Sample records for high predictive accuracy

  1. Adjusted Clinical Groups: Predictive Accuracy for Medicaid Enrollees in Three States

    PubMed Central

    Adams, E. Kathleen; Bronstein, Janet M.; Raskind-Hood, Cheryl

    2002-01-01

    Actuarial split-sample methods were used to assess predictive accuracy of adjusted clinical groups (ACGs) for Medicaid enrollees in Georgia, Mississippi (lagging in managed care penetration), and California. Accuracy for two non-random groups—high-cost and located in urban poor areas—was assessed. Measures for random groups were derived with and without short-term enrollees to assess the effect of turnover on predictive accuracy. ACGs improved predictive accuracy for high-cost conditions in all States, but did so only for those in Georgia's poorest urban areas. Higher and more unpredictable expenses of short-term enrollees moderated the predictive power of ACGs. This limitation was significant in Mississippi due in part, to that State's very high proportion of short-term enrollees. PMID:12545598

  2. Genomic selection accuracies within and between environments and small breeding groups in white spruce.

    PubMed

    Beaulieu, Jean; Doerksen, Trevor K; MacKay, John; Rainville, André; Bousquet, Jean

    2014-12-02

    Genomic selection (GS) may improve selection response over conventional pedigree-based selection if markers capture more detailed information than pedigrees in recently domesticated tree species and/or make it more cost effective. Genomic prediction accuracies using 1748 trees and 6932 SNPs representative of as many distinct gene loci were determined for growth and wood traits in white spruce, within and between environments and breeding groups (BG), each with an effective size of Ne ≈ 20. Marker subsets were also tested. Model fits and/or cross-validation (CV) prediction accuracies for ridge regression (RR) and the least absolute shrinkage and selection operator models approached those of pedigree-based models. With strong relatedness between CV sets, prediction accuracies for RR within environment and BG were high for wood (r = 0.71-0.79) and moderately high for growth (r = 0.52-0.69) traits, in line with trends in heritabilities. For both classes of traits, these accuracies achieved between 83% and 92% of those obtained with phenotypes and pedigree information. Prediction into untested environments remained moderately high for wood (r ≥ 0.61) but dropped significantly for growth (r ≥ 0.24) traits, emphasizing the need to phenotype in all test environments and model genotype-by-environment interactions for growth traits. Removing relatedness between CV sets sharply decreased prediction accuracies for all traits and subpopulations, falling near zero between BGs with no known shared ancestry. For marker subsets, similar patterns were observed but with lower prediction accuracies. Given the need for high relatedness between CV sets to obtain good prediction accuracies, we recommend to build GS models for prediction within the same breeding population only. Breeding groups could be merged to build genomic prediction models as long as the total effective population size does not exceed 50 individuals in order to obtain high prediction accuracy such as that obtained in the present study. A number of markers limited to a few hundred would not negatively impact prediction accuracies, but these could decrease more rapidly over generations. The most promising short-term approach for genomic selection would likely be the selection of superior individuals within large full-sib families vegetatively propagated to implement multiclonal forestry.

  3. Improving transmembrane protein consensus topology prediction using inter-helical interaction.

    PubMed

    Wang, Han; Zhang, Chao; Shi, Xiaohu; Zhang, Li; Zhou, You

    2012-11-01

    Alpha helix transmembrane proteins (αTMPs) represent roughly 30% of all open reading frames (ORFs) in a typical genome and are involved in many critical biological processes. Due to the special physicochemical properties, it is hard to crystallize and obtain high resolution structures experimentally, thus, sequence-based topology prediction is highly desirable for the study of transmembrane proteins (TMPs), both in structure prediction and function prediction. Various model-based topology prediction methods have been developed, but the accuracy of those individual predictors remain poor due to the limitation of the methods or the features they used. Thus, the consensus topology prediction method becomes practical for high accuracy applications by combining the advances of the individual predictors. Here, based on the observation that inter-helical interactions are commonly found within the transmembrane helixes (TMHs) and strongly indicate the existence of them, we present a novel consensus topology prediction method for αTMPs, CNTOP, which incorporates four top leading individual topology predictors, and further improves the prediction accuracy by using the predicted inter-helical interactions. The method achieved 87% prediction accuracy based on a benchmark dataset and 78% accuracy based on a non-redundant dataset which is composed of polytopic αTMPs. Our method derives the highest topology accuracy than any other individual predictors and consensus predictors, at the same time, the TMHs are more accurately predicted in their length and locations, where both the false positives (FPs) and the false negatives (FNs) decreased dramatically. The CNTOP is available at: http://ccst.jlu.edu.cn/JCSB/cntop/CNTOP.html. Copyright © 2012 Elsevier B.V. All rights reserved.

  4. Evaluating the accuracy of SHAPE-directed RNA secondary structure predictions

    PubMed Central

    Sükösd, Zsuzsanna; Swenson, M. Shel; Kjems, Jørgen; Heitsch, Christine E.

    2013-01-01

    Recent advances in RNA structure determination include using data from high-throughput probing experiments to improve thermodynamic prediction accuracy. We evaluate the extent and nature of improvements in data-directed predictions for a diverse set of 16S/18S ribosomal sequences using a stochastic model of experimental SHAPE data. The average accuracy for 1000 data-directed predictions always improves over the original minimum free energy (MFE) structure. However, the amount of improvement varies with the sequence, exhibiting a correlation with MFE accuracy. Further analysis of this correlation shows that accurate MFE base pairs are typically preserved in a data-directed prediction, whereas inaccurate ones are not. Thus, the positive predictive value of common base pairs is consistently higher than the directed prediction accuracy. Finally, we confirm sequence dependencies in the directability of thermodynamic predictions and investigate the potential for greater accuracy improvements in the worst performing test sequence. PMID:23325843

  5. Outcome Prediction in Mathematical Models of Immune Response to Infection.

    PubMed

    Mai, Manuel; Wang, Kun; Huber, Greg; Kirby, Michael; Shattuck, Mark D; O'Hern, Corey S

    2015-01-01

    Clinicians need to predict patient outcomes with high accuracy as early as possible after disease inception. In this manuscript, we show that patient-to-patient variability sets a fundamental limit on outcome prediction accuracy for a general class of mathematical models for the immune response to infection. However, accuracy can be increased at the expense of delayed prognosis. We investigate several systems of ordinary differential equations (ODEs) that model the host immune response to a pathogen load. Advantages of systems of ODEs for investigating the immune response to infection include the ability to collect data on large numbers of 'virtual patients', each with a given set of model parameters, and obtain many time points during the course of the infection. We implement patient-to-patient variability v in the ODE models by randomly selecting the model parameters from distributions with coefficients of variation v that are centered on physiological values. We use logistic regression with one-versus-all classification to predict the discrete steady-state outcomes of the system. We find that the prediction algorithm achieves near 100% accuracy for v = 0, and the accuracy decreases with increasing v for all ODE models studied. The fact that multiple steady-state outcomes can be obtained for a given initial condition, i.e. the basins of attraction overlap in the space of initial conditions, limits the prediction accuracy for v > 0. Increasing the elapsed time of the variables used to train and test the classifier, increases the prediction accuracy, while adding explicit external noise to the ODE models decreases the prediction accuracy. Our results quantify the competition between early prognosis and high prediction accuracy that is frequently encountered by clinicians.

  6. Genomic Prediction of Seed Quality Traits Using Advanced Barley Breeding Lines.

    PubMed

    Nielsen, Nanna Hellum; Jahoor, Ahmed; Jensen, Jens Due; Orabi, Jihad; Cericola, Fabio; Edriss, Vahid; Jensen, Just

    2016-01-01

    Genomic selection was recently introduced in plant breeding. The objective of this study was to develop genomic prediction for important seed quality parameters in spring barley. The aim was to predict breeding values without expensive phenotyping of large sets of lines. A total number of 309 advanced spring barley lines tested at two locations each with three replicates were phenotyped and each line was genotyped by Illumina iSelect 9Kbarley chip. The population originated from two different breeding sets, which were phenotyped in two different years. Phenotypic measurements considered were: seed size, protein content, protein yield, test weight and ergosterol content. A leave-one-out cross-validation strategy revealed high prediction accuracies ranging between 0.40 and 0.83. Prediction across breeding sets resulted in reduced accuracies compared to the leave-one-out strategy. Furthermore, predicting across full and half-sib-families resulted in reduced prediction accuracies. Additionally, predictions were performed using reduced marker sets and reduced training population sets. In conclusion, using less than 200 lines in the training set can result in low prediction accuracy, and the accuracy will then be highly dependent on the family structure of the selected training set. However, the results also indicate that relatively small training sets (200 lines) are sufficient for genomic prediction in commercial barley breeding. In addition, our results indicate a minimum marker set of 1,000 to decrease the risk of low prediction accuracy for some traits or some families.

  7. Genomic Prediction of Seed Quality Traits Using Advanced Barley Breeding Lines

    PubMed Central

    Nielsen, Nanna Hellum; Jahoor, Ahmed; Jensen, Jens Due; Orabi, Jihad; Cericola, Fabio; Edriss, Vahid; Jensen, Just

    2016-01-01

    Genomic selection was recently introduced in plant breeding. The objective of this study was to develop genomic prediction for important seed quality parameters in spring barley. The aim was to predict breeding values without expensive phenotyping of large sets of lines. A total number of 309 advanced spring barley lines tested at two locations each with three replicates were phenotyped and each line was genotyped by Illumina iSelect 9Kbarley chip. The population originated from two different breeding sets, which were phenotyped in two different years. Phenotypic measurements considered were: seed size, protein content, protein yield, test weight and ergosterol content. A leave-one-out cross-validation strategy revealed high prediction accuracies ranging between 0.40 and 0.83. Prediction across breeding sets resulted in reduced accuracies compared to the leave-one-out strategy. Furthermore, predicting across full and half-sib-families resulted in reduced prediction accuracies. Additionally, predictions were performed using reduced marker sets and reduced training population sets. In conclusion, using less than 200 lines in the training set can result in low prediction accuracy, and the accuracy will then be highly dependent on the family structure of the selected training set. However, the results also indicate that relatively small training sets (200 lines) are sufficient for genomic prediction in commercial barley breeding. In addition, our results indicate a minimum marker set of 1,000 to decrease the risk of low prediction accuracy for some traits or some families. PMID:27783639

  8. Selecting Optimal Random Forest Predictive Models: A Case Study on Predicting the Spatial Distribution of Seabed Hardness

    PubMed Central

    Li, Jin; Tran, Maggie; Siwabessy, Justy

    2016-01-01

    Spatially continuous predictions of seabed hardness are important baseline environmental information for sustainable management of Australia’s marine jurisdiction. Seabed hardness is often inferred from multibeam backscatter data with unknown accuracy and can be inferred from underwater video footage at limited locations. In this study, we classified the seabed into four classes based on two new seabed hardness classification schemes (i.e., hard90 and hard70). We developed optimal predictive models to predict seabed hardness using random forest (RF) based on the point data of hardness classes and spatially continuous multibeam data. Five feature selection (FS) methods that are variable importance (VI), averaged variable importance (AVI), knowledge informed AVI (KIAVI), Boruta and regularized RF (RRF) were tested based on predictive accuracy. Effects of highly correlated, important and unimportant predictors on the accuracy of RF predictive models were examined. Finally, spatial predictions generated using the most accurate models were visually examined and analysed. This study confirmed that: 1) hard90 and hard70 are effective seabed hardness classification schemes; 2) seabed hardness of four classes can be predicted with a high degree of accuracy; 3) the typical approach used to pre-select predictive variables by excluding highly correlated variables needs to be re-examined; 4) the identification of the important and unimportant predictors provides useful guidelines for further improving predictive models; 5) FS methods select the most accurate predictive model(s) instead of the most parsimonious ones, and AVI and Boruta are recommended for future studies; and 6) RF is an effective modelling method with high predictive accuracy for multi-level categorical data and can be applied to ‘small p and large n’ problems in environmental sciences. Additionally, automated computational programs for AVI need to be developed to increase its computational efficiency and caution should be taken when applying filter FS methods in selecting predictive models. PMID:26890307

  9. Selecting Optimal Random Forest Predictive Models: A Case Study on Predicting the Spatial Distribution of Seabed Hardness.

    PubMed

    Li, Jin; Tran, Maggie; Siwabessy, Justy

    2016-01-01

    Spatially continuous predictions of seabed hardness are important baseline environmental information for sustainable management of Australia's marine jurisdiction. Seabed hardness is often inferred from multibeam backscatter data with unknown accuracy and can be inferred from underwater video footage at limited locations. In this study, we classified the seabed into four classes based on two new seabed hardness classification schemes (i.e., hard90 and hard70). We developed optimal predictive models to predict seabed hardness using random forest (RF) based on the point data of hardness classes and spatially continuous multibeam data. Five feature selection (FS) methods that are variable importance (VI), averaged variable importance (AVI), knowledge informed AVI (KIAVI), Boruta and regularized RF (RRF) were tested based on predictive accuracy. Effects of highly correlated, important and unimportant predictors on the accuracy of RF predictive models were examined. Finally, spatial predictions generated using the most accurate models were visually examined and analysed. This study confirmed that: 1) hard90 and hard70 are effective seabed hardness classification schemes; 2) seabed hardness of four classes can be predicted with a high degree of accuracy; 3) the typical approach used to pre-select predictive variables by excluding highly correlated variables needs to be re-examined; 4) the identification of the important and unimportant predictors provides useful guidelines for further improving predictive models; 5) FS methods select the most accurate predictive model(s) instead of the most parsimonious ones, and AVI and Boruta are recommended for future studies; and 6) RF is an effective modelling method with high predictive accuracy for multi-level categorical data and can be applied to 'small p and large n' problems in environmental sciences. Additionally, automated computational programs for AVI need to be developed to increase its computational efficiency and caution should be taken when applying filter FS methods in selecting predictive models.

  10. High-definition endoscopy with digital chromoendoscopy for histologic prediction of distal colorectal polyps.

    PubMed

    Rath, Timo; Tontini, Gian E; Nägel, Andreas; Vieth, Michael; Zopf, Steffen; Günther, Claudia; Hoffman, Arthur; Neurath, Markus F; Neumann, Helmut

    2015-10-22

    Distal diminutive colorectal polyps are common and accurate endoscopic prediction of hyperplastic or adenomatous polyp histology could reduce procedural time, costs and potential risks associated with the resection. Within this study we assessed whether digital chromoendoscopy can accurately predict the histology of distal diminutive colorectal polyps according to the ASGE PIVI statement. In this prospective cohort study, 224 consecutive patients undergoing screening or surveillance colonoscopy were included. Real time histology of 121 diminutive distal colorectal polyps was evaluated using high-definition endoscopy with digital chromoendoscopy and the accuracy of predicting histology with digital chromoendoscopy was assessed. The overall accuracy of digital chromoendoscopy for prediction of adenomatous polyp histology was 90.1 %. Sensitivity, specificity, positive and negative predictive values were 93.3, 88.7, 88.7, and 93.2 %, respectively. In high-confidence predictions, the accuracy increased to 96.3 % while sensitivity, specificity, positive and negative predictive values were calculated as 98.1, 94.4, 94.5, and 98.1 %, respectively. Surveillance intervals with digital chromoendoscopy were correctly predicted with >90 % accuracy. High-definition endoscopy in combination with digital chromoendoscopy allowed real-time in vivo prediction of distal colorectal polyp histology and is accurate enough to leave distal colorectal polyps in place without resection or to resect and discard them without pathologic assessment. This approach has the potential to reduce costs and risks associated with the redundant removal of diminutive colorectal polyps. ClinicalTrials NCT02217449.

  11. Checking the predictive accuracy of basic symptoms against ultra high-risk criteria and testing of a multivariable prediction model: Evidence from a prospective three-year observational study of persons at clinical high-risk for psychosis.

    PubMed

    Hengartner, M P; Heekeren, K; Dvorsky, D; Walitza, S; Rössler, W; Theodoridou, A

    2017-09-01

    The aim of this study was to critically examine the prognostic validity of various clinical high-risk (CHR) criteria alone and in combination with additional clinical characteristics. A total of 188 CHR positive persons from the region of Zurich, Switzerland (mean age 20.5 years; 60.2% male), meeting ultra high-risk (UHR) and/or basic symptoms (BS) criteria, were followed over three years. The test battery included the Structured Interview for Prodromal Syndromes (SIPS), verbal IQ and many other screening tools. Conversion to psychosis was defined according to ICD-10 criteria for schizophrenia (F20) or brief psychotic disorder (F23). Altogether n=24 persons developed manifest psychosis within three years and according to Kaplan-Meier survival analysis, the projected conversion rate was 17.5%. The predictive accuracy of UHR was statistically significant but poor (area under the curve [AUC]=0.65, P<.05), whereas BS did not predict psychosis beyond mere chance (AUC=0.52, P=.730). Sensitivity and specificity were 0.83 and 0.47 for UHR, and 0.96 and 0.09 for BS. UHR plus BS achieved an AUC=0.66, with sensitivity and specificity of 0.75 and 0.56. In comparison, baseline antipsychotic medication yielded a predictive accuracy of AUC=0.62 (sensitivity=0.42; specificity=0.82). A multivariable prediction model comprising continuous measures of positive symptoms and verbal IQ achieved a substantially improved prognostic accuracy (AUC=0.85; sensitivity=0.86; specificity=0.85; positive predictive value=0.54; negative predictive value=0.97). We showed that BS have no predictive accuracy beyond chance, while UHR criteria poorly predict conversion to psychosis. Combining BS with UHR criteria did not improve the predictive accuracy of UHR alone. In contrast, dimensional measures of both positive symptoms and verbal IQ showed excellent prognostic validity. A critical re-thinking of binary at-risk criteria is necessary in order to improve the prognosis of psychotic disorders. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  12. Effectiveness of link prediction for face-to-face behavioral networks.

    PubMed

    Tsugawa, Sho; Ohsaki, Hiroyuki

    2013-01-01

    Research on link prediction for social networks has been actively pursued. In link prediction for a given social network obtained from time-windowed observation, new link formation in the network is predicted from the topology of the obtained network. In contrast, recent advances in sensing technology have made it possible to obtain face-to-face behavioral networks, which are social networks representing face-to-face interactions among people. However, the effectiveness of link prediction techniques for face-to-face behavioral networks has not yet been explored in depth. To clarify this point, here we investigate the accuracy of conventional link prediction techniques for networks obtained from the history of face-to-face interactions among participants at an academic conference. Our findings were (1) that conventional link prediction techniques predict new link formation with a precision of 0.30-0.45 and a recall of 0.10-0.20, (2) that prolonged observation of social networks often degrades the prediction accuracy, (3) that the proposed decaying weight method leads to higher prediction accuracy than can be achieved by observing all records of communication and simply using them unmodified, and (4) that the prediction accuracy for face-to-face behavioral networks is relatively high compared to that for non-social networks, but not as high as for other types of social networks.

  13. Canopy Temperature and Vegetation Indices from High-Throughput Phenotyping Improve Accuracy of Pedigree and Genomic Selection for Grain Yield in Wheat

    PubMed Central

    Rutkoski, Jessica; Poland, Jesse; Mondal, Suchismita; Autrique, Enrique; Pérez, Lorena González; Crossa, José; Reynolds, Matthew; Singh, Ravi

    2016-01-01

    Genomic selection can be applied prior to phenotyping, enabling shorter breeding cycles and greater rates of genetic gain relative to phenotypic selection. Traits measured using high-throughput phenotyping based on proximal or remote sensing could be useful for improving pedigree and genomic prediction model accuracies for traits not yet possible to phenotype directly. We tested if using aerial measurements of canopy temperature, and green and red normalized difference vegetation index as secondary traits in pedigree and genomic best linear unbiased prediction models could increase accuracy for grain yield in wheat, Triticum aestivum L., using 557 lines in five environments. Secondary traits on training and test sets, and grain yield on the training set were modeled as multivariate, and compared to univariate models with grain yield on the training set only. Cross validation accuracies were estimated within and across-environment, with and without replication, and with and without correcting for days to heading. We observed that, within environment, with unreplicated secondary trait data, and without correcting for days to heading, secondary traits increased accuracies for grain yield by 56% in pedigree, and 70% in genomic prediction models, on average. Secondary traits increased accuracy slightly more when replicated, and considerably less when models corrected for days to heading. In across-environment prediction, trends were similar but less consistent. These results show that secondary traits measured in high-throughput could be used in pedigree and genomic prediction to improve accuracy. This approach could improve selection in wheat during early stages if validated in early-generation breeding plots. PMID:27402362

  14. High accuracy operon prediction method based on STRING database scores.

    PubMed

    Taboada, Blanca; Verde, Cristina; Merino, Enrique

    2010-07-01

    We present a simple and highly accurate computational method for operon prediction, based on intergenic distances and functional relationships between the protein products of contiguous genes, as defined by STRING database (Jensen,L.J., Kuhn,M., Stark,M., Chaffron,S., Creevey,C., Muller,J., Doerks,T., Julien,P., Roth,A., Simonovic,M. et al. (2009) STRING 8-a global view on proteins and their functional interactions in 630 organisms. Nucleic Acids Res., 37, D412-D416). These two parameters were used to train a neural network on a subset of experimentally characterized Escherichia coli and Bacillus subtilis operons. Our predictive model was successfully tested on the set of experimentally defined operons in E. coli and B. subtilis, with accuracies of 94.6 and 93.3%, respectively. As far as we know, these are the highest accuracies ever obtained for predicting bacterial operons. Furthermore, in order to evaluate the predictable accuracy of our model when using an organism's data set for the training procedure, and a different organism's data set for testing, we repeated the E. coli operon prediction analysis using a neural network trained with B. subtilis data, and a B. subtilis analysis using a neural network trained with E. coli data. Even for these cases, the accuracies reached with our method were outstandingly high, 91.5 and 93%, respectively. These results show the potential use of our method for accurately predicting the operons of any other organism. Our operon predictions for fully-sequenced genomes are available at http://operons.ibt.unam.mx/OperonPredictor/.

  15. The accuracy of Genomic Selection in Norwegian red cattle assessed by cross-validation.

    PubMed

    Luan, Tu; Woolliams, John A; Lien, Sigbjørn; Kent, Matthew; Svendsen, Morten; Meuwissen, Theo H E

    2009-11-01

    Genomic Selection (GS) is a newly developed tool for the estimation of breeding values for quantitative traits through the use of dense markers covering the whole genome. For a successful application of GS, accuracy of the prediction of genomewide breeding value (GW-EBV) is a key issue to consider. Here we investigated the accuracy and possible bias of GW-EBV prediction, using real bovine SNP genotyping (18,991 SNPs) and phenotypic data of 500 Norwegian Red bulls. The study was performed on milk yield, fat yield, protein yield, first lactation mastitis traits, and calving ease. Three methods, best linear unbiased prediction (G-BLUP), Bayesian statistics (BayesB), and a mixture model approach (MIXTURE), were used to estimate marker effects, and their accuracy and bias were estimated by using cross-validation. The accuracies of the GW-EBV prediction were found to vary widely between 0.12 and 0.62. G-BLUP gave overall the highest accuracy. We observed a strong relationship between the accuracy of the prediction and the heritability of the trait. GW-EBV prediction for production traits with high heritability achieved higher accuracy and also lower bias than health traits with low heritability. To achieve a similar accuracy for the health traits probably more records will be needed.

  16. Metamemory prediction accuracy for simple prospective and retrospective memory tasks in 5-year-old children.

    PubMed

    Kvavilashvili, Lia; Ford, Ruth M

    2014-11-01

    It is well documented that young children greatly overestimate their performance on tests of retrospective memory (RM), but the current investigation is the first to examine children's prediction accuracy for prospective memory (PM). Three studies were conducted, each testing a different group of 5-year-olds. In Study 1 (N=46), participants were asked to predict their success in a simple event-based PM task (remembering to convey a message to a toy mole if they encountered a particular picture during a picture-naming activity). Before naming the pictures, children listened to either a reminder story or a neutral story. Results showed that children were highly accurate in their PM predictions (78% accuracy) and that the reminder story appeared to benefit PM only in children who predicted they would remember the PM response. In Study 2 (N=80), children showed high PM prediction accuracy (69%) regardless of whether the cue was specific or general and despite typical overoptimism regarding their performance on a 10-item RM task using item-by-item prediction. Study 3 (N=35) showed that children were prone to overestimate RM even when asked about their ability to recall a single item-the mole's unusual name. In light of these findings, we consider possible reasons for children's impressive PM prediction accuracy, including the potential involvement of future thinking in performance predictions and PM. Copyright © 2014 Elsevier Inc. All rights reserved.

  17. Addressing issues associated with evaluating prediction models for survival endpoints based on the concordance statistic.

    PubMed

    Wang, Ming; Long, Qi

    2016-09-01

    Prediction models for disease risk and prognosis play an important role in biomedical research, and evaluating their predictive accuracy in the presence of censored data is of substantial interest. The standard concordance (c) statistic has been extended to provide a summary measure of predictive accuracy for survival models. Motivated by a prostate cancer study, we address several issues associated with evaluating survival prediction models based on c-statistic with a focus on estimators using the technique of inverse probability of censoring weighting (IPCW). Compared to the existing work, we provide complete results on the asymptotic properties of the IPCW estimators under the assumption of coarsening at random (CAR), and propose a sensitivity analysis under the mechanism of noncoarsening at random (NCAR). In addition, we extend the IPCW approach as well as the sensitivity analysis to high-dimensional settings. The predictive accuracy of prediction models for cancer recurrence after prostatectomy is assessed by applying the proposed approaches. We find that the estimated predictive accuracy for the models in consideration is sensitive to NCAR assumption, and thus identify the best predictive model. Finally, we further evaluate the performance of the proposed methods in both settings of low-dimensional and high-dimensional data under CAR and NCAR through simulations. © 2016, The International Biometric Society.

  18. Prediction-Oriented Marker Selection (PROMISE): With Application to High-Dimensional Regression.

    PubMed

    Kim, Soyeon; Baladandayuthapani, Veerabhadran; Lee, J Jack

    2017-06-01

    In personalized medicine, biomarkers are used to select therapies with the highest likelihood of success based on an individual patient's biomarker/genomic profile. Two goals are to choose important biomarkers that accurately predict treatment outcomes and to cull unimportant biomarkers to reduce the cost of biological and clinical verifications. These goals are challenging due to the high dimensionality of genomic data. Variable selection methods based on penalized regression (e.g., the lasso and elastic net) have yielded promising results. However, selecting the right amount of penalization is critical to simultaneously achieving these two goals. Standard approaches based on cross-validation (CV) typically provide high prediction accuracy with high true positive rates but at the cost of too many false positives. Alternatively, stability selection (SS) controls the number of false positives, but at the cost of yielding too few true positives. To circumvent these issues, we propose prediction-oriented marker selection (PROMISE), which combines SS with CV to conflate the advantages of both methods. Our application of PROMISE with the lasso and elastic net in data analysis shows that, compared to CV, PROMISE produces sparse solutions, few false positives, and small type I + type II error, and maintains good prediction accuracy, with a marginal decrease in the true positive rates. Compared to SS, PROMISE offers better prediction accuracy and true positive rates. In summary, PROMISE can be applied in many fields to select regularization parameters when the goals are to minimize false positives and maximize prediction accuracy.

  19. Assessing risk of reoffending in adolescents who have committed a sexual offense: the accuracy of clinical judgments after completion of risk assessment instruments.

    PubMed

    Elkovitch, Natasha; Viljoen, Jodi L; Scalora, Mario J; Ullman, Daniel

    2008-01-01

    As courts often rely on clinicians when differentiating between sexually abusive youth at a low versus high risk of reoffense, understanding factors that contribute to accuracy in assessment of risk is imperative. The present study built on existing research by examining (1) the accuracy of clinical judgments of risk made after completing risk assessment instruments, (2) whether instrument-informed clinical judgments made with a high degree of confidence are associated with greater accuracy, and (3) the risk assessment instruments and subscales most predictive of clinical judgments. Raters assessed each youth's (n = 166) risk of reoffending after completing the SAVRY and J-SOAP-II. Raters were not able to predict detected cases of either sexual recidivism or nonsexual violent recidivism above chance, and a high degree of rater confidence was not associated with higher levels of accuracy. Total scores on the J-SOAP-II were predictive of instrument-informed clinical judgments of sexual risk, and total scores on the SAVRY of nonsexual risk.

  20. Effectiveness of Link Prediction for Face-to-Face Behavioral Networks

    PubMed Central

    Tsugawa, Sho; Ohsaki, Hiroyuki

    2013-01-01

    Research on link prediction for social networks has been actively pursued. In link prediction for a given social network obtained from time-windowed observation, new link formation in the network is predicted from the topology of the obtained network. In contrast, recent advances in sensing technology have made it possible to obtain face-to-face behavioral networks, which are social networks representing face-to-face interactions among people. However, the effectiveness of link prediction techniques for face-to-face behavioral networks has not yet been explored in depth. To clarify this point, here we investigate the accuracy of conventional link prediction techniques for networks obtained from the history of face-to-face interactions among participants at an academic conference. Our findings were (1) that conventional link prediction techniques predict new link formation with a precision of 0.30–0.45 and a recall of 0.10–0.20, (2) that prolonged observation of social networks often degrades the prediction accuracy, (3) that the proposed decaying weight method leads to higher prediction accuracy than can be achieved by observing all records of communication and simply using them unmodified, and (4) that the prediction accuracy for face-to-face behavioral networks is relatively high compared to that for non-social networks, but not as high as for other types of social networks. PMID:24339956

  1. Knowing Loved Ones’ End-of-Life Health Care Wishes: Attachment Security Predicts Caregivers’ Accuracy

    PubMed Central

    Turan, Bulent; Goldstein, Mary K.; Garber, Alan M.; Carstensen, Laura L.

    2011-01-01

    Objective At times caregivers make life-and-death decisions for loved ones. Yet very little is known about the factors that make caregivers more or less accurate as surrogate decision makers for their loved ones. Previous research suggests that in low stress situations, individuals with high attachment-related anxiety are attentive to their relationship partners’ wishes and concerns, but get overwhelmed by stressful situations. Individuals with high attachment-related avoidance are likely to avoid intimacy and stressful situations altogether. We hypothesized that both of these insecure attachment patterns limit surrogates’ ability to process distressing information and should therefore be associated with lower accuracy in the stressful task of predicting their loved ones’ end-of-life health care wishes. Methods Older patients visiting a medical clinic stated their preferences toward end-of-life health care in different health contexts and surrogate decision makers independently predicted those preferences. For comparison purposes, surrogates also predicted patients’ perceptions of everyday living conditions so that surrogates’ accuracy of their loved ones’ perceptions in non-stressful situations could be assessed. Results Surrogates high on either type of insecure attachment dimension were less accurate in predicting their loved ones’ end-of-life health care wishes. Interestingly, even though surrogates’ attachment-related anxiety was associated with lower accuracy of end-of-life health care wishes of patients, it was associated with higher accuracy in the non-stressful task of predicting their everyday living conditions. Conclusions Attachment orientation plays an important role in accuracy about loved ones’ end-of-life health care wishes. Interventions may target emotion regulation strategies associated with insecure attachment orientations. PMID:22081941

  2. A Multicriteria Approach to Find Predictive and Sparse Models with Stable Feature Selection for High-Dimensional Data.

    PubMed

    Bommert, Andrea; Rahnenführer, Jörg; Lang, Michel

    2017-01-01

    Finding a good predictive model for a high-dimensional data set can be challenging. For genetic data, it is not only important to find a model with high predictive accuracy, but it is also important that this model uses only few features and that the selection of these features is stable. This is because, in bioinformatics, the models are used not only for prediction but also for drawing biological conclusions which makes the interpretability and reliability of the model crucial. We suggest using three target criteria when fitting a predictive model to a high-dimensional data set: the classification accuracy, the stability of the feature selection, and the number of chosen features. As it is unclear which measure is best for evaluating the stability, we first compare a variety of stability measures. We conclude that the Pearson correlation has the best theoretical and empirical properties. Also, we find that for the stability assessment behaviour it is most important that a measure contains a correction for chance or large numbers of chosen features. Then, we analyse Pareto fronts and conclude that it is possible to find models with a stable selection of few features without losing much predictive accuracy.

  3. The predictive value of magnetic resonance imaging of retinoblastoma for the likelihood of high-risk pathologic features.

    PubMed

    Hiasat, Jamila G; Saleh, Alaa; Al-Hussaini, Maysa; Al Nawaiseh, Ibrahim; Mehyar, Mustafa; Qandeel, Monther; Mohammad, Mona; Deebajah, Rasha; Sultan, Iyad; Jaradat, Imad; Mansour, Asem; Yousef, Yacoub A

    2018-06-01

    To evaluate the predictive value of magnetic resonance imaging in retinoblastoma for the likelihood of high-risk pathologic features. A retrospective study of 64 eyes enucleated from 60 retinoblastoma patients. Contrast-enhanced magnetic resonance imaging was performed before enucleation. Main outcome measures included demographics, laterality, accuracy, sensitivity, and specificity of magnetic resonance imaging in detecting high-risk pathologic features. Optic nerve invasion and choroidal invasion were seen microscopically in 34 (53%) and 28 (44%) eyes, respectively, while they were detected in magnetic resonance imaging in 22 (34%) and 15 (23%) eyes, respectively. The accuracy of magnetic resonance imaging in detecting prelaminar invasion was 77% (sensitivity 89%, specificity 98%), 56% for laminar invasion (sensitivity 27%, specificity 94%), 84% for postlaminar invasion (sensitivity 42%, specificity 98%), and 100% for optic cut edge invasion (sensitivity100%, specificity 100%). The accuracy of magnetic resonance imaging in detecting focal choroidal invasion was 48% (sensitivity 33%, specificity 97%), and 84% for massive choroidal invasion (sensitivity 53%, specificity 98%), and the accuracy in detecting extrascleral extension was 96% (sensitivity 67%, specificity 98%). Magnetic resonance imaging should not be the only method to stratify patients at high risk from those who are not, eventhough it can predict with high accuracy extensive postlaminar optic nerve invasion, massive choroidal invasion, and extrascleral tumor extension.

  4. Artificial neural network modeling using clinical and knowledge independent variables predicts salt intake reduction behavior

    PubMed Central

    Isma’eel, Hussain A.; Sakr, George E.; Almedawar, Mohamad M.; Fathallah, Jihan; Garabedian, Torkom; Eddine, Savo Bou Zein

    2015-01-01

    Background High dietary salt intake is directly linked to hypertension and cardiovascular diseases (CVDs). Predicting behaviors regarding salt intake habits is vital to guide interventions and increase their effectiveness. We aim to compare the accuracy of an artificial neural network (ANN) based tool that predicts behavior from key knowledge questions along with clinical data in a high cardiovascular risk cohort relative to the least square models (LSM) method. Methods We collected knowledge, attitude and behavior data on 115 patients. A behavior score was calculated to classify patients’ behavior towards reducing salt intake. Accuracy comparison between ANN and regression analysis was calculated using the bootstrap technique with 200 iterations. Results Starting from a 69-item questionnaire, a reduced model was developed and included eight knowledge items found to result in the highest accuracy of 62% CI (58-67%). The best prediction accuracy in the full and reduced models was attained by ANN at 66% and 62%, respectively, compared to full and reduced LSM at 40% and 34%, respectively. The average relative increase in accuracy over all in the full and reduced models is 82% and 102%, respectively. Conclusions Using ANN modeling, we can predict salt reduction behaviors with 66% accuracy. The statistical model has been implemented in an online calculator and can be used in clinics to estimate the patient’s behavior. This will help implementation in future research to further prove clinical utility of this tool to guide therapeutic salt reduction interventions in high cardiovascular risk individuals. PMID:26090333

  5. Genomic Prediction of Gene Bank Wheat Landraces.

    PubMed

    Crossa, José; Jarquín, Diego; Franco, Jorge; Pérez-Rodríguez, Paulino; Burgueño, Juan; Saint-Pierre, Carolina; Vikram, Prashant; Sansaloni, Carolina; Petroli, Cesar; Akdemir, Deniz; Sneller, Clay; Reynolds, Matthew; Tattaris, Maria; Payne, Thomas; Guzman, Carlos; Peña, Roberto J; Wenzl, Peter; Singh, Sukhwinder

    2016-07-07

    This study examines genomic prediction within 8416 Mexican landrace accessions and 2403 Iranian landrace accessions stored in gene banks. The Mexican and Iranian collections were evaluated in separate field trials, including an optimum environment for several traits, and in two separate environments (drought, D and heat, H) for the highly heritable traits, days to heading (DTH), and days to maturity (DTM). Analyses accounting and not accounting for population structure were performed. Genomic prediction models include genotype × environment interaction (G × E). Two alternative prediction strategies were studied: (1) random cross-validation of the data in 20% training (TRN) and 80% testing (TST) (TRN20-TST80) sets, and (2) two types of core sets, "diversity" and "prediction", including 10% and 20%, respectively, of the total collections. Accounting for population structure decreased prediction accuracy by 15-20% as compared to prediction accuracy obtained when not accounting for population structure. Accounting for population structure gave prediction accuracies for traits evaluated in one environment for TRN20-TST80 that ranged from 0.407 to 0.677 for Mexican landraces, and from 0.166 to 0.662 for Iranian landraces. Prediction accuracy of the 20% diversity core set was similar to accuracies obtained for TRN20-TST80, ranging from 0.412 to 0.654 for Mexican landraces, and from 0.182 to 0.647 for Iranian landraces. The predictive core set gave similar prediction accuracy as the diversity core set for Mexican collections, but slightly lower for Iranian collections. Prediction accuracy when incorporating G × E for DTH and DTM for Mexican landraces for TRN20-TST80 was around 0.60, which is greater than without the G × E term. For Iranian landraces, accuracies were 0.55 for the G × E model with TRN20-TST80. Results show promising prediction accuracies for potential use in germplasm enhancement and rapid introgression of exotic germplasm into elite materials. Copyright © 2016 Crossa et al.

  6. Accuracy of Prediction Instruments for Diagnosing Large Vessel Occlusion in Individuals With Suspected Stroke: A Systematic Review for the 2018 Guidelines for the Early Management of Patients With Acute Ischemic Stroke.

    PubMed

    Smith, Eric E; Kent, David M; Bulsara, Ketan R; Leung, Lester Y; Lichtman, Judith H; Reeves, Mathew J; Towfighi, Amytis; Whiteley, William N; Zahuranec, Darin B

    2018-03-01

    Endovascular thrombectomy is a highly efficacious treatment for large vessel occlusion (LVO). LVO prediction instruments, based on stroke signs and symptoms, have been proposed to identify stroke patients with LVO for rapid transport to endovascular thrombectomy-capable hospitals. This evidence review committee was commissioned by the American Heart Association/American Stroke Association to systematically review evidence for the accuracy of LVO prediction instruments. Medline, Embase, and Cochrane databases were searched on October 27, 2016. Study quality was assessed with the Quality Assessment of Diagnostic Accuracy-2 tool. Thirty-six relevant studies were identified. Most studies (21 of 36) recruited patients with ischemic stroke, with few studies in the prehospital setting (4 of 36) and in populations that included hemorrhagic stroke or stroke mimics (12 of 36). The most frequently studied prediction instrument was the National Institutes of Health Stroke Scale. Most studies had either some risk of bias or unclear risk of bias. Reported discrimination of LVO mostly ranged from 0.70 to 0.85, as measured by the C statistic. In meta-analysis, sensitivity was as high as 87% and specificity was as high as 90%, but no threshold on any instruments predicted LVO with both high sensitivity and specificity. With a positive LVO prediction test, the probability of LVO could be 50% to 60% (depending on the LVO prevalence in the population), but the probability of LVO with a negative test could still be ≥10%. No scale predicted LVO with both high sensitivity and high specificity. Systems that use LVO prediction instruments for triage will miss some patients with LVO and milder stroke. More prospective studies are needed to assess the accuracy of LVO prediction instruments in the prehospital setting in all patients with suspected stroke, including patients with hemorrhagic stroke and stroke mimics. © 2018 American Heart Association, Inc.

  7. Effect of genetic architecture on the prediction accuracy of quantitative traits in samples of unrelated individuals.

    PubMed

    Morgante, Fabio; Huang, Wen; Maltecca, Christian; Mackay, Trudy F C

    2018-06-01

    Predicting complex phenotypes from genomic data is a fundamental aim of animal and plant breeding, where we wish to predict genetic merits of selection candidates; and of human genetics, where we wish to predict disease risk. While genomic prediction models work well with populations of related individuals and high linkage disequilibrium (LD) (e.g., livestock), comparable models perform poorly for populations of unrelated individuals and low LD (e.g., humans). We hypothesized that low prediction accuracies in the latter situation may occur when the genetics architecture of the trait departs from the infinitesimal and additive architecture assumed by most prediction models. We used simulated data for 10,000 lines based on sequence data from a population of unrelated, inbred Drosophila melanogaster lines to evaluate this hypothesis. We show that, even in very simplified scenarios meant as a stress test of the commonly used Genomic Best Linear Unbiased Predictor (G-BLUP) method, using all common variants yields low prediction accuracy regardless of the trait genetic architecture. However, prediction accuracy increases when predictions are informed by the genetic architecture inferred from mapping the top variants affecting main effects and interactions in the training data, provided there is sufficient power for mapping. When the true genetic architecture is largely or partially due to epistatic interactions, the additive model may not perform well, while models that account explicitly for interactions generally increase prediction accuracy. Our results indicate that accounting for genetic architecture can improve prediction accuracy for quantitative traits.

  8. High accuracy satellite drag model (HASDM)

    NASA Astrophysics Data System (ADS)

    Storz, M.; Bowman, B.; Branson, J.

    The dominant error source in the force models used to predict low perigee satellite trajectories is atmospheric drag. Errors in operational thermospheric density models cause significant errors in predicted satellite positions, since these models do not account for dynamic changes in atmospheric drag for orbit predictions. The Air Force Space Battlelab's High Accuracy Satellite Drag Model (HASDM) estimates and predicts (out three days) a dynamically varying high-resolution density field. HASDM includes the Dynamic Calibration Atmosphere (DCA) algorithm that solves for the phases and amplitudes of the diurnal, semidiurnal and terdiurnal variations of thermospheric density near real-time from the observed drag effects on a set of Low Earth Orbit (LEO) calibration satellites. The density correction is expressed as a function of latitude, local solar time and altitude. In HASDM, a time series prediction filter relates the extreme ultraviolet (EUV) energy index E10.7 and the geomagnetic storm index a p to the DCA density correction parameters. The E10.7 index is generated by the SOLAR2000 model, the first full spectrum model of solar irradiance. The estimated and predicted density fields will be used operationally to significantly improve the accuracy of predicted trajectories for all low perigee satellites.

  9. Genomic Prediction of Gene Bank Wheat Landraces

    PubMed Central

    Crossa, José; Jarquín, Diego; Franco, Jorge; Pérez-Rodríguez, Paulino; Burgueño, Juan; Saint-Pierre, Carolina; Vikram, Prashant; Sansaloni, Carolina; Petroli, Cesar; Akdemir, Deniz; Sneller, Clay; Reynolds, Matthew; Tattaris, Maria; Payne, Thomas; Guzman, Carlos; Peña, Roberto J.; Wenzl, Peter; Singh, Sukhwinder

    2016-01-01

    This study examines genomic prediction within 8416 Mexican landrace accessions and 2403 Iranian landrace accessions stored in gene banks. The Mexican and Iranian collections were evaluated in separate field trials, including an optimum environment for several traits, and in two separate environments (drought, D and heat, H) for the highly heritable traits, days to heading (DTH), and days to maturity (DTM). Analyses accounting and not accounting for population structure were performed. Genomic prediction models include genotype × environment interaction (G × E). Two alternative prediction strategies were studied: (1) random cross-validation of the data in 20% training (TRN) and 80% testing (TST) (TRN20-TST80) sets, and (2) two types of core sets, “diversity” and “prediction”, including 10% and 20%, respectively, of the total collections. Accounting for population structure decreased prediction accuracy by 15–20% as compared to prediction accuracy obtained when not accounting for population structure. Accounting for population structure gave prediction accuracies for traits evaluated in one environment for TRN20-TST80 that ranged from 0.407 to 0.677 for Mexican landraces, and from 0.166 to 0.662 for Iranian landraces. Prediction accuracy of the 20% diversity core set was similar to accuracies obtained for TRN20-TST80, ranging from 0.412 to 0.654 for Mexican landraces, and from 0.182 to 0.647 for Iranian landraces. The predictive core set gave similar prediction accuracy as the diversity core set for Mexican collections, but slightly lower for Iranian collections. Prediction accuracy when incorporating G × E for DTH and DTM for Mexican landraces for TRN20-TST80 was around 0.60, which is greater than without the G × E term. For Iranian landraces, accuracies were 0.55 for the G × E model with TRN20-TST80. Results show promising prediction accuracies for potential use in germplasm enhancement and rapid introgression of exotic germplasm into elite materials. PMID:27172218

  10. Alternative evaluation metrics for risk adjustment methods.

    PubMed

    Park, Sungchul; Basu, Anirban

    2018-06-01

    Risk adjustment is instituted to counter risk selection by accurately equating payments with expected expenditures. Traditional risk-adjustment methods are designed to estimate accurate payments at the group level. However, this generates residual risks at the individual level, especially for high-expenditure individuals, thereby inducing health plans to avoid those with high residual risks. To identify an optimal risk-adjustment method, we perform a comprehensive comparison of prediction accuracies at the group level, at the tail distributions, and at the individual level across 19 estimators: 9 parametric regression, 7 machine learning, and 3 distributional estimators. Using the 2013-2014 MarketScan database, we find that no one estimator performs best in all prediction accuracies. Generally, machine learning and distribution-based estimators achieve higher group-level prediction accuracy than parametric regression estimators. However, parametric regression estimators show higher tail distribution prediction accuracy and individual-level prediction accuracy, especially at the tails of the distribution. This suggests that there is a trade-off in selecting an appropriate risk-adjustment method between estimating accurate payments at the group level and lower residual risks at the individual level. Our results indicate that an optimal method cannot be determined solely on the basis of statistical metrics but rather needs to account for simulating plans' risk selective behaviors. Copyright © 2018 John Wiley & Sons, Ltd.

  11. Sequence-Based Prediction of RNA-Binding Proteins Using Random Forest with Minimum Redundancy Maximum Relevance Feature Selection.

    PubMed

    Ma, Xin; Guo, Jing; Sun, Xiao

    2015-01-01

    The prediction of RNA-binding proteins is one of the most challenging problems in computation biology. Although some studies have investigated this problem, the accuracy of prediction is still not sufficient. In this study, a highly accurate method was developed to predict RNA-binding proteins from amino acid sequences using random forests with the minimum redundancy maximum relevance (mRMR) method, followed by incremental feature selection (IFS). We incorporated features of conjoint triad features and three novel features: binding propensity (BP), nonbinding propensity (NBP), and evolutionary information combined with physicochemical properties (EIPP). The results showed that these novel features have important roles in improving the performance of the predictor. Using the mRMR-IFS method, our predictor achieved the best performance (86.62% accuracy and 0.737 Matthews correlation coefficient). High prediction accuracy and successful prediction performance suggested that our method can be a useful approach to identify RNA-binding proteins from sequence information.

  12. Accuracy statistics in predicting Independent Activities of Daily Living (IADL) capacity with comprehensive and brief neuropsychological test batteries.

    PubMed

    Karzmark, Peter; Deutsch, Gayle K

    2018-01-01

    This investigation was designed to determine the predictive accuracy of a comprehensive neuropsychological and brief neuropsychological test battery with regard to the capacity to perform instrumental activities of daily living (IADLs). Accuracy statistics that included measures of sensitivity, specificity, positive and negative predicted power and positive likelihood ratio were calculated for both types of batteries. The sample was drawn from a general neurological group of adults (n = 117) that included a number of older participants (age >55; n = 38). Standardized neuropsychological assessments were administered to all participants and were comprised of the Halstead Reitan Battery and portions of the Wechsler Adult Intelligence Scale-III. A comprehensive test battery yielded a moderate increase over base-rate in predictive accuracy that generalized to older individuals. There was only limited support for using a brief battery, for although sensitivity was high, specificity was low. We found that a comprehensive neuropsychological test battery provided good classification accuracy for predicting IADL capacity.

  13. Moisture effects on the prediction performance of a single kernel near-infrared deoxynivalenol calibration

    USDA-ARS?s Scientific Manuscript database

    Effect of moisture content variation on the accuracy of single kernel deoxynivalenol (DON) prediction by near-infrared (NIR) spectroscopy was investigated. Sample moisture content (MC) considerably affected accuracy of the current NIR DON calibration by underestimating or over estimating DON at high...

  14. Performance of genomic prediction within and across generations in maritime pine.

    PubMed

    Bartholomé, Jérôme; Van Heerwaarden, Joost; Isik, Fikret; Boury, Christophe; Vidal, Marjorie; Plomion, Christophe; Bouffier, Laurent

    2016-08-11

    Genomic selection (GS) is a promising approach for decreasing breeding cycle length in forest trees. Assessment of progeny performance and of the prediction accuracy of GS models over generations is therefore a key issue. A reference population of maritime pine (Pinus pinaster) with an estimated effective inbreeding population size (status number) of 25 was first selected with simulated data. This reference population (n = 818) covered three generations (G0, G1 and G2) and was genotyped with 4436 single-nucleotide polymorphism (SNP) markers. We evaluated the effects on prediction accuracy of both the relatedness between the calibration and validation sets and validation on the basis of progeny performance. Pedigree-based (best linear unbiased prediction, ABLUP) and marker-based (genomic BLUP and Bayesian LASSO) models were used to predict breeding values for three different traits: circumference, height and stem straightness. On average, the ABLUP model outperformed genomic prediction models, with a maximum difference in prediction accuracies of 0.12, depending on the trait and the validation method. A mean difference in prediction accuracy of 0.17 was found between validation methods differing in terms of relatedness. Including the progenitors in the calibration set reduced this difference in prediction accuracy to 0.03. When only genotypes from the G0 and G1 generations were used in the calibration set and genotypes from G2 were used in the validation set (progeny validation), prediction accuracies ranged from 0.70 to 0.85. This study suggests that the training of prediction models on parental populations can predict the genetic merit of the progeny with high accuracy: an encouraging result for the implementation of GS in the maritime pine breeding program.

  15. Improved Short-Term Clock Prediction Method for Real-Time Positioning.

    PubMed

    Lv, Yifei; Dai, Zhiqiang; Zhao, Qile; Yang, Sheng; Zhou, Jinning; Liu, Jingnan

    2017-06-06

    The application of real-time precise point positioning (PPP) requires real-time precise orbit and clock products that should be predicted within a short time to compensate for the communication delay or data gap. Unlike orbit correction, clock correction is difficult to model and predict. The widely used linear model hardly fits long periodic trends with a small data set and exhibits significant accuracy degradation in real-time prediction when a large data set is used. This study proposes a new prediction model for maintaining short-term satellite clocks to meet the high-precision requirements of real-time clocks and provide clock extrapolation without interrupting the real-time data stream. Fast Fourier transform (FFT) is used to analyze the linear prediction residuals of real-time clocks. The periodic terms obtained through FFT are adopted in the sliding window prediction to achieve a significant improvement in short-term prediction accuracy. This study also analyzes and compares the accuracy of short-term forecasts (less than 3 h) by using different length observations. Experimental results obtained from International GNSS Service (IGS) final products and our own real-time clocks show that the 3-h prediction accuracy is better than 0.85 ns. The new model can replace IGS ultra-rapid products in the application of real-time PPP. It is also found that there is a positive correlation between the prediction accuracy and the short-term stability of on-board clocks. Compared with the accuracy of the traditional linear model, the accuracy of the static PPP using the new model of the 2-h prediction clock in N, E, and U directions is improved by about 50%. Furthermore, the static PPP accuracy of 2-h clock products is better than 0.1 m. When an interruption occurs in the real-time model, the accuracy of the kinematic PPP solution using 1-h clock prediction product is better than 0.2 m, without significant accuracy degradation. This model is of practical significance because it solves the problems of interruption and delay in data broadcast in real-time clock estimation and can meet the requirements of real-time PPP.

  16. PPCM: Combing multiple classifiers to improve protein-protein interaction prediction

    DOE PAGES

    Yao, Jianzhuang; Guo, Hong; Yang, Xiaohan

    2015-08-01

    Determining protein-protein interaction (PPI) in biological systems is of considerable importance, and prediction of PPI has become a popular research area. Although different classifiers have been developed for PPI prediction, no single classifier seems to be able to predict PPI with high confidence. We postulated that by combining individual classifiers the accuracy of PPI prediction could be improved. We developed a method called protein-protein interaction prediction classifiers merger (PPCM), and this method combines output from two PPI prediction tools, GO2PPI and Phyloprof, using Random Forests algorithm. The performance of PPCM was tested by area under the curve (AUC) using anmore » assembled Gold Standard database that contains both positive and negative PPI pairs. Our AUC test showed that PPCM significantly improved the PPI prediction accuracy over the corresponding individual classifiers. We found that additional classifiers incorporated into PPCM could lead to further improvement in the PPI prediction accuracy. Furthermore, cross species PPCM could achieve competitive and even better prediction accuracy compared to the single species PPCM. This study established a robust pipeline for PPI prediction by integrating multiple classifiers using Random Forests algorithm. Ultimately, this pipeline will be useful for predicting PPI in nonmodel species.« less

  17. Genomic prediction of piglet response to infection with one of two porcine reproductive and respiratory syndrome virus isolates.

    PubMed

    Waide, Emily H; Tuggle, Christopher K; Serão, Nick V L; Schroyen, Martine; Hess, Andrew; Rowland, Raymond R R; Lunney, Joan K; Plastow, Graham; Dekkers, Jack C M

    2018-02-01

    Genomic prediction of the pig's response to the porcine reproductive and respiratory syndrome (PRRS) virus (PRRSV) would be a useful tool in the swine industry. This study investigated the accuracy of genomic prediction based on porcine SNP60 Beadchip data using training and validation datasets from populations with different genetic backgrounds that were challenged with different PRRSV isolates. Genomic prediction accuracy averaged 0.34 for viral load (VL) and 0.23 for weight gain (WG) following experimental PRRSV challenge, which demonstrates that genomic selection could be used to improve response to PRRSV infection. Training on WG data during infection with a less virulent PRRSV, KS06, resulted in poor accuracy of prediction for WG during infection with a more virulent PRRSV, NVSL. Inclusion of single nucleotide polymorphisms (SNPs) that are in linkage disequilibrium with a major quantitative trait locus (QTL) on chromosome 4 was vital for accurate prediction of VL. Overall, SNPs that were significantly associated with either trait in single SNP genome-wide association analysis were unable to predict the phenotypes with an accuracy as high as that obtained by using all genotyped SNPs across the genome. Inclusion of data from close relatives into the training population increased whole genome prediction accuracy by 33% for VL and by 37% for WG but did not affect the accuracy of prediction when using only SNPs in the major QTL region. Results show that genomic prediction of response to PRRSV infection is moderately accurate and, when using all SNPs on the porcine SNP60 Beadchip, is not very sensitive to differences in virulence of the PRRSV in training and validation populations. Including close relatives in the training population increased prediction accuracy when using the whole genome or SNPs other than those near a major QTL.

  18. Prediction of beef carcass and meat traits from rearing factors in young bulls and cull cows.

    PubMed

    Soulat, J; Picard, B; Léger, S; Monteils, V

    2016-04-01

    The aim of this study was to predict the beef carcass and LM (thoracis part) characteristics and the sensory properties of the LM from rearing factors applied during the fattening period. Individual data from 995 animals (688 young bulls and 307 cull cows) in 15 experiments were used to establish prediction models. The data concerned rearing factors (13 variables), carcass characteristics (5 variables), LM characteristics (2 variables), and LM sensory properties (3 variables). In this study, 8 prediction models were established: dressing percentage and the proportions of fat tissue and muscle in the carcass to characterize the beef carcass; cross-sectional area of fibers (mean fiber area) and isocitrate dehydrogenase activity to characterize the LM; and, finally, overall tenderness, juiciness, and flavor intensity scores to characterize the LM sensory properties. A random effect was considered in each model: the breed for the prediction models for the carcass and LM characteristics and the trained taste panel for the prediction of the meat sensory properties. To evaluate the quality of prediction models, 3 criteria were measured: robustness, accuracy, and precision. The model was robust when the root mean square errors of prediction of calibration and validation sub-data sets were near to one another. Except for the mean fiber area model, the obtained predicted models were robust. The prediction models were considered to have a high accuracy when the mean prediction error (MPE) was ≤0.10 and to have a high precision when the was the closest to 1. The prediction of the characteristics of the carcass from the rearing factors had a high precision ( > 0.70) and a high prediction accuracy (MPE < 0.10), except for the fat percentage model ( = 0.67, MPE = 0.16). However, the predictions of the LM characteristics and LM sensory properties from the rearing factors were not sufficiently precise ( < 0.50) and accurate (MPE > 0.10). Only the flavor intensity of the beef score could be satisfactorily predicted from the rearing factors with high precision ( = 0.72) and accuracy (MPE = 0.10). All the prediction models displayed different effects of the rearing factors according to animal categories (young bulls or cull cows). In consequence, these prediction models display the necessary adaption of rearing factors during the fattening period according to animal categories to optimize the carcass traits according to animal categories.

  19. Can nutrient status of four woody plant species be predicted using field spectrometry?

    NASA Astrophysics Data System (ADS)

    Ferwerda, Jelle G.; Skidmore, Andrew K.

    This paper demonstrates the potential of hyperspectral remote sensing to predict the chemical composition (i.e., nitrogen, phosphorous, calcium, potassium, sodium, and magnesium) of three tree species (i.e., willow, mopane and olive) and one shrub species (i.e., heather). Reflectance spectra, derivative spectra and continuum-removed spectra were compared in terms of predictive power. Results showed that the best predictions for nitrogen, phosphorous, and magnesium occur when using derivative spectra, and the best predictions for sodium, potassium, and calcium occur when using continuum-removed data. To test whether a general model for multiple species is also valid for individual species, a bootstrapping routine was applied. Prediction accuracies for the individual species were lower then prediction accuracies obtained for the combined dataset for all except one element/species combination, indicating that indices with high prediction accuracies at the landscape scale are less appropriate to detect the chemical content of individual species.

  20. Researches on High Accuracy Prediction Methods of Earth Orientation Parameters

    NASA Astrophysics Data System (ADS)

    Xu, X. Q.

    2015-09-01

    The Earth rotation reflects the coupling process among the solid Earth, atmosphere, oceans, mantle, and core of the Earth on multiple spatial and temporal scales. The Earth rotation can be described by the Earth's orientation parameters, which are abbreviated as EOP (mainly including two polar motion components PM_X and PM_Y, and variation in the length of day ΔLOD). The EOP is crucial in the transformation between the terrestrial and celestial reference systems, and has important applications in many areas such as the deep space exploration, satellite precise orbit determination, and astrogeodynamics. However, the EOP products obtained by the space geodetic technologies generally delay by several days to two weeks. The growing demands for modern space navigation make high-accuracy EOP prediction be a worthy topic. This thesis is composed of the following three aspects, for the purpose of improving the EOP forecast accuracy. (1) We analyze the relation between the length of the basic data series and the EOP forecast accuracy, and compare the EOP prediction accuracy for the linear autoregressive (AR) model and the nonlinear artificial neural network (ANN) method by performing the least squares (LS) extrapolations. The results show that the high precision forecast of EOP can be realized by appropriate selection of the basic data series length according to the required time span of EOP prediction: for short-term prediction, the basic data series should be shorter, while for the long-term prediction, the series should be longer. The analysis also showed that the LS+AR model is more suitable for the short-term forecasts, while the LS+ANN model shows the advantages in the medium- and long-term forecasts. (2) We develop for the first time a new method which combines the autoregressive model and Kalman filter (AR+Kalman) in short-term EOP prediction. The equations of observation and state are established using the EOP series and the autoregressive coefficients respectively, which are used to improve/re-evaluate the AR model. Comparing to the single AR model, the AR+Kalman method performs better in the prediction of UT1-UTC and ΔLOD, and the improvement in the prediction of the polar motion is significant. (3) Following the successful Earth Orientation Parameter Prediction Comparison Campaign (EOP PCC), the Earth Orientation Parameter Combination of Prediction Pilot Project (EOPC PPP) was sponsored in 2010. As one of the participants from China, we update and submit the short- and medium-term (1 to 90 days) EOP predictions every day. From the current comparative statistics, our prediction accuracy is on the medium international level. We will carry out more innovative researches to improve the EOP forecast accuracy and enhance our level in EOP forecast.

  1. Genomic prediction of reproduction traits for Merino sheep.

    PubMed

    Bolormaa, S; Brown, D J; Swan, A A; van der Werf, J H J; Hayes, B J; Daetwyler, H D

    2017-06-01

    Economically important reproduction traits in sheep, such as number of lambs weaned and litter size, are expressed only in females and later in life after most selection decisions are made, which makes them ideal candidates for genomic selection. Accurate genomic predictions would lead to greater genetic gain for these traits by enabling accurate selection of young rams with high genetic merit. The aim of this study was to design and evaluate the accuracy of a genomic prediction method for female reproduction in sheep using daughter trait deviations (DTD) for sires and ewe phenotypes (when individual ewes were genotyped) for three reproduction traits: number of lambs born (NLB), litter size (LSIZE) and number of lambs weaned. Genomic best linear unbiased prediction (GBLUP), BayesR and pedigree BLUP analyses of the three reproduction traits measured on 5340 sheep (4503 ewes and 837 sires) with real and imputed genotypes for 510 174 SNPs were performed. The prediction of breeding values using both sire and ewe trait records was validated in Merino sheep. Prediction accuracy was evaluated by across sire family and random cross-validations. Accuracies of genomic estimated breeding values (GEBVs) were assessed as the mean Pearson correlation adjusted by the accuracy of the input phenotypes. The addition of sire DTD into the prediction analysis resulted in higher accuracies compared with using only ewe records in genomic predictions or pedigree BLUP. Using GBLUP, the average accuracy based on the combined records (ewes and sire DTD) was 0.43 across traits, but the accuracies varied by trait and type of cross-validations. The accuracies of GEBVs from random cross-validations (range 0.17-0.61) were higher than were those from sire family cross-validations (range 0.00-0.51). The GEBV accuracies of 0.41-0.54 for NLB and LSIZE based on the combined records were amongst the highest in the study. Although BayesR was not significantly different from GBLUP in prediction accuracy, it identified several candidate genes which are known to be associated with NLB and LSIZE. The approach provides a way to make use of all data available in genomic prediction for traits that have limited recording. © 2017 Stichting International Foundation for Animal Genetics.

  2. Accuracy of risk scales for predicting repeat self-harm and suicide: a multicentre, population-level cohort study using routine clinical data.

    PubMed

    Steeg, Sarah; Quinlivan, Leah; Nowland, Rebecca; Carroll, Robert; Casey, Deborah; Clements, Caroline; Cooper, Jayne; Davies, Linda; Knipe, Duleeka; Ness, Jennifer; O'Connor, Rory C; Hawton, Keith; Gunnell, David; Kapur, Nav

    2018-04-25

    Risk scales are used widely in the management of patients presenting to hospital following self-harm. However, there is evidence that their diagnostic accuracy in predicting repeat self-harm is limited. Their predictive accuracy in population settings, and in identifying those at highest risk of suicide is not known. We compared the predictive accuracy of the Manchester Self-Harm Rule (MSHR), ReACT Self-Harm Rule (ReACT), SAD PERSONS Scale (SPS) and Modified SAD PERSONS Scale (MSPS) in an unselected sample of patients attending hospital following self-harm. Data on 4000 episodes of self-harm presenting to Emergency Departments (ED) between 2010 and 2012 were obtained from four established monitoring systems in England. Episodes were assigned a risk category for each scale and followed up for 6 months. The episode-based repeat rate was 28% (1133/4000) and the incidence of suicide was 0.5% (18/3962). The MSHR and ReACT performed with high sensitivity (98% and 94% respectively) and low specificity (15% and 23%). The SPS and the MSPS performed with relatively low sensitivity (24-29% and 9-12% respectively) and high specificity (76-77% and 90%). The area under the curve was 71% for both MSHR and ReACT, 51% for SPS and 49% for MSPS. Differences in predictive accuracy by subgroup were small. The scales were less accurate at predicting suicide than repeat self-harm. The scales failed to accurately predict repeat self-harm and suicide. The findings support existing clinical guidance not to use risk classification scales alone to determine treatment or predict future risk.

  3. Life History Traits and Niche Instability Impact Accuracy and Temporal Transferability for Historically Calibrated Distribution Models of North American Birds

    PubMed Central

    Wogan, Guinevere O. U.

    2016-01-01

    A primary assumption of environmental niche models (ENMs) is that models are both accurate and transferable across geography or time; however, recent work has shown that models may be accurate but not highly transferable. While some of this is due to modeling technique, individual species ecologies may also underlie this phenomenon. Life history traits certainly influence the accuracy of predictive ENMs, but their impact on model transferability is less understood. This study investigated how life history traits influence the predictive accuracy and transferability of ENMs using historically calibrated models for birds. In this study I used historical occurrence and climate data (1950-1990s) to build models for a sample of birds, and then projected them forward to the ‘future’ (1960-1990s). The models were then validated against models generated from occurrence data at that ‘future’ time. Internal and external validation metrics, as well as metrics assessing transferability, and Generalized Linear Models were used to identify life history traits that were significant predictors of accuracy and transferability. This study found that the predictive ability of ENMs differs with regard to life history characteristics such as range, migration, and habitat, and that the rarity versus commonness of a species affects the predicted stability and overlap and hence the transferability of projected models. Projected ENMs with both high accuracy and transferability scores, still sometimes suffered from over- or under- predicted species ranges. Life history traits certainly influenced the accuracy of predictive ENMs for birds, but while aspects of geographic range impact model transferability, the mechanisms underlying this are less understood. PMID:26959979

  4. Developing Local Oral Reading Fluency Cut Scores for Predicting High-Stakes Test Performance

    ERIC Educational Resources Information Center

    Grapin, Sally L.; Kranzler, John H.; Waldron, Nancy; Joyce-Beaulieu, Diana; Algina, James

    2017-01-01

    This study evaluated the classification accuracy of a second grade oral reading fluency curriculum-based measure (R-CBM) in predicting third grade state test performance. It also compared the long-term classification accuracy of local and publisher-recommended R-CBM cut scores. Participants were 266 students who were divided into a calibration…

  5. Genomic selection across multiple breeding cycles in applied bread wheat breeding.

    PubMed

    Michel, Sebastian; Ametz, Christian; Gungor, Huseyin; Epure, Doru; Grausgruber, Heinrich; Löschenberger, Franziska; Buerstmayr, Hermann

    2016-06-01

    We evaluated genomic selection across five breeding cycles of bread wheat breeding. Bias of within-cycle cross-validation and methods for improving the prediction accuracy were assessed. The prospect of genomic selection has been frequently shown by cross-validation studies using the same genetic material across multiple environments, but studies investigating genomic selection across multiple breeding cycles in applied bread wheat breeding are lacking. We estimated the prediction accuracy of grain yield, protein content and protein yield of 659 inbred lines across five independent breeding cycles and assessed the bias of within-cycle cross-validation. We investigated the influence of outliers on the prediction accuracy and predicted protein yield by its components traits. A high average heritability was estimated for protein content, followed by grain yield and protein yield. The bias of the prediction accuracy using populations from individual cycles using fivefold cross-validation was accordingly substantial for protein yield (17-712 %) and less pronounced for protein content (8-86 %). Cross-validation using the cycles as folds aimed to avoid this bias and reached a maximum prediction accuracy of [Formula: see text] = 0.51 for protein content, [Formula: see text] = 0.38 for grain yield and [Formula: see text] = 0.16 for protein yield. Dropping outlier cycles increased the prediction accuracy of grain yield to [Formula: see text] = 0.41 as estimated by cross-validation, while dropping outlier environments did not have a significant effect on the prediction accuracy. Independent validation suggests, on the other hand, that careful consideration is necessary before an outlier correction is undertaken, which removes lines from the training population. Predicting protein yield by multiplying genomic estimated breeding values of grain yield and protein content raised the prediction accuracy to [Formula: see text] = 0.19 for this derived trait.

  6. Integrated Strategy Improves the Prediction Accuracy of miRNA in Large Dataset

    PubMed Central

    Lipps, David; Devineni, Sree

    2016-01-01

    MiRNAs are short non-coding RNAs of about 22 nucleotides, which play critical roles in gene expression regulation. The biogenesis of miRNAs is largely determined by the sequence and structural features of their parental RNA molecules. Based on these features, multiple computational tools have been developed to predict if RNA transcripts contain miRNAs or not. Although being very successful, these predictors started to face multiple challenges in recent years. Many predictors were optimized using datasets of hundreds of miRNA samples. The sizes of these datasets are much smaller than the number of known miRNAs. Consequently, the prediction accuracy of these predictors in large dataset becomes unknown and needs to be re-tested. In addition, many predictors were optimized for either high sensitivity or high specificity. These optimization strategies may bring in serious limitations in applications. Moreover, to meet continuously raised expectations on these computational tools, improving the prediction accuracy becomes extremely important. In this study, a meta-predictor mirMeta was developed by integrating a set of non-linear transformations with meta-strategy. More specifically, the outputs of five individual predictors were first preprocessed using non-linear transformations, and then fed into an artificial neural network to make the meta-prediction. The prediction accuracy of meta-predictor was validated using both multi-fold cross-validation and independent dataset. The final accuracy of meta-predictor in newly-designed large dataset is improved by 7% to 93%. The meta-predictor is also proved to be less dependent on datasets, as well as has refined balance between sensitivity and specificity. This study has two folds of importance: First, it shows that the combination of non-linear transformations and artificial neural networks improves the prediction accuracy of individual predictors. Second, a new miRNA predictor with significantly improved prediction accuracy is developed for the community for identifying novel miRNAs and the complete set of miRNAs. Source code is available at: https://github.com/xueLab/mirMeta PMID:28002428

  7. High accuracy satellite drag model (HASDM)

    NASA Astrophysics Data System (ADS)

    Storz, Mark F.; Bowman, Bruce R.; Branson, Major James I.; Casali, Stephen J.; Tobiska, W. Kent

    The dominant error source in force models used to predict low-perigee satellite trajectories is atmospheric drag. Errors in operational thermospheric density models cause significant errors in predicted satellite positions, since these models do not account for dynamic changes in atmospheric drag for orbit predictions. The Air Force Space Battlelab's High Accuracy Satellite Drag Model (HASDM) estimates and predicts (out three days) a dynamically varying global density field. HASDM includes the Dynamic Calibration Atmosphere (DCA) algorithm that solves for the phases and amplitudes of the diurnal and semidiurnal variations of thermospheric density near real-time from the observed drag effects on a set of Low Earth Orbit (LEO) calibration satellites. The density correction is expressed as a function of latitude, local solar time and altitude. In HASDM, a time series prediction filter relates the extreme ultraviolet (EUV) energy index E10.7 and the geomagnetic storm index ap, to the DCA density correction parameters. The E10.7 index is generated by the SOLAR2000 model, the first full spectrum model of solar irradiance. The estimated and predicted density fields will be used operationally to significantly improve the accuracy of predicted trajectories for all low-perigee satellites.

  8. Effect of CTA Tube Current on Spot Sign Detection and Accuracy for Prediction of Intracerebral Hemorrhage Expansion.

    PubMed

    Morotti, A; Romero, J M; Jessel, M J; Brouwers, H B; Gupta, R; Schwab, K; Vashkevich, A; Ayres, A; Anderson, C D; Gurol, M E; Viswanathan, A; Greenberg, S M; Rosand, J; Goldstein, J N

    2016-05-19

    Reduction of CT tube current is an effective strategy to minimize radiation load. However, tube current is also a major determinant of image quality. We investigated the impact of CTA tube current on spot sign detection and diagnostic performance for intracerebral hemorrhage expansion. We retrospectively analyzed a prospectively collected cohort of consecutive patients with primary intracerebral hemorrhage from January 2001 to April 2015 who underwent CTA. The study population was divided into 2 groups according to the median CTA tube current level: low current (<350 mA) and high current (≥350 mA). CTA first-pass readings for spot sign presence were independently analyzed by 2 readers. Baseline and follow-up hematoma volumes were assessed by semiautomated computer-assisted volumetric analysis. Sensitivity, specificity, positive and negative predictive values, and accuracy of spot sign in predicting hematoma expansion were calculated. This study included 709 patients (288 and 421 in the low- and high-current groups, respectively). A higher proportion of low-current scans identified at least 1 spot sign (20.8% versus 14.7%, P = .034), but hematoma expansion frequency was similar in the 2 groups (18.4% versus 16.2%, P = .434). Sensitivity and positive and negative predictive values were not significantly different between the 2 groups. Conversely, high-current scans showed superior specificity (91% versus 84%, P = .015) and overall accuracy (84% versus 77%, P = .038). CTA obtained at high levels of tube current showed better diagnostic accuracy for prediction of hematoma expansion by using spot sign. These findings may have implications for future studies using the CTA spot sign to predict hematoma expansion for clinical trials. © 2016 American Society of Neuroradiology.

  9. Simple to complex modeling of breathing volume using a motion sensor.

    PubMed

    John, Dinesh; Staudenmayer, John; Freedson, Patty

    2013-06-01

    To compare simple and complex modeling techniques to estimate categories of low, medium, and high ventilation (VE) from ActiGraph™ activity counts. Vertical axis ActiGraph™ GT1M activity counts, oxygen consumption and VE were measured during treadmill walking and running, sports, household chores and labor-intensive employment activities. Categories of low (<19.3 l/min), medium (19.3 to 35.4 l/min) and high (>35.4 l/min) VEs were derived from activity intensity classifications (light <2.9 METs, moderate 3.0 to 5.9 METs and vigorous >6.0 METs). We examined the accuracy of two simple techniques (multiple regression and activity count cut-point analyses) and one complex (random forest technique) modeling technique in predicting VE from activity counts. Prediction accuracy of the complex random forest technique was marginally better than the simple multiple regression method. Both techniques accurately predicted VE categories almost 80% of the time. The multiple regression and random forest techniques were more accurate (85 to 88%) in predicting medium VE. Both techniques predicted the high VE (70 to 73%) with greater accuracy than low VE (57 to 60%). Actigraph™ cut-points for light, medium and high VEs were <1381, 1381 to 3660 and >3660 cpm. There were minor differences in prediction accuracy between the multiple regression and the random forest technique. This study provides methods to objectively estimate VE categories using activity monitors that can easily be deployed in the field. Objective estimates of VE should provide a better understanding of the dose-response relationship between internal exposure to pollutants and disease. Copyright © 2013 Elsevier B.V. All rights reserved.

  10. Prediction accuracy of direct and indirect approaches, and their relationships with prediction ability of calibration models.

    PubMed

    Belay, T K; Dagnachew, B S; Boison, S A; Ådnøy, T

    2018-03-28

    Milk infrared spectra are routinely used for phenotyping traits of interest through links developed between the traits and spectra. Predicted individual traits are then used in genetic analyses for estimated breeding value (EBV) or for phenotypic predictions using a single-trait mixed model; this approach is referred to as indirect prediction (IP). An alternative approach [direct prediction (DP)] is a direct genetic analysis of (a reduced dimension of) the spectra using a multitrait model to predict multivariate EBV of the spectral components and, ultimately, also to predict the univariate EBV or phenotype for the traits of interest. We simulated 3 traits under different genetic (low: 0.10 to high: 0.90) and residual (zero to high: ±0.90) correlation scenarios between the 3 traits and assumed the first trait is a linear combination of the other 2 traits. The aim was to compare the IP and DP approaches for predictions of EBV and phenotypes under the different correlation scenarios. We also evaluated relationships between performances of the 2 approaches and the accuracy of calibration equations. Moreover, the effect of using different regression coefficients estimated from simulated phenotypes (β p ), true breeding values (β g ), and residuals (β r ) on performance of the 2 approaches were evaluated. The simulated data contained 2,100 parents (100 sires and 2,000 cows) and 8,000 offspring (4 offspring per cow). Of the 8,000 observations, 2,000 were randomly selected and used to develop links between the first and the other 2 traits using partial least square (PLS) regression analysis. The different PLS regression coefficients, such as β p , β g , and β r , were used in subsequent predictions following the IP and DP approaches. We used BLUP analyses for the remaining 6,000 observations using the true (co)variance components that had been used for the simulation. Accuracy of prediction (of EBV and phenotype) was calculated as a correlation between predicted and true values from the simulations. The results showed that accuracies of EBV prediction were higher in the DP than in the IP approach. The reverse was true for accuracy of phenotypic prediction when using β p but not when using β g and β r , where accuracy of phenotypic prediction in the DP was slightly higher than in the IP approach. Within the DP approach, accuracies of EBV when using β g were higher than when using β p only at the low genetic correlation scenario. However, we found no differences in EBV prediction accuracy between the β p and β g in the IP approach. Accuracy of the calibration models increased with an increase in genetic and residual correlations between the traits. Performance of both approaches increased with an increase in accuracy of the calibration models. In conclusion, the DP approach is a good strategy for EBV prediction but not for phenotypic prediction, where the classical PLS regression-based equations or the IP approach provided better results. The Authors. Published by FASS Inc. and Elsevier Inc. on behalf of the American Dairy Science Association®. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/3.0/).

  11. Contingency Awareness Shapes Acquisition and Extinction of Emotional Responses in a Conditioning Model of Pain-Related Fear

    PubMed Central

    Labrenz, Franziska; Icenhour, Adriane; Benson, Sven; Elsenbruch, Sigrid

    2015-01-01

    As a fundamental learning process, fear conditioning promotes the formation of associations between predictive cues and biologically significant signals. In its application to pain, conditioning may provide important insight into mechanisms underlying pain-related fear, although knowledge especially in interoceptive pain paradigms remains scarce. Furthermore, while the influence of contingency awareness on excitatory learning is subject of ongoing debate, its role in pain-related acquisition is poorly understood and essentially unknown regarding extinction as inhibitory learning. Therefore, we addressed the impact of contingency awareness on learned emotional responses to pain- and safety-predictive cues in a combined dataset of two pain-related conditioning studies. In total, 75 healthy participants underwent differential fear acquisition, during which rectal distensions as interoceptive unconditioned stimuli (US) were repeatedly paired with a predictive visual cue (conditioned stimulus; CS+) while another cue (CS−) was presented unpaired. During extinction, both CS were presented without US. CS valence, indicating learned emotional responses, and CS-US contingencies were assessed on visual analog scales (VAS). Based on an integrative measure of contingency accuracy, a median-split was performed to compare groups with low vs. high contingency accuracy regarding learned emotional responses. To investigate predictive value of contingency accuracy, regression analyses were conducted. Highly accurate individuals revealed more pronounced negative emotional responses to CS+ and increased positive responses to CS− when compared to participants with low contingency accuracy. Following extinction, highly accurate individuals had fully extinguished pain-predictive cue properties, while exhibiting persistent positive emotional responses to safety signals. In contrast, individuals with low accuracy revealed equally positive emotional responses to both, CS+ and CS−. Contingency accuracy predicted variance in the formation of positive responses to safety cues while no predictive value was found for danger cues following acquisition and for neither cue following extinction. Our findings underscore specific roles of learned danger and safety in pain-related acquisition and extinction. Contingency accuracy appears to distinctly impact learned emotional responses to safety and danger cues, supporting aversive learning to occur independently from CS-US awareness. The interplay of cognitive and emotional factors in shaping excitatory and inhibitory pain-related learning may contribute to altered pain processing, underscoring its clinical relevance in chronic pain. PMID:26640433

  12. Contingency Awareness Shapes Acquisition and Extinction of Emotional Responses in a Conditioning Model of Pain-Related Fear.

    PubMed

    Labrenz, Franziska; Icenhour, Adriane; Benson, Sven; Elsenbruch, Sigrid

    2015-01-01

    As a fundamental learning process, fear conditioning promotes the formation of associations between predictive cues and biologically significant signals. In its application to pain, conditioning may provide important insight into mechanisms underlying pain-related fear, although knowledge especially in interoceptive pain paradigms remains scarce. Furthermore, while the influence of contingency awareness on excitatory learning is subject of ongoing debate, its role in pain-related acquisition is poorly understood and essentially unknown regarding extinction as inhibitory learning. Therefore, we addressed the impact of contingency awareness on learned emotional responses to pain- and safety-predictive cues in a combined dataset of two pain-related conditioning studies. In total, 75 healthy participants underwent differential fear acquisition, during which rectal distensions as interoceptive unconditioned stimuli (US) were repeatedly paired with a predictive visual cue (conditioned stimulus; CS(+)) while another cue (CS(-)) was presented unpaired. During extinction, both CS were presented without US. CS valence, indicating learned emotional responses, and CS-US contingencies were assessed on visual analog scales (VAS). Based on an integrative measure of contingency accuracy, a median-split was performed to compare groups with low vs. high contingency accuracy regarding learned emotional responses. To investigate predictive value of contingency accuracy, regression analyses were conducted. Highly accurate individuals revealed more pronounced negative emotional responses to CS(+) and increased positive responses to CS(-) when compared to participants with low contingency accuracy. Following extinction, highly accurate individuals had fully extinguished pain-predictive cue properties, while exhibiting persistent positive emotional responses to safety signals. In contrast, individuals with low accuracy revealed equally positive emotional responses to both, CS(+) and CS(-). Contingency accuracy predicted variance in the formation of positive responses to safety cues while no predictive value was found for danger cues following acquisition and for neither cue following extinction. Our findings underscore specific roles of learned danger and safety in pain-related acquisition and extinction. Contingency accuracy appears to distinctly impact learned emotional responses to safety and danger cues, supporting aversive learning to occur independently from CS-US awareness. The interplay of cognitive and emotional factors in shaping excitatory and inhibitory pain-related learning may contribute to altered pain processing, underscoring its clinical relevance in chronic pain.

  13. Potential and limits to unravel the genetic architecture and predict the variation of Fusarium head blight resistance in European winter wheat (Triticum aestivum L.).

    PubMed

    Jiang, Y; Zhao, Y; Rodemann, B; Plieske, J; Kollers, S; Korzun, V; Ebmeyer, E; Argillier, O; Hinze, M; Ling, J; Röder, M S; Ganal, M W; Mette, M F; Reif, J C

    2015-03-01

    Genome-wide mapping approaches in diverse populations are powerful tools to unravel the genetic architecture of complex traits. The main goals of our study were to investigate the potential and limits to unravel the genetic architecture and to identify the factors determining the accuracy of prediction of the genotypic variation of Fusarium head blight (FHB) resistance in wheat (Triticum aestivum L.) based on data collected with a diverse panel of 372 European varieties. The wheat lines were phenotyped in multi-location field trials for FHB resistance and genotyped with 782 simple sequence repeat (SSR) markers, and 9k and 90k single-nucleotide polymorphism (SNP) arrays. We applied genome-wide association mapping in combination with fivefold cross-validations and observed surprisingly high accuracies of prediction for marker-assisted selection based on the detected quantitative trait loci (QTLs). Using a random sample of markers not selected for marker-trait associations revealed only a slight decrease in prediction accuracy compared with marker-based selection exploiting the QTL information. The same picture was confirmed in a simulation study, suggesting that relatedness is a main driver of the accuracy of prediction in marker-assisted selection of FHB resistance. When the accuracy of prediction of three genomic selection models was contrasted for the three marker data sets, no significant differences in accuracies among marker platforms and genomic selection models were observed. Marker density impacted the accuracy of prediction only marginally. Consequently, genomic selection of FHB resistance can be implemented most cost-efficiently based on low- to medium-density SNP arrays.

  14. Effects of Recovery Behavior and Strain-Rate Dependence of Stress-Strain Curve on Prediction Accuracy of Thermal Stress Analysis During Casting

    NASA Astrophysics Data System (ADS)

    Motoyama, Yuichi; Shiga, Hidetoshi; Sato, Takeshi; Kambe, Hiroshi; Yoshida, Makoto

    2017-06-01

    Recovery behavior (recovery) and strain-rate dependence of the stress-strain curve (strain-rate dependence) are incorporated into constitutive equations of alloys to predict residual stress and thermal stress during casting. Nevertheless, few studies have systematically investigated the effects of these metallurgical phenomena on the prediction accuracy of thermal stress in a casting. This study compares the thermal stress analysis results with in situ thermal stress measurement results of an Al-Si-Cu specimen during casting. The results underscore the importance for the alloy constitutive equation of incorporating strain-rate dependence to predict thermal stress that develops at high temperatures where the alloy shows strong strain-rate dependence of the stress-strain curve. However, the prediction accuracy of the thermal stress developed at low temperatures did not improve by considering the strain-rate dependence. Incorporating recovery into the constitutive equation improved the accuracy of the simulated thermal stress at low temperatures. Results of comparison implied that the constitutive equation should include strain-rate dependence to simulate defects that develop from thermal stress at high temperatures, such as hot tearing and hot cracking. Recovery should be incorporated into the alloy constitutive equation to predict the casting residual stress and deformation caused by the thermal stress developed mainly in the low temperature range.

  15. ShinyGPAS: interactive genomic prediction accuracy simulator based on deterministic formulas.

    PubMed

    Morota, Gota

    2017-12-20

    Deterministic formulas for the accuracy of genomic predictions highlight the relationships among prediction accuracy and potential factors influencing prediction accuracy prior to performing computationally intensive cross-validation. Visualizing such deterministic formulas in an interactive manner may lead to a better understanding of how genetic factors control prediction accuracy. The software to simulate deterministic formulas for genomic prediction accuracy was implemented in R and encapsulated as a web-based Shiny application. Shiny genomic prediction accuracy simulator (ShinyGPAS) simulates various deterministic formulas and delivers dynamic scatter plots of prediction accuracy versus genetic factors impacting prediction accuracy, while requiring only mouse navigation in a web browser. ShinyGPAS is available at: https://chikudaisei.shinyapps.io/shinygpas/ . ShinyGPAS is a shiny-based interactive genomic prediction accuracy simulator using deterministic formulas. It can be used for interactively exploring potential factors that influence prediction accuracy in genome-enabled prediction, simulating achievable prediction accuracy prior to genotyping individuals, or supporting in-class teaching. ShinyGPAS is open source software and it is hosted online as a freely available web-based resource with an intuitive graphical user interface.

  16. Prediction of composite fatigue life under variable amplitude loading using artificial neural network trained by genetic algorithm

    NASA Astrophysics Data System (ADS)

    Rohman, Muhamad Nur; Hidayat, Mas Irfan P.; Purniawan, Agung

    2018-04-01

    Neural networks (NN) have been widely used in application of fatigue life prediction. In the use of fatigue life prediction for polymeric-base composite, development of NN model is necessary with respect to the limited fatigue data and applicable to be used to predict the fatigue life under varying stress amplitudes in the different stress ratios. In the present paper, Multilayer-Perceptrons (MLP) model of neural network is developed, and Genetic Algorithm was employed to optimize the respective weights of NN for prediction of polymeric-base composite materials under variable amplitude loading. From the simulation result obtained with two different composite systems, named E-glass fabrics/epoxy (layups [(±45)/(0)2]S), and E-glass/polyester (layups [90/0/±45/0]S), NN model were trained with fatigue data from two different stress ratios, which represent limited fatigue data, can be used to predict another four and seven stress ratios respectively, with high accuracy of fatigue life prediction. The accuracy of NN prediction were quantified with the small value of mean square error (MSE). When using 33% from the total fatigue data for training, the NN model able to produce high accuracy for all stress ratios. When using less fatigue data during training (22% from the total fatigue data), the NN model still able to produce high coefficient of determination between the prediction result compared with obtained by experiment.

  17. Development of predictive mapping techniques for soil survey and salinity mapping

    NASA Astrophysics Data System (ADS)

    Elnaggar, Abdelhamid A.

    Conventional soil maps represent a valuable source of information about soil characteristics, however they are subjective, very expensive, and time-consuming to prepare. Also, they do not include explicit information about the conceptual mental model used in developing them nor information about their accuracy, in addition to the error associated with them. Decision tree analysis (DTA) was successfully used in retrieving the expert knowledge embedded in old soil survey data. This knowledge was efficiently used in developing predictive soil maps for the study areas in Benton and Malheur Counties, Oregon and accessing their consistency. A retrieved soil-landscape model from a reference area in Harney County was extrapolated to develop a preliminary soil map for the neighboring unmapped part of Malheur County. The developed map had a low prediction accuracy and only a few soil map units (SMUs) were predicted with significant accuracy, mostly those shallow SMUs that have either a lithic contact with the bedrock or developed on a duripan. On the other hand, the developed soil map based on field data was predicted with very high accuracy (overall was about 97%). Salt-affected areas of the Malheur County study area are indicated by their high spectral reflectance and they are easily discriminated from the remote sensing data. However, remote sensing data fails to distinguish between the different classes of soil salinity. Using the DTA method, five classes of soil salinity were successfully predicted with an overall accuracy of about 99%. Moreover, the calculated area of salt-affected soil was overestimated when mapped using remote sensing data compared to that predicted by using DTA. Hence, DTA could be a very helpful approach in developing soil survey and soil salinity maps in more objective, effective, less-expensive and quicker ways based on field data.

  18. A comparison of five methods to predict genomic breeding values of dairy bulls from genome-wide SNP markers

    PubMed Central

    2009-01-01

    Background Genomic selection (GS) uses molecular breeding values (MBV) derived from dense markers across the entire genome for selection of young animals. The accuracy of MBV prediction is important for a successful application of GS. Recently, several methods have been proposed to estimate MBV. Initial simulation studies have shown that these methods can accurately predict MBV. In this study we compared the accuracies and possible bias of five different regression methods in an empirical application in dairy cattle. Methods Genotypes of 7,372 SNP and highly accurate EBV of 1,945 dairy bulls were used to predict MBV for protein percentage (PPT) and a profit index (Australian Selection Index, ASI). Marker effects were estimated by least squares regression (FR-LS), Bayesian regression (Bayes-R), random regression best linear unbiased prediction (RR-BLUP), partial least squares regression (PLSR) and nonparametric support vector regression (SVR) in a training set of 1,239 bulls. Accuracy and bias of MBV prediction were calculated from cross-validation of the training set and tested against a test team of 706 young bulls. Results For both traits, FR-LS using a subset of SNP was significantly less accurate than all other methods which used all SNP. Accuracies obtained by Bayes-R, RR-BLUP, PLSR and SVR were very similar for ASI (0.39-0.45) and for PPT (0.55-0.61). Overall, SVR gave the highest accuracy. All methods resulted in biased MBV predictions for ASI, for PPT only RR-BLUP and SVR predictions were unbiased. A significant decrease in accuracy of prediction of ASI was seen in young test cohorts of bulls compared to the accuracy derived from cross-validation of the training set. This reduction was not apparent for PPT. Combining MBV predictions with pedigree based predictions gave 1.05 - 1.34 times higher accuracies compared to predictions based on pedigree alone. Some methods have largely different computational requirements, with PLSR and RR-BLUP requiring the least computing time. Conclusions The four methods which use information from all SNP namely RR-BLUP, Bayes-R, PLSR and SVR generate similar accuracies of MBV prediction for genomic selection, and their use in the selection of immediate future generations in dairy cattle will be comparable. The use of FR-LS in genomic selection is not recommended. PMID:20043835

  19. Using Subjective and Objective Measures to Predict Level of Reading Fluency at the End of First Grade

    ERIC Educational Resources Information Center

    Morris, Darrell; Pennell, Ashley M.; Perney, Jan; Trathen, Woodrow

    2018-01-01

    This study compared reading rate to reading fluency (as measured by a rating scale). After listening to first graders read short passages, we assigned an overall fluency rating (low, average, or high) to each reading. We then used predictive discriminant analyses to determine which of five measures--accuracy, rate (objective); accuracy, phrasing,…

  20. External validation and comparison of two nomograms predicting the probability of Gleason sum upgrading between biopsy and radical prostatectomy pathology in two patient populations: a retrospective cohort study.

    PubMed

    Utsumi, Takanobu; Oka, Ryo; Endo, Takumi; Yano, Masashi; Kamijima, Shuichi; Kamiya, Naoto; Fujimura, Masaaki; Sekita, Nobuyuki; Mikami, Kazuo; Hiruta, Nobuyuki; Suzuki, Hiroyoshi

    2015-11-01

    The aim of this study is to validate and compare the predictive accuracy of two nomograms predicting the probability of Gleason sum upgrading between biopsy and radical prostatectomy pathology among representative patients with prostate cancer. We previously developed a nomogram, as did Chun et al. In this validation study, patients originated from two centers: Toho University Sakura Medical Center (n = 214) and Chibaken Saiseikai Narashino Hospital (n = 216). We assessed predictive accuracy using area under the curve values and constructed calibration plots to grasp the tendency for each institution. Both nomograms showed a high predictive accuracy in each institution, although the constructed calibration plots of the two nomograms underestimated the actual probability in Toho University Sakura Medical Center. Clinicians need to use calibration plots for each institution to correctly understand the tendency of each nomogram for their patients, even if each nomogram has a good predictive accuracy. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  1. Accuracy of prediction of genomic breeding values for residual feed intake and carcass and meat quality traits in Bos taurus, Bos indicus, and composite beef cattle.

    PubMed

    Bolormaa, S; Pryce, J E; Kemper, K; Savin, K; Hayes, B J; Barendse, W; Zhang, Y; Reich, C M; Mason, B A; Bunch, R J; Harrison, B E; Reverter, A; Herd, R M; Tier, B; Graser, H-U; Goddard, M E

    2013-07-01

    The aim of this study was to assess the accuracy of genomic predictions for 19 traits including feed efficiency, growth, and carcass and meat quality traits in beef cattle. The 10,181 cattle in our study had real or imputed genotypes for 729,068 SNP although not all cattle were measured for all traits. Animals included Bos taurus, Brahman, composite, and crossbred animals. Genomic EBV (GEBV) were calculated using 2 methods of genomic prediction [BayesR and genomic BLUP (GBLUP)] either using a common training dataset for all breeds or using a training dataset comprising only animals of the same breed. Accuracies of GEBV were assessed using 5-fold cross-validation. The accuracy of genomic prediction varied by trait and by method. Traits with a large number of recorded and genotyped animals and with high heritability gave the greatest accuracy of GEBV. Using GBLUP, the average accuracy was 0.27 across traits and breeds, but the accuracies between breeds and between traits varied widely. When the training population was restricted to animals from the same breed as the validation population, GBLUP accuracies declined by an average of 0.04. The greatest decline in accuracy was found for the 4 composite breeds. The BayesR accuracies were greater by an average of 0.03 than GBLUP accuracies, particularly for traits with known genes of moderate to large effect mutations segregating. The accuracies of 0.43 to 0.48 for IGF-I traits were among the greatest in the study. Although accuracies are low compared with those observed in dairy cattle, genomic selection would still be beneficial for traits that are hard to improve by conventional selection, such as tenderness and residual feed intake. BayesR identified many of the same quantitative trait loci as a genomewide association study but appeared to map them more precisely. All traits appear to be highly polygenic with thousands of SNP independently associated with each trait.

  2. Use Of Clinical Decision Analysis In Predicting The Efficacy Of Newer Radiological Imaging Modalities: Radioscintigraphy Versus Single Photon Transverse Section Emission Computed Tomography

    NASA Astrophysics Data System (ADS)

    Prince, John R.

    1982-12-01

    Sensitivity, specificity, and predictive accuracy have been shown to be useful measures of the clinical efficacy of diagnostic tests and can be used to predict the potential improvement in diagnostic certitude resulting from the introduction of a competing technology. This communication demonstrates how the informal use of clinical decision analysis may guide health planners in the allocation of resources, purchasing decisions, and implementation of high technology. For didactic purposes the focus is on a comparison between conventional planar radioscintigraphy (RS) and single photon transverse section emission conputed tomography (SPECT). For example, positive predictive accuracy (PPA) for brain RS in a specialist hospital with a 50% disease prevalance is about 95%. SPECT should increase this predicted accuracy to 96%. In a primary care hospital with only a 15% disease prevalance the PPA is only 77% and SPECT may increase this accuracy to about 79%. Similar calculations based on published data show that marginal improvements are expected with SPECT in the liver. It is concluded that: a) The decision to purchase a high technology imaging modality such as SPECT for clinical purposes should be analyzed on an individual organ system and institutional basis. High technology may be justified in specialist hospitals but not necessarily in primary care hospitals. This is more dependent on disease prevalance than procedure volume; b) It is questionable whether SPECT imaging will be competitive with standard RS procedures. Research should concentrate on the development of different medical applications.

  3. Accuracy of genomic breeding values in multibreed beef cattle populations derived from deregressed breeding values and phenotypes.

    PubMed

    Weber, K L; Thallman, R M; Keele, J W; Snelling, W M; Bennett, G L; Smith, T P L; McDaneld, T G; Allan, M F; Van Eenennaam, A L; Kuehn, L A

    2012-12-01

    Genomic selection involves the assessment of genetic merit through prediction equations that allocate genetic variation with dense marker genotypes. It has the potential to provide accurate breeding values for selection candidates at an early age and facilitate selection for expensive or difficult to measure traits. Accurate across-breed prediction would allow genomic selection to be applied on a larger scale in the beef industry, but the limited availability of large populations for the development of prediction equations has delayed researchers from providing genomic predictions that are accurate across multiple beef breeds. In this study, the accuracy of genomic predictions for 6 growth and carcass traits were derived and evaluated using 2 multibreed beef cattle populations: 3,358 crossbred cattle of the U.S. Meat Animal Research Center Germplasm Evaluation Program (USMARC_GPE) and 1,834 high accuracy bull sires of the 2,000 Bull Project (2000_BULL) representing influential breeds in the U.S. beef cattle industry. The 2000_BULL EPD were deregressed, scaled, and weighted to adjust for between- and within-breed heterogeneous variance before use in training and validation. Molecular breeding values (MBV) trained in each multibreed population and in Angus and Hereford purebred sires of 2000_BULL were derived using the GenSel BayesCπ function (Fernando and Garrick, 2009) and cross-validated. Less than 10% of large effect loci were shared between prediction equations trained on (USMARC_GPE) relative to 2000_BULL although locus effects were moderately to highly correlated for most traits and the traits themselves were highly correlated between populations. Prediction of MBV accuracy was low and variable between populations. For growth traits, MBV accounted for up to 18% of genetic variation in a pooled, multibreed analysis and up to 28% in single breeds. For carcass traits, MBV explained up to 8% of genetic variation in a pooled, multibreed analysis and up to 42% in single breeds. Prediction equations trained in multibreed populations were more accurate for Angus and Hereford subpopulations because those were the breeds most highly represented in the training populations. Accuracies were less for prediction equations trained in a single breed due to the smaller number of records derived from a single breed in the training populations.

  4. Improving risk prediction accuracy for new soldiers in the U.S. Army by adding self-report survey data to administrative data.

    PubMed

    Bernecker, Samantha L; Rosellini, Anthony J; Nock, Matthew K; Chiu, Wai Tat; Gutierrez, Peter M; Hwang, Irving; Joiner, Thomas E; Naifeh, James A; Sampson, Nancy A; Zaslavsky, Alan M; Stein, Murray B; Ursano, Robert J; Kessler, Ronald C

    2018-04-03

    High rates of mental disorders, suicidality, and interpersonal violence early in the military career have raised interest in implementing preventive interventions with high-risk new enlistees. The Army Study to Assess Risk and Resilience in Servicemembers (STARRS) developed risk-targeting systems for these outcomes based on machine learning methods using administrative data predictors. However, administrative data omit many risk factors, raising the question whether risk targeting could be improved by adding self-report survey data to prediction models. If so, the Army may gain from routinely administering surveys that assess additional risk factors. The STARRS New Soldier Survey was administered to 21,790 Regular Army soldiers who agreed to have survey data linked to administrative records. As reported previously, machine learning models using administrative data as predictors found that small proportions of high-risk soldiers accounted for high proportions of negative outcomes. Other machine learning models using self-report survey data as predictors were developed previously for three of these outcomes: major physical violence and sexual violence perpetration among men and sexual violence victimization among women. Here we examined the extent to which this survey information increases prediction accuracy, over models based solely on administrative data, for those three outcomes. We used discrete-time survival analysis to estimate a series of models predicting first occurrence, assessing how model fit improved and concentration of risk increased when adding the predicted risk score based on survey data to the predicted risk score based on administrative data. The addition of survey data improved prediction significantly for all outcomes. In the most extreme case, the percentage of reported sexual violence victimization among the 5% of female soldiers with highest predicted risk increased from 17.5% using only administrative predictors to 29.4% adding survey predictors, a 67.9% proportional increase in prediction accuracy. Other proportional increases in concentration of risk ranged from 4.8% to 49.5% (median = 26.0%). Data from an ongoing New Soldier Survey could substantially improve accuracy of risk models compared to models based exclusively on administrative predictors. Depending upon the characteristics of interventions used, the increase in targeting accuracy from survey data might offset survey administration costs.

  5. A Method of Calculating Functional Independence Measure at Discharge from Functional Independence Measure Effectiveness Predicted by Multiple Regression Analysis Has a High Degree of Predictive Accuracy.

    PubMed

    Tokunaga, Makoto; Watanabe, Susumu; Sonoda, Shigeru

    2017-09-01

    Multiple linear regression analysis is often used to predict the outcome of stroke rehabilitation. However, the predictive accuracy may not be satisfactory. The objective of this study was to elucidate the predictive accuracy of a method of calculating motor Functional Independence Measure (mFIM) at discharge from mFIM effectiveness predicted by multiple regression analysis. The subjects were 505 patients with stroke who were hospitalized in a convalescent rehabilitation hospital. The formula "mFIM at discharge = mFIM effectiveness × (91 points - mFIM at admission) + mFIM at admission" was used. By including the predicted mFIM effectiveness obtained through multiple regression analysis in this formula, we obtained the predicted mFIM at discharge (A). We also used multiple regression analysis to directly predict mFIM at discharge (B). The correlation between the predicted and the measured values of mFIM at discharge was compared between A and B. The correlation coefficients were .916 for A and .878 for B. Calculating mFIM at discharge from mFIM effectiveness predicted by multiple regression analysis had a higher degree of predictive accuracy of mFIM at discharge than that directly predicted. Copyright © 2017 National Stroke Association. Published by Elsevier Inc. All rights reserved.

  6. Impaired gas exchange: accuracy of defining characteristics in children with acute respiratory infection1

    PubMed Central

    Pascoal, Lívia Maia; Lopes, Marcos Venícios de Oliveira; Chaves, Daniel Bruno Resende; Beltrão, Beatriz Amorim; da Silva, Viviane Martins; Monteiro, Flávia Paula Magalhães

    2015-01-01

    OBJECTIVE: to analyze the accuracy of the defining characteristics of the Impaired gas exchange nursing diagnosis in children with acute respiratory infection. METHOD: open prospective cohort study conducted with 136 children monitored for a consecutive period of at least six days and not more than ten days. An instrument based on the defining characteristics of the Impaired gas exchange diagnosis and on literature addressing pulmonary assessment was used to collect data. The accuracy means of all the defining characteristics under study were computed. RESULTS: the Impaired gas exchange diagnosis was present in 42.6% of the children in the first assessment. Hypoxemia was the characteristic that presented the best measures of accuracy. Abnormal breathing presented high sensitivity, while restlessness, cyanosis, and abnormal skin color showed high specificity. All the characteristics presented negative predictive values of 70% and cyanosis stood out by its high positive predictive value. CONCLUSION: hypoxemia was the defining characteristic that presented the best predictive ability to determine Impaired gas exchange. Studies of this nature enable nurses to minimize variability in clinical situations presented by the patient and to identify more precisely the nursing diagnosis that represents the patient's true clinical condition. PMID:26155010

  7. Rapid high performance liquid chromatography method development with high prediction accuracy, using 5cm long narrow bore columns packed with sub-2microm particles and Design Space computer modeling.

    PubMed

    Fekete, Szabolcs; Fekete, Jeno; Molnár, Imre; Ganzler, Katalin

    2009-11-06

    Many different strategies of reversed phase high performance liquid chromatographic (RP-HPLC) method development are used today. This paper describes a strategy for the systematic development of ultrahigh-pressure liquid chromatographic (UHPLC or UPLC) methods using 5cmx2.1mm columns packed with sub-2microm particles and computer simulation (DryLab((R)) package). Data for the accuracy of computer modeling in the Design Space under ultrahigh-pressure conditions are reported. An acceptable accuracy for these predictions of the computer models is presented. This work illustrates a method development strategy, focusing on time reduction up to a factor 3-5, compared to the conventional HPLC method development and exhibits parts of the Design Space elaboration as requested by the FDA and ICH Q8R1. Furthermore this paper demonstrates the accuracy of retention time prediction at elevated pressure (enhanced flow-rate) and shows that the computer-assisted simulation can be applied with sufficient precision for UHPLC applications (p>400bar). Examples of fast and effective method development in pharmaceutical analysis, both for gradient and isocratic separations are presented.

  8. Advanced turboprop noise prediction based on recent theoretical results

    NASA Technical Reports Server (NTRS)

    Farassat, F.; Padula, S. L.; Dunn, M. H.

    1987-01-01

    The development of a high speed propeller noise prediction code at Langley Research Center is described. The code utilizes two recent acoustic formulations in the time domain for subsonic and supersonic sources. The structure and capabilities of the code are discussed. Grid size study for accuracy and speed of execution on a computer is also presented. The code is tested against an earlier Langley code. Considerable increase in accuracy and speed of execution are observed. Some examples of noise prediction of a high speed propeller for which acoustic test data are available are given. A brisk derivation of formulations used is given in an appendix.

  9. Prediction of high-energy radiation belt electron fluxes using a combined VERB-NARMAX model

    NASA Astrophysics Data System (ADS)

    Pakhotin, I. P.; Balikhin, M. A.; Shprits, Y.; Subbotin, D.; Boynton, R.

    2013-12-01

    This study is concerned with the modelling and forecasting of energetic electron fluxes that endanger satellites in space. By combining data-driven predictions from the NARMAX methodology with the physics-based VERB code, it becomes possible to predict electron fluxes with a high level of accuracy and across a radial distance from inside the local acceleration region to out beyond geosynchronous orbit. The model coupling also makes is possible to avoid accounting for seed electron variations at the outer boundary. Conversely, combining a convection code with the VERB and NARMAX models has the potential to provide even greater accuracy in forecasting that is not limited to geostationary orbit but makes predictions across the entire outer radiation belt region.

  10. Bridging the gap between marker-assisted and genomic selection of heading time and plant height in hybrid wheat.

    PubMed

    Zhao, Y; Mette, M F; Gowda, M; Longin, C F H; Reif, J C

    2014-06-01

    Based on data from field trials with a large collection of 135 elite winter wheat inbred lines and 1604 F1 hybrids derived from them, we compared the accuracy of prediction of marker-assisted selection and current genomic selection approaches for the model traits heading time and plant height in a cross-validation approach. For heading time, the high accuracy seen with marker-assisted selection severely dropped with genomic selection approaches RR-BLUP (ridge regression best linear unbiased prediction) and BayesCπ, whereas for plant height, accuracy was low with marker-assisted selection as well as RR-BLUP and BayesCπ. Differences in the linkage disequilibrium structure of the functional and single-nucleotide polymorphism markers relevant for the two traits were identified in a simulation study as a likely explanation for the different trends in accuracies of prediction. A new genomic selection approach, weighted best linear unbiased prediction (W-BLUP), designed to treat the effects of known functional markers more appropriately, proved to increase the accuracy of prediction for both traits and thus closes the gap between marker-assisted and genomic selection.

  11. Bridging the gap between marker-assisted and genomic selection of heading time and plant height in hybrid wheat

    PubMed Central

    Zhao, Y; Mette, M F; Gowda, M; Longin, C F H; Reif, J C

    2014-01-01

    Based on data from field trials with a large collection of 135 elite winter wheat inbred lines and 1604 F1 hybrids derived from them, we compared the accuracy of prediction of marker-assisted selection and current genomic selection approaches for the model traits heading time and plant height in a cross-validation approach. For heading time, the high accuracy seen with marker-assisted selection severely dropped with genomic selection approaches RR-BLUP (ridge regression best linear unbiased prediction) and BayesCπ, whereas for plant height, accuracy was low with marker-assisted selection as well as RR-BLUP and BayesCπ. Differences in the linkage disequilibrium structure of the functional and single-nucleotide polymorphism markers relevant for the two traits were identified in a simulation study as a likely explanation for the different trends in accuracies of prediction. A new genomic selection approach, weighted best linear unbiased prediction (W-BLUP), designed to treat the effects of known functional markers more appropriately, proved to increase the accuracy of prediction for both traits and thus closes the gap between marker-assisted and genomic selection. PMID:24518889

  12. Comparing ordinary kriging and inverse distance weighting for soil as pollution in Beijing.

    PubMed

    Qiao, Pengwei; Lei, Mei; Yang, Sucai; Yang, Jun; Guo, Guanghui; Zhou, Xiaoyong

    2018-06-01

    Spatial interpolation method is the basis of soil heavy metal pollution assessment and remediation. The existing evaluation index for interpolation accuracy did not combine with actual situation. The selection of interpolation methods needs to be based on specific research purposes and research object characteristics. In this paper, As pollution in soils of Beijing was taken as an example. The prediction accuracy of ordinary kriging (OK) and inverse distance weighted (IDW) were evaluated based on the cross validation results and spatial distribution characteristics of influencing factors. The results showed that, under the condition of specific spatial correlation, the cross validation results of OK and IDW for every soil point and the prediction accuracy of spatial distribution trend are similar. But the prediction accuracy of OK for the maximum and minimum is less than IDW, while the number of high pollution areas identified by OK are less than IDW. It is difficult to identify the high pollution areas fully by OK, which shows that the smoothing effect of OK is obvious. In addition, with increasing of the spatial correlation of As concentration, the cross validation error of OK and IDW decreases, and the high pollution area identified by OK is approaching the result of IDW, which can identify the high pollution areas more comprehensively. However, because the semivariogram constructed by OK interpolation method is more subjective and requires larger number of soil samples, IDW is more suitable for spatial prediction of heavy metal pollution in soils.

  13. Diagnostic accuracy of liver fibrosis based on red cell distribution width (RDW) to platelet ratio with fibroscan in chronic hepatitis B

    NASA Astrophysics Data System (ADS)

    Sembiring, J.; Jones, F.

    2018-03-01

    Red cell Distribution Width (RDW) and platelet ratio (RPR) can predict liver fibrosis and cirrhosis in chronic hepatitis B with relatively high accuracy. RPR was superior to other non-invasive methods to predict liver fibrosis, such as AST and ALT ratio, AST and platelet ratio Index and FIB-4. The aim of this study was to assess diagnostic accuracy liver fibrosis by using RDW and platelets ratio in chronic hepatitis B patients based on compared with Fibroscan. This cross-sectional study was conducted at Adam Malik Hospital from January-June 2015. We examine 34 patients hepatitis B chronic, screen RDW, platelet, and fibroscan. Data were statistically analyzed. The result RPR with ROC procedure has an accuracy of 72.3% (95% CI: 84.1% - 97%). In this study, the RPR had a moderate ability to predict fibrosis degree (p = 0.029 with AUC> 70%). The cutoff value RPR was 0.0591, sensitivity and spesificity were 71.4% and 60%, Positive Prediction Value (PPV) was 55.6% and Negative Predictions Value (NPV) was 75%, positive likelihood ratio was 1.79 and negative likelihood ratio was 0.48. RPR have the ability to predict the degree of liver fibrosis in chronic hepatitis B patients with moderate accuracy.

  14. Dissolved oxygen content prediction in crab culture using a hybrid intelligent method

    PubMed Central

    Yu, Huihui; Chen, Yingyi; Hassan, ShahbazGul; Li, Daoliang

    2016-01-01

    A precise predictive model is needed to obtain a clear understanding of the changing dissolved oxygen content in outdoor crab ponds, to assess how to reduce risk and to optimize water quality management. The uncertainties in the data from multiple sensors are a significant factor when building a dissolved oxygen content prediction model. To increase prediction accuracy, a new hybrid dissolved oxygen content forecasting model based on the radial basis function neural networks (RBFNN) data fusion method and a least squares support vector machine (LSSVM) with an optimal improved particle swarm optimization(IPSO) is developed. In the modelling process, the RBFNN data fusion method is used to improve information accuracy and provide more trustworthy training samples for the IPSO-LSSVM prediction model. The LSSVM is a powerful tool for achieving nonlinear dissolved oxygen content forecasting. In addition, an improved particle swarm optimization algorithm is developed to determine the optimal parameters for the LSSVM with high accuracy and generalizability. In this study, the comparison of the prediction results of different traditional models validates the effectiveness and accuracy of the proposed hybrid RBFNN-IPSO-LSSVM model for dissolved oxygen content prediction in outdoor crab ponds. PMID:27270206

  15. Dissolved oxygen content prediction in crab culture using a hybrid intelligent method.

    PubMed

    Yu, Huihui; Chen, Yingyi; Hassan, ShahbazGul; Li, Daoliang

    2016-06-08

    A precise predictive model is needed to obtain a clear understanding of the changing dissolved oxygen content in outdoor crab ponds, to assess how to reduce risk and to optimize water quality management. The uncertainties in the data from multiple sensors are a significant factor when building a dissolved oxygen content prediction model. To increase prediction accuracy, a new hybrid dissolved oxygen content forecasting model based on the radial basis function neural networks (RBFNN) data fusion method and a least squares support vector machine (LSSVM) with an optimal improved particle swarm optimization(IPSO) is developed. In the modelling process, the RBFNN data fusion method is used to improve information accuracy and provide more trustworthy training samples for the IPSO-LSSVM prediction model. The LSSVM is a powerful tool for achieving nonlinear dissolved oxygen content forecasting. In addition, an improved particle swarm optimization algorithm is developed to determine the optimal parameters for the LSSVM with high accuracy and generalizability. In this study, the comparison of the prediction results of different traditional models validates the effectiveness and accuracy of the proposed hybrid RBFNN-IPSO-LSSVM model for dissolved oxygen content prediction in outdoor crab ponds.

  16. Predicting High Imaging Utilization Based on Initial Radiology Reports: A Feasibility Study of Machine Learning.

    PubMed

    Hassanpour, Saeed; Langlotz, Curtis P

    2016-01-01

    Imaging utilization has significantly increased over the last two decades, and is only recently showing signs of moderating. To help healthcare providers identify patients at risk for high imaging utilization, we developed a prediction model to recognize high imaging utilizers based on their initial imaging reports. The prediction model uses a machine learning text classification framework. In this study, we used radiology reports from 18,384 patients with at least one abdomen computed tomography study in their imaging record at Stanford Health Care as the training set. We modeled the radiology reports in a vector space and trained a support vector machine classifier for this prediction task. We evaluated our model on a separate test set of 4791 patients. In addition to high prediction accuracy, in our method, we aimed at achieving high specificity to identify patients at high risk for high imaging utilization. Our results (accuracy: 94.0%, sensitivity: 74.4%, specificity: 97.9%, positive predictive value: 87.3%, negative predictive value: 95.1%) show that a prediction model can enable healthcare providers to identify in advance patients who are likely to be high utilizers of imaging services. Machine learning classifiers developed from narrative radiology reports are feasible methods to predict imaging utilization. Such systems can be used to identify high utilizers, inform future image ordering behavior, and encourage judicious use of imaging. Copyright © 2016 The Association of University Radiologists. Published by Elsevier Inc. All rights reserved.

  17. Accuracy Analysis of a Box-wing Theoretical SRP Model

    NASA Astrophysics Data System (ADS)

    Wang, Xiaoya; Hu, Xiaogong; Zhao, Qunhe; Guo, Rui

    2016-07-01

    For Beidou satellite navigation system (BDS) a high accuracy SRP model is necessary for high precise applications especially with Global BDS establishment in future. The BDS accuracy for broadcast ephemeris need be improved. So, a box-wing theoretical SRP model with fine structure and adding conical shadow factor of earth and moon were established. We verified this SRP model by the GPS Block IIF satellites. The calculation was done with the data of PRN 1, 24, 25, 27 satellites. The results show that the physical SRP model for POD and forecast for GPS IIF satellite has higher accuracy with respect to Bern empirical model. The 3D-RMS of orbit is about 20 centimeters. The POD accuracy for both models is similar but the prediction accuracy with the physical SRP model is more than doubled. We tested 1-day 3-day and 7-day orbit prediction. The longer is the prediction arc length, the more significant is the improvement. The orbit prediction accuracy with the physical SRP model for 1-day, 3-day and 7-day arc length are 0.4m, 2.0m, 10.0m respectively. But they are 0.9m, 5.5m and 30m with Bern empirical model respectively. We apply this means to the BDS and give out a SRP model for Beidou satellites. Then we test and verify the model with Beidou data of one month only for test. Initial results show the model is good but needs more data for verification and improvement. The orbit residual RMS is similar to that with our empirical force model which only estimate the force for along track, across track direction and y-bias. But the orbit overlap and SLR observation evaluation show some improvement. The remaining empirical force is reduced significantly for present Beidou constellation.

  18. Analysis of uncertainties in turbine metal temperature predictions

    NASA Technical Reports Server (NTRS)

    Stepka, F. S.

    1980-01-01

    An analysis was conducted to examine the extent to which various factors influence the accuracy of analytically predicting turbine blade metal temperatures and to determine the uncertainties in these predictions for several accuracies of the influence factors. The advanced turbofan engine gas conditions of 1700 K and 40 atmospheres were considered along with those of a highly instrumented high temperature turbine test rig and a low temperature turbine rig that simulated the engine conditions. The analysis showed that the uncertainty in analytically predicting local blade temperature was as much as 98 K, or 7.6 percent of the metal absolute temperature, with current knowledge of the influence factors. The expected reductions in uncertainties in the influence factors with additional knowledge and tests should reduce the uncertainty in predicting blade metal temperature to 28 K, or 2.1 percent of the metal absolute temperature.

  19. Sensitivity, Specificity, Predictive Values, and Accuracy of Three Diagnostic Tests to Predict Inferior Alveolar Nerve Blockade Failure in Symptomatic Irreversible Pulpitis

    PubMed Central

    Rodríguez-Wong, Laura; Noguera-González, Danny; Esparza-Villalpando, Vicente; Montero-Aguilar, Mauricio

    2017-01-01

    Introduction The inferior alveolar nerve block (IANB) is the most common anesthetic technique used on mandibular teeth during root canal treatment. Its success in the presence of preoperative inflammation is still controversial. The aim of this study was to evaluate the sensitivity, specificity, predictive values, and accuracy of three diagnostic tests used to predict IANB failure in symptomatic irreversible pulpitis (SIP). Methodology A cross-sectional study was carried out on the mandibular molars of 53 patients with SIP. All patients received a single cartridge of mepivacaine 2% with 1 : 100000 epinephrine using the IANB technique. Three diagnostic clinical tests were performed to detect anesthetic failure. Anesthetic failure was defined as a positive painful response to any of the three tests. Sensitivity, specificity, predictive values, accuracy, and ROC curves were calculated and compared and significant differences were analyzed. Results IANB failure was determined in 71.7% of the patients. The sensitivity scores for the three tests (lip numbness, the cold stimuli test, and responsiveness during endodontic access) were 0.03, 0.35, and 0.55, respectively, and the specificity score was determined as 1 for all of the tests. Clinically, none of the evaluated tests demonstrated a high enough accuracy (0.30, 0.53, and 0.68 for lip numbness, the cold stimuli test, and responsiveness during endodontic access, resp.). A comparison of the areas under the curve in the ROC analyses showed statistically significant differences between the three tests (p < 0.05). Conclusion None of the analyzed tests demonstrated a high enough accuracy to be considered a reliable diagnostic tool for the prediction of anesthetic failure. PMID:28694714

  20. Highly accurate prediction of emotions surrounding the attacks of September 11, 2001 over 1-, 2-, and 7-year prediction intervals.

    PubMed

    Doré, Bruce P; Meksin, Robert; Mather, Mara; Hirst, William; Ochsner, Kevin N

    2016-06-01

    In the aftermath of a national tragedy, important decisions are predicated on judgments of the emotional significance of the tragedy in the present and future. Research in affective forecasting has largely focused on ways in which people fail to make accurate predictions about the nature and duration of feelings experienced in the aftermath of an event. Here we ask a related but understudied question: can people forecast how they will feel in the future about a tragic event that has already occurred? We found that people were strikingly accurate when predicting how they would feel about the September 11 attacks over 1-, 2-, and 7-year prediction intervals. Although people slightly under- or overestimated their future feelings at times, they nonetheless showed high accuracy in forecasting (a) the overall intensity of their future negative emotion, and (b) the relative degree of different types of negative emotion (i.e., sadness, fear, or anger). Using a path model, we found that the relationship between forecasted and actual future emotion was partially mediated by current emotion and remembered emotion. These results extend theories of affective forecasting by showing that emotional responses to an event of ongoing national significance can be predicted with high accuracy, and by identifying current and remembered feelings as independent sources of this accuracy. (PsycINFO Database Record (c) 2016 APA, all rights reserved).

  1. Highly accurate prediction of emotions surrounding the attacks of September 11, 2001 over 1-, 2-, and 7-year prediction intervals

    PubMed Central

    Doré, B.P.; Meksin, R.; Mather, M.; Hirst, W.; Ochsner, K.N

    2016-01-01

    In the aftermath of a national tragedy, important decisions are predicated on judgments of the emotional significance of the tragedy in the present and future. Research in affective forecasting has largely focused on ways in which people fail to make accurate predictions about the nature and duration of feelings experienced in the aftermath of an event. Here we ask a related but understudied question: can people forecast how they will feel in the future about a tragic event that has already occurred? We found that people were strikingly accurate when predicting how they would feel about the September 11 attacks over 1-, 2-, and 7-year prediction intervals. Although people slightly under- or overestimated their future feelings at times, they nonetheless showed high accuracy in forecasting 1) the overall intensity of their future negative emotion, and 2) the relative degree of different types of negative emotion (i.e., sadness, fear, or anger). Using a path model, we found that the relationship between forecasted and actual future emotion was partially mediated by current emotion and remembered emotion. These results extend theories of affective forecasting by showing that emotional responses to an event of ongoing national significance can be predicted with high accuracy, and by identifying current and remembered feelings as independent sources of this accuracy. PMID:27100309

  2. When high working memory capacity is and is not beneficial for predicting nonlinear processes.

    PubMed

    Fischer, Helen; Holt, Daniel V

    2017-04-01

    Predicting the development of dynamic processes is vital in many areas of life. Previous findings are inconclusive as to whether higher working memory capacity (WMC) is always associated with using more accurate prediction strategies, or whether higher WMC can also be associated with using overly complex strategies that do not improve accuracy. In this study, participants predicted a range of systematically varied nonlinear processes based on exponential functions where prediction accuracy could or could not be enhanced using well-calibrated rules. Results indicate that higher WMC participants seem to rely more on well-calibrated strategies, leading to more accurate predictions for processes with highly nonlinear trajectories in the prediction region. Predictions of lower WMC participants, in contrast, point toward an increased use of simple exemplar-based prediction strategies, which perform just as well as more complex strategies when the prediction region is approximately linear. These results imply that with respect to predicting dynamic processes, working memory capacity limits are not generally a strength or a weakness, but that this depends on the process to be predicted.

  3. Predictors of change in depressive symptoms from preschool to first grade.

    PubMed

    Reinfjell, Trude; Kårstad, Silja Berg; Berg-Nielsen, Turid Suzanne; Luby, Joan L; Wichstrøm, Lars

    2016-11-01

    Children's depressive symptoms in the transition from preschool to school are rarely investigated. We therefore tested whether children's temperament (effortful control and negative affect), social skills, child psychopathology, environmental stressors (life events), parental accuracy of predicting their child's emotion understanding (parental accuracy), parental emotional availability, and parental depression predict changes in depressive symptoms from preschool to first grade. Parents of a community sample of 995 4-year-olds were interviewed using the Preschool Age Psychiatric Assessment. The children and parents were reassessed when the children started first grade (n = 795). The results showed that DSM-5 defined depressive symptoms increased. Child temperamental negative affect and parental depression predicted increased, whereas social skills predicted decreased, depressive symptoms. However, such social skills were only protective among children with low and medium effortful control. Further, high parental accuracy proved protective among children with low effortful control and high negative affect. Thus, interventions that treat parental depression may be important for young children. Children with low effortful control and high negative affect may especially benefit from having parents who accurately perceive their emotional understanding. Efforts to enhance social skills may prove particularly important for children with low or medium effortful control.

  4. Interactional Effects of Instructional Quality and Teacher Judgement Accuracy on Achievement.

    ERIC Educational Resources Information Center

    Helmke, Andreas; Schrader, Friedrich-Wilhelm

    1987-01-01

    Analysis of predictions of 32 teachers regarding 690 fifth-graders' scores on a mathematics achievement test found that the combination of high judgement accuracy with varied instructional techniques was particularly favorable to students in contrast to a combination of high diagnostic sensitivity with a low frequency of cues or individual…

  5. Boosted classification trees result in minor to modest improvement in the accuracy in classifying cardiovascular outcomes compared to conventional classification trees

    PubMed Central

    Austin, Peter C; Lee, Douglas S

    2011-01-01

    Purpose: Classification trees are increasingly being used to classifying patients according to the presence or absence of a disease or health outcome. A limitation of classification trees is their limited predictive accuracy. In the data-mining and machine learning literature, boosting has been developed to improve classification. Boosting with classification trees iteratively grows classification trees in a sequence of reweighted datasets. In a given iteration, subjects that were misclassified in the previous iteration are weighted more highly than subjects that were correctly classified. Classifications from each of the classification trees in the sequence are combined through a weighted majority vote to produce a final classification. The authors' objective was to examine whether boosting improved the accuracy of classification trees for predicting outcomes in cardiovascular patients. Methods: We examined the utility of boosting classification trees for classifying 30-day mortality outcomes in patients hospitalized with either acute myocardial infarction or congestive heart failure. Results: Improvements in the misclassification rate using boosted classification trees were at best minor compared to when conventional classification trees were used. Minor to modest improvements to sensitivity were observed, with only a negligible reduction in specificity. For predicting cardiovascular mortality, boosted classification trees had high specificity, but low sensitivity. Conclusions: Gains in predictive accuracy for predicting cardiovascular outcomes were less impressive than gains in performance observed in the data mining literature. PMID:22254181

  6. Prediction of soil properties using imaging spectroscopy: Considering fractional vegetation cover to improve accuracy

    NASA Astrophysics Data System (ADS)

    Franceschini, M. H. D.; Demattê, J. A. M.; da Silva Terra, F.; Vicente, L. E.; Bartholomeus, H.; de Souza Filho, C. R.

    2015-06-01

    Spectroscopic techniques have become attractive to assess soil properties because they are fast, require little labor and may reduce the amount of laboratory waste produced when compared to conventional methods. Imaging spectroscopy (IS) can have further advantages compared to laboratory or field proximal spectroscopic approaches such as providing spatially continuous information with a high density. However, the accuracy of IS derived predictions decreases when the spectral mixture of soil with other targets occurs. This paper evaluates the use of spectral data obtained by an airborne hyperspectral sensor (ProSpecTIR-VS - Aisa dual sensor) for prediction of physical and chemical properties of Brazilian highly weathered soils (i.e., Oxisols). A methodology to assess the soil spectral mixture is adapted and a progressive spectral dataset selection procedure, based on bare soil fractional cover, is proposed and tested. Satisfactory performances are obtained specially for the quantification of clay, sand and CEC using airborne sensor data (R2 of 0.77, 0.79 and 0.54; RPD of 2.14, 2.22 and 1.50, respectively), after spectral data selection is performed; although results obtained for laboratory data are more accurate (R2 of 0.92, 0.85 and 0.75; RPD of 3.52, 2.62 and 2.04, for clay, sand and CEC, respectively). Most importantly, predictions based on airborne-derived spectra for which the bare soil fractional cover is not taken into account show considerable lower accuracy, for example for clay, sand and CEC (RPD of 1.52, 1.64 and 1.16, respectively). Therefore, hyperspectral remotely sensed data can be used to predict topsoil properties of highly weathered soils, although spectral mixture of bare soil with vegetation must be considered in order to achieve an improved prediction accuracy.

  7. Short communication: Improving the accuracy of genomic prediction of body conformation traits in Chinese Holsteins using markers derived from high-density marker panels.

    PubMed

    Song, H; Li, L; Ma, P; Zhang, S; Su, G; Lund, M S; Zhang, Q; Ding, X

    2018-06-01

    This study investigated the efficiency of genomic prediction with adding the markers identified by genome-wide association study (GWAS) using a data set of imputed high-density (HD) markers from 54K markers in Chinese Holsteins. Among 3,056 Chinese Holsteins with imputed HD data, 2,401 individuals born before October 1, 2009, were used for GWAS and a reference population for genomic prediction, and the 220 younger cows were used as a validation population. In total, 1,403, 1,536, and 1,383 significant single nucleotide polymorphisms (SNP; false discovery rate at 0.05) associated with conformation final score, mammary system, and feet and legs were identified, respectively. About 2 to 3% genetic variance of 3 traits was explained by these significant SNP. Only a very small proportion of significant SNP identified by GWAS was included in the 54K marker panel. Three new marker sets (54K+) were herein produced by adding significant SNP obtained by linear mixed model for each trait into the 54K marker panel. Genomic breeding values were predicted using a Bayesian variable selection (BVS) model. The accuracies of genomic breeding value by BVS based on the 54K+ data were 2.0 to 5.2% higher than those based on the 54K data. The imputed HD markers yielded 1.4% higher accuracy on average (BVS) than the 54K data. Both the 54K+ and HD data generated lower bias of genomic prediction, and the 54K+ data yielded the lowest bias in all situations. Our results show that the imputed HD data were not very useful for improving the accuracy of genomic prediction and that adding the significant markers derived from the imputed HD marker panel could improve the accuracy of genomic prediction and decrease the bias of genomic prediction. Copyright © 2018 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  8. Accuracy of taxonomy prediction for 16S rRNA and fungal ITS sequences

    PubMed Central

    2018-01-01

    Prediction of taxonomy for marker gene sequences such as 16S ribosomal RNA (rRNA) is a fundamental task in microbiology. Most experimentally observed sequences are diverged from reference sequences of authoritatively named organisms, creating a challenge for prediction methods. I assessed the accuracy of several algorithms using cross-validation by identity, a new benchmark strategy which explicitly models the variation in distances between query sequences and the closest entry in a reference database. When the accuracy of genus predictions was averaged over a representative range of identities with the reference database (100%, 99%, 97%, 95% and 90%), all tested methods had ≤50% accuracy on the currently-popular V4 region of 16S rRNA. Accuracy was found to fall rapidly with identity; for example, better methods were found to have V4 genus prediction accuracy of ∼100% at 100% identity but ∼50% at 97% identity. The relationship between identity and taxonomy was quantified as the probability that a rank is the lowest shared by a pair of sequences with a given pair-wise identity. With the V4 region, 95% identity was found to be a twilight zone where taxonomy is highly ambiguous because the probabilities that the lowest shared rank between pairs of sequences is genus, family, order or class are approximately equal. PMID:29682424

  9. Advanced turboprop noise prediction: Development of a code at NASA Langley based on recent theoretical results

    NASA Technical Reports Server (NTRS)

    Farassat, F.; Dunn, M. H.; Padula, S. L.

    1986-01-01

    The development of a high speed propeller noise prediction code at Langley Research Center is described. The code utilizes two recent acoustic formulations in the time domain for subsonic and supersonic sources. The structure and capabilities of the code are discussed. Grid size study for accuracy and speed of execution on a computer is also presented. The code is tested against an earlier Langley code. Considerable increase in accuracy and speed of execution are observed. Some examples of noise prediction of a high speed propeller for which acoustic test data are available are given. A brisk derivation of formulations used is given in an appendix.

  10. The Upper and Lower Bounds of the Prediction Accuracies of Ensemble Methods for Binary Classification

    PubMed Central

    Wang, Xueyi; Davidson, Nicholas J.

    2011-01-01

    Ensemble methods have been widely used to improve prediction accuracy over individual classifiers. In this paper, we achieve a few results about the prediction accuracies of ensemble methods for binary classification that are missed or misinterpreted in previous literature. First we show the upper and lower bounds of the prediction accuracies (i.e. the best and worst possible prediction accuracies) of ensemble methods. Next we show that an ensemble method can achieve > 0.5 prediction accuracy, while individual classifiers have < 0.5 prediction accuracies. Furthermore, for individual classifiers with different prediction accuracies, the average of the individual accuracies determines the upper and lower bounds. We perform two experiments to verify the results and show that it is hard to achieve the upper and lower bounds accuracies by random individual classifiers and better algorithms need to be developed. PMID:21853162

  11. MEDEX 2015: Heart Rate Variability Predicts Development of Acute Mountain Sickness.

    PubMed

    Sutherland, Angus; Freer, Joseph; Evans, Laura; Dolci, Alberto; Crotti, Matteo; Macdonald, Jamie Hugo

    2017-09-01

    Sutherland, Angus, Joseph Freer, Laura Evans, Alberto Dolci, Matteo Crotti, and Jamie Hugo Macdonald. MEDEX 2015: Heart rate variability predicts development of acute mountain sickness. High Alt Med Biol. 18: 199-208, 2017. Acute mountain sickness (AMS) develops when the body fails to acclimatize to atmospheric changes at altitude. Preascent prediction of susceptibility to AMS would be a useful tool to prevent subsequent harm. Changes to peripheral oxygen saturation (SpO 2 ) on hypoxic exposure have previously been shown to be of poor predictive value. Heart rate variability (HRV) has shown promise in the early prediction of AMS, but its use pre-expedition has not previously been investigated. We aimed to determine whether pre- and intraexpedition HRV assessment could predict susceptibility to AMS at high altitude with better diagnostic accuracy than SpO 2 . Forty-four healthy volunteers undertook an expedition in the Nepali Himalaya to >5000 m. SpO 2 and HRV parameters were recorded at rest in normoxia and in a normobaric hypoxic chamber before the expedition. On the expedition HRV parameters and SpO 2 were collected again at 3841 m. A daily Lake Louise Score was obtained to assess AMS symptomology. Low frequency/high frequency (LF/HF) ratio in normoxia (cutpoint ≤2.28 a.u.) and LF following 15 minutes of exposure to normobaric hypoxia had moderate (area under the curve ≥0.8) diagnostic accuracy. LF/HF ratio in normoxia had the highest sensitivity (85%) and specificity (88%) for predicting AMS on subsequent ascent to altitude. In contrast, pre-expedition SpO 2 measurements had poor (area under the curve <0.7) diagnostic accuracy and inferior sensitivity and specificity. Pre-ascent measurement of HRV in normoxia was found to be of better diagnostic accuracy for AMS prediction than all measures of HRV in hypoxia, and better than peripheral oxygen saturation monitoring.

  12. Prediction accuracies for growth and wood attributes of interior spruce in space using genotyping-by-sequencing.

    PubMed

    Gamal El-Dien, Omnia; Ratcliffe, Blaise; Klápště, Jaroslav; Chen, Charles; Porth, Ilga; El-Kassaby, Yousry A

    2015-05-09

    Genomic selection (GS) in forestry can substantially reduce the length of breeding cycle and increase gain per unit time through early selection and greater selection intensity, particularly for traits of low heritability and late expression. Affordable next-generation sequencing technologies made it possible to genotype large numbers of trees at a reasonable cost. Genotyping-by-sequencing was used to genotype 1,126 Interior spruce trees representing 25 open-pollinated families planted over three sites in British Columbia, Canada. Four imputation algorithms were compared (mean value (MI), singular value decomposition (SVD), expectation maximization (EM), and a newly derived, family-based k-nearest neighbor (kNN-Fam)). Trees were phenotyped for several yield and wood attributes. Single- and multi-site GS prediction models were developed using the Ridge Regression Best Linear Unbiased Predictor (RR-BLUP) and the Generalized Ridge Regression (GRR) to test different assumption about trait architecture. Finally, using PCA, multi-trait GS prediction models were developed. The EM and kNN-Fam imputation methods were superior for 30 and 60% missing data, respectively. The RR-BLUP GS prediction model produced better accuracies than the GRR indicating that the genetic architecture for these traits is complex. GS prediction accuracies for multi-site were high and better than those of single-sites while multi-site predictability produced the lowest accuracies reflecting type-b genetic correlations and deemed unreliable. The incorporation of genomic information in quantitative genetics analyses produced more realistic heritability estimates as half-sib pedigree tended to inflate the additive genetic variance and subsequently both heritability and gain estimates. Principle component scores as representatives of multi-trait GS prediction models produced surprising results where negatively correlated traits could be concurrently selected for using PCA2 and PCA3. The application of GS to open-pollinated family testing, the simplest form of tree improvement evaluation methods, was proven to be effective. Prediction accuracies obtained for all traits greatly support the integration of GS in tree breeding. While the within-site GS prediction accuracies were high, the results clearly indicate that single-site GS models ability to predict other sites are unreliable supporting the utilization of multi-site approach. Principle component scores provided an opportunity for the concurrent selection of traits with different phenotypic optima.

  13. Prospects and Potential Uses of Genomic Prediction of Key Performance Traits in Tetraploid Potato.

    PubMed

    Stich, Benjamin; Van Inghelandt, Delphine

    2018-01-01

    Genomic prediction is a routine tool in breeding programs of most major animal and plant species. However, its usefulness for potato breeding has not yet been evaluated in detail. The objectives of this study were to (i) examine the prospects of genomic prediction of key performance traits in a diversity panel of tetraploid potato modeling additive, dominance, and epistatic effects, (ii) investigate the effects of size and make up of training set, number of test environments and molecular markers on prediction accuracy, and (iii) assess the effect of including markers from candidate genes on the prediction accuracy. With genomic best linear unbiased prediction (GBLUP), BayesA, BayesCπ, and Bayesian LASSO, four different prediction methods were used for genomic prediction of relative area under disease progress curve after a Phytophthora infestans infection, plant maturity, maturity corrected resistance, tuber starch content, tuber starch yield (TSY), and tuber yield (TY) of 184 tetraploid potato clones or subsets thereof genotyped with the SolCAP 8.3k SNP array. The cross-validated prediction accuracies with GBLUP and the three Bayesian approaches for the six evaluated traits ranged from about 0.5 to about 0.8. For traits with a high expected genetic complexity, such as TSY and TY, we observed an 8% higher prediction accuracy using a model with additive and dominance effects compared with a model with additive effects only. Our results suggest that for oligogenic traits in general and when diagnostic markers are available in particular, the use of Bayesian methods for genomic prediction is highly recommended and that the diagnostic markers should be modeled as fixed effects. The evaluation of the relative performance of genomic prediction vs. phenotypic selection indicated that the former is superior, assuming cycle lengths and selection intensities that are possible to realize in commercial potato breeding programs.

  14. Prospects and Potential Uses of Genomic Prediction of Key Performance Traits in Tetraploid Potato

    PubMed Central

    Stich, Benjamin; Van Inghelandt, Delphine

    2018-01-01

    Genomic prediction is a routine tool in breeding programs of most major animal and plant species. However, its usefulness for potato breeding has not yet been evaluated in detail. The objectives of this study were to (i) examine the prospects of genomic prediction of key performance traits in a diversity panel of tetraploid potato modeling additive, dominance, and epistatic effects, (ii) investigate the effects of size and make up of training set, number of test environments and molecular markers on prediction accuracy, and (iii) assess the effect of including markers from candidate genes on the prediction accuracy. With genomic best linear unbiased prediction (GBLUP), BayesA, BayesCπ, and Bayesian LASSO, four different prediction methods were used for genomic prediction of relative area under disease progress curve after a Phytophthora infestans infection, plant maturity, maturity corrected resistance, tuber starch content, tuber starch yield (TSY), and tuber yield (TY) of 184 tetraploid potato clones or subsets thereof genotyped with the SolCAP 8.3k SNP array. The cross-validated prediction accuracies with GBLUP and the three Bayesian approaches for the six evaluated traits ranged from about 0.5 to about 0.8. For traits with a high expected genetic complexity, such as TSY and TY, we observed an 8% higher prediction accuracy using a model with additive and dominance effects compared with a model with additive effects only. Our results suggest that for oligogenic traits in general and when diagnostic markers are available in particular, the use of Bayesian methods for genomic prediction is highly recommended and that the diagnostic markers should be modeled as fixed effects. The evaluation of the relative performance of genomic prediction vs. phenotypic selection indicated that the former is superior, assuming cycle lengths and selection intensities that are possible to realize in commercial potato breeding programs. PMID:29563919

  15. A comparison between Bayes discriminant analysis and logistic regression for prediction of debris flow in southwest Sichuan, China

    NASA Astrophysics Data System (ADS)

    Xu, Wenbo; Jing, Shaocai; Yu, Wenjuan; Wang, Zhaoxian; Zhang, Guoping; Huang, Jianxi

    2013-11-01

    In this study, the high risk areas of Sichuan Province with debris flow, Panzhihua and Liangshan Yi Autonomous Prefecture, were taken as the studied areas. By using rainfall and environmental factors as the predictors and based on the different prior probability combinations of debris flows, the prediction of debris flows was compared in the areas with statistical methods: logistic regression (LR) and Bayes discriminant analysis (BDA). The results through the comprehensive analysis show that (a) with the mid-range scale prior probability, the overall predicting accuracy of BDA is higher than those of LR; (b) with equal and extreme prior probabilities, the overall predicting accuracy of LR is higher than those of BDA; (c) the regional predicting models of debris flows with rainfall factors only have worse performance than those introduced environmental factors, and the predicting accuracies of occurrence and nonoccurrence of debris flows have been changed in the opposite direction as the supplemented information.

  16. State of Jet Noise Prediction-NASA Perspective

    NASA Technical Reports Server (NTRS)

    Bridges, James E.

    2008-01-01

    This presentation covers work primarily done under the Airport Noise Technical Challenge portion of the Supersonics Project in the Fundamental Aeronautics Program. To provide motivation and context, the presentation starts with a brief overview of the Airport Noise Technical Challenge. It then covers the state of NASA s jet noise prediction tools in empirical, RANS-based, and time-resolved categories. The empirical tools, requires seconds to provide a prediction of noise spectral directivity with an accuracy of a few dB, but only for axisymmetric configurations. The RANS-based tools are able to discern the impact of three-dimensional features, but are currently deficient in predicting noise from heated jets and jets with high speed and require hours to produce their prediction. The time-resolved codes are capable of predicting resonances and other time-dependent phenomena, but are very immature, requiring months to deliver predictions without unknown accuracies and dependabilities. In toto, however, when one considers the progress being made it appears that aeroacoustic prediction tools are soon to approach the level of sophistication and accuracy of aerodynamic engineering tools.

  17. Prediction of Spirometric Forced Expiratory Volume (FEV1) Data Using Support Vector Regression

    NASA Astrophysics Data System (ADS)

    Kavitha, A.; Sujatha, C. M.; Ramakrishnan, S.

    2010-01-01

    In this work, prediction of forced expiratory volume in 1 second (FEV1) in pulmonary function test is carried out using the spirometer and support vector regression analysis. Pulmonary function data are measured with flow volume spirometer from volunteers (N=175) using a standard data acquisition protocol. The acquired data are then used to predict FEV1. Support vector machines with polynomial kernel function with four different orders were employed to predict the values of FEV1. The performance is evaluated by computing the average prediction accuracy for normal and abnormal cases. Results show that support vector machines are capable of predicting FEV1 in both normal and abnormal cases and the average prediction accuracy for normal subjects was higher than that of abnormal subjects. Accuracy in prediction was found to be high for a regularization constant of C=10. Since FEV1 is the most significant parameter in the analysis of spirometric data, it appears that this method of assessment is useful in diagnosing the pulmonary abnormalities with incomplete data and data with poor recording.

  18. [Research on partial least squares for determination of impurities in the presence of high concentration of matrix by ICP-AES].

    PubMed

    Wang, Yan-peng; Gong, Qi; Yu, Sheng-rong; Liu, You-yan

    2012-04-01

    A method for detecting trace impurities in high concentration matrix by ICP-AES based on partial least squares (PLS) was established. The research showed that PLS could effectively correct the interference caused by high level of matrix concentration error and could withstand higher concentrations of matrix than multicomponent spectral fitting (MSF). When the mass ratios of matrix to impurities were from 1 000 : 1 to 20 000 : 1, the recoveries of standard addition were between 95% and 105% by PLS. For the system in which interference effect has nonlinear correlation with the matrix concentrations, the prediction accuracy of normal PLS method was poor, but it can be improved greatly by using LIN-PPLS, which was based on matrix transformation of sample concentration. The contents of Co, Pb and Ga in stream sediment (GBW07312) were detected by MSF, PLS and LIN-PPLS respectively. The results showed that the prediction accuracy of LIN-PPLS was better than PLS, and the prediction accuracy of PLS was better than MSF.

  19. Comparative study to assess whether high sensitive C-reactive protein and carotid intima media thickness improve the predictive accuracy of exercise stress testing for coronary artery disease in perimenopausal women with typical angina.

    PubMed

    Sinha, Dhurjati Prasad; Das, Munna; Banerjee, Amal Kumar; Ahmed, Shageer; Majumdar, Sonali

    2008-02-01

    Anginal symptoms are less predictive of abnormal coronary anatomy in women. The diagnostic accuracy of exercise treadmill test for obstructive coronary artery disease is less in young and middle aged women. High sensitive C-reactive protein has shown a strong and consistent relationship to the risk of incident cardiovascular events. Carotid intima media thickness is a non-invasive marker of atherosclerosis burden and also predicts prognosis in patients with coronary artery disease. We investigated whether incorporation of high sensitive C-reactive protein and carotid intima media thickness along with exercise stress results improved the predictive accuracy in perimenopausal non-diabetic women subset. Fifty perimenopausal non-diabetic patients (age 45 +/- 7 years) presenting with typical angina were subjected to treadmill test (Bruce protocol). Also carotid artery images at both sides of neck were acquired by B-mode ultrasound and carotid intima media thickness were measured. High sensitive C-reactive protein was measured. Of 50 patients, 22 had a positive exercise stress result. Coronary angiography done in all 50 patients revealed coronary artery disease in 10 patients with positive exercise stress result and in 4 patients with negative exercise stress result. Treadmill exercise stress test had a sensitivity of 71.4%, specificity of 66.7% and a negative predictive accuracy of 85.7% in this study group. High sensitive C-reactive protein in patients with documented coronary artery disease was not significantly different from those without coronary artery disease (4.8 +/- 0.9 mg/l versus 3.9 +/- 1.7 mg/l, p=NS). Also carotid intima media thickness was not significantly different between either of the groups with coronary artery disease positivity and negativity respectively (left: 1.25 +/- 0.55 versus 1.20 +/- 0.51 mm, p=NS; right:1.18 +/- 0.54 versus 1.15 +/- 0.41 mm, p=NS). High sensitive C-reactive protein and carotid intima media thickness were not helpful in further adding to the predictability of coronary artery disease in perimenopausal patients with typical angina as assessed by treadmill exercise stress test.

  20. Investigation on the Accuracy of Superposition Predictions of Film Cooling Effectiveness

    NASA Astrophysics Data System (ADS)

    Meng, Tong; Zhu, Hui-ren; Liu, Cun-liang; Wei, Jian-sheng

    2018-05-01

    Film cooling effectiveness on flat plates with double rows of holes has been studied experimentally and numerically in this paper. This configuration is widely used to simulate the multi-row film cooling on turbine vane. Film cooling effectiveness of double rows of holes and each single row was used to study the accuracy of superposition predictions. Method of stable infrared measurement technique was used to measure the surface temperature on the flat plate. This paper analyzed the factors that affect the film cooling effectiveness including hole shape, hole arrangement, row-to-row spacing and blowing ratio. Numerical simulations were performed to analyze the flow structure and film cooling mechanisms between each film cooling row. Results show that the blowing ratio within the range of 0.5 to 2 has a significant influence on the accuracy of superposition predictions. At low blowing ratios, results obtained by superposition method agree well with the experimental data. While at high blowing ratios, the accuracy of superposition prediction decreases. Another significant factor is hole arrangement. Results obtained by superposition prediction are nearly the same as experimental values of staggered arrangement structures. For in-line configurations, the superposition values of film cooling effectiveness are much higher than experimental data. For different hole shapes, the accuracy of superposition predictions on converging-expanding holes is better than cylinder holes and compound angle holes. For two different hole spacing structures in this paper, predictions show good agreement with the experiment results.

  1. Improvement of PM concentration predictability using WRF-CMAQ-DLM coupled system and its applications

    NASA Astrophysics Data System (ADS)

    Lee, Soon Hwan; Kim, Ji Sun; Lee, Kang Yeol; Shon, Keon Tae

    2017-04-01

    Air quality due to increasing Particulate Matter(PM) in Korea in Asia is getting worse. At present, the PM forecast is announced based on the PM concentration predicted from the air quality prediction numerical model. However, forecast accuracy is not as high as expected due to various uncertainties for PM physical and chemical characteristics. The purpose of this study was to develop a numerical-statistically ensemble models to improve the accuracy of prediction of PM10 concentration. Numerical models used in this study are the three dimensional atmospheric model Weather Research and Forecasting(WRF) and the community multiscale air quality model (CMAQ). The target areas for the PM forecast are Seoul, Busan, Daegu, and Daejeon metropolitan areas in Korea. The data used in the model development are PM concentration and CMAQ predictions and the data period is 3 months (March 1 - May 31, 2014). The dynamic-statistical technics for reducing the systematic error of the CMAQ predictions was applied to the dynamic linear model(DLM) based on the Baysian Kalman filter technic. As a result of applying the metrics generated from the dynamic linear model to the forecasting of PM concentrations accuracy was improved. Especially, at the high PM concentration where the damage is relatively large, excellent improvement results are shown.

  2. Spatiotemporal Bayesian networks for malaria prediction.

    PubMed

    Haddawy, Peter; Hasan, A H M Imrul; Kasantikul, Rangwan; Lawpoolsri, Saranath; Sa-Angchai, Patiwat; Kaewkungwal, Jaranit; Singhasivanon, Pratap

    2018-01-01

    Targeted intervention and resource allocation are essential for effective malaria control, particularly in remote areas, with predictive models providing important information for decision making. While a diversity of modeling technique have been used to create predictive models of malaria, no work has made use of Bayesian networks. Bayes nets are attractive due to their ability to represent uncertainty, model time lagged and nonlinear relations, and provide explanations. This paper explores the use of Bayesian networks to model malaria, demonstrating the approach by creating village level models with weekly temporal resolution for Tha Song Yang district in northern Thailand. The networks are learned using data on cases and environmental covariates. Three types of networks are explored: networks for numeric prediction, networks for outbreak prediction, and networks that incorporate spatial autocorrelation. Evaluation of the numeric prediction network shows that the Bayes net has prediction accuracy in terms of mean absolute error of about 1.4 cases for 1 week prediction and 1.7 cases for 6 week prediction. The network for outbreak prediction has an ROC AUC above 0.9 for all prediction horizons. Comparison of prediction accuracy of both Bayes nets against several traditional modeling approaches shows the Bayes nets to outperform the other models for longer time horizon prediction of high incidence transmission. To model spread of malaria over space, we elaborate the models with links between the village networks. This results in some very large models which would be far too laborious to build by hand. So we represent the models as collections of probability logic rules and automatically generate the networks. Evaluation of the models shows that the autocorrelation links significantly improve prediction accuracy for some villages in regions of high incidence. We conclude that spatiotemporal Bayesian networks are a highly promising modeling alternative for prediction of malaria and other vector-borne diseases. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. The effect of stimulus strength on the speed and accuracy of a perceptual decision.

    PubMed

    Palmer, John; Huk, Alexander C; Shadlen, Michael N

    2005-05-02

    Both the speed and the accuracy of a perceptual judgment depend on the strength of the sensory stimulation. When stimulus strength is high, accuracy is high and response time is fast; when stimulus strength is low, accuracy is low and response time is slow. Although the psychometric function is well established as a tool for analyzing the relationship between accuracy and stimulus strength, the corresponding chronometric function for the relationship between response time and stimulus strength has not received as much consideration. In this article, we describe a theory of perceptual decision making based on a diffusion model. In it, a decision is based on the additive accumulation of sensory evidence over time to a bound. Combined with simple scaling assumptions, the proportional-rate and power-rate diffusion models predict simple analytic expressions for both the chronometric and psychometric functions. In a series of psychophysical experiments, we show that this theory accounts for response time and accuracy as a function of both stimulus strength and speed-accuracy instructions. In particular, the results demonstrate a close coupling between response time and accuracy. The theory is also shown to subsume the predictions of Piéron's Law, a power function dependence of response time on stimulus strength. The theory's analytic chronometric function allows one to extend theories of accuracy to response time.

  4. Mean Expected Error in Prediction of Total Body Water: A True Accuracy Comparison between Bioimpedance Spectroscopy and Single Frequency Regression Equations

    PubMed Central

    Abtahi, Shirin; Abtahi, Farhad; Ellegård, Lars; Johannsson, Gudmundur; Bosaeus, Ingvar

    2015-01-01

    For several decades electrical bioimpedance (EBI) has been used to assess body fluid distribution and body composition. Despite the development of several different approaches for assessing total body water (TBW), it remains uncertain whether bioimpedance spectroscopic (BIS) approaches are more accurate than single frequency regression equations. The main objective of this study was to answer this question by calculating the expected accuracy of a single measurement for different EBI methods. The results of this study showed that all methods produced similarly high correlation and concordance coefficients, indicating good accuracy as a method. Even the limits of agreement produced from the Bland-Altman analysis indicated that the performance of single frequency, Sun's prediction equations, at population level was close to the performance of both BIS methods; however, when comparing the Mean Absolute Percentage Error value between the single frequency prediction equations and the BIS methods, a significant difference was obtained, indicating slightly better accuracy for the BIS methods. Despite the higher accuracy of BIS methods over 50 kHz prediction equations at both population and individual level, the magnitude of the improvement was small. Such slight improvement in accuracy of BIS methods is suggested insufficient to warrant their clinical use where the most accurate predictions of TBW are required, for example, when assessing over-fluidic status on dialysis. To reach expected errors below 4-5%, novel and individualized approaches must be developed to improve the accuracy of bioimpedance-based methods for the advent of innovative personalized health monitoring applications. PMID:26137489

  5. A general strategy for performing temperature-programming in high performance liquid chromatography--further improvements in the accuracy of retention time predictions of segmented temperature gradients.

    PubMed

    Wiese, Steffen; Teutenberg, Thorsten; Schmidt, Torsten C

    2012-01-27

    In the present work it is shown that the linear elution strength (LES) model which was adapted from temperature-programming gas chromatography (GC) can also be employed for systematic method development in high-temperature liquid chromatography (HT-HPLC). The ability to predict isothermal retention times based on temperature-gradient as well as isothermal input data was investigated. For a small temperature interval of ΔT=40°C, both approaches result in very similar predictions. Average relative errors of predicted retention times of 2.7% and 1.9% were observed for simulations based on isothermal and temperature-gradient measurements, respectively. Concurrently, it was investigated whether the accuracy of retention time predictions of segmented temperature gradients can be further improved by temperature dependent calculation of the parameter S(T) of the LES relationship. It was found that the accuracy of retention time predictions of multi-step temperature gradients can be improved to around 1.5%, if S(T) was also calculated temperature dependent. The adjusted experimental design making use of four temperature-gradient measurements was applied for systematic method development of selected food additives by high-temperature liquid chromatography. Method development was performed within a temperature interval from 40°C to 180°C using water as mobile phase. Two separation methods were established where selected food additives were baseline separated. In addition, a good agreement between simulation and experiment was observed, because an average relative error of predicted retention times of complex segmented temperature gradients less than 5% was observed. Finally, a schedule of recommendations to assist the practitioner during systematic method development in high-temperature liquid chromatography was established. Copyright © 2011 Elsevier B.V. All rights reserved.

  6. Effects of number of training generations on genomic prediction for various traits in a layer chicken population.

    PubMed

    Weng, Ziqing; Wolc, Anna; Shen, Xia; Fernando, Rohan L; Dekkers, Jack C M; Arango, Jesus; Settar, Petek; Fulton, Janet E; O'Sullivan, Neil P; Garrick, Dorian J

    2016-03-19

    Genomic estimated breeding values (GEBV) based on single nucleotide polymorphism (SNP) genotypes are widely used in animal improvement programs. It is typically assumed that the larger the number of animals is in the training set, the higher is the prediction accuracy of GEBV. The aim of this study was to quantify genomic prediction accuracy depending on the number of ancestral generations included in the training set, and to determine the optimal number of training generations for different traits in an elite layer breeding line. Phenotypic records for 16 traits on 17,793 birds were used. All parents and some selection candidates from nine non-overlapping generations were genotyped for 23,098 segregating SNPs. An animal model with pedigree relationships (PBLUP) and the BayesB genomic prediction model were applied to predict EBV or GEBV at each validation generation (progeny of the most recent training generation) based on varying numbers of immediately preceding ancestral generations. Prediction accuracy of EBV or GEBV was assessed as the correlation between EBV and phenotypes adjusted for fixed effects, divided by the square root of trait heritability. The optimal number of training generations that resulted in the greatest prediction accuracy of GEBV was determined for each trait. The relationship between optimal number of training generations and heritability was investigated. On average, accuracies were higher with the BayesB model than with PBLUP. Prediction accuracies of GEBV increased as the number of closely-related ancestral generations included in the training set increased, but reached an asymptote or slightly decreased when distant ancestral generations were used in the training set. The optimal number of training generations was 4 or more for high heritability traits but less than that for low heritability traits. For less heritable traits, limiting the training datasets to individuals closely related to the validation population resulted in the best predictions. The effect of adding distant ancestral generations in the training set on prediction accuracy differed between traits and the optimal number of necessary training generations is associated with the heritability of traits.

  7. Predicting Voice Disorder Status From Smoothed Measures of Cepstral Peak Prominence Using Praat and Analysis of Dysphonia in Speech and Voice (ADSV).

    PubMed

    Sauder, Cara; Bretl, Michelle; Eadie, Tanya

    2017-09-01

    The purposes of this study were to (1) determine and compare the diagnostic accuracy of a single acoustic measure, smoothed cepstral peak prominence (CPPS), to predict voice disorder status from connected speech samples using two software systems: Analysis of Dysphonia in Speech and Voice (ADSV) and Praat; and (2) to determine the relationship between measures of CPPS generated from these programs. This is a retrospective cross-sectional study. Measures of CPPS were obtained from connected speech recordings of 100 subjects with voice disorders and 70 nondysphonic subjects without vocal complaints using commercially available ADSV and freely downloadable Praat software programs. Logistic regression and receiver operating characteristic (ROC) analyses were used to evaluate and compare the diagnostic accuracy of CPPS measures. Relationships between CPPS measures from the programs were determined. Results showed acceptable overall accuracy rates (75% accuracy, ADSV; 82% accuracy, Praat) and area under the ROC curves (area under the curve [AUC] = 0.81, ADSV; AUC = 0.91, Praat) for predicting voice disorder status, with slight differences in sensitivity and specificity. CPPS measures derived from Praat were uniquely predictive of disorder status above and beyond CPPS measures from ADSV (χ 2 (1) = 40.71, P < 0.001). CPPS measures from both programs were significantly and highly correlated (r = 0.88, P < 0.001). A single acoustic measure of CPPS was highly predictive of voice disorder status using either program. Clinicians may consider using CPPS to complement clinical voice evaluation and screening protocols. Copyright © 2017 The Voice Foundation. Published by Elsevier Inc. All rights reserved.

  8. Comparative effectiveness of i-SCAN™ and high-definition white light characterizing small colonic polyps.

    PubMed

    Chan, Johanna L; Lin, Li; Feiler, Michael; Wolf, Andrew I; Cardona, Diana M; Gellad, Ziad F

    2012-11-07

    To evaluate accuracy of in vivo diagnosis of adenomatous vs non-adenomatous polyps using i-SCAN digital chromoendoscopy compared with high-definition white light. This is a single-center comparative effectiveness pilot study. Polyps (n = 103) from 75 average-risk adult outpatients undergoing screening or surveillance colonoscopy between December 1, 2010 and April 1, 2011 were evaluated by two participating endoscopists in an academic outpatient endoscopy center. Polyps were evaluated both with high-definition white light and with i-SCAN to make an in vivo prediction of adenomatous vs non-adenomatous pathology. We determined diagnostic characteristics of i-SCAN and high-definition white light, including sensitivity, specificity, and accuracy, with regards to identifying adenomatous vs non-adenomatous polyps. Histopathologic diagnosis was the gold standard comparison. One hundred and three small polyps, detected from forty-three patients, were included in the analysis. The average size of the polyps evaluated in the analysis was 3.7 mm (SD 1.3 mm, range 2 mm to 8 mm). Formal histopathology revealed that 54/103 (52.4%) were adenomas, 26/103 (25.2%) were hyperplastic, and 23/103 (22.3%) were other diagnoses include "lymphoid aggregates", "non-specific colitis," and "no pathologic diagnosis." Overall, the combined accuracy of endoscopists for predicting adenomas was identical between i-SCAN (71.8%, 95%CI: 62.1%-80.3%) and high-definition white light (71.8%, 95%CI: 62.1%-80.3%). However, the accuracy of each endoscopist differed substantially, where endoscopist A demonstrated 63.0% overall accuracy (95%CI: 50.9%-74.0%) as compared with endoscopist B demonstrating 93.3% overall accuracy (95%CI: 77.9%-99.2%), irrespective of imaging modality. Neither endoscopist demonstrated a significant learning effect with i-SCAN during the study. Though endoscopist A increased accuracy using i-SCAN from 59% (95%CI: 42.1%-74.4%) in the first half to 67.6% (95%CI: 49.5%-82.6%) in the second half, and endoscopist B decreased accuracy using i-SCAN from 100% (95%CI: 80.5%-100.0%) in the first half to 84.6% (95%CI: 54.6%-98.1%) in the second half, neither of these differences were statistically significant. i-SCAN and high-definition white light had similar efficacy predicting polyp histology. Endoscopist training likely plays a critical role in diagnostic test characteristics and deserves further study.

  9. Impacts of Earth rotation parameters on GNSS ultra-rapid orbit prediction: Derivation and real-time correction

    NASA Astrophysics Data System (ADS)

    Wang, Qianxin; Hu, Chao; Xu, Tianhe; Chang, Guobin; Hernández Moraleda, Alberto

    2017-12-01

    Analysis centers (ACs) for global navigation satellite systems (GNSSs) cannot accurately obtain real-time Earth rotation parameters (ERPs). Thus, the prediction of ultra-rapid orbits in the international terrestrial reference system (ITRS) has to utilize the predicted ERPs issued by the International Earth Rotation and Reference Systems Service (IERS) or the International GNSS Service (IGS). In this study, the accuracy of ERPs predicted by IERS and IGS is analyzed. The error of the ERPs predicted for one day can reach 0.15 mas and 0.053 ms in polar motion and UT1-UTC direction, respectively. Then, the impact of ERP errors on ultra-rapid orbit prediction by GNSS is studied. The methods for orbit integration and frame transformation in orbit prediction with introduced ERP errors dominate the accuracy of the predicted orbit. Experimental results show that the transformation from the geocentric celestial references system (GCRS) to ITRS exerts the strongest effect on the accuracy of the predicted ultra-rapid orbit. To obtain the most accurate predicted ultra-rapid orbit, a corresponding real-time orbit correction method is developed. First, orbits without ERP-related errors are predicted on the basis of ITRS observed part of ultra-rapid orbit for use as reference. Then, the corresponding predicted orbit is transformed from GCRS to ITRS to adjust for the predicted ERPs. Finally, the corrected ERPs with error slopes are re-introduced to correct the predicted orbit in ITRS. To validate the proposed method, three experimental schemes are designed: function extrapolation, simulation experiments, and experiments with predicted ultra-rapid orbits and international GNSS Monitoring and Assessment System (iGMAS) products. Experimental results show that using the proposed correction method with IERS products considerably improved the accuracy of ultra-rapid orbit prediction (except the geosynchronous BeiDou orbits). The accuracy of orbit prediction is enhanced by at least 50% (error related to ERP) when a highly accurate observed orbit is used with the correction method. For iGMAS-predicted orbits, the accuracy improvement ranges from 8.5% for the inclined BeiDou orbits to 17.99% for the GPS orbits. This demonstrates that the correction method proposed by this study can optimize the ultra-rapid orbit prediction.

  10. Accounting of fundamental components of the rotation parameters of the Earth in the formation of a high-accuracy orbit of navigation satellites

    NASA Astrophysics Data System (ADS)

    Markov, Yu. G.; Mikhailov, M. V.; Pochukaev, V. N.

    2012-07-01

    An analysis of perturbing factors influencing the motion of a navigation satellite (NS) is carried out, and the degree of influence of each factor on the GLONASS orbit is estimated. It is found that fundamental components of the Earth's rotation parameters (ERP) are one substantial factor commensurable with maximum perturbations. Algorithms for the calculation of orbital perturbations caused by these parameters are given; these algorithms can be implemented in a consumer's equipment. The daily prediction of NS coordinates is performed on the basis of real GLONASS satellite ephemerides transmitted to a consumer, using the developed prediction algorithms taking the ERP into account. The obtained accuracy of the daily prediction of GLONASS ephemerides exceeds by tens of times the accuracy of the daily prediction performed using algorithms recommended in interface control documents.

  11. Artificial neural networks: Predicting head CT findings in elderly patients presenting with minor head injury after a fall.

    PubMed

    Dusenberry, Michael W; Brown, Charles K; Brewer, Kori L

    2017-02-01

    To construct an artificial neural network (ANN) model that can predict the presence of acute CT findings with both high sensitivity and high specificity when applied to the population of patients≥age 65years who have incurred minor head injury after a fall. An ANN was created in the Python programming language using a population of 514 patients ≥ age 65 years presenting to the ED with minor head injury after a fall. The patient dataset was divided into three parts: 60% for "training", 20% for "cross validation", and 20% for "testing". Sensitivity, specificity, positive and negative predictive values, and accuracy were determined by comparing the model's predictions to the actual correct answers for each patient. On the "cross validation" data, the model attained a sensitivity ("recall") of 100.00%, specificity of 78.95%, PPV ("precision") of 78.95%, NPV of 100.00%, and accuracy of 88.24% in detecting the presence of positive head CTs. On the "test" data, the model attained a sensitivity of 97.78%, specificity of 89.47%, PPV of 88.00%, NPV of 98.08%, and accuracy of 93.14% in detecting the presence of positive head CTs. ANNs show great potential for predicting CT findings in the population of patients ≥ 65 years of age presenting with minor head injury after a fall. As a good first step, the ANN showed comparable sensitivity, predictive values, and accuracy, with a much higher specificity than the existing decision rules in clinical usage for predicting head CTs with acute intracranial findings. Copyright © 2016 Elsevier Inc. All rights reserved.

  12. Radiomics-based Prognosis Analysis for Non-Small Cell Lung Cancer

    NASA Astrophysics Data System (ADS)

    Zhang, Yucheng; Oikonomou, Anastasia; Wong, Alexander; Haider, Masoom A.; Khalvati, Farzad

    2017-04-01

    Radiomics characterizes tumor phenotypes by extracting large numbers of quantitative features from radiological images. Radiomic features have been shown to provide prognostic value in predicting clinical outcomes in several studies. However, several challenges including feature redundancy, unbalanced data, and small sample sizes have led to relatively low predictive accuracy. In this study, we explore different strategies for overcoming these challenges and improving predictive performance of radiomics-based prognosis for non-small cell lung cancer (NSCLC). CT images of 112 patients (mean age 75 years) with NSCLC who underwent stereotactic body radiotherapy were used to predict recurrence, death, and recurrence-free survival using a comprehensive radiomics analysis. Different feature selection and predictive modeling techniques were used to determine the optimal configuration of prognosis analysis. To address feature redundancy, comprehensive analysis indicated that Random Forest models and Principal Component Analysis were optimum predictive modeling and feature selection methods, respectively, for achieving high prognosis performance. To address unbalanced data, Synthetic Minority Over-sampling technique was found to significantly increase predictive accuracy. A full analysis of variance showed that data endpoints, feature selection techniques, and classifiers were significant factors in affecting predictive accuracy, suggesting that these factors must be investigated when building radiomics-based predictive models for cancer prognosis.

  13. Data mining methods in the prediction of Dementia: A real-data comparison of the accuracy, sensitivity and specificity of linear discriminant analysis, logistic regression, neural networks, support vector machines, classification trees and random forests

    PubMed Central

    2011-01-01

    Background Dementia and cognitive impairment associated with aging are a major medical and social concern. Neuropsychological testing is a key element in the diagnostic procedures of Mild Cognitive Impairment (MCI), but has presently a limited value in the prediction of progression to dementia. We advance the hypothesis that newer statistical classification methods derived from data mining and machine learning methods like Neural Networks, Support Vector Machines and Random Forests can improve accuracy, sensitivity and specificity of predictions obtained from neuropsychological testing. Seven non parametric classifiers derived from data mining methods (Multilayer Perceptrons Neural Networks, Radial Basis Function Neural Networks, Support Vector Machines, CART, CHAID and QUEST Classification Trees and Random Forests) were compared to three traditional classifiers (Linear Discriminant Analysis, Quadratic Discriminant Analysis and Logistic Regression) in terms of overall classification accuracy, specificity, sensitivity, Area under the ROC curve and Press'Q. Model predictors were 10 neuropsychological tests currently used in the diagnosis of dementia. Statistical distributions of classification parameters obtained from a 5-fold cross-validation were compared using the Friedman's nonparametric test. Results Press' Q test showed that all classifiers performed better than chance alone (p < 0.05). Support Vector Machines showed the larger overall classification accuracy (Median (Me) = 0.76) an area under the ROC (Me = 0.90). However this method showed high specificity (Me = 1.0) but low sensitivity (Me = 0.3). Random Forest ranked second in overall accuracy (Me = 0.73) with high area under the ROC (Me = 0.73) specificity (Me = 0.73) and sensitivity (Me = 0.64). Linear Discriminant Analysis also showed acceptable overall accuracy (Me = 0.66), with acceptable area under the ROC (Me = 0.72) specificity (Me = 0.66) and sensitivity (Me = 0.64). The remaining classifiers showed overall classification accuracy above a median value of 0.63, but for most sensitivity was around or even lower than a median value of 0.5. Conclusions When taking into account sensitivity, specificity and overall classification accuracy Random Forests and Linear Discriminant analysis rank first among all the classifiers tested in prediction of dementia using several neuropsychological tests. These methods may be used to improve accuracy, sensitivity and specificity of Dementia predictions from neuropsychological testing. PMID:21849043

  14. In-class didactic versus self-directed teaching of the probe-based confocal laser endomicroscopy (pCLE) criteria for Barrett's esophagus.

    PubMed

    Rzouq, Fadi; Vennalaganti, Prashanth; Pakseresht, Kavous; Kanakadandi, Vijay; Parasa, Sravanthi; Mathur, Sharad C; Alsop, Benjamin R; Hornung, Benjamin; Gupta, Neil; Sharma, Prateek

    2016-02-01

    Optimal teaching methods for disease recognition using probe-based confocal laser endomicroscopy (pCLE) have not been developed. Our aim was to compare in-class didactic teaching vs. self-directed teaching of Barrett's neoplasia diagnosis using pCLE. This randomized controlled trial was conducted at a tertiary academic center. Study participants with no prior pCLE experience were randomized to in-class didactic (group 1) or self-directed teaching groups (group 2). For group 1, an expert conducted a classroom teaching session using standardized educational material. Participants in group 2 were provided with the same material on an audio PowerPoint. After initial training, all participants graded an initial set of 20 pCLE videos and reviewed correct responses with the expert (group 1) or on audio PowerPoint (group 2). Finally, all participants completed interpretations of a further 40 videos. Eighteen trainees (8 medical students, 10 gastroenterology trainees) participated in the study. Overall diagnostic accuracy for neoplasia prediction by pCLE was 77 % (95 % confidence interval [CI] 74.0 % - 79.2 %); of predictions made with high confidence (53 %), the accuracy was 85 % (95 %CI 81.8 % - 87.8 %). The overall accuracy and interobserver agreement was significantly higher in group 1 than in group 2 for all predictions (80.4 % vs. 73 %; P = 0.005) and for high confidence predictions (90 % vs. 80 %; P < 0.001). Following feedback (after the initial 20 videos), the overall accuracy improved from 73 % to 79 % (P = 0.04), mainly driven by a significant improvement in group 1 (74 % to 84 %; P < 0.01). Accuracy of prediction significantly improved with time in endoscopy training (72 % students, 77 % FY1, 82 % FY2, and 85 % FY3; P = 0.003). For novice trainees, in-class didactic teaching enables significantly better recognition of the pCLE features of Barrett's esophagus than self-directed teaching. The in-class didactic group had a shorter learning curve and were able to achieve 90 % accuracy for their high confidence predictions. © Georg Thieme Verlag KG Stuttgart · New York.

  15. Novel biomarkers for predicting intrauterine growth restriction: a systematic review and meta-analysis.

    PubMed

    Conde-Agudelo, A; Papageorghiou, A T; Kennedy, S H; Villar, J

    2013-05-01

    Several biomarkers for predicting intrauterine growth restriction (IUGR) have been proposed in recent years. However, the predictive performance of these biomarkers has not been systematically evaluated. To determine the predictive accuracy of novel biomarkers for IUGR in women with singleton gestations. Electronic databases, reference list checking and conference proceedings. Observational studies that evaluated the accuracy of novel biomarkers proposed for predicting IUGR. Data were extracted on characteristics, quality and predictive accuracy from each study to construct 2×2 tables. Summary receiver operating characteristic curves, sensitivities, specificities and likelihood ratios (LRs) were generated. A total of 53 studies, including 39,974 women and evaluating 37 novel biomarkers, fulfilled the inclusion criteria. Overall, the predictive accuracy of angiogenic factors for IUGR was minimal (median pooled positive and negative LRs of 1.7, range 1.0-19.8; and 0.8, range 0.0-1.0, respectively). Two small case-control studies reported high predictive values for placental growth factor and angiopoietin-2 only when IUGR was defined as birthweight centile with clinical or pathological evidence of fetal growth restriction. Biomarkers related to endothelial function/oxidative stress, placental protein/hormone, and others such as serum levels of vitamin D, urinary albumin:creatinine ratio, thyroid function tests and metabolomic profile had low predictive accuracy. None of the novel biomarkers evaluated in this review are sufficiently accurate to recommend their use as predictors of IUGR in routine clinical practice. However, the use of biomarkers in combination with biophysical parameters and maternal characteristics could be more useful and merits further research. © 2013 The Authors BJOG An International Journal of Obstetrics and Gynaecology © 2013 RCOG.

  16. The Effects of Individual or Group Guidelines on the Calibration Accuracy and Achievement of High School Biology Students

    ERIC Educational Resources Information Center

    Bol, Linda; Hacker, Douglas J.; Walck, Camilla C.; Nunnery, John A.

    2012-01-01

    A 2 x 2 factorial design was employed in a quasi-experiment to investigate the effects of guidelines in group or individual settings on the calibration accuracy and achievement of 82 high school biology students. Significant main effects indicated that calibration practice with guidelines and practice in group settings increased prediction and…

  17. Predicting human olfactory perception from chemical features of odor molecules.

    PubMed

    Keller, Andreas; Gerkin, Richard C; Guan, Yuanfang; Dhurandhar, Amit; Turu, Gabor; Szalai, Bence; Mainland, Joel D; Ihara, Yusuke; Yu, Chung Wen; Wolfinger, Russ; Vens, Celine; Schietgat, Leander; De Grave, Kurt; Norel, Raquel; Stolovitzky, Gustavo; Cecchi, Guillermo A; Vosshall, Leslie B; Meyer, Pablo

    2017-02-24

    It is still not possible to predict whether a given molecule will have a perceived odor or what olfactory percept it will produce. We therefore organized the crowd-sourced DREAM Olfaction Prediction Challenge. Using a large olfactory psychophysical data set, teams developed machine-learning algorithms to predict sensory attributes of molecules based on their chemoinformatic features. The resulting models accurately predicted odor intensity and pleasantness and also successfully predicted 8 among 19 rated semantic descriptors ("garlic," "fish," "sweet," "fruit," "burnt," "spices," "flower," and "sour"). Regularized linear models performed nearly as well as random forest-based ones, with a predictive accuracy that closely approaches a key theoretical limit. These models help to predict the perceptual qualities of virtually any molecule with high accuracy and also reverse-engineer the smell of a molecule. Copyright © 2017, American Association for the Advancement of Science.

  18. Combining Physicochemical and Evolutionary Information for Protein Contact Prediction

    PubMed Central

    Schneider, Michael; Brock, Oliver

    2014-01-01

    We introduce a novel contact prediction method that achieves high prediction accuracy by combining evolutionary and physicochemical information about native contacts. We obtain evolutionary information from multiple-sequence alignments and physicochemical information from predicted ab initio protein structures. These structures represent low-energy states in an energy landscape and thus capture the physicochemical information encoded in the energy function. Such low-energy structures are likely to contain native contacts, even if their overall fold is not native. To differentiate native from non-native contacts in those structures, we develop a graph-based representation of the structural context of contacts. We then use this representation to train an support vector machine classifier to identify most likely native contacts in otherwise non-native structures. The resulting contact predictions are highly accurate. As a result of combining two sources of information—evolutionary and physicochemical—we maintain prediction accuracy even when only few sequence homologs are present. We show that the predicted contacts help to improve ab initio structure prediction. A web service is available at http://compbio.robotics.tu-berlin.de/epc-map/. PMID:25338092

  19. The urine dipstick test useful to rule out infections. A meta-analysis of the accuracy

    PubMed Central

    Devillé, Walter LJM; Yzermans, Joris C; van Duijn, Nico P; Bezemer, P Dick; van der Windt, Daniëlle AWM; Bouter, Lex M

    2004-01-01

    Background Many studies have evaluated the accuracy of dipstick tests as rapid detectors of bacteriuria and urinary tract infections (UTI). The lack of an adequate explanation for the heterogeneity of the dipstick accuracy stimulates an ongoing debate. The objective of the present meta-analysis was to summarise the available evidence on the diagnostic accuracy of the urine dipstick test, taking into account various pre-defined potential sources of heterogeneity. Methods Literature from 1990 through 1999 was searched in Medline and Embase, and by reference tracking. Selected publications should be concerned with the diagnosis of bacteriuria or urinary tract infections, investigate the use of dipstick tests for nitrites and/or leukocyte esterase, and present empirical data. A checklist was used to assess methodological quality. Results 70 publications were included. Accuracy of nitrites was high in pregnant women (Diagnostic Odds Ratio = 165) and elderly people (DOR = 108). Positive predictive values were ≥80% in elderly and in family medicine. Accuracy of leukocyte-esterase was high in studies in urology patients (DOR = 276). Sensitivities were highest in family medicine (86%). Negative predictive values were high in both tests in all patient groups and settings, except for in family medicine. The combination of both test results showed an important increase in sensitivity. Accuracy was high in studies in urology patients (DOR = 52), in children (DOR = 46), and if clinical information was present (DOR = 28). Sensitivity was highest in studies carried out in family medicine (90%). Predictive values of combinations of positive test results were low in all other situations. Conclusions Overall, this review demonstrates that the urine dipstick test alone seems to be useful in all populations to exclude the presence of infection if the results of both nitrites and leukocyte-esterase are negative. Sensitivities of the combination of both tests vary between 68 and 88% in different patient groups, but positive test results have to be confirmed. Although the combination of positive test results is very sensitive in family practice, the usefulness of the dipstick test alone to rule in infection remains doubtful, even with high pre-test probabilities. PMID:15175113

  20. Post-mortem prediction of primal and selected retail cut weights of New Zealand lamb from carcass and animal characteristics.

    PubMed

    Ngo, L; Ho, H; Hunter, P; Quinn, K; Thomson, A; Pearson, G

    2016-02-01

    Post-mortem measurements (cold weight, grade and external carcass linear dimensions) as well as live animal data (age, breed, sex) were used to predict ovine primal and retail cut weights for 792 lamb carcases. Significant levels of variance could be explained using these predictors. The predictive power of those measurements on primal and retail cut weights was studied by using the results from principal component analysis and the absolute value of the t-statistics of the linear regression model. High prediction accuracy for primal cut weight was achieved (adjusted R(2) up to 0.95), as well as moderate accuracy for key retail cut weight: tenderloins (adj-R(2)=0.60), loin (adj-R(2)=0.62), French rack (adj-R(2)=0.76) and rump (adj-R(2)=0.75). The carcass cold weight had the best predictive power, with the accuracy increasing by around 10% after including the next three most significant variables. Copyright © 2015 Elsevier Ltd. All rights reserved.

  1. Regional Scale High Resolution δ18O Prediction in Precipitation Using MODIS EVI

    PubMed Central

    Huang, Cho-Ying; Wang, Chung-Ho; Lin, Shou-De; Lo, Yi-Chen; Huang, Bo-Wen; Hatch, Kent A.; Shiu, Hau-Jie; You, Cheng-Feng; Chang, Yuan-Mou; Shen, Sheng-Feng

    2012-01-01

    The natural variation in stable water isotope ratio data, also known as water isoscape, is a spatiotemporal fingerprint and a powerful natural tracer that has been widely applied in disciplines as diverse as hydrology, paleoclimatology, ecology and forensic investigation. Although much effort has been devoted to developing a predictive water isoscape model, it remains a central challenge for scientists to generate high accuracy, fine scale spatiotemporal water isoscape prediction. Here we develop a novel approach of using the MODIS-EVI (the Moderate Resolution Imagining Spectroradiometer-Enhanced Vegetation Index), to predict δ18O in precipitation at the regional scale. Using a structural equation model, we show that the EVI and precipitated δ18O are highly correlated and thus the EVI is a good predictor of precipitated δ18O. We then test the predictability of our EVI-δ18O model and demonstrate that our approach can provide high accuracy with fine spatial (250×250 m) and temporal (16 days) scale δ18O predictions (annual and monthly predictabilities [r] are 0.96 and 0.80, respectively). We conclude the merging of the EVI and δ18O in precipitation can greatly extend the spatial and temporal data availability and thus enhance the applicability for both the EVI and water isoscape. PMID:23029053

  2. Increased genomic prediction accuracy in wheat breeding using a large Australian panel.

    PubMed

    Norman, Adam; Taylor, Julian; Tanaka, Emi; Telfer, Paul; Edwards, James; Martinant, Jean-Pierre; Kuchel, Haydn

    2017-12-01

    Genomic prediction accuracy within a large panel was found to be substantially higher than that previously observed in smaller populations, and also higher than QTL-based prediction. In recent years, genomic selection for wheat breeding has been widely studied, but this has typically been restricted to population sizes under 1000 individuals. To assess its efficacy in germplasm representative of commercial breeding programmes, we used a panel of 10,375 Australian wheat breeding lines to investigate the accuracy of genomic prediction for grain yield, physical grain quality and other physiological traits. To achieve this, the complete panel was phenotyped in a dedicated field trial and genotyped using a custom Axiom TM Affymetrix SNP array. A high-quality consensus map was also constructed, allowing the linkage disequilibrium present in the germplasm to be investigated. Using the complete SNP array, genomic prediction accuracies were found to be substantially higher than those previously observed in smaller populations and also more accurate compared to prediction approaches using a finite number of selected quantitative trait loci. Multi-trait genetic correlations were also assessed at an additive and residual genetic level, identifying a negative genetic correlation between grain yield and protein as well as a positive genetic correlation between grain size and test weight.

  3. Application of GA-SVM method with parameter optimization for landslide development prediction

    NASA Astrophysics Data System (ADS)

    Li, X. Z.; Kong, J. M.

    2013-10-01

    Prediction of landslide development process is always a hot issue in landslide research. So far, many methods for landslide displacement series prediction have been proposed. Support vector machine (SVM) has been proved to be a novel algorithm with good performance. However, the performance strongly depends on the right selection of the parameters (C and γ) of SVM model. In this study, we presented an application of GA-SVM method with parameter optimization in landslide displacement rate prediction. We selected a typical large-scale landslide in some hydro - electrical engineering area of Southwest China as a case. On the basis of analyzing the basic characteristics and monitoring data of the landslide, a single-factor GA-SVM model and a multi-factor GA-SVM model of the landslide were built. Moreover, the models were compared with single-factor and multi-factor SVM models of the landslide. The results show that, the four models have high prediction accuracies, but the accuracies of GA-SVM models are slightly higher than those of SVM models and the accuracies of multi-factor models are slightly higher than those of single-factor models for the landslide prediction. The accuracy of the multi-factor GA-SVM models is the highest, with the smallest RSME of 0.0009 and the biggest RI of 0.9992.

  4. Accuracy of Genomic Prediction in Switchgrass (Panicum virgatum L.) Improved by Accounting for Linkage Disequilibrium

    PubMed Central

    Ramstein, Guillaume P.; Evans, Joseph; Kaeppler, Shawn M.; Mitchell, Robert B.; Vogel, Kenneth P.; Buell, C. Robin; Casler, Michael D.

    2016-01-01

    Switchgrass is a relatively high-yielding and environmentally sustainable biomass crop, but further genetic gains in biomass yield must be achieved to make it an economically viable bioenergy feedstock. Genomic selection (GS) is an attractive technology to generate rapid genetic gains in switchgrass, and meet the goals of a substantial displacement of petroleum use with biofuels in the near future. In this study, we empirically assessed prediction procedures for genomic selection in two different populations, consisting of 137 and 110 half-sib families of switchgrass, tested in two locations in the United States for three agronomic traits: dry matter yield, plant height, and heading date. Marker data were produced for the families’ parents by exome capture sequencing, generating up to 141,030 polymorphic markers with available genomic-location and annotation information. We evaluated prediction procedures that varied not only by learning schemes and prediction models, but also by the way the data were preprocessed to account for redundancy in marker information. More complex genomic prediction procedures were generally not significantly more accurate than the simplest procedure, likely due to limited population sizes. Nevertheless, a highly significant gain in prediction accuracy was achieved by transforming the marker data through a marker correlation matrix. Our results suggest that marker-data transformations and, more generally, the account of linkage disequilibrium among markers, offer valuable opportunities for improving prediction procedures in GS. Some of the achieved prediction accuracies should motivate implementation of GS in switchgrass breeding programs. PMID:26869619

  5. Systematic bias of correlation coefficient may explain negative accuracy of genomic prediction.

    PubMed

    Zhou, Yao; Vales, M Isabel; Wang, Aoxue; Zhang, Zhiwu

    2017-09-01

    Accuracy of genomic prediction is commonly calculated as the Pearson correlation coefficient between the predicted and observed phenotypes in the inference population by using cross-validation analysis. More frequently than expected, significant negative accuracies of genomic prediction have been reported in genomic selection studies. These negative values are surprising, given that the minimum value for prediction accuracy should hover around zero when randomly permuted data sets are analyzed. We reviewed the two common approaches for calculating the Pearson correlation and hypothesized that these negative accuracy values reflect potential bias owing to artifacts caused by the mathematical formulas used to calculate prediction accuracy. The first approach, Instant accuracy, calculates correlations for each fold and reports prediction accuracy as the mean of correlations across fold. The other approach, Hold accuracy, predicts all phenotypes in all fold and calculates correlation between the observed and predicted phenotypes at the end of the cross-validation process. Using simulated and real data, we demonstrated that our hypothesis is true. Both approaches are biased downward under certain conditions. The biases become larger when more fold are employed and when the expected accuracy is low. The bias of Instant accuracy can be corrected using a modified formula. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  6. What is the Best Model Specification and Earth Observation Product for Predicting Regional Grain Yields in Food Insecure Countries?

    NASA Astrophysics Data System (ADS)

    Davenport, F., IV; Harrison, L.; Shukla, S.; Husak, G. J.; Funk, C. C.

    2017-12-01

    We evaluate the predictive accuracy of an ensemble of empirical model specifications that use earth observation data to predict sub-national grain yields in Mexico and East Africa. Products that are actively used for seasonal drought monitoring are tested as yield predictors. Our research is driven by the fact that East Africa is a region where decisions regarding agricultural production are critical to preventing the loss of economic livelihoods and human life. Regional grain yield forecasts can be used to anticipate availability and prices of key staples, which can turn can inform decisions about targeting humanitarian response such as food aid. Our objective is to identify-for a given region, grain, and time year- what type of model and/or earth observation can most accurately predict end of season yields. We fit a set of models to county level panel data from Mexico, Kenya, Sudan, South Sudan, and Somalia. We then examine out of sample predicative accuracy using various linear and non-linear models that incorporate spatial and time varying coefficients. We compare accuracy within and across models that use predictor variables from remotely sensed measures of precipitation, temperature, soil moisture, and other land surface processes. We also examine at what point in the season a given model or product is most useful for determining predictive accuracy. Finally we compare predictive accuracy across a variety of agricultural regimes including high intensity irrigated commercial agricultural and rain fed subsistence level farms.

  7. A high order accurate finite element algorithm for high Reynolds number flow prediction

    NASA Technical Reports Server (NTRS)

    Baker, A. J.

    1978-01-01

    A Galerkin-weighted residuals formulation is employed to establish an implicit finite element solution algorithm for generally nonlinear initial-boundary value problems. Solution accuracy, and convergence rate with discretization refinement, are quantized in several error norms, by a systematic study of numerical solutions to several nonlinear parabolic and a hyperbolic partial differential equation characteristic of the equations governing fluid flows. Solutions are generated using selective linear, quadratic and cubic basis functions. Richardson extrapolation is employed to generate a higher-order accurate solution to facilitate isolation of truncation error in all norms. Extension of the mathematical theory underlying accuracy and convergence concepts for linear elliptic equations is predicted for equations characteristic of laminar and turbulent fluid flows at nonmodest Reynolds number. The nondiagonal initial-value matrix structure introduced by the finite element theory is determined intrinsic to improved solution accuracy and convergence. A factored Jacobian iteration algorithm is derived and evaluated to yield a consequential reduction in both computer storage and execution CPU requirements while retaining solution accuracy.

  8. Predicting protein subcellular locations using hierarchical ensemble of Bayesian classifiers based on Markov chains.

    PubMed

    Bulashevska, Alla; Eils, Roland

    2006-06-14

    The subcellular location of a protein is closely related to its function. It would be worthwhile to develop a method to predict the subcellular location for a given protein when only the amino acid sequence of the protein is known. Although many efforts have been made to predict subcellular location from sequence information only, there is the need for further research to improve the accuracy of prediction. A novel method called HensBC is introduced to predict protein subcellular location. HensBC is a recursive algorithm which constructs a hierarchical ensemble of classifiers. The classifiers used are Bayesian classifiers based on Markov chain models. We tested our method on six various datasets; among them are Gram-negative bacteria dataset, data for discriminating outer membrane proteins and apoptosis proteins dataset. We observed that our method can predict the subcellular location with high accuracy. Another advantage of the proposed method is that it can improve the accuracy of the prediction of some classes with few sequences in training and is therefore useful for datasets with imbalanced distribution of classes. This study introduces an algorithm which uses only the primary sequence of a protein to predict its subcellular location. The proposed recursive scheme represents an interesting methodology for learning and combining classifiers. The method is computationally efficient and competitive with the previously reported approaches in terms of prediction accuracies as empirical results indicate. The code for the software is available upon request.

  9. Integrated Computational Solution for Predicting Skin Sensitization Potential of Molecules

    PubMed Central

    Desai, Aarti; Singh, Vivek K.; Jere, Abhay

    2016-01-01

    Introduction Skin sensitization forms a major toxicological endpoint for dermatology and cosmetic products. Recent ban on animal testing for cosmetics demands for alternative methods. We developed an integrated computational solution (SkinSense) that offers a robust solution and addresses the limitations of existing computational tools i.e. high false positive rate and/or limited coverage. Results The key components of our solution include: QSAR models selected from a combinatorial set, similarity information and literature-derived sub-structure patterns of known skin protein reactive groups. Its prediction performance on a challenge set of molecules showed accuracy = 75.32%, CCR = 74.36%, sensitivity = 70.00% and specificity = 78.72%, which is better than several existing tools including VEGA (accuracy = 45.00% and CCR = 54.17% with ‘High’ reliability scoring), DEREK (accuracy = 72.73% and CCR = 71.44%) and TOPKAT (accuracy = 60.00% and CCR = 61.67%). Although, TIMES-SS showed higher predictive power (accuracy = 90.00% and CCR = 92.86%), the coverage was very low (only 10 out of 77 molecules were predicted reliably). Conclusions Owing to improved prediction performance and coverage, our solution can serve as a useful expert system towards Integrated Approaches to Testing and Assessment for skin sensitization. It would be invaluable to cosmetic/ dermatology industry for pre-screening their molecules, and reducing time, cost and animal testing. PMID:27271321

  10. Genomic prediction of the polled and horned phenotypes in Merino sheep.

    PubMed

    Duijvesteijn, Naomi; Bolormaa, Sunduimijid; Daetwyler, Hans D; van der Werf, Julius H J

    2018-05-22

    In horned sheep breeds, breeding for polledness has been of interest for decades. The objective of this study was to improve prediction of the horned and polled phenotypes using horn scores classified as polled, scurs, knobs or horns. Derived phenotypes polled/non-polled (P/NP) and horned/non-horned (H/NH) were used to test four different strategies for prediction in 4001 purebred Merino sheep. These strategies include the use of single 'single nucleotide polymorphism' (SNP) genotypes, multiple-SNP haplotypes, genome-wide and chromosome-wide genomic best linear unbiased prediction and information from imputed sequence variants from the region including the RXFP2 gene. Low-density genotypes of these animals were imputed to the Illumina Ovine high-density (600k) chip and the 1.78-kb insertion polymorphism in RXFP2 was included in the imputation process to whole-genome sequence. We evaluated the mode of inheritance and validated models by a fivefold cross-validation and across- and between-family prediction. The most significant SNPs for prediction of P/NP and H/NH were OAR10_29546872.1 and OAR10_29458450, respectively, located on chromosome 10 close to the 1.78-kb insertion at 29.5 Mb. The mode of inheritance included an additive effect and a sex-dependent effect for dominance for P/NP and a sex-dependent additive and dominance effect for H/NH. Models with the highest prediction accuracies for H/NH used either single SNPs or 3-SNP haplotypes and included a polygenic effect estimated based on traditional pedigree relationships. Prediction accuracies for H/NH were 0.323 for females and 0.725 for males. For predicting P/NP, the best models were the same as for H/NH but included a genomic relationship matrix with accuracies of 0.713 for females and 0.620 for males. Our results show that prediction accuracy is high using a single SNP, but does not reach 1 since the causative mutation is not genotyped. Incomplete penetrance or allelic heterogeneity, which can influence expression of the phenotype, may explain why prediction accuracy did not approach 1 with any of the genetic models tested here. Nevertheless, a breeding program to eradicate horns from Merino sheep can be effective by selecting genotypes GG of SNP OAR10_29458450 or TT of SNP OAR10_29546872.1 since all sheep with these genotypes will be non-horned.

  11. Predict the fatigue life of crack based on extended finite element method and SVR

    NASA Astrophysics Data System (ADS)

    Song, Weizhen; Jiang, Zhansi; Jiang, Hui

    2018-05-01

    Using extended finite element method (XFEM) and support vector regression (SVR) to predict the fatigue life of plate crack. Firstly, the XFEM is employed to calculate the stress intensity factors (SIFs) with given crack sizes. Then predicetion model can be built based on the function relationship of the SIFs with the fatigue life or crack length. Finally, according to the prediction model predict the SIFs at different crack sizes or different cycles. Because of the accuracy of the forward Euler method only ensured by the small step size, a new prediction method is presented to resolve the issue. The numerical examples were studied to demonstrate the proposed method allow a larger step size and have a high accuracy.

  12. Assessing the accuracy of predictive models for numerical data: Not r nor r2, why not? Then what?

    PubMed Central

    2017-01-01

    Assessing the accuracy of predictive models is critical because predictive models have been increasingly used across various disciplines and predictive accuracy determines the quality of resultant predictions. Pearson product-moment correlation coefficient (r) and the coefficient of determination (r2) are among the most widely used measures for assessing predictive models for numerical data, although they are argued to be biased, insufficient and misleading. In this study, geometrical graphs were used to illustrate what were used in the calculation of r and r2 and simulations were used to demonstrate the behaviour of r and r2 and to compare three accuracy measures under various scenarios. Relevant confusions about r and r2, has been clarified. The calculation of r and r2 is not based on the differences between the predicted and observed values. The existing error measures suffer various limitations and are unable to tell the accuracy. Variance explained by predictive models based on cross-validation (VEcv) is free of these limitations and is a reliable accuracy measure. Legates and McCabe’s efficiency (E1) is also an alternative accuracy measure. The r and r2 do not measure the accuracy and are incorrect accuracy measures. The existing error measures suffer limitations. VEcv and E1 are recommended for assessing the accuracy. The applications of these accuracy measures would encourage accuracy-improved predictive models to be developed to generate predictions for evidence-informed decision-making. PMID:28837692

  13. Office gel sonovaginography for the prediction of posterior deep infiltrating endometriosis: a multicenter prospective observational study.

    PubMed

    Reid, S; Lu, C; Hardy, N; Casikar, I; Reid, G; Cario, G; Chou, D; Almashat, D; Condous, G

    2014-12-01

    To use office gel sonovaginography (SVG) to predict posterior deep infiltrating endometriosis (DIE) in women undergoing laparoscopy. This was a multicenter prospective observational study carried out between January 2009 and February 2013. All women were of reproductive age, had a history of chronic pelvic pain and underwent office gel SVG assessment for the prediction of posterior compartment DIE prior to laparoscopic endometriosis surgery. Gel SVG findings were compared with laparoscopic findings to determine the diagnostic accuracy of office gel SVG for the prediction of posterior compartment DIE. In total, 189 women underwent preoperative gel SVG and laparoscopy for endometriosis. At laparoscopy, 57 (30%) women had posterior DIE and 43 (23%) had rectosigmoid/anterior rectal DIE. For the prediction of rectosigmoid/anterior rectal (i.e. bowel) DIE, gel SVG had an accuracy of 92%, sensitivity of 88%, specificity of 93%, positive predictive value (PPV) of 79%, negative predictive value (NPV) of 97%, positive likelihood ratio (LR+) of 12.9 and negative likelihood ratio (LR-) of 0.12 (P = 3.98E-25); for posterior vaginal wall and rectovaginal septum (RVS) DIE, respectively, the accuracy was 95% and 95%, sensitivity was 18% and 18%, specificity was 99% and 100%, PPV was 67% and 100%, NPV was 95% and 95%, LR+ was 32.4 and infinity and LR- was 0.82 and 0.82 (P = 0.009 and P = 0.003). Office gel SVG appears to be an effective outpatient imaging technique for the prediction of bowel DIE, with a higher accuracy for the prediction of rectosigmoid compared with anterior rectal DIE. Although the sensitivity for vaginal and RVS DIE was limited, gel SVG had a high specificity and NPV for all forms of posterior DIE, indicating that a negative gel SVG examination is highly suggestive of the absence of DIE at laparoscopy. Copyright © 2014 ISUOG. Published by John Wiley & Sons Ltd.

  14. Antimicrobial activity predictors benchmarking analysis using shuffled and designed synthetic peptides.

    PubMed

    Porto, William F; Pires, Állan S; Franco, Octavio L

    2017-08-07

    The antimicrobial activity prediction tools aim to help the novel antimicrobial peptides (AMP) sequences discovery, utilizing machine learning methods. Such approaches have gained increasing importance in the generation of novel synthetic peptides by means of rational design techniques. This study focused on predictive ability of such approaches to determine the antimicrobial sequence activities, which were previously characterized at the protein level by in vitro studies. Using four web servers and one standalone software, we evaluated 78 sequences generated by the so-called linguistic model, being 40 designed and 38 shuffled sequences, with ∼60 and ∼25% of identity to AMPs, respectively. The ab initio molecular modelling of such sequences indicated that the structure does not affect the predictions, as both sets present similar structures. Overall, the systems failed on predicting shuffled versions of designed peptides, as they are identical in AMPs composition, which implies in accuracies below 30%. The prediction accuracy is negatively affected by the low specificity of all systems here evaluated, as they, on the other hand, reached 100% of sensitivity. Our results suggest that complementary approaches with high specificity, not necessarily high accuracy, should be developed to be used together with the current systems, overcoming their limitations. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Predicting metabolic syndrome using decision tree and support vector machine methods.

    PubMed

    Karimi-Alavijeh, Farzaneh; Jalili, Saeed; Sadeghi, Masoumeh

    2016-05-01

    Metabolic syndrome which underlies the increased prevalence of cardiovascular disease and Type 2 diabetes is considered as a group of metabolic abnormalities including central obesity, hypertriglyceridemia, glucose intolerance, hypertension, and dyslipidemia. Recently, artificial intelligence based health-care systems are highly regarded because of its success in diagnosis, prediction, and choice of treatment. This study employs machine learning technics for predict the metabolic syndrome. This study aims to employ decision tree and support vector machine (SVM) to predict the 7-year incidence of metabolic syndrome. This research is a practical one in which data from 2107 participants of Isfahan Cohort Study has been utilized. The subjects without metabolic syndrome according to the ATPIII criteria were selected. The features that have been used in this data set include: gender, age, weight, body mass index, waist circumference, waist-to-hip ratio, hip circumference, physical activity, smoking, hypertension, antihypertensive medication use, systolic blood pressure (BP), diastolic BP, fasting blood sugar, 2-hour blood glucose, triglycerides (TGs), total cholesterol, low-density lipoprotein, high density lipoprotein-cholesterol, mean corpuscular volume, and mean corpuscular hemoglobin. Metabolic syndrome was diagnosed based on ATPIII criteria and two methods of decision tree and SVM were selected to predict the metabolic syndrome. The criteria of sensitivity, specificity and accuracy were used for validation. SVM and decision tree methods were examined according to the criteria of sensitivity, specificity and accuracy. Sensitivity, specificity and accuracy were 0.774 (0.758), 0.74 (0.72) and 0.757 (0.739) in SVM (decision tree) method. The results show that SVM method sensitivity, specificity and accuracy is more efficient than decision tree. The results of decision tree method show that the TG is the most important feature in predicting metabolic syndrome. According to this study, in cases where only the final result of the decision is regarded significant, SVM method can be used with acceptable accuracy in decision making medical issues. This method has not been implemented in the previous research.

  16. Numerical experience with a class of algorithms for nonlinear optimization using inexact function and gradient information

    NASA Technical Reports Server (NTRS)

    Carter, Richard G.

    1989-01-01

    For optimization problems associated with engineering design, parameter estimation, image reconstruction, and other optimization/simulation applications, low accuracy function and gradient values are frequently much less expensive to obtain than high accuracy values. Here, researchers investigate the computational performance of trust region methods for nonlinear optimization when high accuracy evaluations are unavailable or prohibitively expensive, and confirm earlier theoretical predictions when the algorithm is convergent even with relative gradient errors of 0.5 or more. The proper choice of the amount of accuracy to use in function and gradient evaluations can result in orders-of-magnitude savings in computational cost.

  17. Improving Prediction Accuracy of “Central Line-Associated Blood Stream Infections” Using Data Mining Models

    PubMed Central

    Noaman, Amin Y.; Jamjoom, Arwa; Al-Abdullah, Nabeela; Nasir, Mahreen; Ali, Anser G.

    2017-01-01

    Prediction of nosocomial infections among patients is an important part of clinical surveillance programs to enable the related personnel to take preventive actions in advance. Designing a clinical surveillance program with capability of predicting nosocomial infections is a challenging task due to several reasons, including high dimensionality of medical data, heterogenous data representation, and special knowledge required to extract patterns for prediction. In this paper, we present details of six data mining methods implemented using cross industry standard process for data mining to predict central line-associated blood stream infections. For our study, we selected datasets of healthcare-associated infections from US National Healthcare Safety Network and consumer survey data from Hospital Consumer Assessment of Healthcare Providers and Systems. Our experiments show that central line-associated blood stream infections (CLABSIs) can be successfully predicted using AdaBoost method with an accuracy up to 89.7%. This will help in implementing effective clinical surveillance programs for infection control, as well as improving the accuracy detection of CLABSIs. Also, this reduces patients' hospital stay cost and maintains patients' safety. PMID:29085836

  18. Development of machine learning models for diagnosis of glaucoma.

    PubMed

    Kim, Seong Jae; Cho, Kyong Jin; Oh, Sejong

    2017-01-01

    The study aimed to develop machine learning models that have strong prediction power and interpretability for diagnosis of glaucoma based on retinal nerve fiber layer (RNFL) thickness and visual field (VF). We collected various candidate features from the examination of retinal nerve fiber layer (RNFL) thickness and visual field (VF). We also developed synthesized features from original features. We then selected the best features proper for classification (diagnosis) through feature evaluation. We used 100 cases of data as a test dataset and 399 cases of data as a training and validation dataset. To develop the glaucoma prediction model, we considered four machine learning algorithms: C5.0, random forest (RF), support vector machine (SVM), and k-nearest neighbor (KNN). We repeatedly composed a learning model using the training dataset and evaluated it by using the validation dataset. Finally, we got the best learning model that produces the highest validation accuracy. We analyzed quality of the models using several measures. The random forest model shows best performance and C5.0, SVM, and KNN models show similar accuracy. In the random forest model, the classification accuracy is 0.98, sensitivity is 0.983, specificity is 0.975, and AUC is 0.979. The developed prediction models show high accuracy, sensitivity, specificity, and AUC in classifying among glaucoma and healthy eyes. It will be used for predicting glaucoma against unknown examination records. Clinicians may reference the prediction results and be able to make better decisions. We may combine multiple learning models to increase prediction accuracy. The C5.0 model includes decision rules for prediction. It can be used to explain the reasons for specific predictions.

  19. Preoperative prediction of histopathological outcome in basal cell carcinoma: flat surface and multiple small erosions predict superficial basal cell carcinoma in lighter skin types.

    PubMed

    Ahnlide, I; Zalaudek, I; Nilsson, F; Bjellerup, M; Nielsen, K

    2016-10-01

    Prediction of the histopathological subtype of basal cell carcinoma (BCC) is important for tailoring optimal treatment, especially in patients with suspected superficial BCC (sBCC). To assess the accuracy of the preoperative prediction of subtypes of BCC in clinical practice, to evaluate whether dermoscopic examination enhances accuracy and to find dermoscopic criteria for discriminating sBCC from other subtypes. The main presurgical diagnosis was compared with the histopathological, postoperative diagnosis of routinely excised skin tumours in a predominantly fair-skinned patient cohort of northern Europe during a study period of 3 years (2011-13). The study period was split in two: during period 1, dermoscopy was optional (850 cases with a pre- or postoperative diagnosis of BCC), while during period 2 (after an educational dermoscopic update) dermoscopy was mandatory (651 cases). A classification tree based on clinical and dermoscopic features for prediction of sBCC was applied. For a total of 3544 excised skin tumours, the sensitivity for the diagnosis of BCC (any subtype) was 93·3%, specificity 91·8%, and the positive predictive value (PPV) 89·0%. The diagnostic accuracy as well as the PPV and the positive likelihood ratio for sBCC were significantly higher when dermoscopy was mandatory. A flat surface and multiple small erosions predicted sBCC. The study shows a high accuracy for an overall diagnosis of BCC and increased accuracy in prediction of sBCC for the period when dermoscopy was applied in all cases. The most discriminating findings for sBCC, based on clinical and dermoscopic features in this fair-skinned population, were a flat surface and multiple small erosions. © 2016 British Association of Dermatologists.

  20. Prediction of novel pre-microRNAs with high accuracy through boosting and SVM.

    PubMed

    Zhang, Yuanwei; Yang, Yifan; Zhang, Huan; Jiang, Xiaohua; Xu, Bo; Xue, Yu; Cao, Yunxia; Zhai, Qian; Zhai, Yong; Xu, Mingqing; Cooke, Howard J; Shi, Qinghua

    2011-05-15

    High-throughput deep-sequencing technology has generated an unprecedented number of expressed short sequence reads, presenting not only an opportunity but also a challenge for prediction of novel microRNAs. To verify the existence of candidate microRNAs, we have to show that these short sequences can be processed from candidate pre-microRNAs. However, it is laborious and time consuming to verify these using existing experimental techniques. Therefore, here, we describe a new method, miRD, which is constructed using two feature selection strategies based on support vector machines (SVMs) and boosting method. It is a high-efficiency tool for novel pre-microRNA prediction with accuracy up to 94.0% among different species. miRD is implemented in PHP/PERL+MySQL+R and can be freely accessed at http://mcg.ustc.edu.cn/rpg/mird/mird.php.

  1. Accuracy of genomic selection in European maize elite breeding populations.

    PubMed

    Zhao, Yusheng; Gowda, Manje; Liu, Wenxin; Würschum, Tobias; Maurer, Hans P; Longin, Friedrich H; Ranc, Nicolas; Reif, Jochen C

    2012-03-01

    Genomic selection is a promising breeding strategy for rapid improvement of complex traits. The objective of our study was to investigate the prediction accuracy of genomic breeding values through cross validation. The study was based on experimental data of six segregating populations from a half-diallel mating design with 788 testcross progenies from an elite maize breeding program. The plants were intensively phenotyped in multi-location field trials and fingerprinted with 960 SNP markers. We used random regression best linear unbiased prediction in combination with fivefold cross validation. The prediction accuracy across populations was higher for grain moisture (0.90) than for grain yield (0.58). The accuracy of genomic selection realized for grain yield corresponds to the precision of phenotyping at unreplicated field trials in 3-4 locations. As for maize up to three generations are feasible per year, selection gain per unit time is high and, consequently, genomic selection holds great promise for maize breeding programs.

  2. Modelling for Prediction vs. Modelling for Understanding: Commentary on Musso et al. (2013)

    ERIC Educational Resources Information Center

    Edelsbrunner, Peter; Schneider, Michael

    2013-01-01

    Musso et al. (2013) predict students' academic achievement with high accuracy one year in advance from cognitive and demographic variables, using artificial neural networks (ANNs). They conclude that ANNs have high potential for theoretical and practical improvements in learning sciences. ANNs are powerful statistical modelling tools but they can…

  3. The Accuracy of Integrated [18F] Fluorodeoxyglucose-Positron Emission Tomography/Computed Tomography in Detection of Pelvic and Para-aortic Nodal Metastasis in Patients with High Risk Endometrial Cancer

    PubMed Central

    Gholkar, Nikhil Shirish; Saha, Subhas Chandra; Prasad, GRV; Bhattacharya, Anish; Srinivasan, Radhika; Suri, Vanita

    2014-01-01

    Lymph nodal (LN) metastasis is the most important prognostic factor in high-risk endometrial cancer. However, the benefit of routine lymphadenectomy in endometrial cancer is controversial. This study was conducted to assess the accuracy of [18F] fluorodeoxyglucose-positron emission tomography/computed tomography ([18F] FDG-PET/CT) in detection of pelvic and para-aortic nodal metastases in high-risk endometrial cancer. 20 patients with high-risk endometrial carcinoma underwent [18F] FDG-PET/CT followed by total abdominal hysterectomy, bilateral salpingo-oophorectomy and systematic pelvic lymphadenectomy with or without para-aortic lymphadenectomy. The findings on histopathology were compared with [18F] FDG-PET/CT findings to calculate the sensitivity, specificity, positive predictive value (PPV), negative predictive value (NPV), and accuracy of [18F] FDG-PET/CT. The pelvic nodal findings were analyzed on a patient and nodal chain based criteria. The para-aortic nodal findings were reported separately. Histopathology documented nodal involvement in two patients (10%). For detection of pelvic nodes, on a patient based analysis, [18F] FDG-PET/CT had a sensitivity of 100%, specificity of 61.11%, PPV of 22.22%, NPV of 100% and accuracy of 65% and on a nodal chain based analysis, [18F] FDG-PET/CT had a sensitivity of 100%, specificity of 80%, PPV of 20%, NPV of 100%, and accuracy of 80.95%. For detection of para-aortic nodes, [18F] FDG-PET/CT had sensitivity of 100%, specificity of 66.67%, PPV of 20%, NPV of 100%, and accuracy of 69.23%. Although [18F] FDG-PET/CT has high sensitivity for detection of LN metastasis in endometrial carcinoma, it had moderate accuracy and high false positivity. However, the high NPV is important in selecting patients in whom lymphadenectomy may be omitted. PMID:25538488

  4. Compound activity prediction using models of binding pockets or ligand properties in 3D

    PubMed Central

    Kufareva, Irina; Chen, Yu-Chen; Ilatovskiy, Andrey V.; Abagyan, Ruben

    2014-01-01

    Transient interactions of endogenous and exogenous small molecules with flexible binding sites in proteins or macromolecular assemblies play a critical role in all biological processes. Current advances in high-resolution protein structure determination, database development, and docking methodology make it possible to design three-dimensional models for prediction of such interactions with increasing accuracy and specificity. Using the data collected in the Pocketome encyclopedia, we here provide an overview of two types of the three-dimensional ligand activity models, pocket-based and ligand property-based, for two important classes of proteins, nuclear and G-protein coupled receptors. For half the targets, the pocket models discriminate actives from property matched decoys with acceptable accuracy (the area under ROC curve, AUC, exceeding 84%) and for about one fifth of the targets with high accuracy (AUC > 95%). The 3D ligand property field models performed better than 95% in half of the cases. The high performance models can already become a basis of activity predictions for new chemicals. Family-wide benchmarking of the models highlights strengths of both approaches and helps identify their inherent bottlenecks and challenges. PMID:23116466

  5. Evaluating Methods of Updating Training Data in Long-Term Genomewide Selection

    PubMed Central

    Neyhart, Jeffrey L.; Tiede, Tyler; Lorenz, Aaron J.; Smith, Kevin P.

    2017-01-01

    Genomewide selection is hailed for its ability to facilitate greater genetic gains per unit time. Over breeding cycles, the requisite linkage disequilibrium (LD) between quantitative trait loci and markers is expected to change as a result of recombination, selection, and drift, leading to a decay in prediction accuracy. Previous research has identified the need to update the training population using data that may capture new LD generated over breeding cycles; however, optimal methods of updating have not been explored. In a barley (Hordeum vulgare L.) breeding simulation experiment, we examined prediction accuracy and response to selection when updating the training population each cycle with the best predicted lines, the worst predicted lines, both the best and worst predicted lines, random lines, criterion-selected lines, or no lines. In the short term, we found that updating with the best predicted lines or the best and worst predicted lines resulted in high prediction accuracy and genetic gain, but in the long term, all methods (besides not updating) performed similarly. We also examined the impact of including all data in the training population or only the most recent data. Though patterns among update methods were similar, using a smaller but more recent training population provided a slight advantage in prediction accuracy and genetic gain. In an actual breeding program, a breeder might desire to gather phenotypic data on lines predicted to be the best, perhaps to evaluate possible cultivars. Therefore, our results suggest that an optimal method of updating the training population is also very practical. PMID:28315831

  6. An evaluation of the accuracy and precision of methane prediction equations for beef cattle fed high-forage and high-grain diets.

    PubMed

    Escobar-Bahamondes, P; Oba, M; Beauchemin, K A

    2017-01-01

    The study determined the performance of equations to predict enteric methane (CH4) from beef cattle fed forage- and grain-based diets. Many equations are available to predict CH4 from beef cattle and the predictions vary substantially among equations. The aims were to (1) construct a database of CH4 emissions for beef cattle from published literature, and (2) identify the most precise and accurate extant CH4 prediction models for beef cattle fed diets varying in forage content. The database was comprised of treatment means of CH4 production from in vivo beef studies published from 2000 to 2015. Criteria to include data in the database were as follows: animal description, intakes, diet composition and CH4 production. In all, 54 published equations that predict CH4 production from diet composition were evaluated. Precision and accuracy of the equations were evaluated using the concordance correlation coefficient (r c ), root mean square prediction error (RMSPE), model efficiency and analysis of errors. Equations were ranked using a combined index of the various statistical assessments based on principal component analysis. The final database contained 53 studies and 207 treatment means that were divided into two data sets: diets containing ⩾400 g/kg dry matter (DM) forage (n=116) and diets containing ⩽200 g/kg DM forage (n=42). Diets containing between ⩽400 and ⩾200 g/kg DM forage were not included in the analysis because of their limited numbers (n=6). Outliers, treatment means where feed was fed restrictively and diets with CH4 mitigation additives were omitted (n=43). Using the high-forage dataset the best-fit equations were the International Panel on Climate Change Tier 2 method, 3 equations for steers that considered gross energy intake (GEI) and body weight and an equation that considered dry matter intake and starch:neutral detergent fiber with r c ranging from 0.60 to 0.73 and RMSPE from 35.6 to 45.9 g/day. For the high-grain diets, the 5 best-fit equations considered intakes of metabolisable energy, cellulose, hemicellulose and fat, or for steers GEI and body weight, with r c ranging from 0.35 to 0.52 and RMSPE from 47.4 to 62.9 g/day. Ranking of extant CH4 prediction equations for their accuracy and precision differed with forage content of the diet. When used for cattle fed high-grain diets, extant CH4 prediction models were generally imprecise and lacked accuracy.

  7. The predictability of consumer visitation patterns

    NASA Astrophysics Data System (ADS)

    Krumme, Coco; Llorente, Alejandro; Cebrian, Manuel; Pentland, Alex ("Sandy"); Moro, Esteban

    2013-04-01

    We consider hundreds of thousands of individual economic transactions to ask: how predictable are consumers in their merchant visitation patterns? Our results suggest that, in the long-run, much of our seemingly elective activity is actually highly predictable. Notwithstanding a wide range of individual preferences, shoppers share regularities in how they visit merchant locations over time. Yet while aggregate behavior is largely predictable, the interleaving of shopping events introduces important stochastic elements at short time scales. These short- and long-scale patterns suggest a theoretical upper bound on predictability, and describe the accuracy of a Markov model in predicting a person's next location. We incorporate population-level transition probabilities in the predictive models, and find that in many cases these improve accuracy. While our results point to the elusiveness of precise predictions about where a person will go next, they suggest the existence, at large time-scales, of regularities across the population.

  8. The predictability of consumer visitation patterns

    PubMed Central

    Krumme, Coco; Llorente, Alejandro; Cebrian, Manuel; Pentland, Alex ("Sandy"); Moro, Esteban

    2013-01-01

    We consider hundreds of thousands of individual economic transactions to ask: how predictable are consumers in their merchant visitation patterns? Our results suggest that, in the long-run, much of our seemingly elective activity is actually highly predictable. Notwithstanding a wide range of individual preferences, shoppers share regularities in how they visit merchant locations over time. Yet while aggregate behavior is largely predictable, the interleaving of shopping events introduces important stochastic elements at short time scales. These short- and long-scale patterns suggest a theoretical upper bound on predictability, and describe the accuracy of a Markov model in predicting a person's next location. We incorporate population-level transition probabilities in the predictive models, and find that in many cases these improve accuracy. While our results point to the elusiveness of precise predictions about where a person will go next, they suggest the existence, at large time-scales, of regularities across the population. PMID:23598917

  9. Longer-Term Investigation of the Value of 18F-FDG-PET and Magnetic Resonance Imaging for Predicting the Conversion of Mild Cognitive Impairment to Alzheimer's Disease: A Multicenter Study.

    PubMed

    Inui, Yoshitaka; Ito, Kengo; Kato, Takashi

    2017-01-01

    The value of fluorine-18-fluorodeoxyglucose positron emission tomography (18F-FDG-PET) and magnetic resonance imaging (MRI) for predicting conversion of mild cognitive impairment (MCI) to Alzheimer's disease (AD) in longer-term is unclear. To evaluate longer-term prediction of MCI to AD conversion using 18F-FDG-PET and MRI in a multicenter study. One-hundred and fourteen patients with MCI were followed for 5 years. They underwent clinical and neuropsychological examinations, 18F-FDG-PET, and MRI at baseline. PET images were visually classified into predefined dementia patterns. PET scores were calculated as a semi quantitative index. For structural MRI, z-scores in medial temporal area were calculated by automated volume-based morphometry (VBM). Overall, 72% patients with amnestic MCI progressed to AD during the 5-year follow-up. The diagnostic accuracy of PET scores over 5 years was 60% with 53% sensitivity and 84% specificity. Visual interpretation of PET images predicted conversion to AD with an overall 82% diagnostic accuracy, 94% sensitivity, and 53% specificity. The accuracy of VBM analysis presented little fluctuation through 5 years and it was highest (73%) at the 5-year follow-up, with 79% sensitivity and 63% specificity. The best performance (87.9% diagnostic accuracy, 89.8% sensitivity, and 82.4% specificity) was with a combination identified using multivariate logistic regression analysis that included PET visual interpretation, educational level, and neuropsychological tests as predictors. 18F-FDG-PET visual assessment showed high performance for predicting conversion to AD from MCI, particularly in combination with neuropsychological tests. PET scores showed high diagnostic specificity. Structural MRI focused on the medial temporal area showed stable predictive value throughout the 5-year course.

  10. Genomic Prediction Accounting for Residual Heteroskedasticity

    PubMed Central

    Ou, Zhining; Tempelman, Robert J.; Steibel, Juan P.; Ernst, Catherine W.; Bates, Ronald O.; Bello, Nora M.

    2015-01-01

    Whole-genome prediction (WGP) models that use single-nucleotide polymorphism marker information to predict genetic merit of animals and plants typically assume homogeneous residual variance. However, variability is often heterogeneous across agricultural production systems and may subsequently bias WGP-based inferences. This study extends classical WGP models based on normality, heavy-tailed specifications and variable selection to explicitly account for environmentally-driven residual heteroskedasticity under a hierarchical Bayesian mixed-models framework. WGP models assuming homogeneous or heterogeneous residual variances were fitted to training data generated under simulation scenarios reflecting a gradient of increasing heteroskedasticity. Model fit was based on pseudo-Bayes factors and also on prediction accuracy of genomic breeding values computed on a validation data subset one generation removed from the simulated training dataset. Homogeneous vs. heterogeneous residual variance WGP models were also fitted to two quantitative traits, namely 45-min postmortem carcass temperature and loin muscle pH, recorded in a swine resource population dataset prescreened for high and mild residual heteroskedasticity, respectively. Fit of competing WGP models was compared using pseudo-Bayes factors. Predictive ability, defined as the correlation between predicted and observed phenotypes in validation sets of a five-fold cross-validation was also computed. Heteroskedastic error WGP models showed improved model fit and enhanced prediction accuracy compared to homoskedastic error WGP models although the magnitude of the improvement was small (less than two percentage points net gain in prediction accuracy). Nevertheless, accounting for residual heteroskedasticity did improve accuracy of selection, especially on individuals of extreme genetic merit. PMID:26564950

  11. Modeling the distribution of white spruce (Picea glauca) for Alaska with high accuracy: an open access role-model for predicting tree species in last remaining wilderness areas

    Treesearch

    Bettina Ohse; Falk Huettmann; Stefanie M. Ickert-Bond; Glenn P. Juday

    2009-01-01

    Most wilderness areas still lack accurate distribution information on tree species. We met this need with a predictive GIS modeling approach, using freely available digital data and computer programs to efficiently obtain high-quality species distribution maps. Here we present a digital map with the predicted distribution of white spruce (Picea glauca...

  12. Assessment of a remote sensing-based model for predicting malaria transmission risk in villages of Chiapas, Mexico

    NASA Technical Reports Server (NTRS)

    Beck, L. R.; Rodriguez, M. H.; Dister, S. W.; Rodriguez, A. D.; Washino, R. K.; Roberts, D. R.; Spanner, M. A.

    1997-01-01

    A blind test of two remote sensing-based models for predicting adult populations of Anopheles albimanus in villages, an indicator of malaria transmission risk, was conducted in southern Chiapas, Mexico. One model was developed using a discriminant analysis approach, while the other was based on regression analysis. The models were developed in 1992 for an area around Tapachula, Chiapas, using Landsat Thematic Mapper (TM) satellite data and geographic information system functions. Using two remotely sensed landscape elements, the discriminant model was able to successfully distinguish between villages with high and low An. albimanus abundance with an overall accuracy of 90%. To test the predictive capability of the models, multitemporal TM data were used to generate a landscape map of the Huixtla area, northwest of Tapachula, where the models were used to predict risk for 40 villages. The resulting predictions were not disclosed until the end of the test. Independently, An. albimanus abundance data were collected in the 40 randomly selected villages for which the predictions had been made. These data were subsequently used to assess the models' accuracies. The discriminant model accurately predicted 79% of the high-abundance villages and 50% of the low-abundance villages, for an overall accuracy of 70%. The regression model correctly identified seven of the 10 villages with the highest mosquito abundance. This test demonstrated that remote sensing-based models generated for one area can be used successfully in another, comparable area.

  13. High-resolution endoscopic ultrasound imaging and the number of needle passages are significant factors predicting high yield of endoscopic ultrasound-guided fine needle aspiration for pancreatic solid masses without an on-site cytopathologist

    PubMed Central

    Jeong, Seok Hoo; Yoon, Hyun Hwa; Kim, Eui Joo; Kim, Yoon Jae; Kim, Yeon Suk; Cho, Jae Hee

    2017-01-01

    Abstract Endoscopic ultrasound-guided fine needle aspiration (EUS-FNA) is the accurate diagnostic method for pancreatic masses and its accuracy is affected by various FNA methods and EUS equipment. Therefore, we aimed to elucidate the instrumental and methodologic factors for determining the diagnostic yield of EUS-FNA for pancreatic solid masses without an on-site cytopathology evaluation. We retrospectively reviewed the medical records of 260 patients (265 pancreatic solid masses) who underwent EUS-FNA. We compared historical conventional EUS groups with high-resolution imaging devices and finally analyzed various factors affecting EUS-FNA accuracy. In total, 265 pancreatic solid masses of 260 patients were included in this study. The accuracy, sensitivity, specificity, positive predictive value, and negative predictive value of EUS-FNA for pancreatic solid masses without on-site cytopathology evaluation were 83.4%, 81.8%, 100.0%, 100.0%, and 34.3%, respectively. In comparison with conventional image group, high-resolution image group showed the increased accuracy, sensitivity and specificity of EUS-FNA (71.3% vs 92.7%, 68.9% vs 91.9%, and 100% vs 100%, respectively). On the multivariate analysis with various instrumental and methodologic factors, high-resolution imaging (P = 0.040, odds ratio = 3.28) and 3 or more needle passes (P = 0.039, odds ratio = 2.41) were important factors affecting diagnostic yield of pancreatic solid masses. High-resolution imaging and 3 or more passes were the most significant factors influencing diagnostic yield of EUS-FNA in patients with pancreatic solid masses without an on-site cytopathologist. PMID:28079803

  14. Numerical simulation of turbulence flow in a Kaplan turbine -Evaluation on turbine performance prediction accuracy-

    NASA Astrophysics Data System (ADS)

    Ko, P.; Kurosawa, S.

    2014-03-01

    The understanding and accurate prediction of the flow behaviour related to cavitation and pressure fluctuation in a Kaplan turbine are important to the design work enhancing the turbine performance including the elongation of the operation life span and the improvement of turbine efficiency. In this paper, high accuracy turbine and cavitation performance prediction method based on entire flow passage for a Kaplan turbine is presented and evaluated. Two-phase flow field is predicted by solving Reynolds-Averaged Navier-Stokes equations expressed by volume of fluid method tracking the free surface and combined with Reynolds Stress model. The growth and collapse of cavitation bubbles are modelled by the modified Rayleigh-Plesset equation. The prediction accuracy is evaluated by comparing with the model test results of Ns 400 Kaplan model turbine. As a result that the experimentally measured data including turbine efficiency, cavitation performance, and pressure fluctuation are accurately predicted. Furthermore, the cavitation occurrence on the runner blade surface and the influence to the hydraulic loss of the flow passage are discussed. Evaluated prediction method for the turbine flow and performance is introduced to facilitate the future design and research works on Kaplan type turbine.

  15. Multi-centre diagnostic classification of individual structural neuroimaging scans from patients with major depressive disorder.

    PubMed

    Mwangi, Benson; Ebmeier, Klaus P; Matthews, Keith; Steele, J Douglas

    2012-05-01

    Quantitative abnormalities of brain structure in patients with major depressive disorder have been reported at a group level for decades. However, these structural differences appear subtle in comparison with conventional radiologically defined abnormalities, with considerable inter-subject variability. Consequently, it has not been possible to readily identify scans from patients with major depressive disorder at an individual level. Recently, machine learning techniques such as relevance vector machines and support vector machines have been applied to predictive classification of individual scans with variable success. Here we describe a novel hybrid method, which combines machine learning with feature selection and characterization, with the latter aimed at maximizing the accuracy of machine learning prediction. The method was tested using a multi-centre dataset of T(1)-weighted 'structural' scans. A total of 62 patients with major depressive disorder and matched controls were recruited from referred secondary care clinical populations in Aberdeen and Edinburgh, UK. The generalization ability and predictive accuracy of the classifiers was tested using data left out of the training process. High prediction accuracy was achieved (~90%). While feature selection was important for maximizing high predictive accuracy with machine learning, feature characterization contributed only a modest improvement to relevance vector machine-based prediction (~5%). Notably, while the only information provided for training the classifiers was T(1)-weighted scans plus a categorical label (major depressive disorder versus controls), both relevance vector machine and support vector machine 'weighting factors' (used for making predictions) correlated strongly with subjective ratings of illness severity. These results indicate that machine learning techniques have the potential to inform clinical practice and research, as they can make accurate predictions about brain scan data from individual subjects. Furthermore, machine learning weighting factors may reflect an objective biomarker of major depressive disorder illness severity, based on abnormalities of brain structure.

  16. Evaluation of approaches for estimating the accuracy of genomic prediction in plant breeding

    PubMed Central

    2013-01-01

    Background In genomic prediction, an important measure of accuracy is the correlation between the predicted and the true breeding values. Direct computation of this quantity for real datasets is not possible, because the true breeding value is unknown. Instead, the correlation between the predicted breeding values and the observed phenotypic values, called predictive ability, is often computed. In order to indirectly estimate predictive accuracy, this latter correlation is usually divided by an estimate of the square root of heritability. In this study we use simulation to evaluate estimates of predictive accuracy for seven methods, four (1 to 4) of which use an estimate of heritability to divide predictive ability computed by cross-validation. Between them the seven methods cover balanced and unbalanced datasets as well as correlated and uncorrelated genotypes. We propose one new indirect method (4) and two direct methods (5 and 6) for estimating predictive accuracy and compare their performances and those of four other existing approaches (three indirect (1 to 3) and one direct (7)) with simulated true predictive accuracy as the benchmark and with each other. Results The size of the estimated genetic variance and hence heritability exerted the strongest influence on the variation in the estimated predictive accuracy. Increasing the number of genotypes considerably increases the time required to compute predictive accuracy by all the seven methods, most notably for the five methods that require cross-validation (Methods 1, 2, 3, 4 and 6). A new method that we propose (Method 5) and an existing method (Method 7) used in animal breeding programs were the fastest and gave the least biased, most precise and stable estimates of predictive accuracy. Of the methods that use cross-validation Methods 4 and 6 were often the best. Conclusions The estimated genetic variance and the number of genotypes had the greatest influence on predictive accuracy. Methods 5 and 7 were the fastest and produced the least biased, the most precise, robust and stable estimates of predictive accuracy. These properties argue for routinely using Methods 5 and 7 to assess predictive accuracy in genomic selection studies. PMID:24314298

  17. Evaluation of approaches for estimating the accuracy of genomic prediction in plant breeding.

    PubMed

    Ould Estaghvirou, Sidi Boubacar; Ogutu, Joseph O; Schulz-Streeck, Torben; Knaak, Carsten; Ouzunova, Milena; Gordillo, Andres; Piepho, Hans-Peter

    2013-12-06

    In genomic prediction, an important measure of accuracy is the correlation between the predicted and the true breeding values. Direct computation of this quantity for real datasets is not possible, because the true breeding value is unknown. Instead, the correlation between the predicted breeding values and the observed phenotypic values, called predictive ability, is often computed. In order to indirectly estimate predictive accuracy, this latter correlation is usually divided by an estimate of the square root of heritability. In this study we use simulation to evaluate estimates of predictive accuracy for seven methods, four (1 to 4) of which use an estimate of heritability to divide predictive ability computed by cross-validation. Between them the seven methods cover balanced and unbalanced datasets as well as correlated and uncorrelated genotypes. We propose one new indirect method (4) and two direct methods (5 and 6) for estimating predictive accuracy and compare their performances and those of four other existing approaches (three indirect (1 to 3) and one direct (7)) with simulated true predictive accuracy as the benchmark and with each other. The size of the estimated genetic variance and hence heritability exerted the strongest influence on the variation in the estimated predictive accuracy. Increasing the number of genotypes considerably increases the time required to compute predictive accuracy by all the seven methods, most notably for the five methods that require cross-validation (Methods 1, 2, 3, 4 and 6). A new method that we propose (Method 5) and an existing method (Method 7) used in animal breeding programs were the fastest and gave the least biased, most precise and stable estimates of predictive accuracy. Of the methods that use cross-validation Methods 4 and 6 were often the best. The estimated genetic variance and the number of genotypes had the greatest influence on predictive accuracy. Methods 5 and 7 were the fastest and produced the least biased, the most precise, robust and stable estimates of predictive accuracy. These properties argue for routinely using Methods 5 and 7 to assess predictive accuracy in genomic selection studies.

  18. Integrative Chemical-Biological Read-Across Approach for Chemical Hazard Classification

    PubMed Central

    Low, Yen; Sedykh, Alexander; Fourches, Denis; Golbraikh, Alexander; Whelan, Maurice; Rusyn, Ivan; Tropsha, Alexander

    2013-01-01

    Traditional read-across approaches typically rely on the chemical similarity principle to predict chemical toxicity; however, the accuracy of such predictions is often inadequate due to the underlying complex mechanisms of toxicity. Here we report on the development of a hazard classification and visualization method that draws upon both chemical structural similarity and comparisons of biological responses to chemicals measured in multiple short-term assays (”biological” similarity). The Chemical-Biological Read-Across (CBRA) approach infers each compound's toxicity from those of both chemical and biological analogs whose similarities are determined by the Tanimoto coefficient. Classification accuracy of CBRA was compared to that of classical RA and other methods using chemical descriptors alone, or in combination with biological data. Different types of adverse effects (hepatotoxicity, hepatocarcinogenicity, mutagenicity, and acute lethality) were classified using several biological data types (gene expression profiling and cytotoxicity screening). CBRA-based hazard classification exhibited consistently high external classification accuracy and applicability to diverse chemicals. Transparency of the CBRA approach is aided by the use of radial plots that show the relative contribution of analogous chemical and biological neighbors. Identification of both chemical and biological features that give rise to the high accuracy of CBRA-based toxicity prediction facilitates mechanistic interpretation of the models. PMID:23848138

  19. Comparison of integrated clustering methods for accurate and stable prediction of building energy consumption data

    DOE PAGES

    Hsu, David

    2015-09-27

    Clustering methods are often used to model energy consumption for two reasons. First, clustering is often used to process data and to improve the predictive accuracy of subsequent energy models. Second, stable clusters that are reproducible with respect to non-essential changes can be used to group, target, and interpret observed subjects. However, it is well known that clustering methods are highly sensitive to the choice of algorithms and variables. This can lead to misleading assessments of predictive accuracy and mis-interpretation of clusters in policymaking. This paper therefore introduces two methods to the modeling of energy consumption in buildings: clusterwise regression,more » also known as latent class regression, which integrates clustering and regression simultaneously; and cluster validation methods to measure stability. Using a large dataset of multifamily buildings in New York City, clusterwise regression is compared to common two-stage algorithms that use K-means and model-based clustering with linear regression. Predictive accuracy is evaluated using 20-fold cross validation, and the stability of the perturbed clusters is measured using the Jaccard coefficient. These results show that there seems to be an inherent tradeoff between prediction accuracy and cluster stability. This paper concludes by discussing which clustering methods may be appropriate for different analytical purposes.« less

  20. OH-PRED: prediction of protein hydroxylation sites by incorporating adapted normal distribution bi-profile Bayes feature extraction and physicochemical properties of amino acids.

    PubMed

    Jia, Cang-Zhi; He, Wen-Ying; Yao, Yu-Hua

    2017-03-01

    Hydroxylation of proline or lysine residues in proteins is a common post-translational modification event, and such modifications are found in many physiological and pathological processes. Nonetheless, the exact molecular mechanism of hydroxylation remains under investigation. Because experimental identification of hydroxylation is time-consuming and expensive, bioinformatics tools with high accuracy represent desirable alternatives for large-scale rapid identification of protein hydroxylation sites. In view of this, we developed a supporter vector machine-based tool, OH-PRED, for the prediction of protein hydroxylation sites using the adapted normal distribution bi-profile Bayes feature extraction in combination with the physicochemical property indexes of the amino acids. In a jackknife cross validation, OH-PRED yields an accuracy of 91.88% and a Matthew's correlation coefficient (MCC) of 0.838 for the prediction of hydroxyproline sites, and yields an accuracy of 97.42% and a MCC of 0.949 for the prediction of hydroxylysine sites. These results demonstrate that OH-PRED increased significantly the prediction accuracy of hydroxyproline and hydroxylysine sites by 7.37 and 14.09%, respectively, when compared with the latest predictor PredHydroxy. In independent tests, OH-PRED also outperforms previously published methods.

  1. Gradient Magnitude Similarity Deviation: A Highly Efficient Perceptual Image Quality Index.

    PubMed

    Xue, Wufeng; Zhang, Lei; Mou, Xuanqin; Bovik, Alan C

    2014-02-01

    It is an important task to faithfully evaluate the perceptual quality of output images in many applications, such as image compression, image restoration, and multimedia streaming. A good image quality assessment (IQA) model should not only deliver high quality prediction accuracy, but also be computationally efficient. The efficiency of IQA metrics is becoming particularly important due to the increasing proliferation of high-volume visual data in high-speed networks. We present a new effective and efficient IQA model, called gradient magnitude similarity deviation (GMSD). The image gradients are sensitive to image distortions, while different local structures in a distorted image suffer different degrees of degradations. This motivates us to explore the use of global variation of gradient based local quality map for overall image quality prediction. We find that the pixel-wise gradient magnitude similarity (GMS) between the reference and distorted images combined with a novel pooling strategy-the standard deviation of the GMS map-can predict accurately perceptual image quality. The resulting GMSD algorithm is much faster than most state-of-the-art IQA methods, and delivers highly competitive prediction accuracy. MATLAB source code of GMSD can be downloaded at http://www4.comp.polyu.edu.hk/~cslzhang/IQA/GMSD/GMSD.htm.

  2. All-atom 3D structure prediction of transmembrane β-barrel proteins from sequences.

    PubMed

    Hayat, Sikander; Sander, Chris; Marks, Debora S; Elofsson, Arne

    2015-04-28

    Transmembrane β-barrels (TMBs) carry out major functions in substrate transport and protein biogenesis but experimental determination of their 3D structure is challenging. Encouraged by successful de novo 3D structure prediction of globular and α-helical membrane proteins from sequence alignments alone, we developed an approach to predict the 3D structure of TMBs. The approach combines the maximum-entropy evolutionary coupling method for predicting residue contacts (EVfold) with a machine-learning approach (boctopus2) for predicting β-strands in the barrel. In a blinded test for 19 TMB proteins of known structure that have a sufficient number of diverse homologous sequences available, this combined method (EVfold_bb) predicts hydrogen-bonded residue pairs between adjacent β-strands at an accuracy of ∼70%. This accuracy is sufficient for the generation of all-atom 3D models. In the transmembrane barrel region, the average 3D structure accuracy [template-modeling (TM) score] of top-ranked models is 0.54 (ranging from 0.36 to 0.85), with a higher (44%) number of residue pairs in correct strand-strand registration than in earlier methods (18%). Although the nonbarrel regions are predicted less accurately overall, the evolutionary couplings identify some highly constrained loop residues and, for FecA protein, the barrel including the structure of a plug domain can be accurately modeled (TM score = 0.68). Lower prediction accuracy tends to be associated with insufficient sequence information and we therefore expect increasing numbers of β-barrel families to become accessible to accurate 3D structure prediction as the number of available sequences increases.

  3. A fresh look at the predictors of naming accuracy and errors in Alzheimer's disease.

    PubMed

    Cuetos, Fernando; Rodríguez-Ferreiro, Javier; Sage, Karen; Ellis, Andrew W

    2012-09-01

    In recent years, a considerable number of studies have tried to establish which characteristics of objects and their names predict the responses of patients with Alzheimer's disease (AD) in the picture-naming task. The frequency of use of words and their age of acquisition (AoA) have been implicated as two of the most influential variables, with naming being best preserved for objects with high-frequency, early-acquired names. The present study takes a fresh look at the predictors of naming success in Spanish and English AD patients using a range of measures of word frequency and AoA along with visual complexity, imageability, and word length as predictors. Analyses using generalized linear mixed modelling found that naming accuracy was better predicted by AoA ratings taken from older adults than conventional ratings from young adults. Older frequency measures based on written language samples predicted accuracy better than more modern measures based on the frequencies of words in film subtitles. Replacing adult frequency with an estimate of cumulative (lifespan) frequency did not reduce the impact of AoA. Semantic error rates were predicted by both written word frequency and senior AoA while null response errors were only predicted by frequency. Visual complexity, imageability, and word length did not predict naming accuracy or errors. ©2012 The British Psychological Society.

  4. Accuracy of genomic prediction in switchgrass ( Panicum virgatum L.) improved by accounting for linkage disequilibrium

    DOE PAGES

    Ramstein, Guillaume P.; Evans, Joseph; Kaeppler, Shawn M.; ...

    2016-02-11

    Switchgrass is a relatively high-yielding and environmentally sustainable biomass crop, but further genetic gains in biomass yield must be achieved to make it an economically viable bioenergy feedstock. Genomic selection (GS) is an attractive technology to generate rapid genetic gains in switchgrass, and meet the goals of a substantial displacement of petroleum use with biofuels in the near future. In this study, we empirically assessed prediction procedures for genomic selection in two different populations, consisting of 137 and 110 half-sib families of switchgrass, tested in two locations in the United States for three agronomic traits: dry matter yield, plant height,more » and heading date. Marker data were produced for the families’ parents by exome capture sequencing, generating up to 141,030 polymorphic markers with available genomic-location and annotation information. We evaluated prediction procedures that varied not only by learning schemes and prediction models, but also by the way the data were preprocessed to account for redundancy in marker information. More complex genomic prediction procedures were generally not significantly more accurate than the simplest procedure, likely due to limited population sizes. Nevertheless, a highly significant gain in prediction accuracy was achieved by transforming the marker data through a marker correlation matrix. Our results suggest that marker-data transformations and, more generally, the account of linkage disequilibrium among markers, offer valuable opportunities for improving prediction procedures in GS. Furthermore, some of the achieved prediction accuracies should motivate implementation of GS in switchgrass breeding programs.« less

  5. Personalized Risk Prediction in Clinical Oncology Research: Applications and Practical Issues Using Survival Trees and Random Forests.

    PubMed

    Hu, Chen; Steingrimsson, Jon Arni

    2018-01-01

    A crucial component of making individualized treatment decisions is to accurately predict each patient's disease risk. In clinical oncology, disease risks are often measured through time-to-event data, such as overall survival and progression/recurrence-free survival, and are often subject to censoring. Risk prediction models based on recursive partitioning methods are becoming increasingly popular largely due to their ability to handle nonlinear relationships, higher-order interactions, and/or high-dimensional covariates. The most popular recursive partitioning methods are versions of the Classification and Regression Tree (CART) algorithm, which builds a simple interpretable tree structured model. With the aim of increasing prediction accuracy, the random forest algorithm averages multiple CART trees, creating a flexible risk prediction model. Risk prediction models used in clinical oncology commonly use both traditional demographic and tumor pathological factors as well as high-dimensional genetic markers and treatment parameters from multimodality treatments. In this article, we describe the most commonly used extensions of the CART and random forest algorithms to right-censored outcomes. We focus on how they differ from the methods for noncensored outcomes, and how the different splitting rules and methods for cost-complexity pruning impact these algorithms. We demonstrate these algorithms by analyzing a randomized Phase III clinical trial of breast cancer. We also conduct Monte Carlo simulations to compare the prediction accuracy of survival forests with more commonly used regression models under various scenarios. These simulation studies aim to evaluate how sensitive the prediction accuracy is to the underlying model specifications, the choice of tuning parameters, and the degrees of missing covariates.

  6. Accuracy of genomic prediction in switchgrass ( Panicum virgatum L.) improved by accounting for linkage disequilibrium

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ramstein, Guillaume P.; Evans, Joseph; Kaeppler, Shawn M.

    Switchgrass is a relatively high-yielding and environmentally sustainable biomass crop, but further genetic gains in biomass yield must be achieved to make it an economically viable bioenergy feedstock. Genomic selection (GS) is an attractive technology to generate rapid genetic gains in switchgrass, and meet the goals of a substantial displacement of petroleum use with biofuels in the near future. In this study, we empirically assessed prediction procedures for genomic selection in two different populations, consisting of 137 and 110 half-sib families of switchgrass, tested in two locations in the United States for three agronomic traits: dry matter yield, plant height,more » and heading date. Marker data were produced for the families’ parents by exome capture sequencing, generating up to 141,030 polymorphic markers with available genomic-location and annotation information. We evaluated prediction procedures that varied not only by learning schemes and prediction models, but also by the way the data were preprocessed to account for redundancy in marker information. More complex genomic prediction procedures were generally not significantly more accurate than the simplest procedure, likely due to limited population sizes. Nevertheless, a highly significant gain in prediction accuracy was achieved by transforming the marker data through a marker correlation matrix. Our results suggest that marker-data transformations and, more generally, the account of linkage disequilibrium among markers, offer valuable opportunities for improving prediction procedures in GS. Furthermore, some of the achieved prediction accuracies should motivate implementation of GS in switchgrass breeding programs.« less

  7. Towards an Online Seizure Advisory System-An Adaptive Seizure Prediction Framework Using Active Learning Heuristics.

    PubMed

    Karuppiah Ramachandran, Vignesh Raja; Alblas, Huibert J; Le, Duc V; Meratnia, Nirvana

    2018-05-24

    In the last decade, seizure prediction systems have gained a lot of attention because of their enormous potential to largely improve the quality-of-life of the epileptic patients. The accuracy of the prediction algorithms to detect seizure in real-world applications is largely limited because the brain signals are inherently uncertain and affected by various factors, such as environment, age, drug intake, etc., in addition to the internal artefacts that occur during the process of recording the brain signals. To deal with such ambiguity, researchers transitionally use active learning, which selects the ambiguous data to be annotated by an expert and updates the classification model dynamically. However, selecting the particular data from a pool of large ambiguous datasets to be labelled by an expert is still a challenging problem. In this paper, we propose an active learning-based prediction framework that aims to improve the accuracy of the prediction with a minimum number of labelled data. The core technique of our framework is employing the Bernoulli-Gaussian Mixture model (BGMM) to determine the feature samples that have the most ambiguity to be annotated by an expert. By doing so, our approach facilitates expert intervention as well as increasing medical reliability. We evaluate seven different classifiers in terms of the classification time and memory required. An active learning framework built on top of the best performing classifier is evaluated in terms of required annotation effort to achieve a high level of prediction accuracy. The results show that our approach can achieve the same accuracy as a Support Vector Machine (SVM) classifier using only 20 % of the labelled data and also improve the prediction accuracy even under the noisy condition.

  8. Comparing Magnetic Resonance Imaging and High-Resolution Dynamic Ultrasonography for Diagnosis of Plantar Plate Pathology: A Case Series.

    PubMed

    Donegan, Ryan J; Stauffer, Anthony; Heaslet, Michael; Poliskie, Michael

    Plantar plate pathology has gained noticeable attention in recent years as an etiology of lesser metatarsophalangeal joint pain. The heightened clinical awareness has led to the need for more effective diagnostic imaging accuracy. Numerous reports have established the accuracy of both magnetic resonance imaging and ultrasonography for the diagnosis of plantar plate pathology. However, no conclusions have been made regarding which is the superior imaging modality. The present study reports a case series directly comparing high-resolution dynamic ultrasonography and magnetic resonance imaging. A multicenter retrospective comparison of magnetic resonance imaging versus high-resolution dynamic ultrasonography to evaluate plantar plate pathology with surgical confirmation was conducted. The sensitivity, specificity, and positive and negative predictive values for magnetic resonance imaging were 60%, 100%, 100%, and 33%, respectively. The overall diagnostic accuracy compared with the intraoperative findings was 66%. The sensitivity, specificity, and positive and negative predictive values for high-resolution dynamic ultrasound imaging were 100%, 100%, 100%, and 100%, respectively. The overall diagnostic accuracy compared with the intraoperative findings was 100%. The p value using Fisher's exact test for magnetic resonance imaging and high-resolution dynamic ultrasonography was p = .45, a difference that was not statistically significant. High-resolution dynamic ultrasonography had greater accuracy than magnetic resonance imaging in diagnosing lesser metatarsophalangeal joint plantar plate pathology, although the difference was not statistically significant. The present case series suggests that high-resolution dynamic ultrasonography can be considered an equally accurate imaging modality for plantar plate pathology at a potential cost savings compared with magnetic resonance imaging. Therefore, high-resolution dynamic ultrasonography warrants further investigation in a prospective study. Copyright © 2016 American College of Foot and Ankle Surgeons. Published by Elsevier Inc. All rights reserved.

  9. Prediction of high-dimensional states subject to respiratory motion: a manifold learning approach

    NASA Astrophysics Data System (ADS)

    Liu, Wenyang; Sawant, Amit; Ruan, Dan

    2016-07-01

    The development of high-dimensional imaging systems in image-guided radiotherapy provides important pathways to the ultimate goal of real-time full volumetric motion monitoring. Effective motion management during radiation treatment usually requires prediction to account for system latency and extra signal/image processing time. It is challenging to predict high-dimensional respiratory motion due to the complexity of the motion pattern combined with the curse of dimensionality. Linear dimension reduction methods such as PCA have been used to construct a linear subspace from the high-dimensional data, followed by efficient predictions on the lower-dimensional subspace. In this study, we extend such rationale to a more general manifold and propose a framework for high-dimensional motion prediction with manifold learning, which allows one to learn more descriptive features compared to linear methods with comparable dimensions. Specifically, a kernel PCA is used to construct a proper low-dimensional feature manifold, where accurate and efficient prediction can be performed. A fixed-point iterative pre-image estimation method is used to recover the predicted value in the original state space. We evaluated and compared the proposed method with a PCA-based approach on level-set surfaces reconstructed from point clouds captured by a 3D photogrammetry system. The prediction accuracy was evaluated in terms of root-mean-squared-error. Our proposed method achieved consistent higher prediction accuracy (sub-millimeter) for both 200 ms and 600 ms lookahead lengths compared to the PCA-based approach, and the performance gain was statistically significant.

  10. Predictive accuracy of combined genetic and environmental risk scores.

    PubMed

    Dudbridge, Frank; Pashayan, Nora; Yang, Jian

    2018-02-01

    The substantial heritability of most complex diseases suggests that genetic data could provide useful risk prediction. To date the performance of genetic risk scores has fallen short of the potential implied by heritability, but this can be explained by insufficient sample sizes for estimating highly polygenic models. When risk predictors already exist based on environment or lifestyle, two key questions are to what extent can they be improved by adding genetic information, and what is the ultimate potential of combined genetic and environmental risk scores? Here, we extend previous work on the predictive accuracy of polygenic scores to allow for an environmental score that may be correlated with the polygenic score, for example when the environmental factors mediate the genetic risk. We derive common measures of predictive accuracy and improvement as functions of the training sample size, chip heritabilities of disease and environmental score, and genetic correlation between disease and environmental risk factors. We consider simple addition of the two scores and a weighted sum that accounts for their correlation. Using examples from studies of cardiovascular disease and breast cancer, we show that improvements in discrimination are generally small but reasonable degrees of reclassification could be obtained with current sample sizes. Correlation between genetic and environmental scores has only minor effects on numerical results in realistic scenarios. In the longer term, as the accuracy of polygenic scores improves they will come to dominate the predictive accuracy compared to environmental scores. © 2017 WILEY PERIODICALS, INC.

  11. Predictive accuracy of combined genetic and environmental risk scores

    PubMed Central

    Pashayan, Nora; Yang, Jian

    2017-01-01

    ABSTRACT The substantial heritability of most complex diseases suggests that genetic data could provide useful risk prediction. To date the performance of genetic risk scores has fallen short of the potential implied by heritability, but this can be explained by insufficient sample sizes for estimating highly polygenic models. When risk predictors already exist based on environment or lifestyle, two key questions are to what extent can they be improved by adding genetic information, and what is the ultimate potential of combined genetic and environmental risk scores? Here, we extend previous work on the predictive accuracy of polygenic scores to allow for an environmental score that may be correlated with the polygenic score, for example when the environmental factors mediate the genetic risk. We derive common measures of predictive accuracy and improvement as functions of the training sample size, chip heritabilities of disease and environmental score, and genetic correlation between disease and environmental risk factors. We consider simple addition of the two scores and a weighted sum that accounts for their correlation. Using examples from studies of cardiovascular disease and breast cancer, we show that improvements in discrimination are generally small but reasonable degrees of reclassification could be obtained with current sample sizes. Correlation between genetic and environmental scores has only minor effects on numerical results in realistic scenarios. In the longer term, as the accuracy of polygenic scores improves they will come to dominate the predictive accuracy compared to environmental scores. PMID:29178508

  12. A comprehensive comparison of network similarities for link prediction and spurious link elimination

    NASA Astrophysics Data System (ADS)

    Zhang, Peng; Qiu, Dan; Zeng, An; Xiao, Jinghua

    2018-06-01

    Identifying missing interactions in complex networks, known as link prediction, is realized by estimating the likelihood of the existence of a link between two nodes according to the observed links and nodes' attributes. Similar approaches have also been employed to identify and remove spurious links in networks which is crucial for improving the reliability of network data. In network science, the likelihood for two nodes having a connection strongly depends on their structural similarity. The key to address these two problems thus becomes how to objectively measure the similarity between nodes in networks. In the literature, numerous network similarity metrics have been proposed and their accuracy has been discussed independently in previous works. In this paper, we systematically compare the accuracy of 18 similarity metrics in both link prediction and spurious link elimination when the observed networks are very sparse or consist of inaccurate linking information. Interestingly, some methods have high prediction accuracy, they tend to perform low accuracy in identification spurious interaction. We further find that methods can be classified into several cluster according to their behaviors. This work is useful for guiding future use of these similarity metrics for different purposes.

  13. Development of a deep convolutional neural network to predict grading of canine meningiomas from magnetic resonance images.

    PubMed

    Banzato, T; Cherubini, G B; Atzori, M; Zotti, A

    2018-05-01

    An established deep neural network (DNN) based on transfer learning and a newly designed DNN were tested to predict the grade of meningiomas from magnetic resonance (MR) images in dogs and to determine the accuracy of classification of using pre- and post-contrast T1-weighted (T1W), and T2-weighted (T2W) MR images. The images were randomly assigned to a training set, a validation set and a test set, comprising 60%, 10% and 30% of images, respectively. The combination of DNN and MR sequence displaying the highest discriminating accuracy was used to develop an image classifier to predict the grading of new cases. The algorithm based on transfer learning using the established DNN did not provide satisfactory results, whereas the newly designed DNN had high classification accuracy. On the basis of classification accuracy, an image classifier built on the newly designed DNN using post-contrast T1W images was developed. This image classifier correctly predicted the grading of 8 out of 10 images not included in the data set. Copyright © 2018 The Authors. Published by Elsevier Ltd.. All rights reserved.

  14. Infrared Imagery of Shuttle (IRIS). Task 2, summary report

    NASA Technical Reports Server (NTRS)

    Chocol, C. J.

    1978-01-01

    End-to-end tests of a 16 element indium antimonide sensor array and 10 channels of associated electronic signal processing were completed. Quantitative data were gathered on system responsivity, frequency response, noise, stray capacitance effects, and sensor paralleling. These tests verify that the temperature accuracies, predicted in the Task 1 study, can be obtained with a very carefully designed electro-optical flight system. Pre-flight and inflight calibration of a high quality are mandatory to obtain these accuracies. Also, optical crosstalk in the array-dewar assembly must be carefully eliminated by its design. Tests of the scaled up tracking system reticle also demonstrate that the predicted tracking system accuracies can be met in the flight system. In addition, improvements in the reticle pattern and electronics are possible, which will reduce the complexity of the flight system and increase tracking accuracy.

  15. Accuracy of frozen section in the diagnosis of ovarian tumours.

    PubMed

    Toneva, F; Wright, H; Razvi, K

    2012-07-01

    The purpose of our retrospective study was to assess the accuracy of intraoperative frozen section diagnosis compared to final paraffin diagnosis in ovarian tumours at a gynaecological oncology centre in the UK. We analysed 66 cases and observed that frozen section consultation agreed with final paraffin diagnosis in 59 cases, which provided an accuracy of 89.4%. The overall sensitivity and specificity for all tumours were 85.4% and 100%, respectively. The positive predictive value (PPV) and negative predictive value (NPV) were 100% and 89.4%, respectively. Of the seven cases with discordant results, the majority were large, mucinous tumours, which is in line with previous studies. Our study demonstrated that despite its limitations, intraoperative frozen section has a high accuracy and sensitivity for assessing ovarian tumours; however, care needs to be taken with large, mucinous tumours.

  16. Optical coherence tomography in the diagnosis of dysplasia and adenocarcinoma in Barret's esophagus

    NASA Astrophysics Data System (ADS)

    Gladkova, N. D.; Zagaynova, E. V.; Zuccaro, G.; Kareta, M. V.; Feldchtein, F. I.; Balalaeva, I. V.; Balandina, E. B.

    2007-02-01

    Statistical analysis of endoscopic optical coherence tomography (EOCT) surveillance of 78 patients with Barrett's esophagus (BE) is presented in this study. The sensitivity of OCT device in retrospective open detection of early malignancy (including high grade dysplasia and intramucosal adenocarcinoma (IMAC)) was 75%, specificity 82%, diagnostic accuracy - 80%, positive predictive value- 60%, negative predictive value- 87%. In the open recognition of IMAC sensitivity was 81% and specificity were 85% each. Results of a blind recognition with the same material were similar: sensitivity - 77%, specificity 85%, diagnostic accuracy - 82%, positive predictive value- 70%, negative predictive value- 87%. As the endoscopic detection of early malignancy is problematic, OCT holds great promise in enhancing the diagnostic capability of clinical GI endoscopy.

  17. Pharmacokinetics of low-dose nedaplatin and validation of AUC prediction in patients with non-small-cell lung carcinoma.

    PubMed

    Niioka, Takenori; Uno, Tsukasa; Yasui-Furukori, Norio; Takahata, Takenori; Shimizu, Mikiko; Sugawara, Kazunobu; Tateishi, Tomonori

    2007-04-01

    The aim of this study was to determine the pharmacokinetics of low-dose nedaplatin combined with paclitaxel and radiation therapy in patients having non-small-cell lung carcinoma and establish the optimal dosage regimen for low-dose nedaplatin. We also evaluated predictive accuracy of reported formulas to estimate the area under the plasma concentration-time curve (AUC) of low-dose nedaplatin. A total of 19 patients were administered a constant intravenous infusion of 20 mg/m(2) body surface area (BSA) nedaplatin for an hour, and blood samples were collected at 1, 2, 3, 4, 6, 8, and 19 h after the administration. Plasma concentrations of unbound platinum were measured, and the actual value of platinum AUC (actual AUC) was calculated based on these data. The predicted value of platinum AUC (predicted AUC) was determined by three predictive methods reported in previous studies, consisting of Bayesian method, limited sampling strategies with plasma concentration at a single time point, and simple formula method (SFM) without measured plasma concentration. Three error indices, mean prediction error (ME, measure of bias), mean absolute error (MAE, measure of accuracy), and root mean squared prediction error (RMSE, measure of precision), were obtained from the difference between the actual and the predicted AUC, to compare the accuracy between the three predictive methods. The AUC showed more than threefold inter-patient variation, and there was a favorable correlation between nedaplatin clearance and creatinine clearance (Ccr) (r = 0.832, P < 0.01). In three error indices, MAE and RMSE showed significant difference between the three AUC predictive methods, and the method of SFM had the most favorable results, in which %ME, %MAE, and %RMSE were 5.5, 10.7, and 15.4, respectively. The dosage regimen of low-dose nedaplatin should be established based on Ccr rather than on BSA. Since prediction accuracy of SFM, which did not require measured plasma concentration, was most favorable among the three methods evaluated in this study, SFM could be the most practical method to predict AUC of low-dose nedaplatin in a clinical situation judging from its high accuracy in predicting AUC without measured plasma concentration.

  18. Mortality, morbidity and refractoriness prediction in status epilepticus: Comparison of STESS and EMSE scores.

    PubMed

    Giovannini, Giada; Monti, Giulia; Tondelli, Manuela; Marudi, Andrea; Valzania, Franco; Leitinger, Markus; Trinka, Eugen; Meletti, Stefano

    2017-03-01

    Status epilepticus (SE) is a neurological emergency, characterized by high short-term morbidity and mortality. We evaluated and compared two scores that have been developed to evaluate status epilepticus prognosis: STESS (Status Epilepticus Severity Score) and EMSE (Epidemiology based Mortality score in Status Epilepticus). A prospective observational study was performed on consecutive patients with SE admitted between September 2013 and August 2015. Demographics, clinical variables, STESS-3 and -4, and EMSE-64 scores were calculated for each patient at baseline. SE drug response, 30-day mortality and morbidity were the outcomes measure. 162 episodes of SE were observed: 69% had a STESS ≥3; 34% had a STESS ≥4; 51% patients had an EMSE ≥64. The 30-days mortality was 31.5%: EMSE-64 showed greater negative predictive value (NPV) (97.5%), positive predictive value (PPV) (59.8%) and accuracy in the prediction of death than STESS-3 and STESS-4 (p<0.001). At 30 days, the clinical condition had deteriorated in 59% of the cases: EMSE-64 showed greater NPV (71.3%), PPV (87.8%) and accuracy than STESS-3 and STESS-4 (p<0.001) in the prediction of this outcome. In 23% of all cases, status epilepticus proved refractory to non-anaesthetic treatment. All three scales showed a high NPV (EMSE-64: 87.3%; STESS-4: 89.4%; STESS-3: 87.5%) but a low PPV (EMSE-64: 40.9%; STESS-4: 52.9%; STESS-3: 32%) for the prediction of refractoriness to first and second line drugs. This means that accuracy for the prediction of refractoriness was equally poor for all scales. EMSE-64 appears superior to STESS-3 and STESS-4 in the prediction of 30-days mortality and morbidity. All scales showed poor accuracy in the prediction of response to first and second line antiepileptic drugs. At present, there are no reliable scores capable of predicting treatment responsiveness. Copyright © 2017 British Epilepsy Association. Published by Elsevier Ltd. All rights reserved.

  19. Accuracy, Sensitivity and Specificity of Fine Needle Aspiration Biopsy for Salivary Gland Tumors: A Retrospective Study from 2006 to 2011

    PubMed

    Silva, William P P; Stramandinoli-Zanicotti, Roberta T; Schussel, Juliana L; Ramos, Gyl H A; Ioshi, Sergio O; Sassi, Laurindo M

    2016-11-01

    Objective: This article concerns evaluation of the sensitivity, specificity and accuracy of FNAB for pre-surgical diagnosis of benign and malignant lesions of major and minor salivary glands of patients treated in the Department of Head and Neck Surgery of Erasto Gartner Hospital. Methods: This retrospective study analyzed medical records from January 2006 to December 2011 from patients with salivary gland lesions who underwent preoperative FNAB and, after surgical excision of the lesion, histopathological examination. Results: The study had a cohort of 130 cases, but 34 cases (26.2%) were considered unsatisfactory regarding cytology analyses. Based on the data, sensitivity was 66.7% (6/9), specificity was 81.6% (71/87), accuracy was 80.2% (77/96), the positive predictive value was 66,7% (6/9) and the negative predictive value was 81.6% (71/87). Conclusion: Despite the high rate of inadequate samples obtained in the FNAB in this study the technique offers high specificity, accuracy and acceptable sensitivity. Creative Commons Attribution License

  20. Leuconostoc mesenteroides growth in food products: prediction and sensitivity analysis by adaptive-network-based fuzzy inference systems.

    PubMed

    Wang, Hue-Yu; Wen, Ching-Feng; Chiu, Yu-Hsien; Lee, I-Nong; Kao, Hao-Yun; Lee, I-Chen; Ho, Wen-Hsien

    2013-01-01

    An adaptive-network-based fuzzy inference system (ANFIS) was compared with an artificial neural network (ANN) in terms of accuracy in predicting the combined effects of temperature (10.5 to 24.5°C), pH level (5.5 to 7.5), sodium chloride level (0.25% to 6.25%) and sodium nitrite level (0 to 200 ppm) on the growth rate of Leuconostoc mesenteroides under aerobic and anaerobic conditions. THE ANFIS AND ANN MODELS WERE COMPARED IN TERMS OF SIX STATISTICAL INDICES CALCULATED BY COMPARING THEIR PREDICTION RESULTS WITH ACTUAL DATA: mean absolute percentage error (MAPE), root mean square error (RMSE), standard error of prediction percentage (SEP), bias factor (Bf), accuracy factor (Af), and absolute fraction of variance (R (2)). Graphical plots were also used for model comparison. The learning-based systems obtained encouraging prediction results. Sensitivity analyses of the four environmental factors showed that temperature and, to a lesser extent, NaCl had the most influence on accuracy in predicting the growth rate of Leuconostoc mesenteroides under aerobic and anaerobic conditions. The observed effectiveness of ANFIS for modeling microbial kinetic parameters confirms its potential use as a supplemental tool in predictive mycology. Comparisons between growth rates predicted by ANFIS and actual experimental data also confirmed the high accuracy of the Gaussian membership function in ANFIS. Comparisons of the six statistical indices under both aerobic and anaerobic conditions also showed that the ANFIS model was better than all ANN models in predicting the four kinetic parameters. Therefore, the ANFIS model is a valuable tool for quickly predicting the growth rate of Leuconostoc mesenteroides under aerobic and anaerobic conditions.

  1. Leuconostoc Mesenteroides Growth in Food Products: Prediction and Sensitivity Analysis by Adaptive-Network-Based Fuzzy Inference Systems

    PubMed Central

    Wang, Hue-Yu; Wen, Ching-Feng; Chiu, Yu-Hsien; Lee, I-Nong; Kao, Hao-Yun; Lee, I-Chen; Ho, Wen-Hsien

    2013-01-01

    Background An adaptive-network-based fuzzy inference system (ANFIS) was compared with an artificial neural network (ANN) in terms of accuracy in predicting the combined effects of temperature (10.5 to 24.5°C), pH level (5.5 to 7.5), sodium chloride level (0.25% to 6.25%) and sodium nitrite level (0 to 200 ppm) on the growth rate of Leuconostoc mesenteroides under aerobic and anaerobic conditions. Methods The ANFIS and ANN models were compared in terms of six statistical indices calculated by comparing their prediction results with actual data: mean absolute percentage error (MAPE), root mean square error (RMSE), standard error of prediction percentage (SEP), bias factor (Bf), accuracy factor (Af), and absolute fraction of variance (R 2). Graphical plots were also used for model comparison. Conclusions The learning-based systems obtained encouraging prediction results. Sensitivity analyses of the four environmental factors showed that temperature and, to a lesser extent, NaCl had the most influence on accuracy in predicting the growth rate of Leuconostoc mesenteroides under aerobic and anaerobic conditions. The observed effectiveness of ANFIS for modeling microbial kinetic parameters confirms its potential use as a supplemental tool in predictive mycology. Comparisons between growth rates predicted by ANFIS and actual experimental data also confirmed the high accuracy of the Gaussian membership function in ANFIS. Comparisons of the six statistical indices under both aerobic and anaerobic conditions also showed that the ANFIS model was better than all ANN models in predicting the four kinetic parameters. Therefore, the ANFIS model is a valuable tool for quickly predicting the growth rate of Leuconostoc mesenteroides under aerobic and anaerobic conditions. PMID:23705023

  2. Predicting maximal strength of quadriceps from submaximal performance in individuals with knee joint osteoarthritis.

    PubMed

    McNair, Peter J; Colvin, Matt; Reid, Duncan

    2011-02-01

    To compare the accuracy of 12 maximal strength (1-repetition maximum [1-RM]) equations for predicting quadriceps strength in people with osteoarthritis (OA) of the knee joint. Eighteen subjects with OA of the knee joint attended a rehabilitation gymnasium on 3 occasions: 1) a familiarization session, 2) a session where the 1-RM of the quadriceps was established using a weights machine for an open-chain knee extension exercise and a leg press exercise, and 3) a session where the subjects performed with a load at which they could lift for approximately 10 repetitions only. The data were used in 12 prediction equations to calculate 1-RM strength and compared to the actual 1-RM data. Data were examined using Bland and Altman graphs and statistics, intraclass correlation coefficients (ICCs), and typical error values between the actual 1-RM and the respective 1-RM prediction equation data. Difference scores (predicted 1-RM--actual 1-RM) across the injured and control legs were also compared. For the knee extension exercise, the Brown, Brzycki, Epley, Lander, Mayhew et al, Poliquin, and Wathen prediction equations demonstrated the greatest levels of predictive accuracy. All of the ICCs were high (range 0.96–0.99), and typical errors were between 3% and 4%. For the knee press exercise, the Adams, Berger, Kemmler et al, and O'Conner et al equations demonstrated the greatest levels of predictive accuracy. All of the ICCs were high (range 0.95-0.98), and the typical errors ranged from 5.9-6.3%. This study provided evidence supporting the use of prediction equations to assess maximal strength in individuals with a knee joint with OA.

  3. Use of Cell Viability Assay Data Improves the Prediction Accuracy of Conventional Quantitative Structure–Activity Relationship Models of Animal Carcinogenicity

    PubMed Central

    Zhu, Hao; Rusyn, Ivan; Richard, Ann; Tropsha, Alexander

    2008-01-01

    Background To develop efficient approaches for rapid evaluation of chemical toxicity and human health risk of environmental compounds, the National Toxicology Program (NTP) in collaboration with the National Center for Chemical Genomics has initiated a project on high-throughput screening (HTS) of environmental chemicals. The first HTS results for a set of 1,408 compounds tested for their effects on cell viability in six different cell lines have recently become available via PubChem. Objectives We have explored these data in terms of their utility for predicting adverse health effects of the environmental agents. Methods and results Initially, the classification k nearest neighbor (kNN) quantitative structure–activity relationship (QSAR) modeling method was applied to the HTS data only, for a curated data set of 384 compounds. The resulting models had prediction accuracies for training, test (containing 275 compounds together), and external validation (109 compounds) sets as high as 89%, 71%, and 74%, respectively. We then asked if HTS results could be of value in predicting rodent carcinogenicity. We identified 383 compounds for which data were available from both the Berkeley Carcinogenic Potency Database and NTP–HTS studies. We found that compounds classified by HTS as “actives” in at least one cell line were likely to be rodent carcinogens (sensitivity 77%); however, HTS “inactives” were far less informative (specificity 46%). Using chemical descriptors only, kNN QSAR modeling resulted in 62.3% prediction accuracy for rodent carcinogenicity applied to this data set. Importantly, the prediction accuracy of the model was significantly improved (72.7%) when chemical descriptors were augmented by HTS data, which were regarded as biological descriptors. Conclusions Our studies suggest that combining NTP–HTS profiles with conventional chemical descriptors could considerably improve the predictive power of computational approaches in toxicology. PMID:18414635

  4. Genomic Prediction Accounting for Residual Heteroskedasticity.

    PubMed

    Ou, Zhining; Tempelman, Robert J; Steibel, Juan P; Ernst, Catherine W; Bates, Ronald O; Bello, Nora M

    2015-11-12

    Whole-genome prediction (WGP) models that use single-nucleotide polymorphism marker information to predict genetic merit of animals and plants typically assume homogeneous residual variance. However, variability is often heterogeneous across agricultural production systems and may subsequently bias WGP-based inferences. This study extends classical WGP models based on normality, heavy-tailed specifications and variable selection to explicitly account for environmentally-driven residual heteroskedasticity under a hierarchical Bayesian mixed-models framework. WGP models assuming homogeneous or heterogeneous residual variances were fitted to training data generated under simulation scenarios reflecting a gradient of increasing heteroskedasticity. Model fit was based on pseudo-Bayes factors and also on prediction accuracy of genomic breeding values computed on a validation data subset one generation removed from the simulated training dataset. Homogeneous vs. heterogeneous residual variance WGP models were also fitted to two quantitative traits, namely 45-min postmortem carcass temperature and loin muscle pH, recorded in a swine resource population dataset prescreened for high and mild residual heteroskedasticity, respectively. Fit of competing WGP models was compared using pseudo-Bayes factors. Predictive ability, defined as the correlation between predicted and observed phenotypes in validation sets of a five-fold cross-validation was also computed. Heteroskedastic error WGP models showed improved model fit and enhanced prediction accuracy compared to homoskedastic error WGP models although the magnitude of the improvement was small (less than two percentage points net gain in prediction accuracy). Nevertheless, accounting for residual heteroskedasticity did improve accuracy of selection, especially on individuals of extreme genetic merit. Copyright © 2016 Ou et al.

  5. Prediction of psychosis across protocols and risk cohorts using automated language analysis.

    PubMed

    Corcoran, Cheryl M; Carrillo, Facundo; Fernández-Slezak, Diego; Bedi, Gillinder; Klim, Casimir; Javitt, Daniel C; Bearden, Carrie E; Cecchi, Guillermo A

    2018-02-01

    Language and speech are the primary source of data for psychiatrists to diagnose and treat mental disorders. In psychosis, the very structure of language can be disturbed, including semantic coherence (e.g., derailment and tangentiality) and syntactic complexity (e.g., concreteness). Subtle disturbances in language are evident in schizophrenia even prior to first psychosis onset, during prodromal stages. Using computer-based natural language processing analyses, we previously showed that, among English-speaking clinical (e.g., ultra) high-risk youths, baseline reduction in semantic coherence (the flow of meaning in speech) and in syntactic complexity could predict subsequent psychosis onset with high accuracy. Herein, we aimed to cross-validate these automated linguistic analytic methods in a second larger risk cohort, also English-speaking, and to discriminate speech in psychosis from normal speech. We identified an automated machine-learning speech classifier - comprising decreased semantic coherence, greater variance in that coherence, and reduced usage of possessive pronouns - that had an 83% accuracy in predicting psychosis onset (intra-protocol), a cross-validated accuracy of 79% of psychosis onset prediction in the original risk cohort (cross-protocol), and a 72% accuracy in discriminating the speech of recent-onset psychosis patients from that of healthy individuals. The classifier was highly correlated with previously identified manual linguistic predictors. Our findings support the utility and validity of automated natural language processing methods to characterize disturbances in semantics and syntax across stages of psychotic disorder. The next steps will be to apply these methods in larger risk cohorts to further test reproducibility, also in languages other than English, and identify sources of variability. This technology has the potential to improve prediction of psychosis outcome among at-risk youths and identify linguistic targets for remediation and preventive intervention. More broadly, automated linguistic analysis can be a powerful tool for diagnosis and treatment across neuropsychiatry. © 2018 World Psychiatric Association.

  6. Random forest estimation of genomic breeding values for disease susceptibility over different disease incidences and genomic architectures in simulated cow calibration groups.

    PubMed

    Naderi, S; Yin, T; König, S

    2016-09-01

    A simulation study was conducted to investigate the performance of random forest (RF) and genomic BLUP (GBLUP) for genomic predictions of binary disease traits based on cow calibration groups. Training and testing sets were modified in different scenarios according to disease incidence, the quantitative-genetic background of the trait (h(2)=0.30 and h(2)=0.10), and the genomic architecture [725 quantitative trait loci (QTL) and 290 QTL, populations with high and low levels of linkage disequilibrium (LD)]. For all scenarios, 10,005 SNP (depicting a low-density 10K SNP chip) and 50,025 SNP (depicting a 50K SNP chip) were evenly spaced along 29 chromosomes. Training and testing sets included 20,000 cows (4,000 sick, 16,000 healthy, disease incidence 20%) from the last 2 generations. Initially, 4,000 sick cows were assigned to the testing set, and the remaining 16,000 healthy cows represented the training set. In the ongoing allocation schemes, the number of sick cows in the training set increased stepwise by moving 10% of the sick animals from the testing set to the training set, and vice versa. The size of the training and testing sets was kept constant. Evaluation criteria for both GBLUP and RF were the correlations between genomic breeding values and true breeding values (prediction accuracy), and the area under the receiving operating characteristic curve (AUROC). Prediction accuracy and AUROC increased for both methods and all scenarios as increasing percentages of sick cows were allocated to the training set. Highest prediction accuracies were observed for disease incidences in training sets that reflected the population disease incidence of 0.20. For this allocation scheme, the largest prediction accuracies of 0.53 for RF and of 0.51 for GBLUP, and the largest AUROC of 0.66 for RF and of 0.64 for GBLUP, were achieved using 50,025 SNP, a heritability of 0.30, and 725 QTL. Heritability decreases from 0.30 to 0.10 and QTL reduction from 725 to 290 were associated with decreasing prediction accuracy and decreasing AUROC for all scenarios. This decrease was more pronounced for RF. Also, the increase of LD had stronger effect on RF results than on GBLUP results. The highest prediction accuracy from the low LD scenario was 0.30 from RF and 0.36 from GBLUP, and increased to 0.39 for both methods in the high LD population. Random forest successfully identified important SNP in close map distance to QTL explaining a high proportion of the phenotypic trait variations. Copyright © 2016 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  7. High Accuracy Liquid Propellant Slosh Predictions Using an Integrated CFD and Controls Analysis Interface

    NASA Technical Reports Server (NTRS)

    Marsell, Brandon; Griffin, David; Schallhorn, Dr. Paul; Roth, Jacob

    2012-01-01

    Coupling computational fluid dynamics (CFD) with a controls analysis tool elegantly allows for high accuracy predictions of the interaction between sloshing liquid propellants and th e control system of a launch vehicle. Instead of relying on mechanical analogs which are not valid during aU stages of flight, this method allows for a direct link between the vehicle dynamic environments calculated by the solver in the controls analysis tool to the fluid flow equations solved by the CFD code. This paper describes such a coupling methodology, presents the results of a series of test cases, and compares said results against equivalent results from extensively validated tools. The coupling methodology, described herein, has proven to be highly accurate in a variety of different cases.

  8. Integrated CFD and Controls Analysis Interface for High Accuracy Liquid Propellant Slosh Predictions

    NASA Technical Reports Server (NTRS)

    Marsell, Brandon; Griffin, David; Schallhorn, Paul; Roth, Jacob

    2012-01-01

    Coupling computational fluid dynamics (CFD) with a controls analysis tool elegantly allows for high accuracy predictions of the interaction between sloshing liquid propellants and the control system of a launch vehicle. Instead of relying on mechanical analogs which are n0t va lid during all stages of flight, this method allows for a direct link between the vehicle dynamic environments calculated by the solver in the controls analysis tool to the fluid now equations solved by the CFD code. This paper describes such a coupling methodology, presents the results of a series of test cases, and compares said results against equivalent results from extensively validated tools. The coupling methodology, described herein, has proven to be highly accurate in a variety of different cases.

  9. Continuous electroencephalography predicts delayed cerebral ischemia after subarachnoid hemorrhage: A prospective study of diagnostic accuracy.

    PubMed

    Rosenthal, Eric S; Biswal, Siddharth; Zafar, Sahar F; O'Connor, Kathryn L; Bechek, Sophia; Shenoy, Apeksha V; Boyle, Emily J; Shafi, Mouhsin M; Gilmore, Emily J; Foreman, Brandon P; Gaspard, Nicolas; Leslie-Mazwi, Thabele M; Rosand, Jonathan; Hoch, Daniel B; Ayata, Cenk; Cash, Sydney S; Cole, Andrew J; Patel, Aman B; Westover, M Brandon

    2018-04-16

    Delayed cerebral ischemia (DCI) is a common, disabling complication of subarachnoid hemorrhage (SAH). Preventing DCI is a key focus of neurocritical care, but interventions carry risk and cannot be applied indiscriminately. Although retrospective studies have identified continuous electroencephalographic (cEEG) measures associated with DCI, no study has characterized the accuracy of cEEG with sufficient rigor to justify using it to triage patients to interventions or clinical trials. We therefore prospectively assessed the accuracy of cEEG for predicting DCI, following the Standards for Reporting Diagnostic Accuracy Studies. We prospectively performed cEEG in nontraumatic, high-grade SAH patients at a single institution. The index test consisted of clinical neurophysiologists prospectively reporting prespecified EEG alarms: (1) decreasing relative alpha variability, (2) decreasing alpha-delta ratio, (3) worsening focal slowing, or (4) late appearing epileptiform abnormalities. The diagnostic reference standard was DCI determined by blinded, adjudicated review. Primary outcome measures were sensitivity and specificity of cEEG for subsequent DCI, determined by multistate survival analysis, adjusted for baseline risk. One hundred three of 227 consecutive patients were eligible and underwent cEEG monitoring (7.7-day mean duration). EEG alarms occurred in 96.2% of patients with and 19.6% without subsequent DCI (1.9-day median latency, interquartile range = 0.9-4.1). Among alarm subtypes, late onset epileptiform abnormalities had the highest predictive value. Prespecified EEG findings predicted DCI among patients with low (91% sensitivity, 83% specificity) and high (95% sensitivity, 77% specificity) baseline risk. cEEG accurately predicts DCI following SAH and may help target therapies to patients at highest risk of secondary brain injury. Ann Neurol 2018. © 2018 American Neurological Association.

  10. Failure prediction using machine learning and time series in optical network.

    PubMed

    Wang, Zhilong; Zhang, Min; Wang, Danshi; Song, Chuang; Liu, Min; Li, Jin; Lou, Liqi; Liu, Zhuo

    2017-08-07

    In this paper, we propose a performance monitoring and failure prediction method in optical networks based on machine learning. The primary algorithms of this method are the support vector machine (SVM) and double exponential smoothing (DES). With a focus on risk-aware models in optical networks, the proposed protection plan primarily investigates how to predict the risk of an equipment failure. To the best of our knowledge, this important problem has not yet been fully considered. Experimental results showed that the average prediction accuracy of our method was 95% when predicting the optical equipment failure state. This finding means that our method can forecast an equipment failure risk with high accuracy. Therefore, our proposed DES-SVM method can effectively improve traditional risk-aware models to protect services from possible failures and enhance the optical network stability.

  11. A Statistical Evaluation of the Diagnostic Performance of MEDAS-The Medical Emergency Decision Assistance System

    PubMed Central

    Georgakis, D. Christine; Trace, David A.; Naeymi-Rad, Frank; Evens, Martha

    1990-01-01

    Medical expert systems require comprehensive evaluation of their diagnostic accuracy. The usefulness of these systems is limited without established evaluation methods. We propose a new methodology for evaluating the diagnostic accuracy and the predictive capacity of a medical expert system. We have adapted to the medical domain measures that have been used in the social sciences to examine the performance of human experts in the decision making process. Thus, in addition to the standard summary measures, we use measures of agreement and disagreement, and Goodman and Kruskal's λ and τ measures of predictive association. This methodology is illustrated by a detailed retrospective evaluation of the diagnostic accuracy of the MEDAS system. In a study using 270 patients admitted to the North Chicago Veterans Administration Hospital, diagnoses produced by MEDAS are compared with the discharge diagnoses of the attending physicians. The results of the analysis confirm the high diagnostic accuracy and predictive capacity of the MEDAS system. Overall, the agreement of the MEDAS system with the “gold standard” diagnosis of the attending physician has reached a 90% level.

  12. Analysis of energy-based algorithms for RNA secondary structure prediction

    PubMed Central

    2012-01-01

    Background RNA molecules play critical roles in the cells of organisms, including roles in gene regulation, catalysis, and synthesis of proteins. Since RNA function depends in large part on its folded structures, much effort has been invested in developing accurate methods for prediction of RNA secondary structure from the base sequence. Minimum free energy (MFE) predictions are widely used, based on nearest neighbor thermodynamic parameters of Mathews, Turner et al. or those of Andronescu et al. Some recently proposed alternatives that leverage partition function calculations find the structure with maximum expected accuracy (MEA) or pseudo-expected accuracy (pseudo-MEA) methods. Advances in prediction methods are typically benchmarked using sensitivity, positive predictive value and their harmonic mean, namely F-measure, on datasets of known reference structures. Since such benchmarks document progress in improving accuracy of computational prediction methods, it is important to understand how measures of accuracy vary as a function of the reference datasets and whether advances in algorithms or thermodynamic parameters yield statistically significant improvements. Our work advances such understanding for the MFE and (pseudo-)MEA-based methods, with respect to the latest datasets and energy parameters. Results We present three main findings. First, using the bootstrap percentile method, we show that the average F-measure accuracy of the MFE and (pseudo-)MEA-based algorithms, as measured on our largest datasets with over 2000 RNAs from diverse families, is a reliable estimate (within a 2% range with high confidence) of the accuracy of a population of RNA molecules represented by this set. However, average accuracy on smaller classes of RNAs such as a class of 89 Group I introns used previously in benchmarking algorithm accuracy is not reliable enough to draw meaningful conclusions about the relative merits of the MFE and MEA-based algorithms. Second, on our large datasets, the algorithm with best overall accuracy is a pseudo MEA-based algorithm of Hamada et al. that uses a generalized centroid estimator of base pairs. However, between MFE and other MEA-based methods, there is no clear winner in the sense that the relative accuracy of the MFE versus MEA-based algorithms changes depending on the underlying energy parameters. Third, of the four parameter sets we considered, the best accuracy for the MFE-, MEA-based, and pseudo-MEA-based methods is 0.686, 0.680, and 0.711, respectively (on a scale from 0 to 1 with 1 meaning perfect structure predictions) and is obtained with a thermodynamic parameter set obtained by Andronescu et al. called BL* (named after the Boltzmann likelihood method by which the parameters were derived). Conclusions Large datasets should be used to obtain reliable measures of the accuracy of RNA structure prediction algorithms, and average accuracies on specific classes (such as Group I introns and Transfer RNAs) should be interpreted with caution, considering the relatively small size of currently available datasets for such classes. The accuracy of the MEA-based methods is significantly higher when using the BL* parameter set of Andronescu et al. than when using the parameters of Mathews and Turner, and there is no significant difference between the accuracy of MEA-based methods and MFE when using the BL* parameters. The pseudo-MEA-based method of Hamada et al. with the BL* parameter set significantly outperforms all other MFE and MEA-based algorithms on our large data sets. PMID:22296803

  13. Analysis of energy-based algorithms for RNA secondary structure prediction.

    PubMed

    Hajiaghayi, Monir; Condon, Anne; Hoos, Holger H

    2012-02-01

    RNA molecules play critical roles in the cells of organisms, including roles in gene regulation, catalysis, and synthesis of proteins. Since RNA function depends in large part on its folded structures, much effort has been invested in developing accurate methods for prediction of RNA secondary structure from the base sequence. Minimum free energy (MFE) predictions are widely used, based on nearest neighbor thermodynamic parameters of Mathews, Turner et al. or those of Andronescu et al. Some recently proposed alternatives that leverage partition function calculations find the structure with maximum expected accuracy (MEA) or pseudo-expected accuracy (pseudo-MEA) methods. Advances in prediction methods are typically benchmarked using sensitivity, positive predictive value and their harmonic mean, namely F-measure, on datasets of known reference structures. Since such benchmarks document progress in improving accuracy of computational prediction methods, it is important to understand how measures of accuracy vary as a function of the reference datasets and whether advances in algorithms or thermodynamic parameters yield statistically significant improvements. Our work advances such understanding for the MFE and (pseudo-)MEA-based methods, with respect to the latest datasets and energy parameters. We present three main findings. First, using the bootstrap percentile method, we show that the average F-measure accuracy of the MFE and (pseudo-)MEA-based algorithms, as measured on our largest datasets with over 2000 RNAs from diverse families, is a reliable estimate (within a 2% range with high confidence) of the accuracy of a population of RNA molecules represented by this set. However, average accuracy on smaller classes of RNAs such as a class of 89 Group I introns used previously in benchmarking algorithm accuracy is not reliable enough to draw meaningful conclusions about the relative merits of the MFE and MEA-based algorithms. Second, on our large datasets, the algorithm with best overall accuracy is a pseudo MEA-based algorithm of Hamada et al. that uses a generalized centroid estimator of base pairs. However, between MFE and other MEA-based methods, there is no clear winner in the sense that the relative accuracy of the MFE versus MEA-based algorithms changes depending on the underlying energy parameters. Third, of the four parameter sets we considered, the best accuracy for the MFE-, MEA-based, and pseudo-MEA-based methods is 0.686, 0.680, and 0.711, respectively (on a scale from 0 to 1 with 1 meaning perfect structure predictions) and is obtained with a thermodynamic parameter set obtained by Andronescu et al. called BL* (named after the Boltzmann likelihood method by which the parameters were derived). Large datasets should be used to obtain reliable measures of the accuracy of RNA structure prediction algorithms, and average accuracies on specific classes (such as Group I introns and Transfer RNAs) should be interpreted with caution, considering the relatively small size of currently available datasets for such classes. The accuracy of the MEA-based methods is significantly higher when using the BL* parameter set of Andronescu et al. than when using the parameters of Mathews and Turner, and there is no significant difference between the accuracy of MEA-based methods and MFE when using the BL* parameters. The pseudo-MEA-based method of Hamada et al. with the BL* parameter set significantly outperforms all other MFE and MEA-based algorithms on our large data sets.

  14. Genomic-Enabled Prediction Kernel Models with Random Intercepts for Multi-environment Trials.

    PubMed

    Cuevas, Jaime; Granato, Italo; Fritsche-Neto, Roberto; Montesinos-Lopez, Osval A; Burgueño, Juan; Bandeira E Sousa, Massaine; Crossa, José

    2018-03-28

    In this study, we compared the prediction accuracy of the main genotypic effect model (MM) without G×E interactions, the multi-environment single variance G×E deviation model (MDs), and the multi-environment environment-specific variance G×E deviation model (MDe) where the random genetic effects of the lines are modeled with the markers (or pedigree). With the objective of further modeling the genetic residual of the lines, we incorporated the random intercepts of the lines ([Formula: see text]) and generated another three models. Each of these 6 models were fitted with a linear kernel method (Genomic Best Linear Unbiased Predictor, GB) and a Gaussian Kernel (GK) method. We compared these 12 model-method combinations with another two multi-environment G×E interactions models with unstructured variance-covariances (MUC) using GB and GK kernels (4 model-method). Thus, we compared the genomic-enabled prediction accuracy of a total of 16 model-method combinations on two maize data sets with positive phenotypic correlations among environments, and on two wheat data sets with complex G×E that includes some negative and close to zero phenotypic correlations among environments. The two models (MDs and MDE with the random intercept of the lines and the GK method) were computationally efficient and gave high prediction accuracy in the two maize data sets. Regarding the more complex G×E wheat data sets, the prediction accuracy of the model-method combination with G×E, MDs and MDe, including the random intercepts of the lines with GK method had important savings in computing time as compared with the G×E interaction multi-environment models with unstructured variance-covariances but with lower genomic prediction accuracy. Copyright © 2018 Cuevas et al.

  15. Genomic-Enabled Prediction Kernel Models with Random Intercepts for Multi-environment Trials

    PubMed Central

    Cuevas, Jaime; Granato, Italo; Fritsche-Neto, Roberto; Montesinos-Lopez, Osval A.; Burgueño, Juan; Bandeira e Sousa, Massaine; Crossa, José

    2018-01-01

    In this study, we compared the prediction accuracy of the main genotypic effect model (MM) without G×E interactions, the multi-environment single variance G×E deviation model (MDs), and the multi-environment environment-specific variance G×E deviation model (MDe) where the random genetic effects of the lines are modeled with the markers (or pedigree). With the objective of further modeling the genetic residual of the lines, we incorporated the random intercepts of the lines (l) and generated another three models. Each of these 6 models were fitted with a linear kernel method (Genomic Best Linear Unbiased Predictor, GB) and a Gaussian Kernel (GK) method. We compared these 12 model-method combinations with another two multi-environment G×E interactions models with unstructured variance-covariances (MUC) using GB and GK kernels (4 model-method). Thus, we compared the genomic-enabled prediction accuracy of a total of 16 model-method combinations on two maize data sets with positive phenotypic correlations among environments, and on two wheat data sets with complex G×E that includes some negative and close to zero phenotypic correlations among environments. The two models (MDs and MDE with the random intercept of the lines and the GK method) were computationally efficient and gave high prediction accuracy in the two maize data sets. Regarding the more complex G×E wheat data sets, the prediction accuracy of the model-method combination with G×E, MDs and MDe, including the random intercepts of the lines with GK method had important savings in computing time as compared with the G×E interaction multi-environment models with unstructured variance-covariances but with lower genomic prediction accuracy. PMID:29476023

  16. Systematic Calibration for Ultra-High Accuracy Inertial Measurement Units.

    PubMed

    Cai, Qingzhong; Yang, Gongliu; Song, Ningfang; Liu, Yiliang

    2016-06-22

    An inertial navigation system (INS) has been widely used in challenging GPS environments. With the rapid development of modern physics, an atomic gyroscope will come into use in the near future with a predicted accuracy of 5 × 10(-6)°/h or better. However, existing calibration methods and devices can not satisfy the accuracy requirements of future ultra-high accuracy inertial sensors. In this paper, an improved calibration model is established by introducing gyro g-sensitivity errors, accelerometer cross-coupling errors and lever arm errors. A systematic calibration method is proposed based on a 51-state Kalman filter and smoother. Simulation results show that the proposed calibration method can realize the estimation of all the parameters using a common dual-axis turntable. Laboratory and sailing tests prove that the position accuracy in a five-day inertial navigation can be improved about 8% by the proposed calibration method. The accuracy can be improved at least 20% when the position accuracy of the atomic gyro INS can reach a level of 0.1 nautical miles/5 d. Compared with the existing calibration methods, the proposed method, with more error sources and high order small error parameters calibrated for ultra-high accuracy inertial measurement units (IMUs) using common turntables, has a great application potential in future atomic gyro INSs.

  17. Common polygenic variation enhances risk prediction for Alzheimer’s disease

    PubMed Central

    Sims, Rebecca; Bannister, Christian; Harold, Denise; Vronskaya, Maria; Majounie, Elisa; Badarinarayan, Nandini; Morgan, Kevin; Passmore, Peter; Holmes, Clive; Powell, John; Brayne, Carol; Gill, Michael; Mead, Simon; Goate, Alison; Cruchaga, Carlos; Lambert, Jean-Charles; van Duijn, Cornelia; Maier, Wolfgang; Ramirez, Alfredo; Holmans, Peter; Jones, Lesley; Hardy, John; Seshadri, Sudha; Schellenberg, Gerard D.; Amouyel, Philippe

    2015-01-01

    The identification of subjects at high risk for Alzheimer’s disease is important for prognosis and early intervention. We investigated the polygenic architecture of Alzheimer’s disease and the accuracy of Alzheimer’s disease prediction models, including and excluding the polygenic component in the model. This study used genotype data from the powerful dataset comprising 17 008 cases and 37 154 controls obtained from the International Genomics of Alzheimer’s Project (IGAP). Polygenic score analysis tested whether the alleles identified to associate with disease in one sample set were significantly enriched in the cases relative to the controls in an independent sample. The disease prediction accuracy was investigated in a subset of the IGAP data, a sample of 3049 cases and 1554 controls (for whom APOE genotype data were available) by means of sensitivity, specificity, area under the receiver operating characteristic curve (AUC) and positive and negative predictive values. We observed significant evidence for a polygenic component enriched in Alzheimer’s disease (P = 4.9 × 10−26). This enrichment remained significant after APOE and other genome-wide associated regions were excluded (P = 3.4 × 10−19). The best prediction accuracy AUC = 78.2% (95% confidence interval 77–80%) was achieved by a logistic regression model with APOE, the polygenic score, sex and age as predictors. In conclusion, Alzheimer’s disease has a significant polygenic component, which has predictive utility for Alzheimer’s disease risk and could be a valuable research tool complementing experimental designs, including preventative clinical trials, stem cell selection and high/low risk clinical studies. In modelling a range of sample disease prevalences, we found that polygenic scores almost doubles case prediction from chance with increased prediction at polygenic extremes. PMID:26490334

  18. Ottawa Ankle Rules and Subjective Surgeon Perception to Evaluate Radiograph Necessity Following Foot and Ankle Sprain

    PubMed Central

    Pires, RES; Pereira, AA; Abreu-e-Silva, GM; Labronici, PJ; Figueiredo, LB; Godoy-Santos, AL; Kfuri, M

    2014-01-01

    Background: Foot and ankle injuries are frequent in emergency departments. Although only a few patients with foot and ankle sprain present fractures and the fracture patterns are almost always simple, lack of fracture diagnosis can lead to poor functional outcomes. Aim: The present study aims to evaluate the reliability of the Ottawa ankle rules and the orthopedic surgeon subjective perception to assess foot and ankle fractures after sprains. Subjects and Methods: A cross-sectional study was conducted from July 2012 to December 2012. Ethical approval was granted. Two hundred seventy-four adult patients admitted to the emergency department with foot and/or ankle sprain were evaluated by an orthopedic surgeon who completed a questionnaire prior to radiographic assessment. The Ottawa ankle rules and subjective perception of foot and/or ankle fractures were evaluated on the questionnaire. Results: Thirteen percent (36/274) patients presented fracture. Orthopedic surgeon subjective analysis showed 55.6% sensitivity, 90.1% specificity, 46.5% positive predictive value and 92.9% negative predictive value. The general orthopedic surgeon opinion accuracy was 85.4%. The Ottawa ankle rules presented 97.2% sensitivity, 7.8% specificity, 13.9% positive predictive value, 95% negative predictive value and 19.9% accuracy respectively. Weight-bearing inability was the Ottawa ankle rule item that presented the highest reliability, 69.4% sensitivity, 61.6% specificity, 63.1% accuracy, 21.9% positive predictive value and 93% negative predictive value respectively. Conclusion: The Ottawa ankle rules showed high reliability for deciding when to take radiographs in foot and/or ankle sprains. Weight-bearing inability was the most important isolated item to predict fracture presence. Orthopedic surgeon subjective analysis to predict fracture possibility showed a high specificity rate, representing a confident method to exclude unnecessary radiographic exams. PMID:24971221

  19. Predicting coronary artery disease using different artificial neural network models.

    PubMed

    Colak, M Cengiz; Colak, Cemil; Kocatürk, Hasan; Sağiroğlu, Seref; Barutçu, Irfan

    2008-08-01

    Eight different learning algorithms used for creating artificial neural network (ANN) models and the different ANN models in the prediction of coronary artery disease (CAD) are introduced. This work was carried out as a retrospective case-control study. Overall, 124 consecutive patients who had been diagnosed with CAD by coronary angiography (at least 1 coronary stenosis > 50% in major epicardial arteries) were enrolled in the work. Angiographically, the 113 people (group 2) with normal coronary arteries were taken as control subjects. Multi-layered perceptrons ANN architecture were applied. The ANN models trained with different learning algorithms were performed in 237 records, divided into training (n=171) and testing (n=66) data sets. The performance of prediction was evaluated by sensitivity, specificity and accuracy values based on standard definitions. The results have demonstrated that ANN models trained with eight different learning algorithms are promising because of high (greater than 71%) sensitivity, specificity and accuracy values in the prediction of CAD. Accuracy, sensitivity and specificity values varied between 83.63%-100%, 86.46%-100% and 74.67%-100% for training, respectively. For testing, the values were more than 71% for sensitivity, 76% for specificity and 81% for accuracy. It may be proposed that the use of different learning algorithms other than backpropagation and larger sample sizes can improve the performance of prediction. The proposed ANN models trained with these learning algorithms could be used a promising approach for predicting CAD without the need for invasive diagnostic methods and could help in the prognostic clinical decision.

  20. Proposal for a New Predictive Model of Short-Term Mortality After Living Donor Liver Transplantation due to Acute Liver Failure.

    PubMed

    Chung, Hyun Sik; Lee, Yu Jung; Jo, Yun Sung

    2017-02-21

    BACKGROUND Acute liver failure (ALF) is known to be a rapidly progressive and fatal disease. Various models which could help to estimate the post-transplant outcome for ALF have been developed; however, none of them have been proved to be the definitive predictive model of accuracy. We suggest a new predictive model, and investigated which model has the highest predictive accuracy for the short-term outcome in patients who underwent living donor liver transplantation (LDLT) due to ALF. MATERIAL AND METHODS Data from a total 88 patients were collected retrospectively. King's College Hospital criteria (KCH), Child-Turcotte-Pugh (CTP) classification, and model for end-stage liver disease (MELD) score were calculated. Univariate analysis was performed, and then multivariate statistical adjustment for preoperative variables of ALF prognosis was performed. A new predictive model was developed, called the MELD conjugated serum phosphorus model (MELD-p). The individual diagnostic accuracy and cut-off value of models in predicting 3-month post-transplant mortality were evaluated using the area under the receiver operating characteristic curve (AUC). The difference in AUC between MELD-p and the other models was analyzed. The diagnostic improvement in MELD-p was assessed using the net reclassification improvement (NRI) and integrated discrimination improvement (IDI). RESULTS The MELD-p and MELD scores had high predictive accuracy (AUC >0.9). KCH and serum phosphorus had an acceptable predictive ability (AUC >0.7). The CTP classification failed to show discriminative accuracy in predicting 3-month post-transplant mortality. The difference in AUC between MELD-p and the other models had statistically significant associations with CTP and KCH. The cut-off value of MELD-p was 3.98 for predicting 3-month post-transplant mortality. The NRI was 9.9% and the IDI was 2.9%. CONCLUSIONS MELD-p score can predict 3-month post-transplant mortality better than other scoring systems after LDLT due to ALF. The recommended cut-off value of MELD-p is 3.98.

  1. Predicting Survival From Large Echocardiography and Electronic Health Record Datasets: Optimization With Machine Learning.

    PubMed

    Samad, Manar D; Ulloa, Alvaro; Wehner, Gregory J; Jing, Linyuan; Hartzel, Dustin; Good, Christopher W; Williams, Brent A; Haggerty, Christopher M; Fornwalt, Brandon K

    2018-06-09

    The goal of this study was to use machine learning to more accurately predict survival after echocardiography. Predicting patient outcomes (e.g., survival) following echocardiography is primarily based on ejection fraction (EF) and comorbidities. However, there may be significant predictive information within additional echocardiography-derived measurements combined with clinical electronic health record data. Mortality was studied in 171,510 unselected patients who underwent 331,317 echocardiograms in a large regional health system. We investigated the predictive performance of nonlinear machine learning models compared with that of linear logistic regression models using 3 different inputs: 1) clinical variables, including 90 cardiovascular-relevant International Classification of Diseases, Tenth Revision, codes, and age, sex, height, weight, heart rate, blood pressures, low-density lipoprotein, high-density lipoprotein, and smoking; 2) clinical variables plus physician-reported EF; and 3) clinical variables and EF, plus 57 additional echocardiographic measurements. Missing data were imputed with a multivariate imputation by using a chained equations algorithm (MICE). We compared models versus each other and baseline clinical scoring systems by using a mean area under the curve (AUC) over 10 cross-validation folds and across 10 survival durations (6 to 60 months). Machine learning models achieved significantly higher prediction accuracy (all AUC >0.82) over common clinical risk scores (AUC = 0.61 to 0.79), with the nonlinear random forest models outperforming logistic regression (p < 0.01). The random forest model including all echocardiographic measurements yielded the highest prediction accuracy (p < 0.01 across all models and survival durations). Only 10 variables were needed to achieve 96% of the maximum prediction accuracy, with 6 of these variables being derived from echocardiography. Tricuspid regurgitation velocity was more predictive of survival than LVEF. In a subset of studies with complete data for the top 10 variables, multivariate imputation by chained equations yielded slightly reduced predictive accuracies (difference in AUC of 0.003) compared with the original data. Machine learning can fully utilize large combinations of disparate input variables to predict survival after echocardiography with superior accuracy. Copyright © 2018 American College of Cardiology Foundation. Published by Elsevier Inc. All rights reserved.

  2. THE PANC 3 SCORE PREDICTING SEVERITY OF ACUTE PANCREATITIS.

    PubMed

    Beduschi, Murilo Gamba; Mello, André Luiz Parizi; VON-Mühlen, Bruno; Franzon, Orli

    2016-03-01

    About 20% of cases of acute pancreatitis progress to a severe form, leading to high mortality rates. Several studies suggested methods to identify patients that will progress more severely. However, most studies present problems when used on daily practice. To assess the efficacy of the PANC 3 score to predict acute pancreatitis severity and its relation to clinical outcome. Acute pancreatitis patients were assessed as to sex, age, body mass index (BMI), etiology of pancreatitis, intensive care need, length of stay, length of stay in intensive care unit and mortality. The PANC 3 score was determined within the first 24 hours after diagnosis and compared to acute pancreatitis grade of the Revised Atlanta classification. Out of 64 patients diagnosed with acute pancreatitis, 58 met the inclusion criteria. The PANC 3 score was positive in five cases (8.6%), pancreatitis progressed to a severe form in 10 cases (17.2%) and five patients (8.6%) died. Patients with a positive score and severe pancreatitis required intensive care more often, and stayed for a longer period in intensive care units. The PANC 3 score showed sensitivity of 50%, specificity of 100%, accuracy of 91.4%, positive predictive value of 100% and negative predictive value of 90.6% in prediction of severe acute pancreatitis. The PANC 3 score is useful to assess acute pancreatitis because it is easy and quick to use, has high specificity, high accuracy and high predictive value in prediction of severe acute pancreatitis.

  3. PSSP-RFE: accurate prediction of protein structural class by recursive feature extraction from PSI-BLAST profile, physical-chemical property and functional annotations.

    PubMed

    Li, Liqi; Cui, Xiang; Yu, Sanjiu; Zhang, Yuan; Luo, Zhong; Yang, Hua; Zhou, Yue; Zheng, Xiaoqi

    2014-01-01

    Protein structure prediction is critical to functional annotation of the massively accumulated biological sequences, which prompts an imperative need for the development of high-throughput technologies. As a first and key step in protein structure prediction, protein structural class prediction becomes an increasingly challenging task. Amongst most homological-based approaches, the accuracies of protein structural class prediction are sufficiently high for high similarity datasets, but still far from being satisfactory for low similarity datasets, i.e., below 40% in pairwise sequence similarity. Therefore, we present a novel method for accurate and reliable protein structural class prediction for both high and low similarity datasets. This method is based on Support Vector Machine (SVM) in conjunction with integrated features from position-specific score matrix (PSSM), PROFEAT and Gene Ontology (GO). A feature selection approach, SVM-RFE, is also used to rank the integrated feature vectors through recursively removing the feature with the lowest ranking score. The definitive top features selected by SVM-RFE are input into the SVM engines to predict the structural class of a query protein. To validate our method, jackknife tests were applied to seven widely used benchmark datasets, reaching overall accuracies between 84.61% and 99.79%, which are significantly higher than those achieved by state-of-the-art tools. These results suggest that our method could serve as an accurate and cost-effective alternative to existing methods in protein structural classification, especially for low similarity datasets.

  4. THE PANC 3 SCORE PREDICTING SEVERITY OF ACUTE PANCREATITIS

    PubMed Central

    BEDUSCHI, Murilo Gamba; MELLO, André Luiz Parizi; VON-MÜHLEN, Bruno; FRANZON, Orli

    2016-01-01

    Background : About 20% of cases of acute pancreatitis progress to a severe form, leading to high mortality rates. Several studies suggested methods to identify patients that will progress more severely. However, most studies present problems when used on daily practice. Objective : To assess the efficacy of the PANC 3 score to predict acute pancreatitis severity and its relation to clinical outcome. Methods : Acute pancreatitis patients were assessed as to sex, age, body mass index (BMI), etiology of pancreatitis, intensive care need, length of stay, length of stay in intensive care unit and mortality. The PANC 3 score was determined within the first 24 hours after diagnosis and compared to acute pancreatitis grade of the Revised Atlanta classification. Results : Out of 64 patients diagnosed with acute pancreatitis, 58 met the inclusion criteria. The PANC 3 score was positive in five cases (8.6%), pancreatitis progressed to a severe form in 10 cases (17.2%) and five patients (8.6%) died. Patients with a positive score and severe pancreatitis required intensive care more often, and stayed for a longer period in intensive care units. The PANC 3 score showed sensitivity of 50%, specificity of 100%, accuracy of 91.4%, positive predictive value of 100% and negative predictive value of 90.6% in prediction of severe acute pancreatitis. Conclusion : The PANC 3 score is useful to assess acute pancreatitis because it is easy and quick to use, has high specificity, high accuracy and high predictive value in prediction of severe acute pancreatitis. PMID:27120730

  5. Improving medical decisions for incapacitated persons: does focusing on "accurate predictions" lead to an inaccurate picture?

    PubMed

    Kim, Scott Y H

    2014-04-01

    The Patient Preference Predictor (PPP) proposal places a high priority on the accuracy of predicting patients' preferences and finds the performance of surrogates inadequate. However, the quest to develop a highly accurate, individualized statistical model has significant obstacles. First, it will be impossible to validate the PPP beyond the limit imposed by 60%-80% reliability of people's preferences for future medical decisions--a figure no better than the known average accuracy of surrogates. Second, evidence supports the view that a sizable minority of persons may not even have preferences to predict. Third, many, perhaps most, people express their autonomy just as much by entrusting their loved ones to exercise their judgment than by desiring to specifically control future decisions. Surrogate decision making faces none of these issues and, in fact, it may be more efficient, accurate, and authoritative than is commonly assumed.

  6. Surrogate Modeling of High-Fidelity Fracture Simulations for Real-Time Residual Strength Predictions

    NASA Technical Reports Server (NTRS)

    Spear, Ashley D.; Priest, Amanda R.; Veilleux, Michael G.; Ingraffea, Anthony R.; Hochhalter, Jacob D.

    2011-01-01

    A surrogate model methodology is described for predicting in real time the residual strength of flight structures with discrete-source damage. Starting with design of experiment, an artificial neural network is developed that takes as input discrete-source damage parameters and outputs a prediction of the structural residual strength. Target residual strength values used to train the artificial neural network are derived from 3D finite element-based fracture simulations. A residual strength test of a metallic, integrally-stiffened panel is simulated to show that crack growth and residual strength are determined more accurately in discrete-source damage cases by using an elastic-plastic fracture framework rather than a linear-elastic fracture mechanics-based method. Improving accuracy of the residual strength training data would, in turn, improve accuracy of the surrogate model. When combined, the surrogate model methodology and high-fidelity fracture simulation framework provide useful tools for adaptive flight technology.

  7. Surrogate Modeling of High-Fidelity Fracture Simulations for Real-Time Residual Strength Predictions

    NASA Technical Reports Server (NTRS)

    Spear, Ashley D.; Priest, Amanda R.; Veilleux, Michael G.; Ingraffea, Anthony R.; Hochhalter, Jacob D.

    2011-01-01

    A surrogate model methodology is described for predicting, during flight, the residual strength of aircraft structures that sustain discrete-source damage. Starting with design of experiment, an artificial neural network is developed that takes as input discrete-source damage parameters and outputs a prediction of the structural residual strength. Target residual strength values used to train the artificial neural network are derived from 3D finite element-based fracture simulations. Two ductile fracture simulations are presented to show that crack growth and residual strength are determined more accurately in discrete-source damage cases by using an elastic-plastic fracture framework rather than a linear-elastic fracture mechanics-based method. Improving accuracy of the residual strength training data does, in turn, improve accuracy of the surrogate model. When combined, the surrogate model methodology and high fidelity fracture simulation framework provide useful tools for adaptive flight technology.

  8. Fine Particulate Matter Predictions Using High Resolution Aerosol Optical Depth (AOD) Retrievals

    NASA Technical Reports Server (NTRS)

    Chudnovsky, Alexandra A.; Koutrakis, Petros; Kloog, Itai; Melly, Steven; Nordio, Francesco; Lyapustin, Alexei; Wang, Jujie; Schwartz, Joel

    2014-01-01

    To date, spatial-temporal patterns of particulate matter (PM) within urban areas have primarily been examined using models. On the other hand, satellites extend spatial coverage but their spatial resolution is too coarse. In order to address this issue, here we report on spatial variability in PM levels derived from high 1 km resolution AOD product of Multi-Angle Implementation of Atmospheric Correction (MAIAC) algorithm developed for MODIS satellite. We apply day-specific calibrations of AOD data to predict PM(sub 2.5) concentrations within the New England area of the United States. To improve the accuracy of our model, land use and meteorological variables were incorporated. We used inverse probability weighting (IPW) to account for nonrandom missingness of AOD and nested regions within days to capture spatial variation. With this approach we can control for the inherent day-to-day variability in the AOD-PM(sub 2.5) relationship, which depends on time-varying parameters such as particle optical properties, vertical and diurnal concentration profiles and ground surface reflectance among others. Out-of-sample "ten-fold" cross-validation was used to quantify the accuracy of model predictions. Our results show that the model-predicted PM(sub 2.5) mass concentrations are highly correlated with the actual observations, with out-of- sample R(sub 2) of 0.89. Furthermore, our study shows that the model captures the pollution levels along highways and many urban locations thereby extending our ability to investigate the spatial patterns of urban air quality, such as examining exposures in areas with high traffic. Our results also show high accuracy within the cities of Boston and New Haven thereby indicating that MAIAC data can be used to examine intra-urban exposure contrasts in PM(sub 2.5) levels.

  9. Building a knowledge-based statistical potential by capturing high-order inter-residue interactions and its applications in protein secondary structure assessment.

    PubMed

    Li, Yaohang; Liu, Hui; Rata, Ionel; Jakobsson, Eric

    2013-02-25

    The rapidly increasing number of protein crystal structures available in the Protein Data Bank (PDB) has naturally made statistical analyses feasible in studying complex high-order inter-residue correlations. In this paper, we report a context-based secondary structure potential (CSSP) for assessing the quality of predicted protein secondary structures generated by various prediction servers. CSSP is a sequence-position-specific knowledge-based potential generated based on the potentials of mean force approach, where high-order inter-residue interactions are taken into consideration. The CSSP potential is effective in identifying secondary structure predictions with good quality. In 56% of the targets in the CB513 benchmark, the optimal CSSP potential is able to recognize the native secondary structure or a prediction with Q3 accuracy higher than 90% as best scored in the predicted secondary structures generated by 10 popularly used secondary structure prediction servers. In more than 80% of the CB513 targets, the predicted secondary structures with the lowest CSSP potential values yield higher than 80% Q3 accuracy. Similar performance of CSSP is found on the CASP9 targets as well. Moreover, our computational results also show that the CSSP potential using triplets outperforms the CSSP potential using doublets and is currently better than the CSSP potential using quartets.

  10. Analysis of spatial distribution of land cover maps accuracy

    NASA Astrophysics Data System (ADS)

    Khatami, R.; Mountrakis, G.; Stehman, S. V.

    2017-12-01

    Land cover maps have become one of the most important products of remote sensing science. However, classification errors will exist in any classified map and affect the reliability of subsequent map usage. Moreover, classification accuracy often varies over different regions of a classified map. These variations of accuracy will affect the reliability of subsequent analyses of different regions based on the classified maps. The traditional approach of map accuracy assessment based on an error matrix does not capture the spatial variation in classification accuracy. Here, per-pixel accuracy prediction methods are proposed based on interpolating accuracy values from a test sample to produce wall-to-wall accuracy maps. Different accuracy prediction methods were developed based on four factors: predictive domain (spatial versus spectral), interpolation function (constant, linear, Gaussian, and logistic), incorporation of class information (interpolating each class separately versus grouping them together), and sample size. Incorporation of spectral domain as explanatory feature spaces of classification accuracy interpolation was done for the first time in this research. Performance of the prediction methods was evaluated using 26 test blocks, with 10 km × 10 km dimensions, dispersed throughout the United States. The performance of the predictions was evaluated using the area under the curve (AUC) of the receiver operating characteristic. Relative to existing accuracy prediction methods, our proposed methods resulted in improvements of AUC of 0.15 or greater. Evaluation of the four factors comprising the accuracy prediction methods demonstrated that: i) interpolations should be done separately for each class instead of grouping all classes together; ii) if an all-classes approach is used, the spectral domain will result in substantially greater AUC than the spatial domain; iii) for the smaller sample size and per-class predictions, the spectral and spatial domain yielded similar AUC; iv) for the larger sample size (i.e., very dense spatial sample) and per-class predictions, the spatial domain yielded larger AUC; v) increasing the sample size improved accuracy predictions with a greater benefit accruing to the spatial domain; and vi) the function used for interpolation had the smallest effect on AUC.

  11. Prediction of high incidence of dengue in the Philippines.

    PubMed

    Buczak, Anna L; Baugher, Benjamin; Babin, Steven M; Ramac-Thomas, Liane C; Guven, Erhan; Elbert, Yevgeniy; Koshute, Phillip T; Velasco, John Mark S; Roque, Vito G; Tayag, Enrique A; Yoon, In-Kyu; Lewis, Sheri H

    2014-04-01

    Accurate prediction of dengue incidence levels weeks in advance of an outbreak may reduce the morbidity and mortality associated with this neglected disease. Therefore, models were developed to predict high and low dengue incidence in order to provide timely forewarnings in the Philippines. Model inputs were chosen based on studies indicating variables that may impact dengue incidence. The method first uses Fuzzy Association Rule Mining techniques to extract association rules from these historical epidemiological, environmental, and socio-economic data, as well as climate data indicating future weather patterns. Selection criteria were used to choose a subset of these rules for a classifier, thereby generating a Prediction Model. The models predicted high or low incidence of dengue in a Philippines province four weeks in advance. The threshold between high and low was determined relative to historical incidence data. Model accuracy is described by Positive Predictive Value (PPV), Negative Predictive Value (NPV), Sensitivity, and Specificity computed on test data not previously used to develop the model. Selecting a model using the F0.5 measure, which gives PPV more importance than Sensitivity, gave these results: PPV = 0.780, NPV = 0.938, Sensitivity = 0.547, Specificity = 0.978. Using the F3 measure, which gives Sensitivity more importance than PPV, the selected model had PPV = 0.778, NPV = 0.948, Sensitivity = 0.627, Specificity = 0.974. The decision as to which model has greater utility depends on how the predictions will be used in a particular situation. This method builds prediction models for future dengue incidence in the Philippines and is capable of being modified for use in different situations; for diseases other than dengue; and for regions beyond the Philippines. The Philippines dengue prediction models predicted high or low incidence of dengue four weeks in advance of an outbreak with high accuracy, as measured by PPV, NPV, Sensitivity, and Specificity.

  12. Prediction of High Incidence of Dengue in the Philippines

    PubMed Central

    Buczak, Anna L.; Baugher, Benjamin; Babin, Steven M.; Ramac-Thomas, Liane C.; Guven, Erhan; Elbert, Yevgeniy; Koshute, Phillip T.; Velasco, John Mark S.; Roque, Vito G.; Tayag, Enrique A.; Yoon, In-Kyu; Lewis, Sheri H.

    2014-01-01

    Background Accurate prediction of dengue incidence levels weeks in advance of an outbreak may reduce the morbidity and mortality associated with this neglected disease. Therefore, models were developed to predict high and low dengue incidence in order to provide timely forewarnings in the Philippines. Methods Model inputs were chosen based on studies indicating variables that may impact dengue incidence. The method first uses Fuzzy Association Rule Mining techniques to extract association rules from these historical epidemiological, environmental, and socio-economic data, as well as climate data indicating future weather patterns. Selection criteria were used to choose a subset of these rules for a classifier, thereby generating a Prediction Model. The models predicted high or low incidence of dengue in a Philippines province four weeks in advance. The threshold between high and low was determined relative to historical incidence data. Principal Findings Model accuracy is described by Positive Predictive Value (PPV), Negative Predictive Value (NPV), Sensitivity, and Specificity computed on test data not previously used to develop the model. Selecting a model using the F0.5 measure, which gives PPV more importance than Sensitivity, gave these results: PPV = 0.780, NPV = 0.938, Sensitivity = 0.547, Specificity = 0.978. Using the F3 measure, which gives Sensitivity more importance than PPV, the selected model had PPV = 0.778, NPV = 0.948, Sensitivity = 0.627, Specificity = 0.974. The decision as to which model has greater utility depends on how the predictions will be used in a particular situation. Conclusions This method builds prediction models for future dengue incidence in the Philippines and is capable of being modified for use in different situations; for diseases other than dengue; and for regions beyond the Philippines. The Philippines dengue prediction models predicted high or low incidence of dengue four weeks in advance of an outbreak with high accuracy, as measured by PPV, NPV, Sensitivity, and Specificity. PMID:24722434

  13. Feature Selection Methods for Zero-Shot Learning of Neural Activity.

    PubMed

    Caceres, Carlos A; Roos, Matthew J; Rupp, Kyle M; Milsap, Griffin; Crone, Nathan E; Wolmetz, Michael E; Ratto, Christopher R

    2017-01-01

    Dimensionality poses a serious challenge when making predictions from human neuroimaging data. Across imaging modalities, large pools of potential neural features (e.g., responses from particular voxels, electrodes, and temporal windows) have to be related to typically limited sets of stimuli and samples. In recent years, zero-shot prediction models have been introduced for mapping between neural signals and semantic attributes, which allows for classification of stimulus classes not explicitly included in the training set. While choices about feature selection can have a substantial impact when closed-set accuracy, open-set robustness, and runtime are competing design objectives, no systematic study of feature selection for these models has been reported. Instead, a relatively straightforward feature stability approach has been adopted and successfully applied across models and imaging modalities. To characterize the tradeoffs in feature selection for zero-shot learning, we compared correlation-based stability to several other feature selection techniques on comparable data sets from two distinct imaging modalities: functional Magnetic Resonance Imaging and Electrocorticography. While most of the feature selection methods resulted in similar zero-shot prediction accuracies and spatial/spectral patterns of selected features, there was one exception; A novel feature/attribute correlation approach was able to achieve those accuracies with far fewer features, suggesting the potential for simpler prediction models that yield high zero-shot classification accuracy.

  14. Prediction of early and late preeclampsia by flow-mediated dilation of the brachial artery*

    PubMed Central

    Brandão, Augusto Henriques Fulgêncio; Evangelista, Aline Aarão; Martins, Raphaela Menin Franco; Leite, Henrique Vítor; Cabral, Antônio Carlos Vieira

    2014-01-01

    Objective To assess the accuracy in the prediction of both early and late preeclampsia by flow-mediated dilation of the brachial artery (FMD), a biophysical marker for endothelial dysfunction. Materials and Methods A total of 91 patients, considered at high risk for development of preeclampsia were submitted to brachial artery FMD between 24 and 28 weeks of gestation. Results Nineteen out of the selected patients developed preeclampsia, 8 in its early form and 11 in the late form. With a cut-off value of 6.5%, the FMD sensitivity for early preeclampsia prediction was 75.0%, with specificity of 73.3%, positive predictive value (PPV) of 32.4% and negative predictive value (NPV) of 91.9%. For the prediction of late preeclampsia, sensitivity = 83.3%, specificity = 73.2%, PPV = 34.4% and NPV = 96.2% were observed. And for the prediction of all associated forms of preeclampsia, sensitivity = 84.2%, specificity = 73.6%, PPV = 45.7% and NPV = 94.6% were observed. Conclusion FMD of the brachial artery is a test with good accuracy in the prediction of both early and late preeclampsia, which may represent a positive impact on the follow-up of pregnant women at high risk for developing this syndrome. PMID:25741086

  15. Aircraft noise prediction program validation

    NASA Technical Reports Server (NTRS)

    Shivashankara, B. N.

    1980-01-01

    A modular computer program (ANOPP) for predicting aircraft flyover and sideline noise was developed. A high quality flyover noise data base for aircraft that are representative of the U.S. commercial fleet was assembled. The accuracy of ANOPP with respect to the data base was determined. The data for source and propagation effects were analyzed and suggestions for improvements to the prediction methodology are given.

  16. Prognostic significance of electrical alternans versus signal averaged electrocardiography in predicting the outcome of electrophysiological testing and arrhythmia-free survival

    NASA Technical Reports Server (NTRS)

    Armoundas, A. A.; Rosenbaum, D. S.; Ruskin, J. N.; Garan, H.; Cohen, R. J.

    1998-01-01

    OBJECTIVE: To investigate the accuracy of signal averaged electrocardiography (SAECG) and measurement of microvolt level T wave alternans as predictors of susceptibility to ventricular arrhythmias. DESIGN: Analysis of new data from a previously published prospective investigation. SETTING: Electrophysiology laboratory of a major referral hospital. PATIENTS AND INTERVENTIONS: 43 patients, not on class I or class III antiarrhythmic drug treatment, undergoing invasive electrophysiological testing had SAECG and T wave alternans measurements. The SAECG was considered positive in the presence of one (SAECG-I) or two (SAECG-II) of three standard criteria. T wave alternans was considered positive if the alternans ratio exceeded 3.0. MAIN OUTCOME MEASURES: Inducibility of sustained ventricular tachycardia or fibrillation during electrophysiological testing, and 20 month arrhythmia-free survival. RESULTS: The accuracy of T wave alternans in predicting the outcome of electrophysiological testing was 84% (p < 0.0001). Neither SAECG-I (accuracy 60%; p < 0.29) nor SAECG-II (accuracy 71%; p < 0.10) was a statistically significant predictor of electrophysiological testing. SAECG, T wave alternans, electrophysiological testing, and follow up data were available in 36 patients while not on class I or III antiarrhythmic agents. The accuracy of T wave alternans in predicting the outcome of arrhythmia-free survival was 86% (p < 0.030). Neither SAECG-I (accuracy 65%; p < 0.21) nor SAECG-II (accuracy 71%; p < 0.48) was a statistically significant predictor of arrhythmia-free survival. CONCLUSIONS: T wave alternans was a highly significant predictor of the outcome of electrophysiological testing and arrhythmia-free survival, while SAECG was not a statistically significant predictor. Although these results need to be confirmed in prospective clinical studies, they suggest that T wave alternans may serve as a non-invasive probe for screening high risk populations for malignant ventricular arrhythmias.

  17. ir-HSP: Improved Recognition of Heat Shock Proteins, Their Families and Sub-types Based On g-Spaced Di-peptide Features and Support Vector Machine

    PubMed Central

    Meher, Prabina K.; Sahu, Tanmaya K.; Gahoi, Shachi; Rao, Atmakuri R.

    2018-01-01

    Heat shock proteins (HSPs) play a pivotal role in cell growth and variability. Since conventional approaches are expensive and voluminous protein sequence information is available in the post-genomic era, development of an automated and accurate computational tool is highly desirable for prediction of HSPs, their families and sub-types. Thus, we propose a computational approach for reliable prediction of all these components in a single framework and with higher accuracy as well. The proposed approach achieved an overall accuracy of ~84% in predicting HSPs, ~97% in predicting six different families of HSPs, and ~94% in predicting four types of DnaJ proteins, with bench mark datasets. The developed approach also achieved higher accuracy as compared to most of the existing approaches. For easy prediction of HSPs by experimental scientists, a user friendly web server ir-HSP is made freely accessible at http://cabgrid.res.in:8080/ir-hsp. The ir-HSP was further evaluated for proteome-wide identification of HSPs by using proteome datasets of eight different species, and ~50% of the predicted HSPs in each species were found to be annotated with InterPro HSP families/domains. Thus, the developed computational method is expected to supplement the currently available approaches for prediction of HSPs, to the extent of their families and sub-types. PMID:29379521

  18. Comparative evaluation of atom mapping algorithms for balanced metabolic reactions: application to Recon 3D

    DOE PAGES

    Preciat Gonzalez, German A.; El Assal, Lemmer R. P.; Noronha, Alberto; ...

    2017-06-14

    The mechanism of each chemical reaction in a metabolic network can be represented as a set of atom mappings, each of which relates an atom in a substrate metabolite to an atom of the same element in a product metabolite. Genome-scale metabolic network reconstructions typically represent biochemistry at the level of reaction stoichiometry. However, a more detailed representation at the underlying level of atom mappings opens the possibility for a broader range of biological, biomedical and biotechnological applications than with stoichiometry alone. Complete manual acquisition of atom mapping data for a genome-scale metabolic network is a laborious process. However, manymore » algorithms exist to predict atom mappings. How do their predictions compare to each other and to manually curated atom mappings? For more than four thousand metabolic reactions in the latest human metabolic reconstruction, Recon 3D, we compared the atom mappings predicted by six atom mapping algorithms. We also compared these predictions to those obtained by manual curation of atom mappings for over five hundred reactions distributed among all top level Enzyme Commission number classes. Five of the evaluated algorithms had similarly high prediction accuracy of over 91% when compared to manually curated atom mapped reactions. On average, the accuracy of the prediction was highest for reactions catalysed by oxidoreductases and lowest for reactions catalysed by ligases. In addition to prediction accuracy, the algorithms were evaluated on their accessibility, their advanced features, such as the ability to identify equivalent atoms, and their ability to map hydrogen atoms. In addition to prediction accuracy, we found that software accessibility and advanced features were fundamental to the selection of an atom mapping algorithm in practice.« less

  19. Comparative evaluation of atom mapping algorithms for balanced metabolic reactions: application to Recon 3D

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Preciat Gonzalez, German A.; El Assal, Lemmer R. P.; Noronha, Alberto

    The mechanism of each chemical reaction in a metabolic network can be represented as a set of atom mappings, each of which relates an atom in a substrate metabolite to an atom of the same element in a product metabolite. Genome-scale metabolic network reconstructions typically represent biochemistry at the level of reaction stoichiometry. However, a more detailed representation at the underlying level of atom mappings opens the possibility for a broader range of biological, biomedical and biotechnological applications than with stoichiometry alone. Complete manual acquisition of atom mapping data for a genome-scale metabolic network is a laborious process. However, manymore » algorithms exist to predict atom mappings. How do their predictions compare to each other and to manually curated atom mappings? For more than four thousand metabolic reactions in the latest human metabolic reconstruction, Recon 3D, we compared the atom mappings predicted by six atom mapping algorithms. We also compared these predictions to those obtained by manual curation of atom mappings for over five hundred reactions distributed among all top level Enzyme Commission number classes. Five of the evaluated algorithms had similarly high prediction accuracy of over 91% when compared to manually curated atom mapped reactions. On average, the accuracy of the prediction was highest for reactions catalysed by oxidoreductases and lowest for reactions catalysed by ligases. In addition to prediction accuracy, the algorithms were evaluated on their accessibility, their advanced features, such as the ability to identify equivalent atoms, and their ability to map hydrogen atoms. In addition to prediction accuracy, we found that software accessibility and advanced features were fundamental to the selection of an atom mapping algorithm in practice.« less

  20. Benefit of hepatitis C virus core antigen assay in prediction of therapeutic response to interferon and ribavirin combination therapy.

    PubMed

    Takahashi, Masahiko; Saito, Hidetsugu; Higashimoto, Makiko; Atsukawa, Kazuhiro; Ishii, Hiromasa

    2005-01-01

    A highly sensitive second-generation hepatitis C virus (HCV) core antigen assay has recently been developed. We compared viral disappearance and first-phase kinetics between commercially available core antigen (Ag) assays, Lumipulse Ortho HCV Ag (Lumipulse-Ag), and a quantitative HCV RNA PCR assay, Cobas Amplicor HCV Monitor test, version 2 (Amplicor M), to estimate the predictive benefit of a sustained viral response (SVR) and non-SVR in 44 genotype 1b patients treated with interferon (IFN) and ribavirin. HCV core Ag negativity could predict SVR on day 1 (sensitivity = 100%, specificity = 85.0%, accuracy = 86.4%), whereas RNA negativity could predict SVR on day 7 (sensitivity = 100%, specificity = 87.2%, accuracy = 88.6%). None of the patients who had detectable serum core Ag or RNA on day 14 achieved SVR (specificity = 100%). The predictive accuracy on day 14 was higher by RNA negativity (93.2%) than that by core Ag negativity (75.0%). The combined predictive criterion of both viral load decline during the first 24 h and basal viral load was also predictive for SVR; the sensitivities of Lumipulse-Ag and Amplicor-M were 45.5 and 47.6%, respectively, and the specificity was 100%. Amplicor-M had better predictive accuracy than Lumipulse-Ag in 2-week disappearance tests because it had better sensitivity. On the other hand, estimates of kinetic parameters were similar regardless of the detection method. Although the correlations between Lumipulse-Ag and Amplicor-M were good both before and 24 h after IFN administration, HCV core Ag seemed to be relatively lower 24 h after IFN administration than before administration. Lumipulse-Ag seems to be useful for detecting the HCV concentration during IFN therapy; however, we still need to understand the characteristics of the assay.

  1. Comparative evaluation of atom mapping algorithms for balanced metabolic reactions: application to Recon 3D.

    PubMed

    Preciat Gonzalez, German A; El Assal, Lemmer R P; Noronha, Alberto; Thiele, Ines; Haraldsdóttir, Hulda S; Fleming, Ronan M T

    2017-06-14

    The mechanism of each chemical reaction in a metabolic network can be represented as a set of atom mappings, each of which relates an atom in a substrate metabolite to an atom of the same element in a product metabolite. Genome-scale metabolic network reconstructions typically represent biochemistry at the level of reaction stoichiometry. However, a more detailed representation at the underlying level of atom mappings opens the possibility for a broader range of biological, biomedical and biotechnological applications than with stoichiometry alone. Complete manual acquisition of atom mapping data for a genome-scale metabolic network is a laborious process. However, many algorithms exist to predict atom mappings. How do their predictions compare to each other and to manually curated atom mappings? For more than four thousand metabolic reactions in the latest human metabolic reconstruction, Recon 3D, we compared the atom mappings predicted by six atom mapping algorithms. We also compared these predictions to those obtained by manual curation of atom mappings for over five hundred reactions distributed among all top level Enzyme Commission number classes. Five of the evaluated algorithms had similarly high prediction accuracy of over 91% when compared to manually curated atom mapped reactions. On average, the accuracy of the prediction was highest for reactions catalysed by oxidoreductases and lowest for reactions catalysed by ligases. In addition to prediction accuracy, the algorithms were evaluated on their accessibility, their advanced features, such as the ability to identify equivalent atoms, and their ability to map hydrogen atoms. In addition to prediction accuracy, we found that software accessibility and advanced features were fundamental to the selection of an atom mapping algorithm in practice.

  2. Predicting one repetition maximum equations accuracy in paralympic rowers with motor disabilities.

    PubMed

    Schwingel, Paulo A; Porto, Yuri C; Dias, Marcelo C M; Moreira, Mônica M; Zoppi, Cláudio C

    2009-05-01

    Predicting one repetition maximum equations accuracy in paralympic rowers Resistance training intensity is prescribed using percentiles of the maximum strength, defined as the maximum tension generated for a muscle or muscular group. This value is found through the application of the one maximal repetition (1RM) test. One maximal repetition test demands time and still is not appropriate for some populations because of the risk it offers. In recent years, the prediction of maximal strength, through predicting equations, has been used to prevent the inconveniences of the 1RM test. The purpose of this study was to verify the accuracy of 12 1RM predicting equations for disabled rowers. Nine male paralympic rowers (7 one-leg amputated rowers and 2 cerebral paralyzed rowers; age, 30 +/- 7.9 years; height, 175.1 +/- 5.9 cm; weight, 69 +/- 13.6 kg) performed 1RM test for lying T-bar row and flat barbell bench press exercises to determine upper-body strength and leg press exercise to determine lower-body strength. One maximal repetition test was performed, and based on submaximal repetitions loads, several linear and exponential equations models were tested with regard of their accuracy. We did not find statistical differences for lying T-bar row and bench press exercises between measured and predicted 1RM values (p = 0.84 and 0.23 for lying T-bar row and flat barbell bench press, respectively); however, leg press exercise reached a high significant difference between measured and predicted values (p < 0.01). In conclusion, rowers with motor disabilities tolerate 1RM testing procedures, and predicting 1RM equations are accurate for bench press and lying T-bar row, but not for leg press, in this kind of athlete.

  3. Achievable accuracy of hip screw holding power estimation by insertion torque measurement.

    PubMed

    Erani, Paolo; Baleani, Massimiliano

    2018-02-01

    To ensure stability of proximal femoral fractures, the hip screw must firmly engage into the femoral head. Some studies suggested that screw holding power into trabecular bone could be evaluated, intraoperatively, through measurement of screw insertion torque. However, those studies used synthetic bone, instead of trabecular bone, as host material or they did not evaluate accuracy of predictions. We determined prediction accuracy, also assessing the impact of screw design and host material. We measured, under highly-repeatable experimental conditions, disregarding clinical procedure complexities, insertion torque and pullout strength of four screw designs, both in 120 synthetic and 80 trabecular bone specimens of variable density. For both host materials, we calculated the root-mean-square error and the mean-absolute-percentage error of predictions based on the best fitting model of torque-pullout data, in both single-screw and merged dataset. Predictions based on screw-specific regression models were the most accurate. Host material impacts on prediction accuracy: the replacement of synthetic with trabecular bone decreased both root-mean-square errors, from 0.54 ÷ 0.76 kN to 0.21 ÷ 0.40 kN, and mean-absolute-percentage errors, from 14 ÷ 21% to 10 ÷ 12%. However, holding power predicted on low insertion torque remained inaccurate, with errors up to 40% for torques below 1 Nm. In poor-quality trabecular bone, tissue inhomogeneities likely affect pullout strength and insertion torque to different extents, limiting the predictive power of the latter. This bias decreases when the screw engages good-quality bone. Under this condition, predictions become more accurate although this result must be confirmed by close in-vitro simulation of the clinical procedure. Copyright © 2018 Elsevier Ltd. All rights reserved.

  4. Implementation of Chaotic Gaussian Particle Swarm Optimization for Optimize Learning-to-Rank Software Defect Prediction Model Construction

    NASA Astrophysics Data System (ADS)

    Buchari, M. A.; Mardiyanto, S.; Hendradjaya, B.

    2018-03-01

    Finding the existence of software defect as early as possible is the purpose of research about software defect prediction. Software defect prediction activity is required to not only state the existence of defects, but also to be able to give a list of priorities which modules require a more intensive test. Therefore, the allocation of test resources can be managed efficiently. Learning to rank is one of the approach that can provide defect module ranking data for the purposes of software testing. In this study, we propose a meta-heuristic chaotic Gaussian particle swarm optimization to improve the accuracy of learning to rank software defect prediction approach. We have used 11 public benchmark data sets as experimental data. Our overall results has demonstrated that the prediction models construct using Chaotic Gaussian Particle Swarm Optimization gets better accuracy on 5 data sets, ties in 5 data sets and gets worse in 1 data sets. Thus, we conclude that the application of Chaotic Gaussian Particle Swarm Optimization in Learning-to-Rank approach can improve the accuracy of the defect module ranking in data sets that have high-dimensional features.

  5. The role of feedback contingency in perceptual category learning.

    PubMed

    Ashby, F Gregory; Vucovich, Lauren E

    2016-11-01

    Feedback is highly contingent on behavior if it eventually becomes easy to predict, and weakly contingent on behavior if it remains difficult or impossible to predict even after learning is complete. Many studies have demonstrated that humans and nonhuman animals are highly sensitive to feedback contingency, but no known studies have examined how feedback contingency affects category learning, and current theories assign little or no importance to this variable. Two experiments examined the effects of contingency degradation on rule-based and information-integration category learning. In rule-based tasks, optimal accuracy is possible with a simple explicit rule, whereas optimal accuracy in information-integration tasks requires integrating information from 2 or more incommensurable perceptual dimensions. In both experiments, participants each learned rule-based or information-integration categories under either high or low levels of feedback contingency. The exact same stimuli were used in all 4 conditions, and optimal accuracy was identical in every condition. Learning was good in both high-contingency conditions, but most participants showed little or no evidence of learning in either low-contingency condition. Possible causes of these effects, as well as their theoretical implications, are discussed. (PsycINFO Database Record (c) 2016 APA, all rights reserved).

  6. The Role of Feedback Contingency in Perceptual Category Learning

    PubMed Central

    Ashby, F. Gregory; Vucovich, Lauren E.

    2016-01-01

    Feedback is highly contingent on behavior if it eventually becomes easy to predict, and weakly contingent on behavior if it remains difficult or impossible to predict even after learning is complete. Many studies have demonstrated that humans and nonhuman animals are highly sensitive to feedback contingency, but no known studies have examined how feedback contingency affects category learning, and current theories assign little or no importance to this variable. Two experiments examined the effects of contingency degradation on rule-based and information-integration category learning. In rule-based tasks, optimal accuracy is possible with a simple explicit rule, whereas optimal accuracy in information-integration tasks requires integrating information from two or more incommensurable perceptual dimensions. In both experiments, participants each learned rule-based or information-integration categories under either high or low levels of feedback contingency. The exact same stimuli were used in all four conditions and optimal accuracy was identical in every condition. Learning was good in both high-contingency conditions, but most participants showed little or no evidence of learning in either low-contingency condition. Possible causes of these effects are discussed, as well as their theoretical implications. PMID:27149393

  7. Transmembrane protein topology prediction using support vector machines.

    PubMed

    Nugent, Timothy; Jones, David T

    2009-05-26

    Alpha-helical transmembrane (TM) proteins are involved in a wide range of important biological processes such as cell signaling, transport of membrane-impermeable molecules, cell-cell communication, cell recognition and cell adhesion. Many are also prime drug targets, and it has been estimated that more than half of all drugs currently on the market target membrane proteins. However, due to the experimental difficulties involved in obtaining high quality crystals, this class of protein is severely under-represented in structural databases. In the absence of structural data, sequence-based prediction methods allow TM protein topology to be investigated. We present a support vector machine-based (SVM) TM protein topology predictor that integrates both signal peptide and re-entrant helix prediction, benchmarked with full cross-validation on a novel data set of 131 sequences with known crystal structures. The method achieves topology prediction accuracy of 89%, while signal peptides and re-entrant helices are predicted with 93% and 44% accuracy respectively. An additional SVM trained to discriminate between globular and TM proteins detected zero false positives, with a low false negative rate of 0.4%. We present the results of applying these tools to a number of complete genomes. Source code, data sets and a web server are freely available from http://bioinf.cs.ucl.ac.uk/psipred/. The high accuracy of TM topology prediction which includes detection of both signal peptides and re-entrant helices, combined with the ability to effectively discriminate between TM and globular proteins, make this method ideally suited to whole genome annotation of alpha-helical transmembrane proteins.

  8. Friends' knowledge of youth internalizing and externalizing adjustment: accuracy, bias, and the influences of gender, grade, positive friendship quality, and self-disclosure.

    PubMed

    Swenson, Lance P; Rose, Amanda J

    2009-08-01

    Some evidence suggests that close friends may be knowledgeable of youth's psychological adjustment. However, friends are understudied as reporters of adjustment. The current study examines associations between self- and friend-reports of internalizing and externalizing adjustment in a community sample of fifth-, eighth-, and eleventh-grade youth. The study extends prior work by considering the degree to which friends' reports of youth adjustment are accurate (i.e., predicted by youths' actual adjustment) versus biased (i.e., predicted by the friend reporters' own adjustment). Findings indicated stronger bias effects than accuracy effects, but the accuracy effects were significant for both internalizing and externalizing adjustment. Additionally, friends who perceived their relationships as high in positive quality, friends in relationships high in disclosure, and girls perceived youths' internalizing symptoms most accurately. Knowledge of externalizing adjustment was not influenced by gender, grade, relationship quality, or self-disclosure. Findings suggest that friends could play an important role in prevention efforts.

  9. SCPRED: accurate prediction of protein structural class for sequences of twilight-zone similarity with predicting sequences.

    PubMed

    Kurgan, Lukasz; Cios, Krzysztof; Chen, Ke

    2008-05-01

    Protein structure prediction methods provide accurate results when a homologous protein is predicted, while poorer predictions are obtained in the absence of homologous templates. However, some protein chains that share twilight-zone pairwise identity can form similar folds and thus determining structural similarity without the sequence similarity would be desirable for the structure prediction. The folding type of a protein or its domain is defined as the structural class. Current structural class prediction methods that predict the four structural classes defined in SCOP provide up to 63% accuracy for the datasets in which sequence identity of any pair of sequences belongs to the twilight-zone. We propose SCPRED method that improves prediction accuracy for sequences that share twilight-zone pairwise similarity with sequences used for the prediction. SCPRED uses a support vector machine classifier that takes several custom-designed features as its input to predict the structural classes. Based on extensive design that considers over 2300 index-, composition- and physicochemical properties-based features along with features based on the predicted secondary structure and content, the classifier's input includes 8 features based on information extracted from the secondary structure predicted with PSI-PRED and one feature computed from the sequence. Tests performed with datasets of 1673 protein chains, in which any pair of sequences shares twilight-zone similarity, show that SCPRED obtains 80.3% accuracy when predicting the four SCOP-defined structural classes, which is superior when compared with over a dozen recent competing methods that are based on support vector machine, logistic regression, and ensemble of classifiers predictors. The SCPRED can accurately find similar structures for sequences that share low identity with sequence used for the prediction. The high predictive accuracy achieved by SCPRED is attributed to the design of the features, which are capable of separating the structural classes in spite of their low dimensionality. We also demonstrate that the SCPRED's predictions can be successfully used as a post-processing filter to improve performance of modern fold classification methods.

  10. SCPRED: Accurate prediction of protein structural class for sequences of twilight-zone similarity with predicting sequences

    PubMed Central

    Kurgan, Lukasz; Cios, Krzysztof; Chen, Ke

    2008-01-01

    Background Protein structure prediction methods provide accurate results when a homologous protein is predicted, while poorer predictions are obtained in the absence of homologous templates. However, some protein chains that share twilight-zone pairwise identity can form similar folds and thus determining structural similarity without the sequence similarity would be desirable for the structure prediction. The folding type of a protein or its domain is defined as the structural class. Current structural class prediction methods that predict the four structural classes defined in SCOP provide up to 63% accuracy for the datasets in which sequence identity of any pair of sequences belongs to the twilight-zone. We propose SCPRED method that improves prediction accuracy for sequences that share twilight-zone pairwise similarity with sequences used for the prediction. Results SCPRED uses a support vector machine classifier that takes several custom-designed features as its input to predict the structural classes. Based on extensive design that considers over 2300 index-, composition- and physicochemical properties-based features along with features based on the predicted secondary structure and content, the classifier's input includes 8 features based on information extracted from the secondary structure predicted with PSI-PRED and one feature computed from the sequence. Tests performed with datasets of 1673 protein chains, in which any pair of sequences shares twilight-zone similarity, show that SCPRED obtains 80.3% accuracy when predicting the four SCOP-defined structural classes, which is superior when compared with over a dozen recent competing methods that are based on support vector machine, logistic regression, and ensemble of classifiers predictors. Conclusion The SCPRED can accurately find similar structures for sequences that share low identity with sequence used for the prediction. The high predictive accuracy achieved by SCPRED is attributed to the design of the features, which are capable of separating the structural classes in spite of their low dimensionality. We also demonstrate that the SCPRED's predictions can be successfully used as a post-processing filter to improve performance of modern fold classification methods. PMID:18452616

  11. Development and evaluation of a regression-based model to predict cesium-137 concentration ratios for saltwater fish.

    PubMed

    Pinder, John E; Rowan, David J; Smith, Jim T

    2016-02-01

    Data from published studies and World Wide Web sources were combined to develop a regression model to predict (137)Cs concentration ratios for saltwater fish. Predictions were developed from 1) numeric trophic levels computed primarily from random resampling of known food items and 2) K concentrations in the saltwater for 65 samplings from 41 different species from both the Atlantic and Pacific Oceans. A number of different models were initially developed and evaluated for accuracy which was assessed as the ratios of independently measured concentration ratios to those predicted by the model. In contrast to freshwater systems, were K concentrations are highly variable and are an important factor in affecting fish concentration ratios, the less variable K concentrations in saltwater were relatively unimportant in affecting concentration ratios. As a result, the simplest model, which used only trophic level as a predictor, had comparable accuracies to more complex models that also included K concentrations. A test of model accuracy involving comparisons of 56 published concentration ratios from 51 species of marine fish to those predicted by the model indicated that 52 of the predicted concentration ratios were within a factor of 2 of the observed concentration ratios. Copyright © 2015 Elsevier Ltd. All rights reserved.

  12. Predicting Sargassum blooms in the Caribbean Sea from MODIS observations

    NASA Astrophysics Data System (ADS)

    Wang, Mengqiu; Hu, Chuanmin

    2017-04-01

    Recurrent and significant Sargassum beaching events in the Caribbean Sea (CS) have caused serious environmental and economic problems, calling for a long-term prediction capacity of Sargassum blooms. Here we present predictions based on a hindcast of 2000-2016 observations from Moderate Resolution Imaging Spectroradiometer (MODIS), which showed Sargassum abundance in the CS and the Central West Atlantic (CWA), as well as connectivity between the two regions with time lags. This information was used to derive bloom and nonbloom probability matrices for each 1° square in the CS for the months of May-August, predicted from bloom conditions in a hotspot region in the CWA in February. A suite of standard statistical measures were used to gauge the prediction accuracy, among which the user's accuracy and kappa statistics showed high fidelity of the probability maps in predicting both blooms and nonblooms in the eastern CS with several months of lead time, with overall accuracy often exceeding 80%. The bloom probability maps from this hindcast analysis will provide early warnings to better study Sargassum blooms and prepare for beaching events near the study region. This approach may also be extendable to many other regions around the world that face similar challenges and opportunities of macroalgal blooms and beaching events.

  13. Can plantar soft tissue mechanics enhance prognosis of diabetic foot ulcer?

    PubMed

    Naemi, R; Chatzistergos, P; Suresh, S; Sundar, L; Chockalingam, N; Ramachandran, A

    2017-04-01

    To investigate if the assessment of the mechanical properties of plantar soft tissue can increase the accuracy of predicting Diabetic Foot Ulceration (DFU). 40 patients with diabetic neuropathy and no DFU were recruited. Commonly assessed clinical parameters along with plantar soft tissue stiffness and thickness were measured at baseline using ultrasound elastography technique. 7 patients developed foot ulceration during a 12months follow-up. Logistic regression was used to identify parameters that contribute to predicting the DFU incidence. The effect of using parameters related to the mechanical behaviour of plantar soft tissue on the specificity, sensitivity, prediction strength and accuracy of the predicting models for DFU was assessed. Patients with higher plantar soft tissue thickness and lower stiffness at the 1st Metatarsal head area showed an increased risk of DFU. Adding plantar soft tissue stiffness and thickness to the model improved its specificity (by 3%), sensitivity (by 14%), prediction accuracy (by 5%) and prognosis strength (by 1%). The model containing all predictors was able to effectively (χ 2 (8, N=40)=17.55, P<0.05) distinguish between the patients with and without DFU incidence. The mechanical properties of plantar soft tissue can be used to improve the predictability of DFU in moderate/high risk patients. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Performance of blend sign in predicting hematoma expansion in intracerebral hemorrhage: A meta-analysis.

    PubMed

    Yu, Zhiyuan; Zheng, Jun; Guo, Rui; Ma, Lu; Li, Mou; Wang, Xiaoze; Lin, Sen; Li, Hao; You, Chao

    2017-12-01

    Hematoma expansion is independently associated with poor outcome in intracerebral hemorrhage (ICH). Blend sign is a simple predictor for hematoma expansion on non-contrast computed tomography. However, its accuracy for predicting hematoma expansion is inconsistent in previous studies. This meta-analysis is aimed to systematically assess the performance of blend sign in predicting hematoma expansion in ICH. A systematic literature search was conducted. Original studies about predictive accuracy of blend sign for hematoma expansion in ICH were included. Pooled sensitivity, specificity, positive and negative likelihood ratios were calculated. Summary receiver operating characteristics curve was constructed. Publication bias was assessed by Deeks' funnel plot asymmetry test. A total of 5 studies with 2248 patients were included in this meta-analysis. The pooled sensitivity, specificity, positive and negative likelihood ratios of blend sign for predicting hematoma expansion were 0.28, 0.92, 3.4 and 0.78, respectively. The area under the curve (AUC) was 0.85. No significant publication bias was found. This meta-analysis demonstrates that blend sign is a useful predictor with high specificity for hematoma expansion in ICH. Further studies with larger sample size are still necessary to verify the accuracy of blend sign for predicting hematoma expansion. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Development of variable pathlength UV-vis spectroscopy combined with partial-least-squares regression for wastewater chemical oxygen demand (COD) monitoring.

    PubMed

    Chen, Baisheng; Wu, Huanan; Li, Sam Fong Yau

    2014-03-01

    To overcome the challenging task to select an appropriate pathlength for wastewater chemical oxygen demand (COD) monitoring with high accuracy by UV-vis spectroscopy in wastewater treatment process, a variable pathlength approach combined with partial-least squares regression (PLSR) was developed in this study. Two new strategies were proposed to extract relevant information of UV-vis spectral data from variable pathlength measurements. The first strategy was by data fusion with two data fusion levels: low-level data fusion (LLDF) and mid-level data fusion (MLDF). Predictive accuracy was found to improve, indicated by the lower root-mean-square errors of prediction (RMSEP) compared with those obtained for single pathlength measurements. Both fusion levels were found to deliver very robust PLSR models with residual predictive deviations (RPD) greater than 3 (i.e. 3.22 and 3.29, respectively). The second strategy involved calculating the slopes of absorbance against pathlength at each wavelength to generate slope-derived spectra. Without the requirement to select the optimal pathlength, the predictive accuracy (RMSEP) was improved by 20-43% as compared to single pathlength spectroscopy. Comparing to nine-factor models from fusion strategy, the PLSR model from slope-derived spectroscopy was found to be more parsimonious with only five factors and more robust with residual predictive deviation (RPD) of 3.72. It also offered excellent correlation of predicted and measured COD values with R(2) of 0.936. In sum, variable pathlength spectroscopy with the two proposed data analysis strategies proved to be successful in enhancing prediction performance of COD in wastewater and showed high potential to be applied in on-line water quality monitoring. Copyright © 2013 Elsevier B.V. All rights reserved.

  16. High accuracy prediction of beta-turns and their types using propensities and multiple alignments.

    PubMed

    Fuchs, Patrick F J; Alix, Alain J P

    2005-06-01

    We have developed a method that predicts both the presence and the type of beta-turns, using a straightforward approach based on propensities and multiple alignments. The propensities were calculated classically, but the way to use them for prediction was completely new: starting from a tetrapeptide sequence on which one wants to evaluate the presence of a beta-turn, the propensity for a given residue is modified by taking into account all the residues present in the multiple alignment at this position. The evaluation of a score is then done by weighting these propensities by the use of Position-specific score matrices generated by PSI-BLAST. The introduction of secondary structure information predicted by PSIPRED or SSPRO2 as well as taking into account the flanking residues around the tetrapeptide improved the accuracy greatly. This latter evaluated on a database of 426 reference proteins (previously used on other studies) by a sevenfold crossvalidation gave very good results with a Matthews Correlation Coefficient (MCC) of 0.42 and an overall prediction accuracy of 74.8%; this places our method among the best ones. A jackknife test was also done, which gave results within the same range. This shows that it is possible to reach neural networks accuracy with considerably less computional cost and complexity. Furthermore, propensities remain excellent descriptors of amino acid tendencies to belong to beta-turns, which can be useful for peptide or protein engineering and design. For beta-turn type prediction, we reached the best accuracy ever published in terms of MCC (except for the irregular type IV) in the range of 0.25-0.30 for types I, II, and I' and 0.13-0.15 for types VIII, II', and IV. To our knowledge, our method is the only one available on the Web that predicts types I' and II'. The accuracy evaluated on two larger databases of 547 and 823 proteins was not improved significantly. All of this was implemented into a Web server called COUDES (French acronym for: Chercher Ou Une Deviation Existe Surement), which is available at the following URL: http://bioserv.rpbs.jussieu.fr/Coudes/index.html within the new bioinformatics platform RPBS.

  17. Statistical validation of a solar wind propagation model from 1 to 10 AU

    NASA Astrophysics Data System (ADS)

    Zieger, Bertalan; Hansen, Kenneth C.

    2008-08-01

    A one-dimensional (1-D) numerical magnetohydrodynamic (MHD) code is applied to propagate the solar wind from 1 AU through 10 AU, i.e., beyond the heliocentric distance of Saturn's orbit, in a non-rotating frame of reference. The time-varying boundary conditions at 1 AU are obtained from hourly solar wind data observed near the Earth. Although similar MHD simulations have been carried out and used by several authors, very little work has been done to validate the statistical accuracy of such solar wind predictions. In this paper, we present an extensive analysis of the prediction efficiency, using 12 selected years of solar wind data from the major heliospheric missions Pioneer, Voyager, and Ulysses. We map the numerical solution to each spacecraft in space and time, and validate the simulation, comparing the propagated solar wind parameters with in-situ observations. We do not restrict our statistical analysis to the times of spacecraft alignment, as most of the earlier case studies do. Our superposed epoch analysis suggests that the prediction efficiency is significantly higher during periods with high recurrence index of solar wind speed, typically in the late declining phase of the solar cycle. Among the solar wind variables, the solar wind speed can be predicted to the highest accuracy, with a linear correlation of 0.75 on average close to the time of opposition. We estimate the accuracy of shock arrival times to be as high as 10-15 hours within ±75 d from apparent opposition during years with high recurrence index. During solar activity maximum, there is a clear bias for the model to predicted shocks arriving later than observed in the data, suggesting that during these periods, there is an additional acceleration mechanism in the solar wind that is not included in the model.

  18. Navigating highly elliptical earth orbiters with simultaneous VLBI from orthogonal baseline pairs

    NASA Technical Reports Server (NTRS)

    Frauenholz, Raymond B.

    1986-01-01

    Navigation strategies for determining highly elliptical orbits with VLBI are described. The predicted performance of wideband VLBI and Delta VLBI measurements obtained by orthogonal baseline pairs are compared for a 16-hr equatorial orbit. It is observed that the one-sigma apogee position accuracy improves two orders of magnitude to the meter level when Delta VLBI measurements are added to coherent Doppler and range, and the simpler VLBI strategy provides nearly the same orbit accuracy. The effects of differential measurement noise and acquisition geometry on orbit accuracy are investigated. The data reveal that quasar position uncertainty limits the accuracy of wideband Delta VLBI measurements, and that polar motion and baseline uncertainties and offsets between station clocks affect the wideband VLBI data. It is noted that differential one-way range (DOR) has performance nearly equal to that of the more complex Delta DOR and is recommended for use on spacecraft in high elliptical orbits.

  19. Development and validation of classifiers and variable subsets for predicting nursing home admission.

    PubMed

    Nuutinen, Mikko; Leskelä, Riikka-Leena; Suojalehto, Ella; Tirronen, Anniina; Komssi, Vesa

    2017-04-13

    In previous years a substantial number of studies have identified statistically important predictors of nursing home admission (NHA). However, as far as we know, the analyses have been done at the population-level. No prior research has analysed the prediction accuracy of a NHA model for individuals. This study is an analysis of 3056 longer-term home care customers in the city of Tampere, Finland. Data were collected from the records of social and health service usage and RAI-HC (Resident Assessment Instrument - Home Care) assessment system during January 2011 and September 2015. The aim was to find out the most efficient variable subsets to predict NHA for individuals and validate the accuracy. The variable subsets of predicting NHA were searched by sequential forward selection (SFS) method, a variable ranking metric and the classifiers of logistic regression (LR), support vector machine (SVM) and Gaussian naive Bayes (GNB). The validation of the results was guaranteed using randomly balanced data sets and cross-validation. The primary performance metrics for the classifiers were the prediction accuracy and AUC (average area under the curve). The LR and GNB classifiers achieved 78% accuracy for predicting NHA. The most important variables were RAI MAPLE (Method for Assigning Priority Levels), functional impairment (RAI IADL, Activities of Daily Living), cognitive impairment (RAI CPS, Cognitive Performance Scale), memory disorders (diagnoses G30-G32 and F00-F03) and the use of community-based health-service and prior hospital use (emergency visits and periods of care). The accuracy of the classifier for individuals was high enough to convince the officials of the city of Tampere to integrate the predictive model based on the findings of this study as a part of home care information system. Further work need to be done to evaluate variables that are modifiable and responsive to interventions.

  20. TH-CD-207A-07: Prediction of High Dimensional State Subject to Respiratory Motion: A Manifold Learning Approach

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, W; Sawant, A; Ruan, D

    Purpose: The development of high dimensional imaging systems (e.g. volumetric MRI, CBCT, photogrammetry systems) in image-guided radiotherapy provides important pathways to the ultimate goal of real-time volumetric/surface motion monitoring. This study aims to develop a prediction method for the high dimensional state subject to respiratory motion. Compared to conventional linear dimension reduction based approaches, our method utilizes manifold learning to construct a descriptive feature submanifold, where more efficient and accurate prediction can be performed. Methods: We developed a prediction framework for high-dimensional state subject to respiratory motion. The proposed method performs dimension reduction in a nonlinear setting to permit moremore » descriptive features compared to its linear counterparts (e.g., classic PCA). Specifically, a kernel PCA is used to construct a proper low-dimensional feature manifold, where low-dimensional prediction is performed. A fixed-point iterative pre-image estimation method is applied subsequently to recover the predicted value in the original state space. We evaluated and compared the proposed method with PCA-based method on 200 level-set surfaces reconstructed from surface point clouds captured by the VisionRT system. The prediction accuracy was evaluated with respect to root-mean-squared-error (RMSE) for both 200ms and 600ms lookahead lengths. Results: The proposed method outperformed PCA-based approach with statistically higher prediction accuracy. In one-dimensional feature subspace, our method achieved mean prediction accuracy of 0.86mm and 0.89mm for 200ms and 600ms lookahead lengths respectively, compared to 0.95mm and 1.04mm from PCA-based method. The paired t-tests further demonstrated the statistical significance of the superiority of our method, with p-values of 6.33e-3 and 5.78e-5, respectively. Conclusion: The proposed approach benefits from the descriptiveness of a nonlinear manifold and the prediction reliability in such low dimensional manifold. The fixed-point iterative approach turns out to work well practically for the pre-image recovery. Our approach is particularly suitable to facilitate managing respiratory motion in image-guide radiotherapy. This work is supported in part by NIH grant R01 CA169102-02.« less

  1. Accuracy of Predicted Genomic Breeding Values in Purebred and Crossbred Pigs.

    PubMed

    Hidalgo, André M; Bastiaansen, John W M; Lopes, Marcos S; Harlizius, Barbara; Groenen, Martien A M; de Koning, Dirk-Jan

    2015-05-26

    Genomic selection has been widely implemented in dairy cattle breeding when the aim is to improve performance of purebred animals. In pigs, however, the final product is a crossbred animal. This may affect the efficiency of methods that are currently implemented for dairy cattle. Therefore, the objective of this study was to determine the accuracy of predicted breeding values in crossbred pigs using purebred genomic and phenotypic data. A second objective was to compare the predictive ability of SNPs when training is done in either single or multiple populations for four traits: age at first insemination (AFI); total number of piglets born (TNB); litter birth weight (LBW); and litter variation (LVR). We performed marker-based and pedigree-based predictions. Within-population predictions for the four traits ranged from 0.21 to 0.72. Multi-population prediction yielded accuracies ranging from 0.18 to 0.67. Predictions across purebred populations as well as predicting genetic merit of crossbreds from their purebred parental lines for AFI performed poorly (not significantly different from zero). In contrast, accuracies of across-population predictions and accuracies of purebred to crossbred predictions for LBW and LVR ranged from 0.08 to 0.31 and 0.11 to 0.31, respectively. Accuracy for TNB was zero for across-population prediction, whereas for purebred to crossbred prediction it ranged from 0.08 to 0.22. In general, marker-based outperformed pedigree-based prediction across populations and traits. However, in some cases pedigree-based prediction performed similarly or outperformed marker-based prediction. There was predictive ability when purebred populations were used to predict crossbred genetic merit using an additive model in the populations studied. AFI was the only exception, indicating that predictive ability depends largely on the genetic correlation between PB and CB performance, which was 0.31 for AFI. Multi-population prediction was no better than within-population prediction for the purebred validation set. Accuracy of prediction was very trait-dependent. Copyright © 2015 Hidalgo et al.

  2. Diagnostic accuracy of high-definition CT coronary angiography in high-risk patients.

    PubMed

    Iyengar, S S; Morgan-Hughes, G; Ukoumunne, O; Clayton, B; Davies, E J; Nikolaou, V; Hyde, C J; Shore, A C; Roobottom, C A

    2016-02-01

    To assess the diagnostic accuracy of computed tomography coronary angiography (CTCA) using a combination of high-definition CT (HD-CTCA) and high level of reader experience, with invasive coronary angiography (ICA) as the reference standard, in high-risk patients for the investigation of coronary artery disease (CAD). Three hundred high-risk patients underwent HD-CTCA and ICA. Independent experts evaluated the images for the presence of significant CAD, defined primarily as the presence of moderate (≥ 50%) stenosis and secondarily as the presence of severe (≥ 70%) stenosis in at least one coronary segment, in a blinded fashion. HD-CTCA was compared to ICA as the reference standard. No patients were excluded. Two hundred and six patients (69%) had moderate and 178 (59%) had severe stenosis in at least one vessel at ICA. The sensitivity, specificity, positive predictive value, and negative predictive value were 97.1%, 97.9%, 99% and 93.9% for moderate stenosis, and 98.9%, 93.4%, 95.7% and 98.3%, for severe stenosis, on a per-patient basis. The combination of HD-CTCA and experienced readers applied to a high-risk population, results in high diagnostic accuracy comparable to ICA. Modern generation CT systems in experienced hands might be considered for an expanded role. Copyright © 2015 The Royal College of Radiologists. Published by Elsevier Ltd. All rights reserved.

  3. Model Predictions and Observed Performance of JWST's Cryogenic Position Metrology System

    NASA Technical Reports Server (NTRS)

    Lunt, Sharon R.; Rhodes, David; DiAntonio, Andrew; Boland, John; Wells, Conrad; Gigliotti, Trevis; Johanning, Gary

    2016-01-01

    The James Webb Space Telescope cryogenic testing requires measurement systems that both obtain a very high degree of accuracy and can function in that environment. Close-range photogrammetry was identified as meeting those criteria. Testing the capability of a close-range photogrammetric system prior to its existence is a challenging problem. Computer simulation was chosen over building a scaled mock-up to allow for increased flexibility in testing various configurations. Extensive validation work was done to ensure that the actual as-built system meet accuracy and repeatability requirements. The simulated image data predicted the uncertainty in measurement to be within specification and this prediction was borne out experimentally. Uncertainty at all levels was verified experimentally to be less than 0.1 millimeters.

  4. A new ionospheric index MF2

    NASA Astrophysics Data System (ADS)

    Mikhailov, A. V.; Mikhailov, V. V.

    1995-02-01

    A new ionospheric index MF2 to improve monthly median foF2 regression and prediction accuracy is proposed. The interhemispheric magnetic conjunction of the F2-region was used to derive this index for the northern hemisphere. Since the monthly MF2 index varies in regular way with the season and in the course of solar cycle this allows an easy long-term prediction. Using MF2 instead of direct solar R12 index considerably improves the quality of the foF2 versus solar activity level regression (by 30% for middle, and by 10% for high latitudes.) For the rising phase of solar cycle 22, MF2 yields much better foF2 prediction accuracy than Consultative Committee on International Radiopropagation (CCIR) numerical maps can achieve.

  5. Accuracy of binding mode prediction with a cascadic stochastic tunneling method.

    PubMed

    Fischer, Bernhard; Basili, Serena; Merlitz, Holger; Wenzel, Wolfgang

    2007-07-01

    We investigate the accuracy of the binding modes predicted for 83 complexes of the high-resolution subset of the ASTEX/CCDC receptor-ligand database using the atomistic FlexScreen approach with a simple forcefield-based scoring function. The median RMS deviation between experimental and predicted binding mode was just 0.83 A. Over 80% of the ligands dock within 2 A of the experimental binding mode, for 60 complexes the docking protocol locates the correct binding mode in all of ten independent simulations. Most docking failures arise because (a) the experimental structure clashed in our forcefield and is thus unattainable in the docking process or (b) because the ligand is stabilized by crystal water. 2007 Wiley-Liss, Inc.

  6. Predicting risky choices from brain activity patterns

    PubMed Central

    Helfinstein, Sarah M.; Schonberg, Tom; Congdon, Eliza; Karlsgodt, Katherine H.; Mumford, Jeanette A.; Sabb, Fred W.; Cannon, Tyrone D.; London, Edythe D.; Bilder, Robert M.; Poldrack, Russell A.

    2014-01-01

    Previous research has implicated a large network of brain regions in the processing of risk during decision making. However, it has not yet been determined if activity in these regions is predictive of choices on future risky decisions. Here, we examined functional MRI data from a large sample of healthy subjects performing a naturalistic risk-taking task and used a classification analysis approach to predict whether individuals would choose risky or safe options on upcoming trials. We were able to predict choice category successfully in 71.8% of cases. Searchlight analysis revealed a network of brain regions where activity patterns were reliably predictive of subsequent risk-taking behavior, including a number of regions known to play a role in control processes. Searchlights with significant predictive accuracy were primarily located in regions more active when preparing to avoid a risk than when preparing to engage in one, suggesting that risk taking may be due, in part, to a failure of the control systems necessary to initiate a safe choice. Additional analyses revealed that subject choice can be successfully predicted with minimal decrements in accuracy using highly condensed data, suggesting that information relevant for risky choice behavior is encoded in coarse global patterns of activation as well as within highly local activation within searchlights. PMID:24550270

  7. Accuracy, image quality, and radiation dose of prospectively ECG-triggered high-pitch dual-source CT angiography in infants and children with complex coarctation of the aorta.

    PubMed

    Xu, Jian; Zhao, Hongliang; Wang, Xiaoying; Bai, Yuxiang; Liu, Liwen; Liu, Ying; Wei, Mengqi; Li, Jian; Zheng, Minwen

    2014-10-01

    To evaluate the diagnostic accuracy, image quality, and radiation dose of prospective electrocardiogram (ECG)-triggered high-pitch dual-source computed tomography (DSCT) in infants and young children with complex coarctation of the aorta (CoA). Forty pediatric patients aged < 4 years with suspected CoA underwent prospective ECG-triggered high-pitch DSCT angiography and transthoracic echocardiography (TTE). Surgery and/or conventional cardiac angiography (CCA) were performed in all patients. The diagnostic accuracy of DSCT angiography and TTE was compared to the surgical and/or CCA findings. The causes of misdiagnosis and miss were analyzed, and the advantages and limitation of both imaging modalities were evaluated. Image quality of DSCT was evaluated, and effective radiation dose was calculated. The sensitivity, specificity, positive predictive value, negative predictive value, and overall diagnostic accuracy of DSCT in evaluation of complex CoA were 92.37%, 98.51%, 97.32%, 93.57%, and 96.25%, respectively. There was a significant difference in the accuracy between DSCT and TTE (χ² = 9.9, P<.05). For a total of 80 extracardiac anomalies, the sensitivity (98.8%, 79/80) of DSCT was greater than that of TTE (62.5%; 50 of 80). On the contrary, for 38 cardiac anomalies, the sensitivity (78.9%, 30 of 38) of DSCT was lesser than that of TTE (100%; 38 of 38). The mean score of image quality was 4.27 ± 0.73. The mean effective radiation dose was 0.20 ± 0.09 mSv. Prospective ECG-triggered high-pitch DSCT may be a clinical feasible modality in the evaluation of pediatric patients with complex CoA, providing adequate image quality, high diagnostic accuracy, and low radiation dose. Copyright © 2014 AUR. Published by Elsevier Inc. All rights reserved.

  8. Mining HIV protease cleavage data using genetic programming with a sum-product function.

    PubMed

    Yang, Zheng Rong; Dalby, Andrew R; Qiu, Jing

    2004-12-12

    In order to design effective HIV inhibitors, studying and understanding the mechanism of HIV protease cleavage specification is critical. Various methods have been developed to explore the specificity of HIV protease cleavage activity. However, success in both extracting discriminant rules and maintaining high prediction accuracy is still challenging. The earlier study had employed genetic programming with a min-max scoring function to extract discriminant rules with success. However, the decision will finally be degenerated to one residue making further improvement of the prediction accuracy difficult. The challenge of revising the min-max scoring function so as to improve the prediction accuracy motivated this study. This paper has designed a new scoring function called a sum-product function for extracting HIV protease cleavage discriminant rules using genetic programming methods. The experiments show that the new scoring function is superior to the min-max scoring function. The software package can be obtained by request to Dr Zheng Rong Yang.

  9. Genotype imputation from various low-density SNP panels and its impact on accuracy of genomic breeding values in pigs.

    PubMed

    Grossi, D A; Brito, L F; Jafarikia, M; Schenkel, F S; Feng, Z

    2018-04-30

    The uptake of genomic selection (GS) by the swine industry is still limited by the costs of genotyping. A feasible alternative to overcome this challenge is to genotype animals using an affordable low-density (LD) single nucleotide polymorphism (SNP) chip panel followed by accurate imputation to a high-density panel. Therefore, the main objective of this study was to screen incremental densities of LD panels in order to systematically identify one that balances the tradeoffs among imputation accuracy, prediction accuracy of genomic estimated breeding values (GEBVs), and genotype density (directly associated with genotyping costs). Genotypes using the Illumina Porcine60K BeadChip were available for 1378 Duroc (DU), 2361 Landrace (LA) and 3192 Yorkshire (YO) pigs. In addition, pseudo-phenotypes (de-regressed estimated breeding values) for five economically important traits were provided for the analysis. The reference population for genotyping imputation consisted of 931 DU, 1631 LA and 2103 YO animals and the remainder individuals were included in the validation population of each breed. A LD panel of 3000 evenly spaced SNPs (LD3K) yielded high imputation accuracy rates: 93.78% (DU), 97.07% (LA) and 97.00% (YO) and high correlations (>0.97) between the predicted GEBVs using the actual 60 K SNP genotypes and the imputed 60 K SNP genotypes for all traits and breeds. The imputation accuracy was influenced by the reference population size as well as the amount of parental genotype information available in the reference population. However, parental genotype information became less important when the LD panel had at least 3000 SNPs. The correlation of the GEBVs directly increased with an increase in imputation accuracy. When genotype information for both parents was available, a panel of 300 SNPs (imputed to 60 K) yielded GEBV predictions highly correlated (⩾0.90) with genomic predictions obtained based on the true 60 K panel, for all traits and breeds. For a small reference population size with no parents on reference population, it is recommended the use of a panel at least as dense as the LD3K and, when there are two parents in the reference population, a panel as small as the LD300 might be a feasible option. These findings are of great importance for the development of LD panels for swine in order to reduce genotyping costs, increase the uptake of GS and, therefore, optimize the profitability of the swine industry.

  10. EVALUATING RISK-PREDICTION MODELS USING DATA FROM ELECTRONIC HEALTH RECORDS.

    PubMed

    Wang, L E; Shaw, Pamela A; Mathelier, Hansie M; Kimmel, Stephen E; French, Benjamin

    2016-03-01

    The availability of data from electronic health records facilitates the development and evaluation of risk-prediction models, but estimation of prediction accuracy could be limited by outcome misclassification, which can arise if events are not captured. We evaluate the robustness of prediction accuracy summaries, obtained from receiver operating characteristic curves and risk-reclassification methods, if events are not captured (i.e., "false negatives"). We derive estimators for sensitivity and specificity if misclassification is independent of marker values. In simulation studies, we quantify the potential for bias in prediction accuracy summaries if misclassification depends on marker values. We compare the accuracy of alternative prognostic models for 30-day all-cause hospital readmission among 4548 patients discharged from the University of Pennsylvania Health System with a primary diagnosis of heart failure. Simulation studies indicate that if misclassification depends on marker values, then the estimated accuracy improvement is also biased, but the direction of the bias depends on the direction of the association between markers and the probability of misclassification. In our application, 29% of the 1143 readmitted patients were readmitted to a hospital elsewhere in Pennsylvania, which reduced prediction accuracy. Outcome misclassification can result in erroneous conclusions regarding the accuracy of risk-prediction models.

  11. Effects of urban microcellular environments on ray-tracing-based coverage predictions.

    PubMed

    Liu, Zhongyu; Guo, Lixin; Guan, Xiaowei; Sun, Jiejing

    2016-09-01

    The ray-tracing (RT) algorithm, which is based on geometrical optics and the uniform theory of diffraction, has become a typical deterministic approach of studying wave-propagation characteristics. Under urban microcellular environments, the RT method highly depends on detailed environmental information. The aim of this paper is to provide help in selecting the appropriate level of accuracy required in building databases to achieve good tradeoffs between database costs and prediction accuracy. After familiarization with the operating procedures of the RT-based prediction model, this study focuses on the effect of errors in environmental information on prediction results. The environmental information consists of two parts, namely, geometric and electrical parameters. The geometric information can be obtained from a digital map of a city. To study the effects of inaccuracies in geometry information (building layout) on RT-based coverage prediction, two different artificial erroneous maps are generated based on the original digital map, and systematic analysis is performed by comparing the predictions with the erroneous maps and measurements or the predictions with the original digital map. To make the conclusion more persuasive, the influence of random errors on RMS delay spread results is investigated. Furthermore, given the electrical parameters' effect on the accuracy of the predicted results of the RT model, the dielectric constant and conductivity of building materials are set with different values. The path loss and RMS delay spread under the same circumstances are simulated by the RT prediction model.

  12. Improved method for predicting protein fold patterns with ensemble classifiers.

    PubMed

    Chen, W; Liu, X; Huang, Y; Jiang, Y; Zou, Q; Lin, C

    2012-01-27

    Protein folding is recognized as a critical problem in the field of biophysics in the 21st century. Predicting protein-folding patterns is challenging due to the complex structure of proteins. In an attempt to solve this problem, we employed ensemble classifiers to improve prediction accuracy. In our experiments, 188-dimensional features were extracted based on the composition and physical-chemical property of proteins and 20-dimensional features were selected using a coupled position-specific scoring matrix. Compared with traditional prediction methods, these methods were superior in terms of prediction accuracy. The 188-dimensional feature-based method achieved 71.2% accuracy in five cross-validations. The accuracy rose to 77% when we used a 20-dimensional feature vector. These methods were used on recent data, with 54.2% accuracy. Source codes and dataset, together with web server and software tools for prediction, are available at: http://datamining.xmu.edu.cn/main/~cwc/ProteinPredict.html.

  13. Prostatectomy-based validation of combined urine and plasma test for predicting high grade prostate cancer.

    PubMed

    Albitar, Maher; Ma, Wanlong; Lund, Lars; Shahbaba, Babak; Uchio, Edward; Feddersen, Søren; Moylan, Donald; Wojno, Kirk; Shore, Neal

    2018-03-01

    Distinguishing between low- and high-grade prostate cancers (PCa) is important, but biopsy may underestimate the actual grade of cancer. We have previously shown that urine/plasma-based prostate-specific biomarkers can predict high grade PCa. Our objective was to determine the accuracy of a test using cell-free RNA levels of biomarkers in predicting prostatectomy results. This multicenter community-based prospective study was conducted using urine/blood samples collected from 306 patients. All recruited patients were treatment-naïve, without metastases, and had been biopsied, designated a Gleason Score (GS) based on biopsy, and assigned to prostatectomy prior to participation in the study. The primary outcome measure was the urine/plasma test accuracy in predicting high grade PCa on prostatectomy compared with biopsy findings. Sensitivity and specificity were calculated using standard formulas, while comparisons between groups were performed using the Wilcoxon Rank Sum, Kruskal-Wallis, Chi-Square, and Fisher's exact test. GS as assigned by standard 10-12 core biopsies was 3 + 3 in 90 (29.4%), 3 + 4 in 122 (39.8%), 4 + 3 in 50 (16.3%), and > 4 + 3 in 44 (14.4%) patients. The urine/plasma assay confirmed a previous validation and was highly accurate in predicting the presence of high-grade PCa (Gleason ≥3 + 4) with sensitivity between 88% and 95% as verified by prostatectomy findings. GS was upgraded after prostatectomy in 27% of patients and downgraded in 12% of patients. This plasma/urine biomarker test accurately predicts high grade cancer as determined by prostatectomy with a sensitivity at 92-97%, while the sensitivity of core biopsies was 78%. © 2018 Wiley Periodicals, Inc.

  14. Genomic-Enabled Prediction in Maize Using Kernel Models with Genotype × Environment Interaction

    PubMed Central

    Bandeira e Sousa, Massaine; Cuevas, Jaime; de Oliveira Couto, Evellyn Giselly; Pérez-Rodríguez, Paulino; Jarquín, Diego; Fritsche-Neto, Roberto; Burgueño, Juan; Crossa, Jose

    2017-01-01

    Multi-environment trials are routinely conducted in plant breeding to select candidates for the next selection cycle. In this study, we compare the prediction accuracy of four developed genomic-enabled prediction models: (1) single-environment, main genotypic effect model (SM); (2) multi-environment, main genotypic effects model (MM); (3) multi-environment, single variance G×E deviation model (MDs); and (4) multi-environment, environment-specific variance G×E deviation model (MDe). Each of these four models were fitted using two kernel methods: a linear kernel Genomic Best Linear Unbiased Predictor, GBLUP (GB), and a nonlinear kernel Gaussian kernel (GK). The eight model-method combinations were applied to two extensive Brazilian maize data sets (HEL and USP data sets), having different numbers of maize hybrids evaluated in different environments for grain yield (GY), plant height (PH), and ear height (EH). Results show that the MDe and the MDs models fitted with the Gaussian kernel (MDe-GK, and MDs-GK) had the highest prediction accuracy. For GY in the HEL data set, the increase in prediction accuracy of SM-GK over SM-GB ranged from 9 to 32%. For the MM, MDs, and MDe models, the increase in prediction accuracy of GK over GB ranged from 9 to 49%. For GY in the USP data set, the increase in prediction accuracy of SM-GK over SM-GB ranged from 0 to 7%. For the MM, MDs, and MDe models, the increase in prediction accuracy of GK over GB ranged from 34 to 70%. For traits PH and EH, gains in prediction accuracy of models with GK compared to models with GB were smaller than those achieved in GY. Also, these gains in prediction accuracy decreased when a more difficult prediction problem was studied. PMID:28455415

  15. Genomic-Enabled Prediction in Maize Using Kernel Models with Genotype × Environment Interaction.

    PubMed

    Bandeira E Sousa, Massaine; Cuevas, Jaime; de Oliveira Couto, Evellyn Giselly; Pérez-Rodríguez, Paulino; Jarquín, Diego; Fritsche-Neto, Roberto; Burgueño, Juan; Crossa, Jose

    2017-06-07

    Multi-environment trials are routinely conducted in plant breeding to select candidates for the next selection cycle. In this study, we compare the prediction accuracy of four developed genomic-enabled prediction models: (1) single-environment, main genotypic effect model (SM); (2) multi-environment, main genotypic effects model (MM); (3) multi-environment, single variance G×E deviation model (MDs); and (4) multi-environment, environment-specific variance G×E deviation model (MDe). Each of these four models were fitted using two kernel methods: a linear kernel Genomic Best Linear Unbiased Predictor, GBLUP (GB), and a nonlinear kernel Gaussian kernel (GK). The eight model-method combinations were applied to two extensive Brazilian maize data sets (HEL and USP data sets), having different numbers of maize hybrids evaluated in different environments for grain yield (GY), plant height (PH), and ear height (EH). Results show that the MDe and the MDs models fitted with the Gaussian kernel (MDe-GK, and MDs-GK) had the highest prediction accuracy. For GY in the HEL data set, the increase in prediction accuracy of SM-GK over SM-GB ranged from 9 to 32%. For the MM, MDs, and MDe models, the increase in prediction accuracy of GK over GB ranged from 9 to 49%. For GY in the USP data set, the increase in prediction accuracy of SM-GK over SM-GB ranged from 0 to 7%. For the MM, MDs, and MDe models, the increase in prediction accuracy of GK over GB ranged from 34 to 70%. For traits PH and EH, gains in prediction accuracy of models with GK compared to models with GB were smaller than those achieved in GY. Also, these gains in prediction accuracy decreased when a more difficult prediction problem was studied. Copyright © 2017 Bandeira e Sousa et al.

  16. Population variation in isotopic composition of shorebird feathers: Implications for determining molting grounds

    USGS Publications Warehouse

    Torres-Dowdall, J.; Farmer, A.H.; Bucher, E.H.; Rye, R.O.; Landis, G.

    2009-01-01

    Stable isotope analyses have revolutionized the study of migratory connectivity. However, as with all tools, their limitations must be understood in order to derive the maximum benefit of a particular application. The goal of this study was to evaluate the efficacy of stable isotopes of C, N, H, O and S for assigning known-origin feathers to the molting sites of migrant shorebird species wintering and breeding in Argentina. Specific objectives were to: 1) compare the efficacy of the technique for studying shorebird species with different migration patterns, life histories and habitat-use patterns; 2) evaluate the grouping of species with similar migration and habitat use patterns in a single analysis to potentially improve prediction accuracy; and 3) evaluate the potential gains in prediction accuracy that might be achieved from using multiple stable isotopes. The efficacy of stable isotope ratios to determine origin was found to vary with species. While one species (White-rumped Sandpiper, Calidris fuscicollis) had high levels of accuracy assigning samples to known origin (91% of samples correctly assigned), another (Collared Plover, Charadrius collaris) showed low levels of accuracy (52% of samples correctly assigned). Intra-individual variability may account for this difference in efficacy. The prediction model for three species with similar migration and habitat-use patterns performed poorly compared with the model for just one of the species (71% versus 91% of samples correctly assigned). Thus, combining multiple sympatric species may not improve model prediction accuracy. Increasing the number of stable isotopes in the analyses increased the accuracy of assigning shorebirds to their molting origin, but the best combination - involving a subset of all the isotopes analyzed - varied among species.

  17. Value of lower respiratory tract surveillance cultures to predict bacterial pathogens in ventilator-associated pneumonia: systematic review and diagnostic test accuracy meta-analysis.

    PubMed

    Brusselaers, Nele; Labeau, Sonia; Vogelaers, Dirk; Blot, Stijn

    2013-03-01

    In ventilator-associated pneumonia (VAP), early appropriate antimicrobial therapy may be hampered by involvement of multidrug-resistant (MDR) pathogens. A systematic review and diagnostic test accuracy meta-analysis were performed to analyse whether lower respiratory tract surveillance cultures accurately predict the causative pathogens of subsequent VAP in adult patients. Selection and assessment of eligibility were performed by three investigators by mutual consideration. Of the 525 studies retrieved, 14 were eligible for inclusion (all in English; published since 1994), accounting for 791 VAP episodes. The following data were collected: study and population characteristics; in- and exclusion criteria; diagnostic criteria for VAP; microbiological workup of surveillance and diagnostic VAP cultures. Sub-analyses were conducted for VAP caused by Staphylococcus aureus, Pseudomonas spp., and Acinetobacter spp., MDR microorganisms, frequency of sampling, and consideration of all versus the most recent surveillance cultures. The meta-analysis showed a high accuracy of surveillance cultures, with pooled sensitivities up to 0.75 and specificities up to 0.92 in culture-positive VAP. The area under the curve (AUC) of the hierarchical summary receiver-operating characteristic curve demonstrates moderate accuracy (AUC: 0.90) in predicting multidrug resistance. A sampling frequency of >2/week (sensitivity 0.79; specificity 0.96) and consideration of only the most recent surveillance culture (sensitivity 0.78; specificity 0.96) are associated with a higher accuracy of prediction. This study provides evidence for the benefit of surveillance cultures in predicting MDR bacterial pathogens in VAP. However, clinical and statistical heterogeneity, limited samples sizes, and bias remain important limitations of this meta-analysis.

  18. Homology to peptide pattern for annotation of carbohydrate-active enzymes and prediction of function.

    PubMed

    Busk, P K; Pilgaard, B; Lezyk, M J; Meyer, A S; Lange, L

    2017-04-12

    Carbohydrate-active enzymes are found in all organisms and participate in key biological processes. These enzymes are classified in 274 families in the CAZy database but the sequence diversity within each family makes it a major task to identify new family members and to provide basis for prediction of enzyme function. A fast and reliable method for de novo annotation of genes encoding carbohydrate-active enzymes is to identify conserved peptides in the curated enzyme families followed by matching of the conserved peptides to the sequence of interest as demonstrated for the glycosyl hydrolase and the lytic polysaccharide monooxygenase families. This approach not only assigns the enzymes to families but also provides functional prediction of the enzymes with high accuracy. We identified conserved peptides for all enzyme families in the CAZy database with Peptide Pattern Recognition. The conserved peptides were matched to protein sequence for de novo annotation and functional prediction of carbohydrate-active enzymes with the Hotpep method. Annotation of protein sequences from 12 bacterial and 16 fungal genomes to families with Hotpep had an accuracy of 0.84 (measured as F1-score) compared to semiautomatic annotation by the CAZy database whereas the dbCAN HMM-based method had an accuracy of 0.77 with optimized parameters. Furthermore, Hotpep provided a functional prediction with 86% accuracy for the annotated genes. Hotpep is available as a stand-alone application for MS Windows. Hotpep is a state-of-the-art method for automatic annotation and functional prediction of carbohydrate-active enzymes.

  19. Predicting the accuracy of ligand overlay methods with Random Forest models.

    PubMed

    Nandigam, Ravi K; Evans, David A; Erickson, Jon A; Kim, Sangtae; Sutherland, Jeffrey J

    2008-12-01

    The accuracy of binding mode prediction using standard molecular overlay methods (ROCS, FlexS, Phase, and FieldCompare) is studied. Previous work has shown that simple decision tree modeling can be used to improve accuracy by selection of the best overlay template. This concept is extended to the use of Random Forest (RF) modeling for template and algorithm selection. An extensive data set of 815 ligand-bound X-ray structures representing 5 gene families was used for generating ca. 70,000 overlays using four programs. RF models, trained using standard measures of ligand and protein similarity and Lipinski-related descriptors, are used for automatically selecting the reference ligand and overlay method maximizing the probability of reproducing the overlay deduced from X-ray structures (i.e., using rmsd < or = 2 A as the criteria for success). RF model scores are highly predictive of overlay accuracy, and their use in template and method selection produces correct overlays in 57% of cases for 349 overlay ligands not used for training RF models. The inclusion in the models of protein sequence similarity enables the use of templates bound to related protein structures, yielding useful results even for proteins having no available X-ray structures.

  20. Prediction of missing links and reconstruction of complex networks

    NASA Astrophysics Data System (ADS)

    Zhang, Cheng-Jun; Zeng, An

    2016-04-01

    Predicting missing links in complex networks is of great significance from both theoretical and practical point of view, which not only helps us understand the evolution of real systems but also relates to many applications in social, biological and online systems. In this paper, we study the features of different simple link prediction methods, revealing that they may lead to the distortion of networks’ structural and dynamical properties. Moreover, we find that high prediction accuracy is not definitely corresponding to a high performance in preserving the network properties when using link prediction methods to reconstruct networks. Our work highlights the importance of considering the feedback effect of the link prediction methods on network properties when designing the algorithms.

  1. Prediction of drug synergy in cancer using ensemble-based machine learning techniques

    NASA Astrophysics Data System (ADS)

    Singh, Harpreet; Rana, Prashant Singh; Singh, Urvinder

    2018-04-01

    Drug synergy prediction plays a significant role in the medical field for inhibiting specific cancer agents. It can be developed as a pre-processing tool for therapeutic successes. Examination of different drug-drug interaction can be done by drug synergy score. It needs efficient regression-based machine learning approaches to minimize the prediction errors. Numerous machine learning techniques such as neural networks, support vector machines, random forests, LASSO, Elastic Nets, etc., have been used in the past to realize requirement as mentioned above. However, these techniques individually do not provide significant accuracy in drug synergy score. Therefore, the primary objective of this paper is to design a neuro-fuzzy-based ensembling approach. To achieve this, nine well-known machine learning techniques have been implemented by considering the drug synergy data. Based on the accuracy of each model, four techniques with high accuracy are selected to develop ensemble-based machine learning model. These models are Random forest, Fuzzy Rules Using Genetic Cooperative-Competitive Learning method (GFS.GCCL), Adaptive-Network-Based Fuzzy Inference System (ANFIS) and Dynamic Evolving Neural-Fuzzy Inference System method (DENFIS). Ensembling is achieved by evaluating the biased weighted aggregation (i.e. adding more weights to the model with a higher prediction score) of predicted data by selected models. The proposed and existing machine learning techniques have been evaluated on drug synergy score data. The comparative analysis reveals that the proposed method outperforms others in terms of accuracy, root mean square error and coefficient of correlation.

  2. Validation of a short cognitive battery to screen for fitness-to-drive of people with multiple sclerosis.

    PubMed

    Akinwuntan, A E; Backus, D; Grayson, J; Devos, H

    2018-05-26

    Some symptoms of multiple sclerosis (MS) affect driving. In a recent study, performance on five cognitive tests predicted the on-road test performance of individuals with relapsing-remitting MS with 91% accuracy, 70% sensitivity and 97% specificity. However, the accuracy with which the battery will predict the driving performance of a different cohort that includes all types of MS is unknown. Participants (n = 118; 48 ± 9 years of age; 97 females) performed a comprehensive off-road evaluation that lasted about 3 h and a standardized on-road test that lasted approximately 45 min over a 2-day period within the same week. Performance on the five cognitive tests was used to predict participants' performance on the standardized on-road test. Performance on the five tests together predicted outcome of the on-road test with 82% accuracy, 42% sensitivity and 90% specificity. The accuracy of predicting the on-road performance of a new MS cohort using performance on the battery of five cognitive tests remained very high (82%). The battery, which was administrable in <45 min and cost ~$150, was better at identifying those who actually passed the on-road test (90% specificity). The sensitivity (42%) of the battery indicated that it should not be used as the sole determinant of poor driving-related cognitive skills. A fail performance on the battery should only imply that more comprehensive testing is warranted. © 2018 EAN.

  3. Can species distribution models really predict the expansion of invasive species?

    PubMed

    Barbet-Massin, Morgane; Rome, Quentin; Villemant, Claire; Courchamp, Franck

    2018-01-01

    Predictive studies are of paramount importance for biological invasions, one of the biggest threats for biodiversity. To help and better prioritize management strategies, species distribution models (SDMs) are often used to predict the potential invasive range of introduced species. Yet, SDMs have been regularly criticized, due to several strong limitations, such as violating the equilibrium assumption during the invasion process. Unfortunately, validation studies-with independent data-are too scarce to assess the predictive accuracy of SDMs in invasion biology. Yet, biological invasions allow to test SDMs usefulness, by retrospectively assessing whether they would have accurately predicted the latest ranges of invasion. Here, we assess the predictive accuracy of SDMs in predicting the expansion of invasive species. We used temporal occurrence data for the Asian hornet Vespa velutina nigrithorax, a species native to China that is invading Europe with a very fast rate. Specifically, we compared occurrence data from the last stage of invasion (independent validation points) to the climate suitability distribution predicted from models calibrated with data from the early stage of invasion. Despite the invasive species not being at equilibrium yet, the predicted climate suitability of validation points was high. SDMs can thus adequately predict the spread of V. v. nigrithorax, which appears to be-at least partially-climatically driven. In the case of V. v. nigrithorax, SDMs predictive accuracy was slightly but significantly better when models were calibrated with invasive data only, excluding native data. Although more validation studies for other invasion cases are needed to generalize our results, our findings are an important step towards validating the use of SDMs in invasion biology.

  4. Can species distribution models really predict the expansion of invasive species?

    PubMed Central

    Rome, Quentin; Villemant, Claire; Courchamp, Franck

    2018-01-01

    Predictive studies are of paramount importance for biological invasions, one of the biggest threats for biodiversity. To help and better prioritize management strategies, species distribution models (SDMs) are often used to predict the potential invasive range of introduced species. Yet, SDMs have been regularly criticized, due to several strong limitations, such as violating the equilibrium assumption during the invasion process. Unfortunately, validation studies–with independent data–are too scarce to assess the predictive accuracy of SDMs in invasion biology. Yet, biological invasions allow to test SDMs usefulness, by retrospectively assessing whether they would have accurately predicted the latest ranges of invasion. Here, we assess the predictive accuracy of SDMs in predicting the expansion of invasive species. We used temporal occurrence data for the Asian hornet Vespa velutina nigrithorax, a species native to China that is invading Europe with a very fast rate. Specifically, we compared occurrence data from the last stage of invasion (independent validation points) to the climate suitability distribution predicted from models calibrated with data from the early stage of invasion. Despite the invasive species not being at equilibrium yet, the predicted climate suitability of validation points was high. SDMs can thus adequately predict the spread of V. v. nigrithorax, which appears to be—at least partially–climatically driven. In the case of V. v. nigrithorax, SDMs predictive accuracy was slightly but significantly better when models were calibrated with invasive data only, excluding native data. Although more validation studies for other invasion cases are needed to generalize our results, our findings are an important step towards validating the use of SDMs in invasion biology. PMID:29509789

  5. Genome-based prediction of test cross performance in two subsequent breeding cycles.

    PubMed

    Hofheinz, Nina; Borchardt, Dietrich; Weissleder, Knuth; Frisch, Matthias

    2012-12-01

    Genome-based prediction of genetic values is expected to overcome shortcomings that limit the application of QTL mapping and marker-assisted selection in plant breeding. Our goal was to study the genome-based prediction of test cross performance with genetic effects that were estimated using genotypes from the preceding breeding cycle. In particular, our objectives were to employ a ridge regression approach that approximates best linear unbiased prediction of genetic effects, compare cross validation with validation using genetic material of the subsequent breeding cycle, and investigate the prospects of genome-based prediction in sugar beet breeding. We focused on the traits sugar content and standard molasses loss (ML) and used a set of 310 sugar beet lines to estimate genetic effects at 384 SNP markers. In cross validation, correlations >0.8 between observed and predicted test cross performance were observed for both traits. However, in validation with 56 lines from the next breeding cycle, a correlation of 0.8 could only be observed for sugar content, for standard ML the correlation reduced to 0.4. We found that ridge regression based on preliminary estimates of the heritability provided a very good approximation of best linear unbiased prediction and was not accompanied with a loss in prediction accuracy. We conclude that prediction accuracy assessed with cross validation within one cycle of a breeding program can not be used as an indicator for the accuracy of predicting lines of the next cycle. Prediction of lines of the next cycle seems promising for traits with high heritabilities.

  6. First-trimester ultrasound determination of chorionicity in twin gestations using the lambda sign: a systematic review and meta-analysis.

    PubMed

    Maruotti, G M; Saccone, G; Morlando, M; Martinelli, P

    2016-07-01

    To evaluate the accuracy of first-trimester sonographic determination of chorionicity in twin gestations using the lambda sign. Electronic databases (MEDLINE, PROSPERO, Scopus, ClinicalTrials.gov, EMBASE, Sciencedirect) were searched from their inception until April 2016. We included only study assessing the accuracy lambda sign in prediction of monochorionicity in the first trimester. Forest plots for pooled sensitivity and specificity with 95% confidence intervals (CI) were generated. In addition, symmetric summary receiver-operating characteristic curves were plotted. The area under the curve (AUC) was also computed to evaluate the overall accuracy of the diagnostic test. Nine studies, including 2292 twins, were analysed. In all of these studies, identification of the lambda sign was used to diagnose chorionicity on real-time B-mode imaging. Twins were classified as monochorionic if there was a single placental mass in the absence of the lambda sign, and dichorionic if there was a single placental mass but the lambda sign was present or the placentas were not adjacent to each other. In all nine studies, placental histology or discordant fetal sex were used to confirm chorionicity. Pooled results from the meta-analysis showed that sensitivity of the presence of the lambda sign in the prediction of dichorionicity was 99% (95% CI 98-100%), and specificity was 95% (95% CI 92-97%). Pooled sensitivity of the absence of the lambda sign in the prediction of monochorionicity was 96% (95% CI 92-98%) and pooled specificity was 99% (95% CI 98-99%). The AUC for diagnostic accuracy was 0.99, and suggested very high diagnostic accuracy. The lambda sign predicts chorionicity with a high degree of accuracy before 14 weeks of gestation. Presence of the lambda sign indicates dichorionicity, and absence of the lambda sign indicates monochorionicity. All hospitals should encourage departments providing ultrasound services to determine chorionicity when examining women with twin pregnancies in the first trimester. As determination of chorionicity is most accurate before 14 weeks when the amnion and chorion have not yet fused, the first-trimester scan in twin pregnancy is paramount. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  7. VWPS: A Ventilator Weaning Prediction System with Artificial Intelligence

    NASA Astrophysics Data System (ADS)

    Chen, Austin H.; Chen, Guan-Ting

    How to wean patients efficiently off mechanical ventilation continues to be a challenge for medical professionals. In this paper we have described a novel approach to the study of a ventilator weaning prediction system (VWPS). Firstly, we have developed and written three Artificial Neural Network (ANN) algorithms to predict a weaning successful rate based on the clinical data. Secondly, we have implemented two user-friendly weaning success rate prediction systems; the VWPS system and the BWAP system. Both systems could be used to help doctors objectively and effectively predict whether weaning is appropriate for patients based on the patients' clinical data. Our system utilizes the powerful processing abilities of MatLab. Thirdly, we have calculated the performance through measures such as sensitivity and accuracy for these three algorithms. The results show a very high sensitivity (around 80%) and accuracy (around 70%). To our knowledge, this is the first design approach of its kind to be used in the study of ventilator weaning success rate prediction.

  8. On Predictive Understanding of Extreme Events: Pattern Recognition Approach; Prediction Algorithms; Applications to Disaster Preparedness

    NASA Astrophysics Data System (ADS)

    Keilis-Borok, V. I.; Soloviev, A.; Gabrielov, A.

    2011-12-01

    We describe a uniform approach to predicting different extreme events, also known as critical phenomena, disasters, or crises. The following types of such events are considered: strong earthquakes; economic recessions (their onset and termination); surges of unemployment; surges of crime; and electoral changes of the governing party. A uniform approach is possible due to the common feature of these events: each of them is generated by a certain hierarchical dissipative complex system. After a coarse-graining, such systems exhibit regular behavior patterns; we look among them for "premonitory patterns" that signal the approach of an extreme event. We introduce methodology, based on the optimal control theory, assisting disaster management in choosing optimal set of disaster preparedness measures undertaken in response to a prediction. Predictions with their currently realistic (limited) accuracy do allow preventing a considerable part of the damage by a hierarchy of preparedness measures. Accuracy of prediction should be known, but not necessarily high.

  9. Sensitivity and specificity considerations for fMRI encoding, decoding, and mapping of auditory cortex at ultra-high field.

    PubMed

    Moerel, Michelle; De Martino, Federico; Kemper, Valentin G; Schmitter, Sebastian; Vu, An T; Uğurbil, Kâmil; Formisano, Elia; Yacoub, Essa

    2018-01-01

    Following rapid technological advances, ultra-high field functional MRI (fMRI) enables exploring correlates of neuronal population activity at an increasing spatial resolution. However, as the fMRI blood-oxygenation-level-dependent (BOLD) contrast is a vascular signal, the spatial specificity of fMRI data is ultimately determined by the characteristics of the underlying vasculature. At 7T, fMRI measurement parameters determine the relative contribution of the macro- and microvasculature to the acquired signal. Here we investigate how these parameters affect relevant high-end fMRI analyses such as encoding, decoding, and submillimeter mapping of voxel preferences in the human auditory cortex. Specifically, we compare a T 2 * weighted fMRI dataset, obtained with 2D gradient echo (GE) EPI, to a predominantly T 2 weighted dataset obtained with 3D GRASE. We first investigated the decoding accuracy based on two encoding models that represented different hypotheses about auditory cortical processing. This encoding/decoding analysis profited from the large spatial coverage and sensitivity of the T 2 * weighted acquisitions, as evidenced by a significantly higher prediction accuracy in the GE-EPI dataset compared to the 3D GRASE dataset for both encoding models. The main disadvantage of the T 2 * weighted GE-EPI dataset for encoding/decoding analyses was that the prediction accuracy exhibited cortical depth dependent vascular biases. However, we propose that the comparison of prediction accuracy across the different encoding models may be used as a post processing technique to salvage the spatial interpretability of the GE-EPI cortical depth-dependent prediction accuracy. Second, we explored the mapping of voxel preferences. Large-scale maps of frequency preference (i.e., tonotopy) were similar across datasets, yet the GE-EPI dataset was preferable due to its larger spatial coverage and sensitivity. However, submillimeter tonotopy maps revealed biases in assigned frequency preference and selectivity for the GE-EPI dataset, but not for the 3D GRASE dataset. Thus, a T 2 weighted acquisition is recommended if high specificity in tonotopic maps is required. In conclusion, different fMRI acquisitions were better suited for different analyses. It is therefore critical that any sequence parameter optimization considers the eventual intended fMRI analyses and the nature of the neuroscience questions being asked. Copyright © 2017 Elsevier Inc. All rights reserved.

  10. Evaluation of the International Consensus Guidelines for the Surgical Resection of Intraductal Papillary Mucinous Neoplasms.

    PubMed

    Tsukagoshi, Mariko; Araki, Kenichiro; Saito, Fumiyoshi; Kubo, Norio; Watanabe, Akira; Igarashi, Takamichi; Ishii, Norihiro; Yamanaka, Takahiro; Shirabe, Ken; Kuwano, Hiroyuki

    2018-04-01

    International consensus guidelines for intraductal papillary mucinous neoplasms (IPMNs) were revised in 2012. We aimed to evaluate the clinical utility of each predictor in the 2006 and 2012 guidelines and validate the diagnostic value and surgical indications. Forty-two patients with surgically resected IPMNs were included. Each predictor was applied to evaluate its diagnostic value. The 2012 guidelines had greater accuracy for invasive carcinoma than the 2006 guidelines (64.3 vs. 31.0%). Moreover, the accuracy for high-grade dysplasia was also increased (48.6 vs. 77.1%). When the main pancreatic duct (MPD) size ≥8 mm was substituted for MPD size ≥10 mm in the 2012 guidelines, the accuracy for high-grade dysplasia was 80.0%. The 2012 guidelines exhibited increased diagnostic accuracy for invasive IPMN. It is important to consider surgical resection prior to invasive carcinoma, and high-risk stigmata might be a useful diagnostic criterion. Furthermore, MPD size ≥8 mm may be predictive of high-grade dysplasia.

  11. High Spatiotemporal Resolution ECoG Recording of Somatosensory Evoked Potentials with Flexible Micro-Electrode Arrays.

    PubMed

    Kaiju, Taro; Doi, Keiichi; Yokota, Masashi; Watanabe, Kei; Inoue, Masato; Ando, Hiroshi; Takahashi, Kazutaka; Yoshida, Fumiaki; Hirata, Masayuki; Suzuki, Takafumi

    2017-01-01

    Electrocorticogram (ECoG) has great potential as a source signal, especially for clinical BMI. Until recently, ECoG electrodes were commonly used for identifying epileptogenic foci in clinical situations, and such electrodes were low-density and large. Increasing the number and density of recording channels could enable the collection of richer motor/sensory information, and may enhance the precision of decoding and increase opportunities for controlling external devices. Several reports have aimed to increase the number and density of channels. However, few studies have discussed the actual validity of high-density ECoG arrays. In this study, we developed novel high-density flexible ECoG arrays and conducted decoding analyses with monkey somatosensory evoked potentials (SEPs). Using MEMS technology, we made 96-channel Parylene electrode arrays with an inter-electrode distance of 700 μm and recording site area of 350 μm 2 . The arrays were mainly placed onto the finger representation area in the somatosensory cortex of the macaque, and partially inserted into the central sulcus. With electrical finger stimulation, we successfully recorded and visualized finger SEPs with a high spatiotemporal resolution. We conducted offline analyses in which the stimulated fingers and intensity were predicted from recorded SEPs using a support vector machine. We obtained the following results: (1) Very high accuracy (~98%) was achieved with just a short segment of data (~15 ms from stimulus onset). (2) High accuracy (~96%) was achieved even when only a single channel was used. This result indicated placement optimality for decoding. (3) Higher channel counts generally improved prediction accuracy, but the efficacy was small for predictions with feature vectors that included time-series information. These results suggest that ECoG signals with high spatiotemporal resolution could enable greater decoding precision or external device control.

  12. High Spatiotemporal Resolution ECoG Recording of Somatosensory Evoked Potentials with Flexible Micro-Electrode Arrays

    PubMed Central

    Kaiju, Taro; Doi, Keiichi; Yokota, Masashi; Watanabe, Kei; Inoue, Masato; Ando, Hiroshi; Takahashi, Kazutaka; Yoshida, Fumiaki; Hirata, Masayuki; Suzuki, Takafumi

    2017-01-01

    Electrocorticogram (ECoG) has great potential as a source signal, especially for clinical BMI. Until recently, ECoG electrodes were commonly used for identifying epileptogenic foci in clinical situations, and such electrodes were low-density and large. Increasing the number and density of recording channels could enable the collection of richer motor/sensory information, and may enhance the precision of decoding and increase opportunities for controlling external devices. Several reports have aimed to increase the number and density of channels. However, few studies have discussed the actual validity of high-density ECoG arrays. In this study, we developed novel high-density flexible ECoG arrays and conducted decoding analyses with monkey somatosensory evoked potentials (SEPs). Using MEMS technology, we made 96-channel Parylene electrode arrays with an inter-electrode distance of 700 μm and recording site area of 350 μm2. The arrays were mainly placed onto the finger representation area in the somatosensory cortex of the macaque, and partially inserted into the central sulcus. With electrical finger stimulation, we successfully recorded and visualized finger SEPs with a high spatiotemporal resolution. We conducted offline analyses in which the stimulated fingers and intensity were predicted from recorded SEPs using a support vector machine. We obtained the following results: (1) Very high accuracy (~98%) was achieved with just a short segment of data (~15 ms from stimulus onset). (2) High accuracy (~96%) was achieved even when only a single channel was used. This result indicated placement optimality for decoding. (3) Higher channel counts generally improved prediction accuracy, but the efficacy was small for predictions with feature vectors that included time-series information. These results suggest that ECoG signals with high spatiotemporal resolution could enable greater decoding precision or external device control. PMID:28442997

  13. Accuracy of predicting genomic breeding values for residual feed intake in Angus and Charolais beef cattle.

    PubMed

    Chen, L; Schenkel, F; Vinsky, M; Crews, D H; Li, C

    2013-10-01

    In beef cattle, phenotypic data that are difficult and/or costly to measure, such as feed efficiency, and DNA marker genotypes are usually available on a small number of animals of different breeds or populations. To achieve a maximal accuracy of genomic prediction using the phenotype and genotype data, strategies for forming a training population to predict genomic breeding values (GEBV) of the selection candidates need to be evaluated. In this study, we examined the accuracy of predicting GEBV for residual feed intake (RFI) based on 522 Angus and 395 Charolais steers genotyped on SNP with the Illumina Bovine SNP50 Beadchip for 3 training population forming strategies: within breed, across breed, and by pooling data from the 2 breeds (i.e., combined). Two other scenarios with the training and validation data split by birth year and by sire family within a breed were also investigated to assess the impact of genetic relationships on the accuracy of genomic prediction. Three statistical methods including the best linear unbiased prediction with the relationship matrix defined based on the pedigree (PBLUP), based on the SNP genotypes (GBLUP), and a Bayesian method (BayesB) were used to predict the GEBV. The results showed that the accuracy of the GEBV prediction was the highest when the prediction was within breed and when the validation population had greater genetic relationships with the training population, with a maximum of 0.58 for Angus and 0.64 for Charolais. The within-breed prediction accuracies dropped to 0.29 and 0.38, respectively, when the validation populations had a minimal pedigree link with the training population. When the training population of a different breed was used to predict the GEBV of the validation population, that is, across-breed genomic prediction, the accuracies were further reduced to 0.10 to 0.22, depending on the prediction method used. Pooling data from the 2 breeds to form the training population resulted in accuracies increased to 0.31 and 0.43, respectively, for the Angus and Charolais validation populations. The results suggested that the genetic relationship of selection candidates with the training population has a greater impact on the accuracy of GEBV using the Illumina Bovine SNP50 Beadchip. Pooling data from different breeds to form the training population will improve the accuracy of across breed genomic prediction for RFI in beef cattle.

  14. Assessment of flat rolling theories for the use in a model-based controller for high-precision rolling applications

    NASA Astrophysics Data System (ADS)

    Stockert, Sven; Wehr, Matthias; Lohmar, Johannes; Abel, Dirk; Hirt, Gerhard

    2017-10-01

    In the electrical and medical industries the trend towards further miniaturization of devices is accompanied by the demand for smaller manufacturing tolerances. Such industries use a plentitude of small and narrow cold rolled metal strips with high thickness accuracy. Conventional rolling mills can hardly achieve further improvement of these tolerances. However, a model-based controller in combination with an additional piezoelectric actuator for high dynamic roll adjustment is expected to enable the production of the required metal strips with a thickness tolerance of +/-1 µm. The model-based controller has to be based on a rolling theory which can describe the rolling process very accurately. Additionally, the required computing time has to be low in order to predict the rolling process in real-time. In this work, four rolling theories from literature with different levels of complexity are tested for their suitability for the predictive controller. Rolling theories of von Kármán, Siebel, Bland & Ford and Alexander are implemented in Matlab and afterwards transferred to the real-time computer used for the controller. The prediction accuracy of these theories is validated using rolling trials with different thickness reduction and a comparison to the calculated results. Furthermore, the required computing time on the real-time computer is measured. Adequate results according the prediction accuracy can be achieved with the rolling theories developed by Bland & Ford and Alexander. A comparison of the computing time of those two theories reveals that Alexander's theory exceeds the sample rate of 1 kHz of the real-time computer.

  15. Prospective validation of a novel renal activity index of lupus nephritis.

    PubMed

    Gulati, G; Bennett, M R; Abulaban, K; Song, H; Zhang, X; Ma, Q; Brodsky, S V; Nadasdy, T; Haffner, C; Wiley, K; Ardoin, S P; Devarajan, P; Ying, J; Rovin, B H; Brunner, H I

    2017-08-01

    Objectives The renal activity index for lupus (RAIL) score was developed in children with lupus nephritis as a weighted sum of six urine biomarkers (UBMs) (neutrophil gelatinase-associated lipocalin, monocyte chemotactic protein 1, ceruloplasmin, adiponectin, hemopexin and kidney injury molecule 1) measured in a random urine sample. We aimed at prospectively validating the RAIL in adults with lupus nephritis. Methods Urine from 79 adults was collected at the time of kidney biopsy to assay the RAIL UBMs. Using receiver operating characteristic curve analysis, we evaluated the accuracy of the RAIL to discriminate high lupus nephritis activity status (National Institutes of Health activity index (NIH-AI) score >10), from low/moderate lupus nephritis activity status (NIH-AI score ≤10). Results In this mixed racial cohort, high lupus nephritis activity was present in 15 patients (19%), and 71% had proliferative lupus nephritis. Use of the identical RAIL algorithm developed in children resulted in only fair prediction of lupus nephritis activity status of adults (area under the receiver operating characteristic curve (AUC) 0.62). Alternative weightings of the six RAIL UBMs as suggested by logistic regression yielded excellent accuracy to predict lupus nephritis activity status (AUC 0.88). Accuracy of the model did not improve with adjustment of the UBMs for urine creatinine or albumin, and was little influenced by concurrent kidney damage. Conclusions The RAIL UBMs provide excellent prediction of lupus nephritis activity in adults. Age adaption of the RAIL is warranted to optimize its discriminative validity to predict high lupus nephritis activity status non-invasively.

  16. Accurate and predictive antibody repertoire profiling by molecular amplification fingerprinting.

    PubMed

    Khan, Tarik A; Friedensohn, Simon; Gorter de Vries, Arthur R; Straszewski, Jakub; Ruscheweyh, Hans-Joachim; Reddy, Sai T

    2016-03-01

    High-throughput antibody repertoire sequencing (Ig-seq) provides quantitative molecular information on humoral immunity. However, Ig-seq is compromised by biases and errors introduced during library preparation and sequencing. By using synthetic antibody spike-in genes, we determined that primer bias from multiplex polymerase chain reaction (PCR) library preparation resulted in antibody frequencies with only 42 to 62% accuracy. Additionally, Ig-seq errors resulted in antibody diversity measurements being overestimated by up to 5000-fold. To rectify this, we developed molecular amplification fingerprinting (MAF), which uses unique molecular identifier (UID) tagging before and during multiplex PCR amplification, which enabled tagging of transcripts while accounting for PCR efficiency. Combined with a bioinformatic pipeline, MAF bias correction led to measurements of antibody frequencies with up to 99% accuracy. We also used MAF to correct PCR and sequencing errors, resulting in enhanced accuracy of full-length antibody diversity measurements, achieving 98 to 100% error correction. Using murine MAF-corrected data, we established a quantitative metric of recent clonal expansion-the intraclonal diversity index-which measures the number of unique transcripts associated with an antibody clone. We used this intraclonal diversity index along with antibody frequencies and somatic hypermutation to build a logistic regression model for prediction of the immunological status of clones. The model was able to predict clonal status with high confidence but only when using MAF error and bias corrected Ig-seq data. Improved accuracy by MAF provides the potential to greatly advance Ig-seq and its utility in immunology and biotechnology.

  17. Accurate and predictive antibody repertoire profiling by molecular amplification fingerprinting

    PubMed Central

    Khan, Tarik A.; Friedensohn, Simon; de Vries, Arthur R. Gorter; Straszewski, Jakub; Ruscheweyh, Hans-Joachim; Reddy, Sai T.

    2016-01-01

    High-throughput antibody repertoire sequencing (Ig-seq) provides quantitative molecular information on humoral immunity. However, Ig-seq is compromised by biases and errors introduced during library preparation and sequencing. By using synthetic antibody spike-in genes, we determined that primer bias from multiplex polymerase chain reaction (PCR) library preparation resulted in antibody frequencies with only 42 to 62% accuracy. Additionally, Ig-seq errors resulted in antibody diversity measurements being overestimated by up to 5000-fold. To rectify this, we developed molecular amplification fingerprinting (MAF), which uses unique molecular identifier (UID) tagging before and during multiplex PCR amplification, which enabled tagging of transcripts while accounting for PCR efficiency. Combined with a bioinformatic pipeline, MAF bias correction led to measurements of antibody frequencies with up to 99% accuracy. We also used MAF to correct PCR and sequencing errors, resulting in enhanced accuracy of full-length antibody diversity measurements, achieving 98 to 100% error correction. Using murine MAF-corrected data, we established a quantitative metric of recent clonal expansion—the intraclonal diversity index—which measures the number of unique transcripts associated with an antibody clone. We used this intraclonal diversity index along with antibody frequencies and somatic hypermutation to build a logistic regression model for prediction of the immunological status of clones. The model was able to predict clonal status with high confidence but only when using MAF error and bias corrected Ig-seq data. Improved accuracy by MAF provides the potential to greatly advance Ig-seq and its utility in immunology and biotechnology. PMID:26998518

  18. High Order Schemes in Bats-R-US for Faster and More Accurate Predictions

    NASA Astrophysics Data System (ADS)

    Chen, Y.; Toth, G.; Gombosi, T. I.

    2014-12-01

    BATS-R-US is a widely used global magnetohydrodynamics model that originally employed second order accurate TVD schemes combined with block based Adaptive Mesh Refinement (AMR) to achieve high resolution in the regions of interest. In the last years we have implemented fifth order accurate finite difference schemes CWENO5 and MP5 for uniform Cartesian grids. Now the high order schemes have been extended to generalized coordinates, including spherical grids and also to the non-uniform AMR grids including dynamic regridding. We present numerical tests that verify the preservation of free-stream solution and high-order accuracy as well as robust oscillation-free behavior near discontinuities. We apply the new high order accurate schemes to both heliospheric and magnetospheric simulations and show that it is robust and can achieve the same accuracy as the second order scheme with much less computational resources. This is especially important for space weather prediction that requires faster than real time code execution.

  19. Evaluation with 3.0-T MR imaging: predicting the pathological response of triple-negative breast cancer treated with anthracycline and taxane neoadjuvant chemotherapy.

    PubMed

    Kim, Min Jung; Kim, Eun-Kyung; Park, Seho; Moon, Hee Jung; Kim, Seung Il; Park, Byeong-Woo

    2015-09-01

    Triple-negative breast cancer (TNBC) which expresses neither hormonal receptors nor HER-2 is associated with poor prognosis and shorter survival. Several studies have suggested that TNBC patients attaining pathological complete response (pCR) after neoadjuvant chemotherapy (NAC) show a longer survival than those without pCR. To assess the accuracy of 3.0-T breast magnetic resonance imaging (MRI) in predicting pCR and to evaluate the clinicoradiologic factors affecting the diagnostic accuracy of 3.0-T breast MRI in TNBC patients treated with anthracycline and taxane (ACD). This retrospective study was approved by the institutional review board; patient consent was not required. Between 2009 and 2012, 35 TNBC patients with 3.0-T breast MRI prior to (n = 26) or after (n = 35) NAC were included. MRI findings were reviewed according to pCR to chemotherapy. The diagnostic accuracy of 3.0-T breast MRI for predicting pCR and the clinicoradiological factors affecting MRI accuracy and response to NAC were analyzed. 3.0-T MRI following NAC with ACD accurately predicted pCR in 91.4% of TNBC patients. The residual tumor size between pathology and 3.0-T MRI in non-pCR cases showed a higher correlation in the Ki-67-positive TNBC group (r = 0.947) than in the Ki-67 negative group (r = 0.375) with statistical trends (P = 0.069). Pre-treatment MRI in the non-pCR group compared to the pCR group showed a larger tumor size (P = 0.030) and non-mass presentation (P = 0.015). 3.0-T MRI in TNBC patients following NAC with ACD showed a high accuracy for predicting pCR to NAC. Ki-67 can affect the diagnostic accuracy of 3.0-T MRI for pCR to NAC with ACD in TNBC patients. © The Foundation Acta Radiologica 2014.

  20. Mean Platelet Volume, Red Cell Distribution Width to Platelet Count Ratio, Globulin Platelet Index, and 16 Other Indirect Noninvasive Fibrosis Scores: How Much Do Routine Blood Tests Tell About Liver Fibrosis in Chronic Hepatitis C?

    PubMed

    Thandassery, Ragesh B; Al Kaabi, Saad; Soofi, Madiha E; Mohiuddin, Syed A; John, Anil K; Al Mohannadi, Muneera; Al Ejji, Khalid; Yakoob, Rafie; Derbala, Moutaz F; Wani, Hamidullah; Sharma, Manik; Al Dweik, Nazeeh; Butt, Mohammed T; Kamel, Yasser M; Sultan, Khaleel; Pasic, Fuad; Singh, Rajvir

    2016-07-01

    Many indirect noninvasive scores to predict liver fibrosis are calculated from routine blood investigations. Only limited studies have compared their efficacy head to head. We aimed to compare these scores with liver biopsy fibrosis stages in patients with chronic hepatitis C. From blood investigations of 1602 patients with chronic hepatitis C who underwent a liver biopsy before initiation of antiviral treatment, 19 simple noninvasive scores were calculated. The area under the receiver operating characteristic curves and diagnostic accuracy of each of these scores were calculated (with reference to the Scheuer staging) and compared. The mean age of the patients was 41.8±9.6 years (1365 men). The most common genotype was genotype 4 (65.6%). Significant fibrosis, advanced fibrosis, and cirrhosis were seen in 65.1%, 25.6, and 6.6% of patients, respectively. All the scores except the aspartate transaminase (AST) alanine transaminase ratio, Pohl score, mean platelet volume, fibro-alpha, and red cell distribution width to platelet count ratio index showed high predictive accuracy for the stages of fibrosis. King's score (cutoff, 17.5) showed the highest predictive accuracy for significant and advanced fibrosis. King's score, Göteborg university cirrhosis index, APRI (the AST/platelet count ratio index), and Fibrosis-4 (FIB-4) had the highest predictive accuracy for cirrhosis, with the APRI (cutoff, 2) and FIB-4 (cutoff, 3.25) showing the highest diagnostic accuracy.We derived the study score 8.5 - 0.2(albumin, g/dL) +0.01(AST, IU/L) -0.02(platelet count, 10/L), which at a cutoff of >4.7 had a predictive accuracy of 0.868 (95% confidence interval, 0.833-0.904) for cirrhosis. King's score for significant and advanced fibrosis and the APRI or FIB-4 score for cirrhosis could be the best simple indirect noninvasive scores.

  1. Impact of QTL minor allele frequency on genomic evaluation using real genotype data and simulated phenotypes in Japanese Black cattle.

    PubMed

    Uemoto, Yoshinobu; Sasaki, Shinji; Kojima, Takatoshi; Sugimoto, Yoshikazu; Watanabe, Toshio

    2015-11-19

    Genetic variance that is not captured by single nucleotide polymorphisms (SNPs) is due to imperfect linkage disequilibrium (LD) between SNPs and quantitative trait loci (QTLs), and the extent of LD between SNPs and QTLs depends on different minor allele frequencies (MAF) between them. To evaluate the impact of MAF of QTLs on genomic evaluation, we performed a simulation study using real cattle genotype data. In total, 1368 Japanese Black cattle and 592,034 SNPs (Illumina BovineHD BeadChip) were used. We simulated phenotypes using real genotypes under different scenarios, varying the MAF categories, QTL heritability, number of QTLs, and distribution of QTL effect. After generating true breeding values and phenotypes, QTL heritability was estimated and the prediction accuracy of genomic estimated breeding value (GEBV) was assessed under different SNP densities, prediction models, and population size by a reference-test validation design. The extent of LD between SNPs and QTLs in this population was higher in the QTLs with high MAF than in those with low MAF. The effect of MAF of QTLs depended on the genetic architecture, evaluation strategy, and population size in genomic evaluation. In genetic architecture, genomic evaluation was affected by the MAF of QTLs combined with the QTL heritability and the distribution of QTL effect. The number of QTL was not affected on genomic evaluation if the number of QTL was more than 50. In the evaluation strategy, we showed that different SNP densities and prediction models affect the heritability estimation and genomic prediction and that this depends on the MAF of QTLs. In addition, accurate QTL heritability and GEBV were obtained using denser SNP information and the prediction model accounted for the SNPs with low and high MAFs. In population size, a large sample size is needed to increase the accuracy of GEBV. The MAF of QTL had an impact on heritability estimation and prediction accuracy. Most genetic variance can be captured using denser SNPs and the prediction model accounted for MAF, but a large sample size is needed to increase the accuracy of GEBV under all QTL MAF categories.

  2. Research on Improved Depth Belief Network-Based Prediction of Cardiovascular Diseases

    PubMed Central

    Zhang, Hongpo

    2018-01-01

    Quantitative analysis and prediction can help to reduce the risk of cardiovascular disease. Quantitative prediction based on traditional model has low accuracy. The variance of model prediction based on shallow neural network is larger. In this paper, cardiovascular disease prediction model based on improved deep belief network (DBN) is proposed. Using the reconstruction error, the network depth is determined independently, and unsupervised training and supervised optimization are combined. It ensures the accuracy of model prediction while guaranteeing stability. Thirty experiments were performed independently on the Statlog (Heart) and Heart Disease Database data sets in the UCI database. Experimental results showed that the mean of prediction accuracy was 91.26% and 89.78%, respectively. The variance of prediction accuracy was 5.78 and 4.46, respectively. PMID:29854369

  3. Research on light rail electric load forecasting based on ARMA model

    NASA Astrophysics Data System (ADS)

    Huang, Yifan

    2018-04-01

    The article compares a variety of time series models and combines the characteristics of power load forecasting. Then, a light load forecasting model based on ARMA model is established. Based on this model, a light rail system is forecasted. The prediction results show that the accuracy of the model prediction is high.

  4. Prediction of pathologic staging with magnetic resonance imaging after preoperative chemoradiotherapy in rectal cancer: pooled analysis of KROG 10-01 and 11-02.

    PubMed

    Lee, Jong Hoon; Jang, Hong Seok; Kim, Jun-Gi; Lee, Myung Ah; Kim, Dae Yong; Kim, Tae Hyun; Oh, Jae Hwan; Park, Sung Chan; Kim, Sun Young; Baek, Ji Yeon; Park, Hee Chul; Kim, Hee Cheol; Nam, Taek-Keun; Chie, Eui Kyu; Jung, Ji-Han; Oh, Seong Taek

    2014-10-01

    The reported overall accuracy of MRI in predicting the pathologic stage of nonirradiated rectal cancer is high. However, the role of MRI in restaging rectal tumors after neoadjuvant CRT is contentious. Thus, we evaluate the accuracy of restaging magnetic resonance imaging (MRI) for rectal cancer patients who receive preoperative chemoradiotherapy (CRT). We analyzed 150 patients with locally advanced rectal cancer (T3-4N0-2) who had received preoperative CRT. Pre-CRT MRI was performed for local tumor and nodal staging. All patients underwent restaging MRI followed by total mesorectal excision after the end of radiotherapy. The primary endpoint of the present study was to estimate the accuracy of post-CRT MRI as compared with pathologic staging. Pathologic T classification matched the post-CRT MRI findings in 97 (64.7%) of 150 patients. 36 (24.0%) of 150 patients were overstaged in T classification, and the concordance degree was moderate (k=0.33, p<0.01). Pathologic N classification matched the post-CRI MRI findings in 85 (56.6%) of 150 patients. 54 (36.0%) of 150 patients were overstaged in N classification. 26 patients achieved downstaging (ycT0-2N0) on restaging MRI after CRT. 23 (88.5%) of 26 patients who had been downstaged on MRI after CRT were confirmed on the pathological staging, and the concordance degree was good (k=0.72, p<0.01). Restaging MRI has low accuracy for the prediction of the pathologic T and N classifications in rectal cancer patients who received preoperative CRT. The diagnostic accuracy of restaging MRI is relatively high in rectal cancer patients who achieved clinical downstaging after CRT. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  5. Fatigue Strength Prediction for Titanium Alloy TiAl6V4 Manufactured by Selective Laser Melting

    NASA Astrophysics Data System (ADS)

    Leuders, Stefan; Vollmer, Malte; Brenne, Florian; Tröster, Thomas; Niendorf, Thomas

    2015-09-01

    Selective laser melting (SLM), as a metalworking additive manufacturing technique, received considerable attention from industry and academia due to unprecedented design freedom and overall balanced material properties. However, the fatigue behavior of SLM-processed materials often suffers from local imperfections such as micron-sized pores. In order to enable robust designs of SLM components used in an industrial environment, further research regarding process-induced porosity and its impact on the fatigue behavior is required. Hence, this study aims at a transfer of fatigue prediction models, established for conventional process-routes, to the field of SLM materials. By using high-resolution computed tomography, load increase tests, and electron microscopy, it is shown that pore-based fatigue strength predictions for a titanium alloy TiAl6V4 have become feasible. However, the obtained accuracies are subjected to scatter, which is probably caused by the high defect density even present in SLM materials manufactured following optimized processing routes. Based on thorough examination of crack surfaces and crack initiation sites, respectively, implications for optimization of prediction accuracy of the models in focus are deduced.

  6. Estimation of Power Consumption in the Circular Sawing of Stone Based on Tangential Force Distribution

    NASA Astrophysics Data System (ADS)

    Huang, Guoqin; Zhang, Meiqin; Huang, Hui; Guo, Hua; Xu, Xipeng

    2018-04-01

    Circular sawing is an important method for the processing of natural stone. The ability to predict sawing power is important in the optimisation, monitoring and control of the sawing process. In this paper, a predictive model (PFD) of sawing power, which is based on the tangential force distribution at the sawing contact zone, was proposed, experimentally validated and modified. With regard to the influence of sawing speed on tangential force distribution, the modified PFD (MPFD) performed with high predictive accuracy across a wide range of sawing parameters, including sawing speed. The mean maximum absolute error rate was within 6.78%, and the maximum absolute error rate was within 11.7%. The practicability of predicting sawing power by the MPFD with few initial experimental samples was proved in case studies. On the premise of high sample measurement accuracy, only two samples are required for a fixed sawing speed. The feasibility of applying the MPFD to optimise sawing parameters while lowering the energy consumption of the sawing system was validated. The case study shows that energy use was reduced 28% by optimising the sawing parameters. The MPFD model can be used to predict sawing power, optimise sawing parameters and control energy.

  7. Sensitivity analysis of gene ranking methods in phenotype prediction.

    PubMed

    deAndrés-Galiana, Enrique J; Fernández-Martínez, Juan L; Sonis, Stephen T

    2016-12-01

    It has become clear that noise generated during the assay and analytical processes has the ability to disrupt accurate interpretation of genomic studies. Not only does such noise impact the scientific validity and costs of studies, but when assessed in the context of clinically translatable indications such as phenotype prediction, it can lead to inaccurate conclusions that could ultimately impact patients. We applied a sequence of ranking methods to damp noise associated with microarray outputs, and then tested the utility of the approach in three disease indications using publically available datasets. This study was performed in three phases. We first theoretically analyzed the effect of noise in phenotype prediction problems showing that it can be expressed as a modeling error that partially falsifies the pathways. Secondly, via synthetic modeling, we performed the sensitivity analysis for the main gene ranking methods to different types of noise. Finally, we studied the predictive accuracy of the gene lists provided by these ranking methods in synthetic data and in three different datasets related to cancer, rare and neurodegenerative diseases to better understand the translational aspects of our findings. In the case of synthetic modeling, we showed that Fisher's Ratio (FR) was the most robust gene ranking method in terms of precision for all the types of noise at different levels. Significance Analysis of Microarrays (SAM) provided slightly lower performance and the rest of the methods (fold change, entropy and maximum percentile distance) were much less precise and accurate. The predictive accuracy of the smallest set of high discriminatory probes was similar for all the methods in the case of Gaussian and Log-Gaussian noise. In the case of class assignment noise, the predictive accuracy of SAM and FR is higher. Finally, for real datasets (Chronic Lymphocytic Leukemia, Inclusion Body Myositis and Amyotrophic Lateral Sclerosis) we found that FR and SAM provided the highest predictive accuracies with the smallest number of genes. Biological pathways were found with an expanded list of genes whose discriminatory power has been established via FR. We have shown that noise in expression data and class assignment partially falsifies the sets of discriminatory probes in phenotype prediction problems. FR and SAM better exploit the principle of parsimony and are able to find subsets with less number of high discriminatory genes. The predictive accuracy and the precision are two different metrics to select the important genes, since in the presence of noise the most predictive genes do not completely coincide with those that are related to the phenotype. Based on the synthetic results, FR and SAM are recommended to unravel the biological pathways that are involved in the disease development. Copyright © 2016 Elsevier Inc. All rights reserved.

  8. The accuracy of new wheelchair users' predictions about their future wheelchair use.

    PubMed

    Hoenig, Helen; Griffiths, Patricia; Ganesh, Shanti; Caves, Kevin; Harris, Frances

    2012-06-01

    This study examined the accuracy of new wheelchair user predictions about their future wheelchair use. This was a prospective cohort study of 84 community-dwelling veterans provided a new manual wheelchair. The association between predicted and actual wheelchair use was strong at 3 mos (ϕ coefficient = 0.56), with 90% of those who anticipated using the wheelchair at 3 mos still using it (i.e., positive predictive value = 0.96) and 60% of those who anticipated not using it indeed no longer using the wheelchair (i.e., negative predictive value = 0.60, overall accuracy = 0.92). Predictive accuracy diminished over time, with overall accuracy declining from 0.92 at 3 mos to 0.66 at 6 mos. At all time points, and for all types of use, patients better predicted use as opposed to disuse, with correspondingly higher positive than negative predictive values. Accuracy of prediction of use in specific indoor and outdoor locations varied according to location. This study demonstrates the importance of better understanding the potential mismatch between the anticipated and actual patterns of wheelchair use. The findings suggest that users can be relied upon to accurately predict their basic wheelchair-related needs in the short-term. Further exploration is needed to identify characteristics that will aid users and their providers in more accurately predicting mobility needs for the long-term.

  9. Determination of GPS orbits to submeter accuracy

    NASA Technical Reports Server (NTRS)

    Bertiger, W. I.; Lichten, S. M.; Katsigris, E. C.

    1988-01-01

    Orbits for satellites of the Global Positioning System (GPS) were determined with submeter accuracy. Tests used to assess orbital accuracy include orbit comparisons from independent data sets, orbit prediction, ground baseline determination, and formal errors. One satellite tracked 8 hours each day shows rms error below 1 m even when predicted more than 3 days outside of a 1-week data arc. Differential tracking of the GPS satellites in high Earth orbit provides a powerful relative positioning capability, even when a relatively small continental U.S. fiducial tracking network is used with less than one-third of the full GPS constellation. To demonstrate this capability, baselines of up to 2000 km in North America were also determined with the GPS orbits. The 2000 km baselines show rms daily repeatability of 0.3 to 2 parts in 10 to the 8th power and agree with very long base interferometry (VLBI) solutions at the level of 1.5 parts in 10 to the 8th power. This GPS demonstration provides an opportunity to test different techniques for high-accuracy orbit determination for high Earth orbiters. The best GPS orbit strategies included data arcs of at least 1 week, process noise models for tropospheric fluctuations, estimation of GPS solar pressure coefficients, and combine processing of GPS carrier phase and pseudorange data. For data arc of 2 weeks, constrained process noise models for GPS dynamic parameters significantly improved the situation.

  10. Impact of different training strategies on the accuracy of a Bayesian network for predicting hospital admission.

    PubMed

    Leegon, Jeffrey; Aronsky, Dominik

    2006-01-01

    The healthcare environment is constantly changing. Probabilistic clinical decision support systems need to recognize and incorporate the changing patterns and adjust the decision model to maintain high levels of accuracy. Using data from >75,000 ED patients during a 19-month study period we examined the impact of various static and dynamic training strategies on a decision support system designed to predict hospital admission status for ED patients. Training durations ranged from 1 to 12 weeks. During the study period major institutional changes occurred that affected the system's performance level. The average area under the receiver operating characteristic curve was higher and more stable when longer training periods were used. The system showed higher accuracy when retrained an updated with more recent data as compared to static training period. To adjust for temporal trends the accuracy of decision support systems can benefit from longer training periods and retraining with more recent data.

  11. A Ranking Approach to Genomic Selection.

    PubMed

    Blondel, Mathieu; Onogi, Akio; Iwata, Hiroyoshi; Ueda, Naonori

    2015-01-01

    Genomic selection (GS) is a recent selective breeding method which uses predictive models based on whole-genome molecular markers. Until now, existing studies formulated GS as the problem of modeling an individual's breeding value for a particular trait of interest, i.e., as a regression problem. To assess predictive accuracy of the model, the Pearson correlation between observed and predicted trait values was used. In this paper, we propose to formulate GS as the problem of ranking individuals according to their breeding value. Our proposed framework allows us to employ machine learning methods for ranking which had previously not been considered in the GS literature. To assess ranking accuracy of a model, we introduce a new measure originating from the information retrieval literature called normalized discounted cumulative gain (NDCG). NDCG rewards more strongly models which assign a high rank to individuals with high breeding value. Therefore, NDCG reflects a prerequisite objective in selective breeding: accurate selection of individuals with high breeding value. We conducted a comparison of 10 existing regression methods and 3 new ranking methods on 6 datasets, consisting of 4 plant species and 25 traits. Our experimental results suggest that tree-based ensemble methods including McRank, Random Forests and Gradient Boosting Regression Trees achieve excellent ranking accuracy. RKHS regression and RankSVM also achieve good accuracy when used with an RBF kernel. Traditional regression methods such as Bayesian lasso, wBSR and BayesC were found less suitable for ranking. Pearson correlation was found to correlate poorly with NDCG. Our study suggests two important messages. First, ranking methods are a promising research direction in GS. Second, NDCG can be a useful evaluation measure for GS.

  12. Feature Selection Methods for Zero-Shot Learning of Neural Activity

    PubMed Central

    Caceres, Carlos A.; Roos, Matthew J.; Rupp, Kyle M.; Milsap, Griffin; Crone, Nathan E.; Wolmetz, Michael E.; Ratto, Christopher R.

    2017-01-01

    Dimensionality poses a serious challenge when making predictions from human neuroimaging data. Across imaging modalities, large pools of potential neural features (e.g., responses from particular voxels, electrodes, and temporal windows) have to be related to typically limited sets of stimuli and samples. In recent years, zero-shot prediction models have been introduced for mapping between neural signals and semantic attributes, which allows for classification of stimulus classes not explicitly included in the training set. While choices about feature selection can have a substantial impact when closed-set accuracy, open-set robustness, and runtime are competing design objectives, no systematic study of feature selection for these models has been reported. Instead, a relatively straightforward feature stability approach has been adopted and successfully applied across models and imaging modalities. To characterize the tradeoffs in feature selection for zero-shot learning, we compared correlation-based stability to several other feature selection techniques on comparable data sets from two distinct imaging modalities: functional Magnetic Resonance Imaging and Electrocorticography. While most of the feature selection methods resulted in similar zero-shot prediction accuracies and spatial/spectral patterns of selected features, there was one exception; A novel feature/attribute correlation approach was able to achieve those accuracies with far fewer features, suggesting the potential for simpler prediction models that yield high zero-shot classification accuracy. PMID:28690513

  13. Evaluation of an ensemble of genetic models for prediction of a quantitative trait.

    PubMed

    Milton, Jacqueline N; Steinberg, Martin H; Sebastiani, Paola

    2014-01-01

    Many genetic markers have been shown to be associated with common quantitative traits in genome-wide association studies. Typically these associated genetic markers have small to modest effect sizes and individually they explain only a small amount of the variability of the phenotype. In order to build a genetic prediction model without fitting a multiple linear regression model with possibly hundreds of genetic markers as predictors, researchers often summarize the joint effect of risk alleles into a genetic score that is used as a covariate in the genetic prediction model. However, the prediction accuracy can be highly variable and selecting the optimal number of markers to be included in the genetic score is challenging. In this manuscript we present a strategy to build an ensemble of genetic prediction models from data and we show that the ensemble-based method makes the challenge of choosing the number of genetic markers more amenable. Using simulated data with varying heritability and number of genetic markers, we compare the predictive accuracy and inclusion of true positive and false positive markers of a single genetic prediction model and our proposed ensemble method. The results show that the ensemble of genetic models tends to include a larger number of genetic variants than a single genetic model and it is more likely to include all of the true genetic markers. This increased sensitivity is obtained at the price of a lower specificity that appears to minimally affect the predictive accuracy of the ensemble.

  14. Didactic training vs. computer-based self-learning in the prediction of diminutive colon polyp histology by trainees: a randomized controlled study.

    PubMed

    Khan, Taimur; Cinnor, Birtukan; Gupta, Neil; Hosford, Lindsay; Bansal, Ajay; Olyaee, Mojtaba S; Wani, Sachin; Rastogi, Amit

    2017-12-01

    Background and study aim  Experts can accurately predict diminutive polyp histology, but the ideal method to train nonexperts is not known. The aim of the study was to compare accuracy in diminutive polyp histology characterization using narrow-band imaging (NBI) between participants undergoing classroom didactic training vs. computer-based self-learning. Participants and methods  Trainees at two institutions were randomized to classroom didactic training or computer-based self-learning. In didactic training, experienced endoscopists reviewed a presentation on NBI patterns for adenomatous and hyperplastic polyps and 40 NBI videos, along with interactive discussion. The self-learning group reviewed the same presentation of 40 teaching videos independently, without interactive discussion. A total of 40 testing videos of diminutive polyps under NBI were then evaluated by both groups. Performance characteristics were calculated by comparing predicted and actual histology. Fisher's exact test was used and P  < 0.05 was considered significant. Results  A total of 17 trainees participated (8 didactic training and 9 self-learning). A larger proportion of polyps were diagnosed with high confidence in the classroom group (66.5 % vs. 50.8 %; P  < 0.01), although sensitivity (86.9 % vs. 95.0 %) and accuracy (85.7 % vs. 93.9 %) of high-confidence predictions were higher in the self-learning group. However, there was no difference in overall accuracy of histology characterization (83.4 % vs. 87.2 %; P  = 0.19). Similar results were noted when comparing sensitivity and specificity between the groups. Conclusion  The self-learning group showed results on a par with or, for high-confidence predictions, even slightly superior to classroom didactic training for predicting diminutive polyp histology. This approach can help in widespread training and clinical implementation of real-time polyp histology characterization. © Georg Thieme Verlag KG Stuttgart · New York.

  15. Alcoholic hepatitis histological score has high accuracy to predict 90-day mortality and response to steroids.

    PubMed

    Andrade, Patrícia; Silva, Marco; Rodrigues, Susana; Lopes, Joanne; Lopes, Susana; Macedo, Guilherme

    2016-06-01

    A histological classification system (AHHS) has been recently proposed to predict 90-day mortality in patients with alcoholic hepatitis (AH). We analyzed the spectrum of histological features in patients with AH and assessed the ability of AHHS for predicting both response to steroids and 90-day mortality. Retrospective study of patients admitted to our tertiary centre between 2010 and 2014 with biopsy-proven AH. Histological features were analyzed and AHHS value was calculated. Kaplan-Meyer curves were calculated to assess the ability of AHHS to predict response to steroids and 90-day mortality. We included 34 patients (70.6% men, mean age 48.5±8.9 years). Transjugular liver biopsy was performed 3.5±2.9 days after admission. Presence of bilirubinostasis (p=0.049), degree of bilirubinostasis (p<0.001), absence of megamitochondria (p<0.001) and degree of polymorphonuclear infiltration (p=0.018) were significantly associated with higher mortality at 90 days. Patients who responded to steroids had a significantly lower AHHS value than non-responders (5.4±0.9 vs 8.1±1.1, p=0.003). AAHS value was significantly higher in patients who died compared to patients who survived at 90 days (9.0±0.7 vs 5.0±0.9, p<0.001). AHHS predicted response to steroids [AUROC 0.90 (CI95% 0.742-1.000), p=0.004] and 90-day mortality [AUROC 1.0 (CI95% 1.0-1.0), p<0.001] with high accuracy. In this cohort of patients, presence and degree of bilirubinostasis, absence of megamitochondria and degree of PMN infiltration were significantly associated with 90-day mortality. AHHS had a high accuracy for predicting response to steroids and 90-day mortality in this cohort of patients. Copyright © 2016 Editrice Gastroenterologica Italiana S.r.l. Published by Elsevier Ltd. All rights reserved.

  16. Multiple fuzzy neural network system for outcome prediction and classification of 220 lymphoma patients on the basis of molecular profiling.

    PubMed

    Ando, Tatsuya; Suguro, Miyuki; Kobayashi, Takeshi; Seto, Masao; Honda, Hiroyuki

    2003-10-01

    A fuzzy neural network (FNN) using gene expression profile data can select combinations of genes from thousands of genes, and is applicable to predict outcome for cancer patients after chemotherapy. However, wide clinical heterogeneity reduces the accuracy of prediction. To overcome this problem, we have proposed an FNN system based on majoritarian decision using multiple noninferior models. We used transcriptional profiling data, which were obtained from "Lymphochip" DNA microarrays (http://llmpp.nih.gov/DLBCL), reported by Rosenwald (N Engl J Med 2002; 346: 1937-47). When the data were analyzed by our FNN system, accuracy (73.4%) of outcome prediction using only 1 FNN model with 4 genes was higher than that (68.5%) of the Cox model using 17 genes. Higher accuracy (91%) was obtained when an FNN system with 9 noninferior models, consisting of 35 independent genes, was used. The genes selected by the system included genes that are informative in the prognosis of Diffuse large B-cell lymphoma (DLBCL), such as genes showing an expression pattern similar to that of CD10 and BCL-6 or similar to that of IRF-4 and BCL-4. We classified 220 DLBCL patients into 5 groups using the prediction results of 9 FNN models. These groups may correspond to DLBCL subtypes. In group A containing half of the 220 patients, patients with poor outcome were found to satisfy 2 rules, i.e., high expression of MAX dimerization with high expression of unknown A (LC_26146), or high expression of MAX dimerization with low expression of unknown B (LC_33144). The present paper is the first to describe the multiple noninferior FNN modeling system. This system is a powerful tool for predicting outcome and classifying patients, and is applicable to other heterogeneous diseases.

  17. Double Resummation for Higgs Production

    NASA Astrophysics Data System (ADS)

    Bonvini, Marco; Marzani, Simone

    2018-05-01

    We present the first double-resummed prediction of the inclusive cross section for the main Higgs production channel in proton-proton collisions, namely, gluon fusion. Our calculation incorporates to all orders in perturbation theory two distinct towers of logarithmic corrections which are enhanced, respectively, at threshold, i.e., large x , and in the high-energy limit, i.e., small x . Large-x logarithms are resummed to next-to-next-to-next-to-leading logarithmic accuracy, while small-x ones to leading logarithmic accuracy. The double-resummed cross section is furthermore matched to the state-of-the-art fixed-order prediction at next-to-next-to-next-to-leading accuracy. We find that double resummation corrects the Higgs production rate by 2% at the currently explored center-of-mass energy of 13 TeV and its impact reaches 10% at future circular colliders at 100 TeV.

  18. A simplified clinical risk score predicts the need for early endoscopy in non-variceal upper gastrointestinal bleeding.

    PubMed

    Tammaro, Leonardo; Buda, Andrea; Di Paolo, Maria Carla; Zullo, Angelo; Hassan, Cesare; Riccio, Elisabetta; Vassallo, Roberto; Caserta, Luigi; Anderloni, Andrea; Natali, Alessandro

    2014-09-01

    Pre-endoscopic triage of patients who require an early upper endoscopy can improve management of patients with non-variceal upper gastrointestinal bleeding. To validate a new simplified clinical score (T-score) to assess the need of an early upper endoscopy in non variceal bleeding patients. Secondary outcomes were re-bleeding rate, 30-day bleeding-related mortality. In this prospective, multicentre study patients with bleeding who underwent upper endoscopy were enrolled. The accuracy for high risk endoscopic stigmata of the T-score was compared with that of the Glasgow Blatchford risk score. Overall, 602 patients underwent early upper endoscopy, and 472 presented with non-variceal bleeding. High risk endoscopic stigmata were detected in 145 (30.7%) cases. T-score sensitivity and specificity for high risk endoscopic stigmata and bleeding-related mortality was 96% and 30%, and 80% and 71%, respectively. No statistically difference in predicting high risk endoscopic stigmata between T-score and Glasgow Blatchford risk score was observed (ROC curve: 0.72 vs. 0.69, p=0.11). The two scores were also similar in predicting re-bleeding (ROC curve: 0.64 vs. 0.63, p=0.4) and 30-day bleeding-related mortality (ROC curve: 0.78 vs. 0.76, p=0.3). The T-score appeared to predict high risk endoscopic stigmata, re-bleeding and mortality with similar accuracy to Glasgow Blatchford risk score. Such a score may be helpful for the prediction of high-risk patients who need a very early therapeutic endoscopy. Copyright © 2014 Editrice Gastroenterologica Italiana S.r.l. Published by Elsevier Ltd. All rights reserved.

  19. Randomized, controlled trial of standard-definition white-light, high-definition white-light, and narrow-band imaging colonoscopy for the detection of colon polyps and prediction of polyp histology.

    PubMed

    Rastogi, Amit; Early, Dayna S; Gupta, Neil; Bansal, Ajay; Singh, Vikas; Ansstas, Michael; Jonnalagadda, Sreenivasa S; Hovis, Christine E; Gaddam, Srinivas; Wani, Sachin B; Edmundowicz, Steven A; Sharma, Prateek

    2011-09-01

    Missing adenomas and the inability to accurately differentiate between polyp histology remain the main limitations of standard-definition white-light (SD-WL) colonoscopy. To compare the adenoma detection rates of SD-WL with those of high-definition white-light (HD-WL) and narrow-band imaging (NBI) as well as the accuracy of predicting polyp histology. Multicenter, prospective, randomized, controlled trial. Two academic medical centers in the United States. Subjects undergoing screening or surveillance colonoscopy. Subjects were randomized to undergo colonoscopy with one of the following: SD-WL, HD-WL, or NBI. The proportion of subjects detected with adenomas, adenomas detected per subject, and the accuracy of predicting polyp histology real time. A total of 630 subjects were included. The proportion of subjects with adenomas was 38.6% with SD-WL compared with 45.7% with HD-WL and 46.2% with NBI (P = .17 and P = .14, respectively). Adenomas detected per subject were 0.69 with SD-WL compared with 1.12 with HD-WL and 1.13 with NBI (P = .016 and P = .014, respectively). HD-WL and NBI detected more subjects with flat and right-sided adenomas compared with SD-WL (all P values <.005). NBI had a superior sensitivity (90%) and accuracy (82%) to predict adenomas compared with SD-WL and HD-WL (all P values <.005). Academic medical centers with experienced endoscopists. There was no difference in the proportion of subjects with adenomas detected with SD-WL, HD-WL, and NBI. However, HD-WL and NBI detected significantly more adenomas per subject (>60%) compared with SD-WL. NBI had the highest accuracy in predicting adenomas in real time during colonoscopy. ( NCT 00614770.). Copyright © 2011 American Society for Gastrointestinal Endoscopy. Published by Mosby, Inc. All rights reserved.

  20. Prediction of psychosis across protocols and risk cohorts using automated language analysis

    PubMed Central

    Corcoran, Cheryl M.; Carrillo, Facundo; Fernández‐Slezak, Diego; Bedi, Gillinder; Klim, Casimir; Javitt, Daniel C.; Bearden, Carrie E.; Cecchi, Guillermo A.

    2018-01-01

    Language and speech are the primary source of data for psychiatrists to diagnose and treat mental disorders. In psychosis, the very structure of language can be disturbed, including semantic coherence (e.g., derailment and tangentiality) and syntactic complexity (e.g., concreteness). Subtle disturbances in language are evident in schizophrenia even prior to first psychosis onset, during prodromal stages. Using computer‐based natural language processing analyses, we previously showed that, among English‐speaking clinical (e.g., ultra) high‐risk youths, baseline reduction in semantic coherence (the flow of meaning in speech) and in syntactic complexity could predict subsequent psychosis onset with high accuracy. Herein, we aimed to cross‐validate these automated linguistic analytic methods in a second larger risk cohort, also English‐speaking, and to discriminate speech in psychosis from normal speech. We identified an automated machine‐learning speech classifier – comprising decreased semantic coherence, greater variance in that coherence, and reduced usage of possessive pronouns – that had an 83% accuracy in predicting psychosis onset (intra‐protocol), a cross‐validated accuracy of 79% of psychosis onset prediction in the original risk cohort (cross‐protocol), and a 72% accuracy in discriminating the speech of recent‐onset psychosis patients from that of healthy individuals. The classifier was highly correlated with previously identified manual linguistic predictors. Our findings support the utility and validity of automated natural language processing methods to characterize disturbances in semantics and syntax across stages of psychotic disorder. The next steps will be to apply these methods in larger risk cohorts to further test reproducibility, also in languages other than English, and identify sources of variability. This technology has the potential to improve prediction of psychosis outcome among at‐risk youths and identify linguistic targets for remediation and preventive intervention. More broadly, automated linguistic analysis can be a powerful tool for diagnosis and treatment across neuropsychiatry. PMID:29352548

  1. Building machine learning force fields for nanoclusters

    NASA Astrophysics Data System (ADS)

    Zeni, Claudio; Rossi, Kevin; Glielmo, Aldo; Fekete, Ádám; Gaston, Nicola; Baletto, Francesca; De Vita, Alessandro

    2018-06-01

    We assess Gaussian process (GP) regression as a technique to model interatomic forces in metal nanoclusters by analyzing the performance of 2-body, 3-body, and many-body kernel functions on a set of 19-atom Ni cluster structures. We find that 2-body GP kernels fail to provide faithful force estimates, despite succeeding in bulk Ni systems. However, both 3- and many-body kernels predict forces within an ˜0.1 eV/Å average error even for small training datasets and achieve high accuracy even on out-of-sample, high temperature structures. While training and testing on the same structure always provide satisfactory accuracy, cross-testing on dissimilar structures leads to higher prediction errors, posing an extrapolation problem. This can be cured using heterogeneous training on databases that contain more than one structure, which results in a good trade-off between versatility and overall accuracy. Starting from a 3-body kernel trained this way, we build an efficient non-parametric 3-body force field that allows accurate prediction of structural properties at finite temperatures, following a newly developed scheme [A. Glielmo et al., Phys. Rev. B 95, 214302 (2017)]. We use this to assess the thermal stability of Ni19 nanoclusters at a fractional cost of full ab initio calculations.

  2. Accuracy of Two Motor Assessments during the First Year of Life in Preterm Infants for Predicting Motor Outcome at Preschool Age.

    PubMed

    Spittle, Alicia J; Lee, Katherine J; Spencer-Smith, Megan; Lorefice, Lucy E; Anderson, Peter J; Doyle, Lex W

    2015-01-01

    The primary aim of this study was to investigate the accuracy of the Alberta Infant Motor Scale (AIMS) and Neuro-Sensory Motor Developmental Assessment (NSMDA) over the first year of life for predicting motor impairment at 4 years in preterm children. The secondary aims were to assess the predictive value of serial assessments over the first year and when using a combination of these two assessment tools in follow-up. Children born <30 weeks' gestation were prospectively recruited and assessed at 4, 8 and 12 months' corrected age using the AIMS and NSMDA. At 4 years' corrected age children were assessed for cerebral palsy (CP) and motor impairment using the Movement Assessment Battery for Children 2nd-edition (MABC-2). We calculated accuracy of the AIMS and NSMDA for predicting CP and MABC-2 scores ≤15th (at-risk of motor difficulty) and ≤5th centile (significant motor difficulty) for each test (AIMS and NSMDA) at 4, 8 and 12 months, for delay on one, two or all three of the time points over the first year, and finally for delay on both tests at each time point. Accuracy for predicting motor impairment was good for each test at each age, although false positives were common. Motor impairment on the MABC-2 (scores ≤5th and ≤15th) was most accurately predicted by the AIMS at 4 months, whereas CP was most accurately predicted by the NSMDA at 12 months. In regards to serial assessments, the likelihood ratio for motor impairment increased with the number of delayed assessments. When combining both the NSMDA and AIMS the best accuracy was achieved at 4 months, although results were similar at 8 and 12 months. Motor development during the first year of life in preterm infants assessed with the AIMS and NSMDA is predictive of later motor impairment at preschool age. However, false positives are common and therefore it is beneficial to follow-up children at high risk of motor impairment at more than one time point, or to use a combination of assessment tools. ACTR.org.au ACTRN12606000252516.

  3. The wisdom of crowds in action: Forecasting epidemic diseases with a web-based prediction market system.

    PubMed

    Li, Eldon Y; Tung, Chen-Yuan; Chang, Shu-Hsun

    2016-08-01

    The quest for an effective system capable of monitoring and predicting the trends of epidemic diseases is a critical issue for communities worldwide. With the prevalence of Internet access, more and more researchers today are using data from both search engines and social media to improve the prediction accuracy. In particular, a prediction market system (PMS) exploits the wisdom of crowds on the Internet to effectively accomplish relatively high accuracy. This study presents the architecture of a PMS and demonstrates the matching mechanism of logarithmic market scoring rules. The system was implemented to predict infectious diseases in Taiwan with the wisdom of crowds in order to improve the accuracy of epidemic forecasting. The PMS architecture contains three design components: database clusters, market engine, and Web applications. The system accumulated knowledge from 126 health professionals for 31 weeks to predict five disease indicators: the confirmed cases of dengue fever, the confirmed cases of severe and complicated influenza, the rate of enterovirus infections, the rate of influenza-like illnesses, and the confirmed cases of severe and complicated enterovirus infection. Based on the winning ratio, the PMS predicts the trends of three out of five disease indicators more accurately than does the existing system that uses the five-year average values of historical data for the same weeks. In addition, the PMS with the matching mechanism of logarithmic market scoring rules is easy to understand for health professionals and applicable to predict all the five disease indicators. The PMS architecture of this study affords organizations and individuals to implement it for various purposes in our society. The system can continuously update the data and improve prediction accuracy in monitoring and forecasting the trends of epidemic diseases. Future researchers could replicate and apply the PMS demonstrated in this study to more infectious diseases and wider geographical areas, especially the under-developed countries across Asia and Africa. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  4. Random Forests for Global and Regional Crop Yield Predictions.

    PubMed

    Jeong, Jig Han; Resop, Jonathan P; Mueller, Nathaniel D; Fleisher, David H; Yun, Kyungdahm; Butler, Ethan E; Timlin, Dennis J; Shim, Kyo-Moon; Gerber, James S; Reddy, Vangimalla R; Kim, Soo-Hyung

    2016-01-01

    Accurate predictions of crop yield are critical for developing effective agricultural and food policies at the regional and global scales. We evaluated a machine-learning method, Random Forests (RF), for its ability to predict crop yield responses to climate and biophysical variables at global and regional scales in wheat, maize, and potato in comparison with multiple linear regressions (MLR) serving as a benchmark. We used crop yield data from various sources and regions for model training and testing: 1) gridded global wheat grain yield, 2) maize grain yield from US counties over thirty years, and 3) potato tuber and maize silage yield from the northeastern seaboard region. RF was found highly capable of predicting crop yields and outperformed MLR benchmarks in all performance statistics that were compared. For example, the root mean square errors (RMSE) ranged between 6 and 14% of the average observed yield with RF models in all test cases whereas these values ranged from 14% to 49% for MLR models. Our results show that RF is an effective and versatile machine-learning method for crop yield predictions at regional and global scales for its high accuracy and precision, ease of use, and utility in data analysis. RF may result in a loss of accuracy when predicting the extreme ends or responses beyond the boundaries of the training data.

  5. Accurate genomic predictions for BCWD resistance in rainbow trout are achieved using low-density SNP panels: Evidence that long-range LD is a major contributing factor.

    PubMed

    Vallejo, Roger L; Silva, Rafael M O; Evenhuis, Jason P; Gao, Guangtu; Liu, Sixin; Parsons, James E; Martin, Kyle E; Wiens, Gregory D; Lourenco, Daniela A L; Leeds, Timothy D; Palti, Yniv

    2018-06-05

    Previously accurate genomic predictions for Bacterial cold water disease (BCWD) resistance in rainbow trout were obtained using a medium-density single nucleotide polymorphism (SNP) array. Here, the impact of lower-density SNP panels on the accuracy of genomic predictions was investigated in a commercial rainbow trout breeding population. Using progeny performance data, the accuracy of genomic breeding values (GEBV) using 35K, 10K, 3K, 1K, 500, 300 and 200 SNP panels as well as a panel with 70 quantitative trait loci (QTL)-flanking SNP was compared. The GEBVs were estimated using the Bayesian method BayesB, single-step GBLUP (ssGBLUP) and weighted ssGBLUP (wssGBLUP). The accuracy of GEBVs remained high despite the sharp reductions in SNP density, and even with 500 SNP accuracy was higher than the pedigree-based prediction (0.50-0.56 versus 0.36). Furthermore, the prediction accuracy with the 70 QTL-flanking SNP (0.65-0.72) was similar to the panel with 35K SNP (0.65-0.71). Genomewide linkage disequilibrium (LD) analysis revealed strong LD (r 2  ≥ 0.25) spanning on average over 1 Mb across the rainbow trout genome. This long-range LD likely contributed to the accurate genomic predictions with the low-density SNP panels. Population structure analysis supported the hypothesis that long-range LD in this population may be caused by admixture. Results suggest that lower-cost, low-density SNP panels can be used for implementing genomic selection for BCWD resistance in rainbow trout breeding programs. © 2018 The Authors. This article is a U.S. Government work and is in the public domain in the USA. Journal of Animal Breeding and Genetics published by Blackwell Verlag GmbH.

  6. Improved Displacement Transfer Functions for Structure Deformed Shape Predictions Using Discretely Distributed Surface Strains

    NASA Technical Reports Server (NTRS)

    Ko, William L.; Fleischer, Van Tran

    2012-01-01

    In the formulations of earlier Displacement Transfer Functions for structure shape predictions, the surface strain distributions, along a strain-sensing line, were represented with piecewise linear functions. To improve the shape-prediction accuracies, Improved Displacement Transfer Functions were formulated using piecewise nonlinear strain representations. Through discretization of an embedded beam (depth-wise cross section of a structure along a strain-sensing line) into multiple small domains, piecewise nonlinear functions were used to describe the surface strain distributions along the discretized embedded beam. Such piecewise approach enabled the piecewise integrations of the embedded beam curvature equations to yield slope and deflection equations in recursive forms. The resulting Improved Displacement Transfer Functions, written in summation forms, were expressed in terms of beam geometrical parameters and surface strains along the strain-sensing line. By feeding the surface strains into the Improved Displacement Transfer Functions, structural deflections could be calculated at multiple points for mapping out the overall structural deformed shapes for visual display. The shape-prediction accuracies of the Improved Displacement Transfer Functions were then examined in view of finite-element-calculated deflections using different tapered cantilever tubular beams. It was found that by using the piecewise nonlinear strain representations, the shape-prediction accuracies could be greatly improved, especially for highly-tapered cantilever tubular beams.

  7. High precision predictions for exclusive VH production at the LHC

    DOE PAGES

    Li, Ye; Liu, Xiaohui

    2014-06-04

    We present a resummation-improved prediction for pp → VH + 0 jets at the Large Hadron Collider. We focus on highly-boosted final states in the presence of jet veto to suppress the tt¯ background. In this case, conventional fixed-order calculations are plagued by the existence of large Sudakov logarithms α n slog m(p veto T/Q) for Q ~ m V + m H which lead to unreliable predictions as well as large theoretical uncertainties, and thus limit the accuracy when comparing experimental measurements to the Standard Model. In this work, we show that the resummation of Sudakov logarithms beyond themore » next-to-next-to-leading-log accuracy, combined with the next-to-next-to-leading order calculation, reduces the scale uncertainty and stabilizes the perturbative expansion in the region where the vector bosons carry large transverse momentum. Thus, our result improves the precision with which Higgs properties can be determined from LHC measurements using boosted Higgs techniques.« less

  8. Electrophysiological evidence for preserved primacy of lexical prediction in aging.

    PubMed

    Dave, Shruti; Brothers, Trevor A; Traxler, Matthew J; Ferreira, Fernanda; Henderson, John M; Swaab, Tamara Y

    2018-05-28

    Young adults show consistent neural benefits of predictable contexts when processing upcoming words, but these benefits are less clear-cut in older adults. Here we disentangle the neural correlates of prediction accuracy and contextual support during word processing, in order to test current theories that suggest that neural mechanisms underlying predictive processing are specifically impaired in older adults. During a sentence comprehension task, older and younger readers were asked to predict passage-final words and report the accuracy of these predictions. Age-related reductions were observed for N250 and N400 effects of prediction accuracy, as well as for N400 effects of contextual support independent of prediction accuracy. Furthermore, temporal primacy of predictive processing (i.e., earlier facilitation for successful predictions) was preserved across the lifespan, suggesting that predictive mechanisms are unlikely to be uniquely impaired in older adults. In addition, older adults showed prediction effects on frontal post-N400 positivities (PNPs) that were similar in amplitude to PNPs in young adults. Previous research has shown correlations between verbal fluency and lexical prediction in older adult readers, suggesting that the production system may be linked to capacity for lexical prediction, especially in aging. The current study suggests that verbal fluency modulates PNP effects of contextual support, but not prediction accuracy. Taken together, our findings suggest that aging does not result in specific declines in lexical prediction. Copyright © 2018 Elsevier Ltd. All rights reserved.

  9. Automated Deep Learning-Based System to Identify Endothelial Cells Derived from Induced Pluripotent Stem Cells.

    PubMed

    Kusumoto, Dai; Lachmann, Mark; Kunihiro, Takeshi; Yuasa, Shinsuke; Kishino, Yoshikazu; Kimura, Mai; Katsuki, Toshiomi; Itoh, Shogo; Seki, Tomohisa; Fukuda, Keiichi

    2018-06-05

    Deep learning technology is rapidly advancing and is now used to solve complex problems. Here, we used deep learning in convolutional neural networks to establish an automated method to identify endothelial cells derived from induced pluripotent stem cells (iPSCs), without the need for immunostaining or lineage tracing. Networks were trained to predict whether phase-contrast images contain endothelial cells based on morphology only. Predictions were validated by comparison to immunofluorescence staining for CD31, a marker of endothelial cells. Method parameters were then automatically and iteratively optimized to increase prediction accuracy. We found that prediction accuracy was correlated with network depth and pixel size of images to be analyzed. Finally, K-fold cross-validation confirmed that optimized convolutional neural networks can identify endothelial cells with high performance, based only on morphology. Copyright © 2018 The Author(s). Published by Elsevier Inc. All rights reserved.

  10. A time series modeling approach in risk appraisal of violent and sexual recidivism.

    PubMed

    Bani-Yaghoub, Majid; Fedoroff, J Paul; Curry, Susan; Amundsen, David E

    2010-10-01

    For over half a century, various clinical and actuarial methods have been employed to assess the likelihood of violent recidivism. Yet there is a need for new methods that can improve the accuracy of recidivism predictions. This study proposes a new time series modeling approach that generates high levels of predictive accuracy over short and long periods of time. The proposed approach outperformed two widely used actuarial instruments (i.e., the Violence Risk Appraisal Guide and the Sex Offender Risk Appraisal Guide). Furthermore, analysis of temporal risk variations based on specific time series models can add valuable information into risk assessment and management of violent offenders.

  11. Increased pulmonary alveolar-capillary permeability in patients at risk for adult respiratory distress syndrome

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tennenberg, S.D.; Jacobs, M.P.; Solomkin, J.S.

    1987-04-01

    Two methods for predicting adult respiratory distress syndrome (ARDS) were evaluated prospectively in a group of 81 multitrauma and sepsis patients considered at clinical high risk. A popular ARDS risk-scoring method, employing discriminant analysis equations (weighted risk criteria and oxygenation characteristics), yielded a predictive accuracy of 59% and a false-negative rate of 22%. Pulmonary alveolar-capillary permeability (PACP) was determined with a radioaerosol lung-scan technique in 23 of these 81 patients, representing a statistically similar subgroup. Lung scanning achieved a predictive accuracy of 71% (after excluding patients with unilateral pulmonary contusion) and gave no false-negatives. We propose a combination of clinicalmore » risk identification and functional determination of PACP to assess a patient's risk of developing ARDS.« less

  12. FMRI Is a Valid Noninvasive Alternative to Wada Testing

    PubMed Central

    Binder, Jeffrey R.

    2010-01-01

    Partial removal of the anterior temporal lobe (ATL) is a highly effective surgical treatment for intractable temporal lobe epilepsy, yet roughly half of patients who undergo left ATL resection show decline in language or verbal memory function postoperatively. Two recent studies demonstrate that preoperative fMRI can predict postoperative naming and verbal memory changes in such patients. Most importantly, fMRI significantly improves the accuracy of prediction relative to other noninvasive measures used alone. Addition of language and memory lateralization data from the intracarotid amobarbital (Wada) test did not improve prediction accuracy in these studies. Thus, fMRI provides patients and practitioners with a safe, non-invasive, and well-validated tool for making better-informed decisions regarding elective surgery based on a quantitative assessment of cognitive risk. PMID:20850386

  13. Predicting problems in school performance from preschool health, developmental and behavioural assessments.

    PubMed Central

    Cadman, D; Walter, S D; Chambers, L W; Ferguson, R; Szatmari, P; Johnson, N; McNamee, J

    1988-01-01

    To determine the accuracy of various predictors of school problems, we conducted a 3-year prospective study of 1999 children who began school in the Niagara region of Ontario in 1980. During the year before school entry the parents gave a health, developmental and behavioural history during an interview with a community health nurse, and the children underwent vision and hearing screening tests and the Denver Developmental Screening Test (DDST). At the end of the 1980-81 school year the kindergarten teachers rated the children's learning problems. At the end of the 1982-83 school year the presence of school problems was ascertained, and the predictive accuracy of items from the preschool history and examination and of the kindergarten teachers' ratings was calculated. The health, developmental and behavioural history with or without the DDST was found to predict later school problems with acceptable accuracy. The kindergarten teachers' ratings gave slightly more accurate predictions. We conclude that in communities where prompt diagnostic evaluation and effective therapeutic or preventive help can be provided to children identified as being at high risk, health professionals may play a useful role in screening for future school problems. PMID:3383038

  14. Accuracy of ultrasound in prediction of rectosigmoid infiltration in epithelial ovarian cancer.

    PubMed

    Zikan, M; Fischerova, D; Semeradova, I; Slama, J; Dundr, P; Weinberger, V; Dusek, L; Cibula, D

    2017-10-01

    To examine prospectively the accuracy of ultrasound in predicting rectosigmoid tumor infiltration in patients with epithelial ovarian cancer. Patients referred for a suspicious pelvic mass between 2012 and 2014 were examined by ultrasound following the standard protocol for assessment of tumor infiltration. Of the 245 patients examined, 191 had proven ovarian cancer and underwent primary surgery and were included in the analysis. Patients with apparently benign or inoperable disease were excluded. Rectosigmoid infiltration was evaluated by histopathology or according to perioperative findings. Clinical, pathological and laboratory parameters were analyzed as factors potentially affecting the sensitivity and specificity of sonography. The sensitivity of ultrasound in detecting rectosigmoid infiltration in patients with ovarian cancer was 86.3%, with specificity of 95.8%, positive predictive value of 92.6%, negative predictive value of 91.9% and overall accuracy of 92.1%. Ultrasound is a highly accurate method for detecting rectosigmoid tumor infiltration in ovarian cancer patients, and thus, can be used for planning adequate management, including patient consultation, surgical team planning, suitable operating time and postoperative care. Copyright © 2016 ISUOG. Published by John Wiley & Sons Ltd. Copyright © 2016 ISUOG. Published by John Wiley & Sons Ltd.

  15. Effects of mora deletion, nonword repetition, rapid naming, and visual search performance on beginning reading in Japanese.

    PubMed

    Kobayashi, Maya Shiho; Haynes, Charles W; Macaruso, Paul; Hook, Pamela E; Kato, Junko

    2005-06-01

    This study examined the extent to which mora deletion (phonological analysis), nonword repetition (phonological memory), rapid automatized naming (RAN), and visual search abilities predict reading in Japanese kindergartners and first graders. Analogous abilities have been identified as important predictors of reading skills in alphabetic languages like English. In contrast to English, which is based on grapheme-phoneme relationships, the primary components of Japanese orthography are two syllabaries-hiragana and katakana (collectively termed "kana")-and a system of morphosyllabic symbols (kanji). Three RAN tasks (numbers, objects, syllabary symbols [hiragana]) were used with kindergartners, with an additional kanji RAN task included for first graders. Reading measures included accuracy and speed of passage reading for kindergartners and first graders, and reading comprehension for first graders. In kindergartners, hiragana RAN and number RAN were the only significant predictors of reading accuracy and speed. In first graders, kanji RAN and hiragana RAN predicted reading speed, whereas accuracy was predicted by mora deletion. Reading comprehension was predicted by kanji RAN, mora deletion, and nonword repetition. Although number RAN did not contribute unique variance to any reading measure, it correlated highly with kanji RAN. Implications of these findings for research and practice are discussed.

  16. Including non-additive genetic effects in Bayesian methods for the prediction of genetic values based on genome-wide markers

    PubMed Central

    2011-01-01

    Background Molecular marker information is a common source to draw inferences about the relationship between genetic and phenotypic variation. Genetic effects are often modelled as additively acting marker allele effects. The true mode of biological action can, of course, be different from this plain assumption. One possibility to better understand the genetic architecture of complex traits is to include intra-locus (dominance) and inter-locus (epistasis) interaction of alleles as well as the additive genetic effects when fitting a model to a trait. Several Bayesian MCMC approaches exist for the genome-wide estimation of genetic effects with high accuracy of genetic value prediction. Including pairwise interaction for thousands of loci would probably go beyond the scope of such a sampling algorithm because then millions of effects are to be estimated simultaneously leading to months of computation time. Alternative solving strategies are required when epistasis is studied. Methods We extended a fast Bayesian method (fBayesB), which was previously proposed for a purely additive model, to include non-additive effects. The fBayesB approach was used to estimate genetic effects on the basis of simulated datasets. Different scenarios were simulated to study the loss of accuracy of prediction, if epistatic effects were not simulated but modelled and vice versa. Results If 23 QTL were simulated to cause additive and dominance effects, both fBayesB and a conventional MCMC sampler BayesB yielded similar results in terms of accuracy of genetic value prediction and bias of variance component estimation based on a model including additive and dominance effects. Applying fBayesB to data with epistasis, accuracy could be improved by 5% when all pairwise interactions were modelled as well. The accuracy decreased more than 20% if genetic variation was spread over 230 QTL. In this scenario, accuracy based on modelling only additive and dominance effects was generally superior to that of the complex model including epistatic effects. Conclusions This simulation study showed that the fBayesB approach is convenient for genetic value prediction. Jointly estimating additive and non-additive effects (especially dominance) has reasonable impact on the accuracy of prediction and the proportion of genetic variation assigned to the additive genetic source. PMID:21867519

  17. A novel feature extraction scheme with ensemble coding for protein-protein interaction prediction.

    PubMed

    Du, Xiuquan; Cheng, Jiaxing; Zheng, Tingting; Duan, Zheng; Qian, Fulan

    2014-07-18

    Protein-protein interactions (PPIs) play key roles in most cellular processes, such as cell metabolism, immune response, endocrine function, DNA replication, and transcription regulation. PPI prediction is one of the most challenging problems in functional genomics. Although PPI data have been increasing because of the development of high-throughput technologies and computational methods, many problems are still far from being solved. In this study, a novel predictor was designed by using the Random Forest (RF) algorithm with the ensemble coding (EC) method. To reduce computational time, a feature selection method (DX) was adopted to rank the features and search the optimal feature combination. The DXEC method integrates many features and physicochemical/biochemical properties to predict PPIs. On the Gold Yeast dataset, the DXEC method achieves 67.2% overall precision, 80.74% recall, and 70.67% accuracy. On the Silver Yeast dataset, the DXEC method achieves 76.93% precision, 77.98% recall, and 77.27% accuracy. On the human dataset, the prediction accuracy reaches 80% for the DXEC-RF method. We extended the experiment to a bigger and more realistic dataset that maintains 50% recall on the Yeast All dataset and 80% recall on the Human All dataset. These results show that the DXEC method is suitable for performing PPI prediction. The prediction service of the DXEC-RF classifier is available at http://ailab.ahu.edu.cn:8087/ DXECPPI/index.jsp.

  18. NRfamPred: a proteome-scale two level method for prediction of nuclear receptor proteins and their sub-families.

    PubMed

    Kumar, Ravindra; Kumari, Bandana; Srivastava, Abhishikha; Kumar, Manish

    2014-10-29

    Nuclear receptor proteins (NRP) are transcription factor that regulate many vital cellular processes in animal cells. NRPs form a super-family of phylogenetically related proteins and divided into different sub-families on the basis of ligand characteristics and their functions. In the post-genomic era, when new proteins are being added to the database in a high-throughput mode, it becomes imperative to identify new NRPs using information from amino acid sequence alone. In this study we report a SVM based two level prediction systems, NRfamPred, using dipeptide composition of proteins as input. At the 1st level, NRfamPred screens whether the query protein is NRP or non-NRP; if the query protein belongs to NRP class, prediction moves to 2nd level and predicts the sub-family. Using leave-one-out cross-validation, we were able to achieve an overall accuracy of 97.88% at the 1st level and an overall accuracy of 98.11% at the 2nd level with dipeptide composition. Benchmarking on independent datasets showed that NRfamPred had comparable accuracy to other existing methods, developed on the same dataset. Our method predicted the existence of 76 NRPs in the human proteome, out of which 14 are novel NRPs. NRfamPred also predicted the sub-families of these 14 NRPs.

  19. Lurking systematics in predicting galaxy cold gas masses using dust luminosities and star formation rates

    NASA Astrophysics Data System (ADS)

    Janowiecki, Steven; Cortese, Luca; Catinella, Barbara; Goodwin, Adelle J.

    2018-05-01

    We use galaxies from the Herschel Reference Survey to evaluate commonly used indirect predictors of cold gas masses. We calibrate predictions for cold neutral atomic and molecular gas using infrared dust emission and gas depletion time methods that are self-consistent and have ˜20 per cent accuracy (with the highest accuracy in the prediction of total cold gas mass). However, modest systematic residual dependences are found in all calibrations that depend on the partition between molecular and atomic gas, and can over/underpredict gas masses by up to 0.3 dex. As expected, dust-based estimates are best at predicting the total gas mass while depletion time-based estimates are only able to predict the (star-forming) molecular gas mass. Additionally, we advise caution when applying these predictions to high-z galaxies, as significant (0.5 dex or more) errors can arise when incorrect assumptions are made about the dominant gas phase. Any scaling relations derived using predicted gas masses may be more closely related to the calibrations used than to the actual galaxies observed.

  20. Common polygenic variation enhances risk prediction for Alzheimer's disease.

    PubMed

    Escott-Price, Valentina; Sims, Rebecca; Bannister, Christian; Harold, Denise; Vronskaya, Maria; Majounie, Elisa; Badarinarayan, Nandini; Morgan, Kevin; Passmore, Peter; Holmes, Clive; Powell, John; Brayne, Carol; Gill, Michael; Mead, Simon; Goate, Alison; Cruchaga, Carlos; Lambert, Jean-Charles; van Duijn, Cornelia; Maier, Wolfgang; Ramirez, Alfredo; Holmans, Peter; Jones, Lesley; Hardy, John; Seshadri, Sudha; Schellenberg, Gerard D; Amouyel, Philippe; Williams, Julie

    2015-12-01

    The identification of subjects at high risk for Alzheimer's disease is important for prognosis and early intervention. We investigated the polygenic architecture of Alzheimer's disease and the accuracy of Alzheimer's disease prediction models, including and excluding the polygenic component in the model. This study used genotype data from the powerful dataset comprising 17 008 cases and 37 154 controls obtained from the International Genomics of Alzheimer's Project (IGAP). Polygenic score analysis tested whether the alleles identified to associate with disease in one sample set were significantly enriched in the cases relative to the controls in an independent sample. The disease prediction accuracy was investigated in a subset of the IGAP data, a sample of 3049 cases and 1554 controls (for whom APOE genotype data were available) by means of sensitivity, specificity, area under the receiver operating characteristic curve (AUC) and positive and negative predictive values. We observed significant evidence for a polygenic component enriched in Alzheimer's disease (P = 4.9 × 10(-26)). This enrichment remained significant after APOE and other genome-wide associated regions were excluded (P = 3.4 × 10(-19)). The best prediction accuracy AUC = 78.2% (95% confidence interval 77-80%) was achieved by a logistic regression model with APOE, the polygenic score, sex and age as predictors. In conclusion, Alzheimer's disease has a significant polygenic component, which has predictive utility for Alzheimer's disease risk and could be a valuable research tool complementing experimental designs, including preventative clinical trials, stem cell selection and high/low risk clinical studies. In modelling a range of sample disease prevalences, we found that polygenic scores almost doubles case prediction from chance with increased prediction at polygenic extremes. © The Author (2015). Published by Oxford University Press on behalf of the Guarantors of Brain. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  1. Predicting outcome of Morris water maze test in vascular dementia mouse model with deep learning

    PubMed Central

    Mogi, Masaki; Iwanami, Jun; Min, Li-Juan; Bai, Hui-Yu; Shan, Bao-Shuai; Kukida, Masayoshi; Kan-no, Harumi; Ikeda, Shuntaro; Higaki, Jitsuo; Horiuchi, Masatsugu

    2018-01-01

    The Morris water maze test (MWM) is one of the most popular and established behavioral tests to evaluate rodents’ spatial learning ability. The conventional training period is around 5 days, but there is no clear evidence or guidelines about the appropriate duration. In many cases, the final outcome of the MWM seems predicable from previous data and their trend. So, we assumed that if we can predict the final result with high accuracy, the experimental period could be shortened and the burden on testers reduced. An artificial neural network (ANN) is a useful modeling method for datasets that enables us to obtain an accurate mathematical model. Therefore, we constructed an ANN system to estimate the final outcome in MWM from the previously obtained 4 days of data in both normal mice and vascular dementia model mice. Ten-week-old male C57B1/6 mice (wild type, WT) were subjected to bilateral common carotid artery stenosis (WT-BCAS) or sham-operation (WT-sham). At 6 weeks after surgery, we evaluated their cognitive function with MWM. Mean escape latency was significantly longer in WT-BCAS than in WT-sham. All data were collected and used as training data and test data for the ANN system. We defined a multiple layer perceptron (MLP) as a prediction model using an open source framework for deep learning, Chainer. After a certain number of updates, we compared the predicted values and actual measured values with test data. A significant correlation coefficient was derived form the updated ANN model in both WT-sham and WT-BCAS. Next, we analyzed the predictive capability of human testers with the same datasets. There was no significant difference in the prediction accuracy between human testers and ANN models in both WT-sham and WT-BCAS. In conclusion, deep learning method with ANN could predict the final outcome in MWM from 4 days of data with high predictive accuracy in a vascular dementia model. PMID:29415035

  2. Predicting outcome of Morris water maze test in vascular dementia mouse model with deep learning.

    PubMed

    Higaki, Akinori; Mogi, Masaki; Iwanami, Jun; Min, Li-Juan; Bai, Hui-Yu; Shan, Bao-Shuai; Kukida, Masayoshi; Kan-No, Harumi; Ikeda, Shuntaro; Higaki, Jitsuo; Horiuchi, Masatsugu

    2018-01-01

    The Morris water maze test (MWM) is one of the most popular and established behavioral tests to evaluate rodents' spatial learning ability. The conventional training period is around 5 days, but there is no clear evidence or guidelines about the appropriate duration. In many cases, the final outcome of the MWM seems predicable from previous data and their trend. So, we assumed that if we can predict the final result with high accuracy, the experimental period could be shortened and the burden on testers reduced. An artificial neural network (ANN) is a useful modeling method for datasets that enables us to obtain an accurate mathematical model. Therefore, we constructed an ANN system to estimate the final outcome in MWM from the previously obtained 4 days of data in both normal mice and vascular dementia model mice. Ten-week-old male C57B1/6 mice (wild type, WT) were subjected to bilateral common carotid artery stenosis (WT-BCAS) or sham-operation (WT-sham). At 6 weeks after surgery, we evaluated their cognitive function with MWM. Mean escape latency was significantly longer in WT-BCAS than in WT-sham. All data were collected and used as training data and test data for the ANN system. We defined a multiple layer perceptron (MLP) as a prediction model using an open source framework for deep learning, Chainer. After a certain number of updates, we compared the predicted values and actual measured values with test data. A significant correlation coefficient was derived form the updated ANN model in both WT-sham and WT-BCAS. Next, we analyzed the predictive capability of human testers with the same datasets. There was no significant difference in the prediction accuracy between human testers and ANN models in both WT-sham and WT-BCAS. In conclusion, deep learning method with ANN could predict the final outcome in MWM from 4 days of data with high predictive accuracy in a vascular dementia model.

  3. CFD Computations for a Generic High-Lift Configuration Using TetrUSS

    NASA Technical Reports Server (NTRS)

    Pandya, Mohagna J.; Abdol-Hamid, Khaled S.; Parlette, Edward B.

    2011-01-01

    Assessment of the accuracy of computational results for a generic high-lift trapezoidal wing with a single slotted flap and slat is presented. The paper is closely aligned with the focus of the 1st AIAA CFD High Lift Prediction Workshop (HiLiftPW-1) which was to assess the accuracy of CFD methods for multi-element high-lift configurations. The unstructured grid Reynolds-Averaged Navier-Stokes solver TetrUSS/USM3D is used for the computational results. USM3D results are obtained assuming fully turbulent flow using the Spalart-Allmaras (SA) and Shear Stress Transport (SST) turbulence models. Computed solutions have been obtained at seven different angles-of-attack ranging from 6 -37 . Three grids providing progressively higher grid resolution are used to quantify the effect of grid resolution on the lift, drag, pitching moment, surface pressure and stall angle. SA results, as compared to SST results, exhibit better agreement with the measured data. However, both turbulence models under-predict upper surface pressures near the wing tip region.

  4. Diagnostic Accuracy Assessment of Sensititre and Agar Disk Diffusion for Determining Antimicrobial Resistance Profiles of Bovine Clinical Mastitis Pathogens▿

    PubMed Central

    Saini, V.; Riekerink, R. G. M. Olde; McClure, J. T.; Barkema, H. W.

    2011-01-01

    Determining the accuracy and precision of a measuring instrument is pertinent in antimicrobial susceptibility testing. This study was conducted to predict the diagnostic accuracy of the Sensititre MIC mastitis panel (Sensititre) and agar disk diffusion (ADD) method with reference to the manual broth microdilution test method for antimicrobial resistance profiling of Escherichia coli (n = 156), Staphylococcus aureus (n = 154), streptococcal (n = 116), and enterococcal (n = 31) bovine clinical mastitis isolates. The activities of ampicillin, ceftiofur, cephalothin, erythromycin, oxacillin, penicillin, the penicillin-novobiocin combination, pirlimycin, and tetracycline were tested against the isolates. Diagnostic accuracy was determined by estimating the area under the receiver operating characteristic curve; intertest essential and categorical agreements were determined as well. Sensititre and the ADD method demonstrated moderate to highly accurate (71 to 99%) and moderate to perfect (71 to 100%) predictive accuracies for 74 and 76% of the isolate-antimicrobial MIC combinations, respectively. However, the diagnostic accuracy was low for S. aureus-ceftiofur/oxacillin combinations and other streptococcus-ampicillin combinations by either testing method. Essential agreement between Sensititre automatic MIC readings and MIC readings obtained by the broth microdilution test method was 87%. Essential agreement between Sensititre automatic and manual MIC reading methods was 97%. Furthermore, the ADD test method and Sensititre MIC method exhibited 92 and 91% categorical agreement (sensitive, intermediate, resistant) of results, respectively, compared with the reference method. However, both methods demonstrated lower agreement for E. coli-ampicillin/cephalothin combinations than for Gram-positive isolates. In conclusion, the Sensititre and ADD methods had moderate to high diagnostic accuracy and very good essential and categorical agreement for most udder pathogen-antimicrobial combinations and can be readily employed in veterinary diagnostic laboratories. PMID:21270215

  5. Teaching a Machine to Feel Postoperative Pain: Combining High-Dimensional Clinical Data with Machine Learning Algorithms to Forecast Acute Postoperative Pain

    PubMed Central

    Tighe, Patrick J.; Harle, Christopher A.; Hurley, Robert W.; Aytug, Haldun; Boezaart, Andre P.; Fillingim, Roger B.

    2015-01-01

    Background Given their ability to process highly dimensional datasets with hundreds of variables, machine learning algorithms may offer one solution to the vexing challenge of predicting postoperative pain. Methods Here, we report on the application of machine learning algorithms to predict postoperative pain outcomes in a retrospective cohort of 8071 surgical patients using 796 clinical variables. Five algorithms were compared in terms of their ability to forecast moderate to severe postoperative pain: Least Absolute Shrinkage and Selection Operator (LASSO), gradient-boosted decision tree, support vector machine, neural network, and k-nearest neighbor, with logistic regression included for baseline comparison. Results In forecasting moderate to severe postoperative pain for postoperative day (POD) 1, the LASSO algorithm, using all 796 variables, had the highest accuracy with an area under the receiver-operating curve (ROC) of 0.704. Next, the gradient-boosted decision tree had an ROC of 0.665 and the k-nearest neighbor algorithm had an ROC of 0.643. For POD 3, the LASSO algorithm, using all variables, again had the highest accuracy, with an ROC of 0.727. Logistic regression had a lower ROC of 0.5 for predicting pain outcomes on POD 1 and 3. Conclusions Machine learning algorithms, when combined with complex and heterogeneous data from electronic medical record systems, can forecast acute postoperative pain outcomes with accuracies similar to methods that rely only on variables specifically collected for pain outcome prediction. PMID:26031220

  6. Subcellular location prediction of proteins using support vector machines with alignment of block sequences utilizing amino acid composition.

    PubMed

    Tamura, Takeyuki; Akutsu, Tatsuya

    2007-11-30

    Subcellular location prediction of proteins is an important and well-studied problem in bioinformatics. This is a problem of predicting which part in a cell a given protein is transported to, where an amino acid sequence of the protein is given as an input. This problem is becoming more important since information on subcellular location is helpful for annotation of proteins and genes and the number of complete genomes is rapidly increasing. Since existing predictors are based on various heuristics, it is important to develop a simple method with high prediction accuracies. In this paper, we propose a novel and general predicting method by combining techniques for sequence alignment and feature vectors based on amino acid composition. We implemented this method with support vector machines on plant data sets extracted from the TargetP database. Through fivefold cross validation tests, the obtained overall accuracies and average MCC were 0.9096 and 0.8655 respectively. We also applied our method to other datasets including that of WoLF PSORT. Although there is a predictor which uses the information of gene ontology and yields higher accuracy than ours, our accuracies are higher than existing predictors which use only sequence information. Since such information as gene ontology can be obtained only for known proteins, our predictor is considered to be useful for subcellular location prediction of newly-discovered proteins. Furthermore, the idea of combination of alignment and amino acid frequency is novel and general so that it may be applied to other problems in bioinformatics. Our method for plant is also implemented as a web-system and available on http://sunflower.kuicr.kyoto-u.ac.jp/~tamura/slpfa.html.

  7. Genome-Enabled Estimates of Additive and Nonadditive Genetic Variances and Prediction of Apple Phenotypes Across Environments

    PubMed Central

    Kumar, Satish; Molloy, Claire; Muñoz, Patricio; Daetwyler, Hans; Chagné, David; Volz, Richard

    2015-01-01

    The nonadditive genetic effects may have an important contribution to total genetic variation of phenotypes, so estimates of both the additive and nonadditive effects are desirable for breeding and selection purposes. Our main objectives were to: estimate additive, dominance and epistatic variances of apple (Malus × domestica Borkh.) phenotypes using relationship matrices constructed from genome-wide dense single nucleotide polymorphism (SNP) markers; and compare the accuracy of genomic predictions using genomic best linear unbiased prediction models with or without including nonadditive genetic effects. A set of 247 clonally replicated individuals was assessed for six fruit quality traits at two sites, and also genotyped using an Illumina 8K SNP array. Across several fruit quality traits, the additive, dominance, and epistatic effects contributed about 30%, 16%, and 19%, respectively, to the total phenotypic variance. Models ignoring nonadditive components yielded upwardly biased estimates of additive variance (heritability) for all traits in this study. The accuracy of genomic predicted genetic values (GEGV) varied from about 0.15 to 0.35 for various traits, and these were almost identical for models with or without including nonadditive effects. However, models including nonadditive genetic effects further reduced the bias of GEGV. Between-site genotypic correlations were high (>0.85) for all traits, and genotype-site interaction accounted for <10% of the phenotypic variability. The accuracy of prediction, when the validation set was present only at one site, was generally similar for both sites, and varied from about 0.50 to 0.85. The prediction accuracies were strongly influenced by trait heritability, and genetic relatedness between the training and validation families. PMID:26497141

  8. Influence of outliers on accuracy estimation in genomic prediction in plant breeding.

    PubMed

    Estaghvirou, Sidi Boubacar Ould; Ogutu, Joseph O; Piepho, Hans-Peter

    2014-10-01

    Outliers often pose problems in analyses of data in plant breeding, but their influence on the performance of methods for estimating predictive accuracy in genomic prediction studies has not yet been evaluated. Here, we evaluate the influence of outliers on the performance of methods for accuracy estimation in genomic prediction studies using simulation. We simulated 1000 datasets for each of 10 scenarios to evaluate the influence of outliers on the performance of seven methods for estimating accuracy. These scenarios are defined by the number of genotypes, marker effect variance, and magnitude of outliers. To mimic outliers, we added to one observation in each simulated dataset, in turn, 5-, 8-, and 10-times the error SD used to simulate small and large phenotypic datasets. The effect of outliers on accuracy estimation was evaluated by comparing deviations in the estimated and true accuracies for datasets with and without outliers. Outliers adversely influenced accuracy estimation, more so at small values of genetic variance or number of genotypes. A method for estimating heritability and predictive accuracy in plant breeding and another used to estimate accuracy in animal breeding were the most accurate and resistant to outliers across all scenarios and are therefore preferable for accuracy estimation in genomic prediction studies. The performances of the other five methods that use cross-validation were less consistent and varied widely across scenarios. The computing time for the methods increased as the size of outliers and sample size increased and the genetic variance decreased. Copyright © 2014 Ould Estaghvirou et al.

  9. Two unconventional risk factors for major adverse cardiovascular events in subjects with sexual dysfunction: low education and reported partner's hypoactive sexual desire in comparison with conventional risk factors.

    PubMed

    Rastrelli, Giulia; Corona, Giovanni; Fisher, Alessandra D; Silverii, Antonio; Mannucci, Edoardo; Maggi, Mario

    2012-12-01

    The classification of subjects as low or high cardiovascular (CV) risk is usually performed by risk engines, based upon multivariate prediction algorithms. However, their accuracy in predicting major adverse CV events (MACEs) is lower in high-risk populations as they take into account only conventional risk factors. To evaluate the accuracy of Progetto Cuore risk engine in predicting MACE in subjects with erectile dysfunction (ED) and to test the role of unconventional CV risk factors, specifically identified for ED. A consecutive series of 1,233 men (mean age 53.33 ± 9.08 years) attending our outpatient clinic for sexual dysfunction was longitudinally studied for a mean period of 4.4 ± 2.6 years. Several clinical, biochemical, and instrumental parameters were evaluated. Subjects were classified as high or low risk, according to previously reported ED-specific risk factors. In the overall population, Progetto Cuore-predicted population survival was not significantly different from the observed one (P = 0.545). Accordingly, receiver operating characteristic (ROC) analysis shows that Progetto Cuore has an accuracy of 0.697 ± 0.037 (P < 0.001) in predicting MACE. Considering subjects at high risk according to ED-specific risk factors, the observed incidence of MACE was significantly higher than the expected for both low educated and patients reporting partner's hypoactive sexual desire (HSD, both <0.05), but not for other described factors. The area under ROC curves of Progetto Cuore for MACE in subjects with low education and reported partner's HSD were 0.659 ± 0.053 (P = 0.008) and 0.550 ± 0.076 (P = 0.570), respectively. Overall, Progetto Cuore is a proper instrument for evaluating CV risk in ED subjects. However, in ED, other factors such as low education and partner's HSD concur to risk profile. At variance with low education, Progetto Cuore is not accurate enough to predict MACE in subjects with partner's HSD, suggesting that the latter effect is not mediated by conventional risk factors included in the algorithm. © 2012 International Society for Sexual Medicine.

  10. Support vector machine incremental learning triggered by wrongly predicted samples

    NASA Astrophysics Data System (ADS)

    Tang, Ting-long; Guan, Qiu; Wu, Yi-rong

    2018-05-01

    According to the classic Karush-Kuhn-Tucker (KKT) theorem, at every step of incremental support vector machine (SVM) learning, the newly adding sample which violates the KKT conditions will be a new support vector (SV) and migrate the old samples between SV set and non-support vector (NSV) set, and at the same time the learning model should be updated based on the SVs. However, it is not exactly clear at this moment that which of the old samples would change between SVs and NSVs. Additionally, the learning model will be unnecessarily updated, which will not greatly increase its accuracy but decrease the training speed. Therefore, how to choose the new SVs from old sets during the incremental stages and when to process incremental steps will greatly influence the accuracy and efficiency of incremental SVM learning. In this work, a new algorithm is proposed to select candidate SVs and use the wrongly predicted sample to trigger the incremental processing simultaneously. Experimental results show that the proposed algorithm can achieve good performance with high efficiency, high speed and good accuracy.

  11. SIPSim: A Modeling Toolkit to Predict Accuracy and Aid Design of DNA-SIP Experiments.

    PubMed

    Youngblut, Nicholas D; Barnett, Samuel E; Buckley, Daniel H

    2018-01-01

    DNA Stable isotope probing (DNA-SIP) is a powerful method that links identity to function within microbial communities. The combination of DNA-SIP with multiplexed high throughput DNA sequencing enables simultaneous mapping of in situ assimilation dynamics for thousands of microbial taxonomic units. Hence, high throughput sequencing enabled SIP has enormous potential to reveal patterns of carbon and nitrogen exchange within microbial food webs. There are several different methods for analyzing DNA-SIP data and despite the power of SIP experiments, it remains difficult to comprehensively evaluate method accuracy across a wide range of experimental parameters. We have developed a toolset (SIPSim) that simulates DNA-SIP data, and we use this toolset to systematically evaluate different methods for analyzing DNA-SIP data. Specifically, we employ SIPSim to evaluate the effects that key experimental parameters (e.g., level of isotopic enrichment, number of labeled taxa, relative abundance of labeled taxa, community richness, community evenness, and beta-diversity) have on the specificity, sensitivity, and balanced accuracy (defined as the product of specificity and sensitivity) of DNA-SIP analyses. Furthermore, SIPSim can predict analytical accuracy and power as a function of experimental design and community characteristics, and thus should be of great use in the design and interpretation of DNA-SIP experiments.

  12. SIPSim: A Modeling Toolkit to Predict Accuracy and Aid Design of DNA-SIP Experiments

    PubMed Central

    Youngblut, Nicholas D.; Barnett, Samuel E.; Buckley, Daniel H.

    2018-01-01

    DNA Stable isotope probing (DNA-SIP) is a powerful method that links identity to function within microbial communities. The combination of DNA-SIP with multiplexed high throughput DNA sequencing enables simultaneous mapping of in situ assimilation dynamics for thousands of microbial taxonomic units. Hence, high throughput sequencing enabled SIP has enormous potential to reveal patterns of carbon and nitrogen exchange within microbial food webs. There are several different methods for analyzing DNA-SIP data and despite the power of SIP experiments, it remains difficult to comprehensively evaluate method accuracy across a wide range of experimental parameters. We have developed a toolset (SIPSim) that simulates DNA-SIP data, and we use this toolset to systematically evaluate different methods for analyzing DNA-SIP data. Specifically, we employ SIPSim to evaluate the effects that key experimental parameters (e.g., level of isotopic enrichment, number of labeled taxa, relative abundance of labeled taxa, community richness, community evenness, and beta-diversity) have on the specificity, sensitivity, and balanced accuracy (defined as the product of specificity and sensitivity) of DNA-SIP analyses. Furthermore, SIPSim can predict analytical accuracy and power as a function of experimental design and community characteristics, and thus should be of great use in the design and interpretation of DNA-SIP experiments. PMID:29643843

  13. Predictive value of CHADS2 and CHA2DS2-VASc scores for acute myocardial infarction in patients with atrial fibrillation.

    PubMed

    Pang, Hui; Han, Bing; Fu, Qiang; Zong, Zhenkun

    2017-07-05

    The presence of acute myocardial infarction (AMI) confers a poor prognosis in atrial fibrillation (AF), associated with increased mortality dramatically. This study aimed to evaluate the predictive value of CHADS 2 and CHA 2 DS 2 -VASc scores for AMI in patients with AF. This retrospective study enrolled 5140 consecutive nonvalvular AF patients, 300 patients with AMI and 4840 patients without AMI. We identified the optimal cut-off values of the CHADS 2 and CHA 2 DS 2 -VASc scores each based on receiver operating characteristic curves to predict the risk of AMI. Both CHADS 2 score and CHA 2 DS 2 -VASc score were associated with an increased odds ratio of the prevalence of AMI in patients with AF, after adjustment for hyperlipidaemia, hyperuricemia, hyperthyroidism, hypothyroidism and obstructive sleep apnea. The present results showed that the area under the curve (AUC) for CHADS 2 score was 0.787 with a similar accuracy of the CHA 2 DS 2 -VASc score (AUC 0.750) in predicting "high-risk" AF patients who developed AMI. However, the predictive accuracy of the two clinical-based risk scores was fair. The CHA 2 DS 2 -VASc score has fair predictive value for identifying high-risk patients with AF and is not significantly superior to CHADS 2 in predicting patients who develop AMI.

  14. Short communication: Variations in major mineral contents of Mediterranean buffalo milk and application of Fourier-transform infrared spectroscopy for their prediction.

    PubMed

    Stocco, G; Cipolat-Gotet, C; Bonfatti, V; Schiavon, S; Bittante, G; Cecchinato, A

    2016-11-01

    The aims of this study were (1) to assess variability in the major mineral components of buffalo milk, (2) to estimate the effect of certain environmental sources of variation on the major minerals during lactation, and (3) to investigate the possibility of using Fourier-transform infrared (FTIR) spectroscopy as an indirect, noninvasive tool for routine prediction of the mineral content of buffalo milk. A total of 173 buffaloes reared in 5 herds were sampled once during the morning milking. Milk samples were analyzed for Ca, P, K, and Mg contents within 3h of sample collection using inductively coupled plasma optical emission spectrometry. A Milkoscan FT2 (Foss, Hillerød, Denmark) was used to acquire milk spectra over the spectral range from 5,000 to 900 wavenumber/cm. Prediction models were built using a partial least square approach, and cross-validation was used to assess the prediction accuracy of FTIR. Prediction models were validated using a 4-fold random cross-validation, thus dividing the calibration-test set in 4 folds, using one of them to check the results (prediction models) and the remaining 3 to develop the calibration models. Buffalo milk minerals averaged 162, 117, 86, and 14.4mg/dL of milk for Ca, P, K, and Mg, respectively. Herd and days in milk were the most important sources of variation in the traits investigated. Parity slightly affected only Ca content. Coefficients of determination of cross-validation between the FTIR-predicted and the measured values were 0.71, 0.70, and 0.72 for Ca, Mg, and P, respectively, whereas prediction accuracy was lower for K (0.55). Our findings reveal FTIR to be an unsuitable tool when milk mineral content needs to be predicted with high accuracy. Predictions may play a role as indicator traits in selective breeding (if the additive genetic correlation between FTIR predictions and measures of milk minerals is high enough) or in monitoring the milk of buffalo populations for dairy industry purposes. Copyright © 2016 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  15. How do gender and anxiety affect students' self-assessment and actual performance on a high-stakes clinical skills examination?

    PubMed

    Colbert-Getz, Jorie M; Fleishman, Carol; Jung, Julianna; Shilkofski, Nicole

    2013-01-01

    Research suggests that medical students are not accurate in self-assessment, but it is not clear whether students over- or underestimate their skills or how certain characteristics correlate with accuracy in self-assessment. The goal of this study was to determine the effect of gender and anxiety on accuracy of students' self-assessment and on actual performance in the context of a high-stakes assessment. Prior to their fourth year of medical school, two classes of medical students at Johns Hopkins University School of Medicine completed a required clinical skills exam in fall 2010 and 2011, respectively. Two hundred two students rated their anxiety in anticipation of the exam and predicted their overall scores in the history taking and physical examination performance domains. A self-assessment deviation score was calculated by subtracting each student's predicted score from his or her score as rated by standardized patients. When students self-assessed their data gathering performance, there was a weak negative correlation between their predicted scores and their actual scores on the examination. Additionally, there was an interaction effect of anxiety and gender on both self-assessment deviation scores and actual performance. Specifically, females with high anxiety were more accurate in self-assessment and achieved higher actual scores compared with males with high anxiety. No differences by gender emerged for students with moderate or low anxiety. Educators should take into account not only gender but also the role of emotion, in this case anxiety, when planning interventions to help improve accuracy of students' self-assessment.

  16. Computerized tomography with 3-dimensional reconstruction for the evaluation of renal size and arterial anatomy in the living kidney donor.

    PubMed

    Janoff, Daniel M; Davol, Patrick; Hazzard, James; Lemmers, Michael J; Paduch, Darius A; Barry, John M

    2004-01-01

    Computerized tomography (CT) with 3-dimensional (3-D) reconstruction has gained acceptance as an imaging study to evaluate living renal donors. We report our experience with this technique in 199 consecutive patients to validate its predictions of arterial anatomy and kidney volumes. Between January 1997 and March 2002, 199 living donor nephrectomies were performed at our institution using an open technique. During the operation arterial anatomy was recorded as well as kidney weight in 98 patients and displacement volume in 27. Each donor had been evaluated preoperatively by CT angiography with 3-D reconstruction. Arterial anatomy described by a staff radiologist was compared with intraoperative findings. CT estimated volumes were reported. Linear correlation graphs were generated to assess the reliability of CT volume predictions. The accuracy of CT angiography for predicting arterial anatomy was 90.5%. However, as the number of renal arteries increased, predictive accuracy decreased. The ability of CT to predict multiple arteries remained high with a positive predictive value of 95.2%. Calculated CT volume and kidney weight significantly correlated (0.654). However, the coefficient of variation index (how much average CT volume differed from measured intraoperative volume) was 17.8%. CT angiography with 3-D reconstruction accurately predicts arterial vasculature in more than 90% of patients and it can be used to compare renal volumes. However, accuracy decreases with multiple renal arteries and volume comparisons may be inaccurate when the difference in kidney volumes is within 17.8%.

  17. Local-search based prediction of medical image registration error

    NASA Astrophysics Data System (ADS)

    Saygili, Görkem

    2018-03-01

    Medical image registration is a crucial task in many different medical imaging applications. Hence, considerable amount of work has been published recently that aim to predict the error in a registration without any human effort. If provided, these error predictions can be used as a feedback to the registration algorithm to further improve its performance. Recent methods generally start with extracting image-based and deformation-based features, then apply feature pooling and finally train a Random Forest (RF) regressor to predict the real registration error. Image-based features can be calculated after applying a single registration but provide limited accuracy whereas deformation-based features such as variation of deformation vector field may require up to 20 registrations which is a considerably high time-consuming task. This paper proposes to use extracted features from a local search algorithm as image-based features to estimate the error of a registration. The proposed method comprises a local search algorithm to find corresponding voxels between registered image pairs and based on the amount of shifts and stereo confidence measures, it predicts the amount of registration error in millimetres densely using a RF regressor. Compared to other algorithms in the literature, the proposed algorithm does not require multiple registrations, can be efficiently implemented on a Graphical Processing Unit (GPU) and can still provide highly accurate error predictions in existence of large registration error. Experimental results with real registrations on a public dataset indicate a substantially high accuracy achieved by using features from the local search algorithm.

  18. High-definition vs. standard-definition colonoscopy in the characterization of small colonic polyps: results from a randomized trial.

    PubMed

    Longcroft-Wheaton, G; Brown, J; Cowlishaw, D; Higgins, B; Bhandari, P

    2012-10-01

    The resolution of endoscopes has increased in recent years. Modern Fujinon colonoscopes have a charge-coupled device (CCD) pixel density of 650,000 pixels compared with the 410,000 pixel CCD in standard-definition scopes. Acquiring high-definition scopes represents a significant capital investment and their clinical value remains uncertain. The aim of the current study was to investigate the impact of high-definition endoscopes on the in vivo histology prediction of colonic polyps. Colonoscopy procedures were performed using Fujinon colonoscopes and EPX-4400 processor. Procedures were randomized to be performed using either a standard-definition EC-530 colonoscope or high-definition EC-530 and EC-590 colonoscopes. Polyps of <10 mm were assessed using both white light imaging (WLI) and flexible spectral imaging color enhancement (FICE), and the predicted diagnosis was recorded. Polyps were removed and sent for histological analysis by a pathologist who was blinded to the endoscopic diagnosis. The predicted diagnosis was compared with the histology to calculate the accuracy, sensitivity, and specificity of in vivo assessment using either standard or high-definition scopes. A total of 293 polyps of <10 mm were examined–150 polyps using the standard-definition colonoscope and 143 polyps using high-definition colonoscopes. There was no difference in sensitivity, specificity or accuracy between the two scopes when WLI was used (standard vs. high: accuracy 70% [95% CI 62–77] vs. 73% [95% CI 65–80]; P=0.61). When FICE was used, high-definition colonoscopes showed a sensitivity of 93% compared with 83% for standard-definition colonoscopes (P=0.048); specificity was 81% and 82%, respectively. There was no difference between high- and standard-definition colonoscopes when white light was used, but FICE significantly improved the in vivo diagnosis of small polyps when high-definition scopes were used compared with standard definition.

  19. Classification of drug molecules considering their IC50 values using mixed-integer linear programming based hyper-boxes method.

    PubMed

    Armutlu, Pelin; Ozdemir, Muhittin E; Uney-Yuksektepe, Fadime; Kavakli, I Halil; Turkay, Metin

    2008-10-03

    A priori analysis of the activity of drugs on the target protein by computational approaches can be useful in narrowing down drug candidates for further experimental tests. Currently, there are a large number of computational methods that predict the activity of drugs on proteins. In this study, we approach the activity prediction problem as a classification problem and, we aim to improve the classification accuracy by introducing an algorithm that combines partial least squares regression with mixed-integer programming based hyper-boxes classification method, where drug molecules are classified as low active or high active regarding their binding activity (IC50 values) on target proteins. We also aim to determine the most significant molecular descriptors for the drug molecules. We first apply our approach by analyzing the activities of widely known inhibitor datasets including Acetylcholinesterase (ACHE), Benzodiazepine Receptor (BZR), Dihydrofolate Reductase (DHFR), Cyclooxygenase-2 (COX-2) with known IC50 values. The results at this stage proved that our approach consistently gives better classification accuracies compared to 63 other reported classification methods such as SVM, Naïve Bayes, where we were able to predict the experimentally determined IC50 values with a worst case accuracy of 96%. To further test applicability of this approach we first created dataset for Cytochrome P450 C17 inhibitors and then predicted their activities with 100% accuracy. Our results indicate that this approach can be utilized to predict the inhibitory effects of inhibitors based on their molecular descriptors. This approach will not only enhance drug discovery process, but also save time and resources committed.

  20. An Improved Method of AGM for High Precision Geolocation of SAR Images

    NASA Astrophysics Data System (ADS)

    Zhou, G.; He, C.; Yue, T.; Huang, W.; Huang, Y.; Li, X.; Chen, Y.

    2018-05-01

    In order to take full advantage of SAR images, it is necessary to obtain the high precision location of the image. During the geometric correction process of images, to ensure the accuracy of image geometric correction and extract the effective mapping information from the images, precise image geolocation is important. This paper presents an improved analytical geolocation method (IAGM) that determine the high precision geolocation of each pixel in a digital SAR image. This method is based on analytical geolocation method (AGM) proposed by X. K. Yuan aiming at realizing the solution of RD model. Tests will be conducted using RADARSAT-2 SAR image. Comparing the predicted feature geolocation with the position as determined by high precision orthophoto, results indicate an accuracy of 50m is attainable with this method. Error sources will be analyzed and some recommendations about improving image location accuracy in future spaceborne SAR's will be given.

  1. Using the MMPI 168 with Medical Inpatients

    ERIC Educational Resources Information Center

    Erickson, Richard C.; Freeman, Charles

    1976-01-01

    Explores the potential utility of the MMPI 168 with two inpatient medical populations. Correlations and clinically relevant comparisons suggest that the MMPI 168 predicted the standard MMPI with a high degree accuracy. (Editor/RK)

  2. Short-term Temperature Prediction Using Adaptive Computing on Dynamic Scales

    NASA Astrophysics Data System (ADS)

    Hu, W.; Cervone, G.; Jha, S.; Balasubramanian, V.; Turilli, M.

    2017-12-01

    When predicting temperature, there are specific places and times when high accuracy predictions are harder. For example, not all the sub-regions in the domain require the same amount of computing resources to generate an accurate prediction. Plateau areas might require less computing resources than mountainous areas because of the steeper gradient of temperature change in the latter. However, it is difficult to estimate beforehand the optimal allocation of computational resources because several parameters play a role in determining the accuracy of the forecasts, in addition to orography. The allocation of resources to perform simulations can become a bottleneck because it requires human intervention to stop jobs or start new ones. The goal of this project is to design and develop a dynamic approach to generate short-term temperature predictions that can automatically determines the required computing resources and the geographic scales of the predictions based on the spatial and temporal uncertainties. The predictions and the prediction quality metrics are computed using a numeric weather prediction model, Analog Ensemble (AnEn), and the parallelization on high performance computing systems is accomplished using Ensemble Toolkit, one component of the RADICAL-Cybertools family of tools. RADICAL-Cybertools decouple the science needs from the computational capabilities by building an intermediate layer to run general ensemble patterns, regardless of the science. In this research, we show how the ensemble toolkit allows generating high resolution temperature forecasts at different spatial and temporal resolution. The AnEn algorithm is run using NAM analysis and forecasts data for the continental United States for a period of 2 years. AnEn results show that temperature forecasts perform well according to different probabilistic and deterministic statistical tests.

  3. The effect of using genealogy-based haplotypes for genomic prediction

    PubMed Central

    2013-01-01

    Background Genomic prediction uses two sources of information: linkage disequilibrium between markers and quantitative trait loci, and additive genetic relationships between individuals. One way to increase the accuracy of genomic prediction is to capture more linkage disequilibrium by regression on haplotypes instead of regression on individual markers. The aim of this study was to investigate the accuracy of genomic prediction using haplotypes based on local genealogy information. Methods A total of 4429 Danish Holstein bulls were genotyped with the 50K SNP chip. Haplotypes were constructed using local genealogical trees. Effects of haplotype covariates were estimated with two types of prediction models: (1) assuming that effects had the same distribution for all haplotype covariates, i.e. the GBLUP method and (2) assuming that a large proportion (π) of the haplotype covariates had zero effect, i.e. a Bayesian mixture method. Results About 7.5 times more covariate effects were estimated when fitting haplotypes based on local genealogical trees compared to fitting individuals markers. Genealogy-based haplotype clustering slightly increased the accuracy of genomic prediction and, in some cases, decreased the bias of prediction. With the Bayesian method, accuracy of prediction was less sensitive to parameter π when fitting haplotypes compared to fitting markers. Conclusions Use of haplotypes based on genealogy can slightly increase the accuracy of genomic prediction. Improved methods to cluster the haplotypes constructed from local genealogy could lead to additional gains in accuracy. PMID:23496971

  4. The effect of using genealogy-based haplotypes for genomic prediction.

    PubMed

    Edriss, Vahid; Fernando, Rohan L; Su, Guosheng; Lund, Mogens S; Guldbrandtsen, Bernt

    2013-03-06

    Genomic prediction uses two sources of information: linkage disequilibrium between markers and quantitative trait loci, and additive genetic relationships between individuals. One way to increase the accuracy of genomic prediction is to capture more linkage disequilibrium by regression on haplotypes instead of regression on individual markers. The aim of this study was to investigate the accuracy of genomic prediction using haplotypes based on local genealogy information. A total of 4429 Danish Holstein bulls were genotyped with the 50K SNP chip. Haplotypes were constructed using local genealogical trees. Effects of haplotype covariates were estimated with two types of prediction models: (1) assuming that effects had the same distribution for all haplotype covariates, i.e. the GBLUP method and (2) assuming that a large proportion (π) of the haplotype covariates had zero effect, i.e. a Bayesian mixture method. About 7.5 times more covariate effects were estimated when fitting haplotypes based on local genealogical trees compared to fitting individuals markers. Genealogy-based haplotype clustering slightly increased the accuracy of genomic prediction and, in some cases, decreased the bias of prediction. With the Bayesian method, accuracy of prediction was less sensitive to parameter π when fitting haplotypes compared to fitting markers. Use of haplotypes based on genealogy can slightly increase the accuracy of genomic prediction. Improved methods to cluster the haplotypes constructed from local genealogy could lead to additional gains in accuracy.

  5. Validity of Predictive Equations for Resting Energy Expenditure Developed for Obese Patients: Impact of Body Composition Method

    PubMed Central

    Achamrah, Najate; Jésus, Pierre; Grigioni, Sébastien; Rimbert, Agnès; Petit, André; Déchelotte, Pierre; Folope, Vanessa; Coëffier, Moïse

    2018-01-01

    Predictive equations have been specifically developed for obese patients to estimate resting energy expenditure (REE). Body composition (BC) assessment is needed for some of these equations. We assessed the impact of BC methods on the accuracy of specific predictive equations developed in obese patients. REE was measured (mREE) by indirect calorimetry and BC assessed by bioelectrical impedance analysis (BIA) and dual-energy X-ray absorptiometry (DXA). mREE, percentages of prediction accuracy (±10% of mREE) were compared. Predictive equations were studied in 2588 obese patients. Mean mREE was 1788 ± 6.3 kcal/24 h. Only the Müller (BIA) and Harris & Benedict (HB) equations provided REE with no difference from mREE. The Huang, Müller, Horie-Waitzberg, and HB formulas provided a higher accurate prediction (>60% of cases). The use of BIA provided better predictions of REE than DXA for the Huang and Müller equations. Inversely, the Horie-Waitzberg and Lazzer formulas provided a higher accuracy using DXA. Accuracy decreased when applied to patients with BMI ≥ 40, except for the Horie-Waitzberg and Lazzer (DXA) formulas. Müller equations based on BIA provided a marked improvement of REE prediction accuracy than equations not based on BC. The interest of BC to improve REE predictive equations accuracy in obese patients should be confirmed. PMID:29320432

  6. Advanced Computational Methods for High-accuracy Refinement of Protein Low-quality Models

    NASA Astrophysics Data System (ADS)

    Zang, Tianwu

    Predicting the 3-dimentional structure of protein has been a major interest in the modern computational biology. While lots of successful methods can generate models with 3˜5A root-mean-square deviation (RMSD) from the solution, the progress of refining these models is quite slow. It is therefore urgently needed to develop effective methods to bring low-quality models to higher-accuracy ranges (e.g., less than 2 A RMSD). In this thesis, I present several novel computational methods to address the high-accuracy refinement problem. First, an enhanced sampling method, named parallel continuous simulated tempering (PCST), is developed to accelerate the molecular dynamics (MD) simulation. Second, two energy biasing methods, Structure-Based Model (SBM) and Ensemble-Based Model (EBM), are introduced to perform targeted sampling around important conformations. Third, a three-step method is developed to blindly select high-quality models along the MD simulation. These methods work together to make significant refinement of low-quality models without any knowledge of the solution. The effectiveness of these methods is examined in different applications. Using the PCST-SBM method, models with higher global distance test scores (GDT_TS) are generated and selected in the MD simulation of 18 targets from the refinement category of the 10th Critical Assessment of Structure Prediction (CASP10). In addition, in the refinement test of two CASP10 targets using the PCST-EBM method, it is indicated that EBM may bring the initial model to even higher-quality levels. Furthermore, a multi-round refinement protocol of PCST-SBM improves the model quality of a protein to the level that is sufficient high for the molecular replacement in X-ray crystallography. Our results justify the crucial position of enhanced sampling in the protein structure prediction and demonstrate that a considerable improvement of low-accuracy structures is still achievable with current force fields.

  7. Reliability of nine programs of topological predictions and their application to integral membrane channel and carrier proteins.

    PubMed

    Reddy, Abhinay; Cho, Jaehoon; Ling, Sam; Reddy, Vamsee; Shlykov, Maksim; Saier, Milton H

    2014-01-01

    We evaluated topological predictions for nine different programs, HMMTOP, TMHMM, SVMTOP, DAS, SOSUI, TOPCONS, PHOBIUS, MEMSAT-SVM (hereinafter referred to as MEMSAT), and SPOCTOPUS. These programs were first evaluated using four large topologically well-defined families of secondary transporters, and the three best programs were further evaluated using topologically more diverse families of channels and carriers. In the initial studies, the order of accuracy was: SPOCTOPUS > MEMSAT > HMMTOP > TOPCONS > PHOBIUS > TMHMM > SVMTOP > DAS > SOSUI. Some families, such as the Sugar Porter Family (2.A.1.1) of the Major Facilitator Superfamily (MFS; TC #2.A.1) and the Amino Acid/Polyamine/Organocation (APC) Family (TC #2.A.3), were correctly predicted with high accuracy while others, such as the Mitochondrial Carrier (MC) (TC #2.A.29) and the K(+) transporter (Trk) families (TC #2.A.38), were predicted with much lower accuracy. For small, topologically homogeneous families, SPOCTOPUS and MEMSAT were generally most reliable, while with large, more diverse superfamilies, HMMTOP often proved to have the greatest prediction accuracy. We next developed a novel program, TM-STATS, that tabulates HMMTOP, SPOCTOPUS or MEMSAT-based topological predictions for any subdivision (class, subclass, superfamily, family, subfamily, or any combination of these) of the Transporter Classification Database (TCDB; www.tcdb.org) and examined the following subclasses: α-type channel proteins (TC subclasses 1.A and 1.E), secreted pore-forming toxins (TC subclass 1.C) and secondary carriers (subclass 2.A). Histograms were generated for each of these subclasses, and the results were analyzed according to subclass, family and protein. The results provide an update of topological predictions for integral membrane transport proteins as well as guides for the development of more reliable topological prediction programs, taking family-specific characteristics into account. © 2014 S. Karger AG, Basel.

  8. Benefit of Hepatitis C Virus Core Antigen Assay in Prediction of Therapeutic Response to Interferon and Ribavirin Combination Therapy

    PubMed Central

    Takahashi, Masahiko; Saito, Hidetsugu; Higashimoto, Makiko; Atsukawa, Kazuhiro; Ishii, Hiromasa

    2005-01-01

    A highly sensitive second-generation hepatitis C virus (HCV) core antigen assay has recently been developed. We compared viral disappearance and first-phase kinetics between commercially available core antigen (Ag) assays, Lumipulse Ortho HCV Ag (Lumipulse-Ag), and a quantitative HCV RNA PCR assay, Cobas Amplicor HCV Monitor test, version 2 (Amplicor M), to estimate the predictive benefit of a sustained viral response (SVR) and non-SVR in 44 genotype 1b patients treated with interferon (IFN) and ribavirin. HCV core Ag negativity could predict SVR on day 1 (sensitivity = 100%, specificity = 85.0%, accuracy = 86.4%), whereas RNA negativity could predict SVR on day 7 (sensitivity = 100%, specificity = 87.2%, accuracy = 88.6%). None of the patients who had detectable serum core Ag or RNA on day 14 achieved SVR (specificity = 100%). The predictive accuracy on day 14 was higher by RNA negativity (93.2%) than that by core Ag negativity (75.0%). The combined predictive criterion of both viral load decline during the first 24 h and basal viral load was also predictive for SVR; the sensitivities of Lumipulse-Ag and Amplicor-M were 45.5 and 47.6%, respectively, and the specificity was 100%. Amplicor-M had better predictive accuracy than Lumipulse-Ag in 2-week disappearance tests because it had better sensitivity. On the other hand, estimates of kinetic parameters were similar regardless of the detection method. Although the correlations between Lumipulse-Ag and Amplicor-M were good both before and 24 h after IFN administration, HCV core Ag seemed to be relatively lower 24 h after IFN administration than before administration. Lumipulse-Ag seems to be useful for detecting the HCV concentration during IFN therapy; however, we still need to understand the characteristics of the assay. PMID:15634970

  9. Pre-drilling prediction techniques on the high-temperature high-pressure hydrocarbon reservoirs offshore Hainan Island, China

    NASA Astrophysics Data System (ADS)

    Zhang, Hanyu; Liu, Huaishan; Wu, Shiguo; Sun, Jin; Yang, Chaoqun; Xie, Yangbing; Chen, Chuanxu; Gao, Jinwei; Wang, Jiliang

    2018-02-01

    Decreasing the risks and geohazards associated with drilling engineering in high-temperature high-pressure (HTHP) geologic settings begins with the implementation of pre-drilling prediction techniques (PPTs). To improve the accuracy of geopressure prediction in HTHP hydrocarbon reservoirs offshore Hainan Island, we made a comprehensive summary of current PPTs to identify existing problems and challenges by analyzing the global distribution of HTHP hydrocarbon reservoirs, the research status of PPTs, and the geologic setting and its HTHP formation mechanism. Our research results indicate that the HTHP formation mechanism in the study area is caused by multiple factors, including rapid loading, diapir intrusions, hydrocarbon generation, and the thermal expansion of pore fluids. Due to this multi-factor interaction, a cloud of HTHP hydrocarbon reservoirs has developed in the Ying-Qiong Basin, but only traditional PPTs have been implemented, based on the assumption of conditions that do not conform to the actual geologic environment, e.g., Bellotti's law and Eaton's law. In this paper, we focus on these issues, identify some challenges and solutions, and call for further PPT research to address the drawbacks of previous works and meet the challenges associated with the deepwater technology gap. In this way, we hope to contribute to the improved accuracy of geopressure prediction prior to drilling and provide support for future HTHP drilling offshore Hainan Island.

  10. Evaluation of anthropogenic influence in probabilistic forecasting of coastal change

    NASA Astrophysics Data System (ADS)

    Hapke, C. J.; Wilson, K.; Adams, P. N.

    2014-12-01

    Prediction of large scale coastal behavior is especially challenging in areas of pervasive human activity. Many coastal zones on the Gulf and Atlantic coasts are moderately to highly modified through the use of soft sediment and hard stabilization techniques. These practices have the potential to alter sediment transport and availability, as well as reshape the beach profile, ultimately transforming the natural evolution of the coastal system. We present the results of a series of probabilistic models, designed to predict the observed geomorphic response to high wave events at Fire Island, New York. The island comprises a variety of land use types, including inhabited communities with modified beaches, where beach nourishment and artificial dune construction (scraping) occur, unmodified zones, and protected national seashore. This variation in land use presents an opportunity for comparison of model accuracy across highly modified and rarely modified stretches of coastline. Eight models with basic and expanded structures were developed, resulting in sixteen models, informed with observational data from Fire Island. The basic model type does not include anthropogenic modification. The expanded model includes records of nourishment and scraping, designed to quantify the improved accuracy when anthropogenic activity is represented. Modification was included as frequency of occurrence divided by the time since the most recent event, to distinguish between recent and historic events. All but one model reported improved predictive accuracy from the basic to expanded form. The addition of nourishment and scraping parameters resulted in a maximum reduction in predictive error of 36%. The seven improved models reported an average 23% reduction in error. These results indicate that it is advantageous to incorporate the human forcing into a coastal hazards probability model framework.

  11. Accuracy of the paracetamol-aminotransferase product to predict hepatotoxicity in paracetamol overdose treated with a 2-bag acetylcysteine regimen.

    PubMed

    Wong, Anselm; Sivilotti, Marco L A; Gunja, Naren; McNulty, Richard; Graudins, Andis

    2018-03-01

    Paracetamol concentration is a highly accurate risk predictor for hepatotoxicity following overdose with known time of ingestion. However, the paracetamol-aminotransferase multiplication product can be used as a risk predictor independent of timing or ingestion type. Validated in patients treated with the traditional, "three-bag" intravenous acetylcysteine regimen, we evaluated the accuracy of the multiplication product in paracetamol overdose treated with a two-bag acetylcysteine regimen. We examined consecutive patients treated with the two-bag regimen from five emergency departments over a two-year period. We assessed the predictive accuracy of initial multiplication product for the primary outcome of hepatotoxicity (peak alanine aminotransferase ≥1000IU/L), as well as for acute liver injury (ALI), defined peak alanine aminotransferase ≥2× baseline and above 50IU/L). Of 447 paracetamol overdoses treated with the two-bag acetylcysteine regimen, 32 (7%) developed hepatotoxicity and 73 (16%) ALI. The pre-specified cut-off points of 1500 mg/L × IU/L (sensitivity 100% [95% CI 82%, 100%], specificity 62% [56%, 67%]) and 10,000 mg/L × IU/L (sensitivity 70% [47%, 87%], specificity of 97% [95%, 99%]) were highly accurate for predicting hepatotoxicity. There were few cases of hepatotoxicity irrespective of the product when acetylcysteine was administered within eight hours of overdose, when the product was largely determined by a high paracetamol concentration but normal aminotransferase. The multiplication product accurately predicts hepatotoxicity when using a two-bag acetylcysteine regimen, especially in patients treated more than eight hours post-overdose. Further studies are needed to assess the product as a method to adjust for exposure severity when testing efficacy of modified acetylcysteine regimens.

  12. Accuracy and Calibration of High Explosive Thermodynamic Equations of State

    DTIC Science & Technology

    2010-08-01

    physics descriptions, but can also mean increased calibration complexity. A generalized extent of aluminum reaction, the Jones-Wilkins-Lee ( JWL ) based...predictions compared to experiments 3 3 PAX-30 JWL and JWLB cylinder test predictions compared to experiments 4 4 PAX-29 JWL and JWLB cylinder test...predictions compared to experiments 5 5 Experiment and modeling comparisons for HMX/AI 85/15 7 TABLES 1 LX-14 JWL and JWLB cylinder test velocity

  13. Study design requirements for RNA sequencing-based breast cancer diagnostics.

    PubMed

    Mer, Arvind Singh; Klevebring, Daniel; Grönberg, Henrik; Rantalainen, Mattias

    2016-02-01

    Sequencing-based molecular characterization of tumors provides information required for individualized cancer treatment. There are well-defined molecular subtypes of breast cancer that provide improved prognostication compared to routine biomarkers. However, molecular subtyping is not yet implemented in routine breast cancer care. Clinical translation is dependent on subtype prediction models providing high sensitivity and specificity. In this study we evaluate sample size and RNA-sequencing read requirements for breast cancer subtyping to facilitate rational design of translational studies. We applied subsampling to ascertain the effect of training sample size and the number of RNA sequencing reads on classification accuracy of molecular subtype and routine biomarker prediction models (unsupervised and supervised). Subtype classification accuracy improved with increasing sample size up to N = 750 (accuracy = 0.93), although with a modest improvement beyond N = 350 (accuracy = 0.92). Prediction of routine biomarkers achieved accuracy of 0.94 (ER) and 0.92 (Her2) at N = 200. Subtype classification improved with RNA-sequencing library size up to 5 million reads. Development of molecular subtyping models for cancer diagnostics requires well-designed studies. Sample size and the number of RNA sequencing reads directly influence accuracy of molecular subtyping. Results in this study provide key information for rational design of translational studies aiming to bring sequencing-based diagnostics to the clinic.

  14. A Coupled Surface Nudging Scheme for use in Retrospective ...

    EPA Pesticide Factsheets

    A surface analysis nudging scheme coupling atmospheric and land surface thermodynamic parameters has been implemented into WRF v3.8 (latest version) for use with retrospective weather and climate simulations, as well as for applications in air quality, hydrology, and ecosystem modeling. This scheme is known as the flux-adjusting surface data assimilation system (FASDAS) developed by Alapaty et al. (2008). This scheme provides continuous adjustments for soil moisture and temperature (via indirect nudging) and for surface air temperature and water vapor mixing ratio (via direct nudging). The simultaneous application of indirect and direct nudging maintains greater consistency between the soil temperature–moisture and the atmospheric surface layer mass-field variables. The new method, FASDAS, consistently improved the accuracy of the model simulations at weather prediction scales for different horizontal grid resolutions, as well as for high resolution regional climate predictions. This new capability has been released in WRF Version 3.8 as option grid_sfdda = 2. This new capability increased the accuracy of atmospheric inputs for use air quality, hydrology, and ecosystem modeling research to improve the accuracy of respective end-point research outcome. IMPACT: A new method, FASDAS, was implemented into the WRF model to consistently improve the accuracy of the model simulations at weather prediction scales for different horizontal grid resolutions, as wel

  15. At risk or not at risk? A meta-analysis of the prognostic accuracy of psychometric interviews for psychosis prediction

    PubMed Central

    Fusar-Poli, Paolo; Cappucciati, Marco; Rutigliano, Grazia; Schultze-Lutter, Frauke; Bonoldi, Ilaria; Borgwardt, Stefan; Riecher-Rössler, Anita; Addington, Jean; Perkins, Diana; Woods, Scott W; McGlashan, Thomas H; Lee, Jimmy; Klosterkötter, Joachim; Yung, Alison R; McGuire, Philip

    2015-01-01

    An accurate detection of individuals at clinical high risk (CHR) for psychosis is a prerequisite for effective preventive interventions. Several psychometric interviews are available, but their prognostic accuracy is unknown. We conducted a prognostic accuracy meta-analysis of psychometric interviews used to examine referrals to high risk services. The index test was an established CHR psychometric instrument used to identify subjects with and without CHR (CHR+ and CHR−). The reference index was psychosis onset over time in both CHR+ and CHR− subjects. Data were analyzed with MIDAS (STATA13). Area under the curve (AUC), summary receiver operating characteristic curves, quality assessment, likelihood ratios, Fagan’s nomogram and probability modified plots were computed. Eleven independent studies were included, with a total of 2,519 help-seeking, predominately adult subjects (CHR+: N=1,359; CHR−: N=1,160) referred to high risk services. The mean follow-up duration was 38 months. The AUC was excellent (0.90; 95% CI: 0.87-0.93), and comparable to other tests in preventive medicine, suggesting clinical utility in subjects referred to high risk services. Meta-regression analyses revealed an effect for exposure to antipsychotics and no effects for type of instrument, age, gender, follow-up time, sample size, quality assessment, proportion of CHR+ subjects in the total sample. Fagan’s nomogram indicated a low positive predictive value (5.74%) in the general non-help-seeking population. Albeit the clear need to further improve prediction of psychosis, these findings support the use of psychometric prognostic interviews for CHR as clinical tools for an indicated prevention in subjects seeking help at high risk services worldwide. PMID:26407788

  16. Dispersal and extrapolation on the accuracy of temporal predictions from distribution models for the Darwin's frog.

    PubMed

    Uribe-Rivera, David E; Soto-Azat, Claudio; Valenzuela-Sánchez, Andrés; Bizama, Gustavo; Simonetti, Javier A; Pliscoff, Patricio

    2017-07-01

    Climate change is a major threat to biodiversity; the development of models that reliably predict its effects on species distributions is a priority for conservation biogeography. Two of the main issues for accurate temporal predictions from Species Distribution Models (SDM) are model extrapolation and unrealistic dispersal scenarios. We assessed the consequences of these issues on the accuracy of climate-driven SDM predictions for the dispersal-limited Darwin's frog Rhinoderma darwinii in South America. We calibrated models using historical data (1950-1975) and projected them across 40 yr to predict distribution under current climatic conditions, assessing predictive accuracy through the area under the ROC curve (AUC) and True Skill Statistics (TSS), contrasting binary model predictions against temporal-independent validation data set (i.e., current presences/absences). To assess the effects of incorporating dispersal processes we compared the predictive accuracy of dispersal constrained models with no dispersal limited SDMs; and to assess the effects of model extrapolation on the predictive accuracy of SDMs, we compared this between extrapolated and no extrapolated areas. The incorporation of dispersal processes enhanced predictive accuracy, mainly due to a decrease in the false presence rate of model predictions, which is consistent with discrimination of suitable but inaccessible habitat. This also had consequences on range size changes over time, which is the most used proxy for extinction risk from climate change. The area of current climatic conditions that was absent in the baseline conditions (i.e., extrapolated areas) represents 39% of the study area, leading to a significant decrease in predictive accuracy of model predictions for those areas. Our results highlight (1) incorporating dispersal processes can improve predictive accuracy of temporal transference of SDMs and reduce uncertainties of extinction risk assessments from global change; (2) as geographical areas subjected to novel climates are expected to arise, they must be reported as they show less accurate predictions under future climate scenarios. Consequently, environmental extrapolation and dispersal processes should be explicitly incorporated to report and reduce uncertainties in temporal predictions of SDMs, respectively. Doing so, we expect to improve the reliability of the information we provide for conservation decision makers under future climate change scenarios. © 2017 by the Ecological Society of America.

  17. Predicting outcomes in patients with perforated gastroduodenal ulcers: artificial neural network modelling indicates a highly complex disease.

    PubMed

    Søreide, K; Thorsen, K; Søreide, J A

    2015-02-01

    Mortality prediction models for patients with perforated peptic ulcer (PPU) have not yielded consistent or highly accurate results. Given the complex nature of this disease, which has many non-linear associations with outcomes, we explored artificial neural networks (ANNs) to predict the complex interactions between the risk factors of PPU and death among patients with this condition. ANN modelling using a standard feed-forward, back-propagation neural network with three layers (i.e., an input layer, a hidden layer and an output layer) was used to predict the 30-day mortality of consecutive patients from a population-based cohort undergoing surgery for PPU. A receiver-operating characteristic (ROC) analysis was used to assess model accuracy. Of the 172 patients, 168 had their data included in the model; the data of 117 (70%) were used for the training set, and the data of 51 (39%) were used for the test set. The accuracy, as evaluated by area under the ROC curve (AUC), was best for an inclusive, multifactorial ANN model (AUC 0.90, 95% CIs 0.85-0.95; p < 0.001). This model outperformed standard predictive scores, including Boey and PULP. The importance of each variable decreased as the number of factors included in the ANN model increased. The prediction of death was most accurate when using an ANN model with several univariate influences on the outcome. This finding demonstrates that PPU is a highly complex disease for which clinical prognoses are likely difficult. The incorporation of computerised learning systems might enhance clinical judgments to improve decision making and outcome prediction.

  18. Determining the end of a musical turn: Effects of tonal cues.

    PubMed

    Hadley, Lauren V; Sturt, Patrick; Moran, Nikki; Pickering, Martin J

    2018-01-01

    Successful duetting requires that musicians coordinate their performance with their partners. In the case of turn-taking in improvised performance they need to be able to predict their partner's turn-end in order to accurately time their own entries. Here we investigate the cues used for accurate turn-end prediction in musical improvisations, focusing on the role of tonal structure. In a response-time task, participants more accurately determined the endings of (tonal) jazz than (non-tonal) free improvisation turns. Moreover, for the jazz improvisations, removing low frequency information (<2100Hz) - and hence obscuring the pitch relationships conveying tonality - reduced response accuracy, but removing high frequency information (>2100Hz) had no effect. Neither form of filtering affected response accuracy in the free improvisation condition. We therefore argue that tonal cues aided prediction accuracy for the jazz improvisations compared to the free improvisations. We compare our results with those from related speech research (De Ruiter et al., 2006), to draw comparisons between the structural function of tonality and linguistic syntax. Copyright © 2017. Published by Elsevier B.V.

  19. Development and Validation of a Clinic-Based Prediction Tool to Identify Female Athletes at High Risk for Anterior Cruciate Ligament Injury

    PubMed Central

    Myer, Gregory D.; Ford, Kevin R.; Khoury, Jane; Succop, Paul; Hewett, Timothy E.

    2012-01-01

    Background Prospective measures of high knee abduction moment (KAM) during landing identify female athletes at high risk for anterior cruciate ligament injury. Laboratory-based measurements demonstrate 90% accuracy in prediction of high KAM. Clinic-based prediction algorithms that employ correlates derived from laboratory-based measurements also demonstrate high accuracy for prediction of high KAM mechanics during landing. Hypotheses Clinic-based measures derived from highly predictive laboratory-based models are valid for the accurate prediction of high KAM status, and simultaneous measurements using laboratory-based and clinic-based techniques highly correlate. Study Design Cohort study (diagnosis); Level of evidence, 2. Methods One hundred female athletes (basketball, soccer, volleyball players) were tested using laboratory-based measures to confirm the validity of identified laboratory-based correlate variables to clinic-based measures included in a prediction algorithm to determine high KAM status. To analyze selected clinic-based surrogate predictors, another cohort of 20 female athletes was simultaneously tested with both clinic-based and laboratory-based measures. Results The prediction model (odds ratio: 95% confidence interval), derived from laboratory-based surrogates including (1) knee valgus motion (1.59: 1.17-2.16 cm), (2) knee flexion range of motion (0.94: 0.89°-1.00°), (3) body mass (0.98: 0.94-1.03 kg), (4) tibia length (1.55: 1.20-2.07 cm), and (5) quadriceps-to-hamstrings ratio (1.70: 0.48%-6.0%), predicted high KAM status with 84% sensitivity and 67% specificity (P < .001). Clinic-based techniques that used a calibrated physician’s scale, a standard measuring tape, standard camcorder, ImageJ software, and an isokinetic dynamometer showed high correlation (knee valgus motion, r = .87; knee flexion range of motion, r = .95; and tibia length, r = .98) to simultaneous laboratory-based measurements. Body mass and quadriceps-to-hamstrings ratio were included in both methodologies and therefore had r values of 1.0. Conclusion Clinically obtainable measures of increased knee valgus, knee flexion range of motion, body mass, tibia length, and quadriceps-to-hamstrings ratio predict high KAM status in female athletes with high sensitivity and specificity. Female athletes who demonstrate high KAM landing mechanics are at increased risk for anterior cruciate ligament injury and are more likely to benefit from neuromuscular training targeted to this risk factor. Use of the developed clinic-based assessment tool may facilitate high-risk athletes’ entry into appropriate interventions that will have greater potential to reduce their injury risk. PMID:20595554

  20. Development and Validation of Decision Forest Model for Estrogen Receptor Binding Prediction of Chemicals Using Large Data Sets.

    PubMed

    Ng, Hui Wen; Doughty, Stephen W; Luo, Heng; Ye, Hao; Ge, Weigong; Tong, Weida; Hong, Huixiao

    2015-12-21

    Some chemicals in the environment possess the potential to interact with the endocrine system in the human body. Multiple receptors are involved in the endocrine system; estrogen receptor α (ERα) plays very important roles in endocrine activity and is the most studied receptor. Understanding and predicting estrogenic activity of chemicals facilitates the evaluation of their endocrine activity. Hence, we have developed a decision forest classification model to predict chemical binding to ERα using a large training data set of 3308 chemicals obtained from the U.S. Food and Drug Administration's Estrogenic Activity Database. We tested the model using cross validations and external data sets of 1641 chemicals obtained from the U.S. Environmental Protection Agency's ToxCast project. The model showed good performance in both internal (92% accuracy) and external validations (∼ 70-89% relative balanced accuracies), where the latter involved the validations of the model across different ER pathway-related assays in ToxCast. The important features that contribute to the prediction ability of the model were identified through informative descriptor analysis and were related to current knowledge of ER binding. Prediction confidence analysis revealed that the model had both high prediction confidence and accuracy for most predicted chemicals. The results demonstrated that the model constructed based on the large training data set is more accurate and robust for predicting ER binding of chemicals than the published models that have been developed using much smaller data sets. The model could be useful for the evaluation of ERα-mediated endocrine activity potential of environmental chemicals.

  1. Optimization of rotamers prior to template minimization improves stability predictions made by computational protein design.

    PubMed

    Davey, James A; Chica, Roberto A

    2015-04-01

    Computational protein design (CPD) predictions are highly dependent on the structure of the input template used. However, it is unclear how small differences in template geometry translate to large differences in stability prediction accuracy. Herein, we explored how structural changes to the input template affect the outcome of stability predictions by CPD. To do this, we prepared alternate templates by Rotamer Optimization followed by energy Minimization (ROM) and used them to recapitulate the stability of 84 protein G domain β1 mutant sequences. In the ROM process, side-chain rotamers for wild-type (WT) or mutant sequences are optimized on crystal or nuclear magnetic resonance (NMR) structures prior to template minimization, resulting in alternate structures termed ROM templates. We show that use of ROM templates prepared from sequences known to be stable results predominantly in improved prediction accuracy compared to using the minimized crystal or NMR structures. Conversely, ROM templates prepared from sequences that are less stable than the WT reduce prediction accuracy by increasing the number of false positives. These observed changes in prediction outcomes are attributed to differences in side-chain contacts made by rotamers in ROM templates. Finally, we show that ROM templates prepared from sequences that are unfolded or that adopt a nonnative fold result in the selective enrichment of sequences that are also unfolded or that adopt a nonnative fold, respectively. Our results demonstrate the existence of a rotamer bias caused by the input template that can be harnessed to skew predictions toward sequences displaying desired characteristics. © 2014 The Protein Society.

  2. Genomic Prediction for Quantitative Traits Is Improved by Mapping Variants to Gene Ontology Categories in Drosophila melanogaster

    PubMed Central

    Edwards, Stefan M.; Sørensen, Izel F.; Sarup, Pernille; Mackay, Trudy F. C.; Sørensen, Peter

    2016-01-01

    Predicting individual quantitative trait phenotypes from high-resolution genomic polymorphism data is important for personalized medicine in humans, plant and animal breeding, and adaptive evolution. However, this is difficult for populations of unrelated individuals when the number of causal variants is low relative to the total number of polymorphisms and causal variants individually have small effects on the traits. We hypothesized that mapping molecular polymorphisms to genomic features such as genes and their gene ontology categories could increase the accuracy of genomic prediction models. We developed a genomic feature best linear unbiased prediction (GFBLUP) model that implements this strategy and applied it to three quantitative traits (startle response, starvation resistance, and chill coma recovery) in the unrelated, sequenced inbred lines of the Drosophila melanogaster Genetic Reference Panel. Our results indicate that subsetting markers based on genomic features increases the predictive ability relative to the standard genomic best linear unbiased prediction (GBLUP) model. Both models use all markers, but GFBLUP allows differential weighting of the individual genetic marker relationships, whereas GBLUP weighs the genetic marker relationships equally. Simulation studies show that it is possible to further increase the accuracy of genomic prediction for complex traits using this model, provided the genomic features are enriched for causal variants. Our GFBLUP model using prior information on genomic features enriched for causal variants can increase the accuracy of genomic predictions in populations of unrelated individuals and provides a formal statistical framework for leveraging and evaluating information across multiple experimental studies to provide novel insights into the genetic architecture of complex traits. PMID:27235308

  3. Post processing of protein-compound docking for fragment-based drug discovery (FBDD): in-silico structure-based drug screening and ligand-binding pose prediction.

    PubMed

    Fukunishi, Yoshifumi

    2010-01-01

    For fragment-based drug development, both hit (active) compound prediction and docking-pose (protein-ligand complex structure) prediction of the hit compound are important, since chemical modification (fragment linking, fragment evolution) subsequent to the hit discovery must be performed based on the protein-ligand complex structure. However, the naïve protein-compound docking calculation shows poor accuracy in terms of docking-pose prediction. Thus, post-processing of the protein-compound docking is necessary. Recently, several methods for the post-processing of protein-compound docking have been proposed. In FBDD, the compounds are smaller than those for conventional drug screening. This makes it difficult to perform the protein-compound docking calculation. A method to avoid this problem has been reported. Protein-ligand binding free energy estimation is useful to reduce the procedures involved in the chemical modification of the hit fragment. Several prediction methods have been proposed for high-accuracy estimation of protein-ligand binding free energy. This paper summarizes the various computational methods proposed for docking-pose prediction and their usefulness in FBDD.

  4. Experimental and computational prediction of glass transition temperature of drugs.

    PubMed

    Alzghoul, Ahmad; Alhalaweh, Amjad; Mahlin, Denny; Bergström, Christel A S

    2014-12-22

    Glass transition temperature (Tg) is an important inherent property of an amorphous solid material which is usually determined experimentally. In this study, the relation between Tg and melting temperature (Tm) was evaluated using a data set of 71 structurally diverse druglike compounds. Further, in silico models for prediction of Tg were developed based on calculated molecular descriptors and linear (multilinear regression, partial least-squares, principal component regression) and nonlinear (neural network, support vector regression) modeling techniques. The models based on Tm predicted Tg with an RMSE of 19.5 K for the test set. Among the five computational models developed herein the support vector regression gave the best result with RMSE of 18.7 K for the test set using only four chemical descriptors. Hence, two different models that predict Tg of drug-like molecules with high accuracy were developed. If Tm is available, a simple linear regression can be used to predict Tg. However, the results also suggest that support vector regression and calculated molecular descriptors can predict Tg with equal accuracy, already before compound synthesis.

  5. Integrative Approaches for Predicting in vivo Effects of Chemicals from their Structural Descriptors and the Results of Short-term Biological Assays

    PubMed Central

    Low, Yen S.; Sedykh, Alexander; Rusyn, Ivan; Tropsha, Alexander

    2017-01-01

    Cheminformatics approaches such as Quantitative Structure Activity Relationship (QSAR) modeling have been used traditionally for predicting chemical toxicity. In recent years, high throughput biological assays have been increasingly employed to elucidate mechanisms of chemical toxicity and predict toxic effects of chemicals in vivo. The data generated in such assays can be considered as biological descriptors of chemicals that can be combined with molecular descriptors and employed in QSAR modeling to improve the accuracy of toxicity prediction. In this review, we discuss several approaches for integrating chemical and biological data for predicting biological effects of chemicals in vivo and compare their performance across several data sets. We conclude that while no method consistently shows superior performance, the integrative approaches rank consistently among the best yet offer enriched interpretation of models over those built with either chemical or biological data alone. We discuss the outlook for such interdisciplinary methods and offer recommendations to further improve the accuracy and interpretability of computational models that predict chemical toxicity. PMID:24805064

  6. Predicting child maltreatment: A meta-analysis of the predictive validity of risk assessment instruments.

    PubMed

    van der Put, Claudia E; Assink, Mark; Boekhout van Solinge, Noëlle F

    2017-11-01

    Risk assessment is crucial in preventing child maltreatment since it can identify high-risk cases in need of child protection intervention. Despite widespread use of risk assessment instruments in child welfare, it is unknown how well these instruments predict maltreatment and what instrument characteristics are associated with higher levels of predictive validity. Therefore, a multilevel meta-analysis was conducted to examine the predictive accuracy of (characteristics of) risk assessment instruments. A literature search yielded 30 independent studies (N=87,329) examining the predictive validity of 27 different risk assessment instruments. From these studies, 67 effect sizes could be extracted. Overall, a medium significant effect was found (AUC=0.681), indicating a moderate predictive accuracy. Moderator analyses revealed that onset of maltreatment can be better predicted than recurrence of maltreatment, which is a promising finding for early detection and prevention of child maltreatment. In addition, actuarial instruments were found to outperform clinical instruments. To bring risk and needs assessment in child welfare to a higher level, actuarial instruments should be further developed and strengthened by distinguishing risk assessment from needs assessment and by integrating risk assessment with case management. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Massive metrology using fast e-beam technology improves OPC model accuracy by >2x at faster turnaround time

    NASA Astrophysics Data System (ADS)

    Zhao, Qian; Wang, Lei; Wang, Jazer; Wang, ChangAn; Shi, Hong-Fei; Guerrero, James; Feng, Mu; Zhang, Qiang; Liang, Jiao; Guo, Yunbo; Zhang, Chen; Wallow, Tom; Rio, David; Wang, Lester; Wang, Alvin; Wang, Jen-Shiang; Gronlund, Keith; Lang, Jun; Koh, Kar Kit; Zhang, Dong Qing; Zhang, Hongxin; Krishnamurthy, Subramanian; Fei, Ray; Lin, Chiawen; Fang, Wei; Wang, Fei

    2018-03-01

    Classical SEM metrology, CD-SEM, uses low data rate and extensive frame-averaging technique to achieve high-quality SEM imaging for high-precision metrology. The drawbacks include prolonged data collection time and larger photoresist shrinkage due to excess electron dosage. This paper will introduce a novel e-beam metrology system based on a high data rate, large probe current, and ultra-low noise electron optics design. At the same level of metrology precision, this high speed e-beam metrology system could significantly shorten data collection time and reduce electron dosage. In this work, the data collection speed is higher than 7,000 images per hr. Moreover, a novel large field of view (LFOV) capability at high resolution was enabled by an advanced electron deflection system design. The area coverage by LFOV is >100x larger than classical SEM. Superior metrology precision throughout the whole image has been achieved, and high quality metrology data could be extracted from full field. This new capability on metrology will further improve metrology data collection speed to support the need for large volume of metrology data from OPC model calibration of next generation technology. The shrinking EPE (Edge Placement Error) budget places more stringent requirement on OPC model accuracy, which is increasingly limited by metrology errors. In the current practice of metrology data collection and data processing to model calibration flow, CD-SEM throughput becomes a bottleneck that limits the amount of metrology measurements available for OPC model calibration, impacting pattern coverage and model accuracy especially for 2D pattern prediction. To address the trade-off in metrology sampling and model accuracy constrained by the cycle time requirement, this paper employs the high speed e-beam metrology system and a new computational software solution to take full advantage of the large volume data and significantly reduce both systematic and random metrology errors. The new computational software enables users to generate large quantity of highly accurate EP (Edge Placement) gauges and significantly improve design pattern coverage with up to 5X gain in model prediction accuracy on complex 2D patterns. Overall, this work showed >2x improvement in OPC model accuracy at a faster model turn-around time.

  8. High accuracy heat capacity measurements through the lambda transition of helium with very high temperature resolution

    NASA Technical Reports Server (NTRS)

    Fairbanks, W. M.; Lipa, J. A.

    1984-01-01

    A measurement of the heat capacity singularity of helium at the lambda transition was performed with the aim of improving tests of the Renormalization Group (RG) predictions for the static thermodynamic behavior near the singularity. The goal was to approach as closely as possible to the lambda-point while making heat capacity measurements of high accuracy. To do this, a new temperature sensor capable of unprecedented resolution near the lambda-point, and two thermal control systems were used. A short description of the theoretical background and motivation is given. The initial apparatus and results are also described.

  9. Effects of sample survey design on the accuracy of classification tree models in species distribution models

    USGS Publications Warehouse

    Edwards, T.C.; Cutler, D.R.; Zimmermann, N.E.; Geiser, L.; Moisen, Gretchen G.

    2006-01-01

    We evaluated the effects of probabilistic (hereafter DESIGN) and non-probabilistic (PURPOSIVE) sample surveys on resultant classification tree models for predicting the presence of four lichen species in the Pacific Northwest, USA. Models derived from both survey forms were assessed using an independent data set (EVALUATION). Measures of accuracy as gauged by resubstitution rates were similar for each lichen species irrespective of the underlying sample survey form. Cross-validation estimates of prediction accuracies were lower than resubstitution accuracies for all species and both design types, and in all cases were closer to the true prediction accuracies based on the EVALUATION data set. We argue that greater emphasis should be placed on calculating and reporting cross-validation accuracy rates rather than simple resubstitution accuracy rates. Evaluation of the DESIGN and PURPOSIVE tree models on the EVALUATION data set shows significantly lower prediction accuracy for the PURPOSIVE tree models relative to the DESIGN models, indicating that non-probabilistic sample surveys may generate models with limited predictive capability. These differences were consistent across all four lichen species, with 11 of the 12 possible species and sample survey type comparisons having significantly lower accuracy rates. Some differences in accuracy were as large as 50%. The classification tree structures also differed considerably both among and within the modelled species, depending on the sample survey form. Overlap in the predictor variables selected by the DESIGN and PURPOSIVE tree models ranged from only 20% to 38%, indicating the classification trees fit the two evaluated survey forms on different sets of predictor variables. The magnitude of these differences in predictor variables throws doubt on ecological interpretation derived from prediction models based on non-probabilistic sample surveys. ?? 2006 Elsevier B.V. All rights reserved.

  10. Flight Test Results: CTAS Cruise/Descent Trajectory Prediction Accuracy for En route ATC Advisories

    NASA Technical Reports Server (NTRS)

    Green, S.; Grace, M.; Williams, D.

    1999-01-01

    The Center/TRACON Automation System (CTAS), under development at NASA Ames Research Center, is designed to assist controllers with the management and control of air traffic transitioning to/from congested airspace. This paper focuses on the transition from the en route environment, to high-density terminal airspace, under a time-based arrival-metering constraint. Two flight tests were conducted at the Denver Air Route Traffic Control Center (ARTCC) to study trajectory-prediction accuracy, the key to accurate Decision Support Tool advisories such as conflict detection/resolution and fuel-efficient metering conformance. In collaboration with NASA Langley Research Center, these test were part of an overall effort to research systems and procedures for the integration of CTAS and flight management systems (FMS). The Langley Transport Systems Research Vehicle Boeing 737 airplane flew a combined total of 58 cruise-arrival trajectory runs while following CTAS clearance advisories. Actual trajectories of the airplane were compared to CTAS and FMS predictions to measure trajectory-prediction accuracy and identify the primary sources of error for both. The research airplane was used to evaluate several levels of cockpit automation ranging from conventional avionics to a performance-based vertical navigation (VNAV) FMS. Trajectory prediction accuracy was analyzed with respect to both ARTCC radar tracking and GPS-based aircraft measurements. This paper presents detailed results describing the trajectory accuracy and error sources. Although differences were found in both accuracy and error sources, CTAS accuracy was comparable to the FMS in terms of both meter-fix arrival-time performance (in support of metering) and 4D-trajectory prediction (key to conflict prediction). Overall arrival time errors (mean plus standard deviation) were measured to be approximately 24 seconds during the first flight test (23 runs) and 15 seconds during the second flight test (25 runs). The major source of error during these tests was found to be the predicted winds aloft used by CTAS. Position and velocity estimates of the airplane provided to CTAS by the ATC Host radar tracker were found to be a relatively insignificant error source for the trajectory conditions evaluated. Airplane performance modeling errors within CTAS were found to not significantly affect arrival time errors when the constrained descent procedures were used. The most significant effect related to the flight guidance was observed to be the cross-track and turn-overshoot errors associated with conventional VOR guidance. Lateral navigation (LNAV) guidance significantly reduced both the cross-track and turn-overshoot error. Pilot procedures and VNAV guidance were found to significantly reduce the vertical profile errors associated with atmospheric and aircraft performance model errors.

  11. Final Technical Report: Increasing Prediction Accuracy.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    King, Bruce Hardison; Hansen, Clifford; Stein, Joshua

    2015-12-01

    PV performance models are used to quantify the value of PV plants in a given location. They combine the performance characteristics of the system, the measured or predicted irradiance and weather at a site, and the system configuration and design into a prediction of the amount of energy that will be produced by a PV system. These predictions must be as accurate as possible in order for finance charges to be minimized. Higher accuracy equals lower project risk. The Increasing Prediction Accuracy project at Sandia focuses on quantifying and reducing uncertainties in PV system performance models.

  12. Static bending deflection and free vibration analysis of moderate thick symmetric laminated plates using multidimensional wave digital filters

    NASA Astrophysics Data System (ADS)

    Tseng, Chien-Hsun

    2018-06-01

    This paper aims to develop a multidimensional wave digital filtering network for predicting static and dynamic behaviors of composite laminate based on the FSDT. The resultant network is, thus, an integrated platform that can perform not only the free vibration but also the bending deflection of moderate thick symmetric laminated plates with low plate side-to-thickness ratios (< = 20). Safeguarded by the Courant-Friedrichs-Levy stability condition with the least restriction in terms of optimization technique, the present method offers numerically high accuracy, stability and efficiency to proceed a wide range of modulus ratios for the FSDT laminated plates. Instead of using a constant shear correction factor (SCF) with a limited numerical accuracy for the bending deflection, an optimum SCF is particularly sought by looking for a minimum ratio of change in the transverse shear energy. This way, it can predict as good results in terms of accuracy for certain cases of bending deflection. Extensive simulation results carried out for the prediction of maximum bending deflection have demonstratively proven that the present method outperforms those based on the higher-order shear deformation and layerwise plate theories. To the best of our knowledge, this is the first work that shows an optimal selection of SCF can significantly increase the accuracy of FSDT-based laminates especially compared to the higher order theory disclaiming any correction. The highest accuracy of overall solution is compared to the 3D elasticity equilibrium one.

  13. Genotyping by sequencing for genomic prediction in a soybean breeding population.

    PubMed

    Jarquín, Diego; Kocak, Kyle; Posadas, Luis; Hyma, Katie; Jedlicka, Joseph; Graef, George; Lorenz, Aaron

    2014-08-29

    Advances in genotyping technology, such as genotyping by sequencing (GBS), are making genomic prediction more attractive to reduce breeding cycle times and costs associated with phenotyping. Genomic prediction and selection has been studied in several crop species, but no reports exist in soybean. The objectives of this study were (i) evaluate prospects for genomic selection using GBS in a typical soybean breeding program and (ii) evaluate the effect of GBS marker selection and imputation on genomic prediction accuracy. To achieve these objectives, a set of soybean lines sampled from the University of Nebraska Soybean Breeding Program were genotyped using GBS and evaluated for yield and other agronomic traits at multiple Nebraska locations. Genotyping by sequencing scored 16,502 single nucleotide polymorphisms (SNPs) with minor-allele frequency (MAF) > 0.05 and percentage of missing values ≤ 5% on 301 elite soybean breeding lines. When SNPs with up to 80% missing values were included, 52,349 SNPs were scored. Prediction accuracy for grain yield, assessed using cross validation, was estimated to be 0.64, indicating good potential for using genomic selection for grain yield in soybean. Filtering SNPs based on missing data percentage had little to no effect on prediction accuracy, especially when random forest imputation was used to impute missing values. The highest accuracies were observed when random forest imputation was used on all SNPs, but differences were not significant. A standard additive G-BLUP model was robust; modeling additive-by-additive epistasis did not provide any improvement in prediction accuracy. The effect of training population size on accuracy began to plateau around 100, but accuracy steadily climbed until the largest possible size was used in this analysis. Including only SNPs with MAF > 0.30 provided higher accuracies when training populations were smaller. Using GBS for genomic prediction in soybean holds good potential to expedite genetic gain. Our results suggest that standard additive G-BLUP models can be used on unfiltered, imputed GBS data without loss in accuracy.

  14. AERONET Version 3 Release: Providing Significant Improvements for Multi-Decadal Global Aerosol Database and Near Real-Time Validation

    NASA Technical Reports Server (NTRS)

    Holben, Brent; Slutsker, Ilya; Giles, David; Eck, Thomas; Smirnov, Alexander; Sinyuk, Aliaksandr; Schafer, Joel; Sorokin, Mikhail; Rodriguez, Jon; Kraft, Jason; hide

    2016-01-01

    Aerosols are highly variable in space, time and properties. Global assessment from satellite platforms and model predictions rely on validation from AERONET, a highly accurate ground-based network. Ver. 3 represents a significant improvement in accuracy and quality.

  15. The use of genomic information increases the accuracy of breeding value predictions for sea louse (Caligus rogercresseyi) resistance in Atlantic salmon (Salmo salar).

    PubMed

    Correa, Katharina; Bangera, Rama; Figueroa, René; Lhorente, Jean P; Yáñez, José M

    2017-01-31

    Sea lice infestations caused by Caligus rogercresseyi are a main concern to the salmon farming industry due to associated economic losses. Resistance to this parasite was shown to have low to moderate genetic variation and its genetic architecture was suggested to be polygenic. The aim of this study was to compare accuracies of breeding value predictions obtained with pedigree-based best linear unbiased prediction (P-BLUP) methodology against different genomic prediction approaches: genomic BLUP (G-BLUP), Bayesian Lasso, and Bayes C. To achieve this, 2404 individuals from 118 families were measured for C. rogercresseyi count after a challenge and genotyped using 37 K single nucleotide polymorphisms. Accuracies were assessed using fivefold cross-validation and SNP densities of 0.5, 1, 5, 10, 25 and 37 K. Accuracy of genomic predictions increased with increasing SNP density and was higher than pedigree-based BLUP predictions by up to 22%. Both Bayesian and G-BLUP methods can predict breeding values with higher accuracies than pedigree-based BLUP, however, G-BLUP may be the preferred method because of reduced computation time and ease of implementation. A relatively low marker density (i.e. 10 K) is sufficient for maximal increase in accuracy when using G-BLUP or Bayesian methods for genomic prediction of C. rogercresseyi resistance in Atlantic salmon.

  16. Accuracy of algorithms to predict accessory pathway location in children with Wolff-Parkinson-White syndrome.

    PubMed

    Wren, Christopher; Vogel, Melanie; Lord, Stephen; Abrams, Dominic; Bourke, John; Rees, Philip; Rosenthal, Eric

    2012-02-01

    The aim of this study was to examine the accuracy in predicting pathway location in children with Wolff-Parkinson-White syndrome for each of seven published algorithms. ECGs from 100 consecutive children with Wolff-Parkinson-White syndrome undergoing electrophysiological study were analysed by six investigators using seven published algorithms, six of which had been developed in adult patients. Accuracy and concordance of predictions were adjusted for the number of pathway locations. Accessory pathways were left-sided in 49, septal in 20 and right-sided in 31 children. Overall accuracy of prediction was 30-49% for the exact location and 61-68% including adjacent locations. Concordance between investigators varied between 41% and 86%. No algorithm was better at predicting septal pathways (accuracy 5-35%, improving to 40-78% including adjacent locations), but one was significantly worse. Predictive accuracy was 24-53% for the exact location of right-sided pathways (50-71% including adjacent locations) and 32-55% for the exact location of left-sided pathways (58-73% including adjacent locations). All algorithms were less accurate in our hands than in other authors' own assessment. None performed well in identifying midseptal or right anteroseptal accessory pathway locations.

  17. Conflation and aggregation of spatial data improve predictive models for species with limited habitats: a case of the threatened yellow-billed cuckoo in Arizona, USA

    USGS Publications Warehouse

    Villarreal, Miguel L.; van Riper, Charles; Petrakis, Roy E.

    2013-01-01

    Riparian vegetation provides important wildlife habitat in the Southwestern United States, but limited distributions and spatial complexity often leads to inaccurate representation in maps used to guide conservation. We test the use of data conflation and aggregation on multiple vegetation/land-cover maps to improve the accuracy of habitat models for the threatened western yellow-billed cuckoo (Coccyzus americanus occidentalis). We used species observations (n = 479) from a state-wide survey to develop habitat models from 1) three vegetation/land-cover maps produced at different geographic scales ranging from state to national, and 2) new aggregate maps defined by the spatial agreement of cover types, which were defined as high (agreement = all data sets), moderate (agreement ≥ 2), and low (no agreement required). Model accuracies, predicted habitat locations, and total area of predicted habitat varied considerably, illustrating the effects of input data quality on habitat predictions and resulting potential impacts on conservation planning. Habitat models based on aggregated and conflated data were more accurate and had higher model sensitivity than original vegetation/land-cover, but this accuracy came at the cost of reduced geographic extent of predicted habitat. Using the highest performing models, we assessed cuckoo habitat preference and distribution in Arizona and found that major watersheds containing high-probably habitat are fragmented by a wide swath of low-probability habitat. Focus on riparian restoration in these areas could provide more breeding habitat for the threatened cuckoo, offset potential future habitat losses in adjacent watershed, and increase regional connectivity for other threatened vertebrates that also use riparian corridors.

  18. Grazing Incidence Optics for X-rays Interferometry

    NASA Technical Reports Server (NTRS)

    Shipley, Ann; Zissa, David; Cash, Webster; Joy, Marshall

    1999-01-01

    Grazing incidence mirror parameters and constraints for x-ray interferometry are described. We present interferometer system tolerances and ray trace results used to define mirror surface accuracy requirements. Mirror material, surface figure, roughness, and geometry are evaluated based on analysis results. We also discuss mirror mount design constraints, finite element analysis, environmental issues, and solutions. Challenges associated with quantifying high accuracy mirror surface quality are addressed and test results are compared with theoretical predictions.

  19. Impact of fitting dominance and additive effects on accuracy of genomic prediction of breeding values in layers.

    PubMed

    Heidaritabar, M; Wolc, A; Arango, J; Zeng, J; Settar, P; Fulton, J E; O'Sullivan, N P; Bastiaansen, J W M; Fernando, R L; Garrick, D J; Dekkers, J C M

    2016-10-01

    Most genomic prediction studies fit only additive effects in models to estimate genomic breeding values (GEBV). However, if dominance genetic effects are an important source of variation for complex traits, accounting for them may improve the accuracy of GEBV. We investigated the effect of fitting dominance and additive effects on the accuracy of GEBV for eight egg production and quality traits in a purebred line of brown layers using pedigree or genomic information (42K single-nucleotide polymorphism (SNP) panel). Phenotypes were corrected for the effect of hatch date. Additive and dominance genetic variances were estimated using genomic-based [genomic best linear unbiased prediction (GBLUP)-REML and BayesC] and pedigree-based (PBLUP-REML) methods. Breeding values were predicted using a model that included both additive and dominance effects and a model that included only additive effects. The reference population consisted of approximately 1800 animals hatched between 2004 and 2009, while approximately 300 young animals hatched in 2010 were used for validation. Accuracy of prediction was computed as the correlation between phenotypes and estimated breeding values of the validation animals divided by the square root of the estimate of heritability in the whole population. The proportion of dominance variance to total phenotypic variance ranged from 0.03 to 0.22 with PBLUP-REML across traits, from 0 to 0.03 with GBLUP-REML and from 0.01 to 0.05 with BayesC. Accuracies of GEBV ranged from 0.28 to 0.60 across traits. Inclusion of dominance effects did not improve the accuracy of GEBV, and differences in their accuracies between genomic-based methods were small (0.01-0.05), with GBLUP-REML yielding higher prediction accuracies than BayesC for egg production, egg colour and yolk weight, while BayesC yielded higher accuracies than GBLUP-REML for the other traits. In conclusion, fitting dominance effects did not impact accuracy of genomic prediction of breeding values in this population. © 2016 Blackwell Verlag GmbH.

  20. Accuracy of genomic prediction using deregressed breeding values estimated from purebred and crossbred offspring phenotypes in pigs.

    PubMed

    Hidalgo, A M; Bastiaansen, J W M; Lopes, M S; Veroneze, R; Groenen, M A M; de Koning, D-J

    2015-07-01

    Genomic selection is applied to dairy cattle breeding to improve the genetic progress of purebred (PB) animals, whereas in pigs and poultry the target is a crossbred (CB) animal for which a different strategy appears to be needed. The source of information used to estimate the breeding values, i.e., using phenotypes of CB or PB animals, may affect the accuracy of prediction. The objective of our study was to assess the direct genomic value (DGV) accuracy of CB and PB pigs using different sources of phenotypic information. Data used were from 3 populations: 2,078 Dutch Landrace-based, 2,301 Large White-based, and 497 crossbreds from an F1 cross between the 2 lines. Two female reproduction traits were analyzed: gestation length (GLE) and total number of piglets born (TNB). Phenotypes used in the analyses originated from offspring of genotyped individuals. Phenotypes collected on CB and PB animals were analyzed as separate traits using a single-trait model. Breeding values were estimated separately for each trait in a pedigree BLUP analysis and subsequently deregressed. Deregressed EBV for each trait originating from different sources (CB or PB offspring) were used to study the accuracy of genomic prediction. Accuracy of prediction was computed as the correlation between DGV and the DEBV of the validation population. Accuracy of prediction within PB populations ranged from 0.43 to 0.62 across GLE and TNB. Accuracies to predict genetic merit of CB animals with one PB population in the training set ranged from 0.12 to 0.28, with the exception of using the CB offspring phenotype of the Dutch Landrace that resulted in an accuracy estimate around 0 for both traits. Accuracies to predict genetic merit of CB animals with both parental PB populations in the training set ranged from 0.17 to 0.30. We conclude that prediction within population and trait had good predictive ability regardless of the trait being the PB or CB performance, whereas using PB population(s) to predict genetic merit of CB animals had zero to moderate predictive ability. We observed that the DGV accuracy of CB animals when training on PB data was greater than or equal to training on CB data. However, when results are corrected for the different levels of reliabilities in the PB and CB training data, we showed that training on CB data does outperform PB data for the prediction of CB genetic merit, indicating that more CB animals should be phenotyped to increase the reliability and, consequently, accuracy of DGV for CB genetic merit.

  1. Magnetic resonance spectroscopy and brain volumetry in mild cognitive impairment. A prospective study.

    PubMed

    Fayed, Nicolás; Modrego, Pedro J; García-Martí, Gracián; Sanz-Requena, Roberto; Marti-Bonmatí, Luis

    2017-05-01

    To assess the accuracy of magnetic resonance spectroscopy (1H-MRS) and brain volumetry in mild cognitive impairment (MCI) to predict conversion to probable Alzheimer's disease (AD). Forty-eight patients fulfilling the criteria of amnestic MCI who underwent a conventional magnetic resonance imaging (MRI) followed by MRS, and T1-3D on 1.5 Tesla MR unit. At baseline the patients underwent neuropsychological examination. 1H-MRS of the brain was carried out by exploring the left medial occipital lobe and ventral posterior cingulated cortex (vPCC) using the LCModel software. A high resolution T1-3D sequence was acquired to carry out the volumetric measurement. A cortical and subcortical parcellation strategy was used to obtain the volumes of each area within the brain. The patients were followed up to detect conversion to probable AD. After a 3-year follow-up, 15 (31.2%) patients converted to AD. The myo-inositol in the occipital cortex and glutamate+glutamine (Glx) in the posterior cingulate cortex predicted conversion to probable AD at 46.1% sensitivity and 90.6% specificity. The positive predictive value was 66.7%, and the negative predictive value was 80.6%, with an overall cross-validated classification accuracy of 77.8%. The volume of the third ventricle, the total white matter and entorhinal cortex predict conversion to probable AD at 46.7% sensitivity and 90.9% specificity. The positive predictive value was 70%, and the negative predictive value was 78.9%, with an overall cross-validated classification accuracy of 77.1%. Combining volumetric measures in addition to the MRS measures the prediction to probable AD has a 38.5% sensitivity and 87.5% specificity, with a positive predictive value of 55.6%, a negative predictive value of 77.8% and an overall accuracy of 73.3%. Either MRS or brain volumetric measures are markers separately of cognitive decline and may serve as a noninvasive tool to monitor cognitive changes and progression to dementia in patients with amnestic MCI, but the results do not support the routine use in the clinical settings. Copyright © 2016 Elsevier Inc. All rights reserved.

  2. Constraint on Absolute Accuracy of Metacomprehension Assessments: The Anchoring and Adjustment Model vs. the Standards Model

    ERIC Educational Resources Information Center

    Kwon, Heekyung

    2011-01-01

    The objective of this study is to provide a systematic account of three typical phenomena surrounding absolute accuracy of metacomprehension assessments: (1) the absolute accuracy of predictions is typically quite low; (2) there exist individual differences in absolute accuracy of predictions as a function of reading skill; and (3) postdictions…

  3. Distinct gene expression profiles determine molecular treatment response in childhood acute lymphoblastic leukemia.

    PubMed

    Cario, Gunnar; Stanulla, Martin; Fine, Bernard M; Teuffel, Oliver; Neuhoff, Nils V; Schrauder, André; Flohr, Thomas; Schäfer, Beat W; Bartram, Claus R; Welte, Karl; Schlegelberger, Brigitte; Schrappe, Martin

    2005-01-15

    Treatment resistance, as indicated by the presence of high levels of minimal residual disease (MRD) after induction therapy and induction consolidation, is associated with a poor prognosis in childhood acute lymphoblastic leukemia (ALL). We hypothesized that treatment resistance is an intrinsic feature of ALL cells reflected in the gene expression pattern and that resistance to chemotherapy can be predicted before treatment. To test these hypotheses, gene expression signatures of ALL samples with high MRD load were compared with those of samples without measurable MRD during treatment. We identified 54 genes that clearly distinguished resistant from sensitive ALL samples. Genes with low expression in resistant samples were predominantly associated with cell-cycle progression and apoptosis, suggesting that impaired cell proliferation and apoptosis are involved in treatment resistance. Prediction analysis using randomly selected samples as a training set and the remaining samples as a test set revealed an accuracy of 84%. We conclude that resistance to chemotherapy seems at least in part to be an intrinsic feature of ALL cells. Because treatment response could be predicted with high accuracy, gene expression profiling could become a clinically relevant tool for treatment stratification in the early course of childhood ALL.

  4. Predicting Drug-Target Interactions for New Drug Compounds Using a Weighted Nearest Neighbor Profile.

    PubMed

    van Laarhoven, Twan; Marchiori, Elena

    2013-01-01

    In silico discovery of interactions between drug compounds and target proteins is of core importance for improving the efficiency of the laborious and costly experimental determination of drug-target interaction. Drug-target interaction data are available for many classes of pharmaceutically useful target proteins including enzymes, ion channels, GPCRs and nuclear receptors. However, current drug-target interaction databases contain a small number of drug-target pairs which are experimentally validated interactions. In particular, for some drug compounds (or targets) there is no available interaction. This motivates the need for developing methods that predict interacting pairs with high accuracy also for these 'new' drug compounds (or targets). We show that a simple weighted nearest neighbor procedure is highly effective for this task. We integrate this procedure into a recent machine learning method for drug-target interaction we developed in previous work. Results of experiments indicate that the resulting method predicts true interactions with high accuracy also for new drug compounds and achieves results comparable or better than those of recent state-of-the-art algorithms. Software is publicly available at http://cs.ru.nl/~tvanlaarhoven/drugtarget2013/.

  5. Accuracy of gap analysis habitat models in predicting physical features for wildlife-habitat associations in the southwest U.S.

    USGS Publications Warehouse

    Boykin, K.G.; Thompson, B.C.; Propeck-Gray, S.

    2010-01-01

    Despite widespread and long-standing efforts to model wildlife-habitat associations using remotely sensed and other spatially explicit data, there are relatively few evaluations of the performance of variables included in predictive models relative to actual features on the landscape. As part of the National Gap Analysis Program, we specifically examined physical site features at randomly selected sample locations in the Southwestern U.S. to assess degree of concordance with predicted features used in modeling vertebrate habitat distribution. Our analysis considered hypotheses about relative accuracy with respect to 30 vertebrate species selected to represent the spectrum of habitat generalist to specialist and categorization of site by relative degree of conservation emphasis accorded to the site. Overall comparison of 19 variables observed at 382 sample sites indicated ???60% concordance for 12 variables. Directly measured or observed variables (slope, soil composition, rock outcrop) generally displayed high concordance, while variables that required judgments regarding descriptive categories (aspect, ecological system, landform) were less concordant. There were no differences detected in concordance among taxa groups, degree of specialization or generalization of selected taxa, or land conservation categorization of sample sites with respect to all sites. We found no support for the hypothesis that accuracy of habitat models is inversely related to degree of taxa specialization when model features for a habitat specialist could be more difficult to represent spatially. Likewise, we did not find support for the hypothesis that physical features will be predicted with higher accuracy on lands with greater dedication to biodiversity conservation than on other lands because of relative differences regarding available information. Accuracy generally was similar (>60%) to that observed for land cover mapping at the ecological system level. These patterns demonstrate resilience of gap analysis deductive model processes to the type of remotely sensed or interpreted data used in habitat feature predictions. ?? 2010 Elsevier B.V.

  6. Predict or classify: The deceptive role of time-locking in brain signal classification

    NASA Astrophysics Data System (ADS)

    Rusconi, Marco; Valleriani, Angelo

    2016-06-01

    Several experimental studies claim to be able to predict the outcome of simple decisions from brain signals measured before subjects are aware of their decision. Often, these studies use multivariate pattern recognition methods with the underlying assumption that the ability to classify the brain signal is equivalent to predict the decision itself. Here we show instead that it is possible to correctly classify a signal even if it does not contain any predictive information about the decision. We first define a simple stochastic model that mimics the random decision process between two equivalent alternatives, and generate a large number of independent trials that contain no choice-predictive information. The trials are first time-locked to the time point of the final event and then classified using standard machine-learning techniques. The resulting classification accuracy is above chance level long before the time point of time-locking. We then analyze the same trials using information theory. We demonstrate that the high classification accuracy is a consequence of time-locking and that its time behavior is simply related to the large relaxation time of the process. We conclude that when time-locking is a crucial step in the analysis of neural activity patterns, both the emergence and the timing of the classification accuracy are affected by structural properties of the network that generates the signal.

  7. Application and analysis of debris-flow early warning system in Wenchuan earthquake-affected area

    NASA Astrophysics Data System (ADS)

    Liu, D. L.; Zhang, S. J.; Yang, H. J.; Zhao, L. Q.; Jiang, Y. H.; Tang, D.; Leng, X. P.

    2016-02-01

    The activities of debris flow (DF) in the Wenchuan earthquake-affected area significantly increased after the earthquake on 12 May 2008. The safety of the lives and property of local people is threatened by DFs. A physics-based early warning system (EWS) for DF forecasting was developed and applied in this earthquake area. This paper introduces an application of the system in the Wenchuan earthquake-affected area and analyzes the prediction results via a comparison to the DF events triggered by the strong rainfall events reported by the local government. The prediction accuracy and efficiency was first compared with a contribution-factor-based system currently used by the weather bureau of Sichuan province. The storm on 17 August 2012 was used as a case study for this comparison. The comparison shows that the false negative rate and false positive rate of the new system is, respectively, 19 and 21 % lower than the system based on the contribution factors. Consequently, the prediction accuracy is obviously higher than the system based on the contribution factors with a higher operational efficiency. On the invitation of the weather bureau of Sichuan province, the authors upgraded their prediction system of DF by using this new system before the monsoon of Wenchuan earthquake-affected area in 2013. Two prediction cases on 9 July 2013 and 10 July 2014 were chosen to further demonstrate that the new EWS has high stability, efficiency, and prediction accuracy.

  8. Predictive capacity of a non-radioisotopic local lymph node assay using flow cytometry, LLNA:BrdU-FCM: Comparison of a cutoff approach and inferential statistics.

    PubMed

    Kim, Da-Eun; Yang, Hyeri; Jang, Won-Hee; Jung, Kyoung-Mi; Park, Miyoung; Choi, Jin Kyu; Jung, Mi-Sook; Jeon, Eun-Young; Heo, Yong; Yeo, Kyung-Wook; Jo, Ji-Hoon; Park, Jung Eun; Sohn, Soo Jung; Kim, Tae Sung; Ahn, Il Young; Jeong, Tae-Cheon; Lim, Kyung-Min; Bae, SeungJin

    2016-01-01

    In order for a novel test method to be applied for regulatory purposes, its reliability and relevance, i.e., reproducibility and predictive capacity, must be demonstrated. Here, we examine the predictive capacity of a novel non-radioisotopic local lymph node assay, LLNA:BrdU-FCM (5-bromo-2'-deoxyuridine-flow cytometry), with a cutoff approach and inferential statistics as a prediction model. 22 reference substances in OECD TG429 were tested with a concurrent positive control, hexylcinnamaldehyde 25%(PC), and the stimulation index (SI) representing the fold increase in lymph node cells over the vehicle control was obtained. The optimal cutoff SI (2.7≤cutoff <3.5), with respect to predictive capacity, was obtained by a receiver operating characteristic curve, which produced 90.9% accuracy for the 22 substances. To address the inter-test variability in responsiveness, SI values standardized with PC were employed to obtain the optimal percentage cutoff (42.6≤cutoff <57.3% of PC), which produced 86.4% accuracy. A test substance may be diagnosed as a sensitizer if a statistically significant increase in SI is elicited. The parametric one-sided t-test and non-parametric Wilcoxon rank-sum test produced 77.3% accuracy. Similarly, a test substance could be defined as a sensitizer if the SI means of the vehicle control, and of the low, middle, and high concentrations were statistically significantly different, which was tested using ANOVA or Kruskal-Wallis, with post hoc analysis, Dunnett, or DSCF (Dwass-Steel-Critchlow-Fligner), respectively, depending on the equal variance test, producing 81.8% accuracy. The absolute SI-based cutoff approach produced the best predictive capacity, however the discordant decisions between prediction models need to be examined further. Copyright © 2015 Elsevier Inc. All rights reserved.

  9. Efficacy of Transcerebellar Diameter/Abdominal Circumference Versus Head Circumference/Abdominal Circumference in Predicting Asymmetric Intrauterine Growth Retardation

    PubMed Central

    Bhimarao; Bhat, Venkataramana; Gowda, Puttanna VN

    2015-01-01

    Background The high incidence of IUGR and its low recognition lead to increasing perinatal morbidity and mortality for which prediction of IUGR with timely management decisions is of paramount importance. Many studies have compared the efficacy of several gestational age independent parameters and found that TCD/AC is a better predictor of asymmetric IUGR. Aim To compare the accuracy of transcerebellar diameter/abdominal circumference with head circumference/abdominal circumference in predicting asymmetric intrauterine growth retardation after 20 weeks of gestation. Materials and Methods The prospective study was conducted over a period of one year on 50 clinically suspected IUGR pregnancies who were evaluated with 3.5 MHz frequency ultrasound scanner by a single sonologist. BPD, HC, AC and FL along with TCD were measured for assessing the sonological gestational age. Two morphometric ratios- TCD/AC and HC/AC were calculated. Estimated fetal weight was calculated for all these pregnancies and its percentile was determined. Statistical Methods The TCD/AC and HC/AC ratios were correlated with advancing gestational age to know if these were related to GA. Sensitivity, specificity, positive predictive value (PPV), negative predictive value (NPV) and diagnostic accuracy (DA) for TCD/AC and HC/AC ratios in evaluating IUGR fetuses were calculated. Results In the present study, linear relation of TCD and HC in IUGR fetuses with gestation was noted. The sensitivity, specificity, PPV, NPV & DA were 88%, 93.5%, 77.1%, 96.3% & 92.4% respectively for TCD/AC ratio versus 84%, 92%, 72.4%, 95.8% & 90.4% respectively for HC/AC ratio in predicting IUGR. Conclusion Both ratios were gestational age independent and can be used in detecting IUGR with good diagnostic accuracy. However, TCD/AC ratio had a better diagnostic validity and accuracy compared to HC/AC ratio in predicting asymmetric IUGR. PMID:26557588

  10. Predicting Barrett's Esophagus in Families: An Esophagus Translational Research Network (BETRNet) Model Fitting Clinical Data to a Familial Paradigm.

    PubMed

    Sun, Xiangqing; Elston, Robert C; Barnholtz-Sloan, Jill S; Falk, Gary W; Grady, William M; Faulx, Ashley; Mittal, Sumeet K; Canto, Marcia; Shaheen, Nicholas J; Wang, Jean S; Iyer, Prasad G; Abrams, Julian A; Tian, Ye D; Willis, Joseph E; Guda, Kishore; Markowitz, Sanford D; Chandar, Apoorva; Warfe, James M; Brock, Wendy; Chak, Amitabh

    2016-05-01

    Barrett's esophagus is often asymptomatic and only a small portion of Barrett's esophagus patients are currently diagnosed and under surveillance. Therefore, it is important to develop risk prediction models to identify high-risk individuals with Barrett's esophagus. Familial aggregation of Barrett's esophagus and esophageal adenocarcinoma, and the increased risk of esophageal adenocarcinoma for individuals with a family history, raise the necessity of including genetic factors in the prediction model. Methods to determine risk prediction models using both risk covariates and ascertained family data are not well developed. We developed a Barrett's Esophagus Translational Research Network (BETRNet) risk prediction model from 787 singly ascertained Barrett's esophagus pedigrees and 92 multiplex Barrett's esophagus pedigrees, fitting a multivariate logistic model that incorporates family history and clinical risk factors. The eight risk factors, age, sex, education level, parental status, smoking, heartburn frequency, regurgitation frequency, and use of acid suppressant, were included in the model. The prediction accuracy was evaluated on the training dataset and an independent validation dataset of 643 multiplex Barrett's esophagus pedigrees. Our results indicate family information helps to predict Barrett's esophagus risk, and predicting in families improves both prediction calibration and discrimination accuracy. Our model can predict Barrett's esophagus risk for anyone with family members known to have, or not have, had Barrett's esophagus. It can predict risk for unrelated individuals without knowing any relatives' information. Our prediction model will shed light on effectively identifying high-risk individuals for Barrett's esophagus screening and surveillance, consequently allowing intervention at an early stage, and reducing mortality from esophageal adenocarcinoma. Cancer Epidemiol Biomarkers Prev; 25(5); 727-35. ©2016 AACR. ©2016 American Association for Cancer Research.

  11. Accuracies of univariate and multivariate genomic prediction models in African cassava.

    PubMed

    Okeke, Uche Godfrey; Akdemir, Deniz; Rabbi, Ismail; Kulakow, Peter; Jannink, Jean-Luc

    2017-12-04

    Genomic selection (GS) promises to accelerate genetic gain in plant breeding programs especially for crop species such as cassava that have long breeding cycles. Practically, to implement GS in cassava breeding, it is necessary to evaluate different GS models and to develop suitable models for an optimized breeding pipeline. In this paper, we compared (1) prediction accuracies from a single-trait (uT) and a multi-trait (MT) mixed model for a single-environment genetic evaluation (Scenario 1), and (2) accuracies from a compound symmetric multi-environment model (uE) parameterized as a univariate multi-kernel model to a multivariate (ME) multi-environment mixed model that accounts for genotype-by-environment interaction for multi-environment genetic evaluation (Scenario 2). For these analyses, we used 16 years of public cassava breeding data for six target cassava traits and a fivefold cross-validation scheme with 10-repeat cycles to assess model prediction accuracies. In Scenario 1, the MT models had higher prediction accuracies than the uT models for all traits and locations analyzed, which amounted to on average a 40% improved prediction accuracy. For Scenario 2, we observed that the ME model had on average (across all locations and traits) a 12% improved prediction accuracy compared to the uE model. We recommend the use of multivariate mixed models (MT and ME) for cassava genetic evaluation. These models may be useful for other plant species.

  12. Accuracy of estimation of genomic breeding values in pigs using low-density genotypes and imputation.

    PubMed

    Badke, Yvonne M; Bates, Ronald O; Ernst, Catherine W; Fix, Justin; Steibel, Juan P

    2014-04-16

    Genomic selection has the potential to increase genetic progress. Genotype imputation of high-density single-nucleotide polymorphism (SNP) genotypes can improve the cost efficiency of genomic breeding value (GEBV) prediction for pig breeding. Consequently, the objectives of this work were to: (1) estimate accuracy of genomic evaluation and GEBV for three traits in a Yorkshire population and (2) quantify the loss of accuracy of genomic evaluation and GEBV when genotypes were imputed under two scenarios: a high-cost, high-accuracy scenario in which only selection candidates were imputed from a low-density platform and a low-cost, low-accuracy scenario in which all animals were imputed using a small reference panel of haplotypes. Phenotypes and genotypes obtained with the PorcineSNP60 BeadChip were available for 983 Yorkshire boars. Genotypes of selection candidates were masked and imputed using tagSNP in the GeneSeek Genomic Profiler (10K). Imputation was performed with BEAGLE using 128 or 1800 haplotypes as reference panels. GEBV were obtained through an animal-centric ridge regression model using de-regressed breeding values as response variables. Accuracy of genomic evaluation was estimated as the correlation between estimated breeding values and GEBV in a 10-fold cross validation design. Accuracy of genomic evaluation using observed genotypes was high for all traits (0.65-0.68). Using genotypes imputed from a large reference panel (accuracy: R(2) = 0.95) for genomic evaluation did not significantly decrease accuracy, whereas a scenario with genotypes imputed from a small reference panel (R(2) = 0.88) did show a significant decrease in accuracy. Genomic evaluation based on imputed genotypes in selection candidates can be implemented at a fraction of the cost of a genomic evaluation using observed genotypes and still yield virtually the same accuracy. On the other side, using a very small reference panel of haplotypes to impute training animals and candidates for selection results in lower accuracy of genomic evaluation.

  13. The Use of Linear Programming for Prediction.

    ERIC Educational Resources Information Center

    Schnittjer, Carl J.

    The purpose of the study was to develop a linear programming model to be used for prediction, test the accuracy of the predictions, and compare the accuracy with that produced by curvilinear multiple regression analysis. (Author)

  14. Estimation of time-series properties of gourd observed solar irradiance data using cloud properties derived from satellite observations

    NASA Astrophysics Data System (ADS)

    Watanabe, T.; Nohara, D.

    2017-12-01

    The shorter temporal scale variation in the downward solar irradiance at the ground level (DSI) is not understood well because researches in the shorter-scale variation in the DSI is based on the ground observation and ground observation stations are located coarsely. Use of dataset derived from satellite observation will overcome such defect. DSI data and MODIS cloud properties product are analyzed simultaneously. Three metrics: mean, standard deviation and sample entropy, are used to evaluate time-series properties of the DSI. Three metrics are computed from two-hours time-series centered at the observation time of MODIS over the ground observation stations. We apply the regression methods to design prediction models of each three metrics from cloud properties. The validation of the model accuracy show that mean and standard deviation are predicted with a higher degree of accuracy and that the accuracy of prediction of sample entropy, which represents the complexity of time-series, is not high. One of causes of lower prediction skill of sample entropy is the resolution of the MODIS cloud properties. Higher sample entropy is corresponding to the rapid fluctuation, which is caused by the small and unordered cloud. It seems that such clouds isn't retrieved well.

  15. BDDCS Class Prediction for New Molecular Entities

    PubMed Central

    Broccatelli, Fabio; Cruciani, Gabriele; Benet, Leslie Z.; Oprea, Tudor I.

    2012-01-01

    The Biopharmaceutics Drug Disposition Classification System (BDDCS) was successfully employed for predicting drug-drug interactions (DDIs) with respect to drug metabolizing enzymes (DMEs), drug transporters and their interplay. The major assumption of BDDCS is that the extent of metabolism (EoM) predicts high versus low intestinal permeability rate, and vice versa, at least when uptake transporters or paracellular transport are not involved. We recently published a collection of over 900 marketed drugs classified for BDDCS. We suggest that a reliable model for predicting BDDCS class, integrated with in vitro assays, could anticipate disposition and potential DDIs of new molecular entities (NMEs). Here we describe a computational procedure for predicting BDDCS class from molecular structures. The model was trained on a set of 300 oral drugs, and validated on an external set of 379 oral drugs, using 17 descriptors calculated or derived from the VolSurf+ software. For each molecule, a probability of BDDCS class membership was given, based on predicted EoM, FDA solubility (FDAS) and their confidence scores. The accuracy in predicting FDAS was 78% in training and 77% in validation, while for EoM prediction the accuracy was 82% in training and 79% in external validation. The actual BDDCS class corresponded to the highest ranked calculated class for 55% of the validation molecules, and it was within the top two ranked more than 92% of the times. The unbalanced stratification of the dataset didn’t affect the prediction, which showed highest accuracy in predicting classes 2 and 3 with respect to the most populated class 1. For class 4 drugs a general lack of predictability was observed. A linear discriminant analysis (LDA) confirmed the degree of accuracy for the prediction of the different BDDCS classes is tied to the structure of the dataset. This model could routinely be used in early drug discovery to prioritize in vitro tests for NMEs (e.g., affinity to transporters, intestinal metabolism, intestinal absorption and plasma protein binding). We further applied the BDDCS prediction model on a large set of medicinal chemistry compounds (over 30,000 chemicals). Based on this application, we suggest that solubility, and not permeability, is the major difference between NMEs and drugs. We anticipate that the forecast of BDDCS categories in early drug discovery may lead to a significant R&D cost reduction. PMID:22224483

  16. Predicting Individuals' Learning Success from Patterns of Pre-Learning MRI Activity

    PubMed Central

    Vo, Loan T. K.; Walther, Dirk B.; Kramer, Arthur F.; Erickson, Kirk I.; Boot, Walter R.; Voss, Michelle W.; Prakash, Ruchika S.; Lee, Hyunkyu; Fabiani, Monica; Gratton, Gabriele; Simons, Daniel J.; Sutton, Bradley P.; Wang, Michelle Y.

    2011-01-01

    Performance in most complex cognitive and psychomotor tasks improves with training, yet the extent of improvement varies among individuals. Is it possible to forecast the benefit that a person might reap from training? Several behavioral measures have been used to predict individual differences in task improvement, but their predictive power is limited. Here we show that individual differences in patterns of time-averaged T2*-weighted MRI images in the dorsal striatum recorded at the initial stage of training predict subsequent learning success in a complex video game with high accuracy. These predictions explained more than half of the variance in learning success among individuals, suggesting that individual differences in neuroanatomy or persistent physiology predict whether and to what extent people will benefit from training in a complex task. Surprisingly, predictions from white matter were highly accurate, while voxels in the gray matter of the dorsal striatum did not contain any information about future training success. Prediction accuracy was higher in the anterior than the posterior half of the dorsal striatum. The link between trainability and the time-averaged T2*-weighted signal in the dorsal striatum reaffirms the role of this part of the basal ganglia in learning and executive functions, such as task-switching and task coordination processes. The ability to predict who will benefit from training by using neuroimaging data collected in the early training phase may have far-reaching implications for the assessment of candidates for specific training programs as well as the study of populations that show deficiencies in learning new skills. PMID:21264257

  17. Creatinine measurement on dry blood spot sample for chronic kidney disease screening.

    PubMed

    Silva, Alan Castro Azevedo E; Gómez, Juan Fidel Bencomo; Lugon, Jocemir Ronaldo; Graciano, Miguel Luis

    2016-03-01

    Chronic kidney disease (CKD) screening is advisable due to its high morbidity and mortality and is usually performed by sampling blood and urine. Here we present an innovative and simpler method, by measuring creatinine on a dry blood spot on filter paper. One-hundred and six individuals at high risk for CKD were enrolled. The creatinine values obtained using both tests and the demographic data of each participant allowed us to determinate the eGFR. The adopted cutoff for CKD was an eGFR < 60 ml/min. Mean age was 57 ± 12 years, 74% were female, 40% white, and 60% non-white. Seventy-six percent were hypertensive, 30% diabetic, 37% had family history of CKD, and 22% of smoking. The BMI was 29.5 ± 6.9 kg/m2, median systolic blood pressure was 125 mmHg (IQR 120-140 mmHg) and median diastolic blood pressure was 80 mmHg (IQR 70-80 mmHg). According to MDRD equation, sensitivity was 96%, specificity 55%, predictive positive value 96%, predictive negative value 55% and accuracy 92%. By the CKD-EPI equation the sensitivity was 94%, specificity 55%, predictive positive value 94%, predictive negative value 55% and accuracy 90%. A Bland and Altman analysis showed a relatively narrow range of creatinine values differences (+ 0.68mg/dl to -0.55mg/dl) inside the ± 1.96 SD, without systematic differences. Measurement of creatinine on dry blood sample is an easily feasible non-invasive diagnostic test with good accuracy that may be useful to screen chronic kidney disease.

  18. A Stochastic Simulation Framework for the Prediction of Strategic Noise Mapping and Occupational Noise Exposure Using the Random Walk Approach

    PubMed Central

    Haron, Zaiton; Bakar, Suhaimi Abu; Dimon, Mohamad Ngasri

    2015-01-01

    Strategic noise mapping provides important information for noise impact assessment and noise abatement. However, producing reliable strategic noise mapping in a dynamic, complex working environment is difficult. This study proposes the implementation of the random walk approach as a new stochastic technique to simulate noise mapping and to predict the noise exposure level in a workplace. A stochastic simulation framework and software, namely RW-eNMS, were developed to facilitate the random walk approach in noise mapping prediction. This framework considers the randomness and complexity of machinery operation and noise emission levels. Also, it assesses the impact of noise on the workers and the surrounding environment. For data validation, three case studies were conducted to check the accuracy of the prediction data and to determine the efficiency and effectiveness of this approach. The results showed high accuracy of prediction results together with a majority of absolute differences of less than 2 dBA; also, the predicted noise doses were mostly in the range of measurement. Therefore, the random walk approach was effective in dealing with environmental noises. It could predict strategic noise mapping to facilitate noise monitoring and noise control in the workplaces. PMID:25875019

  19. Asymmetric bagging and feature selection for activities prediction of drug molecules.

    PubMed

    Li, Guo-Zheng; Meng, Hao-Hua; Lu, Wen-Cong; Yang, Jack Y; Yang, Mary Qu

    2008-05-28

    Activities of drug molecules can be predicted by QSAR (quantitative structure activity relationship) models, which overcomes the disadvantages of high cost and long cycle by employing the traditional experimental method. With the fact that the number of drug molecules with positive activity is rather fewer than that of negatives, it is important to predict molecular activities considering such an unbalanced situation. Here, asymmetric bagging and feature selection are introduced into the problem and asymmetric bagging of support vector machines (asBagging) is proposed on predicting drug activities to treat the unbalanced problem. At the same time, the features extracted from the structures of drug molecules affect prediction accuracy of QSAR models. Therefore, a novel algorithm named PRIFEAB is proposed, which applies an embedded feature selection method to remove redundant and irrelevant features for asBagging. Numerical experimental results on a data set of molecular activities show that asBagging improve the AUC and sensitivity values of molecular activities and PRIFEAB with feature selection further helps to improve the prediction ability. Asymmetric bagging can help to improve prediction accuracy of activities of drug molecules, which can be furthermore improved by performing feature selection to select relevant features from the drug molecules data sets.

  20. Real-Time Optical Biopsy of Colon Polyps With Narrow Band Imaging in Community Practice Does Not Yet Meet Key Thresholds for Clinical Decisions

    PubMed Central

    LADABAUM, URI; FIORITTO, ANN; MITANI, AYA; DESAI, MANISHA; KIM, JANE P.; REX, DOUGLAS K.; IMPERIALE, THOMAS; GUNARATNAM, NARESH

    2017-01-01

    BACKGROUND & AIMS Accurate optical analysis of colorectal polyps (optical biopsy) could prevent unnecessary polypectomies or allow a “resect and discard” strategy with surveillance intervals determined based on the results of the optical biopsy; this could be less expensive than histopathologic analysis of polyps. We prospectively evaluated real-time optical biopsy analysis of polyps with narrow band imaging (NBI) by community-based gastroenterologists. METHODS We first analyzed a computerized module to train gastroenterologists (N = 13) in optical biopsy skills using photographs of polyps. Then we evaluated a practice-based learning program for these gastroenterologists (n = 12) that included real-time optical analysis of polyps in vivo, comparison of optical biopsy predictions to histopathologic analysis, and ongoing feedback on performance. RESULTS Twelve of 13 subjects identified adenomas with >90% accuracy at the end of the computer study, and 3 of 12 subjects did so with accuracy ≥90% in the in vivo study. Learning curves showed considerable variation among batches of polyps. For diminutive rectosigmoid polyps assessed with high confidence at the end of the study, adenomas were identified with mean (95% confidence interval [CI]) accuracy, sensitivity, specificity, and negative predictive values of 81% (73%–89%), 85% (74%–96%), 78% (66%–92%), and 91% (86%–97%), respectively. The adjusted odds ratio for high confidence as a predictor of accuracy was 1.8 (95% CI, 1.3–2.5). The agreement between surveillance recommendations informed by high-confidence NBI analysis of diminutive polyps and results from histopathologic analysis of all polyps was 80% (95% CI, 77%–82%). CONCLUSIONS In an evaluation of real-time optical biopsy analysis of polyps with NBI, only 25% of gastroenterologists assessed polyps with ≥90% accuracy. The negative predictive value for identification of adenomas, but not the surveillance interval agreement, met the American Society for Gastrointestinal Endoscopy–recommended thresholds for optical biopsy. Better results in community practice must be achieved before NBI-based optical biopsy methods can be used routinely to evaluate polyps; ClinicalTrials.gov number, NCT01638091. PMID:23041328

  1. Accuracy of Two Motor Assessments during the First Year of Life in Preterm Infants for Predicting Motor Outcome at Preschool Age

    PubMed Central

    Spittle, Alicia J.; Lee, Katherine J.; Spencer-Smith, Megan; Lorefice, Lucy E.; Anderson, Peter J.; Doyle, Lex W.

    2015-01-01

    Aim The primary aim of this study was to investigate the accuracy of the Alberta Infant Motor Scale (AIMS) and Neuro-Sensory Motor Developmental Assessment (NSMDA) over the first year of life for predicting motor impairment at 4 years in preterm children. The secondary aims were to assess the predictive value of serial assessments over the first year and when using a combination of these two assessment tools in follow-up. Method Children born <30 weeks’ gestation were prospectively recruited and assessed at 4, 8 and 12 months’ corrected age using the AIMS and NSMDA. At 4 years’ corrected age children were assessed for cerebral palsy (CP) and motor impairment using the Movement Assessment Battery for Children 2nd-edition (MABC-2). We calculated accuracy of the AIMS and NSMDA for predicting CP and MABC-2 scores ≤15th (at-risk of motor difficulty) and ≤5th centile (significant motor difficulty) for each test (AIMS and NSMDA) at 4, 8 and 12 months, for delay on one, two or all three of the time points over the first year, and finally for delay on both tests at each time point. Results Accuracy for predicting motor impairment was good for each test at each age, although false positives were common. Motor impairment on the MABC-2 (scores ≤5th and ≤15th) was most accurately predicted by the AIMS at 4 months, whereas CP was most accurately predicted by the NSMDA at 12 months. In regards to serial assessments, the likelihood ratio for motor impairment increased with the number of delayed assessments. When combining both the NSMDA and AIMS the best accuracy was achieved at 4 months, although results were similar at 8 and 12 months. Interpretation Motor development during the first year of life in preterm infants assessed with the AIMS and NSMDA is predictive of later motor impairment at preschool age. However, false positives are common and therefore it is beneficial to follow-up children at high risk of motor impairment at more than one time point, or to use a combination of assessment tools. Trial Registration ACTR.org.au ACTRN12606000252516 PMID:25970619

  2. Predictors of Mortality in the Critically Ill Cirrhotic Patient: Is the Model for End-Stage Liver Disease Enough?

    PubMed

    Annamalai, Alagappan; Harada, Megan Y; Chen, Melissa; Tran, Tram; Ko, Ara; Ley, Eric J; Nuno, Miriam; Klein, Andrew; Nissen, Nicholas; Noureddin, Mazen

    2017-03-01

    Critically ill cirrhotics require liver transplantation urgently, but are at high risk for perioperative mortality. The Model for End-stage Liver Disease (MELD) score, recently updated to incorporate serum sodium, estimates survival probability in patients with cirrhosis, but needs additional evaluation in the critically ill. The purpose of this study was to evaluate the predictive power of ICU admission MELD scores and identify clinical risk factors associated with increased mortality. This was a retrospective review of cirrhotic patients admitted to the ICU between January 2011 and December 2014. Patients who were discharged or underwent transplantation (survivors) were compared with those who died (nonsurvivors). Demographic characteristics, admission MELD scores, and clinical risk factors were recorded. Multivariate regression was used to identify independent predictors of mortality, and measures of model performance were assessed to determine predictive accuracy. Of 276 patients who met inclusion criteria, 153 were considered survivors and 123 were nonsurvivors. Survivor and nonsurvivor cohorts had similar demographic characteristics. Nonsurvivors had increased MELD, gastrointestinal bleeding, infection, mechanical ventilation, encephalopathy, vasopressors, dialysis, renal replacement therapy, requirement of blood products, and ICU length of stay. The MELD demonstrated low predictive power (c-statistic 0.73). Multivariate analysis identified MELD score (adjusted odds ratio [AOR] = 1.05), mechanical ventilation (AOR = 4.55), vasopressors (AOR = 3.87), and continuous renal replacement therapy (AOR = 2.43) as independent predictors of mortality, with stronger predictive accuracy (c-statistic 0.87). The MELD demonstrated relatively poor predictive accuracy in critically ill patients with cirrhosis and might not be the best indicator for prognosis in the ICU population. Prognostic accuracy is significantly improved when variables indicating organ support (mechanical ventilation, vasopressors, and continuous renal replacement therapy) are included in the model. Copyright © 2016. Published by Elsevier Inc.

  3. Accuracy of direct genomic values in Holstein bulls and cows using subsets of SNP markers

    PubMed Central

    2010-01-01

    Background At the current price, the use of high-density single nucleotide polymorphisms (SNP) genotyping assays in genomic selection of dairy cattle is limited to applications involving elite sires and dams. The objective of this study was to evaluate the use of low-density assays to predict direct genomic value (DGV) on five milk production traits, an overall conformation trait, a survival index, and two profit index traits (APR, ASI). Methods Dense SNP genotypes were available for 42,576 SNP for 2,114 Holstein bulls and 510 cows. A subset of 1,847 bulls born between 1955 and 2004 was used as a training set to fit models with various sets of pre-selected SNP. A group of 297 bulls born between 2001 and 2004 and all cows born between 1992 and 2004 were used to evaluate the accuracy of DGV prediction. Ridge regression (RR) and partial least squares regression (PLSR) were used to derive prediction equations and to rank SNP based on the absolute value of the regression coefficients. Four alternative strategies were applied to select subset of SNP, namely: subsets of the highest ranked SNP for each individual trait, or a single subset of evenly spaced SNP, where SNP were selected based on their rank for ASI, APR or minor allele frequency within intervals of approximately equal length. Results RR and PLSR performed very similarly to predict DGV, with PLSR performing better for low-density assays and RR for higher-density SNP sets. When using all SNP, DGV predictions for production traits, which have a higher heritability, were more accurate (0.52-0.64) than for survival (0.19-0.20), which has a low heritability. The gain in accuracy using subsets that included the highest ranked SNP for each trait was marginal (5-6%) over a common set of evenly spaced SNP when at least 3,000 SNP were used. Subsets containing 3,000 SNP provided more than 90% of the accuracy that could be achieved with a high-density assay for cows, and 80% of the high-density assay for young bulls. Conclusions Accurate genomic evaluation of the broader bull and cow population can be achieved with a single genotyping assays containing ~ 3,000 to 5,000 evenly spaced SNP. PMID:20950478

  4. Genome Properties and Prospects of Genomic Prediction of Hybrid Performance in a Breeding Program of Maize

    PubMed Central

    Technow, Frank; Schrag, Tobias A.; Schipprack, Wolfgang; Bauer, Eva; Simianer, Henner; Melchinger, Albrecht E.

    2014-01-01

    Maize (Zea mays L.) serves as model plant for heterosis research and is the crop where hybrid breeding was pioneered. We analyzed genomic and phenotypic data of 1254 hybrids of a typical maize hybrid breeding program based on the important Dent × Flint heterotic pattern. Our main objectives were to investigate genome properties of the parental lines (e.g., allele frequencies, linkage disequilibrium, and phases) and examine the prospects of genomic prediction of hybrid performance. We found high consistency of linkage phases and large differences in allele frequencies between the Dent and Flint heterotic groups in pericentromeric regions. These results can be explained by the Hill–Robertson effect and support the hypothesis of differential fixation of alleles due to pseudo-overdominance in these regions. In pericentromeric regions we also found indications for consistent marker–QTL linkage between heterotic groups. With prediction methods GBLUP and BayesB, the cross-validation prediction accuracy ranged from 0.75 to 0.92 for grain yield and from 0.59 to 0.95 for grain moisture. The prediction accuracy of untested hybrids was highest, if both parents were parents of other hybrids in the training set, and lowest, if none of them were involved in any training set hybrid. Optimizing the composition of the training set in terms of number of lines and hybrids per line could further increase prediction accuracy. We conclude that genomic prediction facilitates a paradigm shift in hybrid breeding by focusing on the performance of experimental hybrids rather than the performance of parental lines in testcrosses. PMID:24850820

  5. Utilizing multiple scale models to improve predictions of extra-axial hemorrhage in the immature piglet.

    PubMed

    Scott, Gregory G; Margulies, Susan S; Coats, Brittany

    2016-10-01

    Traumatic brain injury (TBI) is a leading cause of death and disability in the USA. To help understand and better predict TBI, researchers have developed complex finite element (FE) models of the head which incorporate many biological structures such as scalp, skull, meninges, brain (with gray/white matter differentiation), and vasculature. However, most models drastically simplify the membranes and substructures between the pia and arachnoid membranes. We hypothesize that substructures in the pia-arachnoid complex (PAC) contribute substantially to brain deformation following head rotation, and that when included in FE models accuracy of extra-axial hemorrhage prediction improves. To test these hypotheses, microscale FE models of the PAC were developed to span the variability of PAC substructure anatomy and regional density. The constitutive response of these models were then integrated into an existing macroscale FE model of the immature piglet brain to identify changes in cortical stress distribution and predictions of extra-axial hemorrhage (EAH). Incorporating regional variability of PAC substructures substantially altered the distribution of principal stress on the cortical surface of the brain compared to a uniform representation of the PAC. Simulations of 24 non-impact rapid head rotations in an immature piglet animal model resulted in improved accuracy of EAH prediction (to 94 % sensitivity, 100 % specificity), as well as a high accuracy in regional hemorrhage prediction (to 82-100 % sensitivity, 100 % specificity). We conclude that including a biofidelic PAC substructure variability in FE models of the head is essential for improved predictions of hemorrhage at the brain/skull interface.

  6. Carotid bruit for detection of hemodynamically significant carotid stenosis: the Northern Manhattan Study

    PubMed Central

    Ratchford, Elizabeth V.; Jin, Zhezhen; Di Tullio, Marco R.; Salameh, Maya J.; Homma, Shunichi; Gan, Robert; Boden-Albala, Bernadette; Sacco, Ralph L.; Rundek, Tatjana

    2009-01-01

    Objective The prevalence of carotid bruits and the utility of auscultation for predicting carotid stenosis are not well known. We aimed to establish the prevalence of carotid bruits and the diagnostic accuracy of auscultation for detection of hemodynamically significant carotid stenosis, using carotid duplex as the gold standard. Methods The Northern Manhattan Study (NOMAS) is a prospective multiethnic community-based cohort designed to examine the incidence of stroke and other vascular events and the association between various vascular risk factors and subclinical atherosclerosis. Of the stroke-free cohort (n=3298), 686 were examined for carotid bruits and underwent carotid duplex. Main outcome measures included prevalence of carotid bruits and sensitivity, specificity, positive predictive value, negative predictive value and accuracy of auscultation for prediction of ipsilateral carotid stenosis. Results Among 686 subjects with a mean age of 68.2 ± 9.4 years, the prevalence of ≥60% carotid stenosis as detected by ultrasound was 2.2% and the prevalence of carotid bruits was 4.1%. For detection of carotid stenosis, sensitivity of auscultation was 56%, specificity was 98%, positive predictive value was 25%, negative predictive value was 99% and overall accuracy was 97.5%. Discussion In this ethnically diverse cohort, the prevalence of carotid bruits and hemodynamically significant carotid stenosis was low. Sensitivity and positive predictive value were also low, and the 44% false-negative rate suggests that auscultation is not sufficient to exclude carotid stenosis. While the presence of a bruit may still warrant further evaluation with carotid duplex, ultrasonography may be considered in high-risk asymptomatic patients, irrespective of findings on auscultation. PMID:19133168

  7. Instrument for evaluation of sedentary lifestyle in patients with high blood pressure.

    PubMed

    Lopes, Marcos Venícios de Oliveira; da Silva, Viviane Martins; de Araujo, Thelma Leite; Guedes, Nirla Gomes; Martins, Larissa Castelo Guedes; Teixeira, Iane Ximenes

    2015-01-01

    this article describes the diagnostic accuracy of the International Physical Activity Questionnaire to identify the nursing diagnosis of sedentary lifestyle. a diagnostic accuracy study was developed with 240 individuals with established high blood pressure. The analysis of diagnostic accuracy was based on measures of sensitivity, specificity, predictive values, likelihood ratios, efficiency, diagnostic odds ratio, Youden index, and area under the receiver-operating characteristic curve. statistical differences between genders were observed for activities of moderate intensity and for total physical activity. Age was negatively correlated with activities of moderate intensity and total physical activity. the analysis of area under the receiver-operating characteristic curve for moderate intensity activities, walking, and total physical activity showed that the International Physical Activity Questionnaire present moderate capacity to correctly classify individuals with and without sedentary lifestyle.

  8. Using the American Board of Surgery In-Training Examination to predict board certification: a cautionary study.

    PubMed

    Jones, Andrew T; Biester, Thomas W; Buyske, Jo; Lewis, Frank R; Malangoni, Mark A

    2014-01-01

    Although designed as a low-stakes formative examination, the American Board of Surgery In-Training Examination (ABSITE) is often used in high-stakes decisions such as promotion, remediation, and retention owing to its perceived ability to predict the outcome of board certification. Because of the discrepancy between intent and use, the ability of ABSITE scores to predict passing the American Board of Surgery certification examinations was analyzed. All first-time American Board of Surgery qualifying examination (QE) examinees between 2006 and 2012 were reviewed. Examinees' postgraduate year (PGY) 1 and PGY5 ABSITE standard scores were linked to QE scores and pass/fail outcomes (n = 6912 and 6846, respectively) as well as first-time certifying examination (CE) pass/fail results (n = 1329). Linear and logistic regression analyses were performed to evaluate the utility of ABSITE scores to predict board certification scores and pass/fail outcomes. PGY1 ABSITE scores accounted for 22% of the variance in QE scores (p < 0.001). PGY5 scores were a slightly better predictor, accounting for 30% of QE score variance (p < 0.001). Analyses showed that selecting a PGY5 ABSITE score that maximized overall decision accuracy for predicting QE pass/fail outcomes (86% accuracy) resulted in 98% sensitivity, 13% specificity, a positive predictive value of 87%, and a negative predictive value of 57%. ABSITE scores were not predictive of success on the CE. ABSITE scores are a useful predictor of QE scores and outcomes but do not predict passing the CE. Although scoring well on the ABSITE is highly predictive of QE success, using low ABSITE scores to predict QE failure results in frequent decision errors. Program directors and other evaluators should use additional sources of information when making high-stakes decisions about resident performance. Copyright © 2014 Association of Program Directors in Surgery. Published by Elsevier Inc. All rights reserved.

  9. Quantifying and comparing dynamic predictive accuracy of joint models for longitudinal marker and time-to-event in presence of censoring and competing risks.

    PubMed

    Blanche, Paul; Proust-Lima, Cécile; Loubère, Lucie; Berr, Claudine; Dartigues, Jean-François; Jacqmin-Gadda, Hélène

    2015-03-01

    Thanks to the growing interest in personalized medicine, joint modeling of longitudinal marker and time-to-event data has recently started to be used to derive dynamic individual risk predictions. Individual predictions are called dynamic because they are updated when information on the subject's health profile grows with time. We focus in this work on statistical methods for quantifying and comparing dynamic predictive accuracy of this kind of prognostic models, accounting for right censoring and possibly competing events. Dynamic area under the ROC curve (AUC) and Brier Score (BS) are used to quantify predictive accuracy. Nonparametric inverse probability of censoring weighting is used to estimate dynamic curves of AUC and BS as functions of the time at which predictions are made. Asymptotic results are established and both pointwise confidence intervals and simultaneous confidence bands are derived. Tests are also proposed to compare the dynamic prediction accuracy curves of two prognostic models. The finite sample behavior of the inference procedures is assessed via simulations. We apply the proposed methodology to compare various prediction models using repeated measures of two psychometric tests to predict dementia in the elderly, accounting for the competing risk of death. Models are estimated on the French Paquid cohort and predictive accuracies are evaluated and compared on the French Three-City cohort. © 2014, The International Biometric Society.

  10. High-precision predictions for the light CP-even Higgs boson mass of the minimal supersymmetric standard model.

    PubMed

    Hahn, T; Heinemeyer, S; Hollik, W; Rzehak, H; Weiglein, G

    2014-04-11

    For the interpretation of the signal discovered in the Higgs searches at the LHC it will be crucial in particular to discriminate between the minimal Higgs sector realized in the standard model (SM) and its most commonly studied extension, the minimal supersymmetric standard model (MSSM). The measured mass value, having already reached the level of a precision observable with an experimental accuracy of about 500 MeV, plays an important role in this context. In the MSSM the mass of the light CP-even Higgs boson, Mh, can directly be predicted from the other parameters of the model. The accuracy of this prediction should at least match the one of the experimental result. The relatively high mass value of about 126 GeV has led to many investigations where the scalar top quarks are in the multi-TeV range. We improve the prediction for Mh in the MSSM by combining the existing fixed-order result, comprising the full one-loop and leading and subleading two-loop corrections, with a resummation of the leading and subleading logarithmic contributions from the scalar top sector to all orders. In this way for the first time a high-precision prediction for the mass of the light CP-even Higgs boson in the MSSM is possible all the way up to the multi-TeV region of the relevant supersymmetric particles. The results are included in the code FEYNHIGGS.

  11. Predictive performance of genomic selection methods for carcass traits in Hanwoo beef cattle: impacts of the genetic architecture.

    PubMed

    Mehrban, Hossein; Lee, Deuk Hwan; Moradi, Mohammad Hossein; IlCho, Chung; Naserkheil, Masoumeh; Ibáñez-Escriche, Noelia

    2017-01-04

    Hanwoo beef is known for its marbled fat, tenderness, juiciness and characteristic flavor, as well as for its low cholesterol and high omega 3 fatty acid contents. As yet, there has been no comprehensive investigation to estimate genomic selection accuracy for carcass traits in Hanwoo cattle using dense markers. This study aimed at evaluating the accuracy of alternative statistical methods that differed in assumptions about the underlying genetic model for various carcass traits: backfat thickness (BT), carcass weight (CW), eye muscle area (EMA), and marbling score (MS). Accuracies of direct genomic breeding values (DGV) for carcass traits were estimated by applying fivefold cross-validation to a dataset including 1183 animals and approximately 34,000 single nucleotide polymorphisms (SNPs). Accuracies of BayesC, Bayesian LASSO (BayesL) and genomic best linear unbiased prediction (GBLUP) methods were similar for BT, EMA and MS. However, for CW, DGV accuracy was 7% higher with BayesC than with BayesL and GBLUP. The increased accuracy of BayesC, compared to GBLUP and BayesL, was maintained for CW, regardless of the training sample size, but not for BT, EMA, and MS. Genome-wide association studies detected consistent large effects for SNPs on chromosomes 6 and 14 for CW. The predictive performance of the models depended on the trait analyzed. For CW, the results showed a clear superiority of BayesC compared to GBLUP and BayesL. These findings indicate the importance of using a proper variable selection method for genomic selection of traits and also suggest that the genetic architecture that underlies CW differs from that of the other carcass traits analyzed. Thus, our study provides significant new insights into the carcass traits of Hanwoo cattle.

  12. Building predictive in vitro pulmonary toxicity assays using high-throughput imaging and artificial intelligence.

    PubMed

    Lee, Jia-Ying Joey; Miller, James Alastair; Basu, Sreetama; Kee, Ting-Zhen Vanessa; Loo, Lit-Hsin

    2018-06-01

    Human lungs are susceptible to the toxicity induced by soluble xenobiotics. However, the direct cellular effects of many pulmonotoxic chemicals are not always clear, and thus, a general in vitro assay for testing pulmonotoxicity applicable to a wide variety of chemicals is not currently available. Here, we report a study that uses high-throughput imaging and artificial intelligence to build an in vitro pulmonotoxicity assay by automatically comparing and selecting human lung-cell lines and their associated quantitative phenotypic features most predictive of in vivo pulmonotoxicity. This approach is called "High-throughput In vitro Phenotypic Profiling for Toxicity Prediction" (HIPPTox). We found that the resulting assay based on two phenotypic features of a human bronchial epithelial cell line, BEAS-2B, can accurately classify 33 reference chemicals with human pulmonotoxicity information (88.8% balance accuracy, 84.6% sensitivity, and 93.0% specificity). In comparison, the predictivity of a standard cell-viability assay on the same set of chemicals is much lower (77.1% balanced accuracy, 84.6% sensitivity, and 69.5% specificity). We also used the assay to evaluate 17 additional test chemicals with unknown/unclear human pulmonotoxicity, and experimentally confirmed that many of the pulmonotoxic reference and predicted-positive test chemicals induce DNA strand breaks and/or activation of the DNA-damage response (DDR) pathway. Therefore, HIPPTox helps us to uncover these common modes-of-action of pulmonotoxic chemicals. HIPPTox may also be applied to other cell types or models, and accelerate the development of predictive in vitro assays for other cell-type- or organ-specific toxicities.

  13. Bio-knowledge based filters improve residue-residue contact prediction accuracy.

    PubMed

    Wozniak, P P; Pelc, J; Skrzypecki, M; Vriend, G; Kotulska, M

    2018-05-29

    Residue-residue contact prediction through direct coupling analysis has reached impressive accuracy, but yet higher accuracy will be needed to allow for routine modelling of protein structures. One way to improve the prediction accuracy is to filter predicted contacts using knowledge about the particular protein of interest or knowledge about protein structures in general. We focus on the latter and discuss a set of filters that can be used to remove false positive contact predictions. Each filter depends on one or a few cut-off parameters for which the filter performance was investigated. Combining all filters while using default parameters resulted for a test-set of 851 protein domains in the removal of 29% of the predictions of which 92% were indeed false positives. All data and scripts are available from http://comprec-lin.iiar.pwr.edu.pl/FPfilter/. malgorzata.kotulska@pwr.edu.pl. Supplementary data are available at Bioinformatics online.

  14. Theoretical prediction of welding distortion in large and complex structures

    NASA Astrophysics Data System (ADS)

    Deng, De-An

    2010-06-01

    Welding technology is widely used to assemble large thin plate structures such as ships, automobiles, and passenger trains because of its high productivity. However, it is impossible to avoid welding-induced distortion during the assembly process. Welding distortion not only reduces the fabrication accuracy of a weldment, but also decreases the productivity due to correction work. If welding distortion can be predicted using a practical method beforehand, the prediction will be useful for taking appropriate measures to control the dimensional accuracy to an acceptable limit. In this study, a two-step computational approach, which is a combination of a thermoelastic-plastic finite element method (FEM) and an elastic finite element with consideration for large deformation, is developed to estimate welding distortion for large and complex welded structures. Welding distortions in several representative large complex structures, which are often used in shipbuilding, are simulated using the proposed method. By comparing the predictions and the measurements, the effectiveness of the two-step computational approach is verified.

  15. Private traits and attributes are predictable from digital records of human behavior.

    PubMed

    Kosinski, Michal; Stillwell, David; Graepel, Thore

    2013-04-09

    We show that easily accessible digital records of behavior, Facebook Likes, can be used to automatically and accurately predict a range of highly sensitive personal attributes including: sexual orientation, ethnicity, religious and political views, personality traits, intelligence, happiness, use of addictive substances, parental separation, age, and gender. The analysis presented is based on a dataset of over 58,000 volunteers who provided their Facebook Likes, detailed demographic profiles, and the results of several psychometric tests. The proposed model uses dimensionality reduction for preprocessing the Likes data, which are then entered into logistic/linear regression to predict individual psychodemographic profiles from Likes. The model correctly discriminates between homosexual and heterosexual men in 88% of cases, African Americans and Caucasian Americans in 95% of cases, and between Democrat and Republican in 85% of cases. For the personality trait "Openness," prediction accuracy is close to the test-retest accuracy of a standard personality test. We give examples of associations between attributes and Likes and discuss implications for online personalization and privacy.

  16. Identifying a predictive model for response to atypical antipsychotic monotherapy treatment in south Indian schizophrenia patients.

    PubMed

    Gupta, Meenal; Moily, Nagaraj S; Kaur, Harpreet; Jajodia, Ajay; Jain, Sanjeev; Kukreti, Ritushree

    2013-08-01

    Atypical antipsychotic (AAP) drugs are the preferred choice of treatment for schizophrenia patients. Patients who do not show favorable response to AAP monotherapy are subjected to random prolonged therapeutic treatment with AAP multitherapy, typical antipsychotics or a combination of both. Therefore, prior identification of patients' response to drugs can be an important step in providing efficacious and safe therapeutic treatment. We thus attempted to elucidate a genetic signature which could predict patients' response to AAP monotherapy. Our logistic regression analyses indicated the probability that 76% patients carrying combination of four SNPs will not show favorable response to AAP therapy. The robustness of this prediction model was assessed using repeated 10-fold cross validation method, and the results across n-fold cross-validations (mean accuracy=71.91%; 95%CI=71.47-72.35) suggest high accuracy and reliability of the prediction model. Further validations of these results in large sample sets are likely to establish their clinical applicability. Copyright © 2013 Elsevier Inc. All rights reserved.

  17. Real estate value prediction using multivariate regression models

    NASA Astrophysics Data System (ADS)

    Manjula, R.; Jain, Shubham; Srivastava, Sharad; Rajiv Kher, Pranav

    2017-11-01

    The real estate market is one of the most competitive in terms of pricing and the same tends to vary significantly based on a lot of factors, hence it becomes one of the prime fields to apply the concepts of machine learning to optimize and predict the prices with high accuracy. Therefore in this paper, we present various important features to use while predicting housing prices with good accuracy. We have described regression models, using various features to have lower Residual Sum of Squares error. While using features in a regression model some feature engineering is required for better prediction. Often a set of features (multiple regressions) or polynomial regression (applying a various set of powers in the features) is used for making better model fit. For these models are expected to be susceptible towards over fitting ridge regression is used to reduce it. This paper thus directs to the best application of regression models in addition to other techniques to optimize the result.

  18. Use of the HR index to predict maximal oxygen uptake during different exercise protocols.

    PubMed

    Haller, Jeannie M; Fehling, Patricia C; Barr, David A; Storer, Thomas W; Cooper, Christopher B; Smith, Denise L

    2013-10-01

    This study examined the ability of the HRindex model to accurately predict maximal oxygen uptake ([Formula: see text]O2max) across a variety of incremental exercise protocols. Ten men completed five incremental protocols to volitional exhaustion. Protocols included three treadmill (Bruce, UCLA running, Wellness Fitness Initiative [WFI]), one cycle, and one field (shuttle) test. The HRindex prediction equation (METs = 6 × HRindex - 5, where HRindex = HRmax/HRrest) was used to generate estimates of energy expenditure, which were converted to body mass-specific estimates of [Formula: see text]O2max. Estimated [Formula: see text]O2max was compared with measured [Formula: see text]O2max. Across all protocols, the HRindex model significantly underestimated [Formula: see text]O2max by 5.1 mL·kg(-1)·min(-1) (95% CI: -7.4, -2.7) and the standard error of the estimate (SEE) was 6.7 mL·kg(-1)·min(-1). Accuracy of the model was protocol-dependent, with [Formula: see text]O2max significantly underestimated for the Bruce and WFI protocols but not the UCLA, Cycle, or Shuttle protocols. Although no significant differences in [Formula: see text]O2max estimates were identified for these three protocols, predictive accuracy among them was not high, with root mean squared errors and SEEs ranging from 7.6 to 10.3 mL·kg(-1)·min(-1) and from 4.5 to 8.0 mL·kg(-1)·min(-1), respectively. Correlations between measured and predicted [Formula: see text]O2max were between 0.27 and 0.53. Individual prediction errors indicated that prediction accuracy varied considerably within protocols and among participants. In conclusion, across various protocols the HRindex model significantly underestimated [Formula: see text]O2max in a group of aerobically fit young men. Estimates generated using the model did not differ from measured [Formula: see text]O2max for three of the five protocols studied; nevertheless, some individual prediction errors were large. The lack of precision among estimates may limit the utility of the HRindex model; however, further investigation to establish the model's predictive accuracy is warranted.

  19. Protein contact prediction using patterns of correlation.

    PubMed

    Hamilton, Nicholas; Burrage, Kevin; Ragan, Mark A; Huber, Thomas

    2004-09-01

    We describe a new method for using neural networks to predict residue contact pairs in a protein. The main inputs to the neural network are a set of 25 measures of correlated mutation between all pairs of residues in two "windows" of size 5 centered on the residues of interest. While the individual pair-wise correlations are a relatively weak predictor of contact, by training the network on windows of correlation the accuracy of prediction is significantly improved. The neural network is trained on a set of 100 proteins and then tested on a disjoint set of 1033 proteins of known structure. An average predictive accuracy of 21.7% is obtained taking the best L/2 predictions for each protein, where L is the sequence length. Taking the best L/10 predictions gives an average accuracy of 30.7%. The predictor is also tested on a set of 59 proteins from the CASP5 experiment. The accuracy is found to be relatively consistent across different sequence lengths, but to vary widely according to the secondary structure. Predictive accuracy is also found to improve by using multiple sequence alignments containing many sequences to calculate the correlations. Copyright 2004 Wiley-Liss, Inc.

  20. Classifying injury narratives of large administrative databases for surveillance-A practical approach combining machine learning ensembles and human review.

    PubMed

    Marucci-Wellman, Helen R; Corns, Helen L; Lehto, Mark R

    2017-01-01

    Injury narratives are now available real time and include useful information for injury surveillance and prevention. However, manual classification of the cause or events leading to injury found in large batches of narratives, such as workers compensation claims databases, can be prohibitive. In this study we compare the utility of four machine learning algorithms (Naïve Bayes, Single word and Bi-gram models, Support Vector Machine and Logistic Regression) for classifying narratives into Bureau of Labor Statistics Occupational Injury and Illness event leading to injury classifications for a large workers compensation database. These algorithms are known to do well classifying narrative text and are fairly easy to implement with off-the-shelf software packages such as Python. We propose human-machine learning ensemble approaches which maximize the power and accuracy of the algorithms for machine-assigned codes and allow for strategic filtering of rare, emerging or ambiguous narratives for manual review. We compare human-machine approaches based on filtering on the prediction strength of the classifier vs. agreement between algorithms. Regularized Logistic Regression (LR) was the best performing algorithm alone. Using this algorithm and filtering out the bottom 30% of predictions for manual review resulted in high accuracy (overall sensitivity/positive predictive value of 0.89) of the final machine-human coded dataset. The best pairings of algorithms included Naïve Bayes with Support Vector Machine whereby the triple ensemble NB SW =NB BI-GRAM =SVM had very high performance (0.93 overall sensitivity/positive predictive value and high accuracy (i.e. high sensitivity and positive predictive values)) across both large and small categories leaving 41% of the narratives for manual review. Integrating LR into this ensemble mix improved performance only slightly. For large administrative datasets we propose incorporation of methods based on human-machine pairings such as we have done here, utilizing readily-available off-the-shelf machine learning techniques and resulting in only a fraction of narratives that require manual review. Human-machine ensemble methods are likely to improve performance over total manual coding. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  1. Circumferential resection margin (CRM) positivity after MRI assessment and adjuvant treatment in 189 patients undergoing rectal cancer resection.

    PubMed

    Simpson, G S; Eardley, N; McNicol, F; Healey, P; Hughes, M; Rooney, P S

    2014-05-01

    The management of rectal cancer relies on accurate MRI staging. Multi-modal treatments can downstage rectal cancer prior to surgery and may have an effect on MRI accuracy. We aim to correlate the findings of MRI staging of rectal cancer with histological analysis, the effect of neoadjuvant therapy on this and the implications of circumferential resection margin (CRM) positivity following neoadjuvant therapy. An analysis of histological data and radiological staging of all cases of rectal cancer in a single centre between 2006 and 2011 were conducted. Two hundred forty-one patients had histologically proved rectal cancer during the study period. One hundred eighty-two patients underwent resection. Median age was 66.6 years, and male to female ratio was 13:5. R1 resection rate was 11.1%. MRI assessments of the circumferential resection margin in patients without neoadjuvant radiotherapy were 93.6 and 88.1% in patients who underwent neoadjuvant radiotherapy. Eighteen patients had predicted positive margins following chemoradiotherapy, of which 38.9% had an involved CRM on histological analysis. MRI assessment of the circumferential resection margin in rectal cancer is associated with high accuracy. Neoadjuvant chemoradiotherapy has a detrimental effect on this accuracy, although accuracy remains high. In the presence of persistently predicted positive margins, complete resection remains achievable but may necessitate a more radical approach to resection.

  2. Rice Crop Monitoring and Yield Assessment with MODIS 250m Gridded Vegetation Products: A Case Study of Sa Kaeo Province, Thailand

    NASA Astrophysics Data System (ADS)

    Wijesingha, J. S. J.; Deshapriya, N. L.; Samarakoon, L.

    2015-04-01

    Billions of people in the world depend on rice as a staple food and as an income-generating crop. Asia is the leader in rice cultivation and it is necessary to maintain an up-to-date rice-related database to ensure food security as well as economic development. This study investigates general applicability of high temporal resolution Moderate Resolution Imaging Spectroradiometer (MODIS) 250m gridded vegetation product for monitoring rice crop growth, mapping rice crop acreage and analyzing crop yield, at the province-level. The MODIS 250m Normalized Difference Vegetation Index (NDVI) and Enhanced Vegetation Index (EVI) time series data, field data and crop calendar information were utilized in this research in Sa Kaeo Province, Thailand. The following methodology was used: (1) data pre-processing and rice plant growth analysis using Vegetation Indices (VI) (2) extraction of rice acreage and start-of-season dates from VI time series data (3) accuracy assessment, and (4) yield analysis with MODIS VI. The results show a direct relationship between rice plant height and MODIS VI. The crop calendar information and the smoothed NDVI time series with Whittaker Smoother gave high rice acreage estimation (with 86% area accuracy and 75% classification accuracy). Point level yield analysis showed that the MODIS EVI is highly correlated with rice yield and yield prediction using maximum EVI in the rice cycle predicted yield with an average prediction error 4.2%. This study shows the immense potential of MODIS gridded vegetation product for keeping an up-to-date Geographic Information System of rice cultivation.

  3. Correcting Memory Improves Accuracy of Predicted Task Duration

    ERIC Educational Resources Information Center

    Roy, Michael M.; Mitten, Scott T.; Christenfeld, Nicholas J. S.

    2008-01-01

    People are often inaccurate in predicting task duration. The memory bias explanation holds that this error is due to people having incorrect memories of how long previous tasks have taken, and these biased memories cause biased predictions. Therefore, the authors examined the effect on increasing predictive accuracy of correcting memory through…

  4. Comparison of baseline removal methods for laser-induced breakdown spectroscopy of geological samples

    NASA Astrophysics Data System (ADS)

    Dyar, M. Darby; Giguere, Stephen; Carey, CJ; Boucher, Thomas

    2016-12-01

    This project examines the causes, effects, and optimization of continuum removal in laser-induced breakdown spectroscopy (LIBS) to produce the best possible prediction accuracy of elemental composition in geological samples. We compare prediction accuracy resulting from several different techniques for baseline removal, including asymmetric least squares (ALS), adaptive iteratively reweighted penalized least squares (Air-PLS), fully automatic baseline correction (FABC), continuous wavelet transformation, median filtering, polynomial fitting, the iterative thresholding Dietrich method, convex hull/rubber band techniques, and a newly-developed technique for Custom baseline removal (BLR). We assess the predictive performance of these methods using partial least-squares analysis for 13 elements of geological interest, expressed as the weight percentages of SiO2, Al2O3, TiO2, FeO, MgO, CaO, Na2O, K2O, and the parts per million concentrations of Ni, Cr, Zn, Mn, and Co. We find that previously published methods for baseline subtraction generally produce equivalent prediction accuracies for major elements. When those pre-existing methods are used, automated optimization of their adjustable parameters is always necessary to wring the best predictive accuracy out of a data set; ideally, it should be done for each individual variable. The new technique of Custom BLR produces significant improvements in prediction accuracy over existing methods across varying geological data sets, instruments, and varying analytical conditions. These results also demonstrate the dual objectives of the continuum removal problem: removing a smooth underlying signal to fit individual peaks (univariate analysis) versus using feature selection to select only those channels that contribute to best prediction accuracy for multivariate analyses. Overall, the current practice of using generalized, one-method-fits-all-spectra baseline removal results in poorer predictive performance for all methods. The extra steps needed to optimize baseline removal for each predicted variable and empower multivariate techniques with the best possible input data for optimal prediction accuracy are shown to be well worth the slight increase in necessary computations and complexity.

  5. Meta-analytical prognostic accuracy of the Comprehensive Assessment of at Risk Mental States (CAARMS): The need for refined prediction.

    PubMed

    Oliver, D; Kotlicka-Antczak, M; Minichino, A; Spada, G; McGuire, P; Fusar-Poli, P

    2018-03-01

    Primary indicated prevention is reliant on accurate tools to predict the onset of psychosis. The gold standard assessment for detecting individuals at clinical high risk (CHR-P) for psychosis in the UK and many other countries is the Comprehensive Assessment for At Risk Mental States (CAARMS). While the prognostic accuracy of CHR-P instruments has been assessed in general, this is the first study to specifically analyse that of the CAARMS. As such, the CAARMS was used as the index test, with the reference index being psychosis onset within 2 years. Six independent studies were analysed using MIDAS (STATA 14), with a total of 1876 help-seeking subjects referred to high risk services (CHR-P+: n=892; CHR-P-: n=984). Area under the curve (AUC), summary receiver operating characteristic curves (SROC), quality assessment, likelihood ratios, and probability modified plots were computed, along with sensitivity analyses and meta-regressions. The current meta-analysis confirmed that the 2-year prognostic accuracy of the CAARMS is only acceptable (AUC=0.79 95% CI: 0.75-0.83) and not outstanding as previously reported. In particular, specificity was poor. Sensitivity of the CAARMS is inferior compared to the SIPS, while specificity is comparably low. However, due to the difficulties in performing these types of studies, power in this meta-analysis was low. These results indicate that refining and improving the prognostic accuracy of the CAARMS should be the mainstream area of research for the next era. Avenues of prediction improvement are critically discussed and presented to better benefit patients and improve outcomes of first episode psychosis. Copyright © 2017 The Authors. Published by Elsevier Masson SAS.. All rights reserved.

  6. Effect of sample size on multi-parametric prediction of tissue outcome in acute ischemic stroke using a random forest classifier

    NASA Astrophysics Data System (ADS)

    Forkert, Nils Daniel; Fiehler, Jens

    2015-03-01

    The tissue outcome prediction in acute ischemic stroke patients is highly relevant for clinical and research purposes. It has been shown that the combined analysis of diffusion and perfusion MRI datasets using high-level machine learning techniques leads to an improved prediction of final infarction compared to single perfusion parameter thresholding. However, most high-level classifiers require a previous training and, until now, it is ambiguous how many subjects are required for this, which is the focus of this work. 23 MRI datasets of acute stroke patients with known tissue outcome were used in this work. Relative values of diffusion and perfusion parameters as well as the binary tissue outcome were extracted on a voxel-by- voxel level for all patients and used for training of a random forest classifier. The number of patients used for training set definition was iteratively and randomly reduced from using all 22 other patients to only one other patient. Thus, 22 tissue outcome predictions were generated for each patient using the trained random forest classifiers and compared to the known tissue outcome using the Dice coefficient. Overall, a logarithmic relation between the number of patients used for training set definition and tissue outcome prediction accuracy was found. Quantitatively, a mean Dice coefficient of 0.45 was found for the prediction using the training set consisting of the voxel information from only one other patient, which increases to 0.53 if using all other patients (n=22). Based on extrapolation, 50-100 patients appear to be a reasonable tradeoff between tissue outcome prediction accuracy and effort required for data acquisition and preparation.

  7. Genetic polymorphisms to predict gains in maximal O2 uptake and knee peak torque after a high intensity training program in humans.

    PubMed

    Yoo, Jinho; Kim, Bo-Hyung; Kim, Soo-Hwan; Kim, Yangseok; Yim, Sung-Vin

    2016-05-01

    The study aimed to identify single nucleotide polymorphisms (SNPs) that significantly influenced the level of improvement of two kinds of training responses, including maximal O2 uptake (V'O2max) and knee peak torque of healthy adults participating in the high intensity training (HIT) program. The study also aimed to use these SNPs to develop prediction models for individual training responses. 79 Healthy volunteers participated in the HIT program. A genome-wide association study, based on 2,391,739 SNPs, was performed to identify SNPs that were significantly associated with gains in V'O2max and knee peak torque, following 9 weeks of the HIT program. To predict two training responses, two independent SNPs sets were determined using linear regression and iterative binary logistic regression analysis. False discovery rate analysis and permutation tests were performed to avoid false-positive findings. To predict gains in V'O2max, 7 SNPs were identified. These SNPs accounted for 26.0 % of the variance in the increment of V'O2max, and discriminated the subjects into three subgroups, non-responders, medium responders, and high responders, with prediction accuracy of 86.1 %. For the knee peak torque, 6 SNPs were identified, and accounted for 27.5 % of the variance in the increment of knee peak torque. The prediction accuracy discriminating the subjects into the three subgroups was estimated as 77.2 %. Novel SNPs found in this study could explain, and predict inter-individual variability in gains of V'O2max, and knee peak torque. Furthermore, with these genetic markers, a methodology suggested in this study provides a sound approach for the personalized training program.

  8. Improving High-Resolution Weather Forecasts Using the Weather Research and Forecasting (WRF) Model with an Updated Kain–Fritsch Scheme

    EPA Science Inventory

    Efforts to improve the prediction accuracy of high-resolution (1–10 km) surface precipitation distribution and variability are of vital importance to local aspects of air pollution, wet deposition, and regional climate. However, precipitation biases and errors can occur at ...

  9. Precision assessment of some supervised and unsupervised algorithms for genotype discrimination in the genus Pisum using SSR molecular data.

    PubMed

    Nasiri, Jaber; Naghavi, Mohammad Reza; Kayvanjoo, Amir Hossein; Nasiri, Mojtaba; Ebrahimi, Mansour

    2015-03-07

    For the first time, prediction accuracies of some supervised and unsupervised algorithms were evaluated in an SSR-based DNA fingerprinting study of a pea collection containing 20 cultivars and 57 wild samples. In general, according to the 10 attribute weighting models, the SSR alleles of PEAPHTAP-2 and PSBLOX13.2-1 were the two most important attributes to generate discrimination among eight different species and subspecies of genus Pisum. In addition, K-Medoids unsupervised clustering run on Chi squared dataset exhibited the best prediction accuracy (83.12%), while the lowest accuracy (25.97%) gained as K-Means model ran on FCdb database. Irrespective of some fluctuations, the overall accuracies of tree induction models were significantly high for many algorithms, and the attributes PSBLOX13.2-3 and PEAPHTAP could successfully detach Pisum fulvum accessions and cultivars from the others when two selected decision trees were taken into account. Meanwhile, the other used supervised algorithms exhibited overall reliable accuracies, even though in some rare cases, they gave us low amounts of accuracies. Our results, altogether, demonstrate promising applications of both supervised and unsupervised algorithms to provide suitable data mining tools regarding accurate fingerprinting of different species and subspecies of genus Pisum, as a fundamental priority task in breeding programs of the crop. Copyright © 2015 Elsevier Ltd. All rights reserved.

  10. The identification of high potential archers based on relative psychological coping skills variables: A Support Vector Machine approach

    NASA Astrophysics Data System (ADS)

    Taha, Zahari; Muazu Musa, Rabiu; Majeed, A. P. P. Abdul; Razali Abdullah, Mohamad; Aizzat Zakaria, Muhammad; Muaz Alim, Muhammad; Arif Mat Jizat, Jessnor; Fauzi Ibrahim, Mohamad

    2018-03-01

    Support Vector Machine (SVM) has been revealed to be a powerful learning algorithm for classification and prediction. However, the use of SVM for prediction and classification in sport is at its inception. The present study classified and predicted high and low potential archers from a collection of psychological coping skills variables trained on different SVMs. 50 youth archers with the average age and standard deviation of (17.0 ±.056) gathered from various archery programmes completed a one end shooting score test. Psychological coping skills inventory which evaluates the archers level of related coping skills were filled out by the archers prior to their shooting tests. k-means cluster analysis was applied to cluster the archers based on their scores on variables assessed. SVM models, i.e. linear and fine radial basis function (RBF) kernel functions, were trained on the psychological variables. The k-means clustered the archers into high psychologically prepared archers (HPPA) and low psychologically prepared archers (LPPA), respectively. It was demonstrated that the linear SVM exhibited good accuracy and precision throughout the exercise with an accuracy of 92% and considerably fewer error rate for the prediction of the HPPA and the LPPA as compared to the fine RBF SVM. The findings of this investigation can be valuable to coaches and sports managers to recognise high potential athletes from the selected psychological coping skills variables examined which would consequently save time and energy during talent identification and development programme.

  11. Climatologies at high resolution for the earth’s land surface areas

    PubMed Central

    Karger, Dirk Nikolaus; Conrad, Olaf; Böhner, Jürgen; Kawohl, Tobias; Kreft, Holger; Soria-Auza, Rodrigo Wilber; Zimmermann, Niklaus E.; Linder, H. Peter; Kessler, Michael

    2017-01-01

    High-resolution information on climatic conditions is essential to many applications in environmental and ecological sciences. Here we present the CHELSA (Climatologies at high resolution for the earth’s land surface areas) data of downscaled model output temperature and precipitation estimates of the ERA-Interim climatic reanalysis to a high resolution of 30 arc sec. The temperature algorithm is based on statistical downscaling of atmospheric temperatures. The precipitation algorithm incorporates orographic predictors including wind fields, valley exposition, and boundary layer height, with a subsequent bias correction. The resulting data consist of a monthly temperature and precipitation climatology for the years 1979–2013. We compare the data derived from the CHELSA algorithm with other standard gridded products and station data from the Global Historical Climate Network. We compare the performance of the new climatologies in species distribution modelling and show that we can increase the accuracy of species range predictions. We further show that CHELSA climatological data has a similar accuracy as other products for temperature, but that its predictions of precipitation patterns are better. PMID:28872642

  12. Climatologies at high resolution for the earth's land surface areas

    NASA Astrophysics Data System (ADS)

    Karger, Dirk Nikolaus; Conrad, Olaf; Böhner, Jürgen; Kawohl, Tobias; Kreft, Holger; Soria-Auza, Rodrigo Wilber; Zimmermann, Niklaus E.; Linder, H. Peter; Kessler, Michael

    2017-09-01

    High-resolution information on climatic conditions is essential to many applications in environmental and ecological sciences. Here we present the CHELSA (Climatologies at high resolution for the earth's land surface areas) data of downscaled model output temperature and precipitation estimates of the ERA-Interim climatic reanalysis to a high resolution of 30 arc sec. The temperature algorithm is based on statistical downscaling of atmospheric temperatures. The precipitation algorithm incorporates orographic predictors including wind fields, valley exposition, and boundary layer height, with a subsequent bias correction. The resulting data consist of a monthly temperature and precipitation climatology for the years 1979-2013. We compare the data derived from the CHELSA algorithm with other standard gridded products and station data from the Global Historical Climate Network. We compare the performance of the new climatologies in species distribution modelling and show that we can increase the accuracy of species range predictions. We further show that CHELSA climatological data has a similar accuracy as other products for temperature, but that its predictions of precipitation patterns are better.

  13. Dopamine reward prediction-error signalling: a two-component response

    PubMed Central

    Schultz, Wolfram

    2017-01-01

    Environmental stimuli and objects, including rewards, are often processed sequentially in the brain. Recent work suggests that the phasic dopamine reward prediction-error response follows a similar sequential pattern. An initial brief, unselective and highly sensitive increase in activity unspecifically detects a wide range of environmental stimuli, then quickly evolves into the main response component, which reflects subjective reward value and utility. This temporal evolution allows the dopamine reward prediction-error signal to optimally combine speed and accuracy. PMID:26865020

  14. Prediction algorithms for urban traffic control

    DOT National Transportation Integrated Search

    1979-02-01

    The objectives of this study are to 1) review and assess the state-of-the-art of prediction algorithms for urban traffic control in terms of their accuracy and application, and 2) determine the prediction accuracy obtainable by examining the performa...

  15. Prediction of active sites of enzymes by maximum relevance minimum redundancy (mRMR) feature selection.

    PubMed

    Gao, Yu-Fei; Li, Bi-Qing; Cai, Yu-Dong; Feng, Kai-Yan; Li, Zhan-Dong; Jiang, Yang

    2013-01-27

    Identification of catalytic residues plays a key role in understanding how enzymes work. Although numerous computational methods have been developed to predict catalytic residues and active sites, the prediction accuracy remains relatively low with high false positives. In this work, we developed a novel predictor based on the Random Forest algorithm (RF) aided by the maximum relevance minimum redundancy (mRMR) method and incremental feature selection (IFS). We incorporated features of physicochemical/biochemical properties, sequence conservation, residual disorder, secondary structure and solvent accessibility to predict active sites of enzymes and achieved an overall accuracy of 0.885687 and MCC of 0.689226 on an independent test dataset. Feature analysis showed that every category of the features except disorder contributed to the identification of active sites. It was also shown via the site-specific feature analysis that the features derived from the active site itself contributed most to the active site determination. Our prediction method may become a useful tool for identifying the active sites and the key features identified by the paper may provide valuable insights into the mechanism of catalysis.

  16. Medium- and Long-term Prediction of LOD Change by the Leap-step Autoregressive Model

    NASA Astrophysics Data System (ADS)

    Wang, Qijie

    2015-08-01

    The accuracy of medium- and long-term prediction of length of day (LOD) change base on combined least-square and autoregressive (LS+AR) deteriorates gradually. Leap-step autoregressive (LSAR) model can significantly reduce the edge effect of the observation sequence. Especially, LSAR model greatly improves the resolution of signals’ low-frequency components. Therefore, it can improve the efficiency of prediction. In this work, LSAR is used to forecast the LOD change. The LOD series from EOP 08 C04 provided by IERS is modeled by both the LSAR and AR models. The results of the two models are analyzed and compared. When the prediction length is between 10-30 days, the accuracy improvement is less than 10%. When the prediction length amounts to above 30 day, the accuracy improved obviously, with the maximum being around 19%. The results show that the LSAR model has higher prediction accuracy and stability in medium- and long-term prediction.

  17. Estimation of genomic prediction accuracy from reference populations with varying degrees of relationship.

    PubMed

    Lee, S Hong; Clark, Sam; van der Werf, Julius H J

    2017-01-01

    Genomic prediction is emerging in a wide range of fields including animal and plant breeding, risk prediction in human precision medicine and forensic. It is desirable to establish a theoretical framework for genomic prediction accuracy when the reference data consists of information sources with varying degrees of relationship to the target individuals. A reference set can contain both close and distant relatives as well as 'unrelated' individuals from the wider population in the genomic prediction. The various sources of information were modeled as different populations with different effective population sizes (Ne). Both the effective number of chromosome segments (Me) and Ne are considered to be a function of the data used for prediction. We validate our theory with analyses of simulated as well as real data, and illustrate that the variation in genomic relationships with the target is a predictor of the information content of the reference set. With a similar amount of data available for each source, we show that close relatives can have a substantially larger effect on genomic prediction accuracy than lesser related individuals. We also illustrate that when prediction relies on closer relatives, there is less improvement in prediction accuracy with an increase in training data or marker panel density. We release software that can estimate the expected prediction accuracy and power when combining different reference sources with various degrees of relationship to the target, which is useful when planning genomic prediction (before or after collecting data) in animal, plant and human genetics.

  18. Middle cerebral artery peak systolic velocity to predict fetal hemoglobin levels in twin anemia-polycythemia sequence.

    PubMed

    Slaghekke, F; Pasman, S; Veujoz, M; Middeldorp, J M; Lewi, L; Devlieger, R; Favre, R; Lopriore, E; Oepkes, D

    2015-10-01

    To evaluate the diagnostic accuracy of middle cerebral artery peak systolic velocity (MCA-PSV) Doppler measurements in prediction of hemoglobin levels in twin anemia-polycythemia sequence (TAPS). This study involved a consecutive cohort comprising monochorionic twin pregnancies complicated by TAPS managed at three European fetal medicine centers between 2005 and 2013. The accuracy of MCA-PSV, measured immediately prior to fetal hemoglobin (Hb) measurement by fetal or cord blood sampling, for prediction of anemia and polycythemia was assessed using 2 × 2 tables. A total of 116 measurements (74 recorded in donors and 42 in recipients) from 43 twin pregnancies complicated by TAPS were available for analysis. MCA-PSV multiples of the median (MoM) values correlated well with Hb levels (r = - 0.86; P < 0.001). The sensitivity of MCA-PSV ≥ 1.5 MoM to predict severe anemia (Hb deficit > 5 SD below the mean) in TAPS donors was 94% (95% CI, 85-98%); specificity was 74% (95% CI, 62-83%); positive and negative predictive values were 76% (95% CI, 65-85%) and 94% (95% CI, 83-98%), respectively. The sensitivity of MCA-PSV ≤ 1.0 MoM to predict polycythemia (Hb level > 5 SD above the mean) in TAPS recipients was 97% (95% CI, 87-99%); specificity was 96% (95% CI, 89-99%); positive and negative predictive values were 93% (95% CI, 81-97%) and 99% (95% CI, 93-100%), respectively. MCA-PSV measurement has high diagnostic accuracy for predicting abnormal Hb levels in fetuses with TAPS. Copyright © 2015 ISUOG. Published by John Wiley & Sons Ltd.

  19. THE MIRA–TITAN UNIVERSE: PRECISION PREDICTIONS FOR DARK ENERGY SURVEYS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Heitmann, Katrin; Habib, Salman; Biswas, Rahul

    2016-04-01

    Large-scale simulations of cosmic structure formation play an important role in interpreting cosmological observations at high precision. The simulations must cover a parameter range beyond the standard six cosmological parameters and need to be run at high mass and force resolution. A key simulation-based task is the generation of accurate theoretical predictions for observables using a finite number of simulation runs, via the method of emulation. Using a new sampling technique, we explore an eight-dimensional parameter space including massive neutrinos and a variable equation of state of dark energy. We construct trial emulators using two surrogate models (the linear powermore » spectrum and an approximate halo mass function). The new sampling method allows us to build precision emulators from just 26 cosmological models and to systematically increase the emulator accuracy by adding new sets of simulations in a prescribed way. Emulator fidelity can now be continuously improved as new observational data sets become available and higher accuracy is required. Finally, using one ΛCDM cosmology as an example, we study the demands imposed on a simulation campaign to achieve the required statistics and accuracy when building emulators for investigations of dark energy.« less

  20. The mira-titan universe. Precision predictions for dark energy surveys

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Heitmann, Katrin; Bingham, Derek; Lawrence, Earl

    2016-03-28

    Large-scale simulations of cosmic structure formation play an important role in interpreting cosmological observations at high precision. The simulations must cover a parameter range beyond the standard six cosmological parameters and need to be run at high mass and force resolution. A key simulation-based task is the generation of accurate theoretical predictions for observables using a finite number of simulation runs, via the method of emulation. Using a new sampling technique, we explore an eight-dimensional parameter space including massive neutrinos and a variable equation of state of dark energy. We construct trial emulators using two surrogate models (the linear powermore » spectrum and an approximate halo mass function). The new sampling method allows us to build precision emulators from just 26 cosmological models and to systematically increase the emulator accuracy by adding new sets of simulations in a prescribed way. Emulator fidelity can now be continuously improved as new observational data sets become available and higher accuracy is required. Finally, using one ΛCDM cosmology as an example, we study the demands imposed on a simulation campaign to achieve the required statistics and accuracy when building emulators for investigations of dark energy.« less

  1. [Prognosis of acute pancreatitis by PANC 3 score].

    PubMed

    Fukuda, James Ken; Franzon, Orli; Resende-Filho, Fernando de Oliveira; Kruel, Nicolau Fernandes; Ferri, Thiago Alessandro

    2013-06-01

    Acute pancreatitis is a disease of great importance in clinical practice, defined as an inflammatory process of the pancreas that may involve local tissues or affect other organs in a systemic manner, requiring, in such cases, an intensive care. To analyze the simplified stratification system of the PANC 3 score, correlating it with the Ranson score, for the prognostic definition of cases of acute pancreatitis. Was conducted a prospective, observational study in which were evaluated 65 patients who were diagnosed with acute pancreatitis. PANC 3 showed sensitivity, 31.25%; specificity,100%; positive predictive value, 100%; negative predictive value, 81.66% and accuracy, 83.07%. The PANC 3 criteria are applicable to define the severity and the prognosis of acute pancreatitis, and are not a substitute method, but rather a method to be associated with the Ranson criteria, mainly due to its high accuracy, positive predictive value and specificity.

  2. Method to predict external store carriage characteristics at transonic speeds

    NASA Technical Reports Server (NTRS)

    Rosen, Bruce S.

    1988-01-01

    Development of a computational method for prediction of external store carriage characteristics at transonic speeds is described. The geometric flexibility required for treatment of pylon-mounted stores is achieved by computing finite difference solutions on a five-level embedded grid arrangement. A completely automated grid generation procedure facilitates applications. Store modeling capability consists of bodies of revolution with multiple fore and aft fins. A body-conforming grid improves the accuracy of the computed store body flow field. A nonlinear relaxation scheme developed specifically for modified transonic small disturbance flow equations enhances the method's numerical stability and accuracy. As a result, treatment of lower aspect ratio, more highly swept and tapered wings is possible. A limited supersonic freestream capability is also provided. Pressure, load distribution, and force/moment correlations show good agreement with experimental data for several test cases. A detailed computer program description for the Transonic Store Carriage Loads Prediction (TSCLP) Code is included.

  3. Thermodynamic model effects on the design and optimization of natural gas plants

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Diaz, S.; Zabaloy, M.; Brignole, E.A.

    1999-07-01

    The design and optimization of natural gas plants is carried out on the basis of process simulators. The physical property package is generally based on cubic equations of state. By rigorous thermodynamics phase equilibrium conditions, thermodynamic functions, equilibrium phase separations, work and heat are computed. The aim of this work is to analyze the NGL turboexpansion process and identify possible process computations that are more sensitive to model predictions accuracy. Three equations of state, PR, SRK and Peneloux modification, are used to study the effect of property predictions on process calculations and plant optimization. It is shown that turboexpander plantsmore » have moderate sensitivity with respect to phase equilibrium computations, but higher accuracy is required for the prediction of enthalpy and turboexpansion work. The effect of modeling CO{sub 2} solubility is also critical in mixtures with high CO{sub 2} content in the feed.« less

  4. Iodine-123 metaiodobenzylguanidine scintigraphy and iodine-123 ioflupane single photon emission computed tomography in Lewy body diseases: complementary or alternative techniques?

    PubMed

    Treglia, Giorgio; Cason, Ernesto; Cortelli, Pietro; Gabellini, Anna; Liguori, Rocco; Bagnato, Antonio; Giordano, Alessandro; Fagioli, Giorgio

    2014-01-01

    To compare myocardial sympathetic imaging using (123)I-Metaiodobenzylguanidine (MIBG) scintigraphy and striatal dopaminergic imaging using (123)I-Ioflupane (FP-CIT) single photon emission computed tomography (SPECT) in patients with suspected Lewy body diseases (LBD). Ninety-nine patients who performed both methods within 2 months for differential diagnosis between Parkinson's disease (PD) and other parkinsonism (n = 68) or between dementia with Lewy bodies (DLB) and other dementia (n = 31) were enrolled. Sensitivity, specificity, accuracy, positive and negative predictive values of both methods were calculated. For (123) I-MIBG scintigraphy, the overall sensitivity, specificity, accuracy, positive and negative predictive values in LBD were 83%, 79%, 82%, 86%, and 76%, respectively. For (123)I-FP-CIT SPECT, the overall sensitivity, specificity, accuracy, positive and negative predictive values in LBD were 93%, 41%, 73%, 71%, and 80%, respectively. There was a statistically significant difference between these two methods in patients without LBD, but not in patients with LBD. LBD usually present both myocardial sympathetic and striatal dopaminergic impairments. (123)I-FP-CIT SPECT presents high sensitivity in the diagnosis of LBD; (123)I-MIBG scintigraphy may have a complementary role in differential diagnosis between PD and other parkinsonism. These scintigraphic methods showed similar diagnostic accuracy in differential diagnosis between DLB and other dementia. Copyright © 2012 by the American Society of Neuroimaging.

  5. Multi-Scale Approach for Predicting Fish Species Distributions across Coral Reef Seascapes

    PubMed Central

    Pittman, Simon J.; Brown, Kerry A.

    2011-01-01

    Two of the major limitations to effective management of coral reef ecosystems are a lack of information on the spatial distribution of marine species and a paucity of data on the interacting environmental variables that drive distributional patterns. Advances in marine remote sensing, together with the novel integration of landscape ecology and advanced niche modelling techniques provide an unprecedented opportunity to reliably model and map marine species distributions across many kilometres of coral reef ecosystems. We developed a multi-scale approach using three-dimensional seafloor morphology and across-shelf location to predict spatial distributions for five common Caribbean fish species. Seascape topography was quantified from high resolution bathymetry at five spatial scales (5–300 m radii) surrounding fish survey sites. Model performance and map accuracy was assessed for two high performing machine-learning algorithms: Boosted Regression Trees (BRT) and Maximum Entropy Species Distribution Modelling (MaxEnt). The three most important predictors were geographical location across the shelf, followed by a measure of topographic complexity. Predictor contribution differed among species, yet rarely changed across spatial scales. BRT provided ‘outstanding’ model predictions (AUC = >0.9) for three of five fish species. MaxEnt provided ‘outstanding’ model predictions for two of five species, with the remaining three models considered ‘excellent’ (AUC = 0.8–0.9). In contrast, MaxEnt spatial predictions were markedly more accurate (92% map accuracy) than BRT (68% map accuracy). We demonstrate that reliable spatial predictions for a range of key fish species can be achieved by modelling the interaction between the geographical location across the shelf and the topographic heterogeneity of seafloor structure. This multi-scale, analytic approach is an important new cost-effective tool to accurately delineate essential fish habitat and support conservation prioritization in marine protected area design, zoning in marine spatial planning, and ecosystem-based fisheries management. PMID:21637787

  6. Multi-scale approach for predicting fish species distributions across coral reef seascapes.

    PubMed

    Pittman, Simon J; Brown, Kerry A

    2011-01-01

    Two of the major limitations to effective management of coral reef ecosystems are a lack of information on the spatial distribution of marine species and a paucity of data on the interacting environmental variables that drive distributional patterns. Advances in marine remote sensing, together with the novel integration of landscape ecology and advanced niche modelling techniques provide an unprecedented opportunity to reliably model and map marine species distributions across many kilometres of coral reef ecosystems. We developed a multi-scale approach using three-dimensional seafloor morphology and across-shelf location to predict spatial distributions for five common Caribbean fish species. Seascape topography was quantified from high resolution bathymetry at five spatial scales (5-300 m radii) surrounding fish survey sites. Model performance and map accuracy was assessed for two high performing machine-learning algorithms: Boosted Regression Trees (BRT) and Maximum Entropy Species Distribution Modelling (MaxEnt). The three most important predictors were geographical location across the shelf, followed by a measure of topographic complexity. Predictor contribution differed among species, yet rarely changed across spatial scales. BRT provided 'outstanding' model predictions (AUC = >0.9) for three of five fish species. MaxEnt provided 'outstanding' model predictions for two of five species, with the remaining three models considered 'excellent' (AUC = 0.8-0.9). In contrast, MaxEnt spatial predictions were markedly more accurate (92% map accuracy) than BRT (68% map accuracy). We demonstrate that reliable spatial predictions for a range of key fish species can be achieved by modelling the interaction between the geographical location across the shelf and the topographic heterogeneity of seafloor structure. This multi-scale, analytic approach is an important new cost-effective tool to accurately delineate essential fish habitat and support conservation prioritization in marine protected area design, zoning in marine spatial planning, and ecosystem-based fisheries management.

  7. Global skin colour prediction from DNA.

    PubMed

    Walsh, Susan; Chaitanya, Lakshmi; Breslin, Krystal; Muralidharan, Charanya; Bronikowska, Agnieszka; Pospiech, Ewelina; Koller, Julia; Kovatsi, Leda; Wollstein, Andreas; Branicki, Wojciech; Liu, Fan; Kayser, Manfred

    2017-07-01

    Human skin colour is highly heritable and externally visible with relevance in medical, forensic, and anthropological genetics. Although eye and hair colour can already be predicted with high accuracies from small sets of carefully selected DNA markers, knowledge about the genetic predictability of skin colour is limited. Here, we investigate the skin colour predictive value of 77 single-nucleotide polymorphisms (SNPs) from 37 genetic loci previously associated with human pigmentation using 2025 individuals from 31 global populations. We identified a minimal set of 36 highly informative skin colour predictive SNPs and developed a statistical prediction model capable of skin colour prediction on a global scale. Average cross-validated prediction accuracies expressed as area under the receiver-operating characteristic curve (AUC) ± standard deviation were 0.97 ± 0.02 for Light, 0.83 ± 0.11 for Dark, and 0.96 ± 0.03 for Dark-Black. When using a 5-category, this resulted in 0.74 ± 0.05 for Very Pale, 0.72 ± 0.03 for Pale, 0.73 ± 0.03 for Intermediate, 0.87±0.1 for Dark, and 0.97 ± 0.03 for Dark-Black. A comparative analysis in 194 independent samples from 17 populations demonstrated that our model outperformed a previously proposed 10-SNP-classifier approach with AUCs rising from 0.79 to 0.82 for White, comparable at the intermediate level of 0.63 and 0.62, respectively, and a large increase from 0.64 to 0.92 for Black. Overall, this study demonstrates that the chosen DNA markers and prediction model, particularly the 5-category level; allow skin colour predictions within and between continental regions for the first time, which will serve as a valuable resource for future applications in forensic and anthropologic genetics.

  8. Real-data comparison of data mining methods in prediction of diabetes in iran.

    PubMed

    Tapak, Lily; Mahjub, Hossein; Hamidi, Omid; Poorolajal, Jalal

    2013-09-01

    Diabetes is one of the most common non-communicable diseases in developing countries. Early screening and diagnosis play an important role in effective prevention strategies. This study compared two traditional classification methods (logistic regression and Fisher linear discriminant analysis) and four machine-learning classifiers (neural networks, support vector machines, fuzzy c-mean, and random forests) to classify persons with and without diabetes. The data set used in this study included 6,500 subjects from the Iranian national non-communicable diseases risk factors surveillance obtained through a cross-sectional survey. The obtained sample was based on cluster sampling of the Iran population which was conducted in 2005-2009 to assess the prevalence of major non-communicable disease risk factors. Ten risk factors that are commonly associated with diabetes were selected to compare the performance of six classifiers in terms of sensitivity, specificity, total accuracy, and area under the receiver operating characteristic (ROC) curve criteria. Support vector machines showed the highest total accuracy (0.986) as well as area under the ROC (0.979). Also, this method showed high specificity (1.000) and sensitivity (0.820). All other methods produced total accuracy of more than 85%, but for all methods, the sensitivity values were very low (less than 0.350). The results of this study indicate that, in terms of sensitivity, specificity, and overall classification accuracy, the support vector machine model ranks first among all the classifiers tested in the prediction of diabetes. Therefore, this approach is a promising classifier for predicting diabetes, and it should be further investigated for the prediction of other diseases.

  9. On the accuracy of ERS-1 orbit predictions

    NASA Technical Reports Server (NTRS)

    Koenig, Rolf; Li, H.; Massmann, Franz-Heinrich; Raimondo, J. C.; Rajasenan, C.; Reigber, C.

    1993-01-01

    Since the launch of ERS-1, the D-PAF (German Processing and Archiving Facility) provides regularly orbit predictions for the worldwide SLR (Satellite Laser Ranging) tracking network. The weekly distributed orbital elements are so called tuned IRV's and tuned SAO-elements. The tuning procedure, designed to improve the accuracy of the recovery of the orbit at the stations, is discussed based on numerical results. This shows that tuning of elements is essential for ERS-1 with the currently applied tracking procedures. The orbital elements are updated by daily distributed time bias functions. The generation of the time bias function is explained. Problems and numerical results are presented. The time bias function increases the prediction accuracy considerably. Finally, the quality assessment of ERS-1 orbit predictions is described. The accuracy is compiled for about 250 days since launch. The average accuracy lies in the range of 50-100 ms and has considerably improved.

  10. Short-arc orbit determination using coherent X-band ranging data

    NASA Technical Reports Server (NTRS)

    Thurman, S. W.; Mcelrath, T. P.; Pollmeier, V. M.

    1992-01-01

    The use of X-band frequencies in ground-spacecraft and spacecraft-ground telecommunication links for current and future robotic interplanetary missions makes it possible to perform ranging measurements of greater accuracy than previously obtained. It is shown that ranging data of sufficient accuracy, when acquired from multiple stations, can sense the geocentric angular position of a distant spacecraft. The application of high-accuracy S/X-band and X-band ranging to orbit determination with relatively short data arcs is investigated in planetary approach and encounter scenarios. Actual trajectory solutions for the Ulysses spacecraft constructed from S/X-band ranging and Doppler data are presented; error covariance calculations are used to predict the performance of X-band ranging and Doppler data. The Ulysses trajectory solutions indicate that the aim point for the spacecraft's February 1992 Jupiter encounter was predicted to a geocentric accuracy of 0.20 to 0.23/microrad. Explicit modeling of range bias parameters for each station pass is shown to largely remove systematic ground system calibration errors and transmission media effects from the Ulysses range measurements, which would otherwise corrupt the angle finding capabilities of the data. The Ulysses solutions were found to be reasonably consistent with the theoretical results, which suggest that angular accuracies of 0.08 to 0.1/microrad are achievable with X-band ranging.

  11. Does aging impair first impression accuracy? Differentiating emotion recognition from complex social inferences.

    PubMed

    Krendl, Anne C; Rule, Nicholas O; Ambady, Nalini

    2014-09-01

    Young adults can be surprisingly accurate at making inferences about people from their faces. Although these first impressions have important consequences for both the perceiver and the target, it remains an open question whether first impression accuracy is preserved with age. Specifically, could age differences in impressions toward others stem from age-related deficits in accurately detecting complex social cues? Research on aging and impression formation suggests that young and older adults show relative consensus in their first impressions, but it is unknown whether they differ in accuracy. It has been widely shown that aging disrupts emotion recognition accuracy, and that these impairments may predict deficits in other social judgments, such as detecting deceit. However, it is unclear whether general impression formation accuracy (e.g., emotion recognition accuracy, detecting complex social cues) relies on similar or distinct mechanisms. It is important to examine this question to evaluate how, if at all, aging might affect overall accuracy. Here, we examined whether aging impaired first impression accuracy in predicting real-world outcomes and categorizing social group membership. Specifically, we studied whether emotion recognition accuracy and age-related cognitive decline (which has been implicated in exacerbating deficits in emotion recognition) predict first impression accuracy. Our results revealed that emotion recognition accuracy did not predict first impression accuracy, nor did age-related cognitive decline impair it. These findings suggest that domains of social perception outside of emotion recognition may rely on mechanisms that are relatively unimpaired by aging. PsycINFO Database Record (c) 2014 APA, all rights reserved.

  12. Incorporation of satellite remote sensing pan-sharpened imagery into digital soil prediction and mapping models to characterize soil property variability in small agricultural fields

    NASA Astrophysics Data System (ADS)

    Xu, Yiming; Smith, Scot E.; Grunwald, Sabine; Abd-Elrahman, Amr; Wani, Suhas P.

    2017-01-01

    Soil prediction models based on spectral indices from some multispectral images are too coarse to characterize spatial pattern of soil properties in small and heterogeneous agricultural lands. Image pan-sharpening has seldom been utilized in Digital Soil Mapping research before. This research aimed to analyze the effects of pan-sharpened (PAN) remote sensing spectral indices on soil prediction models in smallholder farm settings. This research fused the panchromatic band and multispectral (MS) bands of WorldView-2, GeoEye-1, and Landsat 8 images in a village in Southern India by Brovey, Gram-Schmidt and Intensity-Hue-Saturation methods. Random Forest was utilized to develop soil total nitrogen (TN) and soil exchangeable potassium (Kex) prediction models by incorporating multiple spectral indices from the PAN and MS images. Overall, our results showed that PAN remote sensing spectral indices have similar spectral characteristics with soil TN and Kex as MS remote sensing spectral indices. There is no soil prediction model incorporating the specific type of pan-sharpened spectral indices always had the strongest prediction capability of soil TN and Kex. The incorporation of pan-sharpened remote sensing spectral data not only increased the spatial resolution of the soil prediction maps, but also enhanced the prediction accuracy of soil prediction models. Small farms with limited footprint, fragmented ownership and diverse crop cycle should benefit greatly from the pan-sharpened high spatial resolution imagery for soil property mapping. Our results show that multiple high and medium resolution images can be used to map soil properties suggesting the possibility of an improvement in the maps' update frequency. Additionally, the results should benefit the large agricultural community through the reduction of routine soil sampling cost and improved prediction accuracy.

  13. Minimalist ensemble algorithms for genome-wide protein localization prediction.

    PubMed

    Lin, Jhih-Rong; Mondal, Ananda Mohan; Liu, Rong; Hu, Jianjun

    2012-07-03

    Computational prediction of protein subcellular localization can greatly help to elucidate its functions. Despite the existence of dozens of protein localization prediction algorithms, the prediction accuracy and coverage are still low. Several ensemble algorithms have been proposed to improve the prediction performance, which usually include as many as 10 or more individual localization algorithms. However, their performance is still limited by the running complexity and redundancy among individual prediction algorithms. This paper proposed a novel method for rational design of minimalist ensemble algorithms for practical genome-wide protein subcellular localization prediction. The algorithm is based on combining a feature selection based filter and a logistic regression classifier. Using a novel concept of contribution scores, we analyzed issues of algorithm redundancy, consensus mistakes, and algorithm complementarity in designing ensemble algorithms. We applied the proposed minimalist logistic regression (LR) ensemble algorithm to two genome-wide datasets of Yeast and Human and compared its performance with current ensemble algorithms. Experimental results showed that the minimalist ensemble algorithm can achieve high prediction accuracy with only 1/3 to 1/2 of individual predictors of current ensemble algorithms, which greatly reduces computational complexity and running time. It was found that the high performance ensemble algorithms are usually composed of the predictors that together cover most of available features. Compared to the best individual predictor, our ensemble algorithm improved the prediction accuracy from AUC score of 0.558 to 0.707 for the Yeast dataset and from 0.628 to 0.646 for the Human dataset. Compared with popular weighted voting based ensemble algorithms, our classifier-based ensemble algorithms achieved much better performance without suffering from inclusion of too many individual predictors. We proposed a method for rational design of minimalist ensemble algorithms using feature selection and classifiers. The proposed minimalist ensemble algorithm based on logistic regression can achieve equal or better prediction performance while using only half or one-third of individual predictors compared to other ensemble algorithms. The results also suggested that meta-predictors that take advantage of a variety of features by combining individual predictors tend to achieve the best performance. The LR ensemble server and related benchmark datasets are available at http://mleg.cse.sc.edu/LRensemble/cgi-bin/predict.cgi.

  14. Minimalist ensemble algorithms for genome-wide protein localization prediction

    PubMed Central

    2012-01-01

    Background Computational prediction of protein subcellular localization can greatly help to elucidate its functions. Despite the existence of dozens of protein localization prediction algorithms, the prediction accuracy and coverage are still low. Several ensemble algorithms have been proposed to improve the prediction performance, which usually include as many as 10 or more individual localization algorithms. However, their performance is still limited by the running complexity and redundancy among individual prediction algorithms. Results This paper proposed a novel method for rational design of minimalist ensemble algorithms for practical genome-wide protein subcellular localization prediction. The algorithm is based on combining a feature selection based filter and a logistic regression classifier. Using a novel concept of contribution scores, we analyzed issues of algorithm redundancy, consensus mistakes, and algorithm complementarity in designing ensemble algorithms. We applied the proposed minimalist logistic regression (LR) ensemble algorithm to two genome-wide datasets of Yeast and Human and compared its performance with current ensemble algorithms. Experimental results showed that the minimalist ensemble algorithm can achieve high prediction accuracy with only 1/3 to 1/2 of individual predictors of current ensemble algorithms, which greatly reduces computational complexity and running time. It was found that the high performance ensemble algorithms are usually composed of the predictors that together cover most of available features. Compared to the best individual predictor, our ensemble algorithm improved the prediction accuracy from AUC score of 0.558 to 0.707 for the Yeast dataset and from 0.628 to 0.646 for the Human dataset. Compared with popular weighted voting based ensemble algorithms, our classifier-based ensemble algorithms achieved much better performance without suffering from inclusion of too many individual predictors. Conclusions We proposed a method for rational design of minimalist ensemble algorithms using feature selection and classifiers. The proposed minimalist ensemble algorithm based on logistic regression can achieve equal or better prediction performance while using only half or one-third of individual predictors compared to other ensemble algorithms. The results also suggested that meta-predictors that take advantage of a variety of features by combining individual predictors tend to achieve the best performance. The LR ensemble server and related benchmark datasets are available at http://mleg.cse.sc.edu/LRensemble/cgi-bin/predict.cgi. PMID:22759391

  15. Posterior Predictive Checks for Conditional Independence between Response Time and Accuracy

    ERIC Educational Resources Information Center

    Bolsinova, Maria; Tijmstra, Jesper

    2016-01-01

    Conditional independence (CI) between response time and response accuracy is a fundamental assumption of many joint models for time and accuracy used in educational measurement. In this study, posterior predictive checks (PPCs) are proposed for testing this assumption. These PPCs are based on three discrepancy measures reflecting different…

  16. The microcomputer scientific software series 4: testing prediction accuracy.

    Treesearch

    H. Michael Rauscher

    1986-01-01

    A computer program, ATEST, is described in this combination user's guide / programmer's manual. ATEST provides users with an efficient and convenient tool to test the accuracy of predictors. As input ATEST requires observed-predicted data pairs. The output reports the two components of accuracy, bias and precision.

  17. Prediction of high frequency core loss for electrical steel using the data provided by manufacturer

    NASA Astrophysics Data System (ADS)

    Roy, Rakesh; Dalal, Ankit; Kumar, Praveen

    2016-07-01

    This paper describes a technique to determine the core loss data, at high frequencies, using the loss data provided by the lamination manufacturer. Steinmetz equation is used in this proposed method to determine core loss at high frequency. This Steinmetz equation consists of static hysteresis and eddy current loss. The presented technique considers the coefficients of Steinmetz equation as variable with frequency and peak magnetic flux density. The high frequency core loss data, predicted using this model is compared with the catalogue data given by manufacturer and very good accuracy has been obtained for a wide range of frequency.

  18. An alternative data filling approach for prediction of missing data in soft sets (ADFIS).

    PubMed

    Sadiq Khan, Muhammad; Al-Garadi, Mohammed Ali; Wahab, Ainuddin Wahid Abdul; Herawan, Tutut

    2016-01-01

    Soft set theory is a mathematical approach that provides solution for dealing with uncertain data. As a standard soft set, it can be represented as a Boolean-valued information system, and hence it has been used in hundreds of useful applications. Meanwhile, these applications become worthless if the Boolean information system contains missing data due to error, security or mishandling. Few researches exist that focused on handling partially incomplete soft set and none of them has high accuracy rate in prediction performance of handling missing data. It is shown that the data filling approach for incomplete soft set (DFIS) has the best performance among all previous approaches. However, in reviewing DFIS, accuracy is still its main problem. In this paper, we propose an alternative data filling approach for prediction of missing data in soft sets, namely ADFIS. The novelty of ADFIS is that, unlike the previous approach that used probability, we focus more on reliability of association among parameters in soft set. Experimental results on small, 04 UCI benchmark data and causality workbench lung cancer (LUCAP2) data shows that ADFIS performs better accuracy as compared to DFIS.

  19. Factors affecting the accuracy of genomic selection for growth and wood quality traits in an advanced-breeding population of black spruce (Picea mariana).

    PubMed

    Lenz, Patrick R N; Beaulieu, Jean; Mansfield, Shawn D; Clément, Sébastien; Desponts, Mireille; Bousquet, Jean

    2017-04-28

    Genomic selection (GS) uses information from genomic signatures consisting of thousands of genetic markers to predict complex traits. As such, GS represents a promising approach to accelerate tree breeding, which is especially relevant for the genetic improvement of boreal conifers characterized by long breeding cycles. In the present study, we tested GS in an advanced-breeding population of the boreal black spruce (Picea mariana [Mill.] BSP) for growth and wood quality traits, and concurrently examined factors affecting GS model accuracy. The study relied on 734 25-year-old trees belonging to 34 full-sib families derived from 27 parents and that were established on two contrasting sites. Genomic profiles were obtained from 4993 Single Nucleotide Polymorphisms (SNPs) representative of as many gene loci distributed among the 12 linkage groups common to spruce. GS models were obtained for four growth and wood traits. Validation using independent sets of trees showed that GS model accuracy was high, related to trait heritability and equivalent to that of conventional pedigree-based models. In forward selection, gains per unit of time were three times higher with the GS approach than with conventional selection. In addition, models were also accurate across sites, indicating little genotype-by-environment interaction in the area investigated. Using information from half-sibs instead of full-sibs led to a significant reduction in model accuracy, indicating that the inclusion of relatedness in the model contributed to its higher accuracies. About 500 to 1000 markers were sufficient to obtain GS model accuracy almost equivalent to that obtained with all markers, whether they were well spread across the genome or from a single linkage group, further confirming the implication of relatedness and potential long-range linkage disequilibrium (LD) in the high accuracy estimates obtained. Only slightly higher model accuracy was obtained when using marker subsets that were identified to carry large effects, indicating a minor role for short-range LD in this population. This study supports the integration of GS models in advanced-generation tree breeding programs, given that high genomic prediction accuracy was obtained with a relatively small number of markers due to high relatedness and family structure in the population. In boreal spruce breeding programs and similar ones with long breeding cycles, much larger gain per unit of time can be obtained from genomic selection at an early age than by the conventional approach. GS thus appears highly profitable, especially in the context of forward selection in species which are amenable to mass vegetative propagation of selected stock, such as spruces.

  20. Neurocognitive and Behavioral Predictors of Math Performance in Children with and without ADHD

    PubMed Central

    Antonini, Tanya N.; O’Brien, Kathleen M.; Narad, Megan E.; Langberg, Joshua M.; Tamm, Leanne; Epstein, Jeff N.

    2014-01-01

    Objective: This study examined neurocognitive and behavioral predictors of math performance in children with and without attention-deficit/hyperactivity disorder (ADHD). Method: Neurocognitive and behavioral variables were examined as predictors of 1) standardized mathematics achievement scores,2) productivity on an analog math task, and 3) accuracy on an analog math task. Results: Children with ADHD had lower achievement scores but did not significantly differ from controls on math productivity or accuracy. N-back accuracy and parent-rated attention predicted math achievement. N-back accuracy and observed attention predicted math productivity. Alerting scores on the Attentional Network Task predicted math accuracy. Mediation analyses indicated that n-back accuracy significantly mediated the relationship between diagnostic group and math achievement. Conclusion: Neurocognition, rather than behavior, may account for the deficits in math achievement exhibited by many children with ADHD. PMID:24071774

  1. Neurocognitive and Behavioral Predictors of Math Performance in Children With and Without ADHD.

    PubMed

    Antonini, Tanya N; Kingery, Kathleen M; Narad, Megan E; Langberg, Joshua M; Tamm, Leanne; Epstein, Jeffery N

    2016-02-01

    This study examined neurocognitive and behavioral predictors of math performance in children with and without ADHD. Neurocognitive and behavioral variables were examined as predictors of (a) standardized mathematics achievement scores, (b) productivity on an analog math task, and (c) accuracy on an analog math task. Children with ADHD had lower achievement scores but did not significantly differ from controls on math productivity or accuracy. N-back accuracy and parent-rated attention predicted math achievement. N-back accuracy and observed attention predicted math productivity. Alerting scores on the attentional network task predicted math accuracy. Mediation analyses indicated that n-back accuracy significantly mediated the relationship between diagnostic group and math achievement. Neurocognition, rather than behavior, may account for the deficits in math achievement exhibited by many children with ADHD. © The Author(s) 2013.

  2. Artificial neural network prediction of ischemic tissue fate in acute stroke imaging

    PubMed Central

    Huang, Shiliang; Shen, Qiang; Duong, Timothy Q

    2010-01-01

    Multimodal magnetic resonance imaging of acute stroke provides predictive value that can be used to guide stroke therapy. A flexible artificial neural network (ANN) algorithm was developed and applied to predict ischemic tissue fate on three stroke groups: 30-, 60-minute, and permanent middle cerebral artery occlusion in rats. Cerebral blood flow (CBF), apparent diffusion coefficient (ADC), and spin–spin relaxation time constant (T2) were acquired during the acute phase up to 3 hours and again at 24 hours followed by histology. Infarct was predicted on a pixel-by-pixel basis using only acute (30-minute) stroke data. In addition, neighboring pixel information and infarction incidence were also incorporated into the ANN model to improve prediction accuracy. Receiver-operating characteristic analysis was used to quantify prediction accuracy. The major findings were the following: (1) CBF alone poorly predicted the final infarct across three experimental groups; (2) ADC alone adequately predicted the infarct; (3) CBF+ADC improved the prediction accuracy; (4) inclusion of neighboring pixel information and infarction incidence further improved the prediction accuracy; and (5) prediction was more accurate for permanent occlusion, followed by 60- and 30-minute occlusion. The ANN predictive model could thus provide a flexible and objective framework for clinicians to evaluate stroke treatment options on an individual patient basis. PMID:20424631

  3. Comparing stream-specific to generalized temperature models to guide salmonid management in a changing climate

    USGS Publications Warehouse

    Andrew K. Carlson,; William W. Taylor,; Hartikainen, Kelsey M.; Dana M. Infante,; Beard, Douglas; Lynch, Abigail

    2017-01-01

    Global climate change is predicted to increase air and stream temperatures and alter thermal habitat suitability for growth and survival of coldwater fishes, including brook charr (Salvelinus fontinalis), brown trout (Salmo trutta), and rainbow trout (Oncorhynchus mykiss). In a changing climate, accurate stream temperature modeling is increasingly important for sustainable salmonid management throughout the world. However, finite resource availability (e.g. funding, personnel) drives a tradeoff between thermal model accuracy and efficiency (i.e. cost-effective applicability at management-relevant spatial extents). Using different projected climate change scenarios, we compared the accuracy and efficiency of stream-specific and generalized (i.e. region-specific) temperature models for coldwater salmonids within and outside the State of Michigan, USA, a region with long-term stream temperature data and productive coldwater fisheries. Projected stream temperature warming between 2016 and 2056 ranged from 0.1 to 3.8 °C in groundwater-dominated streams and 0.2–6.8 °C in surface-runoff dominated systems in the State of Michigan. Despite their generally lower accuracy in predicting exact stream temperatures, generalized models accurately projected salmonid thermal habitat suitability in 82% of groundwater-dominated streams, including those with brook charr (80% accuracy), brown trout (89% accuracy), and rainbow trout (75% accuracy). In contrast, generalized models predicted thermal habitat suitability in runoff-dominated streams with much lower accuracy (54%). These results suggest that, amidst climate change and constraints in resource availability, generalized models are appropriate to forecast thermal conditions in groundwater-dominated streams within and outside Michigan and inform regional-level salmonid management strategies that are practical for coldwater fisheries managers, policy makers, and the public. We recommend fisheries professionals reserve resource-intensive stream-specific models for runoff-dominated systems containing high-priority fisheries resources (e.g. trophy individuals, endangered species) that will be directly impacted by projected stream warming.

  4. PREDICT: a diagnostic accuracy study of a tool for predicting mortality within one year: who should have an advance healthcare directive?

    PubMed

    Richardson, Philip; Greenslade, Jaimi; Shanmugathasan, Sulochana; Doucet, Katherine; Widdicombe, Neil; Chu, Kevin; Brown, Anthony

    2015-01-01

    CARING is a screening tool developed to identify patients who have a high likelihood of death in 1 year. This study sought to validate a modified CARING tool (termed PREDICT) using a population of patients presenting to the Emergency Department. In total, 1000 patients aged over 55 years who were admitted to hospital via the Emergency Department between January and June 2009 were eligible for inclusion in this study. Data on the six prognostic indicators comprising PREDICT were obtained retrospectively from patient records. One-year mortality data were obtained from the State Death Registry. Weights were applied to each PREDICT criterion, and its final score ranged from 0 to 44. Receiver operator characteristic analyses and diagnostic accuracy statistics were used to assess the accuracy of PREDICT in identifying 1-year mortality. The sample comprised 976 patients with a median (interquartile range) age of 71 years (62-81 years) and a 1-year mortality of 23.4%. In total, 50% had ≥1 PREDICT criteria with a 1-year mortality of 40.4%. Receiver operator characteristic analysis gave an area under the curve of 0.86 (95% confidence interval: 0.83-0.89). Using a cut-off of 13 points, PREDICT had a 95.3% (95% confidence interval: 93.6-96.6) specificity and 53.9% (95% confidence interval: 47.5-60.3) sensitivity for predicting 1-year mortality. PREDICT was simpler than the CARING criteria and identified 158 patients per 1000 admitted who could benefit from advance care planning. PREDICT was successfully applied to the Australian healthcare system with findings similar to the original CARING study conducted in the United States. This tool could improve end-of-life care by identifying who should have advance care planning or an advance healthcare directive. © The Author(s) 2014.

  5. Prediction of Dementia in Primary Care Patients

    PubMed Central

    Jessen, Frank; Wiese, Birgitt; Bickel, Horst; Eiffländer-Gorfer, Sandra; Fuchs, Angela; Kaduszkiewicz, Hanna; Köhler, Mirjam; Luck, Tobias; Mösch, Edelgard; Pentzek, Michael; Riedel-Heller, Steffi G.; Wagner, Michael; Weyerer, Siegfried; Maier, Wolfgang; van den Bussche, Hendrik

    2011-01-01

    Background Current approaches for AD prediction are based on biomarkers, which are however of restricted availability in primary care. AD prediction tools for primary care are therefore needed. We present a prediction score based on information that can be obtained in the primary care setting. Methodology/Principal Findings We performed a longitudinal cohort study in 3.055 non-demented individuals above 75 years recruited via primary care chart registries (Study on Aging, Cognition and Dementia, AgeCoDe). After the baseline investigation we performed three follow-up investigations at 18 months intervals with incident dementia as the primary outcome. The best set of predictors was extracted from the baseline variables in one randomly selected half of the sample. This set included age, subjective memory impairment, performance on delayed verbal recall and verbal fluency, on the Mini-Mental-State-Examination, and on an instrumental activities of daily living scale. These variables were aggregated to a prediction score, which achieved a prediction accuracy of 0.84 for AD. The score was applied to the second half of the sample (test cohort). Here, the prediction accuracy was 0.79. With a cut-off of at least 80% sensitivity in the first cohort, 79.6% sensitivity, 66.4% specificity, 14.7% positive predictive value (PPV) and 97.8% negative predictive value of (NPV) for AD were achieved in the test cohort. At a cut-off for a high risk population (5% of individuals with the highest risk score in the first cohort) the PPV for AD was 39.1% (52% for any dementia) in the test cohort. Conclusions The prediction score has useful prediction accuracy. It can define individuals (1) sensitively for low cost-low risk interventions, or (2) more specific and with increased PPV for measures of prevention with greater costs or risks. As it is independent of technical aids, it may be used within large scale prevention programs. PMID:21364746

  6. Prediction of dementia in primary care patients.

    PubMed

    Jessen, Frank; Wiese, Birgitt; Bickel, Horst; Eiffländer-Gorfer, Sandra; Fuchs, Angela; Kaduszkiewicz, Hanna; Köhler, Mirjam; Luck, Tobias; Mösch, Edelgard; Pentzek, Michael; Riedel-Heller, Steffi G; Wagner, Michael; Weyerer, Siegfried; Maier, Wolfgang; van den Bussche, Hendrik

    2011-02-18

    Current approaches for AD prediction are based on biomarkers, which are however of restricted availability in primary care. AD prediction tools for primary care are therefore needed. We present a prediction score based on information that can be obtained in the primary care setting. We performed a longitudinal cohort study in 3.055 non-demented individuals above 75 years recruited via primary care chart registries (Study on Aging, Cognition and Dementia, AgeCoDe). After the baseline investigation we performed three follow-up investigations at 18 months intervals with incident dementia as the primary outcome. The best set of predictors was extracted from the baseline variables in one randomly selected half of the sample. This set included age, subjective memory impairment, performance on delayed verbal recall and verbal fluency, on the Mini-Mental-State-Examination, and on an instrumental activities of daily living scale. These variables were aggregated to a prediction score, which achieved a prediction accuracy of 0.84 for AD. The score was applied to the second half of the sample (test cohort). Here, the prediction accuracy was 0.79. With a cut-off of at least 80% sensitivity in the first cohort, 79.6% sensitivity, 66.4% specificity, 14.7% positive predictive value (PPV) and 97.8% negative predictive value of (NPV) for AD were achieved in the test cohort. At a cut-off for a high risk population (5% of individuals with the highest risk score in the first cohort) the PPV for AD was 39.1% (52% for any dementia) in the test cohort. The prediction score has useful prediction accuracy. It can define individuals (1) sensitively for low cost-low risk interventions, or (2) more specific and with increased PPV for measures of prevention with greater costs or risks. As it is independent of technical aids, it may be used within large scale prevention programs.

  7. Relationship between esophageal clinical symptoms and manometry findings in patients with esophageal motility disorders: a cross-sectional study.

    PubMed

    FakhreYaseri, Hashem; FakhreYaseri, Ali Mohammad; Baradaran Moghaddam, Ali; Soltani Arabshhi, Seyed Kamran

    2015-01-01

    Manometry is the gold-standard diagnostic test for motility disorders in the esophagus. The development of high-resolution manometry catheters and software displays of manometry recordings in color-coded pressure plots have changed the diagnostic assessment of esophageal disease. The diagnostic value of particular esophageal clinical symptoms among patients suspected of esophageal motor disorders (EMDs) is still unknown. The aim of this study was to explore the sensitivity, specificity, and predictive accuracy of presenting esophageal symptoms between abnormal and normal esophageal manometry findings. We conducted a cross-sectional study of 623 patients aged 11-80 years. Data were collected from clinical examinations as well as patient questionnaires. The sensitivity, specificity, and accuracy were calculated after high-resolution manometry plots were reviewed according to the most recent Chicago Criteria. The clinical symptoms were not sensitive enough to discriminate between EMDs. Nevertheless, dysphagia, noncardiac chest pain, hoarseness, vomiting, and weight loss had high specificity and high accuracy to distinguish EMDs from normal findings. Regurgitation and heartburn did not have good accuracy for the diagnosis of EMDs. Clinical symptoms are not reliable enough to discriminate between EMDs. Clinical symptoms can, however, discriminate between normal findings and EMDs, especially achalasia.

  8. Identification and delineation of areas flood hazard using high accuracy of DEM data

    NASA Astrophysics Data System (ADS)

    Riadi, B.; Barus, B.; Widiatmaka; Yanuar, M. J. P.; Pramudya, B.

    2018-05-01

    Flood incidents that often occur in Karawang regency need to be mitigated. These expectations exist on technologies that can predict, anticipate and reduce disaster risks. Flood modeling techniques using Digital Elevation Model (DEM) data can be applied in mitigation activities. High accuracy DEM data used in modeling, will result in better flooding flood models. The result of high accuracy DEM data processing will yield information about surface morphology which can be used to identify indication of flood hazard area. The purpose of this study was to identify and describe flood hazard areas by identifying wetland areas using DEM data and Landsat-8 images. TerraSAR-X high-resolution data is used to detect wetlands from landscapes, while land cover is identified by Landsat image data. The Topography Wetness Index (TWI) method is used to detect and identify wetland areas with basic DEM data, while for land cover analysis using Tasseled Cap Transformation (TCT) method. The result of TWI modeling yields information about potential land of flood. Overlay TWI map with land cover map that produces information that in Karawang regency the most vulnerable areas occur flooding in rice fields. The spatial accuracy of the flood hazard area in this study was 87%.

  9. Development and validation of the SIMPLE endoscopic classification of diminutive and small colorectal polyps.

    PubMed

    Iacucci, Marietta; Trovato, Cristina; Daperno, Marco; Akinola, Oluseyi; Greenwald, David; Gross, Seth A; Hoffman, Arthur; Lee, Jeffrey; Lethebe, Brendan C; Lowerison, Mark; Nayor, Jennifer; Neumann, Helmut; Rath, Timo; Sanduleanu, Silvia; Sharma, Prateek; Kiesslich, Ralf; Ghosh, Subrata; Saltzman, John R

    2018-03-23

    Prediction of histology of small polyps facilitates colonoscopic treatment. The aims of this study were: 1) to develop a simplified polyp classification, 2) to evaluate its performance in predicting polyp histology, and 3) to evaluate the reproducibility of the classification by trainees using multiplatform endoscopic systems. In phase 1, a new simplified endoscopic classification for polyps - Simplified Identification Method for Polyp Labeling during Endoscopy (SIMPLE) - was created, using the new I-SCAN OE system (Pentax, Tokyo, Japan), by eight international experts. In phase 2, the accuracy, level of confidence, and interobserver agreement to predict polyp histology before and after training, and univariable/multivariable analysis of the endoscopic features, were performed. In phase 3, the reproducibility of SIMPLE by trainees using different endoscopy platforms was evaluated. Using the SIMPLE classification, the accuracy of experts in predicting polyps was 83 % (95 % confidence interval [CI] 77 % - 88 %) before and 94 % (95 %CI 89 % - 97 %) after training ( P   = 0.002). The sensitivity, specificity, positive predictive value, and negative predictive value after training were 97 %, 88 %, 95 %, and 91 %. The interobserver agreement of polyp diagnosis improved from 0.46 (95 %CI 0.30 - 0.64) before to 0.66 (95 %CI 0.48 - 0.82) after training. The trainees demonstrated that the SIMPLE classification is applicable across endoscopy platforms, with similar post-training accuracies for narrow-band imaging NBI classification (0.69; 95 %CI 0.64 - 0.73) and SIMPLE (0.71; 95 %CI 0.67 - 0.75). Using the I-SCAN OE system, the new SIMPLE classification demonstrated a high degree of accuracy for adenoma diagnosis, meeting the ASGE PIVI recommendations. We demonstrated that SIMPLE may be used with either I-SCAN OE or NBI. © Georg Thieme Verlag KG Stuttgart · New York.

  10. Benthic Species Richness of U.S. Pacific Estuaries

    EPA Science Inventory

    Understanding the spatial distribution of biodiversity is of paramount importance due to the potential consequences of its loss on human welfare. We demonstrate that biodiversity of soft-bottomed estuarine benthic organisms can be predicted with relatively high accuracy at multi...

  11. Cross-validation of recent and longstanding resting metabolic rate prediction equations

    USDA-ARS?s Scientific Manuscript database

    Resting metabolic rate (RMR) measurement is time consuming and requires specialized equipment. Prediction equations provide an easy method to estimate RMR; however, their accuracy likely varies across individuals. Understanding the factors that influence predicted RMR accuracy at the individual lev...

  12. Predicting solvation free energies and thermodynamics in polar solvents and mixtures using a solvation-layer interface condition

    PubMed Central

    Goossens, Spencer; Mehdizadeh Rahimi, Ali

    2017-01-01

    We demonstrate that with two small modifications, the popular dielectric continuum model is capable of predicting, with high accuracy, ion solvation thermodynamics (Gibbs free energies, entropies, and heat capacities) in numerous polar solvents. We are also able to predict ion solvation free energies in water–co-solvent mixtures over available concentration series. The first modification to the classical dielectric Poisson model is a perturbation of the macroscopic dielectric-flux interface condition at the solute–solvent interface: we add a nonlinear function of the local electric field, giving what we have called a solvation-layer interface condition (SLIC). The second modification is including the microscopic interface potential (static potential) in our model. We show that the resulting model exhibits high accuracy without the need for fitting solute atom radii in a state-dependent fashion. Compared to experimental results in nine water–co-solvent mixtures, SLIC predicts transfer free energies to within 2.5 kJ/mol. The co-solvents include both protic and aprotic species, as well as biologically relevant denaturants such as urea and dimethylformamide. Furthermore, our results indicate that the interface potential is essential to reproduce entropies and heat capacities. These and previous tests of the SLIC model indicate that it is a promising dielectric continuum model for accurate predictions in a wide range of conditions.

  13. SubCellProt: predicting protein subcellular localization using machine learning approaches.

    PubMed

    Garg, Prabha; Sharma, Virag; Chaudhari, Pradeep; Roy, Nilanjan

    2009-01-01

    High-throughput genome sequencing projects continue to churn out enormous amounts of raw sequence data. However, most of this raw sequence data is unannotated and, hence, not very useful. Among the various approaches to decipher the function of a protein, one is to determine its localization. Experimental approaches for proteome annotation including determination of a protein's subcellular localizations are very costly and labor intensive. Besides the available experimental methods, in silico methods present alternative approaches to accomplish this task. Here, we present two machine learning approaches for prediction of the subcellular localization of a protein from the primary sequence information. Two machine learning algorithms, k Nearest Neighbor (k-NN) and Probabilistic Neural Network (PNN) were used to classify an unknown protein into one of the 11 subcellular localizations. The final prediction is made on the basis of a consensus of the predictions made by two algorithms and a probability is assigned to it. The results indicate that the primary sequence derived features like amino acid composition, sequence order and physicochemical properties can be used to assign subcellular localization with a fair degree of accuracy. Moreover, with the enhanced accuracy of our approach and the definition of a prediction domain, this method can be used for proteome annotation in a high throughput manner. SubCellProt is available at www.databases.niper.ac.in/SubCellProt.

  14. Prediction of Multiple-Trait and Multiple-Environment Genomic Data Using Recommender Systems.

    PubMed

    Montesinos-López, Osval A; Montesinos-López, Abelardo; Crossa, José; Montesinos-López, José C; Mota-Sanchez, David; Estrada-González, Fermín; Gillberg, Jussi; Singh, Ravi; Mondal, Suchismita; Juliana, Philomin

    2018-01-04

    In genomic-enabled prediction, the task of improving the accuracy of the prediction of lines in environments is difficult because the available information is generally sparse and usually has low correlations between traits. In current genomic selection, although researchers have a large amount of information and appropriate statistical models to process it, there is still limited computing efficiency to do so. Although some statistical models are usually mathematically elegant, many of them are also computationally inefficient, and they are impractical for many traits, lines, environments, and years because they need to sample from huge normal multivariate distributions. For these reasons, this study explores two recommender systems: item-based collaborative filtering (IBCF) and the matrix factorization algorithm (MF) in the context of multiple traits and multiple environments. The IBCF and MF methods were compared with two conventional methods on simulated and real data. Results of the simulated and real data sets show that the IBCF technique was slightly better in terms of prediction accuracy than the two conventional methods and the MF method when the correlation was moderately high. The IBCF technique is very attractive because it produces good predictions when there is high correlation between items (environment-trait combinations) and its implementation is computationally feasible, which can be useful for plant breeders who deal with very large data sets. Copyright © 2018 Montesinos-Lopez et al.

  15. Predicting solvation free energies and thermodynamics in polar solvents and mixtures using a solvation-layer interface condition

    NASA Astrophysics Data System (ADS)

    Molavi Tabrizi, Amirhossein; Goossens, Spencer; Mehdizadeh Rahimi, Ali; Knepley, Matthew; Bardhan, Jaydeep P.

    2017-03-01

    We demonstrate that with two small modifications, the popular dielectric continuum model is capable of predicting, with high accuracy, ion solvation thermodynamics (Gibbs free energies, entropies, and heat capacities) in numerous polar solvents. We are also able to predict ion solvation free energies in water-co-solvent mixtures over available concentration series. The first modification to the classical dielectric Poisson model is a perturbation of the macroscopic dielectric-flux interface condition at the solute-solvent interface: we add a nonlinear function of the local electric field, giving what we have called a solvation-layer interface condition (SLIC). The second modification is including the microscopic interface potential (static potential) in our model. We show that the resulting model exhibits high accuracy without the need for fitting solute atom radii in a state-dependent fashion. Compared to experimental results in nine water-co-solvent mixtures, SLIC predicts transfer free energies to within 2.5 kJ/mol. The co-solvents include both protic and aprotic species, as well as biologically relevant denaturants such as urea and dimethylformamide. Furthermore, our results indicate that the interface potential is essential to reproduce entropies and heat capacities. These and previous tests of the SLIC model indicate that it is a promising dielectric continuum model for accurate predictions in a wide range of conditions.

  16. Prediction of Multiple-Trait and Multiple-Environment Genomic Data Using Recommender Systems

    PubMed Central

    Montesinos-López, Osval A.; Montesinos-López, Abelardo; Crossa, José; Montesinos-López, José C.; Mota-Sanchez, David; Estrada-González, Fermín; Gillberg, Jussi; Singh, Ravi; Mondal, Suchismita; Juliana, Philomin

    2018-01-01

    In genomic-enabled prediction, the task of improving the accuracy of the prediction of lines in environments is difficult because the available information is generally sparse and usually has low correlations between traits. In current genomic selection, although researchers have a large amount of information and appropriate statistical models to process it, there is still limited computing efficiency to do so. Although some statistical models are usually mathematically elegant, many of them are also computationally inefficient, and they are impractical for many traits, lines, environments, and years because they need to sample from huge normal multivariate distributions. For these reasons, this study explores two recommender systems: item-based collaborative filtering (IBCF) and the matrix factorization algorithm (MF) in the context of multiple traits and multiple environments. The IBCF and MF methods were compared with two conventional methods on simulated and real data. Results of the simulated and real data sets show that the IBCF technique was slightly better in terms of prediction accuracy than the two conventional methods and the MF method when the correlation was moderately high. The IBCF technique is very attractive because it produces good predictions when there is high correlation between items (environment–trait combinations) and its implementation is computationally feasible, which can be useful for plant breeders who deal with very large data sets. PMID:29097376

  17. An Analysis on the Constitutive Models for Forging of Ti6Al4V Alloy Considering the Softening Behavior

    NASA Astrophysics Data System (ADS)

    Souza, Paul M.; Beladi, Hossein; Singh, Rajkumar P.; Hodgson, Peter D.; Rolfe, Bernard

    2018-05-01

    This paper developed high-temperature deformation constitutive models for a Ti6Al4V alloy using an empirical-based Arrhenius equation and an enhanced version of the authors' physical-based EM + Avrami equations. The initial microstructure was a partially equiaxed α + β grain structure. A wide range of experimental data was obtained from hot compression of the Ti6Al4 V alloy at deformation temperatures ranging from 720 to 970 °C, and at strain rates varying from 0.01 to 10 s-1. The friction- and adiabatic-corrected flow curves were used to identify the parameter values of the constitutive models. Both models provided good overall accuracy of the flow stress. The generalized modified Arrhenius model was better at predicting the flow stress at lower strain rates. However, the model was inaccurate in predicting the peak strain. In contrast, the enhanced physical-based EM + Avrami model revealed very good accuracy at intermediate and high strain rates, but it was also better at predicting the peak strain. Blind sample tests revealed that the EM + Avrami maintained good predictions on new (unseen) data. Thus, the enhanced EM + Avrami model may be preferred over the Arrhenius model to predict the flow behavior of Ti6Al4V alloy during industrial forgings, when the initial microstructure is partially equiaxed.

  18. Prospects for Genomic Selection in Cassava Breeding.

    PubMed

    Wolfe, Marnin D; Del Carpio, Dunia Pino; Alabi, Olumide; Ezenwaka, Lydia C; Ikeogu, Ugochukwu N; Kayondo, Ismail S; Lozano, Roberto; Okeke, Uche G; Ozimati, Alfred A; Williams, Esuma; Egesi, Chiedozie; Kawuki, Robert S; Kulakow, Peter; Rabbi, Ismail Y; Jannink, Jean-Luc

    2017-11-01

    Cassava ( Crantz) is a clonally propagated staple food crop in the tropics. Genomic selection (GS) has been implemented at three breeding institutions in Africa to reduce cycle times. Initial studies provided promising estimates of predictive abilities. Here, we expand on previous analyses by assessing the accuracy of seven prediction models for seven traits in three prediction scenarios: cross-validation within populations, cross-population prediction and cross-generation prediction. We also evaluated the impact of increasing the training population (TP) size by phenotyping progenies selected either at random or with a genetic algorithm. Cross-validation results were mostly consistent across programs, with nonadditive models predicting of 10% better on average. Cross-population accuracy was generally low (mean = 0.18) but prediction of cassava mosaic disease increased up to 57% in one Nigerian population when data from another related population were combined. Accuracy across generations was poorer than within-generation accuracy, as expected, but accuracy for dry matter content and mosaic disease severity should be sufficient for rapid-cycling GS. Selection of a prediction model made some difference across generations, but increasing TP size was more important. With a genetic algorithm, selection of one-third of progeny could achieve an accuracy equivalent to phenotyping all progeny. We are in the early stages of GS for this crop but the results are promising for some traits. General guidelines that are emerging are that TPs need to continue to grow but phenotyping can be done on a cleverly selected subset of individuals, reducing the overall phenotyping burden. Copyright © 2017 Crop Science Society of America.

  19. The use of measures of obesity in childhood for predicting obesity and the development of obesity-related diseases in adulthood: a systematic review and meta-analysis.

    PubMed

    Simmonds, Mark; Burch, Jane; Llewellyn, Alexis; Griffiths, Claire; Yang, Huiqin; Owen, Christopher; Duffy, Steven; Woolacott, Nerys

    2015-06-01

    It is uncertain which simple measures of childhood obesity are best for predicting future obesity-related health problems and the persistence of obesity into adolescence and adulthood. To investigate the ability of simple measures, such as body mass index (BMI), to predict the persistence of obesity from childhood into adulthood and to predict obesity-related adult morbidities. To investigate how accurately simple measures diagnose obesity in children, and how acceptable these measures are to children, carers and health professionals. Multiple sources including MEDLINE, EMBASE and The Cochrane Library were searched from 2008 to 2013. Systematic reviews and a meta-analysis were carried out of large cohort studies on the association between childhood obesity and adult obesity; the association between childhood obesity and obesity-related morbidities in adulthood; and the diagnostic accuracy of simple childhood obesity measures. Study quality was assessed using Quality Assessment of Diagnostic Accuracy Studies-2 (QUADAS-2) and a modified version of the Quality in Prognosis Studies (QUIPS) tool. A systematic review and an elicitation exercise were conducted on the acceptability of the simple measures. Thirty-seven studies (22 cohorts) were included in the review of prediction of adult morbidities. Twenty-three studies (16 cohorts) were included in the tracking review. All studies included BMI. There were very few studies of other measures. There was a strong positive association between high childhood BMI and adult obesity [odds ratio 5.21, 95% confidence interval (CI) 4.50 to 6.02]. A positive association was found between high childhood BMI and adult coronary heart disease, diabetes and a range of cancers, but not stroke or breast cancer. The predictive accuracy of childhood BMI to predict any adult morbidity was very low, with most morbidities occurring in adults who were of healthy weight in childhood. Predictive accuracy of childhood obesity was moderate for predicting adult obesity, with a sensitivity of 30% and a specificity of 98%. Persistence of obesity from adolescence to adulthood was high. Thirty-four studies were included in the diagnostic accuracy review. Most of the studies used the least reliable reference standard (dual-energy X-ray absorptiometry); only 24% of studies were of high quality. The sensitivity of BMI for diagnosing obesity and overweight varied considerably; specificity was less variable. Pooled sensitivity of BMI was 74% (95% CI 64.2% to 81.8%) and pooled specificity was 95% (95% CI 92.2% to 96.4%). The acceptability to children and their carers of BMI or other common simple measures was generally good. Little evidence was available regarding childhood measures other than BMI. No individual-level analysis could be performed. Childhood BMI is not a good predictor of adult obesity or adult disease; the majority of obese adults were not obese as children and most obesity-related adult morbidity occurs in adults who had a healthy childhood weight. However, obesity (as measured using BMI) was found to persist from childhood to adulthood, with most obese adolescents also being obese in adulthood. BMI was found to be reasonably good for diagnosing obesity during childhood. There is no convincing evidence suggesting that any simple measure is better than BMI for diagnosing obesity in childhood or predicting adult obesity and morbidity. Further research on obesity measures other than BMI is needed to determine which is the best tool for diagnosing childhood obesity, and new cohort studies are needed to investigate the impact of contemporary childhood obesity on adult obesity and obesity-related morbidities. This study is registered as PROSPERO CRD42013005711. The National Institute for Health Research Health Technology Assessment programme.

  20. ZCURVE 3.0: identify prokaryotic genes with higher accuracy as well as automatically and accurately select essential genes

    PubMed Central

    Hua, Zhi-Gang; Lin, Yan; Yuan, Ya-Zhou; Yang, De-Chang; Wei, Wen; Guo, Feng-Biao

    2015-01-01

    In 2003, we developed an ab initio program, ZCURVE 1.0, to find genes in bacterial and archaeal genomes. In this work, we present the updated version (i.e. ZCURVE 3.0). Using 422 prokaryotic genomes, the average accuracy was 93.7% with the updated version, compared with 88.7% with the original version. Such results also demonstrate that ZCURVE 3.0 is comparable with Glimmer 3.02 and may provide complementary predictions to it. In fact, the joint application of the two programs generated better results by correctly finding more annotated genes while also containing fewer false-positive predictions. As the exclusive function, ZCURVE 3.0 contains one post-processing program that can identify essential genes with high accuracy (generally >90%). We hope ZCURVE 3.0 will receive wide use with the web-based running mode. The updated ZCURVE can be freely accessed from http://cefg.uestc.edu.cn/zcurve/ or http://tubic.tju.edu.cn/zcurveb/ without any restrictions. PMID:25977299

  1. Perendoscopic gastric pH determination. Simple method for increasing accuracy in diagnosing chronic atrophic gastritis.

    PubMed

    Farinati, F; Cardin, F; Di Mario, F; Sava, G A; Piccoli, A; Costa, F; Penon, G; Naccarato, R

    1987-08-01

    The endoscopic diagnosis of chronic atrophic gastritis is often underestimated, and most of the procedures adopted to increase diagnostic accuracy are time consuming and complex. In this study, we evaluated the usefulness of the determination of gastric juice pH by means of litmus paper. Values obtained by this method correlate well with gastric acid secretory capacity as measured by gastric acid analysis (r = -0.64, p less than 0.001) and are not affected by the presence of bile. Gastric juice pH determination increases sensitivity and other diagnostic parameters such as performance index (Youden J test), positive predictive value, and post-test probability difference by 50%. Furthermore, the negative predictive value is very high, the probability of missing a patient with chronic atrophic gastritis with this simple method being 2% for fundic and 15% for antral atrophic change. We conclude that gastric juice pH determination, which substantially increases diagnostic accuracy and is very simple to perform, should be routinely adopted.

  2. GESPA: classifying nsSNPs to predict disease association.

    PubMed

    Khurana, Jay K; Reeder, Jay E; Shrimpton, Antony E; Thakar, Juilee

    2015-07-25

    Non-synonymous single nucleotide polymorphisms (nsSNPs) are the most common DNA sequence variation associated with disease in humans. Thus determining the clinical significance of each nsSNP is of great importance. Potential detrimental nsSNPs may be identified by genetic association studies or by functional analysis in the laboratory, both of which are expensive and time consuming. Existing computational methods lack accuracy and features to facilitate nsSNP classification for clinical use. We developed the GESPA (GEnomic Single nucleotide Polymorphism Analyzer) program to predict the pathogenicity and disease phenotype of nsSNPs. GESPA is a user-friendly software package for classifying disease association of nsSNPs. It allows flexibility in acceptable input formats and predicts the pathogenicity of a given nsSNP by assessing the conservation of amino acids in orthologs and paralogs and supplementing this information with data from medical literature. The development and testing of GESPA was performed using the humsavar, ClinVar and humvar datasets. Additionally, GESPA also predicts the disease phenotype associated with a nsSNP with high accuracy, a feature unavailable in existing software. GESPA's overall accuracy exceeds existing computational methods for predicting nsSNP pathogenicity. The usability of GESPA is enhanced by fast SQL-based cloud storage and retrieval of data. GESPA is a novel bioinformatics tool to determine the pathogenicity and phenotypes of nsSNPs. We anticipate that GESPA will become a useful clinical framework for predicting the disease association of nsSNPs. The program, executable jar file, source code, GPL 3.0 license, user guide, and test data with instructions are available at http://sourceforge.net/projects/gespa.

  3. Optimal Wavelength Selection on Hyperspectral Data with Fused Lasso for Biomass Estimation of Tropical Rain Forest

    NASA Astrophysics Data System (ADS)

    Takayama, T.; Iwasaki, A.

    2016-06-01

    Above-ground biomass prediction of tropical rain forest using remote sensing data is of paramount importance to continuous large-area forest monitoring. Hyperspectral data can provide rich spectral information for the biomass prediction; however, the prediction accuracy is affected by a small-sample-size problem, which widely exists as overfitting in using high dimensional data where the number of training samples is smaller than the dimensionality of the samples due to limitation of require time, cost, and human resources for field surveys. A common approach to addressing this problem is reducing the dimensionality of dataset. Also, acquired hyperspectral data usually have low signal-to-noise ratio due to a narrow bandwidth and local or global shifts of peaks due to instrumental instability or small differences in considering practical measurement conditions. In this work, we propose a methodology based on fused lasso regression that select optimal bands for the biomass prediction model with encouraging sparsity and grouping, which solves the small-sample-size problem by the dimensionality reduction from the sparsity and the noise and peak shift problem by the grouping. The prediction model provided higher accuracy with root-mean-square error (RMSE) of 66.16 t/ha in the cross-validation than other methods; multiple linear analysis, partial least squares regression, and lasso regression. Furthermore, fusion of spectral and spatial information derived from texture index increased the prediction accuracy with RMSE of 62.62 t/ha. This analysis proves efficiency of fused lasso and image texture in biomass estimation of tropical forests.

  4. Early prediction of lung cancer recurrence after stereotactic radiotherapy using second order texture statistics

    NASA Astrophysics Data System (ADS)

    Mattonen, Sarah A.; Palma, David A.; Haasbeek, Cornelis J. A.; Senan, Suresh; Ward, Aaron D.

    2014-03-01

    Benign radiation-induced lung injury is a common finding following stereotactic ablative radiotherapy (SABR) for lung cancer, and is often difficult to differentiate from a recurring tumour due to the ablative doses and highly conformal treatment with SABR. Current approaches to treatment response assessment have shown limited ability to predict recurrence within 6 months of treatment. The purpose of our study was to evaluate the accuracy of second order texture statistics for prediction of eventual recurrence based on computed tomography (CT) images acquired within 6 months of treatment, and compare with the performance of first order appearance and lesion size measures. Consolidative and ground-glass opacity (GGO) regions were manually delineated on post-SABR CT images. Automatic consolidation expansion was also investigated to act as a surrogate for GGO position. The top features for prediction of recurrence were all texture features within the GGO and included energy, entropy, correlation, inertia, and first order texture (standard deviation of density). These predicted recurrence with 2-fold cross validation (CV) accuracies of 70-77% at 2- 5 months post-SABR, with energy, entropy, and first order texture having leave-one-out CV accuracies greater than 80%. Our results also suggest that automatic expansion of the consolidation region could eliminate the need for manual delineation, and produced reproducible results when compared to manually delineated GGO. If validated on a larger data set, this could lead to a clinically useful computer-aided diagnosis system for prediction of recurrence within 6 months of SABR and allow for early salvage therapy for patients with recurrence.

  5. Application of biodynamic imaging for personalized chemotherapy in canine lymphoma

    NASA Astrophysics Data System (ADS)

    Custead, Michelle R.

    Biodynamic imaging (BDI) is a novel phenotypic cancer profiling technology which characterizes changes in cellular and subcellular motion in living tumor tissue samples following in vitro or ex vivo treatment with chemotherapeutics. The ability of BDI to predict clinical response to single-agent doxorubicin chemotherapy was tested in ten dogs with naturally-occurring non-Hodgkin's lymphomas (NHL). Pre-treatment tumor biopsy samples were obtained from all dogs and treated with doxorubicin (10 muM) ex vivo. BDI captured cellular and subcellular motility measures on all biopsy samples at baseline and at regular intervals for 9 hours following drug application. All dogs subsequently received treatment with a standard single-agent doxorubicin protocol. Objective response (OR) to doxorubicin and progression-free survival time (PFST) following chemotherapy were recorded for all dogs. The dynamic biomarkers measured by BDI were entered into a multivariate logistic model to determine the extent to which BDI predicted OR and PFST following doxorubicin therapy. The model showed that the sensitivity, specificity, and accuracy of BDI for predicting treatment outcome were 95%, 91%, and 93%, respectively. To account for possible over-fitting of data to the predictive model, cross-validation with a one-left-out analysis was performed, and the adjusted sensitivity, specificity, and accuracy following this analysis were 93%, 87%, and 91%, respectively. These findings suggest that BDI can predict, with high accuracy, treatment outcome following single-agent doxorubicin chemotherapy in a relevant spontaneous canine cancer model, and is a promising novel technology for advancing personalized cancer medicine.

  6. A generic approach for the development of short-term predictions of Escherichia coli and biotoxins in shellfish

    PubMed Central

    Schmidt, Wiebke; Evers-King, Hayley L.; Campos, Carlos J. A.; Jones, Darren B.; Miller, Peter I.; Davidson, Keith; Shutler, Jamie D.

    2018-01-01

    Microbiological contamination or elevated marine biotoxin concentrations within shellfish can result in temporary closure of shellfish aquaculture harvesting, leading to financial loss for the aquaculture business and a potential reduction in consumer confidence in shellfish products. We present a method for predicting short-term variations in shellfish concentrations of Escherichia coli and biotoxin (okadaic acid and its derivates dinophysistoxins and pectenotoxins). The approach was evaluated for 2 contrasting shellfish harvesting areas. Through a meta-data analysis and using environmental data (in situ, satellite observations and meteorological nowcasts and forecasts), key environmental drivers were identified and used to develop models to predict E. coli and biotoxin concentrations within shellfish. Models were trained and evaluated using independent datasets, and the best models were identified based on the model exhibiting the lowest root mean square error. The best biotoxin model was able to provide 1 wk forecasts with an accuracy of 86%, a 0% false positive rate and a 0% false discovery rate (n = 78 observations) when used to predict the closure of shellfish beds due to biotoxin. The best E. coli models were used to predict the European hygiene classification of the shellfish beds to an accuracy of 99% (n = 107 observations) and 98% (n = 63 observations) for a bay (St Austell Bay) and an estuary (Turnaware Bar), respectively. This generic approach enables high accuracy short-term farm-specific forecasts, based on readily accessible environmental data and observations. PMID:29805719

  7. Modeling time-to-event (survival) data using classification tree analysis.

    PubMed

    Linden, Ariel; Yarnold, Paul R

    2017-12-01

    Time to the occurrence of an event is often studied in health research. Survival analysis differs from other designs in that follow-up times for individuals who do not experience the event by the end of the study (called censored) are accounted for in the analysis. Cox regression is the standard method for analysing censored data, but the assumptions required of these models are easily violated. In this paper, we introduce classification tree analysis (CTA) as a flexible alternative for modelling censored data. Classification tree analysis is a "decision-tree"-like classification model that provides parsimonious, transparent (ie, easy to visually display and interpret) decision rules that maximize predictive accuracy, derives exact P values via permutation tests, and evaluates model cross-generalizability. Using empirical data, we identify all statistically valid, reproducible, longitudinally consistent, and cross-generalizable CTA survival models and then compare their predictive accuracy to estimates derived via Cox regression and an unadjusted naïve model. Model performance is assessed using integrated Brier scores and a comparison between estimated survival curves. The Cox regression model best predicts average incidence of the outcome over time, whereas CTA survival models best predict either relatively high, or low, incidence of the outcome over time. Classification tree analysis survival models offer many advantages over Cox regression, such as explicit maximization of predictive accuracy, parsimony, statistical robustness, and transparency. Therefore, researchers interested in accurate prognoses and clear decision rules should consider developing models using the CTA-survival framework. © 2017 John Wiley & Sons, Ltd.

  8. Localized Density/Drag Prediction for Improved Onboard Orbit Propagation

    DTIC Science & Technology

    2009-09-01

    Localized Density/Drag Prediction for Improved Onboard Orbit Propagation Nathan B. Stastny, Frank R. Chavez, Chin Lin, T. Alan Lovell , Robert A...Terrestrial Physics, Vol. 70, 774-793, 2008 3. Storz, M.F, Bowman, B.R., Branson, J.I., High Accuracy Satellite Drag Model (HASDM), AIAA/ AAS ...Geomagnetic Indices, AIAA/ AAS Astrodynamics Specialist Conference, Honolulu, HI, Aug. 2008 5. Bruinsma, S., Biancale, R., Total Densities Derived from

  9. Effectiveness of evaluating tumor vascularization using 3D power Doppler ultrasound with high-definition flow technology in the prediction of the response to neoadjuvant chemotherapy for T2 breast cancer: a preliminary report

    NASA Astrophysics Data System (ADS)

    Shia, Wei-Chung; Chen, Dar-Ren; Huang, Yu-Len; Wu, Hwa-Koon; Kuo, Shou-Jen

    2015-10-01

    The aim of this study was to evaluate the effectiveness of advanced ultrasound (US) imaging of vascular flow and morphological features in the prediction of a pathologic complete response (pCR) and a partial response (PR) to neoadjuvant chemotherapy for T2 breast cancer. Twenty-nine consecutive patients with T2 breast cancer treated with six courses of anthracycline-based neoadjuvant chemotherapy were enrolled. Three-dimensional (3D) power Doppler US with high-definition flow (HDF) technology was used to investigate the blood flow in and morphological features of the tumors. Six vascularity quantization features, three morphological features, and two vascular direction features were selected and extracted from the US images. A support vector machine was used to evaluate the changes in vascularity after neoadjuvant chemotherapy, and pCR and PR were predicted on the basis of these changes. The most accurate prediction of pCR was achieved after the first chemotherapy cycle, with an accuracy of 93.1% and a specificity of 85.5%, while that of a PR was achieved after the second cycle, with an accuracy of 79.31% and a specificity of 72.22%. Vascularity data can be useful to predict the effects of neoadjuvant chemotherapy. Determination of changes in vascularity after neoadjuvant chemotherapy using 3D power Doppler US with HDF can generate accurate predictions of the patient response, facilitating early decision-making.

  10. A Rat α-Fetoprotein Binding Activity Prediction Model to Facilitate Assessment of the Endocrine Disruption Potential of Environmental Chemicals.

    PubMed

    Hong, Huixiao; Shen, Jie; Ng, Hui Wen; Sakkiah, Sugunadevi; Ye, Hao; Ge, Weigong; Gong, Ping; Xiao, Wenming; Tong, Weida

    2016-03-25

    Endocrine disruptors such as polychlorinated biphenyls (PCBs), diethylstilbestrol (DES) and dichlorodiphenyltrichloroethane (DDT) are agents that interfere with the endocrine system and cause adverse health effects. Huge public health concern about endocrine disruptors has arisen. One of the mechanisms of endocrine disruption is through binding of endocrine disruptors with the hormone receptors in the target cells. Entrance of endocrine disruptors into target cells is the precondition of endocrine disruption. The binding capability of a chemical with proteins in the blood affects its entrance into the target cells and, thus, is very informative for the assessment of potential endocrine disruption of chemicals. α-fetoprotein is one of the major serum proteins that binds to a variety of chemicals such as estrogens. To better facilitate assessment of endocrine disruption of environmental chemicals, we developed a model for α-fetoprotein binding activity prediction using the novel pattern recognition method (Decision Forest) and the molecular descriptors calculated from two-dimensional structures by Mold² software. The predictive capability of the model has been evaluated through internal validation using 125 training chemicals (average balanced accuracy of 69%) and external validations using 22 chemicals (balanced accuracy of 71%). Prediction confidence analysis revealed the model performed much better at high prediction confidence. Our results indicate that the model is useful (when predictions are in high confidence) in endocrine disruption risk assessment of environmental chemicals though improvement by increasing number of training chemicals is needed.

  11. Lessons from (co-)evolution in the docking of proteins and peptides for CAPRI Rounds 28-35.

    PubMed

    Yu, Jinchao; Andreani, Jessica; Ochsenbein, Françoise; Guerois, Raphaël

    2017-03-01

    Computational protein-protein docking is of great importance for understanding protein interactions at the structural level. Critical assessment of prediction of interactions (CAPRI) experiments provide the protein docking community with a unique opportunity to blindly test methods based on real-life cases and help accelerate methodology development. For CAPRI Rounds 28-35, we used an automatic docking pipeline integrating the coarse-grained co-evolution-based potential InterEvScore. This score was developed to exploit the information contained in the multiple sequence alignments of binding partners and selectively recognize co-evolved interfaces. Together with Zdock/Frodock for rigid-body docking, SOAP-PP for atomic potential and Rosetta applications for structural refinement, this pipeline reached high performance on a majority of targets. For protein-peptide docking and interfacial water position predictions, we also explored different means of taking evolutionary information into account. Overall, our group ranked 1 st by correctly predicting 10 targets, composed of 1 High, 7 Medium and 2 Acceptable predictions. Excellent and Outstanding levels of accuracy were reached for each of the two water prediction targets, respectively. Altogether, in 15 out of 18 targets in total, evolutionary information, either through co-evolution or conservation analyses, could provide key constraints to guide modeling towards the most likely assemblies. These results open promising perspectives regarding the way evolutionary information can be valuable to improve docking prediction accuracy. Proteins 2017; 85:378-390. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  12. Comparing strategies for selection of low-density SNPs for imputation-mediated genomic prediction in U. S. Holsteins.

    PubMed

    He, Jun; Xu, Jiaqi; Wu, Xiao-Lin; Bauck, Stewart; Lee, Jungjae; Morota, Gota; Kachman, Stephen D; Spangler, Matthew L

    2018-04-01

    SNP chips are commonly used for genotyping animals in genomic selection but strategies for selecting low-density (LD) SNPs for imputation-mediated genomic selection have not been addressed adequately. The main purpose of the present study was to compare the performance of eight LD (6K) SNP panels, each selected by a different strategy exploiting a combination of three major factors: evenly-spaced SNPs, increased minor allele frequencies, and SNP-trait associations either for single traits independently or for all the three traits jointly. The imputation accuracies from 6K to 80K SNP genotypes were between 96.2 and 98.2%. Genomic prediction accuracies obtained using imputed 80K genotypes were between 0.817 and 0.821 for daughter pregnancy rate, between 0.838 and 0.844 for fat yield, and between 0.850 and 0.863 for milk yield. The two SNP panels optimized on the three major factors had the highest genomic prediction accuracy (0.821-0.863), and these accuracies were very close to those obtained using observed 80K genotypes (0.825-0.868). Further exploration of the underlying relationships showed that genomic prediction accuracies did not respond linearly to imputation accuracies, but were significantly affected by genotype (imputation) errors of SNPs in association with the traits to be predicted. SNPs optimal for map coverage and MAF were favorable for obtaining accurate imputation of genotypes whereas trait-associated SNPs improved genomic prediction accuracies. Thus, optimal LD SNP panels were the ones that combined both strengths. The present results have practical implications on the design of LD SNP chips for imputation-enabled genomic prediction.

  13. Predicting methylphenidate response in attention deficit hyperactivity disorder: a preliminary study.

    PubMed

    Johnston, Blair A; Coghill, David; Matthews, Keith; Steele, J Douglas

    2015-01-01

    Methylphenidate (MPH) is established as the main pharmacological treatment for patients with attention deficit hyperactivity disorder (ADHD). Whilst MPH is generally a highly effective treatment, not all patients respond, and some experience adverse reactions. Currently, there is no reliable method to predict how patients will respond, other than by exposure to a trial of medication. In this preliminary study, we sought to investigate whether an accurate predictor of clinical response to methylphenidate could be developed for individual patients, using sociodemographic, clinical and neuropsychological measures. Of the 43 boys with ADHD included in this proof-of-concept study, 30 were classed as responders and 13 as non-responders to MPH, with no significant differences in age nor verbal intelligence quotient (IQ) between the groups. Here we report the application of a multivariate analysis approach to the prediction of clinical response to MPH, which achieved an accuracy of 77% (p = 0.005). The most important variables to the classifier were performance on a 'go/no go' task and comorbid conduct disorder. This preliminary study suggested that further investigation is merited. Achieving a highly significant accuracy of 77% for the prediction of MPH response is an encouraging step towards finding a reliable and clinically useful method that could minimise the number of children needlessly being exposed to MPH. © The Author(s) 2014.

  14. New support vector machine-based method for microRNA target prediction.

    PubMed

    Li, L; Gao, Q; Mao, X; Cao, Y

    2014-06-09

    MicroRNA (miRNA) plays important roles in cell differentiation, proliferation, growth, mobility, and apoptosis. An accurate list of precise target genes is necessary in order to fully understand the importance of miRNAs in animal development and disease. Several computational methods have been proposed for miRNA target-gene identification. However, these methods still have limitations with respect to their sensitivity and accuracy. Thus, we developed a new miRNA target-prediction method based on the support vector machine (SVM) model. The model supplies information of two binding sites (primary and secondary) for a radial basis function kernel as a similarity measure for SVM features. The information is categorized based on structural, thermodynamic, and sequence conservation. Using high-confidence datasets selected from public miRNA target databases, we obtained a human miRNA target SVM classifier model with high performance and provided an efficient tool for human miRNA target gene identification. Experiments have shown that our method is a reliable tool for miRNA target-gene prediction, and a successful application of an SVM classifier. Compared with other methods, the method proposed here improves the sensitivity and accuracy of miRNA prediction. Its performance can be further improved by providing more training examples.

  15. A Hybrid FPGA-Based System for EEG- and EMG-Based Online Movement Prediction.

    PubMed

    Wöhrle, Hendrik; Tabie, Marc; Kim, Su Kyoung; Kirchner, Frank; Kirchner, Elsa Andrea

    2017-07-03

    A current trend in the development of assistive devices for rehabilitation, for example exoskeletons or active orthoses, is to utilize physiological data to enhance their functionality and usability, for example by predicting the patient's upcoming movements using electroencephalography (EEG) or electromyography (EMG). However, these modalities have different temporal properties and classification accuracies, which results in specific advantages and disadvantages. To use physiological data analysis in rehabilitation devices, the processing should be performed in real-time, guarantee close to natural movement onset support, provide high mobility, and should be performed by miniaturized systems that can be embedded into the rehabilitation device. We present a novel Field Programmable Gate Array (FPGA) -based system for real-time movement prediction using physiological data. Its parallel processing capabilities allows the combination of movement predictions based on EEG and EMG and additionally a P300 detection, which is likely evoked by instructions of the therapist. The system is evaluated in an offline and an online study with twelve healthy subjects in total. We show that it provides a high computational performance and significantly lower power consumption in comparison to a standard PC. Furthermore, despite the usage of fixed-point computations, the proposed system achieves a classification accuracy similar to systems with double precision floating-point precision.

  16. Transcription Factor Binding Profiles Reveal Cyclic Expression of Human Protein-coding Genes and Non-coding RNAs

    PubMed Central

    Cheng, Chao; Ung, Matthew; Grant, Gavin D.; Whitfield, Michael L.

    2013-01-01

    Cell cycle is a complex and highly supervised process that must proceed with regulatory precision to achieve successful cellular division. Despite the wide application, microarray time course experiments have several limitations in identifying cell cycle genes. We thus propose a computational model to predict human cell cycle genes based on transcription factor (TF) binding and regulatory motif information in their promoters. We utilize ENCODE ChIP-seq data and motif information as predictors to discriminate cell cycle against non-cell cycle genes. Our results show that both the trans- TF features and the cis- motif features are predictive of cell cycle genes, and a combination of the two types of features can further improve prediction accuracy. We apply our model to a complete list of GENCODE promoters to predict novel cell cycle driving promoters for both protein-coding genes and non-coding RNAs such as lincRNAs. We find that a similar percentage of lincRNAs are cell cycle regulated as protein-coding genes, suggesting the importance of non-coding RNAs in cell cycle division. The model we propose here provides not only a practical tool for identifying novel cell cycle genes with high accuracy, but also new insights on cell cycle regulation by TFs and cis-regulatory elements. PMID:23874175

  17. Subsidence monitoring and prediction of high-speed railway in Beijing with multitemporal TerraSAR-X data

    NASA Astrophysics Data System (ADS)

    Fan, Zelin; Zhang, Yonghong; Wu, Hong'an; Kang, Yonghui; Jiang, Decai

    2018-02-01

    The uneven settlement of high-speed railway (HSR) brings about great threat to the safe operation of trains. Therefore, the subsidence monitoring and prediction of HSR has important significance. In this paper, an improved multitemporal InSAR method combing PS-InSAR and SBAS-InSAR, Multiple-master Coherent Target Small-Baseline InSAR (MCTSB-InSAR), is used to monitor the subsidence of partial section of the Beijing-Tianjin HSR (BTHSR) and the Beijing-Shanghai HSR (BSHSR) in Beijing area. Thirty-one TerraSAR-X images from June 2011 to December 2016 are processed with the MCTSB-InSAR, and the subsidence information of the region covering 56km*32km in Beijing is dug out. Moreover, the monitoring results is validated by the leveling measurements in this area, with the accuracy of 4.4 mm/year. On the basis of above work, we extract the subsidence information of partial section of BTHSR and BSHSR in the research area. Finally, we adopt the idea of timing analysis, and employ the back-propagation (BP) neural network to simulate the relationship between former settlement and current settlement. Training data sets and test data sets are constructed respectively based on the monitoring results. The experimental results show that the prediction model has good prediction accuracy and applicability.

  18. A Hybrid FPGA-Based System for EEG- and EMG-Based Online Movement Prediction

    PubMed Central

    Wöhrle, Hendrik; Tabie, Marc; Kim, Su Kyoung; Kirchner, Frank; Kirchner, Elsa Andrea

    2017-01-01

    A current trend in the development of assistive devices for rehabilitation, for example exoskeletons or active orthoses, is to utilize physiological data to enhance their functionality and usability, for example by predicting the patient’s upcoming movements using electroencephalography (EEG) or electromyography (EMG). However, these modalities have different temporal properties and classification accuracies, which results in specific advantages and disadvantages. To use physiological data analysis in rehabilitation devices, the processing should be performed in real-time, guarantee close to natural movement onset support, provide high mobility, and should be performed by miniaturized systems that can be embedded into the rehabilitation device. We present a novel Field Programmable Gate Array (FPGA) -based system for real-time movement prediction using physiological data. Its parallel processing capabilities allows the combination of movement predictions based on EEG and EMG and additionally a P300 detection, which is likely evoked by instructions of the therapist. The system is evaluated in an offline and an online study with twelve healthy subjects in total. We show that it provides a high computational performance and significantly lower power consumption in comparison to a standard PC. Furthermore, despite the usage of fixed-point computations, the proposed system achieves a classification accuracy similar to systems with double precision floating-point precision. PMID:28671632

  19. Comparison of the accuracy of three algorithms in predicting accessory pathways among adult Wolff-Parkinson-White syndrome patients.

    PubMed

    Maden, Orhan; Balci, Kevser Gülcihan; Selcuk, Mehmet Timur; Balci, Mustafa Mücahit; Açar, Burak; Unal, Sefa; Kara, Meryem; Selcuk, Hatice

    2015-12-01

    The aim of this study was to investigate the accuracy of three algorithms in predicting accessory pathway locations in adult patients with Wolff-Parkinson-White syndrome in Turkish population. A total of 207 adult patients with Wolff-Parkinson-White syndrome were retrospectively analyzed. The most preexcited 12-lead electrocardiogram in sinus rhythm was used for analysis. Two investigators blinded to the patient data used three algorithms for prediction of accessory pathway location. Among all locations, 48.5% were left-sided, 44% were right-sided, and 7.5% were located in the midseptum or anteroseptum. When only exact locations were accepted as match, predictive accuracy for Chiang was 71.5%, 72.4% for d'Avila, and 71.5% for Arruda. The percentage of predictive accuracy of all algorithms did not differ between the algorithms (p = 1.000; p = 0.875; p = 0.885, respectively). The best algorithm for prediction of right-sided, left-sided, and anteroseptal and midseptal accessory pathways was Arruda (p < 0.001). Arruda was significantly better than d'Avila in predicting adjacent sites (p = 0.035) and the percent of the contralateral site prediction was higher with d'Avila than Arruda (p = 0.013). All algorithms were similar in predicting accessory pathway location and the predicted accuracy was lower than previously reported by their authors. However, according to the accessory pathway site, the algorithm designed by Arruda et al. showed better predictions than the other algorithms and using this algorithm may provide advantages before a planned ablation.

  20. Accuracy test for link prediction in terms of similarity index: The case of WS and BA models

    NASA Astrophysics Data System (ADS)

    Ahn, Min-Woo; Jung, Woo-Sung

    2015-07-01

    Link prediction is a technique that uses the topological information in a given network to infer the missing links in it. Since past research on link prediction has primarily focused on enhancing performance for given empirical systems, negligible attention has been devoted to link prediction with regard to network models. In this paper, we thus apply link prediction to two network models: The Watts-Strogatz (WS) model and Barabási-Albert (BA) model. We attempt to gain a better understanding of the relation between accuracy and each network parameter (mean degree, the number of nodes and the rewiring probability in the WS model) through network models. Six similarity indices are used, with precision and area under the ROC curve (AUC) value as the accuracy metrics. We observe a positive correlation between mean degree and accuracy, and size independence of the AUC value.

Top