit indicates the presence of an underlying magma body between about 2 and 4??km depth below sea level, based on similar features found previously at several other Alaskan volcanoes. ?? 2009 Elsevier B.V.

  6. Development and application of a validated HPLC method for the analysis of dissolution samples of levothyroxine sodium drug products.

    PubMed

    Collier, J W; Shah, R B; Bryant, A R; Habib, M J; Khan, M A; Faustino, P J

    2011-02-20

    A rapid, selective, and sensitive gradient HPLC method was developed for the analysis of dissolution samples of levothyroxine sodium tablets. Current USP methodology for levothyroxine (L-T(4)) was not adequate to resolve co-elutants from a variety of levothyroxine drug product formulations. The USP method for analyzing dissolution samples of the drug product has shown significant intra- and inter-day variability. The sources of method variability include chromatographic interferences introduced by the dissolution media and the formulation excipients. In the present work, chromatographic separation of levothyroxine was achieved on an Agilent 1100 Series HPLC with a Waters Nova-pak column (250 mm × 3.9 mm) using a 0.01 M phosphate buffer (pH 3.0)-methanol (55:45, v/v) in a gradient elution mobile phase at a flow rate of 1.0 mL/min and detection UV wavelength of 225 nm. The injection volume was 800 μL and the column temperature was maintained at 28°C. The method was validated according to USP Category I requirements. The validation characteristics included accuracy, precision, specificity, linearity, and analytical range. The standard curve was found to have a linear relationship (r(2)>0.99) over the analytical range of 0.08-0.8 μg/mL. Accuracy ranged from 90 to 110% for low quality control (QC) standards and 95 to 105% for medium and high QC standards. Precision was <2% at all QC levels. The method was found to be accurate, precise, selective, and linear for L-T(4) over the analytical range. The HPLC method was successfully applied to the analysis of dissolution samples of marketed levothyroxine sodium tablets. Published by Elsevier B.V.

  7. Development and application of a validated HPLC method for the analysis of dissolution samples of levothyroxine sodium drug products

    PubMed Central

    Collier, J.W.; Shah, R.B.; Bryant, A.R.; Habib, M.J.; Khan, M.A.; Faustino, P.J.

    2011-01-01

    A rapid, selective, and sensitive gradient HPLC method was developed for the analysis of dissolution samples of levothyroxine sodium tablets. Current USP methodology for levothyroxine (l-T4) was not adequate to resolve co-elutants from a variety of levothyroxine drug product formulations. The USP method for analyzing dissolution samples of the drug product has shown significant intra- and inter-day variability. The sources of method variability include chromatographic interferences introduced by the dissolution media and the formulation excipients. In the present work, chromatographic separation of levothyroxine was achieved on an Agilent 1100 Series HPLC with a Waters Nova-pak column (250mm × 3.9mm) using a 0.01 M phosphate buffer (pH 3.0)–methanol (55:45, v/v) in a gradient elution mobile phase at a flow rate of 1.0 mL/min and detection UV wavelength of 225 nm. The injection volume was 800 µL and the column temperature was maintained at 28 °C. The method was validated according to USP Category I requirements. The validation characteristics included accuracy, precision, specificity, linearity, and analytical range. The standard curve was found to have a linear relationship (r2 > 0.99) over the analytical range of 0.08–0.8 µg/mL. Accuracy ranged from 90 to 110% for low quality control (QC) standards and 95 to 105% for medium and high QC standards. Precision was <2% at all QC levels. The method was found to be accurate, precise, selective, and linear for l-T4 over the analytical range. The HPLC method was successfully applied to the analysis of dissolution samples of marketed levothyroxine sodium tablets. PMID:20947276

  8. Microbiological assay for the determination of meropenem in pharmaceutical dosage form.

    PubMed

    Mendez, Andreas S L; Weisheimer, Vanessa; Oppe, Tércio P; Steppe, Martin; Schapoval, Elfrides E S

    2005-04-01

    Meropenem is a highly active carbapenem antibiotic used in the treatment of a wide range of serious infections. The present work reports a microbiological assay, applying the cylinder-plate method, for the determination of meropenem in powder for injection. The validation method yielded good results and included linearity, precision, accuracy and specificity. The assay is based on the inhibitory effect of meropenem upon the strain of Micrococcus luteus ATCC 9341 used as the test microorganism. The results of assay were treated statistically by analysis of variance (ANOVA) and were found to be linear (r=0.9999) in the range of 1.5-6.0 microg ml(-1), precise (intra-assay: R.S.D.=0.29; inter-assay: R.S.D.=0.94) and accurate. A preliminary stability study of meropenem was performed to show that the microbiological assay is specific for the determination of meropenem in the presence of its degradation products. The degraded samples were also analysed by the HPLC method. The proposed method allows the quantitation of meropenem in pharmaceutical dosage form and can be used for the drug analysis in routine quality control.

  9. Scintillating fiber array for tagging post-bremsstrahlung electrons

    NASA Astrophysics Data System (ADS)

    Cole, Philip; Alef, Stefan; Reitz, Björn-Eric; Schmieden, Hartmut; Hannappel, Jürgen; Jude, Thomas; Sandri, Paolo Levi; BGO-OD Collaboration

    2016-03-01

    We seek to extract the kinematic fingerprints of baryon resonances by making use of a high-quality beam of linearly polarized photons at the BGO-OD experiment at ELSA (Bonn, German). We constructed a unique device for precisely determining the degree of polarization in the coherent bremsstrahlung peak. Deflection of post-bremsstrahlung electrons in the magnetic field of the photon tagger provides precise information on the energy and polarization of the bremsstrahlung photons. And thereby will constrain the overall kinematics of the final-state particles in all decay channels of the photoproduced baryon resonances. We designed, prototyped, built, calibrated, and have been operating a three-layered, multi-stranded, scintillating-fiber detector for ensuring the quality of the linearly polarization of the photon beam. The overlapping 2.00-mm scintillating fibers form an array giving ARGUS over 500 channels. The very befitting name harkens to the mythological all-seeing creature Argus Panoptes, the multi-eyed giant. Our work was supported through a Fulbright Scholarship Award and by the Deutsche Forschungsgemeinschaft through the Collaborative Research Center (Sonderforschungsbereich SFB/TR-16) of the universities in Bonn, Giessen and Bochum, Germany. NSF-PHY-1307340.

  10. RP-HPLC Method Development and Validation for Determination of Eptifibatide Acetate in Bulk Drug Substance and Pharmaceutical Dosage Forms.

    PubMed

    Bavand Savadkouhi, Maryam; Vahidi, Hossein; Ayatollahi, Abdul Majid; Hooshfar, Shirin; Kobarfard, Farzad

    2017-01-01

    A new, rapid, economical and isocratic reverse phase high performance liquid chromatography (RP-HPLC) method was developed for the determination of eptifibatide acetate, a small synthetic antiplatelet peptide, in bulk drug substance and pharmaceutical dosage forms. The developed method was validated as per of ICH guidelines. The chromatographic separation was achieved isocratically on C18 column (150 x 4.60 mm i.d., 5 µM particle size) at ambient temperature using acetonitrile (ACN), water and trifluoroacetic acid (TFA) as mobile phase at flow rate of 1 mL/min and UV detection at 275 nm. Eptifibatide acetate exhibited linearity over the concentration range of 0.15-2 mg/mL (r 2 =0.997) with limit of detection of 0.15 mg/mL The accuracy of the method was 96.4-103.8%. The intra-day and inter-day precision were between 0.052% and 0.598%, respectively. The present successfully validated method with excellent selectivity, linearity, sensitivity, precision and accuracy was applicable for the assay of eptifibatide acetate in bulk drug substance and pharmaceutical dosage forms.

  11. Predicting the Maximum Dynamic Strength in Bench Press: The High Precision of the Bar Velocity Approach.

    PubMed

    Loturco, Irineu; Kobal, Ronaldo; Moraes, José E; Kitamura, Katia; Cal Abad, César C; Pereira, Lucas A; Nakamura, Fábio Y

    2017-04-01

    Loturco, I, Kobal, R, Moraes, JE, Kitamura, K, Cal Abad, CC, Pereira, LA, and Nakamura, FY. Predicting the maximum dynamic strength in bench press: the high precision of the bar velocity approach. J Strength Cond Res 31(4): 1127-1131, 2017-The aim of this study was to determine the force-velocity relationship and test the possibility of determining the 1 repetition maximum (1RM) in "free weight" and Smith machine bench presses. Thirty-six male top-level athletes from 3 different sports were submitted to a standardized 1RM bench press assessment (free weight or Smith machine, in randomized order), following standard procedures encompassing lifts performed at 40-100% of 1RM. The mean propulsive velocity (MPV) was measured in all attempts. A linear regression was performed to establish the relationships between bar velocities and 1RM percentages. The actual and predicted 1RM for each exercise were compared using a paired t-test. Although the Smith machine 1RM was higher (10% difference) than the free weight 1RM, in both cases the actual and predicted values did not differ. In addition, the linear relationship between MPV and percentage of 1RM (coefficient of determination ≥95%) allow determination of training intensity based on the bar velocity. The linear relationships between the MPVs and the relative percentages of 1RM throughout the entire range of loads enable coaches to use the MPV to accurately monitor their athletes on a daily basis and accurately determine their actual 1RM without the need to perform standard maximum dynamic strength assessments.

  12. Measurement of HbA1c in Gingival Crevicular Blood Using a High Pressure Liquid Chromatography Procedure

    PubMed Central

    Pesce, Michael A.; Strauss, Shiela M.; Rosedale, Mary; Netterwald, Jane; Wang, Hangli

    2016-01-01

    Objectives To validate an ion exchange high-pressure liquid chromatography (HPLC) method for measuring glycated hemoglobin (HbA1c) in gingival crevicular blood (GCB) spotted on filter paper, for use in screening dental patients for diabetes. Methods We collected the GCB specimens for this study from the oral cavities of patients during dental visits, using rigorous strategies to obtain GCB that was as free of debris as possible. The analytical performance of the HPLC method was determined by measuring the precision, linearity, carryover, stability of HbA1c in GCB, and correlation of HbA1c results in GCB specimens with finger-stick blood (FSB) specimens spotted on filter paper. Results The coefficients of variation (CVs) for the inter- and intrarun precision of the method were less than 2.0%. Linearity ranged between 4.2% and 12.4%; carryover was less than 2.0%, and the stability of the specimen was 6 days at 4°C and as many as 14 days at −70°C. Linear regression analysis comparing the HbA1c results in GCB with FSB yielded a correlation coefficient of 0.993, a slope of 0.981, and an intercept of 0.13. The Bland-Altman plot showed no difference in the HbA1c results from the GCB and FSB specimens at normal, prediabetes, and diabetes HbA1c levels. Conclusion We validated an HPLC method for measuring HbA1c in GCB; this method can be used to screen dental patients for diabetes. PMID:26489673

  13. SLC: The End Game

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Raimondi, Pantaleo

    The design of the Stanford Linear Collider (SLC) called for a beam intensity far beyond what was practically achievable. This was due to intrinsic limitations in many subsystems and to a lack of understanding of the new physics of linear colliders. Real progress in improving the SLC performance came from precision, non-invasive diagnostics to measure and monitor the beams and from new techniques to control the emittance dilution and optimize the beams. A major contribution to the success of the last 1997-98 SLC run came from several innovative ideas for improving the performance of the Final Focus (FF). This papermore » describes some of the problems encountered and techniques used to overcome them. Building on the SLC experience, we will also present a new approach to the FF design for future high energy linear colliders.« less

  14. Experimental Demonstration of Longitudinal Beam Phase-Space Linearizer in a Free-Electron Laser Facility by Corrugated Structures

    NASA Astrophysics Data System (ADS)

    Deng, Haixiao; Zhang, Meng; Feng, Chao; Zhang, Tong; Wang, Xingtao; Lan, Taihe; Feng, Lie; Zhang, Wenyan; Liu, Xiaoqing; Yao, Haifeng; Shen, Lei; Li, Bin; Zhang, Junqiang; Li, Xuan; Fang, Wencheng; Wang, Dan; Couprie, Marie-emmanuelle; Lin, Guoqiang; Liu, Bo; Gu, Qiang; Wang, Dong; Zhao, Zhentang

    2014-12-01

    Removal of the undesired time-energy correlations in the electron beam is of paramount importance for efficient lasing of a high-gain free-electron laser. Recently, it has been theoretically and experimentally demonstrated that the longitudinal wakefield excited by the electrons themselves in a corrugated structure allows for precise control of the electron beam phase space. In this Letter, we report the first utilization of a corrugated structure as a beam linearizer in the operation of a seeded free-electron laser driven by a 140 MeV linear accelerator, where a gain of ˜10 000 over spontaneous emission was achieved at the second harmonic of the 1047 nm seed laser, and a free-electron laser bandwidth narrowing by 50% was observed, in good agreement with the theoretical expectations.

  15. A dual-heterodyne laser interferometer for simultaneous measurement of linear and angular displacements.

    PubMed

    Yan, Hao; Duan, Hui-Zong; Li, Lin-Tao; Liang, Yu-Rong; Luo, Jun; Yeh, Hsien-Chi

    2015-12-01

    Picometer laser interferometry is an essential tool for ultra-precision measurements in frontier scientific research and advanced manufacturing. In this paper, we present a dual-heterodyne laser interferometer for simultaneously measuring linear and angular displacements with resolutions of picometer and nanoradian, respectively. The phase measurement method is based on cross-correlation analysis and realized by a PXI-bus data acquisition system. By implementing a dual-heterodyne interferometer with a highly symmetric optical configuration, low frequency noises caused by the environmental fluctuations can be suppressed to very low levels via common-mode noise rejection. Experimental results for the dual-heterodyne interferometer configuration presented demonstrate that the noise levels of the linear and angular displacement measurements are approximately 1 pm/Hz(1/2) and 0.5 nrad/Hz(1/2) at 1 Hz.

  16. [A micro-silicon multi-slit spectrophotometer based on MEMS technology].

    PubMed

    Hao, Peng; Wu, Yi-Hui; Zhang, Ping; Liu, Yong-Shun; Zhang, Ke; Li, Hai-Wen

    2009-06-01

    A new mini-spectrophotometer was developed by adopting micro-silicon slit and pixel segmentation technology, and this spectrophotometer used photoelectron diode array as the detector by the back-dividing-light way. At first, the effect of the spectral bandwidth on the tested absorbance linear correlation was analyzed. A theory for the design of spectrophotometer's slit was brought forward after discussing the relationships between spectrophotometer spectrum band width and pre-and post-slits width. Then, the integrative micro-silicon-slit, which features small volume, high precision, and thin thickness, was manufactured based on the MEMS technology. Finally, a test was carried on linear absorbance solution by this spectrophotometer. The final result showed that the correlation coefficients were larger than 0.999, which means that the new mini-spectrophotometer with micro-silicon slit pixel segmentation has an obvious linear correlation.

  17. Analytical Method Development and Validation for the Simultaneous Estimation of Abacavir and Lamivudine by Reversed-phase High-performance Liquid Chromatography in Bulk and Tablet Dosage Forms.

    PubMed

    Raees Ahmad, Sufiyan Ahmad; Patil, Lalit; Mohammed Usman, Mohammed Rageeb; Imran, Mohammad; Akhtar, Rashid

    2018-01-01

    A simple rapid, accurate, precise, and reproducible validated reverse phase high performance liquid chromatography (HPLC) method was developed for the determination of Abacavir (ABAC) and Lamivudine (LAMI) in bulk and tablet dosage forms. The quantification was carried out using Symmetry Premsil C18 (250 mm × 4.6 mm, 5 μm) column run in isocratic way using mobile phase comprising methanol: water (0.05% orthophosphoric acid with pH 3) 83:17 v/v and a detection wavelength of 245 nm and injection volume of 20 μl, with a flow rate of 1 ml/min. In the developed method, the retention times of ABAC and LAMI were found to be 3.5 min and 7.4 min, respectively. The method was validated in terms of linearity, precision, accuracy, limits of detection, limits of quantitation, and robustness in accordance with the International Conference on Harmonization guidelines. The assay of the proposed method was found to be 99% - 101%. The recovery studies were also carried out and mean % recovery was found to be 99% - 101%. The % relative standard deviation from reproducibility was found to be <2%. The proposed method was statistically evaluated and can be applied for routine quality control analysis of ABAC and LAMI in bulk and in tablet dosage form. Attempts were made to develop RP-HPLC method for simultaneous estimation of Abacavir and Lamivudine for the RP-HPLC method. The developed method was validated according to the ICH guidelines. The linearity, precision, range, robustness were within the limits as specified by the ICH guidelines. Hence the method was found to be simple, accurate, precise, economic and reproducible. So the proposed methods can be used for the routine quality control analysis of Abacavir and Lamivudine in bulk drug as well as in formulations. Abbreviations Used: HPLC: High-performance liquid chromatography, UV: Ultraviolet, ICH: International Conference on Harmonization, ABAC: Abacavir, LAMI: Lamivudine, HIV: Human immunodeficiency virus, AIDS: Acquired immunodeficiency syndrome, NRTI: Nucleoside reverse transcriptase inhibitors, ARV: Antiretroviral, RSD: Relative standard deviation, RT: Retention time, SD: Standard deviation.

  18. Precision of dehydroascorbic acid quantitation with the use of the subtraction method--validation of HPLC-DAD method for determination of total vitamin C in food.

    PubMed

    Mazurek, Artur; Jamroz, Jerzy

    2015-04-15

    In food analysis, a method for determination of vitamin C should enable measuring of total content of ascorbic acid (AA) and dehydroascorbic acid (DHAA) because both chemical forms exhibit biological activity. The aim of the work was to confirm applicability of HPLC-DAD method for analysis of total content of vitamin C (TC) and ascorbic acid in various types of food by determination of validation parameters such as: selectivity, precision, accuracy, linearity and limits of detection and quantitation. The results showed that the method applied for determination of TC and AA was selective, linear and precise. Precision of DHAA determination by the subtraction method was also evaluated. It was revealed that the results of DHAA determination obtained by the subtraction method were not precise which resulted directly from the assumption of this method and the principles of uncertainty propagation. The proposed chromatographic method should be recommended for routine determinations of total vitamin C in various food. Copyright © 2014 Elsevier Ltd. All rights reserved.

  19. Portable Linear Sled (PLS) for biomedical research

    NASA Technical Reports Server (NTRS)

    Vallotton, Will; Matsuhiro, Dennis; Wynn, Tom; Temple, John

    1993-01-01

    The PLS is a portable linear motion generating device conceived by researchers at Ames Research Center's Vestibular Research Facility and designed by engineers at Ames for the study of motion sickness in space. It is an extremely smooth apparatus, powered by linear motors and suspended on air bearings which ride on precision ground ceramic ways.

  20. High-precision ground-based photometry of exoplanets

    NASA Astrophysics Data System (ADS)

    de Mooij, Ernst J. W.; Jayawardhana, Ray

    2013-04-01

    High-precision photometry of transiting exoplanet systems has contributed significantly to our understanding of the properties of their atmospheres. The best targets are the bright exoplanet systems, for which the high number of photons allow very high signal-to-noise ratios. Most of the current instruments are not optimised for these high-precision measurements, either they have a large read-out overhead to reduce the readnoise and/or their field-of-view is limited, preventing simultaneous observations of both the target and a reference star. Recently we have proposed a new wide-field imager for the Observatoir de Mont-Megantic optimised for these bright systems (PI: Jayawardhana). The instruments has a dual beam design and a field-of-view of 17' by 17'. The cameras have a read-out time of 2 seconds, significantly reducing read-out overheads. Over the past years we have obtained significant experience with how to reach the high precision required for the characterisation of exoplanet atmospheres. Based on our experience we provide the following advice: Get the best calibrations possible. In the case of bad weather, characterise the instrument (e.g. non-linearity, dome flats, bias level), this is vital for better understanding of the science data. Observe the target for as long as possible, the out-of-transit baseline is as important as the transit/eclipse itself. A short baseline can lead to improperly corrected systematic and mis-estimation of the red-noise. Keep everything (e.g. position on detector, exposure time) as stable as possible. Take care that the defocus is not too strong. For a large defocus, the contribution of the total flux from the sky-background in the aperture could well exceed that of the target, resulting in very strict requirements on the precision at which the background is measured.

  1. A validated fast difference spectrophotometric method for 5-hydroxymethyl-2-furfural (HMF) determination in corn syrups.

    PubMed

    de Andrade, Jucimara Kulek; de Andrade, Camila Kulek; Komatsu, Emy; Perreault, Hélène; Torres, Yohandra Reyes; da Rosa, Marcos Roberto; Felsner, Maria Lurdes

    2017-08-01

    Corn syrups, important ingredients used in food and beverage industries, often contain high levels of 5-hydroxymethyl-2-furfural (HMF), a toxic contaminant. In this work, an in house validation of a difference spectrophotometric method for HMF analysis in corn syrups was developed using sophisticated statistical tools by the first time. The methodology showed excellent analytical performance with good selectivity, linearity (R 2 =99.9%, r>0.99), accuracy and low limits (LOD=0.10mgL -1 and LOQ=0.34mgL -1 ). An excellent precision was confirmed by repeatability (RSD (%)=0.30) and intermediate precision (RSD (%)=0.36) estimates and by Horrat value (0.07). A detailed study of method precision using a nested design demonstrated that variation sources such as instruments, operators and time did not interfere in the variability of results within laboratory and consequently in its intermediate precision. The developed method is environmentally friendly, fast, cheap and easy to implement resulting in an attractive alternative for corn syrups quality control in industries and official laboratories. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Estimation of L-dopa from Mucuna pruriens LINN and formulations containing M. pruriens by HPTLC method.

    PubMed

    Modi, Ketan Pravinbhai; Patel, Natvarlal Manilal; Goyal, Ramesh Kishorilal

    2008-03-01

    A selective, precise, and accurate high-performance thin-layer chromatographic (HPTLC) method has been developed for the analysis of L-dopa in Mucuna pruriens seed extract and its formulations. The method involves densitometric evaluation of L-dopa after resolving it by HPTLC on silica gel plates with n-butanol-acetic acid-water (4.0+1.0+1.0, v/v) as the mobile phase. Densitometric analysis of L-dopa was carried out in the absorbance mode at 280 nm. The relationship between the concentration of L-dopa and corresponding peak areas was found to be linear in the range of 100 to 1200 ng/spot. The method was validated for precision (inter and intraday), repeatability, and accuracy. Mean recovery was 100.30%. The relative standard deviation (RSD) values of the precision were found to be in the range 0.64-1.52%. In conclusion, the proposed TLC method was found to be precise, specific and accurate and can be used for identification and quantitative determination of L-dopa in herbal extract and its formulations.

  3. Differential computation method used to calibrate the angle-centroid relationship in coaxial reverse Hartmann test

    NASA Astrophysics Data System (ADS)

    Li, Xinji; Hui, Mei; Zhao, Zhu; Liu, Ming; Dong, Liquan; Kong, Lingqin; Zhao, Yuejin

    2018-05-01

    A differential computation method is presented to improve the precision of calibration for coaxial reverse Hartmann test (RHT). In the calibration, the accuracy of the distance measurement greatly influences the surface shape test, as demonstrated in the mathematical analyses. However, high-precision absolute distance measurement is difficult in the calibration. Thus, a differential computation method that only requires the relative distance was developed. In the proposed method, a liquid crystal display screen successively displayed two regular dot matrix patterns with different dot spacing. In a special case, images on the detector exhibited similar centroid distributions during the reflector translation. Thus, the critical value of the relative displacement distance and the centroid distributions of the dots on the detector were utilized to establish the relationship between the rays at certain angles and the detector coordinates. Experiments revealed the approximately linear behavior of the centroid variation with the relative displacement distance. With the differential computation method, we increased the precision of traditional calibration 10-5 rad root mean square. The precision of the RHT was increased by approximately 100 nm.

  4. Mechanical design of a precision linear flexural stage for 3D x-ray diffraction microscope at the Advanced Photon Source

    NASA Astrophysics Data System (ADS)

    Shu, D.; Liu, W.; Kearney, S.; Anton, J.; Tischler, J. Z.

    2015-09-01

    The 3-D X-ray diffraction microscope is a new nondestructive tool for the three-dimensional characterization of mesoscopic materials structure. A flexural-pivot-based precision linear stage has been designed to perform a wire scan as a differential aperture for the 3-D diffraction microscope at the Advanced Photon Source, Argonne National Laboratory. The mechanical design and finite element analyses of the flexural stage, as well as its initial mechanical test results with laser interferometer are described in this paper.

  5. Self-Force Corrections to the Periapsis Advance around a Spinning Black Hole

    NASA Astrophysics Data System (ADS)

    van de Meent, Maarten

    2017-01-01

    The linear in mass ratio correction to the periapsis advance of equatorial nearly circular orbits around a spinning black hole is calculated for the first time and to a very high precision, providing a key benchmark for different approaches modeling spinning binaries. The high precision of the calculation is leveraged to discriminate between two recent incompatible derivations of the 4 post-Newtonian equations of motion. Finally, the limit of the periapsis advance near the innermost stable orbit (ISCO) allows the determination of the ISCO shift, validating previous calculations using the first law of binary mechanics. Calculation of the ISCO shift is further extended into the near-extremal regime (with spins up to 1 -a =10-20), revealing new unexpected phenomenology. In particular, we find that the shift of the ISCO does not have a well-defined extremal limit but instead continues to oscillate.

  6. Iterative matrix algorithm for high precision temperature and force decoupling in multi-parameter FBG sensing.

    PubMed

    Hopf, Barbara; Dutz, Franz J; Bosselmann, Thomas; Willsch, Michael; Koch, Alexander W; Roths, Johannes

    2018-04-30

    A new iterative matrix algorithm has been applied to improve the precision of temperature and force decoupling in multi-parameter FBG sensing. For the first time, this evaluation technique allows the integration of nonlinearities in the sensor's temperature characteristic and the temperature dependence of the sensor's force sensitivity. Applied to a sensor cable consisting of two FBGs in fibers with 80 µm and 125 µm cladding diameter installed in a 7 m-long coiled PEEK capillary, this technique significantly reduced the uncertainties in friction-compensated temperature measurements. In the presence of high friction-induced forces of up to 1.6 N the uncertainties in temperature evaluation were reduced from several degrees Celsius if using a standard linear matrix approach to less than 0.5°C if using the iterative matrix approach in an extended temperature range between -35°C and 125°C.

  7. High-performance liquid chromatography-electrospray ionization mass spectrometry determination of sodium ferulate in human plasma.

    PubMed

    Yang, Cheng; Tian, Yuan; Zhang, Zunjian; Xu, Fengguo; Chen, Yun

    2007-02-19

    A selective and sensitive high-performance liquid chromatography-electrospray ionization mass spectrometry method has been developed for the determination of sodium ferulate in human plasma. The sample preparation was a liquid-liquid extraction and chromatographic separation was achieved with an Agilent ZORBAX SB-C(18) (3.5 microm, 100 mm x 3.0 mm) column, using a mobile phase of methanol-0.05% acetic acid 40:60 (v/v). Standard curves were linear (r(2)=0.9982) over the concentration range of 0.007-4.63 nM/ml and had acceptable accuracy and precision. The within- and between-batch precisions were within 12% relative standard deviation. The lower limit of quantification (LLOQ) was 0.007 nM/ml. The validated HPLC-ESI-MS method has been used successfully to study sodium ferulate pharmacokinetics, bioavailability and bioequivalence in 20 healthy volunteers.

  8. An update on the development of a line-focus refractive concentrator array

    NASA Technical Reports Server (NTRS)

    Piszczor, Michael F.; Oneill, Mark J.; Fraas, Lewis M.

    1994-01-01

    Concentrator arrays offer a number of generic benefits for space (i.e. high array efficiency, protection from space radiation effects, minimized plasma interactions, etc.). The line-focus refractive concept, however, also offers two very important advantages: (1) relaxation of precise array tracking requirements to only a single axis and (2) low-cost mass production of the lens material. The linear refractive concentrator can be designed to provide an essentially flat response over a wide range of longitudinal errors for satellites having only single-axis tracking capability. New panel designs emphasize light weight, high stiffness, storability, and ease of manufacturing and assembly. This paper addresses the current status of the concentrator program with special emphasis on the design implications, and flexibility, of using a linear refractive concentrator lens as well as details recent fabrication of prototype hardware.

  9. An Update on the Development of a Line-Focus Refractive Concentrator Array

    NASA Technical Reports Server (NTRS)

    Piszczor, Michael F.; ONeill, Mark J.; Fraas, Lewis M.

    1994-01-01

    Concentrator arrays offer a number of generic benefits for space (i.e. high array efficiency, protection from space radiation effects, minimized plasma interactions, etc.). The line-focus refractive concentrator concept, however, also offers two very important advantages: (1) relaxation of precise array tracking requirements to only a single axis and (2) low-cost mass production of the lens material. The linear refractive concentrator can be designed to provide an essentially flat response over a wide range of longitudinal errors for satellites having only single-axis tracking capability. New panel designs emphasize light weight, high stiffness, stowability and ease of manufacturing and assembly. This paper will address the current status of the concentrator program with special emphasis on the design implications, and flexibility, of using a linear refractive concentrator lens as well as detail the recent fabrication of prototype hardware.

  10. High performance liquid chromatographic assay for the quantitation of total glutathione in plasma

    NASA Technical Reports Server (NTRS)

    Abukhalaf, Imad K.; Silvestrov, Natalia A.; Menter, Julian M.; von Deutsch, Daniel A.; Bayorh, Mohamed A.; Socci, Robin R.; Ganafa, Agaba A.

    2002-01-01

    A simple and widely used homocysteine HPLC procedure was applied for the HPLC identification and quantitation of glutathione in plasma. The method, which utilizes SBDF as a derivatizing agent utilizes only 50 microl of sample volume. Linear quantitative response curve was generated for glutathione over a concentration range of 0.3125-62.50 micromol/l. Linear regression analysis of the standard curve exhibited correlation coefficient of 0.999. Limit of detection (LOD) and limit of quantitation (LOQ) values were 5.0 and 15 pmol, respectively. Glutathione recovery using this method was nearly complete (above 96%). Intra-assay and inter-assay precision studies reflected a high level of reliability and reproducibility of the method. The applicability of the method for the quantitation of glutathione was demonstrated successfully using human and rat plasma samples.

  11. Extraction and LC determination of lysine clonixinate salt in water/oil microemulsions.

    PubMed

    Pineros, I; Ballesteros, P; Lastres, J L

    2002-02-01

    A new reversed-phase high performance liquid chromatography method has been developed and validated for the quantitative determination of lysine clonixinate salt in water/oil microemulsions. The mobile phase was acetonitrile-buffer phosphate pH 3.3. Detection was UV absorbance at 252 nm. The precision and accurately of the method were excellent. The established linearity range was 5-60 microg ml(-1) (r(2)=0.999). Microemulsions samples were dispersed with chloroform and extracted lysine clonixinate salt with water. This easy method employing chloroformic extraction has been done three times. The recovery of lysine clonixinate salt from spiked placebo and microemulsion were >90% over the linear range.

  12. Plating Processes Utilizing High Intensity Acoustic Beams

    NASA Technical Reports Server (NTRS)

    Oeftering, Richard C. (Inventor); Denofrio, Charles (Inventor)

    2002-01-01

    A system and a method for selective plating processes are disclosed which use directed beams of high intensity acoustic waves to create non-linear effects that alter and improve the plating process. The directed beams are focused on the surface of an object, which in one embodiment is immersed in a plating solution, and in another embodiment is suspended above a plating solution. The plating processes provide precise control of the thickness of the layers of the plating, while at the same time, in at least some incidents, eliminates the need for masking.

  13. Optical coherence tomography for non-invasive examination and conservation of cultural heritage objects

    NASA Astrophysics Data System (ADS)

    Zaki, Farzana; Hou, Isabella; Huang, Qiongdan; Cooper, Denver; Patel, Divya; Liu, Xuan; Yang, Yi

    2017-02-01

    Optical coherence tomography (OCT) has great potential for the examination of oil paintings, particularly for celebrated masterpieces by great artists in history. We developed an OCT system for large field of view (FOV), high definition (HD) imaging of oil paintings. To achieve large FOV, we translated the sample using a pair of high-precision linear motors and performed sequential volumetric imaging on adjacent, non-overlapping regions. Through 3D OCT imaging, the surface terrain and subsurface microarchitecture of the paintings have been characterized and visualized.

  14. Trueness, Precision, and Detectability for Sampling and Analysis of Organic Species in Airborne Particulate Matter

    EPA Science Inventory

    Recovery. precision, limits of detection and quantitation, blank levels, calibration linearity, and agreement with certified reference materials were determined for two classes of organic components of airborne particulate matter, polycyclic aromatic hydrocarbons and hopanes usin...

  15. Self-consistent photothermal techniques: Application for measuring thermal diffusivity in vegetable oils

    NASA Astrophysics Data System (ADS)

    Balderas-López, J. A.; Mandelis, Andreas

    2003-01-01

    The thermal wave resonator cavity (TWRC) was used to measure the thermal properties of vegetable oils. The thermal diffusivity of six commercial vegetable oils (olive, corn, soybean, canola, peanut, and sunflower) was measured by means of this device. A linear relation between both the amplitude and phase as functions of the cavity length for the TWRC was observed and used for the measurements. Three significant figure precisions were obtained. A clear distinction between extra virgin olive oil and other oils in terms of thermal diffusivity was shown. The high measurement precision of the TWRC highlights the potential of this relatively new technique for assessing the quality of this kind of fluids in terms of their thermophysical properties.

  16. Simultaneous determination of related substances of telmisartan and hydrochlorothiazide in tablet dosage form by using reversed phase high performance liquid chromatographic method

    PubMed Central

    Mukhopadhyay, Sutirtho; Kadam, Kiran; Sawant, Laxman; Nachane, Dhanashree; Pandita, Nancy

    2011-01-01

    Objective: Telmisartan is a potent, long-lasting, nonpeptide antagonist of the angiotensin II type-1 (AT1) receptor that is indicated for the treatment of essential hypertension. Hydrochlorothiazide is a widely prescribed diuretic and it is indicated for the treatment of edema, control of essential hypertension and management of diabetes insipidus. In the current article a new, accurate, sensitive, precise, rapid, reversed phase high performance liquid chromatography (RP-HPLC) method was developed for determination of related substances of Telmisartan and Hydrochlorthiazide in tablet dosage form. Materials and Methods: Simultaneous determination of related substances was performed on Kromasil C18 analytical column (250 × 4.6 mm; 5μm pertical size) column at 40°C employing a gradient elution. Mobile phase consisting of solvent A (solution containing 2.0 g of potassium dihydrogen phosphate anhydrous and 1.04 g of Sodium 1- Hexane sulphonic acid monohydrate per liter of water, adjusted to pH 3.0 with orthophosphoric acid) and solvent B (mixture of Acetonitrile: Methanol in the ratio 80:20 v/v) was used at a flow rate of 1.0 ml min–1. UV detection was performed at 270 nm. Results: During method validation parameter such as precision, linearity, accuracy, specificity, limit of detection and quantification were evaluated, which remained within acceptable limits. Conclusions: HPLC analytical method is linear, accurate, precise, robust and specific, being able to separate the main drug from its degradation products. It may find application for the routine analysis of the related substances of both Telmisartan and Hydrochlorthiazide in this combination tablets. PMID:21966158

  17. Combining simplicity with cost-effectiveness: Investigation of potential counterfeit of proton pump inhibitors through simulated formulations using thin-layer chromatography.

    PubMed

    Bhatt, Nejal M; Chavada, Vijay D; Sanyal, Mallika; Shrivastav, Pranav S

    2016-11-18

    A simple, accurate and precise high-performance thin-layer chromatographic method has been developed and validated for the analysis of proton pump inhibitors (PPIs) and their co-formulated drugs, available as binary combination. Planar chromatographic separation was achieved using a single mobile phase comprising of toluene: iso-propranol: acetone: ammonia 5.0:2.3:2.5:0.2 (v/v/v/v) for the analysis of 14 analytes on aluminium-backed layer of silica gel 60 FG 254 . Densitometric determination of the separated spots was done at 290nm. The method was validated according to ICH guidelines for linearity, precision and accuracy, sensitivity, specificity and robustness. The method showed good linear response for the selected drugs as indicated by the high values of correlation coefficients (≥0.9993). The limit of detection and limit of quantiation were in the range of 6.9-159.2ng/band and 20.8-478.1ng/band respectively for all the analytes. The optimized conditions afforded adequate resolution of each PPI from their co-formulated drugs and provided unambiguous identification of the co-formulated drugs from their homologous retardation factors (hR f ). The only limitation of the method was the inability to separate two PPIs, rabeprazole and lansoprazole from each other. Nevertheless, it is proposed that peak spectra recording and comparison with standard drug spot can be a viable option for assignment of TLC spots. The method performance was assessed by analyzing different laboratory simulated mixtures and some marketed formulations of the selected drugs. The developed method was successfully used to investigate potential counterfeit of PPIs through a series of simulated formulations with good accuracy and precision. Copyright © 2016 Elsevier B.V. All rights reserved.

  18. Non-contact measurement of linear external dimensions of the mouse eye

    PubMed Central

    Wisard, Jeffrey; Chrenek, Micah A.; Wright, Charles; Dalal, Nupur; Pardue, Machelle T.; Boatright, Jeffrey H.; Nickerson, John M.

    2010-01-01

    Biometric analyses of quantitative traits in eyes of mice can reveal abnormalities related to refractive or ocular development. Due to the small size of the mouse eye, highly accurate and precise measurements are needed to detect meaningful differences. We sought a non-contact measuring technique to obtain highly accurate and precise linear dimensions of the mouse eye. Laser micrometry was validated with gauge block standards. Simple procedures to measure eye dimensions on three axes were devised. Mouse eyes from C57BL/6J and rd10 on a C57BL/6J background were dissected and extraocular muscle and fat removed. External eye dimensions of axial length (anterior-posterior (A-P) axis) and equatorial diameter (superior-inferior (S-I) and nasal-temporal (N-T) axes) were obtained with a laser micrometer. Several approaches to prevent or ameliorate evaporation due to room air were employed. The resolution of the laser micrometer was less than 0.77 microns, and it provided accurate and precise non-contact measurements of eye dimensions on three axes. External dimensions of the eye strongly correlated with eye weight. The N-T and S-I dimensions of the eye correlated with each other most closely from among the 28 pair-wise combinations of the several parameters that were collected. The equatorial axis measurements correlated well from the right and left eye of each mouse. The A-P measurements did not correlate or correlated poorly in each pair of eyes. The instrument is well suited for the measurement of enucleated eyes and other structures from most commonly used species in experimental vision research and ophthalmology. PMID:20067806

  19. Non-contact measurement of linear external dimensions of the mouse eye.

    PubMed

    Wisard, Jeffrey; Chrenek, Micah A; Wright, Charles; Dalal, Nupur; Pardue, Machelle T; Boatright, Jeffrey H; Nickerson, John M

    2010-03-30

    Biometric analyses of quantitative traits in eyes of mice can reveal abnormalities related to refractive or ocular development. Due to the small size of the mouse eye, highly accurate and precise measurements are needed to detect meaningful differences. We sought a non-contact measuring technique to obtain highly accurate and precise linear dimensions of the mouse eye. Laser micrometry was validated with gauge block standards. Simple procedures to measure eye dimensions on three axes were devised. Mouse eyes from C57BL/6J and rd10 on a C57BL/6J background were dissected and extraocular muscle and fat removed. External eye dimensions of axial length (anterior-posterior (A-P) axis) and equatorial diameter (superior-inferior (S-I) and nasal-temporal (N-T) axes) were obtained with a laser micrometer. Several approaches to prevent or ameliorate evaporation due to room air were employed. The resolution of the laser micrometer was less than 0.77 microm, and it provided accurate and precise non-contact measurements of eye dimensions on three axes. External dimensions of the eye strongly correlated with eye weight. The N-T and S-I dimensions of the eye correlated with each other most closely from among the 28 pair-wise combinations of the several parameters that were collected. The equatorial axis measurements correlated well from the right and left eye of each mouse. The A-P measurements did not correlate or correlated poorly in each pair of eyes. The instrument is well suited for the measurement of enucleated eyes and other structures from most commonly used species in experimental vision research and ophthalmology. Copyright (c) 2010 Elsevier B.V. All rights reserved.

  20. Morphologies of precise polyethylene-based acid copolymers and ionomers

    NASA Astrophysics Data System (ADS)

    Buitrago, C. Francisco

    Acid copolymers and ionomers are polymers that contain a small fraction of covalently bound acidic or ionic groups, respectively. For the specific case of polyethylene (PE), acid and ionic pendants enhance many of the physical properties such as toughness, adhesion and rheological properties. These improved properties result from microphase separated aggregates of the polar pendants in the non-polar PE matrix. Despite the widespread industrial use of these materials, rigorous chemical structure---morphology---property relationships remain elusive due to the inevitable structural heterogeneities in the historically-available acid copolymers and ionomers. Recently, precise acid copolymers and ionomers were successfully synthesized by acyclic diene metathesis (ADMET) polymerization. These precise materials are linear, high molecular weight PEs with pendant acid or ionic functional groups separated by a precisely controlled number of carbon atoms. The morphologies of nine precise acid copolymers and eleven precise ionomers were investigated by X-ray scattering, solid-state 13C nuclear magnetic resonance (NMR) and differential scanning calorimetry (DSC). For comparison, the morphologies of linear PEs with pseudo-random placement of the pendant groups were also studied. Previous studies of precise copolymers with acrylic acid (AA) found that the microstructural precision produces a new morphology in which PE crystals drive the acid aggregates into layers perpendicular to the chain axes and presumably at the interface between crystalline and amorphous phases. In this dissertation, a second new morphology for acid copolymers is identified in which the aggregates arrange on cubic lattices. The fist report of a cubic morphology was observed at room and elevated temperatures for a copolymer functionalized with two phosphonic acid (PA) groups on every 21st carbon atom. The cubic lattice has been identified as face-centered cubic (FCC). Overall, three morphology types have been identified for precise acid copolymers and ionomers at room temperature: (1) liquid-like order of aggregates dispersed throughout an amorphous PE matrix, (2) one-dimensional long-range order of aggregates in layers coexisting with PE crystals, and (3) three-dimensional periodicity of aggregates in cubic lattices in a PE matrix featuring defective packing. The liquid-like morphology is a result of high content of acid or ionic substituents deterring PE crystallinity due to steric hindrance. The layered morphology occurs when the content of pendants is low and the PE segments are long enough to crystallize. The cubic morphologies occur in precise copolymers with geminal substitution of phosphonic acid (PA) groups and long, flexible PE segments. At temperatures above the thermal transitions of the PE matrix, all but one material present a liquid-like morphology. Those conditions are ideal to study the evolution of the interaggregate spacing (d*) in X-ray scattering as a function of PE segment length between pendants, pendant type and pendant architecture (specifically, mono or geminal substitution). Also at elevated temperatures, the morphologies of precise acrylic acid (AA) copolymers and ionomers were investigated further via atomistic molecular dynamics (MD) simulations. The simulations complement X-ray scattering by providing real space visualization of the aggregates, demonstrating the occurrence of isolated, string-like and even percolated aggregate structures. This is the first dissertation completely devoted to the morphology of precise acid copolymers and precise ionomers. The complete analysis of the morphologies in these novel materials provides new insights into the shapes of aggregates in acid copolymers and ionomers in general. A key aspect of this thesis is the complementary use of experimental and simulation methods to unlock a wealth of new understanding.

  1. Quantitative determination of insulin entrapment efficiency in triblock copolymeric nanoparticles by high-performance liquid chromatography.

    PubMed

    Xu, Xiongliang; Fu, Yao; Hu, Haiyan; Duan, Yourong; Zhang, Zhirong

    2006-04-11

    A rapid and effective isocratic chromatographic procedure was described in this paper for the determination of insulin entrapment efficiency (EE) in triblock copolymeric nanoparticles using reversed-phase high-performance liquid chromatography (RP-HPLC) with an ultraviolet/visible detector at low flow rate. The method has been developed on a Shimadzu Shim-pack VP-ODS column (150 mm x 4.6 mm, 5 microm, Chiyoda-Ku, Tokyo, Japan) using a mixture of 0.2 M sodium sulfate anhydrous solution adjusted to pH 2.3 with phosphoric acid and acetonitrile (73:27, v/v) as mobile phase at the flow rate of 0.8 ml min(-1) and a 214 nm detection. The method was validated in terms of selectivity, linearity, precision, accuracy, solution stability, limit of detection (LOD) and limit of quantification (LOQ). The calibration curve was linear in the concentration range of 2.0-500.0 microg ml(-1), and the limits of detection and quantitation were 8 and 20 ng, respectively. The mean recovery of insulin from spiked samples, in a concentration range of 8-100 microg ml(-1), was 98.96% (R.S.D.= 2.51%, n = 9). The intra- and inter-assay coefficients of variation were less than 2.24%. The proposed method has the advantages of simple pretreatment, rapid isolation, high specificity and precision, which can be used for direct analysis of insulin in commercially available raw materials, formulations of nanoparticles, and drug release as well as stability studies.

  2. Electrochemical Impedance Spectrometer with an Environmental Chamber for Rapid Screening of New Precise Copolymers

    DTIC Science & Technology

    2017-10-07

    polymerization to make linear polyethylenes with carboxylic acid groups at precise intervals along the polymer . Precise acid- containing polymers provide...acid polyethylene and the a polymerized ionic liquids based on cyclopropenium. The instrument is also be used to study polymer segmental dynamics...Advances in batteries, fuel cells, and permselective membranes are materials limited. New acid- and ion-containing polymers must be designed and

  3. Reverse phase HPLC method for detection and quantification of lupin seed γ-conglutin.

    PubMed

    Mane, Sharmilee; Bringans, Scott; Johnson, Stuart; Pareek, Vishnu; Utikar, Ranjeet

    2017-09-15

    A simple, selective and accurate reverse phase HPLC method was developed for detection and quantitation of γ-conglutin from lupin seed extract. A linear gradient of water and acetonitrile containing trifluoroacetic acid (TFA) on a reverse phase column (Agilent Zorbax 300SB C-18), with a flow rate of 0.8ml/min was able to produce a sharp and symmetric peak of γ-conglutin with a retention time at 29.16min. The identity of γ-conglutin in the peak was confirmed by mass spectrometry (MS/MS identification) and sodium dodecyl sulphate polyacrylamide gel electrophoresis (SDS-PAGE) analysis. The data obtained from MS/MS analysis was matched against the specified database to obtain the exact match for the protein of interest. The proposed method was validated in terms of specificity, linearity, sensitivity, precision, recovery and accuracy. The analytical parameters revealed that the validated method was capable of selectively performing a good chromatographic separation of γ-conglutin from the lupin seed extract with no interference of the matrix. The detection and quantitation limit of γ-conglutin were found to be 2.68μg/ml and 8.12μg/ml respectively. The accuracy (precision and recovery) analysis of the method was conducted under repeatable conditions on different days. Intra-day and inter-day precision values less than 0.5% and recovery greater than 97% indicated high precision and accuracy of the method for analysis of γ-conglutin. The method validation findings were reproducible and can be successfully applied for routine analysis of γ-conglutin from lupin seed extract. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Adaptive nonsingular terminal sliding mode controller for micro/nanopositioning systems driven by linear piezoelectric ceramic motors.

    PubMed

    Safa, Alireza; Abdolmalaki, Reza Yazdanpanah; Shafiee, Saeed; Sadeghi, Behzad

    2018-06-01

    In the field of nanotechnology, there is a growing demand to provide precision control and manipulation of devices with the ability to interact with complex and unstructured environments at micro/nano-scale. As a result, ultrahigh-precision positioning stages have been turned into a key requirement of nanotechnology. In this paper, linear piezoelectric ceramic motors (LPCMs) are adopted to drive micro/nanopositioning stages since they have the ability to achieve high precision in addition to being versatile to be implemented over a wide range of applications. In the establishment of a control scheme for such manipulation systems, the presence of friction, parameter uncertainties, and external disturbances prevent the systems from providing the desired positioning accuracy. The work in this paper focuses on the development of a control framework that addresses these issues as it uses the nonsingular terminal sliding mode technique for the precise position tracking problem of an LPCM-driven positioning stage with friction, uncertain parameters, and external disturbances. The developed control algorithm exhibits the following two attractive features. First, upper bounds of system uncertainties/perturbations are adaptively estimated in the proposed controller; thus, prior knowledge about uncertainty/disturbance bounds is not necessary. Second, the discontinuous signum function is transferred to the time derivative of the control input and the continuous control signal is obtained after integration; consequently, the chattering phenomenon, which presents a major handicap to the implementation of conventional sliding mode control in real applications, is alleviated without deteriorating the robustness of the system. The stability of the controlled system is analyzed, and the convergence of the position tracking error to zero is analytically proven. The proposed control strategy is experimentally validated and compared to the existing control approaches. Copyright © 2018 ISA. Published by Elsevier Ltd. All rights reserved.

  5. Timing considerations for preclinical MRgRT: effects of ion diffusion, SNR and imaging times on FXG gel calibration

    NASA Astrophysics Data System (ADS)

    Welch, M.; Foltz, W. D.; Jaffray, D. A.

    2015-01-01

    Sub-millimeter resolution images are required for gel dosimeters to be used in preclinical research, which is challenging for MR probed ferrous xylenol-orange (FXG) dosimeters due to ion diffusion and inadequate SNR. A preclinical 7 T MR, small animal irradiator and FXG dosimeters were used in all experiments. Ion diffusion was analyzed using high resolution (0.2 mm/pixel) T1 MR images collected every 5 minutes, post-irradiation, for an hour. Using Fick's second law, ion diffusion was approximated for the first hour post-irradiation. SNR, T1 map precision and calibration fit were determined for two MR protocols: (1) 10 minute acquisition, 0.35mm/pixel and 3mm slices, (2) 45 minute acquisition, 0. 25 mm/pixel and 2 mm slices. SNR and T1 map precision were calculated using a Monte Carlo simulation. Calibration curves were determined by plotting R1 relaxation rates versus depth dose data, and fitting a linear trend line. Ion diffusion was estimated as 0.003mm2 in the first hour post-irradiation. For protocols (1) and (2) respectively, Monte Carlo simulation predicted T1 precisions of 3% and 5% within individual voxels using experimental SNRs; the corresponding measured T1 precisions were 8% and 12%. The linear trend lines reported slopes of 27 ± 3 Gy*s (R2: 0.80 ± 0.04) and 27 ± 4 Gy*s (R2: 0.90 ± 0.04). Ion diffusion is negligible within the first hour post-irradiation, and an accurate and reproducible calibration can be achieved in a preclinical setting with sub-millimeter resolution.

  6. Ion chromatography for the precise analysis of chloride and sodium in sweat for the diagnosis of cystic fibrosis.

    PubMed

    Doorn, J; Storteboom, T T R; Mulder, A M; de Jong, W H A; Rottier, B L; Kema, I P

    2015-07-01

    Measurement of chloride in sweat is an essential part of the diagnostic algorithm for cystic fibrosis. The lack in sensitivity and reproducibility of current methods led us to develop an ion chromatography/high-performance liquid chromatography (IC/HPLC) method, suitable for the analysis of both chloride and sodium in small volumes of sweat. Precision, linearity and limit of detection of an in-house developed IC/HPLC method were established. Method comparison between the newly developed IC/HPLC method and the traditional Chlorocounter was performed, and trueness was determined using Passing Bablok method comparison with external quality assurance material (Royal College of Pathologists of Australasia). Precision and linearity fulfill criteria as established by UK guidelines are comparable with inductively coupled plasma-mass spectrometry methods. Passing Bablok analysis demonstrated excellent correlation between IC/HPLC measurements and external quality assessment target values, for both chloride and sodium. With a limit of quantitation of 0.95 mmol/L, our method is suitable for the analysis of small amounts of sweat and can thus be used in combination with the Macroduct collection system. Although a chromatographic application results in a somewhat more expensive test compared to a Chlorocounter test, more accurate measurements are achieved. In addition, simultaneous measurements of sodium concentrations will result in better detection of false positives, less test repeating and thus faster and more accurate and effective diagnosis. The described IC/HPLC method, therefore, provides a precise, relatively cheap and easy-to-handle application for the analysis of both chloride and sodium in sweat. © The Author(s) 2014 Reprints and permissions: sagepub.co.uk/journalsPermissions.nav.

  7. The development of a novel high-precision major depressive disorder screening system using transient autonomic responses induced by dual mental tasks.

    PubMed

    Matsui, Takemi; Shinba, Toshikazu; Sun, Guanghao

    2018-02-01

    12.6% of major depressive disorder (MDD) patients have suicide intent, while it has been reported that 43% of patients did not consult their doctors for MDD, automated MDD screening is eagerly anticipated. Recently, in order to achieve automated screening of MDD, biomarkers such as multiplex DNA methylation profiles or physiological method using near infra-red spectroscopy (NIRS) have been studied, however, they require inspection using 96-well DNA ELIZA kit after blood sampling or significant cost. Using a single-lead electrocardiography (ECG), we developed a high-precision MDD screening system using transient autonomic responses induced by dual mental tasks. We developed a novel high precision MDD screening system which is composed of a single-lead ECG monitor, analogue to digital (AD) converter and a personal computer with measurement and analysis program written by LabView programming language. The system discriminates MDD patients from normal subjects using heat rate variability (HRV)-derived transient autonomic responses induced by dual mental tasks, i.e. verbal fluency task and random number generation task, via linear discriminant analysis (LDA) adopting HRV-related predictor variables (hear rate (HR), high frequency (HF), low frequency (LF)/HF). The proposed system was tested for 12 MDD patients (32 ± 15 years) under antidepressant treatment from Shizuoka Saiseikai General Hospital outpatient unit and 30 normal volunteers (37 ± 17 years) from Tokyo Metropolitan University. The proposed system achieved 100% sensitivity and 100% specificity in classifying 42 examinees into 12 MDD patients and 30 normal subjects. The proposed system appears promising for future HRV-based high-precision and low-cost screening of MDDs using only single-lead ECG.

  8. Resimulation of noise: a precision estimator for least square error curve-fitting tested for axial strain time constant imaging

    NASA Astrophysics Data System (ADS)

    Nair, S. P.; Righetti, R.

    2015-05-01

    Recent elastography techniques focus on imaging information on properties of materials which can be modeled as viscoelastic or poroelastic. These techniques often require the fitting of temporal strain data, acquired from either a creep or stress-relaxation experiment to a mathematical model using least square error (LSE) parameter estimation. It is known that the strain versus time relationships for tissues undergoing creep compression have a non-linear relationship. In non-linear cases, devising a measure of estimate reliability can be challenging. In this article, we have developed and tested a method to provide non linear LSE parameter estimate reliability: which we called Resimulation of Noise (RoN). RoN provides a measure of reliability by estimating the spread of parameter estimates from a single experiment realization. We have tested RoN specifically for the case of axial strain time constant parameter estimation in poroelastic media. Our tests show that the RoN estimated precision has a linear relationship to the actual precision of the LSE estimator. We have also compared results from the RoN derived measure of reliability against a commonly used reliability measure: the correlation coefficient (CorrCoeff). Our results show that CorrCoeff is a poor measure of estimate reliability for non-linear LSE parameter estimation. While the RoN is specifically tested only for axial strain time constant imaging, a general algorithm is provided for use in all LSE parameter estimation.

  9. High Precision Linear And Circular Polarimetry. Sources With Stable Stokes Q,U & V In The Ghz Regime

    NASA Astrophysics Data System (ADS)

    Myserlis, Ioannis; Angelakis, E.; Zensus, J. A.

    2017-10-01

    We present a novel data analysis pipeline for the reconstruction of the linear and circular polarization parameters of radio sources. It includes several correction steps to minimize the effect of instrumental polarization, allowing the detection of linear and circular polarization degrees as low as 0.3 %. The instrumental linear polarization is corrected across the whole telescope beam and significant Stokes Q and U can be recovered even when the recorded signals are severely corrupted. The instrumental circular polarization is corrected with two independent techniques which yield consistent Stokes V results. The accuracy we reach is of the order of 0.1-0.2 % for the polarization degree and 1\\u00ba for the angle. We used it to recover the polarization of around 150 active galactic nuclei that were monitored monthly between 2010.6 and 2016.3 with the Effelsberg 100-m telescope. We identified sources with stable polarization parameters that can be used as polarization standards. Five sources have stable linear polarization; three are linearly unpolarized; eight have stable polarization angle; and 11 sources have stable circular polarization, four of which with non-zero Stokes V.

  10. Characterization of single chain antibody targets through yeast two hybrid

    PubMed Central

    2010-01-01

    Background Due to their unique ability to bind their targets with high fidelity, antibodies are used widely not only in biomedical research, but also in many clinical applications. Recombinant antibodies, including single chain variable fragments (scFv), are gaining momentum because they allow powerful in vitro selection and manipulation without loss of function. Regardless of the ultimate application or type of antibody used, precise understanding of the interaction between the antibody's binding site and its specific target epitope(s) is of great importance. However, such data is frequently difficult to obtain. Results We describe an approach that allows detailed characterization of a given antibody's target(s) using the yeast two-hybrid system. Several recombinant scFv were used as bait and screened against highly complex cDNA libraries. Systematic sequencing of all retained clones and statistical analysis allowed efficient ranking of the prey fragments. Multiple alignment of the obtained cDNA fragments provided a selected interacting domain (SID), efficiently narrowing the epitope-containing region. Interactions between antibodies and their respective targets were characterized for several scFv. For AA2 and ROF7, two conformation-specific sensors that exclusively bind the activated forms of the small GTPases Rab6 and Rab1 respectively, only fragments expressing the entire target protein's core region were retained. This strongly suggested interaction with a non-linear epitope. For two other scFv, TA10 and SF9, which recognize the large proteins giantin and non-muscle myosin IIA, respectively, precise antibody-binding regions within the target were defined. Finally, for some antibodies, secondary targets within and across species could be revealed. Conclusions Our method, utilizing the yeast two-hybrid technology and scFv as bait, is a simple yet powerful approach for the detailed characterization of antibody targets. It allows precise domain mapping for linear epitopes, confirmation of non-linear epitopes for conformational sensors, and detection of secondary binding partners. This approach may thus prove to be an elegant and rapid method for the target characterization of newly obtained scFv antibodies. It may be considered prior to any research application and particularly before any use of such recombinant antibodies in clinical medicine. PMID:20727208

  11. High-Affinity Recombinant Antibody Fragments (Fabs) Can Be Applied in Peptide Enrichment Immuno-MRM Assays

    PubMed Central

    2015-01-01

    High-affinity antibodies binding to linear peptides in solution are a prerequisite for performing immuno-MRM, an emerging technology for protein quantitation with high precision and specificity using peptide immunoaffinity enrichment coupled to stable isotope dilution and targeted mass spectrometry. Recombinant antibodies can be generated from appropriate libraries in high-throughput in an automated laboratory and thus may offer advantages over conventional monoclonal antibodies. However, recombinant antibodies are typically obtained as fragments (Fab or scFv) expressed from E. coli, and it is not known whether these antibody formats are compatible with the established protocols and whether the affinities necessary for immunocapture of small linear peptides can be achieved with this technology. Hence, we performed a feasibility study to ask: (a) whether it is feasible to isolate high-affinity Fabs to small linear antigens and (b) whether it is feasible to incorporate antibody fragments into robust, quantitative immuno-MRM assays. We describe successful isolation of high-affinity Fab fragments against short (tryptic) peptides from a human combinatorial Fab library. We analytically characterize three immuno-MRM assays using recombinant Fabs, full-length IgGs constructed from these Fabs, or traditional monoclonals. We show that the antibody fragments show similar performance compared with traditional mouse- or rabbit-derived monoclonal antibodies. The data establish feasibility of isolating and incorporating high-affinity Fabs into peptide immuno-MRM assays. PMID:24568200

  12. High-affinity recombinant antibody fragments (Fabs) can be applied in peptide enrichment immuno-MRM assays.

    PubMed

    Whiteaker, Jeffrey R; Zhao, Lei; Frisch, Christian; Ylera, Francisco; Harth, Stefan; Knappik, Achim; Paulovich, Amanda G

    2014-04-04

    High-affinity antibodies binding to linear peptides in solution are a prerequisite for performing immuno-MRM, an emerging technology for protein quantitation with high precision and specificity using peptide immunoaffinity enrichment coupled to stable isotope dilution and targeted mass spectrometry. Recombinant antibodies can be generated from appropriate libraries in high-throughput in an automated laboratory and thus may offer advantages over conventional monoclonal antibodies. However, recombinant antibodies are typically obtained as fragments (Fab or scFv) expressed from E. coli, and it is not known whether these antibody formats are compatible with the established protocols and whether the affinities necessary for immunocapture of small linear peptides can be achieved with this technology. Hence, we performed a feasibility study to ask: (a) whether it is feasible to isolate high-affinity Fabs to small linear antigens and (b) whether it is feasible to incorporate antibody fragments into robust, quantitative immuno-MRM assays. We describe successful isolation of high-affinity Fab fragments against short (tryptic) peptides from a human combinatorial Fab library. We analytically characterize three immuno-MRM assays using recombinant Fabs, full-length IgGs constructed from these Fabs, or traditional monoclonals. We show that the antibody fragments show similar performance compared with traditional mouse- or rabbit-derived monoclonal antibodies. The data establish feasibility of isolating and incorporating high-affinity Fabs into peptide immuno-MRM assays.

  13. Rotating Flow of Magnetite-Water Nanofluid over a Stretching Surface Inspired by Non-Linear Thermal Radiation.

    PubMed

    Mustafa, M; Mushtaq, A; Hayat, T; Alsaedi, A

    2016-01-01

    Present study explores the MHD three-dimensional rotating flow and heat transfer of ferrofluid induced by a radiative surface. The base fluid is considered as water with magnetite-Fe3O4 nanoparticles. Novel concept of non-linear radiative heat flux is considered which produces a non-linear energy equation in temperature field. Conventional transformations are employed to obtain the self-similar form of the governing differential system. The arising system involves an interesting temperature ratio parameter which is an indicator of small/large temperature differences in the flow. Numerical simulations with high precision are determined by well-known shooting approach. Both uniform stretching and rotation have significant impact on the solutions. The variation in velocity components with the nanoparticle volume fraction is non-monotonic. Local Nusselt number in Fe3O4-water ferrofluid is larger in comparison to the pure fluid even at low particle concentration.

  14. [The linear dimensions of human body measurements of Chinese male pilots in standing posture].

    PubMed

    Guo, Xiao-chao; Liu, Bao-shan; Xiao, Hui; Wang, Zhi-jie; Li, Rong; Guo, Hui

    2003-02-01

    To provide the latest anthropometric data of Chinese male pilots on a large scale. 94 linear dimensions of human body measurements were defined, of which there are 42 fundamental items and 52 recommended items. The computer databanks were programmed, in which the subprograms were preset for data checking such as extreme value examination, logical judgement for data relationship, and measuring-remeasuring difference test. All workers were well trained before pilot measurements. 1739 male pilots from China Air Force was measured for the 42 fundamental items, and of which 904 pilots were measured for the 52 recommended items. Mean, standard deviation, the maximum value, the minimal value, and the 5th, 50th, 95th percentile data of all the 94 items were given. The quality of the data was stable and reliable. All data of the 94 linear dimensions of human body measurements were valid and reliable with high precision.

  15. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bose, Benjamin; Koyama, Kazuya, E-mail: benjamin.bose@port.ac.uk, E-mail: kazuya.koyama@port.ac.uk

    We develop a code to produce the power spectrum in redshift space based on standard perturbation theory (SPT) at 1-loop order. The code can be applied to a wide range of modified gravity and dark energy models using a recently proposed numerical method by A.Taruya to find the SPT kernels. This includes Horndeski's theory with a general potential, which accommodates both chameleon and Vainshtein screening mechanisms and provides a non-linear extension of the effective theory of dark energy up to the third order. Focus is on a recent non-linear model of the redshift space power spectrum which has been shownmore » to model the anisotropy very well at relevant scales for the SPT framework, as well as capturing relevant non-linear effects typical of modified gravity theories. We provide consistency checks of the code against established results and elucidate its application within the light of upcoming high precision RSD data.« less

  16. An ultra-high performance liquid chromatography method to determine the skin penetration of an octyl methoxycinnamate-loaded liquid crystalline system.

    PubMed

    Prado, A H; Borges, M C; Eloy, J O; Peccinini, R G; Chorilli, M

    2017-10-01

    Cutaneous penetration is a critical factor in the use of sunscreen, as the compounds should not reach systemic circulation in order to avoid the induction of toxicity. The evaluation of the skin penetration and permeation of the UVB filter octyl methoxycinnamate (OMC) is essential for the development of a successful sunscreen formulation. Liquid-crystalline systems are innovative and potential carriers of OMC, which possess several advantages, including controlled release and protection of the filter from degradation. In this study, a new and effective method was developed using ultra-high performance liquid chromatography (UPLC) with ultraviolet detection (UV) for the quantitative analysis of penetration of OMC-loaded liquid crystalline systems into the skin. The following parameters were assessed in the method: selectivity, linearity, precision, accuracy, robustness, limit of detection (LOD), and limit of quantification (LOQ). The analytical curve was linear in the range from 0.25 to 250 μg.m-1, precise, with a standard deviation of 0.05-1.24%, with an accuracy in the range from 96.72 to 105.52%, and robust, with adequate values for the LOD and LOQ of 0.1 and 0.25 μg.mL -1, respectively. The method was successfully used to determine the in vitro skin permeation of OMC-loaded liquid crystalline systems. The results of the in vitro tests on Franz cells showed low cutaneous permeation and high retention of the OMC, particularly in the stratum corneum, owing to its high lipophilicity, which is desirable for a sunscreen formulation.

  17. Optimal moving grids for time-dependent partial differential equations

    NASA Technical Reports Server (NTRS)

    Wathen, A. J.

    1989-01-01

    Various adaptive moving grid techniques for the numerical solution of time-dependent partial differential equations were proposed. The precise criterion for grid motion varies, but most techniques will attempt to give grids on which the solution of the partial differential equation can be well represented. Moving grids are investigated on which the solutions of the linear heat conduction and viscous Burgers' equation in one space dimension are optimally approximated. Precisely, the results of numerical calculations of optimal moving grids for piecewise linear finite element approximation of partial differential equation solutions in the least squares norm.

  18. Optimal moving grids for time-dependent partial differential equations

    NASA Technical Reports Server (NTRS)

    Wathen, A. J.

    1992-01-01

    Various adaptive moving grid techniques for the numerical solution of time-dependent partial differential equations were proposed. The precise criterion for grid motion varies, but most techniques will attempt to give grids on which the solution of the partial differential equation can be well represented. Moving grids are investigated on which the solutions of the linear heat conduction and viscous Burgers' equation in one space dimension are optimally approximated. Precisely, the results of numerical calculations of optimal moving grids for piecewise linear finite element approximation of PDE solutions in the least-squares norm are reported.

  19. Development of a Stability-Indicating Stereoselective Method for Quantification of the Enantiomer in the Drug Substance and Pharmaceutical Dosage Form of Rosuvastatin Calcium by an Enhanced Approach

    PubMed Central

    Rajendra Reddy, Gangireddy; Ravindra Reddy, Papammagari; Siva Jyothi, Polisetty

    2015-01-01

    A novel, simple, precise, and stability-indicating stereoselective method was developed and validated for the accurate quantification of the enantiomer in the drug substance and pharmaceutical dosage forms of Rosuvastatin Calcium. The method is capable of quantifying the enantiomer in the presence of other related substances. The chromatographic separation was achieved with an immobilized cellulose stationary phase (Chiralpak IB) 250 mm x 4.6 mm x 5.0 μm particle size column with a mobile phase containing a mixture of n-hexane, dichloromethane, 2-propanol, and trifluoroacetic acid in the ratio 82:10:8:0.2 (v/v/v/v). The eluted compounds were monitored at 243 nm and the run time was 18 min. Multivariate analysis and statistical tools were used to develop this highly robust method in a short span of time. The stability-indicating power of the method was established by subjecting Rosuvastatin Calcium to the stress conditions (forced degradation) of acid, base, oxidative, thermal, humidity, and photolytic degradation. Major degradation products were identified and found to be well-resolved from the enantiomer peak, proving the stability-indicating power of the method. The developed method was validated as per International Conference on Harmonization (ICH) guidelines with respect to specificity, limit of detection and limit of quantification, precision, linearity, accuracy, and robustness. The method exhibited consistent, high-quality recoveries (100 ± 10%) with a high precision for the enantiomer. Linear regression analysis revealed an excellent correlation between the peak responses and concentrations (r2 value of 0.9977) for the enantiomer. The method is sensitive enough to quantify the enantiomer above 0.04% and detect the enantiomer above 0.015% in Rosuvastatin Calcium. The stability tests were also performed on the drug substances as per ICH norms. PMID:26839815

  20. THE MIRA–TITAN UNIVERSE: PRECISION PREDICTIONS FOR DARK ENERGY SURVEYS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Heitmann, Katrin; Habib, Salman; Biswas, Rahul

    2016-04-01

    Large-scale simulations of cosmic structure formation play an important role in interpreting cosmological observations at high precision. The simulations must cover a parameter range beyond the standard six cosmological parameters and need to be run at high mass and force resolution. A key simulation-based task is the generation of accurate theoretical predictions for observables using a finite number of simulation runs, via the method of emulation. Using a new sampling technique, we explore an eight-dimensional parameter space including massive neutrinos and a variable equation of state of dark energy. We construct trial emulators using two surrogate models (the linear powermore » spectrum and an approximate halo mass function). The new sampling method allows us to build precision emulators from just 26 cosmological models and to systematically increase the emulator accuracy by adding new sets of simulations in a prescribed way. Emulator fidelity can now be continuously improved as new observational data sets become available and higher accuracy is required. Finally, using one ΛCDM cosmology as an example, we study the demands imposed on a simulation campaign to achieve the required statistics and accuracy when building emulators for investigations of dark energy.« less

  1. The mira-titan universe. Precision predictions for dark energy surveys

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Heitmann, Katrin; Bingham, Derek; Lawrence, Earl

    2016-03-28

    Large-scale simulations of cosmic structure formation play an important role in interpreting cosmological observations at high precision. The simulations must cover a parameter range beyond the standard six cosmological parameters and need to be run at high mass and force resolution. A key simulation-based task is the generation of accurate theoretical predictions for observables using a finite number of simulation runs, via the method of emulation. Using a new sampling technique, we explore an eight-dimensional parameter space including massive neutrinos and a variable equation of state of dark energy. We construct trial emulators using two surrogate models (the linear powermore » spectrum and an approximate halo mass function). The new sampling method allows us to build precision emulators from just 26 cosmological models and to systematically increase the emulator accuracy by adding new sets of simulations in a prescribed way. Emulator fidelity can now be continuously improved as new observational data sets become available and higher accuracy is required. Finally, using one ΛCDM cosmology as an example, we study the demands imposed on a simulation campaign to achieve the required statistics and accuracy when building emulators for investigations of dark energy.« less

  2. Plasma-equivalent glucose at the point-of-care: evaluation of Roche Accu-Chek Inform and Abbott Precision PCx glucose meters.

    PubMed

    Ghys, Timothy; Goedhuys, Wim; Spincemaille, Katrien; Gorus, Frans; Gerlo, Erik

    2007-01-01

    Glucose testing at the bedside has become an integral part of the management strategy in diabetes and of the careful maintenance of normoglycemia in all patients in intensive care units. We evaluated two point-of-care glucometers for the determination of plasma-equivalent blood glucose. The Precision PCx and the Accu-Chek Inform glucometers were evaluated. Imprecision and bias relative to the Vitros 950 system were determined using protocols of the Clinical Laboratory Standards Institute (CLSI). The effects of low, normal, and high hematocrit levels were investigated. Interference by maltose was also studied. Within-run precision for both instruments ranged from 2-5%. Total imprecision was less than 5% except for the Accu-Chek Inform at the low level (2.9 mmol/L). Both instruments correlated well with the comparison instrument and showed excellent recovery and linearity. Both systems reported at least 95% of their values within zone A of the Clarke Error Grid, and both fulfilled the CLSI quality criteria. The more stringent goals of the American Diabetes Association, however, were not reached. Both systems showed negative bias at high hematocrit levels. Maltose interfered with the glucose measurements on the Accu-Chek Inform but not on the Precision PCx. Both systems showed satisfactory imprecision and were reliable in reporting plasma-equivalent glucose concentrations. The most stringent performance goals were however not met.

  3. Precise Lamb Shift Measurements in Hydrogen-Like Heavy Ions—Status and Perspectives

    NASA Astrophysics Data System (ADS)

    Andrianov, V.; Beckert, K.; Bleile, A.; Chatterjee, Ch.; Echler, A.; Egelhof, P.; Gumberidze, A.; Ilieva, S.; Kiselev, O.; Kilbourne, C.; Kluge, H.-J.; Kraft-Bermuth, S.; McCammon, D.; Meier, J. P.; Reuschl, R.; Stöhlker, T.; Trassinelli, M.

    2009-12-01

    The precise determination of the energy of the Lyman α1 and α2 lines in hydrogen-like heavy ions provides a sensitive test of quantum electrodynamics in very strong Coulomb fields. For the first time, a calorimetric low-temperature detector was applied in an experiment to precisely determine the transition energy of the Lyman lines of lead ions 207Pb81+ at the Experimental Storage Ring (ESR) at GSI. The detectors consist of silicon thermistors, provided by the NASA/Goddard Space Flight Center, and Pb or Sn absorbers to obtain high quantum efficiency in the energy range of 40-80 keV, where the Doppler-shifted Lyman lines are located. The measured energy of the Lyman α1 line, E(Ly-α1, 207Pb81+) = (77937±12stat±23syst) eV, agrees within errors with theoretical predictions. The systematic error is mainly due to uncertainties in the non-linear energy calibration of the detectors as well as the relative position of detector and gas-jet target.

  4. Clinical evaluation of the Technico Stat/Ion system.

    PubMed

    Slaunwhite, D; Clements, J C; Reynoso, G

    1977-02-01

    1. We describe our evaluation of the Technicon Stat/Ion, an instrument which performs sodium, chloride and bicarbonate analysis simultaneously. 2. All four of the assays resulted in linear response over the entire clinical range with insignificant carryover between specimens. 3. Precision studies for within-run variation were: sodium 0.3 percent, potassium 0.7 percent, chloride 0.5 percent and bicarbonate 1.6 percent. Day-to-day precision was similar to the within-run precision. 4. Comparison methods for sodium, potassium, chloride and bicarbonate utilizing flame photometry, chloridometry and titration of released carbon dioxide respectively showed the following linear regression and correlation coefficients: sodium y=0.96+5.5 (a=0.988) potassium y=1.01x+0.0 (a=.996) chloride y=0.99x+1.0 (a=.993)bicarbonate y=1.0x+1.2 (alpha=.969).

  5. Simultaneous determination of gatifloxacin and ambroxol hydrochloride from tablet dosage form using reversed-phase high performance liquid chromatography.

    PubMed

    Shahed, Mirza; Nanda, Rabindra; Dehghan, Muhammad Hassan; Nasreen, Huda; Feroz, Shaikh

    2008-05-01

    A reversed-phase high performance liquid chromatography (HPLC) method was developed, validated, and used for the quantitative determination of gatifloxacin (GA) and ambroxol hydrochloride (AM), from its tablet dosage form. Chromatographic separation was performed on a HiQ Sil C18 column (250 mm x 4.6 mm, 5 microm), with a mobile phase comprising of a mixture of 0.01 mol/L potassium dihydrogen orthophosphate buffer and acetonitrile (70 : 30, v/v), and pH adjusted to 3 with orthophosphoric acid, at a flow rate of 1 mL/min, with detection at 247 nm. Separation was completed in less than 10 min. As per International Conference on Harmonisation (ICH) guidelines the method was validated for linearity, accuracy, precision, limit of quantitation, limit of detection, and robustness. Linearity of GA was found to be in the range of 10 -60 microg/mL and that for AM was found to be 5 - 30 microg/mL. The correlation coefficients were 0.999 6 and 0.999 3 for GA and AM respectively. The results of the tablet analysis (n = 5) were found to be 99.94% with +/- 0.25% standard deviation (SD) and 99.98% with +/- 0.36% SD for GA and AM respectively. Percent recovery of GA was found to be 99.92% - 100.02% and that of AM was 99.86% - 100.16%. The assay experiment shows that the method is free from interference of excipients. This demonstrates that the developed HPLC method is simple, linear, precise, and accurate, and can be conveniently adopted for the routine quality control analysis of the tablet.

  6. Improving quantitative gas chromatography-electron ionization mass spectrometry results using a modified ion source: demonstration for a pharmaceutical application.

    PubMed

    D'Autry, Ward; Wolfs, Kris; Hoogmartens, Jos; Adams, Erwin; Van Schepdael, Ann

    2011-07-01

    Gas chromatography-mass spectrometry is a well established analytical technique. However, mass spectrometers with electron ionization sources may suffer from signal drifts, hereby negatively influencing quantitative performance. To demonstrate this phenomenon for a real application, a static headspace-gas chromatography method in combination with electron ionization-quadrupole mass spectrometry was optimized for the determination of residual dichloromethane in coronary stent coatings. Validating the method, the quantitative performance of an original stainless steel ion source was compared to that of a modified ion source. Ion source modification included the application of a gold coating on the repeller and exit plate. Several validation aspects such as limit of detection, limit of quantification, linearity and precision were evaluated using both ion sources. It was found that, as expected, the stainless steel ion source suffered from signal drift. As a consequence, non-linearity and high RSD values for repeated analyses were obtained. An additional experiment was performed to check whether an internal standard compound would lead to better results. It was found that the signal drift patterns of the analyte and internal standard were different, consequently leading to high RSD values for the response factor. With the modified ion source however, a more stable signal was observed resulting in acceptable linearity and precision. Moreover, it was also found that sensitivity improved compared to the stainless steel ion source. Finally, the optimized method with the modified ion source was applied to determine residual dichloromethane in the coating of coronary stents. The solvent was detected but found to be below the limit of quantification. Copyright © 2011 Elsevier B.V. All rights reserved.

  7. Measurement of HbA1c in Gingival Crevicular Blood Using a High-Pressure Liquid Chromatography Procedure.

    PubMed

    Pesce, Michael A; Strauss, Shiela M; Rosedale, Mary; Netterwald, Jane; Wang, Hangli

    2015-01-01

    To validate an ion exchange high-pressure liquid chromatography (HPLC) method for measuring glycated hemoglobin (HbA1c) in gingival crevicular blood (GCB) spotted on filter paper, for use in screening dental patients for diabetes. We collected the GCB specimens for this study from the oral cavities of patients during dental visits, using rigorous strategies to obtain GCB that was as free of debris as possible. The analytical performance of the HPLC method was determined by measuring the precision, linearity, carryover, stability of HbA1c in GCB, and correlation of HbA1c results in GCB specimens with finger-stick blood (FSB) specimens spotted on filter paper. The coefficients of variation (CVs) for the inter- and intrarun precision of the method were less than 2.0%. Linearity ranged between 4.2% and 12.4%; carryover was less than 2.0%, and the stability of the specimen was 6 days at 4°C and as many as 14 days at -70°C. Linear regression analysis comparing the HbA1c results in GCB with FSB yielded a correlation coefficient of 0.993, a slope of 0.981, and an intercept of 0.13. The Bland-Altman plot showed no difference in the HbA1c results from the GCB and FSB specimens at normal, prediabetes, and diabetes HbA1c levels. We validated an HPLC method for measuring HbA1c in GCB; this method can be used to screen dental patients for diabetes. Copyright© by the American Society for Clinical Pathology (ASCP).

  8. A new linear least squares method for T1 estimation from SPGR signals with multiple TRs

    NASA Astrophysics Data System (ADS)

    Chang, Lin-Ching; Koay, Cheng Guan; Basser, Peter J.; Pierpaoli, Carlo

    2009-02-01

    The longitudinal relaxation time, T1, can be estimated from two or more spoiled gradient recalled echo x (SPGR) images with two or more flip angles and one or more repetition times (TRs). The function relating signal intensity and the parameters are nonlinear; T1 maps can be computed from SPGR signals using nonlinear least squares regression. A widely-used linear method transforms the nonlinear model by assuming a fixed TR in SPGR images. This constraint is not desirable since multiple TRs are a clinically practical way to reduce the total acquisition time, to satisfy the required resolution, and/or to combine SPGR data acquired at different times. A new linear least squares method is proposed using the first order Taylor expansion. Monte Carlo simulations of SPGR experiments are used to evaluate the accuracy and precision of the estimated T1 from the proposed linear and the nonlinear methods. We show that the new linear least squares method provides T1 estimates comparable in both precision and accuracy to those from the nonlinear method, allowing multiple TRs and reducing computation time significantly.

  9. Simultaneous determination three phytosterol compounds, campesterol, stigmasterol and daucosterol in Artemisia apiacea by high performance liquid chromatography-diode array ultraviolet/visible detector.

    PubMed

    Lee, Jiwoo; Weon, Jin Bae; Yun, Bo-Ra; Eom, Min Rye; Ma, Choong Je

    2015-01-01

    Artemisia apiacea is a traditional herbal medicine using treatment of eczema and jaundice in Eastern Asia, including China, Korea, and Japan. An accurate and sensitive analysis method using high performance liquid chromatography-diode array ultraviolet/visible detector and liquid chromatography-mass spectrometry for the simultaneous determination of three phytosterol compounds, campesterol, stigmasterol and daucosterol in A. apiacea was established. The analytes were separated on a Shiseido C18 column (5 μm, 4.6 mm I.D. ×250 mm) with gradient elution of 0.1% trifluoroacetic acid and acetonitrile. The flow rate was 1 mL/min and detection wavelengths were set at 205 and 254 nm. Validation of the method was performed to demonstrate its linearity, precision and accuracy. The calibration curves showed good linearity (R (2) > 0.9994). The limits of detection and limits of quantification were within the ranges 0.55-7.07 μg/mL and 1.67-21.44 μg/mL, respectively. And, the relative standard deviations of intra- and inter-day precision were <2.93%. The recoveries were found to be in the range of 90.03-104.91%. The developed method has been successfully applied to the analysis for quality control of campesterol, stigmasterol and daucosterol in A. apiacea.

  10. Simultaneous determination three phytosterol compounds, campesterol, stigmasterol and daucosterol in Artemisia apiacea by high performance liquid chromatography-diode array ultraviolet/visible detector

    PubMed Central

    Lee, Jiwoo; Weon, Jin Bae; Yun, Bo-Ra; Eom, Min Rye; Ma, Choong Je

    2015-01-01

    Background: Artemisia apiacea is a traditional herbal medicine using treatment of eczema and jaundice in Eastern Asia, including China, Korea, and Japan. Objective: An accurate and sensitive analysis method using high performance liquid chromatography-diode array ultraviolet/visible detector and liquid chromatography–mass spectrometry for the simultaneous determination of three phytosterol compounds, campesterol, stigmasterol and daucosterol in A. apiacea was established. Materials and Methods: The analytes were separated on a Shiseido C18 column (5 μm, 4.6 mm I.D. ×250 mm) with gradient elution of 0.1% trifluoroacetic acid and acetonitrile. The flow rate was 1 mL/min and detection wavelengths were set at 205 and 254 nm. Results: Validation of the method was performed to demonstrate its linearity, precision and accuracy. The calibration curves showed good linearity (R2 > 0.9994). The limits of detection and limits of quantification were within the ranges 0.55–7.07 μg/mL and 1.67–21.44 μg/mL, respectively. And, the relative standard deviations of intra- and inter-day precision were <2.93%. The recoveries were found to be in the range of 90.03–104.91%. Conclusion: The developed method has been successfully applied to the analysis for quality control of campesterol, stigmasterol and daucosterol in A. apiacea. PMID:25829768

  11. Electron kinetic effects on optical diagnostics in fusion plasmas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mirnov, V. V.; Den Hartog, D. J.; Duff, J.

    At anticipated high electron temperatures in ITER, the effects of electron thermal motion on Thomson scattering (TS), toroidal interferometer/polarimeter (TIP) and poloidal polarimeter (PoPola) diagnostics will be significant and must be accurately treated. We calculate electron thermal corrections to the interferometric phase and polarization state of an EM wave propagating along tangential and poloidal chords (Faraday and Cotton-Mouton polarimetry) and perform analysis of the degree of polarization for incoherent TS. The precision of the previous lowest order linear in τ = T{sub e}/m{sub e}c{sup 2} model may be insufficient; we present a more precise model with τ{sup 2}-order corrections to satisfy themore » high accuracy required for ITER TIP and PoPola diagnostics. The linear model is extended from Maxwellian to a more general class of anisotropic electron distributions that allows us to take into account distortions caused by equilibrium current, ECRH and RF current drive effects. The classical problem of degree of polarization of incoherent Thomson scattered radiation is solved analytically exactly without any approximations for the full range of incident polarizations, scattering angles, and electron thermal motion from non-relativistic to ultra-relativistic. The results are discussed in the context of the possible use of the polarization properties of Thomson scattered light as a method of T{sup e} measurement relevant to ITER operational scenarios.« less

  12. Development and validation of carbofuran and 3-hydroxycarbofuran analysis by high-pressure liquid chromatography with diode array detector (HPLC-DAD) for forensic Veterinary Medicine.

    PubMed

    Gonçalves, Vagner; Hazarbassanov, Nicolle Queiroz; de Siqueira, Adriana; Florio, Jorge Camilo; Ciscato, Claudia Helena Pastor; Maiorka, Paulo Cesar; Fukushima, André Rinaldi; de Souza Spinosa, Helenice

    2017-10-15

    Agricultural pesticides used with the criminal intent to intoxicate domestic and wild animals are a serious concern in Veterinary Medicine. In order to identify the pesticide carbofuran and its metabolite 3- hydroxycarbofuran in animals suspected of exogenous intoxication a high pressure liquid chromatography with diode array detector (HPLC-DAD) method was developed and validated in stomach contents, liver, vitreous humor and blood. The method was evaluated using biological samples from seven different animal species. The following parameters of analytical validation were evaluated: linearity, precision, accuracy, selectivity, recovery and matrix effect. The method was linear at the range of 6.25-100μg/mL and the correlation coefficient (r 2 ) values were >0.9811 for all matrices. The precision and accuracy of the method was determined by coefficient of variation (CV) and the relative standard deviation error (RSE), and both were less than 15%. Recovery ranged from 74.29 to 100.1% for carbofuran and from 64.72 to 100.61% for 3-hydroxycarbofuran. There were no significant interfering peaks or matrix effects. This method was suitable for detecting 25 positive cases for carbofuran amongst a total of 64 animal samples suspected of poisoning brought to the Toxicology Diagnostic Laboratory, School of Veterinary Medicine and Animal Sciences, University of Sao Paulo. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Precision Efficacy Analysis for Regression.

    ERIC Educational Resources Information Center

    Brooks, Gordon P.

    When multiple linear regression is used to develop a prediction model, sample size must be large enough to ensure stable coefficients. If the derivation sample size is inadequate, the model may not predict well for future subjects. The precision efficacy analysis for regression (PEAR) method uses a cross- validity approach to select sample sizes…

  14. Spatio-temporal water quality mapping from satellite images using geographically and temporally weighted regression

    NASA Astrophysics Data System (ADS)

    Chu, Hone-Jay; Kong, Shish-Jeng; Chang, Chih-Hua

    2018-03-01

    The turbidity (TB) of a water body varies with time and space. Water quality is traditionally estimated via linear regression based on satellite images. However, estimating and mapping water quality require a spatio-temporal nonstationary model, while TB mapping necessitates the use of geographically and temporally weighted regression (GTWR) and geographically weighted regression (GWR) models, both of which are more precise than linear regression. Given the temporal nonstationary models for mapping water quality, GTWR offers the best option for estimating regional water quality. Compared with GWR, GTWR provides highly reliable information for water quality mapping, boasts a relatively high goodness of fit, improves the explanation of variance from 44% to 87%, and shows a sufficient space-time explanatory power. The seasonal patterns of TB and the main spatial patterns of TB variability can be identified using the estimated TB maps from GTWR and by conducting an empirical orthogonal function (EOF) analysis.

  15. A high sensitive 66 dB linear dynamic range receiver for 3-D laser radar

    NASA Astrophysics Data System (ADS)

    Ma, Rui; Zheng, Hao; Zhu, Zhangming

    2017-08-01

    This study presents a CMOS receiver chip realized in 0.18 μm standard CMOS technology and intended for high precision 3-D laser radar. The chip includes an adjustable gain transimpedance pre-amplifier, a post-amplifier and two timing comparators. An additional feedback is employed in the regulated cascode transimpedance amplifier to decrease the input impedance, and a variable gain transimpedance amplifier controlled by digital switches and analog multiplexer is utilized to realize four gain modes, extending the input dynamic range. The measurement shows that the highest transimpedance of the channel is 50 k {{Ω }}, the uncompensated walk error is 1.44 ns in a wide linear dynamic range of 66 dB (1:2000), and the input referred noise current is 2.3 pA/\\sqrt{{Hz}} (rms), resulting in a very low detectable input current of 1 μA with SNR = 5.

  16. Plasma L-ergothioneine measurement by high-performance liquid chromatography and capillary electrophoresis after a pre-column derivatization with 5-iodoacetamidofluorescein (5-IAF) and fluorescence detection.

    PubMed

    Sotgia, Salvatore; Pisanu, Elisabetta; Pintus, Gianfranco; Erre, Gian Luca; Pinna, Gerard Aime; Deiana, Luca; Carru, Ciriaco; Zinellu, Angelo

    2013-01-01

    Two sensitive and reproducible capillary electrophoresis and high-performance liquid chromatography-fluorescence procedures were established for quantitative determination of L-egothioneine in plasma. After derivatization of L-ergothioneine with 5-iodoacetamidofluorescein, the separation was carried out by HPLC on an ODS-2 C-18 sperisorb column by using a linear gradient elution and by HPCE on an uncoated fused silica capillary, 50 µm id, and 60 cm length. The methods were validated and found to be linear in the range of 0.3 to 10 µmol/l. The limit of quantification was 0.27 µmol/l for HPCE and 0.15 µmol/l for HPLC. The variations for intra- and inter-assay precision were around 6 RSD%, and the mean recovery accuracy close to 100% (96.11%).

  17. Plasma L-Ergothioneine Measurement by High-Performance Liquid Chromatography and Capillary Electrophoresis after a Pre-Column Derivatization with 5-Iodoacetamidofluorescein (5-IAF) and Fluorescence Detection

    PubMed Central

    Sotgia, Salvatore; Pisanu, Elisabetta; Pintus, Gianfranco; Erre, Gian Luca; Pinna, Gerard Aime; Deiana, Luca; Carru, Ciriaco; Zinellu, Angelo

    2013-01-01

    Two sensitive and reproducible capillary electrophoresis and high-performance liquid chromatography-fluorescence procedures were established for quantitative determination of L-egothioneine in plasma. After derivatization of L-ergothioneine with 5-iodoacetamidofluorescein, the separation was carried out by HPLC on an ODS-2 C-18 sperisorb column by using a linear gradient elution and by HPCE on an uncoated fused silica capillary, 50 µm id, and 60 cm length. The methods were validated and found to be linear in the range of 0.3 to 10 µmol/l. The limit of quantification was 0.27 µmol/l for HPCE and 0.15 µmol/l for HPLC. The variations for intra- and inter-assay precision were around 6 RSD%, and the mean recovery accuracy close to 100% (96.11%). PMID:23922985

  18. Investigation of the polarization state of dual APPLE-II undulators.

    PubMed

    Hand, Matthew; Wang, Hongchang; Dhesi, Sarnjeet S; Sawhney, Kawal

    2016-01-01

    The use of an APPLE II undulator is extremely important for providing a high-brilliance X-ray beam with the capability to switch between various photon beam polarization states. A high-precision soft X-ray polarimeter has been used to systematically investigate the polarization characteristics of the two helical APPLE II undulators installed on beamline I06 at Diamond Light Source. A simple data acquisition and processing procedure has been developed to determine the Stokes polarization parameters for light polarized at arbitrary linear angles emitted from a single undulator, and for circularly polarized light emitted from both undulators in conjunction with a single-period undulator phasing unit. The purity of linear polarization is found to deteriorate as the polarization angle moves away from the horizontal and vertical modes. Importantly, a negative correlation between the degree of circular polarization and the photon flux has been found when the phasing unit is used.

  19. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sypek, John T.; Yu, Hang; Dusoe, Keith J.

    Shape memory materials have the ability to recover their original shape after a significant amount of deformation when they are subjected to certain stimuli, for instance, heat or magnetic fields. But, their performance is often limited by the energetics and geometry of the martensitic-austenitic phase transformation. We report a unique shape memory behavior in CaFe 2As 2, which exhibits superelasticity with over 13% recoverable strain, over 3 GPa yield strength, repeatable stress–strain response even at the micrometer scale, and cryogenic linear shape memory effects near 50 K. These properties are acheived through a reversible uni-axial phase transformation mechanism, the tetragonal/orthorhombic-to-collapsed-tetragonalmore » phase transformation. These results offer the possibility of developing cryogenic linear actuation technologies with a high precision and high actuation power per unit volume for deep space exploration, and more broadly, suggest a mechanistic path to a class of shape memory materials, ThCr 2Si 2-structured intermetallic compounds.« less

  20. Application of High-Performance Liquid Chromatography Coupled with Linear Ion Trap Quadrupole Orbitrap Mass Spectrometry for Qualitative and Quantitative Assessment of Shejin-Liyan Granule Supplements.

    PubMed

    Gu, Jifeng; Wu, Weijun; Huang, Mengwei; Long, Fen; Liu, Xinhua; Zhu, Yizhun

    2018-04-11

    A method for high-performance liquid chromatography coupled with linear ion trap quadrupole Orbitrap high-resolution mass spectrometry (HPLC-LTQ-Orbitrap MS) was developed and validated for the qualitative and quantitative assessment of Shejin-liyan Granule. According to the fragmentation mechanism and high-resolution MS data, 54 compounds, including fourteen isoflavones, eleven ligands, eight flavonoids, six physalins, six organic acids, four triterpenoid saponins, two xanthones, two alkaloids, and one licorice coumarin, were identified or tentatively characterized. In addition, ten of the representative compounds (matrine, galuteolin, tectoridin, iridin, arctiin, tectorigenin, glycyrrhizic acid, irigenin, arctigenin, and irisflorentin) were quantified using the validated HPLC-LTQ-Orbitrap MS method. The method validation showed a good linearity with coefficients of determination (r²) above 0.9914 for all analytes. The accuracy of the intra- and inter-day variation of the investigated compounds was 95.0-105.0%, and the precision values were less than 4.89%. The mean recoveries and reproducibilities of each analyte were 95.1-104.8%, with relative standard deviations below 4.91%. The method successfully quantified the ten compounds in Shejin-liyan Granule, and the results show that the method is accurate, sensitive, and reliable.

  1. NCLscan: accurate identification of non-co-linear transcripts (fusion, trans-splicing and circular RNA) with a good balance between sensitivity and precision.

    PubMed

    Chuang, Trees-Juen; Wu, Chan-Shuo; Chen, Chia-Ying; Hung, Li-Yuan; Chiang, Tai-Wei; Yang, Min-Yu

    2016-02-18

    Analysis of RNA-seq data often detects numerous 'non-co-linear' (NCL) transcripts, which comprised sequence segments that are topologically inconsistent with their corresponding DNA sequences in the reference genome. However, detection of NCL transcripts involves two major challenges: removal of false positives arising from alignment artifacts and discrimination between different types of NCL transcripts (trans-spliced, circular or fusion transcripts). Here, we developed a new NCL-transcript-detecting method ('NCLscan'), which utilized a stepwise alignment strategy to almost completely eliminate false calls (>98% precision) without sacrificing true positives, enabling NCLscan outperform 18 other publicly-available tools (including fusion- and circular-RNA-detecting tools) in terms of sensitivity and precision, regardless of the generation strategy of simulated dataset, type of intragenic or intergenic NCL event, read depth of coverage, read length or expression level of NCL transcript. With the high accuracy, NCLscan was applied to distinguishing between trans-spliced, circular and fusion transcripts on the basis of poly(A)- and nonpoly(A)-selected RNA-seq data. We showed that circular RNAs were expressed more ubiquitously, more abundantly and less cell type-specifically than trans-spliced and fusion transcripts. Our study thus describes a robust pipeline for the discovery of NCL transcripts, and sheds light on the fundamental biology of these non-canonical RNA events in human transcriptome. © The Author(s) 2015. Published by Oxford University Press on behalf of Nucleic Acids Research.

  2. Neural decoding of treadmill walking from noninvasive electroencephalographic signals

    PubMed Central

    Presacco, Alessandro; Goodman, Ronald; Forrester, Larry

    2011-01-01

    Chronic recordings from ensembles of cortical neurons in primary motor and somatosensory areas in rhesus macaques provide accurate information about bipedal locomotion (Fitzsimmons NA, Lebedev MA, Peikon ID, Nicolelis MA. Front Integr Neurosci 3: 3, 2009). Here we show that the linear and angular kinematics of the ankle, knee, and hip joints during both normal and precision (attentive) human treadmill walking can be inferred from noninvasive scalp electroencephalography (EEG) with decoding accuracies comparable to those from neural decoders based on multiple single-unit activities (SUAs) recorded in nonhuman primates. Six healthy adults were recorded. Participants were asked to walk on a treadmill at their self-selected comfortable speed while receiving visual feedback of their lower limbs (i.e., precision walking), to repeatedly avoid stepping on a strip drawn on the treadmill belt. Angular and linear kinematics of the left and right hip, knee, and ankle joints and EEG were recorded, and neural decoders were designed and optimized with cross-validation procedures. Of note, the optimal set of electrodes of these decoders were also used to accurately infer gait trajectories in a normal walking task that did not require subjects to control and monitor their foot placement. Our results indicate a high involvement of a fronto-posterior cortical network in the control of both precision and normal walking and suggest that EEG signals can be used to study in real time the cortical dynamics of walking and to develop brain-machine interfaces aimed at restoring human gait function. PMID:21768121

  3. Visual coding with a population of direction-selective neurons.

    PubMed

    Fiscella, Michele; Franke, Felix; Farrow, Karl; Müller, Jan; Roska, Botond; da Silveira, Rava Azeredo; Hierlemann, Andreas

    2015-10-01

    The brain decodes the visual scene from the action potentials of ∼20 retinal ganglion cell types. Among the retinal ganglion cells, direction-selective ganglion cells (DSGCs) encode motion direction. Several studies have focused on the encoding or decoding of motion direction by recording multiunit activity, mainly in the visual cortex. In this study, we simultaneously recorded from all four types of ON-OFF DSGCs of the rabbit retina using a microelectronics-based high-density microelectrode array (HDMEA) and decoded their concerted activity using probabilistic and linear decoders. Furthermore, we investigated how the modification of stimulus parameters (velocity, size, angle of moving object) and the use of different tuning curve fits influenced decoding precision. Finally, we simulated ON-OFF DSGC activity, based on real data, in order to understand how tuning curve widths and the angular distribution of the cells' preferred directions influence decoding performance. We found that probabilistic decoding strategies outperformed, on average, linear methods and that decoding precision was robust to changes in stimulus parameters such as velocity. The removal of noise correlations among cells, by random shuffling trials, caused a drop in decoding precision. Moreover, we found that tuning curves are broad in order to minimize large errors at the expense of a higher average error, and that the retinal direction-selective system would not substantially benefit, on average, from having more than four types of ON-OFF DSGCs or from a perfect alignment of the cells' preferred directions. Copyright © 2015 the American Physiological Society.

  4. Visual coding with a population of direction-selective neurons

    PubMed Central

    Farrow, Karl; Müller, Jan; Roska, Botond; Azeredo da Silveira, Rava; Hierlemann, Andreas

    2015-01-01

    The brain decodes the visual scene from the action potentials of ∼20 retinal ganglion cell types. Among the retinal ganglion cells, direction-selective ganglion cells (DSGCs) encode motion direction. Several studies have focused on the encoding or decoding of motion direction by recording multiunit activity, mainly in the visual cortex. In this study, we simultaneously recorded from all four types of ON-OFF DSGCs of the rabbit retina using a microelectronics-based high-density microelectrode array (HDMEA) and decoded their concerted activity using probabilistic and linear decoders. Furthermore, we investigated how the modification of stimulus parameters (velocity, size, angle of moving object) and the use of different tuning curve fits influenced decoding precision. Finally, we simulated ON-OFF DSGC activity, based on real data, in order to understand how tuning curve widths and the angular distribution of the cells' preferred directions influence decoding performance. We found that probabilistic decoding strategies outperformed, on average, linear methods and that decoding precision was robust to changes in stimulus parameters such as velocity. The removal of noise correlations among cells, by random shuffling trials, caused a drop in decoding precision. Moreover, we found that tuning curves are broad in order to minimize large errors at the expense of a higher average error, and that the retinal direction-selective system would not substantially benefit, on average, from having more than four types of ON-OFF DSGCs or from a perfect alignment of the cells' preferred directions. PMID:26289471

  5. Intelligent measurement and compensation of linear motor force ripple: a projection-based learning approach in the presence of noise

    NASA Astrophysics Data System (ADS)

    Liu, Yang; Song, Fazhi; Yang, Xiaofeng; Dong, Yue; Tan, Jiubin

    2018-06-01

    Due to their structural simplicity, linear motors are increasingly receiving attention for use in high velocity and high precision applications. The force ripple, as a space-periodic disturbance, however, would deteriorate the achievable dynamic performance. Conventional force ripple measurement approaches are time-consuming and have high requirements on the experimental conditions. In this paper, a novel learning identification algorithm is proposed for force ripple intelligent measurement and compensation. Existing identification schemes always use all the error signals to update the parameters in the force ripple. However, the error induced by noise is non-effective for force ripple identification, and even deteriorates the identification process. In this paper only the most pertinent information in the error signal is utilized for force ripple identification. Firstly, the effective error signals caused by the reference trajectory and the force ripple are extracted by projecting the overall error signals onto a subspace spanned by the physical model of the linear motor as well as the sinusoidal model of the force ripple. The time delay in the linear motor is compensated in the basis functions. Then, a data-driven approach is proposed to design the learning gain. It balances the trade-off between convergence speed and robustness against noise. Simulation and experimental results validate the proposed method and confirm its effectiveness and superiority.

  6. Gas pressure assisted microliquid-liquid extraction coupled online to direct infusion mass spectrometry: a new automated screening platform for bioanalysis.

    PubMed

    Raterink, Robert-Jan; Witkam, Yoeri; Vreeken, Rob J; Ramautar, Rawi; Hankemeier, Thomas

    2014-10-21

    In the field of bioanalysis, there is an increasing demand for miniaturized, automated, robust sample pretreatment procedures that can be easily connected to direct-infusion mass spectrometry (DI-MS) in order to allow the high-throughput screening of drugs and/or their metabolites in complex body fluids like plasma. Liquid-Liquid extraction (LLE) is a common sample pretreatment technique often used for complex aqueous samples in bioanalysis. Despite significant developments that have been made in automated and miniaturized LLE procedures, fully automated LLE techniques allowing high-throughput bioanalytical studies on small-volume samples using direct infusion mass spectrometry, have not been matured yet. Here, we introduce a new fully automated micro-LLE technique based on gas-pressure assisted mixing followed by passive phase separation, coupled online to nanoelectrospray-DI-MS. Our method was characterized by varying the gas flow and its duration through the solvent mixture. For evaluation of the analytical performance, four drugs were spiked to human plasma, resulting in highly acceptable precision (RSD down to 9%) and linearity (R(2) ranging from 0.990 to 0.998). We demonstrate that our new method does not only allow the reliable extraction of analytes from small sample volumes of a few microliters in an automated and high-throughput manner, but also performs comparable or better than conventional offline LLE, in which the handling of small volumes remains challenging. Finally, we demonstrate the applicability of our method for drug screening on dried blood spots showing excellent linearity (R(2) of 0.998) and precision (RSD of 9%). In conclusion, we present the proof of principe of a new high-throughput screening platform for bioanalysis based on a new automated microLLE method, coupled online to a commercially available nano-ESI-DI-MS.

  7. A high precision, compact electromechanical ground rotation sensor

    NASA Astrophysics Data System (ADS)

    Dergachev, V.; DeSalvo, R.; Asadoor, M.; Bhawal, A.; Gong, P.; Kim, C.; Lottarini, A.; Minenkov, Y.; Murphy, C.; O'Toole, A.; Peña Arellano, F. E.; Rodionov, A. V.; Shaner, M.; Sobacchi, E.

    2014-05-01

    We present a mechanical rotation sensor consisting of a balance pivoting on a tungsten carbide knife edge. These sensors are important for precision seismic isolation systems, as employed in land-based gravitational wave interferometers and for the new field of rotational seismology. The position sensor used is an air-core linear variable differential transformer with a demonstrated noise floor of {1}{ × 10^{-11}}textrm { m}/sqrt{textrm {Hz}}. We describe the instrument construction and demonstrate low noise operation with a noise floor upper bound of {5.7}{ × 10^{-9}}textrm { rad}/sqrt{textrm {Hz}} at 10 mHz and {6.4}{ × 10^{-10}}textrm { rad}/sqrt{textrm {Hz}} at 0.1 Hz. The performance of the knife edge hinge is compatible with a behaviorur free of noise from dislocation self-organized criticality.

  8. Analysis of photopole data reduction models

    NASA Technical Reports Server (NTRS)

    Cheek, James B.

    1987-01-01

    An analysis of the total impulse obtained from a buried explosive charge can be calculated from displacement versus time points taken from successive film frames of high speed motion pictures of the explosive event. The indicator of that motion is a pole and baseplate (photopole), which is placed on or within the soil overburden. Here, researchers are concerned with the precision of the impulse calculation and ways to improve that precision. Also examined here is the effect of each initial condition on the curve fitting process. It is shown that the zero initial velocity criteria should not be applied due to the linear acceleration versus time character of the cubic power series. The applicability of the new method to photopole data records whose early time motions are obscured is illustrated.

  9. Development of MMC Gamma Detectors for Precise Characterization of Uranium Isotopes

    NASA Astrophysics Data System (ADS)

    Kim, G. B.; Flynn, C. C.; Kempf, S.; Gastaldo, L.; Fleischmann, A.; Enss, C.; Friedrich, S.

    2018-06-01

    Precise nuclear data from radioactive decays are important for the accurate non-destructive assay of fissile materials in nuclear safeguards. We are developing high energy resolution gamma detectors based on metallic magnetic calorimeters (MMCs) to accurately measure gamma-ray energies and branching ratios of uranium isotopes. Our MMC gamma detectors exhibit good linearity, reproducibility and a consistent response function for low energy gamma-rays. We illustrate the capabilities of MMCs to improve literature values of nuclear data with an analysis of gamma spectra of U-233. In this context, we also improve the value of the energy for the single gamma-ray of the U-233 daughter Ra-225 by over an order of magnitude from 40.09 ± 0.05 to 40.0932 ± 0.0007 keV.

  10. Lorentz symmetry violation and UHECR experiments

    NASA Astrophysics Data System (ADS)

    Gonzalez-Mestres, L.

    2001-08-01

    Lorentz symmetry violation (LSV) at Planck scale can be tested through ultra-high energy cosmic rays (UHECR). We discuss deformed Lorentz symmetry (DLS) and energy non-conservation (ENC) patterns where the effective LSV parameter varies like the square of the momentum scale (e.g. quadratically de-formed relativistic kinematics, QDRK). In such patterns, a ≈ 106 LSV at Planck scale would be enough to produce observable effects on the properties of cosmic rays at the ≈ 1020 eV scale: absence of GZK cutoff, stability of unstable particles, lower interaction rates, kinematical failure of any parton model and of standard formulae for Lorentz contraction and time dilation... Its phenomeno-logical implications are compatible with existing data. Precise signatures are discussed in several patterns. If the effective LSV or ENC parameter is taken to vary linearly with the momentum scale (e.g. linearly deformed relativistic kinematics, LDRK), contradictions seem to arise with UHECR data. Conse-quences are important for UHECR and high-energy gamma-ray exper iments, as well as for high-energy cosmic rays and gravitational waves.

  11. Magnetostrictive direct drive motor

    NASA Technical Reports Server (NTRS)

    Naik, Dipak; Dehoff, P. H.

    1991-01-01

    Highly magnetostrictive materials such as Tb.3Dy.7Fe2, commercially known as TERFENOL-D, have been used to date in a variety of devices such as high power actuators and linear motors. The larger magnetostriction available in twinned single crystal TERFENOL-D, approx. 2000 ppm at moderate magnetic field strengths, makes possible a new generation of magnetomechanical devices. NASA researchers are studying the potential of this material as the basis for a direct microstepping rotary motor with torque densities on the order of industrial hydraulics and five times greater than that of the most efficient, high power electric motors. Such a motor would be a micro-radian stepper, capable of precision movements and self-braking in the power-off state. Innovative mechanical engineering techniques are juxtaposed on proper magnetic circuit design to reduce losses in structural flexures, inertias, thermal expansions, eddy currents, and magneto-mechanical coupling, thus optimizing motor performance and efficiency. Mathematical models are presented, including magnetic, structural, and both linear and nonlinear dynamic calculations and simulations. In addition, test results on prototypes are presented.

  12. Evaluation of Beckman Coulter DxI 800 immunoassay system using clinically oriented performance goals.

    PubMed

    Akbas, Neval; Schryver, Patricia G; Algeciras-Schimnich, Alicia; Baumann, Nikola A; Block, Darci R; Budd, Jeffrey R; Gaston, S J Stephen; Klee, George G

    2014-11-01

    We evaluated the analytical performance of 24 immunoassays using the Beckman Coulter DxI 800 immunoassay systems at Mayo Clinic, Rochester, MN for trueness, precision, detection limits, linearity, and consistency (across instruments and reagent lots). Clinically oriented performance goals were defined using the following methods: trueness-published desirable accuracy limits, precision-published desirable biologic variation; detection limits - 0.1 percentile of patient test values, linearity - 50% of total error, and consistency-percentage test values crossing key decision points. Local data were collected for precision, linearity, and consistency. Data were provided by Beckman Coulter, Inc. for trueness and detection limits. All evaluated assays except total thyroxine were within the proposed goals for trueness. Most of the assays met the proposed goals for precision (86% of intra-assay results and 75% of inter-assay results). Five assays had more than 15% of the test results below the minimum detection limits. Carcinoembryonic antigen, total thyroxine and free triiodothyronine exceeded the proposed goals of ±6.3%, ±5% and ±5.7% for dilution linearity. All evaluated assays were within the proposed goals for instrument consistency. Lot-to-lot consistency results for cortisol, ferritin and total thyroxine exceeded the proposed goals of 3.3%, 11.4% and 7% at one medical decision level, while vitamin B12 exceeded the proposed goals of 5.2% and 3.8% at two decision levels. The Beckman Coulter DxI 800 immunoassay system meets most of these proposed goals, even though these clinically focused performance goals represent relatively stringent limits. Copyright © 2014 The Canadian Society of Clinical Chemists. Published by Elsevier Inc. All rights reserved.

  13. Development and validation of a high performance liquid chromatographic method for the determination of oxcarbazepine and its main metabolites in human plasma and cerebrospinal fluid and its application to pharmacokinetic study.

    PubMed

    Kimiskidis, Vasilios; Spanakis, Marios; Niopas, Ioannis; Kazis, Dimitrios; Gabrieli, Chrysi; Kanaze, Feras Imad; Divanoglou, Daniil

    2007-01-17

    An isocratic reversed-phase HPLC-UV procedure for the determination of oxcarbazepine and its main metabolites 10-hydroxy-10,11-dihydrocarbamazepine and 10,11-dihydroxy-trans-10,11-dihydrocarbamazepine in human plasma and cerebrospinal fluid has been developed and validated. After addition of bromazepam as internal standard, the analytes were isolated from plasma and cerebrospinal fluid by liquid-liquid extraction. Separation was achieved on a X-TERRA C18 column using a mobile phase composed of 20 mM KH(2)PO(4), acetonitrile, and n-octylamine (76:24:0.05, v/v/v) at 40 degrees C and detected at 237 nm. The described assay was validated in terms of linearity, accuracy, precision, recovery and lower limit of quantification according to the FDA validation guidelines. Calibration curves were linear with a coefficient of variation (r) greater than 0.998. Accuracy ranged from 92.3% to 106.0% and precision was between 2.3% and 8.2%. The method has been applied to plasma and cerebrospinal fluid samples obtained from patients treated with oxcarbazepine, both in monotherapy and adjunctive therapy.

  14. Development and Validation of Different Ultraviolet-Spectrophotometric Methods for the Estimation of Besifloxacin in Different Simulated Body Fluids.

    PubMed

    Singh, C L; Singh, A; Kumar, S; Kumar, M; Sharma, P K; Majumdar, D K

    2015-01-01

    In the present study a simple, accurate, precise, economical and specific UV-spectrophotometric method for estimation of besifloxacin in bulk and in different pharmaceutical formulation has been developed. The drug shows maximum λmax289 nm in distilled water, simulated tears and phosphate buffer saline. The linearity range of developed methods were in the range of 3-30 μg/ml of drug with a correlation coefficient (r(2)) 0.9992, 0.9989 and 0.9984 with respect to distilled water, simulated tears and phosphate buffer saline, respectively. Reproducibility by repeating methods as %RSD were found to be less than 2%. The limit of detection in different media was found to be 0.62, 0.72 and 0.88 μg/ml, respectively. The limit of quantification was found to be 1.88, 2.10, 2.60 μg/ml, respectively. The proposed method was validated statically according to International Conference on Harmonization guidelines with respect to specificity, linearity, range, accuracy, precision and robustness. The proposed methods of validation were found to be accurate and highly specific for the estimation of besifloxacin in different pharmaceutical formulations.

  15. RP-HPLC Method Development and Validation for Determination of Eptifibatide Acetate in Bulk Drug Substance and Pharmaceutical Dosage Forms

    PubMed Central

    Bavand Savadkouhi, Maryam; Vahidi, Hossein; Ayatollahi, Abdul Majid; Hooshfar, Shirin; Kobarfard, Farzad

    2017-01-01

    A new, rapid, economical and isocratic reverse phase high performance liquid chromatography (RP-HPLC) method was developed for the determination of eptifibatide acetate, a small synthetic antiplatelet peptide, in bulk drug substance and pharmaceutical dosage forms. The developed method was validated as per of ICH guidelines. The chromatographic separation was achieved isocratically on C18 column (150 x 4.60 mm i.d., 5 µM particle size) at ambient temperature using acetonitrile (ACN), water and trifluoroacetic acid (TFA) as mobile phase at flow rate of 1 mL/min and UV detection at 275 nm. Eptifibatide acetate exhibited linearity over the concentration range of 0.15-2 mg/mL (r2=0.997) with limit of detection of 0.15 mg/mL The accuracy of the method was 96.4-103.8%. The intra-day and inter-day precision were between 0.052% and 0.598%, respectively. The present successfully validated method with excellent selectivity, linearity, sensitivity, precision and accuracy was applicable for the assay of eptifibatide acetate in bulk drug substance and pharmaceutical dosage forms. PMID:28979304

  16. Anodic Oxidation of Etodolac and its Linear Sweep, Square Wave and Differential Pulse Voltammetric Determination in Pharmaceuticals

    PubMed Central

    Yilmaz, B.; Kaban, S.; Akcay, B. K.

    2015-01-01

    In this study, simple, fast and reliable cyclic voltammetry, linear sweep voltammetry, square wave voltammetry and differential pulse voltammetry methods were developed and validated for determination of etodolac in pharmaceutical preparations. The proposed methods were based on electrochemical oxidation of etodolac at platinum electrode in acetonitrile solution containing 0.1 M lithium perchlorate. The well-defined oxidation peak was observed at 1.03 V. The calibration curves were linear for etodolac at the concentration range of 2.5-50 μg/ml for linear sweep, square wave and differential pulse voltammetry methods, respectively. Intra- and inter-day precision values for etodolac were less than 4.69, and accuracy (relative error) was better than 2.00%. The mean recovery of etodolac was 100.6% for pharmaceutical preparations. No interference was found from three tablet excipients at the selected assay conditions. Developed methods in this study are accurate, precise and can be easily applied to Etol, Tadolak and Etodin tablets as pharmaceutical preparation. PMID:26664057

  17. Efficient calculation of cosmological neutrino clustering in the non-linear regime

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Archidiacono, Maria; Hannestad, Steen, E-mail: archi@phys.au.dk, E-mail: sth@phys.au.dk

    2016-06-01

    We study in detail how neutrino perturbations can be followed in linear theory by using only terms up to l =2 in the Boltzmann hierarchy. We provide a new approximation to the third moment and demonstrate that the neutrino power spectrum can be calculated to a precision of better than ∼ 5% for masses up to ∼ 1 eV and k ∼< 10 h /Mpc. The matter power spectrum can be calculated far more precisely and typically at least a factor of a few better than with existing approximations. We then proceed to study how the neutrino power spectrum canmore » be reliably calculated even in the non-linear regime by using the non-linear gravitational potential, sourced by dark matter overdensities, as it is derived from semi-analytic methods based on N -body simulations in the Boltzmann evolution hierarchy. Our results agree extremely well with results derived from N -body simulations that include cold dark matter and neutrinos as independent particles with different properties.« less

  18. Validation of an assay for quantification of free normetanephrine, metanephrine and methoxytyramine in plasma by high performance liquid chromatography with coulometric detection: Comparison of peak-area vs. peak-height measurements.

    PubMed

    Nieć, Dawid; Kunicki, Paweł K

    2015-10-01

    Measurements of plasma concentrations of free normetanephrine (NMN), metanephrine (MN) and methoxytyramine (MTY) constitute the most diagnostically accurate screening test for pheochromocytomas and paragangliomas. The aim of this article is to present the results from a validation of an analytical method utilizing high performance liquid chromatography with coulometric detection (HPLC-CD) for quantifying plasma free NMN, MN and MTY. Additionally, peak integration by height and area and the use of one calibration curve for all batches or individual calibration curve for each batch of samples was explored as to determine the optimal approach with regard to accuracy and precision. The method was validated using charcoal stripped plasma spiked with solutions of NMN, MN, MTY and internal standard (4-hydroxy-3-methoxybenzylamine) with the exception of selectivity which was evaluated by analysis of real plasma samples. Calibration curve performance, accuracy, precision and recovery were determined following both peak-area and peak-height measurements and the obtained results were compared. The most accurate and precise method of calibration was evaluated by analyzing quality control samples at three concentration levels in 30 analytical runs. The detector response was linear over the entire tested concentration range from 10 to 2000pg/mL with R(2)≥0.9988. The LLOQ was 10pg/mL for each analyte of interest. To improve accuracy for measurements at low concentrations, a weighted (1/amount) linear regression model was employed, which resulted in inaccuracies of -2.48 to 9.78% and 0.22 to 7.81% following peak-area and peak-height integration, respectively. The imprecisions ranged from 1.07 to 15.45% and from 0.70 to 11.65% for peak-area and peak-height measurements, respectively. The optimal approach to calibration was the one utilizing an individual calibration curve for each batch of samples and peak-height measurements. It was characterized by inaccuracies ranging from -3.39 to +3.27% and imprecisions from 2.17 to 13.57%. The established HPLC-CD method enables accurate and precise measurements of plasma free NMN, MN and MTY with reasonable selectivity. Preparing calibration curve based on peak-height measurements for each batch of samples yields optimal accuracy and precision. Copyright © 2015. Published by Elsevier B.V.

  19. Precision measurements and computations of transition energies in rotationally cold triatomic hydrogen ions up to the midvisible spectral range.

    PubMed

    Pavanello, Michele; Adamowicz, Ludwik; Alijah, Alexander; Zobov, Nikolai F; Mizus, Irina I; Polyansky, Oleg L; Tennyson, Jonathan; Szidarovszky, Tamás; Császár, Attila G; Berg, Max; Petrignani, Annemieke; Wolf, Andreas

    2012-01-13

    First-principles computations and experimental measurements of transition energies are carried out for vibrational overtone lines of the triatomic hydrogen ion H(3)(+) corresponding to floppy vibrations high above the barrier to linearity. Action spectroscopy is improved to detect extremely weak visible-light spectral lines on cold trapped H(3)(+) ions. A highly accurate potential surface is obtained from variational calculations using explicitly correlated Gaussian wave function expansions. After nonadiabatic corrections, the floppy H(3)(+) vibrational spectrum is reproduced at the 0.1 cm(-1) level up to 16600 cm(-1).

  20. Reliable method for determination of the velocity of a sinker in a high-pressure falling body type viscometer

    NASA Astrophysics Data System (ADS)

    Dindar, Cigdem; Kiran, Erdogan

    2002-10-01

    We present a new sensor configuration and data reduction process to improve the accuracy and reliability of determining the terminal velocity of a falling sinker in falling body type viscometers. This procedure is based on the use of multiple linear variable differential transformer sensors and precise mapping of the sensor signal and position along with the time of fall which is then converted to distance versus fall time along the complete fall path. The method and its use in determination of high-pressure viscosity of n-pentane and carbon dioxide are described.

  1. Working memory retrieval as a decision process

    PubMed Central

    Pearson, Benjamin; Raškevičius, Julius; Bays, Paul M.; Pertzov, Yoni; Husain, Masud

    2014-01-01

    Working memory (WM) is a core cognitive process fundamental to human behavior, yet the mechanisms underlying it remain highly controversial. Here we provide a new framework for understanding retrieval of information from WM, conceptualizing it as a decision based on the quality of internal evidence. Recent findings have demonstrated that precision of WM decreases with memory load. If WM retrieval uses a decision process that depends on memory quality, systematic changes in response time distribution should occur as a function of WM precision. We asked participants to view sample arrays and, after a delay, report the direction of change in location or orientation of a probe. As WM precision deteriorated with increasing memory load, retrieval time increased systematically. Crucially, the shape of reaction time distributions was consistent with a linear accumulator decision process. Varying either task relevance of items or maintenance duration influenced memory precision, with corresponding shifts in retrieval time. These results provide strong support for a decision-making account of WM retrieval based on noisy storage of items. Furthermore, they show that encoding, maintenance, and retrieval in WM need not be considered as separate processes, but may instead be conceptually unified as operations on the same noise-limited, neural representation. PMID:24492597

  2. Working memory retrieval as a decision process.

    PubMed

    Pearson, Benjamin; Raskevicius, Julius; Bays, Paul M; Pertzov, Yoni; Husain, Masud

    2014-02-03

    Working memory (WM) is a core cognitive process fundamental to human behavior, yet the mechanisms underlying it remain highly controversial. Here we provide a new framework for understanding retrieval of information from WM, conceptualizing it as a decision based on the quality of internal evidence. Recent findings have demonstrated that precision of WM decreases with memory load. If WM retrieval uses a decision process that depends on memory quality, systematic changes in response time distribution should occur as a function of WM precision. We asked participants to view sample arrays and, after a delay, report the direction of change in location or orientation of a probe. As WM precision deteriorated with increasing memory load, retrieval time increased systematically. Crucially, the shape of reaction time distributions was consistent with a linear accumulator decision process. Varying either task relevance of items or maintenance duration influenced memory precision, with corresponding shifts in retrieval time. These results provide strong support for a decision-making account of WM retrieval based on noisy storage of items. Furthermore, they show that encoding, maintenance, and retrieval in WM need not be considered as separate processes, but may instead be conceptually unified as operations on the same noise-limited, neural representation.

  3. Resonant sterile neutrino dark matter in the local and high-z Universe

    NASA Astrophysics Data System (ADS)

    Bozek, Brandon; Boylan-Kolchin, Michael; Horiuchi, Shunsaku; Garrison-Kimmel, Shea; Abazajian, Kevork; Bullock, James S.

    2016-06-01

    Sterile neutrinos comprise an entire class of dark matter models that, depending on their production mechanism, can be hot, warm, or cold dark matter (CDM). We simulate the Local Group and representative volumes of the Universe in a variety of sterile neutrino models, all of which are consistent with the possible existence of a radiative decay line at ˜3.5 keV. We compare models of production via resonances in the presence of a lepton asymmetry (suggested by Shi & Fuller 1999) to `thermal' models. We find that properties in the highly non-linear regime - e.g. counts of satellites and internal properties of haloes and subhaloes - are insensitive to the precise fall-off in power with wavenumber, indicating that non-linear evolution essentially washes away differences in the initial (linear) matter power spectrum. In the quasi-linear regime at higher redshifts, however, quantitative differences in the 3D matter power spectra remain, raising the possibility that such models can be tested with future observations of the Lyman-α forest. While many of the sterile neutrino models largely eliminate multiple small-scale issues within the CDM paradigm, we show that these models may be ruled out in the near future via discoveries of additional dwarf satellites in the Local Group.

  4. Realizing Broadband and Invertible Linear-to-circular Polarization Converter with Ultrathin Single-layer Metasurface

    PubMed Central

    Li, Zhancheng; Liu, Wenwei; Cheng, Hua; Chen, Shuqi; Tian, Jianguo

    2015-01-01

    The arbitrary control of the polarization states of light has attracted the interest of the scientific community because of the wide range of modern optical applications that such control can afford. However, conventional polarization control setups are bulky and very often operate only within a narrow wavelength range, thereby resisting optical system miniaturization and integration. Here, we present the basic theory, simulated demonstration, and in-depth analysis of a high-performance broadband and invertible linear-to-circular (LTC) polarization converter composed of a single-layer gold nanorod array with a total thickness of ~λ/70 for the near-infrared regime. This setup can transform a circularly polarized wave into a linearly polarized one or a linearly polarized wave with a wavelength-dependent electric field polarization angle into a circularly polarized one in the transmission mode. The broadband and invertible LTC polarization conversion can be attributed to the tailoring of the light interference at the subwavelength scale via the induction of the anisotropic optical resonance mode. This ultrathin single-layer metasurface relaxes the high-precision requirements of the structure parameters in general metasurfaces while retaining the polarization conversion performance. Our findings open up intriguing possibilities towards the realization of novel integrated metasurface-based photonics devices for polarization manipulation, modulation, and phase retardation. PMID:26667360

  5. Precision genome editing using CRISPR-Cas9 and linear repair templates in C. elegans.

    PubMed

    Paix, Alexandre; Folkmann, Andrew; Seydoux, Geraldine

    2017-05-15

    The ability to introduce targeted edits in the genome of model organisms is revolutionizing the field of genetics. State-of-the-art methods for precision genome editing use RNA-guided endonucleases to create double-strand breaks (DSBs) and DNA templates containing the edits to repair the DSBs. Following this strategy, we have developed a protocol to create precise edits in the C. elegans genome. The protocol takes advantage of two innovations to improve editing efficiency: direct injection of CRISPR-Cas9 ribonucleoprotein complexes and use of linear DNAs with short homology arms as repair templates. The protocol requires no cloning or selection, and can be used to generate base and gene-size edits in just 4days. Point mutations, insertions, deletions and gene replacements can all be created using the same experimental pipeline. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  6. Master-slave micromanipulator apparatus

    DOEpatents

    Morimoto, A.K.; Kozlowski, D.M.; Charles, S.T.; Spalding, J.A.

    1999-08-31

    An apparatus is disclosed based on precision X-Y stages that are stacked. Attached to arms projecting from each X-Y stage are a set of two axis gimbals. Attached to the gimbals is a rod, which provides motion along the axis of the rod and rotation around its axis. A dual-planar apparatus that provides six degrees of freedom of motion precise to within microns of motion. Precision linear stages along with precision linear motors, encoders, and controls provide a robotics system. The motors can be positioned in a remote location by incorporating a set of bellows on the motors and can be connected through a computer controller that will allow one to be a master and the other one to be a slave. Position information from the master can be used to control the slave. Forces of interaction of the slave with its environment can be reflected back to the motor control of the master to provide a sense of force sensed by the slave. Forces import onto the master by the operator can be fed back into the control of the slave to reduce the forces required to move it. 12 figs.

  7. Master-slave micromanipulator method

    DOEpatents

    Morimoto, Alan K.; Kozlowski, David M.; Charles, Steven T.; Spalding, James A.

    1999-01-01

    A method based on precision X-Y stages that are stacked. Attached to arms projecting from each X-Y stage are a set of two axis gimbals. Attached to the gimbals is a rod, which provides motion along the axis of the rod and rotation around its axis. A dual-planar apparatus that provides six degrees of freedom of motion precise to within microns of motion. Precision linear stages along with precision linear motors, encoders, and controls provide a robotics system. The motors can be remotized by incorporating a set of bellows on the motors and can be connected through a computer controller that will allow one to be a master and the other one to be a slave. Position information from the master can be used to control the slave. Forces of interaction of the slave with its environment can be reflected back to the motor control of the master to provide a sense of force sensed by the slave. Forces import onto the master by the operator can be fed back into the control of the slave to reduce the forces required to move it.

  8. Master-slave micromanipulator apparatus

    DOEpatents

    Morimoto, Alan K.; Kozlowski, David M.; Charles, Steven T.; Spalding, James A.

    1999-01-01

    An apparatus based on precision X-Y stages that are stacked. Attached to arms projecting from each X-Y stage are a set of two axis gimbals. Attached to the gimbals is a rod, which provides motion along the axis of the rod and rotation around its axis. A dual-planar apparatus that provides six degrees of freedom of motion precise to within microns of motion. Precision linear stages along with precision linear motors, encoders, and controls provide a robotics system. The motors can be positioned in a remote location by incorporating a set of bellows on the motors and can be connected through a computer controller that will allow one to be a master and the other one to be a slave. Position information from the master can be used to control the slave. Forces of interaction of the slave with its environment can be reflected back to the motor control of the master to provide a sense of force sensed by the slave. Forces import onto the master by the operator can be fed back into the control of the slave to reduce the forces required to move it.

  9. A parallel solver for huge dense linear systems

    NASA Astrophysics Data System (ADS)

    Badia, J. M.; Movilla, J. L.; Climente, J. I.; Castillo, M.; Marqués, M.; Mayo, R.; Quintana-Ortí, E. S.; Planelles, J.

    2011-11-01

    HDSS (Huge Dense Linear System Solver) is a Fortran Application Programming Interface (API) to facilitate the parallel solution of very large dense systems to scientists and engineers. The API makes use of parallelism to yield an efficient solution of the systems on a wide range of parallel platforms, from clusters of processors to massively parallel multiprocessors. It exploits out-of-core strategies to leverage the secondary memory in order to solve huge linear systems O(100.000). The API is based on the parallel linear algebra library PLAPACK, and on its Out-Of-Core (OOC) extension POOCLAPACK. Both PLAPACK and POOCLAPACK use the Message Passing Interface (MPI) as the communication layer and BLAS to perform the local matrix operations. The API provides a friendly interface to the users, hiding almost all the technical aspects related to the parallel execution of the code and the use of the secondary memory to solve the systems. In particular, the API can automatically select the best way to store and solve the systems, depending of the dimension of the system, the number of processes and the main memory of the platform. Experimental results on several parallel platforms report high performance, reaching more than 1 TFLOP with 64 cores to solve a system with more than 200 000 equations and more than 10 000 right-hand side vectors. New version program summaryProgram title: Huge Dense System Solver (HDSS) Catalogue identifier: AEHU_v1_1 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEHU_v1_1.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 87 062 No. of bytes in distributed program, including test data, etc.: 1 069 110 Distribution format: tar.gz Programming language: Fortran90, C Computer: Parallel architectures: multiprocessors, computer clusters Operating system: Linux/Unix Has the code been vectorized or parallelized?: Yes, includes MPI primitives. RAM: Tested for up to 190 GB Classification: 6.5 External routines: MPI ( http://www.mpi-forum.org/), BLAS ( http://www.netlib.org/blas/), PLAPACK ( http://www.cs.utexas.edu/~plapack/), POOCLAPACK ( ftp://ftp.cs.utexas.edu/pub/rvdg/PLAPACK/pooclapack.ps) (code for PLAPACK and POOCLAPACK is included in the distribution). Catalogue identifier of previous version: AEHU_v1_0 Journal reference of previous version: Comput. Phys. Comm. 182 (2011) 533 Does the new version supersede the previous version?: Yes Nature of problem: Huge scale dense systems of linear equations, Ax=B, beyond standard LAPACK capabilities. Solution method: The linear systems are solved by means of parallelized routines based on the LU factorization, using efficient secondary storage algorithms when the available main memory is insufficient. Reasons for new version: In many applications we need to guarantee a high accuracy in the solution of very large linear systems and we can do it by using double-precision arithmetic. Summary of revisions: Version 1.1 Can be used to solve linear systems using double-precision arithmetic. New version of the initialization routine. The user can choose the kind of arithmetic and the values of several parameters of the environment. Running time: About 5 hours to solve a system with more than 200 000 equations and more than 10 000 right-hand side vectors using double-precision arithmetic on an eight-node commodity cluster with a total of 64 Intel cores.

  10. Study on Fuzzy Adaptive Fractional Order PIλDμ Control for Maglev Guiding System

    NASA Astrophysics Data System (ADS)

    Hu, Qing; Hu, Yuwei

    The mathematical model of the linear elevator maglev guiding system is analyzed in this paper. For the linear elevator needs strong stability and robustness to run, the integer order PID was expanded to the fractional order, in order to improve the steady state precision, rapidity and robustness of the system, enhance the accuracy of the parameter in fractional order PIλDμ controller, the fuzzy control is combined with the fractional order PIλDμ control, using the fuzzy logic achieves the parameters online adjustment. The simulations reveal that the system has faster response speed, higher tracking precision, and has stronger robustness to the disturbance.

  11. A survey of the state of the art and focused research in range systems, task 2

    NASA Technical Reports Server (NTRS)

    Yao, K.

    1986-01-01

    Many communication, control, and information processing subsystems are modeled by linear systems incorporating tapped delay lines (TDL). Such optimized subsystems result in full precision multiplications in the TDL. In order to reduce complexity and cost in a microprocessor implementation, these multiplications can be replaced by single-shift instructions which are equivalent to powers of two multiplications. Since, in general, the obvious operation of rounding the infinite precision TDL coefficients to the nearest powers of two usually yield quite poor system performance, the optimum powers of two coefficient solution was considered. Detailed explanations on the use of branch-and-bound algorithms for finding the optimum powers of two solutions are given. Specific demonstration of this methodology to the design of a linear data equalizer and its implementation in assembly language on a 8080 microprocessor with a 12 bit A/D converter are reported. This simple microprocessor implementation with optimized TDL coefficients achieves a system performance comparable to the optimum linear equalization with full precision multiplications for an input data rate of 300 baud. The philosophy demonstrated in this implementation is dully applicable to many other microprocessor controlled information processing systems.

  12. Comprehensive characterizations of nanoparticle biodistribution following systemic injection in mice

    NASA Astrophysics Data System (ADS)

    Liao, Wei-Yin; Li, Hui-Jing; Chang, Ming-Yao; Tang, Alan C. L.; Hoffman, Allan S.; Hsieh, Patrick C. H.

    2013-10-01

    Various nanoparticle (NP) properties such as shape and surface charge have been studied in an attempt to enhance the efficacy of NPs in biomedical applications. When trying to undermine the precise biodistribution of NPs within the target organs, the analytical method becomes the determining factor in measuring the precise quantity of distributed NPs. High performance liquid chromatography (HPLC) represents a more powerful tool in quantifying NP biodistribution compared to conventional analytical methods such as an in vivo imaging system (IVIS). This, in part, is due to better curve linearity offered by HPLC than IVIS. Furthermore, HPLC enables us to fully analyze each gram of NPs present in the organs without compromising the signals and the depth-related sensitivity as is the case in IVIS measurements. In addition, we found that changing physiological conditions improved large NP (200-500 nm) distribution in brain tissue. These results reveal the importance of selecting analytic tools and physiological environment when characterizing NP biodistribution for future nanoscale toxicology, therapeutics and diagnostics.Various nanoparticle (NP) properties such as shape and surface charge have been studied in an attempt to enhance the efficacy of NPs in biomedical applications. When trying to undermine the precise biodistribution of NPs within the target organs, the analytical method becomes the determining factor in measuring the precise quantity of distributed NPs. High performance liquid chromatography (HPLC) represents a more powerful tool in quantifying NP biodistribution compared to conventional analytical methods such as an in vivo imaging system (IVIS). This, in part, is due to better curve linearity offered by HPLC than IVIS. Furthermore, HPLC enables us to fully analyze each gram of NPs present in the organs without compromising the signals and the depth-related sensitivity as is the case in IVIS measurements. In addition, we found that changing physiological conditions improved large NP (200-500 nm) distribution in brain tissue. These results reveal the importance of selecting analytic tools and physiological environment when characterizing NP biodistribution for future nanoscale toxicology, therapeutics and diagnostics. Electronic supplementary information (ESI) available. See DOI: 10.1039/c3nr03954d

  13. Precision magnetic suspension linear bearing

    NASA Technical Reports Server (NTRS)

    Trumper, David L.; Queen, Michael A.

    1992-01-01

    We have shown the design and analyzed the electromechanics of a linear motor suitable for independently controlling two suspension degrees of freedom. This motor, at least on paper, meets the requirements for driving an X-Y stage of 10 Kg mass with about 4 m/sq sec acceleration, with travel of several hundred millimeters in X and Y, and with reasonable power dissipation. A conceptual design for such a stage is presented. The theoretical feasibility of linear and planar bearings using single or multiple magnetic suspension linear motors is demonstrated.

  14. Testing of advanced technique for linear lattice and closed orbit correction by modeling its application for iota ring at Fermilab

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Romanov, A.

    Many modern and most future accelerators rely on precise configuration of lattice and trajectory. The Integrable Optics Test Accelerator (IOTA) at Fermilab that is coming to final stages of construction will be used to test advanced approaches of control over particles dynamics. Various experiments planned at IOTA require high flexibility of lattice configuration as well as high precision of lattice and closed orbit control. Dense element placement does not allow to have ideal configuration of diagnostics and correctors for all planned experiments. To overcome this limitations advanced method of lattice an beneficial for other machines. Developed algorithm is based onmore » LOCO approach, extended with various sets of other experimental data, such as dispersion, BPM BPM phase advances, beam shape information from synchrotron light monitors, responses of closed orbit bumps to variations of focusing elements and other. Extensive modeling of corrections for a big number of random seed errors is used to illustrate benefits from developed approach.« less

  15. MISR CMVs and Multiangular Views of Tropical Cyclone Inner-Core Dynamics

    NASA Technical Reports Server (NTRS)

    Wu, Dong L.; Diner, David J.; Garay, Michael J; Jovanovic, Veljko M.; Lee, Jae N.; Moroney, Catherine M.; Mueller, Kevin J.; Nelson, David L.

    2010-01-01

    Multi-camera stereo imaging of cloud features from the MISR (Multiangle Imaging SpectroRadiometer) instrument on NASA's Terra satellite provides accurate and precise measurements of cloud top heights (CTH) and cloud motion vector (CMV) winds. MISR observes each cloudy scene from nine viewing angles (Nadir, +/-26(sup o), +/-46(sup o), +/-60(sup o), +/-70(sup o)) with approximatel 275-m pixel resolution. This paper provides an update on MISR CMV and CTH algorithm improvements, and explores a high-resolution retrieval of tangential winds inside the eyewall of tropical cyclones (TC). The MISR CMV and CTH retrievals from the updated algorithm are significantly improved in terms of spatial coverage and systematic errors. A new product, the 1.1-km cross-track wind, provides high accuracy and precision in measuring convective outflows. Preliminary results obtained from the 1.1-km tangential wind retrieval inside the TC eyewall show that the inner-core rotation is often faster near the eyewall, and this faster rotation appears to be related linearly to cyclone intensity.

  16. High-precision optical measurements of 13C/12C isotope ratios in organic compounds at natural abundance

    PubMed Central

    Zare, Richard N.; Kuramoto, Douglas S.; Haase, Christa; Tan, Sze M.; Crosson, Eric R.; Saad, Nabil M. R.

    2009-01-01

    A continuous-flow cavity ring-down spectroscopy (CRDS) system integrating a chromatographic separation technique, a catalytic combustor, and an isotopic 13C/12C optical analyzer is described for the isotopic analysis of a mixture of organic compounds. A demonstration of its potential is made for the geochemically important class of short-chain hydrocarbons. The system proved to be linear over a 3-fold injection volume dynamic range with an average precision of 0.95‰ and 0.67‰ for ethane and propane, respectively. The calibrated accuracy for methane, ethane, and propane is within 3‰ of the values determined using isotope ratio mass spectrometry (IRMS), which is the current method of choice for compound-specific isotope analysis. With anticipated improvements, the low-cost, portable, and easy-to-use CRDS-based instrumental setup is poised to evolve into a credible challenge to the high-cost and complex IRMS-based technique. PMID:19564619

  17. A Highly Controllable Electrochemical Anodization Process to Fabricate Porous Anodic Aluminum Oxide Membranes

    NASA Astrophysics Data System (ADS)

    Lin, Yuanjing; Lin, Qingfeng; Liu, Xue; Gao, Yuan; He, Jin; Wang, Wenli; Fan, Zhiyong

    2015-12-01

    Due to the broad applications of porous alumina nanostructures, research on fabrication of anodized aluminum oxide (AAO) with nanoporous structure has triggered enormous attention. While fabrication of highly ordered nanoporous AAO with tunable geometric features has been widely reported, it is known that its growth rate can be easily affected by the fluctuation of process conditions such as acid concentration and temperature during electrochemical anodization process. To fabricate AAO with various geometric parameters, particularly, to realize precise control over pore depth for scientific research and commercial applications, a controllable fabrication process is essential. In this work, we revealed a linear correlation between the integrated electric charge flow throughout the circuit in the stable anodization process and the growth thickness of AAO membranes. With this understanding, we developed a facile approach to precisely control the growth process of the membranes. It was found that this approach is applicable in a large voltage range, and it may be extended to anodization of other metal materials such as Ti as well.

  18. A Highly Controllable Electrochemical Anodization Process to Fabricate Porous Anodic Aluminum Oxide Membranes.

    PubMed

    Lin, Yuanjing; Lin, Qingfeng; Liu, Xue; Gao, Yuan; He, Jin; Wang, Wenli; Fan, Zhiyong

    2015-12-01

    Due to the broad applications of porous alumina nanostructures, research on fabrication of anodized aluminum oxide (AAO) with nanoporous structure has triggered enormous attention. While fabrication of highly ordered nanoporous AAO with tunable geometric features has been widely reported, it is known that its growth rate can be easily affected by the fluctuation of process conditions such as acid concentration and temperature during electrochemical anodization process. To fabricate AAO with various geometric parameters, particularly, to realize precise control over pore depth for scientific research and commercial applications, a controllable fabrication process is essential. In this work, we revealed a linear correlation between the integrated electric charge flow throughout the circuit in the stable anodization process and the growth thickness of AAO membranes. With this understanding, we developed a facile approach to precisely control the growth process of the membranes. It was found that this approach is applicable in a large voltage range, and it may be extended to anodization of other metal materials such as Ti as well.

  19. Simultaneous quantification of withanolides in Withania somnifera by a validated high-performance thin-layer chromatographic method.

    PubMed

    Srivastava, Pooja; Tiwari, Neerja; Yadav, Akhilesh K; Kumar, Vijendra; Shanker, Karuna; Verma, Ram K; Gupta, Madan M; Gupta, Anil K; Khanuja, Suman P S

    2008-01-01

    This paper describes a sensitive, selective, specific, robust, and validated densitometric high-performance thin-layer chromatographic (HPTLC) method for the simultaneous determination of 3 key withanolides, namely, withaferin-A, 12-deoxywithastramonolide, and withanolide-A, in Ashwagandha (Withania somnifera) plant samples. The separation was performed on aluminum-backed silica gel 60F254 HPTLC plates using dichloromethane-methanol-acetone-diethyl ether (15 + 1 + 1 + 1, v/v/v/v) as the mobile phase. The withanolides were quantified by densitometry in the reflection/absorption mode at 230 nm. Precise and accurate quantification could be performed in the linear working concentration range of 66-330 ng/band with good correlation (r2 = 0.997, 0.999, and 0.996, respectively). The method was validated for recovery, precision, accuracy, robustness, limit of detection, limit of quantitation, and specificity according to International Conference on Harmonization guidelines. Specificity of quantification was confirmed using retention factor (Rf) values, UV-Vis spectral correlation, and electrospray ionization mass spectra of marker compounds in sample tracks.

  20. Determination of rifampicin in human plasma by high-performance liquid chromatography coupled with ultraviolet detection after automatized solid-liquid extraction.

    PubMed

    Louveau, B; Fernandez, C; Zahr, N; Sauvageon-Martre, H; Maslanka, P; Faure, P; Mourah, S; Goldwirt, L

    2016-12-01

    A precise and accurate high-performance liquid chromatography (HPLC) quantification method of rifampicin in human plasma was developed and validated using ultraviolet detection after an automatized solid-phase extraction. The method was validated with respect to selectivity, extraction recovery, linearity, intra- and inter-day precision, accuracy, lower limit of quantification and stability. Chromatographic separation was performed on a Chromolith RP 8 column using a mixture of 0.05 m acetate buffer pH 5.7-acetonitrile (35:65, v/v) as mobile phase. The compounds were detected at a wavelength of 335 nm with a lower limit of quantification of 0.05 mg/L in human plasma. Retention times for rifampicin and 6,7-dimethyl-2,3-di(2-pyridyl) quinoxaline used as internal standard were respectively 3.77 and 4.81 min. This robust and exact method was successfully applied in routine for therapeutic drug monitoring in patients treated with rifampicin. Copyright © 2016 John Wiley & Sons, Ltd.

  1. A novel spectrofluorimetric method for the assay of pseudoephedrine hydrochloride in pharmaceutical formulations via derivatization with 4-chloro-7-nitrobenzofurazan.

    PubMed

    El-Didamony, Akram M; Gouda, Ayman A

    2011-01-01

    A new highly sensitive and specific spectrofluorimetric method has been developed to determine a sympathomimetic drug pseudoephedrine hydrochloride. The present method was based on derivatization with 4-chloro-7-nitrobenzofurazan in phosphate buffer at pH 7.8 to produce a highly fluorescent product which was measured at 532 nm (excitation at 475 nm). Under the optimized conditions a linear relationship and good correlation was found between the fluorescence intensity and pseudoephedrine hydrochloride concentration in the range of 0.5-5 µg mL(-1). The proposed method was successfully applied to the assay of pseudoephedrine hydrochloride in commercial pharmaceutical formulations with good accuracy and precision and without interferences from common additives. Statistical comparison of the results with a well-established method showed excellent agreement and proved that there was no significant difference in the accuracy and precision. The stoichiometry of the reaction was determined and the reaction pathway was postulated. Copyright © 2010 John Wiley & Sons, Ltd.

  2. An hp symplectic pseudospectral method for nonlinear optimal control

    NASA Astrophysics Data System (ADS)

    Peng, Haijun; Wang, Xinwei; Li, Mingwu; Chen, Biaosong

    2017-01-01

    An adaptive symplectic pseudospectral method based on the dual variational principle is proposed and is successfully applied to solving nonlinear optimal control problems in this paper. The proposed method satisfies the first order necessary conditions of continuous optimal control problems, also the symplectic property of the original continuous Hamiltonian system is preserved. The original optimal control problem is transferred into a set of nonlinear equations which can be solved easily by Newton-Raphson iterations, and the Jacobian matrix is found to be sparse and symmetric. The proposed method, on one hand, exhibits exponent convergence rates when the number of collocation points are increasing with the fixed number of sub-intervals; on the other hand, exhibits linear convergence rates when the number of sub-intervals is increasing with the fixed number of collocation points. Furthermore, combining with the hp method based on the residual error of dynamic constraints, the proposed method can achieve given precisions in a few iterations. Five examples highlight the high precision and high computational efficiency of the proposed method.

  3. Thermal expansion as a precision actuator

    NASA Astrophysics Data System (ADS)

    Miller, Chris; Montgomery, David; Black, Martin; Schnetler, Hermine

    2016-07-01

    The UK ATC has developed a novel thermal actuator design as part of an OPTICON project focusing on the development of a Freeform Active Mirror Element (FAME). The actuator uses the well understood concept of thermal expansion to generate the required force and displacement. As heat is applied to the actuator material it expands linearly. A resistance temperature device (RTD) is embedded in the centre of the actuator and is used both as a heater and a sensor. The RTD temperature is controlled electronically by injecting a varying amount of current into the device whilst measuring the voltage across it. Temperature control of the RTD has been achieved to within 0.01°C. A 3D printed version of the actuator is currently being used at the ATC to deform a mirror but it has several advantages that may make it suitable to other applications. The actuator is cheap to produce whilst obtaining a high accuracy and repeatability. The actuator design would be suitable for applications requiring large numbers of actuators with high precision.

  4. MOIL-opt: Energy-Conserving Molecular Dynamics on a GPU/CPU system

    PubMed Central

    Ruymgaart, A. Peter; Cardenas, Alfredo E.; Elber, Ron

    2011-01-01

    We report an optimized version of the molecular dynamics program MOIL that runs on a shared memory system with OpenMP and exploits the power of a Graphics Processing Unit (GPU). The model is of heterogeneous computing system on a single node with several cores sharing the same memory and a GPU. This is a typical laboratory tool, which provides excellent performance at minimal cost. Besides performance, emphasis is made on accuracy and stability of the algorithm probed by energy conservation for explicit-solvent atomically-detailed-models. Especially for long simulations energy conservation is critical due to the phenomenon known as “energy drift” in which energy errors accumulate linearly as a function of simulation time. To achieve long time dynamics with acceptable accuracy the drift must be particularly small. We identify several means of controlling long-time numerical accuracy while maintaining excellent speedup. To maintain a high level of energy conservation SHAKE and the Ewald reciprocal summation are run in double precision. Double precision summation of real-space non-bonded interactions improves energy conservation. In our best option, the energy drift using 1fs for a time step while constraining the distances of all bonds, is undetectable in 10ns simulation of solvated DHFR (Dihydrofolate reductase). Faster options, shaking only bonds with hydrogen atoms, are also very well behaved and have drifts of less than 1kcal/mol per nanosecond of the same system. CPU/GPU implementations require changes in programming models. We consider the use of a list of neighbors and quadratic versus linear interpolation in lookup tables of different sizes. Quadratic interpolation with a smaller number of grid points is faster than linear lookup tables (with finer representation) without loss of accuracy. Atomic neighbor lists were found most efficient. Typical speedups are about a factor of 10 compared to a single-core single-precision code. PMID:22328867

  5. Validation of HPLC and UV spectrophotometric methods for the determination of meropenem in pharmaceutical dosage form.

    PubMed

    Mendez, Andreas S L; Steppe, Martin; Schapoval, Elfrides E S

    2003-12-04

    A high-performance liquid chromatographic method and a UV spectrophotometric method for the quantitative determination of meropenem, a highly active carbapenem antibiotic, in powder for injection were developed in present work. The parameters linearity, precision, accuracy, specificity, robustness, limit of detection and limit of quantitation were studied according to International Conference on Harmonization guidelines. Chromatography was carried out by reversed-phase technique on an RP-18 column with a mobile phase composed of 30 mM monobasic phosphate buffer and acetonitrile (90:10; v/v), adjusted to pH 3.0 with orthophosphoric acid. The UV spectrophotometric method was performed at 298 nm. The samples were prepared in water and the stability of meropenem in aqueous solution at 4 and 25 degrees C was studied. The results were satisfactory with good stability after 24 h at 4 degrees C. Statistical analysis by Student's t-test showed no significant difference between the results obtained by the two methods. The proposed methods are highly sensitive, precise and accurate and can be used for the reliable quantitation of meropenem in pharmaceutical dosage form.

  6. Development and validation of liquid chromatographic and UV derivative spectrophotometric methods for the determination of famciclovir in pharmaceutical dosage forms.

    PubMed

    Srinubabu, Gedela; Sudharani, Batchu; Sridhar, Lade; Rao, Jvln Seshagiri

    2006-06-01

    A high-performance liquid chromatographic method and a UV derivative spectrophotometric method for the determination of famciclovir, a highly active antiviral agent, in tablets were developed in the present work. The various parameters, such as linearity, precision, accuracy, specificity, robustness, limit of detection and limit of quantitation were studied according to International Conference on Harmonization guidelines. HPLC was carried out by using the reversed-phase technique on an RP-18 column with a mobile phase composed of 50 mM monobasic phosphate buffer and methanol (50 : 50; v/v), adjusted to pH 3.05 with orthophosphoric acid. The mobile phase was pumped at a flow rate of 1 ml/min and detection was made at 242 nm with UV dual absorbance detector. The first derivative UV spectrophotometric method was performed at 226.5 nm. Statistical analysis was done by Student's t-test and F-test, which showed no significant difference between the results obtained by the two methods. The proposed methods are highly sensitive, precise and accurate and therefore can be used for its Intended purpose.

  7. Highly conductive ribbons prepared by stick-slip assembly of organosoluble gold nanoparticles.

    PubMed

    Lawrence, Jimmy; Pham, Jonathan T; Lee, Dong Yun; Liu, Yujie; Crosby, Alfred J; Emrick, Todd

    2014-02-25

    Precisely positioning and assembling nanoparticles (NPs) into hierarchical nanostructures is opening opportunities in a wide variety of applications. Many techniques employed to produce hierarchical micrometer and nanoscale structures are limited by complex fabrication of templates and difficulties with scalability. Here we describe the fabrication and characterization of conductive nanoparticle ribbons prepared from surfactant-free organosoluble gold nanoparticles (Au NPs). We used a flow-coating technique in a controlled, stick-slip assembly to regulate the deposition of Au NPs into densely packed, multilayered structures. This affords centimeter-scale long, high-resolution Au NP ribbons with precise periodic spacing in a rapid manner, up to 2 orders-of-magnitude finer and faster than previously reported methods. These Au NP ribbons exhibit linear ohmic response, with conductivity that varies by changing the binding headgroup of the ligands. Controlling NP percolation during sintering (e.g., by adding polymer to retard rapid NP coalescence) enables the formation of highly conductive ribbons, similar to thermally sintered conductive adhesives. Hierarchical, conductive Au NP ribbons represent a promising platform to enable opportunities in sensing, optoelectronics, and electromechanical devices.

  8. STRONG ORACLE OPTIMALITY OF FOLDED CONCAVE PENALIZED ESTIMATION.

    PubMed

    Fan, Jianqing; Xue, Lingzhou; Zou, Hui

    2014-06-01

    Folded concave penalization methods have been shown to enjoy the strong oracle property for high-dimensional sparse estimation. However, a folded concave penalization problem usually has multiple local solutions and the oracle property is established only for one of the unknown local solutions. A challenging fundamental issue still remains that it is not clear whether the local optimum computed by a given optimization algorithm possesses those nice theoretical properties. To close this important theoretical gap in over a decade, we provide a unified theory to show explicitly how to obtain the oracle solution via the local linear approximation algorithm. For a folded concave penalized estimation problem, we show that as long as the problem is localizable and the oracle estimator is well behaved, we can obtain the oracle estimator by using the one-step local linear approximation. In addition, once the oracle estimator is obtained, the local linear approximation algorithm converges, namely it produces the same estimator in the next iteration. The general theory is demonstrated by using four classical sparse estimation problems, i.e., sparse linear regression, sparse logistic regression, sparse precision matrix estimation and sparse quantile regression.

  9. STRONG ORACLE OPTIMALITY OF FOLDED CONCAVE PENALIZED ESTIMATION

    PubMed Central

    Fan, Jianqing; Xue, Lingzhou; Zou, Hui

    2014-01-01

    Folded concave penalization methods have been shown to enjoy the strong oracle property for high-dimensional sparse estimation. However, a folded concave penalization problem usually has multiple local solutions and the oracle property is established only for one of the unknown local solutions. A challenging fundamental issue still remains that it is not clear whether the local optimum computed by a given optimization algorithm possesses those nice theoretical properties. To close this important theoretical gap in over a decade, we provide a unified theory to show explicitly how to obtain the oracle solution via the local linear approximation algorithm. For a folded concave penalized estimation problem, we show that as long as the problem is localizable and the oracle estimator is well behaved, we can obtain the oracle estimator by using the one-step local linear approximation. In addition, once the oracle estimator is obtained, the local linear approximation algorithm converges, namely it produces the same estimator in the next iteration. The general theory is demonstrated by using four classical sparse estimation problems, i.e., sparse linear regression, sparse logistic regression, sparse precision matrix estimation and sparse quantile regression. PMID:25598560

  10. High-precision dosimetry for radiotherapy using the optically stimulated luminescence technique and thin Al2O3:C dosimeters.

    PubMed

    Yukihara, E G; Yoshimura, E M; Lindstrom, T D; Ahmad, S; Taylor, K K; Mardirossian, G

    2005-12-07

    The potential of using the optically stimulated luminescence (OSL) technique with aluminium oxide (Al(2)O(3):C) dosimeters for a precise and accurate estimation of absorbed doses delivered by high-energy photon beams was investigated. This study demonstrates the high reproducibility of the OSL measurements and presents a preliminary determination of the depth-dose curve in water for a 6 MV photon beam from a linear accelerator. The uncertainty of a single OSL measurement, estimated from the variance of a large sample of dosimeters irradiated with the same dose, was 0.7%. In the depth-dose curve obtained using the OSL technique, the difference between the measured and expected doses was < or =0.7% for depths between 1.5 and 10 cm, and 1.1% for a depth of 15 cm. The readout procedure includes a normalization of the response of the dosimeter with respect to a reference dose in order to eliminate variations in the dosimeter mass, dosimeter sensitivity, and the reader's sensitivity. This may be relevant for quality assurance programmes, since it simplifies the requirements in terms of personnel training to achieve the precision and accuracy necessary for radiotherapy applications. We concluded that the OSL technique has the potential to be reliably incorporated in quality assurance programmes and dose verification.

  11. Parallel robot for micro assembly with integrated innovative optical 3D-sensor

    NASA Astrophysics Data System (ADS)

    Hesselbach, Juergen; Ispas, Diana; Pokar, Gero; Soetebier, Sven; Tutsch, Rainer

    2002-10-01

    Recent advances in the fields of MEMS and MOEMS often require precise assembly of very small parts with an accuracy of a few microns. In order to meet this demand, a new approach using a robot based on parallel mechanisms in combination with a novel 3D-vision system has been chosen. The planar parallel robot structure with 2 DOF provides a high resolution in the XY-plane. It carries two additional serial axes for linear and rotational movement in/about z direction. In order to achieve high precision as well as good dynamic capabilities, the drive concept for the parallel (main) axes incorporates air bearings in combination with a linear electric servo motors. High accuracy position feedback is provided by optical encoders with a resolution of 0.1 μm. To allow for visualization and visual control of assembly processes, a camera module fits into the hollow tool head. It consists of a miniature CCD camera and a light source. In addition a modular gripper support is integrated into the tool head. To increase the accuracy a control loop based on an optoelectronic sensor will be implemented. As a result of an in-depth analysis of different approaches a photogrammetric system using one single camera and special beam-splitting optics was chosen. A pattern of elliptical marks is applied to the surfaces of workpiece and gripper. Using a model-based recognition algorithm the image processing software identifies the gripper and the workpiece and determines their relative position. A deviation vector is calculated and fed into the robot control to guide the gripper.

  12. Comparison of UV spectrophotometry and high performance liquid chromatography methods for the determination of repaglinide in tablets.

    PubMed

    Dhole, Seema M; Khedekar, Pramod B; Amnerkar, Nikhil D

    2012-07-01

    Repaglinide is a miglitinide class of antidiabetic drug used for the treatment of type 2 diabetes mellitus. A fast and reliable method for the determination of repaglinide was highly desirable to support formulation screening and quality control. UV spectrophotometric and reversed-phase high performance liquid chromatography (RP-HPLC) methods were developed for determination of repaglinide in the tablet dosage form. The UV spectrum recorded between 200 400 nm using methanol as solvent and the wavelength 241 nm was selected for the determination of repaglinide. RP-HPLC analysis was carried out using Agilent TC-C18 (2) column and mobile phase composed of methanol and water (80:20 v/v, pH adjusted to 3.5 with orthophosphoric acid) at a flow rate of 1.0 ml/min. Parameters such as linearity, precision, accuracy, recovery, specificity and ruggedness are studied as reported in the International Conference on Harmonization (ICH) guidelines. The developed methods illustrated excellent linearity (r(2) > 0.999) in the concentration range of 5-30 μg/ml and 5-50 μg/ml for UV spectrophotometric and HPLC methods, respectively. Precision (%R.S.D < 1.50) and mean recoveries were found in the range of 99.63-100.45% for UV spectrophotometric method and 99.71-100.25% for HPLC method which shows accuracy of the methods. The developed methods were found to be reliable, simple, fast, accurate and successfully used for the quality control of repaglinide as a bulk drug and in pharmaceutical formulations.

  13. Comparison of UV spectrophotometry and high performance liquid chromatography methods for the determination of repaglinide in tablets

    PubMed Central

    Dhole, Seema M.; Khedekar, Pramod B.; Amnerkar, Nikhil D.

    2012-01-01

    Background: Repaglinide is a miglitinide class of antidiabetic drug used for the treatment of type 2 diabetes mellitus. A fast and reliable method for the determination of repaglinide was highly desirable to support formulation screening and quality control. Objective: UV spectrophotometric and reversed-phase high performance liquid chromatography (RP-HPLC) methods were developed for determination of repaglinide in the tablet dosage form. Materials and Methods: The UV spectrum recorded between 200 400 nm using methanol as solvent and the wavelength 241 nm was selected for the determination of repaglinide. RP-HPLC analysis was carried out using Agilent TC-C18 (2) column and mobile phase composed of methanol and water (80:20 v/v, pH adjusted to 3.5 with orthophosphoric acid) at a flow rate of 1.0 ml/min. Parameters such as linearity, precision, accuracy, recovery, specificity and ruggedness are studied as reported in the International Conference on Harmonization (ICH) guidelines. Results: The developed methods illustrated excellent linearity (r2 > 0.999) in the concentration range of 5-30 μg/ml and 5-50 μg/ml for UV spectrophotometric and HPLC methods, respectively. Precision (%R.S.D < 1.50) and mean recoveries were found in the range of 99.63-100.45% for UV spectrophotometric method and 99.71-100.25% for HPLC method which shows accuracy of the methods. Conclusion: The developed methods were found to be reliable, simple, fast, accurate and successfully used for the quality control of repaglinide as a bulk drug and in pharmaceutical formulations. PMID:23781481

  14. Comparison of nitrous oxide (N2O) analyzers for high-precision measurements of atmospheric mole fractions

    NASA Astrophysics Data System (ADS)

    Lebegue, B.; Schmidt, M.; Ramonet, M.; Wastine, B.; Yver Kwok, C.; Laurent, O.; Belviso, S.; Guemri, A.; Philippon, C.; Smith, J.; Conil, S.; Jost, H. J.; Crosson, E. R.

    2015-10-01

    Over the last few decades, in-situ measurements of atmospheric N2O mole fractions have been performed using gas chromatographs (GCs) equipped with electron capture detectors (ECDs). When trying to meet the World Meteorological Organization's (WMO) quality goal, this technique becomes very challenging as the detectors are highly non-linear and the GCs at remote stations require a considerable amount of maintenance by qualified technicians to maintain good short-term and long-term repeatability. With more robust optical spectrometers being now available for N2O measurements, we aim to identify a robust and stable analyzer that can be integrated into atmospheric monitoring networks, such as the Integrated Carbon Observation System (ICOS). In this study, we tested seven analyzers that were developed and commercialized from five different companies and compared the results with established techniques. Each instrument was characterized during a time period of approximately eight weeks. The test protocols included the characterization of the short-term and long-term repeatability, drift, temperature dependence, linearity and sensitivity to water vapor. During the test period, ambient air measurements were compared under field conditions at the Gif-sur-Yvette station. All of the analyzers showed a standard deviation better than 0.1 ppb for the 10 min averages. Some analyzers would benefit from improvements in temperature stability to reduce the instrument drift, which could then help in reducing the frequency of calibrations. For most instruments, the water vapor correction algorithms applied by companies are not sufficient for high-precision atmospheric measurements, which results in the need to dry the ambient air prior to analysis.

  15. Active transport improves the precision of linear long distance molecular signalling

    NASA Astrophysics Data System (ADS)

    Godec, Aljaž; Metzler, Ralf

    2016-09-01

    Molecular signalling in living cells occurs at low copy numbers and is thereby inherently limited by the noise imposed by thermal diffusion. The precision at which biochemical receptors can count signalling molecules is intimately related to the noise correlation time. In addition to passive thermal diffusion, messenger RNA and vesicle-engulfed signalling molecules can transiently bind to molecular motors and are actively transported across biological cells. Active transport is most beneficial when trafficking occurs over large distances, for instance up to the order of 1 metre in neurons. Here we explain how intermittent active transport allows for faster equilibration upon a change in concentration triggered by biochemical stimuli. Moreover, we show how intermittent active excursions induce qualitative changes in the noise in effectively one-dimensional systems such as dendrites. Thereby they allow for significantly improved signalling precision in the sense of a smaller relative deviation in the concentration read-out by the receptor. On the basis of linear response theory we derive the exact mean field precision limit for counting actively transported molecules. We explain how intermittent active excursions disrupt the recurrence in the molecular motion, thereby facilitating improved signalling accuracy. Our results provide a deeper understanding of how recurrence affects molecular signalling precision in biological cells and novel medical-diagnostic devices.

  16. Clinical performance evaluation of total protein measurement by digital refractometry and characterization of non-protein solute interferences.

    PubMed

    Hunsaker, Joshua J H; Wyness, Sara P; Snow, Taylor M; Genzen, Jonathan R

    2016-12-01

    Refractometric methods to measure total protein (TP) in serum and plasma specimens have been replaced by automated biuret methods in virtually all routine clinical testing. A subset of laboratories, however, still report using refractometry to measure TP in conjunction with serum protein electrophoresis. The objective of this study was therefore to conduct a modern performance evaluation of a digital refractometer for TP measurement. Performance evaluation of a MISCO Palm Abbe™ digital refractometer was conducted through device familiarization, carryover, precision, accuracy, linearity, analytical sensitivity, analytical specificity, and reference interval verification. Comparison assays included a manual refractometer and an automated biuret assay. Carryover risk was eliminated using a demineralized distilled water (ddH 2 O) wash step. Precision studies demonstrated overall imprecision of 2.2% CV (low TP pool) and 0.5% CV (high TP pool). Accuracy studies demonstrated correlation to both manual refractometry and the biuret method. An overall positive bias (+5.0%) was observed versus the biuret method. On average, outlier specimens had an increased triglyceride concentration. Linearity was verified using mixed dilutions of: a) low and high concentration patient pools, or b) albumin-spiked ddH 2 O and high concentration patient pool. Decreased recovery was observed using ddH 2 O dilutions at low TP concentrations. Significant interference was detected at high concentrations of glucose (>267 mg/dL) and triglycerides (>580 mg/dL). Current laboratory reference intervals for TP were verified. Performance characteristics of this digital refractometer were validated in a clinical laboratory setting. Biuret method remains the preferred assay for TP measurement in routine clinical analyses.

  17. Analysis of 10 metabolites of polymethoxyflavones with high sensitivity by electrochemical detection in high-performance liquid chromatography.

    PubMed

    Zheng, Jinkai; Bi, Jinfeng; Johnson, David; Sun, Yue; Song, Mingyue; Qiu, Peiju; Dong, Ping; Decker, Eric; Xiao, Hang

    2015-01-21

    Polymethoxyflavones (PMFs) have been known as a type of bioactive flavones that possess various beneficial biological functions. Accumulating evidence demonstrated that the metabolites of PMFs, that is, hydroxyl PMFs (OH-PMFs), had more potent beneficial biological effects than their corresponding parent PMFs. To facilitate the further identification and quantification of OH-PMFs in biological samples, the aim of this study was to develop a methodology for the simultaneous determination of 10 OH-PMFs using high-performance liquid chromatography (HPLC) coupled with electrochemistry detection. The HPLC profiles of these 10 OH-PMFs affected by different chromatographic parameters (different organic composition in mobile phases, the concentration of trifluoroacetic acid, and the concentration of ammonium acetate) are fully discussed in this study. The optimal condition was selected for the following validation studies. The linearity of calibration curves, accuracy, and precision (intra- and interday) at three concentration levels (low, middle, and high concentration range) were verified. The regression equations were linear (r > 0.9992) over the range of 0.005-10 μM. The limit of detection for 10 OH-PMFs was in the range of 0.8-3.7 ng/mL (S/N = 3, 10 μL injection). The recovery rates ranged from 86.6 to 108.7%. The precisions of intraday and interday analyses were less than 7.37 and 8.63% for relative standard deviation, respectively. This validated method was applied for the analysis of a variety of samples containing OH-PMFs. This paper also gives an example of analyzing the metabolites of nobiletin in mouse urine using the developed method. The transformation from nobiletin to traces of 5-hydroxyl metabolites has been discovered by this effective method, and this is the first paper to report such an association.

  18. Highly sensitive spectrofluorimetric determination of lomefloxacin in spiked human plasma, urine and pharmaceutical preparations.

    PubMed

    Ulu, Sevgi Tatar

    2009-09-01

    A sensitive, simple and selective spectrofluorimetric method was developed for the determination of lomefloxacin in biological fluids and pharmaceutical preparations. The method is based on the reaction between the drug and 4-chloro-7-nitrobenzodioxazole in borate buffer of pH 8.5 to yield a highly fluorescent derivative that is measured at 533 nm after excitation at 433 nm. The calibration curves were linear over the concentration ranges of 12.5-625, 15-1500 and 20-2000 ng/mL for plasma, urine and standard solution, respectively. The limits of detection were 4.0 ng/mL in plasma, 5.0 ng/mL in urine and 7.0 ng/mL in standard solution. The intra-assay accuracy and precision in plasma ranged from 0.032 to 2.40% and 0.23 to 0.36%, respectively, while inter-assay accuracy and precision ranged from 0.45 to 2.10% and 0.25 to 0.38%, respectively. The intra-assay accuracy and precision estimated on spiked samples in urine ranged from 1.27 to 4.20% and 0.12 to 0.24%, respectively, while inter-assay accuracy and precision ranged from 1.60 to 4.00% and 0.14 to 0.25%, respectively. The mean recovery of lomefloxacin from plasma and urine was 98.34 and 98.43%, respectively. The method was successfully applied to the determination of lomefloxacin in pharmaceuticals and biological fluids.

  19. Precision Magnetic Bearing Six Degree of Freedom Stage

    NASA Technical Reports Server (NTRS)

    Williams, M. E.; Trumper, David L.

    1996-01-01

    Magnetic bearings are capable of applying force and torque to a suspended object without rigidly constraining any degrees of freedom. Additionally, the resolution of magnetic bearings is limited only by sensors and control, and not by the finish of a bearing surface. For these reasons, magnetic bearings appear to be ideal for precision wafer positioning in lithography systems. To demonstrate this capability a linear magnetic bearing has been constructed which uses variable reluctance actuators to control the motion of a 14.5 kg suspended platen in five degrees of freedom. A Lorentz type linear motor of our own design and construction is used to provide motion and position control in the sixth degree of freedom. The stage performance results verify that the positioning requirements of photolithography can be met with a system of this type. This paper describes the design, control, and performance of the linear magnetic bearing.

  20. Theory, simulation and experiments for precise deflection control of radiotherapy electron beams.

    PubMed

    Figueroa, R; Leiva, J; Moncada, R; Rojas, L; Santibáñez, M; Valente, M; Velásquez, J; Young, H; Zelada, G; Yáñez, R; Guillen, Y

    2018-03-08

    Conventional radiotherapy is mainly applied by linear accelerators. Although linear accelerators provide dual (electron/photon) radiation beam modalities, both of them are intrinsically produced by a megavoltage electron current. Modern radiotherapy treatment techniques are based on suitable devices inserted or attached to conventional linear accelerators. Thus, precise control of delivered beam becomes a main key issue. This work presents an integral description of electron beam deflection control as required for novel radiotherapy technique based on convergent photon beam production. Theoretical and Monte Carlo approaches were initially used for designing and optimizing device´s components. Then, dedicated instrumentation was developed for experimental verification of electron beam deflection due to the designed magnets. Both Monte Carlo simulations and experimental results support the reliability of electrodynamics models used to predict megavoltage electron beam control. Copyright © 2018 Elsevier Ltd. All rights reserved.

  1. Single Image Super-Resolution Using Global Regression Based on Multiple Local Linear Mappings.

    PubMed

    Choi, Jae-Seok; Kim, Munchurl

    2017-03-01

    Super-resolution (SR) has become more vital, because of its capability to generate high-quality ultra-high definition (UHD) high-resolution (HR) images from low-resolution (LR) input images. Conventional SR methods entail high computational complexity, which makes them difficult to be implemented for up-scaling of full-high-definition input images into UHD-resolution images. Nevertheless, our previous super-interpolation (SI) method showed a good compromise between Peak-Signal-to-Noise Ratio (PSNR) performances and computational complexity. However, since SI only utilizes simple linear mappings, it may fail to precisely reconstruct HR patches with complex texture. In this paper, we present a novel SR method, which inherits the large-to-small patch conversion scheme from SI but uses global regression based on local linear mappings (GLM). Thus, our new SR method is called GLM-SI. In GLM-SI, each LR input patch is divided into 25 overlapped subpatches. Next, based on the local properties of these subpatches, 25 different local linear mappings are applied to the current LR input patch to generate 25 HR patch candidates, which are then regressed into one final HR patch using a global regressor. The local linear mappings are learned cluster-wise in our off-line training phase. The main contribution of this paper is as follows: Previously, linear-mapping-based conventional SR methods, including SI only used one simple yet coarse linear mapping to each patch to reconstruct its HR version. On the contrary, for each LR input patch, our GLM-SI is the first to apply a combination of multiple local linear mappings, where each local linear mapping is found according to local properties of the current LR patch. Therefore, it can better approximate nonlinear LR-to-HR mappings for HR patches with complex texture. Experiment results show that the proposed GLM-SI method outperforms most of the state-of-the-art methods, and shows comparable PSNR performance with much lower computational complexity when compared with a super-resolution method based on convolutional neural nets (SRCNN15). Compared with the previous SI method that is limited with a scale factor of 2, GLM-SI shows superior performance with average 0.79 dB higher in PSNR, and can be used for scale factors of 3 or higher.

  2. Accuracy of the Precision® point-of-care ketone test examined by liquid chromatography tandem-mass spectrometry (LC-MS/MS) in the same fingerstick sample.

    PubMed

    Janssen, Marcel J W; Hendrickx, Ben H E; Habets-van der Poel, Carin D; van den Bergh, Joop P W; Haagen, Anton A M; Bakker, Jaap A

    2010-12-01

    The Precision(®) (Abbott Diabetes Care) point-of-care biosensor test strips are widely used by patients with diabetes and clinical laboratories for measurement of plasma β-hydroxybutyrate (β-HB) concentrations in capillary blood samples obtained by fingerstick. In the literature, this procedure has been validated only against the enzymatic determination of β-HB in venous plasma, i.e., the method to which the Precision(®) has been calibrated. In this study, the Precision(®) Xceed was compared to a methodologically different and superior procedure: determination of β-HB by liquid chromatography tandem-mass spectrometry (LC-MS/MS) in capillary blood spots. Blood spots were obtained from the same fingerstick sample from out of which Precision(®) measurements were performed. Linearity was tested by adding varying amounts of standard to an EDTA venous whole blood matrix. The Precision(®) was in good agreement with LC-MS/MS within the measuring range of 0.0-6.0 mmol/L (Passing and Bablok regression: slope=1.20 and no significant intercept, R=0.97, n=59). Surprisingly, the Precision(®) showed non-linearity and full saturation at concentrations above 6.0 mmol/L, which were confirmed by a standard addition experiment. Results obtained at the saturation level varied between 3.0 and 6.5 mmol/L. The Precision(®) β-HB test strips demonstrate good comparison with LC-MS/MS. Inter-individual variation around the saturation level, however, is large. Therefore, we advise reporting readings above 3.0 as >3.0 mmol/L. The test is valid for use in the clinically relevant range of 0.0-3.0 mmol/L.

  3. Carbon-14 wiggle-match dating of peat deposits: advantages and limitations

    NASA Astrophysics Data System (ADS)

    Blaauw, Maarten; van Geel, Bas; Mauquoy, Dmitri; van der Plicht, Johannes

    2004-02-01

    Carbon-14 wiggle-match dating (WMD) of peat deposits uses the non-linear relationship between 14C age and calendar age to match the shape of a series of closely spaced peat 14C dates with the 14C calibration curve. The method of WMD is discussed, and its advantages and limitations are compared with calibration of individual dates. A numerical approach to WMD is introduced that makes it possible to assess the precision of WMD chronologies. During several intervals of the Holocene, the 14C calibration curve shows less pronounced fluctuations. We assess whether wiggle-matching is also a feasible strategy for these parts of the 14C calibration curve. High-precision chronologies, such as obtainable with WMD, are needed for studies of rapid climate changes and their possible causes during the Holocene. Copyright

  4. AUTOMOTIVE DIESEL MAINTENANCE 1. UNIT X, USE OF MEASURING TOOLS IN DIESEL MAINTENANCE.

    ERIC Educational Resources Information Center

    Human Engineering Inst., Cleveland, OH.

    THIS MODULE OF A 30-MODULE COURSE IS DESIGNED TO DEVELOP AN UNDERSTANDING OF THE PRECISION MEASURING TOOLS USED IN DIESEL ENGINE MAINTENANCE. TOPICS ARE (1) LINEAR MEASURE, (2) MEASURING WITH RULES AND TAPES, (3) GETTING PRECISION WITH MICROMETERS, (4) DIAL INDICATORS, (5) TACHOMETERS, (6) TORQUE WRENCH, (7) THICKNESS (TECHER) GAGE, AND (8) VALVE…

  5. Movement Precision and Amplitude as Separate Factors in the Control of Movement.

    ERIC Educational Resources Information Center

    Kerr, Robert

    The purpose of this study was to assess Welford's dual controlling factor interpretation of Fitts' Law--describing movement time as being a linear function of movement distance (or amplitude) and the required precision of the movement (or target width). Welford's amplification of the theory postulates that two separate processes ought to be…

  6. Confocal fluorescence detected linear dichroism imaging of isolated human amyloid fibrils. Role of supercoiling.

    PubMed

    Steinbach, Gábor; Pomozi, István; Jánosa, Dávid Péter; Makovitzky, Josef; Garab, Gyozo

    2011-05-01

    Amyloids are highly organized insoluble protein aggregates that are associated with a large variety of degenerative diseases. In this work, we investigated the anisotropic architecture of isolated human amyloid samples stained with Congo Red. This was performed by fluorescence detected linear dichroism (FDLD) imaging in a laser scanning confocal microscope that was equipped with a differential polarization attachment using high frequency modulation of the polarization state of the laser beam and a demodulation circuit. Two- and three-dimensional FDLD images of amyloids provided information on the orientation of the electric transition dipoles of the intercalated Congo Red molecules with unprecedented precision and spatial resolution. We show that, in accordance with linear dichroism imaging (Jin et al. Proc Natl Acad Sci USA 100:15294, 2003), amyloids exhibit strong anisotropy with preferential orientation of the dye molecules along the fibrils; estimations on the orientation angle, of around 45°, are given using a model calculation which takes into account the helical organization of the filaments and fibrils. Our data also show that FDLD images display large inhomogeneities, high local values with alternating signs and, in some regions, well identifiable µm-sized periodicities. These features of the anisotropic architecture are accounted for by supercoiling of helically organized amyloid fibrils. © Springer Science+Business Media, LLC 2010

  7. The instantaneous linear motion information measurement method based on inertial sensors for ships

    NASA Astrophysics Data System (ADS)

    Yang, Xu; Huang, Jing; Gao, Chen; Quan, Wei; Li, Ming; Zhang, Yanshun

    2018-05-01

    Ship instantaneous line motion information is the important foundation for ship control, which needs to be measured accurately. For this purpose, an instantaneous line motion measurement method based on inertial sensors is put forward for ships. By introducing a half-fixed coordinate system to realize the separation between instantaneous line motion and ship master movement, the instantaneous line motion acceleration of ships can be obtained with higher accuracy. Then, the digital high-pass filter is applied to suppress the velocity error caused by the low frequency signal such as schuler period. Finally, the instantaneous linear motion displacement of ships can be measured accurately. Simulation experimental results show that the method is reliable and effective, and can realize the precise measurement of velocity and displacement of instantaneous line motion for ships.

  8. On Instability of Geostrophic Current with Linear Vertical Shear at Length Scales of Interleaving

    NASA Astrophysics Data System (ADS)

    Kuzmina, N. P.; Skorokhodov, S. L.; Zhurbas, N. V.; Lyzhkov, D. A.

    2018-01-01

    The instability of long-wave disturbances of a geostrophic current with linear velocity shear is studied with allowance for the diffusion of buoyancy. A detailed derivation of the model problem in dimensionless variables is presented, which is used for analyzing the dynamics of disturbances in a vertically bounded layer and for describing the formation of large-scale intrusions in the Arctic basin. The problem is solved numerically based on a high-precision method developed for solving fourth-order differential equations. It is established that there is an eigenvalue in the spectrum of eigenvalues that corresponds to unstable (growing with time) disturbances, which are characterized by a phase velocity exceeding the maximum velocity of the geostrophic flow. A discussion is presented to explain some features of the instability.

  9. Performance of the first prototype of the CALICE scintillator strip electromagnetic calorimeter

    NASA Astrophysics Data System (ADS)

    Francis, K.; Repond, J.; Schlereth, J.; Smith, J.; Xia, L.; Baldolemar, E.; Li, J.; Park, S. T.; Sosebee, M.; White, A. P.; Yu, J.; Eigen, G.; Mikami, Y.; Watson, N. K.; Thomson, M. A.; Ward, D. R.; Benchekroun, D.; Hoummada, A.; Khoulaki, Y.; Apostolakis, J.; Dotti, A.; Folger, G.; Ivantchenko, V.; Ribon, A.; Uzhinskiy, V.; Cârloganu, C.; Gay, P.; Manen, S.; Royer, L.; Tytgat, M.; Zaganidis, N.; Blazey, G. C.; Dyshkant, A.; Lima, J. G. R.; Zutshi, V.; Hostachy, J.-Y.; Morin, L.; Cornett, U.; David, D.; Ebrahimi, A.; Falley, G.; Gadow, K.; Göttlicher, P.; Günter, C.; Hartbrich, O.; Hermberg, B.; Karstensen, S.; Krivan, F.; Krüger, K.; Lutz, B.; Morozov, S.; Morgunov, V.; Neubüser, C.; Reinecke, M.; Sefkow, F.; Smirnov, P.; Terwort, M.; Garutti, E.; Laurien, S.; Lu, S.; Marchesini, I.; Matysek, M.; Ramilli, M.; Briggl, K.; Eckert, P.; Harion, T.; Schultz-Coulon, H.-Ch.; Shen, W.; Stamen, R.; Bilki, B.; Norbeck, E.; Northacker, D.; Onel, Y.; Wilson, G. W.; Kawagoe, K.; Sudo, Y.; Yoshioka, T.; Dauncey, P. D.; Wing, M.; Salvatore, F.; Cortina Gil, E.; Mannai, S.; Baulieu, G.; Calabria, P.; Caponetto, L.; Combaret, C.; Della Negra, R.; Grenier, G.; Han, R.; Ianigro, J.-C.; Kieffer, R.; Laktineh, I.; Lumb, N.; Mathez, H.; Mirabito, L.; Petrukhin, A.; Steen, A.; Tromeur, W.; Vander Donckt, M.; Zoccarato, Y.; Calvo Alamillo, E.; Fouz, M.-C.; Puerta-Pelayo, J.; Corriveau, F.; Bobchenko, B.; Chadeeva, M.; Danilov, M.; Epifantsev, A.; Markin, O.; Mizuk, R.; Novikov, E.; Popov, V.; Rusinov, V.; Tarkovsky, E.; Besson, D.; Buzhan, P.; Ilyin, A.; Kantserov, V.; Kaplin, V.; Karakash, A.; Popova, E.; Tikhomirov, V.; Kiesling, C.; Seidel, K.; Simon, F.; Soldner, C.; Weuste, L.; Amjad, M. S.; Bonis, J.; Callier, S.; Conforti di Lorenzo, S.; Cornebise, P.; Doublet, Ph.; Dulucq, F.; Fleury, J.; Frisson, T.; van der Kolk, N.; Li, H.; Martin-Chassard, G.; Richard, F.; de la Taille, Ch.; Pöschl, R.; Raux, L.; Rouëné, J.; Seguin-Moreau, N.; Anduze, M.; Balagura, V.; Boudry, V.; Brient, J.-C.; Cornat, R.; Frotin, M.; Gastaldi, F.; Guliyev, E.; Haddad, Y.; Magniette, F.; Musat, G.; Ruan, M.; Tran, T. H.; Videau, H.; Bulanek, B.; Zacek, J.; Cvach, J.; Gallus, P.; Havranek, M.; Janata, M.; Kvasnicka, J.; Lednicky, D.; Marcisovsky, M.; Polak, I.; Popule, J.; Tomasek, L.; Tomasek, M.; Ruzicka, P.; Sicho, P.; Smolik, J.; Vrba, V.; Zalesak, J.; Belhorma, B.; Ghazlane, H.; Kotera, K.; Ono, H.; Takeshita, T.; Uozumi, S.; Jeans, D.; Chang, S.; Khan, A.; Kim, D. H.; Kong, D. J.; Oh, Y. D.; Götze, M.; Sauer, J.; Weber, S.; Zeitnitz, C.

    2014-11-01

    A first prototype of a scintillator strip-based electromagnetic calorimeter was built, consisting of 26 layers of tungsten absorber plates interleaved with planes of 45×10×3 mm3 plastic scintillator strips. Data were collected using a positron test beam at DESY with momenta between 1 and 6 GeV/c. The prototype's performance is presented in terms of the linearity and resolution of the energy measurement. These results represent an important milestone in the development of highly granular calorimeters using scintillator strip technology. A number of possible design improvements were identified, which should be implemented in a future detector of this type. This technology is being developed for a future linear collider experiment, aiming at the precise measurement of jet energies using particle flow techniques.

  10. Proton beam spatial distribution and Bragg peak imaging by photoluminescence of color centers in lithium fluoride crystals at the TOP-IMPLART linear accelerator

    NASA Astrophysics Data System (ADS)

    Piccinini, M.; Ronsivalle, C.; Ampollini, A.; Bazzano, G.; Picardi, L.; Nenzi, P.; Trinca, E.; Vadrucci, M.; Bonfigli, F.; Nichelatti, E.; Vincenti, M. A.; Montereali, R. M.

    2017-11-01

    Solid-state radiation detectors based on the photoluminescence of stable point defects in lithium fluoride crystals have been used for advanced diagnostics during the commissioning of the segment up to 27 MeV of the TOP-IMPLART proton linear accelerator for proton therapy applications, under development at ENEA C.R. Frascati, Italy. The LiF detectors high intrinsic spatial resolution and wide dynamic range allow obtaining two-dimensional images of the beam transverse intensity distribution and also identifying the Bragg peak position with micrometric precision by using a conventional optical fluorescence microscope. Results of the proton beam characterization, among which, the estimation of beam energy components and dynamics, are reported and discussed for different operating conditions of the accelerator.

  11. High speed, precision motion strategies for lightweight structures

    NASA Technical Reports Server (NTRS)

    Book, Wayne J.

    1987-01-01

    Abstracts of published papers and dissertations generated during the reporting period are compiled. Work on fine motion control was completed. Specifically, real time control of flexible manipulator vibrations were experimentally investigated. A linear model based on the application of Lagrangian dynamics to a rigid body mode and a series of separable flexible modes was examined with respect to model order requirements, and modal candidate selection. State feedback control laws were implemented based upon linear quadratic regulator design. Specification of the closed loop poles in the regulator design process was obtained by inclusion of a prescribed degree of stability in the manipulator model. Work on gross motion planning and control is also summarized. A systematic method to symbolically derive the full nonlinear dynamic equations of motion of multi-link flexible manipulators was developed.

  12. Cumulative Retrospective Exposure Assessment (REA) as a predictor of amphibole asbestos lung burden: validation procedures and results for industrial hygiene and pathology estimates.

    PubMed

    Rasmuson, James O; Roggli, Victor L; Boelter, Fred W; Rasmuson, Eric J; Redinger, Charles F

    2014-01-01

    A detailed evaluation of the correlation and linearity of industrial hygiene retrospective exposure assessment (REA) for cumulative asbestos exposure with asbestos lung burden analysis (LBA) has not been previously performed, but both methods are utilized for case-control and cohort studies and other applications such as setting occupational exposure limits. (a) To correlate REA with asbestos LBA for a large number of cases from varied industries and exposure scenarios; (b) to evaluate the linearity, precision, and applicability of both industrial hygiene exposure reconstruction and LBA; and (c) to demonstrate validation methods for REA. A panel of four experienced industrial hygiene raters independently estimated the cumulative asbestos exposure for 363 cases with limited exposure details in which asbestos LBA had been independently determined. LBA for asbestos bodies was performed by a pathologist by both light microscopy and scanning electron microscopy (SEM) and free asbestos fibers by SEM. Precision, reliability, correlation and linearity were evaluated via intraclass correlation, regression analysis and analysis of covariance. Plaintiff's answers to interrogatories, work history sheets, work summaries or plaintiff's discovery depositions that were obtained in court cases involving asbestos were utilized by the pathologist to provide a summarized brief asbestos exposure and work history for each of the 363 cases. Linear relationships between REA and LBA were found when adjustment was made for asbestos fiber-type exposure differences. Significant correlation between REA and LBA was found with amphibole asbestos lung burden and mixed fiber-types, but not with chrysotile. The intraclass correlation coefficients (ICC) for the precision of the industrial hygiene rater cumulative asbestos exposure estimates and the precision of repeated laboratory analysis were found to be in the excellent range. The ICC estimates were performed independent of specific asbestos fiber-type. Both REA and pathology assessment are reliable and complementary predictive methods to characterize asbestos exposures. Correlation analysis between the two methods effectively validates both REA methodology and LBA procedures within the determined precision, particularly for cumulative amphibole asbestos exposures since chrysotile fibers, for the most part, are not retained in the lung for an extended period of time.

  13. Spin structure in high energy processes: Proceedings

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    DePorcel, L.; Dunwoodie, C.

    1994-12-01

    This report contains papers as the following topics: Spin, Mass, and Symmetry; physics with polarized Z{sup 0}s; spin and precision electroweak physics; polarized electron sources; polarization phenomena in quantum chromodynamics; polarized lepton-nucleon scattering; polarized targets in high energy physics; spin dynamics in storage rings and linear accelerators; spin formalism and applications to new physics searches; precision electroweak physics at LEP; recent results on heavy flavor physics from LEP experiments using 1990--1992 data; precise measurement of the left-right cross section asymmetry in Z boson production by electron-positron collisions; preliminary results on heavy flavor physics at SLD; QCD tests with SLD andmore » polarized beams; recent results from TRISTAN at KEK; recent B physics results from CLEO; searching for the H dibaryon at Brookhaven; recent results from the compton observatory; the spin structure of the deuteron; spin structure of the neutron ({sup 3}HE) and the Bjoerken sum rule; a consumer`s guide to lattice QCD results; top ten models constrained by b {yields} sy; a review of the Fermilab fixed target program; results from the D0 experiment; results from CDF at FNAL; quantum-mechanical suppression of bremsstrahlung; report from the ZEUS collaboration at HERA; physics from the first year of H1 at HERA, and hard diffraction. These papers have been cataloged separately elsewhere.« less

  14. Synchronized motion control and precision positioning compensation of a 3-DOFs macro-micro parallel manipulator fully actuated by piezoelectric actuators

    NASA Astrophysics Data System (ADS)

    Zhang, Quan; Li, Chaodong; Zhang, Jiantao; Zhang, Xu

    2017-11-01

    The macro-micro combined approach, as an effective way to realize trans-scale nano-precision positioning with multi-dimensions and high velocity, plays a significant role in integrated circuit manufacturing field. A 3-degree-of-freedoms (3-DOFs) macro-micro manipulator is designed and analyzed to compromise the conflictions among the large stroke, high precision and multi-DOFs. The macro manipulator is a 3-Prismatic-Revolute-Revolute (3-PRR) structure parallel manipulator which is driven by three linear ultrasonic motors. The dynamic model and the cross-coupling error based synchronized motion controller of the 3-PRR parallel manipulator are theoretical analyzed and experimental tested. To further improve the positioning accuracy, a 3-DOFs monolithic compliant manipulator actuated by three piezoelectric stack actuators is designed. Then a multilayer BP neural network based inverse kinematic model identifier is developed to perform the positioning control. Finally, by forming the macro-micro structure, the dual stage manipulator successfully achieved the positioning task from the point (2 mm, 2 mm, 0 rad) back to the original point (0 mm, 0 mm, 0 rad) with the translation errors in X and Y directions less than ±50 nm and the rotation error around Z axis less than ±1 μrad, respectively.

  15. A new magnetic bearing using Halbach magnet arrays for a magnetic levitation stage.

    PubMed

    Choi, Young-Man; Lee, Moon G; Gweon, Dae-Gab; Jeong, Jaehwa

    2009-04-01

    Next-generation lithography requires a high precision stage, which is compatible with a high vacuum condition. A magnetic levitation stage with six degrees-of-freedom is considered state-of-the-art technology for a high vacuum condition. The noncontact characteristic of magnetic levitation enables high precision positioning as well as no particle generation. To position the stage against gravity, z-directional electromagnetic levitation mechanisms are widely used. However, if electromagnetic actuators for levitation are used, heat is inevitably generated, which deforms the structures and degrades accuracy of the stage. Thus, a gravity compensator is required. In this paper, we propose a new magnetic bearing using Halbach magnet arrays for a magnetic levitation stage. The novel Halbach magnetic bearing exerts a force four times larger than a conventional magnetic bearing with the same volume. We also discuss the complementary characteristics of the two magnetic bearings. By modifying the height of the center magnet in a Halbach magnetic bearing, a performance compromise between levitating force density and force uniformity is obtained. The Halbach linear active magnetic bearing can be a good solution for magnetic levitation stages because of its large and uniform levitation force.

  16. Optima XE Single Wafer High Energy Ion Implanter

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Satoh, Shu; Ferrara, Joseph; Bell, Edward

    2008-11-03

    The Optima XE is the first production worthy single wafer high energy implanter. The new system combines a state-of-art single wafer endstation capable of throughputs in excess of 400 wafers/hour with a production-proven RF linear accelerator technology. Axcelis has been evolving and refining RF Linac technology since the introduction of the NV1000 in 1986. The Optima XE provides production worthy beam currents up to energies of 1.2 MeV for P{sup +}, 2.9 MeV for P{sup ++}, and 1.5 MeV for B{sup +}. Energies as low as 10 keV and tilt angles as high as 45 degrees are also available., allowingmore » the implanter to be used for a wide variety of traditional medium current implants to ensure high equipment utilization. The single wafer endstation provides precise implant angle control across wafer and wafer to wafer. In addition, Optima XE's unique dose control system allows compensation of photoresist outgassing effects without relying on traditional pressure-based methods. We describe the specific features, angle control and dosimetry of the Optima XE and their applications in addressing the ever-tightening demands for more precise process controls and higher productivity.« less

  17. Use of Longitudinal Data in Genetic Studies in the Genome-wide Association Studies Era: Summary of Group 14

    PubMed Central

    Kerner, Berit; North, Kari E; Fallin, M Daniele

    2010-01-01

    Participants analyzed actual and simulated longitudinal data from the Framingham Heart Study for various metabolic and cardiovascular traits. The genetic information incorporated into these investigations ranged from selected single-nucleotide polymorphisms to genome-wide association arrays. Genotypes were incorporated using a broad range of methodological approaches including conditional logistic regression, linear mixed models, generalized estimating equations, linear growth curve estimation, growth modeling, growth mixture modeling, population attributable risk fraction based on survival functions under the proportional hazards models, and multivariate adaptive splines for the analysis of longitudinal data. The specific scientific questions addressed by these different approaches also varied, ranging from a more precise definition of the phenotype, bias reduction in control selection, estimation of effect sizes and genotype associated risk, to direct incorporation of genetic data into longitudinal modeling approaches and the exploration of population heterogeneity with regard to longitudinal trajectories. The group reached several overall conclusions: 1) The additional information provided by longitudinal data may be useful in genetic analyses. 2) The precision of the phenotype definition as well as control selection in nested designs may be improved, especially if traits demonstrate a trend over time or have strong age-of-onset effects. 3) Analyzing genetic data stratified for high-risk subgroups defined by a unique development over time could be useful for the detection of rare mutations in common multi-factorial diseases. 4) Estimation of the population impact of genomic risk variants could be more precise. The challenges and computational complexity demanded by genome-wide single-nucleotide polymorphism data were also discussed. PMID:19924713

  18. A weighted least squares estimation of the polynomial regression model on paddy production in the area of Kedah and Perlis

    NASA Astrophysics Data System (ADS)

    Musa, Rosliza; Ali, Zalila; Baharum, Adam; Nor, Norlida Mohd

    2017-08-01

    The linear regression model assumes that all random error components are identically and independently distributed with constant variance. Hence, each data point provides equally precise information about the deterministic part of the total variation. In other words, the standard deviations of the error terms are constant over all values of the predictor variables. When the assumption of constant variance is violated, the ordinary least squares estimator of regression coefficient lost its property of minimum variance in the class of linear and unbiased estimators. Weighted least squares estimation are often used to maximize the efficiency of parameter estimation. A procedure that treats all of the data equally would give less precisely measured points more influence than they should have and would give highly precise points too little influence. Optimizing the weighted fitting criterion to find the parameter estimates allows the weights to determine the contribution of each observation to the final parameter estimates. This study used polynomial model with weighted least squares estimation to investigate paddy production of different paddy lots based on paddy cultivation characteristics and environmental characteristics in the area of Kedah and Perlis. The results indicated that factors affecting paddy production are mixture fertilizer application cycle, average temperature, the squared effect of average rainfall, the squared effect of pest and disease, the interaction between acreage with amount of mixture fertilizer, the interaction between paddy variety and NPK fertilizer application cycle and the interaction between pest and disease and NPK fertilizer application cycle.

  19. Asynchronous RTK precise DGNSS positioning method for deriving a low-latency high-rate output

    NASA Astrophysics Data System (ADS)

    Liang, Zhang; Hanfeng, Lv; Dingjie, Wang; Yanqing, Hou; Jie, Wu

    2015-07-01

    Low-latency high-rate (1 Hz) precise real-time kinematic (RTK) can be applied in high-speed scenarios such as aircraft automatic landing, precise agriculture and intelligent vehicle. The classic synchronous RTK (SRTK) precise differential GNSS (DGNSS) positioning technology, however, is not able to obtain a low-latency high-rate output for the rover receiver because of long data link transmission time delays (DLTTD) from the reference receiver. To overcome the long DLTTD, this paper proposes an asynchronous real-time kinematic (ARTK) method using asynchronous observations from two receivers. The asynchronous observation model (AOM) is developed based on undifferenced carrier phase observation equations of the two receivers at different epochs with short baseline. The ephemeris error and atmosphere delay are the possible main error sources on positioning accuracy in this model, and they are analyzed theoretically. In a short DLTTD and during a period of quiet ionosphere activity, the main error sources decreasing positioning accuracy are satellite orbital errors: the "inverted ephemeris error" and the integration of satellite velocity error which increase linearly along with DLTTD. The cycle slip of asynchronous double-differencing carrier phase is detected by TurboEdit method and repaired by the additional ambiguity parameter method. The AOM can deal with synchronous observation model (SOM) and achieve precise positioning solution with synchronous observations as well, since the SOM is only a specific case of AOM. The proposed method not only can reduce the cost of data collection and transmission, but can also support the mobile phone network data link transfer mode for the data of the reference receiver. This method can avoid data synchronizing process besides ambiguity initialization step, which is very convenient for real-time navigation of vehicles. The static and kinematic experiment results show that this method achieves 20 Hz or even higher rate output in real time. The ARTK positioning accuracy is better and more robust than the combination of phase difference over time (PDOT) and SRTK method at a high rate. The ARTK positioning accuracy is equivalent to SRTK solution when the DLTTD is 0.5 s, and centimeter level accuracy can be achieved even when DLTTD is 15 s.

  20. Simultaneous determination of four neuroprotective compounds of Tilia amurensis by high performance liquid chromatography coupled with diode array detector

    PubMed Central

    Lee, Bohyung; Weon, Jin Bae; Yun, Bo-Ra; Lee, Jiwoo; Eom, Min Rye; Ma, Choong Je

    2014-01-01

    Background: Tilia amurensis consists of various compounds, such as flavonoids and terpenoids. Objective: A simple and reliable high performance liquid chromatography (HPLC) coupled with the diode array detector (DAD) method has been established for simultaneous determination of epicatechin, nudiposide, lyoniside, and scopoletin isolated from Tilia amurensis. Materials and Methods: Optimum separations were obtained with a SHISEIDO C18 column by gradient eluton, with 0.1% Trifluoroacetic acid (TFA) water-methanol as the mobile phase. The gradient elution system was completed within 40 minutes. The flow rate and detection wavelength were 1 mL/minute, 205 nm, 250 nm, and 280 nm, respectively. Results: Validation of the analytical method was evaluated by linearity, precision, and the accuracy test. The calibration curve was linear over the established range with R2 > 0.997. The limit of detection (LOD) and limit of quantification (LOQ) ranged from 0.01-15.20 μg/mL and 0.03-46.06 μg/mL. The method exhibited an intraday and interday precision range of 96.25-105.66% and 93.52-109.92%, respectively (RSD <2.80%). The recoveries and relative standard deviation (RSD) of the four compounds in Tilia amurensis were in the range of 90.42-104.84% and 0.2-2.58%. Conclusion: This developed method was accurate and reliable for the quality evaluation of the four compounds isolated from Tilia amurensis. PMID:25210303

  1. The simple determination method for anthocyanidin aglycones in fruits using ultra-high-performance liquid chromatography.

    PubMed

    Shim, You-Shin; Yoon, Won-Jin; Kim, Dong-Man; Watanabe, Masaki; Park, Hyun-Jin; Jang, Hae Won; Lee, Jangho; Ha, Jaeho

    2015-01-01

    The simple determination method for anthocyanidin aglycones in fruits using ultra-high-performance liquid chromatography (UHPLC) coupled with the heating-block acidic hydrolysis method was validated through the precision, accuracy and linearity. The UHPLC separation was performed on a reversed-phase C18 column (particle size 2 μm, i.d. 2 mm, length 100 mm) with a photodiode-array detector. The limits of detection and quantification of the UHPLC analyses were 0.09 and 0.29 mg/kg for delphinidin, 0.08 and 0.24 mg/kg for cyanidin, 0.09 and 0.26 mg/kg for petunidin, 0.14 and 0.42 mg/kg for pelargonidin, 0.16 and 0.48 mg/kg for peonidin and 0.30 and 0.91 mg/kg for malvidin, respectively. The intra- and inter-day precisions of individual anthocyanidin aglycones were <10.3%. All calibration curves exhibited good linearity (r = 0.999) within the tested ranges. The total run time of UHPLC was 8 min. The simple preparation method with UHPLC detection in this study presented herein significantly improved the speed and the simplicity for preparation step of delphinidin, cyanidin, petunidin, pelargonidin, peonidin and malvidin in fruits. Especially, the UHPLC detection exhibited good resolution in spite of shorter run time about four times than conventional HPLC detection. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  2. Development and validation of sensitive LC/MS/MS method for quantitative bioanalysis of levonorgestrel in rat plasma and application to pharmacokinetics study.

    PubMed

    Ananthula, Suryatheja; Janagam, Dileep R; Jamalapuram, Seshulatha; Johnson, James R; Mandrell, Timothy D; Lowe, Tao L

    2015-10-15

    Rapid, sensitive, selective and accurate LC/MS/MS method was developed for quantitative determination of levonorgestrel (LNG) in rat plasma and further validated for specificity, linearity, accuracy, precision, sensitivity, matrix effect, recovery efficiency and stability. Liquid-liquid extraction procedure using hexane:ethyl acetate mixture at 80:20 v:v ratio was employed to efficiently extract LNG from rat plasma. Reversed phase Luna column C18(2) (50×2.0mm i.d., 3μM) installed on a AB SCIEX Triple Quad™ 4500 LC/MS/MS system was used to perform chromatographic separation. LNG was identified within 2min with high specificity. Linear calibration curve was drawn within 0.5-50ng·mL(-1) concentration range. The developed method was validated for intra-day and inter-day accuracy and precision whose values fell in the acceptable limits. Matrix effect was found to be minimal. Recovery efficiency at three quality control (QC) concentrations 0.5 (low), 5 (medium) and 50 (high) ng·mL(-1) was found to be >90%. Stability of LNG at various stages of experiment including storage, extraction and analysis was evaluated using QC samples, and the results showed that LNG was stable at all the conditions. This validated method was successfully used to study the pharmacokinetics of LNG in rats after SubQ injection, providing its applicability in relevant preclinical studies. Copyright © 2015 Elsevier B.V. All rights reserved.

  3. Multiple-channel ultra-violet absorbance detector for two-dimensional chromatographic separations.

    PubMed

    Lynch, Kyle B; Yang, Yu; Ren, Jiangtao; Liu, Shaorong

    2018-05-01

    In recent years, much research has gone into developing online comprehensive two-dimensional liquid chromatographic systems allowing for high peak capacities in comparable separation times to that of one-dimensional liquid chromatographic systems. However, the speed requirements in the second dimension (2nd-D) still remain one challenge for complex biological samples due to the current configuration of two column/two detector systems. Utilization of multiple 2nd-D columns can mitigate this challenge. To adapt this approach, we need a multiple channel detector. Here we develop a versatile multichannel ultraviolet (UV) light absorbance detector that is capable of simultaneously monitoring separations in 12 columns. The detector consists of a deuterium lighthouse, a flow cell assembly (a 13-channel flow cell fitted with a 13-photodiode-detection system), and a data acquisition and monitoring terminal. Through the use of a custom high optical quality furcated fiber to improve light transmission, precise machining of a flow cell to reduce background stray light through precision alignment, and sensitive electronic circuitry to reduce electronic noise through an active low pass filter, the background noise level is measured in the tens of µAU. We obtain a linear dynamic range of close to three orders of magnitude. Compared to a commercialized multichannel UV light absorbance detector like the Waters 2488 UV/Vis, our device provides an increase in channel detection while residing within the same noise region and linear range. Copyright © 2018 Elsevier B.V. All rights reserved.

  4. AN ADA LINEAR ALGEBRA PACKAGE MODELED AFTER HAL/S

    NASA Technical Reports Server (NTRS)

    Klumpp, A. R.

    1994-01-01

    This package extends the Ada programming language to include linear algebra capabilities similar to those of the HAL/S programming language. The package is designed for avionics applications such as Space Station flight software. In addition to the HAL/S built-in functions, the package incorporates the quaternion functions used in the Shuttle and Galileo projects, and routines from LINPAK that solve systems of equations involving general square matrices. Language conventions in this package follow those of HAL/S to the maximum extent practical and minimize the effort required for writing new avionics software and translating existent software into Ada. Valid numeric types in this package include scalar, vector, matrix, and quaternion declarations. (Quaternions are fourcomponent vectors used in representing motion between two coordinate frames). Single precision and double precision floating point arithmetic is available in addition to the standard double precision integer manipulation. Infix operators are used instead of function calls to define dot products, cross products, quaternion products, and mixed scalar-vector, scalar-matrix, and vector-matrix products. The package contains two generic programs: one for floating point, and one for integer. The actual component type is passed as a formal parameter to the generic linear algebra package. The procedures for solving systems of linear equations defined by general matrices include GEFA, GECO, GESL, and GIDI. The HAL/S functions include ABVAL, UNIT, TRACE, DET, INVERSE, TRANSPOSE, GET, PUT, FETCH, PLACE, and IDENTITY. This package is written in Ada (Version 1.2) for batch execution and is machine independent. The linear algebra software depends on nothing outside the Ada language except for a call to a square root function for floating point scalars (such as SQRT in the DEC VAX MATHLIB library). This program was developed in 1989, and is a copyrighted work with all copyright vested in NASA.

  5. Generalised optical differentiation wavefront sensor: a sensitive high dynamic range wavefront sensor.

    PubMed

    Haffert, S Y

    2016-08-22

    Current wavefront sensors for high resolution imaging have either a large dynamic range or a high sensitivity. A new kind of wavefront sensor is developed which can have both: the Generalised Optical Differentiation wavefront sensor. This new wavefront sensor is based on the principles of optical differentiation by amplitude filters. We have extended the theory behind linear optical differentiation and generalised it to nonlinear filters. We used numerical simulations and laboratory experiments to investigate the properties of the generalised wavefront sensor. With this we created a new filter that can decouple the dynamic range from the sensitivity. These properties make it suitable for adaptive optic systems where a large range of phase aberrations have to be measured with high precision.

  6. Linear Self-Referencing Techiques for Short-Optical-Pulse Characterization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dorrer, C.; Kang, I.

    2008-04-04

    Linear self-referencing techniques for the characterization of the electric field of short optical pulses are presented. The theoretical and practical advantages of these techniques are developed. Experimental implementations are described, and their performance is compared to the performance of their nonlinear counterparts. Linear techniques demonstrate unprecedented sensitivity and are a perfect fit in many domains where the precise, accurate measurement of the electric field of an optical pulse is required.

  7. Precise 3D printing of micro/nanostructures using highly conductive carbon nanotube-thiol-acrylate composites

    NASA Astrophysics Data System (ADS)

    Liu, Y.; Xiong, W.; Jiang, L. J.; Zhou, Y. S.; Lu, Y. F.

    2016-04-01

    Two-photon polymerization (TPP) is of increasing interest due to its unique combination of truly three-dimensional (3D) fabrication capability and ultrahigh spatial resolution of ~40 nm. However, the stringent requirements of non-linear resins seriously limit the material functionality of 3D printing via TPP. Precise fabrication of 3D micro/nanostructures with multi-functionalities such as high electrical conductivity and mechanical strength is still a long-standing challenge. In this work, TPP fabrication of arbitrary 3D micro/nanostructures using multi-walled carbon nanotube (MWNT)-thiolacrylate (MTA) composite resins has been developed. Up to 0.2 wt% MWNTs have been incorporated into thiol-acrylate resins to form highly stable and uniform composite photoresists without obvious degradation for one week at room temperature. Various functional 3D micro/nanostructures including woodpiles, micro-coils, spiral-like photonic crystals, suspended micro-bridges, micro-gears and complex micro-cars have been successfully fabricated. The MTA composite resin offers significant enhancements in electrical conductivity and mechanical strength, and on the same time, preserving high optical transmittance and flexibility. Tightly controlled alignment of MWNTs and the strong anisotropy effect were confirmed. Microelectronic devices including capacitors and resistors made of the MTA composite polymer were demonstrated. The 3D micro/nanofabrication using the MTA composite resins enables the precise 3D printing of micro/nanostructures of high electrical conductivity and mechanical strength, which is expected to lead a wide range of device applications, including micro/nano-electromechanical systems (MEMS/NEMS), integrated photonics and 3D electronics.

  8. Non-linear dynamic compensation system

    NASA Technical Reports Server (NTRS)

    Lin, Yu-Hwan (Inventor); Lurie, Boris J. (Inventor)

    1992-01-01

    A non-linear dynamic compensation subsystem is added in the feedback loop of a high precision optical mirror positioning control system to smoothly alter the control system response bandwidth from a relatively wide response bandwidth optimized for speed of control system response to a bandwidth sufficiently narrow to reduce position errors resulting from the quantization noise inherent in the inductosyn used to measure mirror position. The non-linear dynamic compensation system includes a limiter for limiting the error signal within preselected limits, a compensator for modifying the limiter output to achieve the reduced bandwidth response, and an adder for combining the modified error signal with the difference between the limited and unlimited error signals. The adder output is applied to control system motor so that the system response is optimized for accuracy when the error signal is within the preselected limits, optimized for speed of response when the error signal is substantially beyond the preselected limits and smoothly varied therebetween as the error signal approaches the preselected limits.

  9. Optical Measurement of Radiocarbon below Unity Fraction Modern by Linear Absorption Spectroscopy.

    PubMed

    Fleisher, Adam J; Long, David A; Liu, Qingnan; Gameson, Lyn; Hodges, Joseph T

    2017-09-21

    High-precision measurements of radiocarbon ( 14 C) near or below a fraction modern 14 C of 1 (F 14 C ≤ 1) are challenging and costly. An accurate, ultrasensitive linear absorption approach to detecting 14 C would provide a simple and robust benchtop alternative to off-site accelerator mass spectrometry facilities. Here we report the quantitative measurement of 14 C in gas-phase samples of CO 2 with F 14 C < 1 using cavity ring-down spectroscopy in the linear absorption regime. Repeated analysis of CO 2 derived from the combustion of either biogenic or petrogenic sources revealed a robust ability to differentiate samples with F 14 C < 1. With a combined uncertainty of 14 C/ 12 C = 130 fmol/mol (F 14 C = 0.11), initial performance of the calibration-free instrument is sufficient to investigate a variety of applications in radiocarbon measurement science including the study of biofuels and bioplastics, illicitly traded specimens, bomb dating, and atmospheric transport.

  10. Stabilization of Inviscid Vortex Sheets

    NASA Astrophysics Data System (ADS)

    Protas, Bartosz; Sakajo, Takashi

    2017-11-01

    In this study we investigate the problem of stabilizing inviscid vortex sheets via feedback control. Such models, expressed in terms of the Birkhoff-Rott equation, are often used to describe the Kevin-Helmholtz instability of shear layers and are known to be strongly unstable to small-scale perturbations. First, we consider the linear stability of a straight vortex sheet in the periodic setting with actuation in the form of an array of point vortices or sources located a certain distance away from the sheet. We establish conditions under which this system is controllable and observable. Next, using methods of the linear control theory, we synthesize a feedback control strategy which stabilizes a straight vortex sheet in the linear regime. Given the poor conditioning of the discretized problem, reliable solution of the resulting algebraic Riccati equation requires the use of high-precision arithmetic. Finally, we demonstrate that this control approach also succeeds in the nonlinear regime, provided the magnitude of the initial perturbation is sufficiently small.

  11. Towards TeV-scale electron-positron collisions: the Compact Linear Collider (CLIC)

    NASA Astrophysics Data System (ADS)

    Doebert, Steffen; Sicking, Eva

    2018-02-01

    The Compact Linear Collider (CLIC), a future electron-positron collider at the energy frontier, has the potential to change our understanding of the universe. Proposed to follow the Large Hardron Collider (LHC) programme at CERN, it is conceived for precision measurements as well as for searches for new phenomena.

  12. Precision of the upgraded cottonscan instrument for measuring the average fiber linear density (fineness) of cotton lint samples

    USDA-ARS?s Scientific Manuscript database

    An inter-laboratory trial was conducted to validate the operation of the CottonscanTM technology as useful technique for determining the average fiber linear density of cotton. A significant inter-laboratory trial was completed and confirmed that the technology is quite acceptable. For fibers fin...

  13. High precision optical spectroscopy and quantum state selected photodissociation of ultracold 88Sr2 molecules in an optical lattice

    NASA Astrophysics Data System (ADS)

    McDonald, Mickey

    2017-04-01

    Over the past several decades, rapid progress has been made toward the accurate characterization and control of atoms, epitomized by the ever-increasing accuracy and precision of optical atomic lattice clocks. Extending this progress to molecules will have exciting implications for chemistry, condensed matter physics, and precision tests of physics beyond the Standard Model. My thesis describes work performed over the past six years to establish the state of the art in manipulation and quantum control of ultracold molecules. We describe a thorough set of measurements characterizing the rovibrational structure of weakly bound 88Sr2 molecules from several different perspectives, including determinations of binding energies; linear, quadratic, and higher order Zeeman shifts; transition strengths between bound states; and lifetimes of narrow subradiant states. Finally, we discuss measurements of photofragment angular distributions produced by photodissociation of molecules in single quantum states, leading to an exploration of quantum-state-resolved ultracold chemistry. The images of exploding photofragments produced in these studies exhibit dramatic interference effects and strongly violate semiclassical predictions, instead requiring a fully quantum mechanical description.

  14. A T-Type Capacitive Sensor Capable of Measuring 5-DOF Error Motions of Precision Spindles

    PubMed Central

    Xiang, Kui; Qiu, Rongbo; Mei, Deqing; Chen, Zichen

    2017-01-01

    The precision spindle is a core component of high-precision machine tools, and the accurate measurement of its error motions is important for improving its rotation accuracy as well as the work performance of the machine. This paper presents a T-type capacitive sensor (T-type CS) with an integrated structure. The proposed sensor can measure the 5-degree-of-freedom (5-DOF) error motions of a spindle in-situ and simultaneously by integrating electrode groups in the cylindrical bore of the stator and the outer end face of its flange, respectively. Simulation analysis and experimental results show that the sensing electrode groups with differential measurement configuration have near-linear output for the different types of rotor displacements. What’s more, the additional capacitance generated by fringe effects has been reduced about 90% with the sensing electrode groups fabricated based on flexible printed circuit board (FPCB) and related processing technologies. The improved signal processing circuit has also been increased one times in the measuring performance and makes the measured differential output capacitance up to 93% of the theoretical values. PMID:28846631

  15. Pink-Beam, Highly-Accurate Compact Water Cooled Slits

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lyndaker, Aaron; Deyhim, Alex; Jayne, Richard

    2007-01-19

    Advanced Design Consulting, Inc. (ADC) has designed accurate compact slits for applications where high precision is required. The system consists of vertical and horizontal slit mechanisms, a vacuum vessel which houses them, water cooling lines with vacuum guards connected to the individual blades, stepper motors with linear encoders, limit (home position) switches and electrical connections including internal wiring for a drain current measurement system. The total slit size is adjustable from 0 to 15 mm both vertically and horizontally. Each of the four blades are individually controlled and motorized. In this paper, a summary of the design and Finite Elementmore » Analysis of the system are presented.« less

  16. Experimental validation of flexible robot arm modeling and control

    NASA Technical Reports Server (NTRS)

    Ulsoy, A. Galip

    1989-01-01

    Flexibility is important for high speed, high precision operation of lightweight manipulators. Accurate dynamic modeling of flexible robot arms is needed. Previous work has mostly been based on linear elasticity with prescribed rigid body motions (i.e., no effect of flexible motion on rigid body motion). Little or no experimental validation of dynamic models for flexible arms is available. Experimental results are also limited for flexible arm control. Researchers include the effects of prismatic as well as revolute joints. They investigate the effect of full coupling between the rigid and flexible motions, and of axial shortening, and consider the control of flexible arms using only additional sensors.

  17. Determination of MDMA, MDEA and MDA in urine by high performance liquid chromatography with fluorescence detection.

    PubMed

    da Costa, José Luiz; da Matta Chasin, Alice Aparecida

    2004-11-05

    This paper describes the development and validation of analytical methodology for the determination of the use of MDMA, MDEA and MDA in urine. After a simple liquid extraction, the analyses were carried out on a high performance liquid chromatography (HPLC) in an octadecyl column, with fluorescence detection. The mobile phase using a sodium dodecyl sulfate ion-pairing reagent allows good separation and efficiency. The method showed good linearity and precision. Recovery was between 85 and 102% and detection limits were 10, 15 and 20 ng/ml for MDA, MDMA and MDEA, respectively. No interfering substances were detected with fluorescence detection.

  18. High-bandwidth and flexible tracking control for precision motion with application to a piezo nanopositioner.

    PubMed

    Feng, Zhao; Ling, Jie; Ming, Min; Xiao, Xiao-Hui

    2017-08-01

    For precision motion, high-bandwidth and flexible tracking are the two important issues for significant performance improvement. Iterative learning control (ILC) is an effective feedforward control method only for systems that operate strictly repetitively. Although projection ILC can track varying references, the performance is still limited by the fixed-bandwidth Q-filter, especially for triangular waves tracking commonly used in a piezo nanopositioner. In this paper, a wavelet transform-based linear time-varying (LTV) Q-filter design for projection ILC is proposed to compensate high-frequency errors and improve the ability to tracking varying references simultaneously. The LVT Q-filter is designed based on the modulus maximum of wavelet detail coefficients calculated by wavelet transform to determine the high-frequency locations of each iteration with the advantages of avoiding cross-terms and segmenting manually. The proposed approach was verified on a piezo nanopositioner. Experimental results indicate that the proposed approach can locate the high-frequency regions accurately and achieve the best performance under varying references compared with traditional frequency-domain and projection ILC with a fixed-bandwidth Q-filter, which validates that through implementing the LTV filter on projection ILC, high-bandwidth and flexible tracking can be achieved simultaneously by the proposed approach.

  19. Ultra-Low-Dropout Linear Regulator

    NASA Technical Reports Server (NTRS)

    Thornton, Trevor; Lepkowski, William; Wilk, Seth

    2011-01-01

    A radiation-tolerant, ultra-low-dropout linear regulator can operate between -150 and 150 C. Prototype components were demonstrated to be performing well after a total ionizing dose of 1 Mrad (Si). Unlike existing components, the linear regulator developed during this activity is unconditionally stable over all operating regimes without the need for an external compensation capacitor. The absence of an external capacitor reduces overall system mass/volume, increases reliability, and lowers cost. Linear regulators generate a precisely controlled voltage for electronic circuits regardless of fluctuations in the load current that the circuit draws from the regulator.

  20. Simultaneous determination of kolliphor HS15 and miglyol 812 in microemulsion formulation by ultra-high performance liquid chromatography coupled with nano quantity analyte detector.

    PubMed

    Zhang, Honggen; Wang, Zhenyu; Liu, Oscar

    2016-02-01

    A novel method for simultaneous determination of kolliphor HS15 and miglyol 812 in microemulsion formulation was developed using ultra-high performance liquid chromatography coupled with a nano quantitation analytical detector (UHPLC-NQAD). All components in kolliphor HS15 and miglyol 812 were well separated on an Acquity BEH C 18 column. Mobile phase A was 0.1% trifluoroacetic acid (TFA) in water and mobile phase B was acetonitrile. A gradient elution sequence was programed initially with 60% organic solvent, slowly increased to 100% within 8 min. The flow rate was 0.7 mL/min. Good linearity ( r >0.95) was obtained in the range of 27.6-1381.1 μg/mL for polyoxyl 15 hydroxystearate in kolliphor HS15, 0.8-202.0 μg/mL for caprylic acid triglyceride and 2.7-221.9 μg/mL for capric acid triglyceride in miglyol 812. The relative standard deviations (RSD) ranged from 0.6% to 1.7% for intra-day precision and from 0.4% to 2.7% for inter-day precision. The overall recoveries (accuracy) were 99.7%-101.4% for polyoxyl 15 hydroxystearate in kolliphor HS15, 96.7%-99.6% for caprylic acid triglyceride, and 94.1%-103.3% for capric acid triglyceride in miglyol 812. Quantification limits (QL) were determined as 27.6 μg/mL for polyoxyl 15 hydroxystearate in kolliphor HS15, 0.8 μg/mL for caprylic acid triglyceride, and 2.7 μg/mL for capric acid triglyceride in miglyol 812. No interferences were observed in the retention time ranges of kolliphor HS15 and miglyol 812. The method was validated in terms of specificity, linearity, precision, accuracy, QL, and robustness. The proposed method has been applied to microemulsion formulation analyses with good recoveries (82.2%-103.4%).

  1. Development and Validation of GC-ECD Method for the Determination of Metamitron in Soil

    PubMed Central

    Tandon, Shishir; Kumar, Satyendra; Sand, N. K.

    2015-01-01

    This paper aims at developing and validating a convenient, rapid, and sensitive method for estimation of metamitron from soil samples.Determination andquantification was carried out by Gas Chromatography on microcapillary column with an Electron Capture Detector source. The compound was extracted from soil using methanol and cleanup by C-18 SPE. After optimization, the method was validated by evaluating the analytical curves, linearity, limits of detection, and quantification, precision (repeatability and intermediate precision), and accuracy (recovery). Recovery values ranged from 89 to 93.5% within 0.05- 2.0 µg L−1 with average RSD 1.80%. The precision (repeatability) ranged from 1.7034 to 1.9144% and intermediate precision from 1.5685 to 2.1323%. Retention time was 6.3 minutes, and minimum detectable and quantifiable limits were 0.02 ng mL−1 and 0.05 ng g−1, respectively. Good linearity (R 2 = 0.998) of the calibration curves was obtained over the range from 0.05 to 2.0 µg L−1. Results indicated that the developed method is rapid and easy to perform, making it applicable for analysis in large pesticide monitoring programmes. PMID:25733978

  2. Accurate determination of reference materials and natural isolates by means of quantitative (1)h NMR spectroscopy.

    PubMed

    Frank, Oliver; Kreissl, Johanna Karoline; Daschner, Andreas; Hofmann, Thomas

    2014-03-26

    A fast and precise proton nuclear magnetic resonance (qHNMR) method for the quantitative determination of low molecular weight target molecules in reference materials and natural isolates has been validated using ERETIC 2 (Electronic REference To access In vivo Concentrations) based on the PULCON (PULse length based CONcentration determination) methodology and compared to the gravimetric results. Using an Avance III NMR spectrometer (400 MHz) equipped with a broad band observe (BBO) probe, the qHNMR method was validated by determining its linearity, range, precision, and accuracy as well as robustness and limit of quantitation. The linearity of the method was assessed by measuring samples of l-tyrosine, caffeine, or benzoic acid in a concentration range between 0.3 and 16.5 mmol/L (r(2) ≥ 0.99), whereas the interday and intraday precisions were found to be ≤2%. The recovery of a range of reference compounds was ≥98.5%, thus demonstrating the qHNMR method as a precise tool for the rapid quantitation (~15 min) of food-related target compounds in reference materials and natural isolates such as nucleotides, polyphenols, or cyclic peptides.

  3. Computing Generalized Matrix Inverse on Spiking Neural Substrate.

    PubMed

    Shukla, Rohit; Khoram, Soroosh; Jorgensen, Erik; Li, Jing; Lipasti, Mikko; Wright, Stephen

    2018-01-01

    Emerging neural hardware substrates, such as IBM's TrueNorth Neurosynaptic System, can provide an appealing platform for deploying numerical algorithms. For example, a recurrent Hopfield neural network can be used to find the Moore-Penrose generalized inverse of a matrix, thus enabling a broad class of linear optimizations to be solved efficiently, at low energy cost. However, deploying numerical algorithms on hardware platforms that severely limit the range and precision of representation for numeric quantities can be quite challenging. This paper discusses these challenges and proposes a rigorous mathematical framework for reasoning about range and precision on such substrates. The paper derives techniques for normalizing inputs and properly quantizing synaptic weights originating from arbitrary systems of linear equations, so that solvers for those systems can be implemented in a provably correct manner on hardware-constrained neural substrates. The analytical model is empirically validated on the IBM TrueNorth platform, and results show that the guarantees provided by the framework for range and precision hold under experimental conditions. Experiments with optical flow demonstrate the energy benefits of deploying a reduced-precision and energy-efficient generalized matrix inverse engine on the IBM TrueNorth platform, reflecting 10× to 100× improvement over FPGA and ARM core baselines.

  4. Wii Balance Board: Reliability and Clinical Use in Assessment of Balance in Healthy Elderly Women.

    PubMed

    Monteiro-Junior, Renato Sobral; Ferreira, Arthur Sá; Puell, Vivian Neiva; Lattari, Eduardo; Machado, Sérgio; Otero Vaghetti, César Augusto; da Silva, Elirez Bezerra

    2015-01-01

    Force plate is considered gold standard tool to assess body balance. However the Wii Balance Board (WBB) platform is a trustworthy equipment to assess stabilometric components in young people. Thus, we aim to examine the reliability of measures of center of pressure with WBB in healthy elderly women. Twenty one healthy and physically active women were enrolled in the study (age: 64 ± 7 years; body mass index: 29 ± 5 kg/m2. The WBB was used to assess the center of pressure measures in the individuals. Pressure was linearly applied to different points to test the platform precision. Three assessments were performed, with two of them being held on the same day at a 5- to 10-minute interval, and the third one was performed 48 h later. A linear regression analysis was used to find out linearity, while the intraclass correlation coefficient was used to assess reliability. The platform precision was adequate (R2 = 0.997, P = 0.01). Center of pressure measures showed an excellent reliability (all intraclass correlation coefficient values were > 0.90; p < 0.01). The WBB is a precise and reliable tool of body stability quantitative measure in healthy active elderly women and its use should be encouraged in clinical settings.

  5. Method of Individual Adjustment for 3D CT Analysis: Linear Measurement.

    PubMed

    Kim, Dong Kyu; Choi, Dong Hun; Lee, Jeong Woo; Yang, Jung Dug; Chung, Ho Yun; Cho, Byung Chae; Choi, Kang Young

    2016-01-01

    Introduction . We aim to regularize measurement values in three-dimensional (3D) computed tomography (CT) reconstructed images for higher-precision 3D analysis, focusing on length-based 3D cephalometric examinations. Methods . We measure the linear distances between points on different skull models using Vernier calipers (real values). We use 10 differently tilted CT scans for 3D CT reconstruction of the models and measure the same linear distances from the picture archiving and communication system (PACS). In both cases, each measurement is performed three times by three doctors, yielding nine measurements. The real values are compared with the PACS values. Each PACS measurement is revised based on the display field of view (DFOV) values and compared with the real values. Results . The real values and the PACS measurement changes according to tilt value have no significant correlations ( p > 0.05). However, significant correlations appear between the real values and DFOV-adjusted PACS measurements ( p < 0.001). Hence, we obtain a correlation expression that can yield real physical values from PACS measurements. The DFOV value intervals for various age groups are also verified. Conclusion . Precise confirmation of individual preoperative length and precise analysis of postoperative improvements through 3D analysis is possible, which is helpful for facial-bone-surgery symmetry correction.

  6. Application of a microplate-based ORAC-pyrogallol red assay for the estimation ofantioxidant capacity: First Action 2012.03.

    PubMed

    Ortiz, Rocío; Antilén, Mónica; Speisky, Hernán; Aliaga, Margarita E; López-Alarcón, Camilo; Baugh, Steve

    2012-01-01

    A method was developed for microplate-based oxygen radicals absorbance capacity (ORAC) using pyrogallol red (PGR) as probe (ORAC-PGR). The method was evaluated for linearity, precision, and accuracy. In addition, the antioxidant capacity of commercial beverages, such as wines, fruit juices, and iced teas, was measured. Linearity of the area under the curve (AUC) versus Trolox concentration plots was [AUC = (845 +/- 110) + (23 +/- 2) [Trolox, microM]; R = 0.9961, n = 19]. Analyses showed better precision and accuracy at the highest Trolox concentration (40 microM) with RSD and recovery (REC) values of 1.7 and 101.0%, respectively. The method also showed good linearity for red wine [AUC = (787 +/- 77) + (690 +/- 60) [red wine, microL/mL]; R = 0.9926, n = 17], precision and accuracy with RSD values from 1.4 to 8.3%, and REC values that ranged from 89.7 to 103.8%. Red wines showed higher ORAC-PGR values than white wines, while the ORAC-PGR index of fruit juices and iced teas presented a wide range of results, from 0.6 to 21.6 mM of Trolox equivalents. Product-to-product variability was also observed for juices of the same fruit, showing the differences between brands on the ORAC-PGR index.

  7. Measuring changes in Plasmodium falciparum transmission: Precision, accuracy and costs of metrics

    PubMed Central

    Tusting, Lucy S.; Bousema, Teun; Smith, David L.; Drakeley, Chris

    2016-01-01

    As malaria declines in parts of Africa and elsewhere, and as more countries move towards elimination, it is necessary to robustly evaluate the effect of interventions and control programmes on malaria transmission. To help guide the appropriate design of trials to evaluate transmission-reducing interventions, we review eleven metrics of malaria transmission, discussing their accuracy, precision, collection methods and costs, and presenting an overall critique. We also review the non-linear scaling relationships between five metrics of malaria transmission; the entomological inoculation rate, force of infection, sporozoite rate, parasite rate and the basic reproductive number, R0. Our review highlights that while the entomological inoculation rate is widely considered the gold standard metric of malaria transmission and may be necessary for measuring changes in transmission in highly endemic areas, it has limited precision and accuracy and more standardised methods for its collection are required. In areas of low transmission, parasite rate, sero-conversion rates and molecular metrics including MOI and mFOI may be most appropriate. When assessing a specific intervention, the most relevant effects will be detected by examining the metrics most directly affected by that intervention. Future work should aim to better quantify the precision and accuracy of malaria metrics and to improve methods for their collection. PMID:24480314

  8. Simultaneous quantification of paracetamol, acetylsalicylic acid and papaverine with a validated HPLC method.

    PubMed

    Kalmár, Eva; Gyuricza, Anett; Kunos-Tóth, Erika; Szakonyi, Gerda; Dombi, György

    2014-01-01

    Combined drug products have the advantages of better patient compliance and possible synergic effects. The simultaneous application of several active ingredients at a time is therefore frequently chosen. However, the quantitative analysis of such medicines can be challenging. The aim of this study is to provide a validated method for the investigation of a multidose packed oral powder that contained acetylsalicylic acid, paracetamol and papaverine-HCl. Reversed-phase high-pressure liquid chromatography was used. The Agilent Zorbax SB-C18 column was found to be the most suitable of the three different stationary phases tested for the separation of the components of this sample. The key parameters in the method development (apart from the nature of the column) were the pH of the aqueous phase (set to 3.4) and the ratio of the organic (acetonitrile) and the aqueous (25 mM phosphate buffer) phases, which was varied from 7:93 (v/v) to 25:75 (v/v) in a linear gradient, preceded by an initial hold. The method was validated: linearity, precision (repeatability and intermediate precision), accuracy, specificity and robustness were all tested, and the results met the ICH guidelines. © The Author [2013]. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  9. Simultaneous determination of trace migration of phthalate esters in honey and royal jelly by GC-MS.

    PubMed

    Zhou, Jinhui; Qi, Yitao; Wu, Hongmei; Diao, Qingyun; Tian, Feifei; Li, Yi

    2014-03-01

    A simple, rapid, and reliable liquid-liquid extraction coupled to GC-MS method was developed and validated for the quantification of 22 phthalate esters (PAEs) in honey and royal jelly. Instrument parameters for GC-MS were tested to obtain the satisfactory separation between 22 PAEs with high sensitivity. The extraction procedure was optimized in order to achieve the best recovery. The following criteria were used to validate the developed method: linearity, LOD, lower LOQ, precision, accuracy, matrix effect and carry-over. Correlation coefficients were >0.999 by applying the linear regression model based on the least-squares method with a weighting factor (1/x). The intra- and interday precision were within 12.7% in terms of RSD, and the accuracy was within -11.8% in terms of relative error. The mean extraction recoveries ranged between 80.1 and 110.9% for honey and royal jelly. No significant matrix effect and carry-over for PAEs were observed for the analysis of honey and royal jelly samples. A total of 20 real samples were analyzed for a mini-survey using the developed method. Seven PAEs in honey samples and five PAEs in royal jelly samples were found, indicating potential contamination with several PAEs. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Equalization filters for multiple-channel electromyogram arrays

    PubMed Central

    Clancy, Edward A.; Xia, Hongfang; Christie, Anita; Kamen, Gary

    2007-01-01

    Multiple channels of electromyogram activity are frequently transduced via electrodes, then combined electronically to form one electrophysiologic recording, e.g. bipolar, linear double difference and Laplacian montages. For high quality recordings, precise gain and frequency response matching of the individual electrode potentials is achieved in hardware (e.g., an instrumentation amplifier for bipolar recordings). This technique works well when the number of derived signals is small and the montages are pre-determined. However, for array electrodes employing a variety of montages, hardware channel matching can be expensive and tedious, and limits the number of derived signals monitored. This report describes a method for channel matching based on the concept of equalization filters. Monopolar potentials are recorded from each site without precise hardware matching. During a calibration phase, a time-varying linear chirp voltage is applied simultaneously to each site and recorded. Based on the calibration recording, each monopolar channel is digitally filtered to “correct” for (equalize) differences in the individual channels, and then any derived montages subsequently created. In a hardware demonstration system, the common mode rejection ratio (at 60 Hz) of bipolar montages improved from 35.2 ± 5.0 dB (prior to channel equalization) to 69.0 ± 5.0 dB (after equalization). PMID:17614134

  11. Clinical laboratory urine analysis: comparison of the UriSed automated microscopic analyzer and the manual microscopy.

    PubMed

    Ma, Junlong; Wang, Chengbin; Yue, Jiaxin; Li, Mianyang; Zhang, Hongrui; Ma, Xiaojing; Li, Xincui; Xue, Dandan; Qing, Xiaoyan; Wang, Shengjiang; Xiang, Daijun; Cong, Yulong

    2013-01-01

    Several automated urine sediment analyzers have been introduced to clinical laboratories. Automated microscopic pattern recognition is a new technique for urine particle analysis. We evaluated the analytical and diagnostic performance of the UriSed automated microscopic analyzer and compared with manual microscopy for urine sediment analysis. Precision, linearity, carry-over, and method comparison were carried out. A total of 600 urine samples sent for urinalysis were assessed using the UriSed automated microscopic analyzer and manual microscopy. Within-run and between-run precision of the UriSed for red blood cells (RBC) and white blood cells (WBC) were acceptable at all levels (CV < 20%). Within-run and between-run imprecision of the UriSed testing for cast, squamous epithelial cells (EPI), and bacteria (BAC) were good at middle level and high level (CV < 20%). The linearity analysis revealed substantial agreement between the measured value and the theoretical value of the UriSed for RBC, WBC, cast, EPI, and BAC (r > 0.95). There was no carry-over. RBC, WBC, and squamous epithelial cells with sensitivities and specificities were more than 80% in this study. There is substantial agreement between the UriSed automated microscopic analyzer and the manual microscopy methods. The UriSed provides for a rapid turnaround time.

  12. A sensitive and rapid determination of ranitidine in human plasma by HPLC with fluorescence detection and its application for a pharmacokinetic study.

    PubMed

    Ulu, Sevgi Tatar; Tuncel, Muzaffer

    2012-04-01

    A novel precolumn derivatization reversed-phase high-performance liquid chromatography method with fluorescence detection is described for the determination of ranitidine in human plasma. The method was based on the reaction of ranitidine with 4-fluoro-7-nitrobenzo-2-oxa-1,3-diazole forming yellow colored fluorescent product. The separation was achieved on a C(18) column using methanol-water (60:40, v/v) mobile phase. Fluorescence detection was used at the excitation and emission of 458 and 521 nm, respectively. Lisinopril was utilized as an internal standard. The flow rate was 1.2 mL/min. Ranitidine and lisinopril appeared at 3.24 and 2.25 min, respectively. The method was validated for system suitability, precision, accuracy, linearity, limit of detection, limit of quantification, recovery and robustness. Intra- and inter-day precisions of the assays were in the range of 0.01-0.44%. The assay was linear over the concentration range of 50-2000 ng/mL. The mean recovery was determined to be 96.40 ± 0.02%. This method was successfully applied to a pharmacokinetic study after oral administration of a dose (150 mg) of ranitidine. © The Author [2012]. Published by Oxford University Press. All rights reserved.

  13. Precision PEP-II optics measurement with an SVD-enhanced Least-Square fitting

    NASA Astrophysics Data System (ADS)

    Yan, Y. T.; Cai, Y.

    2006-03-01

    A singular value decomposition (SVD)-enhanced Least-Square fitting technique is discussed. By automatic identifying, ordering, and selecting dominant SVD modes of the derivative matrix that responds to the variations of the variables, the converging process of the Least-Square fitting is significantly enhanced. Thus the fitting speed can be fast enough for a fairly large system. This technique has been successfully applied to precision PEP-II optics measurement in which we determine all quadrupole strengths (both normal and skew components) and sextupole feed-downs as well as all BPM gains and BPM cross-plane couplings through Least-Square fitting of the phase advances and the Local Green's functions as well as the coupling ellipses among BPMs. The local Green's functions are specified by 4 local transfer matrix components R12, R34, R32, R14. These measurable quantities (the Green's functions, the phase advances and the coupling ellipse tilt angles and axis ratios) are obtained by analyzing turn-by-turn Beam Position Monitor (BPM) data with a high-resolution model-independent analysis (MIA). Once all of the quadrupoles and sextupole feed-downs are determined, we obtain a computer virtual accelerator which matches the real accelerator in linear optics. Thus, beta functions, linear coupling parameters, and interaction point (IP) optics characteristics can be measured and displayed.

  14. Investigation of an optical sensor for small tilt angle detection of a precision linear stage

    NASA Astrophysics Data System (ADS)

    Saito, Yusuke; Arai, Yoshikazu; Gao, Wei

    2010-05-01

    This paper presents evaluation results of the characteristics of the angle sensor based on the laser autocollimation method for small tilt angle detection of a precision linear stage. The sensor consists of a laser diode (LD) as the light source, and a quadrant photodiode (QPD) as the position-sensing detector. A small plane mirror is mounted on the moving table of the stage as a target mirror for the sensor. This optical system has advantages of high sensitivity, fast response speed and the ability for two-axis angle detection. On the other hand, the sensitivity of the sensor is determined by the size of the optical spot focused on the QPD, which is a function of the diameter of the laser beam projected onto the target mirror. Because the diameter is influenced by the divergence of the laser beam, this paper focuses on the relationship between the sensor sensitivity and the moving position of the target mirror (sensor working distance) over the moving stroke of the stage. The main error components that influence the sensor sensitivity are discussed and the optimal conditions of the optical system of the sensor are analyzed. The experimental result about evaluation of the effective working distance is also presented.

  15. Performance evaluation of Abbott CELL-DYN Ruby for routine use.

    PubMed

    Lehto, T; Hedberg, P

    2008-10-01

    CELL-DYN Ruby is a new automated hematology analyzer suitable for routine use in small laboratories and as a back-up or emergency analyzer in medium- to high-volume laboratories. The analyzer was evaluated by comparing the results from the CELL-DYN((R)) Ruby with the results obtained from CELL-DYN Sapphire . Precision, linearity, and carryover between patient samples were also assessed. Precision was good at all levels for the routine cell blood count (CBC) parameters, CV% being or= 0.98) with CELL-DYN Sapphire for the CBC parameters. For the absolute reticulocyte count, R(2) was 0.82. In the white blood cell (WBC) differentials, the between-days precision was good for all parameters (CV%: or= 0.97), and the correlation coefficient for absolute monocyte count and monocyte percentage were 0.91 and 0.87, respectively. For absolute basophil count and basophil percentage the correlations were weaker (R(2) = 0.46 and 0.34, respectively). Carryover was minimal for all the parameters studied. The linearities of WBC, red blood cell, PLTs, and hemoglobin were acceptable within the tested ranges. In conclusion, the results of the evaluation showed the performance of CELL-DYN Ruby to be good.

  16. Linear and Nonlinear Molecular Spectroscopy with Laser Frequency Combs

    NASA Astrophysics Data System (ADS)

    Picque, Nathalie

    2013-06-01

    The regular pulse train of a mode-locked femtosecond laser can give rise to a comb spectrum of millions of laser modes with a spacing precisely equal to the pulse repetition frequency. Laser frequency combs were conceived a decade ago as tools for the precision spectroscopy of atomic hydrogen. They are now becoming enabling tools for an increasing number of applications, including molecular spectroscopy. Recent experiments of multi-heterodyne frequency comb Fourier transform spectroscopy (also called dual-comb spectroscopy) have demonstrated that the precisely spaced spectral lines of a laser frequency comb can be harnessed for new techniques of linear absorption spectroscopy. The first proof-of-principle experiments have demonstrated a very exciting potential of dual-comb spectroscopy without moving parts for ultra-rapid and ultra-sensitive recording of complex broad spectral bandwidth molecular spectra. Compared to conventional Michelson-based Fourier transform spectroscopy, recording times could be shortened from seconds to microseconds, with intriguing prospects for spectroscopy of short lived transient species. The resolution improves proportionally to the measurement time. Therefore longer recordings allow high resolution spectroscopy of molecules with extreme precision, since the absolute frequency of each laser comb line can be known with the accuracy of an atomic clock. Moreover, since laser frequency combs involve intense ultrashort laser pulses, nonlinear interactions can be harnessed. Broad spectral bandwidth ultra-rapid nonlinear molecular spectroscopy and imaging with two laser frequency combs is demonstrated with coherent Raman effects and two-photon excitation. Real-time multiplex accessing of hyperspectral images may dramatically expand the range of applications of nonlinear microscopy. B. Bernhardt et al., Nature Photonics 4, 55-57 (2010); A. Schliesser et al. Nature Photonics 6, 440-449 (2012); T. Ideguchi et al. arXiv:1201.4177 (2012) T. Ideguchi et al., Optics letters 37, 4498-4500 (2012); T. Ideguchi et al. arXiv:1302.2414 (2013)

  17. Qualitative and Quantitative Analysis of Volatile Components of Zhengtian Pills Using Gas Chromatography Mass Spectrometry and Ultra-High Performance Liquid Chromatography.

    PubMed

    Liu, Cui-Ting; Zhang, Min; Yan, Ping; Liu, Hai-Chan; Liu, Xing-Yun; Zhan, Ruo-Ting

    2016-01-01

    Zhengtian pills (ZTPs) are traditional Chinese medicine (TCM) which have been commonly used to treat headaches. Volatile components of ZTPs extracted by ethyl acetate with an ultrasonic method were analyzed by gas chromatography mass spectrometry (GC-MS). Twenty-two components were identified, accounting for 78.884% of the total components of volatile oil. The three main volatile components including protocatechuic acid, ferulic acid, and ligustilide were simultaneously determined using ultra-high performance liquid chromatography coupled with diode array detection (UHPLC-DAD). Baseline separation was achieved on an XB-C18 column with linear gradient elution of methanol-0.2% acetic acid aqueous solution. The UHPLC-DAD method provided good linearity (R (2) ≥ 0.9992), precision (RSD < 3%), accuracy (100.68-102.69%), and robustness. The UHPLC-DAD/GC-MS method was successfully utilized to analyze volatile components, protocatechuic acid, ferulic acid, and ligustilide, in 13 batches of ZTPs, which is suitable for discrimination and quality assessment of ZTPs.

  18. Determination of the energy transitions and half-lives of Rubidium nuclei

    NASA Astrophysics Data System (ADS)

    Biçer, Ahmet; Manisa, Kaan; Engin Çalık, Abdullah; Erdoğan, Mehmet; Şen, Mürsel; Bircan, Hasan; Dapo, Haris; Boztosun, Ismail

    2018-03-01

    The photonuclear reactions, first extensively studied in the 1970's and performed using the gamma rays obtained via bremsstrahlung, are a standard nuclear physics experiment. In this study, a non-enriched Rubidium sample was irradiated with photons produced by a clinical linear electron accelerator (cLINACs) with energies up to 18 MeV with the aim of activating it through photonuclear reactions. The activated sample was measured with a high purity germanium detector (HPGe) with the aim of measuring the transition energies and half-lives. The spectroscopic analysis performed on the obtained data yielded high quality results for the transition energies with precision matching or surpassing the literature data. For the half-lives the results were consistent with the literature, most notably the half-life of 84mRb decay was determined as 20.28(2) m. The results for both energies and half-lives further show that the clinical linear accelerators can be successfully used as an efficient tool in experimental nuclear research endeavors.

  19. Minimal supersymmetric B - L extension of the standard model, heavy H and light h Higgs boson production and decay at future e + e - linear colliders

    NASA Astrophysics Data System (ADS)

    Ramírez-Sánchez, F.; Gutierrez-Rodríguez, A.; Hernández-Ruiz, M. A.

    2017-10-01

    We study the phenomenology of the light h and heavy H Higgs boson production and decay in the context of a U(1) B - L extension of the standard model with an additional Z´ boson at future e + e - linear colliders with center-of-mass energies of √𝑠 = 500 - 3000 GeV and integrated luminosities of L = 500 - 2000 fb-1. The study includes the processes e + e - → (Z, Z´) → Zh and e + e - → (Z, Z´) → ZH, considering both the resonant and non-resonant effects. We find that the total number of expected Zh and ZH events can reach 106 and 105, respectively, which is a very optimistic scenario allowing us to perform precision measurements for both Higgs bosons h and H, as well as for the Z‧ boson in future high-energy and high-luminosity e + e - colliders.

  20. Effects of feeding different levels of dietary fiber through the addition of corn stover on nutrient utilization of dairy heifers precision-fed high and low concentrate diets.

    PubMed

    Lascano, G J; Heinrichs, A J

    2011-06-01

    The objective of this experiment was to assess the effects of manipulating dietary fiber by replacing corn silage (CS) with lower quality forage as corn stover (CST) when used in high concentrate (HC) and low concentrate (LC) diets for precision-fed dairy heifers. Eight Holstein heifers (335.6 ± 7.41 kg of body weight) were randomly assigned to 2 levels of concentrate: HC (20% forage) and LC (80% forage), and to a forage type sequence [0% of forage as corn stover (CST), 100% corn silage (CS); 20% CST, 80% CS; 40% CST, 60% CS; and 60% CST, 40% CS] within concentrate level administered according to a split-plot, 4 × 4 Latin square design (21-d periods). Heifers fed HC had higher apparent total-tract dry matter digestibility (DMD). Increasing the fiber level by increasing the amount of CST in the diet resulted in a linear decrease of DMD and organic matter digestibility. Heifers fed LC diets had higher neutral detergent fiber (NDF) digestibility and tended to have lower acid detergent fiber (ADF) digestibility than those fed HC diets. Substituting CS with 20% CST resulted in the highest NDF and ADF digestibilities. Digestibility of N was not different, but N retention increased for HC and decreased quadratically for LC diets. Heifers fed HC diets decreased fecal output, and CST linearly increased these parameters. Urine volume tended to be higher for HC-fed heifers, and increasing dietary fiber through CST inclusion tended to decrease urine output. This shift in water excretion resulted in similar total manure output. Total purine derivative excretion did not differ between treatments, but interacted with CST addition, resulting in a linear increase in microbial protein flow to the duodenum in HC-fed heifers and in a linear decrease in LC diets as CST increased. In conclusion, increasing dietary fiber through CST decreased DMD and organic matter digestibility linearly, whereas NDF and ADF digestibility were maximized when 20% CST was added to HC and LC diets. Microbial protein synthesis increased and decreased linearly with CST addition in HC and LC diets, respectively. Retention of N increased and decreased quadratically with CST addition in HC and LC diets, respectively. Total manure excretion was not different between HC or LC diets. Copyright © 2011 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  1. Activities of the DOE Nuclear Criticality Safety Program (NCSP) at the Oak Ridge Electron Linear Accelerator (ORELA)

    NASA Astrophysics Data System (ADS)

    Valentine, Timothy E.; Leal, Luiz C.; Guber, Klaus H.

    2002-12-01

    The Department of Energy established the Nuclear Criticality Safety Program (NCSP) in response to the Recommendation 97-2 by the Defense Nuclear Facilities Safety Board. The NCSP consists of seven elements of which nuclear data measurements and evaluations is a key component. The intent of the nuclear data activities is to provide high resolution nuclear data measurements that are evaluated, validated, and formatted for use by the nuclear criticality safety community to provide improved and reliable calculations for nuclear criticality safety evaluations. High resolution capture, fission, and transmission measurements are performed at the Oak Ridge Electron Linear Accelerator (ORELA) to address the needs of the criticality safety community and to address known deficiencies in nuclear data evaluations. The activities at ORELA include measurements on both light and heavy nuclei and have been used to identify improvements in measurement techniques that greatly improve the measurement of small capture cross sections. The measurement activities at ORELA provide precise and reliable high-resolution nuclear data for the nuclear criticality safety community.

  2. Simulation of electron energy loss spectra of nanomaterials with linear-scaling density functional theory

    DOE PAGES

    Tait, E. W.; Ratcliff, L. E.; Payne, M. C.; ...

    2016-04-20

    Experimental techniques for electron energy loss spectroscopy (EELS) combine high energy resolution with high spatial resolution. They are therefore powerful tools for investigating the local electronic structure of complex systems such as nanostructures, interfaces and even individual defects. Interpretation of experimental electron energy loss spectra is often challenging and can require theoretical modelling of candidate structures, which themselves may be large and complex, beyond the capabilities of traditional cubic-scaling density functional theory. In this work, we present functionality to compute electron energy loss spectra within the onetep linear-scaling density functional theory code. We first demonstrate that simulated spectra agree withmore » those computed using conventional plane wave pseudopotential methods to a high degree of precision. The ability of onetep to tackle large problems is then exploited to investigate convergence of spectra with respect to supercell size. As a result, we apply the novel functionality to a study of the electron energy loss spectra of defects on the (1 0 1) surface of an anatase slab and determine concentrations of defects which might be experimentally detectable.« less

  3. Magnetically suspended stepping motors for clean room and vacuum environments

    NASA Technical Reports Server (NTRS)

    Higuchi, Toshiro

    1994-01-01

    To answer the growing needs for super-clean or contact free actuators for uses in clean rooms, vacuum chambers, and space, innovative actuators which combine the functions of stepping motors and magnetic bearings in one body were developed. The rotor of the magnetically suspended stepping motor is suspended like a magnetic bearing and rotated and positioned like a stepping motor. The important trait of the motor is that it is not a simple mixture or combination of a stepping motor and conventional magnetic bearing, but an amalgam of a stepping motor and a magnetic bearing. Owing to optimal design and feed-back control, a toothed stator and rotor are all that are needed structurewise for stable suspension. More than ten types of motors such as linear type, high accuracy rotary type, two-dimensional type, and high vacuum type were built and tested. This paper describes the structure and design of these motors and their performance for such applications as precise positioning rotary table, linear conveyor system, and theta-zeta positioner for clean room and high vacuum use.

  4. In vivo precision of the GE Lunar iDXA densitometer for the measurement of total-body, lumbar spine, and femoral bone mineral density in adults.

    PubMed

    Hind, Karen; Oldroyd, Brian; Truscott, John G

    2010-01-01

    Knowledge of precision is integral to the monitoring of bone mineral density (BMD) changes using dual-energy X-ray absorptiometry (DXA). We evaluated the precision for bone measurements acquired using a GE Lunar iDXA (GE Healthcare, Waukesha, WI) in self-selected men and women, with mean age of 34.8 yr (standard deviation [SD]: 8.4; range: 20.1-50.5), heterogeneous in terms of body mass index (mean: 25.8 kg/m(2); SD: 5.1; range: 16.7-42.7 kg/m(2)). Two consecutive iDXA scans (with repositioning) of the total body, lumbar spine, and femur were conducted within 1h, for each subject. The coefficient of variation (CV), the root-mean-square (RMS) averages of SDs of repeated measurements, and the corresponding 95% least significant change were calculated. Linear regression analyses were also undertaken. We found a high level of precision for BMD measurements, particularly for scans of the total body, lumbar spine, and total hip (RMS: 0.007, 0.004, and 0.007 g/cm(2); CV: 0.63%, 0.41%, and 0.53%, respectively). Precision error for the femoral neck was higher but still represented good reproducibility (RMS: 0.014 g/cm(2); CV: 1.36%). There were associations between body size and total-body BMD and total-hip BMD SD precisions (r=0.534-0.806, p<0.05) in male subjects. Regression parameters showed good association between consecutive measurements for all body sites (r(2)=0.98-0.99). The Lunar iDXA provided excellent precision for BMD measurements of the total body, lumbar spine, femoral neck, and total hip. Copyright © 2010 The International Society for Clinical Densitometry. Published by Elsevier Inc. All rights reserved.

  5. Development of an ultrasonic linear motor with ultra-positioning capability and four driving feet.

    PubMed

    Zhu, Cong; Chu, Xiangcheng; Yuan, Songmei; Zhong, Zuojin; Zhao, Yanqiang; Gao, Shuning

    2016-12-01

    This paper presents a novel linear piezoelectric motor which is suitable for rapid ultra-precision positioning. The finite element analysis (FEA) was applied for optimal design and further analysis, then experiments were conducted to investigate its performance. By changing the input signal, the proposed motor was found capable of working in the fast driving mode as well as in the precision positioning mode. When working in the fast driving mode, the motor acts as an ultrasonic motor with maximum no-load speed up to 181.2mm/s and maximum thrust of 1.7N at 200Vp-p. Also, when working in precision positioning mode, the motor can be regarded as a flexible hinge piezoelectric actuator with arbitrary motion in the range of 8μm. The measurable minimum output displacement was found to be 0.08μm, but theoretically, can be even smaller. More importantly, the motor can be quickly and accurately positioned in a large stroke. Copyright © 2016 Elsevier B.V. All rights reserved.

  6. Mechanical design of deformation compensated flexural pivots structured for linear nanopositioning stages

    DOEpatents

    Shu, Deming; Kearney, Steven P.; Preissner, Curt A.

    2015-02-17

    A method and deformation compensated flexural pivots structured for precision linear nanopositioning stages are provided. A deformation-compensated flexural linear guiding mechanism includes a basic parallel mechanism including a U-shaped member and a pair of parallel bars linked to respective pairs of I-link bars and each of the I-bars coupled by a respective pair of flexural pivots. The basic parallel mechanism includes substantially evenly distributed flexural pivots minimizing center shift dynamic errors.

  7. Bit Grooming: statistically accurate precision-preserving quantization with compression, evaluated in the netCDF Operators (NCO, v4.4.8+)

    NASA Astrophysics Data System (ADS)

    Zender, Charles S.

    2016-09-01

    Geoscientific models and measurements generate false precision (scientifically meaningless data bits) that wastes storage space. False precision can mislead (by implying noise is signal) and be scientifically pointless, especially for measurements. By contrast, lossy compression can be both economical (save space) and heuristic (clarify data limitations) without compromising the scientific integrity of data. Data quantization can thus be appropriate regardless of whether space limitations are a concern. We introduce, implement, and characterize a new lossy compression scheme suitable for IEEE floating-point data. Our new Bit Grooming algorithm alternately shaves (to zero) and sets (to one) the least significant bits of consecutive values to preserve a desired precision. This is a symmetric, two-sided variant of an algorithm sometimes called Bit Shaving that quantizes values solely by zeroing bits. Our variation eliminates the artificial low bias produced by always zeroing bits, and makes Bit Grooming more suitable for arrays and multi-dimensional fields whose mean statistics are important. Bit Grooming relies on standard lossless compression to achieve the actual reduction in storage space, so we tested Bit Grooming by applying the DEFLATE compression algorithm to bit-groomed and full-precision climate data stored in netCDF3, netCDF4, HDF4, and HDF5 formats. Bit Grooming reduces the storage space required by initially uncompressed and compressed climate data by 25-80 and 5-65 %, respectively, for single-precision values (the most common case for climate data) quantized to retain 1-5 decimal digits of precision. The potential reduction is greater for double-precision datasets. When used aggressively (i.e., preserving only 1-2 digits), Bit Grooming produces storage reductions comparable to other quantization techniques such as Linear Packing. Unlike Linear Packing, whose guaranteed precision rapidly degrades within the relatively narrow dynamic range of values that it can compress, Bit Grooming guarantees the specified precision throughout the full floating-point range. Data quantization by Bit Grooming is irreversible (i.e., lossy) yet transparent, meaning that no extra processing is required by data users/readers. Hence Bit Grooming can easily reduce data storage volume without sacrificing scientific precision or imposing extra burdens on users.

  8. Magnetic resonance imaging for precise radiotherapy of small laboratory animals.

    PubMed

    Frenzel, Thorsten; Kaul, Michael Gerhard; Ernst, Thomas Michael; Salamon, Johannes; Jäckel, Maria; Schumacher, Udo; Krüll, Andreas

    2017-03-01

    Radiotherapy of small laboratory animals (SLA) is often not as precisely applied as in humans. Here we describe the use of a dedicated SLA magnetic resonance imaging (MRI) scanner for precise tumor volumetry, radiotherapy treatment planning, and diagnostic imaging in order to make the experiments more accurate. Different human cancer cells were injected at the lower trunk of pfp/rag2 and SCID mice to allow for local tumor growth. Data from cross sectional MRI scans were transferred to a clinical treatment planning system (TPS) for humans. Manual palpation of the tumor size was compared with calculated tumor size of the TPS and with tumor weight at necropsy. As a feasibility study MRI based treatment plans were calculated for a clinical 6MV linear accelerator using a micro multileaf collimator (μMLC). In addition, diagnostic MRI scans were used to investigate animals which did clinical poorly during the study. MRI is superior in precise tumor volume definition whereas manual palpation underestimates their size. Cross sectional MRI allow for treatment planning so that conformal irradiation of mice with a clinical linear accelerator using a μMLC is in principle feasible. Several internal pathologies were detected during the experiment using the dedicated scanner. MRI is a key technology for precise radiotherapy of SLA. The scanning protocols provided are suited for tumor volumetry, treatment planning, and diagnostic imaging. Copyright © 2016. Published by Elsevier GmbH.

  9. Precise Point Positioning Using Triple GNSS Constellations in Various Modes

    PubMed Central

    Afifi, Akram; El-Rabbany, Ahmed

    2016-01-01

    This paper introduces a new dual-frequency precise point positioning (PPP) model, which combines the observations from three different global navigation satellite system (GNSS) constellations, namely GPS, Galileo, and BeiDou. Combining measurements from different GNSS systems introduces additional biases, including inter-system bias and hardware delays, which require rigorous modelling. Our model is based on the un-differenced and between-satellite single-difference (BSSD) linear combinations. BSSD linear combination cancels out some receiver-related biases, including receiver clock error and non-zero initial phase bias of the receiver oscillator. Forming the BSSD linear combination requires a reference satellite, which can be selected from any of the GPS, Galileo, and BeiDou systems. In this paper three BSSD scenarios are tested; each considers a reference satellite from a different GNSS constellation. Natural Resources Canada’s GPSPace PPP software is modified to enable a combined GPS, Galileo, and BeiDou PPP solution and to handle the newly introduced biases. A total of four data sets collected at four different IGS stations are processed to verify the developed PPP model. Precise satellite orbit and clock products from the International GNSS Service Multi-GNSS Experiment (IGS-MGEX) network are used to correct the GPS, Galileo, and BeiDou measurements in the post-processing PPP mode. A real-time PPP solution is also obtained, which is referred to as RT-PPP in the sequel, through the use of the IGS real-time service (RTS) for satellite orbit and clock corrections. However, only GPS and Galileo observations are used for the RT-PPP solution, as the RTS-IGS satellite products are not presently available for BeiDou system. All post-processed and real-time PPP solutions are compared with the traditional un-differenced GPS-only counterparts. It is shown that combining the GPS, Galileo, and BeiDou observations in the post-processing mode improves the PPP convergence time by 25% compared with the GPS-only counterpart, regardless of the linear combination used. The use of BSSD linear combination improves the precision of the estimated positioning parameters by about 25% in comparison with the GPS-only PPP solution. Additionally, the solution convergence time is reduced to 10 minutes for the BSSD model, which represents about 50% reduction, in comparison with the GPS-only PPP solution. The GNSS RT-PPP solution, on the other hand, shows a similar convergence time and precision to the GPS-only counterpart. PMID:27240376

  10. Precise Point Positioning Using Triple GNSS Constellations in Various Modes.

    PubMed

    Afifi, Akram; El-Rabbany, Ahmed

    2016-05-28

    This paper introduces a new dual-frequency precise point positioning (PPP) model, which combines the observations from three different global navigation satellite system (GNSS) constellations, namely GPS, Galileo, and BeiDou. Combining measurements from different GNSS systems introduces additional biases, including inter-system bias and hardware delays, which require rigorous modelling. Our model is based on the un-differenced and between-satellite single-difference (BSSD) linear combinations. BSSD linear combination cancels out some receiver-related biases, including receiver clock error and non-zero initial phase bias of the receiver oscillator. Forming the BSSD linear combination requires a reference satellite, which can be selected from any of the GPS, Galileo, and BeiDou systems. In this paper three BSSD scenarios are tested; each considers a reference satellite from a different GNSS constellation. Natural Resources Canada's GPSPace PPP software is modified to enable a combined GPS, Galileo, and BeiDou PPP solution and to handle the newly introduced biases. A total of four data sets collected at four different IGS stations are processed to verify the developed PPP model. Precise satellite orbit and clock products from the International GNSS Service Multi-GNSS Experiment (IGS-MGEX) network are used to correct the GPS, Galileo, and BeiDou measurements in the post-processing PPP mode. A real-time PPP solution is also obtained, which is referred to as RT-PPP in the sequel, through the use of the IGS real-time service (RTS) for satellite orbit and clock corrections. However, only GPS and Galileo observations are used for the RT-PPP solution, as the RTS-IGS satellite products are not presently available for BeiDou system. All post-processed and real-time PPP solutions are compared with the traditional un-differenced GPS-only counterparts. It is shown that combining the GPS, Galileo, and BeiDou observations in the post-processing mode improves the PPP convergence time by 25% compared with the GPS-only counterpart, regardless of the linear combination used. The use of BSSD linear combination improves the precision of the estimated positioning parameters by about 25% in comparison with the GPS-only PPP solution. Additionally, the solution convergence time is reduced to 10 minutes for the BSSD model, which represents about 50% reduction, in comparison with the GPS-only PPP solution. The GNSS RT-PPP solution, on the other hand, shows a similar convergence time and precision to the GPS-only counterpart.

  11. Validation of the Filovirus Plaque Assay for Use in Preclinical Studies

    PubMed Central

    Shurtleff, Amy C.; Bloomfield, Holly A.; Mort, Shannon; Orr, Steven A.; Audet, Brian; Whitaker, Thomas; Richards, Michelle J.; Bavari, Sina

    2016-01-01

    A plaque assay for quantitating filoviruses in virus stocks, prepared viral challenge inocula and samples from research animals has recently been fully characterized and standardized for use across multiple institutions performing Biosafety Level 4 (BSL-4) studies. After standardization studies were completed, Good Laboratory Practices (GLP)-compliant plaque assay method validation studies to demonstrate suitability for reliable and reproducible measurement of the Marburg Virus Angola (MARV) variant and Ebola Virus Kikwit (EBOV) variant commenced at the United States Army Medical Research Institute of Infectious Diseases (USAMRIID). The validation parameters tested included accuracy, precision, linearity, robustness, stability of the virus stocks and system suitability. The MARV and EBOV assays were confirmed to be accurate to ±0.5 log10 PFU/mL. Repeatability precision, intermediate precision and reproducibility precision were sufficient to return viral titers with a coefficient of variation (%CV) of ≤30%, deemed acceptable variation for a cell-based bioassay. Intraclass correlation statistical techniques for the evaluation of the assay’s precision when the same plaques were quantitated by two analysts returned values passing the acceptance criteria, indicating high agreement between analysts. The assay was shown to be accurate and specific when run on Nonhuman Primates (NHP) serum and plasma samples diluted in plaque assay medium, with negligible matrix effects. Virus stocks demonstrated stability for freeze-thaw cycles typical of normal usage during assay retests. The results demonstrated that the EBOV and MARV plaque assays are accurate, precise and robust for filovirus titration in samples associated with the performance of GLP animal model studies. PMID:27110807

  12. Short human occupations in the Middle Palaeolithic level i of the Abric Romani rock-shelter (Capellades, Barcelona, Spain)

    USGS Publications Warehouse

    Vallerdu, J.; Allue, E.; Bischoff, J.L.; Caceres, I.; Carbonell, E.; Cebria, A.; Garcia-Anton, D.; Huguet, R.; Ibanez, N.; Martinez, K.; Pasto, I.; Rosell, J.; Saladie, P.; Vaquero, Manola

    2005-01-01

    The small occupation surfaces and restricted provisioning strategies suggest short settlements in the Abric Romani. This shorter occupation model complements the longer diversified provisioning strategy recorded in both small and medium-sized occupied surfaces. The selection of precise elements for transport and the possible deferred consumption in the diversified provision strategy suggest an individual supply. In this respect, Neanderthal occupations in the Romani rock-shelter show a direct relation to: 1) hunting strategic resources; 2) high, linear mobility.

  13. Systematic Error Mitigation for the PIXIE Instrument

    NASA Technical Reports Server (NTRS)

    Kogut, Alan; Fixsen, Dale J.; Nagler, Peter; Tucker, Gregory

    2016-01-01

    The Primordial Ination Explorer (PIXIE) uses a nulling Fourier Transform Spectrometer to measure the absoluteintensity and linear polarization of the cosmic microwave background and diuse astrophysical foregrounds.PIXIE will search for the signature of primordial ination and will characterize distortions from a blackbodyspectrum, both to precision of a few parts per billion. Rigorous control of potential instrumental eects isrequired to take advantage of the raw sensitivity. PIXIE employs a highly symmetric design using multipledierential nulling to reduce the instrumental signature to negligible levels. We discuss the systematic errorbudget and mitigation strategies for the PIXIE mission.

  14. Geometrical accuracy of metallic objects produced with additive or subtractive manufacturing: A comparative in vitro study.

    PubMed

    Braian, Michael; Jönsson, David; Kevci, Mir; Wennerberg, Ann

    2018-07-01

    To evaluate the accuracy and precision of objects produced by additive manufacturing systems (AM) for use in dentistry and to compare with subtractive manufacturing systems (SM). Ten specimens of two geometrical objects were produced by five different AM machines and one SM machine. Object A mimics an inlay-shaped object, while object B imitates a four-unit bridge model. All the objects were sorted into different measurement dimensions (x, y, z), linear distances, angles and corner radius. None of the additive manufacturing or subtractive manufacturing groups presented a perfect match to the CAD file with regard to all parameters included in the present study. Considering linear measurements, the precision for subtractive manufacturing group was consistent in all axes for object A, presenting results of <0.050mm. The additive manufacturing groups had consistent precision in the x-axis and y-axis but not in the z-axis. With regard to corner radius measurements, the SM group had the best overall accuracy and precision for both objects A and B when compared to the AM groups. Within the limitations of this in vitro study, the conclusion can be made that subtractive manufacturing presented overall precision on all measurements below 0.050mm. The AM machines also presented fairly good precision, <0.150mm, on all axes except for the z-axis. Knowledge regarding accuracy and precision for different production techniques utilized in dentistry is of great clinical importance. The dental community has moved from casting to milling and additive techniques are now being implemented. Thus all these production techniques need to be tested, compared and validated. Copyright © 2018 The Academy of Dental Materials. Published by Elsevier Inc. All rights reserved.

  15. Modifications to a Cavity Ringdown Spectrometer to Improve Data Acquisition Rates

    NASA Astrophysics Data System (ADS)

    Bostrom, Gregory Alan

    Cavity ringdown spectroscopy (CRDS) makes use of light retention in an optical cavity to enhance the sensitivity to absorption or extinction of light from a sample inside the cavity. When light entering the cavity is stopped, the output is an exponential decay with a decay constant that can be used to determine the quantity of the analyte if the extinction or absorption coefficient is known. The precision of the CRDS is dependent on the rate at which the system it acquires and processes ringdowns, assuming randomly distributed errors. We have demonstrated a CRDS system with a ringdown acquisition rate of 1.5 kHz, extendable to a maximum of 3.5 kHz, using new techniques that significantly changed the way in which the ringdowns are both initiated and processed. On the initiation side, we combined a custom high-resolution laser controller with a linear optical feedback configuration and a novel optical technique for initiating a ringdown. Our optical injection "unlock" method switches the laser off-resonance, while allowing the laser to immediately return to resonance, after terminating the unlock, to allow for another ringdown (on the same cavity resonance mode). This part of the system had a demonstrated ringdown initiation rate of 3.5 kHz. To take advantage of this rate, we developed an optimized cost-effective FGPA-based data acquisition and processing system for CRDS, capable of determining decay constants at a maximum rate of 4.4 kHz, by modifying a commercial ADC-FPGA evaluation board and programming it to apply a discrete Fourier transform-based algorithm for determining decay constants. The entire system shows promise with a demonstrated ability to determine gas concentrations for H2O with a measured concentration accuracy of +/-3.3%. The system achieved an absorption coefficient precision of 0.1% (95% confidence interval). It also exhibited a linear response for varying H2O concentrations, a 2.2% variation (1sigma) for repeated measurements at the same H2O concentration, and a corresponding precision of 0.6% (standard error of the mean). The absorption coefficient limit of detection was determined to be 1.6 x 10-8 cm -1 (root mean square of the baseline residual). Proposed modifications to our prototype system offer the promise of more substantial gains in both precision and limit of detection. The system components developed here for faster ringdown acquisition and processing have broader applications for CRDS in atmospheric science and other fields that need fast response systems operating at high-precision.

  16. Targeted profiling of hydrophilic constituents of royal jelly by hydrophilic interaction liquid chromatography-tandem mass spectrometry.

    PubMed

    Pina, Athanasia; Begou, Olga; Kanelis, Dimitris; Gika, Helen; Kalogiannis, Stavros; Tananaki, Chrysoula; Theodoridis, Georgios; Zotou, Anastasia

    2018-01-05

    In the present work a Hydrophilic Interaction Liquid Chromatography-tandem Mass Spectrometry (HILIC-MS/MS) method was developed for the efficient separation and quantification of a large number of small polar bioactive molecules in Royal Jelly. The method was validated and provided satisfactory detection sensitivity for 88 components. Quantification was proven to be precise for 64 components exhibiting good linearity, recoveries R% >90% for the majority of analytes and intra- and inter-day precision from 0.14 to 20% RSD. Analysis of 125 fresh royal jelly samples of Greek origin provided useful information on royal jelly's hydrophilic bioactive components revealing lysine, ribose, proline, melezitose and glutamic acid to be in high abundance. In addition the occurrence of 18 hydrophilic nutrients which have not been reported previously as royal jelly constituents is shown. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Determination of enantiomeric vigabatrin by derivatization with diacetyl-l-tartaric anhydride followed by ultra-high performance liquid chromatography-quadrupole-time-of-flight mass spectrometry.

    PubMed

    Zhao, Jing; Shin, Yujin; Jin, Yan; Jeong, Kyung Min; Lee, Jeongmi

    2017-01-01

    Vigabatrin, one of the most widely used antiepileptic drugs, is marketed and administered as a racemic mixture, while only S-enantiomer is therapeutically effective. In the present study, diacetyl-l-tartaric acid anhydride was used as an inexpensive and effective chiral derivatization reagent to produce tartaric acid monoester derivatives of vigabatrin enantiomers that could be readily resolved by reversed phase chromatography. Derivatization conditions were statistically optimized by response surface methodology, resulting in an optimal reaction temperature of 44°C and an optimal reaction time of 30min. The derivatized diastereomers of vigabatrin and internal standard (gabapentin) were analyzed using ultra-high performance liquid chromatography coupled to quadrupole-time-of-flight mass spectrometry. For this analysis, an Agilent ZORBAX Rapid Resolution High Definition Eclipse Plus C18 column (100mm×2.1mm, 1.8μm) was employed for chromatographic separation using 10mM ammonium formate (pH 3.0) and methanol as mobile phase at a flow rate of 0.2mLmin -1 . The established method was validated in terms of specificity, linearity, precision, accuracy, dilution integrity, recovery, matrix effect, stability, and incurred sample reanalysis. It was linear over a range of 0.25-100.0mgL -1 for both S- and R-enantiomers (R 2 ≥0.9987 for both). Intra- and inter-day precisions and accuracies were within acceptable ranges. The method was successfully applied to determine the levels of vigabatrin enantiomers in mouse serum after administration of vigabatrin racemate. Copyright © 2016 Elsevier B.V. All rights reserved.

  18. Quality Analysis of Chlorogenic Acid and Hyperoside in Crataegi fructus

    PubMed Central

    Weon, Jin Bae; Jung, Youn Sik; Ma, Choong Je

    2016-01-01

    Background: Crataegi fructus is a herbal medicine for strong stomach, sterilization, and alcohol detoxification. Chlorogenic acid and hyperoside are the major compounds in Crataegi fructus. Objective: In this study, we established novel high-performance liquid chromatography (HPLC)-diode array detection analysis method of chlorogenic acid and hyperoside for quality control of Crataegi fructus. Materials and Methods: HPLC analysis was achieved on a reverse-phase C18 column (5 μm, 4.6 mm × 250 mm) using water and acetonitrile as mobile phase with gradient system. The method was validated for linearity, precision, and accuracy. About 31 batches of Crataegi fructus samples collected from Korea and China were analyzed by using HPLC fingerprint of developed HPLC method. Then, the contents of chlorogenic acid and hyperoside were compared for quality evaluation of Crataegi fructus. Results: The results have shown that the average contents (w/w %) of chlorogenic acid and hyperoside in Crataegi fructus collected from Korea were 0.0438% and 0.0416%, respectively, and the average contents (w/w %) of 0.0399% and 0.0325%, respectively. Conclusion: In conclusion, established HPLC analysis method was stable and could provide efficient quality evaluation for monitoring of commercial Crataegi fructus. SUMMARY Quantitative analysis method of chlorogenic acid and hyperoside in Crataegi fructus is developed by high.performance liquid chromatography.(HPLC).diode array detectionEstablished HPLC analysis method is validated with linearity, precision, and accuracyThe developed method was successfully applied for quantitative analysis of Crataegi fructus sample collected from Korea and China. Abbreviations used: HPLC: High-performance liquid chromatography, GC: Gas chromatography, MS: Mass spectrometer, LOD: Limits of detection, LOQ: Limits of quantification, RSD: Relative standard deviation, RRT: Relative retention time, RPA: Relation peak area. PMID:27076744

  19. Liquid chromatography/tandem mass spectrometry method for simultaneous determination of cocaine and its metabolite (-)ecgonine methyl ester in human acidified stabilized plasma samples.

    PubMed

    Liu, Yongzhen; Zheng, Bo; Strafford, Stephanie; Orugunty, Ravi; Sullivan, Michael; Gus, Jeffrey; Heidbreder, Christian; Fudala, Paul J; Nasser, Azmi

    2014-06-15

    Two simple, sensitive and rapid liquid chromatography/electrospray ionization tandem mass spectrometry (LC-ESI-MS/MS) methods (low range and high range) were developed and validated for the quantification of cocaine and its metabolite (-)ecgonine methyl ester (EME) in human acidified stabilized plasma samples. In the low range assay, cocaine and the internal standard, cocaine-D3, were extracted using a single step liquid-liquid extraction from human acidified stabilized plasma. For the high range assay, human acidified stabilized plasma containing cocaine, EME, and the internal standards, cocaine-D3 and EME-D3, was mixed with acetonitrile, and the protein precipitate was separated by centrifugation. Both cocaine and EME extracted from both assays were separated on a HILIC column and detected in positive ion mode using multiple reaction monitoring (MRM). Both methods were validated and the specificity, linearity, lower limit of quantitation (LLOQ), precision, accuracy, recoveries and stability were determined. The linear range for the low range assay was 0.01-5ng/mL for cocaine; in the high range assay values were 5-1000ng/mL for cocaine and 1-200ng/mL for EME. The correlation coefficient (R(2)) values for both assays were 0.993 or greater. The precision and accuracy for intra-day and inter-day were better than 13.0%. The recovery was above 85% and matrix effects were low with the matrix factor ranging from 0.817 to 1.10 for both analytes in both assays. The validated methods were successfully used to quantify the plasma concentrations of cocaine and EME in clinical pharmacokinetic and pharmacodynamic studies. Copyright © 2014 Elsevier B.V. All rights reserved.

  20. Third party EPID with IGRT capability retrofitted onto an existing medical linear accelerator

    PubMed Central

    Odero, DO; Shimm, DS

    2009-01-01

    Radiation therapy requires precision to avoid unintended irradiation of normal organs. Electronic Portal Imaging Devices (EPIDs), can help with precise patient positioning for accurate treatment. EPIDs are now bundled with new linear accelerators, or they can be purchased from the Linac manufacturer for retrofit. Retrofitting a third party EPID to a linear accelerator can pose challenges. The authors describe a relatively inexpensive third party CCD camera-based EPID manufactured by TheraView (Cablon Medical B.V.), installed onto a Siemens Primus linear accelerator, and integrated with a Lantis record and verify system, an Oldelft simulator with Digital Therapy Imaging (DTI) unit, and a Philips ADAC Pinnacle treatment planning system (TPS). This system integrates well with existing equipment and its software can process DICOM images from other sources. The system provides a complete imaging system that eliminates the need for separate software for portal image viewing, interpretation, analysis, archiving, image guided radiation therapy and other image management applications. It can also be accessed remotely via safe VPN tunnels. TheraView EPID retrofit therefore presents an example of a less expensive alternative to linear accelerator manufacturers’ proprietary EPIDs suitable for implementation in third world countries radiation therapy departments which are often faced with limited financial resources. PMID:21611056

  1. Third party EPID with IGRT capability retrofitted onto an existing medical linear accelerator.

    PubMed

    Odero, D O; Shimm, D S

    2009-07-01

    Radiation therapy requires precision to avoid unintended irradiation of normal organs. Electronic Portal Imaging Devices (EPIDs), can help with precise patient positioning for accurate treatment. EPIDs are now bundled with new linear accelerators, or they can be purchased from the Linac manufacturer for retrofit. Retrofitting a third party EPID to a linear accelerator can pose challenges. The authors describe a relatively inexpensive third party CCD camera-based EPID manufactured by TheraView (Cablon Medical B.V.), installed onto a Siemens Primus linear accelerator, and integrated with a Lantis record and verify system, an Oldelft simulator with Digital Therapy Imaging (DTI) unit, and a Philips ADAC Pinnacle treatment planning system (TPS). This system integrates well with existing equipment and its software can process DICOM images from other sources. The system provides a complete imaging system that eliminates the need for separate software for portal image viewing, interpretation, analysis, archiving, image guided radiation therapy and other image management applications. It can also be accessed remotely via safe VPN tunnels. TheraView EPID retrofit therefore presents an example of a less expensive alternative to linear accelerator manufacturers' proprietary EPIDs suitable for implementation in third world countries radiation therapy departments which are often faced with limited financial resources.

  2. Probabilistic measurement of non-physical constructs during early childhood: Epistemological implications for advancing psychosocial science

    NASA Astrophysics Data System (ADS)

    Bezruczko, N.; Fatani, S. S.

    2010-07-01

    Social researchers commonly compute ordinal raw scores and ratings to quantify human aptitudes, attitudes, and abilities but without a clear understanding of their limitations for scientific knowledge. In this research, common ordinal measures were compared to higher order linear (equal interval) scale measures to clarify implications for objectivity, precision, ontological coherence, and meaningfulness. Raw score gains, residualized raw gains, and linear gains calculated with a Rasch model were compared between Time 1 and Time 2 for observations from two early childhood learning assessments. Comparisons show major inconsistencies between ratings and linear gains. When gain distribution was dense, relatively compact, and initial status near item mid-range, linear measures and ratings were indistinguishable. When Time 1 status was distributed more broadly and magnitude of change variable, ratings were unrelated to linear gain, which emphasizes problematic implications of ordinal measures. Surprisingly, residualized gain scores did not significantly improve ordinal measurement of change. In general, raw scores and ratings may be meaningful in specific samples to establish order and high/low rank, but raw score differences suffer from non-uniform units. Even meaningfulness of sample comparisons, as well as derived proportions and percentages, are seriously affected by rank order distortions and should be avoided.

  3. Acceleration of Linear Finite-Difference Poisson-Boltzmann Methods on Graphics Processing Units.

    PubMed

    Qi, Ruxi; Botello-Smith, Wesley M; Luo, Ray

    2017-07-11

    Electrostatic interactions play crucial roles in biophysical processes such as protein folding and molecular recognition. Poisson-Boltzmann equation (PBE)-based models have emerged as widely used in modeling these important processes. Though great efforts have been put into developing efficient PBE numerical models, challenges still remain due to the high dimensionality of typical biomolecular systems. In this study, we implemented and analyzed commonly used linear PBE solvers for the ever-improving graphics processing units (GPU) for biomolecular simulations, including both standard and preconditioned conjugate gradient (CG) solvers with several alternative preconditioners. Our implementation utilizes the standard Nvidia CUDA libraries cuSPARSE, cuBLAS, and CUSP. Extensive tests show that good numerical accuracy can be achieved given that the single precision is often used for numerical applications on GPU platforms. The optimal GPU performance was observed with the Jacobi-preconditioned CG solver, with a significant speedup over standard CG solver on CPU in our diversified test cases. Our analysis further shows that different matrix storage formats also considerably affect the efficiency of different linear PBE solvers on GPU, with the diagonal format best suited for our standard finite-difference linear systems. Further efficiency may be possible with matrix-free operations and integrated grid stencil setup specifically tailored for the banded matrices in PBE-specific linear systems.

  4. Study on longitudinal force simulation of heavy-haul train

    NASA Astrophysics Data System (ADS)

    Chang, Chongyi; Guo, Gang; Wang, Junbiao; Ma, Yingming

    2017-04-01

    The longitudinal dynamics model of heavy-haul trains and air brake model used in the longitudinal train dynamics (LTDs) are established. The dry friction damping hysteretic characteristic of steel friction draft gears is simulated by the equation which describes the suspension forces in truck leaf springs. The model of draft gears introduces dynamic loading force, viscous friction of steel friction and the damping force. Consequently, the numerical model of the draft gears is brought forward. The equation of LTDs is strongly non-linear. In order to solve the response of the strongly non-linear system, the high-precision and equilibrium iteration method based on the Newmark-β method is presented and numerical analysis is made. Longitudinal dynamic forces of the 20,000 tonnes heavy-haul train are tested, and models and solution method provided are verified by the test results.

  5. A precision isotonic measuring system for isolated tissues.

    PubMed

    Mellor, P M

    1984-12-01

    An isotonic measuring system is described which utilizes an angular position transducer of the linear differential voltage transformer type. Resistance to corrosion, protection against the ingress of solutions, and ease of mounting and setting up were the mechanical objectives. Accuracy, linearity, and freedom from drift were essential requirements of the electrical specification. A special housing was designed to accommodate the transducer to overcome these problems. A control unit incorporating a power supply and electronic filtering components was made to serve up to four such transducers. The transducer output voltage is sufficiently high to drive directly even low sensitivity chart recorders. Constructional details and a circuit diagram are included. Fifty such transducers have been in use for up to four years in these laboratories. Examples of some of the published work done using this transducer system are referenced.

  6. Development and evaluation of multi-energy PbO dosimeter for quality assurance of image-guide radiation therapy devices

    NASA Astrophysics Data System (ADS)

    Kim, Kyo-Tae; Heo, Ye-Ji; Han, Moo-Jae; Oh, Kyung-Min; Lee, Young-Kyu; Kim, Shin-Wook; Park, Sung-Kwang

    2017-04-01

    In radiation therapy, accurate radiotherapy treatment plan (RTP) reproduction is necessary to optimize the clinical results. Thus, attempts have recently been made to ensure high RTP reproducibility using image-guide radiation therapy (IGRT) technology. However, the clinical use of digital X-ray equipment requires extended quality assurance (QA) for those devices, since the IGRT device quality determines the precision of intensity-modulated radiation therapy. The study described in this paper was focused on developing a multi-energy PbO dosimeter for IGRT device QA. The Schottky-type polycrystalline PbO dosimeter with a Au/PbO/ITO structure was evaluated by comparing its response coincidence, dose linearity, measurement reproducibility, linear attenuation coefficient, and percent depth dose with those of Si diode and standard ionization chamber dosimeters.

  7. Fiber optics frequency comb enabled linear optical sampling with operation wavelength range extension.

    PubMed

    Liao, Ruolin; Wu, Zhichao; Fu, Songnian; Zhu, Shengnan; Yu, Zhe; Tang, Ming; Liu, Deming

    2018-02-01

    Although the linear optical sampling (LOS) technique is powerful enough to characterize various advanced modulation formats with high symbol rates, the central wavelength of a pulsed local oscillator (LO) needs to be carefully set according to that of the signal under test, due to the coherent mixing operation. Here, we experimentally demonstrate wideband LOS enabled by a fiber optics frequency comb (FOFC). Meanwhile, when the broadband FOFC acts as the pulsed LO, we propose a scheme to mitigate the enhanced sampling error arising in the non-ideal response of a balanced photodetector. Finally, precise characterizations of arbitrary 128 Gbps PDM-QPSK wavelength channels from 1550 to 1570 nm are successfully achieved, when a 101.3 MHz frequency spaced comb with a 3 dB spectral power ripple of 20 nm is used.

  8. An electrostatic 3-phase linear stepper motor fabricated by vertical trench isolation technology

    NASA Astrophysics Data System (ADS)

    Sarajlic, Edin; Yamahata, Christophe; Cordero, Mauricio; Fujita, Hiroyuki

    2009-07-01

    We present the design, microfabrication and characterization of an electrostatic 3-phase linear stepper micromotor constructed with vertical trench isolation technology. This suitable technology was used to create a monolithic stepper motor with high-aspect-ratio poles and an integrated 3-phase electrical network in the bulk of a standard single-crystal silicon wafer. The shuttle of the stepper motor is suspended by a flexure to avoid any mechanical contact during operation, enhancing the precision, repeatability and reliability of the stepping motion. The prototype is capable of a maximum travel of +/-26 µm (52 µm) at an actuation voltage of 30 V and a step size of 1.4 µm during a half-stepping sequence. This work was presented in part at the 19th MicroMechanics Europe Workshop (MME), 28-30 September 2008, Aachen, Germany.

  9. A method for fast determination of psoralens in oral solutions of phytomedicines using liquid chromatography.

    PubMed

    Pires, Adriana Elias; Honda, Neli Kiko; Cardoso, Cláudia Andréa Lima

    2004-10-29

    A method for sample preparation and analysis by high performance liquid chromatography with UV detection (HPLC-UV) has been developed for routine analysis of psoralen and bergapten, photosensitizing compounds, in oral solutions of phytomedicines employed in Brazil for some illnesses. The linearity, accuracy, the inter- and intra-day precision of the procedure were evaluated. Calibration curves for psoralen and bergapten were linear in the range of 1.0-600.0 microg ml(-1) and 1.0-400.0 microg ml(-1) respectively. The recoveries of the psoralens in the oral solutions analysed were 94.43-99.97%. The percentage coefficient of variation (CV) of the quantitative analysis of the psoralens in the products analysis was within 5%. In inter-equipment study was employed gas chromatography-flame ionization (CG-FID) detection.

  10. Performance of the first prototype of the CALICE scintillator strip electromagnetic calorimeter

    DOE PAGES

    Francis, K.; Repond, J.; Schlereth, J.; ...

    2014-11-01

    A first prototype of a scintillator strip-based electromagnetic calorimeter was built, consisting of 26 layers of tungsten absorber plates interleaved with planes of 45 × 10 × 3 mm³ plastic scintillator strips. Data were collected using a positron test beam at DESY with momenta between 1 and 6 GeV/c. The prototype's performance is presented in terms of the linearity and resolution of the energy measurement. These results represent an important milestone in the development of highly granular calorimeters using scintillator strip technology. A number of possible design improvements were identified, which should be implemented in a future detector of thismore » type. This technology is being developed for a future linear collider experiment, aiming at the precise measurement of jet energies using particle flow techniques.« less

  11. CCD developments for particle colliders

    NASA Astrophysics Data System (ADS)

    Stefanov, Konstantin D.

    2006-09-01

    Charge Coupled Devices (CCDs) have been successfully used in several high-energy physics experiments over the last 20 years. Their small pixel size and excellent precision provide superb tool for studying of short-lived particles and understanding the nature at fundamental level. Over the last years the Linear Collider Flavour Identification (LCFI) collaboration has developed Column-Parallel CCDs (CPCCD) and CMOS readout chips to be used for the vertex detector at the International Linear Collider (ILC). The CPCCDs are very fast devices capable of satisfying the challenging requirements imposed by the beam structure of the superconducting accelerator. First set of prototype devices have been designed, manufactured and successfully tested, with second-generation chips on the way. Another idea for CCD-based device, the In-situ Storage Image Sensor (ISIS) is also under development and the first prototype is in production.

  12. CCD-based vertex detector for ILC

    NASA Astrophysics Data System (ADS)

    Stefanov, Konstantin D.

    2006-12-01

    Charge Coupled Devices (CCDs) have been successfully used in several high-energy physics experiments over the last 20 years. Their small pixel size and excellent precision provide a superb tool for studying of short-lived particles and understanding the nature at fundamental level. Over the last few years the Linear Collider Flavour Identification (LCFI) collaboration has developed Column-Parallel CCDs (CPCCD) and CMOS readout chips, to be used for the vertex detector at the International Linear Collider (ILC). The CPCCDs are very fast devices capable of satisfying the challenging requirements imposed by the beam structure of the superconducting accelerator. The first set of prototype devices have been successfully designed, manufactured and tested, with second generation chips on the way. Another idea for CCD-based device, the In-situ Storage Image Sensor (ISIS) is also under development and the first prototype has been manufactured.

  13. Impulsivity modulates performance under response uncertainty in a reaching task.

    PubMed

    Tzagarakis, C; Pellizzer, G; Rogers, R D

    2013-03-01

    We sought to explore the interaction of the impulsivity trait with response uncertainty. To this end, we used a reaching task (Pellizzer and Hedges in Exp Brain Res 150:276-289, 2003) where a motor response direction was cued at different levels of uncertainty (1 cue, i.e., no uncertainty, 2 cues or 3 cues). Data from 95 healthy adults (54 F, 41 M) were analysed. Impulsivity was measured using the Barratt Impulsiveness Scale version 11 (BIS-11). Behavioral variables recorded were reaction time (RT), errors of commission (referred to as 'early errors') and errors of precision. Data analysis employed generalised linear mixed models and generalised additive mixed models. For the early errors, there was an interaction of impulsivity with uncertainty and gender, with increased errors for high impulsivity in the one-cue condition for women and the three-cue condition for men. There was no effect of impulsivity on precision errors or RT. However, the analysis of the effect of RT and impulsivity on precision errors showed a different pattern for high versus low impulsives in the high uncertainty (3 cue) condition. In addition, there was a significant early error speed-accuracy trade-off for women, primarily in low uncertainty and a 'reverse' speed-accuracy trade-off for men in high uncertainty. These results extend those of past studies of impulsivity which help define it as a behavioural trait that modulates speed versus accuracy response styles depending on environmental constraints and highlight once more the importance of gender in the interplay of personality and behaviour.

  14. Next generation multi-scale biophysical characterization of high precision cancer particle radiotherapy using clinical proton, helium-, carbon- and oxygen ion beams

    PubMed Central

    Niklas, Martin; Zimmermann, Ferdinand; Chaudhri, Naved; Krunic, Damir; Tessonnier, Thomas; Ferrari, Alfredo; Parodi, Katia; Jäkel, Oliver; Debus, Jürgen; Haberer, Thomas; Abdollahi, Amir

    2016-01-01

    The growing number of particle therapy facilities worldwide landmarks a novel era of precision oncology. Implementation of robust biophysical readouts is urgently needed to assess the efficacy of different radiation qualities. This is the first report on biophysical evaluation of Monte Carlo simulated predictive models of prescribed dose for four particle qualities i.e., proton, helium-, carbon- or oxygen ions using raster-scanning technology and clinical therapy settings at HIT. A high level of agreement was found between the in silico simulations, the physical dosimetry and the clonogenic tumor cell survival. The cell fluorescence ion track hybrid detector (Cell-Fit-HD) technology was employed to detect particle traverse per cell nucleus. Across a panel of radiobiological surrogates studied such as late ROS accumulation and apoptosis (caspase 3/7 activation), the relative biological effectiveness (RBE) chiefly correlated with the radiation species-specific spatio-temporal pattern of DNA double strand break (DSB) formation and repair kinetic. The size and the number of residual nuclear γ-H2AX foci increased as a function of linear energy transfer (LET) and RBE, reminiscent of enhanced DNA-damage complexity and accumulation of non-repairable DSB. These data confirm the high relevance of complex DSB formation as a central determinant of cell fate and reliable biological surrogates for cell survival/RBE. The multi-scale simulation, physical and radiobiological characterization of novel clinical quality beams presented here constitutes a first step towards development of high precision biologically individualized radiotherapy. PMID:27494855

  15. Precision thermometry and the quantum speed limit

    NASA Astrophysics Data System (ADS)

    Campbell, Steve; Genoni, Marco G.; Deffner, Sebastian

    2018-04-01

    We assess precision thermometry for an arbitrary single quantum system. For a d-dimensional harmonic system we show that the gap sets a single temperature that can be optimally estimated. Furthermore, we establish a simple linear relationship between the gap and this temperature, and show that the precision exhibits a quadratic relationship. We extend our analysis to explore systems with arbitrary spectra, showing that exploiting anharmonicity and degeneracy can greatly enhance the precision of thermometry. Finally, we critically assess the dynamical features of two thermometry protocols for a two level system. By calculating the quantum speed limit we find that, despite the gap fixing a preferred temperature to probe, there is no evidence of this emerging in the dynamical features.

  16. SU-F-T-576: Characterization of Two Dimensional Liquid Filled Detector Array(SRS 1000) in High Precision Cyberknife Robotic Radiosurgery System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Muthukumaran, M; Manigandan, D; Murali, V

    Purpose: The aim of the study is to characterize a two dimensional liquid filled detector array SRS 1000 for routine QA in Cyberknife Robotic Radiosurgery system. Methods: SRS 1000 consists of 977 liquid filled ionization chambers and is designed to be used in small field SRS/SBRT techniques. The detector array has got two different spacial resolutions. Till field size of 5.5×5.5 cm the spacial resolution is 2.5mm (center to center) and after that till field size of 11 × 11 cm the spacial resolution is 5mm. The size of the detector is 2.3 × 2.3 0.5 mm with a volumemore » of .003 cc. The CyberKnife Robotic Radiosurgery System is a frameless stereotactic radiosurgery system in which a LINAC is mounted on a robotic manipulator to deliver beams with a high sub millimeter accuracy. The SRS 1000’s MU linearity, stability, reproducibility in Cyberknife Robotic Radiosurgery system was measured and investigated. The output factors for fixed and IRIS collimators for all available collimators (5mm till 60 mm) was measured and compared with the measurement done with PTW pin-point ionization chamber. Results: The MU linearity was measured from 2 MU till 1000 MU for doserates in the range of 700cGy/min – 780 cGy/min and compared with the measurement done with pin point chamber The MU linearity was with in 3%. The detector arrays stability and reproducibility was excellent and was withinin 0.5% The measured output factors showed an agreement of better than 2% when compared with the measurements with pinpoint chamber for both fixed and IRIS collimators with all available field sizes. Conclusion: We have characterised PTW 1000 SRS as a precise and accurate measurement tool for routine QA of Cyberknife Robotic radiosurgery system.« less

  17. Fabrication Technologies of the High Gradient Accelerator Structures at 100MV/M Range

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Juwen; /SLAC; Lewandowski, James

    A CERN-SLAC-KEK collaboration on high gradient X-band structure research has been established in order to demonstrate the feasibility of the CLIC baseline design for the main linac stably operating at more than 100 MV/m loaded accelerating gradient. Several prototype CLIC structures were successfully fabricated and high power tested. They operated at 105 MV/m with a breakdown rate that meets the CLIC linear collider specifications of < 5 x 10{sup -7}/pulse/m. This paper summarizes the fabrication technologies including the mechanical design, precision machining, chemical cleaning, diffusion bonding as well as vacuum baking and all related assembly technologies. Also, the tolerances control,more » tuning and RF characterization will be discussed.« less

  18. Quantification of urinary uric acid in the presence of thymol and thimerosal by high-performance liquid chromatography

    NASA Technical Reports Server (NTRS)

    Chen, Y.; Pietrzyk, R. A.; Whitson, P. A.

    1997-01-01

    A high-performance liquid chromatographic method was developed as an alternative to automated enzymatic analysis of uric acid in human urine preserved with thymol and/or thimerosal. Uric acid (tR = 10 min) and creatinine (tR = 5 min) were separated and quantified during isocratic elution (0.025 M acetate buffer, pH 4.5) from a mu Bondapak C18 column. The uric-acid peak was identified chemically by incubating urine samples with uricase. The thymol/thimerosal peak appeared at 31 min during the washing step and did not interfere with the analysis. We validated the high-performance liquid chromatographic method for linearity, precision and accuracy, and the results were found to be excellent.

  19. A refined methodology for modeling volume quantification performance in CT

    NASA Astrophysics Data System (ADS)

    Chen, Baiyu; Wilson, Joshua; Samei, Ehsan

    2014-03-01

    The utility of CT lung nodule volume quantification technique depends on the precision of the quantification. To enable the evaluation of quantification precision, we previously developed a mathematical model that related precision to image resolution and noise properties in uniform backgrounds in terms of an estimability index (e'). The e' was shown to predict empirical precision across 54 imaging and reconstruction protocols, but with different correlation qualities for FBP and iterative reconstruction (IR) due to the non-linearity of IR impacted by anatomical structure. To better account for the non-linearity of IR, this study aimed to refine the noise characterization of the model in the presence of textured backgrounds. Repeated scans of an anthropomorphic lung phantom were acquired. Subtracted images were used to measure the image quantum noise, which was then used to adjust the noise component of the e' calculation measured from a uniform region. In addition to the model refinement, the validation of the model was further extended to 2 nodule sizes (5 and 10 mm) and 2 segmentation algorithms. Results showed that the magnitude of IR's quantum noise was significantly higher in structured backgrounds than in uniform backgrounds (ASiR, 30-50%; MBIR, 100-200%). With the refined model, the correlation between e' values and empirical precision no longer depended on reconstruction algorithm. In conclusion, the model with refined noise characterization relfected the nonlinearity of iterative reconstruction in structured background, and further showed successful prediction of quantification precision across a variety of nodule sizes, dose levels, slice thickness, reconstruction algorithms, and segmentation software.

  20. Modulation of Temporal Precision in Thalamic Population Responses to Natural Visual Stimuli

    PubMed Central

    Desbordes, Gaëlle; Jin, Jianzhong; Alonso, Jose-Manuel; Stanley, Garrett B.

    2010-01-01

    Natural visual stimuli have highly structured spatial and temporal properties which influence the way visual information is encoded in the visual pathway. In response to natural scene stimuli, neurons in the lateral geniculate nucleus (LGN) are temporally precise – on a time scale of 10–25 ms – both within single cells and across cells within a population. This time scale, established by non stimulus-driven elements of neuronal firing, is significantly shorter than that of natural scenes, yet is critical for the neural representation of the spatial and temporal structure of the scene. Here, a generalized linear model (GLM) that combines stimulus-driven elements with spike-history dependence associated with intrinsic cellular dynamics is shown to predict the fine timing precision of LGN responses to natural scene stimuli, the corresponding correlation structure across nearby neurons in the population, and the continuous modulation of spike timing precision and latency across neurons. A single model captured the experimentally observed neural response, across different levels of contrasts and different classes of visual stimuli, through interactions between the stimulus correlation structure and the nonlinearity in spike generation and spike history dependence. Given the sensitivity of the thalamocortical synapse to closely timed spikes and the importance of fine timing precision for the faithful representation of natural scenes, the modulation of thalamic population timing over these time scales is likely important for cortical representations of the dynamic natural visual environment. PMID:21151356

  1. Quantitative high-performance liquid chromatography of nucleosides in biological materials.

    PubMed

    Gehrke, C W; Kuo, K C; Davis, G E; Suits, R D; Waalkes, T P; Borek, E

    1978-03-21

    A rigorous, comprehensive, and reliable reversed-phase high-performance liquid chromatographic (HPLC) method has been developed for the analysis of ribonucleosides in urine (psi, m1A, m1I, m2G, A, m2(2)G). An initial isolation of ribonucleosides with an affinity gel containing an immobilized phenylboronic acid was used to improve selectivity and sensitivity. Response for all nucleosides was linear from 0.1 to 50 nmoles injected and good quantitation was obtained for 25 microliter or less of sample placed on the HPLC column. Excellent precision of analysis for urinary nucleosides was achieved on matrix dependent and independent samples, and the high resolution of the reversed-phase column allowed the complete separation of 9 nucleosides from other unidentified UV absorbing components at the 1-ng level. Supporting experimental data are presented on precision, recovery, chromatographic methods, minimum detection limit, retention time, relative molar response, sample clean-up, stability of nucleosides, boronate gel capacity, and application to analysis of urine from patients with leukemia and breast cancer. This method is now being used routinely for the determination of the concentration and ratios of nucleosides in urine from patients with different types of cancer and in chemotherapy response studies.

  2. Linear Collider Physics Resource Book for Snowmass 2001 - Part 3: Studies of Exotic and Standard Model Physics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Abe, T.; et al.

    This Resource Book reviews the physics opportunities of a next-generation e+e- linear collider and discusses options for the experimental program. Part 3 reviews the possible experiments on that can be done at a linear collider on strongly coupled electroweak symmetry breaking, exotic particles, and extra dimensions, and on the top quark, QCD, and two-photon physics. It also discusses the improved precision electroweak measurements that this collider will make available.

  3. Characterizations of linear sufficient statistics

    NASA Technical Reports Server (NTRS)

    Peters, B. C., Jr.; Reoner, R.; Decell, H. P., Jr.

    1977-01-01

    A surjective bounded linear operator T from a Banach space X to a Banach space Y must be a sufficient statistic for a dominated family of probability measures defined on the Borel sets of X. These results were applied, so that they characterize linear sufficient statistics for families of the exponential type, including as special cases the Wishart and multivariate normal distributions. The latter result was used to establish precisely which procedures for sampling from a normal population had the property that the sample mean was a sufficient statistic.

  4. Lexan Linear Shaped Charge Holder with Magnets and Backing Plate

    NASA Technical Reports Server (NTRS)

    Maples, Matthew W.; Dutton, Maureen L.; Hacker, Scott C.; Dean, Richard J.; Kidd, Nicholas; Long, Chris; Hicks, Robert C.

    2013-01-01

    A method was developed for cutting a fabric structural member in an inflatable module, without damaging the internal structure of the module, using linear shaped charge. Lexan and magnets are used in a charge holder to precisely position the linear shaped charge over the desired cut area. Two types of charge holders have been designed, each with its own backing plate. One holder cuts fabric straps in the vertical configuration, and the other charge holder cuts fabric straps in the horizontal configuration.

  5. European Multicenter Study on Analytical Performance of DxN Veris System HCV Assay.

    PubMed

    Braun, Patrick; Delgado, Rafael; Drago, Monica; Fanti, Diana; Fleury, Hervé; Gismondo, Maria Rita; Hofmann, Jörg; Izopet, Jacques; Kühn, Sebastian; Lombardi, Alessandra; Marcos, Maria Angeles; Sauné, Karine; O'Shea, Siobhan; Pérez-Rivilla, Alfredo; Ramble, John; Trimoulet, Pascale; Vila, Jordi; Whittaker, Duncan; Artus, Alain; Rhodes, Daniel W

    2017-04-01

    The analytical performance of the Veris HCV Assay for use on the new and fully automated Beckman Coulter DxN Veris Molecular Diagnostics System (DxN Veris System) was evaluated at 10 European virology laboratories. Precision, analytical sensitivity, specificity, and performance with negative samples, linearity, and performance with hepatitis C virus (HCV) genotypes were evaluated. Precision for all sites showed a standard deviation (SD) of 0.22 log 10 IU/ml or lower for each level tested. Analytical sensitivity determined by probit analysis was between 6.2 and 9.0 IU/ml. Specificity on 94 unique patient samples was 100%, and performance with 1,089 negative samples demonstrated 100% not-detected results. Linearity using patient samples was shown from 1.34 to 6.94 log 10 IU/ml. The assay demonstrated linearity upon dilution with all HCV genotypes. The Veris HCV Assay demonstrated an analytical performance comparable to that of currently marketed HCV assays when tested across multiple European sites. Copyright © 2017 American Society for Microbiology.

  6. Determination of sucralose in Splenda and a sugar-free beverage using high-performance anion-exchange chromatography with pulsed amperometric detection.

    PubMed

    Hanko, Valoran P; Rohrer, Jeffrey S

    2004-07-14

    Sucralose is a chlorinated carbohydrate nonnutritive sweetener of food and beverage products. The determination of sucralose in food and beverages is important to ensure consistency in product quality. Sucralose was determined in two commercial products without sample preparation using high-performance anion-exchange (HPAE) chromatography coupled with pulsed amperometric detection (PAD). Sucralose was determined with a 10 min isocratic separation. To determine sucralose and other carbohydrates (e.g., dextrose) simultaneously, a gradient separation was developed. The linear range of electrochemical response extended over 3 orders of magnitude, from 0.01 (LOD) to 40 microM (16 microg/mL; 25 microL injection). High precision, high spike recovery, and method ruggedness were observed for both samples.

  7. Effects of Prepolymerized Particle Size and Polymerization Kinetics on Volumetric Shrinkage of Dental Modeling Resins

    PubMed Central

    Ha, Jung-Yun; Chun, Ju-Na; Son, Jun Sik; Kim, Kyo-Han

    2014-01-01

    Dental modeling resins have been developed for use in areas where highly precise resin structures are needed. The manufacturers claim that these polymethyl methacrylate/methyl methacrylate (PMMA/MMA) resins show little or no shrinkage after polymerization. This study examined the polymerization shrinkage of five dental modeling resins as well as one temporary PMMA/MMA resin (control). The morphology and the particle size of the prepolymerized PMMA powders were investigated by scanning electron microscopy and laser diffraction particle size analysis, respectively. Linear polymerization shrinkage strains of the resins were monitored for 20 minutes using a custom-made linometer, and the final values (at 20 minutes) were converted into volumetric shrinkages. The final volumetric shrinkage values for the modeling resins were statistically similar (P > 0.05) or significantly larger (P < 0.05) than that of the control resin and were related to the polymerization kinetics (P < 0.05) rather than the PMMA bead size (P = 0.335). Therefore, the optimal control of the polymerization kinetics seems to be more important for producing high-precision resin structures rather than the use of dental modeling resins. PMID:24779020

  8. Assessment of Gamma-Ray Spectra Analysis Method Utilizing the Fireworks Algorithm for various Error Measures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Alamaniotis, Miltiadis; Tsoukalas, Lefteri H.

    2018-01-01

    Significant role in enhancing nuclear nonproliferation plays the analysis of obtained data and the inference of the presence or not of special nuclear materials in them. Among various types of measurements, gamma-ray spectra is the widest used type of data utilized for analysis in nonproliferation. In this chapter, a method that employs the fireworks algorithm (FWA) for analyzing gamma-ray spectra aiming at detecting gamma signatures is presented. In particular FWA is utilized to fit a set of known signatures to a measured spectrum by optimizing an objective function, with non-zero coefficients expressing the detected signatures. FWA is tested on amore » set of experimentally obtained measurements and various objective functions -MSE, RMSE, Theil-2, MAE, MAPE, MAP- with results exhibiting its potential in providing high accuracy and high precision of detected signatures. Furthermore, FWA is benchmarked against genetic algorithms, and multiple linear regression with results exhibiting its superiority over the rest tested algorithms with respect to precision for MAE, MAPE and MAP measures.« less

  9. Controlled Living Nanowire Growth: Precise Control over the Morphology and Optical Properties of AgAuAg Bimetallic Nanowires

    PubMed Central

    2015-01-01

    Inspired by the concept of living polymerization reaction, we are able to produce silver–gold–silver nanowires with a precise control over their total length and plasmonic properties by establishing a constant silver deposition rate on the tips of penta-twinned gold nanorods used as seed cores. Consequently, the length of the wires increases linearly in time. Starting with ∼210 nm × 32 nm gold cores, we produce nanowire lengths up to several microns in a highly controlled manner, with a small self-limited increase in thickness of ∼4 nm, corresponding to aspect ratios above 100, whereas the low polydispersity of the product allows us to detect up to nine distinguishable plasmonic resonances in a single colloidal solution. We analyze the spatial distribution and the nature of the plasmons by electron energy loss spectroscopy and obtain excellent agreement between measurements and electromagnetic simulations, clearly demonstrating that the presence of the gold core plays a marginal role, except for relatively short wires or high-energy modes. PMID:26134470

  10. Quantitative high-throughput determination of endogenous retinoids in human plasma using triple-stage liquid chromatography/tandem mass spectrometry.

    PubMed

    Gundersen, Thomas E; Bastani, Nasser E; Blomhoff, Rune

    2007-01-01

    A high-throughput ultrasensitive analytical method based on liquid chromatography with positive ion atmospheric pressure chemical ionization (APCI) coupled to tandem mass spectrometric detection (LC/MS/MS) was developed for the determination of all-trans-4-oxo-retinoic acid (at4oxoRA), 13-cis-4-oxo-retinoic acid (13c4oxoRA), 13-cis-retinoic acid (13cRA), all-trans-retinoic acid (atRA) and all-trans-retinol (atROH) in human plasma. A stable isotope of atRA was used as internal standard (IS). The analytes and IS were isolated from 100 microL plasma by acetonitrile mono-phase extraction (MPE) performed in black 96-well microtiterplates. A 100 microL injection was focused on-column and chromatographed on an Agilent ZORBAX SB-C18 rapid-resolution high-throughput (RRHT) column with 1.8-microm particles (4.6 mmx50 mm) maintained at 60 degrees C. The initial mobile phase composition was acetonitrile/water/formic acid (10:90:0.1, v/v/v) delivered at 1.8 mL/min. Elution was accomplished by a fast gradient to acetonitrile/methanol/formic acid (90:10:0.1, v/v/v). The method had a chromatographic total run time of 7 min. An Applied Biosystems 4000 Q TRAP linear tandem mass spectrometer equipped with a heated nebulizer (APCI) ionization source was operated in multiple reaction monitoring (MRM) mode with the precursor-to-product ion transitions m/z 315.4-->297 (4-oxo-retinoic acids), 301.2-->205 (retinoic acids), 305.0-->209 (IS) and 269.2-->93 (retinol) used for quantification. The assay was fully validated and found to have acceptable accuracy, precision, linearity, sensitivity and selectivity. The mean extraction recoveries from spiked plasma samples were 80-105% for the various retinoids at three different levels. The intra-day accuracy of the assay was within 8% of nominal and intra-day precision was better than 8% coefficient of variance (CV) for retinoic acids. Inter-day precision results for quality control samples run over a 12-day period alongside clinical samples showed mean precision better than 12.5% CV. The limit of quantification was in the range of 0.1-0.2 ng/mL and the mass limit of detection (mLOD) was in the range 1-4 pg on column for the retinoic acids. The assay has been successfully applied to the analysis of 1700 plasma samples. Copyright (c) 2007 John Wiley & Sons, Ltd.

  11. Straightening Beta: Overdispersion of Lethal Chromosome Aberrations following Radiotherapeutic Doses Leads to Terminal Linearity in the Alpha–Beta Model

    PubMed Central

    Shuryak, Igor; Loucas, Bradford D.; Cornforth, Michael N.

    2017-01-01

    Recent technological advances allow precise radiation delivery to tumor targets. As opposed to more conventional radiotherapy—where multiple small fractions are given—in some cases, the preferred course of treatment may involve only a few (or even one) large dose(s) per fraction. Under these conditions, the choice of appropriate radiobiological model complicates the tasks of predicting radiotherapy outcomes and designing new treatment regimens. The most commonly used model for this purpose is the venerable linear-quadratic (LQ) formalism as it applies to cell survival. However, predictions based on the LQ model are frequently at odds with data following very high acute doses. In particular, although the LQ predicts a continuously bending dose–response relationship for the logarithm of cell survival, empirical evidence over the high-dose region suggests that the survival response is instead log-linear with dose. Here, we show that the distribution of lethal chromosomal lesions among individual human cells (lymphocytes and fibroblasts) exposed to gamma rays and X rays is somewhat overdispersed, compared with the Poisson distribution. Further, we show that such overdispersion affects the predicted dose response for cell survival (the fraction of cells with zero lethal lesions). This causes the dose response to approximate log-linear behavior at high doses, even when the mean number of lethal lesions per cell is well fitted by the continuously curving LQ model. Accounting for overdispersion of lethal lesions provides a novel, mechanistically based explanation for the observed shapes of cell survival dose responses that, in principle, may offer a tractable and clinically useful approach for modeling the effects of high doses per fraction. PMID:29312888

  12. Global GNSS processing based on the raw observation approach

    NASA Astrophysics Data System (ADS)

    Strasser, Sebastian; Zehentner, Norbert; Mayer-Gürr, Torsten

    2017-04-01

    Many global navigation satellite system (GNSS) applications, e.g. Precise Point Positioning (PPP), require high-quality GNSS products, such as precise GNSS satellite orbits and clocks. These products are routinely determined by analysis centers of the International GNSS Service (IGS). The current processing methods of the analysis centers make use of the ionosphere-free linear combination to reduce the ionospheric influence. Some of the analysis centers also form observation differences, in general double-differences, to eliminate several additional error sources. The raw observation approach is a new GNSS processing approach that was developed at Graz University of Technology for kinematic orbit determination of low Earth orbit (LEO) satellites and subsequently adapted to global GNSS processing in general. This new approach offers some benefits compared to well-established approaches, such as a straightforward incorporation of new observables due to the avoidance of observation differences and linear combinations. This becomes especially important in view of the changing GNSS landscape with two new systems, the European system Galileo and the Chinese system BeiDou, currently in deployment. GNSS products generated at Graz University of Technology using the raw observation approach currently comprise precise GNSS satellite orbits and clocks, station positions and clocks, code and phase biases, and Earth rotation parameters. To evaluate the new approach, products generated using the Global Positioning System (GPS) constellation and observations from the global IGS station network are compared to those of the IGS analysis centers. The comparisons show that the products generated at Graz University of Technology are on a similar level of quality to the products determined by the IGS analysis centers. This confirms that the raw observation approach is applicable to global GNSS processing. Some areas requiring further work have been identified, enabling future improvements of the method.

  13. Measurement of atmospheric ozone by cavity ring-down spectroscopy.

    PubMed

    Washenfelder, R A; Wagner, N L; Dube, W P; Brown, S S

    2011-04-01

    Ozone plays a key role in both the Earth's radiative budget and photochemistry. Accurate, robust analytical techniques for measuring its atmospheric abundance are of critical importance. Cavity ring-down spectroscopy has been successfully used for sensitive and accurate measurements of many atmospheric species. However, this technique has not been used for atmospheric measurements of ozone, because the strongest ozone absorption bands occur in the ultraviolet spectral region, where Rayleigh and Mie scattering cause significant cavity losses and dielectric mirror reflectivities are limited. Here, we describe a compact instrument that measures O3 by chemical conversion to NO2 in excess NO, with subsequent detection by cavity ring-down spectroscopy. This method provides a simple, accurate, and high-precision measurement of atmospheric ozone. The instrument consists of two channels. The sum of NO2 and converted O3 (defined as Ox) is measured in the first channel, while NO2 alone is measured in the second channel. NO2 is directly detected in each channel by cavity ring-down spectroscopy with a laser diode light source at 404 nm. The limit of detection for O3 is 26 pptv (2 sigma precision) at 1 s time resolution. The accuracy of the measurement is ±2.2%, with the largest uncertainty being the effective NO2 absorption cross-section. The linear dynamic range of the instrument has been verified from the detection limit to above 200 ppbv (r2>99.99%). The observed precision on signal (2 sigma) with 41 ppbv O3 is 130 pptv in 1 s. Comparison of this instrument to UV absorbance instruments for ambient O3 concentrations shows linear agreement (r2=99.1%) with slope of 1.012±0.002.

  14. Validation of cardiac output studies from the Mostcare compared to a pulmonary artery catheter in septic patients.

    PubMed

    Gopal, S; Do, T; Pooni, J S; Martinelli, G

    2014-03-01

    The Mostcare monitor is a non-invasive cardiac output monitor. It has been well validated in cardiac surgical patients but there is limited evidence on its use in patients with severe sepsis and septic shock. The study included the first 22 consecutive patients with severe sepsis and septic shock in whom the floatation of a pulmonary artery catheter was deemed necessary to guide clinical management. Cardiac output measurements including cardiac output, cardiac index and stroke volume were simultaneously calculated and recorded from a thermodilution pulmonary artery catheter and from the Mostcare monitor respectively. The two methods of measuring cardiac output were compared by Bland-Altman statistics and linear regression analysis. A percentage error of less than 30% was defined as acceptable for this study. Bland-Altman analysis for cardiac output showed a Bias of 0.31 L.min-1, precision (=SD) of 1.97 L.min-1 and a percentage error of 62.54%. For Cardiac Index the bias was 0.21 L.min-1.m-2, precision of 1.10 L.min-1.m-2 and a percentage error of 64%. For stroke volume the bias was 5 mL, precision of 24.46 mL and percentage error of 70.21%. Linear regression produced a correlation coefficient r2 for cardiac output, cardiac index, and stroke volume, of 0.403, 0.306, and 0.3 respectively. Compared to thermodilution cardiac output, cardiac output studies obtained from the Mostcare monitor have an unacceptably high error rate. The Mostcare monitor demonstrated to be an unreliable monitoring device to measure cardiac output in patients with severe sepsis and septic shock on an intensive care unit.

  15. Model cerebellar granule cells can faithfully transmit modulated firing rate signals

    PubMed Central

    Rössert, Christian; Solinas, Sergio; D'Angelo, Egidio; Dean, Paul; Porrill, John

    2014-01-01

    A crucial assumption of many high-level system models of the cerebellum is that information in the granular layer is encoded in a linear manner. However, granule cells are known for their non-linear and resonant synaptic and intrinsic properties that could potentially impede linear signal transmission. In this modeling study we analyse how electrophysiological granule cell properties and spike sampling influence information coded by firing rate modulation, assuming no signal-related, i.e., uncorrelated inhibitory feedback (open-loop mode). A detailed one-compartment granule cell model was excited in simulation by either direct current or mossy-fiber synaptic inputs. Vestibular signals were represented as tonic inputs to the flocculus modulated at frequencies up to 20 Hz (approximate upper frequency limit of vestibular-ocular reflex, VOR). Model outputs were assessed using estimates of both the transfer function, and the fidelity of input-signal reconstruction measured as variance-accounted-for. The detailed granule cell model with realistic mossy-fiber synaptic inputs could transmit information faithfully and linearly in the frequency range of the vestibular-ocular reflex. This was achieved most simply if the model neurons had a firing rate at least twice the highest required frequency of modulation, but lower rates were also adequate provided a population of neurons was utilized, especially in combination with push-pull coding. The exact number of neurons required for faithful transmission depended on the precise values of firing rate and noise. The model neurons were also able to combine excitatory and inhibitory signals linearly, and could be replaced by a simpler (modified) integrate-and-fire neuron in the case of high tonic firing rates. These findings suggest that granule cells can in principle code modulated firing-rate inputs in a linear manner, and are thus consistent with the high-level adaptive-filter model of the cerebellar microcircuit. PMID:25352777

  16. Measuring Anxiety in Visually-Impaired People: A Comparison between the Linear and the Nonlinear IRT Approaches

    ERIC Educational Resources Information Center

    Ferrando, Pere J.; Pallero, Rafael; Anguiano-Carrasco, Cristina

    2013-01-01

    The present study has two main interests. First, some pending issues about the psychometric properties of the CTAC (an anxiety questionnaire for blind and visually-impaired people) are assessed using item response theory (IRT). Second, the linear model is compared to the graded response model (GRM) in terms of measurement precision, sensitivity…

  17. On the Linear Relation between the Mean and the Standard Deviation of a Response Time Distribution

    ERIC Educational Resources Information Center

    Wagenmakers, Eric-Jan; Brown, Scott

    2007-01-01

    Although it is generally accepted that the spread of a response time (RT) distribution increases with the mean, the precise nature of this relation remains relatively unexplored. The authors show that in several descriptive RT distributions, the standard deviation increases linearly with the mean. Results from a wide range of tasks from different…

  18. A novel high sensitivity HPLC assay for topiramate, using 4-chloro-7-nitrobenzofurazan as pre-column fluorescence derivatizing agent.

    PubMed

    Bahrami, Gholamreza; Mohammadi, Bahareh

    2007-05-01

    A new, sensitive and simple high-performance liquid chromatographic method for analysis of topiramate, an antiepileptic agent, using 4-chloro-7-nitrobenzofurazan as pre-column derivatization agent is described. Following liquid-liquid extraction of topiramate and an internal standard (amlodipine) from human serum, derivatization of the drugs was performed by the labeling agent in the presence of dichloromethane, methanol, acetonitrile and borate buffer (0.05 M; pH 10.6). A mixture of sodium phosphate buffer (0.05 M; pH 2.4): methanol (35:65 v/v) was eluted as mobile phase and chromatographic separation was achieved using a Shimpack CLC-C18 (150 x 4.6 mm) column. In this method the limit of quantification of 0.01 microg/mL was obtained and the procedure was validated over the concentration range of 0.01 to 12.8 microg/mL. No interferences were found from commonly co-administrated antiepileptic drugs including phenytoin, phenobarbital carbamazepine, lamotrigine, zonisamide, primidone, gabapentin, vigabatrin, and ethosuximide. The analysis performance was carried-out in terms of specificity, sensitivity, linearity, precision, accuracy and stability and the method was shown to be accurate, with intra-day and inter-day accuracy from -3.4 to 10% and precise, with intra-day and inter-day precision from 1.1 to 18%.

  19. Validation of an analytical method for simultaneous high-precision measurements of greenhouse gas emissions from wastewater treatment plants using a gas chromatography-barrier discharge detector system.

    PubMed

    Pascale, Raffaella; Caivano, Marianna; Buchicchio, Alessandro; Mancini, Ignazio M; Bianco, Giuliana; Caniani, Donatella

    2017-01-13

    Wastewater treatment plants (WWTPs) emit CO 2 and N 2 O, which may lead to climate change and global warming. Over the last few years, awareness of greenhouse gas (GHG) emissions from WWTPs has increased. Moreover, the development of valid, reliable, and high-throughput analytical methods for simultaneous gas analysis is an essential requirement for environmental applications. In the present study, an analytical method based on a gas chromatograph (GC) equipped with a barrier ionization discharge (BID) detector was developed for the first time. This new method simultaneously analyses CO 2 and N 2 O and has a precision, measured in terms of relative standard of variation RSD%, equal to or less than 6.6% and 5.1%, respectively. The method's detection limits are 5.3ppm v for CO 2 and 62.0ppb v for N 2 O. The method's selectivity, linearity, accuracy, repeatability, intermediate precision, limit of detection and limit of quantification were good at trace concentration levels. After validation, the method was applied to a real case of N 2 O and CO 2 emissions from a WWTP, confirming its suitability as a standard procedure for simultaneous GHG analysis in environmental samples containing CO 2 levels less than 12,000mg/L. Copyright © 2016 Elsevier B.V. All rights reserved.

  20. Determination of lipophilic marine toxins in mussels. Quantification and confirmation criteria using high resolution mass spectrometry.

    PubMed

    Domènech, Albert; Cortés-Francisco, Nuria; Palacios, Oscar; Franco, José M; Riobó, Pilar; Llerena, José J; Vichi, Stefania; Caixach, Josep

    2014-02-07

    A multitoxin method has been developed for quantification and confirmation of lipophilic marine biotoxins in mussels by liquid chromatography coupled to high resolution mass spectrometry (HRMS), using an Orbitrap-Exactive HCD mass spectrometer. Okadaic acid (OA), yessotoxin, azaspiracid-1, gymnodimine, 13-desmethyl spirolide C, pectenotoxin-2 and Brevetoxin B were analyzed as representative compounds of each lipophilic toxin group. HRMS identification and confirmation criteria were established. Fragment and isotope ions and ion ratios were studied and evaluated for confirmation purpose. In depth characterization of full scan and fragmentation spectrum of the main toxins were carried out. Accuracy (trueness and precision), linearity, calibration curve check, limit of quantification (LOQ) and specificity were the parameters established for the method validation. The validation was performed at 0.5 times the current European Union permitted levels. The method performed very well for the parameters investigated. The trueness, expressed as recovery, ranged from 80% to 94%, the precision, expressed as intralaboratory reproducibility, ranged from 5% to 22% and the LOQs range from 0.9 to 4.8pg on column. Uncertainty of the method was also estimated for OA, using a certified reference material. A top-down approach considering two main contributions: those arising from the trueness studies and those coming from the precision's determination, was used. An overall expanded uncertainty of 38% was obtained. Copyright © 2014 Elsevier B.V. All rights reserved.

  1. BLAS- BASIC LINEAR ALGEBRA SUBPROGRAMS

    NASA Technical Reports Server (NTRS)

    Krogh, F. T.

    1994-01-01

    The Basic Linear Algebra Subprogram (BLAS) library is a collection of FORTRAN callable routines for employing standard techniques in performing the basic operations of numerical linear algebra. The BLAS library was developed to provide a portable and efficient source of basic operations for designers of programs involving linear algebraic computations. The subprograms available in the library cover the operations of dot product, multiplication of a scalar and a vector, vector plus a scalar times a vector, Givens transformation, modified Givens transformation, copy, swap, Euclidean norm, sum of magnitudes, and location of the largest magnitude element. Since these subprograms are to be used in an ANSI FORTRAN context, the cases of single precision, double precision, and complex data are provided for. All of the subprograms have been thoroughly tested and produce consistent results even when transported from machine to machine. BLAS contains Assembler versions and FORTRAN test code for any of the following compilers: Lahey F77L, Microsoft FORTRAN, or IBM Professional FORTRAN. It requires the Microsoft Macro Assembler and a math co-processor. The PC implementation allows individual arrays of over 64K. The BLAS library was developed in 1979. The PC version was made available in 1986 and updated in 1988.

  2. Validation of analytical methods in GMP: the disposable Fast Read 102® device, an alternative practical approach for cell counting.

    PubMed

    Gunetti, Monica; Castiglia, Sara; Rustichelli, Deborah; Mareschi, Katia; Sanavio, Fiorella; Muraro, Michela; Signorino, Elena; Castello, Laura; Ferrero, Ivana; Fagioli, Franca

    2012-05-31

    The quality and safety of advanced therapy products must be maintained throughout their production and quality control cycle to ensure their final use in patients. We validated the cell count method according to the International Conference on Harmonization of Technical Requirements for Registration of Pharmaceuticals for Human Use and European Pharmacopoeia, considering the tests' accuracy, precision, repeatability, linearity and range. As the cell count is a potency test, we checked accuracy, precision, and linearity, according to ICH Q2. Briefly our experimental approach was first to evaluate the accuracy of Fast Read 102® compared to the Bürker chamber. Once the accuracy of the alternative method was demonstrated, we checked the precision and linearity test only using Fast Read 102®. The data were statistically analyzed by average, standard deviation and coefficient of variation percentages inter and intra operator. All the tests performed met the established acceptance criteria of a coefficient of variation of less than ten percent. For the cell count, the precision reached by each operator had a coefficient of variation of less than ten percent (total cells) and under five percent (viable cells). The best range of dilution, to obtain a slope line value very similar to 1, was between 1:8 and 1:128. Our data demonstrated that the Fast Read 102® count method is accurate, precise and ensures the linearity of the results obtained in a range of cell dilution. Under our standard method procedures, this assay may thus be considered a good quality control method for the cell count as a batch release quality control test. Moreover, the Fast Read 102® chamber is a plastic, disposable device that allows a number of samples to be counted in the same chamber. Last but not least, it overcomes the problem of chamber washing after use and so allows a cell count in a clean environment such as that in a Cell Factory. In a good manufacturing practice setting the disposable cell counting devices will allow a single use of the count chamber they can then be thrown away, thus avoiding the waste disposal of vital dye (e.g. Trypan Blue) or lysing solution (e.g. Tuerk solution).

  3. Validation of analytical methods in GMP: the disposable Fast Read 102® device, an alternative practical approach for cell counting

    PubMed Central

    2012-01-01

    Background The quality and safety of advanced therapy products must be maintained throughout their production and quality control cycle to ensure their final use in patients. We validated the cell count method according to the International Conference on Harmonization of Technical Requirements for Registration of Pharmaceuticals for Human Use and European Pharmacopoeia, considering the tests’ accuracy, precision, repeatability, linearity and range. Methods As the cell count is a potency test, we checked accuracy, precision, and linearity, according to ICH Q2. Briefly our experimental approach was first to evaluate the accuracy of Fast Read 102® compared to the Bürker chamber. Once the accuracy of the alternative method was demonstrated, we checked the precision and linearity test only using Fast Read 102®. The data were statistically analyzed by average, standard deviation and coefficient of variation percentages inter and intra operator. Results All the tests performed met the established acceptance criteria of a coefficient of variation of less than ten percent. For the cell count, the precision reached by each operator had a coefficient of variation of less than ten percent (total cells) and under five percent (viable cells). The best range of dilution, to obtain a slope line value very similar to 1, was between 1:8 and 1:128. Conclusions Our data demonstrated that the Fast Read 102® count method is accurate, precise and ensures the linearity of the results obtained in a range of cell dilution. Under our standard method procedures, this assay may thus be considered a good quality control method for the cell count as a batch release quality control test. Moreover, the Fast Read 102® chamber is a plastic, disposable device that allows a number of samples to be counted in the same chamber. Last but not least, it overcomes the problem of chamber washing after use and so allows a cell count in a clean environment such as that in a Cell Factory. In a good manufacturing practice setting the disposable cell counting devices will allow a single use of the count chamber they can then be thrown away, thus avoiding the waste disposal of vital dye (e.g. Trypan Blue) or lysing solution (e.g. Tuerk solution). PMID:22650233

  4. Clinical Evaluation of the BD FACSPresto™ Near-Patient CD4 Counter in Kenya

    PubMed Central

    Angira, Francis; Akoth, Benta; Omolo, Paul; Opollo, Valarie; Bornheimer, Scott; Judge, Kevin; Tilahun, Henok; Lu, Beverly; Omana-Zapata, Imelda; Zeh, Clement

    2016-01-01

    Background The BD FACSPresto™ Near-Patient CD4 Counter was developed to expand HIV/AIDS management in resource-limited settings. It measures absolute CD4 counts (AbsCD4), percent CD4 (%CD4), and hemoglobin (Hb) from a single drop of capillary or venous blood in approximately 23 minutes, with throughput of 10 samples per hour. We assessed the performance of the BD FACSPresto system, evaluating accuracy, stability, linearity, precision, and reference intervals using capillary and venous blood at KEMRI/CDC HIV-research laboratory, Kisumu, Kenya, and precision and linearity at BD Biosciences, California, USA. Methods For accuracy, venous samples were tested using the BD FACSCalibur™ instrument with BD Tritest™ CD3/CD4/CD45 reagent, BD Trucount™ tubes, and BD Multiset™ software for AbsCD4 and %CD4, and the Sysmex™ KX-21N for Hb. Stability studies evaluated duration of staining (18–120-minute incubation), and effects of venous blood storage <6–24 hours post-draw. A normal cohort was tested for reference intervals. Precision covered multiple days, operators, and instruments. Linearity required mixing two pools of samples, to obtain evenly spaced concentrations for AbsCD4, total lymphocytes, and Hb. Results AbsCD4 and %CD4 venous/capillary (N = 189/ N = 162) accuracy results gave Deming regression slopes within 0.97–1.03 and R2 ≥0.96. For Hb, Deming regression results were R2 ≥0.94 and slope ≥0.94 for both venous and capillary samples. Stability varied within 10% 2 hours after staining and for venous blood stored less than 24 hours. Reference intervals results showed that gender—but not age—differences were statistically significant (p<0.05). Precision results had <3.5% coefficient of variation for AbsCD4, %CD4, and Hb, except for low AbsCD4 samples (<6.8%). Linearity was 42–4,897 cells/μL for AbsCD4, 182–11,704 cells/μL for total lymphocytes, and 2–24 g/dL for Hb. Conclusions The BD FACSPresto system provides accurate, precise clinical results for capillary or venous blood samples and is suitable for near-patient CD4 testing. Trial Registration ClinicalTrials.gov NCT02396355 PMID:27483008

  5. An advanced real-time digital signal processing system for linear systems emulation, with special emphasis on network and acoustic response characterization

    NASA Astrophysics Data System (ADS)

    Gaydecki, Patrick; Fernandes, Bosco

    2003-11-01

    A fast digital signal processing (DSP) system is described that can perform real-time emulation of a wide variety of linear audio-bandwidth systems and networks, such as reverberant spaces, musical instrument bodies and very high order filter networks. The hardware design is based upon a Motorola DSP56309 operating at 110 million multiplication-accumulations per second and a dual-channel 24 bit codec with a maximum sampling frequency of 192 kHz. High level software has been developed to express complex vector frequency responses as both infinite impulse response (IIR) and finite impulse response (FIR) coefficients, in a form suitable for real-time convolution by the firmware installed in the DSP system memory. An algorithm has also been devised to express IIR filters as equivalent FIR structures, thereby obviating the potential instabilities associated with recursive equations and negating the traditional deficiencies of FIR filters respecting equivalent analogue designs. The speed and dynamic range of the system is such that, when sampling at 48 kHz, the frequency response can be specified to a spectral precision of 22 Hz when sampling at 10 kHz, this resolution increases to 0.9 Hz. Moreover, it is also possible to control the phase of any frequency band with a theoretical precision of 10-5 degrees in all cases. The system has been applied in the study of analogue filter networks, real-time Hilbert transformation, phase-shift systems and musical instrument body emulation, where it is providing valuable new insights into the understanding of psychoacoustic mechanisms.

  6. Method of orthogonally splitting imaging pose measurement

    NASA Astrophysics Data System (ADS)

    Zhao, Na; Sun, Changku; Wang, Peng; Yang, Qian; Liu, Xintong

    2018-01-01

    In order to meet the aviation's and machinery manufacturing's pose measurement need of high precision, fast speed and wide measurement range, and to resolve the contradiction between measurement range and resolution of vision sensor, this paper proposes an orthogonally splitting imaging pose measurement method. This paper designs and realizes an orthogonally splitting imaging vision sensor and establishes a pose measurement system. The vision sensor consists of one imaging lens, a beam splitter prism, cylindrical lenses and dual linear CCD. Dual linear CCD respectively acquire one dimensional image coordinate data of the target point, and two data can restore the two dimensional image coordinates of the target point. According to the characteristics of imaging system, this paper establishes the nonlinear distortion model to correct distortion. Based on cross ratio invariability, polynomial equation is established and solved by the least square fitting method. After completing distortion correction, this paper establishes the measurement mathematical model of vision sensor, and determines intrinsic parameters to calibrate. An array of feature points for calibration is built by placing a planar target in any different positions for a few times. An terative optimization method is presented to solve the parameters of model. The experimental results show that the field angle is 52 °, the focus distance is 27.40 mm, image resolution is 5185×5117 pixels, displacement measurement error is less than 0.1mm, and rotation angle measurement error is less than 0.15°. The method of orthogonally splitting imaging pose measurement can satisfy the pose measurement requirement of high precision, fast speed and wide measurement range.

  7. Liquid chromatography method to determine polyamines in thermosetting polymers.

    PubMed

    Dopico-García, M S; López-Vilariño, J M; Fernández-Martínez, G; González-Rodríguez, M V

    2010-05-14

    A simple, robust and sensitive analytical method to determine three polyamines commonly used as hardeners in epoxy resin systems and in the manufacture of polyurethane is reported. The studied polyamines are: one tetramine, TETA (triethylenetetramine), and two diamines, IPDA (Isophorone diamine) and TCD-diamine (4,7-methano-1H-indene-5,?-dimethanamine, octahydro-). The latter has an incompletely defined structure, and, as far as we know, has not been previously determined by other methods. All three polyamines contain primary amines; TETA also contains secondary amines. The analytical method involves derivatization with 6-aminoquinolyl-N-hydroxysuccinimidyl carbamate, used for the first time for these compounds, followed by high performance liquid chromatography (HPLC) analysis with a fluorescence (FL) detector (lambda excitation 248nm, lambda emision 395nm). The HPLC-DAD-LTQ Orbitrap MS was used in order to provide structural information about the obtained derivatized compounds. The hybrid linear ion trap LTQ Orbitrap mass spectrometer has been introduced in recent years and provides a high mass accuracy. The structures of the derivatized analytes were identified from the protonated molecular ions [M+H](+) and corresponded to the fully labelled analytes. The following analytical parameters were determined for the method using the HPLC-FL: linearity, precision (2.5-10%), instrumental precision intraday (0.8-1.5%) and interday (2.9-6.3%), and detection limits (0.02-0.14mgL(-1)). The stability of stock solutions and derivatized compounds was also investigated. The method was applied to determine the amine free content in epoxy resin dust collected in workplaces. Copyright 2010 Elsevier B.V. All rights reserved.

  8. A validated high-performance liquid chromatographic method for the determination of moclobemide and its two metabolites in human plasma and application to pharmacokinetic studies.

    PubMed

    Plenis, Alina; Chmielewska, Aleksandra; Konieczna, Lucyna; Lamparczyk, Henryk

    2007-09-01

    A rapid and sensitive reversed-phase high-performance liquid chromatographic method (RP-HPLC) with ultraviolet detection has been developed for the determination of moclobemide and its metabolites, p-chloro-N-(-2-morpholinoethyl)benzamide N'-oxide (Ro 12-5637) and p-chloro-N-[2-(3-oxomorpholino)ethyl]-benzamide (Ro 12-8095), in human plasma. The assay was performed after single liquid-liquid extraction with dichloromethane at alkaline pH using phenacetin as the internal standard. Chromatographic separation was performed on a C(18) column using a mixture of acetonitrile and water (25:75, v/v), adjusted to pH 2.7 with ortho-phosphoric acid, as mobile phase. Spectrophotometric detection was performed at 239 nm. The method has been validated for accuracy, precision, selectivity, linearity, recovery and stability. The quantification limit for moclobemide and Ro 12-8095 was 10 ng/mL, and for Ro 12-5637 was 30 ng/mL. Linearity of the method was confirmed for the range 20-2500 ng/mL for moclobemide (r = 0.9998), 20-1750 ng/mL for Ro 12-8095 (r = 0.9996) and 30-350 ng/mL for Ro 12-5637 (r = 0.9991). Moreover, within-day and between-day precisions and accuracies of the method were established. The described method was successfully applied in pharmacokinetic studies of parent drug and its two metabolites after a single oral administration of 150 mg of moclobemide to 20 healthy volunteers. Copyright (c) 2007 John Wiley & Sons, Ltd.

  9. Simultaneous determination of five major compounds in the traditional medicine Pyeongwee-San by high performance liquid chromatography-diode array detection and liquid chromatography-mass spectrometry/mass spectrometry.

    PubMed

    Lee, Bohyoung; Weon, Jin Bae; Yun, Bo-Ra; Lee, Jiwoo; Eom, Min Rye; Ma, Choong Je

    2014-01-01

    Pyeongwee-San (PWS) has been widely used for treating acute gastritis, chronic, and gastritis. In this paper, simultaneous determination of five compounds (naringin, hesperidin, glycyrrhizin, atractylenolide III, and magnolol) from traditional medicine PWS using the high performance liquid chromatography (HPLC) was established for quality control. Optimum separations were obtained with a SHISEIDO C18 reverse-phase column by gradient elution with 0.1% Trifluoroacetic acid (TFA) water-acetonitrile as the mobile phase. The flow rate was 1 mL/min and detection wavelength was set at 205 nm and 250 nm. Validation of the analytical method was evaluated by linearity, precision, and accuracy test. The calibration curves were linear over the established range with R (2) > 0.9978. The limit of detection (LOD) and limit of quantification (LOQ) ranged from 0.09 to 0.43 and 0.27 to 1.29 μg/mL. The method exhibited intra-day and inter-day precision range between 0.01-1.86% and 0.04-0.35% respectively. The recoveries of five compounds in PWS were in the range between 93.18-106.40%, and 0.20-1.51%. The application of this method was identified through the successful analysis of five compounds in 12 batches of PWS. In addition, identification of five compounds was confirmed by a liquid chromatography method and mass spectrometry. The HPLC method was could be accomplished to the quality control and stable experiment for the preparations consisted of five major compounds.

  10. Automated Inspection of Defects in Optical Fiber Connector End Face Using Novel Morphology Approaches.

    PubMed

    Mei, Shuang; Wang, Yudan; Wen, Guojun; Hu, Yang

    2018-05-03

    Increasing deployment of optical fiber networks and the need for reliable high bandwidth make the task of inspecting optical fiber connector end faces a crucial process that must not be neglected. Traditional end face inspections are usually performed by manual visual methods, which are low in efficiency and poor in precision for long-term industrial applications. More seriously, the inspection results cannot be quantified for subsequent analysis. Aiming at the characteristics of typical defects in the inspection process for optical fiber end faces, we propose a novel method, “difference of min-max ranking filtering” (DO2MR), for detection of region-based defects, e.g., dirt, oil, contamination, pits, and chips, and a special model, a “linear enhancement inspector” (LEI), for the detection of scratches. The DO2MR is a morphology method that intends to determine whether a pixel belongs to a defective region by comparing the difference of gray values of pixels in the neighborhood around the pixel. The LEI is also a morphology method that is designed to search for scratches at different orientations with a special linear detector. These two approaches can be easily integrated into optical inspection equipment for automatic quality verification. As far as we know, this is the first time that complete defect detection methods for optical fiber end faces are available in the literature. Experimental results demonstrate that the proposed DO2MR and LEI models yield good comprehensive performance with high precision and accepted recall rates, and the image-level detection accuracies reach 96.0 and 89.3%, respectively.

  11. Least Squares Approach to the Alignment of the Generic High Precision Tracking System

    NASA Astrophysics Data System (ADS)

    de Renstrom, Pawel Brückman; Haywood, Stephen

    2006-04-01

    A least squares method to solve a generic alignment problem of a high granularity tracking system is presented. The algorithm is based on an analytical linear expansion and allows for multiple nested fits, e.g. imposing a common vertex for groups of particle tracks is of particular interest. We present a consistent and complete recipe to impose constraints on either implicit or explicit parameters. The method has been applied to the full simulation of a subset of the ATLAS silicon tracking system. The ultimate goal is to determine ≈35,000 degrees of freedom (DoF's). We present a limited scale exercise exploring various aspects of the solution.

  12. Normal and polar-organic-phase high-performance liquid chromatographic enantioresolution of omeprazole, rabeprazole, lansoprazole and pantoprazole using monochloro-methylated cellulose-based chiral stationary phase and determination of dexrabeprazole.

    PubMed

    Dixit, Shuchi; Dubey, Rituraj; Bhushan, Ravi

    2014-01-01

    Enantioresolution of four anti-ulcer drugs (chiral sulfoxides), namely, omeprazole, rabeprazole, lansoprazole and pantoprazole, was carried out by high-performance liquid chromatography using a polysaccharide-based chiral stationary phase consisting of monochloromethylated cellulose (Lux cellulose-2) under normal and polar-organic-phase conditions with ultraviolet detection at 285 nm. The method was validated for linearity, accuracy, precision, robustness and limit of detection. The optimized enantioresolution method was compared for both the elution modes. The optimized method was further utilized to check the enantiomeric purity of dexrabeprazole. Copyright © 2013 John Wiley & Sons, Ltd.

  13. Fluctuation conductivity effects on thermoelectric power of granular Bi/sub 1. 75/Pb/sub 0. 25/Ca/sub 2/Sr/sub 2/Cu/sub 3/O/sub 10/ superconductor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Laurent, C.; Patapis, S.K.; Luo, H.L.

    1989-04-10

    The authors report precise measurements of the thermoelectric power (TEP) of granular superconducting Bi/sub 1.75/Pb/sub 0.25/Ca/sub 2/Sr/sub 2/Cu/sub 3/O/sub 10/. The TEP is strictly linear at high temperature. Superconductivity fluctuations set in at about 140 K. From the temperature derivative of the excess TEP (with respect to a straight line at ''high temperature''), the critical behavior is obtained in the mean field regime, and is found identical to that of the temperature derivative of the excess electrical resistivity.

  14. [Determination of tungsten and cobalt in the air of workplace by ICP-OES].

    PubMed

    Zhang, J; Ding, C G; Li, H B; Song, S; Yan, H F

    2017-08-20

    Objective: To establish the inductively coupled plasma optical emission spectrometry (ICP-OES) method for determination of cobalt and tungsten in the air of workplace. Methods: The cobalt and tungsten were collected by filter membrane and then digested by nitric acid, inductively coupled plasma optical emission spectrometry (ICP-OES) was used for the detection of cobalt and tungsten. Results: The linearity of tungsten was good at the range of 0.01-1 000 μg/ml with a correlation coefficient of 0.999 9, the LOD and LOQ were 0.006 7 μg/ml and 0.022 μg/ml, respectively. The recovery was ranged from 98%-101%, the RSD of intra-and inter-batch precision were 1.1%-3.0% and 2.1%-3.8%, respectively. The linearity of cobalt was good at the range of 0.01-100 μg/ml with a correlation coefficient of 0.999 9, the LOD and LOQ were 0.001 2 μg/ml and 0.044 μg/ml, respectively. The recovery was ranged from 95%-97%, the RSD of intra-and inter-batch precision were 1.1%-2.4% and 1.1%-2.9%, respectively. The sampling efficiency of tungsten and cobalt were higher than 94%. Conclusion: The linear range, sensitivity and precision of the method was suitable for the detection of tungsten and cobalt in the air of workplace.

  15. Optical telescope refocussing mechanism concept design on remote sensing satellite

    NASA Astrophysics Data System (ADS)

    Kuo, Jen-Chueh; Ling, Jer

    2017-09-01

    The optical telescope system in remote sensing satellite must be precisely aligned to obtain high quality images during its mission life. In practical, because the telescope mirrors could be misaligned due to launch loads, thermal distortion on supporting structures or hygroscopic distortion effect in some composite materials, the optical telescope system is often equipped with refocussing mechanism to re-align the optical elements while optical element positions are out of range during image acquisition. This paper is to introduce satellite Refocussing mechanism function model design development process and the engineering models. The design concept of the refocussing mechanism can be applied on either cassegrain type telescope or korsch type telescope, and the refocussing mechanism is located at the rear of the secondary mirror in this paper. The purpose to put the refocussing mechanism on the secondary mirror is due to its higher sensitivity on MTF degradation than other optical elements. There are two types of refocussing mechanism model to be introduced: linear type model and rotation type model. For the linear refocussing mechanism function model, the model is composed of ceramic piezoelectric linear step motor, optical rule as well as controller. The secondary mirror is designed to be precisely moved in telescope despace direction through refocussing mechanism. For the rotation refocussing mechanism function model, the model is assembled with two ceramic piezoelectric rotational motors around two orthogonal directions in order to adjust the secondary mirror attitude in tilt angle and yaw angle. From the validation test results, the linear type refocussing mechanism function model can be operated to adjust the secondary mirror position with minimum 500 nm resolution with close loop control. For the rotation type model, the attitude angle of the secondary mirror can be adjusted with the minimum 6 sec of arc resolution and 5°/sec of angle velocity.

  16. Detectors for Linear Colliders: Tracking and Vertexing (2/4)

    ScienceCinema

    Battaglia, Marco

    2018-04-16

    Efficient and precise determination of the flavour of partons in multi-hadron final states is essential to the anticipated LC physics program. This makes tracking in the vicinity of the interaction region of great importance. Tracking extrapolation and momentum resolution are specified by precise physics requirements. The R&D; towards detectors able to meet these specifications will be discussed, together with some of their application beyond particle physics.

  17. Computing Generalized Matrix Inverse on Spiking Neural Substrate

    PubMed Central

    Shukla, Rohit; Khoram, Soroosh; Jorgensen, Erik; Li, Jing; Lipasti, Mikko; Wright, Stephen

    2018-01-01

    Emerging neural hardware substrates, such as IBM's TrueNorth Neurosynaptic System, can provide an appealing platform for deploying numerical algorithms. For example, a recurrent Hopfield neural network can be used to find the Moore-Penrose generalized inverse of a matrix, thus enabling a broad class of linear optimizations to be solved efficiently, at low energy cost. However, deploying numerical algorithms on hardware platforms that severely limit the range and precision of representation for numeric quantities can be quite challenging. This paper discusses these challenges and proposes a rigorous mathematical framework for reasoning about range and precision on such substrates. The paper derives techniques for normalizing inputs and properly quantizing synaptic weights originating from arbitrary systems of linear equations, so that solvers for those systems can be implemented in a provably correct manner on hardware-constrained neural substrates. The analytical model is empirically validated on the IBM TrueNorth platform, and results show that the guarantees provided by the framework for range and precision hold under experimental conditions. Experiments with optical flow demonstrate the energy benefits of deploying a reduced-precision and energy-efficient generalized matrix inverse engine on the IBM TrueNorth platform, reflecting 10× to 100× improvement over FPGA and ARM core baselines. PMID:29593483

  18. Determination of dasatinib in the tablet dosage form by ultra high performance liquid chromatography, capillary zone electrophoresis, and sequential injection analysis.

    PubMed

    Gonzalez, Aroa Garcia; Taraba, Lukáš; Hraníček, Jakub; Kozlík, Petr; Coufal, Pavel

    2017-01-01

    Dasatinib is a novel oral prescription drug proposed for treating adult patients with chronic myeloid leukemia. Three analytical methods, namely ultra high performance liquid chromatography, capillary zone electrophoresis, and sequential injection analysis, were developed, validated, and compared for determination of the drug in the tablet dosage form. The total analysis time of optimized ultra high performance liquid chromatography and capillary zone electrophoresis methods was 2.0 and 2.2 min, respectively. Direct ultraviolet detection with detection wavelength of 322 nm was employed in both cases. The optimized sequential injection analysis method was based on spectrophotometric detection of dasatinib after a simple colorimetric reaction with folin ciocalteau reagent forming a blue-colored complex with an absorbance maximum at 745 nm. The total analysis time was 2.5 min. The ultra high performance liquid chromatography method provided the lowest detection and quantitation limits and the most precise and accurate results. All three newly developed methods were demonstrated to be specific, linear, sensitive, precise, and accurate, providing results satisfactorily meeting the requirements of the pharmaceutical industry, and can be employed for the routine determination of the active pharmaceutical ingredient in the tablet dosage form. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. An Open-Source Galaxy Redshift Survey Simulator for next-generation Large Scale Structure Surveys

    NASA Astrophysics Data System (ADS)

    Seijak, Uros

    Galaxy redshift surveys produce three-dimensional maps of the galaxy distribution. On large scales these maps trace the underlying matter fluctuations in a relatively simple manner, so that the properties of the primordial fluctuations along with the overall expansion history and growth of perturbations can be extracted. The BAO standard ruler method to measure the expansion history of the universe using galaxy redshift surveys is thought to be robust to observational artifacts and understood theoretically with high precision. These same surveys can offer a host of additional information, including a measurement of the growth rate of large scale structure through redshift space distortions, the possibility of measuring the sum of neutrino masses, tighter constraints on the expansion history through the Alcock-Paczynski effect, and constraints on the scale-dependence and non-Gaussianity of the primordial fluctuations. Extracting this broadband clustering information hinges on both our ability to minimize and subtract observational systematics to the observed galaxy power spectrum, and our ability to model the broadband behavior of the observed galaxy power spectrum with exquisite precision. Rapid development on both fronts is required to capitalize on WFIRST's data set. We propose to develop an open-source computational toolbox that will propel development in both areas by connecting large scale structure modeling and instrument and survey modeling with the statistical inference process. We will use the proposed simulator to both tailor perturbation theory and fully non-linear models of the broadband clustering of WFIRST galaxies and discover novel observables in the non-linear regime that are robust to observational systematics and able to distinguish between a wide range of spatial and dynamic biasing models for the WFIRST galaxy redshift survey sources. We have demonstrated the utility of this approach in a pilot study of the SDSS-III BOSS galaxies, in which we improved the redshift space distortion growth rate measurement precision by a factor of 2.5 using customized clustering statistics in the non-linear regime that were immunized against observational systematics. We look forward to addressing the unique challenges of modeling and empirically characterizing the WFIRST galaxies and observational systematics.

  20. Improved Short-Term Clock Prediction Method for Real-Time Positioning.

    PubMed

    Lv, Yifei; Dai, Zhiqiang; Zhao, Qile; Yang, Sheng; Zhou, Jinning; Liu, Jingnan

    2017-06-06

    The application of real-time precise point positioning (PPP) requires real-time precise orbit and clock products that should be predicted within a short time to compensate for the communication delay or data gap. Unlike orbit correction, clock correction is difficult to model and predict. The widely used linear model hardly fits long periodic trends with a small data set and exhibits significant accuracy degradation in real-time prediction when a large data set is used. This study proposes a new prediction model for maintaining short-term satellite clocks to meet the high-precision requirements of real-time clocks and provide clock extrapolation without interrupting the real-time data stream. Fast Fourier transform (FFT) is used to analyze the linear prediction residuals of real-time clocks. The periodic terms obtained through FFT are adopted in the sliding window prediction to achieve a significant improvement in short-term prediction accuracy. This study also analyzes and compares the accuracy of short-term forecasts (less than 3 h) by using different length observations. Experimental results obtained from International GNSS Service (IGS) final products and our own real-time clocks show that the 3-h prediction accuracy is better than 0.85 ns. The new model can replace IGS ultra-rapid products in the application of real-time PPP. It is also found that there is a positive correlation between the prediction accuracy and the short-term stability of on-board clocks. Compared with the accuracy of the traditional linear model, the accuracy of the static PPP using the new model of the 2-h prediction clock in N, E, and U directions is improved by about 50%. Furthermore, the static PPP accuracy of 2-h clock products is better than 0.1 m. When an interruption occurs in the real-time model, the accuracy of the kinematic PPP solution using 1-h clock prediction product is better than 0.2 m, without significant accuracy degradation. This model is of practical significance because it solves the problems of interruption and delay in data broadcast in real-time clock estimation and can meet the requirements of real-time PPP.

  1. High-speed extended-term time-domain simulation for online cascading analysis of power system

    NASA Astrophysics Data System (ADS)

    Fu, Chuan

    A high-speed extended-term (HSET) time domain simulator (TDS), intended to become a part of an energy management system (EMS), has been newly developed for use in online extended-term dynamic cascading analysis of power systems. HSET-TDS includes the following attributes for providing situational awareness of high-consequence events: (i) online analysis, including n-1 and n-k events, (ii) ability to simulate both fast and slow dynamics for 1-3 hours in advance, (iii) inclusion of rigorous protection-system modeling, (iv) intelligence for corrective action ID, storage, and fast retrieval, and (v) high-speed execution. Very fast on-line computational capability is the most desired attribute of this simulator. Based on the process of solving algebraic differential equations describing the dynamics of power system, HSET-TDS seeks to develop computational efficiency at each of the following hierarchical levels, (i) hardware, (ii) strategies, (iii) integration methods, (iv) nonlinear solvers, and (v) linear solver libraries. This thesis first describes the Hammer-Hollingsworth 4 (HH4) implicit integration method. Like the trapezoidal rule, HH4 is symmetrically A-Stable but it possesses greater high-order precision (h4 ) than the trapezoidal rule. Such precision enables larger integration steps and therefore improves simulation efficiency for variable step size implementations. This thesis provides the underlying theory on which we advocate use of HH4 over other numerical integration methods for power system time-domain simulation. Second, motivated by the need to perform high speed extended-term time domain simulation (HSET-TDS) for on-line purposes, this thesis presents principles for designing numerical solvers of differential algebraic systems associated with power system time-domain simulation, including DAE construction strategies (Direct Solution Method), integration methods(HH4), nonlinear solvers(Very Dishonest Newton), and linear solvers(SuperLU). We have implemented a design appropriate for HSET-TDS, and we compare it to various solvers, including the commercial grade PSSE program, with respect to computational efficiency and accuracy, using as examples the New England 39 bus system, the expanded 8775 bus system, and PJM 13029 buses system. Third, we have explored a stiffness-decoupling method, intended to be part of parallel design of time domain simulation software for super computers. The stiffness-decoupling method is able to combine the advantages of implicit methods (A-stability) and explicit method(less computation). With the new stiffness detection method proposed herein, the stiffness can be captured. The expanded 975 buses system is used to test simulation efficiency. Finally, several parallel strategies for super computer deployment to simulate power system dynamics are proposed and compared. Design A partitions the task via scale with the stiffness decoupling method, waveform relaxation, and parallel linear solver. Design B partitions the task via the time axis using a highly precise integration method, the Kuntzmann-Butcher Method - order 8 (KB8). The strategy of partitioning events is designed to partition the whole simulation via the time axis through a simulated sequence of cascading events. For all strategies proposed, a strategy of partitioning cascading events is recommended, since the sub-tasks for each processor are totally independent, and therefore minimum communication time is needed.

  2. An in-house assay for BK polyomavirus quantification using the Abbott m2000 RealTime system.

    PubMed

    Muldrew, Kenneth L; Lovett, Jennie L

    2013-11-01

    BK polyomavirus (BKPyV) quantification is useful for monitoring renal transplant patient response to therapy. The Abbott m2000 RealTime System employed by some clinical laboratories to perform US Food and Drug Administration-approved assays can also be used to develop in-house assays such as the one presented here. This study aimed to validate an in-house quantitative real-time PCR assay targeting the BKPyV major capsid VP1 gene for assessment of viral load using the Abbott m2000 RealTime System. BKPyV load was measured in 95 urine and plasma samples previously tested for BKPyV by one of three laboratories (46 BKPyV-positive samples consisting of 35 plasma and 11 urine samples; 49 samples negative for BKPyV consisting of 47 plasma and two urine samples). Two additional plasma specimens from the College of American Pathologists proficiency testing survey were also analysed. Precision studies were performed by diluting a high-viral-titre patient sample into BKPyV-negative pooled plasma to create high-positive (6.16 log10 copies ml(-1)) and low-positive (3.16 log10 copies ml(-1)) samples. For precision studies of inter-assay variability, a high-positive (7.0 log10 copies ml(-1)) and a low-positive (3.0 log10 copies ml(-1)) sample were measured in 20 separate runs. The assay's limit of quantification and limit of detection were 2.70 and 2.25 log10 copies ml(-1), respectively. The assay was linear from 2.70 to 9.26 log10 copies ml(-1). Of the 48 known positives, 43 were detected as positive, with three reported by the reference laboratory as values lower than the limit of detection. Two known positives at 3.27 and 3.80 log10 copies ml(-1) tested negative by the m2000 BKPyV assay. Of the 49 known negative samples, 48 were negative by the m2000 BKPyV load assay, with one sample confirmed positive by a reference laboratory. Qualitative analysis prior to discrepancy testing demonstrated a sensitivity of 89.58 % and a specificity of 97.96 %. Precision studies demonstrated inter-assay coefficients of variation of 0.63 % (high positive) and 4.38 % (low positive). Genotyping was performed on 22 patient samples, of which 21 (95.45 %) were type I and one (4.55 %) was type II. In conclusion, the m2000 BKPyV viral load assay sensitivity, specificity, linear range, precision and cost effectiveness make it an attractive methodology for clinical laboratories using the Abbott m2000 RealTime System.

  3. Quantitative determination of multi markers in five varieties of Withania somnifera using ultra-high performance liquid chromatography with hybrid triple quadrupole linear ion trap mass spectrometer combined with multivariate analysis: Application to pharmaceutical dosage forms.

    PubMed

    Chandra, Preeti; Kannujia, Rekha; Saxena, Ankita; Srivastava, Mukesh; Bahadur, Lal; Pal, Mahesh; Singh, Bhim Pratap; Kumar Ojha, Sanjeev; Kumar, Brijesh

    2016-09-10

    An ultra-high performance liquid chromatography electrospray ionization tandem mass spectrometry method has been developed and validated for simultaneous quantification of six major bioactive compounds in five varieties of Withania somnifera in various plant parts (leaf, stem and root). The analysis was accomplished on Waters ACQUITY UPLC BEH C18 column with linear gradient elution of water/formic acid (0.1%) and acetonitrile at a flow rate of 0.3mLmin(-1). The proposed method was validated with acceptable linearity (r(2), 0.9989-0.9998), precision (RSD, 0.16-2.01%), stability (RSD, 1.04-1.62%) and recovery (RSD ≤2.45%), under optimum conditions. The method was also successfully applied for the simultaneous determination of six marker compounds in twenty-six marketed formulations. Hierarchical cluster analysis and principal component analysis were applied to discriminate these twenty-six batches based on characteristics of the bioactive compounds. The results indicated that this method is advance, rapid, sensitive and suitable to reveal the quality of Withania somnifera and also capable of performing quality evaluation of polyherbal formulations having similar markers/raw herbs. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. Optimization and validation of liquid chromatography and headspace-gas chromatography based methods for the quantitative determination of capsaicinoids, salicylic acid, glycol monosalicylate, methyl salicylate, ethyl salicylate, camphor and l-menthol in a topical formulation.

    PubMed

    Pauwels, Jochen; D'Autry, Ward; Van den Bossche, Larissa; Dewever, Cédric; Forier, Michel; Vandenwaeyenberg, Stephanie; Wolfs, Kris; Hoogmartens, Jos; Van Schepdael, Ann; Adams, Erwin

    2012-02-23

    Capsaicinoids, salicylic acid, methyl and ethyl salicylate, glycol monosalicylate, camphor and l-menthol are widely used in topical formulations to relieve local pain. For each separate compound or simple mixtures, quantitative analysis methods are reported. However, for a mixture containing all above mentioned active compounds, no assay methods were found. Due to the differing physicochemical characteristics, two methods were developed and optimized simultaneously. The non-volatile capsaicinoids, salicylic acid and glycol monosalicylate were analyzed with liquid chromatography following liquid-liquid extraction, whereas the volatile compounds were analyzed with static headspace-gas chromatography. For the latter method, liquid paraffin was selected as compatible dilution solvent. The optimized methods were validated in terms of specificity, linearity, accuracy and precision in a range of 80% to 120% of the expected concentrations. For both methods, peaks were well separated without interference of other compounds. Linear relationships were demonstrated with R² values higher than 0.996 for all compounds. Accuracy was assessed by performing replicate recovery experiments with spiked blank samples. Mean recovery values were all between 98% and 102%. Precision was checked at three levels: system repeatability, method precision and intermediate precision. Both methods were found to be acceptably precise at all three levels. Finally, the method was successfully applied to the analysis of some real samples (cutaneous sticks). Copyright © 2011 Elsevier B.V. All rights reserved.

  5. Experimental variability and data pre-processing as factors affecting the discrimination power of some chemometric approaches (PCA, CA and a new algorithm based on linear regression) applied to (+/-)ESI/MS and RPLC/UV data: Application on green tea extracts.

    PubMed

    Iorgulescu, E; Voicu, V A; Sârbu, C; Tache, F; Albu, F; Medvedovici, A

    2016-08-01

    The influence of the experimental variability (instrumental repeatability, instrumental intermediate precision and sample preparation variability) and data pre-processing (normalization, peak alignment, background subtraction) on the discrimination power of multivariate data analysis methods (Principal Component Analysis -PCA- and Cluster Analysis -CA-) as well as a new algorithm based on linear regression was studied. Data used in the study were obtained through positive or negative ion monitoring electrospray mass spectrometry (+/-ESI/MS) and reversed phase liquid chromatography/UV spectrometric detection (RPLC/UV) applied to green tea extracts. Extractions in ethanol and heated water infusion were used as sample preparation procedures. The multivariate methods were directly applied to mass spectra and chromatograms, involving strictly a holistic comparison of shapes, without assignment of any structural identity to compounds. An alternative data interpretation based on linear regression analysis mutually applied to data series is also discussed. Slopes, intercepts and correlation coefficients produced by the linear regression analysis applied on pairs of very large experimental data series successfully retain information resulting from high frequency instrumental acquisition rates, obviously better defining the profiles being compared. Consequently, each type of sample or comparison between samples produces in the Cartesian space an ellipsoidal volume defined by the normal variation intervals of the slope, intercept and correlation coefficient. Distances between volumes graphically illustrates (dis)similarities between compared data. The instrumental intermediate precision had the major effect on the discrimination power of the multivariate data analysis methods. Mass spectra produced through ionization from liquid state in atmospheric pressure conditions of bulk complex mixtures resulting from extracted materials of natural origins provided an excellent data basis for multivariate analysis methods, equivalent to data resulting from chromatographic separations. The alternative evaluation of very large data series based on linear regression analysis produced information equivalent to results obtained through application of PCA an CA. Copyright © 2016 Elsevier B.V. All rights reserved.

  6. Validation of a commercially available enzyme-linked immunoabsorbent assay for the quantification of human α-Synuclein in cerebrospinal fluid.

    PubMed

    Kruse, Niels; Mollenhauer, Brit

    2015-11-01

    The quantification of α-Synuclein in cerebrospinal fluid (CSF) as a biomarker has gained tremendous interest in the last years. Several commercially available immunoassays are emerging. We here describe the full validation of one commercially available ELISA assay for the quantification of α-Synuclein in human CSF (Covance alpha-Synuclein ELISA kit). The study was conducted within the BIOMARKAPD project in the European initiative Joint Program for Neurodegenerative Diseases (JPND). We investigated the effect of several pre-analytical and analytical confounders: i.e. (1) need for centrifugation of freshly drawn CSF, (2) sample stability, (3) delay of freezing, (4) volume of storage aliquots, (5) freeze/thaw cycles, (6) thawing conditions, (7) dilution linearity, (8) parallelism, (9) spike recovery, and (10) precision. None of these confounders influenced the levels of α-Synuclein in CSF significantly. We found a very high intra-assay precision. The inter-assay precision was lower than expected due to different performances of kit lots used. Overall the validated immunoassay is useful for the quantification of α-Synuclein in human CSF. Copyright © 2015 Elsevier B.V. All rights reserved.

  7. Compact spectrometer for precision studies of multimode behavior in an extended-cavity diode laser

    NASA Astrophysics Data System (ADS)

    Roach, Timothy; Golemi, Josian; Krueger, Thomas

    2016-05-01

    We have built a compact, inexpensive, high-precision spectrometer and used it to investigate the tuning behavior of a grating stabilized extended-cavity diode laser (ECDL). A common ECDL design uses a laser chip with an uncoated (partially reflecting) front facet, and the laser output exhibits a complicated pattern of mode hops as the frequency is tuned, in some cases even showing chaotic dynamics. Our grating spectrometer (based on a design by White & Scholten) monitors a span of 4000 GHz (8 nm at 780 nm) with a linewidth of 3 GHz, which with line-splitting gives a precision of 0.02 GHz in determining the frequency of a laser mode. We have studied multimode operation of the ECDL, tracking two or three simultaneous chip cavity modes (spacing ~ 30 GHz) during tuning via current or piezo control of the external cavity. Simultaneous output on adjacent external cavity modes (spacing ~ 5 GHz) is monitored by measuring an increase in the spectral linewidth. Computer-control of the spectrometer (for line-fitting and averaging) and of the ECDL (electronic tuning) allows rapid collection of spectral data sets, which we will use to test mathematical simulation models of the non-linear laser cavity interactions.

  8. 3D Reconstruction and Standardization of the Rat Vibrissal Cortex for Precise Registration of Single Neuron Morphology

    PubMed Central

    Egger, Robert; Narayanan, Rajeevan T.; Helmstaedter, Moritz; de Kock, Christiaan P. J.; Oberlaender, Marcel

    2012-01-01

    The three-dimensional (3D) structure of neural circuits is commonly studied by reconstructing individual or small groups of neurons in separate preparations. Investigation of structural organization principles or quantification of dendritic and axonal innervation thus requires integration of many reconstructed morphologies into a common reference frame. Here we present a standardized 3D model of the rat vibrissal cortex and introduce an automated registration tool that allows for precise placement of single neuron reconstructions. We (1) developed an automated image processing pipeline to reconstruct 3D anatomical landmarks, i.e., the barrels in Layer 4, the pia and white matter surfaces and the blood vessel pattern from high-resolution images, (2) quantified these landmarks in 12 different rats, (3) generated an average 3D model of the vibrissal cortex and (4) used rigid transformations and stepwise linear scaling to register 94 neuron morphologies, reconstructed from in vivo stainings, to the standardized cortex model. We find that anatomical landmarks vary substantially across the vibrissal cortex within an individual rat. In contrast, the 3D layout of the entire vibrissal cortex remains remarkably preserved across animals. This allows for precise registration of individual neuron reconstructions with approximately 30 µm accuracy. Our approach could be used to reconstruct and standardize other anatomically defined brain areas and may ultimately lead to a precise digital reference atlas of the rat brain. PMID:23284282

  9. Linear and Non-Linear Optical Imaging of Cancer Cells with Silicon Nanoparticles

    PubMed Central

    Tolstik, Elen; Osminkina, Liubov A.; Akimov, Denis; Gongalsky, Maksim B.; Kudryavtsev, Andrew A.; Timoshenko, Victor Yu.; Heintzmann, Rainer; Sivakov, Vladimir; Popp, Jürgen

    2016-01-01

    New approaches for visualisation of silicon nanoparticles (SiNPs) in cancer cells are realised by means of the linear and nonlinear optics in vitro. Aqueous colloidal solutions of SiNPs with sizes of about 10–40 nm obtained by ultrasound grinding of silicon nanowires were introduced into breast cancer cells (MCF-7 cell line). Further, the time-varying nanoparticles enclosed in cell structures were visualised by high-resolution structured illumination microscopy (HR-SIM) and micro-Raman spectroscopy. Additionally, the nonlinear optical methods of two-photon excited fluorescence (TPEF) and coherent anti-Stokes Raman scattering (CARS) with infrared laser excitation were applied to study the localisation of SiNPs in cells. Advantages of the nonlinear methods, such as rapid imaging, which prevents cells from overheating and larger penetration depth compared to the single-photon excited HR-SIM, are discussed. The obtained results reveal new perspectives of the multimodal visualisation and precise detection of the uptake of biodegradable non-toxic SiNPs by cancer cells and they are discussed in view of future applications for the optical diagnostics of cancer tumours. PMID:27626408

  10. Precision, accuracy and linearity of radiometer EML 105 whole blood metabolite biosensors.

    PubMed

    Cobbaert, C; Morales, C; van Fessem, M; Kemperman, H

    1999-11-01

    The analytical performance of a new, whole blood glucose and lactate electrode system (EML 105 analyser. Radiometer Medical A/S. Copenhagen, Denmark) was evaluated. Between-day coefficients of variation were < or = 1.9% and < or = 3.1% for glucose and lactate, respectively. Recoveries of glucose were 100 +/- 10% using either aqueous or protein-based standards. Recoveries of lactate depended on the matrix, being underestimated in aqueous standards (approximately -10%) and 95-100% in standards containing 40 g/L albumin at lactate concentrations of 15 and 30 mmol/L. However, recoveries were high (up to 180%) at low lactate concentrations in protein-based standards. Carry-over, investigated according to National Clinical Chemistry Laboratory Standards EP10-T2, was negligible (alpha = 0.01). Glucose and lactate biosensors equipped with new membranes were linear up to 60 and 30 mmol/L, respectively. However, linearity fell upon daily use with increasing membrane lifetime. We conclude that the Radiometer metabolite biosensor results are reproducible and do not suffer from specimen-related carry-over. However, lactate recovery depends on the protein content and the lactate concentration.

  11. A linear quadratic Gaussian with loop transfer recovery proximity operations autopilot for spacecraft. M.S. Thesis - MIT

    NASA Technical Reports Server (NTRS)

    Chen, George T.

    1987-01-01

    An automatic control scheme for spacecraft proximity operations is presented. The controller is capable of holding the vehicle at a prescribed location relative to a target, or maneuvering it to a different relative position using straight line-of-sight translations. The autopilot uses a feedforward loop to initiate and terminate maneuvers, and for operations at nonequilibrium set-points. A multivariate feedback loop facilitates precise position and velocity control in the presence of sensor noise. The feedback loop is formulated using the Linear Quadratic Gaussian (LQG) with Loop Transfer Recovery (LTR) design procedure. Linear models of spacecraft dynamics, adapted from Clohessey-Wiltshire Equations, are augmented and loop shaping techniques are applied to design a target feedback loop. The loop transfer recovery procedure is used to recover the frequency domain properties of the target feedback loop. The resulting compensator is integrated into an autopilot which is tested in a high fidelity Space Shuttle Simulator. The autopilot performance is evaluated for a variety of proximity operations tasks envisioned for future Shuttle flights.

  12. A Wide Linearity Range Method for the Determination of Lenalidomide in Plasma by High-Performance Liquid Chromatography: Application to Pharmacokinetic Studies.

    PubMed

    Guglieri-López, Beatriz; Pérez-Pitarch, Alejandro; Martinez-Gómez, Maria Amparo; Porta-Oltra, Begoña; Climente-Martí, Mónica; Merino-Sanjuán, Matilde

    2016-12-01

    A wide linearity range analytical method for the determination of lenalidomide in patients with multiple myeloma for pharmacokinetic studies is required. Plasma samples were ultrasonicated for protein precipitation. A solid-phase extraction was performed. The eluted samples were evaporated to dryness under vacuum, and the solid obtained was diluted and injected into the high-performance liquid chromatography (HPLC) system. Separation of lenalidomide was performed on an Xterra RP C18 (250 mm length × 4.6 mm i.d., 5 µm) using a mobile phase consisting of phosphate buffer/acetonitrile (85:15, v/v, pH 3.2) at a flow rate of 0.5 mL · min -1 The samples were monitored at a wavelength of 311 nm. A linear relationship with good correlation coefficient (r = 0.997, n = 9) was found between the peak area and lenalidomide concentrations in the range of 100 to 950 ng · mL -1 The limits of detection and quantitation were 28 and 100 ng · mL -1 , respectively. The intra- and interassay precisions were satisfactory, and the accuracy of the method was proved. In conclusion, the proposed method is suitable for the accurate quantification of lenalidomide in human plasma with a wide linear range, from 100 to 950 ng · mL -1 This is a valuable method for pharmacokinetic studies of lenalidomide in human subjects. © 2016 Society for Laboratory Automation and Screening.

  13. Linear Actuator Has Long Stroke and High Resolution

    NASA Technical Reports Server (NTRS)

    Cook, Brant T.; Moore, Donald M.; Braun, David F.; Koenig, John S.; Hankins, Steve M.

    2009-01-01

    The term precision linear actuator, direct drive ( PLADD ) refers to a robust linear actuator designed to be capable of repeatedly performing, over a lifetime of the order of 5 to 10 years, positioning maneuvers that include, variously, submicron increments or slews of the order of a centimeter. The PLADD is capable of both long stroke (120 mm) and high resolution (repeatable increments of 20 nm). Unlike precise linear actuators of prior design, the PLADD contains no gears, levers, or hydraulic converters. The PLADD, now at the prototype stage of development, is intended for original use as a coarse-positioning actuator in a spaceborne interferometer. The PLADD could also be adapted to terrestrial applications in which there are requirements for long stroke and high resolution: potential applications include medical imaging and fabrication of semiconductor devices. The PLADD (see figure) includes a commercially available ball-screw actuator driven directly by a commercially available three-phase brushless DC motor. The ball-screw actuator comprises a spring-preloaded ball nut on a ball screw that is restrained against rotation as described below. The motor is coupled directly (that is, without an intervening gear train) to a drive link that, in turn, is coupled to the ball nut. By eliminating the gear train, the direct-drive design eliminates the complexity, backlash, and potential for misalignment associated with a gear train. To prevent inadvertent movement, there is a brake that includes flexured levers compressed against the drive link by preload springs. This is a power-off brake: There are also piezoelectric stacks that can be activated to oppose the springs and push the levers away from the drive link. Hence, power must be applied to the piezoelectric stacks to release the drive link from braking. To help ensure long operational life, all of the mechanical drive components are immersed in an oil bath within hermetically sealed bellows. The outer end of the bellows holds the outer end of the ball screw, thereby preventing rotation of the ball screw. Positioning is controlled by an electronic control system that includes digital and analog subsystems that interact with the motor and brake and with two sensor/encoder units: a Hall-effect-sensor rotation encoder and a linear glass-scale encoder. This system implements a proportional + integral + derivative control algorithm that results in variation of voltage commands to each of the three pairs of windings of the brushless DC motor. In one of two alternative control modes, the voltages are applied to the windings in a trapezoidal commutation scheme on the basis of timing signals obtained from the Hall-effect sensors; this scheme yields relatively coarse positioning - 24 steps per motor revolution. The second control mode involves a sinusoidal commutation scheme in which the output of the linear glass-scale encoder is transposed to rotational increments to yield much finer position feedback - more than 400,000 steps per revolution.

  14. Modeling vocalization with ECoG cortical activity recorded during vocal production in the macaque monkey.

    PubMed

    Fukushima, Makoto; Saunders, Richard C; Fujii, Naotaka; Averbeck, Bruno B; Mishkin, Mortimer

    2014-01-01

    Vocal production is an example of controlled motor behavior with high temporal precision. Previous studies have decoded auditory evoked cortical activity while monkeys listened to vocalization sounds. On the other hand, there have been few attempts at decoding motor cortical activity during vocal production. Here we recorded cortical activity during vocal production in the macaque with a chronically implanted electrocorticographic (ECoG) electrode array. The array detected robust activity in motor cortex during vocal production. We used a nonlinear dynamical model of the vocal organ to reduce the dimensionality of `Coo' calls produced by the monkey. We then used linear regression to evaluate the information in motor cortical activity for this reduced representation of calls. This simple linear model accounted for circa 65% of the variance in the reduced sound representations, supporting the feasibility of using the dynamical model of the vocal organ for decoding motor cortical activity during vocal production.

  15. Determination of myriocin in natural and cultured Cordyceps cicadae using 9-fluorenylmethyl chloroformate derivatization and high-performance liquid chromatography with UV-detection.

    PubMed

    Yu, Jiawen; Xu, Hongjuan; Mo, Zhihong; Zhu, Huali; Mao, Xianbing

    2009-07-01

    A simple and sensitive reversed-phase liquid chromatographic method, based on the precolumn derivatization with 9-fluorenylmethyl chloroformate, was developed for the determination of myriocin. The derivatization reaction was performed in organic solvents of pyridine and tetrahydrofuran at 40 degrees C. Several factors influencing the derivative yield were investigated and optimized. The formed derivative was stable for more than 24 h at room temperature. The detection wavelength was 262 nm. The system offered the following analytical parameters: the limit of detection was 0.045 microg ml(-1), the linear correlation coefficient was 0.9963 and the linear range response was from 2.0 to 500.0 microg ml(-1). The precision of the method was <2.0%. As a preliminary application, the method has been successfully applied to the determination of myriocin in natural and cultured Cordyceps cicadae.

  16. Orbit control of a stratospheric satellite with parameter uncertainties

    NASA Astrophysics Data System (ADS)

    Xu, Ming; Huo, Wei

    2016-12-01

    When a stratospheric satellite travels by prevailing winds in the stratosphere, its cross-track displacement needs to be controlled to keep a constant latitude orbital flight. To design the orbit control system, a 6 degree-of-freedom (DOF) model of the satellite is established based on the second Lagrangian formulation, it is proven that the input/output feedback linearization theory cannot be directly implemented for the orbit control with this model, thus three subsystem models are deduced from the 6-DOF model to develop a sequential nonlinear control strategy. The control strategy includes an adaptive controller for the balloon-tether subsystem with uncertain balloon parameters, a PD controller based on feedback linearization for the tether-sail subsystem, and a sliding mode controller for the sail-rudder subsystem with uncertain sail parameters. Simulation studies demonstrate that the proposed control strategy is robust to uncertainties and satisfies high precision requirements for the orbit flight of the satellite.

  17. Working Group Report: Higgs Boson

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dawson, Sally; Gritsan, Andrei; Logan, Heather

    2013-10-30

    This report summarizes the work of the Energy Frontier Higgs Boson working group of the 2013 Community Summer Study (Snowmass). We identify the key elements of a precision Higgs physics program and document the physics potential of future experimental facilities as elucidated during the Snowmass study. We study Higgs couplings to gauge boson and fermion pairs, double Higgs production for the Higgs self-coupling, its quantum numbers and $CP$-mixing in Higgs couplings, the Higgs mass and total width, and prospects for direct searches for additional Higgs bosons in extensions of the Standard Model. Our report includes projections of measurement capabilities frommore » detailed studies of the Compact Linear Collider (CLIC), a Gamma-Gamma Collider, the International Linear Collider (ILC), the Large Hadron Collider High-Luminosity Upgrade (HL-LHC), Very Large Hadron Colliders up to 100 TeV (VLHC), a Muon Collider, and a Triple-Large Electron Positron Collider (TLEP).« less

  18. Preparation of pentacene thin film deposited using organic material auto-feeding system for the fabrication of organic thin film transistor.

    PubMed

    Kim, Young Baek; Choi, Bum Ho; Lim, Yong Hwan; Yoo, Ha Na; Lee, Jong Ho; Kim, Jin Hyeok

    2011-02-01

    In this study, pentacene organic thin film was prepared using newly developed organic material auto-feeding system integrated with linear cell and characterized. The newly developed organic material auto-feeding system consists of 4 major parts: reservoir, micro auto-feeder, vaporizer, and linear cell. The deposition of organic thin film could be precisely controlled by adjusting feeding rate, main tube size, position and size of nozzle. 10 nm thick pentacene thin film prepared on glass substrate exhibited high uniformity of 3.46% which is higher than that of conventional evaporation method using point cell. The continuous deposition without replenishment of organic material can be performed over 144 hours with regulated deposition control. The grain size of pentacene film which affect to mobility of OTFT, was controlled as a function of the temperature.

  19. Multiple regression for physiological data analysis: the problem of multicollinearity.

    PubMed

    Slinker, B K; Glantz, S A

    1985-07-01

    Multiple linear regression, in which several predictor variables are related to a response variable, is a powerful statistical tool for gaining quantitative insight into complex in vivo physiological systems. For these insights to be correct, all predictor variables must be uncorrelated. However, in many physiological experiments the predictor variables cannot be precisely controlled and thus change in parallel (i.e., they are highly correlated). There is a redundancy of information about the response, a situation called multicollinearity, that leads to numerical problems in estimating the parameters in regression equations; the parameters are often of incorrect magnitude or sign or have large standard errors. Although multicollinearity can be avoided with good experimental design, not all interesting physiological questions can be studied without encountering multicollinearity. In these cases various ad hoc procedures have been proposed to mitigate multicollinearity. Although many of these procedures are controversial, they can be helpful in applying multiple linear regression to some physiological problems.

  20. Resonant tunneling through discrete quantum states in stacked atomic-layered MoS2.

    PubMed

    Nguyen, Linh-Nam; Lan, Yann-Wen; Chen, Jyun-Hong; Chang, Tay-Rong; Zhong, Yuan-Liang; Jeng, Horng-Tay; Li, Lain-Jong; Chen, Chii-Dong

    2014-05-14

    Two-dimensional crystals can be assembled into three-dimensional stacks with atomic layer precision, which have already shown plenty of fascinating physical phenomena and been used for prototype vertical-field-effect-transistors.1,2 In this work, interlayer electron tunneling in stacked high-quality crystalline MoS2 films were investigated. A trilayered MoS2 film was sandwiched between top and bottom electrodes with an adjacent bottom gate, and the discrete energy levels in each layer could be tuned by bias and gate voltages. When the discrete energy levels aligned, a resonant tunneling peak appeared in the current-voltage characteristics. The peak position shifts linearly with perpendicular magnetic field, indicating formation of Landau levels. From this linear dependence, the effective mass and Fermi velocity are determined and are confirmed by electronic structure calculations. These fundamental parameters are useful for exploitation of its unique properties.

  1. Design and Analysis of a Compact Precision Positioning Platform Integrating Strain Gauges and the Piezoactuator

    PubMed Central

    Huang, Hu; Zhao, Hongwei; Yang, Zhaojun; Fan, Zunqiang; Wan, Shunguang; Shi, Chengli; Ma, Zhichao

    2012-01-01

    Miniaturization precision positioning platforms are needed for in situ nanomechanical test applications. This paper proposes a compact precision positioning platform integrating strain gauges and the piezoactuator. Effects of geometric parameters of two parallel plates on Von Mises stress distribution as well as static and dynamic characteristics of the platform were studied by the finite element method. Results of the calibration experiment indicate that the strain gauge sensor has good linearity and its sensitivity is about 0.0468 mV/μm. A closed-loop control system was established to solve the problem of nonlinearity of the platform. Experimental results demonstrate that for the displacement control process, both the displacement increasing portion and the decreasing portion have good linearity, verifying that the control system is available. The developed platform has a compact structure but can realize displacement measurement with the embedded strain gauges, which is useful for the closed-loop control and structure miniaturization of piezo devices. It has potential applications in nanoindentation and nanoscratch tests, especially in the field of in situ nanomechanical testing which requires compact structures. PMID:23012566

  2. Design and implementation of a novel rotary micropositioning system driven by linear voice coil motor.

    PubMed

    Xu, Qingsong

    2013-05-01

    Limited-angle rotary micropositioning stages are required in precision engineering applications where an ultrahigh-precision rotational motion within a restricted range is needed. This paper presents the design, fabrication, and control of a compliant rotary micropositioning stage dedicated to the said applications. To tackle the challenge of achieving both a large rotational range and a compact size, a new idea of multi-stage compound radial flexure is proposed. A compact rotary stage is devised to deliver an over 10° rotational range while possessing a negligible magnitude of center shift. The stage is driven by a linear voice coil motor and its output motion is measured by laser displacement sensors. Analytical models are derived to facilitate the parametric design, which is validated by conducting finite element analysis. The actuation and sensing issues are addressed to guarantee the stage performance. A prototype is fabricated and a proportional-integral-derivative control is implemented to achieve a precise positioning. Experimental results demonstrate a resolution of 2 μrad over 10° rotational range as well as a low level of center shift of the rotary micropositioning system.

  3. Prototyping and testing of mechanical components for the GRAVITY spectrometers

    NASA Astrophysics Data System (ADS)

    Wiest, Michael; Fischer, Sebastian; Thiel, Markus; Haug, Marcus; Rohloff, Ralf-Rainer; Straubmeier, Christian; Araujo-Hauck, Constanza; Yazici, Senol; Eisenhauer, Frank; Perrin, Guy; Brandner, Wolfgang; Perraut, Karine; Amorim, Antonio; Schöller, Markus; Eckart, Andreas

    2010-07-01

    GRAVITY is a 2nd generation VLTI Instrument which operates on 6 interferometric baselines by using all 4 UTs. It will offer narrow angle astrometry in the infrared K-band with an accuracy of 10 ìas. The University of Cologne is part of the international GRAVITY consortium and responsible for the design and manufacturing of the two spectrometers. One is optimized for observing the science object, providing three different spectral resolutions and optional polarimetry, the other is optimized for a fast fringe tracking at a spectral resolution of R=22 with optional polarimetry. In order to achieve the necessary image quality, the current mechanical design foresees 5 motorized functions, 2 linear motions and 3 filter wheels. Additionally the latest optical design proposal includes 20 degrees of freedom for manual adjustments distributed over the different optical elements. Both spectrometers require precise linear and rotational movements on micrometer or arcsecond scales. These movements will be realized using custom linear stages based on compliant joints. These stages will be driven by actuators based on a Phytron/Harmonic Drive combination. For dimensioning and in order to qualify the reliability of these mechanisms, it is necessary to evaluate the mechanisms on the base of several prototypes. Due to the cryogenic environment the wheel mechanisms will be driven by Phytron stepper motors, too. A ratchet mechanism, which is currently in the beginning of his design phase, will deliver the required precision to the filter wheels. This contribution will give a first impression how the next mechanical prototypes will look like. Besides, advantages of purchasing and integrating a distance sensor and a resolver are reported. Both are supposed to work under cryogenic conditions and should achieve high resolutions for the measuring of movements inside the test cryostat.

  4. A versatile program for the calculation of linear accelerator room shielding.

    PubMed

    Hassan, Zeinab El-Taher; Farag, Nehad M; Elshemey, Wael M

    2018-03-22

    This work aims at designing a computer program to calculate the necessary amount of shielding for a given or proposed linear accelerator room design in radiotherapy. The program (Shield Calculation in Radiotherapy, SCR) has been developed using Microsoft Visual Basic. It applies the treatment room shielding calculations of NCRP report no. 151 to calculate proper shielding thicknesses for a given linear accelerator treatment room design. The program is composed of six main user-friendly interfaces. The first enables the user to upload their choice of treatment room design and to measure the distances required for shielding calculations. The second interface enables the user to calculate the primary barrier thickness in case of three-dimensional conventional radiotherapy (3D-CRT), intensity modulated radiotherapy (IMRT) and total body irradiation (TBI). The third interface calculates the required secondary barrier thickness due to both scattered and leakage radiation. The fourth and fifth interfaces provide a means to calculate the photon dose equivalent for low and high energy radiation, respectively, in door and maze areas. The sixth interface enables the user to calculate the skyshine radiation for photons and neutrons. The SCR program has been successfully validated, precisely reproducing all of the calculated examples presented in NCRP report no. 151 in a simple and fast manner. Moreover, it easily performed the same calculations for a test design that was also calculated manually, and produced the same results. The program includes a new and important feature that is the ability to calculate required treatment room thickness in case of IMRT and TBI. It is characterised by simplicity, precision, data saving, printing and retrieval, in addition to providing a means for uploading and testing any proposed treatment room shielding design. The SCR program provides comprehensive, simple, fast and accurate room shielding calculations in radiotherapy.

  5. Bit Grooming: Statistically accurate precision-preserving quantization with compression, evaluated in the netCDF operators (NCO, v4.4.8+)

    DOE PAGES

    Zender, Charles S.

    2016-09-19

    Geoscientific models and measurements generate false precision (scientifically meaningless data bits) that wastes storage space. False precision can mislead (by implying noise is signal) and be scientifically pointless, especially for measurements. By contrast, lossy compression can be both economical (save space) and heuristic (clarify data limitations) without compromising the scientific integrity of data. Data quantization can thus be appropriate regardless of whether space limitations are a concern. We introduce, implement, and characterize a new lossy compression scheme suitable for IEEE floating-point data. Our new Bit Grooming algorithm alternately shaves (to zero) and sets (to one) the least significant bits ofmore » consecutive values to preserve a desired precision. This is a symmetric, two-sided variant of an algorithm sometimes called Bit Shaving that quantizes values solely by zeroing bits. Our variation eliminates the artificial low bias produced by always zeroing bits, and makes Bit Grooming more suitable for arrays and multi-dimensional fields whose mean statistics are important. Bit Grooming relies on standard lossless compression to achieve the actual reduction in storage space, so we tested Bit Grooming by applying the DEFLATE compression algorithm to bit-groomed and full-precision climate data stored in netCDF3, netCDF4, HDF4, and HDF5 formats. Bit Grooming reduces the storage space required by initially uncompressed and compressed climate data by 25–80 and 5–65 %, respectively, for single-precision values (the most common case for climate data) quantized to retain 1–5 decimal digits of precision. The potential reduction is greater for double-precision datasets. When used aggressively (i.e., preserving only 1–2 digits), Bit Grooming produces storage reductions comparable to other quantization techniques such as Linear Packing. Unlike Linear Packing, whose guaranteed precision rapidly degrades within the relatively narrow dynamic range of values that it can compress, Bit Grooming guarantees the specified precision throughout the full floating-point range. Data quantization by Bit Grooming is irreversible (i.e., lossy) yet transparent, meaning that no extra processing is required by data users/readers. Hence Bit Grooming can easily reduce data storage volume without sacrificing scientific precision or imposing extra burdens on users.« less

  6. The Effect of Test and Examinee Characteristics on the Occurrence of Aberrant Response Patterns in a Computerized Adaptive Test

    ERIC Educational Resources Information Center

    Rizavi, Saba; Hariharan, Swaminathan

    2001-01-01

    The advantages that computer adaptive testing offers over linear tests have been well documented. The Computer Adaptive Test (CAT) design is more efficient than the Linear test design as fewer items are needed to estimate an examinee's proficiency to a desired level of precision. In the ideal situation, a CAT will result in examinees answering…

  7. New Steering Strategies for the USNO Master Clocks

    DTIC Science & Technology

    1999-12-01

    1992. P. Koppang and R. Leland , “Linear quadratic stochastic control of atomic hydrogen masers,” IEEE Trans. Ultrason., Ferroelect., Freq. Contr...vol. 46, pp. 517-522, May 1999. P. Koppang and R. Leland , “Steering of frequency standards by the use of linear quadratic gaussian control theory...3lst Annual Precise Time and Time Interval (PTTI) Meeting NEWSTEERINGSTRATEGIESFOR THEUSNOMASTERCLOCKS Paul A. Koppang Datum, Inc. Beverly, MA

  8. Performance evaluation of new automated hepatitis B viral markers in the clinical laboratory: two quantitative hepatitis B surface antigen assays and an HBV core-related antigen assay.

    PubMed

    Park, Yongjung; Hong, Duck Jin; Shin, Saeam; Cho, Yonggeun; Kim, Hyon-Suk

    2012-05-01

    We evaluated quantitative hepatitis B surface antigen (qHBsAg) assays and a hepatitis B virus (HBV) core-related antigen (HBcrAg) assay. A total of 529 serum samples from patients with hepatitis B were tested. HBsAg levels were determined by using the Elecsys (Roche Diagnostics, Indianapolis, IN) and Architect (Abbott Laboratories, Abbott Park, IL) qHBsAg assays. HBcrAg was measured by using Lumipulse HBcrAg assay (Fujirebio, Tokyo, Japan). Serum aminotransferases and HBV DNA were respectively quantified by using the Hitachi 7600 analyzer (Hitachi High-Technologies, Tokyo, Japan) and the Cobas AmpliPrep/Cobas TaqMan test (Roche). Precision of the qHBsAg and HBcrAg assays was assessed, and linearity of the qHBsAg assays was verified. All assays showed good precision performance with coefficients of variation between 4.5% and 5.3% except for some levels. Both qHBsAg assays showed linearity from 0.1 to 12,000.0 IU/mL and correlated well (r = 0.9934). HBsAg levels correlated with HBV DNA (r = 0.3373) and with HBcrAg (r = 0.5164), and HBcrAg also correlated with HBV DNA (r = 0.5198; P < .0001). This observation could provide impetus for further research to elucidate the clinical usefulness of the qHBsAg and HBcrAg assays.

  9. Myostatin inhibitors in sports drug testing: Detection of myostatin-neutralizing antibodies in plasma/serum by affinity purification and Western blotting.

    PubMed

    Walpurgis, Katja; Thomas, Andreas; Schänzer, Wilhelm; Thevis, Mario

    2016-02-01

    Myostatin is a key regulator of skeletal muscle growth and inhibition of its signaling pathway results in an increased muscle mass and function. The aim of this study was to develop a qualitative detection assay for myostatin-neutralizing antibodies for doping control purposes by using immunological approaches. To detect different types of myostatin-neutralizing antibodies irrespective of their amino acid sequence, an immunological assay specific for antibodies directed against myostatin and having a human Fc domain was established. Affinity purification and Western blotting strategies were combined to allow extracting and identifying relevant analytes from 200 μL of plasma/serum in a non-targeted approach. The assay was characterized regarding specificity, linearity, precision, robustness, and recovery. The assay was found to be highly specific, robust, and linear from 0.1 to 1 μg/mL. The precision was successfully specified at three different concentrations and the recovery of the affinity purification was 58%. Within this study, an immunological detection assay for myostatin-neutralizing antibodies present in plasma/serum specimens was developed and successfully characterized. The presented approach can easily be modified to include other therapeutic antibodies and serves as proof-of-concept for the detection of antibody-based myostatin inhibitors in doping control samples. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Ariadne's Thread: A Robust Software Solution Leading to Automated Absolute and Relative Quantification of SRM Data.

    PubMed

    Nasso, Sara; Goetze, Sandra; Martens, Lennart

    2015-09-04

    Selected reaction monitoring (SRM) MS is a highly selective and sensitive technique to quantify protein abundances in complex biological samples. To enhance the pace of SRM large studies, a validated, robust method to fully automate absolute quantification and to substitute for interactive evaluation would be valuable. To address this demand, we present Ariadne, a Matlab software. To quantify monitored targets, Ariadne exploits metadata imported from the transition lists, and targets can be filtered according to mProphet output. Signal processing and statistical learning approaches are combined to compute peptide quantifications. To robustly estimate absolute abundances, the external calibration curve method is applied, ensuring linearity over the measured dynamic range. Ariadne was benchmarked against mProphet and Skyline by comparing its quantification performance on three different dilution series, featuring either noisy/smooth traces without background or smooth traces with complex background. Results, evaluated as efficiency, linearity, accuracy, and precision of quantification, showed that Ariadne's performance is independent of data smoothness and complex background presence and that Ariadne outperforms mProphet on the noisier data set and improved 2-fold Skyline's accuracy and precision for the lowest abundant dilution with complex background. Remarkably, Ariadne could statistically distinguish from each other all different abundances, discriminating dilutions as low as 0.1 and 0.2 fmol. These results suggest that Ariadne offers reliable and automated analysis of large-scale SRM differential expression studies.

  11. Determining CDOM Absorption Spectra in Diverse Aquatic Environments Using a Multiple Pathlength, Liquid Core Waveguide System

    NASA Technical Reports Server (NTRS)

    Miller, Richard L.; Belz, Mathias; DelCastillo, Carlos; Trzaska, Rick

    2001-01-01

    We evaluated the accuracy, sensitivity and precision of a multiple pathlength, liquid core waveguide (MPLCW) system for measuring colored dissolved organic matter (CDOM) absorption in the UV-visible spectral range (370-700 nm). The MPLCW has four optical paths (2.0, 9.8, 49.3, and 204 cm) coupled to a single Teflon AF sample cell. Water samples were obtained from inland, coastal and ocean waters ranging in salinity from 0 to 36 PSU. Reference solutions for the MPLCW were made having a refractive index of the sample. CDOM absorption coefficients, aCDOM, and the slope of the log-linearized absorption spectra, S, were compared with values obtained using a dual-beam spectrophotometer. Absorption of phenol red secondary standards measured by the MPLCW at 558 nm were highly correlated with spectrophotometer values and showed a linear response across all four pathlengths. Values of aCDOM measured using the MPLCW were virtually identical to spectrophotometer values over a wide range of concentrations. The dynamic range of aCDOM for MPLCW measurements was 0.002 - 231.5 m-1. At low CDOM concentrations spectrophotometric aCDOM were slightly greater than MPLCW values and showed larger fluctuations at longer wavelengths due to limitations in instrument precision. In contrast, MPLCW spectra followed an exponential to 600 nm for all samples.

  12. A HPLC-DAD method for the simultaneous determination of five marker components in the traditional herbal medicine Bangpungtongsung-san

    PubMed Central

    Weon, Jin Bae; Yang, Hye Jin; Ma, Jin Yeul; Ma, Choong Je

    2011-01-01

    Background: Bangpungtongsung-san, one of the traditional herbal medicines, was known to be a prescription for obesity. Objective: For the simultaneous determination of five components (paeoniflorin, 6-gingerol, decursin, geniposide, and glycyrrhizin) in Bangpungtongsung-san, a high-performance liquid chromatography with diode-array detector method was established. Materials and Methods: To develop the method, a reverse phase column, DIONEX C 18 (5 μm, 120 µ, 4.6 mm × 150 mm) was used. The mobile phase consisted of methanol and water using a gradient elution. The UV wavelength was set at 230, 240, and 254 nm. Method validation was accomplished by linearity, precision test, and recovery test. Results: All calibration curves of components showed good linearity (R 2 > 0.9959). The limit of detection (LOD) and limit of quantification (LOQ) ranged from 0.01 to 0.17 μg/ml and 0.04 to 0.53 μg/ml, respectively. The relative standard deviations (RSD) value of precision test, intraday and interday tests were less than 0.43% and 1.26%. In the recovery test, results of accuracy ranged from 95.27% to 107.70% with RSD values less than 2.21%. Conclusion: This developed method was applied to the commercial Bangpungtongsung-san sample and the five marker components were separated effectively without interference of any peaks of components. PMID:21472081

  13. A validated RP-HPLC method for simultaneous determination of propranolol and valsartan in bulk drug and gel formulation

    PubMed Central

    Imam, Syed Sarim; Ahad, Abdul; Aqil, Mohammed; Sultana, Yasmin; Ali, Asgar

    2013-01-01

    Objective: A simple, precise, and stability indicating high performance liquid chromatography (HPLC) method was developed and validated for the simultaneous determination of propranolol hydrochloride and valsartan in pharmaceutical dosage form. Materials and Methods: The method involves the use of easily available inexpensive laboratory reagents. The separation was achieved on Hypersil ODS C-18 column (250*4.6 mm, i.d., 5 μm particle size) with isocratic flow with UV detector. The mobile phase at a flow rate of 1.0 mL/min consisted of acetonitrile, methanol, and 0.01 M disodium hydrogen phosphate (pH 3.5) in the ratio of 50:35:15 v/v. Results: A linear response was observed over the concentration range 5-50 μg/mL of propranolol and the concentration range 4-32 μg/mL of valsartan. Limit of detection and limit of quantitation for propranolol were 0.27 μg/mL and 0.85 μg/mL, and for valsartan were 0.45 μg/mL and 1.39 μg/mL, respectively. The method was successfully validated in accordance to ICH guidelines acceptance criteria for linearity, accuracy, precision, specificity, robustness. Conclusion: The analysis concluded that the method was selective for simultaneous estimation of propranolol and valsartan can be potentially used for the estimation of these drugs in combined dosage form. PMID:23559826

  14. Simultaneous Determination of Clidinium Bromide and Chlordiazepoxide in Combined Dosage Forms by High-Performance Liquid Chromatography.

    PubMed

    Ashour, Safwan; Kattan, Nuha

    2013-01-01

    A sensitive and precise RP-HPLC method has been developed for the simultaneous estimation of clidinium bromide (CDB) and chlordiazepoxide (CDZ) in pure and pharmaceutical formulations. The separation was achieved on a Nucleodur C8 (250 × 4.6 mm i.d., 5 μm particle size) column at 25°C. CH3CN-MeOH-NH4OAc 0.1M (30 : 40 : 30, v/v/v) was used as the mobile phase at a flow rate of 1.0 mL min(-1) and detector wavelength at 218 nm. Almotriptan (ALT) was used as internal standard. The validation of the proposed method was carried out for linearity, accuracy, precision, LOD, LOQ, and robustness. The method showed good linearity in the ranges of 2.5-300.0 and 3.0-500.0 μg mL(-1) for CDB and CDZ, respectively. The percentage recovery obtained for CDB and CDZ was 100.40-103.38 and 99.98-105.59%, respectively. LOD and LOQ were 0.088 and 0.294 μg mL(-1) for CDB and 0.121 and 0.403 μg mL(-1) for CDZ, respectively. The proposed method was successfully applied to the determination of CDB and CDZ in combined dosage forms and the results tallied well with the label claim.

  15. Development and validation of a reversed-phase high-performance thin-layer chromatography-densitometric method for determination of atorvastatin calcium in bulk drug and tablets.

    PubMed

    Shirkhedkar, Atul A; Surana, Sanjay J

    2010-01-01

    Atorvastatin calcium is a synthetic HMG-CoA reductase inhibitor that is used as a cholesterol-lowering agent. A simple, sensitive, selective, and precise RP-HPTLC-densitometric determination of atorvastatin calcium both as bulk drug and from pharmaceutical formulation was developed and validated according to International Conference on Harmonization guidelines. The method used aluminum sheets precoated with silica gel 60 RP18F254S as the stationary phase, and the mobile phase consisted of methanol-water (3.5 + 1.5, v/v). The system gave a compact band for atorvastatin calcium with an Rf value of 0.62 +/- 0.02. Densitometric quantification was carried out at 246 nm. The linear regression analysis data for the calibration plots showed a good linear relationship with r = 0.9992 in the working concentration range of 100-800 ng/band. The method was validated for precision, accuracy, ruggedness, robustness, specificity, recovery, LOD, and LOQ. The LOD and LOQ were 6 and 18 ng, respectively. The drug underwent hydrolysis when subjected to acidic conditions and was found to be stable under alkali, oxidation, dry heat, and photodegradation conditions. Statistical analysis proved that the developed RP-HPTLC-densitometry method is reproducible and selective and that it can be applied for identification and quantitative determination of atorvastatin calcium in bulk drug and tablet formulation.

  16. Therapeutic Drug Monitoring of Phenytoin by Simple, Rapid, Accurate, Highly Sensitive and Novel Method and Its Clinical Applications.

    PubMed

    Shaikh, Abdul S; Guo, Ruichen

    2017-01-01

    Phenytoin has very challenging pharmacokinetic properties. To prevent its toxicity and ensure efficacy, continuous therapeutic monitoring is required. It is hard to get a simple, accurate, rapid, easily available, economical and highly sensitive assay in one method for therapeutic monitoring of phenytoin. The present study is directed towards establishing and validating a simpler, rapid, an accurate, highly sensitive, novel and environment friendly liquid chromatography/mass spectrometry (LC/MS) method for offering rapid and reliable TDM results of phenytoin in epileptic patients to physicians and clinicians for making immediate and rational decision. 27 epileptics patients with uncontrolled seizures or suspected of non-compliance or toxicity of phenytoin were selected and advised for TDM of phenytoin by neurologists of Qilu Hospital Jinan, China. The LC/MS assay was used for performing of therapeutic monitoring of phenytoin. The Agilent 1100 LC/MS system was used for TDM. The mixture of Ammonium acetate 5mM: Methanol at (35: 65 v/v) was used for the composition of mobile phase. The Diamonsil C18 (150mm×4.6mm, 5μm) column was used for the extraction of analytes in plasma. The samples were prepared with one step simple protein precipitation method. The technique was validated with the guidelines of International Conference on Harmonisation (ICH). The calibration curve demonstrated decent linearity within (0.2-20 µg/mL) concentration range with linearity equation, y= 0.0667855 x +0.00241785 and correlation coefficient (R2) of 0.99928. The specificity, recovery, linearity, accuracy, precision and stability results were within the accepted limits. The concentration of 0.2 µg/mL was observed as lower limit of quantitation (LLOQ), which is 12.5 times lower than the currently available enzyme-multiplied immunoassay technique (EMIT) for measurement of phenytoin in epilepsy patients. A rapid, simple, economical, precise, highly sensitive and novel LC/MS assay has been established, validated and applied successfully in TDM of 27 epileptics patients. It was alarmingly found that TDM results of all these patients were out of safe range except two patients. However, it needs further evaluation. Besides TDM, the stated method can also be applied in bioequivalence, pharmacokinetics, toxicokinetics and pharmacovigilance studies. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  17. Optical metrology for Starlight Separated Spacecraft Stellar Interferometry Mission

    NASA Technical Reports Server (NTRS)

    Dubovitsky, S.; Lay, O. P.; Peters, R. D.; Abramovici, A.; Asbury, C. G.; Kuhnert, A. C.; Mulder, J. L.

    2002-01-01

    We describe a high-precision inter-spacecraft metrology system designed for NASA 's StarLight mission, a space-based separated-spacecraft stellar interferometer. It consists of dual-target linear metrology, based on a heterodyne interferometer with carrier phase modulation, and angular metrology designed to sense the pointing of the laser beam and provides bearing information. The dual-target operation enables one metrology beam to sense displacement of two targets independently. We present the current design, breadboard implementation of the Metrology Subsystem in a stellar interferometer testbed and the present state of development of flight qualifiable subsystem components.

  18. High precision optical fiber Fabry-Perot sensor for gas pressure detection

    NASA Astrophysics Data System (ADS)

    Mao, Yan; Tong, Xing-lin

    2013-09-01

    An optical fiber Fabry-Perot (F-P) sensor with quartz diaphragm for gas pressure testing was designed and fabricated. It consisted of single-mode fiber, hollow glass tube and quartz diaphragm. It uses the double peak demodulation to obtain the initialized cavity length. The variety of cavity length can be calcultated by the single peak demodulation after changing the gas pressure. The results show that the sensor is small in size, whose sensitivity is 19 pm/kPa in the range of the 10 ~ 260 kPa gas pressure. And it has good linearity and repeatability.

  19. Automatic Topography Using High Precision Digital Moire Methods

    NASA Astrophysics Data System (ADS)

    Yatagai, T.; Idesawa, M.; Saito, S.

    1983-07-01

    Three types of moire topographic methods using digital techniques are proposed. Deformed gratings obtained by projecting a reference grating onto an object under test are subjected to digital analysis. The electronic analysis procedures of deformed gratings described here enable us to distinguish between depression and elevation of the object, so that automatic measurement of 3-D shapes and automatic moire fringe interpolation are performed. Based on the digital moire methods, we have developed a practical measurement system, with a linear photodiode array on a micro-stage as a scanning image sensor. Examples of fringe analysis in medical applications are presented.

  20. Linear modeling of steady-state behavioral dynamics.

    PubMed Central

    Palya, William L; Walter, Donald; Kessel, Robert; Lucke, Robert

    2002-01-01

    The observed steady-state behavioral dynamics supported by unsignaled periods of reinforcement within repeating 2,000-s trials were modeled with a linear transfer function. These experiments employed improved schedule forms and analytical methods to improve the precision of the measured transfer function, compared to previous work. The refinements include both the use of multiple reinforcement periods that improve spectral coverage and averaging of independently determined transfer functions. A linear analysis was then used to predict behavior observed for three different test schedules. The fidelity of these predictions was determined. PMID:11831782

Top