Sample records for high precision studies

  1. Study on manufacturing method of optical surface with high precision in angle and surface

    NASA Astrophysics Data System (ADS)

    Yu, Xin; Li, Xin; Yu, Ze; Zhao, Bin; Zhang, Xuebin; Sun, Lipeng; Tong, Yi

    2016-10-01

    This paper studied a manufacturing processing of optical surface with high precision in angel and surface. By theoretical analysis of the relationships between the angel precision and surface, the measurement conversion of the technical indicators, optical-cement method application, the optical-cement tooling design, the experiment has been finished successfully, the processing method has been verified, which can be also used in the manufacturing of the optical surface with similar high precision in angle and surface.

  2. Study on high-precision measurement of long radius of curvature

    NASA Astrophysics Data System (ADS)

    Wu, Dongcheng; Peng, Shijun; Gao, Songtao

    2016-09-01

    It is hard to get high-precision measurement of the radius of curvature (ROC), because of many factors that affect the measurement accuracy. For the measurement of long radius of curvature, some factors take more important position than others'. So, at first this paper makes some research about which factor is related to the long measurement distance, and also analyse the uncertain of the measurement accuracy. At second this article also study the influence about the support status and the adjust error about the cat's eye and confocal position. At last, a 1055micrometer radius of curvature convex is measured in high-precision laboratory. Experimental results show that the proper steady support (three-point support) can guarantee the high-precision measurement of radius of curvature. Through calibrating the gain of cat's eye and confocal position, is useful to ensure the precise position in order to increase the measurement accuracy. After finish all the above process, the high-precision long ROC measurement is realized.

  3. Numerical Simulation Analysis of High-precision Dispensing Needles for Solid-liquid Two-phase Grinding

    NASA Astrophysics Data System (ADS)

    Li, Junye; Hu, Jinglei; Wang, Binyu; Sheng, Liang; Zhang, Xinming

    2018-03-01

    In order to investigate the effect of abrasive flow polishing surface variable diameter pipe parts, with high precision dispensing needles as the research object, the numerical simulation of the process of polishing high precision dispensing needle was carried out. Analysis of different volume fraction conditions, the distribution of the dynamic pressure and the turbulence viscosity of the abrasive flow field in the high precision dispensing needle, through comparative analysis, the effectiveness of the abrasive grain polishing high precision dispensing needle was studied, controlling the volume fraction of silicon carbide can change the viscosity characteristics of the abrasive flow during the polishing process, so that the polishing quality of the abrasive grains can be controlled.

  4. Long-term impact of precision agriculture on a farmer’s field

    USDA-ARS?s Scientific Manuscript database

    Targeting management practices and inputs with precision agriculture has high potential to meet some of the grand challenges of sustainability in the coming century. Although potential is high, few studies have documented long-term effects of precision agriculture on crop production and environmenta...

  5. Sensitivity, accuracy, and precision issues in opto-electronic holography based on fiber optics and high-spatial- and high-digitial-resolution cameras

    NASA Astrophysics Data System (ADS)

    Furlong, Cosme; Yokum, Jeffrey S.; Pryputniewicz, Ryszard J.

    2002-06-01

    Sensitivity, accuracy, and precision characteristics in quantitative optical metrology techniques, and specifically in optoelectronic holography based on fiber optics and high-spatial and high-digital resolution cameras, are discussed in this paper. It is shown that sensitivity, accuracy, and precision dependent on both, the effective determination of optical phase and the effective characterization of the illumination-observation conditions. Sensitivity, accuracy, and precision are investigated with the aid of National Institute of Standards and Technology (NIST) traceable gages, demonstrating the applicability of quantitative optical metrology techniques to satisfy constantly increasing needs for the study and development of emerging technologies.

  6. LYSO based precision timing calorimeters

    NASA Astrophysics Data System (ADS)

    Bornheim, A.; Apresyan, A.; Ronzhin, A.; Xie, S.; Duarte, J.; Spiropulu, M.; Trevor, J.; Anderson, D.; Pena, C.; Hassanshahi, M. H.

    2017-11-01

    In this report we outline the study of the development of calorimeter detectors using bright scintillating crystals. We discuss how timing information with a precision of a few tens of pico seconds and below can significantly improve the reconstruction of the physics events under challenging high pileup conditions to be faced at the High-Luminosity LHC or a future hadron collider. The particular challenge in measuring the time of arrival of a high energy photon lies in the stochastic component of the distance of initial conversion and the size of the electromagnetic shower. We present studies and measurements from test beams for calorimeter based timing measurements to explore the ultimate timing precision achievable for high energy photons of 10 GeV and above. We focus on techniques to measure the timing with a high precision in association with the energy of the photon. We present test-beam studies and results on the timing performance and characterization of the time resolution of LYSO-based calorimeters. We demonstrate time resolution of 30 ps is achievable for a particular design.

  7. Validation of search filters for identifying pediatric studies in PubMed.

    PubMed

    Leclercq, Edith; Leeflang, Mariska M G; van Dalen, Elvira C; Kremer, Leontien C M

    2013-03-01

    To identify and validate PubMed search filters for retrieving studies including children and to develop a new pediatric search filter for PubMed. We developed 2 different datasets of studies to evaluate the performance of the identified pediatric search filters, expressed in terms of sensitivity, precision, specificity, accuracy, and number needed to read (NNR). An optimal search filter will have a high sensitivity and high precision with a low NNR. In addition to the PubMed Limits: All Child: 0-18 years filter (in May 2012 renamed to PubMed Filter Child: 0-18 years), 6 search filters for identifying studies including children were identified: 3 developed by Kastner et al, 1 developed by BestBets, one by the Child Health Field, and 1 by the Cochrane Childhood Cancer Group. Three search filters (Cochrane Childhood Cancer Group, Child Health Field, and BestBets) had the highest sensitivity (99.3%, 99.5%, and 99.3%, respectively) but a lower precision (64.5%, 68.4%, and 66.6% respectively) compared with the other search filters. Two Kastner search filters had a high precision (93.0% and 93.7%, respectively) but a low sensitivity (58.5% and 44.8%, respectively). They failed to identify many pediatric studies in our datasets. The search terms responsible for false-positive results in the reference dataset were determined. With these data, we developed a new search filter for identifying studies with children in PubMed with an optimal sensitivity (99.5%) and precision (69.0%). Search filters to identify studies including children either have a low sensitivity or a low precision with a high NNR. A new pediatric search filter with a high sensitivity and a low NNR has been developed. Copyright © 2013 Mosby, Inc. All rights reserved.

  8. Use of Terrestrial Laser Scanning Technology for Long Term High Precision Deformation Monitoring

    PubMed Central

    Vezočnik, Rok; Ambrožič, Tomaž; Sterle, Oskar; Bilban, Gregor; Pfeifer, Norbert; Stopar, Bojan

    2009-01-01

    The paper presents a new methodology for high precision monitoring of deformations with a long term perspective using terrestrial laser scanning technology. In order to solve the problem of a stable reference system and to assure the high quality of possible position changes of point clouds, scanning is integrated with two complementary surveying techniques, i.e., high quality static GNSS positioning and precise tacheometry. The case study object where the proposed methodology was tested is a high pressure underground pipeline situated in an area which is geologically unstable. PMID:22303152

  9. Hypothesis testing for band size detection of high-dimensional banded precision matrices.

    PubMed

    An, Baiguo; Guo, Jianhua; Liu, Yufeng

    2014-06-01

    Many statistical analysis procedures require a good estimator for a high-dimensional covariance matrix or its inverse, the precision matrix. When the precision matrix is banded, the Cholesky-based method often yields a good estimator of the precision matrix. One important aspect of this method is determination of the band size of the precision matrix. In practice, crossvalidation is commonly used; however, we show that crossvalidation not only is computationally intensive but can be very unstable. In this paper, we propose a new hypothesis testing procedure to determine the band size in high dimensions. Our proposed test statistic is shown to be asymptotically normal under the null hypothesis, and its theoretical power is studied. Numerical examples demonstrate the effectiveness of our testing procedure.

  10. Superallowed Fermi β decay studies at TRIUMF-ISAC

    NASA Astrophysics Data System (ADS)

    Svensson, C. E.; Dunlop, R.; Finlay, P.; Ball, G. C.; Ettenauer, S.; Leslie, J. R.; Towner, I. S.; Andreoiu, C.; Austin, R. A. E.; Bandyopadhyay, D.; Chagnon-Lessard, S.; Chester, A.; Cross, D. S.; Demand, G.; Djongolov, M.; Garnsworthy, A. B.; Garrett, P. E.; Green, K. L.; Glister, J.; Grinyer, G. F.; Hackman, G.; Hadinia, B.; Leach, K. G.; Pearson, C. J.; Phillips, A. A.; Rand, E. T.; Starosta, K.; Sumithrarachchi, C. S.; Tardiff, E. R.; Triambak, S.; Williams, S. J.; Wong, J.; Yates, S. W.; Zganjar, E. F.

    2013-10-01

    A program of high-precision superallowed Fermi β decay studies is being carried out at the Isotope Separator and Accelerator (ISAC) radioactive ion beam facility at TRIUMF. Recent high-precision branching ratio measurements for the superallowed decays of 74Rb and 26Alm, as well as a half-life measurement for 26Alm that is the most precise half-life measurement for any superallowed emitter to date, are reported. These results provide demanding tests of the theoretical isospin symmetry breaking corrections in superallowed Fermi β decays.

  11. LYSO based precision timing calorimeters

    DOE PAGES

    Bornheim, A.; Apresyan, A.; Ronzhin, A.; ...

    2017-11-01

    In this report we outline the study of the development of calorimeter detectors using bright scintillating crystals. We discuss how timing information with a precision of a few tens of pico seconds and below can significantly improve the reconstruction of the physics events under challenging high pileup conditions to be faced at the High-Luminosity LHC or a future hadron collider. The particular challenge in measuring the time of arrival of a high energy photon lies in the stochastic component of the distance of initial conversion and the size of the electromagnetic shower. We present studies and measurements from test beamsmore » for calorimeter based timing measurements to explore the ultimate timing precision achievable for high energy photons of 10 GeV and above. We focus on techniques to measure the timing with a high precision in association with the energy of the photon. We present test-beam studies and results on the timing performance and characterization of the time resolution of LYSO-based calorimeters. We demonstrate time resolution of 30 ps is achievable for a particular design.« less

  12. High-Precision Half-Life Measurement for the Superallowed β+ Emitter Alm26

    NASA Astrophysics Data System (ADS)

    Finlay, P.; Ettenauer, S.; Ball, G. C.; Leslie, J. R.; Svensson, C. E.; Andreoiu, C.; Austin, R. A. E.; Bandyopadhyay, D.; Cross, D. S.; Demand, G.; Djongolov, M.; Garrett, P. E.; Green, K. L.; Grinyer, G. F.; Hackman, G.; Leach, K. G.; Pearson, C. J.; Phillips, A. A.; Sumithrarachchi, C. S.; Triambak, S.; Williams, S. J.

    2011-01-01

    A high-precision half-life measurement for the superallowed β+ emitter Alm26 was performed at the TRIUMF-ISAC radioactive ion beam facility yielding T1/2=6346.54±0.46stat±0.60systms, consistent with, but 2.5 times more precise than, the previous world average. The Alm26 half-life and ft value, 3037.53(61) s, are now the most precisely determined for any superallowed β decay. Combined with recent theoretical corrections for isospin-symmetry-breaking and radiative effects, the corrected Ft value for Alm26, 3073.0(12) s, sets a new benchmark for the high-precision superallowed Fermi β-decay studies used to test the conserved vector current hypothesis and determine the Vud element of the Cabibbo-Kobayashi-Maskawa quark mixing matrix.

  13. Laser-Induced Focused Ultrasound for Cavitation Treatment: Toward High-Precision Invisible Sonic Scalpel.

    PubMed

    Lee, Taehwa; Luo, Wei; Li, Qiaochu; Demirci, Hakan; Guo, L Jay

    2017-10-01

    Beyond the implementation of the photoacoustic effect to photoacoustic imaging and laser ultrasonics, this study demonstrates a novel application of the photoacoustic effect for high-precision cavitation treatment of tissue using laser-induced focused ultrasound. The focused ultrasound is generated by pulsed optical excitation of an efficient photoacoustic film coated on a concave surface, and its amplitude is high enough to produce controllable microcavitation within the focal region (lateral focus <100 µm). Such microcavitation is used to cut or ablate soft tissue in a highly precise manner. This work demonstrates precise cutting of tissue-mimicking gels as well as accurate ablation of gels and animal eye tissues. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Application of 3D laser scanning technology in historical building preservation: a case study of a Chinese temple

    NASA Astrophysics Data System (ADS)

    Chang, Yu Min; Lu, Nien Hua; Wu, Tsung Chiang

    2005-06-01

    This study applies 3D Laser scanning technology to develop a high-precision measuring system for digital survey of historical building. It outperformed other methods in obtaining abundant high-precision measuring points and computing data instantly. In this study, the Pei-tien Temple, a Chinese Taoism temple in southern Taiwan famous for its highly intricate architecture and more than 300-year history, was adopted as the target to proof the high accuracy and efficiency of this system. By using French made MENSI GS-100 Laser Scanner, numerous measuring points were precisely plotted to present the plane map, vertical map and 3D map of the property. Accuracies of 0.1-1 mm in the digital data have consistently been achieved for the historical heritage measurement.

  15. [Estimation of desert vegetation coverage based on multi-source remote sensing data].

    PubMed

    Wan, Hong-Mei; Li, Xia; Dong, Dao-Rui

    2012-12-01

    Taking the lower reaches of Tarim River in Xinjiang of Northwest China as study areaAbstract: Taking the lower reaches of Tarim River in Xinjiang of Northwest China as study area and based on the ground investigation and the multi-source remote sensing data of different resolutions, the estimation models for desert vegetation coverage were built, with the precisions of different estimation methods and models compared. The results showed that with the increasing spatial resolution of remote sensing data, the precisions of the estimation models increased. The estimation precision of the models based on the high, middle-high, and middle-low resolution remote sensing data was 89.5%, 87.0%, and 84.56%, respectively, and the precisions of the remote sensing models were higher than that of vegetation index method. This study revealed the change patterns of the estimation precision of desert vegetation coverage based on different spatial resolution remote sensing data, and realized the quantitative conversion of the parameters and scales among the high, middle, and low spatial resolution remote sensing data of desert vegetation coverage, which would provide direct evidence for establishing and implementing comprehensive remote sensing monitoring scheme for the ecological restoration in the study area.

  16. A Lane-Level LBS System for Vehicle Network with High-Precision BDS/GPS Positioning

    PubMed Central

    Guo, Chi; Guo, Wenfei; Cao, Guangyi; Dong, Hongbo

    2015-01-01

    In recent years, research on vehicle network location service has begun to focus on its intelligence and precision. The accuracy of space-time information has become a core factor for vehicle network systems in a mobile environment. However, difficulties persist in vehicle satellite positioning since deficiencies in the provision of high-quality space-time references greatly limit the development and application of vehicle networks. In this paper, we propose a high-precision-based vehicle network location service to solve this problem. The major components of this study include the following: (1) application of wide-area precise positioning technology to the vehicle network system. An adaptive correction message broadcast protocol is designed to satisfy the requirements for large-scale target precise positioning in the mobile Internet environment; (2) development of a concurrence service system with a flexible virtual expansion architecture to guarantee reliable data interaction between vehicles and the background; (3) verification of the positioning precision and service quality in the urban environment. Based on this high-precision positioning service platform, a lane-level location service is designed to solve a typical traffic safety problem. PMID:25755665

  17. Accuracy and Precision of Silicon Based Impression Media for Quantitative Areal Texture Analysis

    PubMed Central

    Goodall, Robert H.; Darras, Laurent P.; Purnell, Mark A.

    2015-01-01

    Areal surface texture analysis is becoming widespread across a diverse range of applications, from engineering to ecology. In many studies silicon based impression media are used to replicate surfaces, and the fidelity of replication defines the quality of data collected. However, while different investigators have used different impression media, the fidelity of surface replication has not been subjected to quantitative analysis based on areal texture data. Here we present the results of an analysis of the accuracy and precision with which different silicon based impression media of varying composition and viscosity replicate rough and smooth surfaces. Both accuracy and precision vary greatly between different media. High viscosity media tested show very low accuracy and precision, and most other compounds showed either the same pattern, or low accuracy and high precision, or low precision and high accuracy. Of the media tested, mid viscosity President Jet Regular Body and low viscosity President Jet Light Body (Coltène Whaledent) are the only compounds to show high levels of accuracy and precision on both surface types. Our results show that data acquired from different impression media are not comparable, supporting calls for greater standardisation of methods in areal texture analysis. PMID:25991505

  18. Advances in the Control System for a High Precision Dissolved Organic Carbon Analyzer

    NASA Astrophysics Data System (ADS)

    Liao, M.; Stubbins, A.; Haidekker, M.

    2017-12-01

    Dissolved organic carbon (DOC) is a master variable in aquatic ecosystems. DOC in the ocean is one of the largest carbon stores on earth. Studies of the dynamics of DOC in the ocean and other low DOC systems (e.g. groundwater) are hindered by the lack of high precision (sub-micromolar) analytical techniques. Results are presented from efforts to construct and optimize a flow-through, wet chemical DOC analyzer. This study focused on the design, integration and optimization of high precision components and control systems required for such a system (mass flow controller, syringe pumps, gas extraction, reactor chamber with controlled UV and temperature). Results of the approaches developed are presented.

  19. A decade of precision agriculture impacts on grain yield and yield variation

    USDA-ARS?s Scientific Manuscript database

    Targeting management practices and inputs with precision agriculture has high potential to meet some of the grand challenges of sustainability in the coming century, including simultaneously improving crop yields and reducing environmental impacts. Although the potential is high, few studies have do...

  20. High precision measurements in crustal dynamic studies

    NASA Technical Reports Server (NTRS)

    Wyatt, F.; Berger, J.

    1984-01-01

    The development of high-precision instrumentation for monitoring benchmark stability and evaluating coseismic strain and tilt signals is reviewed. Laser strainmeter and tilt observations are presented. Examples of coseismic deformation in several geographic locations are given. Evidence suggests that the Earth undergoes elastic response to abrupt faulting.

  1. Search strategies to identify information on adverse effects: a systematic review

    PubMed Central

    Golder, Su; Loke, Yoon

    2009-01-01

    Objectives: The review evaluated studies of electronic database search strategies designed to retrieve adverse effects data for systematic reviews. Methods: Studies of adverse effects were located in ten databases as well as by checking references, hand-searching, searching citations, and contacting experts. Two reviewers screened the retrieved records for potentially relevant papers. Results: Five thousand three hundred thirteen citations were retrieved, yielding 19 studies designed to develop or evaluate adverse effect filters, of which 3 met the inclusion criteria. All 3 studies identified highly sensitive search strategies capable of retrieving over 95% of relevant records. However, 1 study did not evaluate precision, while the level of precision in the other 2 studies ranged from 0.8% to 2.8%. Methodological issues in these papers included the relatively small number of records, absence of a validation set of records for testing, and limited evaluation of precision. Conclusions: The results indicate the difficulty of achieving highly sensitive searches for information on adverse effects with a reasonable level of precision. Researchers who intend to locate studies on adverse effects should allow for the amount of resources and time required to conduct a highly sensitive search. PMID:19404498

  2. Analyzing Water's Optical Absorption

    NASA Technical Reports Server (NTRS)

    2002-01-01

    A cooperative agreement between World Precision Instruments (WPI), Inc., and Stennis Space Center has led the UltraPath(TM) device, which provides a more efficient method for analyzing the optical absorption of water samples at sea. UltraPath is a unique, high-performance absorbance spectrophotometer with user-selectable light path lengths. It is an ideal tool for any study requiring precise and highly sensitive spectroscopic determination of analytes, either in the laboratory or the field. As a low-cost, rugged, and portable system capable of high- sensitivity measurements in widely divergent waters, UltraPath will help scientists examine the role that coastal ocean environments play in the global carbon cycle. UltraPath(TM) is a trademark of World Precision Instruments, Inc. LWCC(TM) is a trademark of World Precision Instruments, Inc.

  3. High-Precision Half-Life Measurement for the Superallowed {beta}{sup +} Emitter {sup 26}Al{sup m}

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Finlay, P.; Svensson, C. E.; Green, K. L.

    2011-01-21

    A high-precision half-life measurement for the superallowed {beta}{sup +} emitter {sup 26}Al{sup m} was performed at the TRIUMF-ISAC radioactive ion beam facility yielding T{sub 1/2}=6346.54{+-}0.46{sub stat{+-}}0.60{sub syst} ms, consistent with, but 2.5 times more precise than, the previous world average. The {sup 26}Al{sup m} half-life and ft value, 3037.53(61) s, are now the most precisely determined for any superallowed {beta} decay. Combined with recent theoretical corrections for isospin-symmetry-breaking and radiative effects, the corrected Ft value for {sup 26}Al{sup m}, 3073.0(12) s, sets a new benchmark for the high-precision superallowed Fermi {beta}-decay studies used to test the conserved vector current hypothesismore » and determine the V{sub ud} element of the Cabibbo-Kobayashi-Maskawa quark mixing matrix.« less

  4. Examining Exposure Assessment in Shift Work Research: A Study on Depression Among Nurses.

    PubMed

    Hall, Amy L; Franche, Renée-Louise; Koehoorn, Mieke

    2018-02-13

    Coarse exposure assessment and assignment is a common issue facing epidemiological studies of shift work. Such measures ignore a number of exposure characteristics that may impact on health, increasing the likelihood of biased effect estimates and masked exposure-response relationships. To demonstrate the impacts of exposure assessment precision in shift work research, this study investigated relationships between work schedule and depression in a large survey of Canadian nurses. The Canadian 2005 National Survey of the Work and Health of Nurses provided the analytic sample (n = 11450). Relationships between work schedule and depression were assessed using logistic regression models with high, moderate, and low-precision exposure groupings. The high-precision grouping described shift timing and rotation frequency, the moderate-precision grouping described shift timing, and the low-precision grouping described the presence/absence of shift work. Final model estimates were adjusted for the potential confounding effects of demographic and work variables, and bootstrap weights were used to generate sampling variances that accounted for the survey sample design. The high-precision exposure grouping model showed the strongest relationships between work schedule and depression, with increased odds ratios [ORs] for rapidly rotating (OR = 1.51, 95% confidence interval [CI] = 0.91-2.51) and undefined rotating (OR = 1.67, 95% CI = 0.92-3.02) shift workers, and a decreased OR for depression in slow rotating (OR = 0.79, 95% CI = 0.57-1.08) shift workers. For the low- and moderate-precision exposure grouping models, weak relationships were observed for all work schedule categories (OR range 0.95 to 0.99). Findings from this study support the need to consider and collect the data required for precise and conceptually driven exposure assessment and assignment in future studies of shift work and health. Further research into the effects of shift rotation frequency on depression is also recommended. © The Author(s) 2018. Published by Oxford University Press on behalf of the British Occupational Hygiene Society.

  5. Using High-Precision Specific Gravity Measurements to Study Minerals in Undergraduate Geoscience Courses

    ERIC Educational Resources Information Center

    Brandriss, Mark E.

    2010-01-01

    This article describes ways to incorporate high-precision measurements of the specific gravities of minerals into undergraduate courses in mineralogy and physical geology. Most traditional undergraduate laboratory methods of measuring specific gravity are suitable only for unusually large samples, which severely limits their usefulness for student…

  6. High-precision multiband spectroscopy of ultracold fermions in a nonseparable optical lattice

    NASA Astrophysics Data System (ADS)

    Fläschner, Nick; Tarnowski, Matthias; Rem, Benno S.; Vogel, Dominik; Sengstock, Klaus; Weitenberg, Christof

    2018-05-01

    Spectroscopic tools are fundamental for the understanding of complex quantum systems. Here, we demonstrate high-precision multiband spectroscopy in a graphenelike lattice using ultracold fermionic atoms. From the measured band structure, we characterize the underlying lattice potential with a relative error of 1.2 ×10-3 . Such a precise characterization of complex lattice potentials is an important step towards precision measurements of quantum many-body systems. Furthermore, we explain the excitation strengths into different bands with a model and experimentally study their dependency on the symmetry of the perturbation operator. This insight suggests the excitation strengths as a suitable observable for interaction effects on the eigenstates.

  7. Basic investigation of dual-energy x-ray absorptiometry for bone densitometry using computed radiography

    NASA Astrophysics Data System (ADS)

    Shimura, Kazuo; Nakajima, Nobuyoshi; Tanaka, Hiroshi; Ishida, Masamitsu; Kato, Hisatoyo

    1993-09-01

    Dual-energy X-ray absorptiometry (DXA) is one of the bone densitometry techniques to diagnose osteoporosis, and has been gradually getting popular due to its high degree of precision. However, DXA involves a time-consuming examination because of its pencil-beam scan, and the equipment is expensive. In this study, we examined a new bone densitometry technique (CR-DXA) utilizing an X-ray imaging system and Computed Radiography (CR) used for medical X-ray image diagnosis. High level of measurement precision and accuracy could be achieved by X-ray rube voltage/filter optimization and various nonuniformity corrections based on simulation and experiment. The phantom study using a bone mineral block showed precision of 0.83% c.v. (coefficient of variation), and accuracy of 0.01 g/cm2, suggesting that a practically equivalent degree of measurement precision and accuracy to that of the DXA approach is achieved. CR-DXA is considered to provide bone mineral densitometry to facilitate simple, quick and precise bone mineral density measurement.

  8. A comparative study of integrators for constructing ephemerides with high precision.

    NASA Astrophysics Data System (ADS)

    Huang, Tian-Yi

    1990-09-01

    There are four indexes for evaluating various integrators. They are the local truncation error, the numerical stability, the complexity of computation and the quality of adaptation. A review and a comparative study of several numerical integration methods, such as Adams, Cowell, Runge-Kutta-Fehlberg, Gragg-Bulirsch-Stoer extrapolation, Everhart, Taylor series and Krogh, which are popular for constructing ephemerides with high precision, has been worked out.

  9. Studies on fast triggering and high precision tracking with Resistive Plate Chambers

    NASA Astrophysics Data System (ADS)

    Aielli, G.; Ball, R.; Bilki, B.; Chapman, J. W.; Cardarelli, R.; Dai, T.; Diehl, E.; Dubbert, J.; Ferretti, C.; Feng, H.; Francis, K.; Guan, L.; Han, L.; Hou, S.; Levin, D.; Li, B.; Liu, L.; Paolozzi, L.; Repond, J.; Roloff, J.; Santonico, R.; Song, H. Y.; Wang, X. L.; Wu, Y.; Xia, L.; Xu, L.; Zhao, T.; Zhao, Z.; Zhou, B.; Zhu, J.

    2013-06-01

    We report on studies of fast triggering and high precision tracking using Resistive Plate Chambers (RPCs). Two beam tests were carried out with the 180 GeV/c muon beam at CERN using glass RPCs with gas gaps of 1.15 mm and equipped with readout strips with 1.27 mm pitch. This is the first beam test of RPCs with fine-pitch readout strips that explores precision tracking and triggering capabilities. RPC signals were acquired with precision timing and charge integrating readout electronics at both ends of the strips. The time resolution was measured to be better than 600 ps and the average spatial resolution was found to be 220 μm using charge information and 287 μm only using signal arrival time information. The dual-ended readout allows the determination of the average and the difference of the signal arrival times. The average time was found to be independent of the incident particle position along the strip and is useful for triggering purposes. The time difference yielded a determination of the hit position with a precision of 7.5 mm along the strip. These results demonstrate the feasibility using RPCs for fast and high-resolution triggering and tracking.

  10. Design and control of a high precision drive mechanism

    NASA Astrophysics Data System (ADS)

    Pan, Bo; He, Yongqiang; Wang, Haowei; Zhang, Shuyang; Zhang, Donghua; Wei, Xiaorong; Jiang, Zhihong

    2017-01-01

    This paper summarizes the development of a high precision drive mechanism (HPDM) for space application, such as the directional antenna, the laser communication device, the mobile camera and other pointing mechanisms. In view of the great practical significance of high precision drive system, control technology for permanent magnet synchronous motor (PMSM) servo system is also studied and a PMSM servo controller is designed in this paper. And the software alignment was applied to the controller to eliminate the steady error of the optical encoder, which helps to realize the 1 arcsec (1σ) control precision. To assess its capabilities, the qualification environment testing including the thermal vacuum cycling testing, and the sinusoidal and random vibration were carried out. The testing results show that the performance of the HPDM is almost the same between the former and the end of each testing.

  11. Measurement Model and Precision Analysis of Accelerometers for Maglev Vibration Isolation Platforms.

    PubMed

    Wu, Qianqian; Yue, Honghao; Liu, Rongqiang; Zhang, Xiaoyou; Ding, Liang; Liang, Tian; Deng, Zongquan

    2015-08-14

    High precision measurement of acceleration levels is required to allow active control for vibration isolation platforms. It is necessary to propose an accelerometer configuration measurement model that yields such a high measuring precision. In this paper, an accelerometer configuration to improve measurement accuracy is proposed. The corresponding calculation formulas of the angular acceleration were derived through theoretical analysis. A method is presented to minimize angular acceleration noise based on analysis of the root mean square noise of the angular acceleration. Moreover, the influence of installation position errors and accelerometer orientation errors on the calculation precision of the angular acceleration is studied. Comparisons of the output differences between the proposed configuration and the previous planar triangle configuration under the same installation errors are conducted by simulation. The simulation results show that installation errors have a relatively small impact on the calculation accuracy of the proposed configuration. To further verify the high calculation precision of the proposed configuration, experiments are carried out for both the proposed configuration and the planar triangle configuration. On the basis of the results of simulations and experiments, it can be concluded that the proposed configuration has higher angular acceleration calculation precision and can be applied to different platforms.

  12. Measurement Model and Precision Analysis of Accelerometers for Maglev Vibration Isolation Platforms

    PubMed Central

    Wu, Qianqian; Yue, Honghao; Liu, Rongqiang; Zhang, Xiaoyou; Ding, Liang; Liang, Tian; Deng, Zongquan

    2015-01-01

    High precision measurement of acceleration levels is required to allow active control for vibration isolation platforms. It is necessary to propose an accelerometer configuration measurement model that yields such a high measuring precision. In this paper, an accelerometer configuration to improve measurement accuracy is proposed. The corresponding calculation formulas of the angular acceleration were derived through theoretical analysis. A method is presented to minimize angular acceleration noise based on analysis of the root mean square noise of the angular acceleration. Moreover, the influence of installation position errors and accelerometer orientation errors on the calculation precision of the angular acceleration is studied. Comparisons of the output differences between the proposed configuration and the previous planar triangle configuration under the same installation errors are conducted by simulation. The simulation results show that installation errors have a relatively small impact on the calculation accuracy of the proposed configuration. To further verify the high calculation precision of the proposed configuration, experiments are carried out for both the proposed configuration and the planar triangle configuration. On the basis of the results of simulations and experiments, it can be concluded that the proposed configuration has higher angular acceleration calculation precision and can be applied to different platforms. PMID:26287203

  13. Study of nanometer-level precise phase-shift system used in electronic speckle shearography and phase-shift pattern interferometry

    NASA Astrophysics Data System (ADS)

    Jing, Chao; Liu, Zhongling; Zhou, Ge; Zhang, Yimo

    2011-11-01

    The nanometer-level precise phase-shift system is designed to realize the phase-shift interferometry in electronic speckle shearography pattern interferometry. The PZT is used as driving component of phase-shift system and translation component of flexure hinge is developed to realize micro displacement of non-friction and non-clearance. Closed-loop control system is designed for high-precision micro displacement, in which embedded digital control system is developed for completing control algorithm and capacitive sensor is used as feedback part for measuring micro displacement in real time. Dynamic model and control model of the nanometer-level precise phase-shift system is analyzed, and high-precision micro displacement is realized with digital PID control algorithm on this basis. It is proved with experiments that the location precision of the precise phase-shift system to step signal of displacement is less than 2nm and the location precision to continuous signal of displacement is less than 5nm, which is satisfied with the request of the electronic speckle shearography and phase-shift pattern interferometry. The stripe images of four-step phase-shift interferometry and the final phase distributed image correlated with distortion of objects are listed in this paper to prove the validity of nanometer-level precise phase-shift system.

  14. Selection and use of TLDS for high precision NERVA shielding measurements

    NASA Technical Reports Server (NTRS)

    Woodsum, H. C.

    1972-01-01

    An experimental evaluation of thermoluminescent dosimeters was performed in order to select high precision dosimeters for a study whose purpose is to measure gamma streaming through the coolant passages of a simulated flight type internal NERVA reactor shield. Based on this study, the CaF2 chip TLDs are the most reproducible dosimeters with reproducibility generally within a few percent, but none of the TLDs tested met the reproducibility criterion of plus or minus 2%.

  15. Memory of Gender and Gait Direction from Biological Motion: Gender Fades Away but Directions Stay

    ERIC Educational Resources Information Center

    Poom, Leo

    2012-01-01

    The delayed discrimination methodology has been used to demonstrate a high-fidelity nondecaying visual short-term memory (VSTM) for so-called preattentive basic features. In the current Study, I show that the nondecaying high VSTM precision is not restricted to basic features by using the same method to measure memory precision for gait direction…

  16. High precision during food recruitment of experienced (reactivated) foragers in the stingless bee Scaptotrigona mexicana (Apidae, Meliponini)

    NASA Astrophysics Data System (ADS)

    Sánchez, Daniel; Nieh, James C.; Hénaut, Yann; Cruz, Leopoldo; Vandame, Rémy

    Several studies have examined the existence of recruitment communication mechanisms in stingless bees. However, the spatial accuracy of location-specific recruitment has not been examined. Moreover, the location-specific recruitment of reactivated foragers, i.e., foragers that have previously experienced the same food source at a different location and time, has not been explicitly examined. However, such foragers may also play a significant role in colony foraging, particularly in small colonies. Here we report that reactivated Scaptotrigona mexicana foragers can recruit with high precision to a specific food location. The recruitment precision of reactivated foragers was evaluated by placing control feeders to the left and the right of the training feeder (direction-precision tests) and between the nest and the training feeder and beyond it (distance-precision tests). Reactivated foragers arrived at the correct location with high precision: 98.44% arrived at the training feeder in the direction trials (five-feeder fan-shaped array, accuracy of at least +/-6° of azimuth at 50 m from the nest), and 88.62% arrived at the training feeder in the distance trials (five-feeder linear array, accuracy of at least +/-5 m or +/-10% at 50 m from the nest). Thus, S. mexicana reactivated foragers can find the indicated food source at a specific distance and direction with high precision, higher than that shown by honeybees, Apis mellifera, which do not communicate food location at such close distances to the nest.

  17. The Dharma Planet Survey (DPS), a Robotic, High Cadence and High Doppler Precision Survey of Habitable Rocky Planets around Nearby Stars

    NASA Astrophysics Data System (ADS)

    Ge, Jian; Ma, Bo; Muterspaugh, Matthew W.; Singer, Michael; Varosi, Frank; Powell, Scott; Williamson, Michael W.; Sithajan, Sirinrat; Grieves, Nolan; Zhao, Bo; Schofield, Sidney; Liu, Jian; Cassette, Anthony; Carlson, Kevin; Klanot, Khaya; Jeram, Sarik; Barnes, Rory

    2016-01-01

    The Dharma Planet Survey (DPS) is to monitor ~100 nearby very bright FGKM dwarfs (most of them brighter than V=8) during 2014-2018 using the TOU optical very high resolution spectrograph (R~100,000, 380-900nm) at the 2m Automatic Spectroscopy Telescope at Fairborn Observatory initially (2014-2015) and at the dedicated 50-inch Robotic Telescope (2016-2018) on Mt. Lemmon after the telescope is installed in the fall of 2015. Operated in high vacuum (<0.01mTorr) with precisely controlled temperature (~1-2 mK), TOU has delivered ~ 1 m/s (RMS) instrument stability after the hardware upgrade in September 2015. DPS aims at reaching better than 0.5 m/s Doppler measurement precision for bright survey targets after the instrument tiny drift is carefully calibrated with Thorium-Argon and Sine reference sources. With very high RV precision and high cadence (~100 observations per target randomly spread over 450 days), a large number of rocky planets, including possible habitable ones, are expected to be detected. The survey also provides the largest single homogenous high precision RV sample of nearby stars for studying low mass planet populations and constraining various planet formation models. Early scientific results from the DPS pilot survey of 25 FGKM dwarfs will be presented.

  18. Estimating chlorophyll with thermal and broadband multispectral high resolution imagery from an unmanned aerial system using relevance vector machines for precision agriculture

    NASA Astrophysics Data System (ADS)

    Elarab, Manal; Ticlavilca, Andres M.; Torres-Rua, Alfonso F.; Maslova, Inga; McKee, Mac

    2015-12-01

    Precision agriculture requires high-resolution information to enable greater precision in the management of inputs to production. Actionable information about crop and field status must be acquired at high spatial resolution and at a temporal frequency appropriate for timely responses. In this study, high spatial resolution imagery was obtained through the use of a small, unmanned aerial system called AggieAirTM. Simultaneously with the AggieAir flights, intensive ground sampling for plant chlorophyll was conducted at precisely determined locations. This study reports the application of a relevance vector machine coupled with cross validation and backward elimination to a dataset composed of reflectance from high-resolution multi-spectral imagery (VIS-NIR), thermal infrared imagery, and vegetative indices, in conjunction with in situ SPAD measurements from which chlorophyll concentrations were derived, to estimate chlorophyll concentration from remotely sensed data at 15-cm resolution. The results indicate that a relevance vector machine with a thin plate spline kernel type and kernel width of 5.4, having LAI, NDVI, thermal and red bands as the selected set of inputs, can be used to spatially estimate chlorophyll concentration with a root-mean-squared-error of 5.31 μg cm-2, efficiency of 0.76, and 9 relevance vectors.

  19. Precision of coherence analysis to detect cerebral autoregulation by near-infrared spectroscopy in preterm infants

    NASA Astrophysics Data System (ADS)

    Hahn, Gitte Holst; Christensen, Karl Bang; Leung, Terence S.; Greisen, Gorm

    2010-05-01

    Coherence between spontaneous fluctuations in arterial blood pressure (ABP) and the cerebral near-infrared spectroscopy signal can detect cerebral autoregulation. Because reliable measurement depends on signals with high signal-to-noise ratio, we hypothesized that coherence is more precisely determined when fluctuations in ABP are large rather than small. Therefore, we investigated whether adjusting for variability in ABP (variabilityABP) improves precision. We examined the impact of variabilityABP within the power spectrum in each measurement and between repeated measurements in preterm infants. We also examined total monitoring time required to discriminate among infants with a simulation study. We studied 22 preterm infants (GA<30) yielding 215 10-min measurements. Surprisingly, adjusting for variabilityABP within the power spectrum did not improve the precision. However, adjusting for the variabilityABP among repeated measurements (i.e., weighting measurements with high variabilityABP in favor of those with low) improved the precision. The evidence of drift in individual infants was weak. Minimum monitoring time needed to discriminate among infants was 1.3-3.7 h. Coherence analysis in low frequencies (0.04-0.1 Hz) had higher precision and statistically more power than in very low frequencies (0.003-0.04 Hz). In conclusion, a reliable detection of cerebral autoregulation takes hours and the precision is improved by adjusting for variabilityABP between repeated measurements.

  20. Investigation of the Stability of a Two-Span Bridge with the use of a High-Precision Laser Displacement Sensors

    NASA Astrophysics Data System (ADS)

    Poddaeva, O.; Churin, P.; Fedosova, A.; Truhanov, S.

    2018-03-01

    Studies of aerodynamics of bridge structures are an actual problem. Such attention is paid to the study of wind influence on bridge structures not at all by chance; a large number of cases of loss of stability of such structures are known under the influence of wind up to their complete destruction. The development of non-contact systems of measuring equipment allows solving this problem with a high level of accuracy and reliability. This article presents the results of experimental studies of wind impact on a two-span bridge using specialized measuring system based on high-precision laser displacement sensors.

  1. Functional precision cancer medicine-moving beyond pure genomics.

    PubMed

    Letai, Anthony

    2017-09-08

    The essential job of precision medicine is to match the right drugs to the right patients. In cancer, precision medicine has been nearly synonymous with genomics. However, sobering recent studies have generally shown that most patients with cancer who receive genomic testing do not benefit from a genomic precision medicine strategy. Although some call the entire project of precision cancer medicine into question, I suggest instead that the tools employed must be broadened. Instead of relying exclusively on big data measurements of initial conditions, we should also acquire highly actionable functional information by perturbing-for example, with cancer therapies-viable primary tumor cells from patients with cancer.

  2. Variation of Static-PPP Positioning Accuracy Using GPS-Single Frequency Observations (Aswan, Egypt)

    NASA Astrophysics Data System (ADS)

    Farah, Ashraf

    2017-06-01

    Precise Point Positioning (PPP) is a technique used for position computation with a high accuracy using only one GNSS receiver. It depends on highly accurate satellite position and clock data rather than broadcast ephemeries. PPP precision varies based on positioning technique (static or kinematic), observations type (single or dual frequency) and the duration of collected observations. PPP-(dual frequency receivers) offers comparable accuracy to differential GPS. PPP-single frequency receivers has many applications such as infrastructure, hydrography and precision agriculture. PPP using low cost GPS single-frequency receivers is an area of great interest for millions of users in developing countries such as Egypt. This research presents a study for the variability of single frequency static GPS-PPP precision based on different observation durations.

  3. Note: Tandem Kirkpatrick-Baez microscope with sixteen channels for high-resolution laser-plasma diagnostics

    NASA Astrophysics Data System (ADS)

    Yi, Shengzhen; Zhang, Zhe; Huang, Qiushi; Zhang, Zhong; Wang, Zhanshan; Wei, Lai; Liu, Dongxiao; Cao, Leifeng; Gu, Yuqiu

    2018-03-01

    Multi-channel Kirkpatrick-Baez (KB) microscopes, which have better resolution and collection efficiency than pinhole cameras, have been widely used in laser inertial confinement fusion to diagnose time evolution of the target implosion. In this study, a tandem multi-channel KB microscope was developed to have sixteen imaging channels with the precise control of spatial resolution and image intervals. This precise control was created using a coarse assembly of mirror pairs with high-accuracy optical prisms, followed by precise adjustment in real-time x-ray imaging experiments. The multilayers coated on the KB mirrors were designed to have substantially the same reflectivity to obtain a uniform brightness of different images for laser-plasma temperature analysis. The study provides a practicable method to achieve the optimum performance of the microscope for future high-resolution applications in inertial confinement fusion experiments.

  4. Investigation of Space Interferometer Control Using Imaging Sensor Output Feedback

    NASA Technical Reports Server (NTRS)

    Leitner, Jesse A.; Cheng, Victor H. L.

    2003-01-01

    Numerous space interferometry missions are planned for the next decade to verify different enabling technologies towards very-long-baseline interferometry to achieve high-resolution imaging and high-precision measurements. These objectives will require coordinated formations of spacecraft separately carrying optical elements comprising the interferometer. High-precision sensing and control of the spacecraft and the interferometer-component payloads are necessary to deliver sub-wavelength accuracy to achieve the scientific objectives. For these missions, the primary scientific product of interferometer measurements may be the only source of data available at the precision required to maintain the spacecraft and interferometer-component formation. A concept is studied for detecting the interferometer's optical configuration errors based on information extracted from the interferometer sensor output. It enables precision control of the optical components, and, in cases of space interferometers requiring formation flight of spacecraft that comprise the elements of a distributed instrument, it enables the control of the formation-flying vehicles because independent navigation or ranging sensors cannot deliver the high-precision metrology over the entire required geometry. Since the concept can act on the quality of the interferometer output directly, it can detect errors outside the capability of traditional metrology instruments, and provide the means needed to augment the traditional instrumentation to enable enhanced performance. Specific analyses performed in this study include the application of signal-processing and image-processing techniques to solve the problems of interferometer aperture baseline control, interferometer pointing, and orientation of multiple interferometer aperture pairs.

  5. Hybrid thrusters and reaction wheels strategy for large angle rapid reorientation with high precision

    NASA Astrophysics Data System (ADS)

    Ye, Dong; Sun, Zhaowei; Wu, Shunan

    2012-08-01

    The quaternion-based, high precision, large angle rapid reorientation of rigid spacecraft is the main problem investigated in this study. The operation is accomplished via a hybrid thrusters and reaction wheels strategy where thrusters are engaged in providing a primary maneuver torque in open loop, while reaction wheels provide fine control torque to achieve high precision in closed-loop control. The inaccuracy of thrusters is handled by a variable structure control (VSC). In addition, a signum function is mixed in the switching surface in VSC to produce a maneuver to the reference attitude trajectory in a shortest distance. Detailed proofs and numerical simulation examples are presented to illustrate all the technical aspects of this work.

  6. Precision and Accuracy of Analysis for Boron in ITP Samples

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tovo, L.L.

    'Inductively Coupled Plasma Emission Spectroscopy (ICPES) has been used by the Analytical Development Section (ADS) to measure boron in catalytic tetraphenylboron decomposition studies performed by the Waste Processing Technology (WPT) section. Analysis of these samples is complicated due to the presence of high concentrations of sodium and organic compounds. Previously, we found signal suppression in samples analyzed "as received". We suspected that the suppression was due to the high organic concentration (up to 0.01 molar organic decomposition products) in the samples. When the samples were acid digested prior to analysis, the suppression was eliminated. The precision of the reported boronmore » concentration was estimated as 10 percent based on the known precision of the inorganic boron standard used for calibration and quality control check of the ICPES analysis. However, a precision better than 10 percent was needed to evaluate ITP process operating parameters. Therefore, the purpose of this work was (1) to measure, instead of estimating, the precision of the boron measurement on ITP samples and (2) to determine the optimum precision attainable with current instrumentation.'« less

  7. Using UAVs to enhance the quality of precision agriculture

    USDA-ARS?s Scientific Manuscript database

    Recent studies by USDA Agricultural Research Service (ARS) have indicated potential for significant improvement in the quality and application of Precision Agriculture products through the use of very high resolution imagery. An assessment of potential platforms to collect such imagery at an afford...

  8. Pose measurement method and experiments for high-speed rolling targets in a wind tunnel.

    PubMed

    Jia, Zhenyuan; Ma, Xin; Liu, Wei; Lu, Wenbo; Li, Xiao; Chen, Ling; Wang, Zhengqu; Cui, Xiaochun

    2014-12-12

    High-precision wind tunnel simulation tests play an important role in aircraft design and manufacture. In this study, a high-speed pose vision measurement method is proposed for high-speed and rolling targets in a supersonic wind tunnel. To obtain images with high signal-to-noise ratio and avoid impacts on the aerodynamic shape of the rolling targets, a high-speed image acquisition method based on ultrathin retro-reflection markers is presented. Since markers are small-sized and some of them may be lost when the target is rolling, a novel markers layout with which markers are distributed evenly on the surface is proposed based on a spatial coding method to achieve highly accurate pose information. Additionally, a pose acquisition is carried out according to the mentioned markers layout after removing mismatching points by Case Deletion Diagnostics. Finally, experiments on measuring the pose parameters of high-speed targets in the laboratory and in a supersonic wind tunnel are conducted to verify the feasibility and effectiveness of the proposed method. Experimental results indicate that the position measurement precision is less than 0.16 mm, the pitching and yaw angle precision less than 0.132° and the roll angle precision 0.712°.

  9. Pose Measurement Method and Experiments for High-Speed Rolling Targets in a Wind Tunnel

    PubMed Central

    Jia, Zhenyuan; Ma, Xin; Liu, Wei; Lu, Wenbo; Li, Xiao; Chen, Ling; Wang, Zhengqu; Cui, Xiaochun

    2014-01-01

    High-precision wind tunnel simulation tests play an important role in aircraft design and manufacture. In this study, a high-speed pose vision measurement method is proposed for high-speed and rolling targets in a supersonic wind tunnel. To obtain images with high signal-to-noise ratio and avoid impacts on the aerodynamic shape of the rolling targets, a high-speed image acquisition method based on ultrathin retro-reflection markers is presented. Since markers are small-sized and some of them may be lost when the target is rolling, a novel markers layout with which markers are distributed evenly on the surface is proposed based on a spatial coding method to achieve highly accurate pose information. Additionally, a pose acquisition is carried out according to the mentioned markers layout after removing mismatching points by Case Deletion Diagnostics. Finally, experiments on measuring the pose parameters of high-speed targets in the laboratory and in a supersonic wind tunnel are conducted to verify the feasibility and effectiveness of the proposed method. Experimental results indicate that the position measurement precision is less than 0.16 mm, the pitching and yaw angle precision less than 0.132° and the roll angle precision 0.712°. PMID:25615732

  10. Construction and Operation of a High-Speed, High-Precision Eye Tracker for Tight Stimulus Synchronization and Real-Time Gaze Monitoring in Human and Animal Subjects.

    PubMed

    Farivar, Reza; Michaud-Landry, Danny

    2016-01-01

    Measurements of the fast and precise movements of the eye-critical to many vision, oculomotor, and animal behavior studies-can be made non-invasively by video oculography. The protocol here describes the construction and operation of a research-grade video oculography system with ~0.1° precision over the full typical viewing range at over 450 Hz with tight synchronization with stimulus onset. The protocol consists of three stages: (1) system assembly, (2) calibration for both cooperative, and for minimally cooperative subjects (e.g., animals or infants), and (3) gaze monitoring and recording.

  11. High spatial precision nano-imaging of polarization-sensitive plasmonic particles

    NASA Astrophysics Data System (ADS)

    Liu, Yunbo; Wang, Yipei; Lee, Somin Eunice

    2018-02-01

    Precise polarimetric imaging of polarization-sensitive nanoparticles is essential for resolving their accurate spatial positions beyond the diffraction limit. However, conventional technologies currently suffer from beam deviation errors which cannot be corrected beyond the diffraction limit. To overcome this issue, we experimentally demonstrate a spatially stable nano-imaging system for polarization-sensitive nanoparticles. In this study, we show that by integrating a voltage-tunable imaging variable polarizer with optical microscopy, we are able to suppress beam deviation errors. We expect that this nano-imaging system should allow for acquisition of accurate positional and polarization information from individual nanoparticles in applications where real-time, high precision spatial information is required.

  12. High-Precision In Situ 87Sr/86Sr Analyses through Microsampling on Solid Samples: Applications to Earth and Life Sciences

    PubMed Central

    Di Salvo, Sara; Casalini, Martina; Marchionni, Sara; Adani, Teresa; Ulivi, Maurizio; Tommasini, Simone; Avanzinelli, Riccardo; Mazza, Paul P. A.; Francalanci, Lorella

    2018-01-01

    An analytical protocol for high-precision, in situ microscale isotopic investigations is presented here, which combines the use of a high-performing mechanical microsampling device and high-precision TIMS measurements on micro-Sr samples, allowing for excellent results both in accuracy and precision. The present paper is a detailed methodological description of the whole analytical procedure from sampling to elemental purification and Sr-isotope measurements. The method offers the potential to attain isotope data at the microscale on a wide range of solid materials with the use of minimally invasive sampling. In addition, we present three significant case studies for geological and life sciences, as examples of the various applications of microscale 87Sr/86Sr isotope ratios, concerning (i) the pre-eruptive mechanisms triggering recent eruptions at Nisyros volcano (Greece), (ii) the dynamics involved with the initial magma ascent during Eyjafjallajökull volcano's (Iceland) 2010 eruption, which are usually related to the precursory signals of the eruption, and (iii) the environmental context of a MIS 3 cave bear, Ursus spelaeus. The studied cases show the robustness of the methods, which can be also be applied in other areas, such as cultural heritage, archaeology, petrology, and forensic sciences. PMID:29850369

  13. Research on the tool holder mode in high speed machining

    NASA Astrophysics Data System (ADS)

    Zhenyu, Zhao; Yongquan, Zhou; Houming, Zhou; Xiaomei, Xu; Haibin, Xiao

    2018-03-01

    High speed machining technology can improve the processing efficiency and precision, but also reduce the processing cost. Therefore, the technology is widely regarded in the industry. With the extensive application of high-speed machining technology, high-speed tool system has higher and higher requirements on the tool chuck. At present, in high speed precision machining, several new kinds of clip heads are as long as there are heat shrinkage tool-holder, high-precision spring chuck, hydraulic tool-holder, and the three-rib deformation chuck. Among them, the heat shrinkage tool-holder has the advantages of high precision, high clamping force, high bending rigidity and dynamic balance, etc., which are widely used. Therefore, it is of great significance to research the new requirements of the machining tool system. In order to adapt to the requirement of high speed machining precision machining technology, this paper expounds the common tool holder technology of high precision machining, and proposes how to select correctly tool clamping system in practice. The characteristics and existing problems are analyzed in the tool clamping system.

  14. Precision controllability of the YF-17 airplane

    NASA Technical Reports Server (NTRS)

    Sisk, T. R.; Mataeny, N. W.

    1980-01-01

    A flying qualities evaluation conducted on the YF-17 airplane permitted assessment of its precision controllability in the transonic flight regime over the allowable angle of attack range. The precision controllability (tailchase tracking) study was conducted in constant-g and windup turn tracking maneuvers with the command augmentation system (CAS) on, automatic maneuver flaps, and the caged pipper gunsight depressed 70 mils. This study showed that the YF-17 airplane tracks essentially as well at 7 g's to 8 g's as earlier fighters did at 4 g's to 5 g's before they encountered wing rock. The pilots considered the YF-17 airplane one of the best tracking airplanes they had flown. Wing rock at the higher angles of attack degraded tracking precision, and lack of control harmony made precision controllability more difficult. The revised automatic maneuver flap schedule incorporated in the airplane at the time of the tests did not appear to be optimum. The largest tracking errors and greatest pilot workload occurred at high normal load factors at low angles of attack. The pilots reported that the high-g maneuvers caused some tunnel vision and that they found it difficult to think clearly after repeated maneuvers.

  15. Precision of Four Acoustic Bone Measurement Devices

    NASA Technical Reports Server (NTRS)

    Miller, Christopher; Feiveson, Alan H.; Shackelford, Linda; Rianon, Nahida; LeBlanc, Adrian

    2000-01-01

    Though many studies have quantified the precision of various acoustic bone measurement devices, it is difficult to directly compare the results among the studies, because they used disparate subject pools, did not specify the estimation methodology, or did not use consistent definitions for various precision characteristics. In this study, we used a repeated measures design protocol to directly determine the precision characteristics of four acoustic bone measurement devices: the Mechanical Response Tissue Analyzer (MRTA), the UBA-575+, the SoundScan 2000 (S2000), and the Sahara Ultrasound Done Analyzer. Ten men and ten women were scanned on all four devices by two different operators at five discrete time points: Week 1, Week 2, Week 3, Month 3 and Month 6. The percent coefficient of variation (%CV) and standardized coefficient of variation were computed for the following precision characteristics: interoperator effect, operator-subject interaction, short-term error variance, and long-term drift, The MRTA had high interoperator errors for its ulnar and tibial stiffness measures and a large long-term drift in its tibial stiffness measurement. The UBA-575+ exhibited large short-term error variances and long-term drift for all three of its measurements. The S2000's tibial speed of sound measurement showed a high short-term error variance and a significant operator-subject interaction but very good values ( < 1%) for the other precision characteristics. The Sahara seemed to have the best overall performance, but was hampered by a large %CV for short-term error variance in its broadband ultrasound attenuation measure.

  16. Precision of Four Acoustic Bone Measurement Devices

    NASA Technical Reports Server (NTRS)

    Miller, Christopher; Rianon, Nahid; Feiveson, Alan; Shackelford, Linda; LeBlanc, Adrian

    2000-01-01

    Though many studies have quantified the precision of various acoustic bone measurement devices, it is difficult to directly compare the results among the studies, because they used disparate subject pools, did not specify the estimation methodology, or did not use consistent definitions for various precision characteristics. In this study, we used a repeated measures design protocol to directly determine the precision characteristics of four acoustic bone measurement devices: the Mechanical Response Tissue Analyzer (MRTA), the UBA-575+, the SoundScan 2000 (S2000), and the Sahara Ultrasound Bone Analyzer. Ten men and ten women were scanned on all four devices by two different operators at five discrete time points: Week 1, Week 2, Week 3, Month 3 and Month 6. The percent coefficient of variation (%CV) and standardized coefficient of variation were computed for the following precision characteristics: interoperator effect, operator-subject interaction, short-term error variance, and long-term drift. The MRTA had high interoperator errors for its ulnar and tibial stiffness measures and a large long-term drift in its tibial stiffness measurement. The UBA-575+ exhibited large short-term error variances and long-term drift for all three of its measurements. The S2000's tibial speed of sound measurement showed a high short-term error variance and a significant operator-subject interaction but very good values (less than 1%) for the other precision characteristics. The Sahara seemed to have the best overall performance, but was hampered by a large %CV for short-term error variance in its broadband ultrasound attenuation measure.

  17. Active-passive hybrid piezoelectric actuators for high-precision hard disk drive servo systems

    NASA Astrophysics Data System (ADS)

    Chan, Kwong Wah; Liao, Wei-Hsin

    2006-03-01

    Positioning precision is crucial to today's increasingly high-speed, high-capacity, high data density, and miniaturized hard disk drives (HDDs). The demand for higher bandwidth servo systems that can quickly and precisely position the read/write head on a high track density becomes more pressing. Recently, the idea of applying dual-stage actuators to track servo systems has been studied. The push-pull piezoelectric actuated devices have been developed as micro actuators for fine and fast positioning, while the voice coil motor functions as a large but coarse seeking. However, the current dual-stage actuator design uses piezoelectric patches only without passive damping. In this paper, we propose a dual-stage servo system using enhanced active-passive hybrid piezoelectric actuators. The proposed actuators will improve the existing dual-stage actuators for higher precision and shock resistance, due to the incorporation of passive damping in the design. We aim to develop this hybrid servo system not only to increase speed of track seeking but also to improve precision of track following servos in HDDs. New piezoelectrically actuated suspensions with passive damping have been designed and fabricated. In order to evaluate positioning and track following performances for the dual-stage track servo systems, experimental efforts are carried out to implement the synthesized active-passive suspension structure with enhanced piezoelectric actuators using a composite nonlinear feedback controller.

  18. Detector Outline Document for the Fourth Concept Detector ("4th") at the International Linear Collider

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barbareschi, Daniele; et al.

    We describe a general purpose detector ( "Fourth Concept") at the International Linear Collider (ILC) that can measure with high precision all the fundamental fermions and bosons of the standard model, and thereby access all known physics processes. The 4th concept consists of four basic subsystems: a pixel vertex detector for high precision vertex definitions, impact parameter tagging and near-beam occupancy reduction; a Time Projection Chamber for robust pattern recognition augmented with three high-precision pad rows for precision momentum measurement; a high precision multiple-readout fiber calorimeter, complemented with an EM dual-readout crystal calorimeter, for the energy measurement of hadrons, jets,more » electrons, photons, missing momentum, and the tagging of muons; and, an iron-free dual-solenoid muon system for the inverse direction bending of muons in a gas volume to achieve high acceptance and good muon momentum resolution. The pixel vertex chamber, TPC and calorimeter are inside the solenoidal magnetic field. All four subsytems separately achieve the important scientific goal to be 2-to-10 times better than the already excellent LEP detectors, ALEPH, DELPHI, L3 and OPAL. All four basic subsystems contribute to the identification of standard model partons, some in unique ways, such that consequent physics studies are cogent. As an integrated detector concept, we achieve comprehensive physics capabilities that puts all conceivable physics at the ILC within reach.« less

  19. Last Glacial Maximum Salinity Reconstruction

    NASA Astrophysics Data System (ADS)

    Homola, K.; Spivack, A. J.

    2016-12-01

    It has been previously demonstrated that salinity can be reconstructed from sediment porewater. The goal of our study is to reconstruct high precision salinity during the Last Glacial Maximum (LGM). Salinity is usually determined at high precision via conductivity, which requires a larger volume of water than can be extracted from a sediment core, or via chloride titration, which yields lower than ideal precision. It has been demonstrated for water column samples that high precision density measurements can be used to determine salinity at the precision of a conductivity measurement using the equation of state of seawater. However, water column seawater has a relatively constant composition, in contrast to porewater, where variations from standard seawater composition occur. These deviations, which affect the equation of state, must be corrected for through precise measurements of each ion's concentration and knowledge of apparent partial molar density in seawater. We have developed a density-based method for determining porewater salinity that requires only 5 mL of sample, achieving density precisions of 10-6 g/mL. We have applied this method to porewater samples extracted from long cores collected along a N-S transect across the western North Atlantic (R/V Knorr cruise KN223). Density was determined to a precision of 2.3x10-6 g/mL, which translates to salinity uncertainty of 0.002 gms/kg if the effect of differences in composition is well constrained. Concentrations of anions (Cl-, and SO4-2) and cations (Na+, Mg+, Ca+2, and K+) were measured. To correct salinities at the precision required to unravel LGM Meridional Overturning Circulation, our ion precisions must be better than 0.1% for SO4-/Cl- and Mg+/Na+, and 0.4% for Ca+/Na+, and K+/Na+. Alkalinity, pH and Dissolved Inorganic Carbon of the porewater were determined to precisions better than 4% when ratioed to Cl-, and used to calculate HCO3-, and CO3-2. Apparent partial molar densities in seawater were determined experimentally. We compare the high precision salinity profiles determined using our new method to profiles determined from the traditional chloride titrations of parallel samples. Our technique provides a more accurate reconstruction of past salinity, informing questions of water mass composition and distribution during the LGM.

  20. Ultra-High Precision Half-Life Measurement for the Superallowed &+circ; Emitter ^26Al^m

    NASA Astrophysics Data System (ADS)

    Finlay, P.; Demand, G.; Garrett, P. E.; Leach, K. G.; Phillips, A. A.; Sumithrarachchi, C. S.; Svensson, C. E.; Triambak, S.; Grinyer, G. F.; Leslie, J. R.; Andreoiu, C.; Cross, D.; Austin, R. A. E.; Ball, G. C.; Bandyopadhyay, D.; Djongolov, M.; Ettenauer, S.; Hackman, G.; Pearson, C. J.; Williams, S. J.

    2009-10-01

    The calculated nuclear structure dependent correction for ^26Al^m (δC-δNS= 0.305(27)% [1]) is smaller by nearly a factor of two than the other twelve precision superallowed cases, making it an ideal case to pursue a reduction in the experimental errors contributing to the Ft value. An ultra-high precision half-life measurement for the superallowed &+circ; emitter ^26Al^m has been made at the Isotope Separator and Accelerator (ISAC) facility at TRIUMF in Vancouver, Canada. A beam of ˜10^5 ^26Al^m/s was delivered in October 2007 and its decay was observed using a 4π continuous gas flow proportional counter as part of an ongoing experimental program in superallowed Fermi β decay studies. With a statistical precision of ˜0.008%, the present work represents the single most precise measurement of any superallowed half-life to date. [4pt] [1] I.S. Towner and J.C. Hardy, Phys. Rev. C 79, 055502 (2009).

  1. Ultra-High Precision Half-Life Measurement for the Superallowed &+circ; Emitter ^26Al^m

    NASA Astrophysics Data System (ADS)

    Finlay, P.; Demand, G.; Garrett, P. E.; Leach, K. G.; Phillips, A. A.; Sumithrarachchi, C. S.; Svensson, C. E.; Triambak, S.; Ball, G. C.; Bandyopadhyay, D.; Djongolov, M.; Ettenauer, S.; Hackman, G.; Pearson, C. J.; Williams, S. J.; Andreoiu, C.; Cross, D.; Austin, R. A. E.; Grinyer, G. F.; Leslie, J. R.

    2008-10-01

    The calculated nuclear structure dependent correction for ^26Al^m (δC-δNS= 0.305(27)% [1]) is smaller by nearly a factor of two than the other twelve precision superallowed cases, making it an ideal case to pursue a reduction in the experimental errors contributing to the Ft value. An ultra-high precision half-life measurement for the superallowed &+circ; emitter ^26Al^m has been made using a 4π continuous gas flow proportional counter as part of an ongoing experimental program in superallowed Fermi β decay studies at the Isotope Separator and Accelerator (ISAC) facility at TRIUMF in Vancouver, Canada, which delivered a beam of ˜10^5 ^26Al^m/s in October 2007. With a statistical precision of ˜0.008%, the present work represents the single most precise measurement of any superallowed half-life to date. [1] I.S. Towner and J.C. Hardy, Phys. Rev. C 77, 025501 (2008).

  2. Influence of Waveform Characteristics on LiDAR Ranging Accuracy and Precision

    PubMed Central

    Yang, Bingwei; Xie, Xinhao; Li, Duan

    2018-01-01

    Time of flight (TOF) based light detection and ranging (LiDAR) is a technology for calculating distance between start/stop signals of time of flight. In lab-built LiDAR, two ranging systems for measuring flying time between start/stop signals include time-to-digital converter (TDC) that counts time between trigger signals and analog-to-digital converter (ADC) that processes the sampled start/stop pulses waveform for time estimation. We study the influence of waveform characteristics on range accuracy and precision of two kinds of ranging system. Comparing waveform based ranging (WR) with analog discrete return system based ranging (AR), a peak detection method (WR-PK) shows the best ranging performance because of less execution time, high ranging accuracy, and stable precision. Based on a novel statistic mathematical method maximal information coefficient (MIC), WR-PK precision has a high linear relationship with the received pulse width standard deviation. Thus keeping the received pulse width of measuring a constant distance as stable as possible can improve ranging precision. PMID:29642639

  3. A highly versatile and easily configurable system for plant electrophysiology.

    PubMed

    Gunsé, Benet; Poschenrieder, Charlotte; Rankl, Simone; Schröeder, Peter; Rodrigo-Moreno, Ana; Barceló, Juan

    2016-01-01

    In this study we present a highly versatile and easily configurable system for measuring plant electrophysiological parameters and ionic flow rates, connected to a computer-controlled highly accurate positioning device. The modular software used allows easy customizable configurations for the measurement of electrophysiological parameters. Both the operational tests and the experiments already performed have been fully successful and rendered a low noise and highly stable signal. Assembly, programming and configuration examples are discussed. The system is a powerful technique that not only gives precise measuring of plant electrophysiological status, but also allows easy development of ad hoc configurations that are not constrained to plant studies. •We developed a highly modular system for electrophysiology measurements that can be used either in organs or cells and performs either steady or dynamic intra- and extracellular measurements that takes advantage of the easiness of visual object-oriented programming.•High precision accuracy in data acquisition under electrical noisy environments that allows it to run even in a laboratory close to electrical equipment that produce electrical noise.•The system makes an improvement of the currently used systems for monitoring and controlling high precision measurements and micromanipulation systems providing an open and customizable environment for multiple experimental needs.

  4. Precise Spatiotemporal Control of Optogenetic Activation Using an Acousto-Optic Device

    PubMed Central

    Guo, Yanmeng; Song, Peipei; Zhang, Xiaohui; Zeng, Shaoqun; Wang, Zuoren

    2011-01-01

    Light activation and inactivation of neurons by optogenetic techniques has emerged as an important tool for studying neural circuit function. To achieve a high resolution, new methods are being developed to selectively manipulate the activity of individual neurons. Here, we report that the combination of an acousto-optic device (AOD) and single-photon laser was used to achieve rapid and precise spatiotemporal control of light stimulation at multiple points in a neural circuit with millisecond time resolution. The performance of this system in activating ChIEF expressed on HEK 293 cells as well as cultured neurons was first evaluated, and the laser stimulation patterns were optimized. Next, the spatiotemporally selective manipulation of multiple neurons was achieved in a precise manner. Finally, we demonstrated the versatility of this high-resolution method in dissecting neural circuits both in the mouse cortical slice and the Drosophila brain in vivo. Taken together, our results show that the combination of AOD-assisted laser stimulation and optogenetic tools provides a flexible solution for manipulating neuronal activity at high efficiency and with high temporal precision. PMID:22174813

  5. Influence of speckle image reconstruction on photometric precision for large solar telescopes

    NASA Astrophysics Data System (ADS)

    Peck, C. L.; Wöger, F.; Marino, J.

    2017-11-01

    Context. High-resolution observations from large solar telescopes require adaptive optics (AO) systems to overcome image degradation caused by Earth's turbulent atmosphere. AO corrections are, however, only partial. Achieving near-diffraction limited resolution over a large field of view typically requires post-facto image reconstruction techniques to reconstruct the source image. Aims: This study aims to examine the expected photometric precision of amplitude reconstructed solar images calibrated using models for the on-axis speckle transfer functions and input parameters derived from AO control data. We perform a sensitivity analysis of the photometric precision under variations in the model input parameters for high-resolution solar images consistent with four-meter class solar telescopes. Methods: Using simulations of both atmospheric turbulence and partial compensation by an AO system, we computed the speckle transfer function under variations in the input parameters. We then convolved high-resolution numerical simulations of the solar photosphere with the simulated atmospheric transfer function, and subsequently deconvolved them with the model speckle transfer function to obtain a reconstructed image. To compute the resulting photometric precision, we compared the intensity of the original image with the reconstructed image. Results: The analysis demonstrates that high photometric precision can be obtained for speckle amplitude reconstruction using speckle transfer function models combined with AO-derived input parameters. Additionally, it shows that the reconstruction is most sensitive to the input parameter that characterizes the atmospheric distortion, and sub-2% photometric precision is readily obtained when it is well estimated.

  6. An experimental search strategy retrieves more precise results than PubMed and Google for questions about medical interventions

    PubMed Central

    Dylla, Daniel P.; Megison, Susan D.

    2015-01-01

    Objective. We compared the precision of a search strategy designed specifically to retrieve randomized controlled trials (RCTs) and systematic reviews of RCTs with search strategies designed for broader purposes. Methods. We designed an experimental search strategy that automatically revised searches up to five times by using increasingly restrictive queries as long at least 50 citations were retrieved. We compared the ability of the experimental and alternative strategies to retrieve studies relevant to 312 test questions. The primary outcome, search precision, was defined for each strategy as the proportion of relevant, high quality citations among the first 50 citations retrieved. Results. The experimental strategy had the highest median precision (5.5%; interquartile range [IQR]: 0%–12%) followed by the narrow strategy of the PubMed Clinical Queries (4.0%; IQR: 0%–10%). The experimental strategy found the most high quality citations (median 2; IQR: 0–6) and was the strategy most likely to find at least one high quality citation (73% of searches; 95% confidence interval 68%–78%). All comparisons were statistically significant. Conclusions. The experimental strategy performed the best in all outcomes although all strategies had low precision. PMID:25922798

  7. Study of the one-way speed of light anisotropy with particle beams

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wojtsekhowski, Bogdan B.

    Concepts of high precision studies of the one-way speed of light anisotropy are discussed. The high energy particle beam allows measurement of a one-way speed of light anisotropy (SOLA) via analysis of the beam momentum variation with sidereal phase without the use of synchronized clocks. High precision beam position monitors could provide accurate monitoring of the beam orbit and determination of the particle beam momentum with relative accuracy on the level of 10^-10, which corresponds to a limit on SOLA of 10^-18 with existing storage rings. A few additional versions of the experiment are also presented.

  8. Study of the one-way speed of light anisotropy with particle beams

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wojtsekhowski, Bogdan

    2017-04-01

    Concepts of high precision studies of the one-way speed of light anisotropy are discussed. The high energy particle beam allows measurement of a one-way speed of light anisotropy (SOLA) via analysis of the beam momentum variation with sidereal phase without the use of synchronized clocks. High precision beam position monitors could provide accurate monitoring of the beam orbit and determination of the particle beam momentum with relative accuracy on the level of 10^-10, which corresponds to a limit on SOLA of 10^-18 with existing storage rings. A few additional versions of the experiment are also presented.

  9. Precision controllability of the F-15 airplane

    NASA Technical Reports Server (NTRS)

    Sisk, T. R.; Matheny, N. W.

    1979-01-01

    A flying qualities evaluation conducted on a preproduction F-15 airplane permitted an assessment to be made of its precision controllability in the high subsonic and low transonic flight regime over the allowable angle of attack range. Precision controllability, or gunsight tracking, studies were conducted in windup turn maneuvers with the gunsight in the caged pipper mode and depressed 70 mils. This evaluation showed the F-15 airplane to experience severe buffet and mild-to-moderate wing rock at the higher angles of attack. It showed the F-15 airplane radial tracking precision to vary from approximately 6 to 20 mils over the load factor range tested. Tracking in the presence of wing rock essentially doubled the radial tracking error generated at the lower angles of attack. The stability augmentation system affected the tracking precision of the F-15 airplane more than it did that of previous aircraft studied.

  10. Precision digital control systems

    NASA Astrophysics Data System (ADS)

    Vyskub, V. G.; Rozov, B. S.; Savelev, V. I.

    This book is concerned with the characteristics of digital control systems of great accuracy. A classification of such systems is considered along with aspects of stabilization, programmable control applications, digital tracking systems and servomechanisms, and precision systems for the control of a scanning laser beam. Other topics explored are related to systems of proportional control, linear devices and methods for increasing precision, approaches for further decreasing the response time in the case of high-speed operation, possibilities for the implementation of a logical control law, and methods for the study of precision digital control systems. A description is presented of precision automatic control systems which make use of electronic computers, taking into account the existing possibilities for an employment of computers in automatic control systems, approaches and studies required for including a computer in such control systems, and an analysis of the structure of automatic control systems with computers. Attention is also given to functional blocks in the considered systems.

  11. Error analysis of high-rate GNSS precise point positioning for seismic wave measurement

    NASA Astrophysics Data System (ADS)

    Shu, Yuanming; Shi, Yun; Xu, Peiliang; Niu, Xiaoji; Liu, Jingnan

    2017-06-01

    High-rate GNSS precise point positioning (PPP) has been playing a more and more important role in providing precise positioning information in fast time-varying environments. Although kinematic PPP is commonly known to have a precision of a few centimeters, the precision of high-rate PPP within a short period of time has been reported recently with experiments to reach a few millimeters in the horizontal components and sub-centimeters in the vertical component to measure seismic motion, which is several times better than the conventional kinematic PPP practice. To fully understand the mechanism of mystified excellent performance of high-rate PPP within a short period of time, we have carried out a theoretical error analysis of PPP and conducted the corresponding simulations within a short period of time. The theoretical analysis has clearly indicated that the high-rate PPP errors consist of two types: the residual systematic errors at the starting epoch, which affect high-rate PPP through the change of satellite geometry, and the time-varying systematic errors between the starting epoch and the current epoch. Both the theoretical error analysis and simulated results are fully consistent with and thus have unambiguously confirmed the reported high precision of high-rate PPP, which has been further affirmed here by the real data experiments, indicating that high-rate PPP can indeed achieve the millimeter level of precision in the horizontal components and the sub-centimeter level of precision in the vertical component to measure motion within a short period of time. The simulation results have clearly shown that the random noise of carrier phases and higher order ionospheric errors are two major factors to affect the precision of high-rate PPP within a short period of time. The experiments with real data have also indicated that the precision of PPP solutions can degrade to the cm level in both the horizontal and vertical components, if the geometry of satellites is rather poor with a large DOP value.

  12. The Use of Scale-Dependent Precision to Increase Forecast Accuracy in Earth System Modelling

    NASA Astrophysics Data System (ADS)

    Thornes, Tobias; Duben, Peter; Palmer, Tim

    2016-04-01

    At the current pace of development, it may be decades before the 'exa-scale' computers needed to resolve individual convective clouds in weather and climate models become available to forecasters, and such machines will incur very high power demands. But the resolution could be improved today by switching to more efficient, 'inexact' hardware with which variables can be represented in 'reduced precision'. Currently, all numbers in our models are represented as double-precision floating points - each requiring 64 bits of memory - to minimise rounding errors, regardless of spatial scale. Yet observational and modelling constraints mean that values of atmospheric variables are inevitably known less precisely on smaller scales, suggesting that this may be a waste of computer resources. More accurate forecasts might therefore be obtained by taking a scale-selective approach whereby the precision of variables is gradually decreased at smaller spatial scales to optimise the overall efficiency of the model. To study the effect of reducing precision to different levels on multiple spatial scales, we here introduce a new model atmosphere developed by extending the Lorenz '96 idealised system to encompass three tiers of variables - which represent large-, medium- and small-scale features - for the first time. In this chaotic but computationally tractable system, the 'true' state can be defined by explicitly resolving all three tiers. The abilities of low resolution (single-tier) double-precision models and similar-cost high resolution (two-tier) models in mixed-precision to produce accurate forecasts of this 'truth' are compared. The high resolution models outperform the low resolution ones even when small-scale variables are resolved in half-precision (16 bits). This suggests that using scale-dependent levels of precision in more complicated real-world Earth System models could allow forecasts to be made at higher resolution and with improved accuracy. If adopted, this new paradigm would represent a revolution in numerical modelling that could be of great benefit to the world.

  13. Omics Profiling in Precision Oncology*

    PubMed Central

    Yu, Kun-Hsing; Snyder, Michael

    2016-01-01

    Cancer causes significant morbidity and mortality worldwide, and is the area most targeted in precision medicine. Recent development of high-throughput methods enables detailed omics analysis of the molecular mechanisms underpinning tumor biology. These studies have identified clinically actionable mutations, gene and protein expression patterns associated with prognosis, and provided further insights into the molecular mechanisms indicative of cancer biology and new therapeutics strategies such as immunotherapy. In this review, we summarize the techniques used for tumor omics analysis, recapitulate the key findings in cancer omics studies, and point to areas requiring further research on precision oncology. PMID:27099341

  14. Note: High precision measurements using high frequency gigahertz signals

    NASA Astrophysics Data System (ADS)

    Jin, Aohan; Fu, Siyuan; Sakurai, Atsunori; Liu, Liang; Edman, Fredrik; Pullerits, Tõnu; Öwall, Viktor; Karki, Khadga Jung

    2014-12-01

    Generalized lock-in amplifiers use digital cavities with Q-factors as high as 5 × 108 to measure signals with very high precision. In this Note, we show that generalized lock-in amplifiers can be used to analyze microwave (giga-hertz) signals with a precision of few tens of hertz. We propose that the physical changes in the medium of propagation can be measured precisely by the ultra-high precision measurement of the signal. We provide evidence to our proposition by verifying the Newton's law of cooling by measuring the effect of change in temperature on the phase and amplitude of the signals propagating through two calibrated cables. The technique could be used to precisely measure different physical properties of the propagation medium, for example, the change in length, resistance, etc. Real time implementation of the technique can open up new methodologies of in situ virtual metrology in material design.

  15. A Fiber Bragg grating based tilt sensor suitable for constant temperature room

    NASA Astrophysics Data System (ADS)

    Tang, Guoyu; Wei, Jue; Zhou, Wei; Wu, Mingyu; Yang, Meichao; Xie, Ruijun; Xu, Xiaofeng

    2015-07-01

    Constant-temperature rooms have been widely used in industrial production, quality testing, and research laboratories. This paper proposes a high-precision tilt sensor suitable for a constant- temperature room, which has achieved a wide-range power change while the fiber Bragg grating (FBG) reflection peak wavelength shifted very little, thereby demonstrating a novel method for obtaining a high-precision tilt sensor. This paper also studies the effect of the reflection peak on measurement precision. The proposed sensor can distinguish the direction of tilt with an excellent sensitivity of 403 dBm/° and a highest achievable resolution of 2.481 × 10-5 ° (that is, 0.08% of the measuring range).

  16. International Conference on the Mechanical Technology of Inertial Devices, University of Newcastle-upon-Tyne, England, Apr. 7-9, 1987, Proceedings

    NASA Astrophysics Data System (ADS)

    Various papers on the mechanical technology of inertial devices are presented. The topics addressed include: development of a directional gyroscope for remotely piloted vehicles and similar applications; a two-degree-of-freedom gyroscope with frictionless inner and outer gimbal pickoffs; oscillogyro design, manufacture, and performance; development of miniature two-axis rate gyroscope; mechanical design aspects of the electrostatically suspended gyroscope; role of gas-lubricated bearings in current and future sensors; development of a new microporous retainer material for precision ball bearings; design study for a high-stability, large-centrifuge test bed; evaluation of a two-axis rate gyro; operating principles of a two-axis angular rate transducer; and nutation frequency analysis. Also considered are: triaxial laser gyro; mechanical design considerations for a ring laser gyro dither mechanism; environmental considerations in the design of fiberoptic gyroscopes; manufacturing aspects of some critical high-precision mechanical components of inertial devices; dynamics and control of a gyroscopic force measurement system; high precision and high performance motion systems; use of multiple acceleration references to obtain high precision centrifuge data at low cost; gyro testing and evaluation at the Communications Research Centre; review of the mechanical design and development of a high-performance accelerometer; and silicon microengineering for accelerometers.

  17. Superordinate Precision: An Examination of Academic Writing Among Bilingual Deaf and Hard of Hearing Students.

    PubMed

    Scott, Jessica A; Hoffmeister, Robert J

    2018-04-01

    Academic English is an essential literacy skill area for success in post-secondary education and in many work environments. Despite its importance, academic English is understudied with deaf and hard of hearing (DHH) students. Nascent research in this area suggests that academic English, alongside American Sign Language (ASL) fluency, may play an important role in the reading proficiency of DHH students in middle and high school. The current study expands this research to investigate academic English by examining student proficiency with a sub-skill of academic writing called superordinate precision, the taxonomical categorization of a term. Currently there is no research that examines DHH students' proficiency with superordinate precision. Middle and high school DHH students enrolled in bilingual schools for the deaf were assessed on their ASL proficiency, academic English proficiency, reading comprehension, and use of superordinate precision in definitions writing. Findings indicate that student use of superordinate precision in definitions writing was correlated with ASL proficiency, reading comprehension, and academic English proficiency. It is possible that degree of mastery of superordinate precision may indicate a higher overall level of proficiency with academic English. This may have important implications for assessment of and instruction in academic English literacy.

  18. A Study of Particle Beam Spin Dynamics for High Precision Experiments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fiedler, Andrew J.

    In the search for physics beyond the Standard Model, high precision experiments to measure fundamental properties of particles are an important frontier. One group of such measurements involves magnetic dipole moment (MDM) values as well as searching for an electric dipole moment (EDM), both of which could provide insights about how particles interact with their environment at the quantum level and if there are undiscovered new particles. For these types of high precision experiments, minimizing statistical uncertainties in the measurements plays a critical role. \\\\ \\indent This work leverages computer simulations to quantify the effects of statistical uncertainty for experimentsmore » investigating spin dynamics. In it, analysis of beam properties and lattice design effects on the polarization of the beam is performed. As a case study, the beam lines that will provide polarized muon beams to the Fermilab Muon \\emph{g}-2 experiment are analyzed to determine the effects of correlations between the phase space variables and the overall polarization of the muon beam.« less

  19. High Precision Material Study at Near Millimeter Wavelengths.

    DTIC Science & Technology

    1983-08-30

    propagating through these tubes , the beams are allowed to expand for a short distance in free space before they are combined by a mylar -film beam- splitter...Laser Precision Rkp-5200). 22 6 The attenuation of the low-loss EH mode in circular plexiglass tubes of I.D. 0.95 cm, and of various lengths. he...pyroelectric detectors (Laser Precision Rkp-545): L L, and L TPx lens; BS1, wire-mesh beam splitter; BS, mylar -film beam splitter; DPC, double-prism coupler

  20. High-Precision Registration of Point Clouds Based on Sphere Feature Constraints.

    PubMed

    Huang, Junhui; Wang, Zhao; Gao, Jianmin; Huang, Youping; Towers, David Peter

    2016-12-30

    Point cloud registration is a key process in multi-view 3D measurements. Its precision affects the measurement precision directly. However, in the case of the point clouds with non-overlapping areas or curvature invariant surface, it is difficult to achieve a high precision. A high precision registration method based on sphere feature constraint is presented to overcome the difficulty in the paper. Some known sphere features with constraints are used to construct virtual overlapping areas. The virtual overlapping areas provide more accurate corresponding point pairs and reduce the influence of noise. Then the transformation parameters between the registered point clouds are solved by an optimization method with weight function. In that case, the impact of large noise in point clouds can be reduced and a high precision registration is achieved. Simulation and experiments validate the proposed method.

  1. High-Precision Registration of Point Clouds Based on Sphere Feature Constraints

    PubMed Central

    Huang, Junhui; Wang, Zhao; Gao, Jianmin; Huang, Youping; Towers, David Peter

    2016-01-01

    Point cloud registration is a key process in multi-view 3D measurements. Its precision affects the measurement precision directly. However, in the case of the point clouds with non-overlapping areas or curvature invariant surface, it is difficult to achieve a high precision. A high precision registration method based on sphere feature constraint is presented to overcome the difficulty in the paper. Some known sphere features with constraints are used to construct virtual overlapping areas. The virtual overlapping areas provide more accurate corresponding point pairs and reduce the influence of noise. Then the transformation parameters between the registered point clouds are solved by an optimization method with weight function. In that case, the impact of large noise in point clouds can be reduced and a high precision registration is achieved. Simulation and experiments validate the proposed method. PMID:28042846

  2. High precision localization of intracerebral hemorrhage based on 3D MPR on head CT images

    NASA Astrophysics Data System (ADS)

    Sun, Jianyong; Hou, Xiaoshuai; Sun, Shujie; Zhang, Jianguo

    2017-03-01

    The key step for minimally invasive intracerebral hemorrhage surgery is precisely positioning the hematoma location in the brain before and during the hematoma surgery, which can significantly improves the success rate of puncture hematoma. We designed a 3D computerized surgical plan (CSP) workstation precisely to locate brain hematoma based on Multi-Planar Reconstruction (MPR) visualization technique. We used ten patients' CT/MR studies to verify our designed CSP intracerebral hemorrhage localization method. With the doctor's assessment and comparing with the results of manual measurements, the output of CSP WS for hematoma surgery is more precise and reliable than manual procedure.

  3. Evaluation of the precision agricultural landscape modeling system (PALMS) in the semiarid Texas southern high plains

    USDA-ARS?s Scientific Manuscript database

    Accurate models to simulate the soil water balance in semiarid cropping systems are needed to evaluate management practices for soil and water conservation in both irrigated and dryland production systems. The objective of this study was to evaluate the application of the Precision Agricultural Land...

  4. Evaluation of the Precision Agricultural Landscape Modeling System (PALMS) in the Semiarid Texas Southern High Plains

    USDA-ARS?s Scientific Manuscript database

    Accurate models to simulate the soil water balance in semiarid cropping systems are needed to evaluate management practices for soil and water conservation in both irrigated and dryland production systems. The objective of this study was to evaluate the application of the Precision Agricultural Land...

  5. Study on the position accuracy of a mechanical alignment system

    NASA Astrophysics Data System (ADS)

    Cai, Yimin

    In this thesis, we investigated the precision level and established the baseline achieved by a mechanical alignment system using datums and reference surfaces. The factors which affect the accuracy of mechanical alignment system were studied and methodology was developed to suppress these factors so as to reach its full potential precision. In order to characterize the mechanical alignment system quantitatively, a new optical position monitoring system by using quadrant detectors has been developed in this thesis, it can monitor multi-dimensional degrees of mechanical workpieces in real time with high precision. We studied the noise factors inside the system and optimized the optical system. Based on the fact that one of the major limiting noise factors is the shifting of the laser beam, a noise cancellation technique has been developed successfully to suppress this noise, the feasibility of an ultra high resolution (<20 A) for displacement monitoring has been demonstrated. Using the optical position monitoring system, repeatability experiment of the mechanical alignment system has been conducted on different kinds of samples including steel, aluminum, glass and plastics with the same size 100mm x 130mm. The alignment accuracy was studied quantitatively rather than qualitatively before. In a controlled environment, the alignment precision can be improved 5 folds by securing the datum without other means of help. The alignment accuracy of an aluminum workpiece having reference surface by milling is about 3 times better than by shearing. Also we have found that sample material can have fairly significant effect on the alignment precision of the system. Contamination trapped between the datum and reference surfaces in mechanical alignment system can cause errors of registration or reduce the level of manufacturing precision. In the thesis, artificial and natural dust particles were used to simulate the real situations and their effects on system precision have been investigated. In this experiment, we discovered two effective cleaning processes.

  6. What can neuromorphic event-driven precise timing add to spike-based pattern recognition?

    PubMed

    Akolkar, Himanshu; Meyer, Cedric; Clady, Zavier; Marre, Olivier; Bartolozzi, Chiara; Panzeri, Stefano; Benosman, Ryad

    2015-03-01

    This letter introduces a study to precisely measure what an increase in spike timing precision can add to spike-driven pattern recognition algorithms. The concept of generating spikes from images by converting gray levels into spike timings is currently at the basis of almost every spike-based modeling of biological visual systems. The use of images naturally leads to generating incorrect artificial and redundant spike timings and, more important, also contradicts biological findings indicating that visual processing is massively parallel, asynchronous with high temporal resolution. A new concept for acquiring visual information through pixel-individual asynchronous level-crossing sampling has been proposed in a recent generation of asynchronous neuromorphic visual sensors. Unlike conventional cameras, these sensors acquire data not at fixed points in time for the entire array but at fixed amplitude changes of their input, resulting optimally sparse in space and time-pixel individually and precisely timed only if new, (previously unknown) information is available (event based). This letter uses the high temporal resolution spiking output of neuromorphic event-based visual sensors to show that lowering time precision degrades performance on several recognition tasks specifically when reaching the conventional range of machine vision acquisition frequencies (30-60 Hz). The use of information theory to characterize separability between classes for each temporal resolution shows that high temporal acquisition provides up to 70% more information that conventional spikes generated from frame-based acquisition as used in standard artificial vision, thus drastically increasing the separability between classes of objects. Experiments on real data show that the amount of information loss is correlated with temporal precision. Our information-theoretic study highlights the potentials of neuromorphic asynchronous visual sensors for both practical applications and theoretical investigations. Moreover, it suggests that representing visual information as a precise sequence of spike times as reported in the retina offers considerable advantages for neuro-inspired visual computations.

  7. High-precision 40Ar/39Ar sanidine geochronology of ignimbrites in the Mogollon-Datil volcanic field, southwestern New Mexico

    USGS Publications Warehouse

    McIntosh, W.C.; Sutter, J.F.; Chapin, C.E.; Kedzie, L.L.

    1990-01-01

    40Ar/39Ar age spectra have been obtained from 85 sanidine separates from 36 ignimbrites and one rhyolitic lava in the latest Eocene-Oligocene Mogollon-Datil volcanic field of southwestern New Mexico. Of the 97 measured age spectra, 94 yield weighted-mean plateau ages each giving single-spectrum 1?? precision of??0.25%-0.4% (??0.07-0.14 Ma). Replicate plateau age determinations for eight different samples show within-sample 1?? precisions averaging ??0.25%. Plateau ages from multiple (n=3-8) samples of individual ignimbrites show 1?? within-unit precision of ??0.1%-0.4% (??0.04-0.13 Ma). This within-unit precision represents a several-fold improvement over published K-Ar data for the same ignimbrites, and is similar to the range of precisions reported from single-crystal laser fusion studies. A further indication of the high precision of unit-mean 40Ar/30Ar ages is their close agreement with independently established stratigraphic order. Two samples failed to meet plateau criteria, apparently due to geologic contamination by older feldspars. Effects of minor contamination are shown by six other samples, which yielded slightly anomalous plateau ages. 40Ar/39Ar plateau ages permit resolution of units differing in age by 0.5% (0.15 Ma) or less. This high resolution, combined with paleomagnetic studies, has helped to correlate ignimbrites among isolated ranges and has allowed development of an integrated timestratigraphic framework for the volcanic field. Mogollon-Datil ignimbrites range in age from 36.2 to 24.3 Ma. Ignimbrite activity was strongly episodic, being confined to four brief (<2.6 m.y.) eruptive episodes separated by 1-3 m.y. gaps. Ignimbrite activity generally tended to migrate from the southeast toward the north and west. ?? 1990 Springer-Verlag.

  8. Bone mineral measurement using dual energy x ray densitometry

    NASA Technical Reports Server (NTRS)

    Smith, Steven W.

    1989-01-01

    Bone mineral measurements before and after space missions have shown that weightlessness greatly accelerates bone demineralization. Bone mineral losses as high as 1 to 3 percent per month were reported. Highly precise instrumentation is required to monitor this loss and thereby test the efficacy of treatment. During the last year, a significant improvement was made in Dual-Photon Absorptiometry by replacing the radioactive source with an x ray tube. Advantages of this system include: better precision, lower patient dose, better spacial resolution, and shorter scan times. The high precision and low radiation dose of this technique will allow detection of bone mineral changes of less than 1 percent with measurements conducted directly at the sites of interest. This will allow the required bone mineral studies to be completed in a shorter time with greater confidence.

  9. Ultrafast dynamic computed tomography myelography for the precise identification of high-flow cerebrospinal fluid leaks caused by spiculated spinal osteophytes.

    PubMed

    Thielen, Kent R; Sillery, John C; Morris, Jonathan M; Hoxworth, Joseph M; Diehn, Felix E; Wald, John T; Rosebrock, Richard E; Yu, Lifeng; Luetmer, Patrick H

    2015-03-01

    Precise localization and understanding of the origin of spontaneous high-flow spinal CSF leaks is required prior to targeted treatment. This study demonstrates the utility of ultrafast dynamic CT myelography for the precise localization of high-flow CSF leaks caused by spiculated spinal osteophytes. This study reports a series of 14 patients with high-flow CSF leaks caused by spiculated spinal osteophytes who underwent ultrafast dynamic CT myelography between March 2009 and December 2010. There were 10 male and 4 female patients, with an average age of 49 years (range 37-74 years). The value of ultrafast dynamic CT myelography in depicting the CSF leak site was qualitatively assessed. In all 14 patients, ultrafast dynamic CT myelography was technically successful at precisely demonstrating the site of the CSF leak, the causative spiculated osteophyte piercing the dura, and the relationship of the implicated osteophyte to adjacent structures. Leak sites included 3 cervical, 11 thoracic, and 0 lumbar levels, with 86% of the leaks occurring from C-5 to T-7. Information obtained from the ultrafast dynamic CT myelogram was considered useful in all treated CSF leaks. Spinal osteophytes piercing the dura are a more frequent cause of high-flow CSF leaks than previously recognized. Ultrafast dynamic CT myelography adds value beyond standard dynamic myelography or digital subtraction myelography in the diagnosis and anatomical characterization of high-flow spinal CSF leaks caused by these osteophytes. This information allows for appropriate planning for percutaneous or surgical treatment.

  10. Development and calibration of an air-floating six-axis force measurement platform using self-calibration

    NASA Astrophysics Data System (ADS)

    Huang, Bin; Wang, Xiaomeng; Li, Chengwei; Yi, Jiajing; Lu, Rongsheng; Tao, Jiayue

    2016-09-01

    This paper describes the design, working principle, as well as calibration of an air-floating six-axis force measurement platform, where the floating plate and nozzles were connected without contact, preventing inter-dimensional coupling and increasing precision significantly. The measurement repeatability error of the force size in the platform is less than 0.2% full scale (FS), which is significantly better than the precision of 1% FS in the six-axis force sensors on the current market. We overcame the difficulties of weight loading device in high-precision calibration by proposing a self-calibration method based on the floating plate gravity and met the calibration precision requirement of 0.02% FS. This study has general implications for the development and calibration of high-precision multi-axis force sensors. In particular, the air-floating six-axis force measurement platform could be applied to the calibration of some special sensors such as flexible tactile sensors and may be used as a micro-nano mechanical assembly platform for real-time assembly force testing.

  11. Citation searches are more sensitive than keyword searches to identify studies using specific measurement instruments

    PubMed Central

    Linder, Suzanne K.; Kamath, Geetanjali R.; Pratt, Gregory F.; Saraykar, Smita S.; Volk, Robert J.

    2015-01-01

    Objective To compare the effectiveness of two search methods in identifying studies that used the Control Preferences Scale (CPS), a healthcare decision-making instrument commonly used in clinical settings. Study Design & Setting We searched the literature using two methods: 1) keyword searching using variations of “control preferences scale” and 2) cited reference searching using two seminal CPS publications. We searched three bibliographic databases [PubMed, Scopus, Web of Science (WOS)] and one full-text database (Google Scholar). We report precision and sensitivity as measures of effectiveness. Results Keyword searches in bibliographic databases yielded high average precision (90%), but low average sensitivity (16%). PubMed was the most precise, followed closely by Scopus and WOS. The Google Scholar keyword search had low precision (54%) but provided the highest sensitivity (70%). Cited reference searches in all databases yielded moderate sensitivity (45–54%), but precision ranged from 35–75% with Scopus being the most precise. Conclusion Cited reference searches were more sensitive than keyword searches, making it a more comprehensive strategy to identify all studies that use a particular instrument. Keyword searches provide a quick way of finding some but not all relevant articles. Goals, time and resources should dictate the combination of which methods and databases are used. PMID:25554521

  12. High precision locating control system based on VCM for Talbot lithography

    NASA Astrophysics Data System (ADS)

    Yao, Jingwei; Zhao, Lixin; Deng, Qian; Hu, Song

    2016-10-01

    Aiming at the high precision and efficiency requirements of Z-direction locating in Talbot lithography, a control system based on Voice Coil Motor (VCM) was designed. In this paper, we built a math model of VCM and its moving characteristic was analyzed. A double-closed loop control strategy including position loop and current loop were accomplished. The current loop was implemented by driver, in order to achieve the rapid follow of the system current. The position loop was completed by the digital signal processor (DSP) and the position feedback was achieved by high precision linear scales. Feed forward control and position feedback Proportion Integration Differentiation (PID) control were applied in order to compensate for dynamic lag and improve the response speed of the system. And the high precision and efficiency of the system were verified by simulation and experiments. The results demonstrated that the performance of Z-direction gantry was obviously improved, having high precision, quick responses, strong real-time and easily to expend for higher precision.

  13. Reconciling evidence-based medicine and precision medicine in the era of big data: challenges and opportunities.

    PubMed

    Beckmann, Jacques S; Lew, Daniel

    2016-12-19

    This era of groundbreaking scientific developments in high-resolution, high-throughput technologies is allowing the cost-effective collection and analysis of huge, disparate datasets on individual health. Proper data mining and translation of the vast datasets into clinically actionable knowledge will require the application of clinical bioinformatics. These developments have triggered multiple national initiatives in precision medicine-a data-driven approach centering on the individual. However, clinical implementation of precision medicine poses numerous challenges. Foremost, precision medicine needs to be contrasted with the powerful and widely used practice of evidence-based medicine, which is informed by meta-analyses or group-centered studies from which mean recommendations are derived. This "one size fits all" approach can provide inadequate solutions for outliers. Such outliers, which are far from an oddity as all of us fall into this category for some traits, can be better managed using precision medicine. Here, we argue that it is necessary and possible to bridge between precision medicine and evidence-based medicine. This will require worldwide and responsible data sharing, as well as regularly updated training programs. We also discuss the challenges and opportunities for achieving clinical utility in precision medicine. We project that, through collection, analyses and sharing of standardized medically relevant data globally, evidence-based precision medicine will shift progressively from therapy to prevention, thus leading eventually to improved, clinician-to-patient communication, citizen-centered healthcare and sustained well-being.

  14. A new numerically stable implementation of the T-matrix method for electromagnetic scattering by spheroidal particles

    NASA Astrophysics Data System (ADS)

    Somerville, W. R. C.; Auguié, B.; Le Ru, E. C.

    2013-07-01

    We propose, describe, and demonstrate a new numerically stable implementation of the extended boundary-condition method (EBCM) to compute the T-matrix for electromagnetic scattering by spheroidal particles. Our approach relies on the fact that for many of the EBCM integrals in the special case of spheroids, a leading part of the integrand integrates exactly to zero, which causes catastrophic loss of precision in numerical computations. This feature was in fact first pointed out by Waterman in the context of acoustic scattering and electromagnetic scattering by infinite cylinders. We have recently studied it in detail in the case of electromagnetic scattering by particles. Based on this study, the principle of our new implementation is therefore to compute all the integrands without the problematic part to avoid the primary cause of loss of precision. Particular attention is also given to choosing the algorithms that minimise loss of precision in every step of the method, without compromising on speed. We show that the resulting implementation can efficiently compute in double precision arithmetic the T-matrix and therefore optical properties of spheroidal particles to a high precision, often down to a remarkable accuracy (10-10 relative error), over a wide range of parameters that are typically considered problematic. We discuss examples such as high-aspect ratio metallic nanorods and large size parameter (≈35) dielectric particles, which had been previously modelled only using quadruple-precision arithmetic codes.

  15. Scanning digital lithography providing high speed large area patterning with diffraction limited sub-micron resolution

    NASA Astrophysics Data System (ADS)

    Wen, Sy-Bor; Bhaskar, Arun; Zhang, Hongjie

    2018-07-01

    A scanning digital lithography system using computer controlled digital spatial light modulator, spatial filter, infinity correct optical microscope and high precision translation stage is proposed and examined. Through utilizing the spatial filter to limit orders of diffraction modes for light delivered from the spatial light modulator, we are able to achieve diffraction limited deep submicron spatial resolution with the scanning digital lithography system by using standard one inch level optical components with reasonable prices. Raster scanning of this scanning digital lithography system using a high speed high precision x-y translation stage and piezo mount to real time adjust the focal position of objective lens allows us to achieve large area sub-micron resolved patterning with high speed (compared with e-beam lithography). It is determined in this study that to achieve high quality stitching of lithography patterns with raster scanning, a high-resolution rotation stage will be required to ensure the x and y directions of the projected pattern are in the same x and y translation directions of the nanometer precision x-y translation stage.

  16. Quantitative Determination of Isotope Ratios from Experimental Isotopic Distributions

    PubMed Central

    Kaur, Parminder; O’Connor, Peter B.

    2008-01-01

    Isotope variability due to natural processes provides important information for studying a variety of complex natural phenomena from the origins of a particular sample to the traces of biochemical reaction mechanisms. These measurements require high-precision determination of isotope ratios of a particular element involved. Isotope Ratio Mass Spectrometers (IRMS) are widely employed tools for such a high-precision analysis, which have some limitations. This work aims at overcoming the limitations inherent to IRMS by estimating the elemental isotopic abundance from the experimental isotopic distribution. In particular, a computational method has been derived which allows the calculation of 13C/12C ratios from the whole isotopic distributions, given certain caveats, and these calculations are applied to several cases to demonstrate their utility. The limitations of the method in terms of the required number of ions and S/N ratio are discussed. For high-precision estimates of the isotope ratios, this method requires very precise measurement of the experimental isotopic distribution abundances, free from any artifacts introduced by noise, sample heterogeneity, or other experimental sources. PMID:17263354

  17. Optimetrics for Precise Navigation

    NASA Technical Reports Server (NTRS)

    Yang, Guangning; Heckler, Gregory; Gramling, Cheryl

    2017-01-01

    Optimetrics for Precise Navigation will be implemented on existing optical communication links. The ranging and Doppler measurements are conducted over communication data frame and clock. The measurement accuracy is two orders of magnitude better than TDRSS. It also has other advantages of: The high optical carrier frequency enables: (1) Immunity from ionosphere and interplanetary Plasma noise floor, which is a performance limitation for RF tracking; and (2) High antenna gain reduces terminal size and volume, enables high precision tracking in Cubesat, and in deep space smallsat. High Optical Pointing Precision provides: (a) spacecraft orientation, (b) Minimal additional hardware to implement Precise Optimetrics over optical comm link; and (c) Continuous optical carrier phase measurement will enable the system presented here to accept future optical frequency standard with much higher clock accuracy.

  18. High Precision Edge Detection Algorithm for Mechanical Parts

    NASA Astrophysics Data System (ADS)

    Duan, Zhenyun; Wang, Ning; Fu, Jingshun; Zhao, Wenhui; Duan, Boqiang; Zhao, Jungui

    2018-04-01

    High precision and high efficiency measurement is becoming an imperative requirement for a lot of mechanical parts. So in this study, a subpixel-level edge detection algorithm based on the Gaussian integral model is proposed. For this purpose, the step edge normal section line Gaussian integral model of the backlight image is constructed, combined with the point spread function and the single step model. Then gray value of discrete points on the normal section line of pixel edge is calculated by surface interpolation, and the coordinate as well as gray information affected by noise is fitted in accordance with the Gaussian integral model. Therefore, a precise location of a subpixel edge was determined by searching the mean point. Finally, a gear tooth was measured by M&M3525 gear measurement center to verify the proposed algorithm. The theoretical analysis and experimental results show that the local edge fluctuation is reduced effectively by the proposed method in comparison with the existing subpixel edge detection algorithms. The subpixel edge location accuracy and computation speed are improved. And the maximum error of gear tooth profile total deviation is 1.9 μm compared with measurement result with gear measurement center. It indicates that the method has high reliability to meet the requirement of high precision measurement.

  19. Method of high precision interval measurement in pulse laser ranging system

    NASA Astrophysics Data System (ADS)

    Wang, Zhen; Lv, Xin-yuan; Mao, Jin-jin; Liu, Wei; Yang, Dong

    2013-09-01

    Laser ranging is suitable for laser system, for it has the advantage of high measuring precision, fast measuring speed,no cooperative targets and strong resistance to electromagnetic interference,the measuremen of laser ranging is the key paremeters affecting the performance of the whole system.The precision of the pulsed laser ranging system was decided by the precision of the time interval measurement, the principle structure of laser ranging system was introduced, and a method of high precision time interval measurement in pulse laser ranging system was established in this paper.Based on the analysis of the factors which affected the precision of range measure,the pulse rising edges discriminator was adopted to produce timing mark for the start-stop time discrimination,and the TDC-GP2 high precision interval measurement system based on TMS320F2812 DSP was designed to improve the measurement precision.Experimental results indicate that the time interval measurement method in this paper can obtain higher range accuracy. Compared with the traditional time interval measurement system,the method simplifies the system design and reduce the influence of bad weather conditions,furthermore,it satisfies the requirements of low costs and miniaturization.

  20. Precision mechatronics based on high-precision measuring and positioning systems and machines

    NASA Astrophysics Data System (ADS)

    Jäger, Gerd; Manske, Eberhard; Hausotte, Tino; Mastylo, Rostyslav; Dorozhovets, Natalja; Hofmann, Norbert

    2007-06-01

    Precision mechatronics is defined in the paper as the science and engineering of a new generation of high precision systems and machines. Nanomeasuring and nanopositioning engineering represents important fields of precision mechatronics. The nanometrology is described as the today's limit of the precision engineering. The problem, how to design nanopositioning machines with uncertainties as small as possible will be discussed. The integration of several optical and tactile nanoprobes makes the 3D-nanopositioning machine suitable for various tasks, such as long range scanning probe microscopy, mask and wafer inspection, nanotribology, nanoindentation, free form surface measurement as well as measurement of microoptics, precision molds, microgears, ring gauges and small holes.

  1. Classification of LIDAR Data for Generating a High-Precision Roadway Map

    NASA Astrophysics Data System (ADS)

    Jeong, J.; Lee, I.

    2016-06-01

    Generating of a highly precise map grows up with development of autonomous driving vehicles. The highly precise map includes a precision of centimetres level unlike an existing commercial map with the precision of meters level. It is important to understand road environments and make a decision for autonomous driving since a robust localization is one of the critical challenges for the autonomous driving car. The one of source data is from a Lidar because it provides highly dense point cloud data with three dimensional position, intensities and ranges from the sensor to target. In this paper, we focus on how to segment point cloud data from a Lidar on a vehicle and classify objects on the road for the highly precise map. In particular, we propose the combination with a feature descriptor and a classification algorithm in machine learning. Objects can be distinguish by geometrical features based on a surface normal of each point. To achieve correct classification using limited point cloud data sets, a Support Vector Machine algorithm in machine learning are used. Final step is to evaluate accuracies of obtained results by comparing them to reference data The results show sufficient accuracy and it will be utilized to generate a highly precise road map.

  2. Biofilm development of an opportunistic model bacterium analysed at high spatiotemporal resolution in the framework of a precise flow cell

    PubMed Central

    Lim, Chun Ping; Mai, Phuong Nguyen Quoc; Roizman Sade, Dan; Lam, Yee Cheong; Cohen, Yehuda

    2016-01-01

    Life of bacteria is governed by the physical dimensions of life in microscales, which is dominated by fast diffusion and flow at low Reynolds numbers. Microbial biofilms are structurally and functionally heterogeneous and their development is suggested to be interactively related to their microenvironments. In this study, we were guided by the challenging requirements of precise tools and engineered procedures to achieve reproducible experiments at high spatial and temporal resolutions. Here, we developed a robust precise engineering approach allowing for the quantification of real-time, high-content imaging of biofilm behaviour under well-controlled flow conditions. Through the merging of engineering and microbial ecology, we present a rigorous methodology to quantify biofilm development at resolutions of single micrometre and single minute, using a newly developed flow cell. We designed and fabricated a high-precision flow cell to create defined and reproducible flow conditions. We applied high-content confocal laser scanning microscopy and developed image quantification using a model biofilm of a defined opportunistic strain, Pseudomonas putida OUS82. We observed complex patterns in the early events of biofilm formation, which were followed by total dispersal. These patterns were closely related to the flow conditions. These biofilm behavioural phenomena were found to be highly reproducible, despite the heterogeneous nature of biofilm. PMID:28721252

  3. High-precision measurement of chlorine stable isotope ratios

    USGS Publications Warehouse

    Long, A.; Eastoe, C.J.; Kaufmann, R.S.; Martin, J.G.; Wirt, L.; Finley, J.B.

    1993-01-01

    We present an analysis procedure that allows stable isotopes of chlorine to be analyzed with precision sufficient for geological and hydrological studies. The total analytical precision is ?????0.09%., and the present known range of chloride in the surface and near-surface environment is 3.5???. As Cl- is essentially nonreactive in natural aquatic environments, it is a conservative tracer and its ??37Cl is also conservative. Thus, the ??37Cl parameter is valuable for quantitative evaluation of mixing of different sources of chloride in brines and aquifers. ?? 1993.

  4. Neural control and precision of flight muscle activation in Drosophila.

    PubMed

    Lehmann, Fritz-Olaf; Bartussek, Jan

    2017-01-01

    Precision of motor commands is highly relevant in a large context of various locomotor behaviors, including stabilization of body posture, heading control and directed escape responses. While posture stability and heading control in walking and swimming animals benefit from high friction via ground reaction forces and elevated viscosity of water, respectively, flying animals have to cope with comparatively little aerodynamic friction on body and wings. Although low frictional damping in flight is the key to the extraordinary aerial performance and agility of flying birds, bats and insects, it challenges these animals with extraordinary demands on sensory integration and motor precision. Our review focuses on the dynamic precision with which Drosophila activates its flight muscular system during maneuvering flight, considering relevant studies on neural and muscular mechanisms of thoracic propulsion. In particular, we tackle the precision with which flies adjust power output of asynchronous power muscles and synchronous flight control muscles by monitoring muscle calcium and spike timing within the stroke cycle. A substantial proportion of the review is engaged in the significance of visual and proprioceptive feedback loops for wing motion control including sensory integration at the cellular level. We highlight that sensory feedback is the basis for precise heading control and body stability in flies.

  5. Precision and Error of Three-dimensional Phenotypic Measures Acquired from 3dMD Photogrammetric Images

    PubMed Central

    Aldridge, Kristina; Boyadjiev, Simeon A.; Capone, George T.; DeLeon, Valerie B.; Richtsmeier, Joan T.

    2015-01-01

    The genetic basis for complex phenotypes is currently of great interest for both clinical investigators and basic scientists. In order to acquire a thorough understanding of the translation from genotype to phenotype, highly precise measures of phenotypic variation are required. New technologies, such as 3D photogrammetry are being implemented in phenotypic studies due to their ability to collect data rapidly and non-invasively. Before these systems can be broadly implemented the error associated with data collected from images acquired using these technologies must be assessed. This study investigates the precision, error, and repeatability associated with anthropometric landmark coordinate data collected from 3D digital photogrammetric images acquired with the 3dMDface System. Precision, error due to the imaging system, error due to digitization of the images, and repeatability are assessed in a sample of children and adults (N=15). Results show that data collected from images with the 3dMDface System are highly repeatable and precise. The average error associated with the placement of landmarks is sub-millimeter; both the error due to digitization and to the imaging system are very low. The few measures showing a higher degree of error include those crossing the labial fissure, which are influenced by even subtle movement of the mandible. These results suggest that 3D anthropometric data collected using the 3dMDface System are highly reliable and therefore useful for evaluation of clinical dysmorphology and surgery, analyses of genotype-phenotype correlations, and inheritance of complex phenotypes. PMID:16158436

  6. High precision spectroscopy and imaging in THz frequency range

    NASA Astrophysics Data System (ADS)

    Vaks, Vladimir L.

    2014-03-01

    Application of microwave methods for development of the THz frequency range has resulted in elaboration of high precision THz spectrometers based on nonstationary effects. The spectrometers characteristics (spectral resolution and sensitivity) meet the requirements for high precision analysis. The gas analyzers, based on the high precision spectrometers, have been successfully applied for analytical investigations of gas impurities in high pure substances. These investigations can be carried out both in absorption cell and in reactor. The devices can be used for ecological monitoring, detecting the components of chemical weapons and explosive in the atmosphere. The great field of THz investigations is the medicine application. Using the THz spectrometers developed one can detect markers for some diseases in exhaled air.

  7. Precision Timing with Silicon Sensors for Use in Calorimetry

    NASA Astrophysics Data System (ADS)

    Bornheim, A.; Ronzhin, A.; Kim, H.; Bolla, G.; Pena, C.; Xie, S.; Apresyan, A.; Los, S.; Spiropulu, M.; Ramberg, E.

    2017-11-01

    The high luminosity upgrade of the Large Hadron Collider (HL-LHC) at CERN is expected to provide instantaneous luminosities of 5 × 1034 cm -2 s -1. The high luminosities expected at the HL-LHC will be accompanied by a factor of 5 to 10 more pileup compared with LHC conditions in 2015, causing general confusion for particle identification and event reconstruction. Precision timing allows to extend calorimetric measurements into such a high density environment by subtracting the energy deposits from pileup interactions. Calorimeters employing silicon as the active component have recently become a popular choice for the HL- LHC and future collider experiments which face very high radiation environments. We present studies of basic calorimetric and precision timing measurements using a prototype composed of tungsten absorber and silicon sensor as the active medium. We show that for the bulk of electromagnetic showers induced by electrons in the range of 20 GeV to 30 GeV, we can achieve time resolutions better than 25 ps per single pad sensor.

  8. High resolution remote sensing for reducing uncertainties in urban forest carbon offset life cycle assessments.

    PubMed

    Tigges, Jan; Lakes, Tobia

    2017-10-04

    Urban forests reduce greenhouse gas emissions by storing and sequestering considerable amounts of carbon. However, few studies have considered the local scale of urban forests to effectively evaluate their potential long-term carbon offset. The lack of precise, consistent and up-to-date forest details is challenging for long-term prognoses. Therefore, this review aims to identify uncertainties in urban forest carbon offset assessment and discuss the extent to which such uncertainties can be reduced by recent progress in high resolution remote sensing. We do this by performing an extensive literature review and a case study combining remote sensing and life cycle assessment of urban forest carbon offset in Berlin, Germany. Recent progress in high resolution remote sensing and methods is adequate for delivering more precise details on the urban tree canopy, individual tree metrics, species, and age structures compared to conventional land use/cover class approaches. These area-wide consistent details can update life cycle inventories for more precise future prognoses. Additional improvements in classification accuracy can be achieved by a higher number of features derived from remote sensing data of increasing resolution, but first studies on this subject indicated that a smart selection of features already provides sufficient data that avoids redundancies and enables more efficient data processing. Our case study from Berlin could use remotely sensed individual tree species as consistent inventory of a life cycle assessment. However, a lack of growth, mortality and planting data forced us to make assumptions, therefore creating uncertainty in the long-term prognoses. Regarding temporal changes and reliable long-term estimates, more attention is required to detect changes of gradual growth, pruning and abrupt changes in tree planting and mortality. As such, precise long-term urban ecological monitoring using high resolution remote sensing should be intensified, especially due to increasing climate change effects. This is important for calibrating and validating recent prognoses of urban forest carbon offset, which have so far scarcely addressed longer timeframes. Additionally, higher resolution remote sensing of urban forest carbon estimates can improve upscaling approaches, which should be extended to reach a more precise global estimate for the first time. Urban forest carbon offset can be made more relevant by making more standardized assessments available for science and professional practitioners, and the increasing availability of high resolution remote sensing data and the progress in data processing allows for precisely that.

  9. Air Bearings Machined On Ultra Precision, Hydrostatic CNC-Lathe

    NASA Astrophysics Data System (ADS)

    Knol, Pierre H.; Szepesi, Denis; Deurwaarder, Jan M.

    1987-01-01

    Micromachining of precision elements requires an adequate machine concept to meet the high demand of surface finish, dimensional and shape accuracy. The Hembrug ultra precision lathes have been exclusively designed with hydrostatic principles for main spindle and guideways. This concept is to be explained with some major advantages of hydrostatics compared with aerostatics at universal micromachining applications. Hembrug has originally developed the conventional Mikroturn ultra precision facing lathes, for diamond turning of computer memory discs. This first generation of machines was followed by the advanced computer numerically controlled types for machining of complex precision workpieces. One of these parts, an aerostatic bearing component has been succesfully machined on the Super-Mikroturn CNC. A case study of airbearing machining confirms the statement that a good result of the micromachining does not depend on machine performance alone, but also on the technology applied.

  10. Citation searches are more sensitive than keyword searches to identify studies using specific measurement instruments.

    PubMed

    Linder, Suzanne K; Kamath, Geetanjali R; Pratt, Gregory F; Saraykar, Smita S; Volk, Robert J

    2015-04-01

    To compare the effectiveness of two search methods in identifying studies that used the Control Preferences Scale (CPS), a health care decision-making instrument commonly used in clinical settings. We searched the literature using two methods: (1) keyword searching using variations of "Control Preferences Scale" and (2) cited reference searching using two seminal CPS publications. We searched three bibliographic databases [PubMed, Scopus, and Web of Science (WOS)] and one full-text database (Google Scholar). We report precision and sensitivity as measures of effectiveness. Keyword searches in bibliographic databases yielded high average precision (90%) but low average sensitivity (16%). PubMed was the most precise, followed closely by Scopus and WOS. The Google Scholar keyword search had low precision (54%) but provided the highest sensitivity (70%). Cited reference searches in all databases yielded moderate sensitivity (45-54%), but precision ranged from 35% to 75% with Scopus being the most precise. Cited reference searches were more sensitive than keyword searches, making it a more comprehensive strategy to identify all studies that use a particular instrument. Keyword searches provide a quick way of finding some but not all relevant articles. Goals, time, and resources should dictate the combination of which methods and databases are used. Copyright © 2015 Elsevier Inc. All rights reserved.

  11. Selected isotope ratio measurements of light metallic elements (Li, Mg, Ca, and Cu) by multiple collector ICP-MS

    PubMed Central

    Platzner, Thomas I.; Segal, Irina

    2007-01-01

    The unique capabilities of multiple collector inductively coupled mass spectrometry (MC-ICP-MS) for high precision isotope ratio measurements in light elements as Li, Mg, Ca, and Cu are reviewed in this paper. These elements have been intensively studied at the Geological Survey of Israel (GSI) and other laboratories over the past few years, and the methods used to obtain high precision isotope analyses are discussed in detail. The scientific study of isotopic fractionation of these elements is significant for achieving a better understanding of geochemical and biochemical processes in nature and the environment. PMID:17962922

  12. Bioinspired Mechano‐Sensitive Macroporous Ceramic Sponge for Logical Drug and Cell Delivery

    PubMed Central

    Xu, Changlu; Wei, Zhihao; Gao, Huajian; Bai, Yanjie; Liu, Huiling; Yang, Huilin

    2017-01-01

    On‐demand, ultrahigh precision delivery of molecules and cells assisted by scaffold is a pivotal theme in the field of controlled release, but it remains extremely challenging for ceramic‐based macroporous scaffolds that are prevalently used in regenerative medicine. Sea sponges (Phylum Porifera), whose bodies possess hierarchical pores or channels and organic/inorganic composite structures, can delicately control water intake/circulation and therefore achieve high precision mass transportation of food, oxygen, and wastes. Inspired by leuconoid sponge, in this study, the authors design and fabricate a biomimetic macroporous ceramic composite sponge (CCS) for high precision logic delivery of molecules and cells regulated by mechanical stimulus. The CCS reveals unique on‐demand AND logic release behaviors in response to dual‐gates of moisture and pressure (or strain) and, more importantly, 1 cm3 volume of CCS achieves unprecedentedly delivery precision of ≈100 ng per cycle for hydrophobic or hydrophilic molecules and ≈1400 cells per cycle for fibroblasts, respectively. PMID:28638781

  13. High-numerical-aperture cryogenic light microscopy for increased precision of superresolution reconstructions

    PubMed Central

    Nahmani, Marc; Lanahan, Conor; DeRosier, David; Turrigiano, Gina G.

    2017-01-01

    Superresolution microscopy has fundamentally altered our ability to resolve subcellular proteins, but improving on these techniques to study dense structures composed of single-molecule-sized elements has been a challenge. One possible approach to enhance superresolution precision is to use cryogenic fluorescent imaging, reported to reduce fluorescent protein bleaching rates, thereby increasing the precision of superresolution imaging. Here, we describe an approach to cryogenic photoactivated localization microscopy (cPALM) that permits the use of a room-temperature high-numerical-aperture objective lens to image frozen samples in their native state. We find that cPALM increases photon yields and show that this approach can be used to enhance the effective resolution of two photoactivatable/switchable fluorophore-labeled structures in the same frozen sample. This higher resolution, two-color extension of the cPALM technique will expand the accessibility of this approach to a range of laboratories interested in more precise reconstructions of complex subcellular targets. PMID:28348224

  14. Attaining the Photometric Precision Required by Future Dark Energy Projects

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stubbs, Christopher

    2013-01-21

    This report outlines our progress towards achieving the high-precision astronomical measurements needed to derive improved constraints on the nature of the Dark Energy. Our approach to obtaining higher precision flux measurements has two basic components: 1) determination of the optical transmission of the atmosphere, and 2) mapping out the instrumental photon sensitivity function vs. wavelength, calibrated by referencing the measurements to the known sensitivity curve of a high precision silicon photodiode, and 3) using the self-consistency of the spectrum of stars to achieve precise color calibrations.

  15. High-precision processing and detection of the high-caliber off-axis aspheric mirror

    NASA Astrophysics Data System (ADS)

    Dai, Chen; Li, Ang; Xu, Lingdi; Zhang, Yingjie

    2017-10-01

    To achieve the efficient, controllable, digital processing and high-precision detection of the high-caliber off-axis aspheric mirror, meeting the high-level development needs of the modern high-resolution, large field of space optical remote sensing camera, we carried out the research on high precision machining and testing technology of off-axis aspheric mirror. First, we forming the off-axis aspheric sample with diameter of 574mm × 302mm by milling it with milling machine, and then the intelligent robot equipment was used for off-axis aspheric high precision polishing. Surface detection of the sample will be proceed with the off-axis aspheric contact contour detection technology and offaxis non-spherical surface interference detection technology after its fine polishing using ion beam equipment. The final surface accuracy RMS is 12nm.

  16. High precision U-PB geochronology and implications for the tectonic evolution of the Superior Province

    NASA Technical Reports Server (NTRS)

    Davis, D. W.; Corfu, F.; Krogh, T. E.

    1986-01-01

    The underlying mechanisms of Archean tectonics and the degree to which modern plate tectonic models are applicable early in Earth's history continue to be a subject of considerable debate. A precise knowledge of the timing of geological events is of the utmost importance in studying this problem. The high precision U-Pb method has been applied in recent years to rock units in many areas of the Superior Province. Most of these data have precisions of about + or - 2-3 Ma. The resulting detailed chronologies of local igneous development and the regional age relationships furnish tight constraints on any Archean tectonic model. Superior province terrains can be classified into 3 types: (1) low grade areas dominated by meta-volcanic rocks (greenstone belts); (2) high grade, largely metaplutonic areas with abundant orthogneiss and foliated to massive I-type granitoid bodies; and (3) high grade areas with abundant metasediments, paragneiss and S-type plutons. Most of the U-Pb age determinations have been done on type 1 terrains with very few having been done in type 3 terrains. A compilation of over 120 ages indicates that the major part of igneous activity took place in the period 2760-2670 Ma, known as the Kenoran event. This event was ubiquitous throughout the Superior Province.

  17. BaHigh-force magnetic tweezers with force feedback for biological applications

    NASA Astrophysics Data System (ADS)

    Kollmannsberger, Philip; Fabry, Ben

    2007-11-01

    Magnetic micromanipulation using magnetic tweezers is a versatile biophysical technique and has been used for single-molecule unfolding, rheology measurements, and studies of force-regulated processes in living cells. This article describes an inexpensive magnetic tweezer setup for the application of precisely controlled forces up to 100nN onto 5μm magnetic beads. High precision of the force is achieved by a parametric force calibration method together with a real-time control of the magnetic tweezer position and current. High forces are achieved by bead-magnet distances of only a few micrometers. Applying such high forces can be used to characterize the local viscoelasticity of soft materials in the nonlinear regime, or to study force-regulated processes and mechanochemical signal transduction in living cells. The setup can be easily adapted to any inverted microscope.

  18. High-force magnetic tweezers with force feedback for biological applications.

    PubMed

    Kollmannsberger, Philip; Fabry, Ben

    2007-11-01

    Magnetic micromanipulation using magnetic tweezers is a versatile biophysical technique and has been used for single-molecule unfolding, rheology measurements, and studies of force-regulated processes in living cells. This article describes an inexpensive magnetic tweezer setup for the application of precisely controlled forces up to 100 nN onto 5 microm magnetic beads. High precision of the force is achieved by a parametric force calibration method together with a real-time control of the magnetic tweezer position and current. High forces are achieved by bead-magnet distances of only a few micrometers. Applying such high forces can be used to characterize the local viscoelasticity of soft materials in the nonlinear regime, or to study force-regulated processes and mechanochemical signal transduction in living cells. The setup can be easily adapted to any inverted microscope.

  19. Design and algorithm research of high precision airborne infrared touch screen

    NASA Astrophysics Data System (ADS)

    Zhang, Xiao-Bing; Wang, Shuang-Jie; Fu, Yan; Chen, Zhao-Quan

    2016-10-01

    There are shortcomings of low precision, touch shaking, and sharp decrease of touch precision when emitting and receiving tubes are failure in the infrared touch screen. A high precision positioning algorithm based on extended axis is proposed to solve these problems. First, the unimpeded state of the beam between emitting and receiving tubes is recorded as 0, while the impeded state is recorded as 1. Then, the method of oblique scan is used, in which the light of one emitting tube is used for five receiving tubes. The impeded information of all emitting and receiving tubes is collected as matrix. Finally, according to the method of arithmetic average, the position of the touch object is calculated. The extended axis positioning algorithm is characteristic of high precision in case of failure of individual infrared tube and affects slightly the precision. The experimental result shows that the 90% display area of the touch error is less than 0.25D, where D is the distance between adjacent emitting tubes. The conclusion is gained that the algorithm based on extended axis has advantages of high precision, little impact when individual infrared tube is failure, and using easily.

  20. Precision Crystal Calorimeters in High Energy Physics

    ScienceCinema

    Ren-Yuan Zhu

    2017-12-09

    Precision crystal calorimeters traditionally play an important role in high energy physics experiments. In the last two decades, it faces a challenge to maintain its precision in a hostile radiation environment. This paper reviews the performance of crystal calorimeters constructed for high energy physics experiments and the progress achieved in understanding crystal’s radiation damage as well as in developing high quality scintillating crystals for particle physics. Potential applications of new generation scintillating crystals of high density and high light yield, such as LSO and LYSO, in particle physics experiments is also discussed.

  1. Value of Sample Return and High Precision Analyses: Need for A Resource of Compelling Stories, Metaphors and Examples for Public Speakers

    NASA Technical Reports Server (NTRS)

    Allton, J. H.

    2017-01-01

    There is widespread agreement among planetary scientists that much of what we know about the workings of the solar system comes from accurate, high precision measurements on returned samples. Precision is a function of the number of atoms the instrumentation is able to count. Accuracy depends on the calibration or standardization technique. For Genesis, the solar wind sample return mission, acquiring enough atoms to ensure precise SW measurements and then accurately quantifying those measurements were steps known to be non-trivial pre-flight. The difficulty of precise and accurate measurements on returned samples, and why they cannot be made remotely, is not communicated well to the public. In part, this is be-cause "high precision" is abstract and error bars are not very exciting topics. This paper explores ideas for collecting and compiling compelling metaphors and colorful examples as a resource for planetary science public speakers.

  2. Parallelism measurement for base plate of standard artifact with multiple tactile approaches

    NASA Astrophysics Data System (ADS)

    Ye, Xiuling; Zhao, Yan; Wang, Yiwen; Wang, Zhong; Fu, Luhua; Liu, Changjie

    2018-01-01

    Nowadays, as workpieces become more precise and more specialized which results in more sophisticated structures and higher accuracy for the artifacts, higher requirements have been put forward for measuring accuracy and measuring methods. As an important method to obtain the size of workpieces, coordinate measuring machine (CMM) has been widely used in many industries. In order to achieve the calibration of a self-developed CMM, it is found that the parallelism of the base plate used for fixing the standard artifact is an important factor which affects the measurement accuracy in the process of studying self-made high-precision standard artifact. And aimed to measure the parallelism of the base plate, by using the existing high-precision CMM, gauge blocks, dial gauge and marble platform with the tactile approach, three methods for parallelism measurement of workpieces are employed, and comparisons are made within the measurement results. The results of experiments show that the final accuracy of all the three methods is able to reach micron level and meets the measurement requirements. Simultaneously, these three approaches are suitable for different measurement conditions which provide a basis for rapid and high-precision measurement under different equipment conditions.

  3. Flexible architecture of data acquisition firmware based on multi-behaviors finite state machine

    NASA Astrophysics Data System (ADS)

    Arpaia, Pasquale; Cimmino, Pasquale

    2016-11-01

    A flexible firmware architecture for different kinds of data acquisition systems, ranging from high-precision bench instruments to low-cost wireless transducers networks, is presented. The key component is a multi-behaviors finite state machine, easily configurable to both low- and high-performance requirements, to diverse operating systems, as well as to on-line and batch measurement algorithms. The proposed solution was validated experimentally on three case studies with data acquisition architectures: (i) concentrated, in a high-precision instrument for magnetic measurements at CERN, (ii) decentralized, for telemedicine remote monitoring of patients at home, and (iii) distributed, for remote monitoring of building's energy loss.

  4. High-Precision Half-Life Measurements for the Superallowed Fermi β+ Emitters 14O and 18Ne

    NASA Astrophysics Data System (ADS)

    Laffoley, A. T.; Andreoiu, C.; Austin, R. A. E.; Ball, G. C.; Bender, P. C.; Bidaman, H.; Bildstein, V.; Blank, B.; Bouzomita, H.; Cross, D. S.; Deng, G.; Diaz Varela, A.; Dunlop, M. R.; Dunlop, R.; Finlay, P.; Garnsworthy, A. B.; Garrett, P.; Giovinazzo, J.; Grinyer, G. F.; Grinyer, J.; Hadinia, B.; Jamieson, D. S.; Jigmeddorj, B.; Ketelhut, S.; Kisliuk, D.; Leach, K. G.; Leslie, J. R.; MacLean, A.; Miller, D.; Mills, B.; Moukaddam, M.; Radich, A. J.; Rajabali, M. M.; Rand, E. T.; Svensson, C. E.; Tardiff, E.; Thomas, J. C.; Turko, J.; Voss, P.; Unsworth, C.

    High-precision half-life measurements, at the level of ±0.04%, for the superallowed Fermi emitters 14O and 18Ne have been performed at TRIUMF's Isotope Separator and Accelerator facility. Using 3 independent detector systems, a gas-proportional counter, a fast plastic scintillator, and a high-purity germanium array, a series of direct β and γ counting measurements were performed for each of the isotopes. In the case of 14O, these measurements were made to help resolve an existing discrepancy between detection methods, whereas for 18Ne the half-life precision has been improved in anticipation of forthcoming high-precision branching ratio measurements.

  5. High-rate RTK and PPP multi-GNSS positioning for small-scale dynamic displacements monitoring

    NASA Astrophysics Data System (ADS)

    Paziewski, Jacek; Sieradzki, Rafał; Baryła, Radosław; Wielgosz, Pawel

    2017-04-01

    The monitoring of dynamic displacements and deformations of engineering structures such as buildings, towers and bridges is of great interest due to several practical and theoretical reasons. The most important is to provide information required for safe maintenance of the constructions. High temporal resolution and precision of GNSS observations predestine this technology to be applied to most demanding application in terms of accuracy, availability and reliability. GNSS technique supported by appropriate processing methodology may meet the specific demands and requirements of ground and structures monitoring. Thus, high-rate multi-GNSS signals may be used as reliable source of information on dynamic displacements of ground and engineering structures, also in real time applications. In this study we present initial results of application of precise relative GNSS positioning for detection of small scale (cm level) high temporal resolution dynamic displacements. Methodology and algorithms applied in self-developed software allowing for relative positioning using high-rate dual-frequency phase and pseudorange GPS+Galileo observations are also given. Additionally, an approach was also made to use the Precise Point Positioning technique to such application. In the experiment were used the observations obtained from high-rate (20 Hz) geodetic receivers. The dynamic displacements were simulated using specially constructed device moving GNSS antenna with dedicated amplitude and frequency. The obtained results indicate on possibility of detection of dynamic displacements of the GNSS antenna even at the level of few millimetres using both relative and Precise Point Positioning techniques after suitable signals processing.

  6. Precision injection molding of freeform optics

    NASA Astrophysics Data System (ADS)

    Fang, Fengzhou; Zhang, Nan; Zhang, Xiaodong

    2016-08-01

    Precision injection molding is the most efficient mass production technology for manufacturing plastic optics. Applications of plastic optics in field of imaging, illumination, and concentration demonstrate a variety of complex surface forms, developing from conventional plano and spherical surfaces to aspheric and freeform surfaces. It requires high optical quality with high form accuracy and lower residual stresses, which challenges both optical tool inserts machining and precision injection molding process. The present paper reviews recent progress in mold tool machining and precision injection molding, with more emphasis on precision injection molding. The challenges and future development trend are also discussed.

  7. Ethical considerations of neuro-oncology trial design in the era of precision medicine.

    PubMed

    Gupta, Saksham; Smith, Timothy R; Broekman, Marike L

    2017-08-01

    The field of oncology is currently undergoing a paradigm shift. Advances in the understanding of tumor biology and in tumor sequencing technology have contributed to the shift towards precision medicine, the therapeutic framework of targeting the individual oncogenic changes each tumor harbors. The success of precision medicine therapies, such as targeted kinase inhibitors and immunotherapies, in other cancers have motivated studies in brain cancers. The high specificity and cost of these therapies also encourage a shift in clinical trial design away from randomized control trials towards smaller, more exclusive early phase clinical trials. While these new trials advance the clinical application of increasingly precise and individualized therapies, their design brings ethical challenges . We review the pertinent ethical considerations for clinical trials of precision medicine in neuro-oncology and discuss methods to protect patients in this new era of trial design.

  8. Creation of the precision magnetic spectrometer SCAN-3

    NASA Astrophysics Data System (ADS)

    Afanasiev, S. V.; Anisimov, Yu. S.; Baldin, A. A.; Berlev, A. I.; Dryablov, D. K.; Dubinchik, B. V.; Elishev, A. F.; Fateev, O. V.; Igamkulov, Z. A.; Krechetov, Yu. F.; Kudashkin, I. V.; Kuznechov, S. N.; Malakhov, A. I.; Smirnov, V. A.; Shimansky, S. S.; Kliman, J.; Matousek, V.; Gmutsa, S.; Turzo, I.; Cruceru, I.; Cruceru, M.; Constantin, F.; Niolescu, G.; Ciolacu, L.; Paraipan, M.; Vokál, S.; Vrláková, J.; Baskov, V. A.; Lebedev, A. I.; L'vov, A. I.; Pavlyuchenko, L. N.; Polyansky, V. V.; Rzhanov, E. V.; Sidorin, S. S.; Sokol, G. A.; Glavanakov, I. V.; Tabachenko, A. N.; Jomurodov, D. M.; Bekmirzaev, R. N.; Ibadov, R. M.; Sultanov, M. U.

    2017-03-01

    The new JINR project [1] is aimed at studies of highly excited nuclear matter created in nuclei by a high-energy deuteron beam. The matter is studied through observation of its particular decay products - pairs of energetic particles with a wide opening angle, close to 180°. The new precision hybrid magnetic spectrometer SCAN-3 is to be built for detecting charged (π±, K±, p) and neutral (n) particles produced at the JINR Nuclotron internal target in dA collisions. One of the main and complex tasks is a study of low-energy ηA interaction and a search for η-bound states (η-mesic nuclei). Basic elements of the spectrometer and its characteristics are discussed in the article.

  9. An Improved Method of AGM for High Precision Geolocation of SAR Images

    NASA Astrophysics Data System (ADS)

    Zhou, G.; He, C.; Yue, T.; Huang, W.; Huang, Y.; Li, X.; Chen, Y.

    2018-05-01

    In order to take full advantage of SAR images, it is necessary to obtain the high precision location of the image. During the geometric correction process of images, to ensure the accuracy of image geometric correction and extract the effective mapping information from the images, precise image geolocation is important. This paper presents an improved analytical geolocation method (IAGM) that determine the high precision geolocation of each pixel in a digital SAR image. This method is based on analytical geolocation method (AGM) proposed by X. K. Yuan aiming at realizing the solution of RD model. Tests will be conducted using RADARSAT-2 SAR image. Comparing the predicted feature geolocation with the position as determined by high precision orthophoto, results indicate an accuracy of 50m is attainable with this method. Error sources will be analyzed and some recommendations about improving image location accuracy in future spaceborne SAR's will be given.

  10. High-precision R-branch transition frequencies in the ν2 fundamental band of H 3+ %A Perry, Adam J.; Hodges, James N.; Markus, Charles R.; Kocheril, G. Stephen; McCall, Benjamin J.

    NASA Astrophysics Data System (ADS)

    Perry, Adam J.; Hodges, James N.; Markus, Charles R.; Kocheril, G. Stephen; McCall, Benjamin J.

    2015-11-01

    The H3+ molecular ion has served as a long-standing benchmark for state-of-the-art ab initio calculations of molecular potentials and variational calculations of rovibrational energy levels. However, the accuracy of such calculations would not have been confirmed if not for the wealth of spectroscopic data that has been made available for this molecule. Recently, a new high-precision ion spectroscopy technique was demonstrated by Hodges et al., which led to the first highly accurate and precise (∼MHz) H3+ transition frequencies. As an extension of this work, we present ten additional R-branch transitions measured to similar precision as a next step toward the ultimate goal of producing a comprehensive high-precision survey of this molecule, from which rovibrational energy levels can be calculated.

  11. Precise Quantitation of MicroRNA in a Single Cell with Droplet Digital PCR Based on Ligation Reaction.

    PubMed

    Tian, Hui; Sun, Yuanyuan; Liu, Chenghui; Duan, Xinrui; Tang, Wei; Li, Zhengping

    2016-12-06

    MicroRNA (miRNA) analysis in a single cell is extremely important because it allows deep understanding of the exact correlation between the miRNAs and cell functions. Herein, we wish to report a highly sensitive and precisely quantitative assay for miRNA detection based on ligation-based droplet digital polymerase chain reaction (ddPCR), which permits the quantitation of miRNA in a single cell. In this ligation-based ddPCR assay, two target-specific oligonucleotide probes can be simply designed to be complementary to the half-sequence of the target miRNA, respectively, which avoids the sophisticated design of reverse transcription and provides high specificity to discriminate a single-base difference among miRNAs with simple operations. After the miRNA-templated ligation, the ddPCR partitions individual ligated products into a water-in-oil droplet and digitally counts the fluorescence-positive and negative droplets after PCR amplification for quantification of the target molecules, which possesses the power of precise quantitation and robustness to variation in PCR efficiency. By integrating the advantages of the precise quantification of ddPCR and the simplicity of the ligation-based PCR, the proposed method can sensitively measure let-7a miRNA with a detection limit of 20 aM (12 copies per microliter), and even a single-base difference can be discriminated in let-7 family members. More importantly, due to its high selectivity and sensitivity, the proposed method can achieve precise quantitation of miRNAs in single-cell lysate. Therefore, the ligation-based ddPCR assay may serve as a useful tool to exactly reveal the miRNAs' actions in a single cell, which is of great importance for the study of miRNAs' biofunction as well as for the related biomedical studies.

  12. Development of a Method to Assess the Precision Of the z-axis X-ray Beam Collimation in a CT Scanner

    NASA Astrophysics Data System (ADS)

    Kim, Yon-Min

    2018-05-01

    Generally X-ray equipment specifies the beam collimator for the accuracy measurement as a quality control item, but the computed tomography (CT) scanner with high dose has no collimator accuracy measurement item. If the radiation dose is to be reduced, an important step is to check if the beam precisely collimates at the body part for CT scan. However, few ways are available to assess how precisely the X-ray beam is collimated. In this regard, this paper provides a way to assess the precision of z-axis X-ray beam collimation in a CT scanner. After the image plate cassette had been exposed to the X-ray beam, the exposed width was automatically detected by using a computer program developed by the research team to calculate the difference between the exposed width and the imaged width (at isocenter). The result for the precision of z-axis X-ray beam collimation showed that the exposed width was 3.8 mm and the overexposure was high at 304% when a narrow beam of a 1.25 mm imaged width was used. In this study, the precision of the beam collimation of the CT scanner, which is frequently used for medical services, was measured in a convenient way by using the image plate (IP) cassette.

  13. Multiple-objective optimization in precision laser cutting of different thermoplastics

    NASA Astrophysics Data System (ADS)

    Tamrin, K. F.; Nukman, Y.; Choudhury, I. A.; Shirley, S.

    2015-04-01

    Thermoplastics are increasingly being used in biomedical, automotive and electronics industries due to their excellent physical and chemical properties. Due to the localized and non-contact process, use of lasers for cutting could result in precise cut with small heat-affected zone (HAZ). Precision laser cutting involving various materials is important in high-volume manufacturing processes to minimize operational cost, error reduction and improve product quality. This study uses grey relational analysis to determine a single optimized set of cutting parameters for three different thermoplastics. The set of the optimized processing parameters is determined based on the highest relational grade and was found at low laser power (200 W), high cutting speed (0.4 m/min) and low compressed air pressure (2.5 bar). The result matches with the objective set in the present study. Analysis of variance (ANOVA) is then carried out to ascertain the relative influence of process parameters on the cutting characteristics. It was found that the laser power has dominant effect on HAZ for all thermoplastics.

  14. Quantifying condition-dependent intracellular protein levels enables high-precision fitness estimates.

    PubMed

    Geiler-Samerotte, Kerry A; Hashimoto, Tatsunori; Dion, Michael F; Budnik, Bogdan A; Airoldi, Edoardo M; Drummond, D Allan

    2013-01-01

    Countless studies monitor the growth rate of microbial populations as a measure of fitness. However, an enormous gap separates growth-rate differences measurable in the laboratory from those that natural selection can distinguish efficiently. Taking advantage of the recent discovery that transcript and protein levels in budding yeast closely track growth rate, we explore the possibility that growth rate can be more sensitively inferred by monitoring the proteomic response to growth, rather than growth itself. We find a set of proteins whose levels, in aggregate, enable prediction of growth rate to a higher precision than direct measurements. However, we find little overlap between these proteins and those that closely track growth rate in other studies. These results suggest that, in yeast, the pathways that set the pace of cell division can differ depending on the growth-altering stimulus. Still, with proper validation, protein measurements can provide high-precision growth estimates that allow extension of phenotypic growth-based assays closer to the limits of evolutionary selection.

  15. The Surface Brightness-color Relations Based on Eclipsing Binary Stars: Toward Precision Better than 1% in Angular Diameter Predictions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Graczyk, Dariusz; Gieren, Wolfgang; Konorski, Piotr

    In this study we investigate the calibration of surface brightness–color (SBC) relations based solely on eclipsing binary stars. We selected a sample of 35 detached eclipsing binaries with trigonometric parallaxes from Gaia DR1 or Hipparcos whose absolute dimensions are known with an accuracy better than 3% and that lie within 0.3 kpc from the Sun. For the purpose of this study, we used mostly homogeneous optical and near-infrared photometry based on the Tycho-2 and 2MASS catalogs. We derived geometric angular diameters for all stars in our sample with a precision better than 10%, and for 11 of them with amore » precision better than 2%. The precision of individual angular diameters of the eclipsing binary components is currently limited by the precision of the geometric distances (∼5% on average). However, by using a subsample of systems with the best agreement between their geometric and photometric distances, we derived the precise SBC relations based only on eclipsing binary stars. These relations have precisions that are comparable to the best available SBC relations based on interferometric angular diameters, and they are fully consistent with them. With very precise Gaia parallaxes becoming available in the near future, angular diameters with a precision better than 1% will be abundant. At that point, the main uncertainty in the total error budget of the SBC relations will come from transformations between different photometric systems, disentangling of component magnitudes, and for hot OB stars, the main uncertainty will come from the interstellar extinction determination. We argue that all these issues can be overcome with modern high-quality data and conclude that a precision better than 1% is entirely feasible.« less

  16. Precise, High-throughput Analysis of Bacterial Growth.

    PubMed

    Kurokawa, Masaomi; Ying, Bei-Wen

    2017-09-19

    Bacterial growth is a central concept in the development of modern microbial physiology, as well as in the investigation of cellular dynamics at the systems level. Recent studies have reported correlations between bacterial growth and genome-wide events, such as genome reduction and transcriptome reorganization. Correctly analyzing bacterial growth is crucial for understanding the growth-dependent coordination of gene functions and cellular components. Accordingly, the precise quantitative evaluation of bacterial growth in a high-throughput manner is required. Emerging technological developments offer new experimental tools that allow updates of the methods used for studying bacterial growth. The protocol introduced here employs a microplate reader with a highly optimized experimental procedure for the reproducible and precise evaluation of bacterial growth. This protocol was used to evaluate the growth of several previously described Escherichia coli strains. The main steps of the protocol are as follows: the preparation of a large number of cell stocks in small vials for repeated tests with reproducible results, the use of 96-well plates for high-throughput growth evaluation, and the manual calculation of two major parameters (i.e., maximal growth rate and population density) representing the growth dynamics. In comparison to the traditional colony-forming unit (CFU) assay, which counts the cells that are cultured in glass tubes over time on agar plates, the present method is more efficient and provides more detailed temporal records of growth changes, but has a stricter detection limit at low population densities. In summary, the described method is advantageous for the precise and reproducible high-throughput analysis of bacterial growth, which can be used to draw conceptual conclusions or to make theoretical observations.

  17. Impact of orbit, clock and EOP errors in GNSS Precise Point Positioning

    NASA Astrophysics Data System (ADS)

    Hackman, C.

    2012-12-01

    Precise point positioning (PPP; [1]) has gained ever-increasing usage in GNSS carrier-phase positioning, navigation and timing (PNT) since its inception in the late 1990s. In this technique, high-precision satellite clocks, satellite ephemerides and earth-orientation parameters (EOPs) are applied as fixed input by the user in order to estimate receiver/location-specific quantities such as antenna coordinates, troposphere delay and receiver-clock corrections. This is in contrast to "network" solutions, in which (typically) less-precise satellite clocks, satellite ephemerides and EOPs are used as input, and in which these parameters are estimated simultaneously with the receiver/location-specific parameters. The primary reason for increased PPP application is that it offers most of the benefits of a network solution with a smaller computing cost. In addition, the software required to do PPP positioning can be simpler than that required for network solutions. Finally, PPP permits high-precision positioning of single or sparsely spaced receivers that may have few or no GNSS satellites in common view. A drawback of PPP is that the accuracy of the results depend directly on the accuracy of the supplied orbits, clocks and EOPs, since these parameters are not adjusted during the processing. In this study, we will examine the impact of orbit, EOP and satellite clock estimates on PPP solutions. Our primary focus will be the impact of these errors on station coordinates; however the study may be extended to error propagation into receiver-clock corrections and/or troposphere estimates if time permits. Study motivation: the United States Naval Observatory (USNO) began testing PPP processing using its own predicted orbits, clocks and EOPs in Summer 2012 [2]. The results of such processing could be useful for real- or near-real-time applications should they meet accuracy/precision requirements. Understanding how errors in satellite clocks, satellite orbits and EOPs propagate into PPP positioning and timing results allows researchers to focus their improvement efforts in areas most in need of attention. The initial study will be conducted using the simulation capabilities of Bernese GPS Software and extended to using real data if time permits. [1] J.F. Zumberge, M.B. Heflin, D.C. Jefferson, M.M. Watkins and F.H. Webb, Precise point positioning for the efficient and robust analysis of GPS data from large networks, J. Geophys. Res., 102(B3), 5005-5017, doi:10.1029/96JB03860, 1997. [2] C. Hackman, S.M. Byram, V.J. Slabinski and J.C. Tracey, Near-real-time and other high-precision GNSS-based orbit/clock/earth-orientation/troposphere parameters available from USNO, Proc. 2012 ION Joint Navigation Conference, 15 pp., in press, 2012.

  18. Sub-sampling genetic data to estimate black bear population size: A case study

    USGS Publications Warehouse

    Tredick, C.A.; Vaughan, M.R.; Stauffer, D.F.; Simek, S.L.; Eason, T.

    2007-01-01

    Costs for genetic analysis of hair samples collected for individual identification of bears average approximately US$50 [2004] per sample. This can easily exceed budgetary allowances for large-scale studies or studies of high-density bear populations. We used 2 genetic datasets from 2 areas in the southeastern United States to explore how reducing costs of analysis by sub-sampling affected precision and accuracy of resulting population estimates. We used several sub-sampling scenarios to create subsets of the full datasets and compared summary statistics, population estimates, and precision of estimates generated from these subsets to estimates generated from the complete datasets. Our results suggested that bias and precision of estimates improved as the proportion of total samples used increased, and heterogeneity models (e.g., Mh[CHAO]) were more robust to reduced sample sizes than other models (e.g., behavior models). We recommend that only high-quality samples (>5 hair follicles) be used when budgets are constrained, and efforts should be made to maximize capture and recapture rates in the field.

  19. PERFORMANCE OF OVID MEDLINE SEARCH FILTERS TO IDENTIFY HEALTH STATE UTILITY STUDIES.

    PubMed

    Arber, Mick; Garcia, Sonia; Veale, Thomas; Edwards, Mary; Shaw, Alison; Glanville, Julie M

    2017-01-01

    This study was designed to assess the sensitivity of three Ovid MEDLINE search filters developed to identify studies reporting health state utility values (HSUVs), to improve the performance of the best performing filter, and to validate resulting search filters. Three quasi-gold standard sets (QGS1, QGS2, QGS3) of relevant studies were harvested from reviews of studies reporting HSUVs. The performance of three initial filters was assessed by measuring their relative recall of studies in QGS1. The best performing filter was then developed further using QGS2. This resulted in three final search filters (FSF1, FSF2, and FSF3), which were validated using QGS3. FSF1 (sensitivity maximizing) retrieved 132/139 records (sensitivity: 95 percent) in the QGS3 validation set. FSF1 had a number needed to read (NNR) of 842. FSF2 (balancing sensitivity and precision) retrieved 128/139 records (sensitivity: 92 percent) with a NNR of 502. FSF3 (precision maximizing) retrieved 123/139 records (sensitivity: 88 percent) with a NNR of 383. We have developed and validated a search filter (FSF1) to identify studies reporting HSUVs with high sensitivity (95 percent) and two other search filters (FSF2 and FSF3) with reasonably high sensitivity (92 percent and 88 percent) but greater precision, resulting in a lower NNR. These seem to be the first validated filters available for HSUVs. The availability of filters with a range of sensitivity and precision options enables researchers to choose the filter which is most appropriate to the resources available for their specific research.

  20. High-precision gamma-ray spectroscopy of 61Cu, an emerging medical isotope used in positron emission tomography

    NASA Astrophysics Data System (ADS)

    Nelson, N.; Ellison, P.; Nickles, R.; McCutchan, E.; Sonzogni, A.; Smith, S.; Greene, J.; Carpenter, M.; Zhu, S.; Lister, C.; Moran, K.

    2017-09-01

    61Cu (t1 / 2 = 3.339h) is an important medical isotope used in positron emission tomography (PET) tumor hypoxia imaging scans; however, its beta-plus decay and the subsequent gamma decay of 61Ni has not been studied in over 30 years. Therefore, high quality decay data of 61Cu is desired to determine the overall dose delivered to a patient. In this study, 61Cu was produced at the University of Wisconsin - Madison cyclotron and then assayed using the Gammasphere array at Argonne National Laboratory. Consisting of 70 Compton-suppressed high-purity germanium (HPGe) detectors, Gammasphere provides precise decay data that exceeds that of previous 61Cu studies. γ-ray singles and coincident data were recorded and then analyzed using Radware gf3m software. Through γ- γ coincidence techniques, new γ-ray transitions were identified and high precision determination of γ-ray intensities were made. These modifications and additions to the current decay scheme will be presented, and their impact on the resulting does estimates will be discussed. DOE Isotope Program is acknowledged for funding ST5001030. Work supported by the U.S. DOE under Grant No. DE-FG02-94ER40848 and Contract Nos. DE-AC02-98CH10946 and DE-AC02-06CH11357 and by the Science Undergraduate Laboratory Internship Program (SULI).

  1. The Geoscience Laser Altimetry/Ranging System (GLARS)

    NASA Technical Reports Server (NTRS)

    Cohen, S. C.; Degnan, J. J.; Bufton, J. L.; Garvin, J. B.; Abshire, J. B.

    1986-01-01

    The Geoscience Laser Altimetry Ranging System (GLARS) is a highly precise distance measurement system to be used for making extremely accurate geodetic observations from a space platform. It combines the attributes of a pointable laser ranging system making observations to cube corner retroreflectors placed on the ground with those of a nadir looking laser altimeter making height observations to ground, ice sheet, and oceanic surfaces. In the ranging mode, centimeter-level precise baseline and station coordinate determinations will be made on grids consisting of 100 to 200 targets separated by distances from a few tens of kilometers to about 1000 km. These measurements will be used for studies of seismic zone crustal deformations and tectonic plate motions. Ranging measurements will also be made to a coarser, but globally distributed array of retroreflectors for both precise geodetic and orbit determination applications. In the altimetric mode, relative height determinations will be obtained with approximately decimeter vertical precision and 70 to 100 meter horizontal resolution. The height data will be used to study surface topography and roughness, ice sheet and lava flow thickness, and ocean dynamics. Waveform digitization will provide a measure of the vertical extent of topography within each footprint. The planned Earth Observing System is an attractive candidate platform for GLARS since the GLAR data can be used both for direct analyses and for highly precise orbit determination needed in the reduction of data from other sensors on the multi-instrument platform. (1064, 532, and 355 nm)Nd:YAG laser meets the performance specifications for the system.

  2. The medline UK filter: development and validation of a geographic search filter to retrieve research about the UK from OVID medline.

    PubMed

    Ayiku, Lynda; Levay, Paul; Hudson, Tom; Craven, Jenny; Barrett, Elizabeth; Finnegan, Amy; Adams, Rachel

    2017-07-13

    A validated geographic search filter for the retrieval of research about the United Kingdom (UK) from bibliographic databases had not previously been published. To develop and validate a geographic search filter to retrieve research about the UK from OVID medline with high recall and precision. Three gold standard sets of references were generated using the relative recall method. The sets contained references to studies about the UK which had informed National Institute for Health and Care Excellence (NICE) guidance. The first and second sets were used to develop and refine the medline UK filter. The third set was used to validate the filter. Recall, precision and number-needed-to-read (NNR) were calculated using a case study. The validated medline UK filter demonstrated 87.6% relative recall against the third gold standard set. In the case study, the medline UK filter demonstrated 100% recall, 11.4% precision and a NNR of nine. A validated geographic search filter to retrieve research about the UK with high recall and precision has been developed. The medline UK filter can be applied to systematic literature searches in OVID medline for topics with a UK focus. © 2017 Crown copyright. Health Information and Libraries Journal © 2017 Health Libraries GroupThis article is published with the permission of the Controller of HMSO and the Queen's Printer for Scotland.

  3. A study on Aerosol jet printing technology in LED module manufacturing

    NASA Astrophysics Data System (ADS)

    Rudorfer, Andreas; Tscherner, Martin; Palfinger, Christian; Reil, Frank; Hartmann, Paul; Seferis, Ioannis E.; Zych, Eugeniusz; Wenzl, Franz P.

    2016-09-01

    State of the art fabrication of LED modules based on chip-on-board (COB) technology comprises some shortcomings both with respect to the manufacturing process itself but also with regard to potential sources of failures and manufacturing impreciseness. One promising alternative is additive manufacturing, a technology which has gained a lot of attention during the last years due to its materials and cost saving capabilities. Especially direct-write technologies like Aerosol jet printing have demonstrated advantages compared to other technological approaches when printing high precision layers or high precision electronic circuits on substrates which, as an additional advantage, also can be flexible and 3D shaped. Based on test samples and test structures manufactured by Aerosol jet printing technology, in this context we discuss the potentials of additive manufacturing in various aspects of LED module fabrication, ranging from the deposition of the die-attach material, wire bond replacement by printed electrical connects as well as aspects of high-precision phosphor layer deposition for color conversion and white light generation.

  4. New precise astrometric observations of Nereid in 2012-2017

    NASA Astrophysics Data System (ADS)

    Yu, Y.; Qiao, R. C.; Yan, D.; Cheng, X.; Xi, X. J.; Tang, K.; Luo, H.

    2018-03-01

    Nereid is one of the most distinctive natural satellites that we know in the Solar system. The orbit of Nereid is highly eccentric and inclined with respect to the equator of its primary, Neptune. Studying Nereid is one of the inspiring ways to acquire better knowledge of the Solar system. Due to its faintness, the ground-based observations of Nereid have been limited and the observation precisions in the past were generally not high. A total of 150 new observed positions of Nereid in the period 2012-2017 were collected by the 0.8 m reflecting telescope at Xinglong station of National Astronomical Observatory and the 2.4 m reflecting telescope at Lijiang station of Yunnan Astronomical Observatory. Thanks to the high-quality reference catalogue Gaia DR1 and suitable processing methods for images, the precision of our new observations of Nereid is 2-3 times higher than those of the previous observations, and the dispersions of our observations are better than 70 mas.

  5. A new polishing process for large-aperture and high-precision aspheric surface

    NASA Astrophysics Data System (ADS)

    Nie, Xuqing; Li, Shengyi; Dai, Yifan; Song, Ci

    2013-07-01

    The high-precision aspheric surface is hard to be achieved due to the mid-spatial frequency error in the finishing step. The influence of mid-spatial frequency error is studied through the simulations and experiments. In this paper, a new polishing process based on magnetorheological finishing (MRF), smooth polishing (SP) and ion beam figuring (IBF) is proposed. A 400mm aperture parabolic surface is polished with this new process. The smooth polishing (SP) is applied after rough machining to control the MSF error. In the middle finishing step, most of low-spatial frequency error is removed by MRF rapidly, then the mid-spatial frequency error is restricted by SP, finally ion beam figuring is used to finish the surface. The surface accuracy is improved from the initial 37.691nm (rms, 95% aperture) to the final 4.195nm. The results show that the new polishing process is effective to manufacture large-aperture and high-precision aspheric surface.

  6. The sPHENIX Experiment

    NASA Astrophysics Data System (ADS)

    Pérez Lara, Carlos E.

    2018-02-01

    Our understanding of QCD under extreme conditions has advanced tremendously in the last 20 years with the discovery of the Quark Gluon Plasma and its characterisation in heavy ion collisions at RHIC and LHC. The sPHENIX detector planned at RHIC is designed to further study the microscopic nature of the QGP through precision measurements of jet, upsilon and open heavy flavor probes over a broad pT range. The multi-year sPHENIX physics program will commence in early 2023, using state-of-the art detector technologies to fully exploit the highest RHIC luminosities. The experiment incorporates the 1.4 T former BaBar solenoid magnet, and will feature high precision tracking and vertexing capabilities, provided by a compact TPC, Si-strip intermediate tracker and MAPS vertex detector. This is complemented by highly granular electromagnetic and hadronic calorimetry with full azimuthal coverage. In this document I describe the sPHENIX detector design and physics program, with particular emphasis on the comprehensive open heavy flavour program enabled by the experiment's large coverage, high rate capability and precision vertexing.

  7. Nucleation by rRNA Dictates the Precision of Nucleolus Assembly.

    PubMed

    Falahati, Hanieh; Pelham-Webb, Bobbie; Blythe, Shelby; Wieschaus, Eric

    2016-02-08

    Membrane-less organelles are intracellular compartments specialized to carry out specific cellular functions. There is growing evidence supporting the possibility that such organelles form as a new phase, separating from cytoplasm or nucleoplasm. However, a main challenge to such phase separation models is that the initial assembly, or nucleation, of the new phase is typically a highly stochastic process and does not allow for the spatiotemporal precision observed in biological systems. Here, we investigate the initial assembly of the nucleolus, a membrane-less organelle involved in different cellular functions including ribosomal biogenesis. We demonstrate that the nucleolus formation is precisely timed in D. melanogaster embryos and follows the transcription of rRNA. We provide evidence that transcription of rRNA is necessary for overcoming the highly stochastic nucleation step in the formation of the nucleolus, through a seeding mechanism. In the absence of rDNA, the nucleolar proteins studied are able to form high-concentration assemblies. However, unlike the nucleolus, these assemblies are highly variable in number, location, and time at which they form. In addition, quantitative study of the changes in the nucleoplasmic concentration and distribution of these nucleolar proteins in the wild-type embryos is consistent with the role of rRNA in seeding the nucleolus formation. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. High precision applications of the global positioning system

    NASA Technical Reports Server (NTRS)

    Lichten, Stephen M.

    1991-01-01

    The Global Positioning System (GPS) is a constellation of U.S. defense navigation satellites which can be used for military and civilian positioning applications. A wide variety of GPS scientific applications were identified and precise positioning capabilities with GPS were already demonstrated with data available from the present partial satellite constellation. Expected applications include: measurements of Earth crustal motion, particularly in seismically active regions; measurements of the Earth's rotation rate and pole orientation; high-precision Earth orbiter tracking; surveying; measurements of media propagation delays for calibration of deep space radiometric data in support of NASA planetary missions; determination of precise ground station coordinates; and precise time transfer worldwide.

  9. Precision Timing with Silicon Sensors for Use in Calorimetry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bornheim, A.; Ronzhin, A.; Kim, H.

    2017-11-27

    The high luminosity upgrade of the Large Hadron Collider (HL-LHC) at CERN is expected to provide instantaneous luminosities of 5 × 10 34 cm -2 s -1. The high luminosities expected at the HL-LHC will be accompanied by a factor of 5 to 10 more pileup compared with LHC conditions in 2015, causing general confusion for particle identification and event reconstruction. Precision timing allows to extend calorimetric measurements into such a high density environment by subtracting the energy deposits from pileup interactions. Calorimeters employing silicon as the active component have recently become a popular choice for the HL- LHC andmore » future collider experiments which face very high radiation environments. We present studies of basic calorimetric and precision timing measurements using a prototype composed of tungsten absorber and silicon sensor as the active medium. We show that for the bulk of electromagnetic showers induced by electrons in the range of 20 GeV to 30 GeV, we can achieve time resolutions better than 25 ps per single pad sensor.« less

  10. Spatial distribution, sampling precision and survey design optimisation with non-normal variables: The case of anchovy (Engraulis encrasicolus) recruitment in Spanish Mediterranean waters

    NASA Astrophysics Data System (ADS)

    Tugores, M. Pilar; Iglesias, Magdalena; Oñate, Dolores; Miquel, Joan

    2016-02-01

    In the Mediterranean Sea, the European anchovy (Engraulis encrasicolus) displays a key role in ecological and economical terms. Ensuring stock sustainability requires the provision of crucial information, such as species spatial distribution or unbiased abundance and precision estimates, so that management strategies can be defined (e.g. fishing quotas, temporal closure areas or marine protected areas MPA). Furthermore, the estimation of the precision of global abundance at different sampling intensities can be used for survey design optimisation. Geostatistics provide a priori unbiased estimations of the spatial structure, global abundance and precision for autocorrelated data. However, their application to non-Gaussian data introduces difficulties in the analysis in conjunction with low robustness or unbiasedness. The present study applied intrinsic geostatistics in two dimensions in order to (i) analyse the spatial distribution of anchovy in Spanish Western Mediterranean waters during the species' recruitment season, (ii) produce distribution maps, (iii) estimate global abundance and its precision, (iv) analyse the effect of changing the sampling intensity on the precision of global abundance estimates and, (v) evaluate the effects of several methodological options on the robustness of all the analysed parameters. The results suggested that while the spatial structure was usually non-robust to the tested methodological options when working with the original dataset, it became more robust for the transformed datasets (especially for the log-backtransformed dataset). The global abundance was always highly robust and the global precision was highly or moderately robust to most of the methodological options, except for data transformation.

  11. High-Precision Phenotyping of Grape Bunch Architecture Using Fast 3D Sensor and Automation.

    PubMed

    Rist, Florian; Herzog, Katja; Mack, Jenny; Richter, Robert; Steinhage, Volker; Töpfer, Reinhard

    2018-03-02

    Wine growers prefer cultivars with looser bunch architecture because of the decreased risk for bunch rot. As a consequence, grapevine breeders have to select seedlings and new cultivars with regard to appropriate bunch traits. Bunch architecture is a mosaic of different single traits which makes phenotyping labor-intensive and time-consuming. In the present study, a fast and high-precision phenotyping pipeline was developed. The optical sensor Artec Spider 3D scanner (Artec 3D, L-1466, Luxembourg) was used to generate dense 3D point clouds of grapevine bunches under lab conditions and an automated analysis software called 3D-Bunch-Tool was developed to extract different single 3D bunch traits, i.e., the number of berries, berry diameter, single berry volume, total volume of berries, convex hull volume of grapes, bunch width and bunch length. The method was validated on whole bunches of different grapevine cultivars and phenotypic variable breeding material. Reliable phenotypic data were obtained which show high significant correlations (up to r² = 0.95 for berry number) compared to ground truth data. Moreover, it was shown that the Artec Spider can be used directly in the field where achieved data show comparable precision with regard to the lab application. This non-invasive and non-contact field application facilitates the first high-precision phenotyping pipeline based on 3D bunch traits in large plant sets.

  12. Water vapor δ17O measurements using an off-axis integrated cavity output spectrometer and seasonal variation in 17O-excess of precipitation in the east-central United States

    NASA Astrophysics Data System (ADS)

    Tian, C.; Wang, L.; Novick, K. A.

    2016-12-01

    High-precision triple oxygen isotope analysis can be used to improve our understanding of multiple hydrological and meteorological processes. Recent studies focus on understanding 17O-excess variation of tropical storms, high-latitude snow and ice-core as well as spatial distribution of meteoric water (tap water). The temporal scale of 17O-excess variation in middle-latitude precipitation is needed to better understand which processes control on the 17O-excess variations. This study focused on assessing how the accuracy and precision of vapor δ17O laser spectroscopy measurements depend on vapor concentration, delta range, and averaging-time. Meanwhile, we presented 17O-excess data from two-year, event based precipitation sampling in the east-central United States. A Triple Water Vapor Isotope Analyzer (T-WVIA) was used to evaluate the accuracy and precision of δ2H, δ18O and δ17O measurements. GISP and SLAP2 from IAEA and four working standards were used to evaluate the sensitivity in the three factors. Overall, the accuracy and precision of all isotope measurements were sensitive to concentration, with higher accuracy and precision generally observed under moderate vapor concentrations (i.e., 10000-15000 ppm) for all isotopes. Precision was also sensitive to the range of delta values, though the effect was not as large when compared to the sensitivity to concentration. The precision was much less sensitive to averaging time when compared with concentration and delta range effects. The preliminary results showed that 17O-excess variation was lower in summer (23±17 per meg) than in winter (34±16 per meg), whereas spring values (30±21 per meg) was similar to fall (29±13 per meg). That means kinetic fractionation influences the isotopic composition and 17O-excess in different seasons.

  13. Precision optical slit for high heat load or ultra high vacuum

    DOEpatents

    Andresen, N.C.; DiGennaro, R.S.; Swain, T.L.

    1995-01-24

    This invention relates generally to slits used in optics that must be precisely aligned and adjusted. The optical slits of the present invention are useful in x-ray optics, x-ray beam lines, optical systems in which the entrance slit is critical for high wavelength resolution. The invention is particularly useful in ultra high vacuum systems where lubricants are difficult to use and designs which avoid the movement of metal parts against one another are important, such as monochromators for high wavelength resolution with ultra high vacuum systems. The invention further relates to optical systems in which temperature characteristics of the slit materials is important. The present invention yet additionally relates to precision slits wherein the opposing edges of the slit must be precisely moved relative to a center line between the edges with each edge retaining its parallel orientation with respect to the other edge and/or the center line. 21 figures.

  14. Precision optical slit for high heat load or ultra high vacuum

    DOEpatents

    Andresen, Nord C.; DiGennaro, Richard S.; Swain, Thomas L.

    1995-01-01

    This invention relates generally to slits used in optics that must be precisely aligned and adjusted. The optical slits of the present invention are useful in x-ray optics, x-ray beam lines, optical systems in which the entrance slit is critical for high wavelength resolution. The invention is particularly useful in ultra high vacuum systems where lubricants are difficult to use and designs which avoid the movement of metal parts against one another are important, such as monochrometers for high wavelength resolution with ultra high vacuum systems. The invention further relates to optical systems in which temperature characteristics of the slit materials is important. The present invention yet additionally relates to precision slits wherein the opposing edges of the slit must be precisely moved relative to a center line between the edges with each edge retaining its parallel orientation with respect to the other edge and/or the center line.

  15. High-precision QEC values of superallowed 0+ → 0+β-emitters 46Cr, 50Fe and 54Ni

    NASA Astrophysics Data System (ADS)

    Zhang, P.; Xu, X.; Shuai, P.; Chen, R. J.; Yan, X. L.; Zhang, Y. H.; Wang, M.; Litvinov, Yu. A.; Blaum, K.; Xu, H. S.; Bao, T.; Chen, X. C.; Chen, H.; Fu, C. Y.; He, J. J.; Kubono, S.; Lam, Y. H.; Liu, D. W.; Mao, R. S.; Ma, X. W.; Sun, M. Z.; Tu, X. L.; Xing, Y. M.; Yang, J. C.; Yuan, Y. J.; Zeng, Q.; Zhou, X.; Zhou, X. H.; Zhan, W. L.; Litvinov, S.; Audi, G.; Uesaka, T.; Yamaguchi, Y.; Yamaguchi, T.; Ozawa, A.; Sun, B. H.; Sun, Y.; Xu, F. R.

    2017-04-01

    Short-lived 46Cr, 50Fe and 54Ni were studied by isochronous mass spectrometry at the HIRFL-CSR facility in Lanzhou. The measured precision mass excesses (ME) of 46Cr, 50Fe and 54Ni are - 29471 (11) keV, - 34477 (6) keV and - 39278 (4) keV, respectively. The superallowed 0+ →0+β-decay Q values were derived to be QEC (46Cr) = 7604 (11) keV, QEC (50Fe) = 8150 (6) keV and QEC (54Ni) = 8731 (4) keV. The values for 50Fe and 54Ni are by one order of magnitude more precise than the adopted literature values. By combining the existing half-lives and branching ratios, we obtained the corrected Ft values to be Ft (50Fe) = 3103 (70) s and Ft (54Ni) = 3076 (50) s. The main contribution to the Ft uncertainties is now due to β-decay branching ratios, still, more high-precision measurements of the half-lives, the masses, and especially the branching ratios are needed in order to satisfy the requirements for a stringent CVC test.

  16. Singlet-catalyzed electroweak phase transitions and precision Higgs boson studies

    NASA Astrophysics Data System (ADS)

    Profumo, Stefano; Ramsey-Musolf, Michael J.; Wainwright, Carroll L.; Winslow, Peter

    2015-02-01

    We update the phenomenology of gauge-singlet extensions of the Standard Model scalar sector and their implications for the electroweak phase transition. Considering the introduction of one real scalar singlet to the scalar potential, we analyze present constraints on the potential parameters from Higgs coupling measurements at the Large Hadron Collider (LHC) and electroweak precision observables for the kinematic regime in which no new scalar decay modes arise. We then show how future precision measurements of Higgs boson signal strengths and the Higgs self-coupling could probe the scalar potential parameter space associated with a strong first-order electroweak phase transition. We illustrate using benchmark precision for several future collider options, including the high-luminosity LHC, the International Linear Collider, Triple-Large Electron-Positron collider, the China Electron-Positron Collider, and a 100 TeV proton-proton collider, such as the Very High Energy LHC or the Super Proton-Proton Collider. For the regions of parameter space leading to a strong first-order electroweak phase transition, we find that there exists considerable potential for observable deviations from purely Standard Model Higgs properties at these prospective future colliders.

  17. Frozen lattice and absorptive model for high angle annular dark field scanning transmission electron microscopy: A comparison study in terms of integrated intensity and atomic column position measurement.

    PubMed

    Alania, M; Lobato, I; Van Aert, S

    2018-01-01

    In this paper, both the frozen lattice (FL) and the absorptive potential (AP) approximation models are compared in terms of the integrated intensity and the precision with which atomic columns can be located from an image acquired using high angle annular dark field (HAADF) scanning transmission electron microscopy (STEM). The comparison is made for atoms of Cu, Ag, and Au. The integrated intensity is computed for both an isolated atomic column and an atomic column inside an FCC structure. The precision has been computed using the so-called Cramér-Rao Lower Bound (CRLB), which provides a theoretical lower bound on the variance with which parameters can be estimated. It is shown that the AP model results into accurate measurements for the integrated intensity only for small detector ranges under relatively low angles and for small thicknesses. In terms of the attainable precision, both methods show similar results indicating picometer range precision under realistic experimental conditions. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. High-throughput dual-colour precision imaging for brain-wide connectome with cytoarchitectonic landmarks at the cellular level

    PubMed Central

    Gong, Hui; Xu, Dongli; Yuan, Jing; Li, Xiangning; Guo, Congdi; Peng, Jie; Li, Yuxin; Schwarz, Lindsay A.; Li, Anan; Hu, Bihe; Xiong, Benyi; Sun, Qingtao; Zhang, Yalun; Liu, Jiepeng; Zhong, Qiuyuan; Xu, Tonghui; Zeng, Shaoqun; Luo, Qingming

    2016-01-01

    The precise annotation and accurate identification of neural structures are prerequisites for studying mammalian brain function. The orientation of neurons and neural circuits is usually determined by mapping brain images to coarse axial-sampling planar reference atlases. However, individual differences at the cellular level likely lead to position errors and an inability to orient neural projections at single-cell resolution. Here, we present a high-throughput precision imaging method that can acquire a co-localized brain-wide data set of both fluorescent-labelled neurons and counterstained cell bodies at a voxel size of 0.32 × 0.32 × 2.0 μm in 3 days for a single mouse brain. We acquire mouse whole-brain imaging data sets of multiple types of neurons and projections with anatomical annotation at single-neuron resolution. The results show that the simultaneous acquisition of labelled neural structures and cytoarchitecture reference in the same brain greatly facilitates precise tracing of long-range projections and accurate locating of nuclei. PMID:27374071

  19. The least channel capacity for chaos synchronization.

    PubMed

    Wang, Mogei; Wang, Xingyuan; Liu, Zhenzhen; Zhang, Huaguang

    2011-03-01

    Recently researchers have found that a channel with capacity exceeding the Kolmogorov-Sinai entropy of the drive system (h(KS)) is theoretically necessary and sufficient to sustain the unidirectional synchronization to arbitrarily high precision. In this study, we use symbolic dynamics and the automaton reset sequence to distinguish the information that is required in identifying the current drive word and obtaining the synchronization. Then, we show that the least channel capacity that is sufficient to transmit the distinguished information and attain the synchronization of arbitrarily high precision is h(KS). Numerical simulations provide support for our conclusions.

  20. Validation of the Filovirus Plaque Assay for Use in Preclinical Studies

    PubMed Central

    Shurtleff, Amy C.; Bloomfield, Holly A.; Mort, Shannon; Orr, Steven A.; Audet, Brian; Whitaker, Thomas; Richards, Michelle J.; Bavari, Sina

    2016-01-01

    A plaque assay for quantitating filoviruses in virus stocks, prepared viral challenge inocula and samples from research animals has recently been fully characterized and standardized for use across multiple institutions performing Biosafety Level 4 (BSL-4) studies. After standardization studies were completed, Good Laboratory Practices (GLP)-compliant plaque assay method validation studies to demonstrate suitability for reliable and reproducible measurement of the Marburg Virus Angola (MARV) variant and Ebola Virus Kikwit (EBOV) variant commenced at the United States Army Medical Research Institute of Infectious Diseases (USAMRIID). The validation parameters tested included accuracy, precision, linearity, robustness, stability of the virus stocks and system suitability. The MARV and EBOV assays were confirmed to be accurate to ±0.5 log10 PFU/mL. Repeatability precision, intermediate precision and reproducibility precision were sufficient to return viral titers with a coefficient of variation (%CV) of ≤30%, deemed acceptable variation for a cell-based bioassay. Intraclass correlation statistical techniques for the evaluation of the assay’s precision when the same plaques were quantitated by two analysts returned values passing the acceptance criteria, indicating high agreement between analysts. The assay was shown to be accurate and specific when run on Nonhuman Primates (NHP) serum and plasma samples diluted in plaque assay medium, with negligible matrix effects. Virus stocks demonstrated stability for freeze-thaw cycles typical of normal usage during assay retests. The results demonstrated that the EBOV and MARV plaque assays are accurate, precise and robust for filovirus titration in samples associated with the performance of GLP animal model studies. PMID:27110807

  1. Detecting declines in the abundance of a bull trout (Salvelinus confluentus) population: Understanding the accuracy, precision, and costs of our efforts

    USGS Publications Warehouse

    Al-Chokhachy, R.; Budy, P.; Conner, M.

    2009-01-01

    Using empirical field data for bull trout (Salvelinus confluentus), we evaluated the trade-off between power and sampling effort-cost using Monte Carlo simulations of commonly collected mark-recapture-resight and count data, and we estimated the power to detect changes in abundance across different time intervals. We also evaluated the effects of monitoring different components of a population and stratification methods on the precision of each method. Our results illustrate substantial variability in the relative precision, cost, and information gained from each approach. While grouping estimates by age or stage class substantially increased the precision of estimates, spatial stratification of sampling units resulted in limited increases in precision. Although mark-resight methods allowed for estimates of abundance versus indices of abundance, our results suggest snorkel surveys may be a more affordable monitoring approach across large spatial scales. Detecting a 25% decline in abundance after 5 years was not possible, regardless of technique (power = 0.80), without high sampling effort (48% of study site). Detecting a 25% decline was possible after 15 years, but still required high sampling efforts. Our results suggest detecting moderate changes in abundance of freshwater salmonids requires considerable resource and temporal commitments and highlight the difficulties of using abundance measures for monitoring bull trout populations.

  2. Design and control of the precise tracking bed based on complex electromechanical design theory

    NASA Astrophysics Data System (ADS)

    Ren, Changzhi; Liu, Zhao; Wu, Liao; Chen, Ken

    2010-05-01

    The precise tracking technology is wide used in astronomical instruments, satellite tracking and aeronautic test bed. However, the precise ultra low speed tracking drive system is one high integrated electromechanical system, which one complexly electromechanical design method is adopted to improve the efficiency, reliability and quality of the system during the design and manufacture circle. The precise Tracking Bed is one ultra-exact, ultra-low speed, high precision and huge inertial instrument, which some kind of mechanism and environment of the ultra low speed is different from general technology. This paper explores the design process based on complex electromechanical optimizing design theory, one non-PID with a CMAC forward feedback control method is used in the servo system of the precise tracking bed and some simulation results are discussed.

  3. Video-rate or high-precision: a flexible range imaging camera

    NASA Astrophysics Data System (ADS)

    Dorrington, Adrian A.; Cree, Michael J.; Carnegie, Dale A.; Payne, Andrew D.; Conroy, Richard M.; Godbaz, John P.; Jongenelen, Adrian P. P.

    2008-02-01

    A range imaging camera produces an output similar to a digital photograph, but every pixel in the image contains distance information as well as intensity. This is useful for measuring the shape, size and location of objects in a scene, hence is well suited to certain machine vision applications. Previously we demonstrated a heterodyne range imaging system operating in a relatively high resolution (512-by-512) pixels and high precision (0.4 mm best case) configuration, but with a slow measurement rate (one every 10 s). Although this high precision range imaging is useful for some applications, the low acquisition speed is limiting in many situations. The system's frame rate and length of acquisition is fully configurable in software, which means the measurement rate can be increased by compromising precision and image resolution. In this paper we demonstrate the flexibility of our range imaging system by showing examples of high precision ranging at slow acquisition speeds and video-rate ranging with reduced ranging precision and image resolution. We also show that the heterodyne approach and the use of more than four samples per beat cycle provides better linearity than the traditional homodyne quadrature detection approach. Finally, we comment on practical issues of frame rate and beat signal frequency selection.

  4. System and method for high precision isotope ratio destructive analysis

    DOEpatents

    Bushaw, Bruce A; Anheier, Norman C; Phillips, Jon R

    2013-07-02

    A system and process are disclosed that provide high accuracy and high precision destructive analysis measurements for isotope ratio determination of relative isotope abundance distributions in liquids, solids, and particulate samples. The invention utilizes a collinear probe beam to interrogate a laser ablated plume. This invention provides enhanced single-shot detection sensitivity approaching the femtogram range, and isotope ratios that can be determined at approximately 1% or better precision and accuracy (relative standard deviation).

  5. Gradient magnetometer system balloons

    NASA Astrophysics Data System (ADS)

    Korepanov, Valery; Tsvetkov, Yury

    2005-08-01

    Earth's magnetic field study still remains one of the leading edges of experimental geophysics. Thus study is executed on the Earth surface, including ocean bottom, and on satellite heights using component, mostly flux-gate magnetometers. But balloon experiments with component magnetometers are very seldom, first of all because of great complexity of data interpretation. This niche still waits for new experimental ideology, which will allow to get the measurements results with high accuracy, especially in gradient mode. The great importance of precise balloon-borne component magnetic field gradient study is obvious. Its technical realization is based both on the available at the marked high-precision non-magnetic tiltmeters and on recent achievements of flux-gate magnetometry. The scientific goals of balloon-borne magnetic gradiometric experiment are discussed and its practical realization is proposed.

  6. Displacements Study of an Earth Fill Dam Based on High Precision Geodetic Monitoring and Numerical Modeling.

    PubMed

    Acosta, Luis Enrique; de Lacy, M Clara; Ramos, M Isabel; Cano, Juan Pedro; Herrera, Antonio Manuel; Avilés, Manuel; Gil, Antonio José

    2018-04-27

    The aim of this paper is to study the behavior of an earth fill dam, analyzing the deformations determined by high precision geodetic techniques and those obtained by the Finite Element Method (FEM). A large number of control points were established around the area of the dam, and the measurements of their displacements took place during several periods. In this study, high-precision leveling and GNSS (Global Navigation Satellite System) techniques were used to monitor vertical and horizontal displacements respectively. Seven surveys were carried out: February and July 2008, March and July 2013, August 2014, September 2015 and September 2016. Deformations were predicted, taking into account the general characteristics of an earth fill dam. A comparative evaluation of the results derived from predicted (FEM) and observed deformations shows the differences on average being 20 cm for vertical displacements, and 6 cm for horizontal displacements at the crest. These differences are probably due to the simplifications assumed during the FEM modeling process: critical sections are considered homogeneous along their longitude, and the properties of the materials were established according to the general characteristics of an earth fill dam. These characteristics were taken from the normative and similar studies in the country. This could also be due to the geodetic control points being anchored in the superficial layer of the slope when the construction of the dam was finished.

  7. High-precision relative position and attitude measurement for on-orbit maintenance of spacecraft

    NASA Astrophysics Data System (ADS)

    Zhu, Bing; Chen, Feng; Li, Dongdong; Wang, Ying

    2018-02-01

    In order to realize long-term on-orbit running of satellites, space stations, etc spacecrafts, in addition to the long life design of devices, The life of the spacecraft can also be extended by the on-orbit servicing and maintenance. Therefore, it is necessary to keep precise and detailed maintenance of key components. In this paper, a high-precision relative position and attitude measurement method used in the maintenance of key components is given. This method mainly considers the design of the passive cooperative marker, light-emitting device and high resolution camera in the presence of spatial stray light and noise. By using a series of algorithms, such as background elimination, feature extraction, position and attitude calculation, and so on, the high precision relative pose parameters as the input to the control system between key operation parts and maintenance equipment are obtained. The simulation results show that the algorithm is accurate and effective, satisfying the requirements of the precision operation technique.

  8. High-precision measurements of cementless acetabular components using model-based RSA: an experimental study.

    PubMed

    Baad-Hansen, Thomas; Kold, Søren; Kaptein, Bart L; Søballe, Kjeld

    2007-08-01

    In RSA, tantalum markers attached to metal-backed acetabular cups are often difficult to detect on stereo radiographs due to the high density of the metal shell. This results in occlusion of the prosthesis markers and may lead to inconclusive migration results. Within the last few years, new software systems have been developed to solve this problem. We compared the precision of 3 RSA systems in migration analysis of the acetabular component. A hemispherical and a non-hemispherical acetabular component were mounted in a phantom. Both acetabular components underwent migration analyses with 3 different RSA systems: conventional RSA using tantalum markers, an RSA system using a hemispherical cup algorithm, and a novel model-based RSA system. We found narrow confidence intervals, indicating high precision of the conventional marker system and model-based RSA with regard to migration and rotation. The confidence intervals of conventional RSA and model-based RSA were narrower than those of the hemispherical cup algorithm-based system regarding cup migration and rotation. The model-based RSA software combines the precision of the conventional RSA software with the convenience of the hemispherical cup algorithm-based system. Based on our findings, we believe that these new tools offer an improvement in the measurement of acetabular component migration.

  9. A Comparative Study of the Applied Methods for Estimating Deflection of the Vertical in Terrestrial Geodetic Measurements

    PubMed Central

    Vittuari, Luca; Tini, Maria Alessandra; Sarti, Pierguido; Serantoni, Eugenio; Borghi, Alessandra; Negusini, Monia; Guillaume, Sébastien

    2016-01-01

    This paper compares three different methods capable of estimating the deflection of the vertical (DoV): one is based on the joint use of high precision spirit leveling and Global Navigation Satellite Systems (GNSS), a second uses astro-geodetic measurements and the third gravimetric geoid models. The working data sets refer to the geodetic International Terrestrial Reference Frame (ITRF) co-location sites of Medicina (Northern, Italy) and Noto (Sicily), these latter being excellent test beds for our investigations. The measurements were planned and realized to estimate the DoV with a level of precision comparable to the angular accuracy achievable in high precision network measured by modern high-end total stations. The three methods are in excellent agreement, with an operational supremacy of the astro-geodetic method, being faster and more precise than the others. The method that combines leveling and GNSS has slightly larger standard deviations; although well within the 1 arcsec level, which was assumed as threshold. Finally, the geoid model based method, whose 2.5 arcsec standard deviations exceed this threshold, is also statistically consistent with the others and should be used to determine the DoV components where local ad hoc measurements are lacking. PMID:27104544

  10. One novel type of miniaturization FBG rotation angle sensor with high measurement precision and temperature self-compensation

    NASA Astrophysics Data System (ADS)

    Jiang, Shanchao; Wang, Jing; Sui, Qingmei

    2018-03-01

    In order to achieve rotation angle measurement, one novel type of miniaturization fiber Bragg grating (FBG) rotation angle sensor with high measurement precision and temperature self-compensation is proposed and studied in this paper. The FBG rotation angle sensor mainly contains two core sensitivity elements (FBG1 and FBG2), triangular cantilever beam, and rotation angle transfer element. In theory, the proposed sensor can achieve temperature self-compensation by complementation of the two core sensitivity elements (FBG1 and FBG2), and it has a boundless angel measurement range with 2π rad period duo to the function of the rotation angle transfer element. Based on introducing the joint working processes, the theory calculation model of the FBG rotation angel sensor is established, and the calibration experiment on one prototype is also carried out to obtain its measurement performance. After experimental data analyses, the measurement precision of the FBG rotation angle sensor prototype is 0.2 ° with excellent linearity, and the temperature sensitivities of FBG1 and FBG2 are 10 pm/° and 10.1 pm/°, correspondingly. All these experimental results confirm that the FBG rotation angle sensor can achieve large-range angle measurement with high precision and temperature self-compensation.

  11. Where in the world are my field plots? Using GPS effectively in environmental field studies

    USGS Publications Warehouse

    Johnson, Chris E.; Barton, Christopher C.

    2004-01-01

    Global positioning system (GPS) technology is rapidly replacing tape, compass, and traditional surveying instruments as the preferred tool for estimating the positions of environmental research sites. One important problem, however, is that it can be difficult to estimate the uncertainty of GPS-derived positions. Sources of error include various satellite- and site-related factors, such as forest canopy and topographic obstructions. In a case study from the Hubbard Brook Experimental Forest in New Hampshire, hand-held, mapping-grade GPS receivers generally estimated positions with 1–5 m precision in open, unobstructed settings, and 20–30 m precision under forest canopy. Surveying-grade receivers achieved precisions of 10 cm or less, even in challenging terrain. Users can maximize the quality of their GPS measurements by “mission planning” to take advantage of high-quality satellite conditions. Repeated measurements and simultaneous data collection at multiple points can be used to assess accuracy and precision.

  12. Precision blackbody sources for radiometric standards.

    PubMed

    Sapritsky, V I; Khlevnoy, B B; Khromchenko, V B; Lisiansky, B E; Mekhontsev, S N; Melenevsky, U A; Morozova, S P; Prokhorov, A V; Samoilov, L N; Shapoval, V I; Sudarev, K A; Zelener, M F

    1997-08-01

    The precision blackbody sources developed at the All-Russian Institute for Optical and Physical Measurements (Moscow, Russia) and their characteristics are analyzed. The precision high-temperature graphite blackbody BB22p, large-area high-temperature pyrolytic graphite blackbody BB3200pg, middle-temperature graphite blackbody BB2000, low-temperature blackbody BB300, and gallium fixed-point blackbody BB29gl and their characteristics are described.

  13. A comparison of Boolean-based retrieval to the WAIS system for retrieval of aeronautical information

    NASA Technical Reports Server (NTRS)

    Marchionini, Gary; Barlow, Diane

    1994-01-01

    An evaluation of an information retrieval system using a Boolean-based retrieval engine and inverted file architecture and WAIS, which uses a vector-based engine, was conducted. Four research questions in aeronautical engineering were used to retrieve sets of citations from the NASA Aerospace Database which was mounted on a WAIS server and available through Dialog File 108 which served as the Boolean-based system (BBS). High recall and high precision searches were done in the BBS and terse and verbose queries were used in the WAIS condition. Precision values for the WAIS searches were consistently above the precision values for high recall BBS searches and consistently below the precision values for high precision BBS searches. Terse WAIS queries gave somewhat better precision performance than verbose WAIS queries. In every case, a small number of relevant documents retrieved by one system were not retrieved by the other, indicating the incomplete nature of the results from either retrieval system. Relevant documents in the WAIS searches were found to be randomly distributed in the retrieved sets rather than distributed by ranks. Advantages and limitations of both types of systems are discussed.

  14. High precision measurement of the proton charge radius: The PRad experiment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Meziane, Mehdi

    2013-11-01

    The recent high precision measurements of the proton charge radius performed at PSI from muonic hydrogen Lamb shift puzzled the hadronic physics community. A value of 0.8418 {+-} 0.0007 fm was extracted which is 7{sigma} smaller than the previous determinations obtained from electron-proton scattering experiments and based on precision spectroscopy of electronic hydrogen. An additional extraction of the proton charge radius from electron scattering at Mainz is also in good agreement with these "electronic" determinations. An independent measurement of the proton charge radius from unpolarized elastic ep scattering using a magnetic spectrometer free method was proposed and fully approved atmore » Jefferson Laboratory in June 2012. This novel technique uses the high precision calorimeter HyCal and a windowless hydrogen gas target which makes possible the extraction of the charge radius at very forward angles and thus very low momentum transfer Q{sup 2} up to 10{sup -4} (GeV/c){sup 2} with an unprecedented sub-percent precision for this type of experiment. In this paper, after a review of the recent progress on the proton charge radius extraction and the new high precision experiment PRad will be presented.« less

  15. In Vivo Precision of Digital Topological Skeletonization Based Individual Trabecula Segmentation (ITS) Analysis of Trabecular Microstructure at the Distal Radius and Tibia by HR-pQCT.

    PubMed

    Zhou, Bin; Zhang, Zhendong; Wang, Ji; Yu, Y Eric; Liu, Xiaowei Sherry; Nishiyama, Kyle K; Rubin, Mishaela R; Shane, Elizabeth; Bilezikian, John P; Guo, X Edward

    2016-06-01

    Trabecular plate and rod microstructure plays a dominant role in the apparent mechanical properties of trabecular bone. With high-resolution computed tomography (CT) images, digital topological analysis (DTA) including skeletonization and topological classification was applied to transform the trabecular three-dimensional (3D) network into surface and curve skeletons. Using the DTA-based topological analysis and a new reconstruction/recovery scheme, individual trabecula segmentation (ITS) was developed to segment individual trabecular plates and rods and quantify the trabecular plate- and rod-related morphological parameters. High-resolution peripheral quantitative computed tomography (HR-pQCT) is an emerging in vivo imaging technique to visualize 3D bone microstructure. Based on HR-pQCT images, ITS was applied to various HR-pQCT datasets to examine trabecular plate- and rod-related microstructure and has demonstrated great potential in cross-sectional and longitudinal clinical applications. However, the reproducibility of ITS has not been fully determined. The aim of the current study is to quantify the precision errors of ITS plate-rod microstructural parameters. In addition, we utilized three different frequently used contour techniques to separate trabecular and cortical bone and to evaluate their effect on ITS measurements. Overall, good reproducibility was found for the standard HR-pQCT parameters with precision errors for volumetric BMD and bone size between 0.2%-2.0%, and trabecular bone microstructure between 4.9%-6.7% at the radius and tibia. High reproducibility was also achieved for ITS measurements using all three different contour techniques. For example, using automatic contour technology, low precision errors were found for plate and rod trabecular number (pTb.N, rTb.N, 0.9% and 3.6%), plate and rod trabecular thickness (pTb.Th, rTb.Th, 0.6% and 1.7%), plate trabecular surface (pTb.S, 3.4%), rod trabecular length (rTb.ℓ, 0.8%), and plate-plate junction density (P-P Junc.D, 2.3%) at the tibia. The precision errors at the radius were similar to those at the tibia. In addition, precision errors were affected by the contour technique. At the tibia, precision error by the manual contour method was significantly different from automatic and standard contour methods for pTb.N, rTb.N and rTb.Th. Precision error using the manual contour method was also significantly different from the standard contour method for rod trabecular number (rTb.N), rod trabecular thickness (rTb.Th), rod-rod and plate-rod junction densities (R-R Junc.D and P-R Junc.D) at the tibia. At the radius, the precision error was similar between the three different contour methods. Image quality was also found to significantly affect the ITS reproducibility. We concluded that ITS parameters are highly reproducible, giving assurance that future cross-sectional and longitudinal clinical HR-pQCT studies are feasible in the context of limited sample sizes.

  16. New high-precision orbital and physical parameters of the double-lined low-mass spectroscopic binary BY Draconis

    NASA Astrophysics Data System (ADS)

    Hełminiak, K. G.; Konacki, M.; Muterspaugh, M. W.; Browne, S. E.; Howard, A. W.; Kulkarni, S. R.

    2012-01-01

    We present the most precise to date orbital and physical parameters of the well-known short period (P= 5.975 d), eccentric (e= 0.3) double-lined spectroscopic binary BY Draconis (BY Dra), a prototype of a class of late-type, active, spotted flare stars. We calculate the full spectroscopic/astrometric orbital solution by combining our precise radial velocities (RVs) and the archival astrometric measurements from the Palomar Testbed Interferometer (PTI). The RVs were derived based on the high-resolution echelle spectra taken between 2004 and 2008 with the Keck I/high-resolution echelle spectrograph, Shane/CAT/HamSpec and TNG/SARG telescopes/spectrographs using our novel iodine-cell technique for double-lined binary stars. The RVs and available PTI astrometric data spanning over eight years allow us to reach 0.2-0.5 per cent level of precision in Msin 3i and the parallax but the geometry of the orbit (i≃ 154°) hampers the absolute mass precision to 3.3 per cent, which is still an order of magnitude better than for previous studies. We compare our results with a set of Yonsei-Yale theoretical stellar isochrones and conclude that BY Dra is probably a main-sequence system more metal rich than the Sun. Using the orbital inclination and the available rotational velocities of the components, we also conclude that the rotational axes of the components are likely misaligned with the orbital angular momentum. Given BY Dra's main-sequence status, late spectral type and the relatively short orbital period, its high orbital eccentricity and probable spin-orbit misalignment are not in agreement with the tidal theory. This disagreement may possibly be explained by smaller rotational velocities of the components and the presence of a substellar mass companion to BY Dra AB.

  17. High-Precision Measurement of the Ne19 Half-Life and Implications for Right-Handed Weak Currents

    NASA Astrophysics Data System (ADS)

    Triambak, S.; Finlay, P.; Sumithrarachchi, C. S.; Hackman, G.; Ball, G. C.; Garrett, P. E.; Svensson, C. E.; Cross, D. S.; Garnsworthy, A. B.; Kshetri, R.; Orce, J. N.; Pearson, M. R.; Tardiff, E. R.; Al-Falou, H.; Austin, R. A. E.; Churchman, R.; Djongolov, M. K.; D'Entremont, R.; Kierans, C.; Milovanovic, L.; O'Hagan, S.; Reeve, S.; Sjue, S. K. L.; Williams, S. J.

    2012-07-01

    We report a precise determination of the Ne19 half-life to be T1/2=17.262±0.007s. This result disagrees with the most recent precision measurements and is important for placing bounds on predicted right-handed interactions that are absent in the current standard model. We are able to identify and disentangle two competing systematic effects that influence the accuracy of such measurements. Our findings prompt a reassessment of results from previous high-precision lifetime measurements that used similar equipment and methods.

  18. High-precision measurement of the 19Ne half-life and implications for right-handed weak currents.

    PubMed

    Triambak, S; Finlay, P; Sumithrarachchi, C S; Hackman, G; Ball, G C; Garrett, P E; Svensson, C E; Cross, D S; Garnsworthy, A B; Kshetri, R; Orce, J N; Pearson, M R; Tardiff, E R; Al-Falou, H; Austin, R A E; Churchman, R; Djongolov, M K; D'Entremont, R; Kierans, C; Milovanovic, L; O'Hagan, S; Reeve, S; Sjue, S K L; Williams, S J

    2012-07-27

    We report a precise determination of the (19)Ne half-life to be T(1/2)=17.262±0.007 s. This result disagrees with the most recent precision measurements and is important for placing bounds on predicted right-handed interactions that are absent in the current standard model. We are able to identify and disentangle two competing systematic effects that influence the accuracy of such measurements. Our findings prompt a reassessment of results from previous high-precision lifetime measurements that used similar equipment and methods.

  19. Tracking individual action potentials throughout mammalian axonal arbors.

    PubMed

    Radivojevic, Milos; Franke, Felix; Altermatt, Michael; Müller, Jan; Hierlemann, Andreas; Bakkum, Douglas J

    2017-10-09

    Axons are neuronal processes specialized for conduction of action potentials (APs). The timing and temporal precision of APs when they reach each of the synapses are fundamentally important for information processing in the brain. Due to small diameters of axons, direct recording of single AP transmission is challenging. Consequently, most knowledge about axonal conductance derives from modeling studies or indirect measurements. We demonstrate a method to noninvasively and directly record individual APs propagating along millimeter-length axonal arbors in cortical cultures with hundreds of microelectrodes at microsecond temporal resolution. We find that cortical axons conduct single APs with high temporal precision (~100 µs arrival time jitter per mm length) and reliability: in more than 8,000,000 recorded APs, we did not observe any conduction or branch-point failures. Upon high-frequency stimulation at 100 Hz, successive became slower, and their arrival time precision decreased by 20% and 12% for the 100th AP, respectively.

  20. An active-optics image-motion compensation technology application for high-speed searching and infrared detection system

    NASA Astrophysics Data System (ADS)

    Wu, Jianping; Lu, Fei; Zou, Kai; Yan, Hong; Wan, Min; Kuang, Yan; Zhou, Yanqing

    2018-03-01

    An ultra-high angular velocity and minor-caliber high-precision stably control technology application for active-optics image-motion compensation, is put forward innovatively in this paper. The image blur problem due to several 100°/s high-velocity relative motion between imaging system and target is theoretically analyzed. The velocity match model of detection system and active optics compensation system is built, and active optics image motion compensation platform experiment parameters are designed. Several 100°/s high-velocity high-precision control optics compensation technology is studied and implemented. The relative motion velocity is up to 250°/s, and image motion amplitude is more than 20 pixel. After the active optics compensation, motion blur is less than one pixel. The bottleneck technology of ultra-high angular velocity and long exposure time in searching and infrared detection system is successfully broke through.

  1. Tidal current energy potential of Nalón river estuary assessment using a high precision flow model

    NASA Astrophysics Data System (ADS)

    Badano, Nicolás; Valdés, Rodolfo Espina; Álvarez, Eduardo Álvarez

    2018-05-01

    Obtaining energy from tide currents in onshore locations is of great interest due to the proximity to the points of consumption. This opens the door to the feasibility of new installations based on hydrokinetic microturbines even in zones of moderate speed. In this context, the accuracy of energy predictions based on hydrodynamic models is of paramount importance. This research presents a high precision methodology based on a multidimensional hydrodynamic model that is used to study the energetic potential in estuaries. Moreover, it is able to estimate the flow variations caused by microturbine installations. The paper also shows the results obtained from the application of the methodology in a study of the Nalón river mouth (Asturias, Spain).

  2. Prospects for a precision timing upgrade of the CMS PbWO crystal electromagnetic calorimeter for the HL-LHC

    NASA Astrophysics Data System (ADS)

    Massironi, A.

    2018-04-01

    The upgrade of the Compact Muon Solenoid (CMS) crystal electromagnetic calorimeter (ECAL), which will operate at the High Luminosity Large Hadron Collider (HL-LHC), will achieve a timing resolution of around 30 ps for high energy photons and electrons. In this talk we will discuss the benefits of precision timing for the ECAL event reconstruction at HL-LHC. Simulation studies focused on the timing properties of PbWO4 crystals, as well as the impact of the photosensors and the readout electronics on the timing performance, will be presented. Test beam studies intended to measure the timing performance of the PbWO4 crystals with different photosensors and readout electronics will be shown.

  3. Research on the high-precision non-contact optical detection technology for banknotes

    NASA Astrophysics Data System (ADS)

    Jin, Xiaofeng; Liang, Tiancai; Luo, Pengfeng; Sun, Jianfeng

    2015-09-01

    The technology of high-precision laser interferometry was introduced for optical measurement of the banknotes in this paper. Taking advantage of laser short wavelength and high sensitivity, information of adhesive tape and cavity about the banknotes could be checked efficiently. Compared with current measurement devices, including mechanical wheel measurement device, Infrared measurement device, ultrasonic measurement device, the laser interferometry measurement has higher precision and reliability. This will improve the ability of banknotes feature information in financial electronic equipment.

  4. High-Precision Half-Life and Branching Ratio Measurements for the Superallowed β+ Emitter 26Alm

    NASA Astrophysics Data System (ADS)

    Finlay, P.; Svensson, C. E.; Demand, G. A.; Garrett, P. E.; Green, K. L.; Leach, K. G.; Phillips, A. A.; Rand, E. T.; Ball, G.; Bandyopadhyay, D.; Djongolov, M.; Ettenauer, S.; Hackman, G.; Pearson, C. J.; Leslie, J. R.; Andreoiu, C.; Cross, D.; Austin, R. A. E.; Grinyer, G. F.; Sumithrarachchi, C. S.; Williams, S. J.; Triambak, S.

    2013-03-01

    High-precision half-life and branching-ratio measurements for the superallowed β+ emitter 26Alm were performed at the TRIUMF-ISAC radioactive ion beam facility. An upper limit of ≤ 15 ppm at 90% C.L. was determined for the sum of all possible non-analogue β+/EC decay branches of 26Alm, yielding a superallowed branching ratio of 100.0000+0-0.0015%. A value of T1/2 = 6:34654(76) s was determined for the 26Alm half-life which is consistent with, but 2.5 times more precise than, the previous world average. Combining these results with world-average measurements yields an ft value of 3037.58(60) s, the most precisely determined for any superallowed emitting nucleus to date. This high-precision ft value for 26Alm provides a new benchmark to refine theoretical models of isospin-symmetry-breaking effects in superallowed β decays.

  5. Temporally precise single-cell resolution optogenetics

    PubMed Central

    Shemesh, Or A.; Tanese, Dimitrii; Zampini, Valeria; Linghu, Changyang; Piatkevich, Kiryl; Ronzitti, Emiliano; Papagiakoumou, Eirini; Boyden, Edward S.; Emiliani, Valentina

    2017-01-01

    Optogenetic control of individual neurons with high temporal precision, within intact mammalian brain circuitry, would enable powerful explorations of how neural circuits operate. Two-photon computer generated holography enables precise sculpting of light, and could in principle enable simultaneous illumination of many neurons in a network, with the requisite temporal precision to simulate accurate neural codes. We designed a high efficacy soma-targeted opsin, finding that fusing the N-terminal 150 residues of kainate receptor subunit 2 (KA2) to the recently discovered high-photocurrent channelrhodopsin CoChR restricted expression of this opsin primarily to the cell body of mammalian cortical neurons. In combination with two-photon holographic stimulation, we found that this somatic CoChR (soCoChR) enabled photostimulation of individual cells in intact cortical circuits with single cell resolution and <1 millisecond temporal precision, and use soCoChR to perform connectivity mapping on intact cortical circuits. PMID:29184208

  6. Highly precise stabilization of intracavity prism-based Er:fiber frequency comb using optical-microwave phase detector.

    PubMed

    Zhang, Shuangyou; Wu, Jiutao; Leng, Jianxiao; Lai, Shunnan; Zhao, Jianye

    2014-11-15

    In this Letter, we demonstrate a fully stabilized Er:fiber frequency comb by using a fiber-based, high-precision optical-microwave phase detector. To achieve high-precision and long-term phase locking of the repetition rate to a microwave reference, frequency control techniques (tuning pump power and cavity length) are combined together as its feedback. Since the pump power has been used for stabilization of the repetition rate, we introduce a pair of intracavity prisms as a regulator for carrier-envelope offset frequency, thereby phase locking one mode of the comb to the rubidium saturated absorption transition line. The stabilized comb performs the same high stability as the reference for the repetition rate and provides a residual frequency instability of 3.6×10(-13) for each comb mode. The demonstrated stabilization scheme could provide a high-precision comb for optical communication, direct frequency comb spectroscopy.

  7. Terrain matching image pre-process and its format transform in autonomous underwater navigation

    NASA Astrophysics Data System (ADS)

    Cao, Xuejun; Zhang, Feizhou; Yang, Dongkai; Yang, Bogang

    2007-06-01

    Underwater passive navigation technology is one of the important development orientations in the field of modern navigation. With the advantage of high self-determination, stealth at sea, anti-jamming and high precision, passive navigation is completely meet with actual navigation requirements. Therefore passive navigation has become a specific navigating method for underwater vehicles. The scientists and researchers in the navigating field paid more attention to it. The underwater passive navigation can provide accurate navigation information with main Inertial Navigation System (INS) for a long period, such as location and speed. Along with the development of micro-electronics technology, the navigation of AUV is given priority to INS assisted with other navigation methods, such as terrain matching navigation. It can provide navigation ability for a long period, correct the errors of INS and make AUV not emerge from the seabed termly. With terrain matching navigation technique, in the assistance of digital charts and ocean geographical characteristics sensors, we carry through underwater image matching assistant navigation to obtain the higher location precision, therefore it is content with the requirement of underwater, long-term, high precision and all-weather of the navigation system for Autonomous Underwater Vehicles. Tertian-assistant navigation (TAN) is directly dependent on the image information (map information) in the navigating field to assist the primary navigation system according to the path appointed in advance. In TAN, a factor coordinative important with the system operation is precision and practicability of the storable images and the database which produce the image data. If the data used for characteristics are not suitable, the system navigation precision will be low. Comparing with terrain matching assistant navigation system, image matching navigation system is a kind of high precision and low cost assistant navigation system, and its matching precision directly influences the final precision of integrated navigation system. Image matching assistant navigation is spatially matching and aiming at two underwater scenery images coming from two different sensors matriculating of the same scenery in order to confirm the relative displacement of the two images. In this way, we can obtain the vehicle's location in fiducial image known geographical relation, and the precise location information given from image matching location is transmitted to INS to eliminate its location error and greatly enhance the navigation precision of vehicle. Digital image data analysis and processing of image matching in underwater passive navigation is important. In regard to underwater geographic data analysis, we focus on the acquirement, disposal, analysis, expression and measurement of database information. These analysis items structure one of the important contents of underwater terrain matching and are propitious to know the seabed terrain configuration of navigation areas so that the best advantageous seabed terrain district and dependable navigation algorithm can be selected. In this way, we can improve the precision and reliability of terrain assistant navigation system. The pre-process and format transformation of digital image during underwater image matching are expatiated in this paper. The information of the terrain status in navigation areas need further study to provide the reliable data terrain characteristic and underwater overcast for navigation. Through realizing the choice of sea route, danger district prediction and navigating algorithm analysis, TAN can obtain more high location precision and probability, hence provide technological support for image matching of underwater passive navigation.

  8. Three-dimensional surgical modelling with an open-source software protocol: study of precision and reproducibility in mandibular reconstruction with the fibula free flap.

    PubMed

    Ganry, L; Quilichini, J; Bandini, C M; Leyder, P; Hersant, B; Meningaud, J P

    2017-08-01

    Very few surgical teams currently use totally independent and free solutions to perform three-dimensional (3D) surgical modelling for osseous free flaps in reconstructive surgery. This study assessed the precision and technical reproducibility of a 3D surgical modelling protocol using free open-source software in mandibular reconstruction with fibula free flaps and surgical guides. Precision was assessed through comparisons of the 3D surgical guide to the sterilized 3D-printed guide, determining accuracy to the millimetre level. Reproducibility was assessed in three surgical cases by volumetric comparison to the millimetre level. For the 3D surgical modelling, a difference of less than 0.1mm was observed. Almost no deformations (<0.2mm) were observed post-autoclave sterilization of the 3D-printed surgical guides. In the three surgical cases, the average precision of fibula free flap modelling was between 0.1mm and 0.4mm, and the average precision of the complete reconstructed mandible was less than 1mm. The open-source software protocol demonstrated high accuracy without complications. However, the precision of the surgical case depends on the surgeon's 3D surgical modelling. Therefore, surgeons need training on the use of this protocol before applying it to surgical cases; this constitutes a limitation. Further studies should address the transfer of expertise. Copyright © 2017 International Association of Oral and Maxillofacial Surgeons. Published by Elsevier Ltd. All rights reserved.

  9. Superior Intraparietal Sulcus Controls the Variability of Visual Working Memory Precision.

    PubMed

    Galeano Weber, Elena M; Peters, Benjamin; Hahn, Tim; Bledowski, Christoph; Fiebach, Christian J

    2016-05-18

    Limitations of working memory (WM) capacity depend strongly on the cognitive resources that are available for maintaining WM contents in an activated state. Increasing the number of items to be maintained in WM was shown to reduce the precision of WM and to increase the variability of WM precision over time. Although WM precision was recently associated with neural codes particularly in early sensory cortex, we have so far no understanding of the neural bases underlying the variability of WM precision, and how WM precision is preserved under high load. To fill this gap, we combined human fMRI with computational modeling of behavioral performance in a delayed color-estimation WM task. Behavioral results replicate a reduction of WM precision and an increase of precision variability under high loads (5 > 3 > 1 colors). Load-dependent BOLD signals in primary visual cortex (V1) and superior intraparietal sulcus (IPS), measured during the WM task at 2-4 s after sample onset, were modulated by individual differences in load-related changes in the variability of WM precision. Although stronger load-related BOLD increase in superior IPS was related to lower increases in precision variability, thus stabilizing WM performance, the reverse was observed for V1. Finally, the detrimental effect of load on behavioral precision and precision variability was accompanied by a load-related decline in the accuracy of decoding the memory stimuli (colors) from left superior IPS. We suggest that the superior IPS may contribute to stabilizing visual WM performance by reducing the variability of memory precision in the face of higher load. This study investigates the neural bases of capacity limitations in visual working memory by combining fMRI with cognitive modeling of behavioral performance, in human participants. It provides evidence that the superior intraparietal sulcus (IPS) is a critical brain region that influences the variability of visual working memory precision between and within individuals (Fougnie et al., 2012; van den Berg et al., 2012) under increased memory load, possibly in cooperation with perceptual systems of the occipital cortex. These findings substantially extend our understanding of the nature of capacity limitations in visual working memory and their neural bases. Our work underlines the importance of integrating cognitive modeling with univariate and multivariate methods in fMRI research, thus improving our knowledge of brain-behavior relationships. Copyright © 2016 the authors 0270-6474/16/365623-13$15.00/0.

  10. -Omic and Electronic Health Record Big Data Analytics for Precision Medicine.

    PubMed

    Wu, Po-Yen; Cheng, Chih-Wen; Kaddi, Chanchala D; Venugopalan, Janani; Hoffman, Ryan; Wang, May D

    2017-02-01

    Rapid advances of high-throughput technologies and wide adoption of electronic health records (EHRs) have led to fast accumulation of -omic and EHR data. These voluminous complex data contain abundant information for precision medicine, and big data analytics can extract such knowledge to improve the quality of healthcare. In this paper, we present -omic and EHR data characteristics, associated challenges, and data analytics including data preprocessing, mining, and modeling. To demonstrate how big data analytics enables precision medicine, we provide two case studies, including identifying disease biomarkers from multi-omic data and incorporating -omic information into EHR. Big data analytics is able to address -omic and EHR data challenges for paradigm shift toward precision medicine. Big data analytics makes sense of -omic and EHR data to improve healthcare outcome. It has long lasting societal impact.

  11. A new Ultra Precision Interferometer for absolute length measurements down to cryogenic temperatures

    NASA Astrophysics Data System (ADS)

    Schödel, R.; Walkov, A.; Zenker, M.; Bartl, G.; Meeß, R.; Hagedorn, D.; Gaiser, C.; Thummes, G.; Heltzel, S.

    2012-09-01

    A new Ultra Precision Interferometer (UPI) was built at Physikalisch-Technische Bundesanstalt. As its precursor, the precision interferometer, it was designed for highly precise absolute length measurements of prismatic bodies, e.g. gauge blocks, under well-defined temperature conditions and pressure, making use of phase stepping imaging interferometry. The UPI enables a number of enhanced features, e.g. it is designed for a much better lateral resolution and better temperature stability. In addition to the original concept, the UPI is equipped with an external measurement pathway (EMP) in which a prismatic body can be placed alternatively. The temperature of the EMP can be controlled in a much wider range compared to the temperature of the interferometer's main chamber. An appropriate cryostat system, a precision temperature measurement system and improved imaging interferometry were established to permit absolute length measurements down to cryogenic temperature, demonstrated for the first time ever. Results of such measurements are important for studying thermal expansion of materials from room temperature towards less than 10 K.

  12. Sapphire Fabry-Perot high-temperature sensor study

    NASA Astrophysics Data System (ADS)

    Yao, Yi-qiang; Liang, Wei-long; Gui, Xinwang; Fan, Dian

    2017-04-01

    A new structure sapphire fiber Fabry-Perot (F-P) high-temperature sensor based on sapphire wafer was proposed and fabricated. The sensor uses the sapphire fiber as a transmission waveguide, the sapphire wafer as an Fabry-Perot (F-P) interferometer and the new structure of "Zirconia ferrule-Zirconia tube" as the sensor fixing structure of the sensor. The reflection spectrum of the interferometer was demodulated by a serial of data processing including FIR bandpass filter, FFT (Fast Fourier Transformation) estimation and LSE (least squares estimation) compensation to obtain more precise OPD. Temperature measurement range is from 20 to 1000°C in experiment. The experimental results show that the sensor has the advantages of small size, low cost, simple fabrication and high repeatability. It can be applied for longterm, stable and high-precision high temperature measurement in harsh environments.

  13. Comparison of fecal egg counting methods in four livestock species.

    PubMed

    Paras, Kelsey L; George, Melissa M; Vidyashankar, Anand N; Kaplan, Ray M

    2018-06-15

    Gastrointestinal nematode parasites are important pathogens of all domesticated livestock species. Fecal egg counts (FEC) are routinely used for evaluating anthelmintic efficacy and for making targeted anthelmintic treatment decisions. Numerous FEC techniques exist and vary in precision and accuracy. These performance characteristics are especially important when performing fecal egg count reduction tests (FECRT). The objective of this study was to compare the accuracy and precision of three commonly used FEC methods and determine if differences existed among livestock species. In this study, we evaluated the modified-Wisconsin, 3-chamber (high-sensitivity) McMaster, and Mini-FLOTAC methods in cattle, sheep, horses, and llamas in three phases. In the first phase, we performed an egg-spiking study to assess the egg recovery rate and accuracy of the different FEC methods. In the second phase, we examined clinical samples from four different livestock species and completed multiple replicate FEC using each method. In the last phase, we assessed the cheesecloth straining step as a potential source of egg loss. In the egg-spiking study, the Mini-FLOTAC recovered 70.9% of the eggs, which was significantly higher than either the McMaster (P = 0.002) or Wisconsin (P = 0.002). In the clinical samples from ruminants, Mini-FLOTAC consistently yielded the highest EPG, revealing a significantly higher level of egg recovery (P < 0.0001). For horses and llamas, both McMaster and Mini-FLOTAC yielded significantly higher EPG than Wisconsin (P < 0.0001, P < 0.0001, P < 0.001, and P = 0.024). Mini-FLOTAC was the most accurate method and was the most precise test for both species of ruminants. The Wisconsin method was the most precise for horses and McMaster was more precise for llama samples. We compared the Wisconsin and Mini-FLOTAC methods using a modified technique where both methods were performed using either the Mini-FLOTAC sieve or cheesecloth. The differences in the estimated mean EPG on log scale between the Wisconsin and mini-FLOTAC methods when cheesecloth was used (P < 0.0001) and when cheesecloth was excluded (P < 0.0001) were significant, providing strong evidence that the straining step is an important source of error. The high accuracy and precision demonstrated in this study for the Mini-FLOTAC, suggest that this method can be recommended for routine use in all host species. The benefits of Mini-FLOTAC will be especially relevant when high accuracy is important, such as when performing FECRT. Copyright © 2018 Elsevier B.V. All rights reserved.

  14. Fine-grained versus categorical: Pupil size differentiates between strategies for spatial working memory performance.

    PubMed

    Starc, Martina; Anticevic, Alan; Repovš, Grega

    2017-05-01

    Pupillometry provides an accessible option to track working memory processes with high temporal resolution. Several studies showed that pupil size increases with the number of items held in working memory; however, no study has explored whether pupil size also reflects the quality of working memory representations. To address this question, we used a spatial working memory task to investigate the relationship of pupil size with spatial precision of responses and indicators of reliance on generalized spatial categories. We asked 30 participants (15 female, aged 19-31) to remember the position of targets presented at various locations along a hidden radial grid. After a delay, participants indicated the remembered location with a high-precision joystick providing a parametric measure of trial-to-trial accuracy. We recorded participants' pupil dilations continuously during task performance. Results showed a significant relation between pupil dilation during preparation/early encoding and the precision of responses, possibly reflecting the attentional resources devoted to memory encoding. In contrast, pupil dilation at late maintenance and response predicted larger shifts of responses toward prototypical locations, possibly reflecting larger reliance on categorical representation. On an intraindividual level, smaller pupil dilations during encoding predicted larger dilations during late maintenance and response. On an interindividual level, participants relying more on categorical representation also produced larger precision errors. The results confirm the link between pupil size and the quality of spatial working memory representation. They suggest compensatory strategies of spatial working memory performance-loss of precise spatial representation likely increases reliance on generalized spatial categories. © 2017 Society for Psychophysiological Research.

  15. Statistical precision of the intensities retrieved from constrained fitting of overlapping peaks in high-resolution mass spectra

    DOE PAGES

    Cubison, M. J.; Jimenez, J. L.

    2015-06-05

    Least-squares fitting of overlapping peaks is often needed to separately quantify ions in high-resolution mass spectrometer data. A statistical simulation approach is used to assess the statistical precision of the retrieved peak intensities. The sensitivity of the fitted peak intensities to statistical noise due to ion counting is probed for synthetic data systems consisting of two overlapping ion peaks whose positions are pre-defined and fixed in the fitting procedure. The fitted intensities are sensitive to imperfections in the m/Q calibration. These propagate as a limiting precision in the fitted intensities that may greatly exceed the precision arising from counting statistics.more » The precision on the fitted peak intensity falls into one of three regimes. In the "counting-limited regime" (regime I), above a peak separation χ ~ 2 to 3 half-widths at half-maximum (HWHM), the intensity precision is similar to that due to counting error for an isolated ion. For smaller χ and higher ion counts (~ 1000 and higher), the intensity precision rapidly degrades as the peak separation is reduced ("calibration-limited regime", regime II). Alternatively for χ < 1.6 but lower ion counts (e.g. 10–100) the intensity precision is dominated by the additional ion count noise from the overlapping ion and is not affected by the imprecision in the m/Q calibration ("overlapping-limited regime", regime III). The transition between the counting and m/Q calibration-limited regimes is shown to be weakly dependent on resolving power and data spacing and can thus be approximated by a simple parameterisation based only on peak intensity ratios and separation. A simple equation can be used to find potentially problematic ion pairs when evaluating results from fitted spectra containing many ions. Longer integration times can improve the precision in regimes I and III, but a given ion pair can only be moved out of regime II through increased spectrometer resolving power. As a result, studies presenting data obtained from least-squares fitting procedures applied to mass spectral peaks should explicitly consider these limits on statistical precision.« less

  16. Rigorous high-precision enclosures of fixed points and their invariant manifolds

    NASA Astrophysics Data System (ADS)

    Wittig, Alexander N.

    The well established concept of Taylor Models is introduced, which offer highly accurate C0 enclosures of functional dependencies, combining high-order polynomial approximation of functions and rigorous estimates of the truncation error, performed using verified arithmetic. The focus of this work is on the application of Taylor Models in algorithms for strongly non-linear dynamical systems. A method is proposed to extend the existing implementation of Taylor Models in COSY INFINITY from double precision coefficients to arbitrary precision coefficients. Great care is taken to maintain the highest efficiency possible by adaptively adjusting the precision of higher order coefficients in the polynomial expansion. High precision operations are based on clever combinations of elementary floating point operations yielding exact values for round-off errors. An experimental high precision interval data type is developed and implemented. Algorithms for the verified computation of intrinsic functions based on the High Precision Interval datatype are developed and described in detail. The application of these operations in the implementation of High Precision Taylor Models is discussed. An application of Taylor Model methods to the verification of fixed points is presented by verifying the existence of a period 15 fixed point in a near standard Henon map. Verification is performed using different verified methods such as double precision Taylor Models, High Precision intervals and High Precision Taylor Models. Results and performance of each method are compared. An automated rigorous fixed point finder is implemented, allowing the fully automated search for all fixed points of a function within a given domain. It returns a list of verified enclosures of each fixed point, optionally verifying uniqueness within these enclosures. An application of the fixed point finder to the rigorous analysis of beam transfer maps in accelerator physics is presented. Previous work done by Johannes Grote is extended to compute very accurate polynomial approximations to invariant manifolds of discrete maps of arbitrary dimension around hyperbolic fixed points. The algorithm presented allows for automatic removal of resonances occurring during construction. A method for the rigorous enclosure of invariant manifolds of continuous systems is introduced. Using methods developed for discrete maps, polynomial approximations of invariant manifolds of hyperbolic fixed points of ODEs are obtained. These approximations are outfit with a sharp error bound which is verified to rigorously contain the manifolds. While we focus on the three dimensional case, verification in higher dimensions is possible using similar techniques. Integrating the resulting enclosures using the verified COSY VI integrator, the initial manifold enclosures are expanded to yield sharp enclosures of large parts of the stable and unstable manifolds. To demonstrate the effectiveness of this method, we construct enclosures of the invariant manifolds of the Lorenz system and show pictures of the resulting manifold enclosures. To the best of our knowledge, these enclosures are the largest verified enclosures of manifolds in the Lorenz system in existence.

  17. Direct detection of antiprotons with the Timepix3 in a new electrostatic selection beamline

    NASA Astrophysics Data System (ADS)

    Pacifico, N.; Aghion, S.; Alozy, J.; Amsler, C.; Ariga, A.; Ariga, T.; Bonomi, G.; Bräunig, P.; Bremer, J.; Brusa, R. S.; Cabaret, L.; Caccia, M.; Campbell, M.; Caravita, R.; Castelli, F.; Cerchiari, G.; Chlouba, K.; Cialdi, S.; Comparat, D.; Consolati, G.; Demetrio, A.; Di Noto, L.; Doser, M.; Dudarev, A.; Ereditato, A.; Evans, C.; Ferragut, R.; Fesel, J.; Fontana, A.; Gerber, S.; Giammarchi, M.; Gligorova, A.; Guatieri, F.; Haider, S.; Holmestad, H.; Huse, T.; Jordan, E.; Kellerbauer, A.; Kimura, M.; Krasnický, D.; Lagomarsino, V.; Lansonneur, P.; Lawler, G.; Lebrun, P.; Llopart, X.; Malbrunot, C.; Mariazzi, S.; Marx, L.; Matveev, V.; Mazzotta, Z.; Nebbia, G.; Nedelec, P.; Oberthaler, M.; Pagano, D.; Penasa, L.; Petracek, V.; Pistillo, C.; Prelz, F.; Prevedelli, M.; Ravelli, L.; Resch, L.; Røhne, O. M.; Rotondi, A.; Sacerdoti, M.; Sandaker, H.; Santoro, R.; Scampoli, P.; Smestad, L.; Sorrentino, F.; Spacek, M.; Storey, J.; Strojek, I. M.; Testera, G.; Tietje, I.; Tlustos, L.; Widmann, E.; Yzombard, P.; Zavatarelli, S.; Zmeskal, J.; Zurlo, N.

    2016-09-01

    We present here the first results obtained employing the Timepix3 for the detection and tagging of annihilations of low energy antiprotons. The Timepix3 is a recently developed hybrid pixel detector with advanced Time-of-Arrival and Time-over-Threshold capabilities and has the potential of allowing precise kinetic energy measurements of low energy charged particles from their time of flight. The tagging of the characteristic antiproton annihilation signature, already studied by our group, is enabled by the high spatial and energy resolution of this detector. In this study we have used a new, dedicated, energy selection beamline (GRACE). The line is symbiotic to the AEgIS experiment at the CERN Antiproton Decelerator and is dedicated to detector tests and possibly antiproton physics experiments. We show how the high resolution of the Timepix3 on the Time-of-Arrival and Time-over-Threshold information allows for a precise 3D reconstruction of the annihilation prongs. The presented results point at the potential use of the Timepix3 in antimatter-research experiments where a precise and unambiguous tagging of antiproton annihilations is required.

  18. Overview of galactic cosmic ray solar modulation in the AMS-02 era

    NASA Astrophysics Data System (ADS)

    Bindi, V.; Corti, C.; Consolandi, C.; Hoffman, J.; Whitman, K.

    2017-08-01

    A new era in cosmic rays physics has started thanks to the precise and continuous observations from space experiments such as PAMELA and AMS-02. Invaluable results are coming out from these new data that are rewriting the theory of acceleration and propagation of cosmic rays. Both at high energies, where several new behaviors have been measured, challenging the accuracy of theoretical models, and also at low energies, in the region affected by the solar modulation. Precise measurements are increasing our knowledge of the effects of solar modulation on low energy cosmic rays, allowing a detailed study of propagation and composition as it has never been done before. These measurements will serve as a high-precision baseline for continued studies of GCR composition, GCR modulation over the solar cycle, space radiation hazards, and other topics. In this review paper, the status of the latest measurements of the cosmic rays in the context of solar modulation are presented together with the current open questions and the future prospects. How new measurements from the AMS-02 experiment will address these questions is also discussed.

  19. Precision forging technology for aluminum alloy

    NASA Astrophysics Data System (ADS)

    Deng, Lei; Wang, Xinyun; Jin, Junsong; Xia, Juchen

    2018-03-01

    Aluminum alloy is a preferred metal material for lightweight part manufacturing in aerospace, automobile, and weapon industries due to its good physical properties, such as low density, high specific strength, and good corrosion resistance. However, during forging processes, underfilling, folding, broken streamline, crack, coarse grain, and other macro- or microdefects are easily generated because of the deformation characteristics of aluminum alloys, including narrow forgeable temperature region, fast heat dissipation to dies, strong adhesion, high strain rate sensitivity, and large flow resistance. Thus, it is seriously restricted for the forged part to obtain precision shape and enhanced property. In this paper, progresses in precision forging technologies of aluminum alloy parts were reviewed. Several advanced precision forging technologies have been developed, including closed die forging, isothermal die forging, local loading forging, metal flow forging with relief cavity, auxiliary force or vibration loading, casting-forging hybrid forming, and stamping-forging hybrid forming. High-precision aluminum alloy parts can be realized by controlling the forging processes and parameters or combining precision forging technologies with other forming technologies. The development of these technologies is beneficial to promote the application of aluminum alloys in manufacturing of lightweight parts.

  20. The Science of and Advanced Technology for Cost-Effective Manufacture of High Precision Engineering Products. Volume 5. Automatic Generation of Process Outlines of Forming and Machining Processes.

    DTIC Science & Technology

    1986-08-01

    THE SCIENCE OF AND ADVANCED TECHNOLOGY FOR COST-EFFECTIVE MANUFACTURE Lfl OF HIGH PRECISION ENGINEERING PRODUCTS N iA6/*N ONR Contract No. 83K0385...ADVANCED TECHNOLOGY FOR1 COST-EFFECTIVE MANUFACTURE OF1’ HIGH PRECISION ENGINEERING PRODUCTS ONR Contract No. 83K0385 Final Report Vol. 5 AUTOMATIC...Ck 53N Drawing #: 03116-6233 Raw Material: Iiz’ 500mm diameter and 3000mm length Ma, rial Alloy steel. high carbon content, quenched to Min 45Rc

  1. Design of a self-calibration high precision micro-angle deformation optical monitoring scheme

    NASA Astrophysics Data System (ADS)

    Gu, Yingying; Wang, Li; Guo, Shaogang; Wu, Yun; Liu, Da

    2018-03-01

    In order to meet the requirement of high precision and micro-angle measurement on orbit, a self-calibrated optical non-contact real-time monitoring device is designed. Within three meters, the micro-angle variable of target relative to measuring basis can be measured in real-time. The range of angle measurement is +/-50'', the angle measurement accuracy is less than 2''. The equipment can realize high precision real-time monitoring the micro-angle deformation, which caused by high strength vibration and shock of rock launching, sun radiation and heat conduction on orbit and so on.

  2. Ultracold Anions for High-Precision Antihydrogen Experiments

    NASA Astrophysics Data System (ADS)

    Cerchiari, G.; Kellerbauer, A.; Safronova, M. S.; Safronova, U. I.; Yzombard, P.

    2018-03-01

    Experiments with antihydrogen (H ¯) for a study of matter-antimatter symmetry and antimatter gravity require ultracold H ¯ to reach ultimate precision. A promising path towards antiatoms much colder than a few kelvin involves the precooling of antiprotons by laser-cooled anions. Because of the weak binding of the valence electron in anions—dominated by polarization and correlation effects—only few candidate systems with suitable transitions exist. We report on a combination of experimental and theoretical studies to fully determine the relevant binding energies, transition rates, and branching ratios of the most promising candidate La- . Using combined transverse and collinear laser spectroscopy, we determined the resonant frequency of the laser cooling transition to be ν =96.592 713 (91 ) THz and its transition rate to be A =4.90 (50 )×104 s-1 . Using a novel high-precision theoretical treatment of La- we calculated yet unmeasured energy levels, transition rates, branching ratios, and lifetimes to complement experimental information on the laser cooling cycle of La- . The new data establish the suitability of La- for laser cooling and show that the cooling transition is significantly stronger than suggested by a previous theoretical study.

  3. Ultracold Anions for High-Precision Antihydrogen Experiments.

    PubMed

    Cerchiari, G; Kellerbauer, A; Safronova, M S; Safronova, U I; Yzombard, P

    2018-03-30

    Experiments with antihydrogen (H[over ¯]) for a study of matter-antimatter symmetry and antimatter gravity require ultracold H[over ¯] to reach ultimate precision. A promising path towards antiatoms much colder than a few kelvin involves the precooling of antiprotons by laser-cooled anions. Because of the weak binding of the valence electron in anions-dominated by polarization and correlation effects-only few candidate systems with suitable transitions exist. We report on a combination of experimental and theoretical studies to fully determine the relevant binding energies, transition rates, and branching ratios of the most promising candidate La^{-}. Using combined transverse and collinear laser spectroscopy, we determined the resonant frequency of the laser cooling transition to be ν=96.592 713(91)  THz and its transition rate to be A=4.90(50)×10^{4}  s^{-1}. Using a novel high-precision theoretical treatment of La^{-} we calculated yet unmeasured energy levels, transition rates, branching ratios, and lifetimes to complement experimental information on the laser cooling cycle of La^{-}. The new data establish the suitability of La^{-} for laser cooling and show that the cooling transition is significantly stronger than suggested by a previous theoretical study.

  4. Ion microprobe measurement of strontium isotopes in calcium carbonate with application to salmon otoliths

    USGS Publications Warehouse

    Weber, P.K.; Bacon, C.R.; Hutcheon, I.D.; Ingram, B.L.; Wooden, J.L.

    2005-01-01

    The ion microprobe has the capability to generate high resolution, high precision isotopic measurements, but analysis of the isotopic composition of strontium, as measured by the 87Sr/ 86Sr ratio, has been hindered by isobaric interferences. Here we report the first high precision measurements of 87Sr/ 86Sr by ion microprobe in calcium carbonate samples with moderate Sr concentrations. We use the high mass resolving power (7000 to 9000 M.R.P.) of the SHRIMP-RG ion microprobe in combination with its high transmission to reduce the number of interfering species while maintaining sufficiently high count rates for precise isotopic measurements. The isobaric interferences are characterized by peak modeling and repeated analyses of standards. We demonstrate that by sample-standard bracketing, 87Sr/86Sr ratios can be measured in inorganic and biogenic carbonates with Sr concentrations between 400 and 1500 ppm with ???2??? external precision (2??) for a single analysis, and subpermil external precision with repeated analyses. Explicit correction for isobaric interferences (peak-stripping) is found to be less accurate and precise than sample-standard bracketing. Spatial resolution is ???25 ??m laterally and 2 ??m deep for a single analysis, consuming on the order of 2 ng of material. The method is tested on otoliths from salmon to demonstrate its accuracy and utility. In these growth-banded aragonitic structures, one-week temporal resolution can be achieved. The analytical method should be applicable to other calcium carbonate samples with similar Sr concentrations. Copyright ?? 2005 Elsevier Ltd.

  5. SPM interferometer with large range for mirco-vibration measurement

    NASA Astrophysics Data System (ADS)

    Fu, Mingyi; Tang, Chaowei; He, Guotian; Hu, Jun; Wang, Li

    2007-12-01

    The measuring range and precision are two inconsistent parameters of traditional optical interferometry. In this paper, the interferometer measuring vibration with high precision and large range is proposed and its measuring principle is analyzed in detail. The interferometer obtains phase information by processing interference signals with two real-time phase discriminator and the vibration displacement could be gotten by expanding this phase. The measuring range was enlarged from half wavelength to millimeter. Meanwhile, the measuring precision was independent of external disturbance and vibration displacement measurement with high precision was realized. The measuring range of vibration displacement for 6000.5nm and the repeatable measuring precision was 5.72nm from experiment. The feasibility of the measuring method was validated by experiments.

  6. Micro-optical fabrication by ultraprecision diamond machining and precision molding

    NASA Astrophysics Data System (ADS)

    Li, Hui; Li, Likai; Naples, Neil J.; Roblee, Jeffrey W.; Yi, Allen Y.

    2017-06-01

    Ultraprecision diamond machining and high volume molding for affordable high precision high performance optical elements are becoming a viable process in optical industry for low cost high quality microoptical component manufacturing. In this process, first high precision microoptical molds are fabricated using ultraprecision single point diamond machining followed by high volume production methods such as compression or injection molding. In the last two decades, there have been steady improvements in ultraprecision machine design and performance, particularly with the introduction of both slow tool and fast tool servo. Today optical molds, including freeform surfaces and microlens arrays, are routinely diamond machined to final finish without post machining polishing. For consumers, compression molding or injection molding provide efficient and high quality optics at extremely low cost. In this paper, first ultraprecision machine design and machining processes such as slow tool and fast too servo are described then both compression molding and injection molding of polymer optics are discussed. To implement precision optical manufacturing by molding, numerical modeling can be included in the future as a critical part of the manufacturing process to ensure high product quality.

  7. Multifrequency high precise subTHz-THz-IR spectroscopy for exhaled breath research

    NASA Astrophysics Data System (ADS)

    Vaks, Vladimir L.; Domracheva, Elena G.; Pripolzin, Sergey I.; Chernyaeva, Mariya B.

    2016-09-01

    Nowadays the development of analytical spectroscopy with high performance, sensitivity and spectral resolution for exhaled breath research is attended. The method of two-frequency high precise THz spectroscopy and the method of high precise subTHz-THz-IR spectroscopy are presented. Development of a subTHz-THz-IR gas analyzer increases the number of gases that can be identified and the reliability of the detection by confirming the signature in both THz and MIR ranges. The testing measurements have testified this new direction of analytical spectroscopy to open widespread trends of its using for various problems of medicine and biology. First of all, there are laboratory investigations of the processes in exhaled breath and studying of their dynamics. Besides, the methods presented can be applied for detecting intermediate and short time living products of reactions in exhaled breath. The spectrometers have been employed for investigations of acetone, methanol and ethanol in the breath samples of healthy volunteers and diabetes patients. The results have demonstrated an increased concentration of acetone in breath of diabetes patients. The dynamic of changing the acetone concentration before and after taking the medicines is discovered. The potential markers of pre-cancer states and oncological diseases of gastrointestinal tract organs have been detected. The changes in the NO concentration in exhaled breath of cancer patients during radiotherapy as well as increase of the NH3 concentration at gastrointestinal diseases have been revealed. The preliminary investigations of biomarkers in three frequency ranges have demonstrated the advantages of the multifrequency high precise spectroscopy for noninvasive medical diagnostics.

  8. Polishing aspheric mirrors of zero-thermal expansion cordierite ceramics (NEXCERA) for space telescope

    NASA Astrophysics Data System (ADS)

    Sugawara, Jun; Kamiya, Tomohiro; Mikashima, Bumpei

    2017-09-01

    Ultra-low thermal expansion ceramics NEXCERATM is regarded as one of potential candidate materials crucial for ultralightweight and thermally-stable optical mirrors for space telescopes which are used in future optical missions satisfying extremely high observation specifications. To realize the high precision NEXCERA mirrors for space telescopes, it is important to develop a deterministic aspheric shape polishing and a precise figure correction polishing method for the NEXCERA. Magnetorheological finishing (MRF) was tested to the NEXCERA aspheric mirror from best fit sphere shape, because the MRF technology is regarded as the best suited process for a precise figure correction of the ultralightweight mirror with thin sheet due to its advantage of low normal force polishing. As using the best combination of material and MR fluid, the MRF was performed high precision figure correction and to induce a hyperbolic shape from a conventionally polished 100mm diameter sphere, and achieved the sufficient high figure accuracy and the high quality surface roughness. In order to apply the NEXCERA to a large scale space mirror, for the next step, a middle size solid mirror, 250 mm diameter concave parabola, was machined. It was roughly ground in the parabolic shape, and was lapped and polished by a computer-controlled polishing machine using sub-aperture polishing tools. It resulted in the smooth surface of 0.6 nm RMS and the figure accuracy of λ/4, being enough as pre-MRF surface. A further study of the NEXCERA space mirrors should be proceeded as a figure correction using the MRF to lightweight mirror with thin mirror sheet.

  9. Quantitative aspects of microchip isotachophoresis for high precision determination of main components in pharmaceuticals.

    PubMed

    Hradski, Jasna; Chorváthová, Mária Drusková; Bodor, Róbert; Sabo, Martin; Matejčík, Štefan; Masár, Marián

    2016-12-01

    Although microchip electrophoresis (MCE) is intended to provide reliable quantitative data, so far there is only limited attention paid to these important aspects. This study gives a general overview of key aspects to be followed to reach high-precise determination using isotachophoresis (ITP) on the microchip with conductivity detection. From the application point of view, the procedure for the determination of acetate, a main component in the pharmaceutical preparation buserelin acetate, was developed. Our results document that run-to-run fluctuations in the sample injection volume limit the reproducibility of quantitation based on the external calibration. The use of a suitable internal standard (succinate in this study) improved the repeatability of the precision of acetate determination from six to eight times. The robustness of the procedure was studied in terms of impact of fluctuations in various experimental parameters (driving current, concentration of the leading ions, pH of the leading electrolyte and buffer impurities) on the precision of the ITP determination. The use of computer simulation programs provided means to assess the ITP experiments using well-defined theoretical models. A long-term validity of the calibration curves on two microchips and two MCE equipments was verified. This favors ITP over other microchip electrophoresis techniques, when chip-to-chip or equipment-to-equipment transfer of the analytical method is required. The recovery values in the range of 98-101 % indicate very accurate determination of acetate in buserelin acetate, which is used in the treatment of hormone-dependent tumors. This study showed that microchip ITP is suitable for reliable determination of main components in pharmaceutical preparations.

  10. Atomically precise organomimetic cluster nanomolecules assembled via perfluoroaryl-thiol SNAr chemistry

    NASA Astrophysics Data System (ADS)

    Qian, Elaine A.; Wixtrom, Alex I.; Axtell, Jonathan C.; Saebi, Azin; Jung, Dahee; Rehak, Pavel; Han, Yanxiao; Moully, Elamar Hakim; Mosallaei, Daniel; Chow, Sylvia; Messina, Marco S.; Wang, Jing Yang; Royappa, A. Timothy; Rheingold, Arnold L.; Maynard, Heather D.; Král, Petr; Spokoyny, Alexander M.

    2017-04-01

    The majority of biomolecules are intrinsically atomically precise, an important characteristic that enables rational engineering of their recognition and binding properties. However, imparting a similar precision to hybrid nanoparticles has been challenging because of the inherent limitations of existing chemical methods and building blocks. Here we report a new approach to form atomically precise and highly tunable hybrid nanomolecules with well-defined three-dimensionality. Perfunctionalization of atomically precise clusters with pentafluoroaryl-terminated linkers produces size-tunable rigid cluster nanomolecules. These species are amenable to facile modification with a variety of thiol-containing molecules and macromolecules. Assembly proceeds at room temperature within hours under mild conditions, and the resulting nanomolecules exhibit high stabilities because of their full covalency. We further demonstrate how these nanomolecules grafted with saccharides can exhibit dramatically improved binding affinity towards a protein. Ultimately, the developed strategy allows the rapid generation of precise molecular assemblies to investigate multivalent interactions.

  11. Development of the One Centimeter Accuracy Geoid Model of Latvia for GNSS Measurements

    NASA Astrophysics Data System (ADS)

    Balodis, J.; Silabriedis, G.; Haritonova, D.; Kaļinka, M.; Janpaule, I.; Morozova, K.; Jumāre, I.; Mitrofanovs, I.; Zvirgzds, J.; Kaminskis, J.; Liepiņš, I.

    2015-11-01

    There is an urgent necessity for a highly accurate and reliable geoid model to enable prompt determination of normal height with the use of GNSS coordinate determination due to the high precision requirements in geodesy, building and high precision road construction development. Additionally, the Latvian height system is in the process of transition from BAS- 77 (Baltic Height System) to EVRS2007 system. The accuracy of the geoid model must approach the precision of about ∼1 cm looking forward to the Baltic Rail and other big projects. The use of all the available and verified data sources is planned, including the use of enlarged set of GNSS/levelling data, gravimetric measurement data and, additionally, the vertical deflection measurements over the territory of Latvia. The work is going ahead stepwise. Just the issue of GNSS reference network stability is discussed. In order to achieve the ∼1 cm precision geoid, it is required to have a homogeneous high precision GNSS network as a basis for ellipsoidal height determination for GNSS/levelling points. Both the LatPos and EUPOS® - Riga network have been examined in this article.

  12. Latest R&D news and beam test performance of the highly granular SiW-ECAL technological prototype for the ILC

    NASA Astrophysics Data System (ADS)

    Irles, A.

    2018-02-01

    High precision physics at future colliders as the International Linear Collider (ILC) require unprecedented high precision in the determination of the energy of final state particles. The needed precision will be achieved thanks to the Particle Flow algorithms (PF) which require highly granular and hermetic calorimeters systems. The physical proof of concept of the PF was performed in the previous campaign of beam tests of physic prototypes within the CALICE collaboration. One of these prototypes was the physics prototype of the Silicon-Tungsten Electromagnetic Calorimeter (SiW-ECAL) for the ILC. In this document we present the latest news on R&D of the next generation prototype, the technological prototype with fully embedded very front-end (VFE) electronics, of the SiW-ECAL. Special emphasis is given to the presentation and discussion of the first results from the beam test done at DESY in June 2017. The physics program for such beam test consisted in the calibration and commissioning of the current set of available SiW ECAL modules; the test of performance of individual slabs under 1T magnetic fields; and the study of electromagnetic showers events.

  13. Application of Template Matching for Improving Classification of Urban Railroad Point Clouds

    PubMed Central

    Arastounia, Mostafa; Oude Elberink, Sander

    2016-01-01

    This study develops an integrated data-driven and model-driven approach (template matching) that clusters the urban railroad point clouds into three classes of rail track, contact cable, and catenary cable. The employed dataset covers 630 m of the Dutch urban railroad corridors in which there are four rail tracks, two contact cables, and two catenary cables. The dataset includes only geometrical information (three dimensional (3D) coordinates of the points) with no intensity data and no RGB data. The obtained results indicate that all objects of interest are successfully classified at the object level with no false positives and no false negatives. The results also show that an average 97.3% precision and an average 97.7% accuracy at the point cloud level are achieved. The high precision and high accuracy of the rail track classification (both greater than 96%) at the point cloud level stems from the great impact of the employed template matching method on excluding the false positives. The cables also achieve quite high average precision (96.8%) and accuracy (98.4%) due to their high sampling and isolated position in the railroad corridor. PMID:27973452

  14. High density scintillating glass proton imaging detector

    NASA Astrophysics Data System (ADS)

    Wilkinson, C. J.; Goranson, K.; Turney, A.; Xie, Q.; Tillman, I. J.; Thune, Z. L.; Dong, A.; Pritchett, D.; McInally, W.; Potter, A.; Wang, D.; Akgun, U.

    2017-03-01

    In recent years, proton therapy has achieved remarkable precision in delivering doses to cancerous cells while avoiding healthy tissue. However, in order to utilize this high precision treatment, greater accuracy in patient positioning is needed. An accepted approximate uncertainty of +/-3% exists in the current practice of proton therapy due to conversions between x-ray and proton stopping power. The use of protons in imaging would eliminate this source of error and lessen the radiation exposure of the patient. To this end, this study focuses on developing a novel proton-imaging detector built with high-density glass scintillator. The model described herein contains a compact homogeneous proton calorimeter composed of scintillating, high density glass as the active medium. The unique geometry of this detector allows for the measurement of both the position and residual energy of protons, eliminating the need for a separate set of position trackers in the system. Average position and energy of a pencil beam of 106 protons is used to reconstruct the image rather than by analyzing individual proton data. Simplicity and efficiency were major objectives in this model in order to present an imaging technique that is compact, cost-effective, and precise, as well as practical for a clinical setting with pencil-beam scanning proton therapy equipment. In this work, the development of novel high-density glass scintillator and the unique conceptual design of the imager are discussed; a proof-of-principle Monte Carlo simulation study is performed; preliminary two-dimensional images reconstructed from the Geant4 simulation are presented.

  15. Water vapor δ(2) H, δ(18) O and δ(17) O measurements using an off-axis integrated cavity output spectrometer - sensitivity to water vapor concentration, delta value and averaging-time.

    PubMed

    Tian, Chao; Wang, Lixin; Novick, Kimberly A

    2016-10-15

    High-precision analysis of atmospheric water vapor isotope compositions, especially δ(17) O values, can be used to improve our understanding of multiple hydrological and meteorological processes (e.g., differentiate equilibrium or kinetic fractionation). This study focused on assessing, for the first time, how the accuracy and precision of vapor δ(17) O laser spectroscopy measurements depend on vapor concentration, delta range, and averaging-time. A Triple Water Vapor Isotope Analyzer (T-WVIA) was used to evaluate the accuracy and precision of δ(2) H, δ(18) O and δ(17) O measurements. The sensitivity of accuracy and precision to water vapor concentration was evaluated using two international standards (GISP and SLAP2). The sensitivity of precision to delta value was evaluated using four working standards spanning a large delta range. The sensitivity of precision to averaging-time was assessed by measuring one standard continuously for 24 hours. Overall, the accuracy and precision of the δ(2) H, δ(18) O and δ(17) O measurements were high. Across all vapor concentrations, the accuracy of δ(2) H, δ(18) O and δ(17) O observations ranged from 0.10‰ to 1.84‰, 0.08‰ to 0.86‰ and 0.06‰ to 0.62‰, respectively, and the precision ranged from 0.099‰ to 0.430‰, 0.009‰ to 0.080‰ and 0.022‰ to 0.054‰, respectively. The accuracy and precision of all isotope measurements were sensitive to concentration, with the higher accuracy and precision generally observed under moderate vapor concentrations (i.e., 10000-15000 ppm) for all isotopes. The precision was also sensitive to the range of delta values, although the effect was not as large compared with the sensitivity to concentration. The precision was much less sensitive to averaging-time than the concentration and delta range effects. The accuracy and precision performance of the T-WVIA depend on concentration but depend less on the delta value and averaging-time. The instrument can simultaneously and continuously measure δ(2) H, δ(18) O and δ(17) O values in water vapor, opening a new window to better understand ecological, hydrological and meteorological processes. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  16. High precision tracking of a piezoelectric nano-manipulator with parameterized hysteresis compensation

    NASA Astrophysics Data System (ADS)

    Yan, Peng; Zhang, Yangming

    2018-06-01

    High performance scanning of nano-manipulators is widely deployed in various precision engineering applications such as SPM (scanning probe microscope), where trajectory tracking of sophisticated reference signals is an challenging control problem. The situation is further complicated when rate dependent hysteresis of the piezoelectric actuators and the stress-stiffening induced nonlinear stiffness of the flexure mechanism are considered. In this paper, a novel control framework is proposed to achieve high precision tracking of a piezoelectric nano-manipulator subjected to hysteresis and stiffness nonlinearities. An adaptive parameterized rate-dependent Prandtl-Ishlinskii model is constructed and the corresponding adaptive inverse model based online compensation is derived. Meanwhile a robust adaptive control architecture is further introduced to improve the tracking accuracy and robustness of the compensated system, where the parametric uncertainties of the nonlinear dynamics can be well eliminated by on-line estimations. Comparative experimental studies of the proposed control algorithm are conducted on a PZT actuated nano-manipulating stage, where hysteresis modeling accuracy and excellent tracking performance are demonstrated in real-time implementations, with significant improvement over existing results.

  17. Molecular diffusion of stable water isotopes in polar firn as a proxy for past temperatures

    NASA Astrophysics Data System (ADS)

    Holme, Christian; Gkinis, Vasileios; Vinther, Bo M.

    2018-03-01

    Polar precipitation archived in ice caps contains information on past temperature conditions. Such information can be retrieved by measuring the water isotopic signals of δ18O and δD in ice cores. These signals have been attenuated during densification due to molecular diffusion in the firn column, where the magnitude of the diffusion is isotopologue specific and temperature dependent. By utilizing the differential diffusion signal, dual isotope measurements of δ18O and δD enable multiple temperature reconstruction techniques. This study assesses how well six different methods can be used to reconstruct past surface temperatures from the diffusion-based temperature proxies. Two of the methods are based on the single diffusion lengths of δ18O and δD , three of the methods employ the differential diffusion signal, while the last uses the ratio between the single diffusion lengths. All techniques are tested on synthetic data in order to evaluate their accuracy and precision. We perform a benchmark test to thirteen high resolution Holocene data sets from Greenland and Antarctica, which represent a broad range of mean annual surface temperatures and accumulation rates. Based on the benchmark test, we comment on the accuracy and precision of the methods. Both the benchmark test and the synthetic data test demonstrate that the most precise reconstructions are obtained when using the single isotope diffusion lengths, with precisions of approximately 1.0 °C . In the benchmark test, the single isotope diffusion lengths are also found to reconstruct consistent temperatures with a root-mean-square-deviation of 0.7 °C . The techniques employing the differential diffusion signals are more uncertain, where the most precise method has a precision of 1.9 °C . The diffusion length ratio method is the least precise with a precision of 13.7 °C . The absolute temperature estimates from this method are also shown to be highly sensitive to the choice of fractionation factor parameterization.

  18. High precision NC lathe feeding system rigid-flexible coupling model reduction technology

    NASA Astrophysics Data System (ADS)

    Xuan, He; Hua, Qingsong; Cheng, Lianjun; Zhang, Hongxin; Zhao, Qinghai; Mao, Xinkai

    2017-08-01

    This paper proposes the use of dynamic substructure method of reduction of order to achieve effective reduction of feed system for high precision NC lathe feeding system rigid-flexible coupling model, namely the use of ADAMS to establish the rigid flexible coupling simulation model of high precision NC lathe, and then the vibration simulation of the period by using the FD 3D damper is very effective for feed system of bolt connection reduction of multi degree of freedom model. The vibration simulation calculation is more accurate, more quickly.

  19. High precision radial velocities with GIANO spectra

    NASA Astrophysics Data System (ADS)

    Carleo, I.; Sanna, N.; Gratton, R.; Benatti, S.; Bonavita, M.; Oliva, E.; Origlia, L.; Desidera, S.; Claudi, R.; Sissa, E.

    2016-06-01

    Radial velocities (RV) measured from near-infrared (NIR) spectra are a potentially excellent tool to search for extrasolar planets around cool or active stars. High resolution infrared (IR) spectrographs now available are reaching the high precision of visible instruments, with a constant improvement over time. GIANO is an infrared echelle spectrograph at the Telescopio Nazionale Galileo (TNG) and it is a powerful tool to provide high resolution spectra for accurate RV measurements of exoplanets and for chemical and dynamical studies of stellar or extragalactic objects. No other high spectral resolution IR instrument has GIANO's capability to cover the entire NIR wavelength range (0.95-2.45 μm) in a single exposure. In this paper we describe the ensemble of procedures that we have developed to measure high precision RVs on GIANO spectra acquired during the Science Verification (SV) run, using the telluric lines as wavelength reference. We used the Cross Correlation Function (CCF) method to determine the velocity for both the star and the telluric lines. For this purpose, we constructed two suitable digital masks that include about 2000 stellar lines, and a similar number of telluric lines. The method is applied to various targets with different spectral type, from K2V to M8 stars. We reached different precisions mainly depending on the H-magnitudes: for H ˜ 5 we obtain an rms scatter of ˜ 10 m s-1, while for H ˜ 9 the standard deviation increases to ˜ 50 ÷ 80 m s-1. The corresponding theoretical error expectations are ˜ 4 m s-1 and 30 m s-1, respectively. Finally we provide the RVs measured with our procedure for the targets observed during GIANO Science Verification.

  20. [Possibile application of X-ray and high resolution CT in pneumoconiosis management].

    PubMed

    Vlasov, V G; Laptev, V Ia; Logvinenko, I I; Smirnova, E L; Brovchenko, E P; Mironova, M V

    2011-01-01

    The article covers results of clinical and roentgenologic data analysis. The data were obtained in the study that covered 447 pneumoconiosis patients, 75 of which were subjected to high resolution CT. If compared to chest X-ray, high resolution CT helps more precise forecast of further course in pneumoconiosis.

  1. A high precision position sensor design and its signal processing algorithm for a maglev train.

    PubMed

    Xue, Song; Long, Zhiqiang; He, Ning; Chang, Wensen

    2012-01-01

    High precision positioning technology for a kind of high speed maglev train with an electromagnetic suspension (EMS) system is studied. At first, the basic structure and functions of the position sensor are introduced and some key techniques to enhance the positioning precision are designed. Then, in order to further improve the positioning signal quality and the fault-tolerant ability of the sensor, a new kind of discrete-time tracking differentiator (TD) is proposed based on nonlinear optimal control theory. This new TD has good filtering and differentiating performances and a small calculation load. It is suitable for real-time signal processing. The stability, convergence property and frequency characteristics of the TD are studied and analyzed thoroughly. The delay constant of the TD is figured out and an effective time delay compensation algorithm is proposed. Based on the TD technology, a filtering process is introduced in to improve the positioning signal waveform when the sensor is under bad working conditions, and a two-sensor switching algorithm is designed to eliminate the positioning errors caused by the joint gaps of the long stator. The effectiveness and stability of the sensor and its signal processing algorithms are proved by the experiments on a test train during a long-term test run.

  2. A High Precision Position Sensor Design and Its Signal Processing Algorithm for a Maglev Train

    PubMed Central

    Xue, Song; Long, Zhiqiang; He, Ning; Chang, Wensen

    2012-01-01

    High precision positioning technology for a kind of high speed maglev train with an electromagnetic suspension (EMS) system is studied. At first, the basic structure and functions of the position sensor are introduced and some key techniques to enhance the positioning precision are designed. Then, in order to further improve the positioning signal quality and the fault-tolerant ability of the sensor, a new kind of discrete-time tracking differentiator (TD) is proposed based on nonlinear optimal control theory. This new TD has good filtering and differentiating performances and a small calculation load. It is suitable for real-time signal processing. The stability, convergence property and frequency characteristics of the TD are studied and analyzed thoroughly. The delay constant of the TD is figured out and an effective time delay compensation algorithm is proposed. Based on the TD technology, a filtering process is introduced in to improve the positioning signal waveform when the sensor is under bad working conditions, and a two-sensor switching algorithm is designed to eliminate the positioning errors caused by the joint gaps of the long stator. The effectiveness and stability of the sensor and its signal processing algorithms are proved by the experiments on a test train during a long-term test run. PMID:22778582

  3. Aspects of ultra-high-precision diamond machining of RSA 443 optical aluminium

    NASA Astrophysics Data System (ADS)

    Mkoko, Z.; Abou-El-Hossein, K.

    2015-08-01

    Optical aluminium alloys such as 6061-T6 are traditionally used in ultra-high precision manufacturing for making optical mirrors for aerospace and other applications. However, the optics industry has recently witnessed the development of more advanced optical aluminium grades that are capable of addressing some of the issues encountered when turning with single-point natural monocrystalline diamond cutters. The advent of rapidly solidified aluminium (RSA) grades has generally opened up new possibilities for ultra-high precision manufacturing of optical components. In this study, experiments were conducted with single-point diamond cutters on rapidly solidified aluminium RSA 443 material. The objective of this study is to observe the effects of depth of cut and feed rate at a fixed rotational speed on the tool wear rate and resulting surface roughness of diamond turned specimens. This is done to gain further understanding of the rate of wear on the diamond cutters versus the surface texture generated on the RSA 443 material. The diamond machining experiments yielded machined surfaces which are less reflective but with consistent surface roughness values. Cutting tools were observed for wear through scanning microscopy; relatively low wear pattern was evident on the diamond tool edge. The highest tool wear were obtained at higher depth of cut and increased feed rate.

  4. Experimental study of an adaptive CFRC reflector for high order wave-front error correction

    NASA Astrophysics Data System (ADS)

    Lan, Lan; Fang, Houfei; Wu, Ke; Jiang, Shuidong; Zhou, Yang

    2018-03-01

    The recent radio frequency communication system developments are generating the need for creating space antennas with lightweight and high precision. The carbon fiber reinforced composite (CFRC) materials have been used to manufacture the high precision reflector. The wave-front errors caused by fabrication and on-orbit distortion are inevitable. The adaptive CFRC reflector has received much attention to do the wave-front error correction. Due to uneven stress distribution that is introduced by actuation force and fabrication, the high order wave-front errors such as print-through error is found on the reflector surface. However, the adaptive CFRC reflector with PZT actuators basically has no control authority over the high order wave-front errors. A new design architecture assembled secondary ribs at the weak triangular surfaces is presented in this paper. The virtual experimental study of the new adaptive CFRC reflector has conducted. The controllability of the original adaptive CFRC reflector and the new adaptive CFRC reflector with secondary ribs are investigated. The virtual experimental investigation shows that the new adaptive CFRC reflector is feasible and efficient to diminish the high order wave-front error.

  5. Development and modulation of intrinsic membrane properties control the temporal precision of auditory brain stem neurons.

    PubMed

    Franzen, Delwen L; Gleiss, Sarah A; Berger, Christina; Kümpfbeck, Franziska S; Ammer, Julian J; Felmy, Felix

    2015-01-15

    Passive and active membrane properties determine the voltage responses of neurons. Within the auditory brain stem, refinements in these intrinsic properties during late postnatal development usually generate short integration times and precise action-potential generation. This developmentally acquired temporal precision is crucial for auditory signal processing. How the interactions of these intrinsic properties develop in concert to enable auditory neurons to transfer information with high temporal precision has not yet been elucidated in detail. Here, we show how the developmental interaction of intrinsic membrane parameters generates high firing precision. We performed in vitro recordings from neurons of postnatal days 9-28 in the ventral nucleus of the lateral lemniscus of Mongolian gerbils, an auditory brain stem structure that converts excitatory to inhibitory information with high temporal precision. During this developmental period, the input resistance and capacitance decrease, and action potentials acquire faster kinetics and enhanced precision. Depending on the stimulation time course, the input resistance and capacitance contribute differentially to action-potential thresholds. The decrease in input resistance, however, is sufficient to explain the enhanced action-potential precision. Alterations in passive membrane properties also interact with a developmental change in potassium currents to generate the emergence of the mature firing pattern, characteristic of coincidence-detector neurons. Cholinergic receptor-mediated depolarizations further modulate this intrinsic excitability profile by eliciting changes in the threshold and firing pattern, irrespective of the developmental stage. Thus our findings reveal how intrinsic membrane properties interact developmentally to promote temporally precise information processing. Copyright © 2015 the American Physiological Society.

  6. High-precision Q EC values of superallowed 0 + → 0 + β-emitters 46Cr, 50Fe and 54Ni

    DOE PAGES

    Zhang, P.; Xu, X.; Shuai, P.; ...

    2017-01-23

    Short-lived 46Cr, 50Fe and 54Ni were studied by isochronous mass spectrometry at the HIRFL-CSR facility in Lanzhou. The measured precision mass excesses (ME) of 46Cr, 50Fe and 54Ni are -29471(11) keV, -34477(6) keV and -39278(4) keV, respectively. The superallowed 0 +→0+β-decay Q values were derived to be Q EC( 46Cr) =7604(11) keV, Q EC( 50Fe) =8150(6) keV and Q EC( 54Ni) =8731(4) keV. The values for 50Fe and 54Ni are by one order of magnitude more precise than the adopted literature values. By combining the existing half-lives and branching ratios, we obtained the corrected ℱt values to be ℱt(more » 50Fe) =3103(70) s and ℱt( 54Ni) =3076(50) s. The main contribution to the ℱt uncertainties is now due to β-decay branching ratios, still, more high-precision measurements of the half-lives, the masses, and especially the branching ratios are needed in order to satisfy the requirements for a stringent CVC test.« less

  7. High-precision Q EC values of superallowed 0 + → 0 + β-emitters 46Cr, 50Fe and 54Ni

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, P.; Xu, X.; Shuai, P.

    Short-lived 46Cr, 50Fe and 54Ni were studied by isochronous mass spectrometry at the HIRFL-CSR facility in Lanzhou. The measured precision mass excesses (ME) of 46Cr, 50Fe and 54Ni are -29471(11) keV, -34477(6) keV and -39278(4) keV, respectively. The superallowed 0 +→0+β-decay Q values were derived to be Q EC( 46Cr) =7604(11) keV, Q EC( 50Fe) =8150(6) keV and Q EC( 54Ni) =8731(4) keV. The values for 50Fe and 54Ni are by one order of magnitude more precise than the adopted literature values. By combining the existing half-lives and branching ratios, we obtained the corrected ℱt values to be ℱt(more » 50Fe) =3103(70) s and ℱt( 54Ni) =3076(50) s. The main contribution to the ℱt uncertainties is now due to β-decay branching ratios, still, more high-precision measurements of the half-lives, the masses, and especially the branching ratios are needed in order to satisfy the requirements for a stringent CVC test.« less

  8. Precision Medicine: Functional Advancements.

    PubMed

    Caskey, Thomas

    2018-01-29

    Precision medicine was conceptualized on the strength of genomic sequence analysis. High-throughput functional metrics have enhanced sequence interpretation and clinical precision. These technologies include metabolomics, magnetic resonance imaging, and I rhythm (cardiac monitoring), among others. These technologies are discussed and placed in clinical context for the medical specialties of internal medicine, pediatrics, obstetrics, and gynecology. Publications in these fields support the concept of a higher level of precision in identifying disease risk. Precise disease risk identification has the potential to enable intervention with greater specificity, resulting in disease prevention-an important goal of precision medicine.

  9. High Precision Isotope Analyses Using Multi-Collector SIMS: Applications to Earth and Planetary Science.

    NASA Astrophysics Data System (ADS)

    Kita, N. T.; Ushikubo, T.; Valley, J. W.

    2008-05-01

    The CAMECA IMS-1280 large radius, multicollector ion microprobe at the Wisc-SIMS National Facility is capable of high accuracy and precision for in situ analysis of isotope ratios. With improved hardware stability and software capability, high precision isotope analyses are routinely performed, typically 5 min per spot. We have developed analytical protocols for stable isotope analyses of oxygen, carbon, Mg, Si and Sulfur using multi-collector Faraday Cups (MCFC) and achieved precision of 0.1-0.2 ‰ (1SD) from a typically 10μm spot analyses. A number of isotopically homogeneous mineral standards have been prepared and calibrated in order to certify the accuracy of analyses in the same level. When spatial resolution is critical, spot size is reduced down to sub- μm for δ 18O to obtain better than 0.5‰ (1SD) precision by using electron multiplier (EM) on multi-collection system. Multi-collection EM analysis is also applied at 10 ppm level to Li isotope ratios in zircon with precision better than 2‰ (1SD). A few applications will be presented. (1) Oxygen three isotope analyses of chondrules in ordinary chondrites revealed both mass dependent and mass independent oxygen isotope fractionations among chondrules as well as within individual chondrules. The results give constraints on the process of chondrule formation and origin of isotope reservoirs in the early solar system. (2) High precision 26Al-26Mg (half life of 0.73 Ma) chronology is applied to zoned melilite and anorthite from Ca, Al-rich inclusions (CAI) in Leoville meteorite, and a well-defined internal isochron is obtained. The results indicate the Al- Mg system was remained closed within 40ky of the crystallization of melilite and anorthite in this CAI. (3) Sub- μm spot analyses of δ18O in isotopically zoned zircon from high-grade metamorphism reveals a diffusion profile of ~6‰ over 2μm, indicating slow diffusion of oxygen in zircon. This result also implies that old Archean detrital zircons (> 4Ga) might preserve their primary oxygen isotopic records, which allows us to trace the geological processes of the early earth [1]. Lithium isotope analyses of pre- 4Ga zircon from Jack Hills show high Li abundance and low δ 7Li, indicating existence of highly weathered crustal material as early as 4.3Ga. In conclusion, these new techniques allow us to study small natural variations of stable isotopes at μm-scale that permit exciting and fundamental research where samples are small, precious, or zoned. [1] Page FZ et al. (2007) Am Min 92, 1772-1775.

  10. Challenging High-Ability Students

    ERIC Educational Resources Information Center

    Scager, Karin; Akkerman, Sanne F.; Pilot, Albert; Wubbels, Theo

    2014-01-01

    The existing literature on indicators of an optimal learning environment for high-ability students frequently discusses the concept of challenge. It is, however, not clear what, precisely, constitutes appropriate challenge for these students. In this study, the authors examined an undergraduate honours course, Advanced Cell Biology, which has…

  11. Composite adaptive control of belt polishing force for aero-engine blade

    NASA Astrophysics Data System (ADS)

    Zhsao, Pengbing; Shi, Yaoyao

    2013-09-01

    The existing methods for blade polishing mainly focus on robot polishing and manual grinding. Due to the difficulty in high-precision control of the polishing force, the blade surface precision is very low in robot polishing, in particular, quality of the inlet and exhaust edges can not satisfy the processing requirements. Manual grinding has low efficiency, high labor intensity and unstable processing quality, moreover, the polished surface is vulnerable to burn, and the surface precision and integrity are difficult to ensure. In order to further improve the profile accuracy and surface quality, a pneumatic flexible polishing force-exerting mechanism is designed and a dual-mode switching composite adaptive control(DSCAC) strategy is proposed, which combines Bang-Bang control and model reference adaptive control based on fuzzy neural network(MRACFNN) together. By the mode decision-making mechanism, Bang-Bang control is used to track the control command signal quickly when the actual polishing force is far away from the target value, and MRACFNN is utilized in smaller error ranges to improve the system robustness and control precision. Based on the mathematical model of the force-exerting mechanism, simulation analysis is implemented on DSCAC. Simulation results show that the output polishing force can better track the given signal. Finally, the blade polishing experiments are carried out on the designed polishing equipment. Experimental results show that DSCAC can effectively mitigate the influence of gas compressibility, valve dead-time effect, valve nonlinear flow, cylinder friction, measurement noise and other interference on the control precision of polishing force, which has high control precision, strong robustness, strong anti-interference ability and other advantages compared with MRACFNN. The proposed research achieves high-precision control of the polishing force, effectively improves the blade machining precision and surface consistency, and significantly reduces the surface roughness.

  12. Precision of FLEET Velocimetry Using High-speed CMOS Camera Systems

    NASA Technical Reports Server (NTRS)

    Peters, Christopher J.; Danehy, Paul M.; Bathel, Brett F.; Jiang, Naibo; Calvert, Nathan D.; Miles, Richard B.

    2015-01-01

    Femtosecond laser electronic excitation tagging (FLEET) is an optical measurement technique that permits quantitative velocimetry of unseeded air or nitrogen using a single laser and a single camera. In this paper, we seek to determine the fundamental precision of the FLEET technique using high-speed complementary metal-oxide semiconductor (CMOS) cameras. Also, we compare the performance of several different high-speed CMOS camera systems for acquiring FLEET velocimetry data in air and nitrogen free-jet flows. The precision was defined as the standard deviation of a set of several hundred single-shot velocity measurements. Methods of enhancing the precision of the measurement were explored such as digital binning (similar in concept to on-sensor binning, but done in post-processing), row-wise digital binning of the signal in adjacent pixels and increasing the time delay between successive exposures. These techniques generally improved precision; however, binning provided the greatest improvement to the un-intensified camera systems which had low signal-to-noise ratio. When binning row-wise by 8 pixels (about the thickness of the tagged region) and using an inter-frame delay of 65 micro sec, precisions of 0.5 m/s in air and 0.2 m/s in nitrogen were achieved. The camera comparison included a pco.dimax HD, a LaVision Imager scientific CMOS (sCMOS) and a Photron FASTCAM SA-X2, along with a two-stage LaVision High Speed IRO intensifier. Excluding the LaVision Imager sCMOS, the cameras were tested with and without intensification and with both short and long inter-frame delays. Use of intensification and longer inter-frame delay generally improved precision. Overall, the Photron FASTCAM SA-X2 exhibited the best performance in terms of greatest precision and highest signal-to-noise ratio primarily because it had the largest pixels.

  13. Base line estimation using single passes of laser data

    NASA Technical Reports Server (NTRS)

    Dunn, P. J.; Torrence, M.; Smith, D. E.; Kolenkiewicz, R.

    1979-01-01

    The laser data of the GEOS 3 satellite passes observed by four stations at Greenbelt (Maryland), Bermuda, Grand Turk Island (Bahamas) and Patrick Air Force Base (Florida), were employed to determine precise interstation base lines and relative heights in short orbital arcs of no more than 12-min duration. No more than five arcs of data are required to define the interstation base lines to 30-cm precision. Base lines running parallel to the orbital motion can be defined to submeter precision from a single short arc of data. Combining arcs of different orbital geometry in a common adjustment of two or more stations relative to the base station helps to compensate for weak base line definition in any single arc. This technique can be used for tracking such spacecraft as Lageos, a high-altitude retroreflector-carrying satellite designed for precise laser ranging studies.

  14. Quantum metrology and estimation of Unruh effect

    PubMed Central

    Wang, Jieci; Tian, Zehua; Jing, Jiliang; Fan, Heng

    2014-01-01

    We study the quantum metrology for a pair of entangled Unruh-Dewitt detectors when one of them is accelerated and coupled to a massless scalar field. Comparing with previous schemes, our model requires only local interaction and avoids the use of cavities in the probe state preparation process. We show that the probe state preparation and the interaction between the accelerated detector and the external field have significant effects on the value of quantum Fisher information, correspondingly pose variable ultimate limit of precision in the estimation of Unruh effect. We find that the precision of the estimation can be improved by a larger effective coupling strength and a longer interaction time. Alternatively, the energy gap of the detector has a range that can provide us a better precision. Thus we may adjust those parameters and attain a higher precision in the estimation. We also find that an extremely high acceleration is not required in the quantum metrology process. PMID:25424772

  15. Superallowed Fermi β-Decay Studies with SCEPTAR and the 8π Gamma-Ray Spectrometer

    NASA Astrophysics Data System (ADS)

    Koopmans, K. A.

    2005-04-01

    The 8π Gamma-Ray Spectrometer, operating at TRIUMF in Vancouver Canada, is a high-precision instrument for detecting the decay radiations from exotic nuclei. In 2003, a new beta-scintillating array called SCEPTAR was installed within the 8π Spectrometer. With these two systems, precise measurements of half-lives and branching ratios can be made, specifically on certain nuclei which exhibit Superallowed Fermi 0+ → 0+ β-decay. These data can be used to determine the value of δC, an isospin symmetry-breaking (Coulomb) correction factor to good precision. As this correction factor is currently one of the leading sources of error in the unitarity test of the CKM matrix, a precise determination of its value could help to eliminate any possible "trivial" explanation of the seeming departure of current experimental data from Standard Model predictions.

  16. -Omic and Electronic Health Records Big Data Analytics for Precision Medicine

    PubMed Central

    Wu, Po-Yen; Cheng, Chih-Wen; Kaddi, Chanchala D.; Venugopalan, Janani; Hoffman, Ryan; Wang, May D.

    2017-01-01

    Objective Rapid advances of high-throughput technologies and wide adoption of electronic health records (EHRs) have led to fast accumulation of -omic and EHR data. These voluminous complex data contain abundant information for precision medicine, and big data analytics can extract such knowledge to improve the quality of health care. Methods In this article, we present -omic and EHR data characteristics, associated challenges, and data analytics including data pre-processing, mining, and modeling. Results To demonstrate how big data analytics enables precision medicine, we provide two case studies, including identifying disease biomarkers from multi-omic data and incorporating -omic information into EHR. Conclusion Big data analytics is able to address –omic and EHR data challenges for paradigm shift towards precision medicine. Significance Big data analytics makes sense of –omic and EHR data to improve healthcare outcome. It has long lasting societal impact. PMID:27740470

  17. Navigation for space shuttle approach and landing using an inertial navigation system augmented by data from a precision ranging system or a microwave scan beam landing guidance system

    NASA Technical Reports Server (NTRS)

    Mcgee, L. A.; Smith, G. L.; Hegarty, D. M.; Merrick, R. B.; Carson, T. M.; Schmidt, S. F.

    1970-01-01

    A preliminary study has been made of the navigation performance which might be achieved for the high cross-range space shuttle orbiter during final approach and landing by using an optimally augmented inertial navigation system. Computed navigation accuracies are presented for an on-board inertial navigation system augmented (by means of an optimal filter algorithm) with data from two different ground navigation aids; a precision ranging system and a microwave scanning beam landing guidance system. These results show that augmentation with either type of ground navigation aid is capable of providing a navigation performance at touchdown which should be adequate for the space shuttle. In addition, adequate navigation performance for space shuttle landing is obtainable from the precision ranging system even with a complete dropout of precision range measurements as much as 100 seconds before touchdown.

  18. Upgrade of the SPIRAL identification station for high-precision measurements of nuclear β decay

    NASA Astrophysics Data System (ADS)

    Grinyer, G. F.; Thomas, J. C.; Blank, B.; Bouzomita, H.; Austin, R. A. E.; Ball, G. C.; Bucaille, F.; Delahaye, P.; Finlay, P.; Frémont, G.; Gibelin, J.; Giovinazzo, J.; Grinyer, J.; Kurtukian-Nieto, T.; Laffoley, A. T.; Leach, K. G.; Lefèvre, A.; Legruel, F.; Lescalié, G.; Perez-Loureiro, D.

    2014-03-01

    The low-energy identification station at SPIRAL (Système de Production d'Ions Radioactifs Accélérés en Ligne) has been upgraded for studying the β decays of short-lived radioactive isotopes and to perform high-precision half-life and branching-ratio measurements for superallowed Fermi and isospin T=1/2 mirror β decays. These new capabilities, combined with an existing Paul trap setup for measurements of β-ν angular-correlation coefficients, provide a powerful facility for investigating fundamental properties of the electroweak interaction through nuclear β decays. A detailed description of the design study, construction, and first results obtained from an in-beam commissioning experiment on the β+ decays 14 O and 17F are presented.

  19. A novel algorithm for detecting active propulsion in wheelchair users following spinal cord injury.

    PubMed

    Popp, Werner L; Brogioli, Michael; Leuenberger, Kaspar; Albisser, Urs; Frotzler, Angela; Curt, Armin; Gassert, Roger; Starkey, Michelle L

    2016-03-01

    Physical activity in wheelchair-bound individuals can be assessed by monitoring their mobility as this is one of the most intense upper extremity activities they perform. Current accelerometer-based approaches for describing wheelchair mobility do not distinguish between self- and attendant-propulsion and hence may overestimate total physical activity. The aim of this study was to develop and validate an inertial measurement unit based algorithm to monitor wheel kinematics and the type of wheelchair propulsion (self- or attendant-) within a "real-world" situation. Different sensor set-ups were investigated, ranging from a high precision set-up including four sensor modules with a relatively short measurement duration of 24 h, to a less precise set-up with only one module attached at the wheel exceeding one week of measurement because the gyroscope of the sensor was turned off. The "high-precision" algorithm distinguished self- and attendant-propulsion with accuracy greater than 93% whilst the long-term measurement set-up showed an accuracy of 82%. The estimation accuracy of kinematic parameters was greater than 97% for both set-ups. The possibility of having different sensor set-ups allows the use of the inertial measurement units as high precision tools for researchers as well as unobtrusive and simple tools for manual wheelchair users. Copyright © 2016 IPEM. Published by Elsevier Ltd. All rights reserved.

  20. Rapid measurement of human milk macronutrients in the neonatal intensive care unit: accuracy and precision of fourier transform mid-infrared spectroscopy.

    PubMed

    Smilowitz, Jennifer T; Gho, Deborah S; Mirmiran, Majid; German, J Bruce; Underwood, Mark A

    2014-05-01

    Although it is well established that human milk varies widely in macronutrient content, it remains common for human milk fortification for premature infants to be based on historic mean values. As a result, those caring for premature infants often underestimate protein intake. Rapid precise measurement of human milk protein, fat, and lactose to allow individualized fortification has been proposed for decades but remains elusive due to technical challenges. This study aimed to evaluate the accuracy and precision of a Fourier transform (FT) mid-infrared (IR) spectroscope in the neonatal intensive care unit to measure human milk fat, total protein, lactose, and calculated energy compared with standard chemical analyses. One hundred sixteen breast milk samples across lactation stages from women who delivered at term (n = 69) and preterm (n = 5) were analyzed with the FT mid-IR spectroscope and with standard chemical methods. Ten of the samples were tested in replicate using the FT mid-IR spectroscope to determine repeatability. The agreement between the FT mid-IR spectroscope analysis and reference methods was high for protein and fat and moderate for lactose and energy. The intra-assay coefficients of variation for all outcomes were less than 3%. The FT mid-IR spectroscope demonstrated high accuracy in measurement of total protein and fat of preterm and term milk with high precision.

  1. Research on precise pneumatic-electric displacement sensor with large measurement range

    NASA Astrophysics Data System (ADS)

    Yin, Zhehao; Yuan, Yibao; Liu, Baoshuai

    2017-10-01

    This research mainly focuses on precise pneumatic-electric displacement sensor which has large measurement range. Under the high precision, measurement range can be expanded so that the need of high precision as well as large range can be satisfied in the field of machining inspection technology. This research was started by the analysis of pneumatic-measuring theory. Then, an gas circuit measuring system which is based on differential pressure was designed. This designed system can reach two aims: Firstly, to convert displacement signal into gas signal; Secondly, to reduce the measurement error which caused by pressure and environmental turbulence. Furthermore, in consideration of the high requirement for linearity, sensitivity and stability, the project studied the pneumatic-electric transducer which puts the SCX series pressure sensor as a key part. The main purpose of this pneumatic-electric transducer is to convert gas signal to suitable electrical signal. Lastly, a broken line subsection linearization circuit was designed, which can nonlinear correct the output characteristic curve so as to enlarge the linear measurement range. The final result could be briefly described like this: under the condition that measuring error is less than 1μm, measurement range could be extended to approximately 200μm which is much higher than the measurement range of traditional pneumatic measuring instrument. Meanwhile, it can reach higher exchangeability and stability in order to become more suitable to engineering application.

  2. High-Precision Monte Carlo Simulation of the Ising Models on the Penrose Lattice and the Dual Penrose Lattice

    NASA Astrophysics Data System (ADS)

    Komura, Yukihiro; Okabe, Yutaka

    2016-04-01

    We study the Ising models on the Penrose lattice and the dual Penrose lattice by means of the high-precision Monte Carlo simulation. Simulating systems up to the total system size N = 20633239, we estimate the critical temperatures on those lattices with high accuracy. For high-speed calculation, we use the generalized method of the single-GPU-based computation for the Swendsen-Wang multi-cluster algorithm of Monte Carlo simulation. As a result, we estimate the critical temperature on the Penrose lattice as Tc/J = 2.39781 ± 0.00005 and that of the dual Penrose lattice as Tc*/J = 2.14987 ± 0.00005. Moreover, we definitely confirm the duality relation between the critical temperatures on the dual pair of quasilattices with a high degree of accuracy, sinh (2J/Tc)sinh (2J/Tc*) = 1.00000 ± 0.00004.

  3. Nanophotonic Trapping for Precise Manipulation of Biomolecular Arrays

    PubMed Central

    Soltani, Mohammad; Lin, Jun; Forties, Robert A.; Inman, James T.; Saraf, Summer N.; Fulbright, Robert M.; Lipson, Michal; Wang, Michelle D.

    2014-01-01

    Optical trapping is a powerful manipulation and measurement technique widely employed in the biological and materials sciences1–8. Miniaturizing optical trap instruments onto optofluidic platforms holds promise for high throughput lab-on-chip applications9–16. However, a persistent challenge with existing optofluidic devices has been controlled and precise manipulation of trapped particles. Here we report a new class of on-chip optical trapping devices. Using photonic interference functionalities, an array of stable, three-dimensional on-chip optical traps is formed at the antinodes of a standing-wave evanescent field on a nanophotonic waveguide. By employing the thermo-optic effect via integrated electric microheaters, the traps can be repositioned at high speed (~ 30 kHz) with nanometer precision. We demonstrate sorting and manipulation of individual DNA molecules. In conjunction with laminar flows and fluorescence, we also show precise control of the chemical environment of a sample with simultaneous monitoring. Such a controllable trapping device has the potential for high-throughput precision measurements on chip. PMID:24776649

  4. Nanophotonic trapping for precise manipulation of biomolecular arrays.

    PubMed

    Soltani, Mohammad; Lin, Jun; Forties, Robert A; Inman, James T; Saraf, Summer N; Fulbright, Robert M; Lipson, Michal; Wang, Michelle D

    2014-06-01

    Optical trapping is a powerful manipulation and measurement technique widely used in the biological and materials sciences. Miniaturizing optical trap instruments onto optofluidic platforms holds promise for high-throughput lab-on-a-chip applications. However, a persistent challenge with existing optofluidic devices has been achieving controlled and precise manipulation of trapped particles. Here, we report a new class of on-chip optical trapping devices. Using photonic interference functionalities, an array of stable, three-dimensional on-chip optical traps is formed at the antinodes of a standing-wave evanescent field on a nanophotonic waveguide. By employing the thermo-optic effect via integrated electric microheaters, the traps can be repositioned at high speed (∼30 kHz) with nanometre precision. We demonstrate sorting and manipulation of individual DNA molecules. In conjunction with laminar flows and fluorescence, we also show precise control of the chemical environment of a sample with simultaneous monitoring. Such a controllable trapping device has the potential to achieve high-throughput precision measurements on chip.

  5. High-precision radius automatic measurement using laser differential confocal technology

    NASA Astrophysics Data System (ADS)

    Jiang, Hongwei; Zhao, Weiqian; Yang, Jiamiao; Guo, Yongkui; Xiao, Yang

    2015-02-01

    A high precision radius automatic measurement method using laser differential confocal technology is proposed. Based on the property of an axial intensity curve that the null point precisely corresponds to the focus of the objective and the bipolar property, the method uses the composite PID (proportional-integral-derivative) control to ensure the steady movement of the motor for process of quick-trigger scanning, and uses least-squares linear fitting to obtain the position of the cat-eye and confocal positions, then calculates the radius of curvature of lens. By setting the number of measure times, precision auto-repeat measurement of the radius of curvature is achieved. The experiment indicates that the method has the measurement accuracy of better than 2 ppm, and the measuring repeatability is better than 0.05 μm. In comparison with the existing manual-single measurement, this method has a high measurement precision, a strong environment anti-interference capability, a better measuring repeatability which is only tenth of former's.

  6. A Fixed-Precision Sequential Sampling Plan for the Potato Tuberworm Moth, Phthorimaea operculella Zeller (Lepidoptera: Gelechidae), on Potato Cultivars.

    PubMed

    Shahbi, M; Rajabpour, A

    2017-08-01

    Phthorimaea operculella Zeller is an important pest of potato in Iran. Spatial distribution and fixed-precision sequential sampling for population estimation of the pest on two potato cultivars, Arinda ® and Sante ® , were studied in two separate potato fields during two growing seasons (2013-2014 and 2014-2015). Spatial distribution was investigated by Taylor's power law and Iwao's patchiness. Results showed that the spatial distribution of eggs and larvae was random. In contrast to Iwao's patchiness, Taylor's power law provided a highly significant relationship between variance and mean density. Therefore, fixed-precision sequential sampling plan was developed by Green's model at two precision levels of 0.25 and 0.1. The optimum sample size on Arinda ® and Sante ® cultivars at precision level of 0.25 ranged from 151 to 813 and 149 to 802 leaves, respectively. At 0.1 precision level, the sample sizes varied from 5083 to 1054 and 5100 to 1050 leaves for Arinda ® and Sante ® cultivars, respectively. Therefore, the optimum sample sizes for the cultivars, with different resistance levels, were not significantly different. According to the calculated stop lines, the sampling must be continued until cumulative number of eggs + larvae reached to 15-16 or 96-101 individuals at precision levels of 0.25 or 0.1, respectively. The performance of the sampling plan was validated by resampling analysis using resampling for validation of sampling plans software. The sampling plant provided in this study can be used to obtain a rapid estimate of the pest density with minimal effort.

  7. Pharmacogenomics and Global Precision Medicine in the Context of Adverse Drug Reactions: Top 10 Opportunities and Challenges for the Next Decade.

    PubMed

    Alessandrini, Marco; Chaudhry, Mamoonah; Dodgen, Tyren M; Pepper, Michael S

    2016-10-01

    In a move indicative of the enthusiastic support of precision medicine, the U.S. President Barack Obama announced the Precision Medicine Initiative in January 2015. The global precision medicine ecosystem is, thus, receiving generous support from the United States ($215 million), and numerous other governments have followed suit. In the context of precision medicine, drug treatment and prediction of its outcomes have been important for nearly six decades in the field of pharmacogenomics. The field offers an elegant solution for minimizing the effects and occurrence of adverse drug reactions (ADRs). The Clinical Pharmacogenetics Implementation Consortium (CPIC) plays an important role in this context, and it aims at specifically guiding the translation of clinically relevant and evidence-based pharmacogenomics research. In this forward-looking analysis, we make particular reference to several of the CPIC guidelines and their role in guiding the treatment of highly relevant diseases, namely cardiovascular disease, major depressive disorder, cancer, and human immunodeficiency virus, with a view to predicting and managing ADRs. In addition, we provide a list of the top 10 crosscutting opportunities and challenges facing the fields of precision medicine and pharmacogenomics, which have broad applicability independent of the drug class involved. Many of these opportunities and challenges pertain to infrastructure, study design, policy, and science culture in the early 21st century. Ultimately, rational pharmacogenomics study design and the acquisition of comprehensive phenotypic data that proportionately match the genomics data should be an imperative as we move forward toward global precision medicine.

  8. Pharmacogenomics and Global Precision Medicine in the Context of Adverse Drug Reactions: Top 10 Opportunities and Challenges for the Next Decade

    PubMed Central

    Alessandrini, Marco; Chaudhry, Mamoonah; Dodgen, Tyren M.

    2016-01-01

    Abstract In a move indicative of the enthusiastic support of precision medicine, the U.S. President Barack Obama announced the Precision Medicine Initiative in January 2015. The global precision medicine ecosystem is, thus, receiving generous support from the United States ($215 million), and numerous other governments have followed suit. In the context of precision medicine, drug treatment and prediction of its outcomes have been important for nearly six decades in the field of pharmacogenomics. The field offers an elegant solution for minimizing the effects and occurrence of adverse drug reactions (ADRs). The Clinical Pharmacogenetics Implementation Consortium (CPIC) plays an important role in this context, and it aims at specifically guiding the translation of clinically relevant and evidence-based pharmacogenomics research. In this forward-looking analysis, we make particular reference to several of the CPIC guidelines and their role in guiding the treatment of highly relevant diseases, namely cardiovascular disease, major depressive disorder, cancer, and human immunodeficiency virus, with a view to predicting and managing ADRs. In addition, we provide a list of the top 10 crosscutting opportunities and challenges facing the fields of precision medicine and pharmacogenomics, which have broad applicability independent of the drug class involved. Many of these opportunities and challenges pertain to infrastructure, study design, policy, and science culture in the early 21st century. Ultimately, rational pharmacogenomics study design and the acquisition of comprehensive phenotypic data that proportionately match the genomics data should be an imperative as we move forward toward global precision medicine. PMID:27643672

  9. Precise measurement of a magnetic field generated by the electromagnetic flux compression technique.

    PubMed

    Nakamura, D; Sawabe, H; Matsuda, Y H; Takeyama, S

    2013-04-01

    The precision of the values of a magnetic field generated by electromagnetic flux compression was investigated in ultra-high magnetic fields of up to 700 T. In an attempt to calibrate the magnetic field measured by pickup coils, precise Faraday rotation (FR) measurements were conducted on optical (quartz and crown) glasses. A discernible "turn-around" phenomenon was observed in the FR signal as well as the pickup coils before the end of a liner implosion. We found that the magnetic field measured by pickup coils should be corrected by taking into account the high-frequency response of the signal transmission line. Near the peak magnetic field, however, the pickup coils failed to provide reliable values, leaving the FR measurement as the only method to precisely measure extremely high magnetic fields.

  10. Scandinavia studies of recent crustal movements and the space geodetic baseline network

    NASA Technical Reports Server (NTRS)

    Anderson, A. J.

    1980-01-01

    A brief review of crustal movements within the Fenno-Scandia shield is given. Results from postglacial studies, projects for measuring active fault regions, and dynamic ocean loading experiments are presented. The 1979 Scandinavian Doppler Campaign Network is discussed. This network includes Doppler translocation baseline determination of future very long baseline interferometry baselines to be measured in Scandinavia. Intercomparison of earlier Doppler translocation measurements with a high precision terrestrial geodetic baseline in Scandinavia has yielded internal agreement of 6 cm over 887 km. This is a precision of better than 1 part in to the 7th power.

  11. High Precision Spectroscopy of CH_5^+ Using Nice-Ohvms

    NASA Astrophysics Data System (ADS)

    Hodges, James N.; Perry, Adam J.; McCall, Benjamin J.

    2013-06-01

    The elusive methonium ion, CH_5^+, is of great interest due to its highly fluxional nature. The only published high-resolution infrared spectrum remains completely unassigned to this date. The primary challenge in understanding the CH_5^+ spectrum is that traditional spectroscopic approaches rely on a molecule having only small (or even large) amplitude motions about a well-defined reference geometry, and this is not the case with CH_5^+. We are in the process of re-scanning Oka's spectrum, in the original Black Widow discharge cell, using the new technique of Noise Immune Cavity Enhanced Optical Heterodyne Velocity Modulation Spectroscopy (NICE-OHVMS). The high precision afforded by optical saturation in conjunction with a frequency comb allows transition line centers to be determined with sub-MHz accuracy and precision -- a substantial improvement over the 90 MHz precision of Oka's work. With a high-precision linelist in hand, we plan to search for four line combination differences to directly determine the spacings between rotational energy levels. Such a search is currently infeasible due to the large number of false positives resulting from the relatively low precision and high spectral density of Oka's spectrum. The resulting combination differences, in conjunction with state-of-the-art theoretical calculations from Tucker Carrington, may provide the first insight into the rotational structure of this unique molecular system. E. T. White, J. Tang, T. Oka, Science (1999) 284, 135--137. B. M. Siller, et al. Opt. Express (2011), 19, 24822--24827. K. N. Crabtree, et al. Chem. Phys. Lett. (2012), 551, 1--6. X. Wang, T. Carrington, J. Chem. Phys., (2008), 129, 234102.

  12. Stochastic precision analysis of 2D cardiac strain estimation in vivo

    NASA Astrophysics Data System (ADS)

    Bunting, E. A.; Provost, J.; Konofagou, E. E.

    2014-11-01

    Ultrasonic strain imaging has been applied to echocardiography and carries great potential to be used as a tool in the clinical setting. Two-dimensional (2D) strain estimation may be useful when studying the heart due to the complex, 3D deformation of the cardiac tissue. Increasing the framerate used for motion estimation, i.e. motion estimation rate (MER), has been shown to improve the precision of the strain estimation, although maintaining the spatial resolution necessary to view the entire heart structure in a single heartbeat remains challenging at high MERs. Two previously developed methods, the temporally unequispaced acquisition sequence (TUAS) and the diverging beam sequence (DBS), have been used in the past to successfully estimate in vivo axial strain at high MERs without compromising spatial resolution. In this study, a stochastic assessment of 2D strain estimation precision is performed in vivo for both sequences at varying MERs (65, 272, 544, 815 Hz for TUAS; 250, 500, 1000, 2000 Hz for DBS). 2D incremental strains were estimated during left ventricular contraction in five healthy volunteers using a normalized cross-correlation function and a least-squares strain estimator. Both sequences were shown capable of estimating 2D incremental strains in vivo. The conditional expected value of the elastographic signal-to-noise ratio (E(SNRe|ɛ)) was used to compare strain estimation precision of both sequences at multiple MERs over a wide range of clinical strain values. The results here indicate that axial strain estimation precision is much more dependent on MER than lateral strain estimation, while lateral estimation is more affected by strain magnitude. MER should be increased at least above 544 Hz to avoid suboptimal axial strain estimation. Radial and circumferential strain estimations were influenced by the axial and lateral strain in different ways. Furthermore, the TUAS and DBS were found to be of comparable precision at similar MERs.

  13. Morphologies of precise polyethylene-based acid copolymers and ionomers

    NASA Astrophysics Data System (ADS)

    Buitrago, C. Francisco

    Acid copolymers and ionomers are polymers that contain a small fraction of covalently bound acidic or ionic groups, respectively. For the specific case of polyethylene (PE), acid and ionic pendants enhance many of the physical properties such as toughness, adhesion and rheological properties. These improved properties result from microphase separated aggregates of the polar pendants in the non-polar PE matrix. Despite the widespread industrial use of these materials, rigorous chemical structure---morphology---property relationships remain elusive due to the inevitable structural heterogeneities in the historically-available acid copolymers and ionomers. Recently, precise acid copolymers and ionomers were successfully synthesized by acyclic diene metathesis (ADMET) polymerization. These precise materials are linear, high molecular weight PEs with pendant acid or ionic functional groups separated by a precisely controlled number of carbon atoms. The morphologies of nine precise acid copolymers and eleven precise ionomers were investigated by X-ray scattering, solid-state 13C nuclear magnetic resonance (NMR) and differential scanning calorimetry (DSC). For comparison, the morphologies of linear PEs with pseudo-random placement of the pendant groups were also studied. Previous studies of precise copolymers with acrylic acid (AA) found that the microstructural precision produces a new morphology in which PE crystals drive the acid aggregates into layers perpendicular to the chain axes and presumably at the interface between crystalline and amorphous phases. In this dissertation, a second new morphology for acid copolymers is identified in which the aggregates arrange on cubic lattices. The fist report of a cubic morphology was observed at room and elevated temperatures for a copolymer functionalized with two phosphonic acid (PA) groups on every 21st carbon atom. The cubic lattice has been identified as face-centered cubic (FCC). Overall, three morphology types have been identified for precise acid copolymers and ionomers at room temperature: (1) liquid-like order of aggregates dispersed throughout an amorphous PE matrix, (2) one-dimensional long-range order of aggregates in layers coexisting with PE crystals, and (3) three-dimensional periodicity of aggregates in cubic lattices in a PE matrix featuring defective packing. The liquid-like morphology is a result of high content of acid or ionic substituents deterring PE crystallinity due to steric hindrance. The layered morphology occurs when the content of pendants is low and the PE segments are long enough to crystallize. The cubic morphologies occur in precise copolymers with geminal substitution of phosphonic acid (PA) groups and long, flexible PE segments. At temperatures above the thermal transitions of the PE matrix, all but one material present a liquid-like morphology. Those conditions are ideal to study the evolution of the interaggregate spacing (d*) in X-ray scattering as a function of PE segment length between pendants, pendant type and pendant architecture (specifically, mono or geminal substitution). Also at elevated temperatures, the morphologies of precise acrylic acid (AA) copolymers and ionomers were investigated further via atomistic molecular dynamics (MD) simulations. The simulations complement X-ray scattering by providing real space visualization of the aggregates, demonstrating the occurrence of isolated, string-like and even percolated aggregate structures. This is the first dissertation completely devoted to the morphology of precise acid copolymers and precise ionomers. The complete analysis of the morphologies in these novel materials provides new insights into the shapes of aggregates in acid copolymers and ionomers in general. A key aspect of this thesis is the complementary use of experimental and simulation methods to unlock a wealth of new understanding.

  14. Yale High Energy Physics Research: Precision Studies of Reactor Antineutrinos

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Heeger, Karsten M.

    2014-09-13

    This report presents experimental research at the intensity frontier of particle physics with particular focus on the study of reactor antineutrinos and the precision measurement of neutrino oscillations. The experimental neutrino physics group of Professor Heeger and Senior Scientist Band at Yale University has had leading responsibilities in the construction and operation of the Daya Bay Reactor Antineutrino Experiment and made critical contributions to the discovery of non-zeromore » $$\\theta_{13}$$. Heeger and Band led the Daya Bay detector management team and are now overseeing the operations of the antineutrino detectors. Postdoctoral researchers and students in this group have made leading contributions to the Daya Bay analysis including the prediction of the reactor antineutrino flux and spectrum, the analysis of the oscillation signal, and the precision determination of the target mass yielding unprecedented precision in the relative detector uncertainty. Heeger's group is now leading an R\\&D effort towards a short-baseline oscillation experiment, called PROSPECT, at a US research reactor and the development of antineutrino detectors with advanced background discrimination.« less

  15. Achieving High Resolution Timer Events in Virtualized Environment.

    PubMed

    Adamczyk, Blazej; Chydzinski, Andrzej

    2015-01-01

    Virtual Machine Monitors (VMM) have become popular in different application areas. Some applications may require to generate the timer events with high resolution and precision. This however may be challenging due to the complexity of VMMs. In this paper we focus on the timer functionality provided by five different VMMs-Xen, KVM, Qemu, VirtualBox and VMWare. Firstly, we evaluate resolutions and precisions of their timer events. Apparently, provided resolutions and precisions are far too low for some applications (e.g. networking applications with the quality of service). Then, using Xen virtualization we demonstrate the improved timer design that greatly enhances both the resolution and precision of achieved timer events.

  16. Research on the impact factors of GRACE precise orbit determination by dynamic method

    NASA Astrophysics Data System (ADS)

    Guo, Nan-nan; Zhou, Xu-hua; Li, Kai; Wu, Bin

    2018-07-01

    With the successful use of GPS-only-based POD (precise orbit determination), more and more satellites carry onboard GPS receivers to support their orbit accuracy requirements. It provides continuous GPS observations in high precision, and becomes an indispensable way to obtain the orbit of LEO satellites. Precise orbit determination of LEO satellites plays an important role for the application of LEO satellites. Numerous factors should be considered in the POD processing. In this paper, several factors that impact precise orbit determination are analyzed, namely the satellite altitude, the time-variable earth's gravity field, the GPS satellite clock error and accelerometer observation. The GRACE satellites provide ideal platform to study the performance of factors for precise orbit determination using zero-difference GPS data. These factors are quantitatively analyzed on affecting the accuracy of dynamic orbit using GRACE observations from 2005 to 2011 by SHORDE software. The study indicates that: (1) with the altitude of the GRACE satellite is lowered from 480 km to 460 km in seven years, the 3D (three-dimension) position accuracy of GRACE satellite orbit is about 3˜4 cm based on long spans data; (2) the accelerometer data improves the 3D position accuracy of GRACE in about 1 cm; (3) the accuracy of zero-difference dynamic orbit is about 6 cm with the GPS satellite clock error products in 5 min sampling interval and can be raised to 4 cm, if the GPS satellite clock error products with 30 s sampling interval can be adopted. (4) the time-variable part of earth gravity field model improves the 3D position accuracy of GRACE in about 0.5˜1.5 cm. Based on this study, we quantitatively analyze the factors that affect precise orbit determination of LEO satellites. This study plays an important role to improve the accuracy of LEO satellites orbit determination.

  17. Binary Studies with the Navy Precision Optical Interferometer

    DTIC Science & Technology

    2013-01-01

    the O9.7 supergiant primary. Meanwhile, another high-precision measurement was taken with the UVES 128 Cent. Eur.Astrophys. Bull. 37 (2013) 1, 127–135...spectrometers used for the measurements are labeled as follows: UVES (diamond), HEROS/FEROS (triangle down), ELODIE (squares), FOCES (circle), BESO (triangles up...collaborators report spectro - Cent. Eur.Astrophys. Bull. 37 (2013) 1, 127–135 131 C.A. HUMMEL, R.T. ZAVALA AND J. SANBORN Figure 4: Orbit of ξ Tauri. Figure 5

  18. Towards the GEOSAT Follow-On Precise Orbit Determination Goals of High Accuracy and Near-Real-Time Processing

    NASA Technical Reports Server (NTRS)

    Lemoine, Frank G.; Zelensky, Nikita P.; Chinn, Douglas S.; Beckley, Brian D.; Lillibridge, John L.

    2006-01-01

    The US Navy's GEOSAT Follow-On spacecraft (GFO) primary mission objective is to map the oceans using a radar altimeter. Satellite laser ranging data, especially in combination with altimeter crossover data, offer the only means of determining high-quality precise orbits. Two tuned gravity models, PGS7727 and PGS7777b, were created at NASA GSFC for GFO that reduce the predicted radial orbit through degree 70 to 13.7 and 10.0 mm. A macromodel was developed to model the nonconservative forces and the SLR spacecraft measurement offset was adjusted to remove a mean bias. Using these improved models, satellite-ranging data, altimeter crossover data, and Doppler data are used to compute both daily medium precision orbits with a latency of less than 24 hours. Final precise orbits are also computed using these tracking data and exported with a latency of three to four weeks to NOAA for use on the GFO Geophysical Data Records (GDR s). The estimated orbit precision of the daily orbits is between 10 and 20 cm, whereas the precise orbits have a precision of 5 cm.

  19. Claims-Based Definition of Death in Japanese Claims Database: Validity and Implications

    PubMed Central

    Ooba, Nobuhiro; Setoguchi, Soko; Ando, Takashi; Sato, Tsugumichi; Yamaguchi, Takuhiro; Mochizuki, Mayumi; Kubota, Kiyoshi

    2013-01-01

    Background For the pending National Claims Database in Japan, researchers will not have access to death information in the enrollment files. We developed and evaluated a claims-based definition of death. Methodology/Principal Findings We used healthcare claims and enrollment data between January 2005 and August 2009 for 195,193 beneficiaries aged 20 to 74 in 3 private health insurance unions. We developed claims-based definitions of death using discharge or disease status and Charlson comorbidity index (CCI). We calculated sensitivity, specificity and positive predictive values (PPVs) using the enrollment data as a gold standard in the overall population and subgroups divided by demographic and other factors. We also assessed bias and precision in two example studies where an outcome was death. The definition based on the combination of discharge/disease status and CCI provided moderate sensitivity (around 60%) and high specificity (99.99%) and high PPVs (94.8%). In most subgroups, sensitivity of the preferred definition was also around 60% but varied from 28 to 91%. In an example study comparing death rates between two anticancer drug classes, the claims-based definition provided valid and precise hazard ratios (HRs). In another example study comparing two classes of anti-depressants, the HR with the claims-based definition was biased and had lower precision than that with the gold standard definition. Conclusions/Significance The claims-based definitions of death developed in this study had high specificity and PPVs while sensitivity was around 60%. The definitions will be useful in future studies when used with attention to the possible fluctuation of sensitivity in some subpopulations. PMID:23741526

  20. Predicting the Oxygen-Binding Properties of Platinum Nanoparticle Ensembles by Combining High-Precision Electron Microscopy and Density Functional Theory.

    PubMed

    Aarons, Jolyon; Jones, Lewys; Varambhia, Aakash; MacArthur, Katherine E; Ozkaya, Dogan; Sarwar, Misbah; Skylaris, Chris-Kriton; Nellist, Peter D

    2017-07-12

    Many studies of heterogeneous catalysis, both experimental and computational, make use of idealized structures such as extended surfaces or regular polyhedral nanoparticles. This simplification neglects the morphological diversity in real commercial oxygen reduction reaction (ORR) catalysts used in fuel-cell cathodes. Here we introduce an approach that combines 3D nanoparticle structures obtained from high-throughput high-precision electron microscopy with density functional theory. Discrepancies between experimental observations and cuboctahedral/truncated-octahedral particles are revealed and discussed using a range of widely used descriptors, such as electron-density, d-band centers, and generalized coordination numbers. We use this new approach to determine the optimum particle size for which both detrimental surface roughness and particle shape effects are minimized.

  1. Prediction of beef carcass and meat traits from rearing factors in young bulls and cull cows.

    PubMed

    Soulat, J; Picard, B; Léger, S; Monteils, V

    2016-04-01

    The aim of this study was to predict the beef carcass and LM (thoracis part) characteristics and the sensory properties of the LM from rearing factors applied during the fattening period. Individual data from 995 animals (688 young bulls and 307 cull cows) in 15 experiments were used to establish prediction models. The data concerned rearing factors (13 variables), carcass characteristics (5 variables), LM characteristics (2 variables), and LM sensory properties (3 variables). In this study, 8 prediction models were established: dressing percentage and the proportions of fat tissue and muscle in the carcass to characterize the beef carcass; cross-sectional area of fibers (mean fiber area) and isocitrate dehydrogenase activity to characterize the LM; and, finally, overall tenderness, juiciness, and flavor intensity scores to characterize the LM sensory properties. A random effect was considered in each model: the breed for the prediction models for the carcass and LM characteristics and the trained taste panel for the prediction of the meat sensory properties. To evaluate the quality of prediction models, 3 criteria were measured: robustness, accuracy, and precision. The model was robust when the root mean square errors of prediction of calibration and validation sub-data sets were near to one another. Except for the mean fiber area model, the obtained predicted models were robust. The prediction models were considered to have a high accuracy when the mean prediction error (MPE) was ≤0.10 and to have a high precision when the was the closest to 1. The prediction of the characteristics of the carcass from the rearing factors had a high precision ( > 0.70) and a high prediction accuracy (MPE < 0.10), except for the fat percentage model ( = 0.67, MPE = 0.16). However, the predictions of the LM characteristics and LM sensory properties from the rearing factors were not sufficiently precise ( < 0.50) and accurate (MPE > 0.10). Only the flavor intensity of the beef score could be satisfactorily predicted from the rearing factors with high precision ( = 0.72) and accuracy (MPE = 0.10). All the prediction models displayed different effects of the rearing factors according to animal categories (young bulls or cull cows). In consequence, these prediction models display the necessary adaption of rearing factors during the fattening period according to animal categories to optimize the carcass traits according to animal categories.

  2. High-precision arithmetic in mathematical physics

    DOE PAGES

    Bailey, David H.; Borwein, Jonathan M.

    2015-05-12

    For many scientific calculations, particularly those involving empirical data, IEEE 32-bit floating-point arithmetic produces results of sufficient accuracy, while for other applications IEEE 64-bit floating-point is more appropriate. But for some very demanding applications, even higher levels of precision are often required. Furthermore, this article discusses the challenge of high-precision computation, in the context of mathematical physics, and highlights what facilities are required to support future computation, in light of emerging developments in computer architecture.

  3. Hardron production and neutrino beams

    NASA Astrophysics Data System (ADS)

    Guglielmi, A.

    2006-11-01

    The precise measurements of the neutrino mixing parameters in the oscillation experiments at accelerators require new high-intensity and high-purity neutrino beams. Ancillary hadron-production measurements are then needed as inputs to precise calculation of neutrino beams and of atmospheric neutrino fluxes.

  4. Development of an Integrated Thermocouple for the Accurate Sample Temperature Measurement During High Temperature Environmental Scanning Electron Microscopy (HT-ESEM) Experiments.

    PubMed

    Podor, Renaud; Pailhon, Damien; Ravaux, Johann; Brau, Henri-Pierre

    2015-04-01

    We have developed two integrated thermocouple (TC) crucible systems that allow precise measurement of sample temperature when using a furnace associated with an environmental scanning electron microscope (ESEM). Sample temperatures measured with these systems are precise (±5°C) and reliable. The TC crucible systems allow working with solids and liquids (silicate melts or ionic liquids), independent of the gas composition and pressure. These sample holder designs will allow end users to perform experiments at high temperature in the ESEM chamber with high precision control of the sample temperature.

  5. Fabrication and Assembly of High-Precision Hinge and Latch Joints for Deployable Optical Instruments

    NASA Technical Reports Server (NTRS)

    Phelps, James E.

    1999-01-01

    Descriptions are presented of high-precision hinge and latch joints that have been co-developed, for application to deployable optical instruments, by NASA Langley Research Center and Nyma/ADF. Page-sized versions of engineering drawings are included in two appendices to describe all mechanical components of both joints. Procedures for assembling the mechanical components of both joints are also presented. The information herein is intended to facilitate the fabrication and assembly of the high-precision hinge and latch joints, and enable the incorporation of these joints into the design of deployable optical instrument systems.

  6. Precision muon physics

    NASA Astrophysics Data System (ADS)

    Gorringe, T. P.; Hertzog, D. W.

    2015-09-01

    The muon is playing a unique role in sub-atomic physics. Studies of muon decay both determine the overall strength and establish the chiral structure of weak interactions, as well as setting extraordinary limits on charged-lepton-flavor-violating processes. Measurements of the muon's anomalous magnetic moment offer singular sensitivity to the completeness of the standard model and the predictions of many speculative theories. Spectroscopy of muonium and muonic atoms gives unmatched determinations of fundamental quantities including the magnetic moment ratio μμ /μp, lepton mass ratio mμ /me, and proton charge radius rp. Also, muon capture experiments are exploring elusive features of weak interactions involving nucleons and nuclei. We will review the experimental landscape of contemporary high-precision and high-sensitivity experiments with muons. One focus is the novel methods and ingenious techniques that achieve such precision and sensitivity in recent, present, and planned experiments. Another focus is the uncommonly broad and topical range of questions in atomic, nuclear and particle physics that such experiments explore.

  7. Tracking Perfluorocarbon Nanoemulsion Delivery by 19F MRI for Precise High Intensity Focused Ultrasound Tumor Ablation

    PubMed Central

    Shin, Soo Hyun; Park, Eun-Joo; Min, Changki; Choi, Sun Il; Jeon, Soyeon; Kim, Yun-Hee; Kim, Daehong

    2017-01-01

    Perfluorocarbon nanoemulsions (PFCNEs) have recently been undergoing rigorous study to investigate their ability to improve the therapeutic efficacy of tumor ablation by high intensity focused ultrasound (HIFU). For precise control of PFCNE delivery and thermal ablation, their accumulation and distribution in a tumor should be quantitatively analyzed. Here, we used fluorine-19 (19F) magnetic resonance imaging (MRI) to quantitatively track PFCNE accumulation in a tumor, and analyzed how intra-tumoral PFCNE quantities affect the therapeutic efficacy of HIFU treatment. Ablation outcomes were assessed by intra-voxel incoherent motion analysis and bioluminescent imaging up to 14 days after the procedure. Assessment of PFCNE delivery and treatment outcomes showed that 2-3 mg/mL of PFCNE in a tumor produces the largest ablation volume under the same HIFU insonation conditions. Histology showed varying degrees of necrosis depending on the amount of PFCNE delivered. 19F MRI promises to be a valuable platform for precisely guiding PFCNE-enhanced HIFU ablation of tumors. PMID:28255351

  8. Observing exoplanet populations with high-precision astrometry

    NASA Astrophysics Data System (ADS)

    Sahlmann, Johannes

    2012-06-01

    This thesis deals with the application of the astrometry technique, consisting in measuring the position of a star in the plane of the sky, for the discovery and characterisation of extra-solar planets. It is feasible only with a very high measurement precision, which motivates the use of space observatories, the development of new ground-based astronomical instrumentation and of innovative data analysis methods: The study of Sun-like stars with substellar companions using CORALIE radial velocities and HIPPARCOS astrometry leads to the determination of the frequency of close brown dwarf companions and to the discovery of a dividing line between massive planets and brown dwarf companions; An observation campaign employing optical imaging with a very large telescope demonstrates sufficient astrometric precision to detect planets around ultra-cool dwarf stars and the first results of the survey are presented; Finally, the design and initial astrometric performance of PRIMA, ! a new dual-feed near-infrared interferometric observing facility for relative astrometry is presented.

  9. Some considerations about the use of different sensors, in coordinate measuring of the small parts

    NASA Astrophysics Data System (ADS)

    Drăgan, L.

    2017-05-01

    The paper presents some particular aspects associated with measuring of the small-size parts with high precision, manufactured by injection procedures. The coordinate measuring machine (CMM) are very used in process of measuring parts with different shapes, dimensions and materials of the most varied. It is studied by experiments, the influence of hygroscopicity on the geometrical properties of polyamide parts, using different types of measuring sensors. We selected a few pieces- cover type, with precision features dimensions and shape tolerances. To measure them was used some sensors which is equipped CMM ScopeCheck S 400 and equipment for dehumidifying. Starting from the need for high precision measurement of geometric characteristics of the parts obtained by injection of plastic, it has been found that the hygroscopicity has a significant influence. To achieve the purpose were used three types of measuring sensors under different conditions of keeping after manufacture. It was observed that the influence of humidity is significantly reduced if the parts are kept in exikator or vacuum dryer.

  10. Implementation of high precision optical and radiometric LRO tracking data in the orbit determination to supplement the baseline S-band tracking

    NASA Astrophysics Data System (ADS)

    Mao, D.; Torrence, M. H.; Mazarico, E.; Neumann, G. A.; Smith, D. E.; Zuber, M. T.

    2016-12-01

    LRO has been in a polar lunar orbit for 7 year since it was launched in June 2009. Seven instruments are onboard LRO to perform a global and detailed geophysical, geological and geochemical mapping of the Moon, some of which have very high spatial resolution. To take full advantage of the high resolution LRO datasets from these instruments, the spacecraft orbit must be reconstructed precisely. The baseline LRO tracking was the NASA's White Sands station in New Mexico and a commercial network, the Universal Space Network (USN), providing up to 20 hours per day of almost continuous S-band radio frequency link to LRO. The USN stations produce S-band range data with a 0.4 m precision and Doppler data with a 0.8 mm/s precision. Using the S-band tracking data together with the high-resolution gravity field model from the GRAIL mission, definitive LRO orbit solutions are obtained with an accuracy of 10 m in total position and 0.5 m radially. Confirmed by the 0.50-m high-resolution NAC images from the LROC team, these orbits well represent the LRO orbit "truth". In addition to the S-band data, one-way Laser Ranging (LR) to LRO provides a unique LRO optical tracking dataset over 5 years, from June 2009 to September 2014. Ten international satellite laser ranging stations contributed over 4000 hours LR data with the 0.05 - 0.10 m normal point precision. Another set of high precision LRO tracking data is provided by the Deep Space Network (DSN), which produces radiometric tracking data more precise than the USN S-band data. In the last two years of the LRO mission, the temporal coverage of the USN data has decreased significantly. We show that LR and DSN data can be a good supplement to the baseline tracking data for the orbit reconstruction.

  11. Mathematical model of bone drilling for virtual surgery system

    NASA Astrophysics Data System (ADS)

    Alaytsev, Innokentiy K.; Danilova, Tatyana V.; Manturov, Alexey O.; Mareev, Gleb O.; Mareev, Oleg V.

    2018-04-01

    The bone drilling is an essential part of surgeries in ENT and Dentistry. A proper training of drilling machine handling skills is impossible without proper modelling of the drilling process. Utilization of high precision methods like FEM is limited due to the requirement of 1000 Hz update rate for haptic feedback. The study presents a mathematical model of the drilling process that accounts the properties of materials, the geometry and the rotation rate of a burr to compute the removed material volume. The simplicity of the model allows for integrating it in the high-frequency haptic thread. The precision of the model is enough for a virtual surgery system targeted on the training of the basic surgery skills.

  12. A simple integrated system for electrophysiologic recordings in animals

    PubMed Central

    Slater, Bernard J.; Miller, Neil R.; Bernstein, Steven L.; Flower, Robert W.

    2009-01-01

    This technical note describes a modification to a fundus camera that permits simultaneous recording of pattern electroretinograms (pERGs) and pattern visual evoked potentials (pVEPs). The modification consists of placing an organic light-emitting diode (OLED) in the split-viewer pathway of a fundus camera, in a plane conjugate to the subject’s pupil. In this way, a focused image of the OLED can be delivered to a precisely known location on the retina. The advantage of using an OLED is that it can achieve high luminance while maintaining high contrast, and with minimal degradation over time. This system is particularly useful for animal studies, especially when precise retinal positioning is required. PMID:19137347

  13. Note: Precise radial distribution of charged particles in a magnetic guiding field

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Backe, H., E-mail: backe@kph.uni-mainz.de

    2015-07-15

    Current high precision beta decay experiments of polarized neutrons, employing magnetic guiding fields in combination with position sensitive and energy dispersive detectors, resulted in a detailed study of the mono-energetic point spread function (PSF) for a homogeneous magnetic field. A PSF describes the radial probability distribution of mono-energetic electrons at the detector plane emitted from a point-like source. With regard to accuracy considerations, unwanted singularities occur as a function of the radial detector coordinate which have recently been investigated by subdividing the radial coordinate into small bins or employing analytical approximations. In this note, a series expansion of the PSFmore » is presented which can numerically be evaluated with arbitrary precision.« less

  14. The development of a novel high-precision major depressive disorder screening system using transient autonomic responses induced by dual mental tasks.

    PubMed

    Matsui, Takemi; Shinba, Toshikazu; Sun, Guanghao

    2018-02-01

    12.6% of major depressive disorder (MDD) patients have suicide intent, while it has been reported that 43% of patients did not consult their doctors for MDD, automated MDD screening is eagerly anticipated. Recently, in order to achieve automated screening of MDD, biomarkers such as multiplex DNA methylation profiles or physiological method using near infra-red spectroscopy (NIRS) have been studied, however, they require inspection using 96-well DNA ELIZA kit after blood sampling or significant cost. Using a single-lead electrocardiography (ECG), we developed a high-precision MDD screening system using transient autonomic responses induced by dual mental tasks. We developed a novel high precision MDD screening system which is composed of a single-lead ECG monitor, analogue to digital (AD) converter and a personal computer with measurement and analysis program written by LabView programming language. The system discriminates MDD patients from normal subjects using heat rate variability (HRV)-derived transient autonomic responses induced by dual mental tasks, i.e. verbal fluency task and random number generation task, via linear discriminant analysis (LDA) adopting HRV-related predictor variables (hear rate (HR), high frequency (HF), low frequency (LF)/HF). The proposed system was tested for 12 MDD patients (32 ± 15 years) under antidepressant treatment from Shizuoka Saiseikai General Hospital outpatient unit and 30 normal volunteers (37 ± 17 years) from Tokyo Metropolitan University. The proposed system achieved 100% sensitivity and 100% specificity in classifying 42 examinees into 12 MDD patients and 30 normal subjects. The proposed system appears promising for future HRV-based high-precision and low-cost screening of MDDs using only single-lead ECG.

  15. High Precision Continuous and Real-Time Measurement of Atmospheric Oxygen Using Cavity Ring-Down Spectroscopy.

    NASA Astrophysics Data System (ADS)

    Kim-Hak, D.; Hoffnagle, J.; Rella, C.; Sun, M.

    2016-12-01

    Oxygen is a major and vital component of the Earth atmosphere representing about 21% of its composition. It is consumed or produced through biochemical processes such as combustion, respiration, and photosynthesis. Although atmospheric oxygen is not a greenhouse gas, it can be used as a top-down constraint on the carbon cycle. The variation observations of oxygen in the atmosphere are very small, in the order of the few ppm's. This presents the main technical challenge for measurement as a very high level of precision is required and only few methods including mass spectrometry, fuel cell, and paramagnetic are capable of overcoming it. Here we present new developments of a high-precision gas analyzer that utilizes the technique of Cavity Ring-Down Spectroscopy to measure oxygen concentration and oxygen isotope. Its compact and ruggedness design combined with high precision and long-term stability allows the user to deploy the instrument in the field for continuous monitoring of atmospheric oxygen level. Measurements have a 1-σ 5-minute averaging precision of 1-2 ppm for O2 over a dynamic range of 0-20%. We will present supplemental data acquired from our 10m tower measurements in Santa Clara, CA.

  16. Double the dates and go for Bayes - Impacts of model choice, dating density and quality on chronologies

    NASA Astrophysics Data System (ADS)

    Blaauw, Maarten; Christen, J. Andrés; Bennett, K. D.; Reimer, Paula J.

    2018-05-01

    Reliable chronologies are essential for most Quaternary studies, but little is known about how age-depth model choice, as well as dating density and quality, affect the precision and accuracy of chronologies. A meta-analysis suggests that most existing late-Quaternary studies contain fewer than one date per millennium, and provide millennial-scale precision at best. We use existing and simulated sediment cores to estimate what dating density and quality are required to obtain accurate chronologies at a desired precision. For many sites, a doubling in dating density would significantly improve chronologies and thus their value for reconstructing and interpreting past environmental changes. Commonly used classical age-depth models stop becoming more precise after a minimum dating density is reached, but the precision of Bayesian age-depth models which take advantage of chronological ordering continues to improve with more dates. Our simulations show that classical age-depth models severely underestimate uncertainty and are inaccurate at low dating densities, and also perform poorly at high dating densities. On the other hand, Bayesian age-depth models provide more realistic precision estimates, including at low to average dating densities, and are much more robust against dating scatter and outliers. Indeed, Bayesian age-depth models outperform classical ones at all tested dating densities, qualities and time-scales. We recommend that chronologies should be produced using Bayesian age-depth models taking into account chronological ordering and based on a minimum of 2 dates per millennium.

  17. Precision Spectrophotometric Calibration System for Dark Energy Instruments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schubnell, Michael S.

    2015-06-30

    For this research we build a precision calibration system and carried out measurements to demonstrate the precision that can be achieved with a high precision spectrometric calibration system. It was shown that the system is capable of providing a complete spectrophotometric calibration at the sub-pixel level. The calibration system uses a fast, high precision monochromator that can quickly and efficiently scan over an instrument’s entire spectral range with a spectral line width of less than 0.01 nm corresponding to a fraction of a pixel on the CCD. The system was extensively evaluated in the laboratory. Our research showed that amore » complete spectrophotometric calibration standard for spectroscopic survey instruments such as DESI is possible. The monochromator precision and repeatability to a small fraction of the DESI spectrograph LSF was demonstrated with re-initialization on every scan and thermal drift compensation by locking to multiple external line sources. A projector system that mimics telescope aperture for point source at infinity was demonstrated.« less

  18. Two Profiles of the Dutch High Performing Employee

    ERIC Educational Resources Information Center

    de Waal, A. A.; Oudshoorn, Michella

    2015-01-01

    Purpose: The purpose of this study is to explore the profile of an ideal employee, to be more precise the behavioral characteristics of the Dutch high-performing employee (HPE). Organizational performance depends for a large part on the commitment of employees. Employees provide their knowledge, skills, experiences and creativity to the…

  19. Nano-level instrumentation for analyzing the dynamic accuracy of a rolling element bearing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Z.; Hong, J.; Zhang, J.

    2013-12-15

    The rotational performance of high-precision rolling bearings is fundamental to the overall accuracy of complex mechanical systems. A nano-level instrument to analyze rotational accuracy of high-precision bearings of machine tools under working conditions was developed. In this instrument, a high-precision (error motion < 0.15 μm) and high-stiffness (2600 N axial loading capacity) aerostatic spindle was applied to spin the test bearing. Operating conditions could be simulated effectively because of the large axial loading capacity. An air-cylinder, controlled by a proportional pressure regulator, was applied to drive an air-bearing subjected to non-contact and precise loaded axial forces. The measurement results onmore » axial loading and rotation constraint with five remaining degrees of freedom were completely unconstrained and uninfluenced by the instrument's structure. Dual capacity displacement sensors with 10 nm resolution were applied to measure the error motion of the spindle using a double-probe error separation method. This enabled the separation of the spindle's error motion from the measurement results of the test bearing which were measured using two orthogonal laser displacement sensors with 5 nm resolution. Finally, a Lissajous figure was used to evaluate the non-repetitive run-out (NRRO) of the bearing at different axial forces and speeds. The measurement results at various axial loadings and speeds showed the standard deviations of the measurements’ repeatability and accuracy were less than 1% and 2%. Future studies will analyze the relationship between geometrical errors and NRRO, such as the ball diameter differences of and the geometrical errors in the grooves of rings.« less

  20. Study of multi-functional precision optical measuring system for large scale equipment

    NASA Astrophysics Data System (ADS)

    Jiang, Wei; Lao, Dabao; Zhou, Weihu; Zhang, Wenying; Jiang, Xingjian; Wang, Yongxi

    2017-10-01

    The effective application of high performance measurement technology can greatly improve the large-scale equipment manufacturing ability. Therefore, the geometric parameters measurement, such as size, attitude and position, requires the measurement system with high precision, multi-function, portability and other characteristics. However, the existing measuring instruments, such as laser tracker, total station, photogrammetry system, mostly has single function, station moving and other shortcomings. Laser tracker needs to work with cooperative target, but it can hardly meet the requirement of measurement in extreme environment. Total station is mainly used for outdoor surveying and mapping, it is hard to achieve the demand of accuracy in industrial measurement. Photogrammetry system can achieve a wide range of multi-point measurement, but the measuring range is limited and need to repeatedly move station. The paper presents a non-contact opto-electronic measuring instrument, not only it can work by scanning the measurement path but also measuring the cooperative target by tracking measurement. The system is based on some key technologies, such as absolute distance measurement, two-dimensional angle measurement, automatically target recognition and accurate aiming, precision control, assembly of complex mechanical system and multi-functional 3D visualization software. Among them, the absolute distance measurement module ensures measurement with high accuracy, and the twodimensional angle measuring module provides precision angle measurement. The system is suitable for the case of noncontact measurement of large-scale equipment, it can ensure the quality and performance of large-scale equipment throughout the process of manufacturing and improve the manufacturing ability of large-scale and high-end equipment.

  1. Nano-level instrumentation for analyzing the dynamic accuracy of a rolling element bearing.

    PubMed

    Yang, Z; Hong, J; Zhang, J; Wang, M Y; Zhu, Y

    2013-12-01

    The rotational performance of high-precision rolling bearings is fundamental to the overall accuracy of complex mechanical systems. A nano-level instrument to analyze rotational accuracy of high-precision bearings of machine tools under working conditions was developed. In this instrument, a high-precision (error motion < 0.15 μm) and high-stiffness (2600 N axial loading capacity) aerostatic spindle was applied to spin the test bearing. Operating conditions could be simulated effectively because of the large axial loading capacity. An air-cylinder, controlled by a proportional pressure regulator, was applied to drive an air-bearing subjected to non-contact and precise loaded axial forces. The measurement results on axial loading and rotation constraint with five remaining degrees of freedom were completely unconstrained and uninfluenced by the instrument's structure. Dual capacity displacement sensors with 10 nm resolution were applied to measure the error motion of the spindle using a double-probe error separation method. This enabled the separation of the spindle's error motion from the measurement results of the test bearing which were measured using two orthogonal laser displacement sensors with 5 nm resolution. Finally, a Lissajous figure was used to evaluate the non-repetitive run-out (NRRO) of the bearing at different axial forces and speeds. The measurement results at various axial loadings and speeds showed the standard deviations of the measurements' repeatability and accuracy were less than 1% and 2%. Future studies will analyze the relationship between geometrical errors and NRRO, such as the ball diameter differences of and the geometrical errors in the grooves of rings.

  2. Software-defined microwave photonic filter with high reconfigurable resolution

    PubMed Central

    Wei, Wei; Yi, Lilin; Jaouën, Yves; Hu, Weisheng

    2016-01-01

    Microwave photonic filters (MPFs) are of great interest in radio frequency systems since they provide prominent flexibility on microwave signal processing. Although filter reconfigurability and tunability have been demonstrated repeatedly, it is still difficult to control the filter shape with very high precision. Thus the MPF application is basically limited to signal selection. Here we present a polarization-insensitive single-passband arbitrary-shaped MPF with ~GHz bandwidth based on stimulated Brillouin scattering (SBS) in optical fibre. For the first time the filter shape, bandwidth and central frequency can all be precisely defined by software with ~MHz resolution. The unprecedented multi-dimensional filter flexibility offers new possibilities to process microwave signals directly in optical domain with high precision thus enhancing the MPF functionality. Nanosecond pulse shaping by implementing precisely defined filters is demonstrated to prove the filter superiority and practicability. PMID:27759062

  3. Software-defined microwave photonic filter with high reconfigurable resolution.

    PubMed

    Wei, Wei; Yi, Lilin; Jaouën, Yves; Hu, Weisheng

    2016-10-19

    Microwave photonic filters (MPFs) are of great interest in radio frequency systems since they provide prominent flexibility on microwave signal processing. Although filter reconfigurability and tunability have been demonstrated repeatedly, it is still difficult to control the filter shape with very high precision. Thus the MPF application is basically limited to signal selection. Here we present a polarization-insensitive single-passband arbitrary-shaped MPF with ~GHz bandwidth based on stimulated Brillouin scattering (SBS) in optical fibre. For the first time the filter shape, bandwidth and central frequency can all be precisely defined by software with ~MHz resolution. The unprecedented multi-dimensional filter flexibility offers new possibilities to process microwave signals directly in optical domain with high precision thus enhancing the MPF functionality. Nanosecond pulse shaping by implementing precisely defined filters is demonstrated to prove the filter superiority and practicability.

  4. Large-Scale Interlaboratory Study to Develop, Analytically Validate and Apply Highly Multiplexed, Quantitative Peptide Assays to Measure Cancer-Relevant Proteins in Plasma*

    PubMed Central

    Abbatiello, Susan E.; Schilling, Birgit; Mani, D. R.; Zimmerman, Lisa J.; Hall, Steven C.; MacLean, Brendan; Albertolle, Matthew; Allen, Simon; Burgess, Michael; Cusack, Michael P.; Gosh, Mousumi; Hedrick, Victoria; Held, Jason M.; Inerowicz, H. Dorota; Jackson, Angela; Keshishian, Hasmik; Kinsinger, Christopher R.; Lyssand, John; Makowski, Lee; Mesri, Mehdi; Rodriguez, Henry; Rudnick, Paul; Sadowski, Pawel; Sedransk, Nell; Shaddox, Kent; Skates, Stephen J.; Kuhn, Eric; Smith, Derek; Whiteaker, Jeffery R.; Whitwell, Corbin; Zhang, Shucha; Borchers, Christoph H.; Fisher, Susan J.; Gibson, Bradford W.; Liebler, Daniel C.; MacCoss, Michael J.; Neubert, Thomas A.; Paulovich, Amanda G.; Regnier, Fred E.; Tempst, Paul; Carr, Steven A.

    2015-01-01

    There is an increasing need in biology and clinical medicine to robustly and reliably measure tens to hundreds of peptides and proteins in clinical and biological samples with high sensitivity, specificity, reproducibility, and repeatability. Previously, we demonstrated that LC-MRM-MS with isotope dilution has suitable performance for quantitative measurements of small numbers of relatively abundant proteins in human plasma and that the resulting assays can be transferred across laboratories while maintaining high reproducibility and quantitative precision. Here, we significantly extend that earlier work, demonstrating that 11 laboratories using 14 LC-MS systems can develop, determine analytical figures of merit, and apply highly multiplexed MRM-MS assays targeting 125 peptides derived from 27 cancer-relevant proteins and seven control proteins to precisely and reproducibly measure the analytes in human plasma. To ensure consistent generation of high quality data, we incorporated a system suitability protocol (SSP) into our experimental design. The SSP enabled real-time monitoring of LC-MRM-MS performance during assay development and implementation, facilitating early detection and correction of chromatographic and instrumental problems. Low to subnanogram/ml sensitivity for proteins in plasma was achieved by one-step immunoaffinity depletion of 14 abundant plasma proteins prior to analysis. Median intra- and interlaboratory reproducibility was <20%, sufficient for most biological studies and candidate protein biomarker verification. Digestion recovery of peptides was assessed and quantitative accuracy improved using heavy-isotope-labeled versions of the proteins as internal standards. Using the highly multiplexed assay, participating laboratories were able to precisely and reproducibly determine the levels of a series of analytes in blinded samples used to simulate an interlaboratory clinical study of patient samples. Our study further establishes that LC-MRM-MS using stable isotope dilution, with appropriate attention to analytical validation and appropriate quality control measures, enables sensitive, specific, reproducible, and quantitative measurements of proteins and peptides in complex biological matrices such as plasma. PMID:25693799

  5. Fundamental interactions involving neutrons and neutrinos: reactor-based studies led by Petersburg Nuclear Physics Institute (National Research Centre 'Kurchatov Institute') [PNPI (NRC KI)

    NASA Astrophysics Data System (ADS)

    Serebrov, A. P.

    2015-11-01

    Neutrons of very low energy ( ˜ 10-7 eV), commonly known as ultracold, are unique in that they can be stored in material and magnetic traps, thus enhancing methodical opportunities to conduct precision experiments and to probe the fundamentals of physics. One of the central problems of physics, of direct relevance to the formation of the Universe, is the violation of time invariance. Experiments searching for the nonzero neutron electric dipole moment serve as a time invariance test, and the use of ultracold neutrons provides very high measurement precision. Precision neutron lifetime measurements using ultracold neutrons are extremely important for checking ideas on the early formation of the Universe. This paper discusses problems that arise in studies using ultracold neutrons. Also discussed are the currently highly topical problem of sterile neutrinos and the search for reactor antineutrino oscillations at distances of 6-12 meters from the reactor core. The field reviewed is being investigated at multiple facilities globally. The present paper mainly concentrates on the results of PNPI-led studies at WWR-M PNPI (Gatchina), ILL (Grenoble), and SM-3 (Dimitrovgrad) reactors, and also covers the results obtained during preparation for research at the PIK reactor which is under construction.

  6. Accuracy evaluation of intraoral optical impressions: A clinical study using a reference appliance.

    PubMed

    Atieh, Mohammad A; Ritter, André V; Ko, Ching-Chang; Duqum, Ibrahim

    2017-09-01

    Trueness and precision are used to evaluate the accuracy of intraoral optical impressions. Although the in vivo precision of intraoral optical impressions has been reported, in vivo trueness has not been evaluated because of limitations in the available protocols. The purpose of this clinical study was to compare the accuracy (trueness and precision) of optical and conventional impressions by using a novel study design. Five study participants consented and were enrolled. For each participant, optical and conventional (vinylsiloxanether) impressions of a custom-made intraoral Co-Cr alloy reference appliance fitted to the mandibular arch were obtained by 1 operator. Three-dimensional (3D) digital models were created for stone casts obtained from the conventional impression group and for the reference appliances by using a validated high-accuracy reference scanner. For the optical impression group, 3D digital models were obtained directly from the intraoral scans. The total mean trueness of each impression system was calculated by averaging the mean absolute deviations of the impression replicates from their 3D reference model for each participant, followed by averaging the obtained values across all participants. The total mean precision for each impression system was calculated by averaging the mean absolute deviations between all the impression replicas for each participant (10 pairs), followed by averaging the obtained values across all participants. Data were analyzed using repeated measures ANOVA (α=.05), first to assess whether a systematic difference in trueness or precision of replicate impressions could be found among participants and second to assess whether the mean trueness and precision values differed between the 2 impression systems. Statistically significant differences were found between the 2 impression systems for both mean trueness (P=.010) and mean precision (P=.007). Conventional impressions had higher accuracy with a mean trueness of 17.0 ±6.6 μm and mean precision of 16.9 ±5.8 μm than optical impressions with a mean trueness of 46.2 ±11.4 μm and mean precision of 61.1 ±4.9 μm. Complete arch (first molar-to-first molar) optical impressions were less accurate than conventional impressions but may be adequate for quadrant impressions. Copyright © 2016 Editorial Council for the Journal of Prosthetic Dentistry. Published by Elsevier Inc. All rights reserved.

  7. High-precision measurement of the light response of BC-418 plastic scintillator to protons with energies from 100 keV to 10 MeV

    NASA Astrophysics Data System (ADS)

    Henzl, Vladimir; Daub, Brian; French, Jennifer; Matthews, June; Kovash, Michael; Wender, Stephen; Famiano, Michael; Koehler, Katrina; Yuly, Mark

    2010-11-01

    The determination of the light response of many organic scintillators to various types of radiation has been a subject of numerous experimental as well as theoretical studies in the past. But while the data on light response to particles with energies above 1 MeV are precise and abundant, the information on light response to very low energy particles (i.e. below 1 MeV) is scarce or completely missing. In this study we measured the light response of a BC-418 scintillator to protons with energies from 100 keV to 10 MeV. The experiment was performed at Weapons Neutron Research Facility at LANSCE, Los Alamos. The neutron beam from a spallation source is used to irradiate the active target made from BC-418 plastic scintillator. The recoiled protons detected in the active target are measured in coincidence with elastically scattered incident neutrons detected by and adjacent liquid scintillator. Time of flight of the incident neutron and the knowledge of scattering geometry allow for a kinematically complete and high-precision measurement of the light response as a function of the proton energy.

  8. Research on the Cross Section Precision of High-strength Steel Tube with Rectangular Section in Rotary Draw Bending

    NASA Astrophysics Data System (ADS)

    Yang, Hongliang; Zhao, Hao; Xing, Zhongwen

    2017-11-01

    For the demand of energy conservation and security improvement, high-strength steel (HSS) is increasingly being used to produce safety related automotive components. However, cross-section distortion occurs easily in bending of HSS tube with rectangular section (RS), affecting the forming precision. HSS BR1500HS tube by rotary draw bending is taken as the study object and a description method of cross-section distortion is proposed in this paper. The influence on cross-section precision of geometric parameters including cross-section position, thickness of tube, bend radius etc. are studied by experiment. Besides, simulation of the rotary draw bending of HSS tube with rectangular section by ABAQUS are carried out and compared to the experiment. The results by simulation agree well with the experiment and show that the cross-section is approximately trapezoidal after distortion; the maximum of distortion exists at 45 ∼ 60° of the bending direction; and the absolute and relative distortion values increase with the decreasing of tube thickness or bending radius. Therefore, the results can provide a reference for the design of geometric parameters of HSS tube with rectangular section in rotary draw bending.

  9. Border effect-based precise measurement of any frequency signal

    NASA Astrophysics Data System (ADS)

    Bai, Li-Na; Ye, Bo; Xuan, Mei-Na; Jin, Yu-Zhen; Zhou, Wei

    2015-12-01

    Limited detection resolution leads to fuzzy areas during the measurement, and the discrimination of the border of a fuzzy area helps to use the resolution stability. In this way, measurement precision is greatly improved, hence this phenomenon is named the border effect. The resolution fuzzy area and its application should be studied to realize high-resolution measurement. During the measurement of any frequency signal, the fuzzy areas of phase-coincidence detection are always discrete and irregular. In this paper the difficulty in capturing the border information of discrete fuzzy areas is overcome and extra-high resolution measurement is implemented. Measurement precision of any frequency-signal can easily reach better than 1 × 10-11/s in a wide range of frequencies, showing the great importance of the border effect. An in-depth study of this issue has great significance for frequency standard comparison, signal processing, telecommunication, and fundamental subjects. Project supported by the National Natural Science Foundation of China (Grant Nos. 10978017 and 61201288), the Natural Science Foundation of Research Plan Projects of Shaanxi Province, China (Grant No. 2014JM2-6128), and the Sino-Poland Science and Technology Cooperation Projects (Grant No. 36-33).

  10. Weighted linear least squares estimation of diffusion MRI parameters: strengths, limitations, and pitfalls.

    PubMed

    Veraart, Jelle; Sijbers, Jan; Sunaert, Stefan; Leemans, Alexander; Jeurissen, Ben

    2013-11-01

    Linear least squares estimators are widely used in diffusion MRI for the estimation of diffusion parameters. Although adding proper weights is necessary to increase the precision of these linear estimators, there is no consensus on how to practically define them. In this study, the impact of the commonly used weighting strategies on the accuracy and precision of linear diffusion parameter estimators is evaluated and compared with the nonlinear least squares estimation approach. Simulation and real data experiments were done to study the performance of the weighted linear least squares estimators with weights defined by (a) the squares of the respective noisy diffusion-weighted signals; and (b) the squares of the predicted signals, which are reconstructed from a previous estimate of the diffusion model parameters. The negative effect of weighting strategy (a) on the accuracy of the estimator was surprisingly high. Multi-step weighting strategies yield better performance and, in some cases, even outperformed the nonlinear least squares estimator. If proper weighting strategies are applied, the weighted linear least squares approach shows high performance characteristics in terms of accuracy/precision and may even be preferred over nonlinear estimation methods. Copyright © 2013 Elsevier Inc. All rights reserved.

  11. Research on the precision measurement of super-low reflectivity

    NASA Astrophysics Data System (ADS)

    Yuan, Hao-yu; Lu, Zong-gui; Xia, Yan-wen; Peng, Zhi-tao; Liu, Hua; Xu, Long-bo; Sun, Zhi-hong; Tang, Jun

    2010-10-01

    Introduced a high-precision measurement of measured the super-low reflectivity and small sampling angle. Using single reflect way measured, and compare with re-swatch. Testing the reflectance of the sampling mirror which be used on TIL, and analyze the error. Research results indicate, the main factor which affect result is energy detector error and energy detector linearity. This methods is easy and have high-precision, it can be used to measure the super-low reflectivity sampling mirror reflectance.

  12. Assessment of fat and lean mass by quantitative magnetic resonance: a future technology of body composition research?

    PubMed

    Bosy-Westphal, Anja; Müller, Manfred J

    2015-09-01

    For the assessment of energy balance or monitoring of therapeutic interventions, there is a need for noninvasive and highly precise methods of body composition analysis that are able to accurately measure small changes in fat and fat-free mass (FFM). The use of quantitative magnetic resonance (QMR) for measurement of body composition has long been established in animal studies. There are, however, only a few human studies that examine the validity of this method. These studies have consistently shown a high precision of QMR and only a small underestimation of fat mass by QMR when compared with a 4-compartment model as a reference. An underestimation of fat mass by QMR is also supported by the comparison between measured energy balance (as a difference between energy intake and energy expenditure) and energy balance predicted from changes in fat mass and FFM. Fewer calories were lost and gained as fat mass compared with the value expected from measured energy balance. Current evidence in healthy humans has shown that QMR is a valid and precise method for noninvasive measurement of body composition. Contrary to standard reference methods, such as densitometry and dual X-ray absorptiometry, QMR results are independent of FFM hydration. However, despite a high accuracy and a low minimal detectable change, underestimation of fat mass by QMR is possible and limits the use of this method for quantification of energy balance.

  13. Template optimization and transfer in perceptual learning.

    PubMed

    Kurki, Ilmari; Hyvärinen, Aapo; Saarinen, Jussi

    2016-08-01

    We studied how learning changes the processing of a low-level Gabor stimulus, using a classification-image method (psychophysical reverse correlation) and a task where observers discriminated between slight differences in the phase (relative alignment) of a target Gabor in visual noise. The method estimates the internal "template" that describes how the visual system weights the input information for decisions. One popular idea has been that learning makes the template more like an ideal Bayesian weighting; however, the evidence has been indirect. We used a new regression technique to directly estimate the template weight change and to test whether the direction of reweighting is significantly different from an optimal learning strategy. The subjects trained the task for six daily sessions, and we tested the transfer of training to a target in an orthogonal orientation. Strong learning and partial transfer were observed. We tested whether task precision (difficulty) had an effect on template change and transfer: Observers trained in either a high-precision (small, 60° phase difference) or a low-precision task (180°). Task precision did not have an effect on the amount of template change or transfer, suggesting that task precision per se does not determine whether learning generalizes. Classification images show that training made observers use more task-relevant features and unlearn some irrelevant features. The transfer templates resembled partially optimized versions of templates in training sessions. The template change direction resembles ideal learning significantly but not completely. The amount of template change was highly correlated with the amount of learning.

  14. Study on the cutting mechanism and the brittle ductile transition model of isotropic pyrolyric graphite

    NASA Astrophysics Data System (ADS)

    Wang, Minghai; Wang, Hujun; Liu, Zhonghai

    2011-05-01

    Isotropic pyrolyric graphite (IPG) is a new kind of brittle material, it can be used for sealing the aero-engine turbine shaft and the ethylene high-temperature equipment. It not only has the general advantages of ordinal carbonaceous materials such as high temperature resistance, lubrication and abrasion resistance, but also has the advantages of impermeability and machinability that carbon/carbon composite doesn't have. Therefore, it has broad prospects for development. Mechanism of brittle-ductile transition of IPG is the foundation of precision cutting while the plastic deformation of IPG is the essential and the most important mechanical behavior of precision cutting. Using the theory of strain gradient, the mechanism of this material removal during the precision cutting is analyzed. The critical cutting thickness of IPG is calculated for the first time. Furthermore, the cutting process parameters such as cutting depth, feed rate which corresponding to the scale of brittle-ductile transition deformation of IPG are calculated. In the end, based on the theory of micromechanics, the deformation behaviors of IPG such as brittle fracture, plastic deformation and mutual transformation process are all simulated under the Sih.G.C fracture criterion. The condition of the simulation is that the material under the pressure-shear loading conditions .The result shows that the best angle during the IPG precision cutting is -30°. The theoretical analysis and the simulation result are validated by precision cutting experiments.

  15. Precise Truss Assembly using Commodity Parts and Low Precision Welding

    NASA Technical Reports Server (NTRS)

    Komendera, Erik; Reishus, Dustin; Dorsey, John T.; Doggett, William R.; Correll, Nikolaus

    2013-01-01

    We describe an Intelligent Precision Jigging Robot (IPJR), which allows high precision assembly of commodity parts with low-precision bonding. We present preliminary experiments in 2D that are motivated by the problem of assembling a space telescope optical bench on orbit using inexpensive, stock hardware and low-precision welding. An IPJR is a robot that acts as the precise "jigging", holding parts of a local assembly site in place while an external low precision assembly agent cuts and welds members. The prototype presented in this paper allows an assembly agent (in this case, a human using only low precision tools), to assemble a 2D truss made of wooden dowels to a precision on the order of millimeters over a span on the order of meters. We report the challenges of designing the IPJR hardware and software, analyze the error in assembly, document the test results over several experiments including a large-scale ring structure, and describe future work to implement the IPJR in 3D and with micron precision.

  16. Fiber Scrambling for High Precision Spectrographs

    NASA Astrophysics Data System (ADS)

    Kaplan, Zachary; Spronck, J. F. P.; Fischer, D.

    2011-05-01

    The detection of Earth-like exoplanets with the radial velocity method requires extreme Doppler precision and long-term stability in order to measure tiny reflex velocities in the host star. Recent planet searches have led to the detection of so called "super-Earths” (up to a few Earth masses) that induce radial velocity changes of about 1 m/s. However, the detection of true Earth analogs requires a precision of 10 cm/s. One of the largest factors limiting Doppler precision is variation in the Point Spread Function (PSF) from observation to observation due to changes in the illumination of the slit and spectrograph optics. Thus, this stability has become a focus of current instrumentation work. Fiber optics have been used since the 1980's to couple telescopes to high-precision spectrographs, initially for simpler mechanical design and control. However, fiber optics are also naturally efficient scramblers. Scrambling refers to a fiber's ability to produce an output beam independent of input. Our research is focused on characterizing the scrambling properties of several types of fibers, including circular, square and octagonal fibers. By measuring the intensity distribution after the fiber as a function of input beam position, we can simulate guiding errors that occur at an observatory. Through this, we can determine which fibers produce the most uniform outputs for the severest guiding errors, improving the PSF and allowing sub-m/s precision. However, extensive testing of fibers of supposedly identical core diameter, length and shape from the same manufacturer has revealed the "personality” of individual fibers. Personality describes differing intensity patterns for supposedly duplicate fibers illuminated identically. Here, we present our results on scrambling characterization as a function of fiber type, while studying individual fiber personality.

  17. Achieving High Resolution Timer Events in Virtualized Environment

    PubMed Central

    Adamczyk, Blazej; Chydzinski, Andrzej

    2015-01-01

    Virtual Machine Monitors (VMM) have become popular in different application areas. Some applications may require to generate the timer events with high resolution and precision. This however may be challenging due to the complexity of VMMs. In this paper we focus on the timer functionality provided by five different VMMs—Xen, KVM, Qemu, VirtualBox and VMWare. Firstly, we evaluate resolutions and precisions of their timer events. Apparently, provided resolutions and precisions are far too low for some applications (e.g. networking applications with the quality of service). Then, using Xen virtualization we demonstrate the improved timer design that greatly enhances both the resolution and precision of achieved timer events. PMID:26177366

  18. Laser light-scattering spectroscopy: a new application in the study of ciliary activity.

    PubMed Central

    Lee, W I; Verdugo, P

    1976-01-01

    A uniquely precise and simple method to study ciliary activity by laser light-scattering spectroscopy has been developed and validated. A concurrent study of the effect of Ca2+ on ciliary activity in vitro by laser scattering spectroscopy and high speed cinematography has demonstrated that this new method is simpler and as accurate and reproducible as the high speed film technique. PMID:963208

  19. A Dynamic Precision Evaluation Method for the Star Sensor in the Stellar-Inertial Navigation System.

    PubMed

    Lu, Jiazhen; Lei, Chaohua; Yang, Yanqiang

    2017-06-28

    Integrating the advantages of INS (inertial navigation system) and the star sensor, the stellar-inertial navigation system has been used for a wide variety of applications. The star sensor is a high-precision attitude measurement instrument; therefore, determining how to validate its accuracy is critical in guaranteeing its practical precision. The dynamic precision evaluation of the star sensor is more difficult than a static precision evaluation because of dynamic reference values and other impacts. This paper proposes a dynamic precision verification method of star sensor with the aid of inertial navigation device to realize real-time attitude accuracy measurement. Based on the gold-standard reference generated by the star simulator, the altitude and azimuth angle errors of the star sensor are calculated for evaluation criteria. With the goal of diminishing the impacts of factors such as the sensors' drift and devices, the innovative aspect of this method is to employ static accuracy for comparison. If the dynamic results are as good as the static results, which have accuracy comparable to the single star sensor's precision, the practical precision of the star sensor is sufficiently high to meet the requirements of the system specification. The experiments demonstrate the feasibility and effectiveness of the proposed method.

  20. High-precision x-ray spectroscopy of highly charged ions with microcalorimeters

    NASA Astrophysics Data System (ADS)

    Kraft-Bermuth, S.; Andrianov, V.; Bleile, A.; Echler, A.; Egelhof, P.; Grabitz, P.; Ilieva, S.; Kilbourne, C.; Kiselev, O.; McCammon, D.; Meier, J.

    2013-09-01

    The precise determination of the energy of the Lyman α1 and α2 lines in hydrogen-like heavy ions provides a sensitive test of quantum electrodynamics in very strong Coulomb fields. To improve the experimental precision, the new detector concept of microcalorimeters is now exploited for such measurements. Such detectors consist of compensated-doped silicon thermistors and Pb or Sn absorbers to obtain high quantum efficiency in the energy range of 40-70 keV, where the Doppler-shifted Lyman lines are located. For the first time, a microcalorimeter was applied in an experiment to precisely determine the transition energy of the Lyman lines of lead ions at the experimental storage ring at GSI. The energy of the Ly α1 line E(Ly-α1, 207Pb81+) = (77937 ± 12stat ± 25syst) eV agrees within error bars with theoretical predictions. To improve the experimental precision, a new detector array with more pixels and better energy resolution was equipped and successfully applied in an experiment to determine the Lyman-α lines of gold ions 197Au78+.

  1. Dotette: Programmable, high-precision, plug-and-play droplet pipetting.

    PubMed

    Fan, Jinzhen; Men, Yongfan; Hao Tseng, Kuo; Ding, Yi; Ding, Yunfeng; Villarreal, Fernando; Tan, Cheemeng; Li, Baoqing; Pan, Tingrui

    2018-05-01

    Manual micropipettes are the most heavily used liquid handling devices in biological and chemical laboratories; however, they suffer from low precision for volumes under 1  μ l and inevitable human errors. For a manual device, the human errors introduced pose potential risks of failed experiments, inaccurate results, and financial costs. Meanwhile, low precision under 1  μ l can cause severe quantification errors and high heterogeneity of outcomes, becoming a bottleneck of reaction miniaturization for quantitative research in biochemical labs. Here, we report Dotette, a programmable, plug-and-play microfluidic pipetting device based on nanoliter liquid printing. With automated control, protocols designed on computers can be directly downloaded into Dotette, enabling programmable operation processes. Utilizing continuous nanoliter droplet dispensing, the precision of the volume control has been successfully improved from traditional 20%-50% to less than 5% in the range of 100 nl to 1000 nl. Such a highly automated, plug-and-play add-on to existing pipetting devices not only improves precise quantification in low-volume liquid handling and reduces chemical consumptions but also facilitates and automates a variety of biochemical and biological operations.

  2. A new fitting method for measurement of the curvature radius of a short arc with high precision

    NASA Astrophysics Data System (ADS)

    Tao, Wei; Zhong, Hong; Chen, Xiao; Selami, Yassine; Zhao, Hui

    2018-07-01

    The measurement of an object with a short arc is widely encountered in scientific research and industrial production. As the most classic method of arc fitting, the least squares fitting method suffers from low precision when it is used for measurement of arcs with smaller central angles and fewer sampling points. The shorter the arc, the lower is the measurement accuracy. In order to improve the measurement precision of short arcs, a parameter constrained fitting method based on a four-parameter circle equation is proposed in this paper. The generalized Lagrange function was introduced together with the optimization by gradient descent method to reduce the influence from noise. The simulation and experimental results showed that the proposed method has high precision even when the central angle drops below 4° and it has good robustness when the noise standard deviation rises to 0.4 mm. This new fitting method is suitable for the high precision measurement of short arcs with smaller central angles without any prior information.

  3. Identification of young stellar variables with KELT for K2 - II. The Upper Scorpius association

    NASA Astrophysics Data System (ADS)

    Ansdell, Megan; Oelkers, Ryan J.; Rodriguez, Joseph E.; Gaidos, Eric; Somers, Garrett; Mamajek, Eric; Cargile, Phillip A.; Stassun, Keivan G.; Pepper, Joshua; Stevens, Daniel J.; Beatty, Thomas G.; Siverd, Robert J.; Lund, Michael B.; Kuhn, Rudolf B.; James, David; Gaudi, B. Scott

    2018-01-01

    High-precision photometry from space-based missions such as K2 and Transiting Exoplanet Survey Satellite enables detailed studies of young star variability. However, because space-based observing campaigns are often short (e.g. 80 d for K2), complementary long-baseline photometric surveys are critical for obtaining a complete understanding of young star variability, which can change on time-scales of minutes to years. We therefore present and analyse light curves of members of the Upper Scorpius association made over 5.5 yr by the ground-based Kilodegree Extremely Little Telescope (KELT), which complement the high-precision observations of this region taken by K2 during its Campaigns 2 and 15. We show that KELT data accurately identify the periodic signals found with high-precision K2 photometry, demonstrating the power of ground-based surveys in deriving stellar rotation periods of young stars. We also use KELT data to identify sources exhibiting variability that is likely related to circumstellar material and/or stellar activity cycles; these signatures are often unseen in the short-term K2 data, illustrating the importance of long-term monitoring surveys for studying the full range of young star variability. We provide the KELT light curves as electronic tables in an ongoing effort to establish legacy time series data sets for young stellar clusters.

  4. A method to transfer an individual graphene flake to a target position with a precision of sub-micrometer

    NASA Astrophysics Data System (ADS)

    Wang, Yubing; Yin, Weihong; Han, Qin; Yang, Xiaohong; Ye, Han; Lü, Qianqian; Yin, Dongdong

    2017-04-01

    Graphene field-effect transistors have been intensively studied. However, in order to fabricate devices with more complicated structures, such as the integration with waveguide and other two-dimensional materials, we need to transfer the exfoliated graphene samples to a target position. Due to the small area of exfoliated graphene and its random distribution, the transfer method requires rather high precision. In this paper, we systematically study a method to selectively transfer mechanically exfoliated graphene samples to a target position with a precision of sub-micrometer. To characterize the doping level of this method, we transfer graphene flakes to pre-patterned metal electrodes, forming graphene field-effect transistors. The hole doping of graphene is calculated to be 2.16 × {10}12{{{cm}}}-2. In addition, we fabricate a waveguide-integrated multilayer graphene photodetector to demonstrate the viability and accuracy of this method. A photocurrent as high as 0.4 μA is obtained, corresponding to a photoresponsivity of 0.48 mA/W. The device performs uniformly in nine illumination cycles. Project supported by the National Key Research and Development Program of China (No. 2016YFB0402404), the High-Tech Research and Development Program of China (Nos. 2013AA031401, 2015AA016902, 2015AA016904), and the National Natural Foundation of China (Nos. 61674136, 61176053, 61274069, 61435002).

  5. Near-IR trigonometric parallaxes of nearby stars in the Galactic plane using the VVV survey

    NASA Astrophysics Data System (ADS)

    Beamín, J. C.; Mendez, R. A.; Smart, R. L.; Jara, R.; Kurtev, R.; Gromadzki, M.; Villanueva, V.; Minniti, D.; Smith, L. C.; Lucas, P. W.

    2017-07-01

    We use the multi-epoch KS band observations, covering a ˜ 5 years baseline to obtain milli and sub-milli arcsec precision astrometry for a sample of eighteen previously known high proper motion sources, including precise parallaxes for these sources for the first time. In this pioneer study we show the capability of the VVV project to measure high precision trigonometric parallaxes for very low mass stars (VLMS) up to distances of ˜ 400 pc reaching farther than most other ground based surveys or space missions for these types of stars. Two stars in our sample are low mass companions to sources in the TGAS catalog, the VVV astrometry of the fainter source is consistent within 1-σ with the astrometry for the primary source in TGAS catalog, confirming the excellent astrometric quality of the VVV data even nearby of saturated sources, as in these cases. Additionally, we used spectral energy distribution to search for evidence of unresolved binary systems and cool sub-dwarfs. We detected five systems that are most likely VLMS belonging to the Galactic halo based on their tangential velocities, and four objects within 60 pc that are likely members of the thick disk. A more comprehensive study of high proper motion sources and parallaxes of VLMS and brown dwarfs with the VVV is ongoing, including thousands of newly discovered objects (Kurtev et al. 2016).

  6. Lotus-on-chip: computer-aided design and 3D direct laser writing of bioinspired surfaces for controlling the wettability of materials and devices.

    PubMed

    Lantada, Andrés Díaz; Hengsbach, Stefan; Bade, Klaus

    2017-10-16

    In this study we present the combination of a math-based design strategy with direct laser writing as high-precision technology for promoting solid free-form fabrication of multi-scale biomimetic surfaces. Results show a remarkable control of surface topography and wettability properties. Different examples of surfaces inspired on the lotus leaf, which to our knowledge are obtained for the first time following a computer-aided design with this degree of precision, are presented. Design and manufacturing strategies towards microfluidic systems whose fluid driving capabilities are obtained just by promoting a design-controlled wettability of their surfaces, are also discussed and illustrated by means of conceptual proofs. According to our experience, the synergies between the presented computer-aided design strategy and the capabilities of direct laser writing, supported by innovative writing strategies to promote final size while maintaining high precision, constitute a relevant step forward towards materials and devices with design-controlled multi-scale and micro-structured surfaces for advanced functionalities. To our knowledge, the surface geometry of the lotus leaf, which has relevant industrial applications thanks to its hydrophobic and self-cleaning behavior, has not yet been adequately modeled and manufactured in an additive way with the degree of precision that we present here.

  7. The prospects of pulsar timing with new-generation radio telescopes and the Square Kilometre Array

    NASA Astrophysics Data System (ADS)

    Stappers, B. W.; Keane, E. F.; Kramer, M.; Possenti, A.; Stairs, I. H.

    2018-05-01

    Pulsars are highly magnetized and rapidly rotating neutron stars. As they spin, the lighthouse-like beam of radio emission from their magnetic poles sweeps across the Earth with a regularity approaching that of the most precise clocks known. This precision combined with the extreme environments in which they are found, often in compact orbits with other neutron stars and white dwarfs, makes them excellent tools for studying gravity. Present and near-future pulsar surveys, especially those using the new generation of telescopes, will find more extreme binary systems and pulsars that are more precise `clocks'. These telescopes will also greatly improve the precision to which we can measure the arrival times of the pulses. The Square Kilometre Array will revolutionize pulsar searches and timing precision. The increased number of sources will reveal rare sources, including possibly a pulsar-black hole binary, which can provide the most stringent tests of strong-field gravity. The improved timing precision will reveal new phenomena and also allow us to make a detection of gravitational waves in the nanohertz frequency regime. It is here where we expect to see the signature of the binary black holes that are formed as galaxies merge throughout cosmological history. This article is part of a discussion meeting issue `The promises of gravitational-wave astronomy'.

  8. Green and Fast Laser Fusion Technique for Bulk Silicate Rock Analysis by Laser Ablation-Inductively Coupled Plasma Mass Spectrometry.

    PubMed

    Zhang, Chenxi; Hu, Zhaochu; Zhang, Wen; Liu, Yongsheng; Zong, Keqing; Li, Ming; Chen, Haihong; Hu, Shenghong

    2016-10-18

    Sample preparation of whole-rock powders is the major limitation for their accurate and precise elemental analysis by laser ablation inductively-coupled plasma mass spectrometry (ICPMS). In this study, a green, efficient, and simplified fusion technique using a high energy infrared laser was developed for major and trace elemental analysis. Fusion takes only tens of milliseconds for each sample. Compared to the pressed pellet sample preparation, the analytical precision of the developed laser fusion technique is higher by an order of magnitude for most elements in granodiorite GSP-2. Analytical results obtained for five USGS reference materials (ranging from mafic to intermediate to felsic) using the laser fusion technique generally agree with recommended values with discrepancies of less than 10% for most elements. However, high losses (20-70%) of highly volatile elements (Zn and Pb) and the transition metal Cu are observed. The achieved precision is within 5% for major elements and within 15% for most trace elements. Direct laser fusion of rock powders is a green and notably simple method to obtain homogeneous samples, which will significantly accelerate the application of laser ablation ICPMS for whole-rock sample analysis.

  9. A new measurement method of actual focal spot position of an x-ray tube using a high-precision carbon-interspaced grid

    NASA Astrophysics Data System (ADS)

    Lee, H. W.; Lim, H. W.; Jeon, D. H.; Park, C. K.; Cho, H. S.; Seo, C. W.; Lee, D. Y.; Kim, K. S.; Kim, G. A.; Park, S. Y.; Kang, S. Y.; Park, J. E.; Kim, W. S.; Woo, T. H.; Oh, J. E.

    2018-06-01

    This study investigated the effectiveness of a new method for measuring the actual focal spot position of a diagnostic x-ray tube using a high-precision antiscatter grid and a digital x-ray detector in which grid magnification, which is directly related to the focal spot position, was determined from the Fourier spectrum of the acquired x-ray grid’s image. A systematic experiment was performed to demonstrate the viability of the proposed measurement method. The hardware system used in the experiment consisted of an x-ray tube run at 50 kVp and 1 mA, a flat-panel detector with a pixel size of 49.5 µm, and a high-precision carbon-interspaced grid with a strip density of 200 lines/inch. The results indicated that the focal spot of the x-ray tube (Jupiter 5000, Oxford Instruments) used in the experiment was located approximately 31.10 mm inside from the exit flange, well agreed with the nominal value of 31.05 mm, which demonstrates the viability of the proposed measurement method. Thus, the proposed method can be utilized for system’s performance optimization in many x-ray imaging applications.

  10. Tool simplifies machining of pipe ends for precision welding

    NASA Technical Reports Server (NTRS)

    Matus, S. T.

    1969-01-01

    Single tool prepares a pipe end for precision welding by simultaneously performing internal machining, end facing, and bevel cutting to specification standards. The machining operation requires only one milling adjustment, can be performed quickly, and produces the high quality pipe-end configurations required to ensure precision-welded joints.

  11. Identification of ground motion features for high-tech facility under far field seismic waves using wavelet packet transform

    NASA Astrophysics Data System (ADS)

    Huang, Shieh-Kung; Loh, Chin-Hsiung; Chen, Chin-Tsun

    2016-04-01

    Seismic records collected from earthquake with large magnitude and far distance may contain long period seismic waves which have small amplitude but with dominant period up to 10 sec. For a general situation, the long period seismic waves will not endanger the safety of the structural system or cause any uncomfortable for human activity. On the contrary, for those far distant earthquakes, this type of seismic waves may cause a glitch or, furthermore, breakdown to some important equipments/facilities (such as the high-precision facilities in high-tech Fab) and eventually damage the interests of company if the amplitude becomes significant. The previous study showed that the ground motion features such as time-variant dominant frequencies extracted using moving window singular spectrum analysis (MWSSA) and amplitude characteristics of long-period waves identified from slope change of ground motion Arias Intensity can efficiently indicate the damage severity to the high-precision facilities. However, embedding a large hankel matrix to extract long period seismic waves make the MWSSA become a time-consumed process. In this study, the seismic ground motion data collected from broadband seismometer network located in Taiwan were used (with epicenter distance over 1000 km). To monitor the significant long-period waves, the low frequency components of these seismic ground motion data are extracted using wavelet packet transform (WPT) to obtain wavelet coefficients and the wavelet entropy of coefficients are used to identify the amplitude characteristics of long-period waves. The proposed method is a timesaving process compared to MWSSA and can be easily implemented for real-time detection. Comparison and discussion on this method among these different seismic events and the damage severity to the high-precision facilities in high-tech Fab is made.

  12. Chiral dynamics with (non)strange quarks

    NASA Astrophysics Data System (ADS)

    Kubis, Bastian; Meißner, Ulf-G.

    2017-01-01

    We review the results and achievements of the project B.3. Topics addressed include pion photoproduction off the proton and off deuterium, three-flavor chiral perturbation theory studies, chiral symmetry tests in Goldstone boson decays, the development of unitarized chiral perturbation theory to next-to-leading order, the two-pole structure of the Λ(1405), the dynamical generation of the lowest S11 resonances, the theory of hadronic atoms and its application to various systems, precision studies in light-meson decays based on dispersion theory, the Roy-Steiner analysis of pion-nucleon scattering, a high-precision extraction of the elusive pion-nucleon σ-term, and aspects of chiral dynamics in few-nucleon systems.

  13. LYSO-based precision timing detectors with SiPM readout

    NASA Astrophysics Data System (ADS)

    Bornheim, A.; Hassanshahi, M. H.; Griffioen, M.; Mao, J.; Mangu, A.; Peña, C.; Spiropulu, M.; Xie, S.; Zhang, Z.

    2018-07-01

    Particle detectors based on scintillation light are particularly well suited for precision timing applications with resolutions of a few 10's of ps. The large primary signal and the initial rise time of the scintillation light result in very favorable signal-to-noise conditions with fast signals. In this paper we describe timing studies using a LYSO-based sampling calorimeter with wavelength-shifting capillary light extraction and silicon photomultipliers as photosensors. We study the contributions of various steps of the signal generation to the total time resolution, and demonstrate its feasibility as a radiation-hard technology for calorimeters at high intensity hadron colliders.

  14. Design of high precision temperature control system for TO packaged LD

    NASA Astrophysics Data System (ADS)

    Liang, Enji; Luo, Baoke; Zhuang, Bin; He, Zhengquan

    2017-10-01

    Temperature is an important factor affecting the performance of TO package LD. In order to ensure the safe and stable operation of LD, a temperature control circuit for LD based on PID technology is designed. The MAX1978 and an external PID circuit are used to form a control circuit that drives the thermoelectric cooler (TEC) to achieve control of temperature and the external load can be changed. The system circuit has low power consumption, high integration and high precision,and the circuit can achieve precise control of the LD temperature. Experiment results show that the circuit can achieve effective and stable control of the laser temperature.

  15. Active Focal Zone Sharpening for High-Precision Treatment Using Histotripsy

    PubMed Central

    Wang, Tzu-Yin; Xu, Zhen; Hall, Timothy L.; Fowlkes, J. Brian; Roberts, William W.; Cain, Charles A.

    2011-01-01

    The goal of this study is to develop a focal zone sharpening strategy that produces more precise lesions for pulsed cavitational ultrasound therapy, or histotripsy. Precise and well-confined lesions were produced by locally suppressing cavitation in the periphery of the treatment focus without affecting cavitation in the center. The local suppression of cavitation was achieved using cavitation nuclei preconditioning pulses to actively control cavitation in the periphery of the focus. A 1-MHz 513-element therapeutic array was used to generate both the therapy and the nuclei preconditioning pulses. For therapy, 10-cycle bursts at 100-Hz pulse repetition frequency with P−/P+ pressure of 21/76 MPa were delivered to the geometric focus of the therapeutic array. For nuclei preconditioning, a different pulse was delivered to an annular region immediately surrounding the focus before each therapy pulse. A parametric study on the effective pressure, pulse duration, and delivery time of the preconditioning pulse was conducted in red blood cell-gel phantoms, where cavitational damage was indicated by the color change resulting from local cell lysis. Results showed that a short-duration (20 µs) preconditioning pulse at a medium pressure (P−/P+ pressure of 7.2/13.6 MPa) delivered shortly before (30 µs) the therapy pulse substantially suppressed the peripheral damage by 77 ± 13% while complete fractionation in the focal center was maintained. High-speed imaging of the bubble cloud showed a substantial decrease in the maximum width of the bubble cloud by 48 ± 24% using focal zone sharpening. Experiments in ex vivo livers confirmed that highly confined lesions were produced in real tissues as well as in the phantoms. This study demonstrated the feasibility of active focal zone sharpening using cavitation nuclei preconditioning, allowing for increased treatment precision compared with the natural focal width of the therapy transducer. PMID:21342816

  16. Active focal zone sharpening for high-precision treatment using histotripsy.

    PubMed

    Wang, Tzu-Yin; Xu, Zhen; Hall, Timothy; Fowlkes, J; Roberts, William; Cain, Charles

    2011-02-01

    The goal of this study is to develop a focal zone sharpening strategy that produces more precise lesions for pulsed cavitational ultrasound therapy, or histotripsy. Precise and well-confined lesions were produced by locally suppressing cavitation in the periphery of the treatment focus without affecting cavitation in the center. The local suppression of cavitation was achieved using cavitation nuclei preconditioning pulses to actively control cavitation in the periphery of the focus. A 1-MHz 513-element therapeutic array was used to generate both the therapy and the nuclei preconditioning pulses. For therapy, 10-cycle bursts at 100-Hz pulse repetition frequency with P-/P+ pressure of 21/76 MPa were delivered to the geometric focus of the therapeutic array. For nuclei preconditioning, a different pulse was delivered to an annular region immediately surrounding the focus before each therapy pulse. A parametric study on the effective pressure, pulse duration, and delivery time of the preconditioning pulse was conducted in red blood cell-gel phantoms, where cavitational damage was indicated by the color change resulting from local cell lysis. Results showed that a short-duration (20 μs) preconditioning pulse at a medium pressure (P-/P+ pressure of 7.2/13.6 MPa) delivered shortly before (30 μs) the therapy pulse substantially suppressed the peripheral damage by 77 ± 13% while complete fractionation in the focal center was maintained. High-speed imaging of the bubble cloud showed a substantial decrease in the maximum width of the bubble cloud by 48 ± 24% using focal zone sharpening. Experiments in ex vivo livers confirmed that highly confined lesions were produced in real tissues as well as in the phantoms. This study demonstrated the feasibility of active focal zone sharpening using cavitation nuclei preconditioning, allowing for increased treatment precision compared with the natural focal width of the therapy transducer.

  17. Precision control of multiple quantum cascade lasers for calibration systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Taubman, Matthew S., E-mail: Matthew.Taubman@pnnl.gov; Myers, Tanya L.; Pratt, Richard M.

    We present a precision, 1-A, digitally interfaced current controller for quantum cascade lasers, with demonstrated temperature coefficients for continuous and 40-kHz full-depth square-wave modulated operation, of 1–2 ppm/ °C and 15 ppm/ °C, respectively. High precision digital to analog converters (DACs) together with an ultra-precision voltage reference produce highly stable, precision voltages, which are selected by a multiplexer (MUX) chip to set output currents via a linear current regulator. The controller is operated in conjunction with a power multiplexing unit, allowing one of three lasers to be driven by the controller, while ensuring protection of controller and all lasers during operation, standby,more » and switching. Simple ASCII commands sent over a USB connection to a microprocessor located in the current controller operate both the controller (via the DACs and MUX chip) and the power multiplexer.« less

  18. The success of pharmacogenomics in moving genetic association studies from bench to bedside: study design and implementation of precision medicine in the post-GWAS era.

    PubMed

    Ritchie, Marylyn D

    2012-10-01

    Pharmacogenomics is emerging as a popular type of study for human genetics in recent years. This is primarily due to the many success stories and high potential for translation to clinical practice. In this review, the strengths and limitations of pharmacogenomics are discussed as well as the primary epidemiologic, clinical trial, and in vitro study designs implemented. A brief discussion of molecular and analytic approaches will be reviewed. Finally, several examples of bench-to-bedside clinical implementations of pharmacogenetic traits will be described. Pharmacogenomics continues to grow in popularity because of the important genetic associations identified that drive the possibility of precision medicine.

  19. Precision of FLEET Velocimetry Using High-Speed CMOS Camera Systems

    NASA Technical Reports Server (NTRS)

    Peters, Christopher J.; Danehy, Paul M.; Bathel, Brett F.; Jiang, Naibo; Calvert, Nathan D.; Miles, Richard B.

    2015-01-01

    Femtosecond laser electronic excitation tagging (FLEET) is an optical measurement technique that permits quantitative velocimetry of unseeded air or nitrogen using a single laser and a single camera. In this paper, we seek to determine the fundamental precision of the FLEET technique using high-speed complementary metal-oxide semiconductor (CMOS) cameras. Also, we compare the performance of several different high-speed CMOS camera systems for acquiring FLEET velocimetry data in air and nitrogen free-jet flows. The precision was defined as the standard deviation of a set of several hundred single-shot velocity measurements. Methods of enhancing the precision of the measurement were explored such as digital binning (similar in concept to on-sensor binning, but done in post-processing), row-wise digital binning of the signal in adjacent pixels and increasing the time delay between successive exposures. These techniques generally improved precision; however, binning provided the greatest improvement to the un-intensified camera systems which had low signal-to-noise ratio. When binning row-wise by 8 pixels (about the thickness of the tagged region) and using an inter-frame delay of 65 microseconds, precisions of 0.5 meters per second in air and 0.2 meters per second in nitrogen were achieved. The camera comparison included a pco.dimax HD, a LaVision Imager scientific CMOS (sCMOS) and a Photron FASTCAM SA-X2, along with a two-stage LaVision HighSpeed IRO intensifier. Excluding the LaVision Imager sCMOS, the cameras were tested with and without intensification and with both short and long inter-frame delays. Use of intensification and longer inter-frame delay generally improved precision. Overall, the Photron FASTCAM SA-X2 exhibited the best performance in terms of greatest precision and highest signal-to-noise ratio primarily because it had the largest pixels.

  20. Quantifying the contribution of grape hexoses to wine volatiles by high-precision [U¹³C]-glucose tracer studies.

    PubMed

    Nisbet, Mark A; Tobias, Herbert J; Brenna, J Thomas; Sacks, Gavin L; Mansfield, Anna Katharine

    2014-07-16

    Many fermentation volatiles important to wine aroma potentially arise from yeast metabolism of hexose sugars, but assessing the relative importance of these pathways is challenging due to high endogenous hexose substrate concentrations. To overcome this problem, gas chromatography combustion isotope ratio mass spectrometry (GC-C-IRMS) was used to measure high-precision (13)C/(12)C isotope ratios of volatiles in wines produced from juices spiked with tracer levels (0.01-1 APE) of uniformly labeled [U-(13)C]-glucose. The contribution of hexose to individual volatiles was determined from the degree of (13)C enrichment. As expected, straight-chain fatty acids and their corresponding ethyl esters were derived almost exclusively from hexoses. Most fusel alcohols and their acetate esters were also majority hexose-derived, indicating the importance of anabolic pathways for their formation. Only two compounds were not derived primarily from hexoses (hexanol and isobutyric acid). This approach can be extended to other food systems or substrates for studying precursor-product relationships.

  1. Combination of High-density Microelectrode Array and Patch Clamp Recordings to Enable Studies of Multisynaptic Integration.

    PubMed

    Jäckel, David; Bakkum, Douglas J; Russell, Thomas L; Müller, Jan; Radivojevic, Milos; Frey, Urs; Franke, Felix; Hierlemann, Andreas

    2017-04-20

    We present a novel, all-electric approach to record and to precisely control the activity of tens of individual presynaptic neurons. The method allows for parallel mapping of the efficacy of multiple synapses and of the resulting dynamics of postsynaptic neurons in a cortical culture. For the measurements, we combine an extracellular high-density microelectrode array, featuring 11'000 electrodes for extracellular recording and stimulation, with intracellular patch-clamp recording. We are able to identify the contributions of individual presynaptic neurons - including inhibitory and excitatory synaptic inputs - to postsynaptic potentials, which enables us to study dendritic integration. Since the electrical stimuli can be controlled at microsecond resolution, our method enables to evoke action potentials at tens of presynaptic cells in precisely orchestrated sequences of high reliability and minimum jitter. We demonstrate the potential of this method by evoking short- and long-term synaptic plasticity through manipulation of multiple synaptic inputs to a specific neuron.

  2. Precision machining of optical surfaces with subaperture correction technologies MRF and IBF

    NASA Astrophysics Data System (ADS)

    Schmelzer, Olaf; Feldkamp, Roman

    2015-10-01

    Precision optical elements are used in a wide range of technical instrumentations. Many optical systems e.g. semiconductor inspection modules, laser heads for laser material processing or high end movie cameras, contain precision optics even aspherical or freeform surfaces. Critical parameters for such systems are wavefront error, image field curvature or scattered light. Following these demands the lens parameters are also critical concerning power and RMSi of the surface form error and micro roughness. How can we reach these requirements? The emphasis of this discussion is set on the application of subaperture correction technologies in the fabrication of high-end aspheres and free-forms. The presentation focuses on the technology chain necessary for the production of high-precision aspherical optical components and the characterization of the applied subaperture finishing tools MRF (magneto-rheological finishing) and IBF (ion beam figuring). These technologies open up the possibility of improving the performance of optical systems.

  3. Design of precise assembly equipment of large aperture optics

    NASA Astrophysics Data System (ADS)

    Pei, Guoqing; Xu, Xu; Xiong, Zhao; Yan, Han; Qin, Tinghai; Zhou, Hai; Yuan, Xiaodong

    2017-05-01

    High-energy solid-state laser is an important way to achieve laser fusion research. Laser fusion facility includes thousands of various types of large aperture optics. These large aperture optics should be assembled with high precision and high efficiency. Currently, however, the assembly of large aperture optics is by man's hand which is in low level of efficiency and labor-intensive. Here, according to the characteristics of the assembly of large aperture optics, we designed three kinds of grasping devices. Using Finite Element Method, we simulated the impact of the grasping device on the PV value and the RMS value of the large aperture optics. The structural strength of the grasping device's key part was analyzed. An experiment was performed to illustrate the reliability and precision of the grasping device. We anticipate that the grasping device would complete the assembly of large aperture optics precisely and efficiently.

  4. High precision, rapid laser hole drilling

    DOEpatents

    Chang, Jim J.; Friedman, Herbert W.; Comaskey, Brian J.

    2007-03-20

    A laser system produces a first laser beam for rapidly removing the bulk of material in an area to form a ragged hole. The laser system produces a second laser beam for accurately cleaning up the ragged hole so that the final hole has dimensions of high precision.

  5. High precision, rapid laser hole drilling

    DOEpatents

    Chang, Jim J.; Friedman, Herbert W.; Comaskey, Brian J.

    2005-03-08

    A laser system produces a first laser beam for rapidly removing the bulk of material in an area to form a ragged hole. The laser system produces a second laser beam for accurately cleaning up the ragged hole so that the final hole has dimensions of high precision.

  6. High precision, rapid laser hole drilling

    DOEpatents

    Chang, Jim J.; Friedman, Herbert W.; Comaskey, Brian J.

    2013-04-02

    A laser system produces a first laser beam for rapidly removing the bulk of material in an area to form a ragged hole. The laser system produces a second laser beam for accurately cleaning up the ragged hole so that the final hole has dimensions of high precision.

  7. High-Precision 40Ar/39Ar dating of the Deccan Traps

    NASA Astrophysics Data System (ADS)

    Sprain, C. J.; Renne, P. R.; Richards, M. A.; Self, S.; Vanderkluysen, L.; Pande, K.; Morgan, L. E.; Cosca, M. A.

    2015-12-01

    The Deccan Traps (DT) have been strongly implicated over the past thirty years as a potential cause of the mass extinctions at the Cretaceous-Paleogene boundary (KPB). While a broad coincidence between the DT eruptions and the KPB is increasingly clear, variables such as tempo, volume of eruptions, and amount of associated climate-modifying volatiles, are too poorly constrained to properly assess causality. In order to appropriately test whether the DT played a role in the mass extinctions a high-precision geochronologic framework defining the timing and tempo of volcanic eruptions is needed. Recent high-precision U/Pb dating of zircons from inferred paleosols (red boles) and melt segregation horizons is the only available geochronology of the DT that is sufficiently precise to resolve age differences of less than 100 ka (Schoene et al., 2015). While this technique can achieve high-precision dates for individual zircon crystals, protracted age distributions may not include the actual eruption age. Moreover, the applicability of U/Pb dating in the DT is limited as suitable material is only sporadically present and therefore the technique is unlikely to achieve the resolution necessary to assess the tempo of DT eruptions. To mediate these limitations, we present new high-precision 40Ar/39Ar ages for plagioclase separated from the lava flows sampled from each of ten chemostratigraphically-defined formations within the Western Ghats. Multiple (N = 1-4) plateau ages from each sample and detailed neutron fluence monitoring during irradiation yield ages with precision commonly better than 100 ka (1 sigma). Results provide the first precise location of the KPB within the DT eruption sequence, which approximately coincides with major changes in eruption frequency, flow-field volumes, extent of crustal contamination, and degree of fractionation. Collectively, these results suggest that a state shift occurred in the DT magma system within ~50 ka of the Chicxulub impact, consistent with transient effects of seismic energy associated with the impact. Further, our new data invalidate the concept of three discrete eruption pulses in the Western Ghats (Chenet et al., 2007, 2009; Keller et al., 2008) and rather indicate only a sharp increase in mean volumetric eruption rates near the KPB.

  8. Less precise representation of numerical magnitude in high math-anxious individuals: an ERP study of the size and distance effects.

    PubMed

    Núñez-Peña, M Isabel; Suárez-Pellicioni, Macarena

    2014-12-01

    Numerical comparison tasks are widely used to study the mental representation of numerical magnitude. In study, event-related brain potentials (ERPs) were recorded while 26 high math-anxious (HMA) and 27 low math-anxious (LMA) individuals were presented with pairs of single-digit Arabic numbers and were asked to decide which one had the larger numerical magnitude. The size of the numbers and the distance between them were manipulated in order to study the size and the distance effects. The results showed that both distance and size effects were larger for the HMA group. As for ERPs, results showed that the ERP distance effect had larger amplitude for both the size and distance effects in the HMA group than among their LMA counterparts. Since this component has been taken as a marker of the processing of numerical magnitude, this result suggests that HMA individuals have a less precise representation of numerical magnitude. Copyright © 2014 Elsevier B.V. All rights reserved.

  9. High-precision {beta} decay half-life measurements of proton-rich nuclei for testing the CVC hypothesis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kurtukian-Nieto, T.; Collaboration: NEX Group of CENBG

    2011-11-30

    The experimental study of super-allowed nuclear {beta} decays serves as a sensitive probe of the conservation of the weak vector current (CVC) and allows tight limits to be set on the presence of scalar or right-handed currents. Once CVC is verified, it is possible to determine the V{sub ud} element of the CKM quark-mixing matrix. Similarly, the study of nuclear mirror {beta} decays allows to arrive at the same final quantity V{sub ud}. Whereas dedicated studies of 0{sup +}{yields}0{sup +} decays are performed for several decades now, the potential of mirror transitions was only rediscovered recently. Therefore, it can bemore » expected that important progress is possible with high-precision studies of different mirror {beta} decays. In the present piece of work the half-life measurements performed by the CENBG group of the proton-rich nuclei {sup 42}Ti, {sup 38-39}Ca, {sup 30-31}S and {sup 29}P are summarised.« less

  10. Study on digital closed-loop system of silicon resonant micro-sensor

    NASA Astrophysics Data System (ADS)

    Xu, Yefeng; He, Mengke

    2008-10-01

    Designing a micro, high reliability weak signal extracting system is a critical problem need to be solved in the application of silicon resonant micro-sensor. The closed-loop testing system based on FPGA uses software to replace hardware circuit which dramatically decrease the system's mass and power consumption and make the system more compact, both correlation theory and frequency scanning scheme are used in extracting weak signal, the adaptive frequency scanning arithmetic ensures the system real-time. The error model was analyzed to show the solution to enhance the system's measurement precision. The experiment results show that the closed-loop testing system based on FPGA has the personality of low power consumption, high precision, high-speed, real-time etc, and also the system is suitable for different kinds of Silicon Resonant Micro-sensor.

  11. High precision mapping of kidney stones using μ-IR spectroscopy to determine urinary lithogenesis.

    PubMed

    Blanco, Francisco; Ortiz-Alías, Pilar; López-Mesas, Montserrat; Valiente, Manuel

    2015-06-01

    Evolution of urinary lithiasis is determined by the metabolism and life-style of the related patient. The appropriate classification of the stone is mandatory for the identification of the lithogenic process. In this study, cros-sections from a single stone of each of the most frequent urolithiasis types (calcium oxalate mono and dihydrate and carbonate apatite) have been selected and imaged using IR microspectroscopy. Moreover, the use of high definition sFTIR (synchrotron source) has revealed hidden information to the conventional FTIR. This work has demonstrated that minor components become key factors on the description of the stages of stone formation. Intensity map for COM (1630 cm(-1) peak). The high spatial definition achieved is key for the precise description of the kidney stone history. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Layered compression for high-precision depth data.

    PubMed

    Miao, Dan; Fu, Jingjing; Lu, Yan; Li, Shipeng; Chen, Chang Wen

    2015-12-01

    With the development of depth data acquisition technologies, access to high-precision depth with more than 8-b depths has become much easier and determining how to efficiently represent and compress high-precision depth is essential for practical depth storage and transmission systems. In this paper, we propose a layered high-precision depth compression framework based on an 8-b image/video encoder to achieve efficient compression with low complexity. Within this framework, considering the characteristics of the high-precision depth, a depth map is partitioned into two layers: 1) the most significant bits (MSBs) layer and 2) the least significant bits (LSBs) layer. The MSBs layer provides rough depth value distribution, while the LSBs layer records the details of the depth value variation. For the MSBs layer, an error-controllable pixel domain encoding scheme is proposed to exploit the data correlation of the general depth information with sharp edges and to guarantee the data format of LSBs layer is 8 b after taking the quantization error from MSBs layer. For the LSBs layer, standard 8-b image/video codec is leveraged to perform the compression. The experimental results demonstrate that the proposed coding scheme can achieve real-time depth compression with satisfactory reconstruction quality. Moreover, the compressed depth data generated from this scheme can achieve better performance in view synthesis and gesture recognition applications compared with the conventional coding schemes because of the error control algorithm.

  13. Single-anchor support and supercritical CO2 drying enable high-precision microfabrication of three-dimensional structures.

    PubMed

    Maruo, Shoji; Hasegawa, Takuya; Yoshimura, Naoki

    2009-11-09

    In high-precision two-photon microfabrication of three-dimensional (3-D) polymeric microstructures, supercritical CO(2) drying was employed to reduce surface tension, which tends to cause the collapse of micro/nano structures. Use of supercritical drying allowed high-aspect ratio microstructures, such as micropillars and cantilevers, to be fabricated. We also propose a single-anchor supporting method to eliminate non-uniform shrinkage of polymeric structures otherwise caused by attachment to the substrate. Use of this method permitted frame models such as lattices to be produced without harmful distortion. The combination of supercritical CO(2) drying and the single-anchor supporting method offers reliable high-precision microfabrication of sophisticated, fragile 3-D micro/nano structures.

  14. Suppression of fiber modal noise induced radial velocity errors for bright emission-line calibration sources

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mahadevan, Suvrath; Halverson, Samuel; Ramsey, Lawrence

    2014-05-01

    Modal noise in optical fibers imposes limits on the signal-to-noise ratio (S/N) and velocity precision achievable with the next generation of astronomical spectrographs. This is an increasingly pressing problem for precision radial velocity spectrographs in the near-infrared (NIR) and optical that require both high stability of the observed line profiles and high S/N. Many of these spectrographs plan to use highly coherent emission-line calibration sources like laser frequency combs and Fabry-Perot etalons to achieve precision sufficient to detect terrestrial-mass planets. These high-precision calibration sources often use single-mode fibers or highly coherent sources. Coupling light from single-mode fibers to multi-mode fibersmore » leads to only a very low number of modes being excited, thereby exacerbating the modal noise measured by the spectrograph. We present a commercial off-the-shelf solution that significantly mitigates modal noise at all optical and NIR wavelengths, and which can be applied to spectrograph calibration systems. Our solution uses an integrating sphere in conjunction with a diffuser that is moved rapidly using electrostrictive polymers, and is generally superior to most tested forms of mechanical fiber agitation. We demonstrate a high level of modal noise reduction with a narrow bandwidth 1550 nm laser. Our relatively inexpensive solution immediately enables spectrographs to take advantage of the innate precision of bright state-of-the art calibration sources by removing a major source of systematic noise.« less

  15. High precision determination of the melting points of water TIP4P/2005 and water TIP4P/Ice models by the direct coexistence technique

    NASA Astrophysics Data System (ADS)

    Conde, M. M.; Rovere, M.; Gallo, P.

    2017-12-01

    An exhaustive study by molecular dynamics has been performed to analyze the factors that enhance the precision of the technique of direct coexistence for a system of ice and liquid water. The factors analyzed are the stochastic nature of the method, the finite size effects, and the influence of the initial ice configuration used. The results obtained show that the precision of estimates obtained through the technique of direct coexistence is markedly affected by the effects of finite size, requiring systems with a large number of molecules to reduce the error bar of the melting point. This increase in size causes an increase in the simulation time, but the estimate of the melting point with a great accuracy is important, for example, in studies on the ice surface. We also verified that the choice of the initial ice Ih configuration with different proton arrangements does not significantly affect the estimate of the melting point. Importantly this study leads us to estimate the melting point at ambient pressure of two of the most popular models of water, TIP4P/2005 and TIP4P/Ice, with the greatest precision to date.

  16. A Biologically Realistic Cortical Model of Eye Movement Control in Reading

    ERIC Educational Resources Information Center

    Heinzle, Jakob; Hepp, Klaus; Martin, Kevan A. C.

    2010-01-01

    Reading is a highly complex task involving a precise integration of vision, attention, saccadic eye movements, and high-level language processing. Although there is a long history of psychological research in reading, it is only recently that imaging studies have identified some neural correlates of reading. Thus, the underlying neural mechanisms…

  17. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kalaydzhyan, Tigran

    Within the general theory of relativity, the curvature of spacetime is related to the energy and momentum of the present matter and radiation. One of the more specific predictions of general relativity is the deflection of light and particle trajectories in the gravitational field of massive objects. Bending angles for electromagnetic waves and light in particular were measured with a high precision. However, the effect of gravity on relativistic massive particles was never studied experimentally. Here we propose and analyze experiments devoted to that purpose. We demonstrate a high sensitivity of the laser Compton scattering at high energy accelerators tomore » the effects of gravity. The main observable – maximal energy of the scattered photons – would experience a significant shift in the ambient gravitational field even for otherwise negligible violation of the equivalence principle. In conclusion, we confirm predictions of general relativity for ultrarelativistic electrons of energy of tens of GeV at a current level of resolution and expect our work to be a starting point of further high-precision studies on current and future accelerators, such as PETRA, European XFEL and ILC.« less

  18. Testing general relativity on accelerators

    DOE PAGES

    Kalaydzhyan, Tigran

    2015-09-07

    Within the general theory of relativity, the curvature of spacetime is related to the energy and momentum of the present matter and radiation. One of the more specific predictions of general relativity is the deflection of light and particle trajectories in the gravitational field of massive objects. Bending angles for electromagnetic waves and light in particular were measured with a high precision. However, the effect of gravity on relativistic massive particles was never studied experimentally. Here we propose and analyze experiments devoted to that purpose. We demonstrate a high sensitivity of the laser Compton scattering at high energy accelerators tomore » the effects of gravity. The main observable – maximal energy of the scattered photons – would experience a significant shift in the ambient gravitational field even for otherwise negligible violation of the equivalence principle. In conclusion, we confirm predictions of general relativity for ultrarelativistic electrons of energy of tens of GeV at a current level of resolution and expect our work to be a starting point of further high-precision studies on current and future accelerators, such as PETRA, European XFEL and ILC.« less

  19. Test beam studies of silicon timing for use in calorimetry

    DOE PAGES

    Apresyan, A.; Bolla, G.; Bornheim, A.; ...

    2016-04-12

    The high luminosity upgrade of the Large Hadron Collider (HL-LHC) at CERN is expected to provide instantaneous luminosities of 5 X 10 34 cm –2 s –1. The high luminosities expected at the HL-LHC will be accompanied by a factor of 5 to 10 more pileup compared with LHC conditions in 2015, causing general confusion for particle identification and event reconstruction. Precision timing allows to extend calorimetric measurements into such a high density environment by subtracting the energy deposits from pileup interactions. Calorimeters employing silicon as the active component have recently become a popular choice for the HL-LHC and futuremore » collider experiments which face very high radiation environments. In this article, we present studies of basic calorimetric and precision timing measurements using a prototype composed of tungsten absorber and silicon sensor as the active medium. Lastly, we show that for the bulk of electromagnetic showers induced by electrons in the range of 20 GeV to 30 GeV, we can achieve time resolutions better than 25 ps per single pad sensor.« less

  20. Semi-empirical studies of atomic structure. Progress report, 1 July 1982-1 February 1983

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Curtis, L.J.

    1983-01-01

    A program of studies of the properties of the heavy and highly ionized atomic systems which often occur as contaminants in controlled fusion devices is continuing. The project combines experimental measurements by fast-ion-beam excitation with semi-empirical data parametrizations to identify and exploit regularities in the properties of these very heavy and very highly ionized systems. The increasing use of spectroscopic line intensities as diagnostics for determining thermonuclear plasma temperatures and densities requires laboratory observation and analysis of such spectra, often to accuracies that exceed the capabilities of ab initio theoretical methods for these highly relativistic many electron systems. Through themore » acquisition and systematization of empirical data, remarkably precise methods for predicting excitation energies, transition wavelengths, transition probabilities, level lifetimes, ionization potentials, core polarizabilities, and core penetrabilities are being developed and applied. Although the data base for heavy, highly ionized atoms is still sparse, parametrized extrapolations and interpolations along isoelectronic, homologous, and Rydberg sequences are providing predictions for large classes of quantities, with a precision that is sharpened by subsequent measurements.« less

  1. Semiempirical studies of atomic structure. Progress report, 1 July 1983-1 June 1984

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Curtis, L.J.

    1984-01-01

    A program of studies of the properties of the heavy and highly ionized atomic systems which often occur as contaminants in controlled fusion devices is continuing. The project combines experimental measurements by fast ion beam excitation with semiempirical data parametrizations to identify and exploit regularities in the properties of these very heavy and very highly ionized systems. The increasing use of spectroscopic line intensities as diagnostics for determining thermonuclear plasma temperatures and densities requires laboratory observation and analysis of such spectra, often to accuracies that exceed the capabilities of ab initio theoretical methods for these highly relativistic many electron systems.more » Through the acquisition and systematization of empirical data, remarkably precise methods for predicting excitation energies, transition wavelengths, transition probabilities, level lifetimes, ionization potentials, core polarizabilities, and core penetrabilities are being developed and applied. Although the data base for heavy, highly ionized atoms is still sparse, parametrized extrapolations and interpolations along isoelectronic, homologous, and Rydberg sequences are providing predictions for large classes of quantities, with a precision that is sharpened by subsequent measurements.« less

  2. Investigation of CMOS pixel sensor with 0.18 μm CMOS technology for high-precision tracking detector

    NASA Astrophysics Data System (ADS)

    Zhang, L.; Fu, M.; Zhang, Y.; Yan, W.; Wang, M.

    2017-01-01

    The Circular Electron Positron Collider (CEPC) proposed by the Chinese high energy physics community is aiming to measure Higgs particles and their interactions precisely. The tracking detector including Silicon Inner Tracker (SIT) and Forward Tracking Disks (FTD) has driven stringent requirements on sensor technologies in term of spatial resolution, power consumption and readout speed. CMOS Pixel Sensor (CPS) is a promising candidate to approach these requirements. This paper presents the preliminary studies on the sensor optimization for tracking detector to achieve high collection efficiency while keeping necessary spatial resolution. Detailed studies have been performed on the charge collection using a 0.18 μm CMOS image sensor process. This process allows high resistivity epitaxial layer, leading to a significant improvement on the charge collection and therefore improving the radiation tolerance. Together with the simulation results, the first exploratory prototype has bee designed and fabricated. The prototype includes 9 different pixel arrays, which vary in terms of pixel pitch, diode size and geometry. The total area of the prototype amounts to 2 × 7.88 mm2.

  3. Full-band error control and crack-free surface fabrication techniques for ultra-precision fly cutting of large-aperture KDP crystals

    NASA Astrophysics Data System (ADS)

    Zhang, F. H.; Wang, S. F.; An, C. H.; Wang, J.; Xu, Q.

    2017-06-01

    Large-aperture potassium dihydrogen phosphate (KDP) crystals are widely used in the laser path of inertial confinement fusion (ICF) systems. The most common method of manufacturing half-meter KDP crystals is ultra-precision fly cutting. When processing KDP crystals by ultra-precision fly cutting, the dynamic characteristics of the fly cutting machine and fluctuations in the fly cutting environment are translated into surface errors at different spatial frequency bands. These machining errors should be suppressed effectively to guarantee that KDP crystals meet the full-band machining accuracy specified in the evaluation index. In this study, the anisotropic machinability of KDP crystals and the causes of typical surface errors in ultra-precision fly cutting of the material are investigated. The structures of the fly cutting machine and existing processing parameters are optimized to improve the machined surface quality. The findings are theoretically and practically important in the development of high-energy laser systems in China.

  4. Stable Sequential Activity Underlying the Maintenance of a Precisely Executed Skilled Behavior.

    PubMed

    Katlowitz, Kalman A; Picardo, Michel A; Long, Michael A

    2018-05-21

    A vast array of motor skills can be maintained throughout life. Do these behaviors require stability of individual neuron tuning or can the output of a given circuit remain constant despite fluctuations in single cells? This question is difficult to address due to the variability inherent in most motor actions studied in the laboratory. A notable exception, however, is the courtship song of the adult zebra finch, which is a learned, highly precise motor act mediated by orderly dynamics within premotor neurons of the forebrain. By longitudinally tracking the activity of excitatory projection neurons during singing using two-photon calcium imaging, we find that both the number and the precise timing of song-related spiking events remain nearly identical over the span of several weeks to months. These findings demonstrate that learned, complex behaviors can be stabilized by maintaining precise and invariant tuning at the level of single neurons. Copyright © 2018 Elsevier Inc. All rights reserved.

  5. Study on the weighing system based on optical fiber Bragg grating

    NASA Astrophysics Data System (ADS)

    Wang, Xiaona; Yu, Qingxu; Li, Yefang

    2010-10-01

    The optical fiber sensor based on wavelength demodulation such as fiber Bragg grating(FBG), with merits of immunity to electromagnetic interference, low drift and high precision, has been widely used in many areas, such as structural health monitoring and smart materials, and the wavelength demodulation system was also studied widely. In the paper, a weighing system based on FBG was studied. The optical source is broadband Erbium-doped fiber ring laser with a spectral range of 1500~1600nm and optical power of 2mW; A Fabry-Perot Etalon with orientation precision of 1pm was adopted as real-time wavelength calibration for the swept laser; and multichannel high resolution simultaneous sampling card was used in the system to acquire sensing signals simultaneously, thus high-resolution and real-time calibration of sweep-wavelength can be achieved. The FBG was adhered to a cantilever beam and the Bragg wavelength was demodulated with the system. The weighing system was done after calibrated with standard weight. Experimental results show that the resolution of the weighing system is 0.5 g with a full scale of 2Kg.

  6. Detection of non-Gaussian fluctuations in a quantum point contact.

    PubMed

    Gershon, G; Bomze, Yu; Sukhorukov, E V; Reznikov, M

    2008-07-04

    An experimental study of current fluctuations through a tunable transmission barrier, a quantum point contact, is reported. We measure the probability distribution function of transmitted charge with precision sufficient to extract the first three cumulants. To obtain the intrinsic quantities, corresponding to voltage-biased barrier, we employ a procedure that accounts for the response of the external circuit and the amplifier. The third cumulant, obtained with a high precision, is found to agree with the prediction for the statistics of transport in the non-Poissonian regime.

  7. Detection of Non-Gaussian Fluctuations in a Quantum Point Contact

    NASA Astrophysics Data System (ADS)

    Gershon, G.; Bomze, Yu.; Sukhorukov, E. V.; Reznikov, M.

    2008-07-01

    An experimental study of current fluctuations through a tunable transmission barrier, a quantum point contact, is reported. We measure the probability distribution function of transmitted charge with precision sufficient to extract the first three cumulants. To obtain the intrinsic quantities, corresponding to voltage-biased barrier, we employ a procedure that accounts for the response of the external circuit and the amplifier. The third cumulant, obtained with a high precision, is found to agree with the prediction for the statistics of transport in the non-Poissonian regime.

  8. In vivo precision of conventional and digital methods for obtaining quadrant dental impressions.

    PubMed

    Ender, Andreas; Zimmermann, Moritz; Attin, Thomas; Mehl, Albert

    2016-09-01

    Quadrant impressions are commonly used as alternative to full-arch impressions. Digital impression systems provide the ability to take these impressions very quickly; however, few studies have investigated the accuracy of the technique in vivo. The aim of this study is to assess the precision of digital quadrant impressions in vivo in comparison to conventional impression techniques. Impressions were obtained via two conventional (metal full-arch tray, CI, and triple tray, T-Tray) and seven digital impression systems (Lava True Definition Scanner, T-Def; Lava Chairside Oral Scanner, COS; Cadent iTero, ITE; 3Shape Trios, TRI; 3Shape Trios Color, TRC; CEREC Bluecam, Software 4.0, BC4.0; CEREC Bluecam, Software 4.2, BC4.2; and CEREC Omnicam, OC). Impressions were taken three times for each of five subjects (n = 15). The impressions were then superimposed within the test groups. Differences from model surfaces were measured using a normal surface distance method. Precision was calculated using the Perc90_10 value. The values for all test groups were statistically compared. The precision ranged from 18.8 (CI) to 58.5 μm (T-Tray), with the highest precision in the CI, T-Def, BC4.0, TRC, and TRI groups. The deviation pattern varied distinctly depending on the impression method. Impression systems with single-shot capture exhibited greater deviations at the tooth surface whereas high-frame rate impression systems differed more in gingival areas. Triple tray impressions displayed higher local deviation at the occlusal contact areas of upper and lower jaw. Digital quadrant impression methods achieve a level of precision, comparable to conventional impression techniques. However, there are significant differences in terms of absolute values and deviation pattern. With all tested digital impression systems, time efficient capturing of quadrant impressions is possible. The clinical precision of digital quadrant impression models is sufficient to cover a broad variety of restorative indications. Yet the precision differs significantly between the digital impression systems.

  9. Magnetic-field-induced rotation of light with orbital angular momentum

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shi, Shuai; Ding, Dong-Sheng, E-mail: dds@ustc.edu.cn; Zhou, Zhi-Yuan

    Light carrying orbital angular momentum (OAM) has attractive applications in the fields of precise optical measurements and high capacity optical communications. We study the rotation of a light beam propagating in warm {sup 87}Rb atomic vapor using a method based on magnetic-field-induced circular birefringence. The dependence of the rotation angle on the magnetic field makes it appropriate for weak magnetic field measurements. We quote a detailed theoretical description that agrees well with the experimental observations. The experiment shown here provides a method to measure the magnetic field intensity precisely and expands the application of OAM-carrying light. This technique has advantagemore » in measurement of magnetic field weaker than 0.5 G, and the precision we achieved is 0.8 mG.« less

  10. High-precision branching ratio measurement for the superallowed β+ emitter Ga62

    NASA Astrophysics Data System (ADS)

    Finlay, P.; Ball, G. C.; Leslie, J. R.; Svensson, C. E.; Towner, I. S.; Austin, R. A. E.; Bandyopadhyay, D.; Chaffey, A.; Chakrawarthy, R. S.; Garrett, P. E.; Grinyer, G. F.; Hackman, G.; Hyland, B.; Kanungo, R.; Leach, K. G.; Mattoon, C. M.; Morton, A. C.; Pearson, C. J.; Phillips, A. A.; Ressler, J. J.; Sarazin, F.; Savajols, H.; Schumaker, M. A.; Wong, J.

    2008-08-01

    A high-precision branching ratio measurement for the superallowed β+ decay of Ga62 was performed at the Isotope Separator and Accelerator (ISAC) radioactive ion beam facility. The 8π spectrometer, an array of 20 high-purity germanium detectors, was employed to detect the γ rays emitted following Gamow-Teller and nonanalog Fermi β+ decays of Ga62, and the SCEPTAR plastic scintillator array was used to detect the emitted β particles. Thirty γ rays were identified following Ga62 decay, establishing the superallowed branching ratio to be 99.858(8)%. Combined with the world-average half-life and a recent high-precision Q-value measurement for Ga62, this branching ratio yields an ft value of 3074.3±1.1 s, making Ga62 among the most precisely determined superallowed ft values. Comparison between the superallowed ft value determined in this work and the world-average corrected F tmacr value allows the large nuclear-structure-dependent correction for Ga62 decay to be experimentally determined from the CVC hypothesis to better than 7% of its own value, the most precise experimental determination for any superallowed emitter. These results provide a benchmark for the refinement of the theoretical description of isospin-symmetry breaking in A⩾62 superallowed decays.

  11. High-precision half-life determination for 21Na using a 4 π gas-proportional counter

    NASA Astrophysics Data System (ADS)

    Finlay, P.; Laffoley, A. T.; Ball, G. C.; Bender, P. C.; Dunlop, M. R.; Dunlop, R.; Hackman, G.; Leslie, J. R.; MacLean, A. D.; Miller, D.; Moukaddam, M.; Olaizola, B.; Severijns, N.; Smith, J. K.; Southall, D.; Svensson, C. E.

    2017-08-01

    A high-precision half-life measurement for the superallowed β+ transition between the isospin T =1 /2 mirror nuclei 21Na and 21Ne has been performed at the TRIUMF-ISAC radioactive ion beam facility yielding T1 /2=22.4506 (33 ) s, a result that is a factor of 4 more precise than the previous world-average half-life for 21Na and represents the single most precisely determined half-life for a transition between mirror nuclei to date. The contribution to the uncertainty in the 21Na F tmirror value due to the half-life is now reduced to the level of the nuclear-structure-dependent theoretical corrections, leaving the branching ratio as the dominant experimental uncertainty.

  12. Indexing system for optical beam steering

    NASA Technical Reports Server (NTRS)

    Sullivan, Mark T.; Cannon, David M.; Debra, Daniel B.; Young, Jeffrey A.; Mansfield, Joseph A.; Carmichael, Roger E.; Lissol, Peter S.; Pryor, G. M.; Miklosy, Les G.; Lee, Jeffrey H.

    1990-01-01

    This paper describes the design and testing of an indexing system for optical-beam steering. The cryogenic beam-steering mechanism is a 360-degree rotation device capable of discrete, high-precision alignment positions. It uses low-precision components for its rough alignment and kinematic design to meet its stringent repeatability and stability requirements (of about 5 arcsec). The principal advantages of this design include a decoupling of the low-precision, large angular motion from the high-precision alignment, and a power-off alignment position that potentially extends the life or hold time of cryogenic systems. An alternate design, which takes advantage of these attributes while reducing overall motion, is also presented. Preliminary test results show the kinematic mount capable of sub-arc second repeatability.

  13. Precision mechanical structure of an ultra-high-resolution spectrometer for inelastic X-ray scattering instrument

    DOEpatents

    Shu, Deming; Shvydko, Yuri; Stoupin, Stanislav A.; Khachatryan, Ruben; Goetze, Kurt A.; Roberts, Timothy

    2015-04-14

    A method and an ultrahigh-resolution spectrometer including a precision mechanical structure for positioning inelastic X-ray scattering optics are provided. The spectrometer includes an X-ray monochromator and an X-ray analyzer, each including X-ray optics of a collimating (C) crystal, a pair of dispersing (D) element crystals, anomalous transmission filter (F) and a wavelength (W) selector crystal. A respective precision mechanical structure is provided with the X-ray monochromator and the X-ray analyzer. The precision mechanical structure includes a base plate, such as an aluminum base plate; positioning stages for D-crystal alignment; positioning stages with an incline sensor for C/F/W-crystal alignment, and the positioning stages including flexure-based high-stiffness structure.

  14. Fundamental Characteristics of Bioprint on Calcium Alginate Gel

    NASA Astrophysics Data System (ADS)

    Umezu, Shinjiro; Hatta, Tatsuru; Ohmori, Hitoshi

    2013-05-01

    The goal of this study is to fabricate precision three-dimensional (3D) biodevices those are micro fluidics and artificial organs utilizing digital fabrication. Digital fabrication is fabrication method utilizing inkjet technologies. Electrostatic inkjet is one of the inkjet technologies. The electrostatic inkjet method has following two merits; those are high resolution to print and ability to eject highly viscous liquid. These characteristics are suitable to print biomaterials precisely. We are now applying for bioprint. In this paper, the electrostatic inkjet method is applied for fabrication of 3D biodevices that has cave like blood vessel. When aqueous solution of sodium alginate is printed to aqueous solution of calcium chloride, calcium alginate is produced. 3D biodevices are fabricated in case that calcium alginate is piled.

  15. Laser-ranging long-baseline differential atom interferometers for space

    NASA Astrophysics Data System (ADS)

    Chiow, Sheng-wey; Williams, Jason; Yu, Nan

    2015-12-01

    High-sensitivity differential atom interferometers (AIs) are promising for precision measurements in science frontiers in space, including gravity-field mapping for Earth science studies and gravitational wave detection. Difficulties associated with implementing long-baseline differential AIs have previously included the need for a high optical power, large differential Doppler shifts, and narrow dynamic range. We propose a configuration of twin AIs connected by a laser-ranging interferometer (LRI-AI) to provide precise information of the displacements between the two AI reference mirrors and also to phase-lock the two independent interferometer lasers over long distances, thereby drastically improving the practical feasibility of long-baseline differential AI measurements. We show that a properly implemented LRI-AI can achieve equivalent functionality to the conventional differential AI measurement configuration.

  16. Fast and Adaptive Sparse Precision Matrix Estimation in High Dimensions

    PubMed Central

    Liu, Weidong; Luo, Xi

    2014-01-01

    This paper proposes a new method for estimating sparse precision matrices in the high dimensional setting. It has been popular to study fast computation and adaptive procedures for this problem. We propose a novel approach, called Sparse Column-wise Inverse Operator, to address these two issues. We analyze an adaptive procedure based on cross validation, and establish its convergence rate under the Frobenius norm. The convergence rates under other matrix norms are also established. This method also enjoys the advantage of fast computation for large-scale problems, via a coordinate descent algorithm. Numerical merits are illustrated using both simulated and real datasets. In particular, it performs favorably on an HIV brain tissue dataset and an ADHD resting-state fMRI dataset. PMID:25750463

  17. Refining FIA plot locations using LiDAR point clouds

    Treesearch

    Charlie Schrader-Patton; Greg C. Liknes; Demetrios Gatziolis; Brian M. Wing; Mark D. Nelson; Patrick D. Miles; Josh Bixby; Daniel G. Wendt; Dennis Kepler; Abbey Schaaf

    2015-01-01

    Forest Inventory and Analysis (FIA) plot location coordinate precision is often insufficient for use with high resolution remotely sensed data, thereby limiting the use of these plots for geospatial applications and reducing the validity of models that assume the locations are precise. A practical and efficient method is needed to improve coordinate precision. To...

  18. Apparatus for precision micromachining with lasers

    DOEpatents

    Chang, J.J.; Dragon, E.P.; Warner, B.E.

    1998-04-28

    A new material processing apparatus using a short-pulsed, high-repetition-rate visible laser for precision micromachining utilizes a near diffraction limited laser, a high-speed precision two-axis tilt-mirror for steering the laser beam, an optical system for either focusing or imaging the laser beam on the part, and a part holder that may consist of a cover plate and a back plate. The system is generally useful for precision drilling, cutting, milling and polishing of metals and ceramics, and has broad application in manufacturing precision components. Precision machining has been demonstrated through percussion drilling and trepanning using this system. With a 30 W copper vapor laser running at multi-kHz pulse repetition frequency, straight parallel holes with size varying from 500 microns to less than 25 microns and with aspect ratios up to 1:40 have been consistently drilled with good surface finish on a variety of metals. Micromilling and microdrilling on ceramics using a 250 W copper vapor laser have also been demonstrated with good results. Materialographic sections of machined parts show little (submicron scale) recast layer and heat affected zone. 1 fig.

  19. Apparatus for precision micromachining with lasers

    DOEpatents

    Chang, Jim J.; Dragon, Ernest P.; Warner, Bruce E.

    1998-01-01

    A new material processing apparatus using a short-pulsed, high-repetition-rate visible laser for precision micromachining utilizes a near diffraction limited laser, a high-speed precision two-axis tilt-mirror for steering the laser beam, an optical system for either focusing or imaging the laser beam on the part, and a part holder that may consist of a cover plate and a back plate. The system is generally useful for precision drilling, cutting, milling and polishing of metals and ceramics, and has broad application in manufacturing precision components. Precision machining has been demonstrated through percussion drilling and trepanning using this system. With a 30 W copper vapor laser running at multi-kHz pulse repetition frequency, straight parallel holes with size varying from 500 microns to less than 25 microns and with aspect ratios up to 1:40 have been consistently drilled with good surface finish on a variety of metals. Micromilling and microdrilling on ceramics using a 250 W copper vapor laser have also been demonstrated with good results. Materialogroaphic sections of machined parts show little (submicron scale) recast layer and heat affected zone.

  20. High-precision multi-node clock network distribution.

    PubMed

    Chen, Xing; Cui, Yifan; Lu, Xing; Ci, Cheng; Zhang, Xuesong; Liu, Bo; Wu, Hong; Tang, Tingsong; Shi, Kebin; Zhang, Zhigang

    2017-10-01

    A high precision multi-node clock network for multiple users was built following the precise frequency transmission and time synchronization of 120 km fiber. The network topology adopts a simple star-shaped network structure. The clock signal of a hydrogen maser (synchronized with UTC) was recovered from a 120 km telecommunication fiber link and then was distributed to 4 sub-stations. The fractional frequency instability of all substations is in the level of 10 -15 in a second and the clock offset instability is in sub-ps in root-mean-square average.

  1. High precision detector robot arm system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shu, Deming; Chu, Yong

    A method and high precision robot arm system are provided, for example, for X-ray nanodiffraction with an X-ray nanoprobe. The robot arm system includes duo-vertical-stages and a kinematic linkage system. A two-dimensional (2D) vertical plane ultra-precision robot arm supporting an X-ray detector provides positioning and manipulating of the X-ray detector. A vertical support for the 2D vertical plane robot arm includes spaced apart rails respectively engaging a first bearing structure and a second bearing structure carried by the 2D vertical plane robot arm.

  2. Inter-examination Precision of Magnitude-based Magnetic Resonance Imaging for Estimation of Segmental Hepatic Proton Density Fat Fraction (PDFF) in Obese Subjects

    PubMed Central

    Negrete, Lindsey M.; Middleton, Michael S.; Clark, Lisa; Wolfson, Tanya; Gamst, Anthony C.; Lam, Jessica; Changchien, Chris; Deyoung-Dominguez, Ivan M.; Hamilton, Gavin; Loomba, Rohit; Schwimmer, Jeffrey; Sirlin, Claude B.

    2013-01-01

    Purpose To prospectively describe magnitude-based multi-echo gradient-echo hepatic proton density fat fraction (PDFF) inter-examination precision at 3T. Materials and Methods In this prospective, IRB approved, HIPAA compliant study, written informed consent was obtained from 29 subjects (body mass indexes > 30kg/m2). Three 3T magnetic resonance imaging (MRI) examinations were obtained over 75-90 minutes. Segmental, lobar, and whole liver PDFF were estimated (using three, four, five, or six echoes) by magnitude-based multi-echo MRI in co-localized regions of interest (ROIs). For estimate (using three, four, five, or six echoes), at each anatomic level (segmental, lobar, whole liver), three inter-examination precision metrics were computed: intra-class correlation coefficient (ICC), standard deviation (SD), and range. Results Magnitude-based PDFF estimates using each reconstruction method showed excellent inter-examination precision for each segment (ICC ≥ 0.992; SD ≤ 0.66%; range ≤ 1.24%), lobe (ICC ≥ 0.998; SD ≤ 0.34%; range ≤ 0.64%), and the whole liver (ICC = 0.999; SD ≤ 0.24%; range ≤ 0.45%). Inter-examination precision was unaffected by whether PDFF was estimated using three, four, five, or six echoes. Conclusion Magnitude-based PDFF estimation shows high inter-examination precision at segmental, lobar, and whole liver anatomic levels, supporting its use in clinical care or clinical trials. The results of this study suggest that longitudinal hepatic PDFF change greater than 1.6% is likely to represent signal rather than noise. PMID:24136736

  3. Accuracy of 3D white light scanning of abutment teeth impressions: evaluation of trueness and precision.

    PubMed

    Jeon, Jin-Hun; Kim, Hae-Young; Kim, Ji-Hwan; Kim, Woong-Chul

    2014-12-01

    This study aimed to evaluate the accuracy of digitizing dental impressions of abutment teeth using a white light scanner and to compare the findings among teeth types. To assess precision, impressions of the canine, premolar, and molar prepared to receive all-ceramic crowns were repeatedly scanned to obtain five sets of 3-D data (STL files). Point clouds were compared and error sizes were measured (n=10 per type). Next, to evaluate trueness, impressions of teeth were rotated by 10°-20° and scanned. The obtained data were compared with the first set of data for precision assessment, and the error sizes were measured (n=5 per type). The Kruskal-Wallis test was performed to evaluate precision and trueness among three teeth types, and post-hoc comparisons were performed using the Mann-Whitney U test with Bonferroni correction (α=.05). Precision discrepancies for the canine, premolar, and molar were 3.7 µm, 3.2 µm, and 7.3 µm, respectively, indicating the poorest precision for the molar (P<.001). Trueness discrepancies for teeth types were 6.2 µm, 11.2 µm, and 21.8 µm, respectively, indicating the poorest trueness for the molar (P=.007). In respect to accuracy the molar showed the largest discrepancies compared with the canine and premolar. Digitizing of dental impressions of abutment teeth using a white light scanner was assessed to be a highly accurate method and provided discrepancy values in a clinically acceptable range. Further study is needed to improve digitizing performance of white light scanning in axial wall.

  4. Precise Truss Assembly Using Commodity Parts and Low Precision Welding

    NASA Technical Reports Server (NTRS)

    Komendera, Erik; Reishus, Dustin; Dorsey, John T.; Doggett, W. R.; Correll, Nikolaus

    2014-01-01

    Hardware and software design and system integration for an intelligent precision jigging robot (IPJR), which allows high precision assembly using commodity parts and low-precision bonding, is described. Preliminary 2D experiments that are motivated by the problem of assembling space telescope optical benches and very large manipulators on orbit using inexpensive, stock hardware and low-precision welding are also described. An IPJR is a robot that acts as the precise "jigging", holding parts of a local structure assembly site in place, while an external low precision assembly agent cuts and welds members. The prototype presented in this paper allows an assembly agent (for this prototype, a human using only low precision tools), to assemble a 2D truss made of wooden dowels to a precision on the order of millimeters over a span on the order of meters. The analysis of the assembly error and the results of building a square structure and a ring structure are discussed. Options for future work, to extend the IPJR paradigm to building in 3D structures at micron precision are also summarized.

  5. Precision glass molding of high-resolution diffractive optical elements

    NASA Astrophysics Data System (ADS)

    Prater, Karin; Dukwen, Julia; Scharf, Toralf; Herzig, Hans P.; Plöger, Sven; Hermerschmidt, Andreas

    2016-04-01

    The demand of high resolution diffractive optical elements (DOE) is growing. Smaller critical dimensions allow higher deflection angles and can fulfill more demanding requirements, which can only be met by using electron-beam lithography. Replication techniques are more economical, since the high cost of the master can be distributed among a larger number of replicas. The lack of a suitable mold material for precision glass molding has so far prevented an industrial use. Glassy Carbon (GC) offers a high mechanical strength and high thermal strength. No anti-adhesion coatings are required in molding processes. This is clearly an advantage for high resolution, high aspect ratio microstructures, where a coating with a thickness between 10 nm and 200 nm would cause a noticeable rounding of the features. Electron-beam lithography was used to fabricate GC molds with highest precision and feature sizes from 250 nm to 2 μm. The master stamps were used for precision glass molding of a low Tg glass L-BAL42 from OHARA. The profile of the replicated glass is compared to the mold with the help of SEM images. This allows discussion of the max. aspect-ratio and min. feature size. To characterize optical performances, beamsplitting elements are fabricated and their characteristics were investigated, which are in excellent agreement to theory.

  6. Effect of dissolved oxygen level of water on ultrasonic power measured using calorimetry

    NASA Astrophysics Data System (ADS)

    Uchida, Takeyoshi; Yoshioka, Masahiro; Horiuchi, Ryuzo

    2018-07-01

    Ultrasonic therapeutic equipment, which exposes the human body to high-power ultrasound, is used in clinical practice to treat cancer. However, the safety of high-power ultrasound has been questioned because the equipment affects not only cancer cells but also normal cells. To evaluate the safety of ultrasound, it is necessary to accurately measure the ultrasonic power of the equipment. This is because ultrasonic power is a key quantity related to the thermal hazard of ultrasound. However, precise techniques for measuring ultrasonic power in excess of 15 W are yet to be established. We have been studying calorimetry as a precise measurement technique. In this study, we investigated the effect of the dissolved oxygen (DO) level of water on ultrasonic power by calorimetry. The results show that the measured ultrasonic power differed significantly between water samples of different DO levels. This difference in ultrasonic power arose from acoustic cavitation.

  7. Early NICER Observations of Magnetars and Young Pulsars

    NASA Astrophysics Data System (ADS)

    Nynka, Melania

    2018-01-01

    Neutron star Interior Composition ExploreR (NICER) is an X-ray telescope attached to the International Space Station (ISS). Launched in June 2017, it is designed to precisely measure the masses and radii of neutron stars (NS) and probe NS equations of state. But its precision timing capabilities and large effective area uniquely position NICER for the study of magnetars. The NICER Magnetar & Magnetosphere (M&M) science working group focuses on studying highly-magnetized neutron stars, a diverse program that includes magnetars, high-B pulsars, rotation powered pulsars, and isolated neutron stars. Our ongoing campaign has already observed targets such as 4U 0142+61, a magnetar in outburst with coincident NuSTAR and Swift observations, the radio rotation powered Vela pulsar PSR B0833-45, and a transient magnetar XTE J1810-197. I will discuss the goals of the M&M program, spectral and temporal results from the observed targets, and an overview of upcoming observations.

  8. Second Iteration of Photogrammetric Pipeline to Enhance the Accuracy of Image Pose Estimation

    NASA Astrophysics Data System (ADS)

    Nguyen, T. G.; Pierrot-Deseilligny, M.; Muller, J.-M.; Thom, C.

    2017-05-01

    In classical photogrammetric processing pipeline, the automatic tie point extraction plays a key role in the quality of achieved results. The image tie points are crucial to pose estimation and have a significant influence on the precision of calculated orientation parameters. Therefore, both relative and absolute orientations of the 3D model can be affected. By improving the precision of image tie point measurement, one can enhance the quality of image orientation. The quality of image tie points is under the influence of several factors such as the multiplicity, the measurement precision and the distribution in 2D images as well as in 3D scenes. In complex acquisition scenarios such as indoor applications and oblique aerial images, tie point extraction is limited while only image information can be exploited. Hence, we propose here a method which improves the precision of pose estimation in complex scenarios by adding a second iteration to the classical processing pipeline. The result of a first iteration is used as a priori information to guide the extraction of new tie points with better quality. Evaluated with multiple case studies, the proposed method shows its validity and its high potiential for precision improvement.

  9. Biomarkers: Delivering on the expectation of molecularly driven, quantitative health.

    PubMed

    Wilson, Jennifer L; Altman, Russ B

    2018-02-01

    Biomarkers are the pillars of precision medicine and are delivering on expectations of molecular, quantitative health. These features have made clinical decisions more precise and personalized, but require a high bar for validation. Biomarkers have improved health outcomes in a few areas such as cancer, pharmacogenetics, and safety. Burgeoning big data research infrastructure, the internet of things, and increased patient participation will accelerate discovery in the many areas that have not yet realized the full potential of biomarkers for precision health. Here we review themes of biomarker discovery, current implementations of biomarkers for precision health, and future opportunities and challenges for biomarker discovery. Impact statement Precision medicine evolved because of the understanding that human disease is molecularly driven and is highly variable across patients. This understanding has made biomarkers, a diverse class of biological measurements, more relevant for disease diagnosis, monitoring, and selection of treatment strategy. Biomarkers' impact on precision medicine can be seen in cancer, pharmacogenomics, and safety. The successes in these cases suggest many more applications for biomarkers and a greater impact for precision medicine across the spectrum of human disease. The authors assess the status of biomarker-guided medical practice by analyzing themes for biomarker discovery, reviewing the impact of these markers in the clinic, and highlight future and ongoing challenges for biomarker discovery. This work is timely and relevant, as the molecular, quantitative approach of precision medicine is spreading to many disease indications.

  10. XPS Study of Oxide/GaAs and SiO2/Si Interfaces

    NASA Technical Reports Server (NTRS)

    Grunthaner, F. J.; Grunthaner, P. J.; Vasquez, R. P.; Lewis, B. F.; Maserjian, J.; Madhukar, A.

    1982-01-01

    Concepts developed in study of SiO2/Si interface applied to analysis of native oxide/GaAs interface. High-resolution X-ray photoelectron spectroscopy (XPS) has been combined with precise chemical-profiling technique and resolution-enhancement methods to study stoichiometry of transitional layer. Results are presented in report now available.

  11. Double resonance calibration of g factor standards: Carbon fibers as a high precision standard

    NASA Astrophysics Data System (ADS)

    Herb, Konstantin; Tschaggelar, Rene; Denninger, Gert; Jeschke, Gunnar

    2018-04-01

    The g factor of paramagnetic defects in commercial high performance carbon fibers was determined by a double resonance experiment based on the Overhauser shift due to hyperfine coupled protons. Our carbon fibers exhibit a single, narrow and perfectly Lorentzian shaped ESR line and a g factor slightly higher than gfree with g = 2.002644 =gfree · (1 + 162ppm) with a relative uncertainty of 15ppm . This precisely known g factor and their inertness qualify them as a high precision g factor standard for general purposes. The double resonance experiment for calibration is applicable to other potential standards with a hyperfine interaction averaged by a process with very short correlation time.

  12. NULL Convention Floating Point Multiplier

    PubMed Central

    Ramachandran, Seshasayanan

    2015-01-01

    Floating point multiplication is a critical part in high dynamic range and computational intensive digital signal processing applications which require high precision and low power. This paper presents the design of an IEEE 754 single precision floating point multiplier using asynchronous NULL convention logic paradigm. Rounding has not been implemented to suit high precision applications. The novelty of the research is that it is the first ever NULL convention logic multiplier, designed to perform floating point multiplication. The proposed multiplier offers substantial decrease in power consumption when compared with its synchronous version. Performance attributes of the NULL convention logic floating point multiplier, obtained from Xilinx simulation and Cadence, are compared with its equivalent synchronous implementation. PMID:25879069

  13. NULL convention floating point multiplier.

    PubMed

    Albert, Anitha Juliette; Ramachandran, Seshasayanan

    2015-01-01

    Floating point multiplication is a critical part in high dynamic range and computational intensive digital signal processing applications which require high precision and low power. This paper presents the design of an IEEE 754 single precision floating point multiplier using asynchronous NULL convention logic paradigm. Rounding has not been implemented to suit high precision applications. The novelty of the research is that it is the first ever NULL convention logic multiplier, designed to perform floating point multiplication. The proposed multiplier offers substantial decrease in power consumption when compared with its synchronous version. Performance attributes of the NULL convention logic floating point multiplier, obtained from Xilinx simulation and Cadence, are compared with its equivalent synchronous implementation.

  14. High precision gas hydrate imaging of small-scale and high-resolution marine sparker multichannel seismic data

    NASA Astrophysics Data System (ADS)

    Luo, D.; Cai, F.

    2017-12-01

    Small-scale and high-resolution marine sparker multi-channel seismic surveys using large energy sparkers are characterized by a high dominant frequency of the seismic source, wide bandwidth, and a high resolution. The technology with a high-resolution and high-detection precision was designed to improve the imaging quality of shallow sedimentary. In the study, a 20KJ sparker and 24-channel streamer cable with a 6.25m group interval were used as a seismic source and receiver system, respectively. Key factors for seismic imaging of gas hydrate are enhancement of S/N ratio, amplitude compensation and detailed velocity analysis. However, the data in this study has some characteristics below: 1. Small maximum offsets are adverse to velocity analysis and multiple attenuation. 2. Lack of low frequency information, that is, information less than 100Hz are invisible. 3. Low S/N ratio since less coverage times (only 12 times). These characteristics make it difficult to reach the targets of seismic imaging. In the study, the target processing methods are used to improve the seismic imaging quality of gas hydrate. First, some technologies of noise suppression are combined used in pre-stack seismic data to suppression of seismic noise and improve the S/N ratio. These technologies including a spectrum sharing noise elimination method, median filtering and exogenous interference suppression method. Second, the combined method of three technologies including SRME, τ-p deconvolution and high precision Radon transformation is used to remove multiples. Third, accurate velocity field are used in amplitude energy compensation to highlight the Bottom Simulating Reflector (short for BSR, the indicator of gas hydrates) and gas migration pathways (such as gas chimneys, hot spots et al.). Fourth, fine velocity analysis technology are used to improve accuracy of velocity analysis. Fifth, pre-stack deconvolution processing technology is used to compensate for low frequency energy and suppress of ghost, thus formation reflection characteristics are highlighted. The result shows that the small-scale and high resolution marine sparker multi-channel seismic surveys are very effective in improving the resolution and quality of gas hydrate imaging than the conventional seismic acquisition technology.

  15. Seismic displacements monitoring for 2015 Mw 7.8 Nepal earthquake with GNSS data

    NASA Astrophysics Data System (ADS)

    Geng, T.; Su, X.; Xie, X.

    2017-12-01

    The high-rate Global Positioning Satellite System (GNSS) has been recognized as one of the powerful tools for monitoring ground motions generated by seismic events. The high-rate GPS and BDS data collected during the 2015 Mw 7.8 Nepal earthquake have been analyzed using two methods, that are the variometric approach and Precise point positioning (PPP). The variometric approach is based on time differenced technique using only GNSS broadcast products to estimate velocity time series from tracking observations in real time, followed by an integration procedure on the velocities to derive the seismic event induced displacements. PPP is a positioning method to calculate precise positions at centimeter- or even millimeter-level accuracy with a single GNSS receiver using precise satellite orbit and clock products. The displacement motions with accuracy of 2 cm at far-field stations and 5 cm at near-field stations with great ground motions and static offsets up to 1-2 m could be achieved. The multi-GNSS, GPS + BDS, could provide higher accuracy displacements with the increasing of satellite numbers and the improvement of the Position Dilution of Precision (PDOP) values. Considering the time consumption of clock estimates and the precision of PPP solutions, 5 s GNSS satellite clock interval is suggested. In addition, the GNSS-derived displacements are in good agreement with those from strong motion data. These studies demonstrate the feasibility of real-time capturing seismic waves with multi-GNSS observations, which is of great promise for the purpose of earthquake early warning and rapid hazard assessment.

  16. Do We Know Who Will Drop out?: A Review of the Predictors of Dropping out of High School--Precision, Sensitivity, and Specificity

    ERIC Educational Resources Information Center

    Bowers, Alex J.; Sprott, Ryan; Taff, Sherry A.

    2013-01-01

    The purpose of this study is to review the literature on the most accurate indicators of students at risk of dropping out of high school. We used Relative Operating Characteristic (ROC) analysis to compare the sensitivity and specificity of 110 dropout flags across 36 studies. Our results indicate that 1) ROC analysis provides a means to compare…

  17. High-precision mass measurements for the rp-process at JYFLTRAP

    NASA Astrophysics Data System (ADS)

    Canete, Laetitia; Eronen, Tommi; Jokinen, Ari; Kankainen, Anu; Moore, Ian D.; Nesterenko, Dimitry; Rinta-Antila, Sami

    2018-01-01

    The double Penning trap JYFLTRAP at the University of Jyväskylä has been successfully used to achieve high-precision mass measurements of nuclei involved in the rapid proton-capture (rp) process. A precise mass measurement of 31Cl is essential to estimate the waiting point condition of 30S in the rp-process occurring in type I x-ray bursts (XRBs). The mass-excess of 31C1 measured at JYFLTRAP, -7034.7(3.4) keV, is 15 more precise than the value given in the Atomic Mass Evaluation 2012. The proton separation energy Sp determined from the new mass-excess value confirmed that 30S is a waiting point, with a lower-temperature limit of 0.44 GK. The mass of 52Co effects both 51Fe(p,γ)52Co and 52Co(p,γ)53Ni reactions. The mass-excess value measured, - 34 331.6(6.6) keV is 30 times more precise than the value given in AME2012. The Q values for the 51Fe(p,γ)52Co and 52Co(p,γ)53Ni reactions are now known with a high precision, 1418(11) keV and 2588(26) keV respectively. The results show that 52Co is more proton bound and 53Ni less proton bound than what was expected from the extrapolated value.

  18. High precision pulsar timing and spin frequency second derivatives

    NASA Astrophysics Data System (ADS)

    Liu, X. J.; Bassa, C. G.; Stappers, B. W.

    2018-05-01

    We investigate the impact of intrinsic, kinematic and gravitational effects on high precision pulsar timing. We present an analytical derivation and a numerical computation of the impact of these effects on the first and second derivative of the pulsar spin frequency. In addition, in the presence of white noise, we derive an expression to determine the expected measurement uncertainty of a second derivative of the spin frequency for a given timing precision, observing cadence and timing baseline and find that it strongly depends on the latter (∝t-7/2). We show that for pulsars with significant proper motion, the spin frequency second derivative is dominated by a term dependent on the radial velocity of the pulsar. Considering the data sets from three Pulsar Timing Arrays, we find that for PSR J0437-4715 a detectable spin frequency second derivative will be present if the absolute value of the radial velocity exceeds 33 km s-1. Similarly, at the current timing precision and cadence, continued timing observations of PSR J1909-3744 for about another eleven years, will allow the measurement of its frequency second derivative and determine the radial velocity with an accuracy better than 14 km s-1. With the ever increasing timing precision and observing baselines, the impact of the, largely unknown, radial velocities of pulsars on high precision pulsar timing can not be neglected.

  19. Process influences and correction possibilities for high precision injection molded freeform optics

    NASA Astrophysics Data System (ADS)

    Dick, Lars; Risse, Stefan; Tünnermann, Andreas

    2016-08-01

    Modern injection molding processes offer a cost-efficient method for manufacturing high precision plastic optics for high volume applications. Besides form deviation of molded freeform optics, internal material stress is a relevant influencing factor for the functionality of a freeform optics in an optical system. This paper illustrates dominant influence parameters of an injection molding process relating to form deviation and internal material stress based on a freeform demonstrator geometry. Furthermore, a deterministic and efficient way for 3D mold correcting of systematic, asymmetrical shrinkage errors is shown to reach micrometer range shape accuracy at diameters up to 40 mm. In a second case, a stress-optimized parameter combination using unusual molding conditions was 3D corrected to reach high precision and low stress freeform polymer optics.

  20. Illuminating necrosis: From mechanistic exploration to preclinical application using fluorescence molecular imaging with indocyanine green

    PubMed Central

    Fang, Cheng; Wang, Kun; Zeng, Chaoting; Chi, Chongwei; Shang, Wenting; Ye, Jinzuo; Mao, Yamin; Fan, Yingfang; Yang, Jian; Xiang, Nan; Zeng, Ning; Zhu, Wen; Fang, Chihua; Tian, Jie

    2016-01-01

    Tissue necrosis commonly accompanies the development of a wide range of serious diseases. Therefore, highly sensitive detection and precise boundary delineation of necrotic tissue via effective imaging techniques are crucial for clinical treatments; however, no imaging modalities have achieved satisfactory results to date. Although fluorescence molecular imaging (FMI) shows potential in this regard, no effective necrosis-avid fluorescent probe has been developed for clinical applications. Here, we demonstrate that indocyanine green (ICG) can achieve high avidity of necrotic tissue owing to its interaction with lipoprotein (LP) and phospholipids. The mechanism was explored at the cellular and molecular levels through a series of in vitro studies. Detection of necrotic tissue and real-time image-guided surgery were successfully achieved in different organs of different animal models with the help of FMI using in house-designed imaging devices. The results indicated that necrotic tissue with a 0.6 mm diameter could be effectively detected with precise boundary definition. We believe that the new discovery and the associated imaging techniques will improve personalized and precise surgery in the near future. PMID:26864116

  1. Nighttime Aerosol Optical Depth Measurements Using a Ground-based Lunar Photometer

    NASA Technical Reports Server (NTRS)

    Berkoff, Tim; Omar, Ali; Haggard, Charles; Pippin, Margaret; Tasaddaq, Aasam; Stone, Tom; Rodriguez, Jon; Slutsker, Ilya; Eck, Tom; Holben, Brent; hide

    2015-01-01

    In recent years it was proposed to combine AERONET network photometer capabilities with a high precision lunar model used for satellite calibration to retrieve columnar nighttime AODs. The USGS lunar model can continuously provide pre-atmosphere high precision lunar irradiance determinations for multiple wavelengths at ground sensor locations. When combined with measured irradiances from a ground-based AERONET photometer, atmospheric column transmissions can determined yielding nighttime column aerosol AOD and Angstrom coefficients. Additional demonstrations have utilized this approach to further develop calibration methods and to obtain data in polar regions where extended periods of darkness occur. This new capability enables more complete studies of the diurnal behavior of aerosols, and feedback for models and satellite retrievals for the nighttime behavior of aerosols. It is anticipated that the nighttime capability of these sensors will be useful for comparisons with satellite lidars such as CALIOP and CATS in additional to ground-based lidars in MPLNET at night, when the signal-to-noise ratio is higher than daytime and more precise AOD comparisons can be made.

  2. Precision Branching Ratio Measurement for the Superallowed &+circ; Emitter ^62Ga

    NASA Astrophysics Data System (ADS)

    Finlay, Paul; Svensson, C. E.; Austin, R. A. E.; Ball, G. C.; Bandyopadhyay, D.; Chaffey, A.; Chakrawarthy, R. S.; Garrett, P. E.; Grinyer, G. F.; Hackman, G.; Hyland, B.; Kanungo, R.; Leslie, J. R.; Mattoon, C.; Morton, A. C.; Pearson, C. J.; Ressler, J. J.; Sarazin, F.; Savajols, H.

    2007-10-01

    A high-precision branching ratio measurement for the superallowed &+circ; emitter ^62Ga has been made using the 8π γ-ray spectrometer in conjunction with the SCintillating Electron-Positron Tagging ARray (SCEPTAR) as part of an ongoing experimental program in superallowed Fermi beta decay studies at the Isotope Separator and Accelerator (ISAC) facility at TRIUMF in Vancouver, Canada, which delivered a high-purity beam of ˜10^4 ^62Ga/s in December 2005. The present work represents the highest statistics measurement of the ^62Ga superallowed branching ratio to date. 25 γ rays emitted following non-superallowed decay branches of ^62Ga have been identified and their intensities determined. These data yield a superallowed branching ratio with 10-4 precision, and our observed branch to the first nonanalogue 0^+ state sets a new upper limit on the isospin-mixing correction δC1^1. By comparing our ft value with the world average Ft, we make stringent tests of the different calculations for the isospin-symmetry-breaking correction δC, which is predicted to be large for ^62Ga.

  3. Ion traps for precision experiments at rare-isotope-beam facilities

    NASA Astrophysics Data System (ADS)

    Kwiatkowski, Anna

    2016-09-01

    Ion traps first entered experimental nuclear physics when the ISOLTRAP team demonstrated Penning trap mass spectrometry of radionuclides. From then on, the demand for ion traps has grown at radioactive-ion-beam (RIB) facilities since beams can be tailored for the desired experiment. Ion traps have been deployed for beam preparation, from bunching (thereby allowing time coincidences) to beam purification. Isomerically pure beams needed for nuclear-structure investigations can be prepared for trap-assisted or in-trap decay spectroscopy. The latter permits studies of highly charged ions for stellar evolution, which would be impossible with traditional experimental nuclear-physics methods. Moreover, the textbook-like conditions and advanced ion manipulation - even of a single ion - permit high-precision experiments. Consequently, the most accurate and precise mass measurements are now performed in Penning traps. After a brief introduction to ion trapping, I will focus on examples which showcase the versatility and utility of the technique at RIB facilities. I will demonstrate how this atomic-physics technique has been integrated into nuclear science, accelerator physics, and chemistry. DOE.

  4. Precision production: enabling deterministic throughput for precision aspheres with MRF

    NASA Astrophysics Data System (ADS)

    Maloney, Chris; Entezarian, Navid; Dumas, Paul

    2017-10-01

    Aspherical lenses offer advantages over spherical optics by improving image quality or reducing the number of elements necessary in an optical system. Aspheres are no longer being used exclusively by high-end optical systems but are now replacing spherical optics in many applications. The need for a method of production-manufacturing of precision aspheres has emerged and is part of the reason that the optics industry is shifting away from artisan-based techniques towards more deterministic methods. Not only does Magnetorheological Finishing (MRF) empower deterministic figure correction for the most demanding aspheres but it also enables deterministic and efficient throughput for series production of aspheres. The Q-flex MRF platform is designed to support batch production in a simple and user friendly manner. Thorlabs routinely utilizes the advancements of this platform and has provided results from using MRF to finish a batch of aspheres as a case study. We have developed an analysis notebook to evaluate necessary specifications for implementing quality control metrics. MRF brings confidence to optical manufacturing by ensuring high throughput for batch processing of aspheres.

  5. Fabrication of micro metallic valve and pump

    NASA Astrophysics Data System (ADS)

    Yang, Ming; Kabasawa, Yasunari; Ito, Kuniyoshi

    2010-03-01

    Fabrication of micro devices by using micro metal forming was proposed by the authors. We developed a desktop servo-press machine with precise tooling system. Precise press forming processes including micro forging and micro joining has been carried out in a progressive die. In this study, micro metallic valve and pump were fabricated by using the precise press forming. The components are made of sheet metals, and assembled in to a unit in the progressive die. A micro check-valve with a diameter of 3mm and a length of 3.2mm was fabricated, and the property of flow resistance was evaluated. The results show that the check valve has high property of leakage proof. Since the valve is a unit parts with dimensions of several millimeters, it has advantage to be adapted to various pump design. Here, two kinds of micro pumps with the check-valves were fabricated. One is diaphragm pump actuated by vibration of the diaphragm, and another is tube-shaped pump actuated by resonation. The flow quantities of the pumps were evaluated and the results show that both of the pumps have high pumping performance.

  6. Evaluating the MEDLINE Core Clinical Journals filter: data-driven evidence assessing clinical utility.

    PubMed

    Klein-Fedyshin, Michele; Ketchum, Andrea M; Arnold, Robert M; Fedyshin, Peter J

    2014-12-01

    MEDLINE offers the Core Clinical Journals filter to limit to clinically useful journals. To determine its effectiveness for searching and patient-centric decision making, this study compared literature used for Morning Report in Internal Medicine with journals in the filter. An EndNote library with references answering 327 patient-related questions during Morning Report from 2007 to 2012 was exported to a file listing variables including designated Core Clinical Journal, Impact Factor, date used and medical subject. Bradford's law of scattering was applied ranking the journals and reflecting their clinical utility. Recall (sensitivity) and precision of the Core Morning Report journals and non-Core set was calculated. This study applied bibliometrics to compare the 628 articles used against these criteria to determine journals impacting decision making. Analysis shows 30% of clinically used articles are from the Core Clinical Journals filter and 16% of the journals represented are Core titles. When Bradford-ranked, 55% of the top 20 journals are Core. Articles <5 years old furnish 63% of sources used. Among the 63 Morning Report subjects, 55 have <50% precision and 41 have <50% recall including 37 subjects with 0% precision and 0% recall. Low usage of publications within the Core Clinical Journals filter indicates less relevance for hospital-based care. The divergence from high-impact medicine titles suggests clinically valuable journals differ from academically important titles. With few subjects demonstrating high recall or precision, the MEDLINE Core Clinical Journals filter may require a review and update to better align with current clinical needs. © 2014 John Wiley & Sons, Ltd.

  7. Defining Clinical Response Criteria and Early Response Criteria for Precision Oncology: Current State-of-the-Art and Future Perspectives.

    PubMed

    Subbiah, Vivek; Chuang, Hubert H; Gambhire, Dhiraj; Kairemo, Kalevi

    2017-02-15

    In this era of precision oncology, there has been an exponential growth in the armamentarium of genomically targeted therapies and immunotherapies. Evaluating early responses to precision therapy is essential for "go" versus "no go" decisions for these molecularly targeted drugs and agents that arm the immune system. Many different response assessment criteria exist for use in solid tumors and lymphomas. We reviewed the literature using the Medline/PubMed database for keywords "response assessment" and various known response assessment criteria published up to 2016. In this article we review the commonly used response assessment criteria. We present a decision tree to facilitate selection of appropriate criteria. We also suggest methods for standardization of various response assessment criteria. The relevant response assessment criteria were further studied for rational of development, key features, proposed use and acceptance by various entities. We also discuss early response evaluation and provide specific case studies of early response to targeted therapy. With high-throughput, advanced computing programs and digital data-mining it is now possible to acquire vast amount of high quality imaging data opening up a new field of "omics in radiology"-radiomics that complements genomics for personalized medicine. Radiomics is rapidly evolving and is still in the research arena. This cutting-edge technology is poised to move soon to the mainstream clinical arena. Novel agents with new mechanisms of action require advanced molecular imaging as imaging biomarkers. There is an urgent need for development of standardized early response assessment criteria for evaluation of response to precision therapy.

  8. Antihydrogen Beams

    NASA Astrophysics Data System (ADS)

    Yamazaki, Yasunori; Doser, Michael; Pérez, Patrice

    2018-03-01

    Why does our universe consist purely of matter, even though the same amount of antimatter and matter should have been produced at the moment of the Big Bang 13.8 billion years ago? One of the most potentially fruitful approaches to address the mystery is to study the properties of antihydrogen and antiprotons. Because they are both stable, we can in principle make measurement precision as high as we need to see differences between these antimatter systems and their matter counterparts, i.e. hydrogen and protons. This is the goal of cold antihydrogen research. To study a fundamental symmetry-charge, parity, and time reversal (CPT) symmetry-which should lead to identical spectra in hydrogen and antihydrogen, as well as the weak equivalence principle (WEP), cold antihydrogen research seeks any discrepancies between matter and antimatter, which might also offer clues to the missing antimatter mystery. Precision tests of CPT have already been carried out in other systems, but antihydrogen spectroscopy offers the hope of reaching even higher sensitivity to violations of CPT. Meanwhile, utilizing the Earth and antihydrogen atoms as an experimental system, the WEP predicts a gravitational interaction between matter and antimatter that is identical to that between any two matter objects. The WEP has been tested to very high precision for a range of material compositions, but no such precision test using antimatter has yet been carried out, offering hope of a telltale inconsistency between matter and antimatter. In this Discovery book, we invite you to visit the frontiers of cold antimatter research, focusing on new technologies to form beams of antihydrogen atoms and antihydrogen ions, and new ways of interrogating the properties of antimatter.

  9. Dynamic tracking down-conversion signal processing method based on reference signal for grating heterodyne interferometer

    NASA Astrophysics Data System (ADS)

    Wang, Guochao; Yan, Shuhua; Zhou, Weihong; Gu, Chenhui

    2012-08-01

    Traditional displacement measurement systems by grating, which purely make use of fringe intensity to implement fringe count and subdivision, have rigid demands for signal quality and measurement condition, so they are not easy to realize measurement with nanometer precision. Displacement measurement with the dual-wavelength and single-grating design takes advantage of the single grating diffraction theory and the heterodyne interference theory, solving quite well the contradiction between large range and high precision in grating displacement measurement. To obtain nanometer resolution and nanometer precision, high-power subdivision of interference fringes must be realized accurately. A dynamic tracking down-conversion signal processing method based on the reference signal is proposed. Accordingly, a digital phase measurement module to realize high-power subdivision on field programmable gate array (FPGA) was designed, as well as a dynamic tracking down-conversion module using phase-locked loop (PLL). Experiments validated that a carrier signal after down-conversion can constantly maintain close to 100 kHz, and the phase-measurement resolution and phase precision are more than 0.05 and 0.2 deg, respectively. The displacement resolution and the displacement precision, corresponding to the phase results, are 0.139 and 0.556 nm, respectively.

  10. Error measuring system of rotary Inductosyn

    NASA Astrophysics Data System (ADS)

    Liu, Chengjun; Zou, Jibin; Fu, Xinghe

    2008-10-01

    The inductosyn is a kind of high-precision angle-position sensor. It has important applications in servo table, precision machine tool and other products. The precision of inductosyn is calibrated by its error. It's an important problem about the error measurement in the process of production and application of the inductosyn. At present, it mainly depends on the method of artificial measurement to obtain the error of inductosyn. Therefore, the disadvantages can't be ignored such as the high labour intensity of the operator, the occurrent error which is easy occurred and the poor repeatability, and so on. In order to solve these problems, a new automatic measurement method is put forward in this paper which based on a high precision optical dividing head. Error signal can be obtained by processing the output signal of inductosyn and optical dividing head precisely. When inductosyn rotating continuously, its zero position error can be measured dynamically, and zero error curves can be output automatically. The measuring and calculating errors caused by man-made factor can be overcome by this method, and it makes measuring process more quickly, exactly and reliably. Experiment proves that the accuracy of error measuring system is 1.1 arc-second (peak - peak value).

  11. A point of application study to determine the accuracy, precision and reliability of a low-cost balance plate for center of pressure measurement.

    PubMed

    Goble, Daniel J; Khan, Ehran; Baweja, Harsimran S; O'Connor, Shawn M

    2018-04-11

    Changes in postural sway measured via force plate center of pressure have been associated with many aspects of human motor ability. A previous study validated the accuracy and precision of a relatively new, low-cost and portable force plate called the Balance Tracking System (BTrackS). This work compared a laboratory-grade force plate versus BTrackS during human-like dynamic sway conditions generated by an inverted pendulum device. The present study sought to extend previous validation attempts for BTrackS using a more traditional point of application (POA) approach. Computer numerical control (CNC) guided application of ∼155 N of force was applied five times to each of 21 points on five different BTrackS Balance Plate (BBP) devices with a hex-nose plunger. Results showed excellent agreement (ICC > 0.999) between the POAs and measured COP by the BBP devices, as well as high accuracy (<1% average percent error) and precision (<0.1 cm average standard deviation of residuals). The ICC between BBP devices was exceptionally high (ICC > 0.999) providing evidence of almost perfect inter-device reliability. Taken together, these results provide an important, static corollary to the previously obtained dynamic COP results from inverted pendulum testing of the BBP. Copyright © 2018 Elsevier Ltd. All rights reserved.

  12. Impairments in Precision, Rather than Spatial Strategy, Characterize Performance on the Virtual Morris Water Maze: A Case Study

    PubMed Central

    Kolarik, Branden S.; Shahlaie, Kiarash; Hassan, Abdul; Borders, Alyssa A.; Kaufman, Kyle C.; Gurkoff, Gene; Yonelinas, Andy P.; Ekstrom, Arne D.

    2015-01-01

    Damage to the medial temporal lobes produces profound amnesia, greatly impairing the ability of patients to learn about new associations and events. While studies in rodents suggest a strong link between damage to the hippocampus and the ability to navigate using distal landmarks in a spatial environment, the connection between navigation and memory in humans remains less clear. Past studies on human navigation have provided mixed findings about whether patients with damage to the medial temporal lobes can successfully acquire and navigate new spatial environments, possibly due, in part, to issues related to patient demographics and characterization of medial temporal lobe damage. Here, we report findings from a young, high functioning patient who suffered severe medial temporal lobe damage. Although the patient is densely amnestic, her ability to acquire and utilize new, but coarse, spatial “maps” appears largely intact. Specifically, a novel computational analysis focused on the precision of her spatial search revealed a significant deficit in spatial precision rather than spatial search strategy. These findings argue that an intact hippocampus in humans is not necessary for representing multiple external landmarks during spatial navigation of new environments. We suggest instead that the human hippocampus may store and represent complex high-resolution bindings of features in the environment as part of a larger role in perception, memory, and navigation. PMID:26593960

  13. VIEW OF MICROMACHINING, HIGH PRECISION EQUIPMENT USED TO CUSTOM MAKE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    VIEW OF MICRO-MACHINING, HIGH PRECISION EQUIPMENT USED TO CUSTOM MAKE SMALL PARTS. LUMPS OF CLAY; SHOWN IN THE PHOTOGRAPH, WERE USED TO STABILIZE PARTS BEING MACHINED. (11/1/87) - Rocky Flats Plant, Stainless Steel & Non-Nuclear Components Manufacturing, Southeast corner of intersection of Cottonwood & Third Avenues, Golden, Jefferson County, CO

  14. High Precision Pressure Measurement with a Funnel

    ERIC Educational Resources Information Center

    Lopez-Arias, T.; Gratton, L. M.; Oss, S.

    2008-01-01

    A simple experimental device for high precision differential pressure measurements is presented. Its working mechanism recalls that of a hydraulic press, where pressure is supplied by insufflating air under a funnel. As an application, we measure air pressure inside a soap bubble. The soap bubble is inflated and connected to a funnel which is…

  15. Advancing Lidar Sensors Technologies for Next Generation Landing Missions

    NASA Technical Reports Server (NTRS)

    Amzajerdian, Farzin; Hines, Glenn D.; Roback, Vincent E.; Petway, Larry B.; Barnes, Bruce W.; Brewster, Paul F.; Pierrottet, Diego F.; Bulyshev, Alexander

    2015-01-01

    Missions to solar systems bodies must meet increasingly ambitious objectives requiring highly reliable "precision landing", and "hazard avoidance" capabilities. Robotic missions to the Moon and Mars demand landing at pre-designated sites of high scientific value near hazardous terrain features, such as escarpments, craters, slopes, and rocks. Missions aimed at paving the path for colonization of the Moon and human landing on Mars need to execute onboard hazard detection and precision maneuvering to ensure safe landing near previously deployed assets. Asteroid missions require precision rendezvous, identification of the landing or sampling site location, and navigation to the highly dynamic object that may be tumbling at a fast rate. To meet these needs, NASA Langley Research Center (LaRC) has developed a set of advanced lidar sensors under the Autonomous Landing and Hazard Avoidance Technology (ALHAT) project. These lidar sensors can provide precision measurement of vehicle relative proximity, velocity, and orientation, and high resolution elevation maps of the surface during the descent to the targeted body. Recent flights onboard Morpheus free-flyer vehicle have demonstrated the viability of ALHAT lidar sensors for future landing missions to solar system bodies.

  16. High throughput single cell counting in droplet-based microfluidics.

    PubMed

    Lu, Heng; Caen, Ouriel; Vrignon, Jeremy; Zonta, Eleonora; El Harrak, Zakaria; Nizard, Philippe; Baret, Jean-Christophe; Taly, Valérie

    2017-05-02

    Droplet-based microfluidics is extensively and increasingly used for high-throughput single-cell studies. However, the accuracy of the cell counting method directly impacts the robustness of such studies. We describe here a simple and precise method to accurately count a large number of adherent and non-adherent human cells as well as bacteria. Our microfluidic hemocytometer provides statistically relevant data on large populations of cells at a high-throughput, used to characterize cell encapsulation and cell viability during incubation in droplets.

  17. Challenges in mold manufacturing for high precision molded diffractive optical elements

    NASA Astrophysics Data System (ADS)

    Pongs, Guido; Bresseler, Bernd; Schweizer, Klaus; Bergs, Thomas

    2016-09-01

    Isothermal precision glass molding of imaging optics is the key technology for mass production of precise optical elements. Especially for numerous consumer applications (e.g. digital cameras, smart phones, …), high precision glass molding is applied for the manufacturing of aspherical lenses. The usage of diffractive optical elements (DOEs) can help to further reduce the number of lenses in the optical systems which will lead to a reduced weight of hand-held optical devices. But today the application of molded glass DOEs is limited due to the technological challenges in structuring the mold surfaces. Depending on the application submicrometer structures are required on the mold surface. Furthermore these structures have to be replicated very precisely to the glass lens surface. Especially the micro structuring of hard and brittle mold materials such as Tungsten Carbide is very difficult and not established. Thus a multitude of innovative approaches using diffractive optical elements cannot be realized. Aixtooling has investigated in different mold materials and different suitable machining technologies for the micro- and sub-micrometer structuring of mold surfaces. The focus of the work lays on ultra-precision grinding to generate the diffractive pattern on the mold surfaces. This paper presents the latest achievements in diffractive structuring of Tungsten Carbide mold surfaces by ultra-precision grinding.

  18. High-Precision, Continuous GPS Data Reveals Seasonal Groundwater Influence on the Deformation of the Salmon Falls Landslide, a Slow-Moving, Rotational Feature in Central Idaho

    NASA Astrophysics Data System (ADS)

    Lauer, I. H.; Crosby, B. T.

    2017-12-01

    The development of predictive tools for landslide initiation and deformation serve both the natural hazard and geomorphic communities. Founded on both field observations and physical laws, these tools require a mechanistic understanding of the connection between forcing and response. Water has a well-documented influence on slope stability, impacting both soil plasticity and pore water pressure. High precision, high frequency GPS measurements of deformation paired with similar frequency water table measurements enable new insight into the lag and sensitivity present in the coupled hillslope-groundwater system, especially in the rotational domain, which is underrepresented in current literature. Our study explores the influence of groundwater on a slow-moving, deep-seated, rotational slide in southern Idaho using daily, mm precision GPS positions and contemporaneous groundwater levels measurements in adjacent wells, lakes, and streams. Seven semi-permanent GPS stations are spatially distributed across the slide and record three-dimensional velocities up to 11 cm/yr, which compare well with historical measurements from the early 2000's. Water level loggers are located in a rough cross-section through the study area and documents rises in water level during spring 2017 and a subsequent 1.5m drop in the following summer. We hypothesize a correlation of groundwater levels and landslide velocity, which varies seasonally and spatially across the body of the slide. We will present whether deformation is spatially contemporaneous or initiate in one region and propagates down-feature. We will also discuss whether temporal lag exists between water level change and deformation and if hysteresis complicates correlation between forcing and response. Results will bolster the breadth of case-studies available for this landslide morphology and provide regional land managers with predictors for increased landslide activity and associated hazards, such as rockfall or landslide dam outburst events. The data from this study will also be integrated into a newly developed field-education module under the GETSI curriculum project. Our project provides a core dataset for how how-precision GPS positioning can be applied to solve societally relevant issues such as hazard prediction or early warning systems.

  19. Fabrication of high wettability gradient on copper substrate

    NASA Astrophysics Data System (ADS)

    Huang, Ding-Jun; Leu, Tzong-Shyng

    2013-09-01

    Copper is one of the most widely used materials in condensation heat transfer. Recently there has been great interest in improving the condensation heat transfer efficiency through copper surface modification. In this study, we describe the fabrication processes of how copper surfaces were modified to be superhydrophilic (CA ≤ 10°) and superhydrophobic (CA > 150°) by means of H2O2 immersion and fluorination with Teflon. The wettability gradient of copper surfaces with contact angles (CA) changing from superhydrophilic to superhydrophobic are also demonstrated. Unlike previous studies on gradient surfaces in which the wettability gradient is controlled either non-precisely or entirely uncontrolled, in this study, the contact angles along wettability gradient copper surfaces vary with a precisely designed gradient. It is demonstrated that a high wettability gradient copper surface can be successfully fabricated using photolithography to define the area ratios between superhydrophilic and superhydrophobic patterns within a short distance. The fabricated wettability gradient of copper surfaces is expected to be able to enhance the condensation heat transfer efficiency.

  20. Can we use high precision metal isotope analysis to improve our understanding of cancer?

    PubMed

    Larner, Fiona

    2016-01-01

    High precision natural isotope analyses are widely used in geosciences to trace elemental transport pathways. The use of this analytical tool is increasing in nutritional and disease-related research. In recent months, a number of groups have shown the potential this technique has in providing new observations for various cancers when applied to trace metal metabolism. The deconvolution of isotopic signatures, however, relies on mathematical models and geochemical data, which are not representative of the system under investigation. In addition to relevant biochemical studies of protein-metal isotopic interactions, technological development both in terms of sample throughput and detection sensitivity of these elements is now needed to translate this novel approach into a mainstream analytical tool. Following this, essential background healthy population studies must be performed, alongside observational, cross-sectional disease-based studies. Only then can the sensitivity and specificity of isotopic analyses be tested alongside currently employed methods, and important questions such as the influence of cancer heterogeneity and disease stage on isotopic signatures be addressed.

  1. Evaluation of the FIR Example using Xilinx Vivado High-Level Synthesis Compiler

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jin, Zheming; Finkel, Hal; Yoshii, Kazutomo

    Compared to central processing units (CPUs) and graphics processing units (GPUs), field programmable gate arrays (FPGAs) have major advantages in reconfigurability and performance achieved per watt. This development flow has been augmented with high-level synthesis (HLS) flow that can convert programs written in a high-level programming language to Hardware Description Language (HDL). Using high-level programming languages such as C, C++, and OpenCL for FPGA-based development could allow software developers, who have little FPGA knowledge, to take advantage of the FPGA-based application acceleration. This improves developer productivity and makes the FPGA-based acceleration accessible to hardware and software developers. Xilinx Vivado HLSmore » compiler is a high-level synthesis tool that enables C, C++ and System C specification to be directly targeted into Xilinx FPGAs without the need to create RTL manually. The white paper [1] published recently by Xilinx uses a finite impulse response (FIR) example to demonstrate the variable-precision features in the Vivado HLS compiler and the resource and power benefits of converting floating point to fixed point for a design. To get a better understanding of variable-precision features in terms of resource usage and performance, this report presents the experimental results of evaluating the FIR example using Vivado HLS 2017.1 and a Kintex Ultrascale FPGA. In addition, we evaluated the half-precision floating-point data type against the double-precision and single-precision data type and present the detailed results.« less

  2. Nanomechanical investigation of ion implanted single crystals - Challenges, possibilities and pitfall traps related to nanoindentation

    NASA Astrophysics Data System (ADS)

    Kurpaska, Lukasz

    2017-10-01

    Nanoindentation technique have developed considerably over last thirty years. Nowadays, commercially available systems offer very precise measurement in nano- and microscale, environmental noise cancelling (or at least noise suppressing), in situ high temperature indentation in controlled atmosphere and vacuum conditions and different additional options, among them dedicated indentation is one of the most popular. Due to its high precision, and ability to measure mechanical properties from very small depths (tens of nm), this technique become quite popular in the nuclear society. It is known that ion implantation (to some extent) can simulate the influence of neutron flux. However, depth of the material damage is very limited resulting in creation of thin layer of modified material over unmodified bulk. Therefore, only very precise technique, offering possibility to control depth of the measurement can be used to study functional properties of the material. For this reason, nanoindentation technique seems to be a perfect tool to investigate mechanical properties of ion implanted specimens. However, conducting correct nanomechanical experiment and extracting valuable mechanical parameters is not an easy task. In this paper a discussion about the nanoindentation tests performed on ion irradiated YSZ single crystal is presented. The goal of this paper is to discuss possible traps when studying mechanical properties of such materials and thin coatings.

  3. Precise Orbit Determination for ALOS

    NASA Technical Reports Server (NTRS)

    Nakamura, Ryo; Nakamura, Shinichi; Kudo, Nobuo; Katagiri, Seiji

    2007-01-01

    The Advanced Land Observing Satellite (ALOS) has been developed to contribute to the fields of mapping, precise regional land coverage observation, disaster monitoring, and resource surveying. Because the mounted sensors need high geometrical accuracy, precise orbit determination for ALOS is essential for satisfying the mission objectives. So ALOS mounts a GPS receiver and a Laser Reflector (LR) for Satellite Laser Ranging (SLR). This paper deals with the precise orbit determination experiments for ALOS using Global and High Accuracy Trajectory determination System (GUTS) and the evaluation of the orbit determination accuracy by SLR data. The results show that, even though the GPS receiver loses lock of GPS signals more frequently than expected, GPS-based orbit is consistent with SLR-based orbit. And considering the 1 sigma error, orbit determination accuracy of a few decimeters (peak-to-peak) was achieved.

  4. Urban forest topographical mapping using UAV LIDAR

    NASA Astrophysics Data System (ADS)

    Putut Ash Shidiq, Iqbal; Wibowo, Adi; Kusratmoko, Eko; Indratmoko, Satria; Ardhianto, Ronni; Prasetyo Nugroho, Budi

    2017-12-01

    Topographical data is highly needed by many parties, such as government institution, mining companies and agricultural sectors. It is not just about the precision, the acquisition time and data processing are also carefully considered. In relation with forest management, a high accuracy topographic map is necessary for planning, close monitoring and evaluating forest changes. One of the solution to quickly and precisely mapped topography is using remote sensing system. In this study, we test high-resolution data using Light Detection and Ranging (LiDAR) collected from unmanned aerial vehicles (UAV) to map topography and differentiate vegetation classes based on height in urban forest area of University of Indonesia (UI). The semi-automatic and manual classifications were applied to divide point clouds into two main classes, namely ground and vegetation. There were 15,806,380 point clouds obtained during the post-process, in which 2.39% of it were detected as ground.

  5. High-precision photometry by telescope defocussing - VI. WASP-24, WASP-25 and WASP-26

    NASA Astrophysics Data System (ADS)

    Southworth, John; Hinse, T. C.; Burgdorf, M.; Calchi Novati, S.; Dominik, M.; Galianni, P.; Gerner, T.; Giannini, E.; Gu, S.-H.; Hundertmark, M.; Jørgensen, U. G.; Juncher, D.; Kerins, E.; Mancini, L.; Rabus, M.; Ricci, D.; Schäfer, S.; Skottfelt, J.; Tregloan-Reed, J.; Wang, X.-B.; Wertz, O.; Alsubai, K. A.; Andersen, J. M.; Bozza, V.; Bramich, D. M.; Browne, P.; Ciceri, S.; D'Ago, G.; Damerdji, Y.; Diehl, C.; Dodds, P.; Elyiv, A.; Fang, X.-S.; Finet, F.; Figuera Jaimes, R.; Hardis, S.; Harpsøe, K.; Jessen-Hansen, J.; Kains, N.; Kjeldsen, H.; Korhonen, H.; Liebig, C.; Lund, M. N.; Lundkvist, M.; Mathiasen, M.; Penny, M. T.; Popovas, A.; Prof., S.; Rahvar, S.; Sahu, K.; Scarpetta, G.; Schmidt, R. W.; Schönebeck, F.; Snodgrass, C.; Street, R. A.; Surdej, J.; Tsapras, Y.; Vilela, C.

    2014-10-01

    We present time series photometric observations of 13 transits in the planetary systems WASP-24, WASP-25 and WASP-26. All three systems have orbital obliquity measurements, WASP-24 and WASP-26 have been observed with Spitzer, and WASP-25 was previously comparatively neglected. Our light curves were obtained using the telescope-defocussing method and have scatters of 0.5-1.2 mmag relative to their best-fitting geometric models. We use these data to measure the physical properties and orbital ephemerides of the systems to high precision, finding that our improved measurements are in good agreement with previous studies. High-resolution Lucky Imaging observations of all three targets show no evidence for faint stars close enough to contaminate our photometry. We confirm the eclipsing nature of the star closest to WASP-24 and present the detection of a detached eclipsing binary within 4.25 arcmin of WASP-26.

  6. Understanding deformation with high angular resolution electron backscatter diffraction (HR-EBSD)

    NASA Astrophysics Data System (ADS)

    Britton, T. B.; Hickey, J. L. R.

    2018-01-01

    High angular resolution electron backscatter diffraction (HR-EBSD) affords an increase in angular resolution, as compared to ‘conventional’ Hough transform based EBSD, of two orders of magnitude, enabling measurements of relative misorientations of 1 x 10-4 rads (~ 0.006°) and changes in (deviatoric) lattice strain with a precision of 1 x 10-4. This is achieved through direct comparison of two or more diffraction patterns using sophisticated cross-correlation based image analysis routines. Image shifts between zone axes in the two-correlated diffraction pattern are measured with sub-pixel precision and this realises the ability to measure changes in interplanar angles and lattice orientation with a high degree of sensitivity. These shifts are linked to strains and lattice rotations through simple geometry. In this manuscript, we outline the basis of the technique and two case studies that highlight its potential to tackle real materials science challenges, such as deformation patterning in polycrystalline alloys.

  7. Highly Automated Arrival Management and Control System Suitable for Early NextGen

    NASA Technical Reports Server (NTRS)

    Swenson, Harry N.; Jung, Jaewoo

    2013-01-01

    This is a presentation of previously published work conducted in the development of the Terminal Area Precision Scheduling and Spacing (TAPSS) system. Included are concept and technical descriptions of the TAPSS system and results from human in the loop simulations conducted at Ames Research Center. The Terminal Area Precision Scheduling and Spacing system has demonstrated through research and extensive high-fidelity simulation studies to have benefits in airport arrival throughput, supporting efficient arrival descents, and enabling mixed aircraft navigation capability operations during periods of high congestion. NASA is currently porting the TAPSS system into the FAA TBFM and STARS system prototypes to ensure its ability to operate in the FAA automation Infrastructure. NASA ATM Demonstration Project is using the the TAPSS technologies to provide the ground-based automation tools to enable airborne Interval Management (IM) capabilities. NASA and the FAA have initiated a Research Transition Team to enable potential TAPSS and IM Technology Transfer.

  8. High-precision γ -ray spectroscopy of the cardiac PET imaging isotope Rb 82 and its impact on dosimetry

    DOE PAGES

    Nino, M. N.; McCutchan, E. A.; Smith, S. V.; ...

    2016-02-01

    82Rb is a positron-emitting isotope used in cardiac positron emission tomography (PET) imaging which has been reported to deliver a significantly lower effective radiation dose than analogous imaging isotopes like 201Tl and 99mTc sestamibi. High-quality β-decay data are essential to accurately appraise the total dose received by the patients. A source of 82Sr was produced at the Brookhaven Linac Isotope Producer (BLIP), transported to Argonne National Laboratory, and studied with the Gammasphere facility. Significant revisions have been made to the level scheme of 82Kr including 12 new levels, 50 new γ-ray transitions, and the determination of many new spin assignmentsmore » through angular correlations. Lastly, these new high-quality data allow a precise reappraisal of the β-decay strength function and thus the consequent dose received by patients.« less

  9. Systematic Comparison of Label-Free, Metabolic Labeling, and Isobaric Chemical Labeling for Quantitative Proteomics on LTQ Orbitrap Velos

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Zhou; Adams, Rachel M; Chourey, Karuna

    2012-01-01

    A variety of quantitative proteomics methods have been developed, including label-free, metabolic labeling, and isobaric chemical labeling using iTRAQ or TMT. Here, these methods were compared in terms of the depth of proteome coverage, quantification accuracy, precision, and reproducibility using a high-performance hybrid mass spectrometer, LTQ Orbitrap Velos. Our results show that (1) the spectral counting method provides the deepest proteome coverage for identification, but its quantification performance is worse than labeling-based approaches, especially the quantification reproducibility; (2) metabolic labeling and isobaric chemical labeling are capable of accurate, precise, and reproducible quantification and provide deep proteome coverage for quantification. Isobaricmore » chemical labeling surpasses metabolic labeling in terms of quantification precision and reproducibility; (3) iTRAQ and TMT perform similarly in all aspects compared in the current study using a CID-HCD dual scan configuration. Based on the unique advantages of each method, we provide guidance for selection of the appropriate method for a quantitative proteomics study.« less

  10. The prospects of pulsar timing with new-generation radio telescopes and the Square Kilometre Array.

    PubMed

    Stappers, B W; Keane, E F; Kramer, M; Possenti, A; Stairs, I H

    2018-05-28

    Pulsars are highly magnetized and rapidly rotating neutron stars. As they spin, the lighthouse-like beam of radio emission from their magnetic poles sweeps across the Earth with a regularity approaching that of the most precise clocks known. This precision combined with the extreme environments in which they are found, often in compact orbits with other neutron stars and white dwarfs, makes them excellent tools for studying gravity. Present and near-future pulsar surveys, especially those using the new generation of telescopes, will find more extreme binary systems and pulsars that are more precise 'clocks'. These telescopes will also greatly improve the precision to which we can measure the arrival times of the pulses. The Square Kilometre Array will revolutionize pulsar searches and timing precision. The increased number of sources will reveal rare sources, including possibly a pulsar-black hole binary, which can provide the most stringent tests of strong-field gravity. The improved timing precision will reveal new phenomena and also allow us to make a detection of gravitational waves in the nanohertz frequency regime. It is here where we expect to see the signature of the binary black holes that are formed as galaxies merge throughout cosmological history.This article is part of a discussion meeting issue 'The promises of gravitational-wave astronomy'. © 2018 The Author(s).

  11. MATS and LaSpec: High-precision experiments using ion traps and lasers at FAIR

    NASA Astrophysics Data System (ADS)

    Rodríguez, D.; Blaum, K.; Nörtershäuser, W.; Ahammed, M.; Algora, A.; Audi, G.; Äystö, J.; Beck, D.; Bender, M.; Billowes, J.; Block, M.; Böhm, C.; Bollen, G.; Brodeur, M.; Brunner, T.; Bushaw, B. A.; Cakirli, R. B.; Campbell, P.; Cano-Ott, D.; Cortés, G.; Crespo López-Urrutia, J. R.; Das, P.; Dax, A.; de, A.; Delheij, P.; Dickel, T.; Dilling, J.; Eberhardt, K.; Eliseev, S.; Ettenauer, S.; Flanagan, K. T.; Ferrer, R.; García-Ramos, J.-E.; Gartzke, E.; Geissel, H.; George, S.; Geppert, C.; Gómez-Hornillos, M. B.; Gusev, Y.; Habs, D.; Heenen, P.-H.; Heinz, S.; Herfurth, F.; Herlert, A.; Hobein, M.; Huber, G.; Huyse, M.; Jesch, C.; Jokinen, A.; Kester, O.; Ketelaer, J.; Kolhinen, V.; Koudriavtsev, I.; Kowalska, M.; Krämer, J.; Kreim, S.; Krieger, A.; Kühl, T.; Lallena, A. M.; Lapierre, A.; Le Blanc, F.; Litvinov, Y. A.; Lunney, D.; Martínez, T.; Marx, G.; Matos, M.; Minaya-Ramirez, E.; Moore, I.; Nagy, S.; Naimi, S.; Neidherr, D.; Nesterenko, D.; Neyens, G.; Novikov, Y. N.; Petrick, M.; Plaß, W. R.; Popov, A.; Quint, W.; Ray, A.; Reinhard, P.-G.; Repp, J.; Roux, C.; Rubio, B.; Sánchez, R.; Schabinger, B.; Scheidenberger, C.; Schneider, D.; Schuch, R.; Schwarz, S.; Schweikhard, L.; Seliverstov, M.; Solders, A.; Suhonen, M.; Szerypo, J.; Taín, J. L.; Thirolf, P. G.; Ullrich, J.; van Duppen, P.; Vasiliev, A.; Vorobjev, G.; Weber, C.; Wendt, K.; Winkler, M.; Yordanov, D.; Ziegler, F.

    2010-05-01

    Nuclear ground state properties including mass, charge radii, spins and moments can be determined by applying atomic physics techniques such as Penning-trap based mass spectrometry and laser spectroscopy. The MATS and LaSpec setups at the low-energy beamline at FAIR will allow us to extend the knowledge of these properties further into the region far from stability. The mass and its inherent connection with the nuclear binding energy is a fundamental property of a nuclide, a unique “fingerprint”. Thus, precise mass values are important for a variety of applications, ranging from nuclear-structure studies like the investigation of shell closures and the onset of deformation, tests of nuclear mass models and mass formulas, to tests of the weak interaction and of the Standard Model. The required relative accuracy ranges from 10-5 to below 10-8 for radionuclides, which most often have half-lives well below 1 s. Substantial progress in Penning trap mass spectrometry has made this method a prime choice for precision measurements on rare isotopes. The technique has the potential to provide high accuracy and sensitivity even for very short-lived nuclides. Furthermore, ion traps can be used for precision decay studies and offer advantages over existing methods. With MATS (Precision Measurements of very short-lived nuclei using an A_dvanced Trapping System for highly-charged ions) at FAIR we aim to apply several techniques to very short-lived radionuclides: High-accuracy mass measurements, in-trap conversion electron and alpha spectroscopy, and trap-assisted spectroscopy. The experimental setup of MATS is a unique combination of an electron beam ion trap for charge breeding, ion traps for beam preparation, and a high-precision Penning trap system for mass measurements and decay studies. For the mass measurements, MATS offers both a high accuracy and a high sensitivity. A relative mass uncertainty of 10-9 can be reached by employing highly-charged ions and a non-destructive Fourier-Transform Ion-Cyclotron-Resonance (FT-ICR) detection technique on single stored ions. This accuracy limit is important for fundamental interaction tests, but also allows for the study of the fine structure of the nuclear mass surface with unprecedented accuracy, whenever required. The use of the FT-ICR technique provides true single ion sensitivity. This is essential to access isotopes that are produced with minimum rates which are very often the most interesting ones. Instead of pushing for highest accuracy, the high charge state of the ions can also be used to reduce the storage time of the ions, hence making measurements on even shorter-lived isotopes possible. Decay studies in ion traps will become possible with MATS. Novel spectroscopic tools for in-trap high-resolution conversion-electron and charged-particle spectroscopy from carrier-free sources will be developed, aiming e.g. at the measurements of quadrupole moments and E0 strengths. With the possibility of both high-accuracy mass measurements of the shortest-lived isotopes and decay studies, the high sensitivity and accuracy potential of MATS is ideally suited for the study of very exotic nuclides that will only be produced at the FAIR facility.Laser spectroscopy of radioactive isotopes and isomers is an efficient and model-independent approach for the determination of nuclear ground and isomeric state properties. Hyperfine structures and isotope shifts in electronic transitions exhibit readily accessible information on the nuclear spin, magnetic dipole and electric quadrupole moments as well as root-mean-square charge radii. The dependencies of the hyperfine splitting and isotope shift on the nuclear moments and mean square nuclear charge radii are well known and the theoretical framework for the extraction of nuclear parameters is well established. These extracted parameters provide fundamental information on the structure of nuclei at the limits of stability. Vital information on both bulk and valence nuclear properties are derived and an exceptional sensitivity to changes in nuclear deformation is achieved. Laser spectroscopy provides the only mechanism for such studies in exotic systems and uniquely facilitates these studies in a model-independent manner.The accuracy of laser-spectroscopic-determined nuclear properties is very high. Requirements concerning production rates are moderate; collinear spectroscopy has been performed with production rates as few as 100 ions per second and laser-desorption resonance ionization mass spectroscopy (combined with β-delayed neutron detection) has been achieved with rates of only a few atoms per second.This Technical Design Report describes a new Penning trap mass spectrometry setup as well as a number of complementary experimental devices for laser spectroscopy, which will provide a complete system with respect to the physics and isotopes that can be studied. Since MATS and LaSpec require high-quality low-energy beams, the two collaborations have a common beamline to stop the radioactive beam of in-flight produced isotopes and prepare them in a suitable way for transfer to the MATS and LaSpec setups, respectively.

  12. High-precision photometry by telescope defocusing - VII. The ultrashort period planet WASP-103

    NASA Astrophysics Data System (ADS)

    Southworth, John; Mancini, L.; Ciceri, S.; Budaj, J.; Dominik, M.; Figuera Jaimes, R.; Haugbølle, T.; Jørgensen, U. G.; Popovas, A.; Rabus, M.; Rahvar, S.; von Essen, C.; Schmidt, R. W.; Wertz, O.; Alsubai, K. A.; Bozza, V.; Bramich, D. M.; Calchi Novati, S.; D'Ago, G.; Hinse, T. C.; Henning, Th.; Hundertmark, M.; Juncher, D.; Korhonen, H.; Skottfelt, J.; Snodgrass, C.; Starkey, D.; Surdej, J.

    2015-02-01

    We present 17 transit light curves of the ultrashort period planetary system WASP-103, a strong candidate for the detection of tidally-induced orbital decay. We use these to establish a high-precision reference epoch for transit timing studies. The time of the reference transit mid-point is now measured to an accuracy of 4.8 s, versus 67.4 s in the discovery paper, aiding future searches for orbital decay. With the help of published spectroscopic measurements and theoretical stellar models, we determine the physical properties of the system to high precision and present a detailed error budget for these calculations. The planet has a Roche lobe filling factor of 0.58, leading to a significant asphericity; we correct its measured mass and mean density for this phenomenon. A high-resolution Lucky Imaging observation shows no evidence for faint stars close enough to contaminate the point spread function of WASP-103. Our data were obtained in the Bessell RI and the SDSS griz passbands and yield a larger planet radius at bluer optical wavelengths, to a confidence level of 7.3σ. Interpreting this as an effect of Rayleigh scattering in the planetary atmosphere leads to a measurement of the planetary mass which is too small by a factor of 5, implying that Rayleigh scattering is not the main cause of the variation of radius with wavelength.

  13. High Resolution UAV-based Passive Microwave L-band Imaging of Soil Moisture

    NASA Astrophysics Data System (ADS)

    Gasiewski, A. J.; Stachura, M.; Elston, J.; McIntyre, E. M.

    2013-12-01

    Due to long electrical wavelengths and aperture size limitations the scaling of passive microwave remote sensing of soil moisture from spaceborne low-resolution applications to high resolution applications suitable for precision agriculture requires use of low flying aerial vehicles. This presentation summarizes a project to develop a commercial Unmanned Aerial Vehicle (UAV) hosting a precision microwave radiometer for mapping of soil moisture in high-value shallow root-zone crops. The project is based on the use of the Tempest electric-powered UAV and a compact digital L-band (1400-1427 MHz) passive microwave radiometer developed specifically for extremely small and lightweight aerial platforms or man-portable, tractor, or tower-based applications. Notable in this combination are a highly integrated UAV/radiometer antenna design and use of both the upwelling emitted signal from the surface and downwelling cold space signal for precise calibration using a lobe-correlating radiometer architecture. The system achieves a spatial resolution comparable to the altitude of the UAV above the ground while referencing upwelling measurements to the constant and well-known background temperature of cold space. The radiometer incorporates digital sampling and radio frequency interference mitigation along with infrared, near-infrared, and visible (red) sensors for surface temperature and vegetation biomass correction. This NASA-sponsored project is being developed both for commercial application in cropland water management, L-band satellite validation, and estuarian plume studies.

  14. Five critical elements to ensure the precision medicine.

    PubMed

    Chen, Chengshui; He, Mingyan; Zhu, Yichun; Shi, Lin; Wang, Xiangdong

    2015-06-01

    The precision medicine as a new emerging area and therapeutic strategy has occurred and was practiced in the individual and brought unexpected successes, and gained high attentions from professional and social aspects as a new path to improve the treatment and prognosis of patients. There will be a number of new components to appear or be discovered, of which clinical bioinformatics integrates clinical phenotypes and informatics with bioinformatics, computational science, mathematics, and systems biology. In addition to those tools, precision medicine calls more accurate and repeatable methodologies for the identification and validation of gene discovery. Precision medicine will bring more new therapeutic strategies, drug discovery and development, and gene-oriented treatment. There is an urgent need to identify and validate disease-specific, mechanism-based, or epigenetics-dependent biomarkers to monitor precision medicine, and develop "precision" regulations to guard the application of precision medicine.

  15. Review on the progress of ultra-precision machining technologies

    NASA Astrophysics Data System (ADS)

    Yuan, Julong; Lyu, Binghai; Hang, Wei; Deng, Qianfa

    2017-06-01

    Ultra-precision machining technologies are the essential methods, to obtain the highest form accuracy and surface quality. As more research findings are published, such technologies now involve complicated systems engineering and been widely used in the production of components in various aerospace, national defense, optics, mechanics, electronics, and other high-tech applications. The conception, applications and history of ultra-precision machining are introduced in this article, and the developments of ultra-precision machining technologies, especially ultra-precision grinding, ultra-precision cutting and polishing are also reviewed. The current state and problems of this field in China are analyzed. Finally, the development trends of this field and the coping strategies employed in China to keep up with the trends are discussed.

  16. High-Precision Distribution of Highly Stable Optical Pulse Trains with 8.8 × 10−19 instability

    PubMed Central

    Ning, B.; Zhang, S. Y.; Hou, D.; Wu, J. T.; Li, Z. B.; Zhao, J. Y.

    2014-01-01

    The high-precision distribution of optical pulse trains via fibre links has had a considerable impact in many fields. In most published work, the accuracy is still fundamentally limited by unavoidable noise sources, such as thermal and shot noise from conventional photodiodes and thermal noise from mixers. Here, we demonstrate a new high-precision timing distribution system that uses a highly precise phase detector to obviously reduce the effect of these limitations. Instead of using photodiodes and microwave mixers, we use several fibre Sagnac-loop-based optical-microwave phase detectors (OM-PDs) to achieve optical-electrical conversion and phase measurements, thereby suppressing the sources of noise and achieving ultra-high accuracy. The results of a distribution experiment using a 10-km fibre link indicate that our system exhibits a residual instability of 2.0 × 10−15 at1 s and8.8 × 10−19 at 40,000 s and an integrated timing jitter as low as 3.8 fs in a bandwidth of 1 Hz to 100 kHz. This low instability and timing jitter make it possible for our system to be used in the distribution of optical-clock signals or in applications that require extremely accurate frequency/time synchronisation. PMID:24870442

  17. Precision lens assembly with alignment turning system

    NASA Astrophysics Data System (ADS)

    Ho, Cheng-Fang; Huang, Chien-Yao; Lin, Yi-Hao; Kuo, Hui-Jean; Kuo, Ching-Hsiang; Hsu, Wei-Yao; Chen, Fong-Zhi

    2017-10-01

    The poker chip assembly with high precision lens barrels is widely applied to ultra-high performance optical system. ITRC applies the poker chip assembly technology to the high numerical aperture objective lenses and lithography projection lenses because of its high efficiency assembly process. In order to achieve high precision lens cell for poker chip assembly, an alignment turning system (ATS) is developed. The ATS includes measurement, alignment and turning modules. The measurement module is equipped with a non-contact displacement sensor (NCDS) and an autocollimator (ACM). The NCDS and ACM are used to measure centration errors of the top and the bottom surface of a lens respectively; then the amount of adjustment of displacement and tilt with respect to the rotational axis of the turning machine for the alignment module can be determined. After measurement, alignment and turning processes on the ATS, the centration error of a lens cell with 200 mm in diameter can be controlled within 10 arcsec. Furthermore, a poker chip assembly lens cell with three sub-cells is demonstrated, each sub-cells are measured and accomplished with alignment and turning processes. The lens assembly test for five times by each three technicians; the average transmission centration error of assembly lens is 12.45 arcsec. The results show that ATS can achieve high assembly efficiency for precision optical systems.

  18. High precision tungsten isotope analysis using MC-ICP-MS and application for terrestrial samples

    NASA Astrophysics Data System (ADS)

    Suzuki, K.; Takamasa, A.

    2017-12-01

    Tungsten has five isotopes (M = 180, 182, 183, 184, 186), and 182W isotope is a rediogenic isotope produced by b-decay of 182Hf. Its half life is short (8.9 m.y.), and 182W isotope has been investigated to understand the early Earth geochemical evolution. Both Hf and W are highly refractory elements. As Hf is a lithophile and W is a siderophile elements, 182Hf-182W system could give constraints on metal-silicate (core-mantle) differentiation such as especially early Earth system because of its larege fractionation betwenn core-mantle and short half life. Improvement of analytical techniques of W isotope analyses leads to findings of W isotope anomaly (mostly positive) in old komatiites (2.4 - 3.8 Ga) and young volcanic rocks (12 Ma Ontong Java Plateau and 6 Ma Baffin Bay). In our study, high-precision W isotope ratio measurement with MC-ICP-MS (Thermo co. Ltd., NEPTUNE PLUS). We have measured W standard solution (SRM 3163) and obtained the isotopic compositions with an precision of ± 5ppm. However, the standard solution, which separated by cation or anion exchange resin, has systematical 183W/184W drift to -5ppm. These phenomena was also reported by Willbold et al. (2011). Therefore, we used the standard solution for correction of isotopic fractionation of samples which was processed by the same method as that of the samples. We will present the data of terrestrial samples obtained by the technique dveloped in this study.

  19. Systems Pharmacology-Based Discovery of Natural Products for Precision Oncology Through Targeting Cancer Mutated Genes.

    PubMed

    Fang, J; Cai, C; Wang, Q; Lin, P; Zhao, Z; Cheng, F

    2017-03-01

    Massive cancer genomics data have facilitated the rapid revolution of a novel oncology drug discovery paradigm through targeting clinically relevant driver genes or mutations for the development of precision oncology. Natural products with polypharmacological profiles have been demonstrated as promising agents for the development of novel cancer therapies. In this study, we developed an integrated systems pharmacology framework that facilitated identifying potential natural products that target mutated genes across 15 cancer types or subtypes in the realm of precision medicine. High performance was achieved for our systems pharmacology framework. In case studies, we computationally identified novel anticancer indications for several US Food and Drug Administration-approved or clinically investigational natural products (e.g., resveratrol, quercetin, genistein, and fisetin) through targeting significantly mutated genes in multiple cancer types. In summary, this study provides a powerful tool for the development of molecularly targeted cancer therapies through targeting the clinically actionable alterations by exploiting the systems pharmacology of natural products. © 2017 The Authors CPT: Pharmacometrics & Systems Pharmacology published by Wiley Periodicals, Inc. on behalf of American Society for Clinical Pharmacology and Therapeutics.

  20. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Albert, F.; Hartemann, F. V.; Anderson, S. G.

    Tunable, high precision gamma-ray sources are under development to enable nuclear photonics, an emerging field of research. This paper focuses on the technological and theoretical challenges related to precision Compton scattering gamma-ray sources. In this scheme, incident laser photons are scattered and Doppler upshifted by a high brightness electron beam to generate tunable and highly collimated gamma-ray pulses. The electron and laser beam parameters can be optimized to achieve the spectral brightness and narrow bandwidth required by nuclear photonics applications. A description of the design of the next generation precision gamma-ray source currently under construction at Lawrence Livermore National Laboratorymore » is presented, along with the underlying motivations. Within this context, high-gradient X-band technology, used in conjunction with fiber-based photocathode drive laser and diode pumped solid-state interaction laser technologies, will be shown to offer optimal performance for high gamma-ray spectral flux, narrow bandwidth applications.« less

  1. Design of Mechanisms for Deployable, Optical Instruments: Guidelines for Reducing Hysteresis

    NASA Technical Reports Server (NTRS)

    Lake, Mark S.; Hachkowski, M. Roman

    2000-01-01

    This paper is intended to facilitate the development of deployable, optical instruments by providing a rational approach for the design, testing, and qualification of high-precision (i.e., low-hysteresis) deployment mechanisms for these instruments. Many of the guidelines included herein come directly from the field of optomechanical engineering, and are, therefore, neither newly developed guidelines, nor are they uniquely applicable to the design of high-precision deployment mechanisms. This paper is to be regarded as a guide to design and not a set of NASA requirements, except as may be defined in formal project specifications. Furthermore, due to the rapid pace of advancement in the field of precision deployment, this paper should be regarded as a preliminary set of guidelines. However, it is expected that this paper, with revisions as experience may indicate to be desirable, might eventually form the basis for a set of uniform design requirements for high-precision deployment mechanisms on future NASA space-based science instruments.

  2. Separation of Platinum from Palladium and Iridium in Iron Meteorites and Accurate High-Precision Determination of Platinum Isotopes by Multi-Collector ICP-MS.

    PubMed

    Hunt, Alison C; Ek, Mattias; Schönbächler, Maria

    2017-12-01

    This study presents a new measurement procedure for the isolation of Pt from iron meteorite samples. The method also allows for the separation of Pd from the same sample aliquot. The separation entails a two-stage anion-exchange procedure. In the first stage, Pt and Pd are separated from each other and from major matrix constituents including Fe and Ni. In the second stage, Ir is reduced with ascorbic acid and eluted from the column before Pt collection. Platinum yields for the total procedure were typically 50-70%. After purification, high-precision Pt isotope determinations were performed by multi-collector ICP-MS. The precision of the new method was assessed using the IIAB iron meteorite North Chile. Replicate analyses of multiple digestions of this material yielded an intermediate precision for the measurement results of 0.73 for ε 192 Pt, 0.15 for ε 194 Pt and 0.09 for ε 196 Pt (2 standard deviations). The NIST SRM 3140 Pt solution reference material was passed through the measurement procedure and yielded an isotopic composition that is identical to the unprocessed Pt reference material. This indicates that the new technique is unbiased within the limit of the estimated uncertainties. Data for three iron meteorites support that Pt isotope variations in these samples are due to exposure to galactic cosmic rays in space.

  3. Compact Integration of a GSM-19 Magnetic Sensor with High-Precision Positioning using VRS GNSS Technology

    PubMed Central

    Martín, Angel; Padín, Jorge; Anquela, Ana Belén; Sánchez, Juán; Belda, Santiago

    2009-01-01

    Magnetic data consists of a sequence of collected points with spatial coordinates and magnetic information. The spatial location of these points needs to be as exact as possible in order to develop a precise interpretation of magnetic anomalies. GPS is a valuable tool for accomplishing this objective, especially if the RTK approach is used. In this paper the VRS (Virtual Reference Station) technique is introduced as a new approach for real-time positioning of magnetic sensors. The main advantages of the VRS approach are, firstly, that only a single GPS receiver is needed (no base station is necessary), reducing field work and equipment costs. Secondly, VRS can operate at distances separated 50–70 km from the reference stations without degrading accuracy. A compact integration of a GSM-19 magnetometer sensor with a geodetic GPS antenna is presented; this integration does not diminish the operational flexibility of the original magnetometer and can work with the VRS approach. The coupled devices were tested in marshlands around Gandia, a city located approximately 100 km South of Valencia (Spain), thought to be the site of a Roman cemetery. The results obtained show adequate geometry and high-precision positioning for the structures to be studied (a comparison with the original low precision GPS of the magnetometer is presented). Finally, the results of the magnetic survey are of great interest for archaeological purposes. PMID:22574055

  4. Plasma-equivalent glucose at the point-of-care: evaluation of Roche Accu-Chek Inform and Abbott Precision PCx glucose meters.

    PubMed

    Ghys, Timothy; Goedhuys, Wim; Spincemaille, Katrien; Gorus, Frans; Gerlo, Erik

    2007-01-01

    Glucose testing at the bedside has become an integral part of the management strategy in diabetes and of the careful maintenance of normoglycemia in all patients in intensive care units. We evaluated two point-of-care glucometers for the determination of plasma-equivalent blood glucose. The Precision PCx and the Accu-Chek Inform glucometers were evaluated. Imprecision and bias relative to the Vitros 950 system were determined using protocols of the Clinical Laboratory Standards Institute (CLSI). The effects of low, normal, and high hematocrit levels were investigated. Interference by maltose was also studied. Within-run precision for both instruments ranged from 2-5%. Total imprecision was less than 5% except for the Accu-Chek Inform at the low level (2.9 mmol/L). Both instruments correlated well with the comparison instrument and showed excellent recovery and linearity. Both systems reported at least 95% of their values within zone A of the Clarke Error Grid, and both fulfilled the CLSI quality criteria. The more stringent goals of the American Diabetes Association, however, were not reached. Both systems showed negative bias at high hematocrit levels. Maltose interfered with the glucose measurements on the Accu-Chek Inform but not on the Precision PCx. Both systems showed satisfactory imprecision and were reliable in reporting plasma-equivalent glucose concentrations. The most stringent performance goals were however not met.

  5. Control of lower incisor inclination with a completely customized lingual appliance for dentoalveolar compensation of class III malocclusion.

    PubMed

    Lossdörfer, Stefan; Schwestka-Polly, Rainer; Wiechmann, Dirk

    2013-09-01

    Bracket slots and orthodontic archwires offering high dimensional precision are needed for fully customized lingual appliances. We aimed to investigate whether high-precision appliances of this type enable dentoalveolar compensation of class III malocclusion so that lower incisor inclination at the end of treatment will closely match the anticipated situation as defined in a pretreatment setup. This retrospective study included a total of 34 consecutive patients who had worn a fully customized lingual appliance to achieve dentoalveolar compensation for class III malocclusion by intermaxillary elastics, or proximal enamel reduction, or extraction of teeth in one or both jaws. Casts fabricated at different points in time were three-dimensionally scanned to analyze how precisely the lower incisor inclinations envisioned in the setup were implemented in clinical practice. Aside from minor deviations of ±3.75°, the lower incisor inclinations were clinically implemented as planned even in patients with major sagittal discrepancies. Treatment goals predefined in a setup of dentoalveolar compensation for class III malocclusion can be very precisely achieved via a customized lingual appliance. Correct planning can prevent undesirable lingual tipping of the lower incisors. This finding should not encourage a more liberal use of dentoalveolar compensation, but it should heighten clinicians' awareness of how essential it is to sufficiently consider the individual anatomy of the dentoalveolar complex during treatment planning.

  6. High Precision Continuous and Real-Time Measurement of Atmospheric Oxygen Using Cavity Ring-Down Spectroscopy

    NASA Astrophysics Data System (ADS)

    Kim-Hak, David; Leuenberger, Markus; Berhanu, Tesfaye; Nyfeler, Peter; Hoffnagle, John; Sun, Minghua

    2017-04-01

    Oxygen (O2) is a major and vital component of the Earth atmosphere representing about 21% of its composition. It is consumed or produced through biochemical processes such as combustion, respiration, and photosynthesis and can be used as a top-down constraint on the carbon cycle. The observed variations of oxygen in the atmosphere are relatively small, in the order of a few ppm's. This presents the main technical challenge for the measurement since a very high level of precision on a large background is required. Only few analytical methods including mass spectrometry, fuel, ultraviolet[1] and paramagnetic cells are capable of achieving it. Here we present new developments of a high-precision gas analyzer that utilizes the technique of Cavity Ring-Down Spectroscopy to measure oxygen concentration and its oxygen isotope ratio 18O/16O. Its compact and ruggedness design combined with high precision and long-term stability allows the user to deploy the instrument in the field for continuous monitoring of atmospheric oxygen level. Measurements have a 1-σ 5-minute averaging precision of 1-2 ppm for O2 over a dynamic range of 0-50%. We will present comparative test results of this instrument against the incumbent technologies such as the mass spectrometer and the paramagnetic cell. In addition, we will demonstrate its long-term stability from a field deployment in Switzerland.

  7. Accurate Wavelength Measurement of High-Energy Gamma Rays from the 35Cl(n,{gamma}) Reactions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Belgya, T.; Molnar, G.L.; Mutti, P.

    2005-05-24

    The energies of eight gamma rays in the 36Cl level scheme have been measured with high precision using the 35Cl(n,{gamma}) reaction and the GAMS4 spectrometer. From these energies, a skeleton decay scheme for 36Cl was constructed, and the binding energy of 36Cl was determined to higher precision than previously. It is shown that using this new information, binding energy determination from Ge detector experiments for other nuclei can also be made with higher precision than now available. The measurement of additional weaker 36Cl gamma rays is continuing.

  8. Local precision nets for monitoring movements of faults and large engineering structures

    NASA Technical Reports Server (NTRS)

    Henneberg, H. G.

    1978-01-01

    Along Bocono Fault were installed local high precision geodetic nets to observe the possible horizontal crustal deformations and movements. In the fault area there are few big structures which are also included in the mentioned investigation. In the near future, measurements shall be extended to other sites of Bocono Fault and also to the El Pilar Fault. In the same way and by similar methods high precision geodetic nets are applied in Venezuela to observe the behavior of big structures, as bridges and large dams and of earth surface deformations due to industrial activities.

  9. High-precision laser microcutting and laser microdrilling using diffractive beam-splitting and high-precision flexible beam alignment

    NASA Astrophysics Data System (ADS)

    Zibner, F.; Fornaroli, C.; Holtkamp, J.; Shachaf, Lior; Kaplan, Natan; Gillner, A.

    2017-08-01

    High-precision laser micro machining gains more importance in industrial applications every month. Optical systems like the helical optics offer highest quality together with controllable and adjustable drilling geometry, thus as taper angle, aspect ratio and heat effected zone. The helical optics is based on a rotating Dove-prism which is mounted in a hollow shaft engine together with other optical elements like wedge prisms and plane plates. Although the achieved quality can be interpreted as extremely high the low process efficiency is a main reason that this manufacturing technology has only limited demand within the industrial market. The objective of the research studies presented in this paper is to dramatically increase process efficiency as well as process flexibility. During the last years, the average power of commercial ultra-short pulsed laser sources has increased significantly. The efficient utilization of the high average laser power in the field of material processing requires an effective distribution of the laser power onto the work piece. One approach to increase the efficiency is the application of beam splitting devices to enable parallel processing. Multi beam processing is used to parallelize the fabrication of periodic structures as most application only require a partial amount of the emitted ultra-short pulsed laser power. In order to achieve highest flexibility while using multi beam processing the single beams are diverted and re-guided in a way that enables the opportunity to process with each partial beam on locally apart probes or semimanufactures.

  10. Realization of Ru-C Eutectic Point for Evaluation of W-Re and IrRh/Ir Thermocouples

    NASA Astrophysics Data System (ADS)

    Ogura, H.; Masuyama, S.; Izuchi, M.; Yamazawa, K.; Arai, M.

    2015-03-01

    Tungsten-rhenium (W-Re) thermocouples are widely used in industry for measurements at high temperatures, up to . Since the electromotive force (emf) of a W-Re thermocouple is known to change during exposure at high temperatures, evaluation of the emf stability is essential for measuring temperature precisely and for realizing precise temperature control used to ensure the quality of products subject to annealing processes. To evaluate precisely the thermoelectric stability around , two Ru-C cells (crucible and Ru-C eutectic alloy) were constructed in our laboratory. The key feature of the cells is that their dimensions are large to ensure there is sufficient immersion available to evaluate the homogeneity characteristics of the thermocouples. By using one of the Ru-C cells, the drift and inhomogeneity of Type C (tungsten-5 % rhenium vs tungsten-26 % rhenium) thermocouples during an exposure to high temperature around were evaluated. Furthermore, to explore possible applications of the eutectic point to other types of high-temperature thermocouples, the drift of an IrRh/Ir thermocouple (iridium-40 % rhodium vs iridium) was also evaluated using another Ru-C cell. The tests with W-Re and IrRh/Ir thermocouples demonstrate that the newly developed Ru-C cells can be used to successfully realize melting plateaux repeatedly. This enables the long-term drift measurements essential for the evaluation and improvement of high-temperature thermocouples. The results obtained in this study will also be useful for evaluating the uncertainty of thermocouple calibrations at around.

  11. [Current situation and thoughts on precision medicine about the treatment of tumor in China].

    PubMed

    Guo, J C; Yuan, D

    2016-07-01

    With United States starting"precision medical plan", it is widespread all over the world and opens a new direction to the development of medicine. Our country also starts the plan, trying to take the opportunity. At present, tumor threats human health with high incidence and mortality. In China, the incidence and mortality of tumor has been on the rise.So the tumor has become one of the most important fields of precision medicine.Precision medicine, hoping to reveal the Chinese characteristics of precision medicine, and getting the personal and social maximize health benefits are discussed in the paper.

  12. Precision axial translator with high stability.

    PubMed

    Bösch, M A

    1979-08-01

    We describe a new type of translator which is inherently stable against torsion and twisting. This concentric translator is also ideally suited for precise axial motion with clearance of the center line.

  13. Applied 3D printing for microscopy in health science research

    NASA Astrophysics Data System (ADS)

    Brideau, Craig; Zareinia, Kourosh; Stys, Peter

    2015-03-01

    The rapid prototyping capability offered by 3D printing is considered advantageous for commercial applications. However, the ability to quickly produce precision custom devices is highly beneficial in the research laboratory setting as well. Biological laboratories require the manipulation and analysis of delicate living samples, thus the ability to create custom holders, support equipment, and adapters allow the extension of existing laboratory machines. Applications include camera adapters and stage sample holders for microscopes, surgical guides for tissue preparation, and small precision tools customized to unique specifications. Where high precision is needed, especially the reproduction of fine features, a printer with a high resolution is needed. However, the introduction of cheaper, lower resolution commercial printers have been shown to be more than adequate for less demanding projects. For direct manipulation of delicate samples, biocompatible raw materials are often required, complicating the printing process. This paper will examine some examples of 3D-printed objects for laboratory use, and provide an overview of the requirements for 3D printing for this application. Materials, printing resolution, production, and ease of use will all be reviewed with an eye to producing better printers and techniques for laboratory applications. Specific case studies will highlight applications for 3D-printed devices in live animal imaging for both microscopy and Magnetic Resonance Imaging.

  14. A robust and high precision optimal explicit guidance scheme for solid motor propelled launch vehicles with thrust and drag uncertainty

    NASA Astrophysics Data System (ADS)

    Maity, Arnab; Padhi, Radhakant; Mallaram, Sanjeev; Mallikarjuna Rao, G.; Manickavasagam, M.

    2016-10-01

    A new nonlinear optimal and explicit guidance law is presented in this paper for launch vehicles propelled by solid motors. It can ensure very high terminal precision despite not having the exact knowledge of the thrust-time curve apriori. This was motivated from using it for a carrier launch vehicle in a hypersonic mission, which demands an extremely narrow terminal accuracy window for the launch vehicle for successful initiation of operation of the hypersonic vehicle. The proposed explicit guidance scheme, which computes the optimal guidance command online, ensures the required stringent final conditions with high precision at the injection point. A key feature of the proposed guidance law is an innovative extension of the recently developed model predictive static programming guidance with flexible final time. A penalty function approach is also followed to meet the input and output inequality constraints throughout the vehicle trajectory. In this paper, the guidance law has been successfully validated from nonlinear six degree-of-freedom simulation studies by designing an inner-loop autopilot as well, which enhances confidence of its usefulness significantly. In addition to excellent nominal results, the proposed guidance has been found to have good robustness for perturbed cases as well.

  15. Dynamical investigations of the multiple stars

    NASA Astrophysics Data System (ADS)

    Kiyaeva, Olga V.; Zhuchkov, Roman Ya.

    2017-11-01

    Two multiple stars - the quadruple star - Bootis (ADS 9173) and the triple star T Taury were investigated. The visual double star - Bootiswas studied on the basis of the Pulkovo 26-inch refractor observations 1982-2013. An invisible satellite of the component A was discovered due to long-term uniform series of observations. Its orbital period is 20 ± 2 years. The known invisible satellite of the component B with near 5 years period was confirmed due to high precision CCD observations. The astrometric orbits of the both components were calculated. The orbits of inner and outer pairs of the pre-main sequence binary T Taury were calculated on the basis of high precision observations by the VLT and on the Keck II Telescope. This weakly hierarchical triple system is stable with probability more than 70%.

  16. A Flexure-Based Mechanism for Precision Adjustment of National Ignition Facility Target Shrouds in Three Rotational Degrees of Freedom

    DOE PAGES

    Boehm, K. -J.; Gibson, C. R.; Hollaway, J. R.; ...

    2016-09-01

    This study presents the design of a flexure-based mount allowing adjustment in three rotational degrees of freedom (DOFs) through high-precision set-screw actuators. The requirements of the application called for small but controlled angular adjustments for mounting a cantilevered beam. The proposed design is based on an array of parallel beams to provide sufficiently high stiffness in the translational directions while allowing angular adjustment through the actuators. A simplified physical model in combination with standard beam theory was applied to estimate the deflection profile and maximum stresses in the beams. A finite element model was built to calculate the stresses andmore » beam profiles for scenarios in which the flexure is simultaneously actuated in more than one DOF.« less

  17. High-performance liquid chromatographic method optimization for ondansetron assay in extemporaneous topical gel and in marketed products.

    PubMed

    Quamrun, Masuda; Mamoon, Rashid; Nasheed, Shams; Randy, Mullins

    2014-01-01

    The compounding and evaluation of ondansetron hydrochloride dihydrate topical gel, 2.5% w/w, were conducted in this study. The gelling agent was Carbopol 940. Ethanol 70% in purified water was used to dissolve the drug and disperse the gelling agent. A gel was formed by adding drops of 0.1 N sodium hydroxide solution. To assay this gel, we developed a simple and reproducible stability--indicating high-performance liquid chromatographic method. This method was validated for specificity, accuracy, and precision. The compounded gel was assayed in triplicate, and the average recovery was 98.3%. Ondansetron marketed products were analyzed for comparison with the compounded formulation. Assay, accuracy, and precision data of the compounded topical gel were comparable to the marketed products.

  18. AMMI adjustment for statistical analysis of an international wheat yield trial.

    PubMed

    Crossa, J; Fox, P N; Pfeiffer, W H; Rajaram, S; Gauch, H G

    1991-01-01

    Multilocation trials are important for the CIMMYT Bread Wheat Program in producing high-yielding, adapted lines for a wide range of environments. This study investigated procedures for improving predictive success of a yield trial, grouping environments and genotypes into homogeneous subsets, and determining the yield stability of 18 CIMMYT bread wheats evaluated at 25 locations. Additive Main effects and Multiplicative Interaction (AMMI) analysis gave more precise estimates of genotypic yields within locations than means across replicates. This precision facilitated formation by cluster analysis of more cohesive groups of genotypes and locations for biological interpretation of interactions than occurred with unadjusted means. Locations were clustered into two subsets for which genotypes with positive interactions manifested in high, stable yields were identified. The analyses highlighted superior selections with both broad and specific adaptation.

  19. Efficient exploration of cosmology dependence in the EFT of LSS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cataneo, Matteo; Foreman, Simon; Senatore, Leonardo, E-mail: matteoc@dark-cosmology.dk, E-mail: sfore@stanford.edu, E-mail: senatore@stanford.edu

    The most effective use of data from current and upcoming large scale structure (LSS) and CMB observations requires the ability to predict the clustering of LSS with very high precision. The Effective Field Theory of Large Scale Structure (EFTofLSS) provides an instrument for performing analytical computations of LSS observables with the required precision in the mildly nonlinear regime. In this paper, we develop efficient implementations of these computations that allow for an exploration of their dependence on cosmological parameters. They are based on two ideas. First, once an observable has been computed with high precision for a reference cosmology, formore » a new cosmology the same can be easily obtained with comparable precision just by adding the difference in that observable, evaluated with much less precision. Second, most cosmologies of interest are sufficiently close to the Planck best-fit cosmology that observables can be obtained from a Taylor expansion around the reference cosmology. These ideas are implemented for the matter power spectrum at two loops and are released as public codes. When applied to cosmologies that are within 3σ of the Planck best-fit model, the first method evaluates the power spectrum in a few minutes on a laptop, with results that have 1% or better precision, while with the Taylor expansion the same quantity is instantly generated with similar precision. The ideas and codes we present may easily be extended for other applications or higher-precision results.« less

  20. Efficient exploration of cosmology dependence in the EFT of LSS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cataneo, Matteo; Foreman, Simon; Senatore, Leonardo

    The most effective use of data from current and upcoming large scale structure (LSS) and CMB observations requires the ability to predict the clustering of LSS with very high precision. The Effective Field Theory of Large Scale Structure (EFTofLSS) provides an instrument for performing analytical computations of LSS observables with the required precision in the mildly nonlinear regime. In this paper, we develop efficient implementations of these computations that allow for an exploration of their dependence on cosmological parameters. They are based on two ideas. First, once an observable has been computed with high precision for a reference cosmology, formore » a new cosmology the same can be easily obtained with comparable precision just by adding the difference in that observable, evaluated with much less precision. Second, most cosmologies of interest are sufficiently close to the Planck best-fit cosmology that observables can be obtained from a Taylor expansion around the reference cosmology. These ideas are implemented for the matter power spectrum at two loops and are released as public codes. When applied to cosmologies that are within 3σ of the Planck best-fit model, the first method evaluates the power spectrum in a few minutes on a laptop, with results that have 1% or better precision, while with the Taylor expansion the same quantity is instantly generated with similar precision. Finally, the ideas and codes we present may easily be extended for other applications or higher-precision results.« less

  1. Efficient exploration of cosmology dependence in the EFT of LSS

    DOE PAGES

    Cataneo, Matteo; Foreman, Simon; Senatore, Leonardo

    2017-04-18

    The most effective use of data from current and upcoming large scale structure (LSS) and CMB observations requires the ability to predict the clustering of LSS with very high precision. The Effective Field Theory of Large Scale Structure (EFTofLSS) provides an instrument for performing analytical computations of LSS observables with the required precision in the mildly nonlinear regime. In this paper, we develop efficient implementations of these computations that allow for an exploration of their dependence on cosmological parameters. They are based on two ideas. First, once an observable has been computed with high precision for a reference cosmology, formore » a new cosmology the same can be easily obtained with comparable precision just by adding the difference in that observable, evaluated with much less precision. Second, most cosmologies of interest are sufficiently close to the Planck best-fit cosmology that observables can be obtained from a Taylor expansion around the reference cosmology. These ideas are implemented for the matter power spectrum at two loops and are released as public codes. When applied to cosmologies that are within 3σ of the Planck best-fit model, the first method evaluates the power spectrum in a few minutes on a laptop, with results that have 1% or better precision, while with the Taylor expansion the same quantity is instantly generated with similar precision. Finally, the ideas and codes we present may easily be extended for other applications or higher-precision results.« less

  2. A discrete time-varying internal model-based approach for high precision tracking of a multi-axis servo gantry.

    PubMed

    Zhang, Zhen; Yan, Peng; Jiang, Huan; Ye, Peiqing

    2014-09-01

    In this paper, we consider the discrete time-varying internal model-based control design for high precision tracking of complicated reference trajectories generated by time-varying systems. Based on a novel parallel time-varying internal model structure, asymptotic tracking conditions for the design of internal model units are developed, and a low order robust time-varying stabilizer is further synthesized. In a discrete time setting, the high precision tracking control architecture is deployed on a Voice Coil Motor (VCM) actuated servo gantry system, where numerical simulations and real time experimental results are provided, achieving the tracking errors around 3.5‰ for frequency-varying signals. Copyright © 2014 ISA. Published by Elsevier Ltd. All rights reserved.

  3. High-precision 41K/39K measurements by MC-ICP-MS indicate terrestrial variability of δ41K

    USGS Publications Warehouse

    Morgan, Leah; Santiago Ramos, Danielle P.; Davidheiser-Kroll, Brett; Faithfull, John; Lloyd, Nicholas S.; Ellam, Rob M.; Higgins, John A.

    2018-01-01

    Potassium is a major component in continental crust, the fourth-most abundant cation in seawater, and a key element in biological processes. Until recently, difficulties with existing analytical techniques hindered our ability to identify natural isotopic variability of potassium isotopes in terrestrial materials. However, measurement precision has greatly improved and a range of K isotopic compositions has now been demonstrated in natural samples. In this study, we present a new technique for high-precision measurement of K isotopic ratios using high-resolution, cold plasma multi-collector mass spectrometry. We apply this technique to demonstrate natural variability in the ratio of 41K to 39K in a diverse group of geological and biological samples, including silicate and evaporite minerals, seawater, and plant and animal tissues. The total range in 41K/39K ratios is ca. 2.6‰, with a long-term external reproducibility of 0.17‰ (2, N=108). Seawater and seawater-derived evaporite minerals are systematically enriched in 41K compared to silicate minerals by ca. 0.6‰, a result consistent with recent findings1, 2. Although our average bulk-silicate Earth value (-0.54‰) is indistinguishable from previously published values, we find systematic δ41K variability in some high-temperature sample suites, particularly those with evidence for the presence of fluids. The δ41K values of biological samples span a range of ca. 1.2‰ between terrestrial mammals, plants, and marine organisms. Implications of terrestrial K isotope variability for the atomic weight of K and K-based geochronology are discussed. Our results indicate that high-precision measurements of stable K isotopes, made using commercially available mass spectrometers, can provide unique insights into the chemistry of potassium in geological and biological systems. 

  4. Test of CCD Precision Limits for Differential Photometry

    NASA Technical Reports Server (NTRS)

    Borucki, W. J.; Dunham, E. W.; Wei, M. Z.; Robinson, L. B.; Ford, C. H.; Granados, A. F.

    1995-01-01

    Results of tests to demonstrate the very high differential-photometric stability of CCD light sensors are presented. The measurements reported here demonstrate that in a controlled laboratory environment, a front-illuminated CCD can provide differential-photometric measurements with reproducible precision approaching one part in 105. Practical limitations to the precision of differential-photometric measurements with CCDs and implications for spaceborne applications are discussed.

  5. Capacity and precision in an animal model of visual short-term memory.

    PubMed

    Lara, Antonio H; Wallis, Jonathan D

    2012-03-14

    Temporary storage of information in visual short-term memory (VSTM) is a key component of many complex cognitive abilities. However, it is highly limited in capacity. Understanding the neurophysiological nature of this capacity limit will require a valid animal model of VSTM. We used a multiple-item color change detection task to measure macaque monkeys' VSTM capacity. Subjects' performance deteriorated and reaction times increased as a function of the number of items in memory. Additionally, we measured the precision of the memory representations by varying the distance between sample and test colors. In trials with similar sample and test colors, subjects made more errors compared to trials with highly discriminable colors. We modeled the error distribution as a Gaussian function and used this to estimate the precision of VSTM representations. We found that as the number of items in memory increases the precision of the representations decreases dramatically. Additionally, we found that focusing attention on one of the objects increases the precision with which that object is stored and degrades the precision of the remaining. These results are in line with recent findings in human psychophysics and provide a solid foundation for understanding the neurophysiological nature of the capacity limit of VSTM.

  6. 92 Years of the Ising Model: A High Resolution Monte Carlo Study

    NASA Astrophysics Data System (ADS)

    Xu, Jiahao; Ferrenberg, Alan M.; Landau, David P.

    2018-04-01

    Using extensive Monte Carlo simulations that employ the Wolff cluster flipping and data analysis with histogram reweighting and quadruple precision arithmetic, we have investigated the critical behavior of the simple cubic Ising model with lattice sizes ranging from 163 to 10243. By analyzing data with cross correlations between various thermodynamic quantities obtained from the same data pool, we obtained the critical inverse temperature K c = 0.221 654 626(5) and the critical exponent of the correlation length ν = 0.629 912(86) with precision that improves upon previous Monte Carlo estimates.

  7. Composite panel development at JPL

    NASA Technical Reports Server (NTRS)

    Mcelroy, Paul; Helms, Rich

    1988-01-01

    Parametric computer studies can be use in a cost effective manner to determine optimized composite mirror panel designs. An InterDisciplinary computer Model (IDM) was created to aid in the development of high precision reflector panels for LDR. The materials properties, thermal responses, structural geometries, and radio/optical precision are synergistically analyzed for specific panel designs. Promising panels designs are fabricated and tested so that comparison with panel test results can be used to verify performance prediction models and accommodate design refinement. The iterative approach of computer design and model refinement with performance testing and materials optimization has shown good results for LDR panels.

  8. Quadratic electroweak corrections for polarized Moller scattering

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    A. Aleksejevs, S. Barkanova, Y. Kolomensky, E. Kuraev, V. Zykunov

    2012-01-01

    The paper discusses the two-loop (NNLO) electroweak radiative corrections to the parity violating electron-electron scattering asymmetry induced by squaring one-loop diagrams. The calculations are relevant for the ultra-precise 11 GeV MOLLER experiment planned at Jefferson Laboratory and experiments at high-energy future electron colliders. The imaginary parts of the amplitudes are taken into consideration consistently in both the infrared-finite and divergent terms. The size of the obtained partial correction is significant, which indicates a need for a complete study of the two-loop electroweak radiative corrections in order to meet the precision goals of future experiments.

  9. Camera-based micro interferometer for distance sensing

    NASA Astrophysics Data System (ADS)

    Will, Matthias; Schädel, Martin; Ortlepp, Thomas

    2017-12-01

    Interference of light provides a high precision, non-contact and fast method for measurement method for distances. Therefore this technology dominates in high precision systems. However, in the field of compact sensors capacitive, resistive or inductive methods dominates. The reason is, that the interferometric system has to be precise adjusted and needs a high mechanical stability. As a result, we have usual high-priced complex systems not suitable in the field of compact sensors. To overcome these we developed a new concept for a very small interferometric sensing setup. We combine a miniaturized laser unit, a low cost pixel detector and machine vision routines to realize a demonstrator for a Michelson type micro interferometer. We demonstrate a low cost sensor smaller 1cm3 including all electronics and demonstrate distance sensing up to 30 cm and resolution in nm range.

  10. Fine-resolution repeat topographic surveying of dryland landscapes using UAS-based structure-from-motion photogrammetry: Assessing accuracy and precision against traditional ground-based erosion measurements

    USGS Publications Warehouse

    Gillian, Jeffrey K.; Karl, Jason W.; Elaksher, Ahmed; Duniway, Michael C.

    2017-01-01

    Structure-from-motion (SfM) photogrammetry from unmanned aerial system (UAS) imagery is an emerging tool for repeat topographic surveying of dryland erosion. These methods are particularly appealing due to the ability to cover large landscapes compared to field methods and at reduced costs and finer spatial resolution compared to airborne laser scanning. Accuracy and precision of high-resolution digital terrain models (DTMs) derived from UAS imagery have been explored in many studies, typically by comparing image coordinates to surveyed check points or LiDAR datasets. In addition to traditional check points, this study compared 5 cm resolution DTMs derived from fixed-wing UAS imagery with a traditional ground-based method of measuring soil surface change called erosion bridges. We assessed accuracy by comparing the elevation values between DTMs and erosion bridges along thirty topographic transects each 6.1 m long. Comparisons occurred at two points in time (June 2014, February 2015) which enabled us to assess vertical accuracy with 3314 data points and vertical precision (i.e., repeatability) with 1657 data points. We found strong vertical agreement (accuracy) between the methods (RMSE 2.9 and 3.2 cm in June 2014 and February 2015, respectively) and high vertical precision for the DTMs (RMSE 2.8 cm). Our results from comparing SfM-generated DTMs to check points, and strong agreement with erosion bridge measurements suggests repeat UAS imagery and SfM processing could replace erosion bridges for a more synoptic landscape assessment of shifting soil surfaces for some studies. However, while collecting the UAS imagery and generating the SfM DTMs for this study was faster than collecting erosion bridge measurements, technical challenges related to the need for ground control networks and image processing requirements must be addressed before this technique could be applied effectively to large landscapes.

  11. A Study into the Method of Precise Orbit Determination of a HEO Orbiter by GPS and Accelerometer

    NASA Technical Reports Server (NTRS)

    Ikenaga, Toshinori; Hashida, Yoshi; Unwin, Martin

    2007-01-01

    In the present day, orbit determination by Global Positioning System (GPS) is not unusual. Especially for low-cost small satellites, position determination by an on-board GPS receiver provides a cheap, reliable and precise method. However, the original purpose of GPS is for ground users, so the transmissions from all of the GPS satellites are directed toward the Earth s surface. Hence there are some restrictions for users above the GPS constellation to detect those signals. On the other hand, a desire for precise orbit determination for users in orbits higher than GPS constellation exists. For example, the next Japanese Very Long Baseline Interferometry (VLBI) mission "ASTRO-G" is trying to determine its orbit in an accuracy of a few centimeters at apogee. The use of GPS is essential for such ultra accurate orbit determination. This study aims to construct a method for precise orbit determination for such high orbit users, especially in High Elliptical Orbits (HEOs). There are several approaches for this objective. In this study, a hybrid method with GPS and an accelerometer is chosen. Basically, while the position cannot be determined by an on-board GPS receiver or other Range and Range Rate (RARR) method, all we can do to estimate the user satellite s position is to propagate the orbit along with the force model, which is not perfectly correct. However if it has an accelerometer (ACC), the coefficients of the air drag and the solar radiation pressure applied to the user satellite can be updated and then the propagation along with the "updated" force model can improve the fitting accuracy of the user satellite s orbit. In this study, it is assumed to use an accelerometer available in the present market. The effects by a bias error of an accelerometer will also be discussed in this paper.

  12. Measuring atmospheric density using GPS-LEO tracking data

    NASA Astrophysics Data System (ADS)

    Kuang, D.; Desai, S.; Sibthorpe, A.; Pi, X.

    2014-01-01

    We present a method to estimate the total neutral atmospheric density from precise orbit determination of Low Earth Orbit (LEO) satellites. We derive the total atmospheric density by determining the drag force acting on the LEOs through centimeter-level reduced-dynamic precise orbit determination (POD) using onboard Global Positioning System (GPS) tracking data. The precision of the estimated drag accelerations is assessed using various metrics, including differences between estimated along-track accelerations from consecutive 30-h POD solutions which overlap by 6 h, comparison of the resulting accelerations with accelerometer measurements, and comparison against an existing atmospheric density model, DTM-2000. We apply the method to GPS tracking data from CHAMP, GRACE, SAC-C, Jason-2, TerraSAR-X and COSMIC satellites, spanning 12 years (2001-2012) and covering orbital heights from 400 km to 1300 km. Errors in the estimates, including those introduced by deficiencies in other modeled forces (such as solar radiation pressure and Earth radiation pressure), are evaluated and the signal and noise levels for each satellite are analyzed. The estimated density data from CHAMP, GRACE, SAC-C and TerraSAR-X are identified as having high signal and low noise levels. These data all have high correlations with anominal atmospheric density model and show common features in relative residuals with respect to the nominal model in related parameter space. On the contrary, the estimated density data from COSMIC and Jason-2 show errors larger than the actual signal at corresponding altitudes thus having little practical value for this study. The results demonstrate that this method is applicable to data from a variety of missions and can provide useful total neutral density measurements for atmospheric study up to altitude as high as 715 km, with precision and resolution between those derived from traditional special orbital perturbation analysis and those obtained from onboard accelerometers.

  13. Moving the Weber Fraction: The Perceptual Precision for Moment of Inertia Increases with Exploration Force

    PubMed Central

    Debats, Nienke B.; Kingma, Idsart; Beek, Peter J.; Smeets, Jeroen B. J.

    2012-01-01

    How does the magnitude of the exploration force influence the precision of haptic perceptual estimates? To address this question, we examined the perceptual precision for moment of inertia (i.e., an object's “angular mass”) under different force conditions, using the Weber fraction to quantify perceptual precision. Participants rotated a rod around a fixed axis and judged its moment of inertia in a two-alternative forced-choice task. We instructed different levels of exploration force, thereby manipulating the magnitude of both the exploration force and the angular acceleration. These are the two signals that are needed by the nervous system to estimate moment of inertia. Importantly, one can assume that the absolute noise on both signals increases with an increase in the signals' magnitudes, while the relative noise (i.e., noise/signal) decreases with an increase in signal magnitude. We examined how the perceptual precision for moment of inertia was affected by this neural noise. In a first experiment we found that a low exploration force caused a higher Weber fraction (22%) than a high exploration force (13%), which suggested that the perceptual precision was constrained by the relative noise. This hypothesis was supported by the result of a second experiment, in which we found that the relationship between exploration force and Weber fraction had a similar shape as the theoretical relationship between signal magnitude and relative noise. The present study thus demonstrated that the amount of force used to explore an object can profoundly influence the precision by which its properties are perceived. PMID:23028437

  14. Why precision medicine is not the best route to a healthier world.

    PubMed

    Rey-López, Juan Pablo; Sá, Thiago Herick de; Rezende, Leandro Fórnias Machado de

    2018-02-05

    Precision medicine has been announced as a new health revolution. The term precision implies more accuracy in healthcare and prevention of diseases, which could yield substantial cost savings. However, scientific debate about precision medicine is needed to avoid wasting economic resources and hype. In this commentary, we express the reasons why precision medicine cannot be a health revolution for population health. Advocates of precision medicine neglect the limitations of individual-centred, high-risk strategies (reduced population health impact) and the current crisis of evidence-based medicine. Overrated "precision medicine" promises may be serving vested interests, by dictating priorities in the research agenda and justifying the exorbitant healthcare expenditure in our finance-based medicine. If societies aspire to address strong risk factors for non-communicable diseases (such as air pollution, smoking, poor diets, or physical inactivity), they need less medicine and more investment in population prevention strategies.

  15. Navigation Doppler lidar sensor for precision altitude and vector velocity measurements: flight test results

    NASA Astrophysics Data System (ADS)

    Pierrottet, Diego; Amzajerdian, Farzin; Petway, Larry; Barnes, Bruce; Lockard, George; Hines, Glenn

    2011-06-01

    An all fiber Navigation Doppler Lidar (NDL) system is under development at NASA Langley Research Center (LaRC) for precision descent and landing applications on planetary bodies. The sensor produces high-resolution line of sight range, altitude above ground, ground relative attitude, and high precision velocity vector measurements. Previous helicopter flight test results demonstrated the NDL measurement concepts, including measurement precision, accuracies, and operational range. This paper discusses the results obtained from a recent campaign to test the improved sensor hardware, and various signal processing algorithms applicable to real-time processing. The NDL was mounted in an instrumentation pod aboard an Erickson Air-Crane helicopter and flown over various terrains. The sensor was one of several sensors tested in this field test by NASA's Autonomous Landing and Hazard Avoidance Technology (ALHAT) project.

  16. The advancement of the high precision stress polishing

    NASA Astrophysics Data System (ADS)

    Li, Chaoqiang; Lei, Baiping; Han, Yu

    2016-10-01

    The stress polishing is a kind of large-diameter aspheric machining technology with high efficiency. This paper focuses on the principle, application in the processing of large aspheric mirror, and the domestic and foreign research status of stress polishing, aimed at the problem of insufficient precision of mirror surface deformation calculated by some traditional theories and the problem that the output precision and stability of the support device in stress polishing cannot meet the requirements. The improvement methods from these three aspects are put forward, the characterization method of mirror's elastic deformation in stress polishing, the deformation theory of influence function and the calculation of correction force, the design of actuator's mechanical structure. These improve the precision of stress polishing and provide theoretical basis for the further application of stress polishing in large-diameter aspheric machining.

  17. Navigation Doppler Lidar Sensor for Precision Altitude and Vector Velocity Measurements Flight Test Results

    NASA Technical Reports Server (NTRS)

    Pierrottet, Diego F.; Lockhard, George; Amzajerdian, Farzin; Petway, Larry B.; Barnes, Bruce; Hines, Glenn D.

    2011-01-01

    An all fiber Navigation Doppler Lidar (NDL) system is under development at NASA Langley Research Center (LaRC) for precision descent and landing applications on planetary bodies. The sensor produces high resolution line of sight range, altitude above ground, ground relative attitude, and high precision velocity vector measurements. Previous helicopter flight test results demonstrated the NDL measurement concepts, including measurement precision, accuracies, and operational range. This paper discusses the results obtained from a recent campaign to test the improved sensor hardware, and various signal processing algorithms applicable to real-time processing. The NDL was mounted in an instrumentation pod aboard an Erickson Air-Crane helicopter and flown over vegetation free terrain. The sensor was one of several sensors tested in this field test by NASA?s Autonomous Landing and Hazard Avoidance Technology (ALHAT) project.

  18. A novel design of the high-precision magnetic locator with three-dimension measurement capability applying dynamically sensing mechanism

    NASA Astrophysics Data System (ADS)

    Huang, Wen-Nan; Chen, Po-Shen; Chen, Mu-Ping; Teng, Ching-Cheng

    2006-09-01

    A novel design of the magnetic locator, for obtaining the high-precision measurement information of variety of the buried metal pipes, is presented in this paper. The concept of dynamically sensing mechanism, including the vibrating and moving devices, proposed herein is a simple and effective way to improve the precision of three-dimension location sensing for the underground utilities. Based on the primary magnetism of Lenz's law and Faraday's law, the functions of the amplifying effect for the sensing magnetic signals, as well as the distinguishing effect by the simple filtering algorithms embedded in processing programs, are achieved while the relatively strong noise exists. The verification results of these integration designs demonstrate the effectiveness both by precise locating for the buried utility, and accurate measurement for the depth.

  19. Precision molding of advanced glass optics: innovative production technology for lens arrays and free form optics

    NASA Astrophysics Data System (ADS)

    Pongs, Guido; Bresseler, Bernd; Bergs, Thomas; Menke, Gert

    2012-10-01

    Today isothermal precision molding of imaging glass optics has become a widely applied and integrated production technology in the optical industry. Especially in consumer electronics (e.g. digital cameras, mobile phones, Blu-ray) a lot of optical systems contain rotationally symmetrical aspherical lenses produced by precision glass molding. But due to higher demands on complexity and miniaturization of optical elements the established process chain for precision glass molding is not sufficient enough. Wafer based molding processes for glass optics manufacturing become more and more interesting for mobile phone applications. Also cylindrical lens arrays can be used in high power laser systems. The usage of unsymmetrical free-form optics allows an increase of efficiency in optical laser systems. Aixtooling is working on different aspects in the fields of mold manufacturing technologies and molding processes for extremely high complex optical components. In terms of array molding technologies, Aixtooling has developed a manufacturing technology for the ultra-precision machining of carbide molds together with European partners. The development covers the machining of multi lens arrays as well as cylindrical lens arrays. The biggest challenge is the molding of complex free-form optics having no symmetrical axis. A comprehensive CAD/CAM data management along the entire process chain is essential to reach high accuracies on the molded lenses. Within a national funded project Aixtooling is working on a consistent data handling procedure in the process chain for precision molding of free-form optics.

  20. Toward precision medicine in Alzheimer's disease.

    PubMed

    Reitz, Christiane

    2016-03-01

    In Western societies, Alzheimer's disease (AD) is the most common form of dementia and the sixth leading cause of death. In recent years, the concept of precision medicine, an approach for disease prevention and treatment that is personalized to an individual's specific pattern of genetic variability, environment and lifestyle factors, has emerged. While for some diseases, in particular select cancers and a few monogenetic disorders such as cystic fibrosis, significant advances in precision medicine have been made over the past years, for most other diseases precision medicine is only in its beginning. To advance the application of precision medicine to a wider spectrum of disorders, governments around the world are starting to launch Precision Medicine Initiatives, major efforts to generate the extensive scientific knowledge needed to integrate the model of precision medicine into every day clinical practice. In this article we summarize the state of precision medicine in AD, review major obstacles in its development, and discuss its benefits in this highly prevalent, clinically and pathologically complex disease.

  1. Validation of HPLC and UV spectrophotometric methods for the determination of meropenem in pharmaceutical dosage form.

    PubMed

    Mendez, Andreas S L; Steppe, Martin; Schapoval, Elfrides E S

    2003-12-04

    A high-performance liquid chromatographic method and a UV spectrophotometric method for the quantitative determination of meropenem, a highly active carbapenem antibiotic, in powder for injection were developed in present work. The parameters linearity, precision, accuracy, specificity, robustness, limit of detection and limit of quantitation were studied according to International Conference on Harmonization guidelines. Chromatography was carried out by reversed-phase technique on an RP-18 column with a mobile phase composed of 30 mM monobasic phosphate buffer and acetonitrile (90:10; v/v), adjusted to pH 3.0 with orthophosphoric acid. The UV spectrophotometric method was performed at 298 nm. The samples were prepared in water and the stability of meropenem in aqueous solution at 4 and 25 degrees C was studied. The results were satisfactory with good stability after 24 h at 4 degrees C. Statistical analysis by Student's t-test showed no significant difference between the results obtained by the two methods. The proposed methods are highly sensitive, precise and accurate and can be used for the reliable quantitation of meropenem in pharmaceutical dosage form.

  2. Quantifying the Contribution of Grape Hexoses to Wine Volatiles by High-Precision [U13C]-Glucose Tracer Studies

    PubMed Central

    Nisbet, Mark A.; Tobias, Herbert J.; Brenna, J. Thomas; Sacks, Gavin L.; Mansfield, Anna Katharine

    2016-01-01

    Many fermentation volatiles important to wine aroma potentially arise from yeast metabolism of hexose sugars, but assessing the relative importance of these pathways is challenging due to high endogenous hexose substrate concentrations. To overcome this problem, gas chromatography combustion isotope ratio mass spectrometry (GC-C-IRMS) was used to measure high-precision 13C/12C isotope ratios of volatiles in wines produced from juices spiked with tracer levels (0.01–1 APE) of uniformly labeled [U-13C]-glucose. The contribution of hexose to individual volatiles was determined from the degree of 13C enrichment. As expected, straight-chain fatty acids and their corresponding ethyl esters were derived almost exclusively from hexoses. Most fusel alcohols and their acetate esters were also majority hexose-derived, indicating the importance of anabolic pathways for their formation. Only two compounds were not derived primarily from hexoses (hexanol and isobutyric acid). This approach can be extended to other food systems or substrates for studying precursor–product relationships. PMID:24960193

  3. Mixed Single/Double Precision in OpenIFS: A Detailed Study of Energy Savings, Scaling Effects, Architectural Effects, and Compilation Effects

    NASA Astrophysics Data System (ADS)

    Fagan, Mike; Dueben, Peter; Palem, Krishna; Carver, Glenn; Chantry, Matthew; Palmer, Tim; Schlacter, Jeremy

    2017-04-01

    It has been shown that a mixed precision approach that judiciously replaces double precision with single precision calculations can speed-up global simulations. In particular, a mixed precision variation of the Integrated Forecast System (IFS) of the European Centre for Medium-Range Weather Forecasts (ECMWF) showed virtually the same quality model results as the standard double precision version (Vana et al., Single precision in weather forecasting models: An evaluation with the IFS, Monthly Weather Review, in print). In this study, we perform detailed measurements of savings in computing time and energy using a mixed precision variation of the -OpenIFS- model. The mixed precision variation of OpenIFS is analogous to the IFS variation used in Vana et al. We (1) present results for energy measurements for simulations in single and double precision using Intel's RAPL technology, (2) conduct a -scaling- study to quantify the effects that increasing model resolution has on both energy dissipation and computing cycles, (3) analyze the differences between single core and multicore processing, and (4) compare the effects of different compiler technologies on the mixed precision OpenIFS code. In particular, we compare intel icc/ifort with gnu gcc/gfortran.

  4. Frontal sinus parameters in computed tomography and sex determination.

    PubMed

    Akhlaghi, Mitra; Bakhtavar, Khadijeh; Moarefdoost, Jhale; Kamali, Artin; Rafeifar, Shahram

    2016-03-01

    The frontal sinus is a sturdy part of the skull that is likely to be retrieved for forensic investigations. We evaluated frontal sinus parameters in paranasal sinus computed tomography (CT) images for sex determination. The study was conducted on 200 normal paranasal sinus CT images of 100 men and 100 women of Persian origin. We categorized the studied population into three age groups of 20-34, 35-49 and ⩾ 50 years. The number of partial septa in the right frontal sinus and the maximum height and width were significantly different between the two sexes. The highest precision for sex determination was for the maximum height of the left frontal sinus (61.3%). In the 20-34 years age-group, height and width of the frontal sinus were significantly different between the two sexes and the height of the left sinus had the highest precision (60.8%). In the 35-49 years age-group, right anterior-posterior diameter had a sex determination precision of 52.3%. No frontal sinus parameter reached a statistically significant level for sex determination in the ⩾ 50 years age-group. The number of septa and scallopings were not useful in sex determination. Frontal sinus parameters did not have a high precision in sex determination among Persian adults. Copyright © 2016. Published by Elsevier Ireland Ltd.

  5. Precision Spectroscopy on Single Cold Trapped Molecular Nitrogen Ions

    NASA Astrophysics Data System (ADS)

    Hegi, Gregor; Najafian, Kaveh; Germann, Matthias; Sergachev, Ilia; Willitsch, Stefan

    2016-06-01

    The ability to precisely control and manipulate single cold trapped particles has enabled spectroscopic studies on narrow transitions of ions at unprecedented levels of precision. This has opened up a wide range of applications, from tests of fundamental physical concepts, e.g., possible time-variations of fundamental constants, to new and improved frequency standards. So far most of these experiments have concentrated on atomic ions. Recently, however, attention has also been focused on molecular species, and molecular nitrogen ions have been identified as promising candidates for testing a possible time-variation of the proton/electron mass ratio. Here, we report progress towards precision-spectroscopic studies on dipole-forbidden vibrational transitions in single trapped N2+ ions. Our approach relies on the state-selective generation of single N2+ ions, subsequent infrared excitation using high intensity, narrow-band quantum-cascade lasers and a quantum-logic scheme for non-destructive state readout. We also characterize processes limiting the state lifetimes in our experiment, which impair the measurement fidelity. P. O. Schmidt et. al., Science 309 (2005), 749. M. Kajita et. al., Phys. Rev. A 89 (2014), 032509 M. Germann , X. Tong, S. Willitsch, Nature Physics 10 (2014), 820. X. Tong, A. Winney, S. Willitsch, Phys. Rev. Lett. 105 (2010), 143001

  6. Using experimental design and spatial analyses to improve the precision of NDVI estimates in upland cotton field trials

    USDA-ARS?s Scientific Manuscript database

    Controlling for spatial variability is important in high-throughput phenotyping studies that enable large numbers of genotypes to be evaluated across time and space. In the current study, we compared the efficacy of different experimental designs and spatial models in the analysis of canopy spectral...

  7. Global Velocities from VLBI

    NASA Technical Reports Server (NTRS)

    Ma, Chopo; Gordon, David; MacMillan, Daniel

    1999-01-01

    Precise geodetic Very Long Baseline Interferometry (VLBI) measurements have been made since 1979 at about 130 points on all major tectonic plates, including stable interiors and deformation zones. From the data set of about 2900 observing sessions and about 2.3 million observations, useful three-dimensional velocities can be derived for about 80 sites using an incremental least-squares adjustment of terrestrial, celestial, Earth rotation and site/session-specific parameters. The long history and high precision of the data yield formal errors for horizontal velocity as low as 0.1 mm/yr, but the limitation on the interpretation of individual site velocities is the tie to the terrestrial reference frame. Our studies indicate that the effect of converting precise relative VLBI velocities to individual site velocities is an error floor of about 0.4 mm/yr. Most VLBI horizontal velocities in stable plate interiors agree with the NUVEL-1A model, but there are significant departures in Africa and the Pacific. Vertical precision is worse by a factor of 2-3, and there are significant non-zero values that can be interpreted as post-glacial rebound, regional effects, and local disturbances.

  8. A validated fast difference spectrophotometric method for 5-hydroxymethyl-2-furfural (HMF) determination in corn syrups.

    PubMed

    de Andrade, Jucimara Kulek; de Andrade, Camila Kulek; Komatsu, Emy; Perreault, Hélène; Torres, Yohandra Reyes; da Rosa, Marcos Roberto; Felsner, Maria Lurdes

    2017-08-01

    Corn syrups, important ingredients used in food and beverage industries, often contain high levels of 5-hydroxymethyl-2-furfural (HMF), a toxic contaminant. In this work, an in house validation of a difference spectrophotometric method for HMF analysis in corn syrups was developed using sophisticated statistical tools by the first time. The methodology showed excellent analytical performance with good selectivity, linearity (R 2 =99.9%, r>0.99), accuracy and low limits (LOD=0.10mgL -1 and LOQ=0.34mgL -1 ). An excellent precision was confirmed by repeatability (RSD (%)=0.30) and intermediate precision (RSD (%)=0.36) estimates and by Horrat value (0.07). A detailed study of method precision using a nested design demonstrated that variation sources such as instruments, operators and time did not interfere in the variability of results within laboratory and consequently in its intermediate precision. The developed method is environmentally friendly, fast, cheap and easy to implement resulting in an attractive alternative for corn syrups quality control in industries and official laboratories. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Fast and precise thermoregulation system in physiological brain slice experiment

    NASA Astrophysics Data System (ADS)

    Sheu, Y. H.; Young, M. S.

    1995-12-01

    We have developed a fast and precise thermoregulation system incorporated within a physiological experiment on a brain slice. The thermoregulation system is used to control the temperature of a recording chamber in which the brain slice is placed. It consists of a single-chip microcomputer, a set command module, a display module, and an FLC module. A fuzzy control algorithm was developed and a fuzzy logic controller then designed for achieving fast, smooth thermostatic performance and providing precise temperature control with accuracy to 0.1 °C, from room temperature through 42 °C (experimental temperature range). The fuzzy logic controller is implemented by microcomputer software and related peripheral hardware circuits. Six operating modes of thermoregulation are offered with the system and this can be further extended according to experimental needs. The test results of this study demonstrate that the fuzzy control method is easily implemented by a microcomputer and also verifies that this method provides a simple way to achieve fast and precise high-performance control of a nonlinear thermoregulation system in a physiological brain slice experiment.

  10. A New Time Measurement Method Using a High-End Global Navigation Satellite System to Analyze Alpine Skiing

    ERIC Educational Resources Information Center

    Supej, Matej; Holmberg, Hans-Christer

    2011-01-01

    Accurate time measurement is essential to temporal analysis in sport. This study aimed to (a) develop a new method for time computation from surveyed trajectories using a high-end global navigation satellite system (GNSS), (b) validate its precision by comparing GNSS with photocells, and (c) examine whether gate-to-gate times can provide more…

  11. Refining Parameters of the XO-5 Planetary System with High-Precision Transit Photometry

    NASA Astrophysics Data System (ADS)

    Maciejewski, G.; Seeliger, M.; Adam, Ch.; Raetz, St.; Neuhäuser, R.

    2011-03-01

    Studies of transiting extrasolar planets provide unique opportunity to get to know the internal structure of those worlds. The transiting exoplanet XO-5 b was found to have an anomalously high Safronov number and surface gravity. Our aim was to refine parameters of this intriguing system and search for signs of transit timing variations. We gathered high-precision light curves for two transits of XO-5 b. Assuming three different limb darkening laws, we found the best-fitting model and redetermined parameters of the system, including planet-to-star radius ratio, impact parameter and central time of transits. Error estimates were derived by the prayer bead method and Monte Carlo simulations. Although system's parameters obtained by us were found to agree with previous studies within one sigma, the planet was found to be notable smaller with the radius of 1.03+0.06-0.05 Jupiter radii. Our results confirm the high Safronov number and surface gravity of the planet. With two new mid-transit times, the ephemeris was refined to BJDTDB=(2454485.66842±0.00028)+(4.1877537±0.000017)E. No significant transit timing variation was detected.

  12. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    The GEM collaboration was formed in June 1991 to develop a major detector for the SSC. The primary physics objectives of GEM are those central to the motivation for the SSC, to study high p{sub T} physics - exemplified by the search for Higgs bosons - and to search for new physics beyond the standard model. The authors present in this Technical Design Report (TDR) a detector with broad capabilities for the discovery and subsequent study of electroweak symmetry breaking, the origin of mass and flavor, and other physics requiring precise measurements of gammas, electrons, and muons - hence themore » name, GEM. In addition, as a design goal, they have taken care to provide the robustness needed to do the physics that requires high luminosity. Finally, good coverage and hermeticity allow the detection of missing transverse energy, E{sub T}. The GEM design emphasizes clean identification and high resolution measurement of the primary physics signatures for high p{sub T} physics. The approach is to make precise energy measurements that maximize the sensitivity to rare narrow resonances, to detect the elementary interaction products (quarks, leptons, and photons), and to build in the features required to reduce backgrounds.« less

  13. Instrumented toys for studying power and precision grasp forces in infants.

    PubMed

    Serio, S M; Cecchi, F; Boldrini, E; Laschi, C; Sgandurra, G; Cioni, G; Dario, P

    2011-01-01

    Currently the study of infants grasping development is purely clinical, based on functional scales or on the observation of the infant while playing; no quantitative variables are measured or known for diagnosis of eventually disturbed development. The aim of this work is to show the results of a longitudinal study achieved by using a "baby gym" composed by a set of instrumented toys, as a tool to measure and stimulate grasping actions, in infants from 4 to 9 months of life. The study has been carried out with 7 healthy infants and it was observed, during infants development, an increase of precision grasp and a reduction of power grasp with age. Moreover the forces applied for performing both precision and power grasp increase with age. The proposed devices represent a valid tool for continuous and quantitative measuring infants manual function and motor development, without being distressful for the infant and consequently it could be suitable for early intervention training during the first year of life. The same system, in fact, could be used with infants at high risk for developmental motor disorder in order to evaluate any potential difference from control healthy infants.

  14. Role of endocortical contouring methods on precision of HR-pQCT-derived cortical micro-architecture in postmenopausal women and young adults.

    PubMed

    Kawalilak, C E; Johnston, J D; Cooper, D M L; Olszynski, W P; Kontulainen, S A

    2016-02-01

    Precision errors of cortical bone micro-architecture from high-resolution peripheral quantitative computed tomography (pQCT) ranged from 1 to 16 % and did not differ between automatic or manually modified endocortical contour methods in postmenopausal women or young adults. In postmenopausal women, manually modified contours led to generally higher cortical bone properties when compared to the automated method. First, the objective of the study was to define in vivo precision errors (coefficient of variation root mean square (CV%RMS)) and least significant change (LSC) for cortical bone micro-architecture using two endocortical contouring methods: automatic (AUTO) and manually modified (MOD) in two groups (postmenopausal women and young adults) from high-resolution pQCT (HR-pQCT) scans. Second, it was to compare precision errors and bone outcomes obtained with both methods within and between groups. Using HR-pQCT, we scanned twice the distal radius and tibia of 34 postmenopausal women (mean age ± SD 74 ± 7 years) and 30 young adults (27 ± 9 years). Cortical micro-architecture was determined using AUTO and MOD contour methods. CV%RMS and LSC were calculated. Repeated measures and multivariate ANOVA were used to compare mean CV% and bone outcomes between the methods within and between the groups. Significance was accepted at P < 0.05. CV%RMS ranged from 0.9 to 16.3 %. Within-group precision did not differ between evaluation methods. Compared to young adults, postmenopausal women had better precision for radial cortical porosity (precision difference 9.3 %) and pore volume (7.5 %) with MOD. Young adults had better precision for cortical thickness (0.8 %, MOD) and tibial cortical density (0.2 %, AUTO). In postmenopausal women, MOD resulted in 0.2-54 % higher values for most cortical outcomes, as well as 6-8 % lower radial and tibial cortical BMD and 2 % lower tibial cortical thickness. Results suggest that AUTO and MOD endocortical contour methods provide comparable repeatability. In postmenopausal women, manual modification of endocortical contours led to generally higher cortical bone properties when compared to the automated method, while no between-method differences were observed in young adults.

  15. Loss of heterozygosity assay for molecular detection of cancer using energy-transfer primers and capillary array electrophoresis.

    PubMed

    Medintz, I L; Lee, C C; Wong, W W; Pirkola, K; Sidransky, D; Mathies, R A

    2000-08-01

    Microsatellite DNA loci are useful markers for the detection of loss of heterozygosity (LOH) and microsatellite instability (MI) associated with primary cancers. To carry out large-scale studies of LOH and MI in cancer progression, high-throughput instrumentation and assays with high accuracy and sensitivity need to be validated. DNA was extracted from 26 renal tumor and paired lymphocyte samples and amplified with two-color energy-transfer (ET) fluorescent primers specific for loci associated with cancer-induced chromosomal changes. PCR amplicons were separated on the MegaBACE-1000 96 capillary array electrophoresis (CAE) instrument and analyzed with MegaBACE Genetic Profiler v.1.0 software. Ninety-six separations were achieved in parallel in 75 minutes. Loss of heterozygosity was easily detected in tumor samples as was the gain/loss of microsatellite core repeats. Allelic ratios were determined with a precision of +/- 10% or better. Prior analysis of these samples with slab gel electrophoresis and radioisotope labeling had not detected these changes with as much sensitivity or precision. This study establishes the validity of this assay and the MegaBACE instrument for large-scale, high-throughput studies of the molecular genetic changes associated with cancer.

  16. Processing of high-precision ceramic balls with a spiral V-groove plate

    NASA Astrophysics Data System (ADS)

    Feng, Ming; Wu, Yongbo; Yuan, Julong; Ping, Zhao

    2017-03-01

    As the demand for high-performance bearings gradually increases, ceramic balls with excellent properties, such as high accuracy, high reliability, and high chemical durability used, are extensively used for highperformance bearings. In this study, a spiral V-groove plate method is employed in processing high-precision ceramic balls. After the kinematic analysis of the ball-spin angle and enveloped lapping trajectories, an experimental rig is constructed and experiments are conducted to confirm the feasibility of this method. Kinematic analysis results indicate that the method not only allows for the control of the ball-spin angle but also uniformly distributes the enveloped lapping trajectories over the entire ball surface. Experimental results demonstrate that the novel spiral Vgroove plate method performs better than the conventional concentric V-groove plate method in terms of roundness, surface roughness, diameter difference, and diameter decrease rate. Ceramic balls with a G3-level accuracy are achieved, and their typical roundness, minimum surface roughness, and diameter difference are 0.05, 0.0045, and 0.105 μm, respectively. These findings confirm that the proposed method can be applied to high-accuracy and high-consistency ceramic ball processing.

  17. High-precision reflectivity measurements: improvements in the calibration procedure

    NASA Astrophysics Data System (ADS)

    Jupe, Marco; Grossmann, Florian; Starke, Kai; Ristau, Detlev

    2003-05-01

    The development of high quality optical components is heavily depending on precise characterization procedures. The reflectance and transmittance of laser components are the most important parameters for advanced laser applications. In the industrial fabrication of optical coatings, quality management is generally insured by spectral photometric methods according to ISO/DIS 15386 on a medium level of accuracy. Especially for high reflecting mirrors, a severe discrepancy in the determination of the absolute reflectivity can be found for spectral photometric procedures. In the first part of the CHOCLAB project, a method for measuring reflectance and transmittance with an enhanced precision was developed, which is described in ISO/WD 13697. In the second part of the CHOCLAB project, the evaluation and optimization for the presented method is scheduled. Within this framework international Round-Robin experiment is currently in progress. During this Round-Robin experiment, distinct deviations could be observed between the results of high precision measurement facilities of different partners. Based on the extended experiments, the inhomogeneity of the sample reflectivity was identified as one important origin for the deviation. Consequently, this inhomogeneity is also influencing the calibration procedure. Therefore, a method was developed that allows the calibration of the chopper blade using always the same position on the reference mirror. During the investigations, the homogeneity of several samples was characterized by a surface mapping procedure for 1064 nm. The measurement facility was extended to the additional wavelength 532 nm and a similar set-up was assembled at 10.6 μm. The high precision reflectivity procedure at the mentioned wavelengths is demonstrated for exemplary measurements.

  18. Development and simulation of microfluidic Wheatstone bridge for high-precision sensor

    NASA Astrophysics Data System (ADS)

    Shipulya, N. D.; Konakov, S. A.; Krzhizhanovskaya, V. V.

    2016-08-01

    In this work we present the results of analytical modeling and 3D computer simulation of microfluidic Wheatstone bridge, which is used for high-accuracy measurements and precision instruments. We propose and simulate a new method of a bridge balancing process by changing the microchannel geometry. This process is based on the “etching in microchannel” technology we developed earlier (doi:10.1088/1742-6596/681/1/012035). Our method ensures a precise control of the flow rate and flow direction in the bridge microchannel. The advantage of our approach is the ability to work without any control valves and other active electronic systems, which are usually used for bridge balancing. The geometrical configuration of microchannels was selected based on the analytical estimations. A detailed 3D numerical model was based on Navier-Stokes equations for a laminar fluid flow at low Reynolds numbers. We investigated the behavior of the Wheatstone bridge under different process conditions; found a relation between the channel resistance and flow rate through the bridge; and calculated the pressure drop across the system under different total flow rates and viscosities. Finally, we describe a high-precision microfluidic pressure sensor that employs the Wheatstone bridge and discuss other applications in complex precision microfluidic systems.

  19. A HIGH-PRECISION NEAR-INFRARED SURVEY FOR RADIAL VELOCITY VARIABLE LOW-MASS STARS USING CSHELL AND A METHANE GAS CELL

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gagné, Jonathan; Plavchan, Peter; Gao, Peter

    2016-05-01

    We present the results of a precise near-infrared (NIR) radial velocity (RV) survey of 32 low-mass stars with spectral types K2–M4 using CSHELL at the NASA InfraRed Telescope Facility in the K band with an isotopologue methane gas cell to achieve wavelength calibration and a novel, iterative RV extraction method. We surveyed 14 members of young (≈25–150 Myr) moving groups, the young field star ε Eridani, and 18 nearby (<25 pc) low-mass stars and achieved typical single-measurement precisions of 8–15 m s{sup −1}with a long-term stability of 15–50 m s{sup −1} over longer baselines. We obtain the best NIR RVmore » constraints to date on 27 targets in our sample, 19 of which were never followed by high-precision RV surveys. Our results indicate that very active stars can display long-term RV variations as low as ∼25–50 m s{sup −1} at ≈2.3125 μ m, thus constraining the effect of jitter at these wavelengths. We provide the first multiwavelength confirmation of GJ 876 bc and independently retrieve orbital parameters consistent with previous studies. We recovered RV variabilities for HD 160934 AB and GJ 725 AB that are consistent with their known binary orbits, and nine other targets are candidate RV variables with a statistical significance of 3 σ –5 σ . Our method, combined with the new iSHELL spectrograph, will yield long-term RV precisions of ≲5 m s{sup −1} in the NIR, which will allow the detection of super-Earths near the habitable zone of mid-M dwarfs.« less

  20. Parallel algorithm for solving Kepler’s equation on Graphics Processing Units: Application to analysis of Doppler exoplanet searches

    NASA Astrophysics Data System (ADS)

    Ford, Eric B.

    2009-05-01

    We present the results of a highly parallel Kepler equation solver using the Graphics Processing Unit (GPU) on a commercial nVidia GeForce 280GTX and the "Compute Unified Device Architecture" (CUDA) programming environment. We apply this to evaluate a goodness-of-fit statistic (e.g., χ2) for Doppler observations of stars potentially harboring multiple planetary companions (assuming negligible planet-planet interactions). Given the high-dimensionality of the model parameter space (at least five dimensions per planet), a global search is extremely computationally demanding. We expect that the underlying Kepler solver and model evaluator will be combined with a wide variety of more sophisticated algorithms to provide efficient global search, parameter estimation, model comparison, and adaptive experimental design for radial velocity and/or astrometric planet searches. We tested multiple implementations using single precision, double precision, pairs of single precision, and mixed precision arithmetic. We find that the vast majority of computations can be performed using single precision arithmetic, with selective use of compensated summation for increased precision. However, standard single precision is not adequate for calculating the mean anomaly from the time of observation and orbital period when evaluating the goodness-of-fit for real planetary systems and observational data sets. Using all double precision, our GPU code outperforms a similar code using a modern CPU by a factor of over 60. Using mixed precision, our GPU code provides a speed-up factor of over 600, when evaluating nsys > 1024 models planetary systems each containing npl = 4 planets and assuming nobs = 256 observations of each system. We conclude that modern GPUs also offer a powerful tool for repeatedly evaluating Kepler's equation and a goodness-of-fit statistic for orbital models when presented with a large parameter space.

  1. Overcoming the Power Wall by Exploiting Application Inexactness and Emerging COTS Architectural Features

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fagan, Mike; Schlachter, Jeremy; Yoshii, Kazutomo

    Abstract—Energy and power consumption are major limitations to continued scaling of computing systems. Inexactness where the quality of the solution can be traded for energy savings has been proposed as a counterintuitive approach to overcoming those limitation. However, in the past, inexactness has been necessitated the need for highly customized or specialized hardware. In order to move away from customization, in earlier work [4], it was shown that by interpreting precision in the computation to be the parameter to trade to achieve inexactness, weather prediction and page rank could both benefit in terms of yielding energy savings through reduced precision,more » while preserving the quality of the application. However, this required representations of numbers that were not readily available on commercial off-the-shelf (COTS) processors. In this paper, we provide opportunities for extending the the notion of trading precision for energy savings into the world COTS. We provide a model and analyze the opportunities and behavior of all three IEEE compliant precision values available on COTS processors: (i) double (ii) single, and (iii) half. Through measurements, we show through a limit study energy savings in going from double to half precision can potentially exceed a factor of four, largely due to memory and cache effects.« less

  2. Rapid evolution of mimicry following local model extinction.

    PubMed

    Akcali, Christopher K; Pfennig, David W

    2014-06-01

    Batesian mimicry evolves when individuals of a palatable species gain the selective advantage of reduced predation because they resemble a toxic species that predators avoid. Here, we evaluated whether-and in which direction-Batesian mimicry has evolved in a natural population of mimics following extirpation of their model. We specifically asked whether the precision of coral snake mimicry has evolved among kingsnakes from a region where coral snakes recently (1960) went locally extinct. We found that these kingsnakes have evolved more precise mimicry; by contrast, no such change occurred in a sympatric non-mimetic species or in conspecifics from a region where coral snakes remain abundant. Presumably, more precise mimicry has continued to evolve after model extirpation, because relatively few predator generations have passed, and the fitness costs incurred by predators that mistook a deadly coral snake for a kingsnake were historically much greater than those incurred by predators that mistook a kingsnake for a coral snake. Indeed, these results are consistent with prior theoretical and empirical studies, which revealed that only the most precise mimics are favoured as their model becomes increasingly rare. Thus, highly noxious models can generate an 'evolutionary momentum' that drives the further evolution of more precise mimicry-even after models go extinct. © 2014 The Author(s) Published by the Royal Society. All rights reserved.

  3. The role of judgment frames and task precision in object attention: Reduced template sharpness limits dual-object performance.

    PubMed

    Liu, Shiau-Hua; Dosher, Barbara Anne; Lu, Zhong-Lin

    2009-06-01

    Multiple attributes of a single-object are often processed more easily than attributes of different objects-a phenomenon associated with object attention. Here we investigate the influence of two factors, judgment frames and judgment precision, on dual-object report deficits as an index of object attention. [Han, S., Dosher, B., & Lu, Z.-L. (2003). Object attention revisited: Identifying mechanisms and boundary conditions. Psychological Science, 14, 598-604] predicted that consistency of the frame for judgments about two separate objects could reduce or eliminate the expression of object attention limitations. The current studies examine the effects of judgment frames and of task precision in orientation identification and find that dual-object report deficits within one feature are indeed affected modestly by the congruency of the judgments and more substantially by the required precision of judgments. The observed dual-object deficits affected contrast thresholds for incongruent frame conditions and for high precision judgments and reduce psychometric asymptotes. These dual-object deficits reflect a combined effect of multiplicative noise and external noise exclusion in dual-object conditions, both related to the effects of attention on the tuning of perceptual templates. These results have implications for modification of object attention theory, for understanding limitations on concurrent tasks.

  4. Rapid evolution of mimicry following local model extinction

    PubMed Central

    Akcali, Christopher K.; Pfennig, David W.

    2014-01-01

    Batesian mimicry evolves when individuals of a palatable species gain the selective advantage of reduced predation because they resemble a toxic species that predators avoid. Here, we evaluated whether—and in which direction—Batesian mimicry has evolved in a natural population of mimics following extirpation of their model. We specifically asked whether the precision of coral snake mimicry has evolved among kingsnakes from a region where coral snakes recently (1960) went locally extinct. We found that these kingsnakes have evolved more precise mimicry; by contrast, no such change occurred in a sympatric non-mimetic species or in conspecifics from a region where coral snakes remain abundant. Presumably, more precise mimicry has continued to evolve after model extirpation, because relatively few predator generations have passed, and the fitness costs incurred by predators that mistook a deadly coral snake for a kingsnake were historically much greater than those incurred by predators that mistook a kingsnake for a coral snake. Indeed, these results are consistent with prior theoretical and empirical studies, which revealed that only the most precise mimics are favoured as their model becomes increasingly rare. Thus, highly noxious models can generate an ‘evolutionary momentum’ that drives the further evolution of more precise mimicry—even after models go extinct. PMID:24919704

  5. A Police and Insurance Joint Management System Based on High Precision BDS/GPS Positioning

    PubMed Central

    Zuo, Wenwei; Guo, Chi; Liu, Jingnan; Peng, Xuan; Yang, Min

    2018-01-01

    Car ownership in China reached 194 million vehicles at the end of 2016. The traffic congestion index (TCI) exceeds 2.0 during rush hour in some cities. Inefficient processing for minor traffic accidents is considered to be one of the leading causes for road traffic jams. Meanwhile, the process after an accident is quite troublesome. The main reason is that it is almost always impossible to get the complete chain of evidence when the accident happens. Accordingly, a police and insurance joint management system is developed which is based on high precision BeiDou Navigation Satellite System (BDS)/Global Positioning System (GPS) positioning to process traffic accidents. First of all, an intelligent vehicle rearview mirror terminal is developed. The terminal applies a commonly used consumer electronic device with single frequency navigation. Based on the high precision BDS/GPS positioning algorithm, its accuracy can reach sub-meter level in the urban areas. More specifically, a kernel driver is built to realize the high precision positioning algorithm in an Android HAL layer. Thus the third-party application developers can call the general location Application Programming Interface (API) of the original standard Global Navigation Satellite System (GNSS) to get high precision positioning results. Therefore, the terminal can provide lane level positioning service for car users. Next, a remote traffic accident processing platform is built to provide big data analysis and management. According to the big data analysis of information collected by BDS high precision intelligent sense service, vehicle behaviors can be obtained. The platform can also automatically match and screen the data that uploads after an accident to achieve accurate reproduction of the scene. Thus, it helps traffic police and insurance personnel to complete remote responsibility identification and survey for the accident. Thirdly, a rapid processing flow is established in this article to meet the requirements to quickly handle traffic accidents. The traffic police can remotely identify accident responsibility and the insurance personnel can remotely survey an accident. Moreover, the police and insurance joint management system has been carried out in Wuhan, Central China’s Hubei Province, and Wuxi, Eastern China’s Jiangsu Province. In a word, a system is developed to obtain and analyze multisource data including precise positioning and visual information, and a solution is proposed for efficient processing of traffic accidents. PMID:29320406

  6. A Police and Insurance Joint Management System Based on High Precision BDS/GPS Positioning.

    PubMed

    Zuo, Wenwei; Guo, Chi; Liu, Jingnan; Peng, Xuan; Yang, Min

    2018-01-10

    Car ownership in China reached 194 million vehicles at the end of 2016. The traffic congestion index (TCI) exceeds 2.0 during rush hour in some cities. Inefficient processing for minor traffic accidents is considered to be one of the leading causes for road traffic jams. Meanwhile, the process after an accident is quite troublesome. The main reason is that it is almost always impossible to get the complete chain of evidence when the accident happens. Accordingly, a police and insurance joint management system is developed which is based on high precision BeiDou Navigation Satellite System (BDS)/Global Positioning System (GPS) positioning to process traffic accidents. First of all, an intelligent vehicle rearview mirror terminal is developed. The terminal applies a commonly used consumer electronic device with single frequency navigation. Based on the high precision BDS/GPS positioning algorithm, its accuracy can reach sub-meter level in the urban areas. More specifically, a kernel driver is built to realize the high precision positioning algorithm in an Android HAL layer. Thus the third-party application developers can call the general location Application Programming Interface (API) of the original standard Global Navigation Satellite System (GNSS) to get high precision positioning results. Therefore, the terminal can provide lane level positioning service for car users. Next, a remote traffic accident processing platform is built to provide big data analysis and management. According to the big data analysis of information collected by BDS high precision intelligent sense service, vehicle behaviors can be obtained. The platform can also automatically match and screen the data that uploads after an accident to achieve accurate reproduction of the scene. Thus, it helps traffic police and insurance personnel to complete remote responsibility identification and survey for the accident. Thirdly, a rapid processing flow is established in this article to meet the requirements to quickly handle traffic accidents. The traffic police can remotely identify accident responsibility and the insurance personnel can remotely survey an accident. Moreover, the police and insurance joint management system has been carried out in Wuhan, Central China's Hubei Province, and Wuxi, Eastern China's Jiangsu Province. In a word, a system is developed to obtain and analyze multisource data including precise positioning and visual information, and a solution is proposed for efficient processing of traffic accidents.

  7. A Monte Carlo Simulation Comparing the Statistical Precision of Two High-Stakes Teacher Evaluation Methods: A Value-Added Model and a Composite Measure

    ERIC Educational Resources Information Center

    Spencer, Bryden

    2016-01-01

    Value-added models are a class of growth models used in education to assign responsibility for student growth to teachers or schools. For value-added models to be used fairly, sufficient statistical precision is necessary for accurate teacher classification. Previous research indicated precision below practical limits. An alternative approach has…

  8. Test of CCD Precision Limits for Differential Photometry

    NASA Technical Reports Server (NTRS)

    Robinson, L. B.; Wei, M. Z.; Borucki, W. J.; Dunham, E. W.; Ford, C. H.; Granados, A. F.

    1995-01-01

    Results of tests to demonstrate the very high differential-photometric stability of CCD light sensors are presented. The measurements reported here demonstrate that in a controlled laboratory environment, a front-illuminated CCD can provide differential-photometric measurements with reproducible precision approaching one part in 10(exp 5). Practical limitations to the precision of differential-photometric measurements with CCDs and implications for spaceborne applications are discussed.

  9. High Precision Optical Observations of Space Debris in the Geo Ring from Venezuela

    NASA Astrophysics Data System (ADS)

    Lacruz, E.; Abad, C.; Downes, J. J.; Casanova, D.; Tresaco, E.

    2018-01-01

    We present preliminary results to demonstrate that our method for detection and location of Space Debris (SD) in the geostationary Earth orbit (GEO) ring, based on observations at the OAN of Venezuela is of high astrometric precision. A detailed explanation of the method, its validation and first results is available in (Lacruz et al. 2017).

  10. Accurate time delay technology in simulated test for high precision laser range finder

    NASA Astrophysics Data System (ADS)

    Chen, Zhibin; Xiao, Wenjian; Wang, Weiming; Xue, Mingxi

    2015-10-01

    With the continuous development of technology, the ranging accuracy of pulsed laser range finder (LRF) is higher and higher, so the maintenance demand of LRF is also rising. According to the dominant ideology of "time analog spatial distance" in simulated test for pulsed range finder, the key of distance simulation precision lies in the adjustable time delay. By analyzing and comparing the advantages and disadvantages of fiber and circuit delay, a method was proposed to improve the accuracy of the circuit delay without increasing the count frequency of the circuit. A high precision controllable delay circuit was designed by combining the internal delay circuit and external delay circuit which could compensate the delay error in real time. And then the circuit delay accuracy could be increased. The accuracy of the novel circuit delay methods proposed in this paper was actually measured by a high sampling rate oscilloscope actual measurement. The measurement result shows that the accuracy of the distance simulated by the circuit delay is increased from +/- 0.75m up to +/- 0.15m. The accuracy of the simulated distance is greatly improved in simulated test for high precision pulsed range finder.

  11. A 256-channel, high throughput and precision time-to-digital converter with a decomposition encoding scheme in a Kintex-7 FPGA

    NASA Astrophysics Data System (ADS)

    Song, Z.; Wang, Y.; Kuang, J.

    2018-05-01

    Field Programmable Gate Arrays (FPGAs) made with 28 nm and more advanced process technology have great potentials for implementation of high precision time-to-digital convertors (TDC), because the delay cells in the tapped delay line (TDL) used for time interpolation are getting smaller and smaller. However, the bubble problems in the TDL status are becoming more complicated, which make it difficult to achieve TDCs on these chips with a high time precision. In this paper, we are proposing a novel decomposition encoding scheme, which not only can solve the bubble problem easily, but also has a high encoding efficiency. The potential of these chips to realize TDC can be fully released with the scheme. In a Xilinx Kintex-7 FPGA chip, we implemented a TDC system with 256 TDC channels, which doubles the number of TDC channels that our previous technique could achieve. Performances of all these TDC channels are evaluated. The average RMS time precision among them is 10.23 ps in the time-interval measurement range of (0–10 ns), and their measurement throughput reaches 277 M measures per second.

  12. High precision and high yield fabrication of dense nanoparticle arrays onto DNA origami at statistically independent binding sites

    NASA Astrophysics Data System (ADS)

    Takabayashi, Sadao; Klein, William P.; Onodera, Craig; Rapp, Blake; Flores-Estrada, Juan; Lindau, Elias; Snowball, Lejmarc; Sam, Joseph T.; Padilla, Jennifer E.; Lee, Jeunghoon; Knowlton, William B.; Graugnard, Elton; Yurke, Bernard; Kuang, Wan; Hughes, William L.

    2014-10-01

    High precision, high yield, and high density self-assembly of nanoparticles into arrays is essential for nanophotonics. Spatial deviations as small as a few nanometers can alter the properties of near-field coupled optical nanostructures. Several studies have reported assemblies of few nanoparticle structures with controlled spacing using DNA nanostructures with variable yield. Here, we report multi-tether design strategies and attachment yields for homo- and hetero-nanoparticle arrays templated by DNA origami nanotubes. Nanoparticle attachment yield via DNA hybridization is comparable with streptavidin-biotin binding. Independent of the number of binding sites, >97% site-occupation was achieved with four tethers and 99.2% site-occupation is theoretically possible with five tethers. The interparticle distance was within 2 nm of all design specifications and the nanoparticle spatial deviations decreased with interparticle spacing. Modified geometric, binomial, and trinomial distributions indicate that site-bridging, steric hindrance, and electrostatic repulsion were not dominant barriers to self-assembly and both tethers and binding sites were statistically independent at high particle densities.High precision, high yield, and high density self-assembly of nanoparticles into arrays is essential for nanophotonics. Spatial deviations as small as a few nanometers can alter the properties of near-field coupled optical nanostructures. Several studies have reported assemblies of few nanoparticle structures with controlled spacing using DNA nanostructures with variable yield. Here, we report multi-tether design strategies and attachment yields for homo- and hetero-nanoparticle arrays templated by DNA origami nanotubes. Nanoparticle attachment yield via DNA hybridization is comparable with streptavidin-biotin binding. Independent of the number of binding sites, >97% site-occupation was achieved with four tethers and 99.2% site-occupation is theoretically possible with five tethers. The interparticle distance was within 2 nm of all design specifications and the nanoparticle spatial deviations decreased with interparticle spacing. Modified geometric, binomial, and trinomial distributions indicate that site-bridging, steric hindrance, and electrostatic repulsion were not dominant barriers to self-assembly and both tethers and binding sites were statistically independent at high particle densities. Electronic supplementary information (ESI) available. See DOI: 10.1039/c4nr03069a

  13. 40 CFR 61.18 - Incorporations by reference.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... D2382-76, 88, Heat of Combustion of Hydrocarbon Fuels by Bomb Calorimeter (High-Precision Method), IBR... Combustion of Liquid Hydrocarbon Fuels by Bomb Calorimeter (Precision Method), IBR approved for § 61.245(e)(3...

  14. High-speed laser microsurgery of alert fruit flies for fluorescence imaging of neural activity

    PubMed Central

    Sinha, Supriyo; Liang, Liang; Ho, Eric T. W.; Urbanek, Karel E.; Luo, Liqun; Baer, Thomas M.; Schnitzer, Mark J.

    2013-01-01

    Intravital microscopy is a key means of monitoring cellular function in live organisms, but surgical preparation of a live animal for microscopy often is time-consuming, requires considerable skill, and limits experimental throughput. Here we introduce a spatially precise (<1-µm edge precision), high-speed (<1 s), largely automated, and economical protocol for microsurgical preparation of live animals for optical imaging. Using a 193-nm pulsed excimer laser and the fruit fly as a model, we created observation windows (12- to 350-µm diameters) in the exoskeleton. Through these windows we used two-photon microscopy to image odor-evoked Ca2+ signaling in projection neuron dendrites of the antennal lobe and Kenyon cells of the mushroom body. The impact of a laser-cut window on fly health appears to be substantially less than that of conventional manual dissection, for our imaging durations of up to 18 h were ∼5–20 times longer than prior in vivo microscopy studies of hand-dissected flies. This improvement will facilitate studies of numerous questions in neuroscience, such as those regarding neuronal plasticity or learning and memory. As a control, we used phototaxis as an exemplary complex behavior in flies and found that laser microsurgery is sufficiently gentle to leave it intact. To demonstrate that our techniques are applicable to other species, we created microsurgical openings in nematodes, ants, and the mouse cranium. In conjunction with emerging robotic methods for handling and mounting flies or other small organisms, our rapid, precisely controllable, and highly repeatable microsurgical techniques should enable automated, high-throughput preparation of live animals for optical experimentation. PMID:24167298

  15. Development and validation of high-performance liquid chromatography and high-performance thin-layer chromatography methods for the quantification of khellin in Ammi visnaga seed

    PubMed Central

    Kamal, Abid; Khan, Washim; Ahmad, Sayeed; Ahmad, F. J.; Saleem, Kishwar

    2015-01-01

    Objective: The present study was used to design simple, accurate and sensitive reversed phase-high-performance liquid chromatography RP-HPLC and high-performance thin-layer chromatography (HPTLC) methods for the development of quantification of khellin present in the seeds of Ammi visnaga. Materials and Methods: RP-HPLC analysis was performed on a C18 column with methanol: Water (75: 25, v/v) as a mobile phase. The HPTLC method involved densitometric evaluation of khellin after resolving it on silica gel plate using ethyl acetate: Toluene: Formic acid (5.5:4.0:0.5, v/v/v) as a mobile phase. Results: The developed HPLC and HPTLC methods were validated for precision (interday, intraday and intersystem), robustness and accuracy, limit of detection and limit of quantification. The relationship between the concentration of standard solutions and the peak response was linear in both HPLC and HPTLC methods with the concentration range of 10–80 μg/mL in HPLC and 25–1,000 ng/spot in HPTLC for khellin. The % relative standard deviation values for method precision was found to be 0.63–1.97%, 0.62–2.05% in HPLC and HPTLC for khellin respectively. Accuracy of the method was checked by recovery studies conducted at three different concentration levels and the average percentage recovery was found to be 100.53% in HPLC and 100.08% in HPTLC for khellin. Conclusions: The developed HPLC and HPTLC methods for the quantification of khellin were found simple, precise, specific, sensitive and accurate which can be used for routine analysis and quality control of A. visnaga and several formulations containing it as an ingredient. PMID:26681890

  16. Nutrient foraging by mycorrhizas: From species functional traits to ecosystem processes

    DOE PAGES

    Chen, Weile; Koide, Roger T.; Eissenstat, David M.

    2018-01-09

    1. Plant roots and the associated mycorrhizal fungal hyphae often selectively proliferate into patchily distributed soil nutrient hotspots, but interactions between these two components of a mycorrhizal root system are usually ignored or experimentally isolated in nutrient foraging studies. 2. From studies in which both roots and mycorrhizal hyphae had access to nutrient hotspots, we compiled data on root foraging precision (increase in roots in nutrient hotspots relative to outside hotspots) of plant species from different ecosystems, ranging from temperate grasslands to subtropical forests. We found that root for- aging precision across the wide range of plant species was stronglymore » influenced by root morphology and mycorrhizal type. 3. The precision of root nutrient foraging, as a plant functional trait, may coordinate with other root traits that are related to the economics of nutrient acquisition. High foraging precision is expected to associate with the strategy of fast return on the investment in roots, such as low construction cost, high metabolic rate and rapid turnover. 4. Nutrient foraging by mycorrhizal fungi alone may be influenced by functional traits such as hyphal exploration distance, hyphal turnover, and hyphal uptake capacity and efficiency, but such data are limited to a small portion of mycorrhizal fungal species. 5. We propose a conceptual framework in which to simulate nitrogen and phosphorus acquisition from both nutrient hotspots and outside hotspots in mixed-species plant communities. Simulation outputs suggest that plant species with varying root morphology and mycorrhizal type can be adaptive to a range of nutrient heterogeneity. 6. Although there are still knowledge gaps related to nutrient foraging, as well as many unexplored plant and fungal species, we suggest that scaling nutrient foraging from individual plants to communities would advance understanding of plant species interactions and below-ground ecosystem function.« less

  17. Datum maintenance of the main Egyptian geodetic control networks by utilizing Precise Point Positioning "PPP" technique

    NASA Astrophysics Data System (ADS)

    Rabah, Mostafa; Elmewafey, Mahmoud; Farahan, Magda H.

    2016-06-01

    A geodetic control network is the wire-frame or the skeleton on which continuous and consistent mapping, Geographic Information Systems (GIS), and surveys are based. Traditionally, geodetic control points are established as permanent physical monuments placed in the ground and precisely marked, located, and documented. With the development of satellite surveying methods and their availability and high degree of accuracy, a geodetic control network could be established by using GNSS and referred to an international terrestrial reference frame used as a three-dimensional geocentric reference system for a country. Based on this concept, in 1992, the Egypt Survey Authority (ESA) established two networks, namely High Accuracy Reference Network (HARN) and the National Agricultural Cadastral Network (NACN). To transfer the International Terrestrial Reference Frame to the HARN, the HARN was connected with four IGS stations. The processing results were 1:10,000,000 (Order A) for HARN and 1:1,000,000 (Order B) for NACN relative network accuracy standard between stations defined in ITRF1994 Epoch1996. Since 1996, ESA did not perform any updating or maintaining works for these networks. To see how non-performing maintenance degrading the values of the HARN and NACN, the available HARN and NACN stations in the Nile Delta were observed. The Processing of the tested part was done by CSRS-PPP Service based on utilizing Precise Point Positioning "PPP" and Trimble Business Center "TBC". The study shows the feasibility of Precise Point Positioning in updating the absolute positioning of the HARN network and its role in updating the reference frame (ITRF). The study also confirmed the necessity of the absent role of datum maintenance of Egypt networks.

  18. Nutrient foraging by mycorrhizas: From species functional traits to ecosystem processes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Weile; Koide, Roger T.; Eissenstat, David M.

    1. Plant roots and the associated mycorrhizal fungal hyphae often selectively proliferate into patchily distributed soil nutrient hotspots, but interactions between these two components of a mycorrhizal root system are usually ignored or experimentally isolated in nutrient foraging studies. 2. From studies in which both roots and mycorrhizal hyphae had access to nutrient hotspots, we compiled data on root foraging precision (increase in roots in nutrient hotspots relative to outside hotspots) of plant species from different ecosystems, ranging from temperate grasslands to subtropical forests. We found that root for- aging precision across the wide range of plant species was stronglymore » influenced by root morphology and mycorrhizal type. 3. The precision of root nutrient foraging, as a plant functional trait, may coordinate with other root traits that are related to the economics of nutrient acquisition. High foraging precision is expected to associate with the strategy of fast return on the investment in roots, such as low construction cost, high metabolic rate and rapid turnover. 4. Nutrient foraging by mycorrhizal fungi alone may be influenced by functional traits such as hyphal exploration distance, hyphal turnover, and hyphal uptake capacity and efficiency, but such data are limited to a small portion of mycorrhizal fungal species. 5. We propose a conceptual framework in which to simulate nitrogen and phosphorus acquisition from both nutrient hotspots and outside hotspots in mixed-species plant communities. Simulation outputs suggest that plant species with varying root morphology and mycorrhizal type can be adaptive to a range of nutrient heterogeneity. 6. Although there are still knowledge gaps related to nutrient foraging, as well as many unexplored plant and fungal species, we suggest that scaling nutrient foraging from individual plants to communities would advance understanding of plant species interactions and below-ground ecosystem function.« less

  19. Non-destructive diagnostics of irradiated materials using neutron scattering from pulsed neutron sources

    NASA Astrophysics Data System (ADS)

    Korenev, Sergey; Sikolenko, Vadim

    2004-09-01

    The advantage of neutron-scattering studies as compared to the standard X-ray technique is the high penetration of neutrons that allow us to study volume effects. The high resolution of instrumentation on the basis neutron scattering allows measurement of the parameters of lattice structure with high precision. We suggest the use of neutron scattering from pulsed neutron sources for analysis of materials irradiated with pulsed high current electron and ion beams. The results of preliminary tests using this method for Ni foils that have been studied by neutron diffraction at the IBR-2 (Pulsed Fast Reactor at Joint Institute for Nuclear Research) are presented.

  20. Precision Health Economics and Outcomes Research to Support Precision Medicine: Big Data Meets Patient Heterogeneity on the Road to Value.

    PubMed

    Chen, Yixi; Guzauskas, Gregory F; Gu, Chengming; Wang, Bruce C M; Furnback, Wesley E; Xie, Guotong; Dong, Peng; Garrison, Louis P

    2016-11-02

    The "big data" era represents an exciting opportunity to utilize powerful new sources of information to reduce clinical and health economic uncertainty on an individual patient level. In turn, health economic outcomes research (HEOR) practices will need to evolve to accommodate individual patient-level HEOR analyses. We propose the concept of "precision HEOR", which utilizes a combination of costs and outcomes derived from big data to inform healthcare decision-making that is tailored to highly specific patient clusters or individuals. To explore this concept, we discuss the current and future roles of HEOR in health sector decision-making, big data and predictive analytics, and several key HEOR contexts in which big data and predictive analytics might transform traditional HEOR into precision HEOR. The guidance document addresses issues related to the transition from traditional to precision HEOR practices, the evaluation of patient similarity analysis and its appropriateness for precision HEOR analysis, and future challenges to precision HEOR adoption. Precision HEOR should make precision medicine more realizable by aiding and adapting healthcare resource allocation. The combined hopes for precision medicine and precision HEOR are that individual patients receive the best possible medical care while overall healthcare costs remain manageable or become more cost-efficient.

Top