Science.gov

Sample records for high pressure freezing

  1. Transmission electron microscopy of thin sections of Drosophila: high-pressure freezing and freeze-substitution.

    PubMed

    McDonald, Kent L; Sharp, David J; Rickoll, Wayne

    2012-04-01

    The state of the art in fine-structure preservation for thin sectioning can be achieved by using fast-freezing technology followed by freeze substitution and embedding in resin. Samples prepared by high-pressure freezing are estimated to be "fixed" in 20-50 msec. Fast freezing also freezes every cell component regardless of its chemistry. Once frozen, tissues can be processed in a variety of ways before viewing in the electron microscope; here we describe only freeze substitution. In freeze substitution, cells are dehydrated at very low temperatures and cell water is replaced with organic solvent at -80°C to -90°C. At this temperature, large molecules such as proteins are immobilized, yet smaller molecules such as water (ice) can be dissolved and replaced with organic solvents, e.g., acetone. The ideal way to do freeze substitution is with a dedicated freeze-substitution device such as the Leica AFS2 system. These devices allow programming of the times and temperatures needed. Alternatively, if this equipment is not available, freeze substitution can still be performed using items commonly found around the laboratory, as is described here. This protocol is useful for preparing thin sections of Drosophila when the best possible preservation of ultrastructure and antigenicity is required.

  2. Tandem High-pressure Freezing and Quick Freeze Substitution of Plant Tissues for Transmission Electron Microscopy

    PubMed Central

    Bobik, Krzysztof; Dunlap, John R.; Burch-Smith, Tessa M.

    2014-01-01

    Since the 1940s transmission electron microscopy (TEM) has been providing biologists with ultra-high resolution images of biological materials. Yet, because of laborious and time-consuming protocols that also demand experience in preparation of artifact-free samples, TEM is not considered a user-friendly technique. Traditional sample preparation for TEM used chemical fixatives to preserve cellular structures. High-pressure freezing is the cryofixation of biological samples under high pressures to produce very fast cooling rates, thereby restricting ice formation, which is detrimental to the integrity of cellular ultrastructure. High-pressure freezing and freeze substitution are currently the methods of choice for producing the highest quality morphology in resin sections for TEM. These methods minimize the artifacts normally associated with conventional processing for TEM of thin sections. After cryofixation the frozen water in the sample is replaced with liquid organic solvent at low temperatures, a process called freeze substitution. Freeze substitution is typically carried out over several days in dedicated, costly equipment. A recent innovation allows the process to be completed in three hours, instead of the usual two days. This is typically followed by several more days of sample preparation that includes infiltration and embedding in epoxy resins before sectioning. Here we present a protocol combining high-pressure freezing and quick freeze substitution that enables plant sample fixation to be accomplished within hours. The protocol can readily be adapted for working with other tissues or organisms. Plant tissues are of special concern because of the presence of aerated spaces and water-filled vacuoles that impede ice-free freezing of water. In addition, the process of chemical fixation is especially long in plants due to cell walls impeding the penetration of the chemicals to deep within the tissues. Plant tissues are therefore particularly challenging, but

  3. Tandem high-pressure freezing and quick freeze substitution of plant tissues for transmission electron microscopy.

    PubMed

    Bobik, Krzysztof; Dunlap, John R; Burch-Smith, Tessa M

    2014-10-13

    Since the 1940s transmission electron microscopy (TEM) has been providing biologists with ultra-high resolution images of biological materials. Yet, because of laborious and time-consuming protocols that also demand experience in preparation of artifact-free samples, TEM is not considered a user-friendly technique. Traditional sample preparation for TEM used chemical fixatives to preserve cellular structures. High-pressure freezing is the cryofixation of biological samples under high pressures to produce very fast cooling rates, thereby restricting ice formation, which is detrimental to the integrity of cellular ultrastructure. High-pressure freezing and freeze substitution are currently the methods of choice for producing the highest quality morphology in resin sections for TEM. These methods minimize the artifacts normally associated with conventional processing for TEM of thin sections. After cryofixation the frozen water in the sample is replaced with liquid organic solvent at low temperatures, a process called freeze substitution. Freeze substitution is typically carried out over several days in dedicated, costly equipment. A recent innovation allows the process to be completed in three hours, instead of the usual two days. This is typically followed by several more days of sample preparation that includes infiltration and embedding in epoxy resins before sectioning. Here we present a protocol combining high-pressure freezing and quick freeze substitution that enables plant sample fixation to be accomplished within hours. The protocol can readily be adapted for working with other tissues or organisms. Plant tissues are of special concern because of the presence of aerated spaces and water-filled vacuoles that impede ice-free freezing of water. In addition, the process of chemical fixation is especially long in plants due to cell walls impeding the penetration of the chemicals to deep within the tissues. Plant tissues are therefore particularly challenging, but

  4. High-pressure freezing: current state and future prospects.

    PubMed

    Kaech, Andres; Ziegler, Urs

    2014-01-01

    In this chapter we discuss the latest developments in the field of high-pressure freezing (HPF). The Leica HPF machine EM HPM100 is discussed in detail due to significant changes compared to its predecessor model. Its centerpiece is a multipart polymer cartridge which holds the specimen carrier sandwich and guides it automatically through the freezing process until immersed in liquid nitrogen. The cartridge can be adapted to the specimen and carrier geometry to optimize the flow of liquid nitrogen and hence rapid cooling. Dedicated cartridges are available for a variety of different carriers, including carriers for samples of up to 5 mm in diameter. Cartridge-specific handling and carrier assemblies are described extensively for freezing samples in aluminum specimen carriers, cell cultures grown on Sapphire discs, suspensions for freeze-fracturing, and specimens for cryo-sectioning. Additionally, we include an advanced technique to freeze monolayer cell cultures on Sapphire discs with the Leica EM PACT2 HPF machine using a composite carrier. PMID:24357363

  5. The initial freezing temperature of foods at high pressure.

    PubMed

    Guignon, B; Torrecilla, J S; Otero, L; Ramos, A M; Molina-García, A D; Sanz, P D

    2008-04-01

    The Pure water (P,T)-phase diagram is known in the form of empirical equations or tables from nearly a century as a result of Bridgman's work. However, few data are available on other aqueous systems probably due to the difficulty of high-pressure measurements. As an alternative, six approaches are presented here to obtain the food phase diagrams in the range of pressure 0.1-210 MPa. Both empirical and theoretical methods are described including the use of an artificial neural network (ANN). Experimental freezing points obtained at the laboratory of the authors and from literature are statistically compared to the calculated ones. About 400 independent freezing data points of aqueous solutions, gels, and foods are analysed. A polynomial equation is the most accurate and simple method to describe the entire melting curve. The ANN is the most versatile model, as only one model allows the calculation of the initial freezing point of all the aqueous systems considered. Robinson and Stokes' equation is successfully extended to the high pressures domain with an average prediction error of 0.4 degrees C. The choice of one approach over the others depends mainly on the availability of experimental data, the accuracy required and the intended use for the calculated data.

  6. An improved high pressure freezing and freeze substitution method to preserve the labile vaccinia virus nucleocapsid.

    PubMed

    Jesus, Desyree Murta; Moussatche, Nissin; Condit, Richard C

    2016-07-01

    In recent years, high pressure freezing and freeze substitution have been widely used for electron microscopy to reveal viral and cellular structures that are difficult to preserve. Vaccinia virus, a member of the Poxviridae family, presents one of the most complex viral structures. The classical view of vaccinia virus structure consists of an envelope surrounding a biconcave core, with a lateral body in each concavity of the core. This classical view was challenged by Peters and Muller (1963), who demonstrated the presence of a folded tubular structure inside the virus core and stated the difficulty in visualizing this structure, possibly because it is labile and cannot be preserved by conventional sample preparation. Therefore, this tubular structure, now called the nucleocapsid, has been mostly neglected over the years. Earlier studies were able to preserve the nucleocapsid, but with low efficiency. In this study, we report the protocol (and troubleshooting) that resulted in preservation of the highest numbers of nucleocapsids in several independent preparations. Using this protocol, we were able to demonstrate an interdependence between the formation of the virus core wall and the nucleocapsid, leading to the hypothesis that an interaction exists between the major protein constituents of these compartments, A3 (core wall) and L4 (nucleocapsid). Our results show that high pressure freezing and freeze substitution can be used in more in-depth studies concerning the nucleocapsid structure and function.

  7. High-pressure freezing and freeze substitution of Arabidopsis for electron microscopy.

    PubMed

    Austin, Jotham R

    2014-01-01

    The objectives of electron microscopy ultrastructural studies are to examine cellular architecture and relate the cell's structural machinery to dynamic functional roles. This aspiration is difficult to achieve if specimens have not been adequately preserved in a "living state"; hence specimen preparation is of the utmost importance for the success of any electron micrographic study. High-pressure freezing (HPF)/freeze substitution (FS) has long been recognized as the primer technique for the preservation of ultrastructure in biological samples. In most cases a basic HPF/freeze substitution protocol is sufficient to obtain superior ultrastructural preservation and structural contrast, which allows one to use more advanced microscopy techniques such as 3D electron tomography. However, for plant tissues, which have a thick cell wall, large water-filled vacuoles, and air spaces (all of which are detrimental to cryopreservation), these basic HPF/FS protocols often yield undesirable results. In particular, ice crystal artifacts and the staining of membrane systems are often poorly or negatively stained, which make 3D segmentation of a tomogram difficult. To overcome these problems, various aspects of the HPF/FS protocol can be altered, including the cryo-filler(s) used, freeze substitution cocktail, and the resin infiltration process. This chapter will describe these modifications for the preparation of plant tissues for routine electron microscopic studies, immunocytochemistry, and 3D tomographic electron imaging.

  8. High-Pressure Freezing Electron Microscopy of Zebrafish Oocytes.

    PubMed

    Kanagaraj, Palsamy; Riedel, Dietmar; Dosch, Roland

    2016-01-01

    Oogenesis is an essential cellular and developmental process to prepare the oocyte for propagation of a species after fertilization. Oocytes of oviparous animals are enormous cells endowed with many, big cellular compartments, which are interconnected through active intracellular transport. The dynamic transport pathways and the big organelles of the oocyte provide the opportunity to study cellular trafficking with outstanding resolution. Hence, oocytes were classically used to investigate cellular compartments. Though many novel regulators of vesicle trafficking have been discovered in yeast, tissue culture cells and invertebrates, recent forward genetic screens in invertebrate and vertebrate oocytes isolated novel control proteins specific to multicellular organisms. Zebrafish is a widely used vertebrate model to study cellular and developmental processes in an entire animal. The transparency of zebrafish embryos allows following cellular events during early development with in vivo imaging. Unfortunately, the active endocytosis of the oocyte also represents a drawback for imaging. The massive amounts of yolk globules prevent the penetration of light-beams and currently make in vivo microscopy a challenge. As a consequence, electron microscopy (EM) still provides the highest resolution to analyze the ultra-structural details of compartments and organelles and the mechanisms controlling many cellular pathways of the oocyte. Among different fixation approaches for EM, High Pressure Freezing (HPF) in combination with freeze substitution significantly improves the samples preservation closest to their natural status. Here, we describe the HPF with freeze substitution embedding method for analyzing cellular processes in zebrafish oocytes using electron microscopy. PMID:27557580

  9. Scanning electron microscopy of muscle myofibrils after high pressure freezing and freeze-substitution-staining.

    PubMed

    Malecki, M; Greaser, M L

    1993-03-01

    A novel approach to study the three dimensional ultrastructure of organelles and cells by means of scanning electron microscopy is described. Muscle myofibrils have been used in the development of the techniques since their structure is well characterized using conventional electron microscopic methods. Myofibrils in rigor buffer (with no cryo-protectants or pressure sealants) were frozen at high pressure (2300 bar) within specially designed chambers. The frozen specimens were then freeze-substituted-stained with methanol containing tungsten and iron salts and finally critical point dried. These methods allowed scanning electron microscopic observations of the organization of individual filaments within whole myofibrils over several sarcomeres. Images obtained showed excellent structural preservation with three dimensional information which is not available with other electron microscopic techniques. Success in these approaches was ascribed to (a) rapid and uniform freezing at high pressure without ice segregation patterns, (b) uniform electro-conductivity of the specimen closely attached to the polished carbon piston/carrier, and (c) good electron emission (secondary and back-scattered) from the metal incorporated into the myofibril structure without additional coating. PMID:7686303

  10. Inner ear tissue preservation by rapid freezing: improving fixation by high-pressure freezing and hybrid methods.

    PubMed

    Bullen, A; Taylor, R R; Kachar, B; Moores, C; Fleck, R A; Forge, A

    2014-09-01

    In the preservation of tissues in as 'close to life' state as possible, rapid freeze fixation has many benefits over conventional chemical fixation. One technique by which rapid freeze-fixation can be achieved, high pressure freezing (HPF), has been shown to enable ice crystal artefact-free freezing and tissue preservation to greater depths (more than 40 μm) than other quick-freezing methods. Despite increasingly becoming routine in electron microscopy, the use of HPF for the fixation of inner ear tissue has been limited. Assessment of the quality of preservation showed routine HPF techniques were suitable for preparation of inner ear tissues in a variety of species. Good preservation throughout the depth of sensory epithelia was achievable. Comparison to chemically fixed tissue indicated that fresh frozen preparations exhibited overall superior structural preservation of cells. However, HPF fixation caused characteristic artefacts in stereocilia that suggested poor quality freezing of the actin bundles. The hybrid technique of pre-fixation and high pressure freezing was shown to produce cellular preservation throughout the tissue, similar to that seen in HPF alone. Pre-fixation HPF produced consistent high quality preservation of stereociliary actin bundles. Optimising the preparation of samples with minimal artefact formation allows analysis of the links between ultrastructure and function in inner ear tissues.

  11. Inner ear tissue preservation by rapid freezing: Improving fixation by high-pressure freezing and hybrid methods

    PubMed Central

    Bullen, A.; Taylor, R.R.; Kachar, B.; Moores, C.; Fleck, R.A.; Forge, A.

    2014-01-01

    In the preservation of tissues in as ‘close to life’ state as possible, rapid freeze fixation has many benefits over conventional chemical fixation. One technique by which rapid freeze-fixation can be achieved, high pressure freezing (HPF), has been shown to enable ice crystal artefact-free freezing and tissue preservation to greater depths (more than 40 μm) than other quick-freezing methods. Despite increasingly becoming routine in electron microscopy, the use of HPF for the fixation of inner ear tissue has been limited. Assessment of the quality of preservation showed routine HPF techniques were suitable for preparation of inner ear tissues in a variety of species. Good preservation throughout the depth of sensory epithelia was achievable. Comparison to chemically fixed tissue indicated that fresh frozen preparations exhibited overall superior structural preservation of cells. However, HPF fixation caused characteristic artefacts in stereocilia that suggested poor quality freezing of the actin bundles. The hybrid technique of pre-fixation and high pressure freezing was shown to produce cellular preservation throughout the tissue, similar to that seen in HPF alone. Pre-fixation HPF produced consistent high quality preservation of stereociliary actin bundles. Optimising the preparation of samples with minimal artefact formation allows analysis of the links between ultrastructure and function in inner ear tissues. PMID:25016142

  12. High-pressure freezing for scanning transmission electron tomography analysis of cellular organelles.

    PubMed

    Walther, Paul; Schmid, Eberhard; Höhn, Katharina

    2013-01-01

    Using an electron microscope's scanning transmission mode (STEM) for collection of tomographic datasets is advantageous compared to bright field transmission electron microscopic (TEM). For image formation, inelastic scattering does not cause chromatic aberration, since in STEM mode no image forming lenses are used after the beam has passed the sample, in contrast to regular TEM. Therefore, thicker samples can be imaged. It has been experimentally demonstrated that STEM is superior to TEM and energy filtered TEM for tomography of samples as thick as 1 μm. Even when using the best electron microscope, adequate sample preparation is the key for interpretable results. We adapted protocols for high-pressure freezing of cultivated cells from a physiological state. In this chapter, we describe optimized high-pressure freezing and freeze substitution protocols for STEM tomography in order to obtain high membrane contrast.

  13. The Use of High Pressure Freezing and Freeze Substitution to Study Host-Pathogen Interactions in Fungal Diseases of Plants

    NASA Astrophysics Data System (ADS)

    Mims, C. W.; Celio, Gail J.; Richardson, Elizabeth A.

    2003-12-01

    This article reports on the use of high pressure freezing followed by freeze substitution (HPF/FS) to study ultrastructural details of host pathogen interactions in fungal diseases of plants. The specific host pathogen systems discussed here include a powdery mildew infection of poinsettia and rust infections of daylily and Indian strawberry. The three pathogens considered here all attack the leaves of their hosts and produce specialized hyphal branches known as haustoria that invade individual host cells without killing them. We found that HPF/FS provided excellent preservation of both haustoria and host cells for all three host pathogen systems. Preservation of fungal and host cell membranes was particularly good and greatly facilitated the detailed study of host pathogen interfaces. In some instances, HPF/FS provided information that was not available in samples prepared for study using conventional chemical fixation. On the other hand, we did encounter various problems associated with the use of HPF/FS. Examples included freeze damage of samples, inconsistency of fixation in different samples, separation of plant cell cytoplasm from cell walls, breakage of cell walls and membranes, and splitting of thin sections. However, we believe that the outstanding preservation of ultrastructural details afforded by HPF/FS significantly outweighs these problems and we highly recommend the use of this fixation protocol for future studies of fungal host-plant interactions.

  14. The use of high pressure freezing and freeze substitution to study host-pathogen interactions in fungal diseases of plants.

    PubMed

    Mims, C W; Celio, Gail J; Richardson, Elizabeth A

    2003-12-01

    This article reports on the use of high pressure freezing followed by freeze substitution (HPF/FS) to study ultrastructural details of host-pathogen interactions in fungal diseases of plants. The specific host-pathogen systems discussed here include a powdery mildew infection of poinsettia and rust infections of daylily and Indian strawberry. The three pathogens considered here all attack the leaves of their hosts and produce specialized hyphal branches known as haustoria that invade individual host cells without killing them. We found that HPF/FS provided excellent preservation of both haustoria and host cells for all three host-pathogen systems. Preservation of fungal and host cell membranes was particularly good and greatly facilitated the detailed study of host-pathogen interfaces. In some instances, HPF/FS provided information that was not available in samples prepared for study using conventional chemical fixation. On the other hand, we did encounter various problems associated with the use of HPF/FS. Examples included freeze damage of samples, inconsistency of fixation in different samples, separation of plant cell cytoplasm from cell walls, breakage of cell walls and membranes, and splitting of thin sections. However, we believe that the outstanding preservation of ultrastructural details afforded by HPF/FS significantly outweighs these problems and we highly recommend the use of this fixation protocol for future studies of fungal host-plant interactions. PMID:14750987

  15. Size and location of ice crystals in pork frozen by high-pressure-assisted freezing as compared to classical methods.

    PubMed

    Martino, M N; Otero, L; Sanz, P D; Zaritzky, N E

    1998-11-01

    In high-pressure-assisted freezing, samples are cooled under pressure (200 MPa) to - 20 °C without ice formation then pressure is released (0.1 MPa) and the high super-cooling reached (approx. 20 °C), promotes uniform and rapid ice nucleation. The size and location of ice crystals in large meat pieces (Longissimus dorsi pork muscle) as a result of high-pressure-assisted freezing were compared to those obtained by air-blast and liquid N(2). Samples from the surface and centre of the frozen muscle were histologically analysed using an indirect technique (isothermal-freeze fixation). Air-blast and cryogenic fluid freezing, having thermal gradients, showed non-uniform ice crystal distributions. High-pressure-assisted frozen samples, both at the surface and at the central zones, showed similar, small-sized ice crystals. This technique is particularly useful for freezing large pieces of food when uniform ice crystal sizes are required.

  16. Rapid freeze-substitution preserves membranes in high-pressure frozen tissue culture cells.

    PubMed

    Hawes, P; Netherton, C L; Mueller, M; Wileman, T; Monaghan, P

    2007-05-01

    We describe a method for high-pressure freezing and rapid freeze-substitution of cells in tissue culture which provides excellent preservation of membrane detail with negligible ice segregation artefacts. Cells grown on sapphire discs were placed 'face to face' without removal of tissue culture medium and frozen without the protection of aluminium planchettes. This reduction in thermal load of the sample/holder combination resulted in freezing of cells without visible ice-crystal artefact. Freeze-substitution at -90 degrees C for 60 min in acetone containing 2% uranyl acetate, followed by warming to -50 degrees C and embedding in Lowicryl HM20 gave consistent and clear membrane detail even when imaged without section contrasting. Preliminary data indicates that the high intrinsic contrast of samples prepared in this way will be valuable for tomographic studies. Immunolabelling sensitivity of sections of samples prepared by this rapid substitution technique was poor; however, reducing the uranyl acetate concentration in the substitution medium to 0.2% resulted in improved labelling. Samples substituted in this lower concentration of uranyl acetate also gave good membrane detail when imaged after section contrasting.

  17. A new look at kinetochore structure in vertebrate somatic cells using high-pressure freezing and freeze substitution.

    PubMed

    McEwen, B F; Hsieh, C E; Mattheyses, A L; Rieder, C L

    1998-12-01

    Three decades of structural analysis have produced the view that the kinetochore in vertebrate cells is a disk-shaped structure composed of three distinct structural domains. The most prominent of these consists of a conspicuous electron opaque outer plate that is separated by a light-staining electron-translucent middle plate from an inner plate associated with the surface of the pericentric heterochromatin. Spindle microtubules terminate in the outer plate and, in their absence, a conspicuous corona of fine filaments radiates from the cytoplasmic surface of this plate. Here we report for the first time the ultrastructure of kinetochores in untreated and Colcemid-treated vertebrate somatic (PtK1) cells prepared for optimal structural preservation using high-pressure freezing and freeze substitution. In serial thin sections, and electron tomographic reconstructions, the kinetochore appears as a 50-75 nm thick mat of light-staining fibrous material that is directly connected with the more electron-opaque surface of the centromeric heterochromatin. This mat corresponds to the outer plate in conventional preparations, and is surrounded on its cytoplasmic surface by a conspicuous 100-150 nm wide zone that excludes ribosomes and other cytoplasmic components. High magnification views of this zone reveal that it contains a loose network of light-staining, thin (<9 nm diameter) fibers that are analogous to the corona fibers in conventional preparations. Unlike the chromosome arms, which appear uniformly electron opaque, the chromatin in the primary constriction appears mottled. Since the middle plate is not visible in these kinetochore preparations this feature is likely an artifact produced by extraction and coagulation during conventional fixation and/or dehydration procedures.

  18. Electron microscopy of myelin: Structure preservation by high-pressure freezing.

    PubMed

    Möbius, Wiebke; Nave, Klaus-Armin; Werner, Hauke B

    2016-06-15

    Electron microscopic visualization of nervous tissue morphology is crucial when aiming to understand the biogenesis and structure of myelin in healthy and pathological conditions. However, accurate interpretation of electron micrographs requires excellent tissue preservation. In this short review we discuss the recent utilization of tissue fixation by high-pressure freezing and freeze-substitution, which now supplements aldehyde fixation in the preparation of samples for electron microscopy of myelin. Cryofixation has proven well suited to yield both, improved contrast and excellent preservation of structural detail of the axon/myelin-unit in healthy and mutant mice and can also be applied to other model organisms, including aquatic species. This article is part of a Special Issue entitled SI: Myelin Evolution. PMID:26920467

  19. High pressure freezing, electron microscopy, and immuno-electron microscopy of Tetrahymena thermophila basal bodies.

    PubMed

    Meehl, Janet B; Giddings, Thomas H; Winey, Mark

    2009-01-01

    Preservation of Tetrahymena thermophila basal body ultrastructure for visualization by transmission electron microscopy is improved by a combination of high pressure freezing (HPF) and freeze substitution (FS). These methods also reliably retain the antigenicity of cellular proteins for immuno-electron microscopy, which enables the precise localization of green fluorescent protein (GFP)-tagged and native basal body proteins. The plastic-embedded samples generated by these methods take full advantage of higher resolution visualization techniques such as electron tomography. We describe protocols for cryofixation, FS, immunolabeling, and staining. Suggestions for trouble shooting and evaluation of specimen quality are discussed. In combination with identification and manipulation of a rapidly expanding list of basal body-associated gene products, these methods are being used to increase our understanding of basal body composition, assembly, and function.

  20. Comparison of methods of high-pressure freezing and automated freeze-substitution of suspension cells combined with LR White embedding.

    PubMed

    Sobol, Margarita; Philimonenko, Vlada V; Hozák, Pavel

    2010-12-01

    In this study we present an optimized method of high-pressure freezing and automated freeze-substitution of cultured human cells, followed by LR White embedding, for subsequent immunolabeling. Also, the influence of various conditions of the freeze-substitution procedures such as temperature, duration, and additives in the substitution medium on the preservation of cryo-immobilized cells was analyzed. The recommended approach combines (1) automated freeze-substitution for high reproducibility and minimizing human-derived errors; (2) minimal addition of contrasting and fixing agents; (3) easy-to-use LR White resin for embedment; (4) good preservation of nuclei and nucleoli which are usually the most difficult structures to effectively vitrify and saturate in a resin; and (5) preservation of antigens for sensitive immunogold labeling.

  1. Conventional freezing plus high pressure-low temperature treatment: Physical properties, microbial quality and storage stability of beef meat.

    PubMed

    Fernández, Pedro P; Sanz, Pedro D; Molina-García, Antonio D; Otero, Laura; Guignon, Bérengère; Vaudagna, Sergio R

    2007-12-01

    Meat high-hydrostatic pressure treatment causes severe decolouration, preventing its commercialisation due to consumer rejection. Novel procedures involving product freezing plus low-temperature pressure processing are here investigated. Room temperature (20°C) pressurisation (650MPa/10min) and air blast freezing (-30°C) are compared to air blast freezing plus high pressure at subzero temperature (-35°C) in terms of drip loss, expressible moisture, shear force, colour, microbial quality and storage stability of fresh and salt-added beef samples (Longissimus dorsi muscle). The latter treatment induced solid water transitions among ice phases. Fresh beef high pressure treatment (650MPa/20°C/10min) increased significantly expressible moisture while it decreased in pressurised (650MPa/-35°C/10min) frozen beef. Salt addition reduced high pressure-induced water loss. Treatments studied did not change fresh or salt-added samples shear force. Frozen beef pressurised at low temperature showed L, a and b values after thawing close to fresh samples. However, these samples in frozen state, presented chromatic parameters similar to unfrozen beef pressurised at room temperature. Apparently, freezing protects meat against pressure colour deterioration, fresh colour being recovered after thawing. High pressure processing (20°C or -35°C) was very effective reducing aerobic total (2-log(10) cycles) and lactic acid bacteria counts (2.4-log(10) cycles), in fresh and salt-added samples. Frozen+pressurised beef stored at -18°C during 45 days recovered its original colour after thawing, similarly to just-treated samples while their counts remain below detection limits during storage.

  2. Cartilage ultrastructure after high pressure freezing, freeze substitution, and low temperature embedding. II. Intercellular matrix ultrastructure - preservation of proteoglycans in their native state

    PubMed Central

    1984-01-01

    The extracellular matrix of epiphyseal cartilage tissue was preserved in a state believed to resemble closely that of native tissue following processing by high pressure freezing, freeze substitution, and low temperature embedding (HPF/FS). Proteoglycans (PG) were preserved in an extended state and were apparent as a reticulum of fine filamentous threads throughout the matrix. Within this network, two morphologically discrete components were discernible and identified with the carbohydrate and protein components of PG molecules. Numerous points of contact were clearly visible between components of the PG network and cross-sectioned collagen fibrils and also between PG components and chondrocytic plasmalemmata. These observations provide direct morphological indication that such relationships may exist in native epiphyseal cartilage tissue. PMID:6707091

  3. Preparation of cultured cells using high-pressure freezing and freeze substitution for subsequent 2D or 3D visualization in the transmission electron microscope.

    PubMed

    Hawes, Philippa C

    2015-01-01

    Transmission electron microscopy (TEM) is an invaluable technique used for imaging the ultrastructure of samples and it is particularly useful when determining virus-host interactions at a cellular level. The environment inside a TEM is not favorable for biological material (high vacuum and high energy electrons). Also biological samples have little or no intrinsic electron contrast, and rarely do they naturally exist in very thin sheets, as is required for optimum resolution in the TEM. To prepare these samples for imaging in the TEM therefore requires extensive processing which can alter the ultrastructure of the material. Here we describe a method which aims to minimize preparation artifacts by freezing the samples at high pressure to instantaneously preserve ultrastructural detail, then rapidly substituting the ice and infiltrating with resin to provide a firm matrix which can be cut into thin sections for imaging. Thicker sections of this material can also be imaged and reconstructed into 3D volumes using electron tomography.

  4. Cartilage ultrastructure after high pressure freezing, freeze substitution, and low temperature embedding. I. Chondrocyte ultrastructure--implications for the theories of mineralization and vascular invasion

    PubMed Central

    1984-01-01

    Electron microscopic examination of epiphyseal cartilage tissue processed by high pressure freezing, freeze substitution, and low temperature embedding revealed a substantial improvement in the preservation quality of intracellular organelles by comparison with the results obtained under conventional chemical fixation conditions. Furthermore, all cells throughout the epiphyseal plate, including the terminal chondrocyte adjacent to the region of vascular invasion, were found to be structurally integral. A zone of degenerating cells consistently observed in cartilage tissue processed under conventional chemical fixation conditions was not apparent. Hence, it would appear that cell destruction in this region occurs during chemical processing and is not a feature of cartilage tissue in the native state. Since these cells are situated in a region where tissue calcification is taking place, the implication is that the onset and progression of cartilage calcification are, at least partially, controlled by the chondrocytes themselves. The observation that the terminal cell adjacent to the zone of vascular invasion is viable has important implications in relation to the theory of vascular invasion. This may now require reconceptualization to accommodate the possibility that active cell destruction may be a precondition for vascular invasion. PMID:6707090

  5. Comparison of the ultrastructure of conventionally fixed and high pressure frozen/freeze substituted root tips of Nicotiana and Arabidopsis

    NASA Technical Reports Server (NTRS)

    Kiss, J. Z.; Giddings, T. H. Jr; Staehelin, L. A.; Sack, F. D.

    1990-01-01

    To circumvent the limitations of chemical fixation (CF) and to gain more reliable structural information about higher plant tissues, we have cryofixed root tips of Nicotiana and Arabidopsis by high pressure freezing (HPF). Whereas other freezing techniques preserve tissue to a relatively shallow depth, HPF in conjunction with freeze substitution (FS) resulted in excellent preservation of entire root tips. Compared to CF, in tissue prepared by HPF/FS: (1) the plasmalemma and all internal membranes were much smoother and often coated on the cytoplasmic side by a thin layer of stained material, (2) the plasmalemma was appressed to the cell wall, (3) organelle profiles were rounder, (4) the cytoplasmic, mitochondrial, and amyloplast matrices were denser, (5) vacuoles contained electron dense material, (6) microtubules appeared to be more numerous and straighter, with crossbridges observed between them, (7) cisternae of endoplasmic reticulum (ER) were wider and filled with material, (8) Golgi intercisternal elements were more clearly resolved and were observed between both Golgi vesicles and cisternae, and (9) larger vesicles were associated with Golgi stacks. This study demonstrates that HPF/FS can be used to successfully preserve the ultrastructure of relatively large plant tissues without the use of intracellular cryoprotectants.

  6. High-pressure freezing and freeze-substitution fixation reveal the ultrastructure of immature and mature spermatozoa of the plant-parasitic nematode Trichodorus similis (Nematoda; Triplonchida; Trichodoridae).

    PubMed

    Lak, Behnam; Yushin, Vladimir V; Slos, Dieter; Claeys, Myriam; Decraemer, Wilfrida; Bert, Wim

    2015-10-01

    The spermatozoa from testis and spermatheca of the plant-parasitic nematode Trichodorus similis Seinhorst, 1963 (Nematoda; Triplonchida; Trichodoridae) were studied with transmission electron microscopy (TEM), being the first study on spermatogenesis of a representative of the order Triplonchida and important to unravel nematode sperm evolution. Comprehensive results could only be obtained using high-pressure freezing (HPF) and freeze-substitution instead of chemical fixation, demonstrating the importance of cryo-fixation for nematode ultrastructural research. The spermatozoa from the testis (immature spermatozoa) are unpolarized cells covered by numerous filopodia. They contain a centrally-located nucleus without a nuclear envelope, surrounded by mitochondria. Specific fibrous bodies (FB) as long parallel bundles of filaments occupy the peripheral cytoplasm. No structures resembling membranous organelles (MO), as found in the sperm of many other nematodes, were observed in immature spermatozoa of T. similis. The spermatozoa from the uterus (mature or activated spermatozoa) are bipolar cells with an anterior pseudopod and posterior main cell body (MCB), which include a nucleus, mitochondria and MO appearing as large vesicles with finger-like invaginations of the outer cell membrane, or as large vesicles connected to the inner cell membrane. The peripheral MO open to the exterior via pores. In the mature sperm, neither FBs nor filopodia were observed. An important feature of T. similis spermatozoa is the late formation of MO; they first appear in mature spermatozoa. This pattern of MO formation is known for several other orders of the nematode class Enoplea: Enoplida, Mermithida, Dioctophymatida, Trichinellida but has never been observed in the class Chromadorea.

  7. High quality Si-InP bulk crystal growth by horizontal gradient freeze method under controlled phosphorus vapor pressure

    NASA Astrophysics Data System (ADS)

    Yoshida, S.; Suzuki, J.; Nakayama, M.; Kikuta, T.

    1990-06-01

    High purity InP was grown by horizontal gradient freeze (HGF) method under controlled phosphorus vapor pressure. The ingot was free from residual In and In inclusion. The carrier concentration of undoped InP ingot was almost in the range of (1.1-4.0)×10 15 cm -3 at 77 K even though a quartz boat was used. Using this technique, Si-InP wafers with a high resistivity over 1.0×10 7 Ω cm were obtained by lower Fe doping (4.0×10 15 cm -3). The growth of single crystals using the seeding technique was also tried by direct synthesis. The strict control of the temperature gradient with the CPU system enabled the seeding to be performed reproducibly. A single crystal, 6 cm long, was obtained from the seed end of the ingot, but twin boundaries were generated from the middle of the ingot.

  8. High pressure freezing of intact plant tissues. Evaluation and characterization of novel features of the endoplasmic reticulum and associated membrane systems.

    PubMed

    Craig, S; Staehelin, L A

    1988-04-01

    We have used plant root tips frozen under high pressure in conjunction with freeze-fracture electron microscopy a) to evaluate the quality of freezing of unfixed, non-cryoprotected tissues obtainable with this method, b) to examine the structure of cells frozen under high pressure, c) to evaluate the usefulness of high pressure freezing to preserve transient membrane events, and d) to look for artifacts caused by the high pressure. A single artifact of high pressure, possibly related to the collapse of air spaces during pressurization before freezing, manifested itself as long tears or folds in the plasma membrane. Excellent freezing, as evidenced by the smooth, turgid appearance of all membrane systems and the lack of aggregated cytosolic materials was observed in 10 to 20% of samples. In the best preserved specimens freezing was uniform throughout the sample volume and all organelles were readily identified. In the remaining ones, a gradient of ice crystal sizes was seen; cells within 50 to 100 microns of the surface being better preserved than those in the interior. Cortical microtubules appeared well preserved as were close associations of endoplasmic reticulum (ER) with nuclear, Golgi and plasma membranes. Junctions between the ER and nuclear membrane were constricted and much thinner (30 nm in diameter) than in chemically-fixed, thin-sectioned tissue, and although no continuities between the ER and Golgi membranes were observed, many Golgi stacks had an adjacent ER cisterna either at the cis or trans face. Both Golgi and ER cisternae exhibited distinct, round dilations indicative of vesicle blebbing or vesicle fusion events. Characteristic disc- and horseshoe-shaped infoldings of the plasma membrane corresponding to fused secretory vesicle and/or membrane recycling structures were also prominent in many cells. Short extensions of the cortical ER cisternae were regularly observed appressed against these plasma membrane infoldings suggesting a functional role

  9. Cryo-fixation by self-pressurized rapid freezing.

    PubMed

    Grabenbauer, Markus; Han, Hong-Mei; Huebinger, Jan

    2014-01-01

    High-pressure freeze fixation is the method of choice to arrest instantly all dynamic and physiological processes inside cells, tissues, and small organisms. Embedded in vitreous ice, such samples can be further processed by freeze substitution or directly analyzed in their fully hydrated state by cryo-electron microscopy of vitreous sections (CEMOVIS) to explore cellular ultrastructure as close as possible to the native state. Here, we describe the procedure of self-pressurized rapid freezing as fast, easy-to-use, and low-cost freeze fixation method, avoiding the usage of a high-pressure freezing (HPF) apparatus. Cells or small organisms are placed in capillary metal tubes, which are tightly closed and plunged directly into liquid ethane cooled by liquid nitrogen. In parts of the tube, crystalline ice is formed and builds up pressure sufficient for the liquid-glass transition of the remaining specimen. The quality of samples is equivalent to preparations by conventional HPF apparatus, allowing for high-resolution cryo-EM applications or for freeze substitution and plastic embedding.

  10. Microaspiration for high-pressure freezing: a new method for ultrastructural preservation of fragile and sparse tissues for TEM and electron tomography

    SciTech Connect

    Auer, Manfred; Triffo, W.J.; Palsdottir, H.; McDonald, K.L.; Inman, J.L.; Bissell, M.J.; Raphael, R.M.; Auer, M.; Lee, J.K.

    2008-02-13

    High-pressure freezing is the preferred method to prepare thick biological specimens for ultrastructural studies. However, the advantages obtained by this method often prove unattainable for samples that are difficult to handle during the freezing and substitution protocols. Delicate and sparse samples are difficult to manipulate and maintain intact throughout the sequence of freezing, infiltration, embedding, and final orientation for sectioning and subsequent TEM imaging. An established approach to surmount these difficulties is the use of cellulose microdialysis tubing to transport the sample. With an inner diameter of 200 micrometers, the tubing protects small and fragile samples within the thickness constraints of high-pressure freezing, and the tube ends can be sealed to avoid loss of sample. Importantly, the transparency of the tubing allows optical study of the specimen at different steps in the process. Here, we describe the use of a micromanipulator and microinjection apparatus to handle and position delicate specimens within the tubing. We report two biologically significant examples that benefit from this approach, 3D cultures of mammary epithelial cells and cochlear outer hair cells. We illustrate the potential for correlative light and electron microscopy as well as electron tomography.

  11. Effect of temperature, high pressure and freezing/thawing of dry-cured ham slices on dielectric time domain reflectometry response.

    PubMed

    Rubio-Celorio, Marc; Garcia-Gil, Núria; Gou, Pere; Arnau, Jacint; Fulladosa, Elena

    2015-02-01

    Dielectric Time Domain Reflectometry (TDR) is a useful technique for the characterization and classification of dry-cured ham according to its composition. However, changes in the behavior of dielectric properties may occur depending on environmental factors and processing. The effect of temperature, high pressure (HP) and freezing/thawing of dry-cured ham slices on the obtained TDR curves and on the predictions of salt and water contents when using previously developed predictive models, was evaluated in three independent experiments. The results showed that at temperatures below 20 °C there is an increase of the predicted salt content error, being more important in samples with higher water content. HP treatment caused a decrease of the reflected signal intensity due to the major mobility of available ions promoting an increase of the predicted salt content. Freezing/thawing treatment caused an increase of the reflected signal intensity due to the microstructural damages and the loss of water and ions, promoting a decrease of the predicted salt content.

  12. Macromolecular differentiation of Golgi stacks in root tips of Arabidopsis and Nicotiana seedlings as visualized in high pressure frozen and freeze-substituted samples

    NASA Technical Reports Server (NTRS)

    Staehelin, L. A.; Giddings, T. H. Jr; Kiss, J. Z.; Sack, F. D.

    1990-01-01

    The plant root tip represents a fascinating model system for studying changes in Golgi stack architecture associated with the developmental progression of meristematic cells to gravity sensing columella cells, and finally to "young" and "old", polysaccharide-slime secreting peripheral cells. To this end we have used high pressure freezing in conjunction with freeze-substitution techniques to follow developmental changes in the macromolecular organization of Golgi stacks in root tips of Arabidopsis and Nicotiana. Due to the much improved structural preservation of all cells under investigation, our electron micrographs reveal both several novel structural features common to all Golgi stacks, as well as characteristic differences in morphology between Golgi stacks of different cell types. Common to all Golgi stacks are clear and discrete differences in staining patterns and width of cis, medial and trans cisternae. Cis cisternae have the widest lumina (approximately 30 nm) and are the least stained. Medial cisternae are narrower (approximately 20 nm) and filled with more darkly staining products. Most trans cisternae possess a completely collapsed lumen in their central domain, giving rise to a 4-6 nm wide dark line in cross-sectional views. Numerous vesicles associated with the cisternal margins carry a non-clathrin type of coat. A trans Golgi network with clathrin coated vesicles is associated with all Golgi stacks except those of old peripheral cells. It is easily distinguished from trans cisternae by its blebbing morphology and staining pattern. The zone of ribosome exclusion includes both the Golgi stack and the trans Golgi network. Intercisternal elements are located exclusively between trans cisternae of columella and peripheral cells, but not meristematic cells. In older peripheral cells only trans cisternae exhibit slime-related staining. Golgi stacks possessing intercisternal elements also contain parallel rows of freeze-fracture particles in their trans

  13. Heat of freezing for supercooled water: measurements at atmospheric pressure.

    PubMed

    Cantrell, Will; Kostinski, Alexander; Szedlak, Anthony; Johnson, Alexandria

    2011-06-16

    Unlike reversible phase transitions, the amount of heat released upon freezing of a metastable supercooled liquid depends on the degree of supercooling. Although terrestrial supercooled water is ubiquitous and has implications for cloud dynamics and nucleation, measurements of its heat of freezing are scarce. We have performed calorimetric measurements of the heat released by freezing water at atmospheric pressure as a function of supercooling. Our measurements show that the heat of freezing can be considerably below one predicted from a reversible hydrostatic process. Our measurements also indicate that the state of the resulting ice is not fully specified by the final pressure and temperature; the ice is likely to be strained on a variety of scales, implying a higher vapor pressure. This would reduce the vapor gradient between supercooled water and ice in mixed phase atmospheric clouds. PMID:21087023

  14. Heat of freezing for supercooled water: measurements at atmospheric pressure.

    PubMed

    Cantrell, Will; Kostinski, Alexander; Szedlak, Anthony; Johnson, Alexandria

    2011-06-16

    Unlike reversible phase transitions, the amount of heat released upon freezing of a metastable supercooled liquid depends on the degree of supercooling. Although terrestrial supercooled water is ubiquitous and has implications for cloud dynamics and nucleation, measurements of its heat of freezing are scarce. We have performed calorimetric measurements of the heat released by freezing water at atmospheric pressure as a function of supercooling. Our measurements show that the heat of freezing can be considerably below one predicted from a reversible hydrostatic process. Our measurements also indicate that the state of the resulting ice is not fully specified by the final pressure and temperature; the ice is likely to be strained on a variety of scales, implying a higher vapor pressure. This would reduce the vapor gradient between supercooled water and ice in mixed phase atmospheric clouds.

  15. Effects of pressure-shift freezing and pressure-assisted thawing on sea bass (Dicentrarchus labrax) quality.

    PubMed

    Tironi, V; LeBail, A; de Lamballerie, M

    2007-09-01

    Effects of pressure-shift freezing and/or pressure-assisted thawing on the quality of sea bass muscle were evaluated and compared with conventional (air-blast) frozen and thawed samples. Microstructural analysis showed a marked decrease of muscle cell damage for pressure-assisted frozen samples. According to differential scanning calorimetry (DSC), protein extractability, and SDS-PAGE results, high-pressure treatment (200 MPa) produced a partial denaturation with aggregation and insolubilization of the myosin, as well as alterations of the sarcoplasmic proteins. Only small differences between high-pressure processes (freezing or/and thawing) were registered. High-pressure-treated systems led to a decrease of water holding capacity but differences between high-pressure and conventional methods disappeared after cooking. Muscle color showed important alterations due to high-pressure treatments (increasing L* and b*).

  16. An Equipment to Measure the Freezing Point of Soils under Higher Pressure

    NASA Astrophysics Data System (ADS)

    Wang, Dayan; Guan, Hui; Wen, Zhi; Ma, Wei

    2014-05-01

    Soil freezing point is the highest temperature at which ice can be presented in the system and soil can be referred to as frozen. The freezing temperature of soil is an important parameter for solving many practical problems in civil engineering, such as evaluation of soil freezing depth, prediction of soil heaving, force of soil suction, etc. However, as the freezing temperature is always affected by many factors like soil particle size, mineral composition, water content and the external pressure endured by soils, to measure soil freezing point is a rather difficult task until now, not to mention the soil suffering higher pressure. But recently, with the artificial freezing technology widely used in the excavation of deep underground space, the frozen wall thickness is a key factor to impact the security and stability of deep frozen wall. To determine the freeze wall thickness, the location of the freezing front must be determined firstly, which will deal with the determination of the soil freezing temperature. So how to measure the freezing temperature of soil suffering higher pressure is an important problem to be solved. This paper will introduce an equipment which was developed lately by State Key Laboratory of Frozen Soil Engineering to measure the freezing-point of soils under higher pressure. The equipment is consisted of cooling and keeping temperature system, temperature sensor and data collection system. By cooling and keeping temperature system, not only can we make the higher pressure soil sample's temperature drop to a discretionary minus temperature, but also keep it and reduce the heat exchange of soil sample with the outside. The temperature sensor is the key part to our measurement, which is featured by high precision and high sensitivity, what is more important is that the temperature sensor can work in a higher pressure condition. Moreover, the major benefit of this equipment is that the soil specimen's loads can be loaded by any microcomputer

  17. Functional compartmentation of the Golgi apparatus of plant cells : immunocytochemical analysis of high-pressure frozen- and freeze-substituted sycamore maple suspension culture cells.

    PubMed

    Zhang, G F; Staehelin, L A

    1992-07-01

    The Golgi apparatus of plant cells is engaged in both the processing of glycoproteins and the synthesis of complex polysaccharides. To investigate the compartmentalization of these functions within individual Golgi stacks, we have analyzed the ultrastructure and the immunolabeling patterns of high-pressure frozen and freeze-substituted suspension-cultured sycamore maple (Acer pseudoplatanus L.) cells. As a result of the improved structural preservation, three morphological types of Golgi cisternae, designated cis, medial, and trans, as well as the trans Golgi network, could be identified. The number of cis cisternae per Golgi stack was found to be fairly constant at approximately 1, whereas the number of medial and trans cisternae per stack was variable and accounted for the varying number of cisternae (3-10) among the many Golgi stacks examined. By using a battery of seven antibodies whose specific sugar epitopes on secreted polysaccharides and glycoproteins are known, we have been able to determine in which types of cisternae specific sugars are added to N-linked glycans, and to xyloglucan and polygalacturonic acid/rhamnogalacturonan-I, two complex polysaccharides. The findings are as follows. The beta-1,4-linked d-glucosyl backbone of xyloglucan is synthesized in trans cisternae, and the terminal fucosyl residues on the trisaccharide side chains of xyloglucan are partly added in the trans cisternae, and partly in the trans Golgi network. In contrast, the polygalacturonic/rhamnogalacturonan-I backbone is assembled in cis and medial cisternae, methylesterification of the carboxyl groups of the galacturonic acid residues in the polygalacturonic acid domains occurs mostly in medial cisternae, and arabinose-containing side chains of the polygalacturonic acid domains are added to the nascent polygalacturonic acid/rhamnogalacturonan-I molecules in the trans cisternae. Double labeling experiments demonstrate that xyloglucan and polygalacturonic acid

  18. Theoretical and experimental studies on freezing point depression and vapor pressure deficit as methods to measure osmotic pressure of aqueous polyethylene glycol and bovine serum albumin solutions.

    PubMed

    Kiyosawa, Keitaro

    2003-05-01

    For survival in adverse environments where there is drought, high salt concentration or low temperature, some plants seem to be able to synthesize biochemical compounds, including proteins, in response to changes in water activity or osmotic pressure. Measurement of the water activity or osmotic pressure of simple aqueous solutions has been based on freezing point depression or vapor pressure deficit. Measurement of the osmotic pressure of plants under water stress has been mainly based on vapor pressure deficit. However, differences have been noted for osmotic pressure values of aqueous polyethylene glycol (PEG) solutions measured by freezing point depression and vapor pressure deficit. For this paper, the physicochemical basis of freezing point depression and vapor pressure deficit were first examined theoretically and then, the osmotic pressure of aqueous ethylene glycol and of PEG solutions were measured by both freezing point depression and vapor pressure deficit in comparison with other aqueous solutions such as NaCl, KCl, CaCl(2), glucose, sucrose, raffinose, and bovine serum albumin (BSA) solutions. The results showed that: (1) freezing point depression and vapor pressure deficit share theoretically the same physicochemical basis; (2) theoretically, they are proportional to the molal concentration of the aqueous solutions to be measured; (3) in practice, the osmotic pressure levels of aqueous NaCl, KCl, CaCl(2), glucose, sucrose, and raffinose solutions increase in proportion to their molal concentrations and there is little inconsistency between those measured by freezing point depression and vapor pressure deficit; (4) the osmotic pressure levels of aqueous ethylene glycol and PEG solutions measured by freezing point depression differed from the values measured by vapor pressure deficit; (5) the osmotic pressure of aqueous BSA solution measured by freezing point depression differed slightly from that measured by vapor pressure deficit.

  19. An improved high performance liquid chromatography-photodiode array detection-atmospheric pressure chemical ionization-mass spectrometry method for determination of chlorophylls and their derivatives in freeze-dried and hot-air-dried Rhinacanthus nasutus (L.) Kurz.

    PubMed

    Kao, Tsai Hua; Chen, Chia Ju; Chen, Bing Huei

    2011-10-30

    Rhinacanthus nasutus (L.) Kurz, a traditional Chinese herb possessing antioxidant and anti-cancer activities, has been reported to contain functional components like carotenoids and chlorophylls. However, the variety and amount of chlorophylls remain uncertain. The objectives of this study were to develop a high performance liquid chromatography-photodiode array detection-atmospheric pressure chemical ionization-mass spectrometry (HPLC-DAD-APCI-MS) method for determination of chlorophylls and their derivatives in hot-air-dried and freeze-dried R. nasutus. An Agilent Eclipse XDB-C18 column and a gradient mobile phase composed of methanol/N,N-dimethylformamide (97:3, v/v), acetonitrile and acetone were employed to separate internal standard zinc-phthalocyanine plus 12 cholorophylls and their derivatives within 21 min, including chlorophyll a, chlorophyll a', hydroxychlorophyll a, 15-OH-lactone chlorophyll a, chlorophyll b, chlorophyll b', hydroxychlorophyll b, pheophytin a, pheophytin a', hydroxypheophytin a, hydroxypheophytin a' and pheophytin b in hot-air-dried R. nasutus with flow rate at 1 mL/min and detection at 660 nm. But, in freeze-dried R. nasutus, only 4 chlorophylls and their derivatives, including chlorophyll a, chlorophyll a', chlorophyll b and pheophytin a were detected. Zinc-phthalocyanine was found to be an appropriate internal standard to quantify all the chlorophyll compounds. After quantification by HPLC-DAD, both chlorophyll a and pheophytin a were the most abundant in hot-air-dried R. nasutus, while in freeze-dried R. nasutus, chlorophyll a and chlorophyll b dominated. PMID:22063550

  20. Studies on Gape and Heave of Foodstuffs Due to Internal Pressure during Freezing

    NASA Astrophysics Data System (ADS)

    Ogawa, Yutaka

    The Present experiments were carried out on freezing of round type of yellowfin tuna / albacore to measure the internal pressure which causes gape and heave of frozen body during the CaCl2 brine immersion freezing under outer pressure and to forstall these undue defects on frozen foodstuffs by the internal pressure. Both of the temperature and the internal pressure of yellowfin tuna / albacore were measured and recorded continuously by a temperature sensor and a pressure sensor during the freezing. The results were that frozen body supported to resist against considerable pressure during the freezing under outer pressure and that gape of frozen body was created by the internal pressure during the freezing when the body had been coverd with many scales or could not be expanded during the freezing. The empirical result that the thick spherical body under outer and internal pressure like round type tuna stacked in a fish hold always caused gape and heave during freezing was theoretically supported. The internal pressure or stress of frozen bodies was released by a thermal equalizing process during freezing

  1. High Blood Pressure

    MedlinePlus

    ... version High Blood Pressure Overview What is blood pressure? Blood pressure is the amount of force that your ... called your blood pressure. What is high blood pressure? High blood pressure (also called hypertension) occurs when your blood ...

  2. Effects of Pressure-shift Freezing on the Structural and Physical Properties of Gelatin Hydrogel Matrices

    PubMed Central

    Kim, Byeongsoo; Gil, Hyung Bae; Min, Sang-Gi; Lee, Si-Kyung; Choi, Mi-Jung

    2014-01-01

    This study investigates the effects of the gelatin concentration (10-40%, w/v), freezing temperatures (from -20℃ to -50℃) and freezing methods on the structural and physical properties of gelatin matrices. To freeze gelatin, the pressure-shift freezing (PSF) is being applied at 0.1 (under atmospheric control), 50 and 100 MPa, respectively. The freezing point of gelatin solutions decrease with increasing gelatin concentrations, from -0.2℃ (10% gelatin) to -6.7℃ (40% gelatin), while the extent of supercooling did not show any specific trends. The rheological properties of the gelatin indicate that both the storage (G') and loss (G") moduli were steady in the strain amplitude range of 0.1-10%. To characterize gelatin matrices formed by the various freezing methods, the ice crystal sizes which were being determined by the scanning electron microscopy (SEM) are affected by the gelatin concentrations. The ice crystal sizes are affected by gelatin concentrations and freezing temperature, while the size distributions of ice crystals depend on the freezing methods. Smaller ice crystals are being formed with PSF rather than under the atmospheric control where the freezing temperature is above -40℃. Thus, the results of this study indicate that the PSF processing at a very low freezing temperature (-50℃) offers a potential advantage over commercial atmospheric freezing points for the formation of small ice crystals. PMID:26760743

  3. New expressions to describe solution nonideal osmotic pressure, freezing point depression, and vapor pressure.

    PubMed

    Fullerton, G D; Zimmerman, R J; Cantu, C; Cameron, I L

    1992-12-01

    New empirical expressions for osmotic pressure, freezing point depression, and vapor pressure are proposed based on the concepts of volume occupancy and (or) hydration force. These expressions are in general inverse relationships in comparison to the standard ideal expressions for the same properties. The slopes of the new equations are determined by the molecular weight of the solute and known constants. The accuracy and precision of the molecular weights calculated from the slope are identical and approximately 1% for the experiments reported here. The nonideality of all three colligative expressions is described by a dimensionless constant called the solute-solvent interaction parameter I. The results on sucrose have the same I = 0.26 for all three solution properties. The nonideality parameter I increased from 0.26 on sucrose to 1.7 on hemoglobin to successfully describe the well-known nonideal response of macromolecules.

  4. Self-pressurized rapid freezing (SPRF) as a simple fixation method for cryo-electron microscopy of vitreous sections.

    PubMed

    Han, Hong-Mei; Huebinger, Jan; Grabenbauer, Markus

    2012-05-01

    Cryo-electron microscopy of vitreous sections (CEMOVIS) is currently considered the method of choice to explore cellular ultrastructure at high resolution as close as possible to their native state. Here, we apply a novel, easy-to-use and low-cost freeze fixation method for CEMOVIS, avoiding the use of high-pressure freezing apparatus. Cells are placed in capillary metal tubes, which are tightly closed and plunged directly into liquid ethane cooled by liquid nitrogen. In some parts of the tube, crystalline ice is formed, building up pressure sufficient for the liquid-glass transition of the remaining specimen. We verified the presence of vitreous ice in these preparations using CEMOVIS and electron diffraction. Furthermore, different tube materials being less poisonous than copper were established to minimize physiological alterations of the specimen. Bacteria, yeast and mammalian cells were tested for molecular resolution. The quality of results is equivalent to samples prepared by conventional high pressure freezing apparatus, thus establishing this novel method as fast, easy-to-use and low-cost freeze fixation alternative for cryo-EM.

  5. High Blood Pressure (Hypertension)

    MedlinePlus

    ... Print Page Text Size: A A A Listen High Blood Pressure (Hypertension) Nearly 1 in 3 American adults has high ... weight. How Will I Know if I Have High Blood Pressure? High blood pressure is a silent problem — you ...

  6. High Blood Pressure

    MedlinePlus

    ... version of this page please turn Javascript on. High Blood Pressure What Is High Blood Pressure? High blood pressure is a common disease in ... the heart, kidneys, brain, and eyes. Types of High Blood Pressure There are two main types of high blood ...

  7. Analysis of freeze-thaw embolism in conifers. The interaction between cavitation pressure and tracheid size.

    PubMed

    Pittermann, Jarmila; Sperry, John S

    2006-01-01

    Ice formation in the xylem sap produces air bubbles that under negative xylem pressures may expand and cause embolism in the xylem conduits. We used the centrifuge method to evaluate the relationship between freeze-thaw embolism and conduit diameter across a range of xylem pressures (Px) in the conifers Pinus contorta and Juniperus scopulorum. Vulnerability curves showing loss of conductivity (embolism) with Px down to -8 MPa were generated with versus without superimposing a freeze-thaw treatment. In both species, the freeze-thaw plus water-stress treatment caused more embolism than water stress alone. We estimated the critical conduit diameter (Df) above which a tracheid will embolize due to freezing and thawing and found that it decreased from 35 microm at a Px of -0.5 MPa to 6 microm at -8 MPa. Further analysis showed that the proportionality between diameter of the air bubble nucleating the cavitation and the diameter of the conduit (kL) declined with increasingly negative Px. This suggests that the bubbles causing cavitation are smaller in proportion to tracheid diameter in narrow tracheids than in wider ones. A possible reason for this is that the rate of dissolving increases with bubble pressure, which is inversely proportional to bubble diameter (La Place's law). Hence, smaller bubbles shrink faster than bigger ones. Last, we used the empirical relationship between Px and Df to model the freeze-thaw response in conifer species.

  8. High Blood Pressure

    MedlinePlus

    ... page from the NHLBI on Twitter. Description of High Blood Pressure Español High blood pressure is a common disease ... defines high blood pressure severity levels. Stages of High Blood Pressure in Adults Stages Systolic (top number) Diastolic (bottom ...

  9. High blood pressure medicines

    MedlinePlus

    Hypertension - medicines ... blood vessel diseases. You may need to take medicines to lower your blood pressure if lifestyle changes ... blood pressure to the target level. WHEN ARE MEDICINES FOR HIGH BLOOD PRESSURE USED Most of the ...

  10. High blood pressure - infants

    MedlinePlus

    Hypertension - infants ... and blood vessels The health of the kidneys High blood pressure in infants may be due to kidney or ... blood vessel of the kidney) In newborn babies, high blood pressure is often caused by a blood clot in ...

  11. Pressure shift freezing of pork muscle: effect on color, drip loss, texture, and protein stability.

    PubMed

    Zhu, Songming; Le Bail, Alain; Chapleau, Nicolas; Ramaswamy, Hosahalli S; De Lamballerie-Anton, Marie

    2004-01-01

    Cylindrical specimens (50 mm diameter and 160 mm length) of fresh pork muscle (boneless rib portions) packed in plastic bags were frozen by pressure shift freezing (PSF) at 100, 150, and 200 MPa, air blast freezing (ABF), and liquid immersion freezing (LIF). Temperature and phase transformations of the muscle tissue were monitored during the freezing process at three locations: center, midway between the center and the surface, and near the surface. Pork muscle quality changes [color, drip loss (both thawing and cooking), texture (shear force), and protein stability (DSC thermal profiles)] were evaluated after thawing the frozen samples at room temperature (20 degrees C). Employing pressures above 150 MPa caused very significant (P < 0.01) color changes in pork muscle during the PSF process. The PSF process reduced thawing drip loss of pork muscle but did not cause obvious changes in total drip loss following thawing and subsequent cooking. PSF at 150 and 200 MPa resulted in considerable denaturation of myofibrillar proteins of pork muscle. The PSF process also caused an increase in the pork muscle toughness as compared with that of unfrozen, ABF, and LIF samples.

  12. High Blood Pressure (Hypertension)

    MedlinePlus

    ... For Consumers Consumer Information by Audience For Women High Blood Pressure (Hypertension) Share Tweet Linkedin Pin it More sharing options ... En Español Who is at risk? How is high blood pressure treated? Understanding your blood pressure: What do the ...

  13. Freezing and Melting of 3D Complex Plasma Structures under Microgravity Conditions Driven by Neutral Gas Pressure Manipulation

    SciTech Connect

    Khrapak, S. A.; Klumov, B. A.; Huber, P.; Thomas, H. M.; Ivlev, A. V.; Morfill, G. E.; Molotkov, V. I.; Lipaev, A. M.; Naumkin, V. N.; Petrov, O. F.; Fortov, V. E.; Malentschenko, Yu.; Volkov, S.

    2011-05-20

    Freezing and melting of large three-dimensional complex plasmas under microgravity conditions is investigated. The neutral gas pressure is used as a control parameter to trigger the phase changes: Complex plasma freezes (melts) by decreasing (increasing) the pressure. The evolution of complex plasma structural properties upon pressure variation is studied. Theoretical estimates allow us to identify the main factors responsible for the observed behavior.

  14. Hypertension (High Blood Pressure)

    MedlinePlus

    ... pressure to live. Without it, blood can't flow through our bodies and carry oxygen to our vital organs. But when blood pressure gets too high — a condition called hypertension — it can lead to ...

  15. High Blood Pressure in Pregnancy

    MedlinePlus

    ... The Health Information Center High Blood Pressure in Pregnancy What Is High Blood Pressure? Blood pressure is ... Are the Effects of High Blood Pressure in Pregnancy? Although many pregnant women with high blood pressure ...

  16. Fast membrane osmometer as alternative to freezing point and vapor pressure osmometry.

    PubMed

    Grattoni, Alessandro; Canavese, Giancarlo; Montevecchi, Franco Maria; Ferrari, Mauro

    2008-04-01

    Osmometry is an essential technique for solution analysis and the investigation of chemical and biological phenomena. Commercially available osmometers rely on the measurements of freezing point, vapor pressure, and osmotic pressure of solutions. Although vapor pressure osmometry (VPO) and freezing point osmometry (FPO) can perform rapid and inexpensive measurements, they are indirect techniques, which rely on thermodynamic assumptions, which limit their applicability. While membrane osmometry (MO) provides a potentially unlimited direct measurement of osmotic pressure and solution osmolality, the conventional technique is often time-consuming and difficult to operate. In the present work, a novel membrane osmometer is presented. The instrument significantly reduces the conventional MO measurement time and is not subject to the limitations of VPO and FPO. For this paper, the osmotic pressure of aqueous sucrose solutions was collected in a molality range 0-5.5, by way of demonstration of the new instrument. When compared with data found in the literature, the experimental data were generally in good agreement. However, differences among results from the three techniques were observed.

  17. High temperature pressure gauge

    DOEpatents

    Echtler, J. Paul; Scandrol, Roy O.

    1981-01-01

    A high temperature pressure gauge comprising a pressure gauge positioned in fluid communication with one end of a conduit which has a diaphragm mounted in its other end. The conduit is filled with a low melting metal alloy above the diaphragm for a portion of its length with a high temperature fluid being positioned in the remaining length of the conduit and in the pressure gauge.

  18. Flux-freezing breakdown in high-conductivity magnetohydrodynamic turbulence.

    PubMed

    Eyink, Gregory; Vishniac, Ethan; Lalescu, Cristian; Aluie, Hussein; Kanov, Kalin; Bürger, Kai; Burns, Randal; Meneveau, Charles; Szalay, Alexander

    2013-05-23

    The idea of 'frozen-in' magnetic field lines for ideal plasmas is useful to explain diverse astrophysical phenomena, for example the shedding of excess angular momentum from protostars by twisting of field lines frozen into the interstellar medium. Frozen-in field lines, however, preclude the rapid changes in magnetic topology observed at high conductivities, as in solar flares. Microphysical plasma processes are a proposed explanation of the observed high rates, but it is an open question whether such processes can rapidly reconnect astrophysical flux structures much greater in extent than several thousand ion gyroradii. An alternative explanation is that turbulent Richardson advection brings field lines implosively together from distances far apart to separations of the order of gyroradii. Here we report an analysis of a simulation of magnetohydrodynamic turbulence at high conductivity that exhibits Richardson dispersion. This effect of advection in rough velocity fields, which appear non-differentiable in space, leads to line motions that are completely indeterministic or 'spontaneously stochastic', as predicted in analytical studies. The turbulent breakdown of standard flux freezing at scales greater than the ion gyroradius can explain fast reconnection of very large-scale flux structures, both observed (solar flares and coronal mass ejections) and predicted (the inner heliosheath, accretion disks, γ-ray bursts and so on). For laminar plasma flows with smooth velocity fields or for low turbulence intensity, stochastic flux freezing reduces to the usual frozen-in condition.

  19. Optical extinction of highly porous aerosol following atmospheric freeze drying

    NASA Astrophysics Data System (ADS)

    Adler, Gabriela; Haspel, Carynelisa; Moise, Tamar; Rudich, Yinon

    2014-06-01

    Porous glassy particles are a potentially significant but unexplored component of atmospheric aerosol that can form by aerosol processing through the ice phase of high convective clouds. The optical properties of porous glassy aerosols formed from a freeze-dry cycle simulating freezing and sublimation of ice particles were measured using a cavity ring down aerosol spectrometer (CRD-AS) at 532 nm and 355 nm wavelength. The measured extinction efficiency was significantly reduced for porous organic and mixed organic-ammonium sulfate particles as compared to the extinction efficiency of the homogeneous aerosol of the same composition prior to the freeze-drying process. A number of theoretical approaches for modeling the optical extinction of porous aerosols were explored. These include effective medium approximations, extended effective medium approximations, multilayer concentric sphere models, Rayleigh-Debye-Gans theory, and the discrete dipole approximation. Though such approaches are commonly used to describe porous particles in astrophysical and atmospheric contexts, in the current study, these approaches predicted an even lower extinction than the measured one. Rather, the best representation of the measured extinction was obtained with an effective refractive index retrieved from a fit to Mie scattering theory assuming spherical particles with a fixed void content. The single-scattering albedo of the porous glassy aerosols was derived using this effective refractive index and was found to be lower than that of the corresponding homogeneous aerosol, indicating stronger relative absorption at the wavelengths measured. The reduced extinction and increased absorption may be of significance in assessing direct, indirect, and semidirect forcing in regions where porous aerosols are expected to be prevalent.

  20. Summer Freezing Resistance: A Critical Filter for Plant Community Assemblies in Mediterranean High Mountains.

    PubMed

    Pescador, David S; Sierra-Almeida, Ángela; Torres, Pablo J; Escudero, Adrián

    2016-01-01

    Assessing freezing community response and whether freezing resistance is related to other functional traits is essential for understanding alpine community assemblages, particularly in Mediterranean environments where plants are exposed to freezing temperatures and summer droughts. Thus, we characterized the leaf freezing resistance of 42 plant species in 38 plots at Sierra de Guadarrama (Spain) by measuring their ice nucleation temperature, freezing point (FP), and low-temperature damage (LT50), as well as determining their freezing resistance mechanisms (i.e., tolerance or avoidance). The community response to freezing was estimated for each plot as community weighted means (CWMs) and functional diversity (FD), and we assessed their relative importance with altitude. We established the relationships between freezing resistance, growth forms, and four key plant functional traits (i.e., plant height, specific leaf area, leaf dry matter content (LDMC), and seed mass). There was a wide range of freezing resistance responses and more than in other alpine habitats. At the community level, the CWMs of FP and LT50 responded negatively to altitude, whereas the FD of both traits increased with altitude. The proportion of freezing-tolerant species also increased with altitude. The ranges of FP and LT50 varied among growth forms, and only leaf dry matter content was negatively correlated with freezing-resistance traits. Summer freezing events represent important abiotic filters for assemblies of Mediterranean high mountain communities, as suggested by the CWMs. However, a concomitant summer drought constraint may also explain the high freezing resistance of species that thrive in these areas and the lower FD of freezing resistance traits at lower altitudes. Leaves with high dry matter contents may maintain turgor at lower water potential and enhance drought tolerance in parallel to freezing resistance. This adaptation to drought seems to be a general prerequisite for plants

  1. Summer Freezing Resistance: A Critical Filter for Plant Community Assemblies in Mediterranean High Mountains.

    PubMed

    Pescador, David S; Sierra-Almeida, Ángela; Torres, Pablo J; Escudero, Adrián

    2016-01-01

    Assessing freezing community response and whether freezing resistance is related to other functional traits is essential for understanding alpine community assemblages, particularly in Mediterranean environments where plants are exposed to freezing temperatures and summer droughts. Thus, we characterized the leaf freezing resistance of 42 plant species in 38 plots at Sierra de Guadarrama (Spain) by measuring their ice nucleation temperature, freezing point (FP), and low-temperature damage (LT50), as well as determining their freezing resistance mechanisms (i.e., tolerance or avoidance). The community response to freezing was estimated for each plot as community weighted means (CWMs) and functional diversity (FD), and we assessed their relative importance with altitude. We established the relationships between freezing resistance, growth forms, and four key plant functional traits (i.e., plant height, specific leaf area, leaf dry matter content (LDMC), and seed mass). There was a wide range of freezing resistance responses and more than in other alpine habitats. At the community level, the CWMs of FP and LT50 responded negatively to altitude, whereas the FD of both traits increased with altitude. The proportion of freezing-tolerant species also increased with altitude. The ranges of FP and LT50 varied among growth forms, and only leaf dry matter content was negatively correlated with freezing-resistance traits. Summer freezing events represent important abiotic filters for assemblies of Mediterranean high mountain communities, as suggested by the CWMs. However, a concomitant summer drought constraint may also explain the high freezing resistance of species that thrive in these areas and the lower FD of freezing resistance traits at lower altitudes. Leaves with high dry matter contents may maintain turgor at lower water potential and enhance drought tolerance in parallel to freezing resistance. This adaptation to drought seems to be a general prerequisite for plants

  2. Summer Freezing Resistance: A Critical Filter for Plant Community Assemblies in Mediterranean High Mountains

    PubMed Central

    Pescador, David S.; Sierra-Almeida, Ángela; Torres, Pablo J.; Escudero, Adrián

    2016-01-01

    Assessing freezing community response and whether freezing resistance is related to other functional traits is essential for understanding alpine community assemblages, particularly in Mediterranean environments where plants are exposed to freezing temperatures and summer droughts. Thus, we characterized the leaf freezing resistance of 42 plant species in 38 plots at Sierra de Guadarrama (Spain) by measuring their ice nucleation temperature, freezing point (FP), and low-temperature damage (LT50), as well as determining their freezing resistance mechanisms (i.e., tolerance or avoidance). The community response to freezing was estimated for each plot as community weighted means (CWMs) and functional diversity (FD), and we assessed their relative importance with altitude. We established the relationships between freezing resistance, growth forms, and four key plant functional traits (i.e., plant height, specific leaf area, leaf dry matter content (LDMC), and seed mass). There was a wide range of freezing resistance responses and more than in other alpine habitats. At the community level, the CWMs of FP and LT50 responded negatively to altitude, whereas the FD of both traits increased with altitude. The proportion of freezing-tolerant species also increased with altitude. The ranges of FP and LT50 varied among growth forms, and only leaf dry matter content was negatively correlated with freezing-resistance traits. Summer freezing events represent important abiotic filters for assemblies of Mediterranean high mountain communities, as suggested by the CWMs. However, a concomitant summer drought constraint may also explain the high freezing resistance of species that thrive in these areas and the lower FD of freezing resistance traits at lower altitudes. Leaves with high dry matter contents may maintain turgor at lower water potential and enhance drought tolerance in parallel to freezing resistance. This adaptation to drought seems to be a general prerequisite for plants

  3. High pressure melt ejection

    SciTech Connect

    Tarbell, W.W.; Brockmann, J.E.; Pilch, M.

    1983-01-01

    Recent probabilistic risk assessments have identified the potential for reactor pressure vessel failure while the reactor coolant system is at elevated pressure. The analyses postulate that the blowdown of steam and hydrogen into the reactor cavity will cause the core material to be swept from the cavity region into the containment building. The High Pressure Melt Streaming (HIPS) program is an experimental study of the high pressure ejection of molten material and subsequent interactions within a concrete cavity. The program focuses on using prototypic system conditions and scaled models of reactor geometries to accurately simulate the ex-vessel processes during high-pressure accident sequences. Scaling analyses of the experiment show that the criteria established for core debris removal from the cavity are met or exceeded. Tests are performed at two scales, representing 1/10th and 1/20th linear reproductions of the Zion reactor plant. Results of the 1/20th scale tests are presented.

  4. High-pressure microfluidics

    NASA Astrophysics Data System (ADS)

    Hjort, K.

    2015-03-01

    When using appropriate materials and microfabrication techniques, with the small dimensions the mechanical stability of microstructured devices allows for processes at high pressures without loss in safety. The largest area of applications has been demonstrated in green chemistry and bioprocesses, where extraction, synthesis and analyses often excel at high densities and high temperatures. This is accessible through high pressures. Capillary chemistry has been used since long but, just like in low-pressure applications, there are several potential advantages in using microfluidic platforms, e.g., planar isothermal set-ups, large local variations in geometries, dense form factors, small dead volumes and precisely positioned microstructures for control of reactions, catalysis, mixing and separation. Other potential applications are in, e.g., microhydraulics, exploration, gas driven vehicles, and high-pressure science. From a review of the state-of-art and frontiers of high pressure microfluidics, the focus will be on different solutions demonstrated for microfluidic handling at high pressures and challenges that remain.

  5. Pressure-freezing with conformational conversion of 3-aminopropan-1-ol molecules.

    PubMed

    Gajda, Roman; Katrusiak, Andrzej

    2008-08-01

    3-Aminopropan-1-ol, NH(2)(CH(2))(3)OH, was pressure-frozen and its structure determined at 0.2, 0.9 and 1.31 GPa by single-crystal X-ray diffraction. The freezing pressure of 0.13 GPa at 296 K was measured by ruby fluorescence in the diamond-anvil cell and from compressibility measurement in the piston-and-cylinder reaction press. The molecules assume an extended conformation in the crystalline state, different from the pseudo-ring conformers, with the terminal groups linked by an intramolecular hydrogen bond, present in the gaseous and liquid states. The polar arrangement in the 3-aminopropan-1-ol crystals is explained in terms of the pattern of intermolecular hydrogen bonds. PMID:18641449

  6. Prevention of High Blood Pressure

    MedlinePlus

    ... page from the NHLBI on Twitter. Prevention of High Blood Pressure Healthy lifestyle habits, proper use of medicines, and ... prevent high blood pressure or its complications. Preventing High Blood Pressure Onset Healthy lifestyle habits can help prevent high ...

  7. What Is High Blood Pressure?

    MedlinePlus

    ... Blood Pressure Tools & Resources Stroke More What is High Blood Pressure? Updated:Aug 26,2016 High blood pressure, also ... content was last reviewed on 08/04/2014. High Blood Pressure • Home • About High Blood Pressure (HBP) Introduction What ...

  8. Diagnosis of High Blood Pressure

    MedlinePlus

    ... the NHLBI on Twitter. Diagnosis of High Blood Pressure For most patients, health care providers diagnose high ... 140/90 mmHg or above. Confirming High Blood Pressure A blood pressure test is easy and painless ...

  9. High pressure furnace

    DOEpatents

    Morris, D.E.

    1993-09-14

    A high temperature high pressure furnace has a hybrid partially externally heated construction. A metallic vessel fabricated from an alloy having a composition of at least 45% nickel, 15% chrome, and 10% tungsten is utilized (the preferred alloy including 55% nickel, 22% chrome, 14% tungsten, 2% molybdenum, 3% iron (maximum) and 5% cobalt (maximum)). The disclosed alloy is fabricated into 11/4 or 2 inch, 32 mm or 50 mm bar stock and has a length of about 22 inches, 56 cm. This bar stock has an aperture formed therein to define a closed high temperature, high pressure oxygen chamber. The opposite and closed end of the vessel is provided with a small blind aperture into which a thermocouple can be inserted. The closed end of the vessel is inserted into an oven, preferably heated by standard nickel chrome electrical elements and having a heavily insulated exterior. 19 figures.

  10. High pressure furnace

    DOEpatents

    Morris, Donald E.

    1993-01-01

    A high temperature high pressure furnace has a hybrid partially externally heated construction. A metallic vessel fabricated from an alloy having a composition of at least 45% nickel, 15% chrome, and 10% tungsten is utilized (the preferred alloy including 55% nickel, 22% chrome, 14% tungsten, 2% molybdenum, 3% iron (maximum) and 5% cobalt (maximum). The disclosed alloy is fabricated into 11/4 or 2 inch, 32 mm or 50 mm bar stock and has a length of about 22 inches, 56 cm. This bar stock has an aperture formed therein to define a closed high temperature, high pressure oxygen chamber. The opposite and closed end of the vessel is provided with a small blind aperture into which a thermocouple can be inserted. The closed end of the vessel is inserted into an oven, preferably heated by standard nickel chrome electrical elements and having a heavily insulated exterior.

  11. High pressure oxygen furnace

    DOEpatents

    Morris, D.E.

    1992-07-14

    A high temperature high pressure oxygen furnace having a hybrid partially externally heated construction is disclosed. A metallic bar fabricated from an alloy having a composition of at least 45% nickel, 15% chrome, and 10% tungsten is utilized, the preferred alloy including 55% nickel, 22% chrome, 14% tungsten, 2% molybdenum, 3% iron (maximum) and 5% cobalt (maximum). The disclosed alloy is fabricated into 11/4 inch bar stock and has a length of about 17 inches. This bar stock is gun drilled for over 16 inches of its length with 0.400 inch aperture to define a closed high temperature, high pressure oxygen chamber. The opposite and closed end of the bar is provided with a small support aperture into which both a support and a thermocouple can be inserted. The closed end of the gun drilled bar is inserted into an oven, preferably heated by standard nickel chrome electrical elements and having a heavily insulated exterior. 5 figs.

  12. High pressure oxygen furnace

    DOEpatents

    Morris, Donald E.

    1992-01-01

    A high temperature high pressure oxygen furnace having a hybrid partially externally heated construction is disclosed. A metallic bar fabricated from an alloy having a composition of at least 45% nickel, 15% chrome, and 10% tungsten is utilized (the preferred alloy including 55% nickel, 22% chrome, 14% tungsten, 2% molybdenum, 3% iron (maximum) and 5% cobalt (maximum). The disclosed alloy is fabricated into 11/4 inch bar stock and has a length of about 17 inches. This bar stock is gun drilled for over 16 inches of its length with 0.400 inch aperture to define a closed high temperature, high pressure oxygen chamber. The opposite and closed end of the bar is provided with a small support aperture into which both a support and a thermocouple can be inserted. The closed end of the gun drilled bar is inserted into an oven, preferably heated by standard nickel chrome electrical elements and having a heavily insulated exterior.

  13. Arginine and proline applied as food additives stimulate high freeze tolerance in larvae of Drosophila melanogaster.

    PubMed

    Koštál, Vladimír; Korbelová, Jaroslava; Poupardin, Rodolphe; Moos, Martin; Šimek, Petr

    2016-08-01

    The fruit fly Drosophila melanogaster is an insect of tropical origin. Its larval stage is evolutionarily adapted for rapid growth and development under warm conditions and shows high sensitivity to cold. In this study, we further developed an optimal acclimation and freezing protocol that significantly improves larval freeze tolerance (an ability to survive at -5°C when most of the freezable fraction of water is converted to ice). Using the optimal protocol, freeze survival to adult stage increased from 0.7% to 12.6% in the larvae fed standard diet (agar, sugar, yeast, cornmeal). Next, we fed the larvae diets augmented with 31 different amino compounds, administered in different concentrations, and observed their effects on larval metabolomic composition, viability, rate of development and freeze tolerance. While some diet additives were toxic, others showed positive effects on freeze tolerance. Statistical correlation revealed tight association between high freeze tolerance and high levels of amino compounds involved in arginine and proline metabolism. Proline- and arginine-augmented diets showed the highest potential, improving freeze survival to 42.1% and 50.6%, respectively. Two plausible mechanisms by which high concentrations of proline and arginine might stimulate high freeze tolerance are discussed: (i) proline, probably in combination with trehalose, could reduce partial unfolding of proteins and prevent membrane fusions in the larvae exposed to thermal stress (prior to freezing) or during freeze dehydration; (ii) both arginine and proline are exceptional among amino compounds in their ability to form supramolecular aggregates which probably bind partially unfolded proteins and inhibit their aggregation under increasing freeze dehydration.

  14. Arginine and proline applied as food additives stimulate high freeze tolerance in larvae of Drosophila melanogaster.

    PubMed

    Koštál, Vladimír; Korbelová, Jaroslava; Poupardin, Rodolphe; Moos, Martin; Šimek, Petr

    2016-08-01

    The fruit fly Drosophila melanogaster is an insect of tropical origin. Its larval stage is evolutionarily adapted for rapid growth and development under warm conditions and shows high sensitivity to cold. In this study, we further developed an optimal acclimation and freezing protocol that significantly improves larval freeze tolerance (an ability to survive at -5°C when most of the freezable fraction of water is converted to ice). Using the optimal protocol, freeze survival to adult stage increased from 0.7% to 12.6% in the larvae fed standard diet (agar, sugar, yeast, cornmeal). Next, we fed the larvae diets augmented with 31 different amino compounds, administered in different concentrations, and observed their effects on larval metabolomic composition, viability, rate of development and freeze tolerance. While some diet additives were toxic, others showed positive effects on freeze tolerance. Statistical correlation revealed tight association between high freeze tolerance and high levels of amino compounds involved in arginine and proline metabolism. Proline- and arginine-augmented diets showed the highest potential, improving freeze survival to 42.1% and 50.6%, respectively. Two plausible mechanisms by which high concentrations of proline and arginine might stimulate high freeze tolerance are discussed: (i) proline, probably in combination with trehalose, could reduce partial unfolding of proteins and prevent membrane fusions in the larvae exposed to thermal stress (prior to freezing) or during freeze dehydration; (ii) both arginine and proline are exceptional among amino compounds in their ability to form supramolecular aggregates which probably bind partially unfolded proteins and inhibit their aggregation under increasing freeze dehydration. PMID:27489218

  15. HIGH PRESSURE GAS REGULATOR

    DOEpatents

    Ramage, R.W.

    1962-05-01

    A gas regulator operating on the piston and feedback principle is described. The device is particularly suitable for the delicate regulation of high pressure, i.e., 10,000 psi and above, gas sources, as well as being perfectly adaptable for use on gas supplies as low as 50 psi. The piston is adjustably connected to a needle valve and the movement of the piston regulates the flow of gas from the needle valve. The gas output is obtained from the needle valve. Output pressure is sampled by a piston feedback means which, in turn, regulates the movement of the main piston. When the output is other than the desired value, the feedback system initiates movement of the main piston to allow the output pressure to be corrected or to remain constant. (AEC)

  16. High pressure atomization

    NASA Astrophysics Data System (ADS)

    Bracco, F. V.

    1982-03-01

    The main objective of these grants has been to study the fundamental processes which lead to the atomization of high pressure jets injected into compressed gases through single hole nozzles. Specific topics include: Dependence of Spray Angle and Other Spray Parameters on Nozzle Design and Operating Conditions; Ultra High Speed Filming of Atomizing Jets; Mechanism of Breakup of Highly Super Heated Liquid Jets; Measurements of the Spray Angle of Atomizing Jets; Mechanism of Atomization of a Liquid Jet; Scaling of Transient Laminar, Turbulent, and Spray Jets; Computations of Drop Sizes in Pulsating Sprays and of Liquid Core Length in Vaporizing Sprays; and Scaling of Impulsively Started Sprays.

  17. High-freezing-point fuels used for aviation turbine engines

    NASA Technical Reports Server (NTRS)

    Friedman, R.

    1979-01-01

    Broadened-specification aviation fuels could be produced from a greater fraction of crude source material with improvements in fuel supply and price. These fuels, particularly those with increased final boiling temperatures, would have higher freezing temperatures than current aviation turbine fuels. The higher-freezing-point fuels can be substituted in the majority of present commercial flights, since temperature data indicate that in-flight fuel temperatures are relatively mild. For the small but significant fraction of commercial flights where low fuel temperatures make higher freezing-point fuel use unacceptable, adaptations to the fuel or fuel system may be made to accommodate this fuel. Several techniques are discussed. Fuel heating is the most promising concept. One simple system design uses existing heat rejection from the fuel-lubricating oil cooler, another uses an engine-driven generator for electrical heating. Both systems offer advantages that outweigh the obvious penalties.

  18. High pressure ratio turbocharger

    SciTech Connect

    Woollenweber, W.E.

    1991-06-25

    This patent describes a turbocharger system for an internal combustion engine. It comprises means forming a turbine adapted to be driven by exhaust gas from an internal combustion engine comprising: a turbine wheel having a central core and outwardly extending vanes, the turbine wheel being rotatable about a central axis; a meridionally divided volute for exhaust gas surrounding the turbine wheel, the meridionally divided volute including a divider wall defining first and second volute passageways with openings at the turbine wheel; means forming a high-pressure compressor driven by the turbine means, the high-pressure compressor comprising: rotating compressor blades, the compressor blades adapted to be driven in rotation about the central axis by the turbine means to deliver a flow of air at high pressures for an internal combustion engine, and blades being moveable about longitudinal axes generally transverse to the central axis to impart positive or negative pre-whirl motion to the air leaving the stator blades prior to entering the rotating blades of the compressor stage; closure means for providing a flow of engine exhaust gas from one of the first and second volute passageways into the turbine wheel; and a control means for operating the closure means and the stator blades in synchronization.

  19. Living with High Blood Pressure

    MedlinePlus

    ... page from the NHLBI on Twitter. Living With High Blood Pressure If you have high blood pressure, the best thing to do is to talk ... help you track your blood pressure. Pregnancy Planning High blood pressure can cause problems for mother and baby. High ...

  20. High freezing point fuels used for aviation turbine engines

    NASA Technical Reports Server (NTRS)

    Friedman, R.

    1979-01-01

    Broadened-specification aviation fuels could be produced from a greater fraction of crude source material with improvements in fuel supply and price. These fuels, particularly those with increased final boiling temperatures, would have higher freezing temperatures than current aviation turbine fuels. For the small but significant fraction of commercial flights where low fuel temperatures make higher freezing-point fuel use unacceptable, adaptations to the fuel or fuel system may be made to accommodate this fuel. Several techniques are discussed. Fuel heating is the most promising concept. One simple design uses existing heat rejection from the fuel-lubricating oil cooler, another uses an engine-driven generator for electrical heating.

  1. Stroke and High Blood Pressure

    MedlinePlus

    ... Blood Pressure Tools & Resources Stroke More Stroke and High Blood Pressure Updated:Jan 6,2015 Stroke is a leading ... to heart disease and stroke. Start exploring today ! High Blood Pressure • Home • About High Blood Pressure (HBP) • Why HBP ...

  2. Pressure Dome for High-Pressure Electrolyzer

    NASA Technical Reports Server (NTRS)

    Norman, Timothy; Schmitt, Edwin

    2012-01-01

    A high-strength, low-weight pressure vessel dome was designed specifically to house a high-pressure [2,000 psi (approx. = 13.8 MPa)] electrolyzer. In operation, the dome is filled with an inert gas pressurized to roughly 100 psi (approx. = 690 kPa) above the high, balanced pressure product oxygen and hydrogen gas streams. The inert gas acts to reduce the clamping load on electrolyzer stack tie bolts since the dome pressure acting axially inward helps offset the outward axial forces from the stack gas pressure. Likewise, radial and circumferential stresses on electrolyzer frames are minimized. Because the dome is operated at a higher pressure than the electrolyzer product gas, any external electrolyzer leak prevents oxygen or hydrogen from leaking into the dome. Instead the affected stack gas stream pressure rises detectably, thereby enabling a system shutdown. All electrical and fluid connections to the stack are made inside the pressure dome and require special plumbing and electrical dome interfaces for this to be accomplished. Further benefits of the dome are that it can act as a containment shield in the unlikely event of a catastrophic failure. Studies indicate that, for a given active area (and hence, cell ID), frame outside diameter must become ever larger to support stresses at higher operating pressures. This can lead to a large footprint and increased costs associated with thicker and/or larger diameter end-plates, tie-rods, and the frames themselves. One solution is to employ rings that fit snugly around the frame. This complicates stack assembly and is sometimes difficult to achieve in practice, as its success is strongly dependent on frame and ring tolerances, gas pressure, and operating temperature. A pressure dome permits an otherwise low-pressure stack to operate at higher pressures without growing the electrolyzer hardware. The pressure dome consists of two machined segments. An O-ring is placed in an O-ring groove in the flange of the bottom

  3. HIGH PRESSURE DIES

    DOEpatents

    Wilson, W.B.

    1960-05-31

    A press was invented for subjecting specimens of bismuth, urania, yttria, or thoria to high pressures and temperatures. The press comprises die parts enclosing a space in which is placed an electric heater thermally insulated from the die parts so as not to damage them by heat. The die parts comprise two opposed inner frustoconical parts and an outer part having a double frustoconical recess receiving the inner parts. The die space decreases in size as the inner die parts move toward one another against the outer part and the inner parts, though very hard, do not fracture because of the mode of support provided by the outer part.

  4. Modeling the Freezing of SN in High Temperature Furnaces

    NASA Technical Reports Server (NTRS)

    Brush, Lucien

    1999-01-01

    Presently, crystal growth furnaces are being designed that will be used to monitor the crystal melt interface shape and the solutal and thermal fields in its vicinity during the directional freezing of dilute binary alloys, To monitor the thermal field within the solidifying materials, thermocouple arrays (AMITA) are inserted into the sample. Intrusive thermocouple monitoring devices can affect the experimental data being measured. Therefore, one objective of this work is to minimize the effect of the thermocouples on the data generated. To aid in accomplishing this objective, two models of solidification have been developed. Model A is a fully transient, one dimensional model for the freezing of a dilute binary alloy that is used to compute temperature profiles for comparison with measurements taken from the thermocouples. Model B is a fully transient two dimensional model of the solidification of a pure metal. It will be used to uncover the manner in which thermocouple placement and orientation within the ampoule breaks the longitudinal axis of symmetry of the thermal field and the crystal-melt interface. Results and conclusions are based on the comparison of the models with experimental results taken during the freezing of pure Sn.

  5. Drought increases the freezing resistance of high-elevation plants of the Central Chilean Andes.

    PubMed

    Sierra-Almeida, Angela; Reyes-Bahamonde, Claudia; Cavieres, Lohengrin A

    2016-08-01

    Freezing temperatures and summer droughts shape plant life in Mediterranean high-elevation habitats. Thus, the impacts of climate change on plant survival for these species could be quite different to those from mesic mountains. We exposed 12 alpine species to experimental irrigation and warming in the Central Chilean Andes to assess whether irrigation decreases freezing resistance, irrigation influences freezing resistance when plants are exposed to warming, and to assess the relative importance of irrigation and temperature in controlling plant freezing resistance. Freezing resistance was determined as the freezing temperature that produced 50 % photoinactivation [lethal temperature (LT50)] and the freezing point (FP). In seven out of 12 high-Andean species, LT50 of drought-exposed plants was on average 3.5 K lower than that of irrigated plants. In contrast, most species did not show differences in FP. Warming changed the effect of irrigation on LT50. Depending on species, warming was found to have (1) no effect, (2) to increase, or (3) to decrease the irrigation effect on LT50. However, the effect size of irrigation on LT50 was greater than that of warming for almost all species. The effect of irrigation on FP was slightly changed by warming and was sometimes in disagreement with LT50 responses. Our data show that drought increases the freezing resistance of high-Andean plant species as a general plant response. Although freezing resistance increases depended on species-specific traits, our results show that warmer and moister growing seasons due to climate change will seriously threaten plant survival and persistence of these and other alpine species in dry mountains.

  6. Drought increases the freezing resistance of high-elevation plants of the Central Chilean Andes.

    PubMed

    Sierra-Almeida, Angela; Reyes-Bahamonde, Claudia; Cavieres, Lohengrin A

    2016-08-01

    Freezing temperatures and summer droughts shape plant life in Mediterranean high-elevation habitats. Thus, the impacts of climate change on plant survival for these species could be quite different to those from mesic mountains. We exposed 12 alpine species to experimental irrigation and warming in the Central Chilean Andes to assess whether irrigation decreases freezing resistance, irrigation influences freezing resistance when plants are exposed to warming, and to assess the relative importance of irrigation and temperature in controlling plant freezing resistance. Freezing resistance was determined as the freezing temperature that produced 50 % photoinactivation [lethal temperature (LT50)] and the freezing point (FP). In seven out of 12 high-Andean species, LT50 of drought-exposed plants was on average 3.5 K lower than that of irrigated plants. In contrast, most species did not show differences in FP. Warming changed the effect of irrigation on LT50. Depending on species, warming was found to have (1) no effect, (2) to increase, or (3) to decrease the irrigation effect on LT50. However, the effect size of irrigation on LT50 was greater than that of warming for almost all species. The effect of irrigation on FP was slightly changed by warming and was sometimes in disagreement with LT50 responses. Our data show that drought increases the freezing resistance of high-Andean plant species as a general plant response. Although freezing resistance increases depended on species-specific traits, our results show that warmer and moister growing seasons due to climate change will seriously threaten plant survival and persistence of these and other alpine species in dry mountains. PMID:27053321

  7. High pressure capillary connector

    DOEpatents

    Renzi, Ronald F.

    2005-08-09

    A high pressure connector capable of operating at pressures of 40,000 psi or higher is provided. This connector can be employed to position a first fluid-bearing conduit that has a proximal end and a distal end to a second fluid-bearing conduit thereby providing fluid communication between the first and second fluid-bearing conduits. The connector includes (a) an internal fitting assembly having a body cavity with (i) a lower segment that defines a lower segment aperture and (ii) an interiorly threaded upper segment, (b) a first member having a first member aperture that traverses its length wherein the first member aperture is configured to accommodate the first fluid-bearing conduit and wherein the first member is positioned in the lower segment of the internal fitting assembly, and (c) a second member having a second member aperture that traverses its length wherein the second member is positioned in the upper segment of the fitting assembly and wherein a lower surface of the second member is in contact with an upper surface of the first member to assert a compressive force onto the first member and wherein the first member aperture and the second member aperture are coaxial.

  8. High Blood Pressure

    MedlinePlus

    Blood pressure is the force of your blood pushing against the walls of your arteries. Each time your heart ... it pumps blood into the arteries. Your blood pressure is highest when your heart beats, pumping the ...

  9. Hypertension (High Blood Pressure)

    MedlinePlus

    ... blood pressure with the development of a practical method to measure it. Physicians began to note associations between hypertension and risk of heart failure, stroke, and kidney failure. Although scientists had yet to prove that lowering blood pressure ...

  10. Freeze-drying for morphological control of high performance semi-interpenetrating polymer networks. III

    NASA Technical Reports Server (NTRS)

    Hsiung, H. J.; Hansen, M. G.; Pater, R. H.

    1991-01-01

    The feasibility of using a freeze-drying (solvent removal by sublimation) approach for controlling the morphology of a high-performance semi-IPN is assessed. A high-performance thermoplastic polyimide and commercially available 4,4'-bismaleimide diphenylenemethane were dissolved in a solvent, 1,3,5-trioxane. The solvent was removed from the constituents by freeze-drying. For purposes of comparison, the constituents were dissolved in a high-boiling-point solvent, N,N-dimethylformamide. The solvent was removed from the solution by evaporation. The physical and mechanical properties and phase morphology of the neat resins and composites prepared by freeze-drying and traditional solution methods are presented and compared. It is concluded that the TG is higher and that the magnitude of minor constituent separation is less in the freeze-dry processed materials than for the processed solution.

  11. Design and evaluation of aircraft heat source systems for use with high-freezing point fuels

    NASA Technical Reports Server (NTRS)

    Pasion, A. J.

    1979-01-01

    The objectives were the design, performance and economic analyses of practical aircraft fuel heating systems that would permit the use of high freezing-point fuels on long-range aircraft. Two hypothetical hydrocarbon fuels with freezing points of -29 C and -18 C were used to represent the variation from current day jet fuels. A Boeing 747-200 with JT9D-7/7A engines was used as the baseline aircraft. A 9300 Km mission was used as the mission length from which the heat requirements to maintain the fuel above its freezing point was based.

  12. High Blood Pressure Fact Sheet

    MedlinePlus

    ... this? Submit What's this? Submit Button Related CDC Web Sites Heart Disease Stroke High Blood Pressure Salt ... Prevent and Control Chronic Diseases Million Hearts® WISEWOMAN Web Sites with More Information About High Blood Pressure ...

  13. What Causes High Blood Pressure?

    MedlinePlus

    ... page from the NHLBI on Twitter. Causes of High Blood Pressure Changes, either from genes or the environment, in ... and blood vessel structure and function. Biology and High Blood Pressure Researchers continue to study how various changes in ...

  14. High pressure mechanical seal

    NASA Technical Reports Server (NTRS)

    Babel, Henry W. (Inventor); Fuson, Phillip L. (Inventor); Chickles, Colin D. (Inventor); Jones, Cherie A. (Inventor); Anderson, Raymond H. (Inventor)

    1995-01-01

    A relatively impervious mechanical seal is formed between the outer surface of a tube and the inside surface of a mechanical fitting of a high pressure fluid or hydraulic system by applying a very thin soft metal layer onto the outer surface of the hard metal tube and/or inner surface of the hard metal fitting, prior to swaging the fitting onto the tube. The thickness of such thin metal layer is independent of the size of the tube and/or fittings. Many metals and alloys of those metals exhibit the requisite softness, including silver, gold, nickel, tin, platinum, indium, rhodium and cadmium. Suitably, the coating is about 0.0025 millimeters (0.10 mils) in thickness. After swaging, the tube and fitting combination exhibits very low leak rates on the order or 10.sup.-8 cubic centimeters per second or less as meaured using the Helium leak test.

  15. High pressure mechanical seal

    NASA Technical Reports Server (NTRS)

    Babel, Henry W. (Inventor); Anderson, Raymond H. (Inventor)

    1996-01-01

    A relatively impervious mechanical seal is formed between the outer surface of a tube and the inside surface of a mechanical fitting of a high pressure fluid or hydraulic system by applying a very thin soft metal layer onto the outer surface of the hard metal tube and/or inner surface of the hard metal fitting. The thickness of such thin metal layer is independent of the size of the tube and/or fittings. Many metals and alloys of those metals exhibit the requisite softness, including silver, gold, tin, platinum, indium, rhodium and cadmium. Suitably, the coating is about 0.0025 millimeters (0.10 mils) in thickness. After compression, the tube and fitting combination exhibits very low leak rates on the order or 10.sup.-8 cubic centimeters per second or less as measured using the Helium leak test.

  16. [High Pressure Gas Tanks

    NASA Technical Reports Server (NTRS)

    Quintana, Rolando

    2002-01-01

    Four high-pressure gas tanks, the basis of this study, were especially made by a private contractor and tested before being delivered to NASA Kennedy Space Center. In order to insure 100% reliability of each individual tank the staff at KSC decided to again submit the four tanks under more rigorous tests. These tests were conducted during a period from April 10 through May 8 at KSC. This application further validates the predictive safety model for accident prevention and system failure in the testing of four high-pressure gas tanks at Kennedy Space Center, called Continuous Hazard Tracking and Failure Prediction Methodology (CHTFPM). It is apparent from the variety of barriers available for a hazard control that some barriers will be more successful than others in providing protection. In order to complete the Barrier Analysis of the system, a Task Analysis and a Biomechanical Study were performed to establish the relationship between the degree of biomechanical non-conformities and the anomalies found within the system on particular joints of the body. This relationship was possible to obtain by conducting a Regression Analysis to the previously generated data. From the information derived the body segment with the lowest percentage of non-conformities was the neck flexion with 46.7%. Intense analysis of the system was conducted including Preliminary Hazard Analysis (PHA), Failure Mode and Effect Analysis (FMEA), and Barrier Analysis. These analyses resulted in the identification of occurrences of conditions, which may be becoming hazardous in the given system. These conditions, known as dendritics, may become hazards and could result in an accident, system malfunction, or unacceptable risk conditions. A total of 56 possible dendritics were identified. Work sampling was performed to observe the occurrence each dendritic. The out of control points generated from a Weighted c control chart along with a Pareto analysis indicate that the dendritics "Personnel not

  17. High-pressure neutron diffraction

    SciTech Connect

    Xu, Hongwu

    2011-01-10

    This lecture will cover progress and prospect of applications of high-pressure neutron diffraction techniques to Earth and materials sciences. I will first introduce general high-pressure research topics and available in-situ high-pressure techniques. Then I'll talk about high-pressure neutron diffraction techniques using two types of pressure cells: fluid-driven and anvil-type cells. Lastly, I will give several case studies using these techniques, particularly, those on hydrogen-bearing materials and magnetic transitions.

  18. High Blood Pressure in Pregnancy

    MedlinePlus

    ... of the baby. Controlling your blood pressure during pregnancy and getting regular prenatal care are important for ... your baby. Treatments for high blood pressure in pregnancy may include close monitoring of the baby, lifestyle ...

  19. Coupled fluid-thermal analysis of low-pressure sublimation and condensation with application to freeze-drying

    NASA Astrophysics Data System (ADS)

    Ganguly, Arnab

    Freeze-drying is a low-pressure, low-temperature condensation pumping process widely used in the manufacture of bio-pharmaceuticals for removal of solvents by sublimation. The goal of the process is to provide a stable dosage form by removing the solvent in such a way that the sensitive molecular structure of the active substance is least disturbed. The vacuum environment presents unique challenges for understanding and controlling heat and mass transfer in the process. As a result, the design of equipment and associated processes has been largely empirical, slow and inefficient. A comprehensive simulation framework to predict both, process and equipment performance is critical to improve current practice. A part of the dissertation is aimed at performing coupled fluid-thermal analysis of low-pressure sublimation-condensation processes typical of freeze-drying technologies. Both, experimental and computational models are used to first understand the key heat transfer modes during the process. A modeling and computational framework, validated with experiments for analysis of sublimation, water-vapor flow and condensation in application to pharmaceutical freeze-drying is developed. Augmented with computational fluid dynamics modeling, the simulation framework presented here allows to predict for the first time, dynamic product/process conditions taking into consideration specifics of equipment design. Moreover, by applying the modeling framework to process design based on a design-space approach, it has demonstrated that there is a viable alternative to empiricism.

  20. High pressure storage vessel

    DOEpatents

    Liu, Qiang

    2013-08-27

    Disclosed herein is a composite pressure vessel with a liner having a polar boss and a blind boss a shell is formed around the liner via one or more filament wrappings continuously disposed around at least a substantial portion of the liner assembly combined the liner and filament wrapping have a support profile. To reduce susceptible to rupture a locally disposed filament fiber is added.

  1. Scanning electron microscopy of high-pressure-frozen sea urchin embryos.

    PubMed

    Walther, P; Chen, Y; Malecki, M; Zoran, S L; Schatten, G P; Pawley, J B

    1993-12-01

    High-pressure-freezing permits direct cryo-fixation of sea urchin embryos having a defined developmental state without the formation of large ice crystals. We have investigated preparation protocols for observing high-pressure-frozen and freeze-fractured samples in the scanning electron microscope. High-pressure-freezing was superior to other freezing protocols, because the whole bulk sample was reasonably well frozen and the overall three-dimensional shape of the embryos was well preserved. The samples were either dehydrated by freeze-substitution and critical-point-drying, or imaged in the partially hydrated state, using a cold stage in the SEM. During freeze-substitution the samples were stabilized by fixatives. The disadvantage of this method was that shrinking and extraction effects, caused by the removal of the water, could not be avoided. These disadvantages were avoided when the sample was imaged in the frozen-hydrated state using a cold-stage in the SEM. This would be the method of choice for morphometric studies. Frozen-hydrated samples, however, were very beam sensitive and many structures remained covered by the ice and were not visible. Frozen-hydrated samples were partially freeze-dried to make visible additional structures that had been covered by ice. However, this method also caused drying artifacts when too much water was removed. PMID:8023095

  2. Highly conductive free standing polypyrrole films prepared by freezing interfacial polymerization.

    PubMed

    Qi, Guijin; Huang, Liyan; Wang, Huiliang

    2012-08-25

    Highly conductive free standing polypyrrole (PPy) films were prepared by a novel freezing interfacial polymerization method. The films exhibit metallic luster and electrical conductivity up to 2000 S cm(-1). By characterizing with SEM, FTIR, Raman and XRD, the high conductivity is attributed to the smooth surface, higher conjugation length and more ordered molecular structure of PPy.

  3. Controlling your high blood pressure

    MedlinePlus

    Controlling hypertension ... when you wake up. For people with very high blood pressure, this is when they are most at risk ... 2014 evidence-based guideline for the management of high blood pressure in adults: report from the panel members appointed ...

  4. Electrokinetically pumped high pressure sprays

    DOEpatents

    Schoeniger, Joseph S.; Paul, Phillip H.; Schoeniger, Luke

    2005-11-01

    An electrokinetic pump capable of producing high pressure is combined with a nozzle having a submicron orifice to provide a high pressure spray device. Because of its small size, the device can be contained within medical devices such as an endoscope for delivering biological materials such as DNA, chemo therapeutic agents, or vaccines to tissues and cells.

  5. Electrokinetically pumped high pressure sprays

    SciTech Connect

    Schoeniger, Joseph S.; Paul, Phillip H.; Schoeniger, Luke

    2002-01-01

    An electrokinetic pump capable of producing high pressure is combined with a nozzle having a submicron orifice to provide a high pressure spray device. Because of its small size, the device can be contained within medical devices such as an endoscope for delivering biological materials such as DNA, chemo therapeutic agents, or vaccines to tissues and cells.

  6. Freeze-dried microarterial allografts

    SciTech Connect

    Raman, J.; Hargrave, J.C.

    1990-02-01

    Rehydrated freeze-dried microarterial allografts were implanted to bridge arterial defects using New Zealand White rabbits as the experimental model. Segments of artery from the rabbit ear and thigh were harvested and preserved for a minimum of 2 weeks after freeze-drying. These allografts, approximately 1 mm in diameter and ranging from 1.5 to 2.5 cm in length, were rehydrated and then implanted in low-pressure and high-pressure arterial systems. Poor patency was noted in low-pressure systems in both allografts and autografts, tested in 12 rabbits. In the high-pressure arterial systems, allografts that were freeze-dried and reconstituted failed in a group of 10 rabbits with an 8-week patency rate of 30 percent. Gamma irradiation in an effort to reduce infection and antigenicity of grafts after freeze-drying was associated with a patency rate of 10 percent at 8 weeks in this system in another group of 10 rabbits. Postoperative cyclosporin A therapy was associated with a patency rate of 22.2 percent in the high-pressure arterial system in a 9-rabbit group. Control autografts in this system in a group of 10 rabbits showed a 100 percent patency at 8 weeks. Microarterial grafts depend on perfusion pressure of the vascular bed for long-term patency. Rehydrated freeze-dried microarterial allografts do not seem to function well in lengths of 1 to 2.5 cm when implanted in a high-pressure arterial system. Freeze-dried arterial allografts are probably not antigenic.

  7. High pressure ices

    PubMed Central

    Hermann, Andreas; Ashcroft, N. W.; Hoffmann, Roald

    2012-01-01

    H2O will be more resistant to metallization than previously thought. From computational evolutionary structure searches, we find a sequence of new stable and meta-stable structures for the ground state of ice in the 1–5 TPa (10 to 50 Mbar) regime, in the static approximation. The previously proposed Pbcm structure is superseded by a Pmc21 phase at p = 930 GPa, followed by a predicted transition to a P21 crystal structure at p = 1.3 TPa. This phase, featuring higher coordination at O and H, is stable over a wide pressure range, reaching 4.8 TPa. We analyze carefully the geometrical changes in the calculated structures, especially the buckling at the H in O-H-O motifs. All structures are insulating—chemistry burns a deep and (with pressure increase) lasting hole in the density of states near the highest occupied electronic levels of what might be component metallic lattices. Metallization of ice in our calculations occurs only near 4.8 TPa, where the metallic C2/m phase becomes most stable. In this regime, zero-point energies much larger than typical enthalpy differences suggest possible melting of the H sublattice, or even the entire crystal. PMID:22207625

  8. High pressure synthesis gas fermentation

    SciTech Connect

    Not Available

    1991-01-01

    Construction of the high pressure gas phase fermentation system is nearing completion. All non-explosion proof components will be housed separately in a gas-monitored plexiglas cabinet. A gas-monitoring system has been designed to ensure the safety of the operations in case of small or large accidental gas releases. Preliminary experiments investigating the effects of high pressure on Clostridium 1jungdahlii have shown that growth and CO uptake are not negatively affected and CO uptake by an increased total pressure of 100 psig at a syngas partial pressure of 10 psig.

  9. Homogeneous Aerosol Freezing in the Tops of High-Altitude Tropical Cumulonimbus Clouds

    NASA Technical Reports Server (NTRS)

    Jensen, E. J.; Ackerman, A. S.

    2006-01-01

    Numerical simulations of deep, intense continental tropical convection indicate that when the cloud tops extend more than a few kilometers above the liquid water homogeneous freezing level, ice nucleation due to freezing of entrained aqueous sulfate aerosols generates large concentrations of small crystals (diameters less than approx. equal to 20 micrometers). The small crystals produced by aerosol freezing have the largest impact on cloud-top ice concentration for convective clouds with strong updrafts but relatively low aerosol concentrations. An implication of this result is that cloud-top ice concentrations in high anvil cirrus can be controlled primarily by updraft speeds in the tops of convective plumes and to a lesser extent by aerosol concentrations in the uppermost troposphere. While larger crystals precipitate out and sublimate in subsaturated air below, the population of small crystals can persist in the saturated uppermost troposphere for many hours, thereby prolonging the lifetime of remnants from anvil cirrus in the tropical tropopause layer.

  10. Steam Oxidation at High Pressure

    SciTech Connect

    Holcomb, Gordon R.; Carney, Casey

    2013-07-19

    A first high pressure test was completed: 293 hr at 267 bar and 670{degrees}C; A parallel 1 bar test was done for comparison; Mass gains were higher for all alloys at 267 bar than at 1 bar; Longer term exposures, over a range of temperatures and pressures, are planned to provide information as to the commercial implications of pressure effects; The planned tests are at a higher combination of temperatures and pressures than in the existing literature. A comparison was made with longer-term literature data: The short term exposures are largely consistent with the longer-term corrosion literature; Ferritic steels--no consistent pressure effect; Austenitic steels--fine grain alloys less able to maintain protective chromia scale as pressure increases; Ni-base alloys--more mass gains above 105 bar than below. Not based on many data points.

  11. High School Press Pressures.

    ERIC Educational Resources Information Center

    Rogers, Luella P.

    History shows that the high school press suffers through cycles that reflect economic factors and cultural climates within communities, states, and the nation. The direction of that cycle in the 1960s and early 1970s was toward more open, free-flowing information by a vigorous student press, but those economic and cultural signs now are pointing…

  12. Risk Factors for High Blood Pressure

    MedlinePlus

    ... the NHLBI on Twitter. Risk Factors for High Blood Pressure Anyone can develop high blood pressure; however, age, ... can increase your risk for developing high blood pressure. Age Blood pressure tends to rise with age. About 65 ...

  13. A study of the impact of freezing on the lyophilization of a concentrated formulation with a high fill depth.

    PubMed

    Liu, Jinsong; Viverette, Todd; Virgin, Marlin; Anderson, Mitch; Paresh, Dalal

    2005-01-01

    The objective of this study was to evaluate the impact of freezing on the lyophilization of a concentrated formulation with a high fill depth. A model system consisting of a 15-mL fill of 15% (w/w) sulfobutylether 7-beta-cyclodextrin (SBECD) solution in a 30-mL vial was selected for this study. Various freezing methods including single-step freezing, two-step freezing with a super-cooling holding, annealing, vacuum-induced freezing, changing ice habit using tert-butyl-alcohol (TBA), ice nucleation with silver iodide (AgI), as well as combinations of some of the methods, were used in the lyophilization of this model system. This work demonstrated that the freezing process had a significant impact on primary drying rate and product quality of a concentrated formulation with a high fill depth. Annealing, vacuum-induced freezing, and addition of either TBA or an ice nucleating agent (AgI) to the formulation accelerated the subsequent ice sublimation process. Two-step freezing or addition of TBA improved the product quality by eliminating vertical heterogeneity within the cake. The combination of two-step freezing in conjunction with an annealing step was shown to be a method of choice for freezing in the lyophilization of a product with a high fill depth. In addition to being an effective method of freezing, it is most applicable for scaling up. An alternative approach is to add a certain amount of TBA to the formulation, if the TBA-formulation interaction or regulatory concerns can be demonstrated as not being an issue. An evaluation of vial size performed in this study showed that although utilizing large-diameter vials to reduce the fill depth can greatly shorten the cycle time of a single batch, it will substantially decrease the product throughput in a large-scale freeze-dryer. PMID:15926675

  14. High pressure ceramic joint

    DOEpatents

    Ward, M.E.; Harkins, B.D.

    1993-11-30

    Many recuperators have components which react to corrosive gases and are used in applications where the donor fluid includes highly corrosive gases. These recuperators have suffered reduced life, increased service or maintenance, and resulted in increased cost. The present joint when used with recuperators increases the use of ceramic components which do not react to highly corrosive gases. Thus, the present joint used with the present recuperator increases the life, reduces the service and maintenance, and reduces the increased cost associated with corrosive action of components used to manufacture recuperators. The present joint is comprised of a first ceramic member, a second ceramic member, a mechanical locking device having a groove defined in one of the first ceramic member and the second ceramic member. The joint and the mechanical locking device is further comprised of a refractory material disposed in the groove and contacting the first ceramic member and the second ceramic member. The present joint mechanically provides a high strength load bearing joint having good thermal cycling characteristics, good resistance to a corrosive environment and good steady state strength at elevated temperatures. 4 figures.

  15. High pressure ceramic joint

    DOEpatents

    Ward, Michael E.; Harkins, Bruce D.

    1993-01-01

    Many recuperators have components which react to corrosive gases and are used in applications where the donor fluid includes highly corrosive gases. These recuperators have suffered reduced life, increased service or maintenance, and resulted in increased cost. The present joint when used with recuperators increases the use of ceramic components which do not react to highly corrosive gases. Thus, the present joint used with the present recuperator increases the life, reduces the service and maintenance, and reduces the increased cost associated with corrosive action of components used to manufacture recuperators. The present joint is comprised of a first ceramic member, a second ceramic member, a mechanical locking device having a groove defined in one of the first ceramic member and the second ceramic member. The joint and the mechanical locking device is further comprised of a refractory material disposed in the groove and contacting the first ceramic member and the second ceramic member. The present joint mechanically provides a high strength load bearing joint having good thermal cycling characteristics, good resistance to a corrosive environment and good steady state strength at elevated temperatures.

  16. High pressure synthesis gas fermentation

    SciTech Connect

    Not Available

    1992-01-01

    The construction of the high pressure gas phase fermentation system has been completed. Photographs of the various components of the system are presented, along with an operating procedure for the equipment.

  17. Medications for High Blood Pressure

    MedlinePlus

    ... Consumers Home For Consumers Consumer Updates Medications for High Blood Pressure Share Tweet Linkedin Pin it More sharing options Linkedin Pin it Email Print Hypertension tends to worsen with age and you cannot ...

  18. Electrokinetic high pressure hydraulic system

    DOEpatents

    Paul, Phillip H.; Rakestraw, David J.

    2000-01-01

    A compact high pressure hydraulic pump having no moving mechanical parts for converting electric potential to hydraulic force. The electrokinetic pump, which can generate hydraulic pressures greater than 2500 psi, can be employed to compress a fluid, either liquid or gas, and manipulate fluid flow. The pump is particularly useful for capillary-base systems. By combining the electrokinetic pump with a housing having chambers separated by a flexible member, fluid flow, including high pressure fluids, is controlled by the application of an electric potential, that can vary with time.

  19. Electrokinetic high pressure hydraulic system

    DOEpatents

    Paul, Phillip H.; Rakestraw, David J.; Arnold, Don W.; Hencken, Kenneth R.; Schoeniger, Joseph S.; Neyer, David W.

    2003-06-03

    An electrokinetic high pressure hydraulic pump for manipulating fluids in capillary-based system. The pump uses electro-osmotic flow to provide a high pressure hydraulic system, having no moving mechanical parts, for pumping and/or compressing fluids, for providing valve means and means for opening and closing valves, for controlling fluid flow rate, and manipulating fluid flow generally and in capillary-based systems (microsystems), in particular. The compact nature of the inventive high pressure hydraulic pump provides the ability to construct a micro-scale or capillary-based HPLC system that fulfills the desire for small sample quantity, low solvent consumption, improved efficiency, the ability to run samples in parallel, and field portability. Control of pressure and solvent flow rate is achieved by controlling the voltage applied to an electrokinetic pump.

  20. Electrokinetic high pressure hydraulic system

    DOEpatents

    Paul, Phillip H.; Rakestraw, David J.; Arnold, Don W.; Hencken, Kenneth R.; Schoeniger, Joseph S.; Neyer, David W.

    2001-01-01

    An electrokinetic high pressure hydraulic pump for manipulating fluids in capillary-based systems. The pump uses electro-osmotic flow to provide a high pressure hydraulic system, having no moving mechanical parts, for pumping and/or compressing fluids, for providing valve means and means for opening and closing valves, for controlling fluid flow rate, and manipulating fluid flow generally and in capillary-based systems (Microsystems), in particular. The compact nature of the inventive high pressure hydraulic pump provides the ability to construct a micro-scale or capillary-based HPLC system that fulfills the desire for small sample quantity, low solvent consumption, improved efficiency, the ability to run samples in parallel, and field portability. Control of pressure and solvent flow rate is achieved by controlling the voltage applied to an electrokinetic pump.

  1. High pressure-low temperature processing of food proteins.

    PubMed

    Dumay, Eliane; Picart, Laetitia; Regnault, Stéphanie; Thiebaud, Maryse

    2006-03-01

    High pressure-low temperature (HP-LT) processing is of interest in the food field in view of: (i) obtaining a "cold" pasteurisation effect, the level of microbial inactivation being higher after pressurisation at low or sub-zero than at ambient temperature; (ii) limiting the negative impact of atmospheric pressure freezing on food structures. The specific effects of freezing by fast pressure release on the formation of ice I crystals have been investigated on oil in water emulsions stabilized by proteins, and protein gels, showing the formation of a high number of small ice nuclei compared to the long needle-shaped crystals obtained by conventional freezing at 0.1 MPa. It was therefore of interest to study the effects of HP-LT processing on unfolding or dissociation/aggregation phenomena in food proteins, in view of minimizing or controlling structural changes and aggregation reactions, and/or of improving protein functional properties. In the present studies, the effects of HP-LT have been investigated on protein models such as (i) beta-lactoglobulin, i.e., a whey protein with a well known 3-D structure, and (ii) casein micelles, i.e., the main milk protein components, the supramolecular structure of which is not fully elucidated. The effects of HP-LT processing was studied up to 300 MPa at low or sub-zero temperatures and after pressure release, or up to 200 MPa by UV spectroscopy under pressure, allowing to follow reversible structural changes. Pressurisation of approximately 2% beta-lactoglobulin solutions up to 300 MPa at low/subzero temperatures minimizes aggregation reactions, as measured after pressure release. In parallel, such low temperature treatments enhanced the size reduction of casein micelles.

  2. The effect of undissolved air on isochoric freezing.

    PubMed

    Perez, Pedro A; Preciado, Jessica; Carlson, Gary; DeLonzor, Russ; Rubinsky, Boris

    2016-06-01

    This study evaluates the effect of undissolved air on isochoric freezing of aqueous solutions. Isochoric freezing is concerned with freezing in a constant volume thermodynamic system. A possible advantage of the process is that it substantially reduces the percentage of ice in the system at every subzero temperature, relative to atmospheric freezing. At the pressures generated by isochoric freezing, or high pressure isobaric freezing, air cannot be considered an incompressible substance and the presence of undissolved air substantially increases the amount of ice that forms at any subfreezing temperature. This effect is measurable at air volumes as low as 1%. Therefore eliminating the undissolved air, or any separate gaseous phase, from the system is essential for retaining the properties of isochoric freezing. PMID:27074589

  3. The effect of undissolved air on isochoric freezing.

    PubMed

    Perez, Pedro A; Preciado, Jessica; Carlson, Gary; DeLonzor, Russ; Rubinsky, Boris

    2016-06-01

    This study evaluates the effect of undissolved air on isochoric freezing of aqueous solutions. Isochoric freezing is concerned with freezing in a constant volume thermodynamic system. A possible advantage of the process is that it substantially reduces the percentage of ice in the system at every subzero temperature, relative to atmospheric freezing. At the pressures generated by isochoric freezing, or high pressure isobaric freezing, air cannot be considered an incompressible substance and the presence of undissolved air substantially increases the amount of ice that forms at any subfreezing temperature. This effect is measurable at air volumes as low as 1%. Therefore eliminating the undissolved air, or any separate gaseous phase, from the system is essential for retaining the properties of isochoric freezing.

  4. Growth of high-elevation Cryptococcus sp. during extreme freeze-thaw cycles.

    PubMed

    Vimercati, L; Hamsher, S; Schubert, Z; Schmidt, S K

    2016-09-01

    Soils above 6000 m.a.s.l. are among the most extreme environments on Earth, especially on high, dry volcanoes where soil temperatures cycle between -10 and 30 °C on a typical summer day. Previous studies have shown that such sites are dominated by yeast in the cryophilic Cryptococcus group, but it is unclear if they can actually grow (or are just surviving) under extreme freeze-thaw conditions. We carried out a series of experiments to determine if Cryptococcus could grow during freeze-thaw cycles similar to those measured under field conditions. We found that Cryptococcus phylotypes increased in relative abundance in soils subjected to 48 days of freeze-thaw cycles, becoming the dominant organisms in the soil. In addition, pure cultures of Cryptococcus isolated from these same soils were able to grow in liquid cultures subjected to daily freeze-thaw cycles, despite the fact that the culture medium froze solid every night. Furthermore, we showed that this organism is metabolically versatile and phylogenetically almost identical to strains from Antarctic Dry Valley soils. Taken together these results indicate that this organism has unique metabolic and temperature adaptations that make it able to thrive in one of the harshest and climatically volatile places on Earth. PMID:27315166

  5. The Freezing Bomb

    ERIC Educational Resources Information Center

    Mills, Allan

    2010-01-01

    The extreme pressures that are generated when water freezes were traditionally demonstrated by sealing a small volume in a massive cast iron "bomb" and then surrounding it with a freezing mixture of ice and salt. This vessel would dramatically fail by brittle fracture, but no quantitative measurement of bursting pressure was available. Calculation…

  6. High pressure synthesis gas conversion. Task 3: High pressure profiles

    SciTech Connect

    Not Available

    1993-05-01

    The purpose of this research project was to build and test a high pressure fermentation system for the production of ethanol from synthesis gas. The fermenters, pumps, controls, and analytical system were procured or fabricated and assembled in our laboratory. This system was then used to determine the effects of high pressure on growth and ethanol production by C. 1jungdahlii. The limits of cell concentration and mass transport relationships were found in CSTR and immobilized cell reactors (ICR). The minimum retention times and reactor volumes were found for ethanol production in these reactors.

  7. Electronic phenomena at high pressure

    SciTech Connect

    Drickamer, H.G.

    1981-01-01

    High pressure research is undertaken either to investigate intrinsically high pressure phenomena or in order to get a better understanding of the effect of the chemical environment on properties or processes at one atmosphere. Studies of electronic properties which fall in each area are presented. Many molecules and complexes can assume in the excited state different molecular arrangements and intermolecular forces depending on the medium. Their luminescence emission is then very different in a rigid or a fluid medium. With pressure one can vary the viscosity of the medium by a factor of 10/sup 7/ and thus control the distribution and rate of crossing between the excited state conformations. In rare earth chelates the efficiency of 4f-4f emission of the rare earth is controlled by the feeding from the singlet and triplet levels of the organic ligand. These ligand levels can be strongly shifted by pressure. A study of the effect of pressure on the emission efficiency permits one to understand the effect of ligand chemistry at one atmosphere. At high pressure electronic states can be sufficiently perturbed to provide new ground states. In EDA complexes these new ground states exhibit unusual chemical reactivity and new products.

  8. Spray patternation at high pressure

    NASA Astrophysics Data System (ADS)

    Cohen, J. M.; Rosfjord, T. J.

    1989-07-01

    The spatial distribution of the fuel spray created by a gas turbine fuel injector has been measured at high pressure and temperature. A patternation system for measuring fuel spray mass flux distributions at high power conditions has been designed and operated. The facility has been designed to simulate the environment inside a gas turbine combustor as closely as possible. Results for a full scale gas turbine fuel injector have been obtained at high levels of pressure, temperature and liquid flowrate and compared with visual observations.

  9. Formation of highly porous aerosol particles by atmospheric freeze-drying in ice clouds.

    PubMed

    Adler, Gabriela; Koop, Thomas; Haspel, Carynelisa; Taraniuk, Ilya; Moise, Tamar; Koren, Ilan; Heiblum, Reuven H; Rudich, Yinon

    2013-12-17

    The cycling of atmospheric aerosols through clouds can change their chemical and physical properties and thus modify how aerosols affect cloud microphysics and, subsequently, precipitation and climate. Current knowledge about aerosol processing by clouds is rather limited to chemical reactions within water droplets in warm low-altitude clouds. However, in cold high-altitude cirrus clouds and anvils of high convective clouds in the tropics and midlatitudes, humidified aerosols freeze to form ice, which upon exposure to subsaturation conditions with respect to ice can sublimate, leaving behind residual modified aerosols. This freeze-drying process can occur in various types of clouds. Here we simulate an atmospheric freeze-drying cycle of aerosols in laboratory experiments using proxies for atmospheric aerosols. We find that aerosols that contain organic material that undergo such a process can form highly porous aerosol particles with a larger diameter and a lower density than the initial homogeneous aerosol. We attribute this morphology change to phase separation upon freezing followed by a glass transition of the organic material that can preserve a porous structure after ice sublimation. A porous structure may explain the previously observed enhancement in ice nucleation efficiency of glassy organic particles. We find that highly porous aerosol particles scatter solar light less efficiently than nonporous aerosol particles. Using a combination of satellite and radiosonde data, we show that highly porous aerosol formation can readily occur in highly convective clouds, which are widespread in the tropics and midlatitudes. These observations may have implications for subsequent cloud formation cycles and aerosol albedo near cloud edges.

  10. Formation of highly porous aerosol particles by atmospheric freeze-drying in ice clouds

    PubMed Central

    Adler, Gabriela; Koop, Thomas; Haspel, Carynelisa; Taraniuk, Ilya; Moise, Tamar; Koren, Ilan; Heiblum, Reuven H.; Rudich, Yinon

    2013-01-01

    The cycling of atmospheric aerosols through clouds can change their chemical and physical properties and thus modify how aerosols affect cloud microphysics and, subsequently, precipitation and climate. Current knowledge about aerosol processing by clouds is rather limited to chemical reactions within water droplets in warm low-altitude clouds. However, in cold high-altitude cirrus clouds and anvils of high convective clouds in the tropics and midlatitudes, humidified aerosols freeze to form ice, which upon exposure to subsaturation conditions with respect to ice can sublimate, leaving behind residual modified aerosols. This freeze-drying process can occur in various types of clouds. Here we simulate an atmospheric freeze-drying cycle of aerosols in laboratory experiments using proxies for atmospheric aerosols. We find that aerosols that contain organic material that undergo such a process can form highly porous aerosol particles with a larger diameter and a lower density than the initial homogeneous aerosol. We attribute this morphology change to phase separation upon freezing followed by a glass transition of the organic material that can preserve a porous structure after ice sublimation. A porous structure may explain the previously observed enhancement in ice nucleation efficiency of glassy organic particles. We find that highly porous aerosol particles scatter solar light less efficiently than nonporous aerosol particles. Using a combination of satellite and radiosonde data, we show that highly porous aerosol formation can readily occur in highly convective clouds, which are widespread in the tropics and midlatitudes. These observations may have implications for subsequent cloud formation cycles and aerosol albedo near cloud edges. PMID:24297908

  11. Formation of highly porous aerosol particles by atmospheric freeze-drying in ice clouds.

    PubMed

    Adler, Gabriela; Koop, Thomas; Haspel, Carynelisa; Taraniuk, Ilya; Moise, Tamar; Koren, Ilan; Heiblum, Reuven H; Rudich, Yinon

    2013-12-17

    The cycling of atmospheric aerosols through clouds can change their chemical and physical properties and thus modify how aerosols affect cloud microphysics and, subsequently, precipitation and climate. Current knowledge about aerosol processing by clouds is rather limited to chemical reactions within water droplets in warm low-altitude clouds. However, in cold high-altitude cirrus clouds and anvils of high convective clouds in the tropics and midlatitudes, humidified aerosols freeze to form ice, which upon exposure to subsaturation conditions with respect to ice can sublimate, leaving behind residual modified aerosols. This freeze-drying process can occur in various types of clouds. Here we simulate an atmospheric freeze-drying cycle of aerosols in laboratory experiments using proxies for atmospheric aerosols. We find that aerosols that contain organic material that undergo such a process can form highly porous aerosol particles with a larger diameter and a lower density than the initial homogeneous aerosol. We attribute this morphology change to phase separation upon freezing followed by a glass transition of the organic material that can preserve a porous structure after ice sublimation. A porous structure may explain the previously observed enhancement in ice nucleation efficiency of glassy organic particles. We find that highly porous aerosol particles scatter solar light less efficiently than nonporous aerosol particles. Using a combination of satellite and radiosonde data, we show that highly porous aerosol formation can readily occur in highly convective clouds, which are widespread in the tropics and midlatitudes. These observations may have implications for subsequent cloud formation cycles and aerosol albedo near cloud edges. PMID:24297908

  12. Formation of highly porous aerosol particles by atmospheric freeze-drying in ice clouds

    NASA Astrophysics Data System (ADS)

    Rudich, Yinon; Adler, Gabriela; Koop, Thomas; Taraniuk, Ilya; Moise, Tamar; Koren, Ilan; Heiblum, Reuven; Haspel, Carynelisa

    2014-05-01

    In cold high altitude cirrus clouds and anvils of high convective clouds in the tropics and mid-latitudes, ice partciles that are exposed to subsaturation conditions with respect to ice can sublimate, leaving behind residual modified aerosols. This freeze-drying process can occur in various types of clouds. In this talk we will describe experiements that simulate the atmospheric freeze-drying cycle of aerosols. We find that aerosols with high organic content can form highly porous particles (HPA) with a larger diameter and a lower density than the initial homogenous aerosol following ice subliation. We attribute this morphology change to phase separation upon freezing followed by a glass transition of the organic material that can preserve a porous structure follwoing ice sublimation. We find that the highly porous aerosol scatter solar light less efficiently than non-porous aerosol particles. A porous structure may explain the previously observed enhancement in ice nucleation efficiency of glassy organic particles. These observations may have implications for subsequent cloud formation cycles and aerosol albedo near cloud edges.

  13. High ice nucleation activity located in blueberry stem bark is linked to primary freeze initiation and adaptive freezing behaviour of the bark.

    PubMed

    Kishimoto, Tadashi; Yamazaki, Hideyuki; Saruwatari, Atsushi; Murakawa, Hiroki; Sekozawa, Yoshihiko; Kuchitsu, Kazuyuki; Price, William S; Ishikawa, Masaya

    2014-01-01

    Controlled ice nucleation is an important mechanism in cold-hardy plant tissues for avoiding excessive supercooling of the protoplasm, for inducing extracellular freezing and/or for accommodating ice crystals in specific tissues. To understand its nature, it is necessary to characterize the ice nucleation activity (INA), defined as the ability of a tissue to induce heterogeneous ice nucleation. Few studies have addressed the precise localization of INA in wintering plant tissues in respect of its function. For this purpose, we recently revised a test tube INA assay and examined INA in various tissues of over 600 species. Extremely high levels of INA (-1 to -4 °C) in two wintering blueberry cultivars of contrasting freezing tolerance were found. Their INA was much greater than in other cold-hardy species and was found to be evenly distributed along the stems of the current year's growth. Concentrations of active ice nuclei in the stem were estimated from quantitative analyses. Stem INA was localized mainly in the bark while the xylem and pith had much lower INA. Bark INA was located mostly in the cell wall fraction (cell walls and intercellular structural components). Intracellular fractions had much less INA. Some cultivar differences were identified. The results corresponded closely with the intrinsic freezing behaviour (extracellular freezing) of the bark, icicle accumulation in the bark and initial ice nucleation in the stem under dry surface conditions. Stem INA was resistant to various antimicrobial treatments. These properties and specific localization imply that high INA in blueberry stems is of intrinsic origin and contributes to the spontaneous initiation of freezing in extracellular spaces of the bark by acting as a subfreezing temperature sensor. PMID:25082142

  14. High ice nucleation activity located in blueberry stem bark is linked to primary freeze initiation and adaptive freezing behaviour of the bark.

    PubMed

    Kishimoto, Tadashi; Yamazaki, Hideyuki; Saruwatari, Atsushi; Murakawa, Hiroki; Sekozawa, Yoshihiko; Kuchitsu, Kazuyuki; Price, William S; Ishikawa, Masaya

    2014-07-31

    Controlled ice nucleation is an important mechanism in cold-hardy plant tissues for avoiding excessive supercooling of the protoplasm, for inducing extracellular freezing and/or for accommodating ice crystals in specific tissues. To understand its nature, it is necessary to characterize the ice nucleation activity (INA), defined as the ability of a tissue to induce heterogeneous ice nucleation. Few studies have addressed the precise localization of INA in wintering plant tissues in respect of its function. For this purpose, we recently revised a test tube INA assay and examined INA in various tissues of over 600 species. Extremely high levels of INA (-1 to -4 °C) in two wintering blueberry cultivars of contrasting freezing tolerance were found. Their INA was much greater than in other cold-hardy species and was found to be evenly distributed along the stems of the current year's growth. Concentrations of active ice nuclei in the stem were estimated from quantitative analyses. Stem INA was localized mainly in the bark while the xylem and pith had much lower INA. Bark INA was located mostly in the cell wall fraction (cell walls and intercellular structural components). Intracellular fractions had much less INA. Some cultivar differences were identified. The results corresponded closely with the intrinsic freezing behaviour (extracellular freezing) of the bark, icicle accumulation in the bark and initial ice nucleation in the stem under dry surface conditions. Stem INA was resistant to various antimicrobial treatments. These properties and specific localization imply that high INA in blueberry stems is of intrinsic origin and contributes to the spontaneous initiation of freezing in extracellular spaces of the bark by acting as a subfreezing temperature sensor.

  15. High ice nucleation activity located in blueberry stem bark is linked to primary freeze initiation and adaptive freezing behaviour of the bark

    PubMed Central

    Kishimoto, Tadashi; Yamazaki, Hideyuki; Saruwatari, Atsushi; Murakawa, Hiroki; Sekozawa, Yoshihiko; Kuchitsu, Kazuyuki; Price, William S.; Ishikawa, Masaya

    2014-01-01

    Controlled ice nucleation is an important mechanism in cold-hardy plant tissues for avoiding excessive supercooling of the protoplasm, for inducing extracellular freezing and/or for accommodating ice crystals in specific tissues. To understand its nature, it is necessary to characterize the ice nucleation activity (INA), defined as the ability of a tissue to induce heterogeneous ice nucleation. Few studies have addressed the precise localization of INA in wintering plant tissues in respect of its function. For this purpose, we recently revised a test tube INA assay and examined INA in various tissues of over 600 species. Extremely high levels of INA (−1 to −4 °C) in two wintering blueberry cultivars of contrasting freezing tolerance were found. Their INA was much greater than in other cold-hardy species and was found to be evenly distributed along the stems of the current year's growth. Concentrations of active ice nuclei in the stem were estimated from quantitative analyses. Stem INA was localized mainly in the bark while the xylem and pith had much lower INA. Bark INA was located mostly in the cell wall fraction (cell walls and intercellular structural components). Intracellular fractions had much less INA. Some cultivar differences were identified. The results corresponded closely with the intrinsic freezing behaviour (extracellular freezing) of the bark, icicle accumulation in the bark and initial ice nucleation in the stem under dry surface conditions. Stem INA was resistant to various antimicrobial treatments. These properties and specific localization imply that high INA in blueberry stems is of intrinsic origin and contributes to the spontaneous initiation of freezing in extracellular spaces of the bark by acting as a subfreezing temperature sensor. PMID:25082142

  16. High pressure neon arc lamp

    DOEpatents

    Sze, Robert C.; Bigio, Irving J.

    2003-07-15

    A high pressure neon arc lamp and method of using the same for photodynamic therapies is provided. The high pressure neon arc lamp includes a housing that encloses a quantity of neon gas pressurized to about 500 Torr to about 22,000 Torr. At each end of the housing the lamp is connected by electrodes and wires to a pulse generator. The pulse generator generates an initial pulse voltage to breakdown the impedance of the neon gas. Then the pulse generator delivers a current through the neon gas to create an electrical arc that emits light having wavelengths from about 620 nanometers to about 645 nanometers. A method for activating a photosensitizer is provided. Initially, a photosensitizer is administered to a patient and allowed time to be absorbed into target cells. Then the high pressure neon arc lamp is used to illuminate the target cells with red light having wavelengths from about 620 nanometers to about 645 nanometers. The red light activates the photosensitizers to start a chain reaction that may involve oxygen free radicals to destroy the target cells. In this manner, a high pressure neon arc lamp that is inexpensive and efficiently generates red light useful in photodynamic therapy is provided.

  17. High-pressure well design

    SciTech Connect

    Krus, H.; Prieur, J.M. )

    1991-12-01

    Shell U.K. E and P (Shell Expro), operator in the U.K. North Sea on behalf of Shell and Esso, plans to drill 20 high-pressure oil and gas wells during the next 2 years. This paper reports that the well design is based on new standards developed after the U.K. Dept. of Energy restriction on high-pressure drilling in the autumn of 1988. Studies were carried out to optimize casing design and drilling performance on these wells. Several casing schemes, including a slim-hole option, were analyzed. The material specifications for casing and drillpipe were reviewed to ensure that they met the loads imposed during drilling, well- control, and well-testing operations. The requirement for sour-service material was weighted against possible H{sub 2}S adsorption by the mud film. As a result, a new drillstring and two high-pressure casing schemes have been specified. The high-pressure casing scheme used depends on the maximum expected surface pressure.

  18. High pressure liquid level monitor

    DOEpatents

    Bean, Vern E.; Long, Frederick G.

    1984-01-01

    A liquid level monitor for tracking the level of a coal slurry in a high-pressure vessel including a toroidal-shaped float with magnetically permeable bands thereon disposed within the vessel, two pairs of magnetic field generators and detectors disposed outside the vessel adjacent the top and bottom thereof and magnetically coupled to the magnetically permeable bands on the float, and signal processing circuitry for combining signals from the top and bottom detectors for generating a monotonically increasing analog control signal which is a function of liquid level. The control signal may be utilized to operate high-pressure control valves associated with processes in which the high-pressure vessel is used.

  19. Fundamentals of freeze-drying.

    PubMed

    Nail, Steven L; Jiang, Shan; Chongprasert, Suchart; Knopp, Shawn A

    2002-01-01

    --the dominant mechanism of heat transfer in freeze-drying--is inefficient at the pressures used in freeze-drying. Steps should be taken to improve the thermal contact between the product and the shelf of the freeze dryer, such as eliminating metal trays from the drying process. Quantitation of the heat transfer coefficient for the geometry used is a useful way of assessing the impact of changes in the system such as elimination of product trays and changes in the vial. Because heat transfer by conduction through the vapor increases with increasing pressure, the commonly held point of view that "the lower the pressure, the better" is not true with respect to process efficiency. The optimum pressure for a given product is a function of the temperature at which freeze-drying is carried out, and lower pressures are needed at low product temperatures. The controlling resistance to mass transfer is almost always the resistance of the partially dried solids above the submination interface. This resistance can be minimized by avoiding fill volumes of more than about half the volume of the container. The development scientist should also recognize that very high concentrations of solute may not be appropriate for optimum freeze-drying, particularly if the resistance of the dried product layer increases sharply with concentration. Although the last 10 years has seen the publication of a significant body of literature of great value in allowing development scientists and engineers to "work smarter," there is still much work needed in both the science and the technology of freeze-drying. Scientific development is needed for improving analytical methodology for characterization of frozen systems and freeze-dried solids. A better understanding of the relationship between molecular mobility and reactivity is needed to allow accurate prediction of product stability at the intended storage temperature based on accelerated stability at higher temperatures. This requires that the temperature

  20. High Blood Pressure: Medicines to Help You

    MedlinePlus

    ... For Consumers Consumer Information by Audience For Women High Blood Pressure--Medicines to Help You Share Tweet Linkedin Pin ... Click here for the Color Version (PDF 533KB) High blood pressure is a serious illness. High blood pressure is ...

  1. Avoid the Consequences of High Blood Pressure

    MedlinePlus

    ... Tools & Resources Stroke More Avoid the Consequences of High Blood Pressure Infographic Updated:Jun 19,2014 View a downloadable version of this infographic High Blood Pressure • Home • About High Blood Pressure (HBP) • Why HBP ...

  2. High-pressure water facility

    NASA Technical Reports Server (NTRS)

    2006-01-01

    NASA Test Operations Group employees, from left, Todd Pearson, Tim Delcuze and Rodney Wilkinson maintain a water pump in Stennis Space Center's high-pressure water facility. The three were part of a group of employees who rode out Hurricane Katrina at the facility and helped protect NASA's rocket engine test complex.

  3. High pressure rinsing system comparison

    SciTech Connect

    D. Sertore; M. Fusetti; P. Michelato; Carlo Pagani; Toshiyasu Higo; Jin-Seok Hong; K. Saito; G. Ciovati; T. Rothgeb

    2007-06-01

    High pressure rinsing (HPR) is a key process for the surface preparation of high field superconducting cavities. A portable apparatus for the water jet characterization, based on the transferred momentum between the water jet and a load cell, has been used in different laboratories. This apparatus allows to collected quantitative parameters that characterize the HPR water jet. In this paper, we present a quantitative comparison of the different water jet produced by various nozzles routinely used in different laboratories for the HPR process

  4. High-speed pressure clamp.

    PubMed

    Besch, Stephen R; Suchyna, Thomas; Sachs, Frederick

    2002-10-01

    We built a high-speed, pneumatic pressure clamp to stimulate patch-clamped membranes mechanically. The key control element is a newly designed differential valve that uses a single, nickel-plated piezoelectric bending element to control both pressure and vacuum. To minimize response time, the valve body was designed with minimum dead volume. The result is improved response time and stability with a threefold decrease in actuation latency. Tight valve clearances minimize the steady-state air flow, permitting us to use small resonant-piston pumps to supply pressure and vacuum. To protect the valve from water contamination in the event of a broken pipette, an optical sensor detects water entering the valve and increases pressure rapidly to clear the system. The open-loop time constant for pressure is 2.5 ms for a 100-mmHg step, and the closed-loop settling time is 500-600 micros. Valve actuation latency is 120 micros. The system performance is illustrated for mechanically induced changes in patch capacitance.

  5. High pressure hollow electrode discharges

    SciTech Connect

    Schoenbach, K.H.; El-Habachi, A.; Shi, W.; Ciocca, M.

    1997-12-31

    Reduction of the cathode hole diameter into the submillimeter range has allowed the authors to extend the pressure range for hollow electrode discharge operation to values on the order of 50 Torr. In recent experiments with cathode holes of 0.2 mm diameter they obtained stable glow discharge operation up to approximately 900 Torr in argon. The current-voltage (I-V) characteristics of these discharges (with currents ranging from the ten`s of {micro}A to ten mA) show three distinct discharge modes: at low current, a discharge with positive differential resistivity, followed by a range with strong increase in current and reduction in voltage, and, at high current, again a resistive discharge mode. For low pressure (< 100 Torr) these modes correspond to the predischarge, hollow cathode discharge (sustained by pendulum electrons), and abnormal glow discharge, respectively. At higher pressure the discharge in the short gap system (anode-cathode distance: 0.25 mm) changes from a hollow cathode discharge to, what seems to be a pulseless partial glow discharge. In hollow cathode discharges operated in the torr range the electron energy distribution is known to be strongly non-maxwellian with a large concentration of electrons at energies greater than 30 eV. This holds also for hollow cathode discharge at high pressure and for partial discharges as indicated by the presence of strong excimer lines in the VUV spectrum of Ar-discharges at 128 nm and Xe-discharges at 172 nm. The resistive characteristic of high pressure hollow electrode discharges over a large range of current allows them to generate arrays of these discharges for use as flat panel, direct current, excimer lamps.

  6. High pressure and high temperature apparatus

    DOEpatents

    Voronov, Oleg A.

    2005-09-13

    A design for high pressure/high temperature apparatus and reaction cell to achieve .about.30 GPa pressure in .about.1 cm volume and .about.100 GPa pressure in .about.1 mm volumes and 20-5000.degree. C. temperatures in a static regime. The device includes profiled anvils (28) action on a reaction cell (14, 16) containing the material (26) to be processed. The reaction cell includes a heater (18) surrounded by insulating layers and screens. Surrounding the anvils are cylindrical inserts and supporting rings (30-48) whose hardness increases towards the reaction cell. These volumes may be increased considerably if applications require it, making use of presses that have larger loading force capability, larger frames and using larger anvils.

  7. Freeze-thaw and high-voltage discharge allow macromolecule uptake into ileal brush-border vesicles

    SciTech Connect

    Donowitz, M.; Emmer, E.; McCullen, J.; Reinlib, L.; Cohen, M.E.; Rood, R.P.; Madara, J.; Sharp, G.W.G.; Murer, H.; Malmstrom, K.

    1987-06-01

    High-voltage discharge or one cycle of freeze-thawing are shown to transiently permeabilize rabbit ileal brush-border membrane vesicles to macromolecules. Uptake of the radiolabeled macromolecule dextran, mol wt 70,000, used as a marker for vesicle permeability, was determined by a rapid filtration technique, with uptake defined as substrate associated with the vesicle and releasable after incubation of vesicles with 0.1% saponin. Dextran added immediately after electric shock (2000 V) or at the beginning of one cycle of freeze-thawing was taken up approximately eightfold compared with control. ATP also was taken up into freeze-thawed vesicles, whereas there was no significant uptake into control vesicles. The increase in vesicle permeability was reversible, based on Na-dependent D-glucose uptake being decreased when studied 5 but not 15 min after electric shock, and was not significantly decreased after completion of one cycle of freeze-thawing. In addition, adenosine 3',5'-cyclic monophosphate and Ca/sup 2 +/-calmodulin-dependent protein kinase activity were similar in control vesicles and vesicles exposed to high-voltage discharge or freeze-thawing. Also, vesicles freeze-thawed with (/sup 32/P)ATP demonstrated increased phosphorylation compared with nonfrozen vesicles, while freeze-thawing did not alter vesicle protein as judged by Coomassie blue staining. These techniques should allow intestinal membrane vesicles to be used for studies of intracellular control of transport processes, for instance, studies of protein kinase regulation of transport.

  8. High pressure synthesis gas conversion

    SciTech Connect

    Not Available

    1992-01-01

    A high pressure gas phase fermentation system has been constructed for the biological production of ethanol from coal synthesis gas. The reactors in the system consist of a 650 mL continuous stirred tank reactor and a 1 L continuous column reactor. The reactors are designed for individual or dual operation in series or parallel, with continuous gas and liquid feed. The system is housed in a constant temperature, explosion-proof room, equipped with gas leak detectors.

  9. Opportunities and challenges in high pressure processing of foods.

    PubMed

    Rastogi, N K; Raghavarao, K S M S; Balasubramaniam, V M; Niranjan, K; Knorr, D

    2007-01-01

    Consumers increasingly demand convenience foods of the highest quality in terms of natural flavor and taste, and which are free from additives and preservatives. This demand has triggered the need for the development of a number of nonthermal approaches to food processing, of which high-pressure technology has proven to be very valuable. A number of recent publications have demonstrated novel and diverse uses of this technology. Its novel features, which include destruction of microorganisms at room temperature or lower, have made the technology commercially attractive. Enzymes and even spore forming bacteria can be inactivated by the application of pressure-thermal combinations, This review aims to identify the opportunities and challenges associated with this technology. In addition to discussing the effects of high pressure on food components, this review covers the combined effects of high pressure processing with: gamma irradiation, alternating current, ultrasound, and carbon dioxide or anti-microbial treatment. Further, the applications of this technology in various sectors - fruits and vegetables, dairy, and meat processing - have been dealt with extensively. The integration of high-pressure with other matured processing operations such as blanching, dehydration, osmotic dehydration, rehydration, frying, freezing / thawing and solid-liquid extraction has been shown to open up new processing options. The key challenges identified include: heat transfer problems and resulting non-uniformity in processing, obtaining reliable and reproducible data for process validation, lack of detailed knowledge about the interaction between high pressure, and a number of food constituents, packaging and statutory issues.

  10. High pressure xenon ionization detector

    DOEpatents

    Markey, J.K.

    1989-11-14

    A method is provided for detecting ionization comprising allowing particles that cause ionization to contact high pressure xenon maintained at or near its critical point and measuring the amount of ionization. An apparatus is provided for detecting ionization, the apparatus comprising a vessel containing a ionizable medium, the vessel having an inlet to allow high pressure ionizable medium to enter the vessel, a means to permit particles that cause ionization of the medium to enter the vessel, an anode, a cathode, a grid and a plurality of annular field shaping rings, the field shaping rings being electrically isolated from one another, the anode, cathode, grid and field shaping rings being electrically isolated from one another in order to form an electric field between the cathode and the anode, the electric field originating at the anode and terminating at the cathode, the grid being disposed between the cathode and the anode, the field shaping rings being disposed between the cathode and the grid, the improvement comprising the medium being xenon and the vessel being maintained at a pressure of 50 to 70 atmospheres and a temperature of 0 to 30 C. 2 figs.

  11. High pressure xenon ionization detector

    DOEpatents

    Markey, John K.

    1989-01-01

    A method is provided for detecting ionization comprising allowing particles that cause ionization to contact high pressure xenon maintained at or near its critical point and measuring the amount of ionization. An apparatus is provided for detecting ionization, the apparatus comprising a vessel containing a ionizable medium, the vessel having an inlet to allow high pressure ionizable medium to enter the vessel, a means to permit particles that cause ionization of the medium to enter the vessel, an anode, a cathode, a grid and a plurality of annular field shaping rings, the field shaping rings being electrically isolated from one another, the anode, cathode, grid and field shaping rings being electrically isolated from one another in order to form an electric field between the cathode and the anode, the electric field originating at the anode and terminating at the cathode, the grid being disposed between the cathode and the anode, the field shaping rings being disposed between the cathode and the grid, the improvement comprising the medium being xenon and the vessel being maintained at a pressure of 50 to 70 atmospheres and a temperature of 0.degree. to 30.degree. C.

  12. A high-pressure carbon dioxide gasdynamic laser

    NASA Technical Reports Server (NTRS)

    Kuehn, D. M.

    1973-01-01

    A carbon dioxide gasdynamic laser was operated over a range of reservoir pressure and temperature, test-gas mixture, and nozzle geometry. A significant result is the dominant influence of nozzle geometry on laser power at high pressure. High reservoir pressure can be effectively utilized to increase laser power if nozzle geometry is chosen to efficiently freeze the test gas. Maximum power density increased from 3.3 W/cu cm of optical cavity volume for an inefficient nozzle to 83.4 W/cu cm at 115 atm for a more efficient nozzle. Variation in the composition of the test gas also caused large changes in laser power output. Most notable is the influence of the catalyst (helium or water vapor) that was used to depopulate the lower vibrational state of the carbon dioxide. Water caused an extreme deterioration of laser power at high pressure (100 atm), whereas, at low pressure the laser for the two catalysts approached similar values. It appears that at high pressure the depopulation of the upper laser level of the carbon dioxide by the water predominates over the lower state depopulation, thus destroying the inversion.

  13. Ultra-high temperature isothermal furnace liners (IFLS) for copper freeze point cells

    NASA Astrophysics Data System (ADS)

    Dussinger, P. M.; Tavener, J. P.

    2013-09-01

    Primary Laboratories use large fixed-point cells in deep calibration furnaces utilizing heat pipes to achieve temperature uniformity. This combination of furnace, heat pipe, and cell gives the smallest of uncertainties. The heat pipe, also known as an isothermal furnace liner (IFL), has typically been manufactured with Alloy 600/601 as the envelope material since the introduction of high temperature IFLs over 40 years ago. Alloy 600/601 is a widely available high temperature material, which is compatible with Cesium, Potassium, and Sodium and has adequate oxidation resistance and reasonable high temperature strength. Advanced Cooling Technologies, Inc. (ACT) Alloy 600/Sodium IFLs are rated to 1100°C for approximately 1000 hours of operation (based on creep strength). Laboratories interested in performing calibrations and studies around the copper freezing point (1084.62°C) were frustrated by the 1000 hours at 1100°C limitation and the fact that expensive freeze-point cells were getting stuck and/or crushed inside the IFL. Because of this growing frustration/need, ACT developed an Ultra High Temperature IFL to take advantage of the exceptional high temperature strength properties of Haynes 230.

  14. A high yield technique for freeze-fracturing of small fractions of isolated cells.

    PubMed

    Falcieri, E; Mariani, A R; Del Coco, R; Facchini, A; Maraldi, N M

    1988-07-01

    A simple, high-yield technique for the freeze-fracturing of small amounts of isolated cells is described. A drop of cells fixed in suspension is deposited on a polylysine-treated coverslip, forming a monolayer through electrostatic forces. After cryoprotection, the coverslip is inverted on a gold carrier covered with Vinol and then frozen in liquid nitrogen. The monolayer will be fractured by advancing the knife under the coverslip. Large areas of cell surface can be exposed despite their low number, such as that obtainable after cell sorting by flow cytometry. PMID:3179998

  15. How Is High Blood Pressure Treated?

    MedlinePlus

    ... blood pressure and maintain normal blood pressure readings. Healthy Eating To help treat high blood pressure, health care ... Read more about the DASH eating plan. Heart-Healthy Eating Your health care provider also may recommend heart- ...

  16. High Pressure Electrolyzer System Evaluation

    NASA Technical Reports Server (NTRS)

    Prokopius, Kevin; Coloza, Anthony

    2010-01-01

    This report documents the continuing efforts to evaluate the operational state of a high pressure PEM based electrolyzer located at the NASA Glenn Research Center. This electrolyzer is a prototype system built by General Electric and refurbished by Hamilton Standard (now named Hamilton Sunstrand). It is capable of producing hydrogen and oxygen at an output pressure of 3000 psi. The electrolyzer has been in storage for a number of years. Evaluation and testing was performed to determine the state of the electrolyzer and provide an estimate of the cost for refurbishment. Pressure testing was performed using nitrogen gas through the oxygen ports to ascertain the status of the internal membranes and seals. It was determined that the integrity of the electrolyzer stack was good as there were no appreciable leaks in the membranes or seals within the stack. In addition to the integrity testing, an itemized list and part cost estimate was produced for the components of the electrolyzer system. An evaluation of the system s present state and an estimate of the cost to bring it back to operational status was also produced.

  17. Electrokinetic high pressure hydraulic system

    SciTech Connect

    Paul, P.H.; Rakestraw, D.J.

    2000-01-11

    A compact high pressure hydraulic system having no moving parts for converting electric potential to hydraulic force and for manipulating fluids. Electro-osmotic flow is used to provide a valve and means to compress a fluid or gas in a capillary-based system. By electro-osmotically moving an electrolyte between a first position opening communication between a fluid inlet and outlet and a second position closing communication between the fluid inlet and outlet the system can be configured as a valve. The system can also be used to generate forces as large as 2500 psi that can be used to compress a fluid, either a liquid or a gas.

  18. Brillouin scattering at high pressures

    SciTech Connect

    Grimsditch, M.; Polian, A.

    1988-02-01

    Technical advances which have made Brillouin scattering a useful tool in high pressure diamond anvil cell (DAC) studies, viz. multipassing and tandem operation of Fabry-Perot interferometers, are reviewed. Experimental aspects, such as allowed scattering geometries, are outlined and the data analysis required to transform Brillouin spectra into sound velocities and elastic constants is presented. Experimental results on H/sub 2/, N/sub 2/, Ar, and He are presented, and the close relationship between the Brillouin scattering results and equations of state is highlighted.

  19. Electokinetic high pressure hydraulic system

    DOEpatents

    Paul, Phillip H.; Rakestraw, David J.

    2000-01-01

    A compact high pressure hydraulic system having no moving parts for converting electric potential to hydraulic force and for manipulating fluids. Electro-osmotic flow is used to provide a valve and means to compress a fluid or gas in a capillary-based system. By electro-osmotically moving an electrolyte between a first position opening communication between a fluid inlet and outlet and a second position closing communication between the fluid inlet and outlet the system can be configured as a valve. The system can also be used to generate forces as large as 2500 psi that can be used to compress a fluid, either a liquid or a gas.

  20. Improved high pressure turbine shroud

    NASA Technical Reports Server (NTRS)

    Bessen, I. I.; Rigney, D. V.; Schwab, R. C.

    1977-01-01

    A new high pressure turbine shroud material has been developed from the consolidation of prealloyed powders of Ni, Cr, Al and Y. The new material, a filler for cast turbine shroud body segments, is called Genaseal. The development followed the identification of oxidation resistance as the primary cause of prior shroud deterioration, since conversion to oxides reduces erosion resistance and increases spalling under thermal cycled engine conditions. The NICrAlY composition was selected in preference to NIAL and FeCRALY alloys, and was formulated to a prescribed density range that offers suitable erosion resistance, thermal conductivity and elastic modulus for improved behavior as a shroud.

  1. New High-Performance Droplet Freezing Assay (HP-DFA) for the Analysis of Ice Nuclei with Complex Composition

    NASA Astrophysics Data System (ADS)

    Kunert, Anna Theresa; Scheel, Jan Frederik; Helleis, Frank; Klimach, Thomas; Pöschl, Ulrich; Fröhlich-Nowoisky, Janine

    2016-04-01

    Freezing of water above homogeneous freezing is catalyzed by ice nucleation active (INA) particles called ice nuclei (IN), which can be of various inorganic or biological origin. The freezing temperatures reach up to -1 °C for some biological samples and are dependent on the chemical composition of the IN. The standard method to analyze IN in solution is the droplet freezing assay (DFA) established by Gabor Vali in 1970. Several modifications and improvements were already made within the last decades, but they are still limited by either small droplet numbers, large droplet volumes or inadequate separation of the single droplets resulting in mutual interferences and therefore improper measurements. The probability that miscellaneous IN are concentrated together in one droplet increases with the volume of the droplet, which can be described by the Poisson distribution. At a given concentration, the partition of a droplet into several smaller droplets leads to finely dispersed IN resulting in better statistics and therefore in a better resolution of the nucleation spectrum. We designed a new customized high-performance droplet freezing assay (HP-DFA), which represents an upgrade of the previously existing DFAs in terms of temperature range and statistics. The necessity of observing freezing events at temperatures lower than homogeneous freezing due to freezing point depression, requires high-performance thermostats combined with an optimal insulation. Furthermore, we developed a cooling setup, which allows both huge and tiny temperature changes within a very short period of time. Besides that, the new DFA provides the analysis of more than 750 droplets per run with a small droplet volume of 5 μL. This enables a fast and more precise analysis of biological samples with complex IN composition as well as better statistics for every sample at the same time.

  2. Activity coefficients and free energies of nonionic mixed surfactant solutions from vapor-pressure and freezing-point osmometry.

    PubMed

    MacNeil, Jennifer A; Ray, Gargi Basu; Leaist, Derek G

    2011-05-19

    The thermodynamic properties of mixed surfactant solutions are widely investigated, prompted by numerous practical applications of these systems and by interest in molecular association and self-organization. General techniques for measuring thermodynamic activities, such as isopiestic equilibration, are well-established for multicomponent solutions. Surprisingly, these techniques have not yet been applied to mixed surfactant solutions, despite the importance of the free energy for micelle stability. In this study, equations are developed for the osmotic coefficients of solutions of nonionic surfactant A + nonionic surfactant B. A mass-action model is used, with virial equations for the activity coefficients of the micelles and free surfactant monomer species. The equations are fitted to osmotic coefficients of aqueous decylsulfobetaine + dodecylsulfobetaine solutions measured by vapor-pressure and freezing-point osmometry. Equilibrium constants for mixed-micelle formation are calculated from the free monomer concentrations at the critical micelle concentrations. The derived activity coefficients of the micelles and free monomers indicate large departures from ideal solution behavior, even for dilute solutions of the surfactants. Stoichiometric activity coefficients of the total surfactant components are evaluated by Gibbs-Duhem integration of the osmotic coefficients. Relatively simple colligative property measurements hold considerable promise for free energy studies of multicomponent surfactant solutions.

  3. Flux-freezing breakdown observed in high-conductivity magnetohydrodynamic turbulence

    NASA Astrophysics Data System (ADS)

    Lalescu, C.; Eyink, G.; Kanov, K.; Burns, R.; Meneveau, C.; Szalay, A.; Vishniac, E.; Aluie, H.; Bürger, K.

    2013-04-01

    Alfven's principle of ``frozen-in'' magnetic field lines for ideal plasmas explains diverse astrophysical phenomena, e.g. how proto-stars shed excess angular momentum. But frozen-in lines also preclude rapid changes in magnetic topology observed at high conductivities, e.g. in solar flares. Microphysical processes at scales below the ion gyroradius are a proposed explanation but it is unclear how these lead to rapid reconnection of astrophysical flux structures very much larger. We propose instead that turbulent Richardson advection brings field-lines implosively together to gyroradius separations from distances far apart. Here we report analysis of a simulation of MHD turbulence at high-conductivity that exhibits Richardson dispersion. This effect of advection by rough velocities leads to line-motions that are completely indeterministic or ``spontaneously stochastic,'' as predicted in analytical studies. The turbulent breakdown of standard flux-freezing at scales greater than the ion gyroradius can explain fast reconnection of large-scale flux structures, e.g. post-CME side-lobe magnetic fields reconnecting to an arcade of flare loops. The thick current sheet observed between flare arcade and CME is explained quantitatively by the stochastic flux-freezing due to turbulence.

  4. Simple Freeze-Drying Procedure for Producing Nanocellulose Aerogel-Containing, High-Performance Air Filters.

    PubMed

    Nemoto, Junji; Saito, Tsuguyuki; Isogai, Akira

    2015-09-01

    Simple freeze-drying of 2,2,6,6-tetramethylpiperidine-1-oxyl (TEMPO)-oxidized cellulose nanofibril (TOCN) dispersions in water/tert-butyl alcohol (TBA) mixtures was conducted to prepare TOCN aerogels as high-performance air filter components. The dispersibility of the TOCNs in the water/TBA mixtures, and the specific surface area (SSA) of the resulting TOCN aerogels, was investigated as a function of the TBA concentration in the mixtures. The TOCNs were homogeneously dispersed in the water/TBA mixtures at TBA concentrations up to 40% w/w. The SSAs of the TOCN aerogels exceeded 300 m2/g when the TBA concentration in the aqueous mixtures was in the range from 20% to 50% w/w. When a commercially available, high-efficiency particulate air (HEPA) filter was combined with TOCN/water/TBA dispersions prepared using 30% TBA, and the product was freeze-dried, the resulting TOCN aerogel-containing filters showed superior filtration properties. This was because nanoscale, spider-web-like networks of the TOCNs with large SSAs were formed within the filter. PMID:26301859

  5. Simple Freeze-Drying Procedure for Producing Nanocellulose Aerogel-Containing, High-Performance Air Filters.

    PubMed

    Nemoto, Junji; Saito, Tsuguyuki; Isogai, Akira

    2015-09-01

    Simple freeze-drying of 2,2,6,6-tetramethylpiperidine-1-oxyl (TEMPO)-oxidized cellulose nanofibril (TOCN) dispersions in water/tert-butyl alcohol (TBA) mixtures was conducted to prepare TOCN aerogels as high-performance air filter components. The dispersibility of the TOCNs in the water/TBA mixtures, and the specific surface area (SSA) of the resulting TOCN aerogels, was investigated as a function of the TBA concentration in the mixtures. The TOCNs were homogeneously dispersed in the water/TBA mixtures at TBA concentrations up to 40% w/w. The SSAs of the TOCN aerogels exceeded 300 m2/g when the TBA concentration in the aqueous mixtures was in the range from 20% to 50% w/w. When a commercially available, high-efficiency particulate air (HEPA) filter was combined with TOCN/water/TBA dispersions prepared using 30% TBA, and the product was freeze-dried, the resulting TOCN aerogel-containing filters showed superior filtration properties. This was because nanoscale, spider-web-like networks of the TOCNs with large SSAs were formed within the filter.

  6. Fundamentals of freeze-drying.

    PubMed

    Nail, Steven L; Jiang, Shan; Chongprasert, Suchart; Knopp, Shawn A

    2002-01-01

    --the dominant mechanism of heat transfer in freeze-drying--is inefficient at the pressures used in freeze-drying. Steps should be taken to improve the thermal contact between the product and the shelf of the freeze dryer, such as eliminating metal trays from the drying process. Quantitation of the heat transfer coefficient for the geometry used is a useful way of assessing the impact of changes in the system such as elimination of product trays and changes in the vial. Because heat transfer by conduction through the vapor increases with increasing pressure, the commonly held point of view that "the lower the pressure, the better" is not true with respect to process efficiency. The optimum pressure for a given product is a function of the temperature at which freeze-drying is carried out, and lower pressures are needed at low product temperatures. The controlling resistance to mass transfer is almost always the resistance of the partially dried solids above the submination interface. This resistance can be minimized by avoiding fill volumes of more than about half the volume of the container. The development scientist should also recognize that very high concentrations of solute may not be appropriate for optimum freeze-drying, particularly if the resistance of the dried product layer increases sharply with concentration. Although the last 10 years has seen the publication of a significant body of literature of great value in allowing development scientists and engineers to "work smarter," there is still much work needed in both the science and the technology of freeze-drying. Scientific development is needed for improving analytical methodology for characterization of frozen systems and freeze-dried solids. A better understanding of the relationship between molecular mobility and reactivity is needed to allow accurate prediction of product stability at the intended storage temperature based on accelerated stability at higher temperatures. This requires that the temperature

  7. Method of producing a high pressure gas

    DOEpatents

    Bingham, Dennis N.; Klingler, Kerry M.; Zollinger, William T.

    2006-07-18

    A method of producing a high pressure gas is disclosed and which includes providing a container; supplying the container with a liquid such as water; increasing the pressure of the liquid within the container; supplying a reactant composition such as a chemical hydride to the liquid under pressure in the container and which chemically reacts with the liquid to produce a resulting high pressure gas such as hydrogen at a pressure of greater than about 100 pounds per square inch of pressure; and drawing the resulting high pressure gas from the container.

  8. Optical calibration of pressure sensors for high pressures and temperatures

    SciTech Connect

    Goncharov, A F; Gregoryanz, E; Zaug, J M; Crowhurst, J C

    2004-10-04

    We present the results of Raman scattering measurements of diamond ({sup 12}C) and of cubic boron nitride (cBN), and fluorescence measurements of ruby, Sm:YAG, and SrB{sub 4}O{sub 7}:Sm{sup 2+} in the diamond anvil cell (DAC) at high pressures and temperatures. These measurements were accompanied by synchrotron x-ray diffraction measurements on gold. We have extended the room-temperature calibration of Sm:YAG in a quasihydrostatic regime up to 100 GPa. The ruby scale is shown to systematically underestimate pressure at high pressures and temperatures compared with all other sensors. On this basis, we propose a new high-temperature ruby pressure scale that should be valid to at least 100 GPa and 850 K. Historically, the accurate determination of pressure at high temperature and ultrahigh pressure has been extremely difficult. In fact, the lack of a general pressure scale nullifies, to a significant extent, the great innovations that have been made in recent years in DAC experimental techniques [1]. Now, more than ever a scale is required whose accuracy is comparable with that of the experimental data. Since pressure in the DAC is dependent on temperature (due to thermal pressure and also to changes in the properties of the materials that constitute the DAC) such a scale requires quantitative, and separate measurements of pressure and temperature.

  9. High-pressure microhydraulic actuator

    DOEpatents

    Mosier, Bruce P [San Francisco, CA; Crocker, Robert W [Fremont, CA; Patel, Kamlesh D [Dublin, CA

    2008-06-10

    Electrokinetic ("EK") pumps convert electric to mechanical work when an electric field exerts a body force on ions in the Debye layer of a fluid in a packed bed, which then viscously drags the fluid. Porous silica and polymer monoliths (2.5-mm O.D., and 6-mm to 10-mm length) having a narrow pore size distribution have been developed that are capable of large pressure gradients (250-500 psi/mm) when large electric fields (1000-1500 V/cm) are applied. Flowrates up to 200 .mu.L/min and delivery pressures up to 1200 psi have been demonstrated. Forces up to 5 lb-force at 0.5 mm/s (12 mW) have been demonstrated with a battery-powered DC-DC converter. Hydraulic power of 17 mW (900 psi@ 180 uL/min) has been demonstrated with wall-powered high voltage supplies. The force and stroke delivered by an actuator utilizing an EK pump are shown to exceed the output of solenoids, stepper motors, and DC motors of similar size, despite the low thermodynamic efficiency.

  10. Electrical Transport Experiments at High Pressure

    SciTech Connect

    Weir, S

    2009-02-11

    High-pressure electrical measurements have a long history of use in the study of materials under ultra-high pressures. In recent years, electrical transport experiments have played a key role in the study of many interesting high pressure phenomena including pressure-induced superconductivity, insulator-to-metal transitions, and quantum critical behavior. High-pressure electrical transport experiments also play an important function in geophysics and the study of the Earth's interior. Besides electrical conductivity measurements, electrical transport experiments also encompass techniques for the study of the optoelectronic and thermoelectric properties of materials under high pressures. In addition, electrical transport techniques, i.e., the ability to extend electrically conductive wires from outside instrumentation into the high pressure sample chamber have been utilized to perform other types of experiments as well, such as high-pressure magnetic susceptibility and de Haas-van Alphen Fermi surface experiments. Finally, electrical transport techniques have also been utilized for delivering significant amounts of electrical power to high pressure samples, for the purpose of performing high-pressure and -temperature experiments. Thus, not only do high-pressure electrical transport experiments provide much interesting and valuable data on the physical properties of materials extreme compression, but the underlying high-pressure electrical transport techniques can be used in a number of ways to develop additional diagnostic techniques and to advance high pressure capabilities.

  11. Metastable superheated ice in liquid-water inclusions under high negative pressure

    USGS Publications Warehouse

    Roedder, E.

    1967-01-01

    In some microscopic inclusions (consisting of aqueous liquid and vapor) in minerals, freezing eliminates the vapor phase because of greater volume occupied by the resulting ice. When vapor fails to nucleate again on partial melting, the resulting negative pressure (hydrostatic tension) inside the inclusions permits the existence of ice I crystals under reversible, metastable equilibrium, at temperatures as high as +6.5??C and negative pressures possibly exceeding 1000 bars.

  12. High Blood Pressure May Hike Dementia Risk

    MedlinePlus

    ... medlineplus.gov/news/fullstory_161398.html High Blood Pressure May Hike Dementia Risk New statement from American ... MONDAY, Oct. 10, 2016 (HealthDay News) -- High blood pressure, particularly in middle age, might open the door ...

  13. High blood pressure and eye disease

    MedlinePlus

    ... this page: //medlineplus.gov/ency/article/000999.htm High blood pressure and eye disease To use the sharing features ... Hypertensive retinopathy is damage to the retina from high blood pressure. The retina is the layer of tissue at ...

  14. Effect of high doses of chemical admixtures on the strength development and freeze-thaw durability of portland cement mortar

    NASA Astrophysics Data System (ADS)

    Korhonen, Charles J.

    This thesis examines the low-temperature strength development of portland cement concrete made with high doses of chemical admixtures dissolved in the mixing water and the possible beneficial effect of these admixtures on that concrete's long-term freeze-thaw durability. The literature shows that high doses of chemical admixtures can protect fresh concrete against freezing and that, under certain conditions, these admixtures can enhance the freeze-thaw durability of concrete. The challenge is that there are no acceptance standards in the U.S. that allow chemicals to be used to protect concrete against freezing. Also, the perception is that chemicals might somehow harm the concrete. This perception seems to be based on the fact that deicing salts, when applied to concrete pavement, cause roadways to scale away. This study investigated the effect of high doses of commercially available admixtures on fresh concrete while it gained strength at low temperature and on hardened concrete exposed to repeated cycles of freezing and thawing in a moist environment. The reason for studying off-the-shelf admixtures was that these materials are approved for use in concrete; they were already governed by their own set of standards. Four mortars were examined, each with a different cement and water content, when dosed with five commercial admixtures. This allowed the fresh mortar to gain appreciable strength when it was kept at nearly -10C. The admixtures also enhanced the freeze-thaw durability of the mortar, even when it was not air-entrained. Clearly, as the dosage of admixture increased beyond approximately 22% by weight of water, the mortar appeared to be unaffected by up to 700 cycles of freezing and thawing.

  15. The High School Coach. A Pressure Position.

    ERIC Educational Resources Information Center

    Lackey, Donald

    1986-01-01

    In 1982 principals of 95 percent of Nebraska high schools responded to a questionnaire regarding amount and types of pressure coaches were under. Results regarding reasons for dismissal were compared with a 1975 study. The types of pressure, sources of pressure, pressure sports, and impact on coaches are discussed. (MT)

  16. Two-dimensional thermal analysis for freezing of plant and animal cells by high-speed microscopic IR camera

    NASA Astrophysics Data System (ADS)

    Morikawa, Junko; Hashimoto, Toshimasa; Hayakawa, Eita; Uemura, Hideyuki

    2003-04-01

    Using a high speed IR camera for temperature sensor is a powerful new tool for thermal analysis in the cell scale biomaterials. In this study, we propose a new type of two-dimensional thermal analysis by means of a high speed IR camera with a microscopic lens, and applied it to the analysis of freezing of plant and animal cells. The latent heat on the freezing of super cooled onion epidermal cell was randomly observed by a unit cell size, one by one, under a cooling rate of 80degC/min with a spatial resolution of 7.5m. The freezing front of ice formation and the thermal diffusion behavior of generated latent heat were analyzed. As a result it was possible to determine simultaneously the intercellular/intracellular temperature distribution, the growing speed of freezing front in a single cell, and the thermal diffusion in the freezing process of living tissue. A new measuring system presented here will be significant in a transient process of biomaterials. A newly developed temperature wave methods for the measurement of in-plane thermal diffusivity was also applied to the cell systems.

  17. High-Pressure Lightweight Thrusters

    NASA Technical Reports Server (NTRS)

    Holmes, Richard; McKechnie, Timothy; Shchetkovskiy, Anatoliy; Smirnov, Alexander

    2013-01-01

    Returning samples of Martian soil and rock to Earth is of great interest to scientists. There were numerous studies to evaluate Mars Sample Return (MSR) mission architectures, technology needs, development plans, and requirements. The largest propulsion risk element of the MSR mission is the Mars Ascent Vehicle (MAV). Along with the baseline solid-propellant vehicle, liquid propellants have been considered. Similar requirements apply to other lander ascent engines and reaction control systems. The performance of current state-ofthe- art liquid propellant engines can be significantly improved by increasing both combustion temperature and pressure. Pump-fed propulsion is suggested for a single-stage bipropellant MAV. Achieving a 90-percent stage propellant fraction is thought to be possible on a 100-kg scale, including sufficient thrust for lifting off Mars. To increase the performance of storable bipropellant rocket engines, a high-pressure, lightweight combustion chamber was designed. Iridium liner electrodeposition was investigated on complex-shaped thrust chamber mandrels. Dense, uniform iridium liners were produced on chamber and cylindrical mandrels. Carbon/carbon composite (C/C) structures were braided over iridium-lined mandrels and densified by chemical vapor infiltration. Niobium deposition was evaluated for forming a metallic attachment flange on the carbon/ carbon structure. The new thrust chamber was designed to exceed state-of-the-art performance, and was manufactured with an 83-percent weight savings. High-performance C/Cs possess a unique set of properties that make them desirable materials for high-temperature structures used in rocket propulsion components, hypersonic vehicles, and aircraft brakes. In particular, more attention is focused on 3D braided C/Cs due to their mesh-work structure. Research on the properties of C/Cs has shown that the strength of composites is strongly affected by the fiber-matrix interfacial bonding, and that weakening

  18. High Pressure Study on High Temperature Superconductors

    NASA Astrophysics Data System (ADS)

    Lin, Jauyn Grace

    In spite of the progress on the understanding of high-temperature superconductivity (HTS), there is still not sufficient evidence to differentiate one theoretical model from the others. In an attempt to relate the crystal structures of high-temperature superconductors (HTS's) to the mechanism of HTS, we have adopted a chemico-physical approach by examining the pressure-effect on the superconducting and transport properties of superconducting compound systems. Without exception, all compounds exhibiting superconductivity above 77 K, the boiling point of liquid nitrogen, are anisotropic structures consisting of layers of CuO_2 , metal element (R's; where R is R being Ca, Y or rare-earth element) and metal-oxide (MO's; where M is Ca, Ba, Sr, Cu, Hg, Tl, Bi or Pb). We have investigated under pressure the electrical and superconducting properties of four highly related systems with different R's, different numbers of MO layers, different numbers of CuO _2 layers and various anion dopings. The specific systems studied were: RBa_2Cu _3O_7 (R = Y, Yb, Tm, Ho, Dy, Gd, Sm and Nd), R_{1 -x}Pr_{x}Ba _2Cu_3O _7 (R = Yb and Dy), Y_2Ba _4Cu_{5 + m} O_{13 + m} (m = 1, 2 and 3), and Tl_2Ba _2Ca_{L-1}Cu _{2L-1}O_ {4 + 2L-delta} (L= 1,2 and 3, and 0 <= delta <= 0.1). We found that: (1) in R-123, R affects T _{c} due to its chemical pressure which, in turn, can lead to a modification in the electronic structure of HTS's, in contrast to the general belief that R is isolated from the superconducting CuO_2 layers and hence has no influence on T _{c}; (2) the absence of superconductivity in PrBa_2Cu_3O _7 may be due to the low carrier concentration and hole-localization, in contrast to the suggestion of pair-breaking; (3) there may exist a common optimal T_{c} for all members of the homologous series Y_2Ba _4Cu_{5 + m} O_{13 + m}, raising the possibility of a similar situation in other compound families; and (4) We have observed a universal T _{c}-behavior for HTS's. We believe that these

  19. Freeze-thawing behaviour of highly concentrated aqueous alkali chloride-glucose systems.

    PubMed

    Kajiwara, K; Motegi, A; Murase, N

    2001-01-01

    The freeze-thawing behaviour of highly concentrated aqueous alkali chloride-glucose systems was investigated by differential scanning calorimetry (DSC). In the aqueous NaCl-glucose solution system, single or double glass transitions followed by the corresponding devitrification exotherms were observed during rewarming. In the aqueous KCl-glucose solution system, on the other hand, a single glass transition followed by an exotherm was observed during rewarming. The presence of double glass transitions observed for a certain composition of the aqueous NaCl-glucose solution was taken as an evidence for the liquid-liquid immiscibility at low temperatures. Two kinds of crystallisation accompanied by exotherms during rewarming were identified by X-ray diffraction as ice and ice/NaCl x 2H(2)O, or ice/KCl eutectic component. PMID:11788873

  20. The freeze-up of high Arctic ponds and potential impacts on the carbon balance

    NASA Astrophysics Data System (ADS)

    Langer, M.; Westermann, S.; Abnizova, A.; Muster, S.; Wischnewski, K.; Boike, J.

    2011-12-01

    A considerable part of the global carbon budget is stored in the Arctic permafrost landscapes. Several studies suggest that lakes and ponds play a key role in the carbon turnover of these ecosystems as they are considered to be favourable paths of carbon exchange between surface and atmosphere. The direction and strength of the carbon fluxes from Arctic lakes is controlled by a variety of physical and biochemical processes whose climate interactions are complex and still poorly understood. In some Arctic regions the fractional area of lakes and ponds can be as large as 25% highlighting the importance of water bodies in the Arctic ecosystems. Our long-term studies on the energy balance of a typical Arctic lake landscape reveal that the seasonal freeze-thaw dynamic is highly sensitive to small variations in the winter time radiation budget and the subsurface heat flux, especially at shallow ponds. The time required to completely freeze the water body including the subjacent bottom sediments can vary up to several months. This implies that the period of unfrozen ponds, during which biological activity is favourable, highly depends on factors such as the winter time cloudiness and snow cover. Hence, the close interaction between the winter time surface energy balance and biological processes might strongly affect the production and storage of green house gases of Arctic landscapes. This potential climate feedback mechanism is even more important as small water bodies are usually below the spatial resolution of remote sensing products. Therefore, they are not included in landscape classifications used in recent estimates of the global carbon budget or climate models. Nevertheless, small water bodies can make up a considerable percentage of the tundra surface comparable in size to the area occupied by large (thermokarst) lakes. Further investigation on the role of small water bodies appears to be mandatory for a better understanding of the Arctic carbon balance.

  1. Behavioral profile and dorsal hippocampal cells in carioca high-conditioned freezing rats.

    PubMed

    Dias, Gisele Pereira; Bevilaqua, Mário Cesar do Nascimento; Silveira, Anna Claudia Domingos; Landeira-Fernandez, Jesus; Gardino, Patrícia Franca

    2009-12-28

    Selection for contextual fear conditioning is an important behavioral paradigm for studying the role of genetic variables and their interaction with the surrounding environment in the etiology and development of anxiety disorders. Recently, a new line of animals selectively bred for high levels of freezing in response to contextual cues previously associated with footshock was developed from a Wistar population. The purpose of the present study was to evaluate the emotional and cognitive aspects of this new line of animals, which has been named Carioca High-Freezing (CHF). For the characterization of anxious behavior, CHF and control animals were tested in the elevated plus-maze (EPM) and the social interaction test. CHF animals were significantly more anxious than control rats in terms of both the number of entries into EPM open arms and the percentage of time spent in these arms. The time spent in social interaction behavior was also significantly decreased. No statistical differences were found in locomotor activity, as measured by both the number of entries into the closed arms of the EPM and the number of crossings into the social interaction test arena. No differences between CHF and control groups were found in the depression forced swimming test, suggesting that the anxiety trait selected in the CHF line did not interact with affective disorders traits such as those for depression. Cognitive aspects of the CHF rats were evaluated in the object recognition task. Results from this test indicated no difference between the two groups. The present study also encompassed histological analysis of the dorsal hippocampus from CHF and control animals. Results revealed an absence of qualitative and quantitative differences between these two groups of animals in cells located in the dentate gyrus, CA1, and CA3 areas. Therefore, future studies are required to further investigate the possible neural mechanisms involved in the origin and development of the anxious

  2. Manufacturing Diamond Under Very High Pressure

    NASA Technical Reports Server (NTRS)

    Voronov, Oleg

    2007-01-01

    A process for manufacturing bulk diamond has been made practical by the invention of the High Pressure and Temperature Apparatus capable of applying the combination of very high temperature and high pressure needed to melt carbon in a sufficiently large volume. The apparatus includes a reaction cell wherein a controlled static pressure as high as 20 GPa and a controlled temperature as high as 5,000 C can be maintained.

  3. High Blood Pressure: Unique to Older Adults

    MedlinePlus

    ... below to read more. High Blood Pressure and Edema : You may notice swelling in some parts of ... blood pressure. This buildup of fluids, called peripheral edema, usually occurs in your ankles, feet, lower legs, ...

  4. High pressure pulsed capillary viscometry

    NASA Technical Reports Server (NTRS)

    Smith, R. L.; Walowitt, J. A.; Pan, C. H. T.

    1972-01-01

    An analytical and test program was conducted in order to establish the feasibility of a multichamber pulsed-capillary viscometer. The initial design incorporated a piston, ram, and seals which produced measured pulses up to 30,000 psi in the closed chamber system. Pressure pulses from one to ten milliseconds were investigated in a system volume of 1 cuin. Four test fluids: a MIL-L-7808, a 5P4E polyphenyl ether, a MIL-L-23699A, and a synthetic hydrocarbon were examined in the test pressure assembly. The pressure-viscosity coefficient and viscosity delay time were determined for the MIL-L-7808 lubricant tested.

  5. Potassium and High Blood Pressure

    MedlinePlus

    ... in blood pressure to certain patterns of food consumption. For example, the D.A.S.H. (Dietary Approaches ... are good natural sources of potassium. Potassium-rich foods include: Sweet ... Levels Mean * ...

  6. High-Pressure Research in Mineral Physics

    NASA Astrophysics Data System (ADS)

    Hazen, Robert M.

    Advances in high-pressure science and technology have transformed solid Earth geophysics. In the last decade, high-pressure researchers have reproduced the full range of Earth pressure and temperature conditions in the laboratory, and they have synthesized single crystals of dense silicate phases, unknown at the Earth's surface yet suspected to comprise most of the Earth's volume. These and other extraordinary accomplishments are chronicled in High-Pressure Research in Mineral Physics, an outgrowth of the third U.S.-Japan High-Pressure seminar, held in Kahuku, Hawaii, January, 13-16, 1986. The well produced and reasonably priced volume is dedicated to Syun-iti Akimoto, dean of Japanese high-pressure research, who recently retired from the University of Tokyo. Akimoto's fascinating historical account of pressure research at the Institute for Solid State Physics at the University of Tokyo is the leadoff article.

  7. Epithelial dominant expression of antifreeze proteins in cunner suggests recent entry into a high freeze-risk ecozone.

    PubMed

    Hobbs, Rod S; Fletcher, Garth L

    2013-01-01

    Most marine teleost fishes residing in a high freeze-risk ecozone, such as the coastal waters of Newfoundland during winter, avoid freezing by secreting high concentrations of antifreeze proteins (AFP) into their blood plasma where they can bind to and prevent the growth of ice that enter the fish. Cunner (Tautogolabrus adspersus), which overwinter in such shallow waters are the only known exception. Although this species does produce type I AFP, the plasma levels are too low to be of value as a freeze protectant. Southern and Northern blot analyses carried out in this study establish that the cunner AFP genes belong to a multigene family that is predominantly expressed in external epithelia (skin and gill filaments). These results support the hypothesis that the survival of cunner in icy waters is attributable in part to epithelial AFP that help block ice propagation into their interior milieu. In contrast to the cunner, heterospecifics occupying the same habitat have greater freeze protection because they produce AFP in the liver for export to the plasma as well as in external epithelia. Since the external epithelia would be the first tissue to come into contact with ice it is possible that one of the earliest steps involved in the evolution of freeze resistant fish could have been the expression of AFP in tissues such as the skin. We suggest that this epithelial-dominant AFP expression represents a primitive stage in AFP evolution and propose that cunner began to inhabit "freeze-risk ecozones" more recently than heterospecifics. PMID:23085291

  8. High pressure synthesis gas conversion. Final report

    SciTech Connect

    Not Available

    1993-05-01

    The purpose of this research project is to build and test a high pressure fermentation system for the production of ethanol from synthesis gas. The fermenters, pumps, controls, and analytical system were procured or fabricated and assembled in our laboratory. This system was then used to determine the effects of high pressure on growth and ethanol production by Clostridium ljungdahlii. The limits of cell concentration and mass transport relationships were found in CSTR and immobilized cell reactors (ICR). The minimum retention times and reactor volumes were found for ethanol production in these reactors. A maximum operating pressure of 150 psig has been shown to be possible for C. ljungdahlli with the medium of Phillips et al. This medium was developed for atmospheric pressure operation in the CSTR to yield maximum ethanol concentrations and thus is not best for operation at elevated pressures. It is recommended that a medium development study be performed for C. ljungdahlii at increased pressure. Cell concentration, gas conversion and product concentration profiles were presented for C. ljungdahlii as a function of gas flow rate, the variable which affects bacterium performance the most. This pressure was chosen as a representative pressure over the 0--150 psig operating pressure range for the bacterium. Increased pressure negatively affected ethanol productivity probably due to the fact that medium composition was designed for atmospheric pressure operation. Medium development at increased pressure is necessary for high pressure development of the system.

  9. High Precision Pressure Measurement with a Funnel

    ERIC Educational Resources Information Center

    Lopez-Arias, T.; Gratton, L. M.; Oss, S.

    2008-01-01

    A simple experimental device for high precision differential pressure measurements is presented. Its working mechanism recalls that of a hydraulic press, where pressure is supplied by insufflating air under a funnel. As an application, we measure air pressure inside a soap bubble. The soap bubble is inflated and connected to a funnel which is…

  10. Effects of High-Pressure, Microbial Transglutaminase and Glucono-δ-Lactone on the Aggregation Properties of Skim Milk.

    PubMed

    Lee, Sang Yoon; Choi, Mi-Jung; Cho, Hyung-Yong; Davaatseren, Munkhtugs

    2016-01-01

    The object in this study is to investigate the effects of high pressure and freezing processes on the curdling of skim milk depending on the presence of transglutaminase (TGase) and glucono-δ-lactone (GdL). Skim milk was treated with atmospheric freezing (AF), high pressure (HP), pressure-shift freezing (PSF) and high pressure sub-zero temperature (HPST) processing conditions. After freezing and pressure processing, these processed milk samples were treated with curdling agents, such as TGase and GdL. Pressurized samples (HP, PSF and HPST) had lower lightness than that of the control. In particular, PSF had the lowest lightness (p<0.05). Likewise, the PSF proteins were the most insoluble regardless of whether they were activated by TGase and GdL, indicating the highest rate of protein aggregation (p<0.05). Furthermore, the TGase/GdL reaction resulted in thick bands corresponding to masses larger than 69 kDa, indicating curdling. Casein bands were the weakest in PSF-treated milk, revealing that casein was prone to protein aggregation. PSF also had the highest G' value among all treatments after activation by TGase, implying that PSF formed the hardest curd. However, adding GdL decreased the G' values of the samples except HPST-treated samples. Synthetically, the PSF process was advantageous for curdling of skim milk. PMID:27433104

  11. Effects of High-Pressure, Microbial Transglutaminase and Glucono-δ-Lactone on the Aggregation Properties of Skim Milk

    PubMed Central

    Lee, Sang Yoon; Choi, Mi-Jung; Cho, Hyung-Yong

    2016-01-01

    The object in this study is to investigate the effects of high pressure and freezing processes on the curdling of skim milk depending on the presence of transglutaminase (TGase) and glucono-δ-lactone (GdL). Skim milk was treated with atmospheric freezing (AF), high pressure (HP), pressure-shift freezing (PSF) and high pressure sub-zero temperature (HPST) processing conditions. After freezing and pressure processing, these processed milk samples were treated with curdling agents, such as TGase and GdL. Pressurized samples (HP, PSF and HPST) had lower lightness than that of the control. In particular, PSF had the lowest lightness (p<0.05). Likewise, the PSF proteins were the most insoluble regardless of whether they were activated by TGase and GdL, indicating the highest rate of protein aggregation (p<0.05). Furthermore, the TGase/GdL reaction resulted in thick bands corresponding to masses larger than 69 kDa, indicating curdling. Casein bands were the weakest in PSF-treated milk, revealing that casein was prone to protein aggregation. PSF also had the highest G' value among all treatments after activation by TGase, implying that PSF formed the hardest curd. However, adding GdL decreased the G' values of the samples except HPST-treated samples. Synthetically, the PSF process was advantageous for curdling of skim milk. PMID:27433104

  12. NETL- High-Pressure Combustion Research Facility

    ScienceCinema

    None

    2016-07-12

    NETL's High-Pressure Combustion Facility is a unique resource within the National Laboratories system. It provides the test capabilities needed to evaluate new combustion concepts for high-pressure, high-temperature hydrogen and natural gas turbines. These concepts will be critical for the next generation of ultra clean, ultra efficient power systems.

  13. NETL- High-Pressure Combustion Research Facility

    SciTech Connect

    2013-07-08

    NETL's High-Pressure Combustion Facility is a unique resource within the National Laboratories system. It provides the test capabilities needed to evaluate new combustion concepts for high-pressure, high-temperature hydrogen and natural gas turbines. These concepts will be critical for the next generation of ultra clean, ultra efficient power systems.

  14. High pressure processing for food safety.

    PubMed

    Fonberg-Broczek, Monika; Windyga, B; Szczawiński, J; Szczawińska, M; Pietrzak, D; Prestamo, G

    2005-01-01

    Food preservation using high pressure is a promising technique in food industry as it offers numerous opportunities for developing new foods with extended shelf-life, high nutritional value and excellent organoleptic characteristics. High pressure is an alternative to thermal processing. The resistance of microorganisms to pressure varies considerably depending on the pressure range applied, temperature and treatment duration, and type of microorganism. Generally, Gram-positive bacteria are more resistant to pressure than Gram-negative bacteria, moulds and yeasts; the most resistant are bacterial spores. The nature of the food is also important, as it may contain substances which protect the microorganism from high pressure. This article presents results of our studies involving the effect of high pressure on survival of some pathogenic bacteria -- Listeria monocytogenes, Aeromonas hydrophila and Enterococcus hirae -- in artificially contaminated cooked ham, ripening hard cheese and fruit juices. The results indicate that in samples of investigated foods the number of these microorganisms decreased proportionally to the pressure used and the duration of treatment, and the effect of these two factors was statistically significant (level of probability, P high pressure treatment than L. monocytogenes and A. hydrophila. Mathematical methods were applied, for accurate prediction of the effects of high pressure on microorganisms. The usefulness of high pressure treatment for inactivation of microorganisms and shelf-life extention of meat products was also evaluated. The results obtained show that high pressure treatment extends the shelf-life of cooked pork ham and raw smoked pork loin up to 8 weeks, ensuring good micro-biological and sensory quality of the products.

  15. Multicomponent fuel vaporization at high pressures.

    SciTech Connect

    Torres, D. J.; O'Rourke, P. J.

    2002-01-01

    We extend our multicomponent fuel model to high pressures using a Peng-Robinson equation of state, and implement the model into KIVA-3V. Phase equilibrium is achieved by equating liquid and vapor fugacities. The latent heat of vaporization and fuel enthalpies are also corrected for at high pressures. Numerical simulations of multicomponent evaporation are performed for single droplets for a diesel fuel surrogate at different pressures.

  16. Cagelike diamondoid nitrogen at high pressures.

    PubMed

    Wang, Xiaoli; Wang, Yanchao; Miao, Maosheng; Zhong, Xin; Lv, Jian; Cui, Tian; Li, Jianfu; Chen, Li; Pickard, Chris J; Ma, Yanming

    2012-10-26

    Under high pressure, triply bonded molecular nitrogen dissociates into singly bonded polymeric nitrogen, a potential high-energy-density material. The discovery of stable high-pressure forms of polymeric nitrogen is of great interest. We report the striking stabilization of cagelike diamondoid nitrogen at high pressures predicted by first-principles structural searches. The diamondoid structure of polymeric nitrogen has not been seen in any other elements, and it adopts a highly symmetric body-centered cubic structure with lattice sites occupied by diamondoids, each of which consists of ten nitrogen atoms, forming a N(10) tetracyclic cage. Diamondoid nitrogen possesses a wide energy gap and is energetically most stable among all known polymeric structures above 263 GPa, a pressure that is accessible to a high-pressure experiment. Our findings represent a significant step toward the understanding of the behavior of solid nitrogen at extreme conditions.

  17. Cagelike diamondoid nitrogen at high pressures.

    PubMed

    Wang, Xiaoli; Wang, Yanchao; Miao, Maosheng; Zhong, Xin; Lv, Jian; Cui, Tian; Li, Jianfu; Chen, Li; Pickard, Chris J; Ma, Yanming

    2012-10-26

    Under high pressure, triply bonded molecular nitrogen dissociates into singly bonded polymeric nitrogen, a potential high-energy-density material. The discovery of stable high-pressure forms of polymeric nitrogen is of great interest. We report the striking stabilization of cagelike diamondoid nitrogen at high pressures predicted by first-principles structural searches. The diamondoid structure of polymeric nitrogen has not been seen in any other elements, and it adopts a highly symmetric body-centered cubic structure with lattice sites occupied by diamondoids, each of which consists of ten nitrogen atoms, forming a N(10) tetracyclic cage. Diamondoid nitrogen possesses a wide energy gap and is energetically most stable among all known polymeric structures above 263 GPa, a pressure that is accessible to a high-pressure experiment. Our findings represent a significant step toward the understanding of the behavior of solid nitrogen at extreme conditions. PMID:23215200

  18. Principles and application of high pressure-based technologies in the food industry.

    PubMed

    Balasubramaniam, V M Bala; Martínez-Monteagudo, Sergio I; Gupta, Rockendra

    2015-01-01

    High pressure processing (HPP) has emerged as a commercially viable food manufacturing tool that satisfies consumers' demand for mildly processed, convenient, fresh-tasting foods with minimal to no preservatives. Pressure treatment, with or without heat, inactivates pathogenic and spoilage bacteria, yeast, mold, viruses, and also spores and extends shelf life. Pressure treatment at ambient or chilled temperatures has minimal impact on product chemistry. The product quality and shelf life are often influenced more by storage conditions and packaging material barrier properties than the treatment itself. Application of pressure reduces the thermal exposure of the food during processing, thereby protecting a variety of bioactive compounds. This review discusses recent scientific advances of high pressure technology for food processing and preservation applications such as pasteurization, sterilization, blanching, freezing, and thawing. We highlight the importance of in situ engineering and thermodynamic properties of food and packaging materials in process design. Current and potential future promising applications of pressure technology are summarized.

  19. Fuel droplet burning rates at high pressures.

    NASA Technical Reports Server (NTRS)

    Canada, G. S.; Faeth, G. M.

    1973-01-01

    Combustion of methanol, ethanol, propanol-1, n-pentane, n-heptane, and n-decane was observed in air under natural convection conditions, at pressures up to 100 atm. The droplets were simulated by porous spheres, with diameters in the range from 0.63 to 1.90 cm. The pressure levels of the tests were high enough so that near-critical combustion was observed for methanol and ethanol. Due to the high pressures, the phase-equilibrium models of the analysis included both the conventional low-pressure approach as well as high-pressure versions, allowing for real gas effects and the solubility of combustion-product gases in the liquid phase. The burning-rate predictions of the various theories were similar, and in fair agreement with the data. The high-pressure theory gave the best prediction for the liquid-surface temperatures of ethanol and propanol-1 at high pressure. The experiments indicated the approach of critical burning conditions for methanol and ethanol at pressures on the order of 80 to 100 atm, which was in good agreement with the predictions of both the low- and high-pressure analysis.

  20. Laser techniques in high-pressure geophysics

    NASA Technical Reports Server (NTRS)

    Hemley, R. J.; Bell, P. M.; Mao, H. K.

    1987-01-01

    Laser techniques in conjunction with the diamond-anvil cell can be used to study high-pressure properties of materials important to a wide range of problems in earth and planetary science. Spontaneous Raman scattering of crystalline and amorphous solids at high pressure demonstrates that dramatic changes in structure and bonding occur on compression. High-pressure Brillouin scattering is sensitive to the pressure variations of single-crystal elastic moduli and acoustic velocities. Laser heating techniques with the diamond-anvil cell can be used to study phase transitions, including melting, under deep-earth conditions. Finally, laser-induced ruby fluorescence has been essential for the development of techniques for generating the maximum pressures now possible with the diamond-anvil cell, and currently provides a calibrated in situ measure of pressure well above 100 gigapascals.

  1. Design optimization of high pressure and high temperature piezoresistive pressure sensor for high sensitivity

    NASA Astrophysics Data System (ADS)

    Niu, Zhe; Zhao, Yulong; Tian, Bian

    2014-01-01

    This paper describes a design method for optimizing sensitivity of piezoresistive pressure sensor in high-pressure and high-temperature environment. In order to prove the method, a piezoresistive pressure sensor (HPTSS) is designed. With the purpose of increasing sensitivity and to improve the measurement range, the piezoresistive sensor adopts rectangular membrane and thick film structure. The configuration of piezoresistors is arranged according to the characteristic of the rectangular membrane. The structure and configuration of the sensor chip are analyzed theoretically and simulated by the finite element method. This design enables the sensor chip to operate in high pressure condition (such as 150 MPa) with a high sensitivity and accuracy. The silicon on insulator wafer is selected to guarantee the thermo stability of the sensor chip. In order to optimize the fabrication and improve the yield of production, an electric conduction step is devised. Series of experiments demonstrates a favorable linearity of 0.13% and a high accuracy of 0.48%. And the sensitivity of HTPSS is about six times as high as a conventional square-membrane sensor chip in the experiment. Compared with the square-membrane pressure sensor and current production, the strength of HPTTS lies in sensitivity and measurement. The performance of the HPTSS indicates that it could be an ideal candidate for high-pressure and high-temperature sensing in real application.

  2. Design optimization of high pressure and high temperature piezoresistive pressure sensor for high sensitivity.

    PubMed

    Niu, Zhe; Zhao, Yulong; Tian, Bian

    2014-01-01

    This paper describes a design method for optimizing sensitivity of piezoresistive pressure sensor in high-pressure and high-temperature environment. In order to prove the method, a piezoresistive pressure sensor (HPTSS) is designed. With the purpose of increasing sensitivity and to improve the measurement range, the piezoresistive sensor adopts rectangular membrane and thick film structure. The configuration of piezoresistors is arranged according to the characteristic of the rectangular membrane. The structure and configuration of the sensor chip are analyzed theoretically and simulated by the finite element method. This design enables the sensor chip to operate in high pressure condition (such as 150 MPa) with a high sensitivity and accuracy. The silicon on insulator wafer is selected to guarantee the thermo stability of the sensor chip. In order to optimize the fabrication and improve the yield of production, an electric conduction step is devised. Series of experiments demonstrates a favorable linearity of 0.13% and a high accuracy of 0.48%. And the sensitivity of HTPSS is about six times as high as a conventional square-membrane sensor chip in the experiment. Compared with the square-membrane pressure sensor and current production, the strength of HPTTS lies in sensitivity and measurement. The performance of the HPTSS indicates that it could be an ideal candidate for high-pressure and high-temperature sensing in real application.

  3. Stability of buffer-free freeze-dried formulations: A feasibility study of a monoclonal antibody at high protein concentrations.

    PubMed

    Garidel, Patrick; Pevestorf, Benjamin; Bahrenburg, Sven

    2015-11-01

    We studied the stability of freeze-dried therapeutic protein formulations over a range of initial concentrations (from 40 to 160 mg/mL) and employed a variety of formulation strategies (including buffer-free freeze dried formulations, or BF-FDF). Highly concentrated, buffer-free liquid formulations of therapeutic monoclonal antibodies (mAbs) have been shown to be a viable alternative to conventionally buffered preparations. We considered whether it is feasible to use the buffer-free strategy in freeze-dried formulations, as an answer to some of the known drawbacks of conventional buffers. We therefore conducted an accelerated stability study (24 weeks at 40 °C) to assess the feasibility of stabilizing freeze-dried formulations without "classical" buffer components. Factors monitored included pH stability, protein integrity, and protein aggregation. Because the protein solutions are inherently self-buffering, and the system's buffer capacity scales with protein concentration, we included highly concentrated buffer-free freeze-dried formulations in the study. The tested formulations ranged from "fully formulated" (containing both conventional buffer and disaccharide stabilizers) to "buffer-free" (including formulations with only disaccharide lyoprotectant stabilizers) to "excipient-free" (with neither added buffers nor stabilizers). We evaluated the impacts of varying concentrations, buffering schemes, pHs, and lyoprotectant additives. At the end of 24 weeks, no change in pH was observed in any of the buffer-free formulations. Unbuffered formulations were found to have shorter reconstitution times and lower opalescence than buffered formulations. Protein stability was assessed by visual inspection, sub-visible particle analysis, protein monomer content, charge variants analysis, and hydrophobic interaction chromatography. All of these measures found the stability of buffer-free formulations that included a disaccharide stabilizer comparable to buffer

  4. Infrared Spectra of High Pressure Carbon Monoxide

    SciTech Connect

    Evans, W J; Lipp, M J; Lorenzana, H E

    2001-09-21

    We report infrared (IR) spectroscopic measurements of carbon monoxide (CO) at high pressures. Although CO is one of the simplest heteronuclear diatomic molecules, it displays surprisingly complex behavior at high pressures and has been the subject of several studies [1-5]. IR spectroscopic studies of high pressures phases of CO provide data complementing results from previous studies and elucidating the nature of these phases. Though a well-known and widely utilized diagnostic of molecular systems, IR spectroscopy presents several experimental challenges to high pressure diamond anvil cell research. We present measurements of the IR absorption bands of CO at high pressures and experimentally illustrate the crucial importance of accurate normalization of IR spectra specially within regions of strong absorptions in diamond.

  5. High Pressure Hollow Cathode Discharges

    NASA Astrophysics Data System (ADS)

    Schoenbach, Karl H.; Tessnow, Thomas; Elhabachi, Ahmed

    1996-10-01

    The sustaining voltage of hollow cathode discharges is dependent on the product of pressure and cathode hole diameter. By reducing the dimension of the cathode hole to 0.2 mm we were able to operate micro-hollow cathode discharges at pressures up to 750 Torr in argon in a direct current mode. The current-voltage characteristics of the 0.2 mm cathode hole discharges was found to have a positive slope at currents below 0.25 mA. Up to this current level hollow cathode discharges can be operated in parallel without ballast. The negative slope observed above the threshold current seems to be due to the onset of thermionic electron emission caused by Joule heating of the cathode. This assumption is supported by the experimental observation that multi-hole operation without ballast even at currents far above the dc-threshold current was possible when the discharge was operated in a pulsed mode. The possibility of generating large arrays of ballast-free, pulsed micro-hollow cathode discharges suggests their use as flat panel light sources or electron sources.

  6. Self healing of high strength concrete after deterioration by freeze/thaw

    SciTech Connect

    Jacobsen, S.; Sellevold, E.J.

    1996-01-01

    Some experiments have been performed to investigate the self healing of concretes deteriorated by internal cracking in the ASTM C666 procedure A rapid freeze/thaw test. Six different well cured concretes were deteriorated to various degrees. Then the specimens (concrete beams) were stored in water for 2--3 months. Resonance frequency, weight, volume and compressive strength were measured during deterioration and self healing. Concretes that lost as much as 50% of their initial relative dynamic modulus during freeze/thaw could recover almost completely during subsequent storage in water, somewhat varying with concrete composition and degree of deterioration. Compressive strength showed reductions of 22--29% on deterioration, but only 4--5% recovery on self healing. Freeze/thaw tests on deteriorated and self-healed specimens in partly sealed condition showed clearly that the deterioration was governed by the ability to take up water; the more water that leaked through the plastic foil during freeze/thaw, the larger the deterioration. Self healing may be an important factor giving concrete better frost durability in field than when submitting specimens to freeze/thaw cycles in water.

  7. Farinose flavonoids are associated with high freezing tolerance in fairy primrose (Primula malacoides) plants.

    PubMed

    Isshiki, Ryutaro; Galis, Ivan; Tanakamaru, Shigemi

    2014-02-01

    The deposition of surface (farinose) flavonoids on aerial parts of some Primula species is a well-documented but poorly understood phenomenon. Here, we show that flavonoid deposition on the leaves and winter buds may contribute strongly to preventing freezing damage in these plants. The ice nucleation temperature of fairy primrose (Primula malacoides) leaves covered with natural flavone was approximately 6 °C lower compared to those that had their flavone artificially removed. Additionally, farinose flavonoids on the leaves reduced subsequent electrolyte leakage (EL) from the cells exposed to freezing temperatures. Interestingly, exogenous application of flavone at 4 mg/g fresh weight to P. malacoides leaves, which had the original flavone mechanically removed, restored freezing tolerance, and diminished EL from the cells to pretreatment values. Our results suggest that farinose flavonoids may function as mediators of freezing tolerance in P. malacoides, and exogenous application of flavone could be used to reduce freezing damage during sudden but predictable frost events in other plant species. PMID:24325406

  8. Farinose flavonoids are associated with high freezing tolerance in fairy primrose (Primula malacoides) plants.

    PubMed

    Isshiki, Ryutaro; Galis, Ivan; Tanakamaru, Shigemi

    2014-02-01

    The deposition of surface (farinose) flavonoids on aerial parts of some Primula species is a well-documented but poorly understood phenomenon. Here, we show that flavonoid deposition on the leaves and winter buds may contribute strongly to preventing freezing damage in these plants. The ice nucleation temperature of fairy primrose (Primula malacoides) leaves covered with natural flavone was approximately 6 °C lower compared to those that had their flavone artificially removed. Additionally, farinose flavonoids on the leaves reduced subsequent electrolyte leakage (EL) from the cells exposed to freezing temperatures. Interestingly, exogenous application of flavone at 4 mg/g fresh weight to P. malacoides leaves, which had the original flavone mechanically removed, restored freezing tolerance, and diminished EL from the cells to pretreatment values. Our results suggest that farinose flavonoids may function as mediators of freezing tolerance in P. malacoides, and exogenous application of flavone could be used to reduce freezing damage during sudden but predictable frost events in other plant species.

  9. High pressure gate valve failure

    SciTech Connect

    Place, M. Jr.; Kochera, J.W.

    1995-10-01

    Shell Oil Company was attempting to develop CRA (Corrosion Resistant Alloy) valves for use in those completions utilizing CRA tubing. The testing and development of new materials for CRA valves of both the solid and clad version were pursued. As part of this CRA valve development program, Shell Oil Company tried to reconcile the apparent discrepancy between unacceptable laboratory test results on 410 SS in sour environments with both the apparent success (when properly heat treated and at an acceptable hardness level) of this alloy in commercial sour use and the fact that it is fully accepted in NACE MR-01-75. A410 stainless steel valve was tested near the material yield strength at low H{sub 2}S partial pressures at the STF (Static Test Facility) in Mississippi. The valve failed by crack growth and body wall leakage while under test.

  10. Abnormally high formation pressures, Potwar Plateau, Pakistan

    USGS Publications Warehouse

    Law, B.E.; Shah, S.H.A.; Malik, M.A.

    1998-01-01

    Abnormally high formation pressures in the Potwar Plateau of north-central Pakistan are major obstacles to oil and gas exploration. Severe drilling problems associated with high pressures have, in some cases, prevented adequate evaluation of reservoirs and significantly increased drilling costs. Previous investigations of abnormal pressure in the Potwar Plateau have only identified abnormal pressures in Neogene rocks. We have identified two distinct pressure regimes in this Himalayan foreland fold and thrust belt basin: one in Neogene rocks and another in pre-Neogene rocks. Pore pressures in Neogene rocks are as high as lithostatic and are interpreted to be due to tectonic compression and compaction disequilibrium associated with high rates of sedimentation. Pore pressure gradients in pre-Neogene rocks are generally less than those in Neogene rocks, commonly ranging from 0.5 to 0.7 psi/ft (11.3 to 15.8 kPa/m) and are most likely due to a combination of tectonic compression and hydrocarbon generation. The top of abnormally high pressure is highly variable and doesn't appear to be related to any specific lithologic seal. Consequently, attempts to predict the depth to the top of overpressure prior to drilling are precluded.

  11. Portable high precision pressure transducer system

    DOEpatents

    Piper, T.C.; Morgan, J.P.; Marchant, N.J.; Bolton, S.M.

    1994-04-26

    A high precision pressure transducer system is described for checking the reliability of a second pressure transducer system used to monitor the level of a fluid confined in a holding tank. Since the response of the pressure transducer is temperature sensitive, it is continually housed in an battery powered oven which is configured to provide a temperature stable environment at specified temperature for an extended period of time. Further, a high precision temperature stabilized oscillator and counter are coupled to a single board computer to accurately determine the pressure transducer oscillation frequency and convert it to an applied pressure. All of the components are powered by the batteries which during periods of availability of line power are charged by an on board battery charger. The pressure readings outputs are transmitted to a line printer and a vacuum fluorescent display. 2 figures.

  12. Portable high precision pressure transducer system

    DOEpatents

    Piper, Thomas C.; Morgan, John P.; Marchant, Norman J.; Bolton, Steven M.

    1994-01-01

    A high precision pressure transducer system for checking the reliability of a second pressure transducer system used to monitor the level of a fluid confined in a holding tank. Since the response of the pressure transducer is temperature sensitive, it is continually housed in an battery powered oven which is configured to provide a temperature stable environment at specified temperature for an extended period of time. Further, a high precision temperature stabilized oscillator and counter are coupled to a single board computer to accurately determine the pressure transducer oscillation frequency and convert it to an applied pressure. All of the components are powered by the batteries which during periods of availability of line power are charged by an on board battery charger. The pressure readings outputs are transmitted to a line printer and a vacuum florescent display.

  13. Combustion of liquid sprays at high pressures

    NASA Technical Reports Server (NTRS)

    Shearer, A. J.; Faeth, G. M.

    1977-01-01

    The combustion of pressure atomized fuel sprays in high pressure stagnant air was studied. Measurements were made of flame and spray boundaries at pressures in the range 0.1-9 MPa for methanol and n-pentane. At the higher test pressure levels, critical phenomena are important. The experiments are compared with theoretical predictions based on a locally homogeneous two-phase flow model. The theory correctly predicted the trends of the data, but underestimates flame and spray boundaries by 30-50 percent, indicating that slip is still important for the present experiments (Sauter mean diameters of 30 microns at atmospheric pressure under cold flow conditions). Since the sprays are shorter at high pressures, slip effects are still important even though the density ratio of the phases approach one another as the droplets heat up. The model indicates the presence of a region where condensed water is present within the spray and provides a convenient means of treating supercritical phenomena.

  14. Portable high precision pressure transducer system

    NASA Astrophysics Data System (ADS)

    Piper, T. C.; Morgan, J. P.; Marchant, N. J.; Bolton, S. M.

    A high precision pressure transducer system for checking the reliability of a second pressure transducer system used to monitor the level of a fluid confined in a holding tank is presented. Since the response of the pressure transducer is temperature sensitive, it is continually housed in a battery powered oven which is configured to provide a temperature stable environment at specified temperature for an extended period of time. Further, a high precision temperature stabilized oscillator and counter are coupled to a single board computer to accurately determine the pressure transducer oscillation frequency and convert it to an applied pressure. All of the components are powered by the batteries which during periods of availability of line power are charged by an on-board battery charger. The pressure readings outputs are transmitted to a line printer and a vacuum fluorescent display.

  15. High-pressure mechanical instability in rocks

    USGS Publications Warehouse

    Byerlee, J.D.; Brace, W.F.

    1969-01-01

    At a confining pressure of a few kilobars, deformation of many sedimentary rocks, altered mafic rocks, porous volcanic rocks, and sand is ductile, in that instabilities leading to audible elastic shocks are absent. At pressures of 7 to 10 kilobars, however, unstable faulting and stick-slip in certain of these rocks was observed. This high pressure-low temperature instability might be responsible for earthquakes in deeply buried sedimentary or volcanic sequences.

  16. High-pressure mechanical instability in rocks.

    PubMed

    Byerlee, J D; Brace, W F

    1969-05-01

    At a confining pressure of a few kilobars, deformation of many sedimentary rocks, altered mafic rocks, porous volcanic rocks, and sand is ductile, in that instabilities leading to audible elastic shocks are absent. At pressures of 7 to 10 kilobars, however, unstable faulting and stick-slip in certain of these rocks was observed. This high pressure-low temperature instability might be responsible for earthquakes in deeply buried sedimentary or volcanic sequences.

  17. Microwave emission from high Arctic Sea ice during freeze-up

    NASA Astrophysics Data System (ADS)

    Hollinger, J. P.; Troy, B. E.; Ramseier, R. O.; Asmus, K. W.; Hartman, M. F.; Luther, C. A.

    1984-09-01

    A cooperative sea ice remote sensing experiment was conducted in the eastern Beaufort Sea and Mould Bay area during the freeze-up period in October 1981. Airborne millimeter-wave imagery at 90, 140, and 220 GHz, and nadir microwave radiometric measurements at 19, 22, and 31 GHz, were made from a U. S. Naval Research Laboratory aircraft, while the Canadian Atmospheric Environment Service conducted an extensive concurrent surface measurement program. This study demonstrates for the first time the high-resolution capability of 90 GHz to investigate detailed ice morphology and to define ice types. The 140 and 220 GHz imagery is the first ever made of sea ice at these high frequencies. Emissivities are determined for young ice, second-year ice (SY), multiyear ice (MY), new ice, old shorefast ice, and open water. The young ice exhibits the emissivity typical of first-year (FY) ice types, i.e., near unity and independent of frequency. The emissivities of new ice and open water increase with frequency, and that of MY ice decreases with frequency. Those of SY ice and old shorefast ice, measured here for the first time, also decrease with frequency but are larger in value than the MY emissivity. Ice type discrimination is optimum at 90 GHz, i.e., the spread in microwave signature between FY ice and old ice (SY and MY) is greatest at 90 GHz. The MY emissivity is lower than that of open water at both 90 and 140 GHz. The measurements presented here provide a basis for development of algorithms to exploit the potential of the Mission Sensor Microwave/Imager (SSM/I) to be launched on a Defense Meteorological Satellite in 1985 and, in particular, the 85.5-GHz SSM/I channels for ice type, concentration, and edge determination.

  18. Myths about High Blood Pressure

    MedlinePlus

    ... sodium – and count the same toward total sodium consumption. Table salt is a combination of the two ... can be highly addictive. If you drink, limit consumption to no more than two drinks per day ...

  19. The Soil Moisture Active Passive (SMAP) Radar: Measurements at High Latitudes and of Surface Freeze/Thaw State

    NASA Technical Reports Server (NTRS)

    Spencer, Michael; Dunbar, Scott; Chen, Curtis

    2013-01-01

    The Soil Moisture Active/Passive (SMAP) mission is scheduled for a late 2014 launch date. The mission will use both active radar and passive radiometer instruments at L-Band in order to achieve the science objectives of measuring soil moisture and land surface freeze-thaw state. To achieve requirements for a wide swath at sufficiently high resolution for both active and passive channels, an instrument architecture that uses a large rotating reflector is employed. In this paper, focus will be placed on the radar design. The radar will employ synthetic-aperture processing to achieve a "moderate" resolution dual-pol product over a 1000 km swath. Because the radar is operating continuously, very frequent temporal coverage will be achieved at high latitudes. This data will be used to produce a surface freeze/thaw state data product.

  20. Small, high-pressure liquid hydrogen turbopump

    NASA Technical Reports Server (NTRS)

    Csomor, A.; Sutton, R.

    1977-01-01

    A high pressure, liquid hydrogen turbopump was designed, fabricated, and tested to a maximum speed of 9739 rad/s and a maximum pump discharge pressure of 2861 N/sq. cm. The approaches used in the analysis and design of the turbopump are described, and fabrication methods are discussed. Data obtained from gas generator tests, turbine performance calibration, and turbopump testing are presented.

  1. High Pressure Solution Kinetics of Metal Complexes.

    ERIC Educational Resources Information Center

    Suvachittanont, Surapong

    1983-01-01

    Describes use of activation volumes derived from the effect of pressure reaction rates in aiding the understanding of reaction mechanism. Topics discussed include determination and interpretation of activation volumes, high pressure equipment/techniques, and application of activation volumes in mechanistic elucidation of several inorganic…

  2. High-pressure differential scanning microcalorimeter.

    PubMed

    Senin, A A; Dzhavadov, L N; Potekhin, S A

    2016-03-01

    A differential scanning microcalorimeter for studying thermotropic conformational transitions of biopolymers at high pressure has been designed. The calorimeter allows taking measurements of partial heat capacity of biopolymer solutions vs. temperature at pressures up to 3000 atm. The principles of operation of the device, methods of its calibration, as well as possible applications are discussed. PMID:27036806

  3. High-pressure phase transitions of strontianite

    NASA Astrophysics Data System (ADS)

    Speziale, S.; Biedermann, N.; Reichmann, H. J.; Koch-Mueller, M.; Heide, G.

    2015-12-01

    Strontianite (SrCO3) is isostructural to aragonite, a major high-pressure polymorph of calcite. Thus it is a material of interest to investigate the high-pressure phase behavior of aragonite-group minerals. SrCO3 is a common component of natural carbonates and knowing its physical properties at high pressures is necessary to properly model the thermodynamic properties of complex carbonates, which are major crustal minerals but are also present in the deep Earth [Brenker et al., 2007] and control carbon cycling in the Earth's mantle. The few available high-pressure studies of SrCO3 disagree regarding both pressure stability and structure of the post-aragonite phase [Lin & Liu, 1997; Ono et al., 2005; Wang et al. 2015]. To clarify such controversies we investigated the high-pressure behavior of synthetic SrCO3 by Raman spectroscopy. Using a diamond anvil cell we compressed single-crystals or powder of strontianite (synthesized at 4 GPa and 1273 K for 24h in a multi anvil apparatus), and measured Raman scattering up to 78 GPa. SrCO3 presents a complex high-pressure behavior. We observe mode softening above 20 GPa and a phase transition at 25 - 26.9 GPa, which we interpret due to the CO3 groups rotation, in agreement with Lin & Liu [1997]. The lattice modes in the high-pressure phase show dramatic changes which may indicate a change from 9-fold coordinated Sr to a 12-fold-coordination [Ono, 2007]. Our results confirm that the high-pressure phase of strontianite is compatible with Pmmn symmetry. References Brenker, F.E. et al. (2007) Earth and Planet. Sci. Lett., 260, 1; Lin, C.-C. & Liu, L.-G. (1997) J. Phys. Chem. Solids, 58, 977; Ono, S. et al. (2005) Phys. Chem. Minerals, 32, 8; Ono, S. (2007) Phys. Chem. Minerals, 34, 215; Wang, M. et al. (2015) Phys Chem Minerals 42, 517.

  4. Magnetic and Superconducting Materials at High Pressures

    SciTech Connect

    Struzhkin, Viktor V.

    2015-03-24

    The work concentrates on few important tasks in enabling techniques for search of superconducting compressed hydrogen compounds and pure hydrogen, investigation of mechanisms of high-Tc superconductivity, and exploring new superconducting materials. Along that route we performed several challenging tasks, including discovery of new forms of polyhydrides of alkali metal Na at very high pressures. These experiments help us to establish the experimental environment that will provide important information on the high-pressure properties of hydrogen-rich compounds. Our recent progress in RIXS measurements opens a whole field of strongly correlated 3d materials. We have developed a systematic approach to measure major electronic parameters, like Hubbard energy U, and charge transfer energy Δ, as function of pressure. This technique will enable also RIXS studies of magnetic excitations in iridates and other 5d materials at the L edge, which attract a lot of interest recently. We have developed new magnetic sensing technique based on optically detected magnetic resonance from NV centers in diamond. The technique can be applied to study superconductivity in high-TC materials, to search for magnetic transitions in strongly correlated and itinerant magnetic materials under pressure. Summary of Project Activities; development of high-pressure experimentation platform for exploration of new potential superconductors, metal polyhydrides (including newly discovered alkali metal polyhydrides), and already known superconductors at the limit of static high-pressure techniques; investigation of special classes of superconducting compounds (high-Tc superconductors, new superconducting materials), that may provide new fundamental knowledge and may prove important for application as high-temperature/high-critical parameter superconductors; investigation of the pressure dependence of superconductivity and magnetic/phase transformations in 3d transition metal compounds, including

  5. High pressure study of acetophenone azine

    NASA Astrophysics Data System (ADS)

    Tang, X. D.; Ding, Z. J.; Zhang, Z. M.

    2009-02-01

    High pressure Raman spectra of acetophenone azine (APA) have been measured up to 17.7 GPa with a diamond anvil cell. Two crystalline-to-crystalline phase transformations are found at pressures about 3.6 and 5.8 GPa. A disappearance of external modes and the C-H vibration at pressures higher than 8.7 GPa suggests that the sample undergoes a phase transition to amorphous or orientationally disordered (plastic) state, and the amorphization was completed at about 12.1 GPa. The disordered state is unstable and, then, a polymerization transformation reaction occurs with a further pressure increase. After the pressure has been released, the polymerization state can remain at the ambient condition, indicating that the virgin crystalline state is not recovered. The results show that the phenomenon underlying the pressure induced phase transition of APA may involve profound changes in the coordination environments of the symmetric aromatic azine.

  6. Raman spectroscopy of triolein under high pressures

    NASA Astrophysics Data System (ADS)

    Tefelski, D. B.; Jastrzębski, C.; Wierzbicki, M.; Siegoczyński, R. M.; Rostocki, A. J.; Wieja, K.; Kościesza, R.

    2010-03-01

    This article presents results of the high pressure Raman spectroscopy of triolein. Triolein, a triacylglyceride (TAG) of oleic acid, is an unsaturated fat, present in natural oils such as olive oil. As a basic food component and an energy storage molecule, it has considerable importance for food and fuel industries. To generate pressure in the experiment, we used a high-pressure cylindrical chamber with sapphire windows, presented in (R.M. Siegoczyński, R. Kościesza, D.B. Tefelski, and A. Kos, Molecular collapse - modification of the liquid structure induced by pressure in oleic acid, High Press. Res. 29 (2009), pp. 61-66). Pressure up to 750 MPa was applied. A Raman spectrometer in "macro"-configuration was employed. Raman spectroscopy provides information on changes of vibrational modes related to structural changes of triolein under pressure. Interesting changes in the triglyceride C‒H stretching region at 2650-3100 cm-1 were observed under high-pressures. Changes were also observed in the ester carbonyl (C˭ O) stretching region 1700-1780 cm-1 and the C‒C stretching region at 1050-1150 cm-1. The overall luminescence of the sample decreased under pressure, making it possible to set longer spectrum acquisition time and obtain more details of the spectrum. The registered changes suggest that the high-pressure solid phase of triolein is organized as β-polymorphic, as was reported in (C. Akita, T. Kawaguchi, and F. Kaneko, Structural study on polymorphism of cis-unsaturated triacylglycerol: Triolein, J. Phys. Chem. B 110 (2006), pp. 4346-4353; E. Da Silva and D. Rousseau, Molecular order and thermodynamics of the solid-liquid transition in triglycerides via Raman spectroscopy, Phys. Chem. Chem. Phys. 10 (2008), pp. 4606-4613) (with temperature-induced phase transitions). The research has shown that Raman spectroscopy in TAGs under pressure reveals useful information about its structural changes.

  7. Let's Talk about High Blood Pressure and Stroke

    MedlinePlus

    ... Tools & Resources Stroke More Let's Talk About High Blood Pressure and Stroke Updated:Dec 9,2015 What is ... Blood Pressure? How Can I Reduce High Blood Pressure? High Blood Pressure and Stroke What Is Diabetes and How ...

  8. Design of high pressure waterjet nozzles

    NASA Technical Reports Server (NTRS)

    Mazzoleni, Andre P.

    1994-01-01

    The Hydroblast Research Cell at Marshall Space Flight Center is used to investigate the use of high pressure waterjets to strip paint, grease, adhesive and thermal spray coatings from various substrates. Current methods of cleaning often use ozone depleting chemicals (ODC) such as chlorinated solvents. High pressure waterjet cleaning has proven to be a viable alternative to the use of solvents. A popular method of waterjet cleaning involves the use of a rotating, multijet, high pressure water nozzle which is robotically controlled. This method enables rapid cleaning of a large area, but problems such as incomplete coverage and damage to the substrate from the waterjet have been observed. This report summarizes research consisting of identifying and investigating the basic properties of rotating, multijet, high pressure water nozzles, and how particular designs and modes of operation affect such things as stripping rate, standoff distance and completeness of coverage. The study involved computer simulations, an extensive literature review, and experimental studies of different nozzle designs.

  9. Design of high pressure waterjet nozzles

    NASA Astrophysics Data System (ADS)

    Mazzoleni, Andre P.

    1994-10-01

    The Hydroblast Research Cell at Marshall Space Flight Center is used to investigate the use of high pressure waterjets to strip paint, grease, adhesive and thermal spray coatings from various substrates. Current methods of cleaning often use ozone depleting chemicals (ODC) such as chlorinated solvents. High pressure waterjet cleaning has proven to be a viable alternative to the use of solvents. A popular method of waterjet cleaning involves the use of a rotating, multijet, high pressure water nozzle which is robotically controlled. This method enables rapid cleaning of a large area, but problems such as incomplete coverage and damage to the substrate from the waterjet have been observed. This report summarizes research consisting of identifying and investigating the basic properties of rotating, multijet, high pressure water nozzles, and how particular designs and modes of operation affect such things as stripping rate, standoff distance and completeness of coverage. The study involved computer simulations, an extensive literature review, and experimental studies of different nozzle designs.

  10. High Blood Pressure and Kidney Disease

    MedlinePlus

    ... Information Center National Kidney Foundation Smokefree.gov MedlinePlus Kidney and Urologic Disease Organizations Many organizations provide support ... Alternate Language URL Español High Blood Pressure and Kidney Disease Page Content On this page: What is ...

  11. Preeclampsia and High Blood Pressure During Pregnancy

    MedlinePlus

    ... thrombophilia , or lupus • are obese •had in vitro fertilization What are the risks for my baby if ... blood cells. Hypertension: High blood pressure. In Vitro Fertilization: A procedure in which an egg is removed ...

  12. High pressure ceramic heat exchanger

    DOEpatents

    Harkins, B.D.; Ward, M.E.

    1998-09-22

    Many recuperators have components which react to corrosive gases and are used in applications where the donor fluid includes highly corrosive gases. These recuperators have suffered reduced life, increased service or maintenance, and resulted in increased cost. The present header assembly when used with recuperators reduces the brittle effect of a portion of the ceramic components. Thus, the present header assembly used with the present recuperator increases the life, reduces the service and maintenance, and reduces the increased cost associated with corrosive action of components used to manufacture recuperators. The present header assembly is comprised of a first ceramic member, a second ceramic member, a strengthening reinforcing member being in spaced relationship to the first ceramic member and the second ceramic member. The header assembly is further comprised of a refractory material disposed in contacting relationship with the first ceramic member, the second ceramic member and the strengthening reinforcing member. The present header assembly provides a high strength load bearing header assembly having good thermal cycling characteristics, good resistance to a corrosive environment and good steady state strength at elevated temperatures. 5 figs.

  13. High pressure ceramic heat exchanger

    DOEpatents

    Harkins, Bruce D.; Ward, Michael E.

    1999-01-01

    Many recuperators have components which react to corrosive gases and are used in applications where the donor fluid includes highly corrosive gases. These recuperators have suffered reduced life, increased service or maintenance, and resulted in increased cost. The present header assembly when used with recuperators reduces the brittle effect of a portion of the ceramic components. Thus, the present header assembly used with the present recuperator increases the life, reduces the service and maintenance, and reduces the increased cost associated with corrosive action of components used to manufacture recuperators. The present header assembly is comprised of a first ceramic member, a second ceramic member, a reinforcing member being in spaced relationship to the first ceramic member and the second ceramic member. The header assembly is further comprised of a refractory material disposed in contacting relationship with the first ceramic member, the second ceramic member and the reinforcing member and having a strengthening member wrapped around the refractory material. The present header assembly provides a high strength load bearing header assembly having good thermal cycling characteristics, good resistance to a corrosive environment and good steady state strength at elevated temperatures.

  14. High pressure ceramic heat exchanger

    DOEpatents

    Harkins, Bruce D.; Ward, Michael E.

    1998-01-01

    Many recuperators have components which react to corrosive gases and are used in applications where the donor fluid includes highly corrosive gases. These recuperators have suffered reduced life, increased service or maintenance, and resulted in increased cost. The present header assembly when used with recuperators reduces the brittle effect of a portion of the ceramic components. Thus, the present header assembly used with the present recuperator increases the life, reduces the service and maintenance, and reduces the increased cost associated with corrosive action of components used to manufacture recuperators. The present header assembly is comprised of a first ceramic member, a second ceramic member, a strengthening reinforcing member being in spaced relationship to the first ceramic member and the second ceramic member. The header assembly is further comprised of a refractory material disposed in contacting relationship with the first ceramic member, the second ceramic member and the strengthening reinforcing member. The present header assembly provides a high strength load bearing header assembly having good thermal cycling characteristics, good resistance to a corrosive environment and good steady state strength at elevated temperatures.

  15. High frequency pressure oscillator for microcryocoolers

    NASA Astrophysics Data System (ADS)

    Vanapalli, S.; ter Brake, H. J. M.; Jansen, H. V.; Zhao, Y.; Holland, H. J.; Burger, J. F.; Elwenspoek, M. C.

    2008-04-01

    Microminiature pulse tube cryocoolers should operate at a frequency of an order higher than the conventional macro ones because the pulse tube cryocooler operating frequency scales inversely with the square of the pulse tube diameter. In this paper, the design and experiments of a high frequency pressure oscillator is presented with the aim to power a micropulse tube cryocooler operating between 300 and 80K, delivering a cooling power of 10mW. Piezoelectric actuators operate efficiently at high frequencies and have high power density making them good candidates as drivers for high frequency pressure oscillator. The pressure oscillator described in this work consists of a membrane driven by a piezoelectric actuator. A pressure ratio of about 1.11 was achieved with a filling pressure of 2.5MPa and compression volume of about 22.6mm3 when operating the actuator with a peak-to-peak sinusoidal voltage of 100V at a frequency of 1kHz. The electrical power input was 2.73W. The high pressure ratio and low electrical input power at high frequencies would herald development of microminiature cryocoolers.

  16. High frequency pressure oscillator for microcryocoolers.

    PubMed

    Vanapalli, S; ter Brake, H J M; Jansen, H V; Zhao, Y; Holland, H J; Burger, J F; Elwenspoek, M C

    2008-04-01

    Microminiature pulse tube cryocoolers should operate at a frequency of an order higher than the conventional macro ones because the pulse tube cryocooler operating frequency scales inversely with the square of the pulse tube diameter. In this paper, the design and experiments of a high frequency pressure oscillator is presented with the aim to power a micropulse tube cryocooler operating between 300 and 80 K, delivering a cooling power of 10 mW. Piezoelectric actuators operate efficiently at high frequencies and have high power density making them good candidates as drivers for high frequency pressure oscillator. The pressure oscillator described in this work consists of a membrane driven by a piezoelectric actuator. A pressure ratio of about 1.11 was achieved with a filling pressure of 2.5 MPa and compression volume of about 22.6 mm(3) when operating the actuator with a peak-to-peak sinusoidal voltage of 100 V at a frequency of 1 kHz. The electrical power input was 2.73 W. The high pressure ratio and low electrical input power at high frequencies would herald development of microminiature cryocoolers.

  17. High pressure optical combustion probe

    SciTech Connect

    Woodruff, S.D.; Richards, G.A.

    1995-06-01

    The Department of Energy`s Morgantown Energy Technology Center has developed a combustion probe for monitoring flame presence and heat release. The technology involved is a compact optical detector of the OH radical`s UV fluorescence. The OH Monitor/Probe is designed to determine the flame presence and provide a qualitative signal proportional to the flame intensity. The probe can be adjusted to monitor a specific volume in the combustion zone to track spatial fluctuations in the flame. The probe is capable of nanosecond time response and is usually slowed electronically to fit the flame characteristics. The probe is a sapphire rod in a stainless steel tube which may be inserted into the combustion chamber and pointed at the flame zone. The end of the sapphire rod is retracted into the SS tube to define a narrow optical collection cone. The collection cone may be adjusted to fit the experiment. The fluorescence signal is collected by the sapphire rod and transmitted through a UV transmitting, fused silica, fiber optic to the detector assembly. The detector is a side window photomultiplier (PMT) with a 310 run line filter. A Hamamatsu photomultiplier base combined with a integral high voltage power supply permits this to be a low voltage device. Electronic connections include: a power lead from a modular DC power supply for 15 VDC; a control lead for 0-1 volts to control the high voltage level (and therefore gain); and a lead out for the actual signal. All low voltage connections make this a safe and easy to use device while still delivering the sensitivity required.

  18. High-pressure distillation is different

    SciTech Connect

    Brierley, R.J.P.

    1994-07-01

    Many fluid systems perform differently at higher pressures than at lower ones. This makes high-pressure distillation different, too. But it also offers significant opportunities to engineers, both those deciding on the types of equipment to specify at the design stage, and those responsible for making high-pressure columns work, getting the best out of them, and assessing whether they can be uprated. Indeed, in a number of cases, it has been possible to uprate columns substantially (in one case by 70%) by redesign of the trays, and by replacement of trays with packing. This article provides practical guidance, based on the author's 20 years of experience as a distillation specialist, on how to get the best out of high-pressure distillation.

  19. [The high pressure life of piezophiles].

    PubMed

    Oger, Philippe; Cario, Anaïs

    2014-01-01

    The deep biosphere is composed of very different biotopes located in the depth of the oceans, the ocean crust or the lithosphere. Although very different, deep biosphere biotopes share one common feature, high hydrostatic pressure. The deep biosphere is colonized by specific organisms, called piezophiles, that are able to grow under high hydrostatic pressure. Bacterial piezophiles are mainly psychrophiles belonging to five genera of γ-proteobacteria, Photobacterium, Shewanella, Colwellia, Psychromonas and Moritella, while piezophilic Archaea are mostly (hyper)thermophiles from the Thermococcales. None of these genera are specific for the deep biosphere. High pressure deeply impacts the activity of cells and cellular components, and reduces the activity of numerous key processes, eventually leading to cell death of piezosensitive organisms. Biochemical and genomic studies yield a fragmented view on the adaptive mechanisms in piezophiles. It is yet unclear whether piezophilic adaptation requires the modification of a few genes, or metabolic pathways, or a more profound reorganization of the genome, the fine tuning of gene expression to compensate the pressure-induced loss of activity of the proteins most affected by high pressure, or a stress-like physiological cell response. In contrast to what has been seen for thermophily or halophily, the adaptation to high pressure is diffuse in the genome and may concern only a small fraction of the genes. PMID:25474000

  20. Pressure sensor for high-temperature liquids

    DOEpatents

    Forster, George A.

    1978-01-01

    A pressure sensor for use in measuring pressures in liquid at high temperatures, especially such as liquid sodium or liquid potassium, comprises a soft diaphragm in contact with the liquid. The soft diaphragm is coupled mechanically to a stiff diaphragm. Pressure is measured by measuring the displacment of both diaphragms, typically by measuring the capacitance between the stiff diaphragm and a fixed plate when the stiff diaphragm is deflected in response to the measured pressure through mechanical coupling from the soft diaphragm. Absolute calibration is achieved by admitting gas under pressure to the region between diaphragms and to the region between the stiff diaphragm and the fixed plate, breaking the coupling between the soft and stiff diaphragms. The apparatus can be calibrated rapidly and absolutely.

  1. Fluid hydrogen at high density - Pressure ionization

    NASA Technical Reports Server (NTRS)

    Saumon, Didier; Chabrier, Gilles

    1992-01-01

    The Helmholtz-free-energy model for nonideal mixtures of hydrogen atoms and molecules by Saumon and Chabrier (1991) is extended to describe dissociation and ionization in similar mixtures in chemical equilibrium. A free-energy model is given that describes partial ionization in the pressure and temperature ionization region. The plasma-phase transition predicted by the model is described for hydrogen mixtures including such components as H2, H, H(+), and e(-). The plasma-phase transition has a critical point at Tc = 15,300 K and Pc = 0.614 Mbar, and thermodynamic instability is noted in the pressure-ionization regime. The pressure dissociation and ionization of fluid hydrogen are described well with the model yielding information on the nature of the plasma-phase transition. The model is shown to be valuable for studying dissociation and ionization in astrophysical objects and in high-pressure studies where pressure and temperature effects are significant.

  2. Yield strength of molybdenum at high pressures.

    PubMed

    Jing, Qiumin; Bi, Yan; Wu, Qiang; Jing, Fuqian; Wang, Zhigang; Xu, Jian; Jiang, Sheng

    2007-07-01

    In the diamond anvil cell technology, the pressure gradient approach is one of the three major methods in determining the yield strength for various materials at high pressures. In the present work, by in situ measuring the thickness of the sample foil, we have improved the traditional technique in this method. Based on this modification, the yield strength of molybdenum at pressures has been measured. Our main experimental conclusions are as follows: (1) The measured yield strength data for three samples with different initial thickness (100, 250, and 500 microm) are in good agreement above a peak pressure of 10 GPa. (2) The measured yield strength can be fitted into a linear formula Y=0.48(+/-0.19)+0.14(+/-0.01)P (Y and P denote the yield strength and local pressure, respectively, both of them are in gigapascals) in the local pressure range of 8-21 GPa. This result is in good agreement with both Y=0.46+0.13P determined in the pressure range of 5-24 GPa measured by the radial x-ray diffraction technique and the previous shock wave data below 10 GPa. (3) The zero-pressure yield strength of Mo is 0.5 GPa when we extrapolate our experimental data into the ambient pressure. It is close to the tensile strength of 0.7 GPa determined by Bridgman [Phys. Rev. 48, 825 (1934)] previously. The modified method described in this article therefore provides the confidence in determination of the yield strength at high pressures. PMID:17672772

  3. High quality FeSb2 single crystal growth by the gradient freeze technique

    NASA Astrophysics Data System (ADS)

    Cao, Yiming; Yuan, Shujuan; Liu, Ming; Kang, Baojuan; Lu, Bo; Zhang, Jincang; Cao, Shixun

    2013-01-01

    A single crystal of FeSb2 about 5 mm in diameter and 10 mm in length with a tapering spire was grown by the gradient freeze technique combining the Bridgman technique and flux method using Sb-rich melts in sealed quartz ampoules. X-ray powder diffraction pattern of single crystal FeSb2 indicates that it is a single phase marcasite structure. Clear Laue spots and scanning electron microscopy photographs indicate good quality and uniform of the FeSb2 single crystal. Magnetic susceptibility of FeSb2 along b-axis does not show the diamagnetic to paramagnetic crossover, indicating the intrinsic susceptibility of FeSb2 determined on large single crystals differs from that of the smaller samples prepared by other techniques. The new method of gradient freeze is of great significance for the single crystal growth of FeSb2 like materials with a peritectic point.

  4. Sample injector for high pressure liquid chromatography

    DOEpatents

    Paul, Phillip H.; Arnold, Don W.; Neyer, David W.

    2001-01-01

    Apparatus and method for driving a sample, having a well-defined volume, under pressure into a chromatography column. A conventional high pressure sampling valve is replaced by a sample injector composed of a pair of injector components connected in series to a common junction. The injector components are containers of porous dielectric material constructed so as to provide for electroosmotic flow of a sample into the junction. At an appropriate time, a pressure pulse from a high pressure source, that can be an electrokinetic pump, connected to the common junction, drives a portion of the sample, whose size is determined by the dead volume of the common junction, into the chromatographic column for subsequent separation and analysis. The apparatus can be fabricated on a substrate for microanalytical applications.

  5. High pressure studies of potassium perchlorate

    NASA Astrophysics Data System (ADS)

    Pravica, Michael; Wang, Yonggang; Sneed, Daniel; Reiser, Sharissa; White, Melanie

    2016-09-01

    Two experiments are reported on KClO4 at extreme conditions. A static high pressure Raman study was first conducted to 18.9 GPa. Evidence for at least two new phases was observed: one between 2.4 and 7.7 GPa (possibly sluggish), and the second near 11.7 GPa. Then, the X-ray induced decomposition rate of potassium perchlorate (KClO4 → hν KCl + 2O2) was studied up to 15.2 GPa. The time-dependent growth of KCl and O2 was monitored. The decomposition rate slowed at higher pressures. We present the first direct evidence for O2 crystallization at higher pressures, demonstrating that O2 molecules aggregate at high pressure.

  6. Nitridation of silicon under high pressure

    SciTech Connect

    Heinrich, J. )

    1987-07-01

    The microstructure of reaction-bonded Si{sub 3}N{sub 4} was changed by nitriding Si powder compacts at 0, 1, and 50 MPa. The microstructural parameters were analyzed using light and scanning electron microscopy, XRD, and mercury pressure porosimetry. The influence of the nitriding gas pressure on the ratio of the crystallographic Si{sub 3}N{sub 4} phases {alpha} and {beta}, the pore size distribution, and the resulting mechanical properties has been investigated. High nitrogen pressure promotes the formation of {beta}-Si{sub 3}N{sub 4} and leads to a fine-grained homogeneous microstructure, with improved fracture strength and fracture toughness.

  7. High pressure oxygen utilization by NASA

    NASA Technical Reports Server (NTRS)

    Belles, F. E.

    1973-01-01

    Although NASA is not one of the country's major oxygen consumers, it uses oxygen under severe conditions including very high flow rates and pressure. Materials for such applications must be carefully selected for compatibility, because susceptibility to ignition increases as operating pressure is raised. Much work is needed, however to define the selection criteria. Some of the work in this area that is being performed under sponsorship of NASA's Aerospace Safety Research and Data Institute (ASRDI) is described.

  8. (High-pressure structural studies of promethium)

    SciTech Connect

    Haire, R.G.

    1988-11-15

    The primary object of the foreign travel was to carry out collaborative high-pressure structural studies at the European Institute for Transuranium Elements (EITU), Karlsruhe, Federal Republic of Germany. These studies reestablished previous collaborative investigations by ORNL and EITU that have been very productive scientifically during the past few years. The study during the present travel period was limited to a structural study of promethium metal under pressure.

  9. High Temperature Dynamic Pressure Measurements Using Silicon Carbide Pressure Sensors

    NASA Technical Reports Server (NTRS)

    Okojie, Robert S.; Meredith, Roger D.; Chang, Clarence T.; Savrun, Ender

    2014-01-01

    Un-cooled, MEMS-based silicon carbide (SiC) static pressure sensors were used for the first time to measure pressure perturbations at temperatures as high as 600 C during laboratory characterization, and subsequently evaluated in a combustor rig operated under various engine conditions to extract the frequencies that are associated with thermoacoustic instabilities. One SiC sensor was placed directly in the flow stream of the combustor rig while a benchmark commercial water-cooled piezoceramic dynamic pressure transducer was co-located axially but kept some distance away from the hot flow stream. In the combustor rig test, the SiC sensor detected thermoacoustic instabilities across a range of engine operating conditions, amplitude magnitude as low as 0.5 psi at 585 C, in good agreement with the benchmark piezoceramic sensor. The SiC sensor experienced low signal to noise ratio at higher temperature, primarily due to the fact that it was a static sensor with low sensitivity.

  10. Nitromethane decomposition under high static pressure.

    PubMed

    Citroni, Margherita; Bini, Roberto; Pagliai, Marco; Cardini, Gianni; Schettino, Vincenzo

    2010-07-29

    The room-temperature pressure-induced reaction of nitromethane has been studied by means of infrared spectroscopy in conjunction with ab initio molecular dynamics simulations. The evolution of the IR spectrum during the reaction has been monitored at 32.2 and 35.5 GPa performing the measurements in a diamond anvil cell. The simulations allowed the characterization of the onset of the high-pressure reaction, showing that its mechanism has a complex bimolecular character and involves the formation of the aci-ion of nitromethane. The growth of a three-dimensional disordered polymer has been evidenced both in the experiments and in the simulations. On decompression of the sample, after the reaction, a continuous evolution of the product is observed with a decomposition into smaller molecules. This behavior has been confirmed by the simulations and represents an important novelty in the scene of the known high-pressure reactions of molecular systems. The major reaction product on decompression is N-methylformamide, the smallest molecule containing the peptide bond. The high-pressure reaction of crystalline nitromethane under irradiation at 458 nm was also experimentally studied. The reaction threshold pressure is significantly lowered by the electronic excitation through two-photon absorption, and methanol, not detected in the purely pressure-induced reaction, is formed. The presence of ammonium carbonate is also observed. PMID:20608697

  11. Single Molecule Raman Spectroscopy Under High Pressure

    NASA Astrophysics Data System (ADS)

    Fu, Yuanxi; Dlott, Dana

    2014-06-01

    Pressure effects on surface-enhanced Raman scattering spectra of Rhdoamine 6G adsorbed on silver nanoparticle surfaces was studied using a confocal Raman microscope. Colloidal silver nanoparticles were treated with Rhodamine 6G (R6G) and its isotopically substituted partner, R6G-d4. Mixed isotopomers let us identify single-molecule spectra, since multiple-molecule spectra would show vibrational transitions from both species. The nanoparticles were embedded into a poly vinyl alcohol film, and loaded into a diamond anvil cell for the high-pressure Raman scattering measurement. Argon was the pressure medium. Ambient pressure Raman scattering spectra showed few single-molecule spectra. At moderately high pressure ( 1GPa), a surprising effect was observed. The number of sites with observable spectra decreased dramatically, and most of the spectra that could be observed were due to single molecules. The effects of high pressure suppressed the multiple-molecule Raman sites, leaving only the single-molecule sites to be observed.

  12. A high-temperature wideband pressure transducer

    NASA Technical Reports Server (NTRS)

    Zuckerwar, A. J.

    1975-01-01

    Progress in the development of a pressure transducer for measurement of the pressure fluctuations in the high temperature environment of a jet exhaust is reported. A condenser microphone carrier system was adapted to meet the specifications. A theoretical analysis is presented which describes the operation of the condenser microphone in terms of geometry, materials, and other physical properties. The analysis was used as the basis for design of a prototype high temperature microphone. The feasibility of connecting the microphone to a converter over a high temperature cable operating as a half-wavelength transmission line was also examined.

  13. High Pressure Electrochemistry: Application to silver halides

    NASA Astrophysics Data System (ADS)

    Havens, K.; Kavner, A.

    2007-12-01

    Electron and ion charge transfer processes help govern electrical conductivity and diffusive mass and heat transport properties in deep Earth minerals. In an attempt to understand how pressure influences charge transfer behavior, the halide silver bromide (AgBr) was studied under the influence of an electric potential difference applied across two electrodes in a diamond anvil cell. This study follows our previous work on AgI, which was found to dissociate to molecular iodine and silver metal due to pressure and voltage influences. We performed two sets of experiments on AgBr at high pressure in a diamond anvil cell: electrochemical dissociation and electrical resistance measurements. In our study, we were able to electrochemically dissociate AgBr at pressures of 0.25-1.6 GPa by applying a voltage across the electrodes in the diamond cell sample chamber. Ag metal grew visibly on the negatively-charged electrode when voltages varying from 0.1 V to 5 V were applied. Additionally, a dark blue color appeared in low pressure areas of the diamond cell and grew darker from both voltage application and light exposure, indicating photochemical effects. We found that the reaction area and growth rate of both metal and dark blue color strongly increased as voltage increased, but tended to decrease with greater pressure. The resistance across the cell was observed to be influenced by both pressure and light exposure. As the AgBr sample was exposed to visible light, the resistance dropped instantaneously, and after the light was turned off, the resistance increased on a timescale of 10's of seconds to minutes. Notably, at higher pressures, the AgBr showed less photosensitivity. Exploration of these metal halide systems has many potential applications. First, these experiments explore the pressure-dependence of photochemical and photovoltaic processes, and may spur development of pressure-tuned microscale electronic devices. Second, these experimental results can be used to

  14. High pressure, high current, low inductance, high reliability sealed terminals

    DOEpatents

    Hsu, John S [Oak Ridge, TN; McKeever, John W [Oak Ridge, TN

    2010-03-23

    The invention is a terminal assembly having a casing with at least one delivery tapered-cone conductor and at least one return tapered-cone conductor routed there-through. The delivery and return tapered-cone conductors are electrically isolated from each other and positioned in the annuluses of ordered concentric cones at an off-normal angle. The tapered cone conductor service can be AC phase conductors and DC link conductors. The center core has at least one service conduit of gate signal leads, diagnostic signal wires, and refrigerant tubing routed there-through. A seal material is in direct contact with the casing inner surface, the tapered-cone conductors, and the service conduits thereby hermetically filling the interstitial space in the casing interior core and center core. The assembly provides simultaneous high-current, high-pressure, low-inductance, and high-reliability service.

  15. High pressure and high temperature behaviour of ZnO

    SciTech Connect

    Thakar, Nilesh A.; Bhatt, Apoorva D.; Pandya, Tushar C.

    2014-04-24

    The thermodynamic properties with the wurtzite (B4) and rocksalt (B1) phases of ZnO under high pressures and high temperatures have been investigated using Tait's Equation of state (EOS). The effects of pressures and temperatures on thermodynamic properties such as bulk modulus, thermal expansivity and thermal pressure are explored for both two structures. It is found that ZnO material gradually softens with increase of temperature while it hardens with the increment of the pressure. Our predicted results of thermodynamics properties for both the phases of ZnO are in overall agreement with the available data in the literature.

  16. Curved and conformal high-pressure vessel

    DOEpatents

    Croteau, Paul F.; Kuczek, Andrzej E.; Zhao, Wenping

    2016-10-25

    A high-pressure vessel is provided. The high-pressure vessel may comprise a first chamber defined at least partially by a first wall, and a second chamber defined at least partially by the first wall. The first chamber and the second chamber may form a curved contour of the high-pressure vessel. A modular tank assembly is also provided, and may comprise a first mid tube having a convex geometry. The first mid tube may be defined by a first inner wall, a curved wall extending from the first inner wall, and a second inner wall extending from the curved wall. The first inner wall may be disposed at an angle relative to the second inner wall. The first mid tube may further be defined by a short curved wall opposite the curved wall and extending from the second inner wall to the first inner wall.

  17. High pressure electrical insulated feed thru connector

    DOEpatents

    Oeschger, Joseph E.; Berkeland, James E.

    1979-11-13

    A feed-thru type hermetic electrical connector including at least one connector pin feeding through an insulator block within the metallic body of the connector shell. A compression stop arrangement coaxially disposed about the insulator body is brazed to the shell, and the shoulder on the insulator block bears against this top in a compression mode, the high pressure or internal connector being at the opposite end of the shell. Seals between the pin and an internal bore at the high pressure end of the insulator block and between the insulator block and the metallic shell at the high pressure end are hermetically brazed in place, the first of these also functioning to transfer the axial compressive load without permitting appreciable shear action between the pin and insulator block.

  18. Fluid hydrogen at high density - Pressure dissociation

    NASA Technical Reports Server (NTRS)

    Saumon, Didier; Chabrier, Gilles

    1991-01-01

    A model for the Helmholtz free energy of fluid hydrogen at high density and high temperature is developed. This model aims at describing both pressure and temperature dissociation and ionization and bears directly on equations of state of partially ionized plasmas, as encountered in astrophysical situations and high-pressure experiments. This paper focuses on a mixture of hydrogen atoms and molecules and is devoted to the study of the phenomenon of pressure dissociation at finite temperatures. In the present model, the strong interactions are described with realistic potentials and are computed with a modified Weeks-Chandler-Andersen fluid perturbation theory that reproduces Monte Carlo simulations to better than 3 percent. Theoretical Hugoniot curves derived from the model are in excellent agreement with experimental data.

  19. Phonon Drag Dislocations at High Pressures

    SciTech Connect

    Wolfer, W.G.

    1999-10-19

    Phonon drag on dislocations is the dominant process which determines the flow stress of metals at elevated temperatures and at very high plastic deformation rates. The dependence of the phonon drag on pressure or density is derived using a Mie-Grueneisen equation of state. The phonon drag is shown to increase nearly linearly with temperature but to decrease with density or pressure. Numerical results are presented for its variation for shock-loaded copper and aluminum. In these cases, density and temperature increase simultaneously, resulting in a more modest net increase in the dislocation drag coefficient. Nevertheless, phonon drag increases by more than an order of magnitude during shock deformations which approach melting. Since the dependencies of elastic moduli and of the phonon drag coefficient on pressure and temperature are fundamentally different, the effect of pressure on the constitutive law for plastic deformation can not simply be accounted for by its effect on the elastic shear modulus.

  20. High pressure chemistry of substituted acetylenes

    SciTech Connect

    Chellappa, Raja; Dattelbaum, Dana; Sheffield, Stephen; Robbins, David

    2011-01-25

    High pressure in situ synchrotron x-ray diffraction experiments were performed on substituted polyacetylenes: tert-butyl acetylene [TBA: (CH{sub 3}){sub 3}-C{triple_bond}CH] and ethynyl trimethylsilane [ETMS: (CH{sub 3}){sub 3}-Si{triple_bond}CH] to investigate pressure-induced chemical reactions. The starting samples were the low temperature crystalline phases which persisted metastably at room temperature and polymerized beyond 11 GPa and 26 GPa for TBA and ETMS respectively. These reaction onset pressures are considerably higher than what we observed in the shockwave studies (6.1 GPa for TBA and 6.6 GPa for ETMS). Interestingly, in the case of ETMS, it was observed with fluid ETMS as starting sample, reacts to form a semi-crystalline polymer (crystalline domains corresponding to the low-T phase) at pressures less than {approx}2 GPa. Further characterization using vibrational spectroscopy is in progress.

  1. Exotic stable cesium polynitrides at high pressure

    DOE PAGES

    Peng, Feng; Han, Yunxia; Liu, Hanyu; Yao, Yansun

    2015-11-19

    New polynitrides containing metastable forms of nitrogen are actively investigated as potential high energy-density materials. Using a structure search method based on the CALYPSO methodology, we investigated the stable stoichiometries and structures of cesium polynitrides at high pressures. Along with the CsN3, we identified five new stoichiometric compounds (Cs3N, Cs2N, CsN, CsN2, and CsN5) with interesting structures that may be experimentally synthesizable at modest pressures (i.e., less than 50 GPa). Nitrogen species in the predicted structures have various structural forms ranging from single atom (N) to highly endothermic molecules (N2, N3 , N4, N5, N6) and chains (N∞). Polymeric chainsmore » of nitrogen were found in the high-pressure C2/c phase of CsN2. This structure contains a substantially high content of single N-N bonds that exceeds the previously known nitrogen chains in pure forms, and also exhibit metastability at ambient conditions. We also identified a very interesting CsN crystal that contains novel N44- anion. In conclusion, to our best knowledge, this is the first time a charged N4 species being reported. Results of the present study suggest that it is possible to obtain energetic polynitrogens in main-group nitrides under high pressure.« less

  2. Exotic stable cesium polynitrides at high pressure

    NASA Astrophysics Data System (ADS)

    Peng, Feng; Han, Yunxia; Liu, Hanyu; Yao, Yansun

    2015-11-01

    New polynitrides containing metastable forms of nitrogen are actively investigated as potential high-energy-density materials. Using a structure search method based on the CALYPSO methodology, we investigated the stable stoichiometries and structures of cesium polynitrides at high pressures. Along with the CsN3, we identified five new stoichiometric compounds (Cs3N, Cs2N, CsN, CsN2, and CsN5) with interesting structures that may be experimentally synthesizable at modest pressures (i.e., less than 50 GPa). Nitrogen species in the predicted structures have various structural forms ranging from single atom (N) to highly endothermic molecules (N2, N3, N4, N5, N6) and chains (N∞). Polymeric chains of nitrogen were found in the high-pressure C2/c phase of CsN2. This structure contains a substantially high content of single N-N bonds that exceeds the previously known nitrogen chains in pure forms, and also exhibit metastability at ambient conditions. We also identified a very interesting CsN crystal that contains novel N44- anion. To our best knowledge, this is the first time a charged N4 species being reported. Results of the present study suggest that it is possible to obtain energetic polynitrogens in main-group nitrides under high pressure.

  3. Exotic stable cesium polynitrides at high pressure

    PubMed Central

    Peng, Feng; Han, Yunxia; Liu, Hanyu; Yao, Yansun

    2015-01-01

    New polynitrides containing metastable forms of nitrogen are actively investigated as potential high-energy-density materials. Using a structure search method based on the CALYPSO methodology, we investigated the stable stoichiometries and structures of cesium polynitrides at high pressures. Along with the CsN3, we identified five new stoichiometric compounds (Cs3N, Cs2N, CsN, CsN2, and CsN5) with interesting structures that may be experimentally synthesizable at modest pressures (i.e., less than 50 GPa). Nitrogen species in the predicted structures have various structural forms ranging from single atom (N) to highly endothermic molecules (N2, N3, N4, N5, N6) and chains (N∞). Polymeric chains of nitrogen were found in the high-pressure C2/c phase of CsN2. This structure contains a substantially high content of single N-N bonds that exceeds the previously known nitrogen chains in pure forms, and also exhibit metastability at ambient conditions. We also identified a very interesting CsN crystal that contains novel N44− anion. To our best knowledge, this is the first time a charged N4 species being reported. Results of the present study suggest that it is possible to obtain energetic polynitrogens in main-group nitrides under high pressure. PMID:26581175

  4. High pressure water jet mining machine

    DOEpatents

    Barker, Clark R.

    1981-05-05

    A high pressure water jet mining machine for the longwall mining of coal is described. The machine is generally in the shape of a plowshare and is advanced in the direction in which the coal is cut. The machine has mounted thereon a plurality of nozzle modules each containing a high pressure water jet nozzle disposed to oscillate in a particular plane. The nozzle modules are oriented to cut in vertical and horizontal planes on the leading edge of the machine and the coal so cut is cleaved off by the wedge-shaped body.

  5. High pressure water jet cutting and stripping

    NASA Technical Reports Server (NTRS)

    Hoppe, David T.; Babai, Majid K.

    1991-01-01

    High pressure water cutting techniques have a wide range of applications to the American space effort. Hydroblasting techniques are commonly used during the refurbishment of the reusable solid rocket motors. The process can be controlled to strip a thermal protective ablator without incurring any damage to the painted surface underneath by using a variation of possible parameters. Hydroblasting is a technique which is easily automated. Automation removes personnel from the hostile environment of the high pressure water. Computer controlled robots can perform the same task in a fraction of the time that would be required by manual operation.

  6. Superelastic carbon spheres under high pressure

    NASA Astrophysics Data System (ADS)

    Li, Meifen; Guo, Junjie; Xu, Bingshe

    2013-03-01

    We report a superelastic deformation behavior of carbon spheres by the in situ Raman spectroscopy in a high-pressure diamond anvil cell. The carbon spheres produced by arc discharging in toluene have a mean diameter of 200 nm and an onion-like multilayer graphitic structure. We find that the elastic coefficients, during both the compression and decompression processes, remain a constant up to 10 GPa, indicating a superior high-pressure structural stability. Such superelastic behavior is related to the isotropic and concentric configuration of carbon spheres and provides additional insight into improving the microscopic mechanical properties of small-scale particles.

  7. High pressure freon decontamination of remote equipment

    SciTech Connect

    Wilson, C.E.

    1987-01-01

    A series of decontamination tests using high pressure FREON 113 was conducted in the 200 Area of the Hanford site. The intent of these tests was to evaluate the effectiveness of FREON 113 in decontamination of manipulator components, tools, and equipment items contaminated with mixed fission products. The test results indicated that high pressure FREON 113 is very effective in removing fissile material from a variety of objects and can reduce both the quantity and the volume of the radioactive waste material presently being buried.

  8. Raman study of opal at high pressure

    NASA Astrophysics Data System (ADS)

    Farfan, G.; Wang, S.; Mao, W. L.

    2011-12-01

    More commonly known for their beauty and lore as gemstones, opals are also intriguing geological materials which may have potential for materials science applications. Opal lacks a definite crystalline structure, and is composed of an amorphous packing of hydrated silica (SiO2) spheroids, which provides us with a unique nano-scaled mineraloid with properties unlike those of other amorphous materials like glass. Opals from different localities were studied at high pressure using a diamond anvil cell to apply pressure and Raman spectroscopy to look at changes in bonding as pressure was increased. We first tested different samples from Virgin Valley, NV, Spencer, ID, Juniper Ridge, OR, and Australia, which contain varying amounts of water at ambient conditions, using Raman spectroscopy to determine if they were opal-CT (semicrystalline cristobalite-trydimite volcanic origin) or opal-A (amorphous sedimentary origin). We then used x-ray diffraction and Raman spectroscopy in a diamond anvil cell to see how their bonding and structure changed under compression and to determine what effect water content had on their high pressure behavior. Comparison of our results on opal to other high pressure studies of amorphous materials like glass has implications from a geological and materials science standpoint.

  9. High pressure effects on allergen food proteins.

    PubMed

    Somkuti, Judit; Smeller, László

    2013-12-15

    There are several proteins, which can cause allergic reaction if they are inhaled or ingested. Our everyday food can also contain such proteins. Food allergy is an IgE-mediated immune disorder, a growing health problem of great public concern. High pressure is known to affect the structure of proteins; typically few hundred MPa pressure can lead to denaturation. That is why several trials have been performed to alter the structure of the allergen proteins by high pressure, in order to reduce its allergenicity. Studies have been performed both on simple protein solutions and on complex food systems. Here we review those allergens which have been investigated under or after high pressure treatment by methods capable of detecting changes in the secondary and tertiary structure of the proteins. We focus on those allergenic proteins, whose structural changes were investigated by spectroscopic methods under pressure in correlation with the observed allergenicity (IgE binding) changes. According to this criterion we selected the following allergen proteins: Mal d 1 and Mal d 3 (apple), Bos d 5 (milk), Dau c 1 (carrot), Gal d 2 (egg), Ara h 2 and Ara h 6 (peanut), and Gad m 1 (cod).

  10. High pressure turbomachinery ground test facility

    NASA Technical Reports Server (NTRS)

    Scheuermann, Patrick E.

    1992-01-01

    Turbomachinery test facilities are at present scarce to non-existent world-wide. The turbomachinery test facility at Stennis Space Center will provide for advanced development and research and development capabilities for liquid hydrogen/liquid oxygen propellant rocket engine components. The facility will provide ultra-high pressure via gas generators to deliver the needed turbine drive on various turbomachinery. State of the art process control systems will provide the vital pressure, temperature and flow requirements during tests. These systems will better control adverse transient conditions during start-up and shutdown, and by using advanced control theory, as well as incorporate test article health monitoring. Also, digital data acquisition systems will obtain high frequency (up to 20 KHz) and low frequency (up to 1 KHz) data during the test. Pressures of up to 15,000 psi will be generated to pressurize high pressure tanks supplying cryogens to various test article inlets thus pushing turbopump materials and manufacturing processes to their limits. By planning for future projects the test facility will be easily adaptable to multi-program test configurations over a range of thermodynamic positions.

  11. HIGH PRESSURE COAL COMBUSTON KINETICS PROJECT

    SciTech Connect

    Stefano Orsino

    2005-03-30

    As part of the U.S. Department of Energy (DoE) initiative to improve the efficiency of coal-fired power plants and reduce the pollution generated by these facilities, DOE has funded the High-Pressure Coal Combustion Kinetics (HPCCK) Projects. A series of laboratory experiments were conducted on selected pulverized coals at elevated pressures with the specific goals to provide new data for pressurized coal combustion that will help extend to high pressure and validate models for burnout, pollutant formation, and generate samples of solid combustion products for analyses to fill crucial gaps in knowledge of char morphology and fly ash formation. Two series of high-pressure coal combustion experiments were performed using SRI's pressurized radiant coal flow reactor. The first series of tests characterized the near burner flame zone (NBFZ). Three coals were tested, two high volatile bituminous (Pittsburgh No.8 and Illinois No.6), and one sub-bituminous (Powder River Basin), at pressures of 1, 2, and 3 MPa (10, 20, and 30 atm). The second series of experiments, which covered high-pressure burnout (HPBO) conditions, utilized a range of substantially longer combustion residence times to produce char burnout levels from 50% to 100%. The same three coals were tested at 1, 2, and 3 MPa, as well as at 0.2 MPa. Tests were also conducted on Pittsburgh No.8 coal in CO2 entrainment gas at 0.2, 1, and 2 MPa to begin establishing a database of experiments relevant to carbon sequestration techniques. The HPBO test series included use of an impactor-type particle sampler to measure the particle size distribution of fly ash produced under complete burnout conditions. The collected data have been interpreted with the help of CFD and detailed kinetics simulation to extend and validate devolatilization, char combustion and pollutant model at elevated pressure. A global NOX production sub-model has been proposed. The submodel reproduces the performance of the detailed chemical reaction

  12. Freezing kinetics in overcompressed water

    NASA Astrophysics Data System (ADS)

    Bastea, Marina; Bastea, S.; Reaugh, J.; Reisman, D.

    2007-03-01

    The transformation of water into ice is among the most common first order phase transitions occurring in nature, but it is far from being an ordinary one. Water has unusual physical properties both as a liquid and as a solid due largely to hydrogen bonding effects, which also play a major role in determining the characteristics of its freezing kinetics. We report high pressure dynamic compression experiments of liquid water along a quasi-adiabatic path leading to the formation of ice VII. We observe dynamic features resembling Van der Waals loops and find that liquid water is compacted to a metastable state close to the ice density before the onset of crystallization. By analyzing the characteristic kinetic time scale involved we estimate the nucleation barrier and conclude that liquid water has been compressed to a high pressure state close to its thermodynamic stability limit.

  13. Design guide for high pressure oxygen systems

    NASA Technical Reports Server (NTRS)

    Bond, A. C.; Pohl, H. O.; Chaffee, N. H.; Guy, W. W.; Allton, C. S.; Johnston, R. L.; Castner, W. L.; Stradling, J. S.

    1983-01-01

    A repository for critical and important detailed design data and information, hitherto unpublished, along with significant data on oxygen reactivity phenomena with metallic and nonmetallic materials in moderate to very high pressure environments is documented. This data and information provide a ready and easy to use reference for the guidance of designers of propulsion, power, and life support systems for use in space flight. The document is also applicable to designs for industrial and civilian uses of high pressure oxygen systems. The information presented herein are derived from data and design practices involving oxygen usage at pressures ranging from about 20 psia to 8000 psia equal with thermal conditions ranging from room temperatures up to 500 F.

  14. High pressure combustion synthesis of aluminum nitride

    SciTech Connect

    Costantino, M.; Firpo, C. )

    1991-11-01

    We report initial results on the synthesis of monolithic aluminum nitride by burning Al--AlN mixtures in high pressure nitrogen. The objective is to synthesize economically large, near-theoretical density AlN parts. In this work, we begin with compacted mixtures of 10 {mu}m Al and 3 {mu}m AlN powder formed into 7.62 cm diameter by 3.81 cm thick disks having densities up to 60% of theoretical. Then, at N{sub 2} pressures up to 180 MPa (26 000 psi), we ignite the disk on one face. The fraction of Al converted to AlN, density, and severity of macroscopic cracking vary with N{sub 2} pressure and heat transfer from the sample. Presently, products are inhomogeneous, showing regions of relatively high porosity, regions with no porosity but with AlN in a matrix of Al, and regions of nearly theoretical density AlN.

  15. Wound cleansing by high pressure irrigation.

    PubMed

    Rodeheaver, G T; Pettry, D; Thacker, J G; Edgerton, M T; Edlich, R F

    1975-09-01

    All traumatic wounds are contaminated to some degree by both soil and bacteria. Specific infection potentiating factors in soil impair the defenses of the tissue and invite infection. These factors are small in size and resist removal by low pressure irrigation. The efficiency of wound irrigation is markedly improved by delivering the irrigant to the wound under continuous high pressure. Irrigation of the wound with saline solution delivered at 15 pounds per square inch removed 84.8 per cent of the soil infection potentiating factors from the wound. The residual infection potentiating factors remaining in the wound did not significantly impair tissue defenses. On the basis of these experimental studies, clinical studies are now being initiated to test the therapeutic value of high pressure irrigation in traumatic wounds in humans.

  16. Advanced Diagnostics for High Pressure Spray Combustion.

    SciTech Connect

    Skeen, Scott A.; Manin, Julien Luc; Pickett, Lyle M.

    2014-06-01

    The development of accurate predictive engine simulations requires experimental data to both inform and validate the models, but very limited information is presently available about the chemical structure of high pressure spray flames under engine- relevant conditions. Probing such flames for chemical information using non- intrusive optical methods or intrusive sampling techniques, however, is challenging because of the physical and optical harshness of the environment. This work details two new diagnostics that have been developed and deployed to obtain quantitative species concentrations and soot volume fractions from a high-pressure combusting spray. A high-speed, high-pressure sampling system was developed to extract gaseous species (including soot precursor species) from within the flame for offline analysis by time-of-flight mass spectrometry. A high-speed multi-wavelength optical extinction diagnostic was also developed to quantify transient and quasi-steady soot processes. High-pressure sampling and offline characterization of gas-phase species formed following the pre-burn event was accomplished as well as characterization of gas-phase species present in the lift-off region of a high-pressure n-dodecane spray flame. For the initial samples discussed in this work several species were identified, including polycyclic aromatic hydrocarbons (PAH); however, quantitative mole fractions were not determined. Nevertheless, the diagnostic developed here does have this capability. Quantitative, time-resolved measurements of soot extinction were also accomplished and the novel use of multiple incident wavelengths proved valuable toward characterizing changes in soot optical properties within different regions of the spray flame.

  17. What about African Americans and High Blood Pressure?

    MedlinePlus

    ANSWERS by heart Lifestyle + Risk Reduction High Blood Pressure What About African Americans and High Blood Pressure? The prevalence of high blood pressure in African Americans is among the highest in ...

  18. Cobalt ferrite nanoparticles under high pressure

    SciTech Connect

    Saccone, F. D.; Ferrari, S.; Grinblat, F.; Bilovol, V.; Errandonea, D.

    2015-08-21

    We report by the first time a high pressure X-ray diffraction and Raman spectroscopy study of cobalt ferrite (CoFe{sub 2}O{sub 4}) nanoparticles carried out at room temperature up to 17 GPa. In contrast with previous studies of nanoparticles, which proposed the transition pressure to be reduced from 20–27 GPa to 7.5–12.5 GPa (depending on particle size), we found that cobalt ferrite nanoparticles remain in the spinel structure up to the highest pressure covered by our experiments. In addition, we report the pressure dependence of the unit-cell parameter and Raman modes of the studied sample. We found that under quasi-hydrostatic conditions, the bulk modulus of the nanoparticles (B{sub 0} = 204 GPa) is considerably larger than the value previously reported for bulk CoFe{sub 2}O{sub 4} (B{sub 0} = 172 GPa). In addition, when the pressure medium becomes non-hydrostatic and deviatoric stresses affect the experiments, there is a noticeable decrease of the compressibility of the studied sample (B{sub 0} = 284 GPa). After decompression, the cobalt ferrite lattice parameter does not revert to its initial value, evidencing a unit cell contraction after pressure was removed. Finally, Raman spectroscopy provides information on the pressure dependence of all Raman-active modes and evidences that cation inversion is enhanced by pressure under non-hydrostatic conditions, being this effect not fully reversible.

  19. Sounding experiments of high pressure gas discharge

    SciTech Connect

    Biele, Joachim K.

    1998-07-10

    A high pressure discharge experiment (200 MPa, 5{center_dot}10{sup 21} molecules/cm{sup 3}, 3000 K) has been set up to study electrically induced shock waves. The apparatus consists of the combustion chamber (4.2 cm{sup 3}) to produce high pressure gas by burning solid propellant grains to fill the electrical pump chamber (2.5 cm{sup 3}) containing an insulated coaxial electrode. Electrical pump energy up to 7.8 kJ at 10 kV, which is roughly three times of the gas energy in the pump chamber, was delivered by a capacitor bank. From the current-voltage relationship the discharge develops at rapidly decreasing voltage. Pressure at the combustion chamber indicating significant underpressure as well as overpressure peaks is followed by an increase of static pressure level. These data are not yet completely understood. However, Lorentz forces are believed to generate pinching with subsequent pinch heating, resulting in fast pressure variations to be propagated as rarefaction and shock waves, respectively. Utilizing pure axisymmetric electrode initiation rather than often used exploding wire technology in the pump chamber, repeatable experiments were achieved.

  20. High temperature pressure coupled ultrasonic waveguide

    DOEpatents

    Caines, Michael J.

    1983-01-01

    A pressure coupled ultrasonic waveguide is provided to which one end may be attached a transducer and at the other end a high temperature material for continuous ultrasonic testing of the material. The ultrasonic signal is coupled from the waveguide into the material through a thin, dry copper foil.

  1. High Pressure Inactivation of HAV within Mussels

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The potential of hepatitis A virus (HAV) to be inactivated within Mediterranean mussels (Mytilus galloprovincialis) and blue mussels (Mytilus edulis) by high pressure processing was evaluated. HAV was bioaccumulated within mussels to approximately 6-log10 PFU by exposure of mussels to HAV-contamina...

  2. A possible origin of EL6 chondrites from a high temperature-high pressure solar gas

    SciTech Connect

    Blander, M.; Unger, L.; Pelton, A.; Eriksson, G.

    1994-05-01

    Condensates from a gas of ``solar`` composition were calculated to investigate the origins of EL6 chondrites using a free energy minimization program with a data base for the thermodynamic properties of multicomponent molten silicates as well as for other liquids solids, solid solutions and gaseous species. Because of high volatility of silicon and silica, the high silicon content of metal (2.6 mole %) can only be produced at pressures 10{sup {minus}2} atm at temperatures above 1475 K. At 100--500 atm, a liquid silicate phase crystallizes at a temperature where the silicon content of the metal, ferrosilite content of the enstatite and albite concentration in the plagioclase are close to measured values. In pyrometallurgy, liquid silicates are catalysts for reactions in which Si-O-Si bridging bonds are broken or formed. Thus, one attractive mode for freezing in the compositions of these three phases is disappearance of fluxing liquid. If the plagioclase can continue to react with the nebula without a liquid phase, lower pressures of 10{sup {minus}1} to 1 atm might be possible. Even if the nebula is more reducing than a solar gas, the measured properties of EL6 chondrites might be reconciled with only slightly lower pressures (less than 3X lower). The temperatures would be about the same as indicated in our calculations since the product of the silicon content of the metal and the square of the ferrosilite content of the enstatite constitute a cosmothermometer for the mineral assemblage in EL6 chondrites.

  3. High pressure luminescence probes in polymers

    SciTech Connect

    Drickamer, H.G.

    1980-01-01

    High pressure luminescence has proved to be a very powerful tool for characterizing crystalline solids and liquids. Two problems involving glassy polymers are analyzed. In the first problem the excited states of azulene and its derivatives are used to probe intermolecular interactions in PMMA and PS. In the second problem the change in emission intensity with pressure from two excimer states of polyvinylcarbazole as a pure polymer and in dilute solution in polystyrene (PS), polymethylmethacrylate (PMMA) and polyisoliutylene (PIB) is studied. The relative emission from the two states depends strongly on the possibility for motion of polymer segments. The observations are related to the proximity to the glass transition.

  4. (Ultra) high pressure homogenization for continuous high pressure sterilization of pumpable foods - a review.

    PubMed

    Georget, Erika; Miller, Brittany; Callanan, Michael; Heinz, Volker; Mathys, Alexander

    2014-01-01

    Bacterial spores have a strong resistance to both chemical and physical hurdles and create a risk for the food industry, which has been tackled by applying high thermal intensity treatments to sterilize food. These strong thermal treatments lead to a reduction of the organoleptic and nutritional properties of food and alternatives are actively searched for. Innovative hurdles offer an alternative to inactivate bacterial spores. In particular, recent technological developments have enabled a new generation of high pressure homogenizer working at pressures up to 400 MPa and thus, opening new opportunities for high pressure sterilization of foods. In this short review, we summarize the work conducted on (ultra) high pressure homogenization (U)HPH to inactivate endospores in model and food systems. Specific attention is given to process parameters (pressure, inlet, and valve temperatures). This review gathers the current state of the art and underlines the potential of UHPH sterilization of pumpable foods while highlighting the needs for future work.

  5. (Ultra) High Pressure Homogenization for Continuous High Pressure Sterilization of Pumpable Foods – A Review

    PubMed Central

    Georget, Erika; Miller, Brittany; Callanan, Michael; Heinz, Volker; Mathys, Alexander

    2014-01-01

    Bacterial spores have a strong resistance to both chemical and physical hurdles and create a risk for the food industry, which has been tackled by applying high thermal intensity treatments to sterilize food. These strong thermal treatments lead to a reduction of the organoleptic and nutritional properties of food and alternatives are actively searched for. Innovative hurdles offer an alternative to inactivate bacterial spores. In particular, recent technological developments have enabled a new generation of high pressure homogenizer working at pressures up to 400 MPa and thus, opening new opportunities for high pressure sterilization of foods. In this short review, we summarize the work conducted on (ultra) high pressure homogenization (U)HPH to inactivate endospores in model and food systems. Specific attention is given to process parameters (pressure, inlet, and valve temperatures). This review gathers the current state of the art and underlines the potential of UHPH sterilization of pumpable foods while highlighting the needs for future work. PMID:25988118

  6. Apparatus for testing high pressure injector elements

    NASA Technical Reports Server (NTRS)

    Myers, William Neill (Inventor); Scott, Ewell M. (Inventor); Forbes, John C. (Inventor); Shadoan, Michael D. (Inventor)

    1995-01-01

    An apparatus for testing and evaluating the spray pattern of high pressure fuel injector elements for use in supplying fuel to combustion engines is presented. Prior art fuel injector elements were normally tested by use of low pressure apparatuses which did not provide a purge to prevent mist from obscuring the injector element or to prevent frosting of the view windows; could utilize only one fluid during each test; and had their viewing ports positioned one hundred eighty (180 deg) apart, thus preventing optimum use of laser diagnostics. The high pressure fluid injector test apparatus includes an upper hub, an upper weldment or housing, a first clamp and stud/nut assembly for securing the upper hub to the upper weldment, a standoff assembly within the upper weldment, a pair of window housings having view glasses within the upper weldment, an injector block assembly and purge plate within the upper weldment for holding an injector element to be tested and evaluated, a lower weldment or housing, a second clamp and stud/nut assembly for securing the lower weldment to the upper hub, a third clamp and stud/nut assembly for securing the lower hub to the lower weldment, mechanisms for introducing fluid under high pressure for testing an injector element, and mechanisms for purging the apparatus to prevent frosting of view glasses within the window housings and to permit unobstructed viewing of the injector element.

  7. Amorphous boron nitride at high pressure

    NASA Astrophysics Data System (ADS)

    Durandurdu, Murat

    2016-06-01

    The pressure-induced phase transformation in hexagonal boron nitrite and amorphous boron nitrite is studied using ab initio molecular dynamics simulations. The hexagonal-to-wurtzite phase transformation is successfully reproduced in the simulation with a transformation mechanism similar to one suggested in experiment. Amorphous boron nitrite, on the other hand, gradually transforms to a high-density amorphous phase with the application of pressure. This phase transformation is irreversible because a densified amorphous state having both sp3 and sp2 bonds is recovered upon pressure release. The high-density amorphous state mainly consists of sp3 bonds and its local structure is quite similar to recently proposed intermediate boron nitrite phases, in particular tetragonal structure (P42/mnm), rather than the known the wurtzite or cubic boron nitrite due to the existence of four membered rings and edge sharing connectivity. On the basis of this finding we propose that amorphous boron nitrite might be best candidate as a starting structure to synthesize the intermediate phase(s) at high pressure and temperature (probably below 800 °C) conditions.

  8. Apparatus for testing high pressure injector elements

    NASA Technical Reports Server (NTRS)

    Myers, William Neill (Inventor); Scott, Ewell M. (Inventor); Forbes, John C. (Inventor); Shadoan, Michael D. (Inventor)

    1993-01-01

    An apparatus for testing and evaluating the spray pattern of high pressure fuel injector elements for use in supplying fuel to combustion engines is presented. Prior art fuel injector elements were normally tested by use of low pressure apparatuses which did not provide a purge to prevent mist from obscuring the injector element or to prevent frosting of the view windows; could utilize only one fluid during each test; and had their viewing ports positioned one hundred eighty (180 deg) apart, thus preventing optimum use of laser diagnostics. The high pressure fluid injector test apparatus includes an upper hub, an upper weldment or housing, a first clamp and stud/nut assembly for securing the upper hub to the upper weldment, a standoff assembly within the upper weldment, a pair of window housings having view glasses within the upper weldment, an injector block assembly and purge plate within the upper weldment for holding an injector element to be tested and evaluated, a lower weldment or housing, a second clamp and stud/nut assembly for securing the lower weldment to the upper weldment, a lower hub, a third clamp and stud/nut assembly for securing the lower hub to the lower weldment, mechanisms for introducing fluid under high pressure for testing an injector element, and mechanisms for purging the apparatus to prevent frosting of view glasses within the window housings and to permit unobstructed viewing of the injector element.

  9. Research at Very High Pressures and High Temperatures

    ERIC Educational Resources Information Center

    Bundy, Francis P.

    1977-01-01

    Reviews research and apparatus utilized in the study of the states and characteristics of materials at very high temperatures and pressures. Includes three examples of the research being conducted. (SL)

  10. Small, high-pressure liquid oxygen turbopump

    NASA Technical Reports Server (NTRS)

    Csomor, A.; Sutton, R.

    1977-01-01

    A small, high-pressure, liquid oxygen turbopump was designed, fabricated, and tested. The pump was of a single-stage, centrifugal type; power to the pump was supplied by a single-stage, partial emission, axial-impulse turbine. Design conditions included an operating speed of 70,000 rpm, pump discharge pressure of 2977 N/sq cm (4318 psia), and a pump flowrate of 16.4 kg/s (36.21 lb/sec). The turbine was propelled by LO2/LH2 combustion products at 1041 K (1874 R) inlet temperature, and at a design pressure ratio of 1.424. The approaches used in the detail analysis and design of the turbopump are described, and fabrication methods are discussed. Data obtained from gas generator tests, turbine performance calibration, and turbopump testing are presented.

  11. Small, high-pressure, liquid oxygen turbopump

    NASA Technical Reports Server (NTRS)

    Csomor, A.

    1978-01-01

    A small, high-pressure, LOX turbopump was designed, fabricated, and tested. The pump was of a single-stage, centrifugal type; power to the pump was supplied by a single-stage, partial-admission, axial-impulse turbine. Design conditions included an operating speed of 7330 rad/sec (70,000 rpm) pump discharge pressure of 2977 N/sq cm (4318 psia), and a pump flowrate of 16.4 kg/s (36.21 lb/sec). The turbine was propelled by LOX/LH2 combustion products at 1041 K (1874 R) inlet temperature, and at a design pressure ratio of 1.424. Test data obtained with the turbopump are presented and mechanical performance is discussed.

  12. Topaz and Kyanite Luminescence Under High Pressure

    NASA Astrophysics Data System (ADS)

    O'Bannon, E. F., III; Williams, Q. C.

    2014-12-01

    The luminescence spectra of Cr3+ in heat-treated topaz Al2SiO4(OH,F)2 and natural kyanite Al2SiO5 were measured from 650 - 800 nm in a hydrostatic environment up to pressures of 15 GPa. The R1 and R2 peaks of topaz shift at average rates of 0.30 nm/GPa and 0.22 nm/GPa, respectively, implying that the deformation of the Cr3+ octahedra increases with pressure. Three peaks are fit under each R line of topaz at both room and high pressure, and these peaks are associated with different Al sites into which the Cr substitutes. The shift of the R lines in topaz under pressure is remarkably linear, which appears to be a general feature of many Cr3+-bearing oxides: the underlying cause of this linearity may lie in anharmonic coupling with lattice vibrations. In this context, we also characterize the frequency shifts of two vibronic peaks within topaz. The R1 and R2 peaks of kyanite shift at 0.37 nm/GPa and 0.88 nm/GPa respectively. Two peaks are fit under R1 and three peaks are fit under R2 of kyanite at both room and high pressure; this result is also consistent with three different Cr3+ sites in this material. The R lines in kyanite are notably optically anisotropic, depending strongly on crystallographic orientation: this is most strongly manifested in the R2 peak. The Cr3+ luminescence in these materials provides a sensitive probe of pressure-dependent shifts in the local geometry of the Al-sites in these materials, which are analyzed in the context of previous single-crystal x-ray diffraction measurements.

  13. High pressure microhollow cathode discharges in air

    SciTech Connect

    Khedr, M.A.; Stark, R.H.; Watson, B.; Schoenbach, K.H.

    1998-12-31

    Research on high pressure, large volume glow discharges in air is motivated by applications such as reflectors and absorbers for electromagnetic radiation, plasma processing, and the remediation of gaseous pollution. In order to prevent glow-to-arc transitions, which in high-pressure glow discharges start in the cathode region, it is proposed to use a plasma cathode consisting of an array of microhollow cathode discharges. To explore the conditions for stable operation of single 100 {micro}m microhollow cathode discharges in flowing air, the current-voltage characteristics, and the visual appearance of a 100 {micro}m microhollow cathode discharge were studied. The results show that the threshold current for the transition from a glow into a filamentary discharge varies inversely with pressure. At pressures of 400 Torr the current in the 100 {micro}m hollow cathode discharge must not exceed 0.5 mA in order for the discharge to be stable. The type of instability, which causes the transition from dc to fluctuating currents, is not known at this time, but the observed dependence of the threshold current from the gas pressure points to a thermal instability. Assuming that the White-Allis scaling law still holds for air discharges at pressures close to atmospheric, it is expected that reducing the cathode hole diameter to 50 {micro}m will allow us to operate microhollow cathode discharges at atmospheric air with currents of up to 0.25 mA. Experimental studies on the effect of the cathode dimensions and cathode material are underway and results will be discussed at the conference.

  14. A study on ice crystal formation behavior at intracellular freezing of plant cells using a high-speed camera.

    PubMed

    Ninagawa, Takako; Eguchi, Akemi; Kawamura, Yukio; Konishi, Tadashi; Narumi, Akira

    2016-08-01

    Intracellular ice crystal formation (IIF) causes several problems to cryopreservation, and it is the key to developing improved cryopreservation techniques that can ensure the long-term preservation of living tissues. Therefore, the ability to capture clear intracellular freezing images is important for understanding both the occurrence and the IIF behavior. The authors developed a new cryomicroscopic system that was equipped with a high-speed camera for this study and successfully used this to capture clearer images of the IIF process in the epidermal tissues of strawberry geranium (Saxifraga stolonifera Curtis) leaves. This system was then used to examine patterns in the location and formation of intracellular ice crystals and to evaluate the degree of cell deformation because of ice crystals inside the cell and the growing rate and grain size of intracellular ice crystals at various cooling rates. The results showed that an increase in cooling rate influenced the formation pattern of intracellular ice crystals but had less of an effect on their location. Moreover, it reduced the degree of supercooling at the onset of intracellular freezing and the degree of cell deformation; the characteristic grain size of intracellular ice crystals was also reduced, but the growing rate of intracellular ice crystals was increased. Thus, the high-speed camera images could expose these changes in IIF behaviors with an increase in the cooling rate, and these are believed to have been caused by an increase in the degree of supercooling.

  15. A study on ice crystal formation behavior at intracellular freezing of plant cells using a high-speed camera.

    PubMed

    Ninagawa, Takako; Eguchi, Akemi; Kawamura, Yukio; Konishi, Tadashi; Narumi, Akira

    2016-08-01

    Intracellular ice crystal formation (IIF) causes several problems to cryopreservation, and it is the key to developing improved cryopreservation techniques that can ensure the long-term preservation of living tissues. Therefore, the ability to capture clear intracellular freezing images is important for understanding both the occurrence and the IIF behavior. The authors developed a new cryomicroscopic system that was equipped with a high-speed camera for this study and successfully used this to capture clearer images of the IIF process in the epidermal tissues of strawberry geranium (Saxifraga stolonifera Curtis) leaves. This system was then used to examine patterns in the location and formation of intracellular ice crystals and to evaluate the degree of cell deformation because of ice crystals inside the cell and the growing rate and grain size of intracellular ice crystals at various cooling rates. The results showed that an increase in cooling rate influenced the formation pattern of intracellular ice crystals but had less of an effect on their location. Moreover, it reduced the degree of supercooling at the onset of intracellular freezing and the degree of cell deformation; the characteristic grain size of intracellular ice crystals was also reduced, but the growing rate of intracellular ice crystals was increased. Thus, the high-speed camera images could expose these changes in IIF behaviors with an increase in the cooling rate, and these are believed to have been caused by an increase in the degree of supercooling. PMID:27343136

  16. Exotic stable cesium polynitrides at high pressure

    SciTech Connect

    Peng, Feng; Han, Yunxia; Liu, Hanyu; Yao, Yansun

    2015-11-19

    New polynitrides containing metastable forms of nitrogen are actively investigated as potential high energy-density materials. Using a structure search method based on the CALYPSO methodology, we investigated the stable stoichiometries and structures of cesium polynitrides at high pressures. Along with the CsN3, we identified five new stoichiometric compounds (Cs3N, Cs2N, CsN, CsN2, and CsN5) with interesting structures that may be experimentally synthesizable at modest pressures (i.e., less than 50 GPa). Nitrogen species in the predicted structures have various structural forms ranging from single atom (N) to highly endothermic molecules (N2, N3 , N4, N5, N6) and chains (N). Polymeric chains of nitrogen were found in the high-pressure C2/c phase of CsN2. This structure contains a substantially high content of single N-N bonds that exceeds the previously known nitrogen chains in pure forms, and also exhibit metastability at ambient conditions. We also identified a very interesting CsN crystal that contains novel N44- anion. In conclusion, to our best knowledge, this is the first time a charged N4 species being reported. Results of the present study suggest that it is possible to obtain energetic polynitrogens in main-group nitrides under high pressure.

  17. Freezing injury in potato leaves.

    PubMed

    Sukumaran, N P; Weiser, C J

    1972-11-01

    Time-temperature profiles of freezing leaves from frost-resistant (Solanum acaule Bitt.) and frost-susceptible (Solanum tuberosum L. subsp. tuberosum Hawkes) types of potatoes did not reveal any major differences. The pattern of change in resistance of leaves to low voltage, low frequency current during freezing was different in the frost-resistant and susceptible leaves. In tissue sections from both types of leaves, cells freeze extracellularly at cooling velocities lower than 5 C per minute. Cells from leaves of resistant plants showed a higher osmotic pressure but not a higher water permeability than those from susceptible plants. The extent of injury caused by even very slow freezing was greater than that caused by equivalent isopiestic desiccation, particularly in susceptible leaves. The higher osmotic pressure in cells of leaves from resistant plants can account for the greater desiccation resistance but not for the frost resistance observed. PMID:16658217

  18. High-pressure droplet combustion studies

    NASA Technical Reports Server (NTRS)

    Mikami, Masato; Kono, M.; Sato, Junichi; Dietrich, Daniel L.; Williams, Forman A.

    1993-01-01

    This is a joint research program, pursued by investigators at the University of Tokyo, UCSD, and NASA Lewis Research Center. The focus is on high-pressure combustion of miscible binary fuel droplets. It involves construction of an experimental apparatus in Tokyo, mating of the apparatus to a NASA-Lewis 2.2-second drop-tower frame in San Diego, and performing experiments in the 2.2-second tower in Cleveland, with experimental results analyzed jointly by the Tokyo, UCSD, and NASA investigators. The project was initiated in December, 1990 and has now involved three periods of drop-tower testing by Mikami at Lewis. The research accomplished thus far concerns the combustion of individual fiber-supported droplets of mixtures of n-heptane and n-hexadecane, initially about 1 mm diameter, under free-fall microgravity conditions. Ambient pressures ranged up to 3.0 MPa, extending above the critical pressures of both pure fuels, in room-temperature nitrogen-oxygen atmospheres having oxygen mole fractions X of 0.12 and 0.13. The general objective is to study near-critical and super-critical combustion of these droplets and to see whether three-stage burning, observed at normal gravity, persists at high pressures in microgravity. Results of these investigations will be summarized here; a more complete account soon will be published.

  19. Picosecond High Pressure Gas Switch experiment

    SciTech Connect

    Cravey, W.R.; Freytag, E.K.; Goerz, D.A.; Poulsen, P.; Pincosy, P.A.

    1993-08-01

    A high Pressure Gas Switch has been developed and tested at LLNL. Risetimes on the order of 200 picoseconds have been observed at 1 kHz prf and 1 atmosphere pressures. Calculations show that switching closure times on the order of tens of picoseconds can be achieved at higher pressures and electric fields. A voltage hold-off of 1 MV/cm has been measured at 10 atmospheres and several MV/cm appears possible with the HPGS. With such high electric field levels, energy storage of tens of Joules in a reasonably sized package is achievable. Initial HPGS performance has been characterized using the WASP pulse generator at LLNL. A detailed description of the switch used for initial testing is given. Switch recovery times of 1-ms have been measured at 1 atmosphere. Data on the switching uniformity, voltage hold-off recovery, and pulse repeatability, is presented. In addition, a physics switch model is described and results are compared with experimental data. Modifications made to the WASP HV pulser in order to drive the HPGS will also be discussed. Recovery times of less than 1 ms were recorded without gas flow in the switch chambers. Low pressure synthetic air was used as the switch dielectric. Longer recovery times were required when it was necessary to over-voltage the switch.

  20. High pressure liquid chromatographic gradient mixer

    DOEpatents

    Daughton, Christian G.; Sakaji, Richard H.

    1985-01-01

    A gradient mixer which effects the continuous mixing of any two miscible solvents without excessive decay or dispersion of the resultant isocratic effluent or of a linear or exponential gradient. The two solvents are fed under low or high pressure by means of two high performance liquid chromatographic pumps. The mixer comprises a series of ultra-low dead volume stainless steel tubes and low dead volume chambers. The two solvent streams impinge head-on at high fluxes. This initial nonhomogeneous mixture is then passed through a chamber packed with spirally-wound wires which cause turbulent mixing thereby homogenizing the mixture with minimum "band-broadening".

  1. High-pressure liquid chromatographic gradient mixer

    DOEpatents

    Daughton, C.G.; Sakaji, R.H.

    1982-09-08

    A gradient mixer effects the continuous mixing of any two miscible solvents without excessive decay or dispersion of the resultant isocratic effluent or of a linear or exponential gradient. The two solvents are fed under low or high pressure by means of two high performance liquid chromatographic pumps. The mixer comprises a series of ultra-low dead volume stainless steel tubes and low dead volume chambers. The two solvent streams impinge head-on at high fluxes. This initial nonhomogeneous mixture is then passed through a chamber packed with spirally-wound wires which cause turbulent mixing thereby homogenizing the mixture with minimum band-broadening.

  2. Water solubility in pyrope at high pressures

    NASA Astrophysics Data System (ADS)

    Mookherjee, M.; Karato, S.-

    2006-12-01

    To address how much water is stored within the Earth's mantle, we need to understand the water solubility in the nominally anhydrous minerals. Much is known about olivine and pyroxene. Garnet is another important component, approaching 40% by volume in the transition zone. Only two studies on water solubility in pyrope at high-pressures exist which contradict each other. Lu and Keppler (1997) observed increase in water solubility in a natural pyrope up to 200 ppm wt of water, till 10 GPa. They concluded that the proton is located in the interstitial site. Withers et al. (1998) on the contrary, observed increasing water content in Mg-rich pyrope till 6 GPa, then sudden decrease of water, beyond detection, at 7 GPa. Based on infrared spectra, Withers et al. (1998), concluded hydrogarnet (Si^{4+} replaced by 4H+ to form O4H4) substitution in synthetic magnesium rich pyrope. They argued that at high pressure owing to larger volume, hydrogarnet substitution is unstable and water is expelled out of garnet. In transition zone conditions, however, majorite garnet seems to contain around 600-700 ppm wt of water (Bolfan-Casanova et al. 2000; Katayama et al. 2003). The cause for such discrepancy is not clear and whether garnet could store a significant amount of water at mantle condition is unconstrained. In order to understand the solubility mechanism of water in pyrope at high-pressure, we have conducted high- pressure experiments on naturally occurring single crystals of pyrope garnet (from Arizona, Aines and Rossman, 1984). To ascertain water-saturated conditions, we use olivine single-crystal as an internal standard. Preliminary results indicate that natural pyrope is capable of dissolving water at high-pressures, however, water preferentially enters olivine than in pyrope. We are undertaking systematic study to estimate the solubility of water in pyrope as a function of pressure. This will enable us to develop solubility models to understand the defect mechanisms

  3. The Soil Moisture Active Passive (SMAP): Radar Measurements at High Latitudes and of Freeze/Thaw State

    NASA Technical Reports Server (NTRS)

    Spencer, Michael; Dunbar, Scott; Chen, Curtis

    2013-01-01

    The Soil Moisture Active/Passive (SMAP) mission is scheduled for a late 2014 launch date. The mission will use both active radar and passive radiometer instruments at L-Band. In order to achieve a wide swath at sufficiently high resolution for both active and passive channels, an instrument architecture that uses a large rotating reflector is employed. In this paper, a focus will be places on the radar design and associated data products at high latitudes. The radar will employ synthetic-aperture processing to achieve a "moderate" resolution dual-pol product over a 1000 km swath. Because the radar is operating continuously, very frequent temporal coverage will be achieved at high latitudes. This data will be used, among other things, to produce a surface freeze/thaw state data product.

  4. Cavity closure arrangement for high pressure vessels

    DOEpatents

    Amtmann, Hans H.

    1981-01-01

    A closure arrangement for a pressure vessel such as the pressure vessel of a high temperature gas-cooled reactor wherein a liner is disposed within a cavity penetration in the reactor vessel and defines an access opening therein. A closure is adapted for sealing relation with an annular mounting flange formed on the penetration liner and has a plurality of radially movable locking blocks thereon having outer serrations adapted for releasable interlocking engagement with serrations formed internally of the upper end of the penetration liner so as to effect high strength closure hold-down. In one embodiment, ramping surfaces are formed on the locking block serrations to bias the closure into sealed relation with the mounting flange when the locking blocks are actuated to locking positions.

  5. High pressure hydrogen time projection chamber

    SciTech Connect

    Goulianos, K.

    1983-01-01

    We describe a high pressure hydrogen gas time projection chamber which consists of two cylindrical drift regions each 45 cm in diameter and 75 cm long. Typically, at 15 atm of H/sub 2/ with 2 kV/cm drift field and 7 kV on the 35..mu.. sense wires, the drift velocity is about 0.5 cm/..mu..sec and the spatial resolution +-200..mu...

  6. Small, high pressure liquid hydrogen turbopump

    NASA Technical Reports Server (NTRS)

    Csomor, A.; Warren, D. J.

    1980-01-01

    A high pressure, low capacity, liquid hydrogen turbopump was designed, fabricated, and tested. The design configuration of the turbopump is summarized and the results of the analytical and test efforts are presented. Approaches used to pin point the cause of poor suction performance with the original design are described and performance data are included with an axial inlet design which results in excellent suction capability.

  7. High temperatures and high pressures Brillouin scattering studies of liquid H(2)O+CO(2) mixtures.

    PubMed

    Qin, Junfeng; Li, Min; Li, Jun; Chen, Rongyan; Duan, Zhenhao; Zhou, Qiang; Li, Fangfei; Cui, Qiliang

    2010-10-21

    The Brillouin scattering spectroscopy studies have been conducted in a diamond anvil cell for a liquid mixtures composed of 95 mol % H(2)O and 5 mol % CO(2) under high temperatures and pressures. The sound velocity, refractive index, density, and adiabatic bulk modulus of the H(2)O+CO(2) mixtures were determined under pressures up to the freezing point at 293, 453, and 575 K. It is found from the experiment that sound velocities of the liquid mixture are substantially lower than those of pure water at 575 K, but not at lower temperatures. We presented an empirical relation of the density in terms of pressure and temperature. Our results show that liquid H(2)O+CO(2) mixtures are more compressible than water obtained from an existing equation of state of at 453 and 575 K. PMID:20969409

  8. 7 CFR 58.219 - High pressure pumps and lines.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 3 2013-01-01 2013-01-01 false High pressure pumps and lines. 58.219 Section 58.219....219 High pressure pumps and lines. High pressure lines may be cleaned-in-place and shall be of such construction that dead ends, valves and the high pressure pumps can be disassembled for hand cleaning. The...

  9. 7 CFR 58.219 - High pressure pumps and lines.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 3 2011-01-01 2011-01-01 false High pressure pumps and lines. 58.219 Section 58.219....219 High pressure pumps and lines. High pressure lines may be cleaned-in-place and shall be of such construction that dead ends, valves and the high pressure pumps can be disassembled for hand cleaning. The...

  10. 7 CFR 58.219 - High pressure pumps and lines.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 3 2012-01-01 2012-01-01 false High pressure pumps and lines. 58.219 Section 58.219....219 High pressure pumps and lines. High pressure lines may be cleaned-in-place and shall be of such construction that dead ends, valves and the high pressure pumps can be disassembled for hand cleaning. The...

  11. 7 CFR 58.219 - High pressure pumps and lines.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 3 2014-01-01 2014-01-01 false High pressure pumps and lines. 58.219 Section 58.219....219 High pressure pumps and lines. High pressure lines may be cleaned-in-place and shall be of such construction that dead ends, valves and the high pressure pumps can be disassembled for hand cleaning. The...

  12. Prediction of Production Power for High-pressure Hydrogen by High-pressure Water Electrolysis

    NASA Astrophysics Data System (ADS)

    Kyakuno, Takahiro; Hattori, Kikuo; Ito, Kohei; Onda, Kazuo

    Recently the high attention for fuel cell electric vehicle (FCEV) is pushing to construct the hydrogen supplying station for FCEV in the world. The hydrogen pressure supplied at the current test station is intended to be high for increasing the FCEV’s driving distance. The water electrolysis can produce cleanly the hydrogen by utilizing the electricity from renewable energy without emitting CO2 to atmosphere, when it is compared to be the popular reforming process of fossil fuel in the industry. The power required for the high-pressure water electrolysis, where water is pumped up to high-pressure, may be smaller than the power for the atmospheric water electrolysis, where the produced atmospheric hydrogen is pumped up by compressor, since the compression power for water is much smaller than that for hydrogen gas. In this study the ideal water electrolysis voltage up to 70MPa and 523K is estimated referring to both the results by LeRoy et al up to 10MPa and 523K, and to the latest steam table. By using this high-pressure water electrolysis voltage, the power required for high-pressure hydrogen produced by the high-pressure water electrolysis method is estimated to be about 5% smaller than that by the atmospheric water electrolysis method, by assuming the compressor and pump efficiency of 50%.

  13. Engine having a high pressure hydraulic system and low pressure lubricating system

    DOEpatents

    Bartley, Bradley E.; Blass, James R.; Gibson, Dennis H.

    2000-01-01

    An engine includes a high pressure hydraulic system having a high pressure pump and at least one hydraulically-actuated device attached to an engine housing. A low pressure engine lubricating system is attached to the engine housing and includes a circulation conduit fluidly connected to an outlet from the high pressure pump.

  14. Sulfidation kinetics of dolomite at high pressure and high temperature

    SciTech Connect

    Misro, S.K.; Jadhav, R.; Gupta, H.; Agnihotri, R.; Chauk, S.; Fan, L.S.

    1999-07-01

    Kinetic studies of the dolomite sulfidation reaction are carried out at high pressure (15 atm) and high temperature (600--900 C) in a differential bed flow-through reactor. The dolomite particles are exposed to simulated coal gas environments and the extent of conversion determined. Experiments are carried out to determine the influence of total pressure, reaction temperature and partial pressure of H{sub 2}S on the extent of fully calcined dolomite (FCD) sulfidation. Based on the grain theory it is found that towards the later stages of the reaction the FCD sulfidation is product layer diffusion controlled. The reaction is found to be first order with respect to H{sub 2}S partial pressure. A low apparent activation energy of 4.6 kcal/gmol for the product layer diffusion controlled reaction is attributed to the presence of porous MgO along with the low porosity CaS product layer. A comparison of the performance of dolomite and limestone as sorbents for desulfurization shows that dolomite is a better sorbent with higher conversions even at higher CO{sub 2} partial pressures. The high pressure sulfidation kinetic data obtained in this study would be useful in understanding and optimizing the in-gasifier H{sub 2}S capture using dolomite sorbents.

  15. Very high-pressure orogenic garnet peridotites

    PubMed Central

    Liou, J. G.; Zhang, R. Y.; Ernst, W. G.

    2007-01-01

    Mantle-derived garnet peridotites are a minor component in many very high-pressure metamorphic terranes that formed during continental subduction and collision. Some of these mantle rocks contain trace amounts of zircon and micrometer-sized inclusions. The constituent minerals exhibit pre- and postsubduction microstructures, including polymorphic transformation and mineral exsolution. Experimental, mineralogical, petrochemical, and geochronological characterizations using novel techniques with high spatial, temporal, and energy resolutions are resulting in unexpected discoveries of new phases, providing better constraints on deep mantle processes. PMID:17519341

  16. Prediction of production power for high-pressure hydrogen by high-pressure water electrolysis

    NASA Astrophysics Data System (ADS)

    Onda, Kazuo; Kyakuno, Takahiro; Hattori, Kikuo; Ito, Kohei

    Recent attention focused on fuel cell electric vehicles (FCEVs) has created demand for the construction of hydrogen supply stations for FCEVs throughout the world. The hydrogen pressure supplied at the supply stations is intentionally high to increase the FCEVs driving mileage. Water electrolysis can produce clean hydrogen by utilizing electricity from renewable energy without CO 2 emission to the atmosphere when compared with the industrial fossil fuel reforming process. The power required for high-pressure water electrolysis, wherein water is pumped up to a high-pressure, may be less than the power required for atmospheric water electrolysis, wherein the produced atmospheric hydrogen is pumped by a compressor, since the compression power for water is much less than that for hydrogen-gas. In this study, the ideal water electrolysis voltage of up to 70 MPa and 250 °C is estimated by referring to both the results of LeRoy et al. up to 10 MPa and 250 °C, and the latest steam tables. Using this high-pressure water electrolysis voltage, the power required to produce high-pressure hydrogen by high-pressure water electrolysis is estimated to be about 5% less than that required for atmospheric water electrolysis, assuming compressor and pump efficiencies of 50%.

  17. Dissociation of methane under high pressure

    NASA Astrophysics Data System (ADS)

    Gao, Guoying; Oganov, Artem R.; Ma, Yanming; Wang, Hui; Li, Peifang; Li, Yinwei; Iitaka, Toshiaki; Zou, Guangtian

    2010-10-01

    Methane is an extremely important energy source with a great abundance in nature and plays a significant role in planetary physics, being one of the major constituents of giant planets Uranus and Neptune. The stable crystal forms of methane under extreme conditions are of great fundamental interest. Using the ab initio evolutionary algorithm for crystal structure prediction, we found three novel insulating molecular structures with P212121, Pnma, and Cmcm space groups. Remarkably, under high pressure, methane becomes unstable and dissociates into ethane (C2H6) at 95 GPa, butane (C4H10) at 158 GPa, and further, carbon (diamond) and hydrogen above 287 GPa at zero temperature. We have computed the pressure-temperature phase diagram, which sheds light into the seemingly conflicting observations of the unusually low formation pressure of diamond at high temperature and the failure of experimental observation of dissociation at room temperature. Our results support the idea of diamond formation in the interiors of giant planets such as Neptune.

  18. Dissociation of methane under high pressure.

    PubMed

    Gao, Guoying; Oganov, Artem R; Ma, Yanming; Wang, Hui; Li, Peifang; Li, Yinwei; Iitaka, Toshiaki; Zou, Guangtian

    2010-10-14

    Methane is an extremely important energy source with a great abundance in nature and plays a significant role in planetary physics, being one of the major constituents of giant planets Uranus and Neptune. The stable crystal forms of methane under extreme conditions are of great fundamental interest. Using the ab initio evolutionary algorithm for crystal structure prediction, we found three novel insulating molecular structures with P2(1)2(1)2(1), Pnma, and Cmcm space groups. Remarkably, under high pressure, methane becomes unstable and dissociates into ethane (C(2)H(6)) at 95 GPa, butane (C(4)H(10)) at 158 GPa, and further, carbon (diamond) and hydrogen above 287 GPa at zero temperature. We have computed the pressure-temperature phase diagram, which sheds light into the seemingly conflicting observations of the unusually low formation pressure of diamond at high temperature and the failure of experimental observation of dissociation at room temperature. Our results support the idea of diamond formation in the interiors of giant planets such as Neptune.

  19. Elasticity of Hydrogen at High Pressures

    NASA Astrophysics Data System (ADS)

    Goncharov, A. F.; Decremps, F.; Gauthier, M.; Ayrinhac, S.; Antonangeli, D.; Freiman, Y. A.; Grechnev, A.; Tretyak, S. M.

    2015-12-01

    High-pressure elastic properties of hydrogen give insight into anisotropy, equation of state, thermodynamic properties, and intermolecular potentials of this material providing an important link to ultrahigh pressure behavior approaching transformation to metallic monatomic or molecular state. Here we present picosecond acoustics measurements of compressional sound velocities [1] combined with optical interferometry and Raman spectroscopy of H2 and D2 at 295 K up to 55 GPa. Using the equation of state determined previously [2], we deduced the transverse sound velocities and the Poisson's ratio up to 55 GPa. The latter shows a broad minimum near 45 GPa (c.f. Ref. [3]) providing a new experimentally proven insight into lattice dynamics of hydrogen at high pressure that can be compared to theoretical calculations of various levels [4]. [1] F. Decremps, M. Gauthier, S. Ayrinhac, L. Bove, L. Belliard, B. Perrin, M. Morand, G. Le Marchand, F. Bergame, J. Philippe, Ultrasonics, 56 (2015) 129-140. [2] P. Loubeyre, R. LeToullec, D. Hausermann, M. Hanfland, R.J. Hemley, H.K. Mao, L.W. Finger, Nature, 383 (1996) 702-704. [3] C.-s. Zha, T.S. Duffy, H.-k. Mao, R.J. Hemley, Phys. Rev. B, 48 (1993) 9246-9255. [4] Y.A. Freiman, A. Grechnev, S.M. Tretyak, A.F. Goncharov, E. Gregoryanz, Fizika Nizkikh Temperatur, 41 (2015) 571.

  20. Dissociation of methane under high pressure.

    PubMed

    Gao, Guoying; Oganov, Artem R; Ma, Yanming; Wang, Hui; Li, Peifang; Li, Yinwei; Iitaka, Toshiaki; Zou, Guangtian

    2010-10-14

    Methane is an extremely important energy source with a great abundance in nature and plays a significant role in planetary physics, being one of the major constituents of giant planets Uranus and Neptune. The stable crystal forms of methane under extreme conditions are of great fundamental interest. Using the ab initio evolutionary algorithm for crystal structure prediction, we found three novel insulating molecular structures with P2(1)2(1)2(1), Pnma, and Cmcm space groups. Remarkably, under high pressure, methane becomes unstable and dissociates into ethane (C(2)H(6)) at 95 GPa, butane (C(4)H(10)) at 158 GPa, and further, carbon (diamond) and hydrogen above 287 GPa at zero temperature. We have computed the pressure-temperature phase diagram, which sheds light into the seemingly conflicting observations of the unusually low formation pressure of diamond at high temperature and the failure of experimental observation of dissociation at room temperature. Our results support the idea of diamond formation in the interiors of giant planets such as Neptune. PMID:20950018

  1. High pressure volumetric measurements in dipalmitoylphosphatidylcholine bilayers.

    PubMed

    Tosh, R E; Collings, P J

    1986-07-10

    The one previously reported high pressure volumetric experiment on a phospholipid bilayer investigated a region of pressure between 0 and 25 MPa and obtained isothermal compressibility values for the liquid crystal and intermediate phases which differed by more than a factor of ten. We report new volumetric measurements around the main transition in dipalmitoylphosphatidylcholine (DPPC) from 0 to 100 MPa. The isothermal compressibility data for the two phases are of the same order of magnitude, and the experimentally determined coexistence curve, specific volume dependence, and volume discontinuity values are compared with the predictions of the phenomenological theory according to Sugar and Tarjan ((1982) Sov. Phys. Crystallogr. 27, 4-5). Significant discrepancies between this theory and experiment are found. Finally, the data indicate that steric interactions play a more dominant role in the main transition of phospholipid bilayers than in transitions in most thermotropic liquid crystals.

  2. 30 CFR 57.13021 - High-pressure hose connections.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false High-pressure hose connections. 57.13021... Air and Boilers § 57.13021 High-pressure hose connections. Except where automatic shutoff valves are...-pressure hose lines of 3/4-inch inside diameter or larger, and between high-pressure hose lines of...

  3. 30 CFR 57.13021 - High-pressure hose connections.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false High-pressure hose connections. 57.13021... Air and Boilers § 57.13021 High-pressure hose connections. Except where automatic shutoff valves are...-pressure hose lines of 3/4-inch inside diameter or larger, and between high-pressure hose lines of...

  4. 30 CFR 57.13021 - High-pressure hose connections.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false High-pressure hose connections. 57.13021... Air and Boilers § 57.13021 High-pressure hose connections. Except where automatic shutoff valves are...-pressure hose lines of 3/4-inch inside diameter or larger, and between high-pressure hose lines of...

  5. 30 CFR 57.13021 - High-pressure hose connections.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false High-pressure hose connections. 57.13021... Air and Boilers § 57.13021 High-pressure hose connections. Except where automatic shutoff valves are...-pressure hose lines of 3/4-inch inside diameter or larger, and between high-pressure hose lines of...

  6. 30 CFR 57.13021 - High-pressure hose connections.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false High-pressure hose connections. 57.13021... Air and Boilers § 57.13021 High-pressure hose connections. Except where automatic shutoff valves are...-pressure hose lines of 3/4-inch inside diameter or larger, and between high-pressure hose lines of...

  7. LHDAC setup for high temperature and high pressure studies

    SciTech Connect

    Patel, Nishant N. Meenakshi, S. Sharma, Surinder M.

    2014-04-24

    A ytterbium fibre laser (λ = 1.07 μm) based laser heated diamond anvil cell (LHDAC) facility has been recently set up at HP and SRPD, BARC for simultaneous high temperature and high pressure investigation of material properties. Synthesis of GaN was carried out at pressure of ∼9 GPa and temperature of ∼1925 K in a Mao-Bell type diamond anvil cell (DAC) using the LHDAC facility. The retrieved sample has been characterized using our laboratory based micro Raman setup.

  8. 49 CFR 192.621 - Maximum allowable operating pressure: High-pressure distribution systems.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 3 2013-10-01 2013-10-01 false Maximum allowable operating pressure: High-pressure distribution systems. 192.621 Section 192.621 Transportation Other Regulations Relating to... STANDARDS Operations § 192.621 Maximum allowable operating pressure: High-pressure distribution systems....

  9. High pressure phase transitions in lawsonite at simultaneous high pressure and temperature: A single crystal study

    NASA Astrophysics Data System (ADS)

    O'Bannon, E. F., III; Vennari, C.; Beavers, C. C. G.; Williams, Q. C.

    2015-12-01

    Lawsonite (CaAl2Si2O7(OH)2.H2O) is a hydrous mineral with a high overall water content of ~11.5 wt.%. It is a significant carrier of water in subduction zones to depths greater than ~150 km. The structure of lawsonite has been extensively studied under room temperature, high-pressure conditions. However, simultaneous high-pressure and high-temperature experiments are scarce. We have conducted synchrotron-based simultaneous high-pressure and temperature single crystal experiments on lawsonite up to a maximum pressure of 8.4 GPa at ambient and high temperatures. We used a natural sample of lawsonite from Valley Ford, California (Sonoma County). At room pressure and temperature lawsonite crystallizes in the orthorhombic system with Cmcm symmetry. Room temperature compression indicates that lawsonite remains in the orthorhombic Cmcm space group up to ~9.0 GPa. Our 5.0 GPa crystal structure is similar to the room pressure structure, and shows almost isotropic compression of the crystallographic axes. Unit cell parameters at 5.0 GPa are a- 5.7835(10), b- 8.694(2), and c- 13.009(3). Single-crystal measurements at simultaneous high-pressure and temperature (e.g., >8.0 GPa and ~100 oC) can be indexed to a monoclinic P-centered unit cell. Interestingly, a modest temperature increase of ~100 oC appears to initiate the orthorhombic to monoclinic phase transition at ~0.6-2.4 GPa lower than room temperature compression studies have shown. There is no evidence of dehydration or H atom disorder under these conditions. This suggests that the orthorhombic to monoclinic transition could be kinetically impeded at 298 K, and that monoclinic lawsonite could be the dominant water carrier through much of the depth range of upper mantle subduction processes.

  10. High-pressure structural properties of tetramethylsilane

    NASA Astrophysics Data System (ADS)

    Zhen-Xing, Qin; Xiao-Jia, Chen

    2016-02-01

    High-pressure structural properties of tetramethylsilane are investigated by synchrotron powder x-ray diffraction at pressures up to 31.1 GPa and room temperature. A phase with the space group of Pnma is found to appear at 4.2 GPa. Upon compression, the compound transforms to two following phases: the phase with space groups of P21/c at 9.9 GPa and the phase with P2/m at 18.2 GPa successively via a transitional phase. The unique structural character of P21/c supports the phase stability of tetramethylsilane without possible decomposition upon heavy compression. The appearance of the P2/m phase suggests the possible realization of metallization for this material at higher pressure. Project supported by the Cultivation Fund of the Key Scientific and Technical Innovation Project from Ministry of Education of China (Grant No. 708070), the Fundamental Research Funds for the Central Universities, South China University of Technology (Grant No. 2014ZZ0069), the National Natural Science Foundation of China (Grant No. 51502189), and the Doctoral Project of Taiyuan University of Science and Technology, China (Grant No. 20132010).

  11. Glow discharges in high pressure microhollow cathodes

    NASA Astrophysics Data System (ADS)

    Boeuf, J.-P.; Pitchford, L. C.; Schoenbach, K. H.

    2004-09-01

    We have developed a model of high-pressure, microhollow cathode discharges (MHCDs) which has been used to predict the electrical characteristics and other properties of these discharges for comparison with experiment. The configuration studied here is an anode/dielectric/cathode sandwich in which a cylindrical hole with a diameter of some 100's of microns is pierced in the dielectric and in the cathode. Results from the model calculations in xenon at 100 torr and higher pressures show that the positive V-I (voltage-current) characteristic observed experimentally at low current corresponds to an abnormal glow discharge inside the cathode hole. At higher current, the V-I characteristic is that of a normal to slightly abnormal glow discharge between the anode and the outer face of the cathode. The change in slope of the V-I characteristic is consistent with experiment (provided metastables are taken into account). This shape was previously attribed to the onset of the classical hollow cathode effect, but we find no hollow cathode effect for pressures above about 30 torr and for 200 micron hole diameters.

  12. Freezing temperatures of H2SO4/HNO3/H2O mixtures: Implications for polar stratospheric clouds

    NASA Technical Reports Server (NTRS)

    Song, Naihui

    1994-01-01

    The freezing temperatures of H2SO4/HNO3/H2O mixtures were systematically documented. Nitric acid was found to affect freezing significantly. Measurements show that nitric acid can cause substantial supercooling over a broad composition range. However, some ternary compositions, like to those in polar stratospheric clouds (PSCs), have high freezing temperatures. The freezing of PSC particles could be controlled by the temperature and vapor pressure of both nitric acid and water in a non-linear way. Formation of polar stratospheric clouds may be forecasted on the basic of conditions of temperature and vapor contents of water and nitric acid.

  13. Test facility for high pressure plasmas

    SciTech Connect

    Block, R.; Laroussi, M.; Schoenbach, K.H.

    1999-07-01

    High pressure nonthermal plasmas are gaining increasing importance because of their wide range of applications, e.g. in air plasma ramparts, gas processing, surface treatment, thin film deposition, and chemical and biological decontamination. In order to compare various methods of plasma generation with respect to efficiency, development of instabilities, homogeneity, lifetime etc., a central test facility for high pressure plasmas is being established. The facility will allow one to study large volume (> 100 cm{sup 3}), nonthermal (gas temperature: < 2,000 K) plasmas over a large pressure range (10{sup {minus}6} Torr up to more than 1 atmosphere) in a standardized discharge cell. The setup was designed to generate plasmas in air as well as in gas mixtures. The available voltage range extends to 25 kV dc (10 kW power). The electrodes can be water cooled. Electrical diagnostics include a 400 Mhz, 2 GS/s 4-channel oscilloscope for current and voltage measurements and the detection of the onset of instabilities. For optical diagnostics, a CCD video camera is used to record the appearance of dc discharges. A high-speed light intensified CCD-camera (25 mm MCP with photocathode, gating speed: 200 ps, adjustable in 10 ps steps) allows to study the development of instabilities and can also be utilized in temporally resolved spectroscopic measurements. Optical emission spectroscopy allows one to determine plasma parameters such as electron density (through Stark broadening measurements) and gas temperature measurements. Interferometry is well suited for electron density measurements especially in weakly ionized plasmas.

  14. Conformable pressure vessel for high pressure gas storage

    DOEpatents

    Simmons, Kevin L.; Johnson, Kenneth I.; Lavender, Curt A.; Newhouse, Norman L.; Yeggy, Brian C.

    2016-01-12

    A non-cylindrical pressure vessel storage tank is disclosed. The storage tank includes an internal structure. The internal structure is coupled to at least one wall of the storage tank. The internal structure shapes and internally supports the storage tank. The pressure vessel storage tank has a conformability of about 0.8 to about 1.0. The internal structure can be, but is not limited to, a Schwarz-P structure, an egg-crate shaped structure, or carbon fiber ligament structure.

  15. Effects of freezing and thawing processes on the quality of Atlantic salmon (Salmo salar) fillets.

    PubMed

    Alizadeh, E; Chapleau, N; de Lamballerie, M; Lebail, A

    2007-06-01

    High-pressure processing is finding a growing interest in the food industry. Among the advantages of this emerging process is the ability to favorably freeze and thaw food. This study aims at comparing the effect of different freezing and thawing processes on the quality of Atlantic salmon fillets. Atlantic salmon (Salmo salar) samples were frozen by Pressure-Shift Freezing (PSF, 200 MPa, -18 degrees C) and Air-Blast Freezing (ABF, -30 degrees C, 4 m/s). Samples were stored 1 mo at -20 degrees C and then subjected to different thawing treatments: Air-Blast Thawing (ABT, 4 degrees C, 4 m/s), Immersion Thawing (IMT, 20 degrees C), and Pressure-Assisted Thawing (PAT, 200 MPa, 20 degrees C). Changes in texture, color, and drip loss were investigated. The toughness of the PSF samples was higher than that of the ABF sample. The modification of color was more important during high-pressure process than during the conventional process. The PSF process reduced thawing drip compared with ABF. The presence of small ice crystals in the pressure-shift frozen sample is probably the major reason leading to the reduced drip volumes. The freezing process was generally much more influent on quality parameters than the thawing process. These results show the interaction between freezing and thawing processes on selected quality parameters.

  16. A picosecond high pressure gas switch

    SciTech Connect

    Cravey, W.R.; Poulsen, P.P.; Pincosy, P.A.

    1992-06-01

    Work is being done to develop a high pressure gas switch (HPGS) with picosecond risetimes for UWB applications. Pulse risetimes on the order of 200 picoseconds have been observed at 1 kHz prf and 1 atmosphere. Calculations show that switching closure times on the order of tens of picoseconds can be achieved at high pressures and higher electric fields. A voltage hold-off of 1 MV/cm has been measured at 10 atmospheres and several MV/cm appears possible with the HPGS. With these high electric field levels, energy storage of tens of Joules in a reasonably sized package is achievable. Initial HPGS performance has been characterized on the WASP pulse generator at LLNL. A detailed description of the switch used for initial testing is given. Switch recovery times of 1-ms have been measured at 1 atmosphere. Data on the switching uniformity, voltage hold-off recovery, and pulse repeatability, is presented. In addition, a physics switch model is described and results are compared with lab data.

  17. HIGH PRESSURE COAL COMBUSTION KINETICS PROJECT

    SciTech Connect

    Chris Guenther, Ph.D.

    2003-01-28

    SRI has completed the NBFZ test program, made modification to the experimental furnace for the HPBO test. The NBFZ datasets provide the information NEA needs to simulate the combustion and fuel-N conversion with detailed chemical reaction mechanisms. BU has determined a linear swell of 1.55 corresponding to a volumetric increase of a factor of 3.7 and a decrease in char density by the same factor. These results are highly significant, and indicate significantly faster burnout at elevated pressure due to the low char density and large diameter.

  18. Method transfer from high-pressure liquid chromatography to ultra-high-pressure liquid chromatography. II. Temperature and pressure effects.

    PubMed

    Åsberg, Dennis; Samuelsson, Jörgen; Leśko, Marek; Cavazzini, Alberto; Kaczmarski, Krzysztof; Fornstedt, Torgny

    2015-07-01

    The importance of the generated temperature and pressure gradients in ultra-high-pressure liquid chromatography (UHPLC) are investigated and compared to high-pressure liquid chromatography (HPLC). The drug Omeprazole, together with three other model compounds (with different chemical characteristics, namely uncharged, positively and negatively charged) were used. Calculations of the complete temperature profile in the column at UHPLC conditions showed, in our experiments, a temperature difference between the inlet and outlet of 16 °C and a difference of 2 °C between the column center and the wall. Through van't Hoff plots, this information was used to single out the decrease in retention factor (k) solely due to the temperature gradient. The uncharged solute was least affected by temperature with a decrease in k of about 5% while for charged solutes the effect was more pronounced, with k decreases up to 14%. A pressure increase of 500 bar gave roughly 5% increase in k for the uncharged solute, while omeprazole and the other two charged solutes gave about 25, 20 and 15% increases in k, respectively. The stochastic model of chromatography was applied to estimate the dependence of the average number of adsorption/desorption events (n) and the average time spent by a molecule in the stationary phase (τs) on temperature and pressure on peak shape for the tailing, basic solute. Increasing the temperature yielded an increase in n and decrease in τs which resulted in less skew at high temperatures. With increasing pressure, the stochastic modeling gave interesting results for the basic solute showing that the skew of the peak increased with pressure. The conclusion is that pressure effects are more pronounced for both retention and peak shape than the temperature effects for the polar or charged compounds in our study.

  19. High-pressure coal fuel processor development

    SciTech Connect

    Greenhalgh, M.L.

    1992-11-01

    The objective of Subtask 1.1 Engine Feasibility was to conduct research needed to establish the technical feasibility of ignition and stable combustion of directly injected, 3,000 psi, low-Btu gas with glow plug ignition assist at diesel engine compression ratios. This objective was accomplished by designing, fabricating, testing and analyzing the combustion performance of synthesized low-Btu coal gas in a single-cylinder test engine combustion rig located at the Caterpillar Technical Center engine lab in Mossville, Illinois. The objective of Subtask 1.2 Fuel Processor Feasibility was to conduct research needed to establish the technical feasibility of air-blown, fixed-bed, high-pressure coal fuel processing at up to 3,000 psi operating pressure, incorporating in-bed sulfur and particulate capture. This objective was accomplished by designing, fabricating, testing and analyzing the performance of bench-scale processors located at Coal Technology Corporation (subcontractor) facilities in Bristol, Virginia. These two subtasks were carried out at widely separated locations and will be discussed in separate sections of this report. They were, however, independent in that the composition of the synthetic coal gas used to fuel the combustion rig was adjusted to reflect the range of exit gas compositions being produced on the fuel processor rig. Two major conclusions resulted from this task. First, direct injected, ignition assisted Diesel cycle engine combustion systems can be suitably modified to efficiently utilize these low-Btu gas fuels. Second, high pressure gasification of selected run-of-the-mine coals in batch-loaded fuel processors is feasible. These two findings, taken together, significantly reduce the perceived technical risks associated with the further development of the proposed coal gas fueled Diesel cycle power plant concept.

  20. High blood pressure and visual sensitivity

    NASA Astrophysics Data System (ADS)

    Eisner, Alvin; Samples, John R.

    2003-09-01

    The study had two main purposes: (1) to determine whether the foveal visual sensitivities of people treated for high blood pressure (vascular hypertension) differ from the sensitivities of people who have not been diagnosed with high blood pressure and (2) to understand how visual adaptation is related to standard measures of systemic cardiovascular function. Two groups of middle-aged subjects-hypertensive and normotensive-were examined with a series of test/background stimulus combinations. All subjects met rigorous inclusion criteria for excellent ocular health. Although the visual sensitivities of the two subject groups overlapped extensively, the age-related rate of sensitivity loss was, for some measures, greater for the hypertensive subjects, possibly because of adaptation differences between the two groups. Overall, the degree of steady-state sensitivity loss resulting from an increase of background illuminance (for 580-nm backgrounds) was slightly less for the hypertensive subjects. Among normotensive subjects, the ability of a bright (3.8-log-td), long-wavelength (640-nm) adapting background to selectively suppress the flicker response of long-wavelength-sensitive (LWS) cones was related inversely to the ratio of mean arterial blood pressure to heart rate. The degree of selective suppression was also related to heart rate alone, and there was evidence that short-term changes of cardiovascular response were important. The results suggest that (1) vascular hypertension, or possibly its treatment, subtly affects visual function even in the absence of eye disease and (2) changes in blood flow affect retinal light-adaptation processes involved in the selective suppression of the flicker response from LWS cones caused by bright, long-wavelength backgrounds.

  1. High pressure-resistant nonincendive emulsion explosive

    DOEpatents

    Ruhe, Thomas C.; Rao, Pilaka P.

    1994-01-01

    An improved emulsion explosive composition including hollow microspheres/bulking agents having high density and high strength. The hollow microspheres/bulking agents have true particle densities of about 0.2 grams per cubic centimeter or greater and include glass, siliceous, ceramic and synthetic resin microspheres, expanded minerals, and mixtures thereof. The preferred weight percentage of hollow microspheres/bulking agents in the composition ranges from 3.0 to 10.0 A chlorinated paraffin oil, also present in the improved emulsion explosive composition, imparts a higher film strength to the oil phase in the emulsion. The emulsion is rendered nonincendive by the production of sodium chloride in situ via the decomposition of sodium nitrate, a chlorinated paraffin oil, and sodium perchlorate. The air-gap sensitivity is improved by the in situ formation of monomethylamine perchlorate from dissolved monomethylamine nitrate and sodium perchlorate. The emulsion explosive composition can withstand static pressures to 139 bars and dynamic pressure loads on the order of 567 bars.

  2. Stable Lithium Argon compounds under high pressure

    PubMed Central

    Li, Xiaofeng; Hermann, Andreas; Peng, Feng; Lv, Jian; Wang, Yanchao; Wang, Hui; Ma, Yanming

    2015-01-01

    High pressure can fundamentally alter the bonding patterns of chemical elements. Its effects include stimulating elements thought to be “inactive” to form unexpectedly stable compounds with unusual chemical and physical properties. Here, using an unbiased structure search method based on CALYPSO methodology and density functional total energy calculations, the phase stabilities and crystal structures of Li−Ar compounds are systematically investigated at high pressure up to 300 GPa. Two unexpected LimArn compounds (LiAr and Li3Ar) are predicted to be stable above 112 GPa and 119 GPa, respectively. A detailed analysis of the electronic structure of LiAr and Li3Ar shows that Ar in these compounds attracts electrons and thus behaves as an oxidizing agent. This is markedly different from the hitherto established chemical reactivity of Ar. Moreover, we predict that the P4/mmm phase of Li3Ar has a superconducting transition temperature of 17.6 K at 120 GPa. PMID:26582083

  3. Stable magnesium peroxide at high pressure.

    PubMed

    Lobanov, Sergey S; Zhu, Qiang; Holtgrewe, Nicholas; Prescher, Clemens; Prakapenka, Vitali B; Oganov, Artem R; Goncharov, Alexander F

    2015-09-01

    Rocky planets are thought to comprise compounds of Mg and O as these are among the most abundant elements, but knowledge of their stable phases may be incomplete. MgO is known to be remarkably stable to very high pressure and chemically inert under reduced condition of the Earth's lower mantle. However, in exoplanets oxygen may be a more abundant constituent. Here, using synchrotron x-ray diffraction in laser-heated diamond anvil cells, we show that MgO and oxygen react at pressures above 96 GPa and T = 2150 K with the formation of I4/mcm MgO2. Raman spectroscopy detects the presence of a peroxide ion (O2(2-)) in the synthesized material as well as in the recovered specimen. Likewise, energy-dispersive x-ray spectroscopy confirms that the recovered sample has higher oxygen content than pure MgO. Our finding suggests that MgO2 may be present together or instead of MgO in rocky mantles and rocky planetary cores under highly oxidized conditions.

  4. Stable magnesium peroxide at high pressure

    NASA Astrophysics Data System (ADS)

    Lobanov, Sergey S.; Zhu, Qiang; Holtgrewe, Nicholas; Prescher, Clemens; Prakapenka, Vitali B.; Oganov, Artem R.; Goncharov, Alexander F.

    2015-09-01

    Rocky planets are thought to comprise compounds of Mg and O as these are among the most abundant elements, but knowledge of their stable phases may be incomplete. MgO is known to be remarkably stable to very high pressure and chemically inert under reduced condition of the Earth’s lower mantle. However, in exoplanets oxygen may be a more abundant constituent. Here, using synchrotron x-ray diffraction in laser-heated diamond anvil cells, we show that MgO and oxygen react at pressures above 96 GPa and T = 2150 K with the formation of I4/mcm MgO2. Raman spectroscopy detects the presence of a peroxide ion (O22-) in the synthesized material as well as in the recovered specimen. Likewise, energy-dispersive x-ray spectroscopy confirms that the recovered sample has higher oxygen content than pure MgO. Our finding suggests that MgO2 may be present together or instead of MgO in rocky mantles and rocky planetary cores under highly oxidized conditions.

  5. High Pressure Hydrogen from First Principles

    NASA Astrophysics Data System (ADS)

    Morales, M. A.

    2014-12-01

    Typical approximations employed in first-principles simulations of high-pressure hydrogen involve the neglect of nuclear quantum effects (NQE) and the approximate treatment of electronic exchange and correlation, typically through a density functional theory (DFT) formulation. In this talk I'll present a detailed analysis of the influence of these approximations on the phase diagram of high-pressure hydrogen, with the goal of identifying the predictive capabilities of current methods and, at the same time, making accurate predictions in this important regime. We use a path integral formulation combined with density functional theory, which allows us to incorporate NQEs in a direct and controllable way. In addition, we use state-of-the-art quantum Monte Carlo calculations to benchmark the accuracy of more approximate mean-field electronic structure calculations based on DFT, and we use GW and hybrid DFT to calculate the optical properties of the solid and liquid phases near metallization. We present accurate predictions of the metal-insulator transition on the solid, including structural and optical properties of the molecular phase. This work was supported by the U.S. Department of Energy at the Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344 and by LDRD Grant No. 13-LW-004.

  6. Stable magnesium peroxide at high pressure.

    PubMed

    Lobanov, Sergey S; Zhu, Qiang; Holtgrewe, Nicholas; Prescher, Clemens; Prakapenka, Vitali B; Oganov, Artem R; Goncharov, Alexander F

    2015-01-01

    Rocky planets are thought to comprise compounds of Mg and O as these are among the most abundant elements, but knowledge of their stable phases may be incomplete. MgO is known to be remarkably stable to very high pressure and chemically inert under reduced condition of the Earth's lower mantle. However, in exoplanets oxygen may be a more abundant constituent. Here, using synchrotron x-ray diffraction in laser-heated diamond anvil cells, we show that MgO and oxygen react at pressures above 96 GPa and T = 2150 K with the formation of I4/mcm MgO2. Raman spectroscopy detects the presence of a peroxide ion (O2(2-)) in the synthesized material as well as in the recovered specimen. Likewise, energy-dispersive x-ray spectroscopy confirms that the recovered sample has higher oxygen content than pure MgO. Our finding suggests that MgO2 may be present together or instead of MgO in rocky mantles and rocky planetary cores under highly oxidized conditions. PMID:26323635

  7. Stable magnesium peroxide at high pressure

    PubMed Central

    Lobanov, Sergey S.; Zhu, Qiang; Holtgrewe, Nicholas; Prescher, Clemens; Prakapenka, Vitali B.; Oganov, Artem R.; Goncharov, Alexander F.

    2015-01-01

    Rocky planets are thought to comprise compounds of Mg and O as these are among the most abundant elements, but knowledge of their stable phases may be incomplete. MgO is known to be remarkably stable to very high pressure and chemically inert under reduced condition of the Earth’s lower mantle. However, in exoplanets oxygen may be a more abundant constituent. Here, using synchrotron x-ray diffraction in laser-heated diamond anvil cells, we show that MgO and oxygen react at pressures above 96 GPa and T = 2150 K with the formation of I4/mcm MgO2. Raman spectroscopy detects the presence of a peroxide ion (O22−) in the synthesized material as well as in the recovered specimen. Likewise, energy-dispersive x-ray spectroscopy confirms that the recovered sample has higher oxygen content than pure MgO. Our finding suggests that MgO2 may be present together or instead of MgO in rocky mantles and rocky planetary cores under highly oxidized conditions. PMID:26323635

  8. Pressure Distribution Over Airfoils at High Speeds

    NASA Technical Reports Server (NTRS)

    Briggs, L J; Dryden, H L

    1927-01-01

    This report deals with the pressure distribution over airfoils at high speeds, and describes an extension of an investigation of the aerodynamic characteristics of certain airfoils which was presented in NACA Technical Report no. 207. The results presented in report no. 207 have been confirmed and extended to higher speeds through a more extensive and systematic series of tests. Observations were also made of the air flow near the surface of the airfoils, and the large changes in lift coefficients were shown to be associated with a sudden breaking away of the flow from the upper surface. The tests were made on models of 1-inch chord and comparison with the earlier measurements on models of 3-inch chord shows that the sudden change in the lift coefficient is due to compressibility and not to a change in the Reynolds number. The Reynolds number still has a large effect, however, on the drag coefficient. The pressure distribution observations furnish the propeller designer with data on the load distribution at high speeds, and also give a better picture of the air-flow changes.

  9. Association between oxidative stress and contextual fear conditioning in Carioca high- and low-conditioned freezing rats.

    PubMed

    Hassan, Waseem; Gomes, Vitor de Castro; Pinton, Simone; Batista Teixeira da Rocha, Joao; Landeira-Fernandez, J

    2013-05-28

    We recently reported two novel breeding lines of rats known as Carioca high-and low-conditioned freezing (CHF and CLF), based on defensive freezing responses to contextual cues previously associated with electric footshock. The anxiety-like profile of these animals from the 7th generation was tested in the elevated plus maze. The results indicated that CHF animals presented a significantly more "anxious" phenotype compared with CLF animals. Animals from the 12th generation were used to evaluate the oxidative stress status of the cortex, hippocampus, and cerebellum. Reactive oxidative species (ROS) were evaluated using 2,7-dichlorofluorescin diacetate (DCFH-DA; a sensor of reactive oxygen species [ROS]), and the levels of malondialdehyde (MDA), an early marker of lipid peroxidation, were assessed. The results indicated that free radical concentrations and MDA levels were significantly higher in all three brain structures in CHF rats compared with CLF rats. Our data also showed that the hippocampus had the highest reactive species and MDA concentrations compared with the cortex and cerebellum in CHF rats. Animals from the 16th generation were used to evaluate the antioxidant enzyme activity of catalase (CAT) and glutathione peroxidase (GPx) within these three brain structures. The results indicated that CAT activity was lower in the cortex and hippocampus in CHF rats compared with CLF rats. No significant difference was observed in the cerebellum. The enzymatic activity of GPx was significantly decreased in all three structures in CHF rats compared with CLF rats. The hippocampus exhibited the highest GPx activity compared with the other two brain structures. These findings suggest the involvement of a redox system in these two bidirectional lines, and the hippocampus might be one of the prime brain structures involved in this state of oxidative stress imbalance.

  10. Association between oxidative stress and contextual fear conditioning in Carioca high- and low-conditioned freezing rats.

    PubMed

    Hassan, Waseem; Gomes, Vitor de Castro; Pinton, Simone; Batista Teixeira da Rocha, Joao; Landeira-Fernandez, J

    2013-05-28

    We recently reported two novel breeding lines of rats known as Carioca high-and low-conditioned freezing (CHF and CLF), based on defensive freezing responses to contextual cues previously associated with electric footshock. The anxiety-like profile of these animals from the 7th generation was tested in the elevated plus maze. The results indicated that CHF animals presented a significantly more "anxious" phenotype compared with CLF animals. Animals from the 12th generation were used to evaluate the oxidative stress status of the cortex, hippocampus, and cerebellum. Reactive oxidative species (ROS) were evaluated using 2,7-dichlorofluorescin diacetate (DCFH-DA; a sensor of reactive oxygen species [ROS]), and the levels of malondialdehyde (MDA), an early marker of lipid peroxidation, were assessed. The results indicated that free radical concentrations and MDA levels were significantly higher in all three brain structures in CHF rats compared with CLF rats. Our data also showed that the hippocampus had the highest reactive species and MDA concentrations compared with the cortex and cerebellum in CHF rats. Animals from the 16th generation were used to evaluate the antioxidant enzyme activity of catalase (CAT) and glutathione peroxidase (GPx) within these three brain structures. The results indicated that CAT activity was lower in the cortex and hippocampus in CHF rats compared with CLF rats. No significant difference was observed in the cerebellum. The enzymatic activity of GPx was significantly decreased in all three structures in CHF rats compared with CLF rats. The hippocampus exhibited the highest GPx activity compared with the other two brain structures. These findings suggest the involvement of a redox system in these two bidirectional lines, and the hippocampus might be one of the prime brain structures involved in this state of oxidative stress imbalance. PMID:23566816

  11. Synthesis of sodium polyhydrides at high pressures.

    PubMed

    Struzhkin, Viktor V; Kim, Duck Young; Stavrou, Elissaios; Muramatsu, Takaki; Mao, Ho-Kwang; Pickard, Chris J; Needs, Richard J; Prakapenka, Vitali B; Goncharov, Alexander F

    2016-01-01

    The only known compound of sodium and hydrogen is archetypal ionic NaH. Application of high pressure is known to promote states with higher atomic coordination, but extensive searches for polyhydrides with unusual stoichiometry have had only limited success in spite of several theoretical predictions. Here we report the first observation of the formation of polyhydrides of Na (NaH3 and NaH7) above 40 GPa and 2,000 K. We combine synchrotron X-ray diffraction and Raman spectroscopy in a laser-heated diamond anvil cell and theoretical random structure searching, which both agree on the stable structures and compositions. Our results support the formation of multicenter bonding in a material with unusual stoichiometry. These results are applicable to the design of new energetic solids and high-temperature superconductors based on hydrogen-rich materials. PMID:27464650

  12. Synthesis of sodium polyhydrides at high pressures

    DOE PAGES

    Struzhkin, Viktor V.; Kim, Duck Young; Stavrou, Elissaios; Muramatsu, Takaki; Mao, Ho-kwang; Pickard, Chris J.; Needs, Richard J.; Prakapenka, Vitali B.; Goncharov, Alexander F.

    2016-07-28

    Archetypal ionic NaH is the only known compound of sodium and hydrogen. Application of high pressure is known to promote states with higher atomic coordination, but extensive searches for polyhydrides with unusual stoichiometry have had only limited success in spite of several theoretical predictions. Here we report the first observation of the formation of polyhydrides of Na (NaH3 and NaH7) above 40 GPa and 2,000 K. Moreover, we combine synchrotron X-ray diffraction and Raman spectroscopy in a laser-heated diamond anvil cell and theoretical random structure searching, which both agree on the stable structures and compositions. Our results support the formationmore » of multicenter bonding in a material with unusual stoichiometry. These results are applicable to the design of new energetic solids and high-temperature superconductors based on hydrogen-rich materials.« less

  13. Synthesis of sodium polyhydrides at high pressures

    NASA Astrophysics Data System (ADS)

    Struzhkin, Viktor V.; Kim, Duck Young; Stavrou, Elissaios; Muramatsu, Takaki; Mao, Ho-Kwang; Pickard, Chris J.; Needs, Richard J.; Prakapenka, Vitali B.; Goncharov, Alexander F.

    2016-07-01

    The only known compound of sodium and hydrogen is archetypal ionic NaH. Application of high pressure is known to promote states with higher atomic coordination, but extensive searches for polyhydrides with unusual stoichiometry have had only limited success in spite of several theoretical predictions. Here we report the first observation of the formation of polyhydrides of Na (NaH3 and NaH7) above 40 GPa and 2,000 K. We combine synchrotron X-ray diffraction and Raman spectroscopy in a laser-heated diamond anvil cell and theoretical random structure searching, which both agree on the stable structures and compositions. Our results support the formation of multicenter bonding in a material with unusual stoichiometry. These results are applicable to the design of new energetic solids and high-temperature superconductors based on hydrogen-rich materials.

  14. Synthesis of sodium polyhydrides at high pressures.

    PubMed

    Struzhkin, Viktor V; Kim, Duck Young; Stavrou, Elissaios; Muramatsu, Takaki; Mao, Ho-Kwang; Pickard, Chris J; Needs, Richard J; Prakapenka, Vitali B; Goncharov, Alexander F

    2016-07-28

    The only known compound of sodium and hydrogen is archetypal ionic NaH. Application of high pressure is known to promote states with higher atomic coordination, but extensive searches for polyhydrides with unusual stoichiometry have had only limited success in spite of several theoretical predictions. Here we report the first observation of the formation of polyhydrides of Na (NaH3 and NaH7) above 40 GPa and 2,000 K. We combine synchrotron X-ray diffraction and Raman spectroscopy in a laser-heated diamond anvil cell and theoretical random structure searching, which both agree on the stable structures and compositions. Our results support the formation of multicenter bonding in a material with unusual stoichiometry. These results are applicable to the design of new energetic solids and high-temperature superconductors based on hydrogen-rich materials.

  15. Synthesis of sodium polyhydrides at high pressures

    PubMed Central

    Struzhkin, Viktor V.; Kim, Duck Young; Stavrou, Elissaios; Muramatsu, Takaki; Mao, Ho-kwang; Pickard, Chris J.; Needs, Richard J.; Prakapenka, Vitali B.; Goncharov, Alexander F.

    2016-01-01

    The only known compound of sodium and hydrogen is archetypal ionic NaH. Application of high pressure is known to promote states with higher atomic coordination, but extensive searches for polyhydrides with unusual stoichiometry have had only limited success in spite of several theoretical predictions. Here we report the first observation of the formation of polyhydrides of Na (NaH3 and NaH7) above 40 GPa and 2,000 K. We combine synchrotron X-ray diffraction and Raman spectroscopy in a laser-heated diamond anvil cell and theoretical random structure searching, which both agree on the stable structures and compositions. Our results support the formation of multicenter bonding in a material with unusual stoichiometry. These results are applicable to the design of new energetic solids and high-temperature superconductors based on hydrogen-rich materials. PMID:27464650

  16. Synergistic and Antagonistic Effects of Combined Subzero Temperature and High Pressure on Inactivation of Escherichia coli

    PubMed Central

    Moussa, Marwen; Perrier-Cornet, Jean-Marie; Gervais, Patrick

    2006-01-01

    The combined effects of subzero temperature and high pressure on the inactivation of Escherichia coli K12TG1 were investigated. Cells of this bacterial strain were exposed to high pressure (50 to 450 MPa, 10-min holding time) at two temperatures (−20°C without freezing and 25°C) and three water activity levels (aw) (0.850, 0.992, and ca. 1.000) achieved with the addition of glycerol. There was a synergistic interaction between subzero temperature and high pressure in their effects on microbial inactivation. Indeed, to achieve the same inactivation rate, the pressures required at −20°C (in the liquid state) were more than 100 MPa less than those required at 25°C, at pressures in the range of 100 to 300 MPa with an aw of 0.992. However, at pressures greater than 300 MPa, this trend was reversed, and subzero temperature counteracted the inactivation effect of pressure. When the amount of water in the bacterial suspension was increased, the synergistic effect was enhanced. Conversely, when the aw was decreased by the addition of solute to the bacterial suspension, the baroprotective effect of subzero temperature increased sharply. These results support the argument that water compression is involved in the antimicrobial effect of high pressure. From a thermodynamic point of view, the mechanical energy transferred to the cell during the pressure treatment can be characterized by the change in volume of the system. The amount of mechanical energy transferred to the cell system is strongly related to cell compressibility, which depends on the water quantity in the cytoplasm. PMID:16391037

  17. Construction from a single parent of baker's yeast strains with high freeze tolerance and fermentative activity in both lean and sweet doughs.

    PubMed

    Nakagawa, S; Ouchi, K

    1994-10-01

    From a freeze-tolerant baker's yeast (Saccharomyces cerevisiae), 2,333 spore clones were obtained. To improve the leavening ability in lean dough of the parent strain, we selected 555 of the high-maltose-fermentative spore clones by using a method in which a soft agar solution containing maltose and bromocresol purple was overlaid on yeast colonies. By measuring the gassing power in the dough, we selected 66 spore clones with a good leavening ability in lean dough and a total of 694 hybrids were constructed by crossing them. Among these hybrids, we obtained 50 novel freeze-tolerant strains with good leavening ability in all lean, regular, and sweet doughs comparable to that of commercial baker's yeast. Hybrids with improved leavening ability or freeze tolerance compared with the parent yeast and commercial baker's yeasts were also obtained. These results suggest that hybridization between spore clones derived from a single parent strain is effective for improving the properties of baker's yeasts.

  18. Rheological assessment of nanofluids at high pressure high temperature

    NASA Astrophysics Data System (ADS)

    Kanjirakat, Anoop; Sadr, Reza

    2013-11-01

    High pressure high temperature (HPHT) fluids are commonly encountered in industry, for example in cooling and/or lubrications applications. Nanofluids, engineered suspensions of nano-sized particles dispersed in a base fluid, have shown prospective as industrial cooling fluids due to their enhanced rheological and heat transfer properties. Nanofluids can be potentially utilized in oil industry for drilling fluids and for high pressure water jet cooling/lubrication in machining. In present work rheological characteristics of oil based nanofluids are investigated at HPHT condition. Nanofluids used in this study are prepared by dispersing commercially available SiO2 nanoparticles (~20 nm) in a mineral oil. The basefluid and nanofluids with two concentrations, namely 1%, and 2%, by volume, are considered in this investigation. The rheological characteristics of base fluid and the nanofluids are measured using an industrial HPHT viscometer. Viscosity values of the nanofluids are measured at pressures of 100 kPa to 42 MPa and temperatures ranging from 25°C to 140°C. The viscosity values of both nanofluids as well as basefluid are observed to have increased with the increase in pressure. Funded by Qatar National Research Fund (NPRP 08-574-2-239).

  19. New developments in high pressure x-ray spectroscopy beamline at High Pressure Collaborative Access Team

    SciTech Connect

    Xiao, Y. M. Chow, P.; Boman, G.; Bai, L. G.; Rod, E.; Bommannavar, A.; Kenney-Benson, C.; Sinogeikin, S.; Shen, G. Y.

    2015-07-15

    The 16 ID-D (Insertion Device - D station) beamline of the High Pressure Collaborative Access Team at the Advanced Photon Source is dedicated to high pressure research using X-ray spectroscopy techniques typically integrated with diamond anvil cells. The beamline provides X-rays of 4.5-37 keV, and current available techniques include X-ray emission spectroscopy, inelastic X-ray scattering, and nuclear resonant scattering. The recent developments include a canted undulator upgrade, 17-element analyzer array for inelastic X-ray scattering, and an emission spectrometer using a polycapillary half-lens. Recent development projects and future prospects are also discussed.

  20. High-pressure coal fuel processor development

    SciTech Connect

    Greenhalgh, M.L. )

    1992-12-01

    Caterpillar shares DOE/METC interest in demonstrating the technology required to displace petroleum-based engine fuels with various forms of low cost coal. Current DOE/METC programs on mild gasification and coal-water-slurries are addressing two approaches to this end. Engine and fuel processor system concept studies by Caterpillar have identified a third, potentially promising, option. This option includes high-pressure fuel processing of run-of-the-mine coal and direct injection of the resulting low-Btu gas stream into an ignition assisted, high compression ratio diesel engine. The compactness and predicted efficiency of the system make it suitable for application to line-haul railroad locomotives. Two overall conclusions resulted from Task 1. First direct injected, ignition assisted Diesel cycle engine combustion systems can be suitably modified to efficiently utilize low-Btu gas fuels. Second, high pressure gasification of selected run-of-the-mine coals in batch-loaded fuel processors is feasible. These two findings, taken together, significantly reduce the perceived technical risk associated with the further development of the proposed coal gas fueled Diesel cycle power plant concept. The significant conclusions from Task 2 were: An engine concept, derived from a Caterpillar 3600 series engine, and a fuel processor concept, based on scaling up a removable-canister configuration from the test rig, appear feasible; and although the results of this concept study are encouraging, further, full-scale component research and development are required before attempting a full-scale integrated system demonstration effort.

  1. High pressure fiber optic sensor system

    DOEpatents

    Guida, Renato; Xia, Hua; Lee, Boon K; Dekate, Sachin N

    2013-11-26

    The present application provides a fiber optic sensor system. The fiber optic sensor system may include a small diameter bellows, a large diameter bellows, and a fiber optic pressure sensor attached to the small diameter bellows. Contraction of the large diameter bellows under an applied pressure may cause the small diameter bellows to expand such that the fiber optic pressure sensor may measure the applied pressure.

  2. Windowless High-Pressure Solar Reactor

    NASA Technical Reports Server (NTRS)

    Ramohalli, K. N. R.

    1985-01-01

    Obscuration by reaction products eliminated. Chemical reactor heated by Sunlight employs rocket technology to maintain internal pressure. Instead of keeping chamber tightly closed, pressure maintained by momentum balance between incoming and outgoing materials. Windowless solar reactor admits concentrated Sunlight through exhaust aperture. Pressure in reactor maintained dynamically.

  3. High Blood Pressure Might Affect Some Kids' Thinking Ability

    MedlinePlus

    ... Services, or federal policy. More Health News on: Child Development High Blood Pressure Recent Health News Related MedlinePlus Health Topics Child Development High Blood Pressure About MedlinePlus Site Map FAQs ...

  4. High blood pressure - what to ask your doctor

    MedlinePlus

    What to ask your doctor about high blood pressure; Hypertension - what to ask your doctor ... problems? What medicines am I taking to treat high blood pressure? Do they have any side effects? What should ...

  5. Even Poorer Nations Not Immune to High Blood Pressure

    MedlinePlus

    ... Even Poorer Nations Not Immune to High Blood Pressure Researchers cite aging populations, diet, inactivity and lack ... News) -- For the first time ever, high blood pressure rates are higher in low- and middle-income ...

  6. A Nutritional Strategy for the Treatment of High Blood Pressure.

    ERIC Educational Resources Information Center

    Podell, Richard N.

    1984-01-01

    Some physicians wonder if high blood pressure can be controlled without the use of drugs and their potential side effects. Current findings concerning nutrition and high blood pressure are presented. (RM)

  7. Very high temperature silicon on silicon pressure transducers

    NASA Technical Reports Server (NTRS)

    Kurtz, Anthony D.; Nunn, Timothy A.; Briggs, Stephen A.; Ned, Alexander

    1992-01-01

    A silicon on silicon pressure sensor has been developed for use at very high temperatures (1000 F). The design principles used to fabricate the pressure sensor are outlined and results are presented of its high temperature performance.

  8. Condensed matter at high shock pressures

    SciTech Connect

    Nellis, W.J.; Holmes, N.C.; Mitchell, A.C.; Radousky, H.B.; Hamilton, D.

    1985-07-12

    Experimental techniques are described for shock waves in liquids: Hugoniot equation-of-state, shock temperature and emission spectroscopy, electrical conductivity, and Raman spectroscopy. Experimental data are reviewed and presented in terms of phenomena that occur at high densities and temperatures in shocked He, Ar, N/sub 2/, CO, SiO/sub 2/-aerogel, H/sub 2/O, and C/sub 6/H/sub 6/. The superconducting properties of Nb metal shocked to 100 GPa (1 Mbar) and recovered intact are discussed in terms of prospects for synthesizing novel, metastable materials. Ultrahigh pressure data for Cu is reviewed in the range 0.3 to 6TPa (3 to 60 Mbar). 56 refs., 9 figs., 1 tab.

  9. Safety improvements in high pressure thermal machines

    SciTech Connect

    Otters, J.L.

    1988-02-09

    In a thermal machine of the type including a machine body having a main axis extending between a thermal end and a work end, a working fluid at relatively high pressure in a working fluid chamber defined in the body and a displacer element reciprocable within the chamber for subjecting the fluid to a thermodynamic cycle in cooperation with a reciprocable work piston, the improvement is described comprising outer shell means enclosing the machine body for maintaining a substantially sealed atmosphere about the machine body, and diffuser means arranged between the machine body and the outer shell means for diffusing a shock wave traveling towards the outer shell means resulting from explosive failure of the machine body and for shielding the outer shell means against fragments projected upon such failure.

  10. Low energy high pressure miniature screw valve

    DOEpatents

    Fischer, Gary J.; Spletzer, Barry L.

    2006-12-12

    A low energy high pressure screw valve having a valve body having an upper portion and a lower portion, said lower portion of said valve body defining an inlet flow passage and an outlet flow passage traversing said valve body to a valve seat, said upper portion of said valve body defining a cavity at said valve seat, a diaphragm restricting flow between said upper portion of said valve body and said lower portion, said diaphragm capable of engaging said valve seat to restrict fluid communication between said inlet passage and said outlet passage, a plunger within said cavity supporting said diaphragm, said plunger being capable of engaging said diaphragm with said valve seat at said inlet and outlet fluid passages, said plunger being in point contact with a drive screw having threads engaged with opposing threads within said upper portion of said valve body such engagement allowing motion of said drive screw within said valve body.

  11. Ceramic high pressure gas path seal

    NASA Technical Reports Server (NTRS)

    Liotta, G. C.

    1987-01-01

    Stage 1 ceramic shrouds (high pressure turbine gas path seal) were developed for the GE T700 turbine helicopter engine under the Army/NASA Contract NAS3-23174. This contract successfully proved the viability and benefits of a Stage 1 ceramic shroud for production application. Stage 1 ceramic shrouds were proven by extensive component and engine testing. This Stage 1 ceramic shroud, plasma sprayed ceramic (ZrOs-BY2O3) and bond coating (NiCrAlY) onto a cast metal backing, offers significant engine performance improvement. Due to the ceramic coating, the amount of cooling air required is reduced 20% resulting in a 0.5% increase in horsepower and a 0.3% decrease in specific fuel consumption. This is accomplished with a component which is lower in cost than the current production shroud. Stage 1 ceramic shrouds will be introduced into field service in late 1987.

  12. Urea and deuterium mixtures at high pressures

    SciTech Connect

    Donnelly, M. Husband, R. J.; Frantzana, A. D.; Loveday, J. S.; Bull, C. L.; Klotz, S.

    2015-03-28

    Urea, like many network forming compounds, has long been known to form inclusion (guest-host) compounds. Unlike other network formers like water, urea is not known to form such inclusion compounds with simple molecules like hydrogen. Such compounds if they existed would be of interest both for the fundamental insight they provide into molecular bonding and as potential gas storage systems. Urea has been proposed as a potential hydrogen storage material [T. A. Strobel et al., Chem. Phys. Lett. 478, 97 (2009)]. Here, we report the results of high-pressure neutron diffraction studies of urea and D{sub 2} mixtures that indicate no inclusion compound forms up to 3.7 GPa.

  13. High Pressure Quick Disconnect Particle Impact Tests

    NASA Technical Reports Server (NTRS)

    Rosales, Keisa R.; Stoltzfus, Joel M.

    2009-01-01

    NASA Johnson Space Center White Sands Test Facility (WSTF) performed particle impact testing to determine whether there is a particle impact ignition hazard in the quick disconnects (QDs) in the Environmental Control and Life Support System (ECLSS) on the International Space Station (ISS). Testing included standard supersonic and subsonic particle impact tests on 15-5 PH stainless steel, as well as tests performed on a QD simulator. This paper summarizes the particle impact tests completed at WSTF. Although there was an ignition in Test Series 4, it was determined the ignition was caused by the presence of a machining imperfection. The sum of all the test results indicates that there is no particle impact ignition hazard in the ISS ECLSS QDs. KEYWORDS: quick disconnect, high pressure, particle impact testing, stainless steel

  14. High-pressure stabilization of argon fluorides.

    PubMed

    Kurzydłowski, Dominik; Zaleski-Ejgierd, Patryk

    2016-01-28

    On account of the rapid development of noble gas chemistry in the past half-century both xenon and krypton compounds can now be isolated in macroscopic quantities. The same does not hold true for the next lighter group 18 element, argon, which forms only isolated molecules stable solely in low temperature matrices or supersonic jet streams. Here we present theoretical investigations into a new high-pressure reaction pathway, which enables synthesis of argon fluorides in bulk and at room temperature. Our hybrid DFT calculations (employing the HSE06 functional) indicate that above 60 GPa ArF2-containing molecular crystals can be obtained by a reaction between argon and molecular fluorine. PMID:26742478

  15. High-Pressure Research Applications Seminar

    NASA Astrophysics Data System (ADS)

    Manghnani, Murli H.; Akimoto, Syun-iti; Ahrens, Thomas J.; Syono, Yasuhiko; Jeanloz, Raymond; Yagi, Takehiko

    The United States-Japan seminar on “High-Pressure Research Applications in Geophysics and Geochemistry” was held in Honolulu, Hawaii, January 13-16, 1986, under the auspices of the National Science Foundation (NSF) and the Japan Society for the Promotion of Science (JSPS). The seminar, the third in a series, was cocovened by Murli H. Manghnani (University of Hawaii, Honolulu) and Syun-iti Akimoto (University of Tokyo). Coming together for this symposium were 25 researchers from Japan, 22 from the United States, and four others, from Australia, the People's Republic of China, the Netherlands, and the Federal Republic of Germany. Of the 52 papers presented, 38 were presented orally at seven scientific sessions, and the rest were displayed at a poster session.

  16. High-Pressure X-ray Tomography Microscope: Synchrotron Computed Microtomography at High Pressure and Temperature

    SciTech Connect

    Wang, Y.; Uchida, T.; Westferro, F.; Rivers, M.L.; Gebhardt, J.; Lesher, C.E.; Sutton, S.R.

    2010-07-20

    A new apparatus has been developed for microtomography studies under high pressure. The pressure generation mechanism is based on the concept of the widely used Drickamer anvil apparatus, with two opposed anvils compressed inside a containment ring. Modifications are made with thin aluminum alloy containment rings to allow transmission of x rays. Pressures up to 8 GPa have been generated with a hydraulic load of 25 T. The modified Drickamer cell is supported by thrust bearings so that the entire pressure cell can be rotated under load. Spatial resolution of the high pressure tomography apparatus has been evaluated using a sample containing vitreous carbon spheres embedded in FeS matrix, with diameters ranging from 0.01 to 0.2 mm. Spheres with diameters as small as 0.02 mm were well resolved, with measured surface-to-volume ratios approaching theoretical values. The sample was then subject to a large shear strain field by twisting the top and bottom Drickamer anvils. Imaging analysis showed that detailed microstructure evolution information can be obtained at various steps of the shear deformation, allowing strain partition determination between the matrix and the inclusions. A sample containing a vitreous Mg{sub 2}SiO{sub 4} sphere in FeS matrix was compressed to 5 GPa, in order to evaluate the feasibility of volume measurement by microtomography. The results demonstrated that quantitative inclusion volume information can be obtained, permitting in situ determination of P-V-T equation of state for noncrystalline materials.

  17. Digital valve for high pressure high flow applications

    NASA Astrophysics Data System (ADS)

    Badescu, Mircea; Sherrit, Stewart; Lewis, Derek; Bao, Xiaoqi; Bar-Cohen, Yoseph; Hall, Jeffery L.

    2016-04-01

    To address the challenges, which are involved with the development of flow control valves that can meet high demand requirements such as high pressure, high flow rate, limited power and limited space, the authors have conceived a novel design configuration. This design consists of a digitalized flow control valve with multipath and multistage pressure reduction structures. Specifically, the valve is configured as a set of parallel flow paths from the inlet to the outlet. A choke valve controls the total flow rate by digitally opening different paths or different combination of the paths. Each path is controlled by a poppet cap valve basically operated in on-off states. The number of flow states is 2N where N is the number of flow paths. To avoid erosion from sand in the fluid and high speed flow, the seal area of the poppet cap valve is located at a distance from the flow inlet away from the high speed flow and the speed is controlled to stay below a predefined erosion safe limit. The path is a multistage structure composed of a set of serial nozzles-expansion chambers that equally distribute the total pressure drop to each stage. The pressure drop of each stage and, therefore, the flow speed at the nozzles and expansion chambers is controlled by the number of stages. The paths have relatively small cross section and could be relatively long for large number of stages and still fit in a strict annular space limit. The paper will present the design configuration, analysis and preliminary test results.

  18. Effect of high pressure on mesophilic lactic fermentation streptococci

    NASA Astrophysics Data System (ADS)

    Reps, A.; Kuźmicka, M.; Wiśniewska, K.

    2008-07-01

    The research concerned the effect of high pressure on mesophilic lactic fermentation streptococci, present in two cheese-making commercial inocula produced by Christian-Hansen. Water solutions of inocula were pressurized at 50-800 MPa, at room temperature, for 30-120 min. Pressurization at 50-100 MPa slightly increased or reduced the number of lactic streptococci, depending on the inoculum and pressurization time. Pressurization at 200 MPa caused a reduction in the number of streptococci by over 99.9%, whereas the pressure of 400 MPa and above almost completely inactivated streptococci. Pressurization also reduced the dynamics of microorganism growth and acidification, to the degree depending on the pressure.

  19. High-pressure phase behavior of binary mixtures of octacosane and carbon dioxide

    SciTech Connect

    McHugh, M.A.; Seckner, A.J.; Yogan, T.J.

    1984-11-01

    The high-pressure fluid phase behavior of binary mixtures of octacosane and CO/sub 2/ is experimentally investigated. Solubilities of octacosane in supercritical CO/sub 2/ and mixture molar volumes are determined for isotherms of 34.7, 45.4, 50.2, and 52.0/sup 0/C over a range of pressures from 80 to 325 atm. The solubility data are obtained by two different experimental techniques. The pressure-temperature projection of the two branches of the three-phase solid-liquid-gas freezing point depression curve is also determined. The octacosane-CO/sub 2/ LCEP is determined as 32.2/sup 0/ C and 72.6 atm. The UCEP, which is at a pressure greater than 650 atm, could not be determined due to the pressure limitation of the experimental apparatus. Phase diagram constructions are used qualitatively to explain the observed phase behavior and to provide information on the expected phase behavior of the octacosane-CO/sub 2/ system at pressures higher than those experimentally investigated.

  20. Metabolic Activity of Bacteria at High Pressure

    NASA Astrophysics Data System (ADS)

    Picard, A.; Daniel, I.; Oger, P.

    2008-12-01

    Over the last 20 years, there has been increasing evidence for the presence of a large number of microbes in the oceanic subsurface. Such a habitat has a very low energy input because it is deprived of light. A few meters below the sediment surface, conditions are already anoxic in most cases, sulfate reduction and/or methanogenesis becoming thus the primary respiratory reactions of organic matter. Neither the fate of methanogenesis, nor the fate of Dissimilatory Metal-Reduction (DMR) has been investigated so far as a function of pressure. For this reason, we measured experimentally the pressure limits of microbial anaerobic energetic metabolism. In practice, we measured in situ the kinetics of selenite respiration by the bacterial model Shewanella oneidensis MR-1 under high hydrostatic pressure (HHP) between 0 and 150 MPa at 30°C. MR-1 stationary-phase cells were used in Luria-Bertani (LB) medium amended with lactate as an additional electron donor and sodium selenite as an electron acceptor. In situ measurements were performed by X- ray Absorption Near-Edge Structure (XANES) spectroscopy in both a diamond-anvil cell and an autoclave. A red precipitate of amorphous Se(0) was virtually observed at any pressure to 150 MPa. A progressive reduction of selenite Se(IV) into selenium Se(0) was also observed in the evolution of XANES spectra with time. All kinetics between 0.1 and 150 MPa can be adjusted to a first order kinetic law. MR-1 respires all available selenite up to 60 MPa. Above 60 MPa, the respiration yield decreases linearly as a function of pressure and reaches 0 at 155 ±5 MPa. This indicates that selenite respiration by Shewanella oneidensis MR-1 stops at about 155 MPa, whereas its growth is arrested at 50 MPa. Hence, the present results show that the respiration of selenium by the strain MR-1 occurs efficiently up to 60 MPa and 30°C, i.e. from the surface of a continental sediment to an equivalent depth of about 2 km, or beneath a 5-km water column and

  1. Heart and Artery Damage and High Blood Pressure

    MedlinePlus

    ... Resources Stroke More Heart and Artery Damage and High Blood Pressure Updated:Oct 22,2015 There are several harmful ... content was last reviewed on 08/04/2014. High Blood Pressure • Home • About High Blood Pressure (HBP) • Why HBP ...

  2. Investigating cavity pressure behavior in high-pressure RTM process variants

    NASA Astrophysics Data System (ADS)

    Rosenberg, P.; Chaudhari, R.; Karcher, M.; Henning, F.; Elsner, P.

    2014-05-01

    The paper addresses new variants of the high pressure resin transfer molding (HP-RTM) process namely high pressure injection RTM (HP-IRTM) and high pressure compression RTM (HP-CRTM) for manufacturing of carbon fiber reinforced composites with high fiber volume content. Both these processes utilize high-pressure RTM equipment for precise dosing and mixing of highly reactive epoxy resin and amine hardener with relatively high throughput rates. The paper addresses results of a study which investigated cavity pressure measurement for both the HP-RTM process variants using a specially designed highpressure RTM mold. The investigations indicate that the cavity pressure built up is a characteristic of the selected process variant. Further the relationship between the applied press force and the cavity pressure in HP-CRTM process was studied.

  3. Energy Dissipation of Materials at High Pressure and High Temperature

    SciTech Connect

    Li,L.; Weidner, D.

    2007-01-01

    We report an experimental method to study the anelastic properties of materials at high pressure and high temperature. The multianvil high pressure deformation device, used to apply a cyclic loading force onto the sample, can reach 15 GPa and 2000 K. A synchrotron x-ray radiation source provides time resolved images of the sample and reference material. The images yield stress and strain as a function of time; stresses are derived from the reference material, and strains from the sample. This method has been tested by applying a sinusoidal stress at megahertz to hertz frequency on a San Carlos olivine specimen at 5 GPa and up to 2000 K. Strain as small as 10{sup -5} can be resolved. We have obtained experimental results which exhibit resolvable attenuation factor (Q{sup -1}) and shear modulus (M) at deep Earth conditions. These results are in quantitative agreement with previously reported lower pressure data and suggest that temperature and grain size have dominating effect on these properties.

  4. High Pressure Rotary Shaft Sealing Mechanism

    DOEpatents

    Dietle, Lannie; Gobeli, Jeffrey D.

    2001-05-08

    A laterally translatable pressure staged rotary shaft sealing mechanism having a seal housing with a shaft passage therein being exposed to a fluid pressure P1 and with a rotary shaft being located within the shaft passage. At least one annular laterally translatable seal carrier is provided. First and second annular resilient sealing elements are supported in axially spaced relation by the annular seal carriers and have sealing relation with the rotary shaft. The seal housing and at least one seal carrier define a first pressure staging chamber exposed to the first annular resilient sealing element and a second pressure staging chamber located between and exposed to the first and second annular resilient sealing elements. A first fluid is circulated to the first pressure chamber at a pressure P1, and a second staging pressure fluid is circulated to the second pressure chamber at a fraction of pressure P1 to achieve pressure staging, cooling of the seals. Seal placement provides hydraulic force balancing of the annular seal carriers.

  5. High-pressure superconducting state in hydrogen

    NASA Astrophysics Data System (ADS)

    Duda, A. M.; Szczȩśniak, R.; Sowińska, M. A.; Kosiacka, A. H.

    2016-10-01

    The paper determines the thermodynamic parameters of the superconducting state in the metallic atomic hydrogen under the pressure at 1 TPa, 1.5 TPa, and 2.5 TPa. The calculations were conducted in the framework of the Eliashberg formalism. It has been shown that the critical temperature is very high (in the range from 301.2 K to 437.3 K), as well as high are the values of the electron effective mass (from 3.43me to 6.88me), where me denotes the electron band mass. The ratio of the low-temperature energy gap to the critical temperature explicitly violates the predictions of the BCS theory: 2 Δ (0) /kB TC ∈ < 4.84 , 5.85 > . Additionally, the free energy difference between the superconducting and normal state, the thermodynamic critical field, and the specific heat of the superconducting state have been determined. Due to the significant strong-coupling and retardation effects those quantities cannot be correctly described in the framework of the BCS theory.

  6. Pressure-induced phonon freezing in the ZnSeS II-VI mixed crystal: phonon-polaritons and ab initio calculations

    NASA Astrophysics Data System (ADS)

    Hajj Hussein, R.; Pagès, O.; Polian, A.; Postnikov, A. V.; Dicko, H.; Firszt, F.; Strzałkowski, K.; Paszkowicz, W.; Broch, L.; Ravy, S.; Fertey, P.

    2016-05-01

    Near-forward Raman scattering combined with ab initio phonon and bond length calculations is used to study the ‘phonon-polariton’ transverse optical modes (with mixed electrical-mechanical character) of the II-VI ZnSe1-x S x mixed crystal under pressure. The goal of the study is to determine the pressure dependence of the poorly-resolved percolation-type Zn-S Raman doublet of the three oscillator [1  ×  (Zn-Se), 2  ×  (Zn-S)] ZnSe0.68S0.32 mixed crystal, which exhibits a phase transition at approximately the same pressure as its two end compounds (~14 GPa, zincblende  →  rocksalt), as determined by high-pressure x-ray diffraction. We find that the intensity of the lower Zn-S sub-mode of ZnSe0.68S0.32, due to Zn-S bonds vibrating in their own (S-like) environment, decreases under pressure (Raman scattering), whereas its frequency progressively converges onto that of the upper Zn-S sub-mode, due to Zn-S vibrations in the foreign (Se-like) environment (ab initio calculations). Ultimately, only the latter sub-mode survives. A similar ‘phonon freezing’ was earlier evidenced with the well-resolved percolation-type Be-Se doublet of Zn1-x Be x Se (Pradhan et al 2010 Phys. Rev. B 81 115207), that exhibits a large contrast in the pressure-induced structural transitions of its end compounds. We deduce that the above collapse/convergence process is intrinsic to the percolation doublet of a short bond under pressure, at least in a ZnSe-based mixed crystal, and not due to any pressure-induced structural transition.

  7. Calculating Mass Diffusion in High-Pressure Binary Fluids

    NASA Technical Reports Server (NTRS)

    Bellan, Josette; Harstad, Kenneth

    2004-01-01

    A comprehensive mathematical model of mass diffusion has been developed for binary fluids at high pressures, including critical and supercritical pressures. Heretofore, diverse expressions, valid for limited parameter ranges, have been used to correlate high-pressure binary mass-diffusion-coefficient data. This model will likely be especially useful in the computational simulation and analysis of combustion phenomena in diesel engines, gas turbines, and liquid rocket engines, wherein mass diffusion at high pressure plays a major role.

  8. High-pressure Raman spectroscopy of carbon onions and nanocapsules

    NASA Astrophysics Data System (ADS)

    Guo, J. J.; Liu, G. H.; Wang, X. M.; Fujita, T.; Xu, B. S.; Chen, M. W.

    2009-08-01

    We report high-pressure Raman spectra of carbon onions and nanocapsules investigated by diamond anvil cell experiments. The pressure coefficient and elastic behavior of carbon onions and nanocapsules are found to be very similar to those of multiwall carbon nanotubes. Additionally, detectable structure changes, particularly the collapse of the concentric graphite structure, cannot been seen at pressures as high as ˜20 GPa, demonstrating that carbon onions and nanocapsules have significant hardness and can sustain very high pressures.

  9. Single stage high pressure centrifugal slurry pump

    DOEpatents

    Meyer, John W.; Bonin, John H.; Daniel, Arnold D.

    1984-03-27

    Apparatus is shown for feeding a slurry to a pressurized housing. An impeller that includes radial passages is mounted in the loose fitting housing. The impeller hub is connected to a drive means and a slurry supply means which extends through the housing. Pressured gas is fed into the housing for substantially enveloping the impeller in a bubble of gas.

  10. Freeze/Thaw-induced embolism: probability of critical bubble formation depends on speed of ice formation.

    PubMed

    Sevanto, Sanna; Holbrook, N Michele; Ball, Marilyn C

    2012-01-01

    Bubble formation in the conduits of woody plants sets a challenge for uninterrupted water transportation from the soil up to the canopy. Freezing and thawing of stems has been shown to increase the number of air-filled (embolized) conduits, especially in trees with large conduit diameters. Despite numerous experimental studies, the mechanisms leading to bubble formation during freezing have not been addressed theoretically. We used classical nucleation theory and fluid mechanics to show which mechanisms are most likely to be responsible for bubble formation during freezing and what parameters determine the likelihood of the process. Our results confirm the common assumption that bubble formation during freezing is most likely due to gas segregation by ice. If xylem conduit walls are not permeable to the salts expelled by ice during the freezing process, osmotic pressures high enough for air seeding could be created. The build-up rate of segregated solutes in front of the ice-water interface depends equally on conduit diameter and freezing velocity. Therefore, bubble formation probability depends on these variables. The dependence of bubble formation probability on freezing velocity means that the experimental results obtained for cavitation threshold conduit diameters during freeze/thaw cycles depend on the experimental setup; namely sample size and cooling rate. The velocity dependence also suggests that to avoid bubble formation during freezing trees should have narrow conduits where freezing is likely to be fast (e.g., branches or outermost layer of the xylem). Avoidance of bubble formation during freezing could thus be one piece of the explanation why xylem conduit size of temperate and boreal zone trees varies quite systematically.

  11. Selected studies of magnetism at high pressure

    SciTech Connect

    Hearne, G.R.; Pasternak, M.P.; Taylor, R.D.

    1995-09-01

    Most previous studies of magnetism in various compounds under extreme conditions have been conducted over a wide pressure range at room temperature or over a wide range of cryogenic temperatures at pressures below 20 GPa (200 kbar). We present some of the most recent studies of magnetism over an extended range of temperatures and pressures far beyond 20 GPa, i.e., in regions of pressure-temperature (P-T) where magnetism has been largely unexplored. Recent techniques have permitted investigations of magnetism in selected 3d transition metal compounds in regions of P-T where physical properties may be drastically modified; related effects have often been seen in selected doping studies at ambient pressures.

  12. Hydrogen solubility in cristobalite at high pressure.

    PubMed

    Efimchenko, Vadim S; Fedotov, Vladimir K; Kuzovnikov, Mikhail A; Meletov, Konstantin P; Bulychev, Boris M

    2014-11-01

    Powder samples of cristobalite-I are loaded with hydrogen at pressures up to 90 kbar and T = 250 °C and quenched under pressure to the liquid N2 temperature. The quenched samples are examined at ambient pressure by X-ray diffraction, Raman spectroscopy, and thermal desorption analysis. The hydrogen content of the samples is found to increase with pressure and reach a molecular ratio of H2/SiO2 ∼ 0.10 at P = 90 kbar. At ambient pressure, the samples consist of a mixture of approximately 80% cristobalite-I phase and 20% cristobalite-II-like phase, the crystal lattices of both phases being slightly expanded due to the hydrogen uptake. According to Raman spectroscopy, the hydrogen is dissolved in these phases in the form of H2 molecules. PMID:25322160

  13. Preliminary results of MUNDO high altitude pressure measurements

    SciTech Connect

    Banister, J.R.; Hereford, W.V.; Solomon, O.M.

    1987-01-01

    Four high altitude pressure measurement canisters were deployed for the MUNDO event. All canister parachutes deployed and the placement of instruments was quite satisfactory in spite of an unusual wind change. Fouled leak plugs caused the two intermediate pressure transducers to be driven out of range but a new and reasonably successful procedure was developed for recovering the pressure histories of these canisters from acceleration histories. The measurements bridged across from the central radiation cone to the transition region. Pressure levels and pressure histories at outer stations are atypical with the unexpected appearances of shock fronts. Pressure histories were more complicated with peak pressures lower than observed on RUMMY.

  14. Superconductivity in the metallic elements at high pressures

    NASA Astrophysics Data System (ADS)

    Hamlin, J. J.

    2015-07-01

    Although the highest superconducting critical temperature, Tc , found in an elemental solid at ambient pressure is 9.2 K (niobium), under the application of ultra-high pressures, several elements exhibit Tc values near or above 20 K. This review includes a survey of the occurrence and understanding of pressure-induced superconductivity in the subset of elements that are metallic at ambient pressure. A particular focus is directed towards those elements that display the highest superconducting critical temperatures or exhibit substantial increases in Tc with pressure. A separate article in this issue by Shimizu will cover pressure-induced superconductivity in elements that are insulating at ambient pressure.

  15. Equation of state of unreacted high explosives at high pressures

    SciTech Connect

    Yoo, C-S

    1998-08-14

    Isotherms of unreacted high explosives (HMX, RDX, and PETN) have been determined to quasi-hydrostatic high pressures below 45 GPa, by using a diamond-anvil cell angle-resolved synchrotron x-ray diffraction method. The equation-of-state parameters (bulk modulus Bo, and its derivatives B' ) are presented for the 3rd-order Birch-Murnaghan formula based on the measured isotherms. The results are also used to retrieve unreacted Hugoniots in these high explosives and to develop the equations of state and kinetic models for composite high explolsivcs such as XTX-8003 and LX-04. The evidence of shear-induced chemistry of HMX in non-hydrostatic conditions is also presented.

  16. Simulating Pressure Effects of High-Flow Volumes

    NASA Technical Reports Server (NTRS)

    Kaufman, M.

    1985-01-01

    Dynamic test stresses realized without high-volume pumps. Assembled in Sections in gas-flow passage, contoured mandrel restricts flow rate to valve convenient for testing and spatially varies pressure on passage walls to simulate operating-pressure profile. Realistic test pressures thereby achieved without extremely high flow volumes.

  17. High pressure waterjet cutting industrial needs survey

    NASA Astrophysics Data System (ADS)

    Klavuhn, John; Baker, Bruce

    1989-08-01

    The results are presented of a survey conducted by personnel of the National Center for Excellence in Metalworking Technology (NCEMT) to assess the industrial needs in high pressure water jet cutting (WJC) technology. Survey forms were mailed to approximately 1400 individuals obtained from three mailing lists. The respondents included approximately 200 individuals associated with a variety of industries: 12 percent were WJC equipment suppliers, 40 percent were WJC users, and 48 percent were neither suppliers nor users. The survey addressed five specific areas of WJC technology: research and development, standards, systems, new products, and training and service. Results show that the need having the highest priority is the establishment of a database on WJC that contains the cutting parameters for a wide range of materials. Associated with this objective is the expressed need for an independent demonstration and test center for testing, data generation and operator training. A further need was found for establishing organized efforts in hardware development and research in mechanisms of cutting.

  18. [Mutation effect of ultra high pressure on microbe].

    PubMed

    Wang, Sui-Lou; Wu, Xiao-Zong; Hao, Li-Hua; Sun, Jun-She

    2005-12-01

    (Ultra) high pressure had many influences on microbe. It could regulate the expression of gene and protein, influence DNA's structure and function as well as change cell morphology and cell component. These effects not only make (ultra) high pressure to be applied into food sterilization, conserving and some processing, but also indicate it would play an important role in mutagenic breeding of microbe. Pressure can change the structure and function of microbe, yet it is possible that (ultra) high pressure could induce mutation of microbe. Now the feasibility of (ultra) high pressure's mutation effect was discussed according to the effects of it on microbe, some examples and author's studying.

  19. Functional Sub-states by High-pressure Macromolecular Crystallography.

    PubMed

    Dhaussy, Anne-Claire; Girard, Eric

    2015-01-01

    At the molecular level, high-pressure perturbation is of particular interest for biological studies as it allows trapping conformational substates. Moreover, within the context of high-pressure adaptation of deep-sea organisms, it allows to decipher the molecular determinants of piezophily. To provide an accurate description of structural changes produced by pressure in a macromolecular system, developments have been made to adapt macromolecular crystallography to high-pressure studies. The present chapter is an overview of results obtained so far using high-pressure macromolecular techniques, from nucleic acids to virus capsid through monomeric as well as multimeric proteins.

  20. Microstructural characteristics of Hadfield steel solidified under high pressure

    NASA Astrophysics Data System (ADS)

    Zhang, Yuzi; Li, Yanguo; Han, Bo; Zhang, Fucheng; Qian, Lihe

    2011-12-01

    Samples of Hadfield steel, high manganese austenite steel with 13 wt% manganese and 1.2 wt% carbon, were solidified under a pressure of 6 GPa. The microstructures of the samples were analyzed by metallography and X-ray diffraction. The results indicate that the solidification microstructure of the Hadfield steel was remarkably refined under high pressure. Additionally, the carbide of M23C6 was obtained in the Hadfield steel solidified under high pressure was different from the carbide of M3C obtained by solidification under normal pressure. Furthermore, high pressure promoted the formation of orientational solidified microstructure of the Hadfield steel.

  1. 9. General view of engine between cylinders with high pressure ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    9. General view of engine between cylinders with high pressure cylinder on left and low pressure cylinder on right. - Carnegie Steel-Ohio Works, Steam Engines, 912 Salt Springs Road, Youngstown, Mahoning County, OH

  2. Single-molecule imaging at high hydrostatic pressure

    NASA Astrophysics Data System (ADS)

    Vass, Hugh; Lucas Black, S.; Flors, Cristina; Lloyd, Diarmuid; Bruce Ward, F.; Allen, Rosalind J.

    2013-04-01

    Direct microscopic fluorescence imaging of single molecules can provide a wealth of mechanistic information, but up to now, it has not been possible under high pressure conditions, due to limitations in microscope pressure cell design. We describe a pressure cell window design that makes it possible to image directly single molecules at high hydrostatic pressure. We demonstrate our design by imaging single molecules of Alexa Fluor 647 dye bound to DNA, at 120 and 210 bar, and following their fluorescence photodynamics. We further show that the failure pressure of this type of pressure cell window can be in excess of 1 kbar.

  3. Bacillus spore inactivation differences after combined mild temperature and high pressure processing using two pressurizing fluids.

    PubMed

    Robertson, Rosalind E; Carroll, Tim; Pearce, Lindsay E

    2008-06-01

    Spores of six species (28 strains) of dairy Bacillus isolates were added to sterile reconstituted skim milk and pressure processed (600 MPa for 60 s at 75 degrees C) using either a water-based pressurizing fluid or silicon oil. Processing temperatures peaked at 88 and 90 degrees C, respectively, for both fluids. For all strains, the log inactivation was consistently higher in the silicon oil than in the water-based fluid. This has potential implications for food safety assessment of combined pressure-temperature processes. High pressure processing causes mild heating during pressurization of both the target sample (i.e., spores) and the pressurizing fluid used for pressure delivery. Primarily, the adiabatic heat of compression of the fluids as well as other heat-transfer properties of the fluids and equipment determines the magnitude of this heating. Pressure cycles run with silicon oil were 7 to 15 degrees C higher in temperature during pressurization than pressure cycles run with the water-based pressurizing fluid, due to the greater adiabatic heat of compression of silicon oil. At and around the target pressure, however, the temperatures of both pressurizing fluids were similar, and they both dropped at the same rate during the holding time at the target pressure. We propose that the increased spore inactivation in the silicon oil system can be attributed to additional heating of the spore preparation when pressurized in oil. This could be explained by the temperature difference between the silicon oil and the aqueous spore preparation established during the pressurization phase of the pressure cycle. These spore-inactivation differences have practical implications because it is common practice to develop inactivation kinetic data on small, jacketed laboratory systems pressurized in oil, with extensive heat loss. However, commercial deployment is invariably on large industrial systems pressurized in water, with limited heat loss. Such effects should be

  4. Hydraulic High Pressure Valve Controller Using the In-Situ Pressure Difference

    NASA Technical Reports Server (NTRS)

    Bao, Xiaoqi (Inventor); Sherrit, Stewart (Inventor); Badescu, Mircea (Inventor); Bar-Cohen, Yoseph (Inventor); Hall, Jeffery L. (Inventor)

    2016-01-01

    A hydraulic valve controller that uses an existing pressure differential as some or all of the power source for valve operation. In a high pressure environment, such as downhole in an oil or gas well, the pressure differential between the inside of a pipe and the outside of the pipe may be adequately large to drive a linear slide valve. The valve is operated hydraulically by a piston in a bore. When a higher pressure is applied to one end of the bore and a lower pressure to the other end, the piston moves in response to the pressure differential and drives a valve attached to it. If the pressure differential is too small to drive the piston at a sufficiently high speed, a pump is provided to generate a larger pressure differential to be applied. The apparatus is conveniently constructed using multiport valves, which can be rotary valves.

  5. High Blood Pressure (Hypertension) (For Parents)

    MedlinePlus

    ... KidsHealth in the Classroom What Other Parents Are Reading Upsetting News Reports? What to Say Vaccines: Which ... when the sounds disappear. When a blood pressure reading is taken, the higher number represents the systolic ...

  6. Transistor package for high pressure applications

    NASA Technical Reports Server (NTRS)

    Zantos, P. J.

    1981-01-01

    TO63 transistor package can operate in hydraulic oil ar pressures of 200 psi or greater without leakage failure if it is reinforced by alumina disk brazed to cap and terminals. This inexpensive modification has been used successfully on power transistors in hydraulic circulating-pump assemblies for Space Shuttle orbiter and should be effective in other pressurized environments, such as in oil exploration equipment.

  7. Superior mechanical performance of highly porous, anisotropic nanocellulose-montmorillonite aerogels prepared by freeze casting.

    PubMed

    Donius, Amalie E; Liu, Andong; Berglund, Lars A; Wegst, Ulrike G K

    2014-09-01

    Directionally solidified nanofibrillated cellulose (NFC)-sodium-montmorillonite (MMT) composite aerogels with a honeycomb-like pore structure were compared with non-directionally frozen aerogels with equiaxed pore structure and identical composition and found to have superior functionalities. To explore structure-property correlations, three different aerogel compositions of 3wt% MMT, and 0.4wt%, 0.8wt%, and 1.2wt% NFC, respectively, were tested. Young׳s modulus, compressive strength and toughness were found to increase with increasing NFC content for both architectures. The modulus increased from 25.8kPa to 386kPa for the isotropic and from 2.13MPa to 3.86MPa for the anisotropic aerogels, the compressive yield strength increased from 3.3kPa to 18.0kPa for the isotropic and from 32.3kPa to 52.5kPa for the anisotropic aerogels, and the toughness increased from 6.3kJ/m(3) to 24.1kJ/m(3) for the isotropic and from 22.9kJ/m(3) to 46.2kJ/m(3) for the anisotropic aerogels. The great range of properties, which can be achieved through compositional as well as architectural variations, makes these aerogels highly attractive for a large range of applications, for which either a specific composition, or a particular pore morphology, or both are required. Finally, because NFC is flammable, gasification experiments were performed, which revealed that the inclusion of MMT increased the heat endurance and shape retention functions of the aerogels dramatically up to 800°C while the mechanical properties were retained up to 300°C. PMID:24905177

  8. Osmium Metal Studied under High Pressure and Nonhydrostatic Stress

    SciTech Connect

    Weinberger,M.; Tolbert, S.; Kavner, A.

    2008-01-01

    Interest in osmium as an ultra-incompressible material and as an analog for the behavior of iron at high pressure has inspired recent studies of its mechanical properties. We have measured elastic and plastic deformation of Os metal at high pressures using in situ high pressure x-ray diffraction in the radial geometry. We show that Os has the highest yield strength observed for any pure metal, supporting up to 10 GPa at a pressure of 26 GPa. Furthermore, our data indicate changes in the nonhydrostatic apparent c/a ratio and clear lattice preferred orientation effects at pressures above 15 GPa.

  9. Vapor Pressure Plus: An Experiment for Studying Phase Equilibria in Water, with Observation of Supercooling, Spontaneous Freezing, and the Triple Point

    ERIC Educational Resources Information Center

    Tellinghuisen, Joel

    2010-01-01

    Liquid-vapor, solid-vapor, and solid-liquid-vapor equilibria are studied for the pure substance water, using modern equipment that includes specially fabricated glass cells. Samples are evaporatively frozen initially, during which they typically supercool to -5 to -10 [degrees]C before spontaneously freezing. Vacuum pumping lowers the temperature…

  10. Studies of basic mechanisms in high pressure gases: Applications to high efficiency high power lasers

    NASA Technical Reports Server (NTRS)

    Verdeyen, J. T.; Cherrington, B. E.; Leslie, S. G.; Millar, W. S.; Edwards, B. E.

    1976-01-01

    A high power pulsed dye laser was used to optically excite high pressure cesium-xenon mixtures and the resulting measurements are presented. A microwave discharge in rubidium at relatively high xenon pressure was achieved. Preliminary studies of cadium-rare gas mixtures are discussed and a detailed description of the entire experimental apparatus is given.

  11. Radiobrightness of diurnally heated, freezing soil

    NASA Technical Reports Server (NTRS)

    England, Anthony W.

    1990-01-01

    Freezing and thawing soils exhibit unique radiometric characteristics. To examine these characteristics, diurnal insolation is modeled as one-dimensional heating of a moist soil half-space during a typical fall at a northern Great Plains site. The one-dimensional heat flow equation is nonlinear because both the enthalpy (the change in internal energy with temperature at constant pressure) and the thermal conductivity of freezing soils are nonlinear functions of temperature. The problem is particularly difficult because phase boundaries propagate in time, and because soils, particularly clay-rich soils, freeze over a range of temperatures rather than at 0 C. Diurnal radiobrightness curves at 10.7, 18.0, and 37.0-GHz were computed for each month. The 37.0-GHz radiobrightness best tracks soil surface temperature; the 10.7-37.0-GHz spectral gradient of thawed soils is strongly positive; the spectral gradient of frozen soils is slightly negative; and the midnight-to-noon spectral gradient is shifted by approximately +0.1 K/GHz by diurnal changes in the surface temperature and the thermal gradient. These observations support the use of the scanning multichannel microwave radiometer 37.0-GHz radiobrightness and its 10.7-37.0-GHz spectral gradient as discriminants in a frozen soil classifier for high-latitude prairie.

  12. Freeze-Tolerant Condensers

    NASA Technical Reports Server (NTRS)

    Crowley, Christopher J.; Elkouhk, Nabil

    2004-01-01

    Two condensers designed for use in dissipating heat carried by working fluids feature two-phase, self-adjusting configurations such that their working lengths automatically vary to suit their input power levels and/or heat-sink temperatures. A key advantage of these condensers is that they can function even if the temperatures of their heat sinks fall below the freezing temperatures of their working fluids and the fluids freeze. The condensers can even be restarted from the frozen condition. The top part of the figure depicts the layout of the first condenser. A two-phase (liquid and vapor) condenser/vapor tube is thermally connected to a heat sink typically, a radiatively or convectively cooled metal panel. A single-phase (liquid) condensate-return tube (return artery) is also thermally connected to the heat sink. At intervals along their lengths, the condenser/vapor tube and the return artery are interconnected through porous plugs. This condenser configuration affords tolerance of freezing, variable effective thermal conductance (such that the return temperature remains nearly constant, independently of the ultimate sink temperature), and overall pressure drop smaller than it would be without the porous interconnections. An additional benefit of this configuration is that the condenser can be made to recover from the completely frozen condition either without using heaters, or else with the help of heaters much smaller than would otherwise be needed. The second condenser affords the same advantages and is based on a similar principle, but it has a different configuration that affords improved flow of working fluid, simplified construction, reduced weight, and faster recovery from a frozen condition.

  13. High-temperature, high-pressure optical cell

    NASA Technical Reports Server (NTRS)

    Harris, R. P. (Inventor); Holland, L. R. (Inventor); Smith, R. E. (Inventor)

    1986-01-01

    The invention is an optical cell for containment of chemicals under conditions of high temperature and high pressure. The cell is formed of a vitreous silica tube, two optical windows comprising a vitreous silica rod inserted into the ends of a tube, and fused into position in the tube ends. Windows are spaced apart to form a cavity enclosed by the tube and the windows. A hole is drilled radially through the tube and into the cavity. Another vitreous silica tube is fused to the silica tube around the hole to form the stem, which is perpendicular to the long axis of the tube. The open end of the stem is used to load chemicals into the cavity. Then the stem may be sealed, and if desired, it may be shortened in order to reduce the volume of the cavity, which extends into the stem.

  14. Magnetic transitions in erbium at high pressures

    NASA Astrophysics Data System (ADS)

    Thomas, Sarah A.; Tsoi, Georgiy M.; Wenger, Lowell E.; Vohra, Yogesh K.; Weir, Samuel T.

    2012-04-01

    Electrical resistance measurements have been carried out on polycrystalline erbium (Er) at temperatures down to 10 K and pressures up to 20 GPa. An abrupt change in the slope of the resistance is observed with decreasing temperature below 84 K which is associated with the c-axis modulated antiferromagnetic (AFM) ordering of the Er moments. With increasing pressure, the temperature of this resistance slope change and the corresponding AFM ordering temperature decrease until vanishing above 10.6 GPa. At higher pressures, a more gradual change in the slope of the resistance is found to occur around 45 K which disappears at pressures near 17 GPa. The transformation from the hexagonal-close-packed structural phase to a nine-layer α-Sm structural phase at a similar pressure of 11 GPa indicates (i) that the disappearance in the c-axis modulated antiferromagnetic ordering of Er moments above 10.6 GPa is correlated to the structural phase change and (ii) that the smaller resistance changes around 45 K result from a different magnetic structure associated with the α-Sm structural phase.

  15. High pressure/high temperature thermogravimetric apparatus. Final report

    SciTech Connect

    Calo, J.M.; Suuberg, E.M.

    1999-12-01

    The purpose of this instrumentation grant was to acquire a state-of-the-art, high pressure, high temperature thermogravimetric apparatus (HP/HT TGA) system for the study of the interactions between gases and carbonaceous solids for the purpose of solving problems related to coal utilization and applications of carbon materials. The instrument that we identified for this purpose was manufactured by DMT (Deutsche Montan Technologies)--Institute of Cokemaking and Coal Chemistry of Essen, Germany. Particular features of note include: Two reactors: a standard TGA reactor, capable of 1100 C at 100 bar; and a high temperature (HT) reactor, capable of operation at 1600 C and 100 bar; A steam generator capable of generating steam to 100 bar; Flow controllers and gas mixing system for up to three reaction gases, plus a separate circuit for steam, and another for purge gas; and An automated software system for data acquisition and control. The HP/TP DMT-TGA apparatus was purchased in 1996 and installed and commissioned during the summer of 1996. The apparatus was located in Room 128 of the Prince Engineering Building at Brown University. A hydrogen alarm and vent system were added for safety considerations. The system has been interfaced to an Ametek quadruple mass spectrometer (MA 100), pumped by a Varian V250 turbomolecular pump, as provided for in the original proposed. With this capability, a number of gas phase species of interest can be monitored in a near-simultaneous fashion. The MS can be used in a few different modes. During high pressure, steady-state gasification experiments, it is used to sample, measure, and monitor the reactant/product gases. It can also be used to monitor gas phase species during nonisothermal temperature programmed reaction (TPR) or temperature programmed desorption (TPD) experiments.

  16. Modeling thermophysical properties of food under high pressure.

    PubMed

    Otero, L; Guignon, B; Aparicio, C; Sanz, P D

    2010-04-01

    A set of well-known generic models to predict the thermophysical properties of food from its composition at atmospheric conditions was adapted to work at any pressure. The suitability of the models was assessed using data from the literature for four different food products, namely tomato paste, potato, pork, and cod. When the composition of the product considered was not known, an alternative was proposed if some thermal data at atmospheric conditions were available. Since knowledge on the initial freezing point and ice content of food are essential for the correct prediction of its thermal properties, models for obtaining these properties under pressure were also included. Our results showed that good predictions under pressure, accurate enough for most engineering calculations can be made, either from composition data or using known thermal data of the food considered at atmospheric conditions. All the equations and coefficients needed to construct the models are given throughout the text, thus readers can compose their own routines. However, these routines can also be downloaded free at http://www.if.csic.es/programas/ifiform.htm as executable programs running in Windows.

  17. High pressure and anesthesia: pressure stimulates or inhibits bacterial bioluminescence depending upon temperature.

    PubMed

    Nosaka, S; Kamaya, H; Ueda, I

    1988-10-01

    Although high pressure is often viewed as a nonspecific stimulus counteracting anesthesia, pressure can either excite or inhibit biological activity depending on the temperature at application. Temperature and pressure are two independent variables that determine equilibrium quantity, e.g., the state of organisms in terms of activity and anesthesia depth. We used the light intensity of luminous bacteria (Vibrio fischeri) as an activity parameter, and studied the effects of pressure and anesthetics on the bacteria's light intensity at various temperatures. The light intensity was greatest at about 30 degrees C at ambient pressure. When the system was pressurized up to 204 atm, the temperature for maximum light intensity was shifted to higher temperatures. Above the optimal temperature for the maximal light intensity, high pressure increased the light intensity. Below the optimal temperature, pressure decreased light intensity. Pressure only shifts the reaction equilibrium to the lower volume state (Le Chatelier's principle). When the volume of the excited state is larger than the resting state, high pressure inhibits excitation, and vice versa. Halothane 0.008 atm and isoflurane 0.021 atm inhibited the light intensity both above and below the optimal temperature. When pressurized, the light intensity increased in the high temperature range but decreased in the low temperature range, as in the control. Thus, high pressure seemingly potentiated the anesthetic action at low temperatures. When the ratio of the light intensity in bacteria exposed to anesthesia and those not exposed to anesthesia was plotted against the pressure, however, the value approached unity in proportion to the pressure increase.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:3421502

  18. Mechanisms of endospore inactivation under high pressure.

    PubMed

    Reineke, Kai; Mathys, Alexander; Heinz, Volker; Knorr, Dietrich

    2013-06-01

    It is well known that spore germination and inactivation can be achieved within a broad temperature and pressure range. The existing literature, however, reports contradictory results concerning the effectiveness of different pressure-temperature combinations and the underlying inactivation mechanism(s). Much of the published kinetic data are prone to error as a result of unstable process conditions or an incomplete investigation of the entire inactivation pathway. Here, we review this field of research, and also discuss an inactivation mechanism of at least two steps and propose an inactivation model based on current data. Further, spore resistance properties and matrix interactions are linked to spore inactivation effectiveness.

  19. Elastic properties of solids at high pressure

    NASA Astrophysics Data System (ADS)

    Vekilov, Yu Kh; Krasilnikov, O. M.; Lugovskoy, A. V.

    2015-11-01

    This review examines the elastic response of solids under load. The definitions of isothermal and adiabatic elastic constants of ( n≥2) for a loaded crystal are given. For the case of hydrostatic pressure, two techniques are proposed for calculating the second-, third-, and fourth-order elastic constants from the energy-strain and stress-strain relations. As an example, using the proposed approach within the framework of the density functional theory, the second- to fourth-order elastic constants of bcc tungsten are calculated for the pressure range of 0-600 GPa.

  20. OH defects in high-pressure kyanite

    NASA Astrophysics Data System (ADS)

    Wieczorek, A. K.; Beran, A.

    2003-04-01

    The close-packed mineral structures of nominally anhydrous minerals, likely to be present within the Earth's upper mantle, may offer important storage sites for trace hydrogen (Ingrin and Skogby, 2000). Kyanite may indeed incorporate essential amounts of hydrogen (Beran et al., 1993). The IR spectrum in the OH stretching vibrational region of a gem-quality kyanite from an eclogite xenolith in a kimberlite from the Roberts Victor mine, South Africa, is characterized by a band triplet consisting of sharp bands centered at 3440, 3410 and 3387 cm-1 showing similar intensities (band group I). In comparison with kyanites from crustal occurrences, the similar intensities of these bands is a characteristic feature of this high-pressure kyanite, probably related to the enhanced Mg and Ti contents (ca. 0.06 wt.% MgO, 0.09 wt.% TiO_2). A second group of bands (band group II) is characterized by a broad absorption centered around 3270 cm-1. Band deconvolution revealed two maxima at 3276 and 3260 cm-1. Heating experiments indicate diffusion processes of hydrogen to preferred structural oxygen positions. Up to temperatures of 600^oC, the band at 3387 cm-1 shows a significant increase of its intensity, while the intensities of the bands at 3440 and 3410 cm-1 slightly decrease. No changes of intensity were observed for the low-energy band group II. Above heating temperatures of 600^oC all bands show a decrease of their intensities. The two groups of bands suggest that at least two types of OH positions exist simultaneously in the structure of kyanite. The pleochroic scheme of the two band groups, measured on oriented sections cut parallel to (100) and perpendicular to b direction, allows to develop a model for the OH defect incorporation, where the two crystallographically different oxygen atoms, not bound to Si, are preferred candidates for the partial OH replacement. The analytical H_2O content was determined on the basis of Beer's law from polarized spectral data and amounts to

  1. Transient High-Pressure Fuel Injection

    NASA Astrophysics Data System (ADS)

    Jarrahbashi, Dorrin

    Break-up and atomization of liquid fuel jet during transient injection process has a significant effect on the Diesel engine combustion efficiency and pollution. The mechanisms responsible for liquid jet instability and break-up at high pressure, during the transient start-up and steady mass flux periods, has been investigated using Navier-Stokes and level-set computations. Via post-processing, the role of vorticity dynamics is examined and shown to reveal crucial new insights. An unsteady, axisymmetric full-jet case is solved. Then, a less computationally intensive case is studied with a segment of the jet core undergoing temporal instability; agreement with the full-jet calculation is satisfactory justifying the segment analysis for three-dimensional computation. The results for surface-shape development are in agreement with experimental observations and other three-dimensional computations; the initial, axisymmetric waves at the jet surface created by Kelvin-Helmholtz instability distort to cone shapes; next, three-dimensional character develops through an azimuthal instability that leads to the creation of streamwise vorticity, lobe shapes on the cones, and formation of liquid ligaments which extend from lobes on the cones. The cause of this azimuthal instability has been widely described as a Rayleigh-Taylor instability. However, additional and sometimes more important causes are identified here. Counter-rotating, streamwise vortices within and around the ligaments show a relationship in the instability behavior for jets flowing into like-density fluid; thus, density difference cannot explain fully the three-dimensional instability as previously suggested. Furthermore, the formation of ligaments that eventually break into droplets and the formation of streamwise vorticity are caused by the same vortical dynamics. Waviness is identified on the ligaments which should result in droplet formation. The nonlinear development of the shorter azimuthal waves and

  2. High-pressure magic angle spinning nuclear magnetic resonance

    NASA Astrophysics Data System (ADS)

    Hoyt, David W.; Turcu, Romulus V. F.; Sears, Jesse A.; Rosso, Kevin M.; Burton, Sarah D.; Felmy, Andrew R.; Hu, Jian Zhi

    2011-10-01

    A high-pressure magic angle spinning (MAS) NMR capability, consisting of a reusable high-pressure MAS rotor, a high-pressure rotor loading/reaction chamber for in situ sealing and re-opening of the high-pressure MAS rotor, and a MAS probe with a localized RF coil for background signal suppression, is reported. The unusual technical challenges associated with development of a reusable high-pressure MAS rotor are addressed in part by modifying standard ceramics for the rotor sleeve by abrading the internal surface at both ends of the cylinder. In this way, not only is the advantage of ceramic cylinders for withstanding very high-pressure utilized, but also plastic bushings can be glued tightly in place so that other removable plastic sealing mechanisms/components and O-rings can be mounted to create the desired high-pressure seal. Using this strategy, sealed internal pressures exceeding 150 bars have been achieved and sustained under ambient external pressure with minimal loss of pressure for 72 h. As an application example, in situ13C MAS NMR studies of mineral carbonation reaction intermediates and final products of forsterite (Mg 2SiO 4) reacted with supercritical CO 2 and H 2O at 150 bar and 50 °C are reported, with relevance to geological sequestration of carbon dioxide.

  3. High-pressure magic angle spinning nuclear magnetic resonance.

    PubMed

    Hoyt, David W; Turcu, Romulus V F; Sears, Jesse A; Rosso, Kevin M; Burton, Sarah D; Felmy, Andrew R; Hu, Jian Zhi

    2011-10-01

    A high-pressure magic angle spinning (MAS) NMR capability, consisting of a reusable high-pressure MAS rotor, a high-pressure rotor loading/reaction chamber for in situ sealing and re-opening of the high-pressure MAS rotor, and a MAS probe with a localized RF coil for background signal suppression, is reported. The unusual technical challenges associated with development of a reusable high-pressure MAS rotor are addressed in part by modifying standard ceramics for the rotor sleeve by abrading the internal surface at both ends of the cylinder. In this way, not only is the advantage of ceramic cylinders for withstanding very high-pressure utilized, but also plastic bushings can be glued tightly in place so that other removable plastic sealing mechanisms/components and O-rings can be mounted to create the desired high-pressure seal. Using this strategy, sealed internal pressures exceeding 150 bars have been achieved and sustained under ambient external pressure with minimal loss of pressure for 72 h. As an application example, in situ(13)C MAS NMR studies of mineral carbonation reaction intermediates and final products of forsterite (Mg(2)SiO(4)) reacted with supercritical CO(2) and H(2)O at 150 bar and 50°C are reported, with relevance to geological sequestration of carbon dioxide. PMID:21862372

  4. High-pressure magic angle spinning nuclear magnetic resonance

    SciTech Connect

    Hoyt, David W.; Turcu, Romulus V. F.; Sears, Jesse A.; Rosso, Kevin M.; Burton, Sarah D.; Felmy, Andrew R.; Hu, Jian Zhi

    2011-10-01

    A high-pressure magic angle spinning (MAS) NMR capability, consisting of a reusable high-pressure MAS rotor, a high-pressure rotor loading/reaction chamber for in situ sealing and re-opening of the high-pressure MAS rotor, and a MAS probe with a localized RF coil for background signal suppression, is reported. The unusual technical challenges associated with development of a reusable high-pressure MAS rotor are addressed in part by modifying standard ceramics for the rotor sleeve by abrading the internal surface at both ends of the cylinder. In this way, not only is the advantage of ceramic cylinders for withstanding very high-pressure utilized, but also plastic bushings can be glued tightly in place so that other removable plastic sealing mechanisms/components and O-rings can be mounted to create the desired high-pressure seal. Using this strategy, sealed internal pressures exceeding 150 bars have been achieved and sustained under ambient external pressure with minimal loss of pressure for 72 h. Finally, as an application example, in situ13C MAS NMR studies of mineral carbonation reaction intermediates and final products of forsterite (Mg2SiO4) reacted with supercritical CO2 and H2O at 150 bar and 50 °C are reported, with relevance to geological sequestration of carbon dioxide.

  5. High Pressure Inactivation of Food-borne Viruses

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Over the past half dozen years or so, the USDA Seafood Safety laboratory has endeavored to evaluate the potential of high pressure processing (HPP) for inactivation of food-borne viruses. As a commercial food technology, high pressure processing is highly advantageous because it can inactivate path...

  6. High temperature pressurized high frequency testing rig and test method

    DOEpatents

    De La Cruz, Jose; Lacey, Paul

    2003-04-15

    An apparatus is described which permits the lubricity of fuel compositions at or near temperatures and pressures experienced by compression ignition fuel injector components during operation in a running engine. The apparatus consists of means to apply a measured force between two surfaces and oscillate them at high frequency while wetted with a sample of the fuel composition heated to an operator selected temperature. Provision is made to permit operation at or near the flash point of the fuel compositions. Additionally a method of using the subject apparatus to simulate ASTM Testing Method D6079 is disclosed, said method involving using the disclosed apparatus to contact the faces of prepared workpieces under a measured load, sealing the workface contact point into the disclosed apparatus while immersing said contact point between said workfaces in a lubricating media to be tested, pressurizing and heating the chamber and thereby the fluid and workfaces therewithin, using the disclosed apparatus to impart a differential linear motion between the workpieces at their contact point until a measurable scar is imparted to at least one workpiece workface, and then evaluating the workface scar.

  7. High pressure and high flowrate induction pumps with permanent magnets

    NASA Astrophysics Data System (ADS)

    Bucenieks, I. E.

    2003-12-01

    Theoretical evaluations and modelling experiments demonstrated a rather high efficiency of electromagnetic induction pumps (EMIP) basing on permanent magnets, in which an alternating travelling magnetic field, inducing electromagnetic dragging forces in liquid metal, is generated by a system of rotating permanent magnets with alternating polarity. Basing on the gained experience at producing real pumps for pure Pb and eutectic alloy Pb-Bi, the evaluation of parameters of much more powerful pumps for mercury developing a head pressure over 5 bars and so providing flow rates over 10 L/s, had been carried out to show their reliability. These powerful pumps are supposed to be used in the proposed European Spallation neutron Source (ESS), in which mercury will be operated as a spallation target material and a cooling fluid at the same time. Tables 2, Figs 5, Refs 8.

  8. [Genesis study of omphacite at high pressure and high temperature].

    PubMed

    Xiao, Ben-Fu; Yi, Li; Wang, Duo-Jun; Xie, Chao; Tang, Xue-Wu; Liu, Lei; Cui, Yue-Ju

    2013-11-01

    The melting and recrystallizing experiments of alkali basalt powder and mixture of pure oxides mixed as stoichiometry were performed at 3 GPa and 1 200 degrees C. Electronic microprobe analysis and Raman spectra showed that the recrystallized products were omphacites, the FWHM (full width at half maximum) of the Raman peak was narrow and its shape was sharp, which is attributed to the stable Si-O tetrahedral structure and the high degree of order in omphacite. Based on the results of previous studies, the influencing factors of omphacite genesis and its primary magma were discussed. The results showed that the formation of omphacite could be affected by many factors, such as the composition of parent rocks, the concentration of fluid in the system and the conditions of pressure and temperature. This result could support some experimental evidences on the genesis studies of omphacite and eclogite.

  9. High Pressure Cryocooling of Protein Crystals: The Enigma of Water

    NASA Astrophysics Data System (ADS)

    Gruner, Sol M.

    2010-03-01

    A novel high-pressure cryocooling technique for preparation biological samples for x-ray analysis is described. The method, high-pressure cryocooling, involves cooling samples to cryogenic temperatures (e.g., 100 K) in high-pressure Helium gas (up to 200 MPa). It bears both similarities and differences to high-pressure cooling methods that have been used to prepare samples for electron microscopy, and has been especially useful for cryocooling of macromolecular crystals for x-ray diffraction. Examples will be given where the method has been effective in providing high quality crystallographic data for difficult samples, such as cases where ligands needed to be stabilized in binding sites to be visualized, or where very high resolution data were required. The talk concludes with a discussion of data obtained by high-pressure cryocooling that pertains to two of the most important problems in modern science: the enigma of water and how water affects the activity of proteins.

  10. Low Pressure Evidence of High Pressure Shock: Thermal Histories and Annealing in Shocked Meteorites

    NASA Astrophysics Data System (ADS)

    Sharp, T. G.; Hu, J.

    2016-08-01

    In this study we look at the mineralogy associated with shock veins in several highly shocked L chondrites to better understand shock conditions and the importance of thermal history in creating and destroying high-pressure minerals.

  11. Reversible high-pressure carbon nanotube vessel

    SciTech Connect

    Ma, Ming D.; Zheng Quanshui; Liu, Jefferson Z.; Wang Lifeng; Shen Luming; Xie Lin; Zhu Jing; Wei Fei; Gong Qianming; Liang Ji

    2010-06-15

    Applying a full pressure loop, i.e., loading and unloading, on a nanocrystal with in situ observation remains a challenge to experimentalists up until now. Using a multiwalled carbon nanotube, we realize the pressure loop acting on a Fe{sub 3}C nanocrystal (with peak value 20 GPa) by electron-beam irradiation with in situ observations inside transmission electron microscopy at 500 deg. C/ambient temperature. Using density-functional theory calculations, we attribute the unloading process to the formation of one dangling-bond single vacancies under the electron-beam irradiation at room temperature. A theoretical model is presented to understand the process and the results agree well with the experimental measurements.

  12. High-pressure phase transitions in adamantane

    NASA Astrophysics Data System (ADS)

    Vijayakumar, V.; Garg, Alka B.; Godwal, B. K.; Sikka, S. K.

    2000-11-01

    We report angle dispersive X-ray diffraction (ADXRD) measurements on adamantane carried out at SPRING-8 to the pressures of 25 GPa. The tetragonal phase observed at 0.5 GPa remains stable up to 12.5 GPa. In this pressure range the intermolecular hydrogen separation reduces from 2.37 to1.87 Å with relative angle of rotation of the two molecules increasing from 8.5° to 10.5° in agreement with values from energy minimization. At 16 GPa, the diffraction pattern could be indexed either by a tetragonal or a monoclinic cell. Beyond 22 GPa only monoclinic cell indexes the patterns. The present findings corroborate the earlier Raman results.

  13. Freezing and Food Safety

    MedlinePlus

    ... Freezer Burn Color Changes Freeze Rapidly Freezer - Refrigerator Temperatures Freezer Storage Time Safe Thawing Refreezing Cooking Frozen ... parasites can be destroyed by sub-zero freezing temperatures. However, very strict government-supervised conditions must be ...

  14. Structural changes in thermoelectric SnSe at high pressures.

    PubMed

    Loa, I; Husband, R J; Downie, R A; Popuri, S R; Bos, J-W G

    2015-02-25

    The crystal structure of the thermoelectric material tin selenide has been investigated with angle-dispersive synchrotron x-ray powder diffraction under hydrostatic pressure up to 27 GPa. With increasing pressure, a continuous evolution of the crystal structure from the GeS type to the higher-symmetry TlI type was observed, with a critical pressure of 10.5(3) GPa. The orthorhombic high-pressure modification, β'-SnSe, is closely related to the pseudo-tetragonal high-temperature modification at ambient pressure. The similarity between the changes of the crystal structure at elevated temperatures and at high pressures suggests the possibility that strained thin films of SnSe may provide a route to overcoming the problem of the limited thermal stability of β-SnSe at high temperatures.

  15. High-pressure, high-temperature bioreactor for comparing effects of hyperbaric and hydrostatic pressure on bacterial growth.

    PubMed Central

    Nelson, C M; Schuppenhauer, M R; Clark, D S

    1992-01-01

    We describe a high-pressure reactor system suitable for simultaneous hyperbaric and hydrostatic pressurization of bacterial cultures at elevated temperatures. For the deep-sea thermophile ES4, the growth rate at 500 atm (1 atm = 101.29 kPa) and 95 degrees C under hydrostatic pressure was ca. three times the growth rate under hyperbaric pressure and ca. 40% higher than the growth rate at 35 atm. PMID:1622255

  16. Structural behaviour of niobium oxynitride under high pressure

    SciTech Connect

    Sharma, Bharat Bhooshan Poswal, H. K. Pandey, K. K. Sharma, Surinder M.; Yakhmi, J. V.; Ohashi, Y.; Kikkawa, S.

    2014-04-24

    High pressure investigation of niobium oxynitrides (NbN{sub 0.98}O{sub 0.02}) employing synchrotron based angle dispersive x-ray diffraction experiments was carried out in very fine pressure steps using membrane driven diamond anvil cell. Ambient cubic phase was found to be stable up to ∼18 GPa. At further high pressure cubic phase showed rhombohedral distortion.

  17. Cross-validation of the osmotic pressure based on Pitzer model with air humidity osmometry at high concentration of ammonium sulfate solutions.

    PubMed

    Wang, Xiao-Lan; Zhan, Ting-Ting; Zhan, Xian-Cheng; Tan, Xiao-Ying; Qu, Xiao-You; Wang, Xin-Yue; Li, Cheng-Rong

    2014-01-01

    The osmotic pressure of ammonium sulfate solutions has been measured by the well-established freezing point osmometry in dilute solutions and we recently reported air humidity osmometry in a much wider range of concentration. Air humidity osmometry cross-validated the theoretical calculations of osmotic pressure based on the Pitzer model at high concentrations by two one-sided test (TOST) of equivalence with multiple testing corrections, where no other experimental method could serve as a reference for comparison. Although more strict equivalence criteria were established between the measurements of freezing point osmometry and the calculations based on the Pitzer model at low concentration, air humidity osmometry is the only currently available osmometry applicable to high concentration, serves as an economic addition to standard osmometry.

  18. Development of a high temperature capacitive pressure transducer

    NASA Technical Reports Server (NTRS)

    Egger, R. L.

    1977-01-01

    High temperature pressure transducers capable of continuous operation while exposed to 650 C were developed and evaluated over a full-scale differential pressure range of + or - 69 kPa. The design of the pressure transducers was based on the use of a diaphragm to respond to pressure, variable capacitive elements arranged to operate as a differential capacitor to measure diaphragm response and on the use of fused silica for the diaphragm and its supporting assembly. The uncertainty associated with measuring + or - 69 kPa pressures between 20C and 650C was less than + or - 6%.

  19. Journey to the Center of the Earth: Exploring High Pressure

    SciTech Connect

    Mao, Wendy

    2009-09-29

    The deeper we go into the Earth, the higher the pressure. At the pressures found within the center of our planet, minerals do not simply compress. Pressure dramatically alters all materials properties, in the process creating numerous novel phases not found on the surface. This lecture will describe how we simulate the conditions found in planetary interiors in the lab, what kinds of new behavior we find, and how these observations can explain what is going on within the Earth. High pressure explorations also lead to discoveries of novel materials with potential for practical applications in our low-pressure, environment.

  20. Cells under pressure - treatment of eukaryotic cells with high hydrostatic pressure, from physiologic aspects to pressure induced cell death.

    PubMed

    Frey, Benjamin; Janko, Christina; Ebel, Nina; Meister, Silke; Schlücker, Eberhard; Meyer-Pittroff, Roland; Fietkau, Rainer; Herrmann, Martin; Gaipl, Udo S

    2008-01-01

    The research on high hydrostatic pressure in medicine and life sciences is multifaceted. According to the used pressure head the research has to be divided into two different parts. To study physiological aspects of pressure on eukaryotic cells physiological pressure (pHHP; < 100 MPa) is used. pHHP induces morphological alterations in the cellular organelles and evokes a reversible stress response similar to the well known heat shock response. pHHP induces highly reversible alterations and normally does not affect cellular viability. The treatment of eukaryotic cells with non-physiological pressure (HHP; > or = 100 MPa) reveals different outcomes. Treatment with HHP < 150 MPa does not markedly affect viability of human cells, but induces apoptosis in murine cells. In human cells apoptosis is observed after treatment with > or = 200 MPa. Moreover, HHP treatment with > 300 MPa leads to necrosis. Therefore, HHP plays a role for the sterilisation of human transplants, of food stuff, and pharmaceuticals. Human tumour cells subjected to HHP > 300 MPa display a necrotic phenotype along with a gelificated cytoplasm, preserve their shape, and retain their immunogenicity. These observations favour the use of HHP to produce whole cell based tumour vaccines. Further experiments revealed that the increment of pressure as well as the pressure holding time influences the cell death of tumour cells. We conclude that high hydrostatic pressure offers both, an economic, easy to apply, clean, and fast technique for the generation of vaccines, and a promising tool to study physiological aspects.

  1. 30 CFR 56.13021 - High-pressure hose connections.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false High-pressure hose connections. 56.13021... and Boilers § 56.13021 High-pressure hose connections. Except where automatic shutoff valves are used, safety chains or other suitable locking devices shall be used at connections to machines of...

  2. 30 CFR 56.13021 - High-pressure hose connections.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false High-pressure hose connections. 56.13021... and Boilers § 56.13021 High-pressure hose connections. Except where automatic shutoff valves are used, safety chains or other suitable locking devices shall be used at connections to machines of...

  3. 30 CFR 56.13021 - High-pressure hose connections.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false High-pressure hose connections. 56.13021... and Boilers § 56.13021 High-pressure hose connections. Except where automatic shutoff valves are used, safety chains or other suitable locking devices shall be used at connections to machines of...

  4. 77 FR 37712 - High Pressure Steel Cylinders From China

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-06-22

    ... Commission, Washington, DC, and by publishing the notice in the Federal Register on January 23, 2012 (77 FR... COMMISSION High Pressure Steel Cylinders From China Determinations On the basis of the record \\1\\ developed... imports of high pressure steel cylinders from China, provided for in subheading 7311.00.00 of...

  5. 30 CFR 56.13021 - High-pressure hose connections.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false High-pressure hose connections. 56.13021... and Boilers § 56.13021 High-pressure hose connections. Except where automatic shutoff valves are used, safety chains or other suitable locking devices shall be used at connections to machines of...

  6. 76 FR 38697 - High Pressure Steel Cylinders From China

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-07-01

    ..., 2011 (76 FR 28807). The conference was held in Washington, DC, on June 1, 2011, and all persons who... COMMISSION High Pressure Steel Cylinders From China Determinations On the basis of the record \\1\\ developed... injured by reason of imports from China of high pressure steel cylinders, provided for in subheading...

  7. 30 CFR 56.13021 - High-pressure hose connections.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false High-pressure hose connections. 56.13021... and Boilers § 56.13021 High-pressure hose connections. Except where automatic shutoff valves are used, safety chains or other suitable locking devices shall be used at connections to machines of...

  8. 15. VIEW OF MODULE H, THE HIGH PRESSURE ASSEMBLY AREA. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    15. VIEW OF MODULE H, THE HIGH PRESSURE ASSEMBLY AREA. PROCESSES IN THIS MODULE OCCURRED UNDER HIGH PRESSURES AND TEMPERATURES. (5/70) - Rocky Flats Plant, Plutonium Manufacturing Facility, North-central section of Plant, just south of Building 776/777, Golden, Jefferson County, CO

  9. 6. Fire Protection (high pressure), view to the east. Located ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    6. Fire Protection (high pressure), view to the east. Located on the pipe floor between Unit 3 and Unit 4, the high pressure CO2 tanks are connected to the generator barrel of all four units. - Washington Water Power Clark Fork River Cabinet Gorge Hydroelectric Development, Powerhouse, North Bank of Clark Fork River at Cabinet Gorge, Cabinet, Bonner County, ID

  10. High Blood Pressure in Pregnancy - Multiple Languages: MedlinePlus

    MedlinePlus

    ... الدم أثناء الحمل - العربية Bilingual PDF Health Information Translations Bosnian (Bosanski) High Blood Pressure in Pregnancy Visok ... u trudnoći - Bosanski (Bosnian) Bilingual PDF Health Information Translations Chinese - Simplified (简体中文) High Blood Pressure in Pregnancy ...

  11. High Blood Pressure - Multiple Languages: MedlinePlus

    MedlinePlus

    ... ارتفاع ضغط الدم - العربية Bilingual PDF Health Information Translations Bosnian (Bosanski) High Blood Pressure Visoki krvni tlak - Bosanski (Bosnian) Bilingual PDF Health Information Translations Chinese - Simplified (简体中文) High Blood Pressure 高血压 - 简体中文 ( ...

  12. Freezing of Xylem Sap Without Cavitation

    PubMed Central

    Hammel, H. T.

    1967-01-01

    Freezing of stem sections and entire twigs of hemlock (Tsuga canadensis) has been demonstrated to occur without increasing the resistance to the movement of water through the frozen part after rewarming. This was interpreted to mean that freezing did not produce cavitation in the xylem sap even though A) the sap was unquestionably frozen; B) it contained dissolved gases; and C) it was under tension before freezing and after. Freezing stem sections of some other evergreen gymnosperms during the summer again produced no evidence for cavitation of the xylem sap. On the other hand, freezing stem sections of some angiosperms invariably increased the resistance to sap flow leading to wilting and death in a few hours when the sap tension was at normal daytime values at the time of freezing. These results were interpreted to mean that the bordered pits on the tracheids of gymnosperms function to isolate the freezing sap in each tracheid so that the expansion of water upon freezing not only eliminates any existing tension but also develops positive pressure in the sap. Dissolved gases frozen out of solution may then be redissolved under this positive pressure as melting occurs. As the bubbles are reduced in size by this ice pressure developed in an isolated tracheid, further pressure is applied by the surface tension of the water against air. If the bubbles are redissolved or are reduced to sufficient small size by the time the tension returns to the sap as the last ice crystals melt, then the internal pressure from surface tension in any existing small bubbles may exceed the hydrostatic tension of the melted sap and the bubbles cannot expand and will continue to dissolve. PMID:16656485

  13. Experimental investigation on pressurization performance of cryogenic tank during high-temperature helium pressurization process

    NASA Astrophysics Data System (ADS)

    Lei, Wang; Yanzhong, Li; Yonghua, Jin; Yuan, Ma

    2015-03-01

    Sufficient knowledge of thermal performance and pressurization behaviors in cryogenic tanks during rocket launching period is of importance to the design and optimization of a pressurization system. In this paper, ground experiments with liquid oxygen (LO2) as the cryogenic propellant, high-temperature helium exceeding 600 K as the pressurant gas, and radial diffuser and anti-cone diffuser respectively at the tank inlet were performed. The pressurant gas requirements, axial and radial temperature distributions, and energy distributions inside the propellant tank were obtained and analyzed to evaluate the comprehensive performance of the pressurization system. It was found that the pressurization system with high-temperature helium as the pressurant gas could work well that the tank pressure was controlled within a specified range and a stable discharging liquid rate was achieved. For the radial diffuser case, the injected gas had a direct impact on the tank inner wall. The severe gas-wall heat transfer resulted in about 59% of the total input energy absorbed by the tank wall. For the pressurization case with anti-cone diffuser, the direct impact of high-temperature gas flowing toward the liquid surface resulted in a greater deal of energy transferred to the liquid propellant, and the percentage even reached up to 38%. Moreover, both of the two cases showed that the proportion of energy left in ullage to the total input energy was quite small, and the percentage was only about 22-24%. This may indicate that a more efficient diffuser should be developed to improve the pressurization effect. Generally, the present experimental results are beneficial to the design and optimization of the pressurization system with high-temperature gas supplying the pressurization effect.

  14. High-pressure studies of pharmaceutical compounds and energetic materials.

    PubMed

    Fabbiani, Francesca P A; Pulham, Colin R

    2006-10-01

    The effects of high pressure on pharmaceutical compounds and energetic materials can have important implications for both the properties and performance of these important classes of material. Pharmaceutical compounds are frequently subjected to pressure during processing and formulation, causing interconversion between solid forms that may affect properties such as solubility and bio-availability. Energetic materials experience extremes of both pressure and temperature under conditions of detonation and deflagration, causing changes in properties such as sensitivity to shock and chemical reactivity. This tutorial review outlines the various methods used to study these materials at high pressure, describes how pressure can be used to explore polymorphism, and provides examples of compounds that have been studied at high pressure. PMID:17003899

  15. High-pressure studies of pharmaceutical compounds and energetic materials.

    PubMed

    Fabbiani, Francesca P A; Pulham, Colin R

    2006-10-01

    The effects of high pressure on pharmaceutical compounds and energetic materials can have important implications for both the properties and performance of these important classes of material. Pharmaceutical compounds are frequently subjected to pressure during processing and formulation, causing interconversion between solid forms that may affect properties such as solubility and bio-availability. Energetic materials experience extremes of both pressure and temperature under conditions of detonation and deflagration, causing changes in properties such as sensitivity to shock and chemical reactivity. This tutorial review outlines the various methods used to study these materials at high pressure, describes how pressure can be used to explore polymorphism, and provides examples of compounds that have been studied at high pressure.

  16. Strong environmental tolerance of Artemia under very high pressure

    NASA Astrophysics Data System (ADS)

    Minami, K.; Ono, F.; Mori, Y.; Takarabe, K.; Saigusa, M.; Matsushima, Y.; Saini, N. L.; Yamashita, M.

    2010-03-01

    It was shown by the present authors group that a tardigrade in its tun-state can survive after exposed to 7.5 GPa for 13 hours. We have extended this experiment to other tiny animals searching for lives under extreme conditions of high hydrostatic pressure. Artemia, a kind of planktons, in its dried egg-state have strong environmental tolerance. Dozens of Artemia eggs were sealed in a small Teflon capsule together with a liquid pressure medium, and exposed to the high hydrostatic pressure of 7.5 GPa. After the pressure was released, they were soaked in seawater to observe hatching rate. It was proved that 80-90% of the Artemia eggs were alive and hatched into Nauplii after exposed to the maximum pressure of 7.5 GPa for up to 48 hours. Comparing with Tardigrades, Artemia are four-times stronger against high pressure.

  17. Construction from a single parent of baker's yeast strains with high freeze tolerance and fermentative activity in both lean and sweet doughs.

    PubMed

    Nakagawa, S; Ouchi, K

    1994-10-01

    From a freeze-tolerant baker's yeast (Saccharomyces cerevisiae), 2,333 spore clones were obtained. To improve the leavening ability in lean dough of the parent strain, we selected 555 of the high-maltose-fermentative spore clones by using a method in which a soft agar solution containing maltose and bromocresol purple was overlaid on yeast colonies. By measuring the gassing power in the dough, we selected 66 spore clones with a good leavening ability in lean dough and a total of 694 hybrids were constructed by crossing them. Among these hybrids, we obtained 50 novel freeze-tolerant strains with good leavening ability in all lean, regular, and sweet doughs comparable to that of commercial baker's yeast. Hybrids with improved leavening ability or freeze tolerance compared with the parent yeast and commercial baker's yeasts were also obtained. These results suggest that hybridization between spore clones derived from a single parent strain is effective for improving the properties of baker's yeasts. PMID:7986027

  18. Pressurized metallurgy for high performance special steels and alloys

    NASA Astrophysics Data System (ADS)

    Jiang, Z. H.; Zhu, H. C.; Li, H. B.; L1, Y.; Liu, F. B.

    2016-07-01

    The pressure is one of the basic parameters which greatly influences the metallurgical reaction process and solidification of steels and alloys. In this paper the history and present situation of research and application of pressurized metallurgy, especially pressurized metallurgy for special steels and alloys have been briefly reviewed. In the following part the physical chemistry of pressurized metallurgy is summarized. It is shown that pressurizing may change the conditions of chemical reaction in thermodynamics and kinetics due to the pressure effect on gas volume, solubility of gas and volatile element in metal melt, activity or activity coefficient of components, and change the physical and chemical properties of metal melt, heat transfer coefficient between mould and ingot, thus greatly influencing phase transformation during the solidification process and the solidification structure, such as increasing the solidification nucleation rate, reducing the critical nucleation radius, accelerating the solidification speed and significant macro/micro-structure refinement, and eliminating shrinkage, porosity and segregation and other casting defects. In the third part the research works of pressured metallurgy performed by the Northeastern University including establishment of pressurized induction melting (PIM) and pressurized electroslag remelting (PESR) equipments and development of high nitrogen steels under pressure are described in detail. Finally, it is considered in the paper that application of pressurized metallurgy in manufacture of high performance special steels and alloys is a relatively new research area, and its application prospects will be very broad and bright.

  19. High-Pressure Oxygen Generation for Outpost EVA Study

    NASA Technical Reports Server (NTRS)

    Jeng, Frank F.; Conger, Bruce; Ewert, Michael K.; Anderson, Molly S.

    2009-01-01

    The amount of oxygen consumption for crew extravehicular activity (EVA) in future lunar exploration missions will be significant. Eight technologies to provide high pressure EVA O2 were investigated. They are: high pressure O2 storage, liquid oxygen (LOX) storage followed by vaporization, scavenging LOX from Lander followed by vaporization, LOX delivery followed by sorption compression, water electrolysis followed by compression, stand-alone high pressure water electrolyzer, Environmental Control and Life Support System (ECLSS) and Power Elements sharing a high pressure water electrolyzer, and ECLSS and In-Situ Resource Utilization (ISRU) Elements sharing a high pressure electrolyzer. A trade analysis was conducted comparing launch mass and equivalent system mass (ESM) of the eight technologies in open and closed ECLSS architectures. Technologies considered appropriate for the two architectures were selected and suggested for development.

  20. Structure of carbonate melts at high pressure

    NASA Astrophysics Data System (ADS)

    Hudspeth, J.; Sanloup, C.; Cochain, B.; Konopkova, Z.; Afonina, V.; Morgenroth, W.

    2015-12-01

    Carbonate melts are rare magmas with only a single active volcano (Oldoinyo Lengai,Tanzania [1]). They are of fundamental interest for their role in the Earth's deep carbon cycle and are of immense economic importance due to their affinity for REE strategic metals (niobium, uranium, tantalum, etc). They have remarkable physical properties such as very low viscosity [2] and magmatic temperatures for alkaline carbonate lavas [3] and it has been predicted that their compressibility could be significantly higher than that of silicate melts [4,5]. Despite the atomic structure of carbonate melts being fundamental for controlling their physical and chemical behavior in natural systems, very few structural studies have been reported and these have been largely computational. Here we present initial structural investigations of carbonate melts at mantle pressures using in situ x-ray diffraction in diamond anvil cells. The structure factor S(Q) is transformed to obtain the real space pair distribution function G(R) which describes the local and intermediate range atomic ordering allowing bond length and coordination number changes with pressure to be determined. [1] Krafft and Keller, Science 245:168-170, 1989 [2] Yono et al., Nat. Commun. 5:5091, 2014 [3] Dobson et al., Earth Planet. Sci. Lett. 143:207-215, 1996 [4] Genge et al., Earth Planet. Sci. Lett. 131:225-238, 1995 [5] Jones et al., Rev. Mineral. Geochem. 75:289-322, 2013

  1. Impurity trapped excitons under high hydrostatic pressure

    NASA Astrophysics Data System (ADS)

    Grinberg, Marek

    2013-09-01

    Paper summarizes the results on pressure effect on energies of the 4fn → 4fn and 4fn-15d1 → 4fn transitions as well as influence of pressure on anomalous luminescence in Lnα+ doped oxides and fluorides. A model of impurity trapped exciton (ITE) was developed. Two types of ITE were considered. The first where a hole is localized at the Lnα+ ion (creation of Ln(α+1)+) and an electron is attracted by Coulomb potential at Rydberg-like states and the second where an electron captured at the Lnα+ ion (creation of Ln(α-1)+) and a hole is attracted by Coulomb potential at Rydberg-like states. Paper presents detailed analysis of nonlinear changes of energy of anomalous luminescence of BaxSr1-xF2:Eu2+ (x > 0.3) and LiBaF3:Eu2+, and relate them to ITE-4f65d1 states mixing.

  2. Effect of high pressure on cod (Gadus morhua) desalting

    NASA Astrophysics Data System (ADS)

    Salvador, Ângelo C.; Saraiva, Jorge A.; Fidalgo, Liliana G.; Delgadillo, Ivonne

    2013-06-01

    The effect of high pressure on salt and water diffusion in the desalting process of cod was studied. Under pressure, up to 300 MPa, the osmotic equilibrium is reached much faster, compared to desalting at atmospheric pressure. Water (D ew) and salt (D es) effective diffusion coefficients reached a maximum at 200 MPa, increasing 500- and 160-fold, respectively, compared with desalting at atmospheric pressure. Increasing pressure up to 300 MPa causes a reduction in both effective diffusion coefficients, although they were still about 70-fold higher than at atmospheric pressure. Up to 200 MPa, a linear correlation was found between D ew and D es and pressure. However, the total diffused amounts of water and salt, when the osmotic equilibrium was reached, were lower under pressure. At atmospheric pressure cod water content increased 1.65-fold, but under pressure the increment was on average 1.25-fold, while salt content decreased to 0.51-fold the initial value at atmospheric pressure and to around 0.75-fold under pressure.

  3. Structure and stability of hydrous minerals at high pressure

    NASA Technical Reports Server (NTRS)

    Duffy, T. S.; Fei, Y.; Meade, C.; Hemley, R. J.; Mao, H. K.

    1994-01-01

    The presence of even small amounts of hydrogen in the Earth's deep interior may have profound effects on mantle melting, rheology, and electrical conductivity. The recent discovery of a large class of high-pressure H-bearing silicates further underscores the potentially important role for hydrous minerals in the Earth's mantle. Hydrogen may also be a significant component of the Earth's core, as has been recently documented by studies of iron hydride at high pressure. In this study, we explore the role of H in crystal structures at high pressure through detailed Raman spectroscopic and x ray diffraction studies of hydrous minerals compressed in diamond anvil cells. Brucite, Mg(OH)2, has a simple structure and serves as an analogue for the more complex hydrous silicates. Over the past five years, this material has been studied at high pressure using shock-compression, powder x ray diffraction, infrared spectroscopy, Raman spectroscopy, and neutron diffraction. In addition, we have recently carried out single-crystal synchrotron x-ray diffraction on Mg(OH)2 and Raman spectroscopy on Mg(OD)2 at elevated pressure. From all these studies, an interesting picture of the crystal chemical behavior of this material at high pressure is beginning to emerge. Some of the primary conclusions are as follows: First, hydrogen bonding is enhanced by the application of pressure. Second, layered minerals which are elastically anisotropic at low pressure may not be so at high pressure. Furthermore, the brucite data place constraints on the effect of hydrogen on seismic velocities and density at very high pressure. Third, the stability of hydrous minerals may be enhanced at high P by subtle structural rearrangements that are difficult to detect using traditional probes and require detailed spectroscopic analyses. Finally, brucite appears to be unique in that it undergoes pressure-induced disordering that is confined solely to the H-containing layers of the structure.

  4. Carbon Nanotubes as High-Pressure Cylinders and Nanoextruders

    NASA Astrophysics Data System (ADS)

    Sun, L.; Banhart, F.; Krasheninnikov, A. V.; Rodríguez-Manzo, J. A.; Terrones, M.; Ajayan, P. M.

    2006-05-01

    Closed-shell carbon nanostructures, such as carbon onions, have been shown to act as self-contracting high-pressure cells under electron irradiation. We report that controlled irradiation of multiwalled carbon nanotubes can cause large pressure buildup within the nanotube cores that can plastically deform, extrude, and break solid materials that are encapsulated inside the core. We further showed by atomistic simulations that the internal pressure inside nanotubes can reach values higher than 40 gigapascals. Nanotubes can thus be used as robust nanoscale jigs for extruding and deforming hard nanomaterials and for modifying their properties, as well as templates for the study of individual nanometer-sized crystals under high pressure.

  5. On some hydrogen bond correlations at high pressures

    NASA Astrophysics Data System (ADS)

    Sikka, S. K.

    2007-09-01

    In situ high pressure neutron diffraction measured lengths of O H and H O pairs in hydrogen bonds in substances are shown to follow the correlation between them established from 0.1 MPa data on different chemical compounds. In particular, the conclusion by Nelmes et al that their high pressure data on ice VIII differ from it is not supported. For compounds in which the O H stretching frequencies red shift under pressure, it is shown that wherever structural data is available, they follow the stretching frequency versus H O (or O O) distance correlation. For compounds displaying blue shifts with pressure an analogy appears to exist with improper hydrogen bonds.

  6. Amorphous diamond: A high-pressure superhard carbon allotrope

    SciTech Connect

    Lin, Yu; Zhang, Li; Mao, Ho Kwang; Chow, Paul; Xiao, Yuming; Baldini, Maria; Shu, Jinfu; Mao, Wendy L.

    2011-01-01

    Compressing glassy carbon above 40 GPa, we have observed a new carbon allotrope with a fully sp³-bonded amorphous structure and diamondlike strength. Synchrotron x-ray Raman spectroscopy revealed a continuous pressure-induced sp²-to-sp³ bonding change, while x-ray diffraction confirmed the perseverance of noncrystallinity. The transition was reversible upon releasing pressure. Used as an indenter, the glassy carbon ball demonstrated exceptional strength by reaching 130 GPa with a confining pressure of 60 GPa. Such an extremely large stress difference of >70 GPa has never been observed in any material besides diamond, indicating the high hardness of this high-pressure carbon allotrope.

  7. Promising dissolution enhancement effect of soluplus on crystallized celecoxib obtained through antisolvent precipitation and high pressure homogenization techniques.

    PubMed

    Homayouni, Alireza; Sadeghi, Fatemeh; Varshosaz, Jaleh; Afrasiabi Garekani, Hadi; Nokhodchi, Ali

    2014-10-01

    Poor solubility and dissolution of hydrophobic drugs have become a major challenge in pharmaceutical development. Drug nanoparticles have been widely accepted to overcome this problem. The aim of this study was to manufacture celecoxib nanoparticles using antisolvent precipitation and high pressure homogenization techniques in the presence of varying concentrations of soluplus(®) as a hydrophilic stabilizer. Antisolvent crystallization followed by freeze drying (CRS-FD) and antisolvent crystallization followed by high pressure homogenization and freeze drying (HPH-FD) were used to obtain celecoxib nanoparticles. The obtained nanoparticles were analyzed in terms of particle size, saturation solubility, morphology (optical and scanning electron microscopy), solid state (DSC, XRPD and FT-IR) and dissolution behavior. The results showed that celecoxib nanoparticle can be obtained when soluplus was added to the crystallization medium. In addition, the results showed that the concentration of soluplus and the method used to prepare nanoparticles can control the size and dissolution of celecoxib. Samples obtained in the presence of 5% soluplus through HPH technique showed an excellent dissolution (90%) within 4min. It is interesting to note that celecoxib samples with high crystallinity showed better dissolution than those celecoxib samples with high amorphous content, although they had the same concentration of soluplus. DSC and XRPD proved that samples obtained via HPH technique are more crystalline than the samples obtained through only antisolvent crystallization technique. PMID:25124835

  8. Effect of high pressure on hydrocarbon-degrading bacteria

    PubMed Central

    2014-01-01

    The blowout of the Deepwater Horizon in the Gulf of Mexico in 2010 occurred at a depth of 1500 m, corresponding to a hydrostatic pressure of 15 MPa. Up to now, knowledge about the impact of high pressure on oil-degrading bacteria has been scarce. To investigate how the biodegradation of crude oil and its components is influenced by high pressures, like those in deep-sea environments, hydrocarbon degradation and growth of two model strains were studied in high-pressure reactors. The alkane-degrading strain Rhodococcus qingshengii TUHH-12 grew well on n-hexadecane at 15 MPa at a rate of 0.16 h−1, although slightly slower than at ambient pressure (0.36 h−1). In contrast, the growth of the aromatic hydrocarbon degrading strain Sphingobium yanoikuyae B1 was highly affected by elevated pressures. Pressures of up to 8.8 MPa had little effect on growth of this strain. However, above this pressure growth decreased and at 12 MPa or more no more growth was observed. Nevertheless, S. yanoikuyae continued to convert naphthalene at pressure >12 MPa, although at a lower rate than at 0.1 MPa. This suggests that certain metabolic functions of this bacterium were inhibited by pressure to a greater extent than the enzymes responsible for naphthalene degradation. These results show that high pressure has a strong influence on the biodegradation of crude oil components and that, contrary to previous assumptions, the role of pressure cannot be discounted when estimating the biodegradation and ultimate fate of deep-sea oil releases such as the Deepwater Horizon event. PMID:25401077

  9. High pressure compressor component performance report

    NASA Technical Reports Server (NTRS)

    Cline, S. J.; Fesler, W.; Liu, H. S.; Lovell, R. C.; Shaffer, S. J.

    1983-01-01

    A compressor optimization study defined a 10 stage configuration with a 22.6:1 pressure ratio, an adiabatic efficiency goal of 86.1%, and a polytropic efficiency of 90.6%; the corrected airflow is 53.5 kg/s. Subsequent component testing included three full scale tests: a six stage rig test, a 10 stage rig test, and another 10 stage rig test completed in the second quarter of 1982. Information from these tests is used to select the configuration for a core engine test and an integrated core/low spool test. The test results will also provide data base for the flight propulsion system. The results of the test series with both aerodynamic and mechanical performance of each compressor build are presented. The second 10 stage compressor adiabatic efficiency was 0.848 at a cruise operating point versus a test goal of 0.846.

  10. New iron hydrides under high pressure.

    PubMed

    Pépin, Charles M; Dewaele, Agnès; Geneste, Grégory; Loubeyre, Paul; Mezouar, Mohamed

    2014-12-31

    The Fe-H system has been investigated by combined x-ray diffraction studies and total energy calculations at pressures up to 136 GPa. The experiments involve laser annealing of hydrogen-embedded iron in a diamond anvil cell. Two new FeHx compounds, with x∼2 and x=3, are discovered at 67 and 86 GPa, respectively. Their crystal structures are identified (unit cell and Fe positional parameters from x-ray diffraction, H positional parameters from ab initio calculations) as tetragonal with space group I4/mmm for FeH(∼2) and as simple cubic with space group Pm3m for FeH3. Large metastability regimes are observed that allowed to measure the P(V) equation of state at room temperature of FeH, FeH(∼2), and FeH3.

  11. A high-temperature wideband pressure transducer

    NASA Technical Reports Server (NTRS)

    Zuckerwar, A. J.

    1977-01-01

    A condenser microphone AM carrier system, which has been developed to measure pressure fluctuations at elevated temperatures, consists of the following components: a condenser microphone designed for operation at elevated temperatures; existing carrier electronics developed under two previous research grants but adapted to meet present requirements; a 6 m cable operating as a half-wavelength transmission line between the microphone and carrier electronics; and a voltage-controlled oscillator used in a feedback loop for automatic tuning control. Both theoretical and practical aspects of the development program are considered. The three predominant effects of temperature changes are changes in the membrane-backplate gap, membrane tension, and air viscosity. The microphone is designed so that changes in gap and membrane tension tend to have compensating effects upon the microphone sensitivity.

  12. High-pressure instrumentation at CHESS

    SciTech Connect

    Brister, K. )

    1992-01-01

    Diamond anvil cells have been used to generate a wide range of pressures, from 0.1 to over 400 GPa (for reference, the center of Earth is about 360 GPa). Samples are squeezed between two diamond anvils and studied using infrared, visible, and x-ray probes. Recently a bending magnet station at CHESS has become available for the general user for diamond anvil cell work using x rays. This has opened up new areas of research as the experimenters need only to bring a sample in a diamond anvil cell and can leave with the x-ray data mostly analyzed. Although most of the work has been with energy dispersive x-ray diffraction, some Laue work has been performed as well. Performing Laue diffraction studies with a station equipped for energy dispersive diffraction has the advantage that, with the addition of a rotation stage, the energy of a Laue diffracted spot can be analyzed.

  13. High Pressure Oxygen A-Band Spectra

    NASA Astrophysics Data System (ADS)

    Drouin, Brian; Sung, Keeyoon; Yu, Shanshan; Lunny, Elizabeth M.; Bui, Thinh Quoc; Okumura, Mitchio; Rupasinghe, Priyanka; Bray, Caitlin; Long, David A.; Hodges, Joseph; Robichaud, David; Benner, D. Chris; Devi, V. Malathy; Hoo, Jiajun

    2015-06-01

    Composition measurements from remote sensing platforms require knowledge of air mass to better than the desired precision of the composition. Oxygen spectra allow determination of air mass since the mixing ratio of oxygen is fixed. The OCO-2 mission is currently retrieving carbon dioxide concentration using the oxygen A-band for air mass normalization. The 0.25% accuracy desired for the carbon dioxide concentration has pushed the state-of-the-art for oxygen spectroscopy. To produce atmospheric pressure A-band cross-sections with this accuracy requires a sophisticated line-shape model (Galatry or Speed-Dependent) with line mixing (LM) and collision induced absorption (CIA). Models of each of these phenomena exist, but an integrated self-consistent model must be developed to ensure accuracy. This presentation will describe the ongoing effort to parameterize these phenomena on a representative data set created from complementary experimental techniques. The techniques include Fourier transform spectroscopy (FTS), photo-acoustic spectroscopy (PAS) and cavity ring-down spectroscopy (CRDS). CRDS data allow long-pathlength measurements with absolute intensities, providing lineshape information as well as LM and CIA, however the subtleties of the lineshape are diminished in the saturated line-centers. Conversely, the short paths and large dynamic range of the PAS data allow the full lineshape to be discerned, but with an arbitrary intensity axis. Finally, the FTS data provides intermediate paths and consistency across a broad pressure range. These spectra are all modeled with the Labfit software using first the spectral line database HITRAN, and then model values are adjusted and fitted for better agreement with the data.

  14. High-pressure applications in medicine and pharmacology

    NASA Astrophysics Data System (ADS)

    Silva, Jerson L.; Foguel, Debora; Suarez, Marisa; Gomes, Andre M. O.; Oliveira, Andréa C.

    2004-04-01

    High pressure has emerged as an important tool to tackle several problems in medicine and biotechnology. Misfolded proteins, aggregates and amyloids have been studied, which point toward the understanding of the protein misfolding diseases. High hydrostatic pressure (HHP) has also been used to dissociate non-amyloid aggregates and inclusion bodies. The diverse range of diseases that result from protein misfolding has made this theme an important research focus for pharmaceutical and biotech companies. The use of high pressure promises to contribute to identifying the mechanisms behind these defects and creating therapies against these diseases. High pressure has also been used to study viruses and other infectious agents for the purpose of sterilization and in the development of vaccines. Using pressure, we have detected the presence of a ribonucleoprotein intermediate, where the coat protein is partially unfolded but bound to RNA. These intermediates are potential targets for antiviral compounds. The ability of pressure to inactivate viruses, prions and bacteria has been evaluated with a view toward the applications of vaccine development and virus sterilization. Recent studies demonstrate that pressure causes virus inactivation while preserving the immunogenic properties. There is increasing evidence that a high-pressure cycle traps a virus in the 'fusion intermediate state', not infectious but highly immunogenic.

  15. Temperature control for high pressure processes up to 1400 MPa

    NASA Astrophysics Data System (ADS)

    Reineke, K.; Mathys, A.; Heinz, V.; Knorr, D.

    2008-07-01

    Pressure- assisted sterilisation is an emerging technology. Hydrostatic high pressure can reduce the thermal load of the product and this allows quality retention in food products. To guarantee the safety of the sterilisation process it is necessary to investigate inactivation kinetics especially of bacterial spores. A significant roll during the inactivation of microorganisms under high pressure has the thermodynamic effect of the adiabatic heating. To analyse the individual effect of pressure and temperature on microorganism inactivation an exact temperature control of the sample to reach ideal adiabatic conditions and isothermal dwell times is necessary. Hence a heating/cooling block for a high pressure unit (Stansted Mini-Food-lab; high pressure capillary with 300 μL sample volume) was constructed. Without temperature control the sample would be cooled down during pressure built up, because of the non-adiabatic heating of the steel made vessel. The heating/cooling block allows an ideal adiabatic heat up and cooling of the pressure vessel during compression and decompression. The high pressure unit has a pressure build-up rate up to 250 MPa s-1 and a maximum pressure of 1400 MPa. Sebacate acid was chosen as pressure transmitting medium because it had no phase shift over the investigate pressure and temperature range. To eliminate the temperature difference between sample and vessel during compression and decompression phase, the mathematical model of the adiabatic heating/cooling of water and sebacate acid was implemented into a computational routine, written in Test Point. The calculated temperature is the setpoint of the PID controller for the heating/cooling block. This software allows an online measurement of the pressure and temperature in the vessel and the temperature at the outer wall of the vessel. The accurate temperature control, including the model of the adiabatic heating opens up the possibility to realise an ideal adiabatic heating and cooling as

  16. The effect of high pressure on nitrogen compounds of milk

    NASA Astrophysics Data System (ADS)

    Kielczewska, Katarzyna; Czerniewicz, Maria; Michalak, Joanna; Brandt, Waldemar

    2004-04-01

    The effect of pressurization at different pressures (from 200 to 1000 MPa, at 200 MPa intervals, tconst. = 15 min) and periods of time (from 15 to 35 min, at 10 min intervals, pconst. = 800 MPa) on the changes of proteins and nitrogen compounds of skimmed milk was studied. The pressurization caused an increase in the amount of soluble casein and denaturation of whey proteins. The level of nonprotein nitrogen compounds and proteoso-peptone nitrogen compounds increased as a result of the high-pressure treatment. These changes increased with an increase in pressure and exposure time. High-pressure treatment considerably affected the changes in the conformation of milk proteins, which was reflected in the changes in the content of proteins sedimenting and an increase in their degree of hydration.

  17. HIGH TEMPERATURE HIGH PRESSURE THERMODYNAMIC MEASUREMENTS FOR COAL MODEL COMPOUNDS

    SciTech Connect

    Vinayak N. Kabadi

    2000-05-01

    The flow VLE apparatus designed and built for a previous project was upgraded and recalibrated for data measurements for this project. The modifications include better and more accurate sampling technique, addition of a digital recorder to monitor temperature and pressure inside the VLE cell, and a new technique for remote sensing of the liquid level in the cell. VLE data measurements for three binary systems, tetralin-quinoline, benzene--ethylbenzene and ethylbenzene--quinoline, have been completed. The temperature ranges of data measurements were 325 C to 370 C for the first system, 180 C to 300 C for the second system, and 225 C to 380 C for the third system. The smoothed data were found to be fairly well behaved when subjected to thermodynamic consistency tests. SETARAM C-80 calorimeter was used for incremental enthalpy and heat capacity measurements for benzene--ethylbenzene binary liquid mixtures. Data were measured from 30 C to 285 C for liquid mixtures covering the entire composition range. An apparatus has been designed for simultaneous measurement of excess volume and incremental enthalpy of liquid mixtures at temperatures from 30 C to 300 C. The apparatus has been tested and is ready for data measurements. A flow apparatus for measurement of heat of mixing of liquid mixtures at high temperatures has also been designed, and is currently being tested and calibrated.

  18. Rotational viscometer for high-pressure high-temperature fluids

    DOEpatents

    Carr, Kenneth R.

    1985-01-01

    The invention is a novel rotational viscometer which is well adapted for use with fluids at high temperatures and/or pressures. In one embodiment, the viscometer includes a substantially non-magnetic tube having a closed end and having an open end in communication with a fluid whose viscosity is to be determined. An annular drive magnet is mounted for rotation about the tube. The tube encompasses and supports a rotatable shaft assembly which carries a rotor, or bob, for insertion in the fluid. Affixed to the shaft are (a) a second magnet which is magnetically coupled to the drive magnet and (b) a third magnet. In a typical operation, the drive magnet is rotated to turn the shaft assembly while the shaft rotor is immersed in the fluid. The viscous drag on the rotor causes the shaft assembly to lag the rotation of the drive magnet by an amount which is a function of the amount of viscous drag. A first magnetic pickup generates a waveform whose phase is a function of the angular position of the drive magnet. A second magnetic pickup generates a waveform whose phase is a function of the angular position of the third magnet. An output is generated indicative of the phase difference between the two waveforms.

  19. Rotational viscometer for high-pressure, high-temperature fluids

    DOEpatents

    Carr, K.R.

    1983-06-06

    The invention is a novel rotational viscometer which is well adapted for use with fluids at high temperatures and/or pressures. In one embodiment, the viscometer include a substantially non-magnetic tube having a closed end and having an open end in communication with a fluid whose viscosity is to be determined. An annular drive magnet is mounted for rotation about the tube. The tube encompasses and supports a rotatable shaft assembly which carries a rotor, or bob, for insertion in the fluid. Affixed to the shaft are (a) a second magnet which is magnetically coupled to the drive magnet and (b) a third magnet. In a typical operation, the drive magnet is rotated to turn the shaft assembly while the shaft rotor is immersed in the fluid. The viscous drag on the rotor causes the shaft assembly to lag the rotation of the drive magnet by an amount which is a function of the amount of viscous drag. A first magnetic pickup generates a waveform whose phase is a function of the angular position of the drive magnet. A second magnetic pickup generates a waveform whose phase is a function of the angular position of the third magnet. Means are provided to generate an output indicative of the phase difference between the two waveforms. The viscometer is comparatively simple, inexpensive, rugged, and does not require shaft seals.

  20. Enhancement of Superconductivity of Beryllium at High Pressure

    NASA Astrophysics Data System (ADS)

    Shimizu, Katsuya; Kubota, Kazuhisa; Katsuoka, Takahiro; Miyake, Atsushi; Sakata, Masafumi; Nakamoto, Yuki; Ohishi, Yasuo

    2013-06-01

    Among elements shows superconductivity at high pressure, some elements show the large enhancement of the transition temperature (Tc) at higher pressures. In the case of lithium, the Tc at ambient pressure is 0.4 mK which is the lowest observed value in whole elements, however, is enhanced by pressure up to near 20 K. And calcium, which is on the same group II and not superconductive at ambient pressure, shows the highest Tc of elements at 29 K under pressure. Then we focused on beryllium which is near to them on the periodic table. At ambient pressure, Tc of beryllium is 24 mK. We measured the electrical resistance at high pressure (P < 50 GPa) and low temperature (T > 100 mK) and found that the Tc rose up to few Kelvin at pressure above 20 GPa and reached up to 3.7 K at 30 GPa. In this pressure range the hcp crystal structure is stable at room temperature. We performed a powder X-ray diffraction measurement at room temperature and low temperature in BL10XU at SPring-8 and found a discontinuous change in c/a ratio at around 25 GPa.

  1. Cryogenic Transport of High-Pressure-System Recharge Gas

    NASA Technical Reports Server (NTRS)

    Ungar, Eugene K,; Ruemmele, Warren P.; Bohannon, Carl

    2010-01-01

    A method of relatively safe, compact, efficient recharging of a high-pressure room-temperature gas supply has been proposed. In this method, the gas would be liquefied at the source for transport as a cryogenic fluid at or slightly above atmospheric pressure. Upon reaching the destination, a simple heating/expansion process would be used to (1) convert the transported cryogenic fluid to the room-temperature, high-pressure gaseous form in which it is intended to be utilized and (2) transfer the resulting gas to the storage tank of the system to be recharged. In conventional practice for recharging high-pressure-gas systems, gases are transported at room temperature in high-pressure tanks. For recharging a given system to a specified pressure, a transport tank must contain the recharge gas at a much higher pressure. At the destination, the transport tank is connected to the system storage tank to be recharged, and the pressures in the transport tank and the system storage tank are allowed to equalize. One major disadvantage of the conventional approach is that the high transport pressure poses a hazard. Another disadvantage is the waste of a significant amount of recharge gas. Because the transport tank is disconnected from the system storage tank when it is at the specified system recharge pressure, the transport tank still contains a significant amount of recharge gas (typically on the order of half of the amount transported) that cannot be used. In the proposed method, the cryogenic fluid would be transported in a suitably thermally insulated tank that would be capable of withstanding the recharge pressure of the destination tank. The tank would be equipped with quick-disconnect fluid-transfer fittings and with a low-power electric heater (which would not be used during transport). In preparation for transport, a relief valve would be attached via one of the quick-disconnect fittings (see figure). During transport, the interior of the tank would be kept at a near

  2. Laboratory investigation of high pressure survival in Shewanella oneidensis MR-1 into the gigapascal pressure range.

    PubMed

    Hazael, Rachael; Foglia, Fabrizia; Kardzhaliyska, Liya; Daniel, Isabelle; Meersman, Filip; McMillan, Paul

    2014-01-01

    The survival of Shewanella oneidensis MR-1 at up to 1500 MPa was investigated by laboratory studies involving exposure to high pressure followed by evaluation of survivors as the number (N) of colony forming units (CFU) that could be cultured following recovery to ambient conditions. Exposing the wild type (WT) bacteria to 250 MPa resulted in only a minor (0.7 log N units) drop in survival compared with the initial concentration of 10(8) cells/ml. Raising the pressure to above 500 MPa caused a large reduction in the number of viable cells observed following recovery to ambient pressure. Additional pressure increase caused a further decrease in survivability, with approximately 10(2) CFU/ml recorded following exposure to 1000 MPa (1 GPa) and 1.5 GPa. Pressurizing samples from colonies resuscitated from survivors that had been previously exposed to high pressure resulted in substantially greater survivor counts. Experiments were carried out to examine potential interactions between pressure and temperature variables in determining bacterial survival. One generation of survivors previously exposed to 1 GPa was compared with WT samples to investigate survival between 37 and 8°C. The results did not reveal any coupling between acquired high pressure resistance and temperature effects on growth. PMID:25452750

  3. Laboratory investigation of high pressure survival in Shewanella oneidensis MR-1 into the gigapascal pressure range

    PubMed Central

    Hazael, Rachael; Foglia, Fabrizia; Kardzhaliyska, Liya; Daniel, Isabelle; Meersman, Filip; McMillan, Paul

    2014-01-01

    The survival of Shewanella oneidensis MR-1 at up to 1500 MPa was investigated by laboratory studies involving exposure to high pressure followed by evaluation of survivors as the number (N) of colony forming units (CFU) that could be cultured following recovery to ambient conditions. Exposing the wild type (WT) bacteria to 250 MPa resulted in only a minor (0.7 log N units) drop in survival compared with the initial concentration of 108 cells/ml. Raising the pressure to above 500 MPa caused a large reduction in the number of viable cells observed following recovery to ambient pressure. Additional pressure increase caused a further decrease in survivability, with approximately 102 CFU/ml recorded following exposure to 1000 MPa (1 GPa) and 1.5 GPa. Pressurizing samples from colonies resuscitated from survivors that had been previously exposed to high pressure resulted in substantially greater survivor counts. Experiments were carried out to examine potential interactions between pressure and temperature variables in determining bacterial survival. One generation of survivors previously exposed to 1 GPa was compared with WT samples to investigate survival between 37 and 8°C. The results did not reveal any coupling between acquired high pressure resistance and temperature effects on growth. PMID:25452750

  4. High pressure synthesis gas conversion. Task 2: Determination of maximum operating pressure

    SciTech Connect

    Not Available

    1993-05-01

    The purpose of this research project was to build and test a high pressure fermentation system for the production of ethanol from synthesis gas. The fermenters, pumps, controls, and analytical system were procured or fabricated and assembled in our laboratory. This system was then used to determine the effects of high pressure on growth and ethanol production by C. ljungdahlil. The limits of cell concentration and mass transport relationships were found in CSTR and immobilized cell reactors (ICR). The minimum retention times and reactor volumes were found for ethanol production in these reactors. The purpose of this report was to present the results of high pressure experiments aimed at determining the maximum operating pressure of C. ljungdahlil. Preliminary experiments carried out in approaching the pressure maximum are presented, as well as experimental results at the maximum pressure of 150 psig. This latter pressure was the maximum operating pressure when using the defined medium of Phillips et al., and is expected to change if alternative media are employed.

  5. Design principles for high-pressure force fields: Aqueous TMAO solutions from ambient to kilobar pressures

    NASA Astrophysics Data System (ADS)

    Hölzl, Christoph; Kibies, Patrick; Imoto, Sho; Frach, Roland; Suladze, Saba; Winter, Roland; Marx, Dominik; Horinek, Dominik; Kast, Stefan M.

    2016-04-01

    Accurate force fields are one of the major pillars on which successful molecular dynamics simulations of complex biomolecular processes rest. They have been optimized for ambient conditions, whereas high-pressure simulations become increasingly important in pressure perturbation studies, using pressure as an independent thermodynamic variable. Here, we explore the design of non-polarizable force fields tailored to work well in the realm of kilobar pressures - while avoiding complete reparameterization. Our key is to first compute the pressure-induced electronic and structural response of a solute by combining an integral equation approach to include pressure effects on solvent structure with a quantum-chemical treatment of the solute within the embedded cluster reference interaction site model (EC-RISM) framework. Next, the solute's response to compression is taken into account by introducing pressure-dependence into selected parameters of a well-established force field. In our proof-of-principle study, the full machinery is applied to N,N,N-trimethylamine-N-oxide (TMAO) in water being a potent osmolyte that counteracts pressure denaturation. EC-RISM theory is shown to describe well the charge redistribution upon compression of TMAO(aq) to 10 kbar, which is then embodied in force field molecular dynamics by pressure-dependent partial charges. The performance of the high pressure force field is assessed by comparing to experimental and ab initio molecular dynamics data. Beyond its broad usefulness for designing non-polarizable force fields for extreme thermodynamic conditions, a good description of the pressure-response of solutions is highly recommended when constructing and validating polarizable force fields.

  6. Design principles for high-pressure force fields: Aqueous TMAO solutions from ambient to kilobar pressures.

    PubMed

    Hölzl, Christoph; Kibies, Patrick; Imoto, Sho; Frach, Roland; Suladze, Saba; Winter, Roland; Marx, Dominik; Horinek, Dominik; Kast, Stefan M

    2016-04-14

    Accurate force fields are one of the major pillars on which successful molecular dynamics simulations of complex biomolecular processes rest. They have been optimized for ambient conditions, whereas high-pressure simulations become increasingly important in pressure perturbation studies, using pressure as an independent thermodynamic variable. Here, we explore the design of non-polarizable force fields tailored to work well in the realm of kilobar pressures--while avoiding complete reparameterization. Our key is to first compute the pressure-induced electronic and structural response of a solute by combining an integral equation approach to include pressure effects on solvent structure with a quantum-chemical treatment of the solute within the embedded cluster reference interaction site model (EC-RISM) framework. Next, the solute's response to compression is taken into account by introducing pressure-dependence into selected parameters of a well-established force field. In our proof-of-principle study, the full machinery is applied to N,N,N-trimethylamine-N-oxide (TMAO) in water being a potent osmolyte that counteracts pressure denaturation. EC-RISM theory is shown to describe well the charge redistribution upon compression of TMAO(aq) to 10 kbar, which is then embodied in force field molecular dynamics by pressure-dependent partial charges. The performance of the high pressure force field is assessed by comparing to experimental and ab initio molecular dynamics data. Beyond its broad usefulness for designing non-polarizable force fields for extreme thermodynamic conditions, a good description of the pressure-response of solutions is highly recommended when constructing and validating polarizable force fields.

  7. Design principles for high-pressure force fields: Aqueous TMAO solutions from ambient to kilobar pressures.

    PubMed

    Hölzl, Christoph; Kibies, Patrick; Imoto, Sho; Frach, Roland; Suladze, Saba; Winter, Roland; Marx, Dominik; Horinek, Dominik; Kast, Stefan M

    2016-04-14

    Accurate force fields are one of the major pillars on which successful molecular dynamics simulations of complex biomolecular processes rest. They have been optimized for ambient conditions, whereas high-pressure simulations become increasingly important in pressure perturbation studies, using pressure as an independent thermodynamic variable. Here, we explore the design of non-polarizable force fields tailored to work well in the realm of kilobar pressures--while avoiding complete reparameterization. Our key is to first compute the pressure-induced electronic and structural response of a solute by combining an integral equation approach to include pressure effects on solvent structure with a quantum-chemical treatment of the solute within the embedded cluster reference interaction site model (EC-RISM) framework. Next, the solute's response to compression is taken into account by introducing pressure-dependence into selected parameters of a well-established force field. In our proof-of-principle study, the full machinery is applied to N,N,N-trimethylamine-N-oxide (TMAO) in water being a potent osmolyte that counteracts pressure denaturation. EC-RISM theory is shown to describe well the charge redistribution upon compression of TMAO(aq) to 10 kbar, which is then embodied in force field molecular dynamics by pressure-dependent partial charges. The performance of the high pressure force field is assessed by comparing to experimental and ab initio molecular dynamics data. Beyond its broad usefulness for designing non-polarizable force fields for extreme thermodynamic conditions, a good description of the pressure-response of solutions is highly recommended when constructing and validating polarizable force fields. PMID:27083705

  8. The synthesis of substances under high static pressures

    NASA Astrophysics Data System (ADS)

    Novikov, N. V.

    1986-05-01

    Phase transitions of many substances occur under extremely high pressures and temperatures. The development of such conditions is possible within a limited reaction vessel volume of a special high pressure apparatus. In order to obtain pressures of 5 to 8 GPa in a reaction volume a high-pressure apparatus is loaded by anvils of hydraulic presses whose working force is 1 to 10 MN. The heating of substances up to 1500-2000 K is carried out by direct current transmission or a reaction vessel is provided with special resistors. The high pressure apparatus (HPA) consists of a number of elements whose yield and heat conductivities differ. This defines the pressure and temperature gradients within the reaction vessel volume and throughout the HPA as a whole. The dimensions and the design pecularities of HPA substantially affect its temperature and pressure fields. The basic principles of the theory of large plastic deformations and those of the mechanics of deformation in solids are considered. The temperature and pressure fields in the HPA reaction volume of model shape and dimensions are defined as a result of solving associated non-linear non-stationary problems of electro- and heat-conductivity in HPA and those of thermal plasticity by the method of finite elements. The probable arrangement and volume of various phases (initial low pressure phase, synthesized high pressure phase and those of the solid and melted metal solvent) were investigated. The characteristics allowing the quantitative evaluation of the efficiency of the selected pressure level within the reaction vessel prior to the heating cycle were proved to be valid.

  9. Criterion for Identifying Vortices in High-Pressure Flows

    NASA Technical Reports Server (NTRS)

    Bellan, Josette; Okong'o, Nora

    2007-01-01

    A study of four previously published computational criteria for identifying vortices in high-pressure flows has led to the selection of one of them as the best. This development can be expected to contribute to understanding of high-pressure flows, which occur in diverse settings, including diesel, gas turbine, and rocket engines and the atmospheres of Jupiter and other large gaseous planets. Information on the atmospheres of gaseous planets consists mainly of visual and thermal images of the flows over the planets. Also, validation of recently proposed computational models of high-pressure flows entails comparison with measurements, which are mainly of visual nature. Heretofore, the interpretation of images of high-pressure flows to identify vortices has been based on experience with low-pressure flows. However, high-pressure flows have features distinct from those of low-pressure flows, particularly in regions of high pressure gradient magnitude caused by dynamic turbulent effects and by thermodynamic mixing of chemical species. Therefore, interpretations based on low-pressure behavior may lead to misidentification of vortices and other flow structures in high-pressure flows. The study reported here was performed in recognition of the need for one or more quantitative criteria for identifying coherent flow structures - especially vortices - from previously generated flow-field data, to complement or supersede the determination of flow structures by visual inspection of instantaneous fields or flow animations. The focus in the study was on correlating visible images of flow features with various quantities computed from flow-field data.

  10. Multilayer graphane synthesized under high hydrogen pressure

    DOE PAGES

    Antonov, V. E.; Bashkin, I. O.; Bazhenov, A. V.; Bulychev, B. M.; Fedotov, V. K.; Fursova, T. N.; Kolesnikov, A. I.; Kulakov, V. I.; Lukashev, R. V.; Matveev, D. V.; et al

    2015-12-19

    A new hydrocarbon – hydrographite – with the composition close to CH is shown to form from graphite and gaseous hydrogen at pressures above 2 GPa and temperatures from 450 to 700 °C. Hydrographite is a black solid thermally stable under ambient conditions. When heated in vacuum, it decomposes into graphite and molecular hydrogen at temperatures from 500 to 650 °C. Powder X-ray diffraction characterizes hydrographite as a multilayer “graphane II” phase predicted by ab initio calculations [Wen X-D et al. PNAS 2011; 108:6833] and consisting of graphane sheets in the chair conformation stacked along the hexagonal c axis inmore » the -ABAB- sequence. The crystal structure of the synthesized phase belongs to the P63mc space group. Moreover, the unit cell parameters are a = 2.53(1) Å and c = 9.54(1) Å and therefore exceed the corresponding parameters of graphite by 2.4(2)% and 42.0(3)%. Stretching vibrations of C–H groups on the surface of the hydrographite particles are examined by infrared spectroscopy.« less

  11. Multilayer graphane synthesized under high hydrogen pressure

    SciTech Connect

    Antonov, V. E.; Bashkin, I. O.; Bazhenov, A. V.; Bulychev, B. M.; Fedotov, V. K.; Fursova, T. N.; Kolesnikov, A. I.; Kulakov, V. I.; Lukashev, R. V.; Matveev, D. V.; Sakharov, M. K.; Shulga, Y. M.

    2015-12-19

    A new hydrocarbon – hydrographite – with the composition close to CH is shown to form from graphite and gaseous hydrogen at pressures above 2 GPa and temperatures from 450 to 700 °C. Hydrographite is a black solid thermally stable under ambient conditions. When heated in vacuum, it decomposes into graphite and molecular hydrogen at temperatures from 500 to 650 °C. Powder X-ray diffraction characterizes hydrographite as a multilayer “graphane II” phase predicted by ab initio calculations [Wen X-D et al. PNAS 2011; 108:6833] and consisting of graphane sheets in the chair conformation stacked along the hexagonal c axis in the -ABAB- sequence. The crystal structure of the synthesized phase belongs to the P63mc space group. Moreover, the unit cell parameters are a = 2.53(1) Å and c = 9.54(1) Å and therefore exceed the corresponding parameters of graphite by 2.4(2)% and 42.0(3)%. Stretching vibrations of C–H groups on the surface of the hydrographite particles are examined by infrared spectroscopy.

  12. Studies of Alkali Sorption Kinetics for Pressurized Fluidized Bed Combustion by High Pressure Mass Spectrometry

    SciTech Connect

    Wolf, K.J.; Willenborg, W.; Fricke, C.; Prikhodovsky, A.; Hilpert, K.; Singheiser, L.

    2002-09-20

    This work describes the first approach to use High Pressure Mass Spectrometry (HPMS) for the quantification and analysis of alkali species in a gas stream downstream a sorbent bed of different tested alumosilicates.

  13. Germination of vegetable seeds exposed to very high pressure

    NASA Astrophysics Data System (ADS)

    Mori, Y.; Yokota, S.; Ono, F.

    2012-07-01

    Effects of high hydrostatic pressure were investigated on vegetable seeds in the GPa range to examine the potentialities of breed improvement by high-pressure processing. Specimens of several seeds of broccoli (Brassica oleracea var. italica), Turnip leaf (Brassica rapa var. perviridis) and Potherb Mustard (Brassica rapa var. nipposinica) were put in a teflon capsule with liquid high pressure medium, fluorinate, and inserted into a pyrophillite cube. By using a cubic anvil press a hydrostatic pressure of 5.5 GP a was applied to these seeds for 15 minutes. After being brought back to ambient pressure, they were seeded on humid soil in a plant pot. Many of these vegetable seeds began to germinate within 6 days after seeded.

  14. High pressure sample cell for total internal reflection fluorescence spectroscopy at pressures up to 2500 bar

    NASA Astrophysics Data System (ADS)

    Koo, Juny; Czeslik, Claus

    2012-08-01

    Total internal reflection fluorescence (TIRF) spectroscopy is a surface sensitive technique that is widely used to characterize the structure and dynamics of molecules at planar liquid-solid interfaces. In particular, biomolecular systems, such as protein adsorbates and lipid membranes can easily be studied by TIRF spectroscopy. Applying pressure to molecular systems offers access to all kinds of volume changes occurring during assembly of molecules, phase transitions, and chemical reactions. So far, most of these volume changes have been characterized in bulk solution, only. Here, we describe the design and performance of a high pressure sample cell that allows for TIRF spectroscopy under high pressures up to 2500 bar (2.5 × 108 Pa), in order to expand the understanding of volume effects from the bulk phase to liquid-solid interfaces. The new sample cell is based on a cylindrical body made of Nimonic 90 alloy and incorporates a pressure transmitting sample cuvette. This cuvette is composed of a fused silica prism and a flexible rubber gasket. It contains the sample solution and ensures a complete separation of the sample from the liquid pressure medium. The sample solution is in contact with the inner wall of the prism forming the interface under study, where fluorescent molecules are immobilized. In this way, the new high pressure TIRF sample cell is very useful for studying any biomolecular layer that can be deposited at a planar water-silica interface. As examples, high pressure TIRF data of adsorbed lysozyme and two phospholipid membranes are presented.

  15. Detail view of unit 43 with high pressure stage compressor ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Detail view of unit 43 with high pressure stage compressor in left foreground and low pressure stage compressor in right background. - Burnsville Natural Gas Pumping Station, Saratoga Avenue between Little Kanawha River & C&O Railroad line, Burnsville, Braxton County, WV

  16. [Effect of high hydrostatic pressure on microbial physiological characteristics].

    PubMed

    Li, Zong-Jun; Xu, Jian-Xing

    2005-08-01

    Physiological characterizations of Listeria monocytogenes NCTC 11994 and Escherichia coli ATCC 80739 have deeply changed by high hydrostatic pressure. The results showed that counts of both microbial strains decreased 7 log cfu at 400MPa, 10 min. Pressure treatments also resulted in change of Intracellular pH value, lowed membrane potential, have internal potassium filtered out, and decreased ATP concentration.

  17. Rotordynamic stability problems and solutions in high pressure turbocompressors

    NASA Technical Reports Server (NTRS)

    Schmied, J.

    1989-01-01

    The stability of a high pressure compressor is investigated with special regard to the self-exciting effects in oil seals and labyrinths. It is shown how to stabilize a rotor in spite of these effects and even increase its stability with increasing pressure.

  18. Equation of state of liquid Indium under high pressure

    SciTech Connect

    Li, Huaming E-mail: mo.li@gatech.edu; Li, Mo E-mail: mo.li@gatech.edu; Sun, Yongli

    2015-09-15

    We apply an equation of state of a power law form to liquid Indium to study its thermodynamic properties under high temperature and high pressure. Molar volume of molten indium is calculated along the isothermal line at 710K within good precision as compared with the experimental data in an externally heated diamond anvil cell. Bulk modulus, thermal expansion and internal pressure are obtained for isothermal compression. Other thermodynamic properties are also calculated along the fitted high pressure melting line. While our results suggest that the power law form may be a better choice for the equation of state of liquids, these detailed predictions are yet to be confirmed by further experiment.

  19. Equation of state of liquid Indium under high pressure

    NASA Astrophysics Data System (ADS)

    Li, Huaming; Sun, Yongli; Li, Mo

    2015-09-01

    We apply an equation of state of a power law form to liquid Indium to study its thermodynamic properties under high temperature and high pressure. Molar volume of molten indium is calculated along the isothermal line at 710K within good precision as compared with the experimental data in an externally heated diamond anvil cell. Bulk modulus, thermal expansion and internal pressure are obtained for isothermal compression. Other thermodynamic properties are also calculated along the fitted high pressure melting line. While our results suggest that the power law form may be a better choice for the equation of state of liquids, these detailed predictions are yet to be confirmed by further experiment.

  20. Safety analysis of high pressure gasous fuel container punctures

    SciTech Connect

    Swain, M.R.

    1995-09-01

    The following report is divided into two sections. The first section describes the results of ignitability tests of high pressure hydrogen and natural gas leaks. The volume of ignitable gases formed by leaking hydrogen or natural gas were measured. Leaking high pressure hydrogen produced a cone of ignitable gases with 28{degrees} included angle. Leaking high pressure methane produced a cone of ignitable gases with 20{degrees} included angle. Ignition of hydrogen produced larger overpressures than did natural gas. The largest overpressures produced by hydrogen were the same as overpressures produced by inflating a 11 inch child`s balloon until it burst.