Science.gov

Sample records for high pressure helium

  1. 2. SOUTHEAST SIDE. HIGH PRESSURE HELIUM STORAGE TANKS AT LEFT. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    2. SOUTHEAST SIDE. HIGH PRESSURE HELIUM STORAGE TANKS AT LEFT. - Edwards Air Force Base, Air Force Rocket Propulsion Laboratory, Helium Compression Plant, Test Area 1-115, intersection of Altair & Saturn Boulevards, Boron, Kern County, CA

  2. Diagnostics of a High Pressure Helium Microplasma

    NASA Astrophysics Data System (ADS)

    Wang, Qiang; Koleva, Ivanka; Economou, Demetre; Donnelly, Vincent

    2004-09-01

    Gas and plasma diagnostics were performed in a slot-type DC microplasma (200 microns gap) discharge at high pressures. The gas temperature in a helium discharge was estimated by adding small quantities of nitrogen (<100 ppm) into the gas feed. Specific rotational bands of the N2 second positive system were carefully selected to avoid interference with emission from He atoms and He2 excimer. At 250 Torr pressure and 200 mA/cm2 current density, the gas temperature was Tg = 350 +/- 25 K. The measured gas temperature was almost independent (to within experimental uncertainty) of pressure (in the range of 150 Torr - 600 Torr), and current density (in the range of 100 mA/cm2 - 400 mA/cm2). These measurements were consistent with a simple heat transfer model. Spatially resolved measurements of electron temperature were also performed using trace rare gas optical emission actinometry (TRG-OES). These measurements are greatly complicated by collisional quenching at the high operating pressures. Electron density and electron temperature profiles was deduced by comparing emission intensities from the Paschen 2px (x = 1-10) manifold of Ne, Ar, Kr and Xe trace gases. Results suggested that the electron temperature peaks in the cathode sheath region, while the plasma density peaks away from the cathode sheath. A self-consistent fluid model of a DC helium microdischarge was in agreement with the experimental data. The model was used to study the dependence of discharge characteristics on operating conditions (pressure, gap spacing, current density, etc.).

  3. Anomalous behavior of cristobalite in helium under high pressure

    NASA Astrophysics Data System (ADS)

    Sato, Tomoko; Takada, Hiroto; Yagi, Takehiko; Gotou, Hirotada; Okada, Taku; Wakabayashi, Daisuke; Funamori, Nobumasa

    2013-01-01

    We have investigated the high-pressure behavior of cristobalite in helium by powder X-ray diffraction. Cristobalite transformed to a new phase at about 8 GPa. This phase is supposed to have a molar volume of about 30 % larger than cristobalite, suggesting the dissolution of helium atoms in its interstitial voids. On further compression, the new phase transformed to a different phase which showed an X-ray diffraction pattern similar to cristobalite X-I at about 21 GPa. On the other hand, when the new phase was decompressed, it transformed to another new phase at about 7 GPa, which is also supposed to have a molar volume of about 25 % larger than cristobalite. On further decompression, the second new phase transformed to cristobalite II at about 2 GPa. In contrast to cristobalite, quartz did not show anomalous behavior in helium. The behavior of cristobalite in helium was also consistent with that in other mediums up to about 8 GPa, where the volume of cristobalite became close to that of quartz. These results suggest that dissolution of helium may be controlled not only by the density (amount of voids) but also by the network structure of SiO4 tetrahedra (topology of voids).

  4. A stable compound of helium and sodium at high pressure

    DOE PAGES

    Dong, Xiao; Oganov, Artem R.; Goncharov, Alexander F.; ...

    2017-02-06

    Helium is generally understood to be chemically inert and this is due to its extremely stable closed-shell electronic configuration, zero electron affinity and an unsurpassed ionization potential. It is not known to form thermodynamically stable compounds, except a few inclusion compounds. Here, using the ab initio evolutionary algorithm USPEX and subsequent high-pressure synthesis in a diamond anvil cell, we report the discovery of a thermodynamically stable compound of helium and sodium, Na2He, which has a fluorite-type structure and is stable at pressures >113 GPa. We show that the presence of He atoms causes strong electron localization and makes this materialmore » insulating. This phase is an electride, with electron pairs localized in interstices, forming eight-centre two-electron bonds within empty Na8 cubes. As a result, we also predict the existence of Na2HeO with a similar structure at pressures above 15 GPa.« less

  5. A stable compound of helium and sodium at high pressure

    NASA Astrophysics Data System (ADS)

    Dong, Xiao; Oganov, Artem R.; Goncharov, Alexander F.; Stavrou, Elissaios; Lobanov, Sergey; Saleh, Gabriele; Qian, Guang-Rui; Zhu, Qiang; Gatti, Carlo; Deringer, Volker L.; Dronskowski, Richard; Zhou, Xiang-Feng; Prakapenka, Vitali B.; Konôpková, Zuzana; Popov, Ivan A.; Boldyrev, Alexander I.; Wang, Hui-Tian

    2017-05-01

    Helium is generally understood to be chemically inert and this is due to its extremely stable closed-shell electronic configuration, zero electron affinity and an unsurpassed ionization potential. It is not known to form thermodynamically stable compounds, except a few inclusion compounds. Here, using the ab initio evolutionary algorithm USPEX and subsequent high-pressure synthesis in a diamond anvil cell, we report the discovery of a thermodynamically stable compound of helium and sodium, Na2He, which has a fluorite-type structure and is stable at pressures >113 GPa. We show that the presence of He atoms causes strong electron localization and makes this material insulating. This phase is an electride, with electron pairs localized in interstices, forming eight-centre two-electron bonds within empty Na8 cubes. We also predict the existence of Na2HeO with a similar structure at pressures above 15 GPa.

  6. Process to recover tritium from high-pressure helium

    SciTech Connect

    Finn, P.A.; Sze, D.K.

    1986-01-01

    A coolant that has gained increased prominence in fusion reactor designs is high-pressure (greater than or equal to 50 atm) helium. One of the major problems to be resolved with this coolant is effective tritium removal and recovery so that environmental losses are minimized but the efficiency of the plant is not compromised. Since the worse case situation is one in which the high-pressure helium coolant is used not only as a coolant but also as the main tritium recovery route, we directed our attention to designing a tritium recovery system that could handle this worst case, as well as simpler cases. The design that evolved was a system in which a liquid getter (sodium is our example case) is used to strip all tritium, deuterium, and oxygen species from the high-pressure helium. The hydrogen species are removed from the sodium either by using a cold trap or by contacting the sodium with a molten salt. The tritium can be recovered from the molten salt by electrolysis. Impurities, including oxygen, are removed from the sodium through the use of a cold trap on a small fraction (less than or equal to 10%) of the total sodium flow.

  7. Experimental investigation on pressurization performance of cryogenic tank during high-temperature helium pressurization process

    NASA Astrophysics Data System (ADS)

    Lei, Wang; Yanzhong, Li; Yonghua, Jin; Yuan, Ma

    2015-03-01

    Sufficient knowledge of thermal performance and pressurization behaviors in cryogenic tanks during rocket launching period is of importance to the design and optimization of a pressurization system. In this paper, ground experiments with liquid oxygen (LO2) as the cryogenic propellant, high-temperature helium exceeding 600 K as the pressurant gas, and radial diffuser and anti-cone diffuser respectively at the tank inlet were performed. The pressurant gas requirements, axial and radial temperature distributions, and energy distributions inside the propellant tank were obtained and analyzed to evaluate the comprehensive performance of the pressurization system. It was found that the pressurization system with high-temperature helium as the pressurant gas could work well that the tank pressure was controlled within a specified range and a stable discharging liquid rate was achieved. For the radial diffuser case, the injected gas had a direct impact on the tank inner wall. The severe gas-wall heat transfer resulted in about 59% of the total input energy absorbed by the tank wall. For the pressurization case with anti-cone diffuser, the direct impact of high-temperature gas flowing toward the liquid surface resulted in a greater deal of energy transferred to the liquid propellant, and the percentage even reached up to 38%. Moreover, both of the two cases showed that the proportion of energy left in ullage to the total input energy was quite small, and the percentage was only about 22-24%. This may indicate that a more efficient diffuser should be developed to improve the pressurization effect. Generally, the present experimental results are beneficial to the design and optimization of the pressurization system with high-temperature gas supplying the pressurization effect.

  8. Kinetics of high pressure argon-helium pulsed gas discharge

    NASA Astrophysics Data System (ADS)

    Emmons, D. J.; Weeks, D. E.

    2017-05-01

    Simulations of a pulsed direct current discharge are performed for a 7% argon in helium mixture at a pressure of 270 Torr using both zero- and one-dimensional models. Kinetics of species relevant to the operation of an optically pumped rare-gas laser are analyzed throughout the pulse duration to identify key reaction pathways. Time dependent densities, electron temperatures, current densities, and reduced electric fields in the positive column are analyzed over a single 20 μs pulse, showing temporal agreement between the two models. Through the use of a robust reaction rate package, radiation trapping is determined to play a key role in reducing A r (1 s5) metastable loss rates through the reaction sequence A r (1 s5)+e-→A r (1 s4)+e- followed by A r (1 s4)→A r +ℏω . Collisions with He are observed to be responsible for A r (2 p9) mixing, with nearly equal rates to A r (2 p10) and A r (2 p8) . Additionally, dissociative recombination of A r2+ is determined to be the dominant electron loss mechanism for the simulated discharge conditions and cavity size.

  9. Equation of State and Electrical Conductivity of Helium at High Pressures and Temperatures

    NASA Astrophysics Data System (ADS)

    McWilliams, R. S.; Eggert, J. H.; Loubeyre, P.; Brygoo, S.; Collins, G.; Jeanloz, R.

    2004-12-01

    Helium, the second-most abundant element in the universe and giant planets, is expected to metallize at much higher pressures and temperatures than the most abundant element, hydrogen. The difference in chemical-bonding character, between insulator and metal, is expected to make hydrogen-helium mixtures immiscible throughout large fractions of planetary interiors, and therefore subject to gravitational separation contributing significantly to the internal dynamics of giant planets. Using laser-driven shock waves on samples pre-compressed in high-pressure cells, we have obtained the first measurements of optical reflectivity from the shock front in helium to pressures of 146 GPa. The reflectivity exceeds 5% above \\ensuremath{\\sim} 100 GPa, indicating high electrical conductivity. By varying the initial pressure (hence density) of the sample, we can access a much wider range of final pressure-temperature conditions than is possible in conventional Hugoniot experiments. Our work increases by nine-fold the pressure range of single-shock measurements, in comparison with gas-gun experiments, and yields results in agreement with the Saumon, Chabrier and Van Horn (1994) equation of state for helium. This changes the internal structures inferred for Jupiter-size planets, relative to models based on earlier equations of state (e. g., SESAME).

  10. [High pressure processing of spices in atmosphere of helium for decrease of microbiological contamination].

    PubMed

    Windyga, Bozena; Fonberg-Broczek, Monika; Sciezyńska, Halina; Skapska, Sylwia; Górecka, Krystyna; Grochowska, Anna; Morawski, Andrzej; Szczepek, Janusz; Karłowski, Kazimierz; Porowski, Sylwester

    2008-01-01

    The aim of the study was to investigate the microbiological decontamination of coriander and caraway when HPP technology was applied in elevated temperature in helium atmosphere. The HPP and heat treatment was conducted for 30 minutes at 800 and 1 000 MPa and temperature range was 60 - 121 degrees C. Contamination with aerobic mesophilic bacteria was decreased by about 2 logarithmic cycles. Total elimination of coliform and yeast and moulds was observed. The efficacy of HPP treatment under helium atmosphere depended on the content of the water in tested samples. It can be concluded that high pressure treatment under atmosphere of helium, combination of proper high pressure and time improved the microbiological quality of spices.

  11. Compression of helium to high pressures and temperatures using a ballistic piston apparatus

    NASA Technical Reports Server (NTRS)

    Roman, B. P.; Rovel, G. P.; Lewis, M. J.

    1971-01-01

    Some preliminary experiments are described which were carried out in a high enthalpy laboratory to investigate the compression of helium, a typical shock-tube driver gas, to very high pressures and temperatures by means of a ballistic piston. The purpose of these measurements was to identify any problem areas in the compression process, to determine the importance of real gas effects duDC 47355s process, and to establish the feasibility of using a ballistic piston apparatus to achieve temperatures in helium in excess of 10,000 K.

  12. Phase equilibria in molecular hydrogen-helium mixtures at high pressures

    NASA Technical Reports Server (NTRS)

    Streett, W. B.

    1973-01-01

    Experiments on phase behavior in hydrogen-helium mixtures have been carried out at pressures up to 9.3 kilobars, at temperatures from 26 to 100 K. Two distinct fluid phases are shown to exist at supercritical temperatures and high pressures. Both the trend of the experimental results and an analysis based on the van der Waals theory of mixtures suggest that this fluid-fluid phase separation persists at temperatures and pressures beyond the range of these experiments, perhaps even to the limits of stability of the molecular phases. The results confirm earlier predictions concerning the form of the hydrogen-helium phase diagram in the region of pressure-induced solidification of the molecular phases at supercritical temperatures. The implications of this phase diagram for planetary interiors are discussed.

  13. Quartz Tuning Fork Pressure Gauge for High-Pressure Liquid Helium

    NASA Astrophysics Data System (ADS)

    Botimer, J.; Velasco, A.; Taborek, P.

    2017-01-01

    We have measured the quality factor Q and the frequency f of a 32-kHz quartz tuning fork immersed in liquid ^4He between 0.9 and 3.0 K, over pressures ranging from the saturated vapor pressure to ≈ 25 atm. At constant pressure, as a function of temperature, the quality factor and frequency have strong features related to the temperature dependence of the superfluid fraction. At constant temperature, Q depends on the superfluid fraction, while the frequency is a smooth function of pressure. The behavior is explained using a simple hydrodynamic model. The liquid helium viscosity is obtained from measured values of Q, and together with tabulated values of the helium density as a function of pressure and temperature, the frequency shift can be parameterized as a function of temperature and pressure. The observed sensitivity is ≈ 7.8 Hz/atm. The quartz tuning fork provides a compact low power method of measuring the pressure in the bulk liquid.

  14. High pressure real gas effects for helium and nitrogen

    NASA Technical Reports Server (NTRS)

    Johnson, R. C.

    1969-01-01

    Critical flow factor is calculated that permits the isentropic mass-flow rate of the gases through critical flow nozzles to be calculated from plenum conditions. Results include nozzle throat velocity, compressibility factor, entropy, enthalpy, specific heat, and ratios of throat to plenum pressure, density, and temperature.

  15. Thermodynamics of hydrogen-helium mixtures at high pressure and finite temperature

    NASA Technical Reports Server (NTRS)

    Hubbard, W. B.

    1972-01-01

    A technique is reviewed for calculating thermodynamic quantities for mixtures of light elements at high pressure, in the metallic state. Ensemble averages are calculated with Monte Carlo techniques and periodic boundary conditions. Interparticle potentials are assumed to be coulombic, screened by the electrons in dielectric function theory. This method is quantitatively accurate for alloys at pressures above about 10 Mbar. An alloy of equal parts hydrogen and helium by mass appears to remain liquid and mixed for temperatures above about 3000 K, at pressures of about 15 Mbar. The additive volume law is satisfied to within about 10%, but the Gruneisen equation of state gives poor results. A calculation at 1300 K shows evidence of a hydrogen-helium phase separation.

  16. Room temperature thermal conductivity measurements of neat MOF-5 compacts with high pressure hydrogen and helium

    DOE PAGES

    Semelsberger, Troy Allen; Veenstra, Mike; Dixon, Craig

    2016-02-09

    Metal-organic frameworks (MOFs) are a highly porous crystalline material with potential in various applications including on-board vehicle hydrogen storage for fuel cell vehicles. The thermal conductivity of MOFs is an important parameter in the design and ultimate performance of an on-board hydrogen storage system. However, in-situ thermal conductivity measurements have not been previously reported. The present study reports room temperature thermal conductivity and thermal diffusivity measurements performed on neat MOF-5 cylindrical compacts (ρ = 0.4 g/mL) as a function of pressure (0.27–90 bar) and gas type (hydrogen and helium). The transient plane source technique was used to measure both themore » non-directional thermal properties (isotropic method) and the directional thermal properties (anisotropic method). High pressure measurements were made using our in-house built low-temperature, high pressure thermal conductivity sample cell. The intrinsic thermal properties of neat MOF-5 measured under vacuum were—Isotropic: kisotropic = 0.1319 W/m K, αisotropic = 0.4165 mm2/s; Anisotropic: kaxial = 0.1477 W/m K, kradial = 0.1218 W/m K, αaxial = 0.5096 mm2/s, and αradial = 0.4232 mm2/s. The apparent thermal properties of neat MOF-5 increased with increasing hydrogen and helium pressure, with the largest increase occurring in the narrow pressure range of 0–10 bar and then monotonically asymptoting with increasing pressures up to around 90 bar. On average, a greater than two-fold enhancement in the apparent thermal properties was observed with neat MOF-5 in the presence of helium and hydrogen compared to the intrinsic values of neat MOF-5 measured under vacuum. The apparent thermal properties of neat MOF-5 measured with hydrogen were higher than those measured with helium, which were directly related to the gas-specific thermal properties of helium and hydrogen. Neat MOF-5 exhibited a small degree of anisotropy under all conditions measured with thermal

  17. Room temperature thermal conductivity measurements of neat MOF-5 compacts with high pressure hydrogen and helium

    SciTech Connect

    Semelsberger, Troy Allen; Veenstra, Mike; Dixon, Craig

    2016-02-09

    Metal-organic frameworks (MOFs) are a highly porous crystalline material with potential in various applications including on-board vehicle hydrogen storage for fuel cell vehicles. The thermal conductivity of MOFs is an important parameter in the design and ultimate performance of an on-board hydrogen storage system. However, in-situ thermal conductivity measurements have not been previously reported. The present study reports room temperature thermal conductivity and thermal diffusivity measurements performed on neat MOF-5 cylindrical compacts (ρ = 0.4 g/mL) as a function of pressure (0.27–90 bar) and gas type (hydrogen and helium). The transient plane source technique was used to measure both the non-directional thermal properties (isotropic method) and the directional thermal properties (anisotropic method). High pressure measurements were made using our in-house built low-temperature, high pressure thermal conductivity sample cell. The intrinsic thermal properties of neat MOF-5 measured under vacuum were—Isotropic: kisotropic = 0.1319 W/m K, αisotropic = 0.4165 mm2/s; Anisotropic: kaxial = 0.1477 W/m K, kradial = 0.1218 W/m K, αaxial = 0.5096 mm2/s, and αradial = 0.4232 mm2/s. The apparent thermal properties of neat MOF-5 increased with increasing hydrogen and helium pressure, with the largest increase occurring in the narrow pressure range of 0–10 bar and then monotonically asymptoting with increasing pressures up to around 90 bar. On average, a greater than two-fold enhancement in the apparent thermal properties was observed with neat MOF-5 in the presence of helium and hydrogen compared to the intrinsic values of neat MOF-5 measured under vacuum. The apparent thermal properties of neat MOF-5 measured with hydrogen were higher than those measured with helium, which were directly related to the gas-specific thermal properties of helium and hydrogen. Neat

  18. Pressure driven flow studies of superfluid helium-4 through single, high aspect ratio nanopipes

    NASA Astrophysics Data System (ADS)

    Botimer, Jeffrey; Taborek, Peter

    We have measured flow rates of helium-4 through high aspect ratio (>10,000) single glass nanopipes and etched nanopores under the influence of a pressure drop. The initial diameter of the glass pipes is 200nm while the initial diameter of the nanopores is approximately 80nm; the diameter of both types of nanopipe were reduced using atomic layer deposition(ALD) of Al2O3. Flow rates were measured for a wide range of temperatures (0.8K to 3.0K), pressures (up to 40 atm), and pipe lengths (0.8 mm to 30 mm). We observed flow velocities in the range of 1-6 m/s which has a power law dependence on pressure. Flow appears to be governed by turbulence at low temperatures. We have found evidence for a critical pressure above which turbulent flow is eliminated. This critical pressure appears to depend on temperature.

  19. Equilibrium separation in a high pressure helium plasma and its application to the determination of temperatures

    SciTech Connect

    Rodero, A.; Garcia, M.C.; Gamero, A.

    1995-12-31

    The spectroscopy method based on the Boltzmann-plot of emission lines has been usually employed for measuring the excitation temperature (T{sub exc}) in high pressure plasmas. In the present work, it is shown that this method can produce great errors in the temperature determination when equilibrium separation exists. In this way, the suitability of this determination is tested comparing with other alternative methods in a high pressure helium plasma and also studying its separation from the equilibrium situation, via the absolute population measurements of atomic levels and the estimation of its atomic state distribution function (ASDF). We have made this study using a new excitation structure, the axial injection torch (Torche A Injection Axiale or T.I.A.), which produces a high power microwave plasma at atmospheric pressure. The measurements were carried out at the beginning of the flame (the highest line intensity zone) for a 300-900 W power range at 2.45 GHz and 71/min. of helium gas flow.

  20. Modeling the chemical kinetics of high-pressure glow discharges in mixtures of helium with real air

    NASA Astrophysics Data System (ADS)

    Stalder, K. R.; Vidmar, R. J.; Nersisyan, G.; Graham, W. G.

    2006-05-01

    Atmospheric and near-atmospheric pressure glow discharges generated in both pure helium and helium-air mixtures have been studied using a plasma chemistry code originally developed for simulations of electron-beam-produced air plasmas. Comparisons are made with experimental data obtained from high-pressure glow discharges in helium-air mixtures developed by applying sinusoidal voltage wave forms between two parallel planar metallic electrodes covered by glass plates, with frequencies ranging from 10 to 50 kHz and electric field strengths up to 5 kV/cm. The code simulates the plasma chemistry following periodic pulsations of ionization in prescribed E/N environments. Many of the rate constants depend on gas temperature, electron temperature, and E/N. In helium plasmas with small amounts (~850 ppm) of air added, rapid conversion of atomic helium ions to molecular helium ions dominate the positive ion kinetics and these species are strongly modulated while the radical species are not. The charged and neutral species concentrations at atmospheric pressure with air impurity levels up to 10 000 ppm are predicted. The negative ion densities are very small but increase as the air impurity level is raised, which indicates that in helium-based systems operated in open air the concentration of negative ions would be significant. If water vapor at typical humidity levels is present as one of the impurities, hydrated cluster ions eventually comprise a significant fraction of the charged species.

  1. Bronchomotor response to cold air or helium-oxygen at normal and high ambient pressures.

    PubMed

    Jammes, Y; Burnet, H; Cosson, P; Lucciano, M

    1988-05-01

    Effects of inhalation of cold air or helium-oxygen mixture on lung resistance (RL) were studied in anesthetized and tracheotomized rabbits under normal ambient pressure and in human volunteers under normo- and hyperbaric conditions. In artificially ventilated rabbits, an increase in RL occurred when the tracheal temperature fell to 10 degrees C. This effect was more than double with helium breathing compared to air, despite a lower respiratory heat loss by convection (Hc) with helium. In 3 normal humans, inhalation of cold air (mouth temperature = 8 degrees C) at sea level had no effect on RL value. However, with a helium-nitrogen-oxygen mixture, a weak but significant increase in RL due to cold gas breathing was measured in 1 subject at 2 ATA and in 2 individuals at 3.5 ATA. The density of inhaled gas mixture (air or He-N2-O2) was near the same in the three circumstances (1, 2, and 3.5 ATA) but Hc value increased with helium. At 8 ATA a 30-55% increase in RL occurred in the 3 divers during inhalation of cold gas (Hc was multiplied by 6 compared to air at sea level) and at 25 ATA the cold-induced bronchospasm ranged between 38 and 95% (Hc multiplied by 27). Thus, in rabbits and humans helium breathing enhanced the cold-induced increase in RL at normal or elevated ambient pressure, and this effect was interpreted as resulting from different mechanisms in the two circumstances.

  2. Study of spatial distributions of highly ionized nonequilibrium helium plasma at atmospheric pressures

    NASA Astrophysics Data System (ADS)

    Chinnov, V. F.; Kavyrshin, D. I.; Ageev, A. G.; Korshunov, O. V.; Sargsyan, M. A.; Efimov, A. V.

    2016-11-01

    Experimental study of helium plasma in the state of quasistationary heating under atmospheric pressure was made. The plasma state is shown to fail to be described by Saha- Boltzmann approximation at high ionization levels α i = 0.5-0.9, temperatures 2.5-4.0 eV and electron concentrations about 1017 cm-3. The deviation from the equilibrium state of the plasma is caused by lack of spatial uniformity due to charged particles loss by ambipolar diffusion. In order to thoroughly study the temporal changes of plasma radiation characteristics, spectroscopic analysis was carried out with DFS-452 spectrometer and high-speed CMOS camera Andor iStar attached to its output. The system yields the spatial resolution of 30-50 μm and temporal resolution of 5-50 μs. Electron concentration ne was measured from the half-width of the local Hei spectrum line contours having dominant quadruple Stark effect with well-known constants. In order to determine the temperature of heavy particles, Doppler component of HeI line triplet at 1083 nm was studied. The temporal evolution of the following important characteristics has been determined for helium plasma during pulsed heating: current power, intensities of a number of HeI and HeII spectral lines, electron temperatures and concentrations.

  3. The effects of high pressure helium and nitrogen on the release of acetylcholine from the guinea-pig ileum

    PubMed Central

    Little, Hilary J.; Paton, W.D.M.

    1979-01-01

    1 The effects of high pressures of helium and of nitrogen on acetylcholine release were tested using the guinea-pig ileum as a model preparation. A superfusion system was designed in which this tissue could be maintained under physiological conditions in a high pressure chamber. 2 Helium, at a pressure of 136 atm slightly increased the spontaneous output of acetylcholine but produced no significant changes at 68 atm (136 atm is close to the lethal pressure for small mammals). 3 The acetylcholine release evoked by electrical stimulation or by 55 mM potassium was not altered by 136 atm of helium. Effects on tetrodotoxin-treated tissues were not consistent. 4 Nitrogen, which in contrast to helium possesses general anaesthetic properties, caused considerable increases in spontaneous and in electrically evoked acetylcholine output at pressures which produce anaesthesia. These increases were not changed when helium was used to increase the total pressure to 136 atm, although this reverses the general anaesthetic actions of nitrogen in vivo. 5 The increases in rate of acetylcholine release produced by nitrogen were observed in tetrodotoxintreated tissues and in tissues from reserpine-treated animals. In a calcium-free medium the increases were considerably smaller. 6 The conclusions from these results are that while high pressures of helium caused little or no change in acetylcholine release rates, nitrogen produced large changes, which were not due to effects on axonal conduction. The effect of nitrogen is not apparently related to its general anaesthetic actions. Differences such as these in transmitter release would be likely to contribute to the differing physiological effects of these two gases. PMID:40648

  4. CO2-helium and CO2-neon mixtures at high pressures

    NASA Astrophysics Data System (ADS)

    Mallick, B.; Ninet, S.; Le Marchand, G.; Munsch, P.; Datchi, F.

    2013-01-01

    The properties of mixtures of carbon dioxide with helium or neon have been investigated as a function of CO2 concentration and pressure up to 30 GPa at room temperature. The binary phase diagrams of these mixtures are determined over the full range of CO2 concentrations using visual observations and Raman scattering measurements. Both diagrams are of eutectic type, with a fluid-fluid miscibility gap for CO2 concentrations in the range [5, 75] mol. % for He and [8, 55] mol. % for Ne, and a complete separation between the two components in the solid phase. The absence of alloys or stoichiometric compounds for these two binary systems is consistent with the Hume-Rothery rules of hard sphere mixtures. The Raman spectra and x-ray diffraction patterns of solid CO2 embedded in He or Ne for various initial concentrations have been measured up to 30 GPa and 12 GPa, respectively. The frequencies of the Raman modes and the volume of solid phase I are identical, within error bars, to those reported for 100% CO2 samples, thus confirming the total immiscibility of CO2 with He and Ne in the solid phase. These results demonstrate the possibility to perform high-pressure experiments on solid CO2 under (quasi-)hydrostatic conditions using He or Ne as pressure transmitting medium.

  5. CO2-helium and CO2-neon mixtures at high pressures.

    PubMed

    Mallick, B; Ninet, S; Le Marchand, G; Munsch, P; Datchi, F

    2013-01-28

    The properties of mixtures of carbon dioxide with helium or neon have been investigated as a function of CO(2) concentration and pressure up to 30 GPa at room temperature. The binary phase diagrams of these mixtures are determined over the full range of CO(2) concentrations using visual observations and Raman scattering measurements. Both diagrams are of eutectic type, with a fluid-fluid miscibility gap for CO(2) concentrations in the range [5, 75] mol. % for He and [8, 55] mol. % for Ne, and a complete separation between the two components in the solid phase. The absence of alloys or stoichiometric compounds for these two binary systems is consistent with the Hume-Rothery rules of hard sphere mixtures. The Raman spectra and x-ray diffraction patterns of solid CO(2) embedded in He or Ne for various initial concentrations have been measured up to 30 GPa and 12 GPa, respectively. The frequencies of the Raman modes and the volume of solid phase I are identical, within error bars, to those reported for 100% CO(2) samples, thus confirming the total immiscibility of CO(2) with He and Ne in the solid phase. These results demonstrate the possibility to perform high-pressure experiments on solid CO(2) under (quasi-)hydrostatic conditions using He or Ne as pressure transmitting medium.

  6. Solubility of oxygen in a seawater medium in equilibrium with a high-pressure oxy-helium atmosphere.

    PubMed

    Taylor, C D

    1979-06-01

    The molar oxygen concentration in a seawater medium in equilibrium with a high-pressure oxygen-helium atmosphere was measured directly in pressurized subsamples, using a modified version of the Winkler oxygen analysis. At a partial pressure of oxygen of 1 atm or less, its concentration in the aqueous phase was adequately described by Henry's Law at total pressures up to 600 atm. This phenomenon, which permits a straightforward determination of dissolved oxygen within hyperbaric systems, resulted from pressure-induced compensatory alterations in the Henry's Law variables rather than from a true obedience to the Ideal Gas Law. If the partial pressure of a gas contributes significantly to the hydrostatic pressure, Henry's Law is no longer adequate for determining its solubility within the compressed medium.

  7. Experimental study of forced convection heat transfer during upward and downward flow of helium at high pressure and high temperature

    SciTech Connect

    Francisco Valentin; Narbeh Artoun; Masahiro Kawaji; Donald M. McEligot

    2015-08-01

    Fundamental high pressure/high temperature forced convection experiments have been conducted in support of the development of a Very High Temperature Reactor (VHTR) with a prismatic core. The experiments utilize a high temperature/high pressure gas flow test facility constructed for forced convection and natural circulation experiments. The test section has a single 16.8 mm ID flow channel in a 2.7 m long, 108 mm OD graphite column with four 2.3kW electric heater rods placed symmetrically around the flow channel. This experimental study presents the role of buoyancy forces in enhancing or reducing convection heat transfer for helium at high pressures up to 70 bar and high temperatures up to 873 degrees K. Wall temperatures have been compared among 10 cases covering the inlet Re numbers ranging from 500 to 3,000. Downward flows display higher and lower wall temperatures in the upstream and downstream regions, respectively, than the upward flow cases due to the influence of buoyancy forces. In the entrance region, convection heat transfer is reduced due to buoyancy leading to higher wall temperatures, while in the downstream region, buoyancyinduced mixing causes higher convection heat transfer and lower wall temperatures. However, their influences are reduced as the Reynolds number increases. This experimental study is of specific interest to VHTR design and validation of safety analysis codes.

  8. High-temperature helium-loop facility

    SciTech Connect

    Tokarz, R.D.

    1981-09-01

    The high-temperature helium loop is a facility for materials testing in ultrapure helium gas at high temperatures. The closed loop system is capable of recirculating high-purity helium or helium with controlled impurities. The gas loop maximum operating conditions are as follows: 300 psi pressure, 500 lb/h flow rate, and 2100/sup 0/F temperature. The two test sections can accept samples up to 3.5 in. diameter and 5 ft long. The gas loop is fully instrumented to continuously monitor all parameters of loop operation as well as helium impurities. The loop is fully automated to operate continuously and requires only a daily servicing by a qualified operator to replenish recorder charts and helium makeup gas. Because of its versatility and high degree of parameter control, the helium loop is applicable to many types of materials research. This report describes the test apparatus, operating parameters, peripheral systems, and instrumentation system.

  9. Heat flow and arc efficiency at high pressures in argon and helium tungsten arcs

    SciTech Connect

    Katsaounis, A. )

    1993-09-01

    For control of welding underwater robotic systems, the arc characteristics and the heat quotation in cathode, arc column and anode (weld) were measured in GTAW with argon and helium shielding gas using the calorimetric method. The measurements were performed mainly in a pressure chamber. The pressure, the current and the arc length were varied from 0.1-6.0 MPa, 50-300 A and 2-11 mm, respectively. It was observed that the welding voltage is strongly dependent on system pressure for both shielding gases and an explicit minimum voltage/current was obtained for the argon arc characteristics at approximately 100 A. Furthermore, the field strength and the heat emission from the arc column increased exponentially with the pressure. A simple relation was developed to predict heat emission from the arc column and, consequently, for the arc efficiency. In addition, a calculation model for engineering use was derived based on the Ellenbaas-Heller equation to calculate the-heat flux from the arc to the weld (for both gases).

  10. Surface Pressures and Heat Transfer on Unswept Blunt Plates in Helium at High Mach Numbers

    NASA Technical Reports Server (NTRS)

    Marvin, Joseph G.

    1961-01-01

    Pressure distributions and local convective heat-transfer coefficients on a flat plate at zero angle of attack were measured in helium. Data were obtained with various amounts of leading-edge bluntness at Mach numbers of 12.5 and 14.7. The pressures on a sharp leading-edged plate were not influenced by the leading edge and were predicted by the first-order, hypersonic, weak-interaction theory. Pressures on blunt plates were correlated by introducing the leading-edge Reynolds number as a parameter. Measured heat-transfer coefficients on the sharp plate agreed with predictions obtained form existing exact solutions for hear transfer across the laminar boundary layer. For the blunt plates a comparison of theory with experiment indicated that more knowledge of the flow field between the sock wave and plate surface is necessary before an adequate prediction of convective heat transfer can be made. Shock-wave shapes for the blun plates at a Mach number 12.5 and zero angle of attack were measured. At distances between 2 and 60 leading-edge thicknesses from the shock vertex, the shock-wave shapes were found to be represented by a modified form of the blast-wave analogy.

  11. Use of a torsional pendulum as a high-pressure gage and determination of viscosity of helium gas at high pressures

    NASA Technical Reports Server (NTRS)

    Maisel, J. E.; Webeler, R. W. H.; Grimes, H. H.

    1973-01-01

    Three torsional crystal parameters were examined for suitability in sensing pressure in gases up to 131 million newtons per square meter. The best parameters were found to be the change in crystal decrement at resonance and the change in crystal electrical resistance at resonance. The change in crystal resonant frequency did not appear to be a reliable pressure measuring parameter. Pure argon and pure helium gases were studied for use as working fluids. Helium functioned better over a wider pressure range. Calibration of the gage also provided a measure of the viscosity-density product of the gas as a function of pressure. These data, together with known extrapolated density data, permitted the determination of the viscosity of helium to 131 million N/square meter.

  12. Primary helium heater for propellant pressurization systems

    NASA Technical Reports Server (NTRS)

    Reichmuth, D. M.; Nguyen, T. V.; Pieper, J. L.

    1991-01-01

    The primary helium heater is a unique design that provides direct heating of pressurant gas for large pressure fed propulsion systems. It has been conceptually designed to supply a heated (800-1000 R) pressurization gas to both a liquid oxygen and an RP-1 propellant tank. This pressurization gas is generated within the heater by mixing super critical helium (40-300 R and 3000-1600 psi) with an appropriate amount of combustion products from a 4:1 throttling stoichiometric LO2/LH2 combustor. This simple, low cost and reliable mixer utilizes the large quantity of helium to provide stoichiometric combustor cooling, extend the throttling limits and enhance the combustion stability margin. Preliminary combustion, thermal, and CFD analyses confirm that this low-pressure-drop direct helium heater can provide the constant-temperature pressurant suitable for tank pressurization of both fuel and oxidizer tanks of large pressure fed vehicles.

  13. Stabilities of filled ice II structure of hydrogen and helium hydrates at low temperatures and high pressures

    NASA Astrophysics Data System (ADS)

    Hirai, H.; Umeda, A.; Fujii, T.; Machida, S.; Shinozaki, A.; Kawamura, T.; Yamamoto, Y.; Yagi, T.

    2011-12-01

    Hydrogen hydrate is expected to be a hydrogen storage material, because it can contain relatively high hydrogen and its synthetic condition is mild comparable to industrial production. Three phases of hydrogen hydrate have been known so for. One is a clathrate hydrate sII [1], and others are filled ice II structure and filled ice Ic structure [2]. The ratio of water to hydrogen molecules for these phases are1:3, 1:6, 1:1, respectively. The clathrate sII containing only hydrogen molecules is stable only in a lower temperature region. At room temperature, above about 0.8 GPa filled ice II and above 2.5 GPa filled ice Ic are formed. The latter one survives at least up to 90 GPa [3]. However, investigations in low temperature and high pressure region have been limited. In this study, low temperature and high pressure experiments were performed by using diamond anvil cells and a helium-refrigeration cryostat in a region of 0.2 to 4.5 GPa and 130 to 300 K. X-ray diffractometry (XRD) showed a series of phase change from sII to filled ice Ic via filled ice II. For example, at 220K, sII transformed to filled ice II at approximately 0.7 GPa and further transformed to filled ice Ic structure at about 2.0 GPa. The present results experimentally confirmed the previously predicted phase boundaries. For filled ice II structure, Raman spectroscopy revealed that pressure dependency of vibration mode of guest hydrogen molecules and OH stretching mode of host water molecules changed at approximately 2.5 GPa. The XRD also showed change in axial ratio at the same pressure. These result suggested that state of filled ice II structure changed at about 2.5 GPa. Helium hydrate is known to form filled ice II structure [4], but high pressure study has not been yet fully performed. Similar experiments were carried out in a region of 0.2 to 5.0 GPa and 200 to 300 K. The results showed that the filled ice II structure did not transformed to filled ice Ic structure, but decomposed into helium

  14. The prediction of helium gas viscosity under high pressure and high temperature with the Chapman-Enskog solution and excess viscosity

    NASA Astrophysics Data System (ADS)

    Yusibani, Elin; Takata, Yasuyuki; Suud, Zaki; Irwanto, Dwi

    2017-01-01

    The purpose of this work is to predict a helium gas viscosity under high pressure and high temperature for practical industrial uses. The suitable force constants and a collision integral for the Chapman-Enskog solution to estimate viscosity in the limit of zero density were recommended by the present author. At high density, modification of the Arp and McCarty extrapolation equation for excess viscosity was applied. A combination of the Chapman-Enskog solution and modification of the Arp and McCarty excess viscosity gives an estimation of helium gas viscosity within 2 to 5 % deviation from the existing experimental data under high-temperature and high-pressure region.

  15. A high-pressure van der Waals compound in solid nitrogen-helium mixtures

    NASA Technical Reports Server (NTRS)

    Vos, W. L.; Finger, L. W.; Hemley, R. J.; Hu, J. Z.; Mao, H. K.; Schouten, J. A.

    1992-01-01

    A detailed diamond anvil-cell study using synchrotron X-ray diffraction, Raman scattering, and optical microscopy has been conducted for the He-N system, with a view to the weakly-bound van der Waals molecule interactions that can be formed in the gas phase. High pressure is found to stabilize the formation of a stoichiometric, solid van der Waals compound of He(N2)11 composition which may exemplify a novel class of compounds found at high pressures in the interiors of the outer planets and their satellites.

  16. Thermodynamics of dense molecular hydrogen-helium mixtures at high pressure

    NASA Technical Reports Server (NTRS)

    Marley, Mark S.; Hubbard, William B.

    1988-01-01

    Effective intermolecular pair potentials derived from liquid hydrogen and helium shock wave experiments are presently used in Monte Carlo simulations of mixtures of hydrogen and helium, at densities of up to 1.2 g/cu cm. The model interaction Helmholtz free energy derived accurately reproduces both the Monte Carlo calculation results and the experimental data obtained for densities of up to about 0.6 g/cu cm. An equation of state is derived from the free energy expression that could be useful in interior models of such Jovian planets as Saturn.

  17. Liquid Oxygen Thermodynamic Vent System Testing with Helium Pressurization

    NASA Technical Reports Server (NTRS)

    VanDresar, Neil T.

    2014-01-01

    This report presents the results of several thermodynamic vent system (TVS) tests with liquid oxygen plus a test with liquid nitrogen. In all tests, the liquid was heated above its normal boiling point to 111 K for oxygen and 100 K for nitrogen. The elevated temperature was representative of tank conditions for a candidate lunar lander ascent stage. An initial test series was conducted with saturated oxygen liquid and vapor at 0.6 MPa. The initial series was followed by tests where the test tank was pressurized with gaseous helium to 1.4 to 1.6 MPa. For these tests, the helium mole fraction in the ullage was quite high, about 0.57 to 0.62. TVS behavior is different when helium is present than when helium is absent. The tank pressure becomes the sum of the vapor pressure and the partial pressure of helium. Therefore, tank pressure depends not only on temperature, as is the case for a pure liquid-vapor system, but also on helium density (i.e., the mass of helium divided by the ullage volume). Thus, properly controlling TVS operation is more challenging with helium pressurization than without helium pressurization. When helium was present, the liquid temperature would rise with each successive TVS cycle if tank pressure was kept within a constant control band. Alternatively, if the liquid temperature was maintained within a constant TVS control band, the tank pressure would drop with each TVS cycle. The final test series, which was conducted with liquid nitrogen pressurized with helium, demonstrated simultaneous pressure and temperature control during TVS operation. The simultaneous control was achieved by systematic injection of additional helium during each TVS cycle. Adding helium maintained the helium partial pressure as the liquid volume decreased because of TVS operation. The TVS demonstrations with liquid oxygen pressurized with helium were conducted with three different fluid-mixer configurations-a submerged axial jet mixer, a pair of spray hoops in the tank

  18. High-pressure phase diagram and equation of state of solid helium from single-crystal X-ray diffraction to 23.3 GPa

    NASA Technical Reports Server (NTRS)

    Mao, H. K.; Hemley, R. J.; Jephcoat, A. P.; Finger, L. W.; Wu, Y.

    1988-01-01

    Single-crystal X-ray diffraction measurements have been performed on solid He-4 from 15.6 to 23.3 GPa at 300 K with synchrotron radiation. The diffraction patterns demonstrate that the structure of the solid is hexagonal close packed over this pressure-temperature range, contrary to both the interpretation of high-pressure optical studies and to theoretical predictions. The solid is more compressible than is indicated by equations of state calculated with recently determined helium pair potentials. The results suggest that a significant revision of current views of the phase diagram and energetics of dense solid helium is in order.

  19. High-pressure phase diagram and equation of state of solid helium from single-crystal X-ray diffraction to 23.3 GPa

    NASA Technical Reports Server (NTRS)

    Mao, H. K.; Hemley, R. J.; Jephcoat, A. P.; Finger, L. W.; Wu, Y.

    1988-01-01

    Single-crystal X-ray diffraction measurements have been performed on solid He-4 from 15.6 to 23.3 GPa at 300 K with synchrotron radiation. The diffraction patterns demonstrate that the structure of the solid is hexagonal close packed over this pressure-temperature range, contrary to both the interpretation of high-pressure optical studies and to theoretical predictions. The solid is more compressible than is indicated by equations of state calculated with recently determined helium pair potentials. The results suggest that a significant revision of current views of the phase diagram and energetics of dense solid helium is in order.

  20. Phase separation in hydrogen–helium mixtures at Mbar pressures

    PubMed Central

    Morales, Miguel A.; Schwegler, Eric; Ceperley, David; Pierleoni, Carlo; Hamel, Sebastien; Caspersen, Kyle

    2009-01-01

    The properties of hydrogen–helium mixtures at Mbar pressures and intermediate temperatures (4000 to 10000 K) are calculated with first-principles molecular dynamics simulations. We determine the equation of state as a function of density, temperature, and composition and, using thermodynamic integration, we estimate the Gibbs free energy of mixing, thereby determining the temperature, at a given pressure, when helium becomes insoluble in dense metallic hydrogen. These results are directly relevant to models of the interior structure and evolution of Jovian planets. We find that the temperatures for the demixing of helium and hydrogen are sufficiently high to cross the planetary adiabat of Saturn at pressures ≈5 Mbar; helium is partially miscible throughout a significant portion of the interior of Saturn, and to a lesser extent in Jupiter. PMID:19171896

  1. Method to deliver ultra high purity helium gas to a use point

    SciTech Connect

    Graczk, L.S.; Francis, A.W.

    1988-08-30

    This patent describes a method to deliver helium gas to a use point comprising: (A) providing gaseous helium from a high pressure cylinder or tube into a storage container containing liquid helium; (B) passing the gaseous helium in heat exchange relation with the liquid helium to: (i) vaporize liquid helium, (ii) increase or maintain the helium pressure, and (iii) condense and/or solidify impurities out of the gaseous helium; (C) withdrawing ultra high purity helium gas comprising resulting vaporized helium and cleaned gaseous helium from the storage container; and (D) providing ultra high purity helium gas to a use point without need for further pressurization, the helium gas containing less than 10 ppm impurities.

  2. Discharge instabilities in high-pressure helium-fluorine laser gas mixtures

    NASA Astrophysics Data System (ADS)

    Mathew, D.; Bastiaens, H. M. J.; Peters, Peter J. M.; Boller, Klaus-Jochen

    2005-03-01

    Discharge instabilities in F2 based excimer gas lasers are investigated using a small-scale discharge system. After preionizing the gas volume, a fast rising voltage pulse initiates the discharge. The temporal development of the discharge is monitored via its fluorescence by an intensified CCD camera with a gating time of 10 ns. Homogeneous discharges are produced in gas mixtures of He/1mbar F2 and He/1mbar F2/30mbar Xe at a total pressure of 2 bar for pump pulse duratins up to 70 ns (FWHM). The addition of Xe to He/F2 mixture does not lead to discharge instabilities while the introduction of more F2 results in hotspot and filament formation.

  3. On the role of helium molecules in atmospheric pressure discharges

    NASA Astrophysics Data System (ADS)

    Carbone, Emile; Schregel, Christian; Luggenhölscher, Dirk; Czarnetzki, Uwe

    2016-09-01

    Despite their intrinsic simplicity, helium plasma kinetics are still not fully understood and quantitatively described. This is particularly the case at high pressures when various molecular helium species (i.e. ions, excimer(s) and Rydberg states) are formed. In this contribution, the absolute density of helium Rydberg molecules is measured for the first time by a combination of laser photo-ionization and Thomson scattering experiments. The experiments are performed on a parallel plate, nanosecond pulsed, DC discharge at 700 mbar. The results are combined with electron and helium metastable densities measurements and compared with a kinetic model of the discharge. The source of He2 molecules in the discharge and afterglow phases are identified and discussed. The present experimental data and kinetic model solve several inconsistencies between reaction paths proposed in the literature.

  4. Cold Helium Gas Pressurization For Spacecraft Cryogenic Propulsion Systems

    NASA Technical Reports Server (NTRS)

    Morehead, Robert L.; Atwell. Matthew J.; Hurlbert, Eric A.; Melcher, J. C.

    2017-01-01

    To reduce the dry mass of a spacecraft pressurization system, helium pressurant may be stored at low temperature and high pressure to increase mass in a given tank volume. Warming this gas through an engine heat exchanger prior to tank pressurization both increases the system efficiency and simplifies the designs of intermediate hardware such as regulators, valves, etc. since the gas is no longer cryogenic. If this type of cold helium pressurization system is used in conjunction with a cryogenic propellant, though, a loss in overall system efficiency can be expected due to heat transfer from the warm ullage gas to the cryogenic propellant which results in a specific volume loss for the pressurant, interpreted as the Collapse Factor. Future spacecraft with cryogenic propellants will likely have a cold helium system, with increasing collapse factor effects as vehicle sizes decrease. To determine the collapse factor effects and overall implementation strategies for a representative design point, a cold helium system was hotfire tested on the Integrated Cryogenic Propulsion Test Article (ICPTA) in a thermal vacuum environment at the NASA Glenn Research Center Plum Brook Station. The ICPTA vehicle is a small lander-sized spacecraft prototype built at NASA Johnson Space Center utilizing cryogenic liquid oxygen/liquid methane propellants and cryogenic helium gas as a pressurant to operate one 2,800lbf 5:1 throttling main engine, two 28lbf Reaction Control Engines (RCE), and two 7lbf RCEs (Figure 1). This vehicle was hotfire tested at a variety of environmental conditions at NASA Plum Brook, ranging from ambient temperature/simulated high altitude, deep thermal/high altitude, and deep thermal/high vacuum conditions. A detailed summary of the vehicle design and testing campaign may be found in Integrated Cryogenic Propulsion Test Article Thermal Vacuum Hotfire Testing, AIAA JPC 2017.

  5. Pressure-Volume-Temperature (PVT) Gauging of an Isothermal Cryogenic Propellant Tank Pressurized with Gaseous Helium

    NASA Technical Reports Server (NTRS)

    VanDresar, Neil T.; Zimmerli, Gregory A.

    2014-01-01

    Results are presented for pressure-volume-temperature (PVT) gauging of a liquid oxygen/liquid nitrogen tank pressurized with gaseous helium that was supplied by a high-pressure cryogenic tank simulating a cold helium supply bottle on a spacecraft. The fluid inside the test tank was kept isothermal by frequent operation of a liquid circulation pump and spray system, and the propellant tank was suspended from load cells to obtain a high-accuracy reference standard for the gauging measurements. Liquid quantity gauging errors of less than 2 percent of the tank volume were obtained when quasi-steady-state conditions existed in the propellant and helium supply tanks. Accurate gauging required careful attention to, and corrections for, second-order effects of helium solubility in the liquid propellant plus differences in the propellant/helium composition and temperature in the various plumbing lines attached to the tanks. On the basis of results from a helium solubility test, a model was developed to predict the amount of helium dissolved in the liquid as a function of cumulative pump operation time. Use of this model allowed correction of the basic PVT gauging calculations and attainment of the reported gauging accuracy. This helium solubility model is system specific, but it may be adaptable to other hardware systems.

  6. Pressure-Driven Flow of Solid Helium

    NASA Astrophysics Data System (ADS)

    Day, James; Beamish, John

    2006-03-01

    The recent torsional oscillator results of Kim and Chan show an anomalous mass decoupling, interpreted by the authors as a supersolid phase transition, in solid He4. We have used a piezoelectrically driven diaphragm to study the flow of solid helium through an array of capillaries. Our measurements showed no indication of low temperature flow, placing stringent restrictions on supersolid flow in response to a pressure difference. The average flow speed at low temperatures was less than 1.2×10-14m/s, corresponding to a supersolid velocity at least 7 orders of magnitude smaller than the critical velocities inferred from the torsional oscillator measurements.

  7. Molecular dynamics study of helium bubble pressure in tungsten

    NASA Astrophysics Data System (ADS)

    Cui, Jiechao; Li, Min; Wang, Jun; Hou, Qing

    2015-06-01

    Molecular dynamics simulations were performed to calculate the stress field in a tungsten matrix containing a nano-scale helium bubble. A helium bubble in tungsten is found to consist of a core and an interface of finite thickness of approximately 0.6 nm. The core contains only helium atoms that are uniformly distributed. The interface is composed of both helium and tungsten atoms. In the periphery region of the helium bubble, the stress filed is found to follow the stress formula based on the elasticity theory of solid. The pressure difference between both sides of the interface can be well described by the Young-Laplace equation for the core size of a helium bubble as small as 0.48 nm. A comparison was performed between the pressure in the helium bubble core and the pressure in pure helium. For a core size larger than 0.3 nm, the pressure in the core of a helium bubble is in good agreement with the pressure in pure helium of the same helium density. These results provide guidance to larger scale simulation methods, such as in kinetic Monte Carlo methods and rate theory.

  8. Behavior of metallic materials between 550 and 870/sup 0/C in high-temperature gas-cooled reactor helium under pressures of 2 and 50 bar

    SciTech Connect

    Cappelaere, M.; Perrot, M.; Sannier, J.

    1984-08-01

    In order to estimate the influence of the helium pressure on the corrosion of ferritic and austenitic materials, tests were carried out under 2 absolute bar in a circuit without helium recirculation and under 50 bar in the AIDA loop. In both cases the partial pressures of impurities were 1.500, 50, 450, and 50 ..mu..atm for H/sub 2/, H/sub 2/O, CO, and CH/sub 4/, respectively. The interruption of the French high-temperature gas-cooled reactor RandD program has only produced limited results: 1. At 650/sup 0/C the behavior of 11% chromium ferritic steel HT 9, Types 304 and 316 austenitic steels, and Incoloy Alloy 800H is excellent; the oxidation rates are low and decrease with time. 2. At 750 and 870/sup 0/C, Hastelloy-X offers better resistance to external and intergranular oxidation than alloys 800H and Inconel-617. 3. At these three temperatures, the oxidation kinetics are appreciably faster under a pressure of 50 bar than under 2 bar. 4. Whereas carbon steel is subject to decarburization at 550/sup 0/C, a carburization phenomenon is observed for alloys 800H, Inconel-617, and Hastelloy-X at 750 and especially at 870/sup 0/C. 5. As for the influence of the initial surface preparation, mechanically polished specimens generally present a lower oxidation rate than those polished electrochemically.

  9. Evaluation of candidate Stirling engine heater tube alloys after 3500 hours exposure to high pressure doped hydrogen or helium

    NASA Technical Reports Server (NTRS)

    Misencik, J. A.; Titran, R. H.

    1984-01-01

    The heater head tubes of current prototype automotive Stirling engines are fabricated from alloy N-155, an alloy which contains 20 percent cobalt. Because the United States imports over 90 percent of the cobalt used in this country and resource supplies could not meet the demand imposed by automotive applications of cobalt in the heater head (tubes plus cylinders and regenerator housings), it is imperative that substitute alloys free of cobalt be identified. The research described herein focused on the heater head tubes. Sixteen alloys (15 potential substitutes plus the 20 percent Co N-155 alloy) were evaluated in the form of thin wall tubing in the NASA Lewis Research Center Stirling simulator materials diesel fuel fired test rigs. Tubes filled with either hydrogen doped with 1 percent CO2 or with helium at a gas pressure of 15 MPa and a temperature of 820 C were cyclic endurance tested for times up to 3500 hr. Results showed that two iron-nickel base superalloys, CG-27 and Pyromet 901 survived the 3500 hr endurance test. The remaining alloys failed by creep-rupture at times less than 3000 hr, however, several other alloys had superior lives to N-155. Results further showed that doping the hydrogen working fluid with 1 vol % CO2 is an effective means of reducing hydrogen permeability through all the alloy tubes investigated.

  10. Influence of flowing helium gas on plasma plume formation in atmospheric pressure plasma

    SciTech Connect

    Yambe, Kiyoyuki; Konda, Kohmei; Ogura, Kazuo

    2015-05-15

    We have studied atmospheric pressure plasma generated using a quartz tube, helium gas, and a foil electrode by applying RF high voltage. The atmospheric pressure plasma in the form of a bullet is released as a plume into the atmosphere. The helium gas flowing out of quartz tube mixes with air, and the flow channel is composed of the regions of flowing helium gas and air. The plasma plume length is equivalent to the reachable distance of flowing helium gas. Although the amount of helium gas on the flow channel increases by increasing the inner diameter of quartz tube at the same gas flow velocity, the plasma plume length peaks at around 8 m/s of gas flow velocity, which is the result that a flow of helium gas is balanced with the amount of gas. The plasma plume is formed at the boundary region where the flow of helium gas is kept to the wall of the air.

  11. Thermodynamics of a solar mixture of molecular hydrogen and helium at high pressure. [for Jupiter atmospheric model

    NASA Technical Reports Server (NTRS)

    Slattery, W. L.; Hubbard, W. B.

    1976-01-01

    The thermodynamic properties of a model molecular hydrogen and helium mixture are calculated in the strongly interacting region of 0.005 to 0.3 per cu cm for a range of temperatures that are of interest for the envelopes of the Jovian planets. Computed adiabats fit the gravity data and boundary conditions from model atmospheres of Jupiter.

  12. Simulation of a non-equilibrium helium plasma bullet emerging into oxygen at high pressure (250-760 Torr) and interacting with a substrate

    NASA Astrophysics Data System (ADS)

    Yan, Wen; Economou, Demetre J.

    2016-09-01

    A two-dimensional computational study of a plasma bullet emanating from a helium gas jet in oxygen ambient at high pressure (250-760 Torr) was performed, with emphasis on the bullet interaction with a substrate. Power was applied in the form of a trapezoidal +5 kV pulse lasting 150 ns. A neutral gas transport model was employed to predict the concentration distributions of helium and oxygen in the system. These were then used in a plasma dynamics model to investigate the characteristics of the plasma bullet during its propagation and interaction with a substrate. Upon ignition, the discharge first propagated as a surface wave along the inner wall of the containing tube, and then exited the tube with a well-defined ionization front (streamer or plasma bullet). The plasma bullet evolved from a hollow (donut-shaped) feature to one where the maximum of ionization was on axis. The bullet propagated in the gap between the tube exit and the substrate with an average speed of ˜2 × 105 m/s. Upon encountering a metal substrate, the bullet formed a conductive channel to the substrate. Upon encountering a dielectric substrate, the bullet turned into an ionization wave propagating radially along the substrate surface. For a conductive substrate, the radial species fluxes to the surface peaked on the symmetry axis. For a dielectric substrate, a ring-shaped flux distribution was observed. The "footprint" of plasma-surface interaction increased either by decreasing the gap between tube exit and substrate, decreasing the relative permittivity of an insulating substrate, or decreasing pressure. As the system pressure was lowered from 760 to 250 Torr, the discharge was initiated earlier, and the plasma bullet propagation speed increased. A reverse electric field developed during the late stages of the ramp-down of the pulse, which accelerated electrons forming a brief backward discharge.

  13. Reaction control system helium pressure regulator filter failure

    NASA Technical Reports Server (NTRS)

    1972-01-01

    The failure analysis of the command module reaction control system helium pressure regulators revealed that the filter element end caps were bulged by the helium pressure surge during activation. Some end caps may bulge and also some wire separation may occur during command module reaction control system activations; however, system performance should not be affected. The reaction control system design is acceptable and no change in hardware, system, or activation procedures is required.

  14. Helium-cooled high temperature reactors

    SciTech Connect

    Trauger, D.B.

    1985-01-01

    Experience with several helium cooled reactors has been favorable, and two commercial plants are now operating. Both of these units are of the High Temperature Graphite Gas Cooled concept, one in the United States and the other in the Federal Republic of Germany. The initial helium charge for a reactor of the 1000 MW(e) size is modest, approx.15,000 kg.

  15. Superconducting cable cooling system by helium gas at two pressures

    DOEpatents

    Dean, John W.

    1977-01-01

    Thermally contacting, oppositely streaming, cryogenic fluid streams in the same enclosure in a closed cycle that changes the fluid from a cool high pressure helium gas to a cooler reduced pressure helium gas in an expander so as to be at different temperature ranges and pressures respectively in go and return legs that are in thermal contact with each other and in thermal contact with a longitudinally extending superconducting transmission line enclosed in the same cable enclosure that insulates the line from the ambient at a temperature T.sub.1. By first circulating the fluid from a refrigerator at one end of the line as a cool gas at a temperature range T.sub.2 to T.sub.3 in the go leg, then circulating the gas through an expander at the other end of the line where the gas becomes a cooler gas at a reduced pressure and at a reduced temperature T.sub.4 and finally by circulating the cooler gas back again to the refrigerator in a return leg at a temperature range T.sub.4 to T.sub.5, while in thermal contact with the gas in the go leg, and in the same enclosure therewith for compression into a higher pressure gas at T.sub.2 in a closed cycle, where T.sub.2 >T.sub.3 and T.sub.5 >T.sub.4, the fluid leaves the enclosure in the go leg as a gas at its coldest point in the go leg, and the temperature distribution is such that the line temperature decreases along its length from the refrigerator due to the cooling from the gas in the return leg.

  16. Extreme ultraviolet spectroscopy of low pressure helium microwave driven discharges

    NASA Astrophysics Data System (ADS)

    Espinho, Susana; Felizardo, Edgar; Tatarova, Elena; Alves, Luis Lemos

    2016-09-01

    Surface wave driven discharges are reliable plasma sources that can produce high levels of vacuum and extreme ultraviolet radiation (VUV and EUV). The richness of the emission spectrum makes this type of discharge a possible alternative source in EUV/VUV radiation assisted applications. However, due to challenging experimental requirements, publications concerning EUV radiation emitted by microwave plasmas are scarce and a deeper understanding of the main mechanisms governing the emission of radiation in this spectral range is required. To this end, the EUV radiation emitted by helium microwave driven plasmas operating at 2.45 GHz has been studied for low pressure conditions. Spectral lines from excited helium atoms and ions were detected via emission spectroscopy in the EUV/VUV regions. Novel data concerning the spectral lines observed in the 23 - 33 nm wavelength range and their intensity behaviour with variation of the discharge operational conditions are presented. The intensity of all the spectral emissions strongly increases with the microwave power delivered to the plasma up to 400 W. Furthermore, the intensity of all the ion spectral emissions in the EUV range decreases by nearly one order of magnitude as the pressure was raised from 0.2 to 0.5 mbar. Work funded by FCT - Fundacao para a Ciencia e a Tecnologia, under Project UID/FIS/50010/2013 and grant SFRH/BD/52412/2013 (PD-F APPLAuSE).

  17. Calibrating the Helium Pressurization System for the Space Shuttle Liquid-Hydrogen Tank

    NASA Technical Reports Server (NTRS)

    2008-01-01

    Analysis of the results from the STS-114 tanking tests and subsequent launch called into question existing thermal and mass models of helium pressurization of the liquid hydrogen tank. This hydrogen tank, which makes up the bottom two-thirds of the External Tank, is pressurized prior to launch to avoid cavitation in the Shuttle Main Engine pumps. At about 2 minutes prior to launch, the main vent valve is closed, and pressurized helium flows into the tank ullage space to achieve set point pressure. As the helium gas cools, its pressure drops, calling for additional helium. Subsequent helium flows are provided in short, timed pulses. The number of pulses is taken as a rough leak indicator. An analysis of thermal models by Marshall Space Flight Center showed considerable uncertainty in the pressure-versus-time behavior of the helium ullage space and the ability to predict the number of pulses normally expected. Kennedy Space Center proposed to calibrate the dime-sized orifice, which together with valves, controls the helium flow quantity (Figure 1). Pressure and temperature sensors were installed to provide upstream and downstream measurements necessary to compute flow rate based on the orifice discharge coefficient. An assessment of flow testing with helium indicated an extremely costly use of this critical resource. In order to reduce costs, we proposed removing the orifices from each Mobile Launcher Platform (MLP) and asking Colorado Engineering Experiment Station Inc. (CEESI) to calibrate the flow. CEESI has a high-pressure air flow system with traceable flow meters capable of handling the large flow rates. However, literature research indicated that square-edged orifices of small diameters often exhibit significant hysteresis and nonrepeatability in the vicinity of choked or sonic flow. Fortunately, the MLP orifices behaved relatively well in testing (Figure 2). Using curve fitting of the air-flow data, in conjunction with ASME orifice modeling equations, a

  18. The thermodynamical instability induced by pressure ionization in fluid helium

    NASA Astrophysics Data System (ADS)

    Li, Qiong; Liu, Hai-Feng; Zhang, Gong-Mu; Zhao, Yan-Hong; Lu, Guo; Tian, Ming-Feng; Song, Hai-Feng

    2016-11-01

    A systematic study of pressure ionization is carried out in the chemical picture by the example of fluid helium. By comparing the variants of the chemical model, it is demonstrated that the behavior of pressure ionization depends on the construction of the free energy function. In the chemical model with the Coulomb free energy described by the Padé interpolation formula, thermodynamical instability induced by pressure ionization is found to be manifested by a discontinuous drop or a continuous fall and rise along the pressure-density curve as well as the pressure-temperature curve, which is very much like the first order liquid-liquid phase transition of fluid hydrogen from the first principles simulations. In contrast, in the variant chemical model with the Coulomb free energy term empirically weakened, no thermodynamical instability is induced when pressure ionization occurs, and the resulting equation of state achieves a good agreement with the first principles simulations of fluid helium.

  19. 80. DETAIL OF TYPICAL PRESSURE GAUGE IN NITROGEN AND HELIUM ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    80. DETAIL OF TYPICAL PRESSURE GAUGE IN NITROGEN AND HELIUM STORAGE AND TRANSFER CONTROL SKIDS ON NORTH END OF SLC-3W FUEL APRON - Vandenberg Air Force Base, Space Launch Complex 3, Launch Pad 3 West, Napa & Alden Roads, Lompoc, Santa Barbara County, CA

  20. Production of carbon monoxide-free hydrogen and helium from a high-purity source

    DOEpatents

    Golden, Timothy Christopher [Allentown, PA; Farris, Thomas Stephen [Bethlehem, PA

    2008-11-18

    The invention provides vacuum swing adsorption processes that produce an essentially carbon monoxide-free hydrogen or helium gas stream from, respectively, a high-purity (e.g., pipeline grade) hydrogen or helium gas stream using one or two adsorber beds. By using physical adsorbents with high heats of nitrogen adsorption, intermediate heats of carbon monoxide adsorption, and low heats of hydrogen and helium adsorption, and by using vacuum purging and high feed stream pressures (e.g., pressures of as high as around 1,000 bar), pipeline grade hydrogen or helium can purified to produce essentially carbon monoxide -free hydrogen and helium, or carbon monoxide, nitrogen, and methane-free hydrogen and helium.

  1. Stimulation of wound healing by helium atmospheric pressure plasma treatment

    NASA Astrophysics Data System (ADS)

    Vasile Nastuta, Andrei; Topala, Ionut; Grigoras, Constantin; Pohoata, Valentin; Popa, Gheorghe

    2011-03-01

    New experiments using atmospheric pressure plasma have found large application in treatment of living cells or tissues, wound healing, cancerous cell apoptosis, blood coagulation on wounds, bone tissue modification, sterilization and decontamination. In this study an atmospheric pressure plasma jet generated using a cylindrical dielectric-barrier discharge was applied for treatment of burned wounds on Wistar rats' skin. The low temperature plasma jet works in helium and is driven by high voltage pulses. Oxygen and nitrogen based impurities are identified in the jet by emission spectroscopy. This paper analyses the natural epithelization of the rats' skin wounds and two methods of assisted epithelization, a classical one using polyurethane wound dressing and a new one using daily atmospheric pressure plasma treatment of wounds. Systemic and local medical data, such as haematological, biochemical and histological parameters, were monitored during entire period of study. Increased oxidative stress was observed for plasma treated wound. This result can be related to the presence in the plasma volume of active species, such as O and OH radicals. Both methods, wound dressing and plasma-assisted epithelization, provided positive medical results related to the recovery process of burned wounds. The dynamics of the skin regeneration process was modified: the epidermis re-epitelization was accelerated, while the recovery of superficial dermis was slowed down.

  2. Cold Helium Pressurization for Liquid Oxygen/Liquid Methane Propulsion Systems: Fully-Integrated Hot-Fire Test Results

    NASA Technical Reports Server (NTRS)

    Morehead, R. L.; Atwell, M. J.; Melcher, J. C.; Hurlbert, E. A.

    2016-01-01

    Hot-fire test demonstrations were successfully conducted using a cold helium pressurization system fully integrated into a liquid oxygen (LOX) / liquid methane (LCH4) propulsion system (Figure 1). Cold helium pressurant storage at near liquid nitrogen (LN2) temperatures (-275 F and colder) and used as a heated tank pressurant provides a substantial density advantage compared to ambient temperature storage. The increased storage density reduces helium pressurant tank size and mass, creating payload increases of 35% for small lunar-lander sized applications. This degree of mass reduction also enables pressure-fed propulsion systems for human-rated Mars ascent vehicle designs. Hot-fire test results from the highly-instrumented test bed will be used to demonstrate system performance and validate integrated models of the helium and propulsion systems. A pressurization performance metric will also be developed as a means to compare different active pressurization schemes.

  3. Modelling and Experimental Verification of Pressure Wave Following Gaseous Helium Storage Tank Rupture

    NASA Astrophysics Data System (ADS)

    Chorowski, M.; Grabowski, M.; Jędrusyna, A.; Wach, J.

    Helium inventory in high energy accelerators, tokamaks and free electron lasers may exceed tens of tons. The gaseous helium is stored in steel tanks under a pressure of about 20 bar and at environment temperature. Accidental rupture of any of the tanks filled with the gaseous helium will create a rapid energy release in form of physical blast. An estimation of pressure wave distribution following the tank rupture and potential consequences to the adjacent research infrastructure and buildings is a very important task, critical in the safety aspect of the whole cryogenic system. According to the present regulations the TNT equivalent approach is to be applied to evaluate the pressure wave following a potential gas storage tank rupture. A special test stand was designed and built in order to verify experimentally the blast effects in controlled conditions. In order to obtain such a shock wave a pressurized plastic tank was used. The tank was ruptured and the resulting pressure wave was recorded using a spatially-distributed array of pressure sensors connected to a high-speed data acquisition device. The results of the experiments and the comparison with theoretical values obtained from thermodynamic model of the blast are presented. A good agreement between the simulated and measured data was obtained. Recommendations regarding the applicability of thermodynamic model of physical blast versus TNT approach, to estimate consequences of gas storage tank rupture are formulated. The laboratory scale experimental results have been scaled to ITER pressurized helium storage tanks.

  4. Pressure drop in the SHOOT superfluid helium acquisition system. [Superfluid Helium On-Orbit Transfer system

    NASA Technical Reports Server (NTRS)

    Nissen, J. A.; Maytal, B.; Van Sciver, S. W.

    1990-01-01

    Central to the upcoming Superfield Helium On-Orbit Transfer (SHOOT) demonstration is the fluid acquisition system. The main component of the system is a rectangular cross-section gallery area with one side fabricated from a fine mesh screen. He II enters through the screen and is delivered to a fountain effect pump. A model is proposed to predict the pressure drop as fluid flows through the screen and an expression is derived for the required gallery arm length as a function of flow rate demand. The model is compared with measurement of pressure drop in a full scale SHOOT gallery arm operated with flow rates of up to 850 cu dm/hr. The tests were conducted in the University of Wisconsin horizontal liquid helium flow facility to minimize gravitational effects.

  5. Design and Test of a Liquid Oxygen / Liquid Methane Thruster with Cold Helium Pressurization Heat Exchanger

    NASA Technical Reports Server (NTRS)

    Melcher, John C.; Morehead, Robert L.; Atwell, Matthew J.; Hurlbert, Eric A.

    2015-01-01

    A liquid oxygen / liquid methane 2,000 lbf thruster was designed and tested in conjuction with a nozzle heat exchanger for cold helium pressurization. Cold helium pressurization systems offer significant spacecraft vehicle dry mass savings since the pressurant tank size can be reduced as the pressurant density is increased. A heat exchanger can be incorporated into the main engine design to provide expansion of the pressurant supply to the propellant tanks. In order to study the systems integration of a cold-helium pressurization system, a 2,000 lbf thruster with a nozzle heat exchanger was designed for integration into the Project Morpheus vehicle at NASA Johnson Space Center. The testing goals were to demonstrate helium loading and initial conditioning to low temperatures, high-pressure/low temperature storage, expansion through the main engine heat exchanger, and propellant tank injection/pressurization. The helium pressurant tank was an existing 19 inch diameter composite-overwrap tank, and the targert conditions were 4500 psi and -250 F, providing a 2:1 density advantage compared to room tempatrue storage. The thruster design uses like-on-like doublets in the injector pattern largely based on Project Morpheus main engine hertiage data, and the combustion chamber was designed for an ablative chamber. The heat exchanger was installed at the ablative nozzle exit plane. Stand-alone engine testing was conducted at NASA Stennis Space Center, including copper heat-sink chambers and highly-instrumented spoolpieces in order to study engine performance, stability, and wall heat flux. A one-dimensional thermal model of the integrated system was completed. System integration into the Project Morpheus vehicle is complete, and systems demonstrations will follow.

  6. Compression of single-crystal magnesium oxide to 118 GPa and a ruby pressure gauge for helium pressure media

    NASA Astrophysics Data System (ADS)

    Jacobsen, S. D.; Holl, C. M.; Adams, K. A.; Fischer, R. A.; Martin, E. S.; Bina, C. R.; Lin, J.; Prakapenka, V. B.; Kubo, A.; Dera, P.

    2008-12-01

    Magnesium oxide (MgO, periclase) is among the most widely studied standard materials for testing experimental and theoretical methods of determining elastic properties. Because of its simple structure and geophysical relevance, knowledge of accurate elastic properties of MgO pertains to problems ranging from experimental pressure scales to interpreting Earth's seismic structure. The pressure-volume equation of state (EoS) of single-crystal MgO has been studied in diamond-anvil cells loaded with helium to 118 GPa and in a non-hydrostatic KCl pressure medium to 87 GPa using monochromatic synchrotron X-ray diffraction at GSECARS (Sector 13, APS). A third-order Birch-Murnaghan fit to the non-hydrostatic P-V data (KCl medium) yields typical results for the initial volume, V0=74.698(7)Å3, bulk modulus, KT0=164(1)GPa, and pressure derivative, K'=4.05(4) using the non-hydrostatic ruby pressure gauge of Mao et al. (1978). However, compression of MgO in helium yields V0=74.697(6)Å3, KT0=159.6(6)GPa, and K'=3.74(3) using the quasi-hydrostatic ruby gauge of Mao et al. (1986). In helium, the fitted equation of state of MgO underdetermines the pressure by 8% at 100 GPa when compared with the primary MgO pressure scale of Zha et al. (2000), with KT0=160.2GPa and K'=4.03. The results suggest that either the compression mechanism of MgO changes above 40 GPa (in helium), or the ruby pressure gauge requires adjustment for the softer helium pressure medium. We provide a revised ruby pressure gauge for helium pressure media against the primary MgO pressure scale, which will be useful for future high-pressure crystallographic studies of minerals compressed with helium in the 25-140 GPa range of the lower mantle.

  7. Effect of high power CO2 and Yb:YAG laser radiation on the characteristics of TIG arc in atmospherical pressure argon and helium

    NASA Astrophysics Data System (ADS)

    Wu, Shikai; Xiao, Rongshi

    2015-04-01

    The effects of laser radiation on the characteristics of the DC tungsten inert gas (TIG) arc were investigated by applying a high power slab CO2 laser and a Yb:YAG disc laser. Experiment results reveal that the arc voltage-current curve shifts downwards, the arc column expands, and the arc temperature rises while the high power CO2 laser beam vertically interacts with the TIG arc in argon. With the increase of the laser power, the voltage-current curve of the arc shifts downwards more significantly, and the closer the laser beam impingement on the arc to the cathode, the more the decrease in arc voltage. Moreover, the arc column expansion and the arc temperature rise occur mainly in the region between the laser beam incident position and the anode. However, the arc characteristics hardly change in the cases of the CO2 laser-helium arc and YAG laser-arc interactions. The reason is that the inverse Bremsstrahlung absorption coefficients are greatly different due to the different electron densities of the argon and helium arcs and the different wave lengths of CO2 and YAG lasers.

  8. An advanced regulator for the helium pressurization systems of the Space Shuttle OMS and RCS

    NASA Technical Reports Server (NTRS)

    Wichmann, H.

    1973-01-01

    The Space Shuttle Orbit Maneuvering System and Reaction Control System are pressure-fed rocket propulsion systems utilizing earth storable hypergolic propellants and featuring engines of 6000 lbs and 900 lbs thrust, respectively. The helium pressurization system requirements for these propulsion systems are defined and the current baseline pressurization systems are described. An advanced helium pressure regulator capable of meeting both OMS and RCS helium pressurization system requirements is presented and its operating characteristics and predicted performance characteristics are discussed.

  9. Study on the Property Evolution of Atmospheric Pressure Plasma Jets in Helium

    NASA Astrophysics Data System (ADS)

    Chang, Zhengshi; Yao, Congwei; Mu, Haibao; Zhang, Guanjun

    2014-01-01

    Nowadays atmospheric pressure plasma jets (APPJs) are being widely applied to many fields and have received growing interests from cold plasma community. A helium APPJ with co-axial double ring electrode configuration is driven by an AC high voltage power with an adjustable frequency of 1-60 kHz. Experiments are conducted for acquiring the electrical and optical properties of APPJ, including the discharge mode, current peak's phase and APPJ's length, etc. Moreover, the actions of Penning effect on APPJ are discussed by adding impurity nitrogen into highly pure helium. The results may contribute to further research and applications of APPJs.

  10. The physiological effects of hydrostatic pressure are not equivalent to those of helium pressure on Rana pipiens.

    PubMed Central

    Dodson, B A; Furmaniuk, Z W; Miller, K W

    1985-01-01

    The effects of helium pressure and hydrostatic pressure on Rana pipiens were compared. Both agents caused paralysis at pressures greater than 135 atmospheres (1 atm = 101.325 kPa), but the median pressure for hydrostatic-pressure-induced paralysis was 35 atm less than that for helium pressure. When the ability of both pressurizing agents to reverse urethane-induced anaesthesia was compared, it was found that hydrostatic pressure raised the median dose for anaesthesia 2.2-fold more per atmosphere than did helium pressure. Animals that were lightly anaesthetized by urethane at 110 atm hydrostatic pressure became more deeply anaesthetized when helium was admitted isobarically into the pressure chamber. This difference in depth of anaesthesia between hydrostatic pressure and helium pressure is consistent with helium possessing an inherent anaesthetic effect. The abilities of other gases to pressure-reverse urethane anaesthesia were also determined. The degree of attenuation of the full pressure reversal effect observed with hydrostatic pressure was proportional to the lipid solubility of the gases, increasing in the order helium, neon, hydrogen, nitrogen and argon. Our data on the difference between hydrostatic and helium pressure are consistent with the critical volume hypothesis. PMID:3874954

  11. High pressure gas metering project

    SciTech Connect

    Tripp, L.R.

    1980-07-07

    The initial research and development of a system that uses high pressure helium gas to pressurize vessels over a wide range of pressurization rates, vessel volumes, and maximum test pressures are described. A method of controlling the mass flow rate in a test vessel was developed by using the pressure difference across a capillary tube. The mass flow rate is related to the pressurization rate through a real gas equation of state. The resulting mass flow equation is then used in a control algorithm. Plots of two typical pressurization tests run on a manually operated system are included.

  12. Long and high conductance helium heat pipe

    NASA Astrophysics Data System (ADS)

    Gully, Philippe

    2014-11-01

    This paper reports on the development and the thermal tests of two superfluid helium heat pipes. They feature a copper braid located inside a 6 mm outer diameter stainless tube fitted with copper ends for mechanical anchoring. The copper braid is the support of the Rollin superfluid helium film which is essential in the heat transfer. The extremely low thickness of the liquid film allows for a low filling pressure, making the technology very simple without the need for any external hot reservoir and with the possibility to easily bend the tube. We present the design and discuss the thermal performance of two heat pipes tested for several filling pressures, adverse tilt angles and in 1.4-2.0 K temperature range. A minimum filling pressure (0.6 MPa) is needed to get significant transport capacity. A 12 mW transport capacity is achieved for 3.0 MPa filling pressure. It is shown that the long heat pipe (1.2 m) and the short one (0.25 m) have similar thermal performance in adverse tilt. At 1.7 K the long heat pipe, 120 g in weight, reaches a transport capacity of 5.7 mW/4.2 mW for a tilt angle of 0 / 60° and a thermal conductance of 600 mW/K for 4 mW transferred power. When the condenser reaches the super-fluid transition temperature, the Rollin film accelerates the cool down of the evaporator down to 1.7 K with a heating power applied to the evaporator.

  13. Pressure dependent line shifts of atoms in superfluid helium

    NASA Astrophysics Data System (ADS)

    Putlitz, Gisbert Zu; Baumann, I.; Foerste, M.; Jungmann, K.; Tabbert, B.; Wiebe, J.; Zühlke, C.

    1998-05-01

    Defect atoms and ions in superfluid helium open the possibility to study the nature of the defect with respect to its environment. Depending on the electronic structure and charge of the foreign particles two forms of defects are built: so-called "bubbles" and "snowballs"(B. Tabbert, H. Günther and G. zu Putlitz, J. Low. Temp. Phys.) 109, 653 (1997). Defect ions are produced by laser sputtering, they can recombine with electrons from a field emission tip(I. Baumann, M. Foerste, K. Layer, G. zu Putlitz, B. Tabbert and C. Zühlke, J. Low. Temp. Phys.) 110, 213 (1998). The spectral lines observed are shifted and broadened compared to the free atomic transitions. The radius and the shape of the defect structure are supposed to be pressure dependent. Consequently we employ a pressure cell which allows for the spectroscopic measurements up to external pressures of 40 bar. Since liquid helium solidifies above 25 bar a study of the phase transition from the liquid to the solid can be made.

  14. Separation of helium-methane mixtures by pressure swing adsorption

    SciTech Connect

    Cheng, H.C.; Hill, F.B.

    1985-01-01

    The separation of mixtures of helium and methane using a single column of activated carbon in a pressure swing adsorption process was studied experimentally. Process performance was predicted with an average error of 10% or less by a local-equilibrium well-stirred cell model in which dead volumes at the feed and product ends of the column were accounted for. Systematic differences between experiment and model were ascribed to omission from the model of flow resistance and heat release. 17 references, 8 figures, 1 table.

  15. Lightweight Liquid Helium Dewar for High-Altitude Balloon Payloads

    NASA Technical Reports Server (NTRS)

    Kogut, Alan; James, Bryan; Fixsen, Dale

    2013-01-01

    Astrophysical observations at millimeter wavelengths require large (2-to-5- meter diameter) telescopes carried to altitudes above 35 km by scientific research balloons. The scientific performance is greatly enhanced if the telescope is cooled to temperatures below 10 K with no emissive windows between the telescope and the sky. Standard liquid helium bucket dewars can contain a suitable telescope for telescope diameter less than two meters. However, the mass of a dewar large enough to hold a 3-to-5-meter diameter telescope would exceed the balloon lift capacity. The solution is to separate the functions of cryogen storage and in-flight thermal isolation, utilizing the unique physical conditions at balloon altitudes. Conventional dewars are launched cold: the vacuum walls necessary for thermal isolation must also withstand the pressure gradient at sea level and are correspondingly thick and heavy. The pressure at 40 km is less than 0.3% of sea level: a dewar designed for use only at 40 km can use ultra thin walls to achieve significant reductions in mass. This innovation concerns new construction and operational techniques to produce a lightweight liquid helium bucket dewar. The dewar is intended for use on high-altitude balloon payloads. The mass is low enough to allow a large (3-to-5-meter) diameter dewar to fly at altitudes above 35 km on conventional scientific research balloons without exceeding the lift capability of the balloon. The lightweight dewar has thin (250- micron) stainless steel walls. The walls are too thin to support the pressure gradient at sea level: the dewar launches warm with the vacuum space vented continuously during ascent to eliminate any pressure gradient across the walls. A commercial 500-liter storage dewar maintains a reservoir of liquid helium within a minimal (hence low mass) volume. Once a 40-km altitude is reached, the valve venting the vacuum space of the bucket dewar is closed to seal the vacuum space. A vacuum pump then

  16. Microwave capillary plasmas in helium at atmospheric pressure

    NASA Astrophysics Data System (ADS)

    Santos, M.; Noël, C.; Belmonte, T.; Alves, L. L.

    2014-07-01

    This work uses both simulations and experiments to study helium plasmas (99.999% purity), sustained by surface-wave discharges (2.45 GHz frequency) in capillary tubes (3 mm in-radius) at atmospheric pressure. The simulations use a self-consistent homogeneous and stationary collisional-radiative model (CRM) that solves the rate balance equations for the different species present in the plasma (electrons, He+ and He_2^+ ions, He(n ⩽ 6) excited states and He_2^* excimers) and the gas thermal balance equation, coupled with the two-term electron Boltzmann equation (including direct and stepwise inelastic and superelastic collisions as well as electron-electron collisions). The experiments use optical emission spectroscopy diagnostics to measure the electron density ne (from the Hβ Stark broadening), the gas temperature Tg (from the ro-vibrational transitions of OH, present at trace concentrations) and the populations of excited states in the energy region 22.7-24.2 eV, whose spectrum allows determining the excitation temperature Texc. Measurements yield ne ≃ (2.45 ± 1.4) × 1013 cm-3, Tg ≃ 1700 ± 100 K and Texc ≃ 2793 ± 116 K, for a ˜180 ± 10 W power coupled and ˜1 cm length plasma column. The model predictions at ne = 1.7 × 1013 cm-3 are in very good agreement with measurements yielding Tg = 1800 K, Texc = 2792 K (for ˜30% average relative error between calculated and measured excited-state densities), and a power absorbed by the plasma per unit length of 165 W cm-1. The model results depend strongly on ne, and hence on the plasma conductivity and on the power coupled to the plasma. The coupling of a thermal module to the CRM has been shown to be crucial. Increasing the electron density leads to very high gas temperature values, which limits the variation range of (ne, Tg) as input parameters to the model.

  17. Measured pressure distributions of large-angle cones in hypersonic flows of tetrafluoromethane, air, and helium

    NASA Technical Reports Server (NTRS)

    Jones, R. A.; Hunt, J. L.

    1973-01-01

    An experimental study of surface pressure distributions on a family of blunt and sharp large angle cones was made in hypersonic flows of helium, air, and tetrafluoromethane. The effective isentropic exponents of these flows were 1.67, 1.40, and 1.12. Thus, the effect of large shock density ratios such as might be encountered during planetary entry because of real-gas effects could be studied by comparing results in tetrafluoromethane with those in air and helium. It was found that shock density ratio had a large effect on both shock shape and pressure distribution. The differences in pressure distribution indicate that for atmospheric flight at high speed where real-gas effects produce large shock density ratios, large-angle cone vehicles can be expected to experience different trim angles of attack, drag coefficient, and lift-drag ratios than those for ground tests in air wind tunnels.

  18. Pressure drop measurements on supercritical helium cooled cable in conduit conductors

    SciTech Connect

    Daugherty, M.A.; Huang, Y.; Van Sciver, S.W. . Applied Superconductivity Center)

    1989-03-01

    Forced flow cable-in-conduit conductors with large cooled surface areas provide excellent stability margins at the price of high frictional losses and large pumping power requirements. For extensive projects such as the International Thermonuclear Experimental Reactor design cooperation it is essential to know the pressure drops to be expected from different conductor geometries and operating conditions. To measure these pressure drops a flow loop was constructed to circulate supercritical helium through different conductors. The loop is surrounded by a 5 K radiation shield to allow for stable operation at the required temperatures. A coil heat exchanger immersed in a helium bath is used to remove the heat generated by the pump. Pressure drops are measured across 1 meter lengths of the conductors for various mass flow rates. Friction factor versus Reynolds number plots are used to correlate the data.

  19. Pressure drop measurements on supercritical helium cooled cable in conduit conductors

    SciTech Connect

    Daugherty, M.A.; Huang, Y.; Van Sciver, S.W.

    1988-01-01

    Forced flow cable-in-conduit conductors with large cooled surface areas provide excellent stability margins at the price of high frictional losses and large pumping power requirements. For extensive projects such as the International Thermonuclear Experimental Reactor design cooperation it is essential to know the pressure drops to be expected from different conductor geometries and operating conditions. To measure these pressure drops a flow loop was constructed to circulate supercritical helium through different conductors. The loop is surrounded by a 5 K radiation shield to allow for stable operation at the required temperatures. A coil heat exchanger immersed in a helium bath is used to remove the heat generated by the pump. Pressure drops are measured across 1 meter lengths of the conductors for various mass flow rates. Friction factor versus Reynolds number plots are used to correlate the data. 12 refs., 4 figs. 1 tab.

  20. Noncavitating Pump For Liquid Helium

    NASA Technical Reports Server (NTRS)

    Hasenbein, Robert; Izenson, Michael; Swift, Walter; Sixsmith, Herbert

    1996-01-01

    Immersion pump features high efficiency in cryogenic service. Simple and reliable centrifugal pump transfers liquid helium with mass-transfer efficiency of 99 percent. Liquid helium drawn into pump by helical inducer, which pressurizes helium slightly to prevent cavitation when liquid enters impeller. Impeller then pressurizes liquid. Purpose of pump to transfer liquid helium from supply to receiver vessel, or to provide liquid helium flow for testing and experimentation.

  1. Defective germanene as a high-efficiency helium separation membrane: a first-principles study

    NASA Astrophysics Data System (ADS)

    Zhu, Lei; Chang, Xiao; He, Daliang; Xue, Qingzhong; Li, Xiaofang; Jin, Yakang; Zheng, Haixia; Ling, Cuicui

    2017-03-01

    Development of low energy cost membranes for separating helium from natural gas is highly desired. Using van der Waals-corrected first-principles density functional theory (DFT) calculations, we theoretically investigate the helium separation performance of divacancy-defective germanene. The 555 777 divacancy-defective germanene presents a 0.53 eV energy barrier for helium, which is slightly larger than the energy threshold value of gas molecule penetration of a membrane (0.5 eV). Thus, the 555 777 divacancy-defective germanene is difficult for helium to permeate, except under high temperature or pressure. However, the 585 divacancy-defective germanene presents a surmountable energy barrier (0.27 eV) for helium, and it shows extremely high helium selectivities relative to other studied gas molecules. Especially, the He/Ne selectivity can be as high as 1 × 104 at room temperature. Together with the acceptable permeance for helium, the 585 divacancy-defective germanene can be used for helium separation with remarkably good performance.

  2. Defective germanene as a high-efficiency helium separation membrane: a first-principles study.

    PubMed

    Zhu, Lei; Chang, Xiao; He, Daliang; Xue, Qingzhong; Li, Xiaofang; Jin, Yakang; Zheng, Haixia; Ling, Cuicui

    2017-03-01

    Development of low energy cost membranes for separating helium from natural gas is highly desired. Using van der Waals-corrected first-principles density functional theory (DFT) calculations, we theoretically investigate the helium separation performance of divacancy-defective germanene. The 555 777 divacancy-defective germanene presents a 0.53 eV energy barrier for helium, which is slightly larger than the energy threshold value of gas molecule penetration of a membrane (0.5 eV). Thus, the 555 777 divacancy-defective germanene is difficult for helium to permeate, except under high temperature or pressure. However, the 585 divacancy-defective germanene presents a surmountable energy barrier (0.27 eV) for helium, and it shows extremely high helium selectivities relative to other studied gas molecules. Especially, the He/Ne selectivity can be as high as 1 × 10(4) at room temperature. Together with the acceptable permeance for helium, the 585 divacancy-defective germanene can be used for helium separation with remarkably good performance.

  3. Plasmid DNA damage induced by helium atmospheric pressure plasma jet

    NASA Astrophysics Data System (ADS)

    Han, Xu; Cantrell, William A.; Escobar, Erika E.; Ptasinska, Sylwia

    2014-03-01

    A helium atmospheric pressure plasma jet (APPJ) is applied to induce damage to aqueous plasmid DNA. The resulting fractions of the DNA conformers, which indicate intact molecules or DNA with single- or double-strand breaks, are determined using agarose gel electrophoresis. The DNA strand breaks increase with a decrease in the distance between the APPJ and DNA samples under two working conditions of the plasma source with different parameters of applied electric pulses. The damage level induced in the plasmid DNA is also enhanced with increased plasma irradiation time. The reactive species generated in the APPJ are characterized by optical emission spectra, and their roles in possible DNA damage processes occurring in an aqueous environment are also discussed.

  4. Applying Chemical Potential and Partial Pressure Concepts to Understand the Spontaneous Mixing of Helium and Air in a Helium-Inflated Balloon

    ERIC Educational Resources Information Center

    Jee-Yon Lee; Hee-Soo Yoo; Jong Sook Park; Kwang-Jin Hwang; Jin Seog Kim

    2005-01-01

    The spontaneous mixing of helium and air in a helium-inflated balloon is described in an experiment in which the partial pressure of the gases in the balloon are determined from the mole factions and the total pressure measured in the balloon. The results described provide a model for teaching concepts of partial pressure, chemical potential, and…

  5. Applying Chemical Potential and Partial Pressure Concepts to Understand the Spontaneous Mixing of Helium and Air in a Helium-Inflated Balloon

    ERIC Educational Resources Information Center

    Jee-Yon Lee; Hee-Soo Yoo; Jong Sook Park; Kwang-Jin Hwang; Jin Seog Kim

    2005-01-01

    The spontaneous mixing of helium and air in a helium-inflated balloon is described in an experiment in which the partial pressure of the gases in the balloon are determined from the mole factions and the total pressure measured in the balloon. The results described provide a model for teaching concepts of partial pressure, chemical potential, and…

  6. Evaluation of candidate Stirling engine heater tube alloys after 3500 hours exposure to high pressure doped hydrogen or helium. Final report

    SciTech Connect

    Misencik, J.A.; Titran, R.H.

    1984-10-01

    Sixteen commercial tubing alloys were endurance tested at 820/sup 0/ C, 15 MPa in a diesel-fuel fired Stirling engine simulator materials test rig: iron-base N-155, A-286, Incoloy 800, 19-9DL, CG-27, W-545, 12RN72, 253MA, Sanicro 31H and Sanicro 32; nickel-base Inconel 601, Inconel 625, Inconel 718, Inconel 750 and Pyromet 901; and cobalt-base HS-188. The iron-nickel alloys CG-27 and Pyromet 901 exhibited superior oxidation/corrosion resistance to the diesel-fuel combustion products and surpassed the design criterias' 3500 h creep-rupture endurance life. Three other alloys, Inconel 625, W-545, and 12RN72, had creep-rupture failures after 2856, 2777, and 1598 h, respectively. Hydrogen permeability coefficients determined after 250 h of rig exposure show that Pyromet 901 had the lowest Phi value, 0.064x10/sup -6/ cm/sup 2//s MPa/sup 1///sup 2/. The next five hairpin tubes, CG-27, Inconel 601, Inconel 718(wd), Inconel 750, and 12RN72(cw) all had Phi values below 0.2x10/sup -6/ more than a decade lower than the design criteria. Based upon its measured high strength and low hydrogen permeation, CG-27 was selected for 3500 h endurance testing at 21 MPa gas pressure and 820/sup 0/C. Results of the high pressure, 21 MPa, CG-27 endurance test demonstrated that the 1.0 vol % C0/sub 2/ dopant is an effective deterrent to hydrogen permeation. The 21 MPa hydrogen gas pressure apparent permeability coefficient at 820/sup 0/C approached 0.1x10/sup -6/ cm/sup 2/sec MPa/sup 1///sup 2/ after 500 hr, the same as the 15 MPa test. Even at this higher gas pressure and comparable permeation rate, CG-27 passed the 3500 hr endurance test without creep-rupture failures. It is concluded that the CG-27 alloy, in the form of thin wall tubing is suitable for Stirling engine applications at 820/sup 0/C and gas pressures up to 21 MPa.

  7. Study of a Helium Atmospheric Pressure Dielectric Barrier Discharge at 100 kHz

    DTIC Science & Technology

    2003-07-20

    model. The calculations agree well with the experiment when a small admixture of nitrogen is assumed and the destruction of the helium excimers is... excimer molecule to the radiating state via collision with a helium atom. The destructionfrequency in our model is taken to be l06’s". The financial...UNCLASSIFIED Defense Technical Information Center Compilation Part Notice ADP014961 TITLE: Study of a Helium Atmospheric Pressure Dielectric Barrier

  8. 75 FR 53353 - Notice of Availability of Final Interim Staff Guidance Document No. 25 “Pressure and Helium...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-08-31

    ... COMMISSION Notice of Availability of Final Interim Staff Guidance Document No. 25 ``Pressure and Helium... Guidance Document No. 25 (ISG-25) ``Pressure and Helium Leakage Testing of the Confinement Boundary of... helium leakage testing and ASME Code required pressure (hydrostatic/pneumatic) testing that is...

  9. Future nuclear plants could put pressure on helium supply

    NASA Astrophysics Data System (ADS)

    Banks, Michael

    2009-05-01

    The next generation of nuclear power stations could put extra demands on the world's supply of helium gas, researchers said at a meeting last month in Cambridge, UK, on the future of helium. The new power stations, which each would require several hundred tonnes of helium in their lifetimes to cool the reactor core, could increase the cost of the gas and make life harder for researchers who need to buy it for magnetic resonance imaging (MRI) experiments and low-temperature physics.

  10. High efficiency pump for space helium transfer

    NASA Technical Reports Server (NTRS)

    Hasenbein, Robert; Izenson, Michael G.; Swift, Walter L.; Sixsmith, Herbert

    1991-01-01

    A centrifugal pump was developed for the efficient and reliable transfer of liquid helium in space. The pump can be used to refill cryostats on orbiting satellites which use liquid helium for refrigeration at extremely low temperatures. The pump meets the head and flow requirements of on-orbit helium transfer: a flow rate of 800 L/hr at a head of 128 J/kg. The overall pump efficiency at the design point is 0.45. The design head and flow requirements are met with zero net positive suction head, which is the condition in an orbiting helium supply Dewar. The mass transfer efficiency calculated for a space transfer operation is 0.99. Steel ball bearings are used with gas fiber-reinforced teflon retainers to provide solid lubrication. These bearings have demonstrated the longest life in liquid helium endurance tests under simulated pumping conditions. Technology developed in the project also has application for liquid helium circulation in terrestrial facilities and for transfer of cryogenic rocket propellants in space.

  11. Low temperature plasma RF capacitive discharge in helium at atmospheric pressure

    NASA Astrophysics Data System (ADS)

    Hakki, A.; Fayrushin, I.; Kashapov, N.

    2016-01-01

    The paper describes Low temperature plasma RF capacitive discharge in helium at atmospheric pressure. The circuit has been done, to obtain output currentabout 90mA,and the maximum power was 100W, The frequency of the discharging was f = 40MHz.Twolamps (DУ-50) were used in power supply. Helium consumption was about 1.5l/m.

  12. The pressure rise simulation when helium pipes are broken in the ITER cryostat

    SciTech Connect

    Nishida, K.; Honda, T.; Hamada, K.; Matsui, K.

    1996-12-31

    The superconducting coil has a potential risk of its cryostat pressure rising as a result of cold helium leaked from coolant pipes. If the cryostat pressure rapidly rises until all inventory helium expands to room temperature in a narrow cryostat space. All components inside of the cryostat must be designed for the saturated pressure. The cryostat pressure rise caused by helium leakage may be slower than ideal heat input to inventory helium. Thus, it is necessary to estimate the case when the pipes are broken in the ITER cryostat as the worst fault for safety aspects. A computer simulation code has been developed to calculate the pressure and temperature rise for the above fault conditions so that safety measures can be adopted.

  13. Simplified Methodology to Estimate the Maximum Liquid Helium (LHe) Cryostat Pressure from a Vacuum Jacket Failure

    NASA Technical Reports Server (NTRS)

    Ungar, Eugene K.; Richards, W. Lance

    2015-01-01

    tool, final verification of the dewar pressure vessel design requires a complete, detailed real fluid compressible flow model of the vent stack. The wall heat flux resulting from a loss of vacuum insulation increases the dewar pressure, which actuates the pressure relief mechanism and results in high-speed flow through the dewar vent stack. At high pressures, the flow can be choked at the vent stack inlet, at the exit, or at an intermediate transition or restriction. During previous SOFIA analyses, it was observed that there was generally a readily identifiable section of the vent stack that would limit the flow – e.g., a small diameter entrance or an orifice. It was also found that when the supercritical helium was approximated as an ideal gas at the dewar condition, the calculated mass flow rate based on choking at the limiting entrance or transition was less than the mass flow rate calculated using the detailed real fluid model2. Using this lower mass flow rate would yield a conservative prediction of the dewar’s wall heat flux capability. The simplified method of the current work was developed by building on this observation.

  14. High pressure mechanical seal

    NASA Technical Reports Server (NTRS)

    Babel, Henry W. (Inventor); Anderson, Raymond H. (Inventor)

    1996-01-01

    A relatively impervious mechanical seal is formed between the outer surface of a tube and the inside surface of a mechanical fitting of a high pressure fluid or hydraulic system by applying a very thin soft metal layer onto the outer surface of the hard metal tube and/or inner surface of the hard metal fitting. The thickness of such thin metal layer is independent of the size of the tube and/or fittings. Many metals and alloys of those metals exhibit the requisite softness, including silver, gold, tin, platinum, indium, rhodium and cadmium. Suitably, the coating is about 0.0025 millimeters (0.10 mils) in thickness. After compression, the tube and fitting combination exhibits very low leak rates on the order or 10.sup.-8 cubic centimeters per second or less as measured using the Helium leak test.

  15. High pressure mechanical seal

    NASA Technical Reports Server (NTRS)

    Babel, Henry W. (Inventor); Fuson, Phillip L. (Inventor); Chickles, Colin D. (Inventor); Jones, Cherie A. (Inventor); Anderson, Raymond H. (Inventor)

    1995-01-01

    A relatively impervious mechanical seal is formed between the outer surface of a tube and the inside surface of a mechanical fitting of a high pressure fluid or hydraulic system by applying a very thin soft metal layer onto the outer surface of the hard metal tube and/or inner surface of the hard metal fitting, prior to swaging the fitting onto the tube. The thickness of such thin metal layer is independent of the size of the tube and/or fittings. Many metals and alloys of those metals exhibit the requisite softness, including silver, gold, nickel, tin, platinum, indium, rhodium and cadmium. Suitably, the coating is about 0.0025 millimeters (0.10 mils) in thickness. After swaging, the tube and fitting combination exhibits very low leak rates on the order or 10.sup.-8 cubic centimeters per second or less as meaured using the Helium leak test.

  16. Contrasting pressure-support ventilation and helium-oxygen during exercise in severe COPD.

    PubMed

    Hussain, Omar; Collins, Eileen G; Adiguzel, Nalan; Langbein, W Edwin; Tobin, Martin J; Laghi, Franco

    2011-03-01

    Helium-oxygen mixtures and pressure-support ventilation have been used to unload the respiratory muscles and increase exercise tolerance in COPD. Considering the different characteristics of these techniques, we hypothesized that helium-oxygen would be more effective in reducing exercise-induced dynamic hyperinflation than pressure-support. We also hypothesized that patients would experience greater increases in respiratory rate and minute ventilation with helium-oxygen than with pressure-support. The hypotheses were tested in ten patients with severe COPD (FEV(1) = 28 ± 3% predicted [mean ± SE]) during constant-load cycling (80% maximal workrate) while breathing 30% oxygen-alone, helium-oxygen, and pressure-support in randomized order. As hypothesized, helium-oxygen had greater impact on dynamic hyperinflation than did pressure-support (end-exercise; p = 0.03). For the most part of exercise, respiratory rate and minute ventilation were greater with helium-oxygen than with pressure-support (p ≤ 0.008). During the initial phases of exercise, helium-oxygen caused less rib-cage muscle recruitment than did pressure-support (p < 0.03), and after the start of exercise it caused greater reduction in inspiratory reserve volume (p ≤ 0.02). Despite these different responses, helium-oxygen and pressure-support caused similar increases in exercise duration (oxygen-alone: 6.9 ± 0.8 min; helium-oxygen: 10.7 ± 1.4 min; pressure-support: 11.2 ± 1.6 min; p = 0.003) and similar decreases in inspiratory effort (esophageal pressure-time product), respiratory drive, pulmonary resistance, dyspnea and leg effort (p < 0.03). In conclusion, helium-oxygen reduced exercise-induced dynamic hyperinflation by improving the relationship between hyperinflation and minute ventilation. In contrast, pressure-support reduced hyperinflation solely as a result of lowering ventilation. Helium-oxygen was more effective in reducing exercise-induced dynamic hyperinflation in severe COPD, and was

  17. Helium-3 and helium-4 acceleration by high power laser pulses for hadron therapy

    DOE PAGES

    Bulanov, S. S.; Esarey, E.; Schroeder, C. B.; ...

    2015-06-24

    The laser driven acceleration of ions is considered a promising candidate for an ion source for hadron therapy of oncological diseases. Though proton and carbon ion sources are conventionally used for therapy, other light ions can also be utilized. Whereas carbon ions require 400 MeV per nucleon to reach the same penetration depth as 250 MeV protons, helium ions require only 250 MeV per nucleon, which is the lowest energy per nucleon among the light ions (heavier than protons). This fact along with the larger biological damage to cancer cells achieved by helium ions, than that by protons, makes thismore » species an interesting candidate for the laser driven ion source. Two mechanisms (magnetic vortex acceleration and hole-boring radiation pressure acceleration) of PW-class laser driven ion acceleration from liquid and gaseous helium targets are studied with the goal of producing 250 MeV per nucleon helium ion beams that meet the hadron therapy requirements. We show that He3 ions, having almost the same penetration depth as He4 with the same energy per nucleon, require less laser power to be accelerated to the required energy for the hadron therapy.« less

  18. SHOOT flowmeter and pressure transducers. [for Superfluid Helium On-Orbit Transfer system

    NASA Technical Reports Server (NTRS)

    Kashani, A.; Wilcox, R. A.; Spivak, A. L.; Daney, D. E.; Woodhouse, C. E.

    1990-01-01

    A venturi flowmeter has been designed and constructed for the Superfluid Helium On-Orbit Transfer (SHOOT) experiment. The calibration results obtained from the SHOOT venturi demonstrate the ability of the flowmeter to meet the requirements of the SHOOT experiment. Flow rates as low as 20 cu dm/h and as high as 800 cu dm/h have been measured. Performances of the SHOOT differential and absolute pressure transducers, which have undergone calibration and vibration tests, are also included. Throughout the tests, the responses of the transducers remained linear and repeatable to within + or - 1 percent of the full scales of the transducers.

  19. Miscibility of hydrogen and helium mixtures at megabar pressures

    SciTech Connect

    Klepeis, J.E.; Schafer, K.J.; Barbee, T.W. III; Ross, M.

    1991-09-01

    Models of Jupiter and Saturn postulate a central rock core surrounded by a fluid mixture of hydrogen and helium. These models suggest that the mixture is undergoing phase separation in Saturn but not Jupiter. State-of-the-art total energy calculations of the enthalpy of mixing for ordered alloys of hydrogen and helium confirm that at least partial phase separation has occurred in Saturn and predict that this process has also begun in Jupiter. 15 refs., 2 figs.

  20. Analysis of trace halocarbon contaminants in ultra high purity helium

    NASA Technical Reports Server (NTRS)

    Fewell, Larry L.

    1994-01-01

    This study describes the analysis of ultra high purity helium. Purification studies were conducted and containment removal was effected by the utilization of solid adsorbent purge-trap systems at cryogenic temperatures. Volatile organic compounds in ultra high purity helium were adsorbed on a solid adsorbent-cryogenic trap, and thermally desorbed trace halocarbon and other contaminants were analyzed by combined gas chromatography-mass spectrometry.

  1. High resolution spectroscopy of six new extreme helium stars

    NASA Technical Reports Server (NTRS)

    Heber, U.; Jones, G.; Drilling, J. S.

    1986-01-01

    High resolution spectra of six newly discovered extreme helium stars are presented. LSS 5121 is shown to be a spectroscopical twin of the hot extreme helium star HD 160641. A preliminary LTE analysis of LSS 3184 yielded an effective temperature of 22,000 K and a surface gravity of log g = 3.2. Four stars form a new subgroup, classified by sharp-lined He I spectra and pronounced O II spectra, and it is conjectured that these lie close to the Eddington limit. The whole group of extreme helium stars apparently is inhomogeneous with respect to luminosity to mass ratio and chemical composition.

  2. Development of miniaturized, spectroscopically assisted Penning gauges for fractional helium and hydrogen neutral pressure measurements

    SciTech Connect

    Flesch, K.; Kremeyer, T.; Schmitz, O.; Soukhanovskii, V.; Wenzel, U.

    2016-08-18

    Direct measurements of the helium (He) fractional neutral pressure in the neutral gas around fusion devices is challenging because of the small mass difference between the abundant D-2 molecules and the He ash which will be produced by deuterium-tritium fusion. In order to study He exhaust, an in situ Penning gauge system is being developed at UW-Madison that is optimized for good pressure and high spectroscopic sensitivity. There are three different anode geometries that we have studied regarding their vacuum electrostatic fields, light output, and ion current. The light output of the two new anode configurations are at least one order of magnitude above the currently available designs, hence improving the spectroscopic sensitivity at similar total neutral pressure resolution.

  3. Development of miniaturized, spectroscopically assisted Penning gauges for fractional helium and hydrogen neutral pressure measurements

    SciTech Connect

    Flesch, K. Kremeyer, T.; Schmitz, O.; Soukhanovskii, V.; Wenzel, U.

    2016-11-15

    Direct measurements of the helium (He) fractional neutral pressure in the neutral gas around fusion devices is challenging because of the small mass difference between the abundant D{sub 2} molecules and the He ash which will be produced by deuterium-tritium fusion. To study He exhaust, an in situ Penning gauge system is being developed at UW-Madison that is optimized for good pressure and high spectroscopic sensitivity. Three different anode geometries have been studied regarding their vacuum electrostatic fields, light output, and ion current. The light output of the two new anode configurations are at least one order of magnitude above the currently available designs, hence improving the spectroscopic sensitivity at similar total neutral pressure resolution.

  4. Development of miniaturized, spectroscopically assisted Penning gauges for fractional helium and hydrogen neutral pressure measurements

    DOE PAGES

    Flesch, K.; Kremeyer, T.; Schmitz, O.; ...

    2016-08-18

    Direct measurements of the helium (He) fractional neutral pressure in the neutral gas around fusion devices is challenging because of the small mass difference between the abundant D-2 molecules and the He ash which will be produced by deuterium-tritium fusion. In order to study He exhaust, an in situ Penning gauge system is being developed at UW-Madison that is optimized for good pressure and high spectroscopic sensitivity. There are three different anode geometries that we have studied regarding their vacuum electrostatic fields, light output, and ion current. The light output of the two new anode configurations are at least onemore » order of magnitude above the currently available designs, hence improving the spectroscopic sensitivity at similar total neutral pressure resolution.« less

  5. Development of miniaturized, spectroscopically assisted Penning gauges for fractional helium and hydrogen neutral pressure measurements

    NASA Astrophysics Data System (ADS)

    Flesch, K.; Kremeyer, T.; Schmitz, O.; Soukhanovskii, V.; Wenzel, U.

    2016-11-01

    Direct measurements of the helium (He) fractional neutral pressure in the neutral gas around fusion devices is challenging because of the small mass difference between the abundant D2 molecules and the He ash which will be produced by deuterium-tritium fusion. To study He exhaust, an in situ Penning gauge system is being developed at UW-Madison that is optimized for good pressure and high spectroscopic sensitivity. Three different anode geometries have been studied regarding their vacuum electrostatic fields, light output, and ion current. The light output of the two new anode configurations are at least one order of magnitude above the currently available designs, hence improving the spectroscopic sensitivity at similar total neutral pressure resolution.

  6. Modeling the pressure increase in liquid helium cryostats after failure of the insulating vacuum

    SciTech Connect

    Heidt, C.; Grohmann, S.; Süßer, M.

    2014-01-29

    The pressure relief system of liquid helium cryostats requires a careful design, due to helium's low enthalpy of vaporization and due to the low operating temperature. Hazard analyses often involve the failure of the insulating vacuum in the worst-case scenario. The venting of the insulating vacuum and the implications for the pressure increase in the helium vessel, however, have not yet been fully analyzed. Therefore, the dimensioning of safety devices often requires experience and reference to very few experimental data. In order to provide a better foundation for the design of cryogenic pressure relief systems, this paper presents an analytic approach for the strongly dynamic process induced by the loss of insulating vacuum. The model is based on theoretical considerations and on differential equation modeling. It contains only few simplifying assumptions, which will be further investigated in future experiments. The numerical solutions of example calculations are presented with regard to the heat flux into the helium vessel, the helium pressure increase and the helium flow rate through the pressure relief device. Implications concerning two-phase flow and the influence of kinetic energy are discussed.

  7. Simulation of the mantle and crustal Helium isotope signature in the Mediterranean Sea using a high resolution regional circulation model

    NASA Astrophysics Data System (ADS)

    Ayache, Mohamed; Dutay, Jean-claude; Jean-baptiste, Philippe

    2015-04-01

    Helium isotopes (3He, 4He) are useful tracers for investigating the deep ocean circulation and for evaluating ocean general circulation models, because helium is a stable and conservative nuclide that does not take part in any chemical or biological processes. Helium in the ocean originates from three different sources: namely, (i) gas dissolution in equilibrium with atmospheric helium, (ii) helium-3 addition by radioactive decay of tritium (called tritiugenic helium), and (iii) injection of helium-3 and helium-4 by the submarine volcanic activity which occurs mainly at plate boundaries, and also addition of helium-4 from the crust and sedimentary cover by α-decay of uranium and thorium contained in various minerals (called terrigenic helium). Here we present the first simulation of the helium isotope distribution in the whole Mediterranean Sea, using a high resolution model (NEMO-MED12). The simulation was produced by building a simple source function for helium produced by submarine volcanic degassing in the main active areas of the Mediterranean, and by crustal degassing at sea bottom, based on previous estimates of the total flux of helium into the oceans. In addition to providing constraints on the degassing flux, our work provides information on the variability of the thermohaline circulation and the ventilation of the deep waters to constrain the degree to which the NEMO-MED12 can reproduce correctly the main hydrographic features of the Mediterranean Sea circulation. This study is part of the work carried out to assess the robustness of the NEMO-MED12 model, which will be used to study the evolution of the climate and its effect on the biogeochemical cycles in the Mediterranean Sea, and to improve our ability to predict the future evolution of the Mediterranean Sea under the increasing anthropogenic pressure.

  8. Compression of single-crystal magnesium oxide to 118 GPa and a ruby pressure gauge for helium pressure media

    SciTech Connect

    Jacobsen, S.D.; Holl, C.M.; Adams, K.A.; Fischer, R.A.; Martin, E.S.; Bina, C.R.; Lin, J.-F.; Prakapenka, V.B.; Kubo, A.; Dera, P.

    2008-11-13

    The pressure-volume equation of state (EoS) of single-crystal MgO has been studied in diamond-anvil cells loaded with helium to 118 GPa and in a non-hydrostatic KCl pressure medium to 87 GPa using monochromatic synchrotron X-ray diffraction. A third-order Birch-Murnaghan fit to the non-hydrostatic P-V data (KCl medium) yields typical results for the initial volume, V{sub 0} = 74.698(7) {angstrom}{sup 3}, bulk modulus, K{sub T0} = 164(1) GPa, and pressure derivative, K' = 4.05(4), using the non-hydrostatic ruby pressure gauge of Mao et al. (1978). However, compression of MgO in helium yields V{sub 0} = 74.697(6) {angstrom}{sup 3}, K{sub T0} = 159.6(6) GPa, and K' = 3.74(3) using the quasi-hydrostatic ruby gauge of Mao et al. (1986). In helium, the fitted equation of state of MgO underdetermines the pressure by 8% at 100 GPa when compared with the primary MgO pressure scale of Zha et al. (2000), with K{sub T0} = 160.2 GPa and K' = 4.03. The results suggest that either the compression mechanism of MgO changes above 40 GPa (in helium), or the ruby pressure gauge requires adjsutment for the softer helium pressure medium. We propose a ruby pressure gauge for helium based on shift of the ruby-R{sub 1} fluorescence line ({Delta}{lambda}/{lambda}{sub 0}) and the primary MgO pressure scale, with P (GPa) = A/B{l_brace}[1 + ({Delta}{lambda}/{lambda}{sub 0})]B - 1{r_brace}, where A is fixed to 1904 GPa and B = 10.32(7).

  9. CFD Modeling of Helium Pressurant Effects on Cryogenic Tank Pressure Rise Rates in Normal Gravity

    NASA Technical Reports Server (NTRS)

    Grayson, Gary; Lopez, Alfredo; Chandler, Frank; Hastings, Leon; Hedayat, Ali; Brethour, James

    2007-01-01

    A recently developed computational fluid dynamics modeling capability for cryogenic tanks is used to simulate both self-pressurization from external heating and also depressurization from thermodynamic vent operation. Axisymmetric models using a modified version of the commercially available FLOW-3D software are used to simulate actual physical tests. The models assume an incompressible liquid phase with density that is a function of temperature only. A fully compressible formulation is used for the ullage gas mixture that contains both condensable vapor and a noncondensable gas component. The tests, conducted at the NASA Marshall Space Flight Center, include both liquid hydrogen and nitrogen in tanks with ullage gas mixtures of each liquid's vapor and helium. Pressure and temperature predictions from the model are compared to sensor measurements from the tests and a good agreement is achieved. This further establishes the accuracy of the developed FLOW-3D based modeling approach for cryogenic systems.

  10. Helium pressures in RHIC vacuum cryostats and relief valve requirements from magnet cooling line failure

    SciTech Connect

    Liaw, C.J.; Than, Y.; Tuozzolo, J.

    2011-03-28

    A catastrophic failure of the RHIC magnet cooling lines, similar to the LHC superconducting bus failure incident, would pressurize the insulating vacuum in the magnet and transfer line cryostats. Insufficient relief valves on the cryostats could cause a structural failure. A SINDA/FLUINT{reg_sign} model, which simulated the 4.5K/4 atm helium flowing through the magnet cooling system distribution lines, then through a line break into the vacuum cryostat and discharging via the reliefs into the RHIC tunnel, had been developed to calculate the helium pressure inside the cryostat. Arc flash energy deposition and heat load from the ambient temperature cryostat surfaces were included in the simulations. Three typical areas: the sextant arc, the Triplet/DX/D0 magnets, and the injection area, had been analyzed. Existing relief valve sizes were reviewed to make sure that the maximum stresses, caused by the calculated maximum pressures inside the cryostats, did not exceed the allowable stresses, based on the ASME Code B31.3 and ANSYS results. The conclusions are as follows: (1) The S/F simulation results show that the highest internal pressure in the cryostats, due to the magnet line failure, is {approx}37 psig (255115 Pa); (2) Based on the simulation, the temperature on the cryostat chamber, INJ Q8-Q9, could drop to 228 K, which is lower than the material minimum design temperature allowed by the Code; (3) Based on the ASME Code and ANSYS results, the reliefs on all the cryostats inside the RHIC tunnel are adequate to protect the vacuum chambers when the magnet cooling lines fail; and (4) In addition to the pressure loading, the thermal deformations, due to the temperature decrease on the cryostat chambers, could also cause a high stress on the chamber, if not properly supported.

  11. Thermodynamic Vent System Performance Testing with Subcooled Liquid Methane and Gaseous Helium Pressurant

    NASA Technical Reports Server (NTRS)

    Flachbart, R. H.; Hastings, L. J.; Hedayat, A.; Nelson, S. L.; Tucker, S. P.

    2007-01-01

    Due to its high specific impulse and favorable thermal properties for storage, liquid methane (LCH4) is being considered as a candidate propellant for exploration architectures. In order to gain an -understanding of any unique considerations involving micro-gravity pressure control with LCH4, testing was conducted at the Marshall Space Flight Center using the Multipurpose Hydrogen Test Bed (MHTB) to evaluate the performance of a spray-bar thermodynamic vent system (TVS) with subcooled LCH4 and gaseous helium (GHe) pressurant. Thirteen days of testing were performed in November 2006, with total tank heat leak conditions of about 715 W and 420 W at a fill level of approximately 90%. The TVS system was used to subcool the LCH4 to a liquid saturation pressure of approximately 55.2 kPa before the tank was pressurized with GHe to a total pressure of 165.5 kPa. A total of 23 TVS cycles were completed. The TVS successfully controlled the ullage pressure within a prescribed control band but did not maintain a stable liquid saturation pressure. This was likely. due to a TVS design not optimized for this particular propellant and test conditions, and possibly due to a large artificially induced heat input directly into the liquid. The capability to reduce liquid saturation pressure as well as maintain it within a prescribed control band, demonstrated that the TVS could be used to seek and maintain a desired liquid inlet temperature for an engine (at a cost of propellant lost through the TVS vent). One special test was conducted at the conclusion of the planned test activities. Reduction of the tank ullage pressure by opening the Joule-Thomson valve (JT) without operating the pump was attempted. The JT remained open for over 9300 seconds, resulting in an ullage pressure reduction of 30 kPa. The special test demonstrated the feasibility of using the JT valve for limited ullage pressure reduction in the event of a pump failure.

  12. Electrical Properties for Capacitively Coupled Radio Frequency Discharges of Helium and Neon at Low Pressure

    NASA Astrophysics Data System (ADS)

    Tanisli, Murat; Sahin, Neslihan; Demir, Suleyman

    2016-10-01

    In this study, the symmetric radio frequency (RF) electrode discharge is formed between the two electrodes placing symmetric parallel. The electrical properties of symmetric capacitive RF discharge of pure neon and pure helium have been obtained from current and voltage waveforms. Calculations are done according to the homogeneous discharge model of capacitively coupled radio frequency (CCRF) using with the data in detail. Electrical properties of bulk plasma and sheath capacitance are also investigated at low pressure with this model. This study compares the electrical characteristics and sheath capacitance changes with RF power and pressure for helium and neon discharges. Also, the aim of the study is to see the differences between helium and neon discharges' current and voltage values. Their root-mean-square voltages and currents are obtained from Tektronix 3052C oscilloscope. Modified homogeneous discharge model of CCRF is used for low pressure discharges and the calculations are done using experimental results. It is seen that homogeneous discharge model of CCRF is usable with modification and then helium and neon discharge's electrical properties are investigated and presented with a comparison. Helium discharge's voltage and current characteristic have smaller values than neon's. It may be said that neon discharge is a better conductor than helium discharge. It is seen that the sheath capacitance is inversely correlation with sheath resistance.

  13. Voltage and Pressure Scaling of Streamer Dynamics in a Helium Plasma Jet With N2 CO-Flow (Postprint)

    DTIC Science & Technology

    2014-08-14

    AFRL-RQ-WP-TP-2014-0242 VOLTAGE AND PRESSURE SCALING OF STREAMER DYNAMICS IN A HELIUM PLASMA JET WITH N2 CO- FLOW (POSTPRINT) Robert J...4. TITLE AND SUBTITLE VOLTAGE AND PRESSURE SCALING OF STREAMER DYNAMICS IN A HELIUM PLASMA JET WITH N2 CO-FLOW (POSTPRINT) 5a. CONTRACT NUMBER...pressure dependent scaling of cathode directed streamer propagation properties in helium gas flow guided capillary dielectric barrier discharge have

  14. Melting Pressure Thermometry and Magnetically Ordered Solid HELIUM-3.

    NASA Astrophysics Data System (ADS)

    Ni, Wenhai

    In this thesis, two separate experiments on solid ^3He are presented. In the first experiment, the ^3He melting pressure has been measured precisely from 500 murm K to 25 mK. Temperatures were determined from a ^{60 }Co nuclear orientation (NO) primary thermometer and Pt NMR, calibrated against the NO thermometer, as a secondary thermometer. The values for the fixed points on the melting curve are: the superfluid ^3He A transition T_{A }=2.505 mK, the A-B transition T_ {AB}=1.948 mK, and the solid ordering temperature T_{N}=0.934 mK. The functional form for P(T) relative to the solid ordering transition pressure P_ {N} is provided. In the second experiment, the melting pressures of ^3He across the various magnetic ordering transitions and in magnetic fields up to 0.65 T have been measured. A precise magnetic phase diagram B-T of solid ^3He is obtained. The transitions from the low field phase (LFP) to the high field phase (HFP) and to the paramagnetic disordered phase (PP) are first order. The phase transition from the HFP to PP is identified as first order from the triple point of the phase diagram to about 0.65 T, above which it is second order phase. The solid ^3He entropy and the magnetization are determined from the Clausius-Clapeyron equations. In the LFP, the melting pressure is proportional to T^4 up to the phase boundary, with a constant spin wave velocity of about 7.8 cm/s, indicating a roughly temperature -independent magnetization at each field. In the HFP, the melting pressure deviates from the T^4 dependence very near the HFP-PP transition, resulting in a very rapid entropy change. From the analysis of the melting pressure data, a very shallow molar-volume minimum was found at the ordering transition T_ {N}..

  15. Thermodynamic analysis of helium boil-off experiments with pressure variations

    NASA Astrophysics Data System (ADS)

    Cha, Y. S.; Niemann, R. C.; Hull, J. R.

    A thermodynamic analysis by calorimetric experiments in a system with changing pressure is presented. A general equation is derived for use in calculating the rate of heat loss from measured mass flow rate. The results show that the largest contribution from pressure variation is the sensible heat of liquid helium in a Dewar. A dimensionless parameter that was identified provides an indication of the importance of pressure variation relative to the latent heat of vaporization during an experiment. This dimensionless parameter is a function of system pressure land the thermodynamic properties of helium), rate of change of system pressure, liquid helium inventory in the Dewar and measured mass flow rate. In the special case when the effect of pressure variation is small compared to the latent heat of vaporization, the heat loss rate is the product of the measured mass flow rate and the latent heat of vaporization, multiplied by a correction factor that is a function of the ratio of vapour density to liquid density. This correction factor is significant for helium at pressures near or above 1 atm and should always be included in the calculation.

  16. Helium tables.

    NASA Technical Reports Server (NTRS)

    Havill, Clinton H

    1928-01-01

    These tables are intended to provide a standard method and to facilitate the calculation of the quantity of "Standard Helium" in high pressure containers. The research data and the formulas used in the preparation of the tables were furnished by the Research Laboratory of Physical Chemistry, of the Massachusetts Institute of Technology.

  17. 3. SOUTHWEST REAR, WITH RAILROAD LINE AT RIGHT. HIGH PRESSURE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    3. SOUTHWEST REAR, WITH RAILROAD LINE AT RIGHT. HIGH PRESSURE HELIUM STORAGE TANKS AT LEFT. - Edwards Air Force Base, Air Force Rocket Propulsion Laboratory, Helium Compression Plant, Test Area 1-115, intersection of Altair & Saturn Boulevards, Boron, Kern County, CA

  18. Probe measurements of electron energy spectrum in Helium/air micro-plasma at atmospheric pressure

    NASA Astrophysics Data System (ADS)

    Demidov, V. I.; Adams, S. F.; Miles, J. A.; Koepke, M. E.; Kurlyandskaya, I. P.; Hensley, A. L.; Tolson, B. A.

    2016-09-01

    It is experimentally demonstrated that a wall probe may be a useful instrument for interpretation of electron energy spectrum in a micro-plasma with a nonlocal electron distribution function at atmospheric pressure. Two micro-plasma devices were fabricated with three layers of molybdenum metal foils with thickness of 0.1 mm separated by two sheets of mica insulation with thickness of 0.11 mm. In one device a hole with the diameter of 0.2 mm formed a cylindrical discharge cavity that passed through the entire five layers. In the second device the hole has the diameter of 0.065 mm. In both devices the inner molybdenum layer formed a wall probe, while the outer layers of molybdenum served as the hollow cathode and anode. The discharge was open into air with flow of helium gas. It is found that the wall probe I-V trace is sensitive to the presence of helium metastable atoms. The first derivative of the probe current with respect to the probe potential shows peaks revealing fast electrons at specific energies arising due to plasma chemical reactions. The devices may be applicable for developing analytical sensors for extreme environments, including high radiation and vibration levels and high temperatures. This work was performed while VID held a NRC Research Associateship Award at AFRL.

  19. Electric field development in γ-mode radiofrequency atmospheric pressure glow discharge in helium

    NASA Astrophysics Data System (ADS)

    Navrátil, Zdeněk; Josepson, Raavo; Cvetanović, Nikola; Obradović, Bratislav; Dvořák, Pavel

    2016-06-01

    Time development of electric field strength during radio-frequency sheath formation was measured using Stark polarization spectroscopy in a helium γ-mode radio-frequency (RF, 13.56 MHz) atmospheric pressure glow discharge at high current density (3 A cm-2). A method of time-correlated single photon counting was applied to record the temporal development of spectral profile of He I 492.2 nm line with a sub-nanosecond temporal resolution. By fitting the measured profile of the line with a combination of pseudo-Voigt profiles for forbidden (2 1P-4 1F) and allowed (2 1P-4 1D) helium lines, instantaneous electric fields up to 32 kV cm-1 were measured in the RF sheath. The measured electric field is in agreement with the spatially averaged value of 40 kV cm-1 estimated from homogeneous charge density RF sheath model. The observed rectangular waveform of the electric field time development is attributed to increased sheath conductivity by the strong electron avalanches occurring in the γ-mode sheath at high current densities.

  20. High temperature reactivity of two chromium-containing alloys in impure helium

    NASA Astrophysics Data System (ADS)

    Cabet, C.; Chapovaloff, J.; Rouillard, F.; Girardin, G.; Kaczorowski, D.; Wolski, K.; Pijolat, M.

    2008-04-01

    Chromium-rich nickel base alloys 617 and 230 are promising candidate materials for very high temperature gas-cooled reactors (VHTR) but they must resist corrosion in the impure primary cooling helium over very long times. The impurities of the hot helium can promote the development of chromium-rich surface oxides that appear to protect the alloys against intensive corrosion processes. However above a critical temperature (typically in the range 1173-1273 K), chromium oxide is reduced by carbon from the alloy and the surface layer is not stable anymore. Depending on the gas composition, the unprotected material rapidly either gains or loses carbon with a dramatic impact on its mechanical properties. The deleterious reaction of chromia and carbon thus fixes an ultimate reactor operating temperature. Critical temperature measurements are presented for alloys 617 and 230 and the influence of carbon monoxide partial pressure in helium is discussed.

  1. Freezing and Pressure-Driven Flow of Solid Helium in Vycor

    NASA Astrophysics Data System (ADS)

    Day, James; Herman, Tobias; Beamish, John

    2005-07-01

    The recent torsional oscillator results of Kim and Chan suggest a supersolid phase transition in solid 4He confined in Vycor. We have used a capacitive technique to directly monitor density changes for helium confined in Vycor at low temperature and have used a piezoelectrically driven diaphragm to study the pressure-induced flow of solid helium into the Vycor pores. Our measurements showed no indication of a mass redistribution in the Vycor that could mimic supersolid decoupling and put an upper limit of about 0.003 μm/s on any pressure-induced supersolid flow in the pores of Vycor.

  2. Controlled Chemistry Helium High Temperature Materials Test Loop

    SciTech Connect

    Richard N. WRight

    2005-08-01

    A system to test aging and environmental effects in flowing helium with impurity content representative of the Next Generation Nuclear Plant (NGNP) has been designed and assembled. The system will be used to expose microstructure analysis coupons and mechanical test specimens for up to 5,000 hours in helium containing potentially oxidizing or carburizing impurities controlled to parts per million levels. Impurity levels in the flowing helium are controlled through a feedback mechanism based on gas chromatography measurements of the gas chemistry at the inlet and exit from a high temperature retort containing the test materials. Initial testing will focus on determining the nature and extent of combined aging and environmental effects on microstructure and elevated temperature mechanical properties of alloys proposed for structural applications in the NGNP, including Inconel 617 and Haynes 230.

  3. Cermet coating tribological behavior in high temperature helium

    SciTech Connect

    CACHON, Lionel; ALBALADEJO, Serge; TARAUD, Pascal; LAFFONT, G.

    2006-07-01

    As the CEA is highly involved in the Generation IV Forum, a comprehensive research and development program has been conducted for several years, in order to establish the feasibility of Gas Cooled Reactor (GCR) technology projects using helium as a cooling fluid. Within this framework, a tribology program was launched in order to select and qualify coatings and materials, and to provide recommendations for the sliding components operating in GCRs. The purpose of this paper is to describe the CEA Helium tribology study on several GCR components (thermal barriers, control rod drive mechanisms, reactor internals, ..) requiring protection against wear and bonding. Tests in helium atmosphere are necessary to be fully representative of tribological environments and to assess the material or coating candidates which can provide a reliable answer to these situations. This paper focuses on the tribology tests performed on CERMET (Cr{sub 3}C-2- NiCr) coatings within a temperature range of between 800 and 1000 deg C.

  4. High Blood Pressure

    MedlinePlus

    ... normal blood pressure 140/90 or higher is high blood pressure Between 120 and 139 for the top number, ... prehypertension. Prehypertension means you may end up with high blood pressure, unless you take steps to prevent it. High ...

  5. High Blood Pressure (Hypertension)

    MedlinePlus

    ... Print Page Text Size: A A A Listen High Blood Pressure (Hypertension) Nearly 1 in 3 American adults has ... weight. How Will I Know if I Have High Blood Pressure? High blood pressure is a silent problem — you ...

  6. Numerical Investigation of Thermal Distribution and Pressurization Behavior in Helium Pressurized Cryogenic Tank by Introducing a Multi-component Model

    NASA Astrophysics Data System (ADS)

    Lei, Wang; Yanzhong, Li; Zhan, Liu; Kang, Zhu

    An improved CFD model involving a multi-component gas mixturein the ullage is constructed to predict the pressurization behavior of a cryogenic tank considering the existence of pressurizing helium.A temperature difference between the local fluid and its saturation temperature corresponding to the vapor partial pressure is taken as the phase change driving force. As practical application of the model, hydrogen and oxygen tanks with helium pressurization arenumerically simulated by using themulti-component gas model. The results presentthat the improved model produce higher ullage temperature and pressure and lower wall temperaturethan those without multi-component consideration. The phase change has a slight influence on thepressurization performance due to the small quantities involved.

  7. Helium gas bubble trapped in liquid helium in high magnetic field

    NASA Astrophysics Data System (ADS)

    Bai, H.; Hannahs, S. T.; Markiewicz, W. D.; Weijers, H. W.

    2014-03-01

    High magnetic field magnets are used widely in the area of the condensed matter physics, material science, chemistry, geochemistry, and biology at the National High Magnetic Field Laboratory. New high field magnets of state-of-the-art are being pursued and developed at the lab, such as the current developing 32 T, 32 mm bore fully superconducting magnet. Liquid Helium (LHe) is used as the coolant for superconducting magnets or samples tested in a high magnetic field. When the magnetic field reaches a relatively high value the boil-off helium gas bubble generated by heat losses in the cryostat can be trapped in the LHe bath in the region where BzdBz/dz is less than negative 2100 T2/m, instead of floating up to the top of LHe. Then the magnet or sample in the trapped bubble region may lose efficient cooling. In the development of the 32 T magnet, a prototype Yttrium Barium Copper Oxide coil of 6 double pancakes with an inner diameter of 40 mm and an outer diameter of 140 mm was fabricated and tested in a resistive magnet providing a background field of 15 T. The trapped gas bubble was observed in the tests when the prototype coil was ramped up to 7.5 T at a current of 200 A. This letter reports the test results on the trapped gas bubble and the comparison with the analytical results which shows they are in a good agreement.

  8. High Blood Pressure

    MedlinePlus

    ... version of this page please turn Javascript on. High Blood Pressure What Is High Blood Pressure? High blood pressure is a common disease in ... the heart, kidneys, brain, and eyes. Types of High Blood Pressure There are two main types of high blood ...

  9. High blood pressure

    MedlinePlus

    ... this page: //medlineplus.gov/ency/article/000468.htm High blood pressure To use the sharing features on this page, ... body. Hypertension is the term used to describe high blood pressure. Blood pressure readings are given as two numbers. ...

  10. High-pressure cryogenic seals for pressure vessels

    NASA Technical Reports Server (NTRS)

    Buggele, A. E.

    1977-01-01

    This investigation of the problems associated with reliably containing gaseous helium pressurized to 1530 bars (22 500 psi) between 4.2 K and 150 K led to the following conclusions: (1) common seal designs used in existing elevated-temperature pressure vessels are unsuitable for high-pressure cryogenic operation, (2) extrusion seal-ring materials such as Teflon, tin, and lead are not good seal materials for cryogenic high-pressure operation; and (3) several high-pressure cryogenic seal systems suitable for large-pressure vessel applications were developed; two seals required prepressurization, and one seal functioned repeatedly without any prepressurization. These designs used indium seal rings, brass or 304 stainless-steel anvil rings, and two O-rings of silicone rubber or Kel-F.

  11. Thermophysical properties of helium-4 from 4 to 3000 R with pressures to 15000 psia

    NASA Technical Reports Server (NTRS)

    Mccarty, R. D.

    1972-01-01

    Data on many of the properties of helium commonly used in engineering calculations are compiled over as wide a temperature and pressure range as is practical. These properties are presented in a form which is convenient to the engineer. All of these properties have been critically evaluated and represent the best values for that property at this time.

  12. Dynamics of liquid helium boil-off experiments with a step change in pressure

    NASA Astrophysics Data System (ADS)

    Cha, Y. S.; Niemann, R. C.; Hull, J. R.

    The results of dynamic analysis of the effect of pressure variations during helium boil-off experiments are presented. A general solution of the diffusion equation with a time-dependent boundary condition is employed to describe the dynamic response of the liquid helium system under variable pressure conditions, and a solution is obtained for the special case when the system is subjected to a step change in pressure. The calculated temperature response of the liquid indicates that most of the experiments were not likely to have reached equilibrium as a result of the low thermal diffusivity of liquid helium. The initial rate of evaporation or condensation is large, and the rate decreases sharply with time. A method is proposed to account for the transient effect that is observed during calculation of the heat loss rate from a helium boil-off experiment. By assuming that there is no mixing at all, the present analysis provides an estimate of the upper (condensation) or lower (evaporation) bound of the heat loss rate as a result of a pressure increase or decrease in the system. A previously reported equilibrium analysis is expected to apply to situations where complete mixing occurred in the bulk liquid and provides the opposite limits.

  13. Highly Excited States of cs Atoms on Helium Nanodroplets

    NASA Astrophysics Data System (ADS)

    Lackner, F.; Theisen, M.; Koch, M.; Ernst, W. E.

    2011-06-01

    Cs atoms on the surface of helium nanodroplets have been excited to high lying nS (n = 8-11), nP (n = 8-11), and nD (n = 6-10) levels. A two-step excitation scheme via the 62P1/2(2Π1/2) state using two cw lasers was applied. This intermediate state has the advantage that a large fraction of the excited Cs atoms does not desorb from the helium nanodroplets. An absorption spectrum was recorded by detecting laser induced fluorescence light from the 62P3/2→62S1/2 transition. The pseudo-diatomic model for helium nanodroplets doped with single alkali-metal atoms holds for the observed spectrum. An investigation of spectral trends shows that the n'2P(Π)←62P1/2(2Π1/2) and n'2D(Δ)←62P1/2(2Π1/2) (n' > 9) transitions are lower in energy than the corresponding free-atom transitions. This indicates that the Cs*--HeN potential becomes attractive for these highly excited states. Our results suggest a possibility of generating an artificial super-atom with a positive ion core inside a helium nanodroplet and the electron outside, which will be subject to future experiments. M. Theisen, F. Lackner, F. Ancilotto, C. Callegari, and W.E. Ernst, Eur. Phys. J. D 61, 403-408 (2011)

  14. Filament wound pressure vessels - Effects of using liner tooling of low pressure vessels for high pressure vessels development

    NASA Astrophysics Data System (ADS)

    Lal, Krishna M.

    High performance pressure vessels have been recently demanded for aerospace and defense applications. Filament wound pressure vessels consist of a metallic thin liner, which also acts as a mandrel, and composite/epoxy overwrap. Graphite/epoxy overwrapped vessels have been developed to obtain the performance ratio, PV/W, as high as one million inches. Under very high pressure the isotropic metallic liner deforms elasto-plastically, and orthotropic composite fibers deform elastically. Sometimes, for the development of ultra high pressure vessels, composite pressure vessels industry uses the existing liner tooling developed for low burst pressure capacity composite vessels. This work presents the effects of various design variables including the low pressure liner tooling for the development of the high burst pressure capacity Brilliant Pebbles helium tanks. Advance stress analysis and development of an ultra high pressure helium tank.

  15. Hypertension (High Blood Pressure)

    MedlinePlus

    ... Loss Surgery? A Week of Healthy Breakfasts Shyness Hypertension (High Blood Pressure) KidsHealth > For Teens > Hypertension (High Blood Pressure) A ... rest temperature diet emotions posture medicines Why Is High Blood Pressure Bad? High blood pressure means a person's heart ...

  16. Pressure Gradients and Annealing Effects in Solid Helium-4

    NASA Astrophysics Data System (ADS)

    Suhel, Md. Abdul Halim

    The Kim and Chan experiment in 2004 gave the first experimental evidence of a possible supersolid state. Even though the origin of this state is not clear yet, several experimental and theoretical investigations suggest defects are responsible for this curious phase. We have used heat pulses and thermal quenching to study pressure gradients and annealing mechanisms in solid 4He crystals. Large pressure gradients exist in crystals grown at constant volume. These can be enhanced by phase transitions, thermal quenching or by partial melting. Annealing reduces defect densities and hence pressure gradients in crystals. Our measurements show that the pressure at different points in a crystal can behave differently, even if there is little change in the crystal's average pressure. We measured the activation energy that is associated with the annealing process.

  17. Helium atmospheric pressure plasma jets touching dielectric and metal surfaces

    NASA Astrophysics Data System (ADS)

    Norberg, Seth A.; Johnsen, Eric; Kushner, Mark J.

    2015-07-01

    Atmospheric pressure plasma jets (APPJs) are being investigated in the context plasma medicine and biotechnology applications, and surface functionalization. The composition of the surface being treated ranges from plastics, liquids, and biological tissue, to metals. The dielectric constant of these materials ranges from as low as 1.5 for plastics to near 80 for liquids, and essentially infinite for metals. The electrical properties of the surface are not independent variables as the permittivity of the material being treated has an effect on the dynamics of the incident APPJ. In this paper, results are discussed from a computational investigation of the interaction of an APPJ incident onto materials of varying permittivity, and their impact on the discharge dynamics of the plasma jet. The computer model used in this investigation solves Poisson's equation, transport equations for charged and neutral species, the electron energy equation, and the Navier-Stokes equations for the neutral gas flow. The APPJ is sustained in He/O2 = 99.8/0.2 flowing into humid air, and is directed onto dielectric surfaces in contact with ground with dielectric constants ranging from 2 to 80, and a grounded metal surface. Low values of relative permittivity encourage propagation of the electric field into the treated material and formation and propagation of a surface ionization wave. High values of relative permittivity promote the restrike of the ionization wave and the formation of a conduction channel between the plasma discharge and the treated surface. The distribution of space charge surrounding the APPJ is discussed.

  18. Three electrode atmospheric pressure plasma jet in helium flow

    NASA Astrophysics Data System (ADS)

    Maletic, Dejan; Puac, Nevena; Malovic, Gordana; Petrovic, Zoran Lj.

    2015-09-01

    Plasma jets are widely used in various types of applications and lately more and more in the field of plasma medicine. However, it is not only their applicability that distinguishes them from other atmospheric plasma sources, but also the behavior of the plasma. It was shown that plasma plume is not continuous, but discrete set of plasma packages. Here we present iCCD images and current voltage characteristics of a three electrode plasma jet. Our plasma jet has a simple design with body made of glass tube and two transparent electrodes wrapped around it. The additional third metal tip electrode was positioned at 10 and 25 mm in front of the jet nozzle and connected to the same potential as the powered electrode. Power transmitted to the plasma was from 0.5 W to 4.0 W and the helium flow rate was kept constant at 4 slm. For the 10 mm configuration plasma is ignited on the metal tip in the whole period of the excitation signal and in the positive half cycle plasma ``bullet'' is propagating beyond the metal tip. In contrast to that, for the 25 mm configuration at the tip electrode plasma can be seen only in the minimum and maximum of the excitation signal, and there is no plasma ``bullet'' formation. This research has been supported by the Ministry of Education, Science and Technological Development, Republic of Serbia, under projects ON171037 and III41011.

  19. Development of a high vacuum sample preparation system for helium mass spectrometer

    NASA Astrophysics Data System (ADS)

    Kumar, P.; Das, N. K.; Mallik, C.; Bhandari, R. K.

    2012-11-01

    A high vacuum sample preparation system for the 3He/4He ratio mass spectrometer (Helix SFT) has been developed to remove all the gaseous constituents excluding helium from the field gases. The sample preparation system comprises of turbo molecular pump, ion pump, zirconium getter, pipettes and vacuum gauges with controller. All these are fitted with cylindrical SS chamber using all metal valves. The field samples are initially treated with activated charcoal trap immersed in liquid nitrogen to cutoff major impurities and moisture present in the sample gas. A sample of 5 ml is collected out of this stage at a pressure of 10-2 mbar. This sample is subsequently purified at a reduced pressure of 10-7 mbar before it is injected into the ion source of the mass spectrometer. The sample pressure was maintained below 10-7 mbar with turbo molecular vacuum pumps and ion pumps. The sample gas passes through several getter elements and a cold finger with the help of manual high vacuum valves before it is fed to the mass spectrometer. Thus the high vacuum sample preparation system introduces completely clean, dry and refined helium sample to the mass spectrometer for best possible analysis of isotopic ratio of helium.

  20. Investigation of the threshold intensity versus gas pressure in the breakdown of helium by 248 nm laser radiation

    NASA Astrophysics Data System (ADS)

    Gamal, Yosr E. E.-D.; Abdellatif, Galila

    2014-10-01

    An investigation of the unexpectedly strong dependence of the threshold intensity on the gas pressure in the experimental study on the breakdown of He by short laser wavelength (Turcu et al., in Opt Commun, 134:66-68, 1997) is presented. A modified electron cascade model is applied (Evans and Gamal, in J Phys D Appl Phys, 13:1447-1458, 1980). Computations revealed reasonable agreement between the calculated thresholds and the measured ones. Moreover, the calculated electron energy distribution function and its parameters proved that multiphoton ionization of ground and excited atoms is the main source for the seed electrons, which contributes to the breakdown of helium. The effect of diffusion losses over pressures <1,000 Torr elucidated the origin of the strong dependence of the threshold intensity on the gas pressure. Collisional ionization dominates only at high pressures. No evidence for recombination losses is observed for pressures up to 3,000 Torr.

  1. High blood pressure medicines

    MedlinePlus

    Hypertension - medicines ... blood vessel diseases. You may need to take medicines to lower your blood pressure if lifestyle changes ... blood pressure to the target level. WHEN ARE MEDICINES FOR HIGH BLOOD PRESSURE USED Most of the ...

  2. Helium atmospheric pressure plasma jets touching dielectric and metal surfaces

    SciTech Connect

    Norberg, Seth A. Johnsen, Eric; Kushner, Mark J.

    2015-07-07

    Atmospheric pressure plasma jets (APPJs) are being investigated in the context plasma medicine and biotechnology applications, and surface functionalization. The composition of the surface being treated ranges from plastics, liquids, and biological tissue, to metals. The dielectric constant of these materials ranges from as low as 1.5 for plastics to near 80 for liquids, and essentially infinite for metals. The electrical properties of the surface are not independent variables as the permittivity of the material being treated has an effect on the dynamics of the incident APPJ. In this paper, results are discussed from a computational investigation of the interaction of an APPJ incident onto materials of varying permittivity, and their impact on the discharge dynamics of the plasma jet. The computer model used in this investigation solves Poisson's equation, transport equations for charged and neutral species, the electron energy equation, and the Navier-Stokes equations for the neutral gas flow. The APPJ is sustained in He/O{sub 2} = 99.8/0.2 flowing into humid air, and is directed onto dielectric surfaces in contact with ground with dielectric constants ranging from 2 to 80, and a grounded metal surface. Low values of relative permittivity encourage propagation of the electric field into the treated material and formation and propagation of a surface ionization wave. High values of relative permittivity promote the restrike of the ionization wave and the formation of a conduction channel between the plasma discharge and the treated surface. The distribution of space charge surrounding the APPJ is discussed.

  3. The Role of Helium Metastable States in Radio-Frequency Helium-Oxygen Atmospheric Pressure Plasma Jets: Measurement and Numerical Simulation

    NASA Astrophysics Data System (ADS)

    Niemi, Kari; Waskoenig, Jochen; Sadeghi, Nader; Gans, Timo; O'Connell, Deborah

    2011-10-01

    Absolute densities of metastable He atoms were measured line-of sight integrated along the plasma channel of a capacitively-coupled radio-frequency driven atmospheric pressure plasma jet operated in helium oxygen mixtures by tunable diode-laser absorption spectroscopy. Dependencies of the He metastable density with oxygen admixtures up to 1 percent were investigated. Results are compared to a 1-d numerical simulation, which includes a semi-kinetical treatment of the electron dynamics and the complex plasma chemistry (20 species, 184 reactions), and very good agreement is found. The main formation mechanisms for the helium metastables are identified and analyzed, including their pronounced spatio-temporal dynamics. Penning ionization through helium metastables is found to be significant for plasma sustainment, while it is revealed that helium metastables are not an important energy carrying species into the jet effluent and therefore will not play a direct role in remote surface treatments.

  4. Helium gas bubble trapped in liquid helium in high magnetic field

    SciTech Connect

    Bai, H. Hannahs, S. T.; Markiewicz, W. D.; Weijers, H. W.

    2014-03-31

    High magnetic field magnets are used widely in the area of the condensed matter physics, material science, chemistry, geochemistry, and biology at the National High Magnetic Field Laboratory. New high field magnets of state-of-the-art are being pursued and developed at the lab, such as the current developing 32 T, 32 mm bore fully superconducting magnet. Liquid Helium (LHe) is used as the coolant for superconducting magnets or samples tested in a high magnetic field. When the magnetic field reaches a relatively high value the boil-off helium gas bubble generated by heat losses in the cryostat can be trapped in the LHe bath in the region where BzdBz/dz is less than negative 2100 T{sup 2}/m, instead of floating up to the top of LHe. Then the magnet or sample in the trapped bubble region may lose efficient cooling. In the development of the 32 T magnet, a prototype Yttrium Barium Copper Oxide coil of 6 double pancakes with an inner diameter of 40 mm and an outer diameter of 140 mm was fabricated and tested in a resistive magnet providing a background field of 15 T. The trapped gas bubble was observed in the tests when the prototype coil was ramped up to 7.5 T at a current of 200 A. This letter reports the test results on the trapped gas bubble and the comparison with the analytical results which shows they are in a good agreement.

  5. Atmospheric pressure helium afterglow discharge detector for gas chromatography

    DOEpatents

    Rice, Gary; D'Silva, Arthur P.; Fassel, Velmer A.

    1986-05-06

    An apparatus for providing a simple, low-frequency electrodeless discharge system for atmospheric pressure afterglow generation. A single quartz tube through which a gas mixture is passed is extended beyond a concentric electrode positioned thereabout. A grounding rod is placed directly above the tube outlet to permit optical viewing of the discharge between the electrodes.

  6. Atmospheric pressure helium afterglow discharge detector for gas chromatography

    DOEpatents

    Rice, G.; D'Silva, A.P.; Fassel, V.A.

    1985-04-05

    An apparatus for providing a simple, low-frequency, electrodeless discharge system for atmospheric pressure afterglow generation. A single quartz tube through which a gas mixture is passed is extended beyond a concentric electrode positioned thereabout. A grounding rod is placed directly above the tube outlet to permit optical viewing of the discharge between the electrodes.

  7. Pressure broadening of phosphine by hydrogen and helium

    NASA Technical Reports Server (NTRS)

    Pickett, H. M.; Poynter, R. L.; Cohen, E. A.

    1981-01-01

    The line widths, pressure-induced shifts, and center frequency of the J = 1-0, K = 0 phosphine transition at 266.9 GHz have been determined. The widths and shifts are reported for collisions with phosphine, H2, and He.

  8. Testing the Effects of Helium Pressurant on Thermodynamic Vent System Performance with Liquid Hydrogen

    NASA Technical Reports Server (NTRS)

    Flachbart, R. H.; Hastings, L. J.; Hedayat, A.; Nelson, S.; Tucker, S.

    2006-01-01

    In support of the development of a zero gravity pressure control capability for liquid hydrogen, testing was conducted at the Marshall Space Flight Center using the Multipurpose Hydrogen Test Bed (MHTB) to evaluate the effects of helium pressurant on the performance of a spray bar thermodynamic vent system (TVS). Fourteen days of testing was performed in August - September 2005, with an ambient heat leak of about 70-80 watts and tank fill levels of 90%, 50%, and 25%. The TVS successfully controlled the tank pressure within a +/- 3.45 kPa (+/- 0.5 psi) band with various helium concentration levels in the ullage. Relative to pressure control with an "all hydrogen" ullage, the helium presence resulted in 10 to 30 per cent longer pressure reduction durations, depending on the fill level, during the mixing/venting phase of the control cycle. Additionally, the automated control cycle was based on mixing alone for pressure reduction until the pressure versus time slope became positive, at which time the Joule-Thomson vent was opened. Testing was also conducted to evaluate thermodynamic venting without the mixer operating, first with liquid then with vapor at the recirculation line inlet. Although ullage stratification was present, the ullage pressure was successfully controlled without the mixer operating. Thus, if vapor surrounded the pump inlet in a reduced gravity situation, the ullage pressure can still be controlled by venting through the TVS Joule Thomson valve and heat exchanger. It was evident that the spray bar configuration, which extends almost the entire length of the tank, enabled significant thermal energy removal from the ullage even without the mixer operating. Details regarding the test setup and procedures are presented in the paper. 1

  9. Testing the Effects of Helium Pressurant on Thermodynamic Vent System Performance with Liquid Hydrogen

    NASA Technical Reports Server (NTRS)

    Flachbart, R. H.; Hastings, L. J.; Hedayat, A.; Nelson, S.; Tucker, S.

    2006-01-01

    In support of the development of a zero gravity pressure control capability for liquid hydrogen, testing was conducted at the Marshall Space Flight Center using the Multipurpose Hydrogen Test Bed (MHTB) to evaluate the effects of helium pressurant on the performance of a spray bar thermodynamic vent system (TVS). Fourteen days of testing was performed in August - September 2005, with an ambient heat leak of about 70-80 watts and tank fill levels of 90%, 50%, and 25%. The TVS successfully controlled the tank pressure within a +/- 3.45 kPa (+/- 0.5 psi) band with various helium concentration levels in the ullage. Relative to pressure control with an "all hydrogen" ullage, the helium presence resulted in 10 to 30 per cent longer pressure reduction durations, depending on the fill level, during the mixing/venting phase of the control cycle. Additionally, the automated control cycle was based on mixing alone for pressure reduction until the pressure versus time slope became positive, at which time the Joule-Thomson vent was opened. Testing was also conducted to evaluate thermodynamic venting without the mixer operating, first with liquid then with vapor at the recirculation line inlet. Although ullage stratification was present, the ullage pressure was successfully controlled without the mixer operating. Thus, if vapor surrounded the pump inlet in a reduced gravity situation, the ullage pressure can still be controlled by venting through the TVS Joule Thomson valve and heat exchanger. It was evident that the spray bar configuration, which extends almost the entire length of the tank, enabled significant thermal energy removal from the ullage even without the mixer operating. Details regarding the test setup and procedures are presented in the paper. 1

  10. High blood pressure - infants

    MedlinePlus

    ... this page: //medlineplus.gov/ency/article/007329.htm High blood pressure - infants To use the sharing features on this page, please enable JavaScript. High blood pressure (hypertension) is an increase in the force of ...

  11. High Blood Pressure Prevention

    MedlinePlus

    ... version of this page please turn Javascript on. High Blood Pressure Prevention Steps You Can Take You can take steps to prevent high blood pressure by adopting these healthy lifestyle habits. Follow a ...

  12. Hypertension (High Blood Pressure)

    MedlinePlus

    ... Visitor Information RePORT NIH Fact Sheets Home > Hypertension (High Blood Pressure) Small Text Medium Text Large Text Hypertension (High Blood Pressure) YESTERDAY Hypertension is a silent killer because it ...

  13. Use of Interrupted Helium Flow in the Analysis of Vapor Samples with Flowing Atmospheric-Pressure Afterglow-Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Storey, Andrew P.; Zeiri, Offer M.; Ray, Steven J.; Hieftje, Gary M.

    2017-02-01

    The flowing atmospheric-pressure afterglow (FAPA) source was used for the mass-spectrometric analysis of vapor samples introduced between the source and mass spectrometer inlet. Through interrupted operation of the plasma-supporting helium flow, helium consumption is greatly reduced and dynamic gas behavior occurs that was characterized by schlieren imaging. Moreover, mass spectra acquired immediately after the onset of helium flow exhibit a signal spike before declining and ultimately reaching a steady level. This initial signal appears to be due to greater interaction of sample vapor with the afterglow of the source when helium flow resumes. In part, the initial spike in signal can be attributed to a pooling of analyte vapor in the absence of helium flow from the source. Time-resolved schlieren imaging of the helium flow during on and off cycles provided insight into gas-flow patterns between the FAPA source and the MS inlet that were correlated with mass-spectral data.

  14. Innovative Method for Developing a Helium Pressurant Tank Suitable for the Upper Stage Flight Experiment

    NASA Technical Reports Server (NTRS)

    DeLay, Tom K.; Munafo, Paul (Technical Monitor)

    2001-01-01

    The AFRL USFE project is an experimental test bed for new propulsion technologies. It will utilize ambient temperature fuel and oxidizers (Kerosene and Hydrogen peroxide). The system is pressure fed, not pump fed, and will utilize a helium pressurant tank to drive the system. Mr. DeLay has developed a method for cost effectively producing a unique, large pressurant tank that is not commercially available. The pressure vessel is a layered composite structure with an electroformed metallic permeation barrier. The design/process is scalable and easily adaptable to different configurations with minimal cost in tooling development 1/3 scale tanks have already been fabricated and are scheduled for testing. The full-scale pressure vessel (50" diameter) design will be refined based on the performance of the sub-scale tank. The pressure vessels have been designed to operate at 6,000 psi. a PV/W of 1.92 million is anticipated.

  15. FLOATING PRESSURE CONVERSION AND EQUIPMENT UPGRADES OF TWO 3.5KW, 20K, HELIUM REFRIGERATORS

    SciTech Connect

    J. Homan, V. Ganni, A. Sidi-Yekhlef, J. Creel, R. Norton, R. Linza, G. Vargas, J. Lauterbach, J. Urbin, D. Howe

    2010-04-01

    Two helium refrigerators, each rated for 3.5 KW at 20 K, are used at NASA's Johnson Space Center (JSC) in Building No. 32 to provide cryogenic-pumping within two large thermal-vacuum chambers. These refrigerators were originally commissioned in 1996. New changes to the controls of these refrigerators were recently completed. This paper describes some of the control issues that necessitated the controls change-over. It will describe the modifications and the new process control which allows the refrigerators to take advantage of the Ganni Cycle “floating pressure” control technology. The controls philosophy change-over to the floating pressure control technology was the first application on a helium gas refrigeration system. Previous implementations of the floating pressure technology have been on 4 K liquefaction and refrigeration systems, which have stored liquid helium volumes that have level indications used for varying the pressure levels (charge) in the system for capacity modulation. The upgrades have greatly improved the performance, stability, and efficiency of these two refrigerators. The upgrades have also given the operators more information and details about the operational status of the main components (compressors, expanders etc.) of the refrigerators at all operating conditions (i.e. at various loads in the vacuum chambers). The performance data of the two systems, pre and post upgrading are presented.

  16. Investigation of atmospheric pressure glow microdischarge between flat cathode and needle anode in helium and argon

    NASA Astrophysics Data System (ADS)

    Astafiev, Alexander; Belyaev, Vladimir; Zamchii, Roman; Kudryavtsev, Anatoly; Stepanova, Olga; Chen, Zhaoquan

    2016-09-01

    DC atmospheric-pressure glow microdischarge was generated between a flat cathode and needle anode with a diameter of 100 μm in a special chamber with helium or argon. Dependences of discharge parameters on an interelectrode gap was investigated with an original experimental setup based on a movable arm on the hinge joint which allowed changing the gap with a step of 5 μm. The gap was varied from 5 to 700 μm. Discharge current was 1-21 mA. Such discharge cell has a very low interelectrode capacitance and provides increasing the stability of the discharge against arc formation (transition to RC oscillations mode) at low currents of 1 mA. A weak dependence of discharge voltage across the gap was revealed in helium at 100-250 μm between the electrodes (normal discharge). In contrast to this, glow microdischarge in argon has a descending current-voltage characteristic and unstable nature. The discharge voltage depending on the gap changes significantly slower than in helium. According to our estimations, the strength of electrical field of positive glow in argon is 5 times lower than in helium. Saint Petersburg State University (Grant No. 0.37.218.2016).

  17. A computational modeling study on the helium atmospheric pressure plasma needle discharge

    NASA Astrophysics Data System (ADS)

    Qian, Mu-Yang; Yang, Cong-Ying; Liu, San-Qiu; Wang, Zhen-Dong; Lv, Yan; Wang, De-Zhen

    2015-12-01

    A two-dimensional coupled model of neutral gas flow and plasma dynamics is employed to investigate the streamer dynamics in a helium plasma needle at atmospheric pressure. A parametric study of the streamer propagation as a function of needle tip curvature radius and helium gas flow rate is presented. The key chemical reactions at the He/air mixing layer which drive the streamer propagation are the direct ionization via collision with electrons, the Penning effect being not so crucial. With increasing the gas flow rate from 0.2 standard liter per minute (SLM) to 0.8 SLM, however, the emissions resulting from reactive oxygen and nitrogen species change from a solid circle to a hollow profile and the average streamer propagation velocity decreases. Air impurities (backdiffusion from ambient air) in the helium jet result in a significant increase in the streamer propagation velocity. Besides, with decreasing the tip curvature radiusfrom 200 μm to 100 μm, the electron avalanche process around the near-tip region is more pronounced. However, the spatially resolved plasma parameters distributions (electron, helium metastables, ground state atomic oxygen, etc.) remain almost the same, except that around the near-tip region where their peak values are more than doubled. Project supported partly by the National Natural Science Foundation of China (Grant No. 11465013), the Natural Science Foundation of Jiangxi Province, China (Grant No. 20151BAB212012), and in part by the International Science and Technology Cooperation Program of China (Grant No. 2015DFA61800).

  18. High Blood Pressure (Hypertension)

    MedlinePlus

    ... For Consumers Consumer Information by Audience For Women High Blood Pressure (Hypertension) Share Tweet Linkedin Pin it More sharing ... En Español Who is at risk? How is high blood pressure treated? Understanding your blood pressure: What do the ...

  19. Analytical model of atmospheric pressure, helium/trace gas radio-frequency capacitive Penning discharges

    NASA Astrophysics Data System (ADS)

    Lieberman, M. A.

    2015-04-01

    Atmospheric and near-atmospheric pressure, helium/trace gas radio-frequency capacitive discharges have wide applications. An analytic equilibrium solution is developed based on a homogeneous, current-driven discharge model that includes sheath and electron multiplication effects and contains two electron populations. A simplified chemistry is used with four unknown densities: hot electrons, warm electrons, positive ions and metastables. The dominant electron-ion pair production is Penning ionization, and the dominant ion losses are to the walls. The equilibrium particle balances are used to determine a single ionization balance equation for the warm electron temperature, which is solved, both approximately within the α- and γ-modes, and exactly by conventional root-finding techniques. All other discharge parameters are found, the extinction and α-γ transitions are determined, and a similarity law is given, in which the equilibrium for a short gap at high pressure can be rescaled to a longer gap at lower pressure. Within the α-mode, we find the scaling of the discharge parameters with current density, frequency, gas density and gap width. The analytic results are compared to hybrid and particle-in-cell (PIC) results for He/0.1%N2, and to hybrid results for He/0.1%H2O. For nitrogen, a full reaction set is used for the hybrid calculations and a simplified reaction set for the PIC simulations. For the chemically complex water trace gas, a set of 209 reactions among 43 species is used. The analytic results are found to be in reasonably good agreement with the more elaborate hybrid and PIC calculations.

  20. Use of Heated Helium to Simulate Surface Pressure Fluctuations on the Launch Abort Vehicle During Abort Motor Firing

    NASA Technical Reports Server (NTRS)

    Panda, Jayanta; James, George H.; Burnside, Nathan J.; Fong, Robert; Fogt, Vincent A.

    2011-01-01

    The solid-rocket plumes from the Abort motor of the Multi-Purpose Crew Vehicle (MPCV, also know as Orion) were simulated using hot, high pressure, Helium gas to determine the surface pressure fluctuations on the vehicle in the event of an abort. About 80 different abort situations over a wide Mach number range, (0.3< or =M< or =1.2) and vehicle attitudes (+/-15deg) were simulated inside the NASA Ames Unitary Plan, 11-Foot Transonic Wind Tunnel. For each abort case, typically two different Helium plume and wind tunnel conditions were used to bracket different flow matching critera. This unique, yet cost-effective test used a custom-built hot Helium delivery system, and a 6% scale model of a part of the MPCV, known as the Launch Abort Vehicle. The test confirmed the very high level of pressure fluctuations on the surface of the vehicle expected during an abort. In general, the fluctuations were found to be dominated by the very near-field hydrodynamic fluctuations present in the plume shear-layer. The plumes were found to grow in size for aborts occurring at higher flight Mach number and altitude conditions. This led to an increase in the extent of impingement on the vehicle surfaces; however, unlike some initial expectations, the general trend was a decrease in the level of pressure fluctuations with increasing impingement. In general, the highest levels of fluctuations were found when the outer edges of the plume shear layers grazed the vehicle surface. At non-zero vehicle attitudes the surface pressure distributions were found to become very asymmetric. The data from these wind-tunnel simulations were compared against data collected from the recent Pad Abort 1 flight test. In spite of various differences between the transient flight situation and the steady-state wind tunnel simulations, the hot-Helium data were found to replicate the PA1 data fairly reasonably. The data gathered from this one-of-a-kind wind-tunnel test fills a gap in the manned-space programs

  1. The influence of high grain boundary density on helium retention in tungsten

    NASA Astrophysics Data System (ADS)

    Valles, G.; González, C.; Martin-Bragado, I.; Iglesias, R.; Perlado, J. M.; Rivera, A.

    2015-02-01

    In order to study the influence of a high grain boundary density on the amount, size and distribution of defects produced by pulsed helium (625 keV) irradiation in tungsten, we have carried out Object Kinetic Monte Carlo (OKMC) simulations in both monocrystalline and nanocrystalline tungsten. The parameterization of the OKMC code (MMonCa) includes binding energies obtained with our in-house Density Functional Theory (DFT) calculations. In the interior of a grain in nanocrystalline tungsten the mixed HenVm clusters are larger and have a lower He/V ratio. Thus, they are less pressurized clusters. The total elastic strain energy remains almost constant with the increasing number of pulses, contrary to its increase in monocrystalline tungsten. A better response to helium irradiation is therefore expected in nanocrystalline tungsten, opening a new path to investigate these nanostructured materials for fusion purposes.

  2. Testing the Effects of Helium Pressurant on Thermodynamic Vent System Performance with Liquid Hydrogen

    NASA Astrophysics Data System (ADS)

    Flachbart, R. H.; Hastings, L. J.; Hedayat, A.; Nelson, S. L.; Tucker, S.

    2008-03-01

    In support of the development of a micro-gravity pressure control capability for liquid hydrogen, testing was conducted at the Marshall Space Flight Center (MSFC) with the Multipurpose Hydrogen Test Bed (MHTB) to evaluate the effects of helium pressurant on the performance of a spray-bar thermodynamic vent system (TVS). The testing, with an ambient heat leak of about 70 W and tank fill levels of 90, 50, and 25%, was performed for 14 days during August and September 2005. The TVS successfully controlled the tank pressure within a ±3.45 kPa band with various gaseous helium (GHe) masses in the ullage. Relative to pressure control with an "all hydrogen" ullage, the GHe presence resulted in 37 to 68% longer pressure reduction cycle durations, depending on the fill level, during the mixing/venting phase of the control cycle. Testing was also conducted to evaluate thermodynamic venting without the recirculation pump operating, at a very low fill level. Although ullage stratification was present, the ullage pressure was successfully controlled without the pump. It was evident that the spray-bar and heat exchanger configuration, which extended almost the entire length of the tank, enabled significant thermal energy removal from the ullage even without the pump operating.

  3. High precision Hugoniot measurements on statically pre-compressed fluid helium

    DOE PAGES

    Seagle, Christopher T.; Reinhart, William D.; Lopez, Andrew J.; ...

    2016-09-27

    Here we describe how the capability for statically pre-compressing fluid targets for Hugoniot measurements utilizing gas gun driven flyer plates has been developed. Pre-compression expands the capability for initial condition control, allowing access to thermodynamic states off the principal Hugoniot. Absolute Hugoniot measurements with an uncertainty less than 3% on density and pressure were obtained on statically pre-compressed fluid helium utilizing a two stage light gas gun. Helium is highly compressible; the locus of shock states resulting from dynamic loading of an initially compressed sample at room temperature is significantly denser than the cryogenic fluid Hugoniot even for relatively modestmore » (0.27–0.38 GPa) initial pressures. Lastly, the dynamic response of pre-compressed helium in the initial density range of 0.21–0.25 g/cm3 at ambient temperature may be described by a linear shock velocity (us) and particle velocity (up) relationship: us = C0 + sup, with C0 = 1.44 ± 0.14 km/s and s = 1.344 ± 0.025.« less

  4. High precision Hugoniot measurements on statically pre-compressed fluid helium

    NASA Astrophysics Data System (ADS)

    Seagle, Christopher T.; Reinhart, William D.; Lopez, Andrew J.; Hickman, Randy J.; Thornhill, Tom F.

    2016-09-01

    The capability for statically pre-compressing fluid targets for Hugoniot measurements utilizing gas gun driven flyer plates has been developed. Pre-compression expands the capability for initial condition control, allowing access to thermodynamic states off the principal Hugoniot. Absolute Hugoniot measurements with an uncertainty less than 3% on density and pressure were obtained on statically pre-compressed fluid helium utilizing a two stage light gas gun. Helium is highly compressible; the locus of shock states resulting from dynamic loading of an initially compressed sample at room temperature is significantly denser than the cryogenic fluid Hugoniot even for relatively modest (0.27-0.38 GPa) initial pressures. The dynamic response of pre-compressed helium in the initial density range of 0.21-0.25 g/cm3 at ambient temperature may be described by a linear shock velocity (us) and particle velocity (up) relationship: us = C0 + sup, with C0 = 1.44 ± 0.14 km/s and s = 1.344 ± 0.025.

  5. High precision Hugoniot measurements on statically pre-compressed fluid helium

    SciTech Connect

    Seagle, Christopher T.; Reinhart, William D.; Lopez, Andrew J.; Hickman, Randy J.; Thornhill, Tom F.

    2016-09-27

    Here we describe how the capability for statically pre-compressing fluid targets for Hugoniot measurements utilizing gas gun driven flyer plates has been developed. Pre-compression expands the capability for initial condition control, allowing access to thermodynamic states off the principal Hugoniot. Absolute Hugoniot measurements with an uncertainty less than 3% on density and pressure were obtained on statically pre-compressed fluid helium utilizing a two stage light gas gun. Helium is highly compressible; the locus of shock states resulting from dynamic loading of an initially compressed sample at room temperature is significantly denser than the cryogenic fluid Hugoniot even for relatively modest (0.27–0.38 GPa) initial pressures. Lastly, the dynamic response of pre-compressed helium in the initial density range of 0.21–0.25 g/cm3 at ambient temperature may be described by a linear shock velocity (us) and particle velocity (up) relationship: us = C0 + sup, with C0 = 1.44 ± 0.14 km/s and s = 1.344 ± 0.025.

  6. High precision Hugoniot measurements on statically pre-compressed fluid helium

    SciTech Connect

    Seagle, Christopher T.; Reinhart, William D.; Lopez, Andrew J.; Hickman, Randy J.; Thornhill, Tom F.

    2016-09-27

    Here we describe how the capability for statically pre-compressing fluid targets for Hugoniot measurements utilizing gas gun driven flyer plates has been developed. Pre-compression expands the capability for initial condition control, allowing access to thermodynamic states off the principal Hugoniot. Absolute Hugoniot measurements with an uncertainty less than 3% on density and pressure were obtained on statically pre-compressed fluid helium utilizing a two stage light gas gun. Helium is highly compressible; the locus of shock states resulting from dynamic loading of an initially compressed sample at room temperature is significantly denser than the cryogenic fluid Hugoniot even for relatively modest (0.27–0.38 GPa) initial pressures. Lastly, the dynamic response of pre-compressed helium in the initial density range of 0.21–0.25 g/cm3 at ambient temperature may be described by a linear shock velocity (us) and particle velocity (up) relationship: us = C0 + sup, with C0 = 1.44 ± 0.14 km/s and s = 1.344 ± 0.025.

  7. Simulation of the mantle and crustal helium isotope signature in the Mediterranean Sea using a high-resolution regional circulation model

    NASA Astrophysics Data System (ADS)

    Ayache, M.; Dutay, J.-C.; Jean-Baptiste, P.; Fourré, P. E.

    2015-08-01

    Helium isotopes (3He, 4He) are useful tracers for investigating the deep ocean circulation and for evaluating ocean general circulation models, because helium is a stable and conservative nuclide that does not take part in any chemical or biological process. Helium in the ocean originates from three different sources: namely, (i) gas dissolution in equilibrium with atmospheric helium, (ii) helium-3 addition by radioactive decay of tritium (called tritiugenic helium), and (iii) injection of terrigenic helium-3 and helium-4 by the submarine volcanic activity which occurs mainly at plate boundaries, and also addition of (mainly) helium-4 from the crust and sedimentary cover by α-decay of uranium and thorium contained in various minerals. We present the first simulation of the terrigenic helium isotope distribution in the whole Mediterranean Sea, using a high-resolution model (NEMO-MED12). For this simulation we build a simple source function for terrigenic helium isotopes based on published estimates of terrestrial helium fluxes. We estimate a hydrothermal flux of 3.5 mol 3He yr-1 and a lower limit for the crustal flux at 1.6 10-7 mol 4He mol m-2 yr-1. In addition to providing constraints on helium isotope degassing fluxes in the Mediterranean, our simulations provide information on the ventilation of the deep Mediterranean waters which are useful for assessing NEMO-MED12 performance. This study is part of the work carried out to assess the robustness of the NEMO-MED12 model, which will be used to study the evolution of the climate and its effect on the biogeochemical cycles in the Mediterranean Sea, and to improve our ability to predict the future evolution of the Mediterranean Sea under the increasing anthropogenic pressure.

  8. Simulation of the mantle and crustal helium isotope signature in the Mediterranean Sea using a high-resolution regional circulation model

    NASA Astrophysics Data System (ADS)

    Ayache, M.; Dutay, J.-C.; Jean-Baptiste, P.; Fourré, E.

    2015-12-01

    Helium isotopes (3He, 4He) are useful tracers for investigating the deep ocean circulation and for evaluating ocean general circulation models, because helium is a stable and conservative nuclide that does not take part in any chemical or biological process. Helium in the ocean originates from three different sources, namely, (i) gas dissolution in equilibrium with atmospheric helium, (ii) helium-3 addition by radioactive decay of tritium (called tritiugenic helium), and (iii) injection of terrigenic helium-3 and helium-4 by the submarine volcanic activity which occurs mainly at plate boundaries, and also addition of (mainly) helium-4 from the crust and sedimentary cover by α-decay of uranium and thorium contained in various minerals. We present the first simulation of the terrigenic helium isotope distribution in the whole Mediterranean Sea using a high-resolution model (NEMO-MED12). For this simulation we build a simple source function for terrigenic helium isotopes based on published estimates of terrestrial helium fluxes. We estimate a hydrothermal flux of 3.5 mol3 He yr-1 and a lower limit for the crustal flux at 1.6 × 10-7 4He mol m-2 yr-1. In addition to providing constraints on helium isotope degassing fluxes in the Mediterranean, our simulations provide information on the ventilation of the deep Mediterranean waters which is useful for assessing NEMO-MED12 performance. This study is part of the work carried out to assess the robustness of the NEMO-MED12 model, which will be used to study the evolution of the climate and its effect on the biogeochemical cycles in the Mediterranean Sea, and to improve our ability to predict the future evolution of the Mediterranean Sea under the increasing anthropogenic pressure.

  9. Columnar discharge mode between parallel dielectric barrier electrodes in atmospheric pressure helium

    SciTech Connect

    Hao, Yanpeng; Zheng, Bin; Liu, Yaoge

    2014-01-15

    Using a fast-gated intensified charge-coupled device, end- and side-view photographs were taken of columnar discharge between parallel dielectric barrier electrodes in atmospheric pressure helium. Based on three-dimensional images generated from end-view photographs, the number of discharge columns increased, whereas the diameter of each column decreased as the applied voltage was increased. Side-view photographs indicate that columnar discharges exhibited a mode transition ranging from Townsend to glow discharges generated by the same discharge physics as atmospheric pressure glow discharge.

  10. Numerical Modeling and Test Data Comparison of Propulsion Test Article Helium Pressurization System

    NASA Technical Reports Server (NTRS)

    Holt, Kimberly; Majumdar, Alok; Steadman, Todd; Hedayat, Ali; Fogle, Frank R. (Technical Monitor)

    2000-01-01

    A transient model of the propulsion test article (PTA) helium pressurization system was developed using the generalized fluid system simulation program (GFSSP). The model included pressurization lines from the facility interface to the engine purge interface and liquid oxygen (lox) and rocket propellant-1 (RP-1) tanks, the propellant tanks themselves including ullage space, and propellant feed lines to their respective pump interfaces. GFSSP's capability was extended to model a control valve to maintain ullage pressure within a specified limit and pressurization processes such as heat transfer between ullage gas, propellant, and the tank wall as well as conduction in the tank wall. The purpose of the model is to predict the flow system characteristics in the entire pressurization system during 80 sec of lower feed system priming, 420 sec of fuel and lox pump priming, and 150 sec of engine firing.

  11. High Blood Pressure in Pregnancy

    MedlinePlus

    ... The Health Information Center High Blood Pressure in Pregnancy What Is High Blood Pressure? Blood pressure is ... Are the Effects of High Blood Pressure in Pregnancy? Although many pregnant women with high blood pressure ...

  12. Cryogenic helium as stopping medium for high-energy ions

    NASA Astrophysics Data System (ADS)

    Purushothaman, S.; Dendooven, P.; Moore, I.; Penttilä, H.; Ronkainen, J.; Saastamoinen, A.; Äystö, J.; Peräjärvi, K.; Takahashi, N.; Gloos, K.

    2008-10-01

    We have investigated the survival and transport efficiency of 219Rn ions emitted by a 223Ra source in high-density cryogenic helium gas, with ionisation of the gas induced by a proton beam. The combined efficiency of ion survival and transport by an applied electric field was measured as a function of ionisation rate density for electric fields up to 160 V/cm and for three temperature and density combinations: 77 K, 0.18 mg/cm3, 10 K, 0.18 mg/cm3 and 10 K, 0.54 mg/cm3. At low beam intensity or high electric field, an efficiency of 30 % is obtained, confirming earlier results. A sharp drop in efficiency is observed at a "threshold" ionisation rate density which increases with the square of the applied electric field. At 160 V/cm, the efficiency stays above 10% up to an ionisation rate density of 1012 ion-electron pairs/cm3/s. The observed behaviour is understood as the result of shielding of the applied field by the weak plasma created by the proton beam: it counteracts the effective transport of ions and electrons, leading to recombination between the two. We conclude that cryogenic helium gas at high-density and high electric field is a promising medium for the transformation of very high-energy ions into low-energy ones.

  13. Electron heating and particle fluxes in dual frequency atmospheric-pressure helium capacitive discharge

    NASA Astrophysics Data System (ADS)

    Liu, Dingxin; Yang, Aijun; Wang, Xiaohua; Chen, Chen; Rong, Mingzhe; Kong, Michael G.

    2016-12-01

    In this letter, a 1D fluid model has been used to study the electron heating and particle transport in dual frequency atmospheric-pressure helium capacitive discharge with a high-frequency (HF) voltage of 10 MHz and a low-frequency (LF) voltage of 1 MHz. The electric field is decoupled to three components: the HF, the LF and the direct current (DC) ones, and they have much different effects on the plasmas. The eletrons in plasma bulk are mainly heated by the HF electric field, while in plasma sheath they are heated and cooled by the LF and DC electric fields, respectively. With a fixed total input power, the increase of LF power leads to great enhancement of the electrode fluxes of electrons and ions, especially for the energetic electrons of T e  >  2 eV, because more power is dissipated in the vicinity of electrodes and the inelastic collision is more pronounced. Therefore, the particle transport on the treated sample can be greatly enhanced without additional gas heating in dual frequency plasmas, which meets the application requirements more compared to the single frequency plasmas.

  14. Benchmarking density functionals for hydrogen-helium mixtures with quantum Monte Carlo: Energetics, pressures, and forces

    SciTech Connect

    Clay, Raymond C.; Holzmann, Markus; Ceperley, David M.; Morales, Maguel A.

    2016-01-19

    An accurate understanding of the phase diagram of dense hydrogen and helium mixtures is a crucial component in the construction of accurate models of Jupiter, Saturn, and Jovian extrasolar planets. Though DFT based rst principles methods have the potential to provide the accuracy and computational e ciency required for this task, recent benchmarking in hydrogen has shown that achieving this accuracy requires a judicious choice of functional, and a quanti cation of the errors introduced. In this work, we present a quantum Monte Carlo based benchmarking study of a wide range of density functionals for use in hydrogen-helium mixtures at thermodynamic conditions relevant for Jovian planets. Not only do we continue our program of benchmarking energetics and pressures, but we deploy QMC based force estimators and use them to gain insights into how well the local liquid structure is captured by di erent density functionals. We nd that TPSS, BLYP and vdW-DF are the most accurate functionals by most metrics, and that the enthalpy, energy, and pressure errors are very well behaved as a function of helium concentration. Beyond this, we highlight and analyze the major error trends and relative di erences exhibited by the major classes of functionals, and estimate the magnitudes of these e ects when possible.

  15. Benchmarking density functionals for hydrogen-helium mixtures with quantum Monte Carlo: Energetics, pressures, and forces

    DOE PAGES

    Clay, Raymond C.; Holzmann, Markus; Ceperley, David M.; ...

    2016-01-19

    An accurate understanding of the phase diagram of dense hydrogen and helium mixtures is a crucial component in the construction of accurate models of Jupiter, Saturn, and Jovian extrasolar planets. Though DFT based rst principles methods have the potential to provide the accuracy and computational e ciency required for this task, recent benchmarking in hydrogen has shown that achieving this accuracy requires a judicious choice of functional, and a quanti cation of the errors introduced. In this work, we present a quantum Monte Carlo based benchmarking study of a wide range of density functionals for use in hydrogen-helium mixtures atmore » thermodynamic conditions relevant for Jovian planets. Not only do we continue our program of benchmarking energetics and pressures, but we deploy QMC based force estimators and use them to gain insights into how well the local liquid structure is captured by di erent density functionals. We nd that TPSS, BLYP and vdW-DF are the most accurate functionals by most metrics, and that the enthalpy, energy, and pressure errors are very well behaved as a function of helium concentration. Beyond this, we highlight and analyze the major error trends and relative di erences exhibited by the major classes of functionals, and estimate the magnitudes of these e ects when possible.« less

  16. Benchmarking density functionals for hydrogen-helium mixtures with quantum Monte Carlo: Energetics, pressures, and forces

    SciTech Connect

    Clay, Raymond C.; Holzmann, Markus; Ceperley, David M.; Morales, Maguel A.

    2016-01-19

    An accurate understanding of the phase diagram of dense hydrogen and helium mixtures is a crucial component in the construction of accurate models of Jupiter, Saturn, and Jovian extrasolar planets. Though DFT based rst principles methods have the potential to provide the accuracy and computational e ciency required for this task, recent benchmarking in hydrogen has shown that achieving this accuracy requires a judicious choice of functional, and a quanti cation of the errors introduced. In this work, we present a quantum Monte Carlo based benchmarking study of a wide range of density functionals for use in hydrogen-helium mixtures at thermodynamic conditions relevant for Jovian planets. Not only do we continue our program of benchmarking energetics and pressures, but we deploy QMC based force estimators and use them to gain insights into how well the local liquid structure is captured by di erent density functionals. We nd that TPSS, BLYP and vdW-DF are the most accurate functionals by most metrics, and that the enthalpy, energy, and pressure errors are very well behaved as a function of helium concentration. Beyond this, we highlight and analyze the major error trends and relative di erences exhibited by the major classes of functionals, and estimate the magnitudes of these e ects when possible.

  17. Benchmarking density functionals for hydrogen-helium mixtures with quantum Monte Carlo: Energetics, pressures, and forces

    DOE PAGES

    Clay, Raymond C.; Holzmann, Markus; Ceperley, David M.; ...

    2016-01-19

    An accurate understanding of the phase diagram of dense hydrogen and helium mixtures is a crucial component in the construction of accurate models of Jupiter, Saturn, and Jovian extrasolar planets. Though DFT based rst principles methods have the potential to provide the accuracy and computational e ciency required for this task, recent benchmarking in hydrogen has shown that achieving this accuracy requires a judicious choice of functional, and a quanti cation of the errors introduced. In this work, we present a quantum Monte Carlo based benchmarking study of a wide range of density functionals for use in hydrogen-helium mixtures atmore » thermodynamic conditions relevant for Jovian planets. Not only do we continue our program of benchmarking energetics and pressures, but we deploy QMC based force estimators and use them to gain insights into how well the local liquid structure is captured by di erent density functionals. We nd that TPSS, BLYP and vdW-DF are the most accurate functionals by most metrics, and that the enthalpy, energy, and pressure errors are very well behaved as a function of helium concentration. Beyond this, we highlight and analyze the major error trends and relative di erences exhibited by the major classes of functionals, and estimate the magnitudes of these e ects when possible.« less

  18. Reactive species in atmospheric pressure helium-oxygen plasmas with humid air impurities

    NASA Astrophysics Data System (ADS)

    Murakami, Tomoyuki; Niemi, Kari; Gans, Timo; O'Connell, Deborah; Graham, William G.

    2012-10-01

    In most applications helium-based plasma jets operate in an open air environment. The presence of humid-air in the plasma jet will influence the plasma chemistry and can lead to the production of a broader range of reactive species. We explore the influence of humid air on the reactive species in rf driven atmospheric-pressure helium-oxygen mixture plasmas (helium with 5000 ppm admixture of oxygen) for wide air impurity levels of 0-500 ppm with relative humidities of from 0 to 100% using a zero-dimensional, time-dependent global model. Comparisons are made with experimental measurements in an rf driven micro-scale atmospheric pressure plasma jet and with one-dimensional semi-kinetic simulations of the same plasma jet. The evolution of species concentration is described for reactive oxygen species, metastable species, radical species and positively- and negatively-charged ions (and its clusters). Effects of the air impurity containing water humidity on electronegativity and chemical activity are clarified with particular emphasis on reactive oxygen species.

  19. The breakdown process in an atmospheric pressure nanosecond parallel-plate helium/argon mixture discharge

    NASA Astrophysics Data System (ADS)

    Huang, Bang-Dou; Takashima, Keisuke; Zhu, Xi-Ming; Pu, Yi-Kang

    2016-02-01

    The breakdown process in an atmospheric pressure nanosecond helium/argon mixture discharge with parallel-plate electrodes is investigated by temporally and spatially resolved optical emission spectroscopy (OES). The spatially resolved electric field is obtained from the Stark splitting of the He i 492.1 nm line. Using the emissions from the He ii 468.6 nm, He i 667.8 nm, and Ar i 750.4 nm lines and a collisional-radiative model, the spatially resolved T e, high and T e, low (representing the effective T e in the high energy and low energy part of the EEDF, respectively) are obtained. It is found that, compared with the average electric field provided by the external pulser, the electric field is greatly enhanced at certain location and is significantly weakened at other places. This observation shows the effect of the ionization wave propagation, as predicted in [1, 2]. The value of T e, high is much larger than that of T e, low, which indicates that an elevated high energy tail in the EEDF is built up under the influence of strong electric field during the breakdown process. Initially, the spatial distribution of the T e, low and the T e, high generally follows that of the electric field. However, at the end of the breakdown period, the location of the highest T e, low and T e, high is shifted away from the cathode sheath, where the electric field is strongest. This indicates the existence of a non-local effect and is supported by the result from a simple Monte-Carlo simulation.

  20. High Resolution Helium Ion Scanning Microscopy of the Rat Kidney

    PubMed Central

    Rice, William L.; Van Hoek, Alfred N.; Păunescu, Teodor G.; Huynh, Chuong; Goetze, Bernhard; Singh, Bipin; Scipioni, Larry; Stern, Lewis A.; Brown, Dennis

    2013-01-01

    Helium ion scanning microscopy is a novel imaging technology with the potential to provide sub-nanometer resolution images of uncoated biological tissues. So far, however, it has been used mainly in materials science applications. Here, we took advantage of helium ion microscopy to explore the epithelium of the rat kidney with unsurpassed image quality and detail. In addition, we evaluated different tissue preparation methods for their ability to preserve tissue architecture. We found that high contrast, high resolution imaging of the renal tubule surface is possible with a relatively simple processing procedure that consists of transcardial perfusion with aldehyde fixatives, vibratome tissue sectioning, tissue dehydration with graded methanol solutions and careful critical point drying. Coupled with the helium ion system, fine details such as membrane texture and membranous nanoprojections on the glomerular podocytes were visualized, and pores within the filtration slit diaphragm could be seen in much greater detail than in previous scanning EM studies. In the collecting duct, the extensive and striking apical microplicae of the intercalated cells were imaged without the shrunken or distorted appearance that is typical with conventional sample processing and scanning electron microscopy. Membrane depressions visible on principal cells suggest possible endo- or exocytotic events, and central cilia on these cells were imaged with remarkable preservation and clarity. We also demonstrate the use of colloidal gold probes for highlighting specific cell-surface proteins and find that 15 nm gold labels are practical and easily distinguishable, indicating that external labels of various sizes can be used to detect multiple targets in the same tissue. We conclude that this technology represents a technical breakthrough in imaging the topographical ultrastructure of animal tissues. Its use in future studies should allow the study of fine cellular details and provide

  1. High resolution helium ion scanning microscopy of the rat kidney.

    PubMed

    Rice, William L; Van Hoek, Alfred N; Păunescu, Teodor G; Huynh, Chuong; Goetze, Bernhard; Singh, Bipin; Scipioni, Larry; Stern, Lewis A; Brown, Dennis

    2013-01-01

    Helium ion scanning microscopy is a novel imaging technology with the potential to provide sub-nanometer resolution images of uncoated biological tissues. So far, however, it has been used mainly in materials science applications. Here, we took advantage of helium ion microscopy to explore the epithelium of the rat kidney with unsurpassed image quality and detail. In addition, we evaluated different tissue preparation methods for their ability to preserve tissue architecture. We found that high contrast, high resolution imaging of the renal tubule surface is possible with a relatively simple processing procedure that consists of transcardial perfusion with aldehyde fixatives, vibratome tissue sectioning, tissue dehydration with graded methanol solutions and careful critical point drying. Coupled with the helium ion system, fine details such as membrane texture and membranous nanoprojections on the glomerular podocytes were visualized, and pores within the filtration slit diaphragm could be seen in much greater detail than in previous scanning EM studies. In the collecting duct, the extensive and striking apical microplicae of the intercalated cells were imaged without the shrunken or distorted appearance that is typical with conventional sample processing and scanning electron microscopy. Membrane depressions visible on principal cells suggest possible endo- or exocytotic events, and central cilia on these cells were imaged with remarkable preservation and clarity. We also demonstrate the use of colloidal gold probes for highlighting specific cell-surface proteins and find that 15 nm gold labels are practical and easily distinguishable, indicating that external labels of various sizes can be used to detect multiple targets in the same tissue. We conclude that this technology represents a technical breakthrough in imaging the topographical ultrastructure of animal tissues. Its use in future studies should allow the study of fine cellular details and provide

  2. Precision, high dose radiotherapy: helium ion treatment of uveal melanoma

    SciTech Connect

    Saunders, W.M.; Char, D.H.; Quivey, J.M.; Castro, J.R.; Chen, G.T.Y.; Collier, J.M.; Cartigny, A.; Blakely, E.A.; Lyman, J.T.; Zink, S.R.

    1985-02-01

    The authors report on 75 patients with uveal melanoma who were treated by placing the Bragg peak of a helium ion beam over the tumor volume. The technique localizes the high dose region very tightly around the tumor volume. This allows critical structures, such as the optic disc and the macula, to be excluded from the high dose region as long as they are 3 to 4 mm away from the edge of the tumor. Careful attention to tumor localization, treatment planning, patient immobilization and treatment verification is required. With a mean follow-up of 22 months (3 to 60 months) the authors have had only five patients with a local recurrence, all of whom were salvaged with another treatment. Pretreatment visual acuity has generally been preserved as long as the tumor edge is at least 4 mm away from the macula and optic disc. The only serious complication to date has been an 18% incidence of neovascular glaucoma in the patients treated at our highest dose level. Clinical results and details of the technique are presented to illustrate potential clinical precision in administering high dose radiotherapy with charged particles such as helium ions or protons.

  3. Measurements on Melting Pressure, Metastable Solid Phases, and Molar Volume of Univariant Saturated Helium Mixture

    NASA Astrophysics Data System (ADS)

    Rysti, J.; Manninen, M. S.; Tuoriniemi, J.

    2014-06-01

    A concentration-saturated helium mixture at the melting pressure consists of two liquid phases and one or two solid phases. The equilibrium system is univariant, whose properties depend uniquely on temperature. Four coexisting phases can exist on singular points, which are called quadruple points. As a univariant system, the melting pressure could be used as a thermometric standard. It would provide some advantages compared to the current reference, namely pure He, especially at the lowest temperatures below 1 mK. We have extended the melting pressure measurements of the concentration-saturated helium mixture from 10 to 460 mK. The density of the dilute liquid phase was also recorded. The effect of the equilibrium crystal structure changing from hcp to bcc was clearly seen at mK at the melting pressure MPa. We observed the existence of metastable solid phases around this point. No evidence was found for the presence of another, disputed, quadruple point at around 400 mK. The experimental results agree well with our previous calculations at low temperatures, but deviate above 200 mK.

  4. Ionization of highly excited helium atoms in an electric field

    SciTech Connect

    van de Water, W.; Mariani, D.R.; Koch, P.M.

    1984-11-01

    We present detailed measurements of ionization of highly excited triplet helium atoms in a static electric field. The atoms were prepared in states with energy E close to the saddle-point threshold E = -2(F(a.u.))/sup 1/2/. The electric field F was sufficiently strong for the states to be characterized by total spin S and absolute value of the magnetic quantum number M/sub L/. For M/sub L/ = 0 states the experiments measured ionization properties of adiabatic states. In another case, Vertical BarM/sub L/Vertical Bar = 2, they predominantly measured those of diabatic states. In both cases the ionization rate was found to be a highly nonmonotonic function of the field strength. The observations are analyzed in terms of a theory of the helium density of states in an electric field. A companion paper (D. A. Harmin, Phys. Rev. A 30, 2413 (1984)) develops in detail the general theory, which uses quantum defects to parametrize the effect of the core interaction. The agreement between measured and calculated ionization curves is good, indicating that the field ionization of a nonhydrogenic atom can now be understood in a detailed, quantitative, and predictive sense.

  5. Helium:oxygen versus air:oxygen noninvasive positive-pressure ventilation in patients exposed to sulfur mustard.

    PubMed

    Ghanei, Mostafa; Rajaeinejad, Mohsen; Motiei-Langroudi, Rouzbeh; Alaeddini, Farshid; Aslani, Jafar

    2011-01-01

    Exposure to sulfur mustard (SM) causes a variety of respiratory symptoms, such as chronic bronchitis and constrictive bronchiolitis. This study assessed the effectiveness of noninvasive positive-pressure ventilation, adjunct with 79:21 helium:oxygen instead of 79:21 air:oxygen, in 24 patients with a previous exposure to SM presenting with acute respiratory failure. Both air:oxygen and helium:oxygen significantly decreased systolic blood pressure, diastolic blood pressure, mean arterial pressure, pulse rate, respiratory rate, dyspnea, and increased oxygen saturation (P values: .007, .029, .002, <.001, <.001, <.001, and .002 for air:oxygen, respectively, and <.001, .020, .001, <.001, <.001, <.001, and .002, for helium:oxygen, respectively). Moreover, helium:oxygen more potently improved systolic pressure, mean arterial pressure, pulse rate, respiratory rate, and dyspnea (P values: .012, .048, <.001, <.001, and .012, respectively). The results of our study support the benefit of using helium:oxygen adjunct with noninvasive positive-pressure ventilation in patients exposed to SM with acute respiratory decompensation. Copyright © 2011 Elsevier Inc. All rights reserved.

  6. High temperature pressure gauge

    DOEpatents

    Echtler, J. Paul; Scandrol, Roy O.

    1981-01-01

    A high temperature pressure gauge comprising a pressure gauge positioned in fluid communication with one end of a conduit which has a diaphragm mounted in its other end. The conduit is filled with a low melting metal alloy above the diaphragm for a portion of its length with a high temperature fluid being positioned in the remaining length of the conduit and in the pressure gauge.

  7. Simulation of Oxygen Disintegration and Mixing With Hydrogen or Helium at Supercritical Pressure

    NASA Technical Reports Server (NTRS)

    Bellan, Josette; Taskinoglu, Ezgi

    2012-01-01

    The simulation of high-pressure turbulent flows, where the pressure, p, is larger than the critical value, p(sub c), for the species under consideration, is relevant to a wide array of propulsion systems, e.g. gas turbine, diesel, and liquid rocket engines. Most turbulence models, however, have been developed for atmospheric-p turbulent flows. The difference between atmospheric-p and supercritical-p turbulence is that, in the former situation, the coupling between dynamics and thermodynamics is moderate to negligible, but for the latter it is very significant, and can dominate the flow characteristics. The reason for this stems from the mathematical form of the equation of state (EOS), which is the perfect-gas EOS in the former case, and the real-gas EOS in the latter case. For flows at supercritical pressure, p, the large eddy simulation (LES) equations consist of the differential conservation equations coupled with a real-gas EOS. The equations use transport properties that depend on the thermodynamic variables. Compared to previous LES models, the differential equations contain not only the subgrid scale (SGS) fluxes, but also new SGS terms, each denoted as a correction. These additional terms, typically assumed null for atmospheric pressure flows, stem from filtering the differential governing equations, and represent differences between a filtered term and the same term computed as a function of the filtered flow field. In particular, the energy equation contains a heat-flux correction (q-correction) that is the difference between the filtered divergence of the heat flux and the divergence of the heat flux computed as a function of the filtered flow field. In a previous study, there was only partial success in modeling the q-correction term, but in this innovation, success has been achieved by using a different modeling approach. This analysis, based on a temporal mixing layer Direct Numerical Simulation database, shows that the focus in modeling the q

  8. Gas-chromatographic analysis of high-purity helium using a helium detector

    SciTech Connect

    Krylov, V.A.; Aleksandrov, S.D.; Krasotskii, S.G.; Chernyatin, A.K.; Shkrunina, T.V.

    1986-10-10

    The limits of gas-chromatographic detection of neon, hydrogen, argon, nitrogen, krypton, and methane in helium have been determined using a helium ionization detector under saturation current conditions. The detection limits are restricted by the gas permeability of the detector Teflon body and the injection system. The dependence of extraction of impurity gases by cryogenic adsorption enrichment on their contents and enrichment time has been examined. the relative detection limit can be lowered by preconcentration of 3 x 10/sup -5/% for neon and to 4 x 10/sup -7/ to 2 x 10/sup -8/% for other gases.

  9. Numerical study of the interaction of a helium atmospheric pressure plasma jet with a dielectric material

    NASA Astrophysics Data System (ADS)

    Wang, Lijun; Zheng, Yashuang; Jia, Shenli

    2016-10-01

    This is a computational modeling study of a cold atmospheric pressure helium plasma jet impinging on a dielectric surface placed normal to the jet axis. This study provides insights into the propagation mechanism of the plasma jet, the electrical properties, and the total accumulated charge density at the dielectric surface. For the radial streamer propagation along the dielectric surface, Penning ionization and the electron impact ionization of helium atoms are the major ionization reactions in the streamer head, while Penning ionization is the only dominant contributor along the streamer body. In addition, the plasma bullet velocity along the dielectric surface is 10-100 times lower than that in the plasma column. Increasing tube radius or helium flow rate lowers air entrainment in the plasma jet, leading to a decrease of the radial electric field and the accumulated charge density at the dielectric surface. Furthermore, the tube radius has weaker influence on the plasma properties as tube radius increases. For a target dielectric with lower relative permittivity, a higher radial electric field penetrates into the material, and the surface ionization wave along the dielectric surface extends farther. Higher relative permittivity of the treated dielectric results in more charging at the dielectric surface and more electron density in the plasma column.

  10. Optical properties of the atmospheric pressure helium plasma jet generated by alternative current (a.c.) power supply

    SciTech Connect

    Ilik, Erkan Akan, Tamer

    2016-05-15

    In this work, an atmospheric pressure plasma jet (APPJ) was produced to generate cold flowing post-discharge plasma of pure helium gas. The main aim of this study was to generate cold flowing APPJ of pure helium gas and to determine how their optical emission spectrum change influences varying different flow rates. Lengths of early, middle, and late post-discharge plasma (jet) regions and their fluctuations were determined, respectively. Then, ignition condition dependence of the post-discharge plasma for flow rate was specified at a constant voltage. Spectroscopic studies of an atmospheric pressure plasma jet of helium were presented via analyzing OH, N{sub 2}, N{sub 2}{sup +}, oxygen, and helium intensities for various flow rates.

  11. Steady state boiling crisis in a helium vertically heated natural circulation loop - Part 2: Friction pressure drop lessening

    NASA Astrophysics Data System (ADS)

    Furci, H.; Baudouy, B.; Four, A.; Meuris, C.

    2016-01-01

    Experiments were conducted on a 2-m high two-phase helium natural circulation loop operating at 4.2 K and 1 atm. Two heated sections with different internal diameter (10 and 6 mm) were tested. The power applied on the heated section wall was controlled in increasing and decreasing sequences, and temperature along the section, mass flow rate and pressure drop evolutions were registered. The post-CHF regime was studied watching simultaneously the evolution of boiling crisis onset along the test section and the evolution of pressure drop and mass flow rate. A significant lessening of friction was observed simultaneous to the development of the post-CHF regime, accompanied by a mass flow rate increase, which lets suppose that the vapor film in the film boiling regime acts as a lubricant. A model was created based on this idea and on heat transfer considerations. The predictions by this model are satisfactory for the low quality post-CHF regime.

  12. Cold Helium Pressurization for Liquid Oxygen / Liquid Methane Propulsion Systems: Fully-Integrated Initial Hot-Fire Test Results

    NASA Technical Reports Server (NTRS)

    Morehead, R. L.; Atwell, M. J.; Melcher, J. C.; Hurlbert, E. A.

    2016-01-01

    A prototype cold helium active pressurization system was incorporated into an existing liquid oxygen (LOX) / liquid methane (LCH4) prototype planetary lander and hot-fire tested to collect vehicle-level performance data. Results from this hot-fire test series were used to validate integrated models of the vehicle helium and propulsion systems and demonstrate system effectiveness for a throttling lander. Pressurization systems vary greatly in complexity and efficiency between vehicles, so a pressurization performance metric was also developed as a means to compare different active pressurization schemes. This implementation of an active repress system is an initial sizing draft. Refined implementations will be tested in the future, improving the general knowledge base for a cryogenic lander-based cold helium system.

  13. Production of stable, non-thermal atmospheric pressure rf capacitive plasmas using gases other than helium or neon

    DOEpatents

    Park, Jaeyoung; Henins, Ivars

    2005-06-21

    The present invention enables the production of stable, steady state, non-thermal atmospheric pressure rf capacitive .alpha.-mode plasmas using gases other than helium and neon. In particular, the current invention generates and maintains stable, steady-state, non-thermal atmospheric pressure rf .alpha.-mode plasmas using pure argon or argon with reactive gas mixtures, pure oxygen or air. By replacing rare and expensive helium with more readily available gases, this invention makes it more economical to use atmospheric pressure rf .alpha.-mode plasmas for various materials processing applications.

  14. Aspirated High Pressure Compressor

    DTIC Science & Technology

    2006-08-01

    Std. Z39.18 A proved for Public Release Distribution Unlimited ABSTRACT (continued from Blockl4) within 0.5 percentage points . High response static...attention was given to the design of the instrumentation to obtain efficiency measurements within 0.5 percentage points . High response static pressure...prior empirical knowledge [3]. 0.5 percentage points . High response static pressure The new proposition addressed here is that aspiration offers

  15. Pressure driven flows of superfluid helium-4 through a single nanopipe

    NASA Astrophysics Data System (ADS)

    Velasco, Angel; Siwy, Zuzanna; Taborek, Peter

    2015-03-01

    We have measured flow rates of helium-4 through a single etched nanopore of 31 nm diameter in mica with a mass spectrometer. Flow rates were measured as a function of pressure at constant temperature and at saturated vapor pressures along the coexistence curve between 0.5 K and 3.5 K. Due to the constraint of the mass spectrometer the low pressure side was maintained at P =0 creating an intrinsic superfluid/vapor interface which forms inside the pipe or at its exit. We observed two flow regimes at low temperatures with velocities in the range of 6 and 11 m/s consistent with Feynman's vortex critical velocity and a thermal vortex nucleation model respectively. The velocity in a laminar, viscous flow is proportional to the pressure drop while in superfluid flows to zeroth order the velocity is independent of the pressure. A first order correction shows a linear dependence on the pressure with the slope continuously varying from a positive to a negative value near the lambda point. We have also measured flow rates in the normal state and found rates in exact agreement with conventional viscous theory that incorporates the Laplace pressure and a zero slip length. Supported by NSF DMR-0907495.

  16. Influence of voltage magnitude on the dynamic behavior of a stable helium atmospheric pressure plasma jet

    NASA Astrophysics Data System (ADS)

    Ning, Wenjun; Wang, Lijun; Wu, Chen; Jia, Shenli

    2014-08-01

    Effects of voltage magnitude on the development of a stable helium atmospheric pressure plasma jet are investigated by current measurements and high temporal-resolution streak images. Generated by a coaxial dielectric barrier discharge structure, the entire discharge can be classified into three regions: discharges in the tube gap, downstream jet, and up-streamer. The discharge morphologies of each region are analyzed. In the positive discharge phase, there are two discharges in the tube gap between the electrodes; the first one is ignited as corona and then developed into streamer corona, and the second one is similar with positive glow. The downstream jet is ignited independently from the discharge in the tube gap. Referred as "plasma bullet," the dynamic behavior of the jet can be well described as a positive streamer. Under specific applied voltage, the jet is found to be composed by double bullets in which case the jet length decreases since that less charge is carried by the first bullet. The up-streamer can be captured as long as the discharge in the tube gap is activated. Propagating with velocity of ˜4 km/s, the up-streamer can be regarded as the extension of the first discharge in the tube gap. In the negative discharge phase, the discharge is confined in the tube gap with nearly symmetrical morphology with the positive one. Besides, with the rising of voltage, the negative discharge is initially intensified and then turns weaker after surpassing certain voltage, which may provide suitable condition for the occurrence of double-bullet phenomenon.

  17. The role of helium metastable states in radio-frequency driven helium-oxygen atmospheric pressure plasma jets: measurement and numerical simulation

    NASA Astrophysics Data System (ADS)

    Niemi, K.; Waskoenig, J.; Sadeghi, N.; Gans, T.; O'Connell, D.

    2011-10-01

    Absolute densities of metastable He(23S1) atoms were measured line-of-sight integrated along the discharge channel of a capacitively coupled radio-frequency driven atmospheric pressure plasma jet operated in technologically relevant helium-oxygen mixtures by tunable diode-laser absorption spectroscopy. The dependences of the He(23S1) density in the homogeneous-glow-like α-mode plasma with oxygen admixtures up to 1% were investigated. The results are compared with a one-dimensional numerical simulation, which includes a semi-kinetical treatment of the pronounced electron dynamics and the complex plasma chemistry (in total 20 species and 184 reactions). Very good agreement between measurement and simulation is found. The main formation mechanisms for metastable helium atoms are identified and analyzed, including their pronounced spatio-temporal dynamics. Penning ionization through helium metastables is found to be significant for plasma sustainment, while it is revealed that helium metastables are not an important energy carrying species into the jet effluent and therefore will not play a direct role in remote surface treatments.

  18. The isotopic composition of helium at high rigidities

    NASA Technical Reports Server (NTRS)

    Jordan, S. P.; Meyer, P.

    1983-01-01

    The isotopic abundance distribution of the cosmic radiation at energies beyond 1 GeV/AMU can at the present time be determined only with the geomagnetic method. A balloon-borne instrument was flown for 12 hours near the geomagnetic equator to measure the relative abundance of the helium isotopes He-3 and He-4 around 12 GV rigidity. The sharp rigidity cut-off at equatorial latitudes permitted separation of the two isotopes using a high-resolution-gas Cerenkov counter. The experiment thus confirms the predicted sharp cut-off at those latitudes and demonstrates the potential for isotopic separation of other elements, once flights of longer duration can be made.

  19. HIGHLY VARIABLE HELIUM ISOTOPE RATIOS IN THE VANUATU VOLCANIC ARC

    NASA Astrophysics Data System (ADS)

    Jean-Baptiste, P.; Allard, P.; Bani, P.; Garaebiti, E.; Pelletier, B.; Fourré, E.; Metrich, N.

    2009-12-01

    , further investigations on yet unsampled islands of the Vanuatu arc are needed to better elucidate the magmatic and geodynamic significance of this high spatial variability of helium isotope ratios highligted by our first results.

  20. High-voltage electrical apparatus utilizing an insulating gas of sulfur hexafluoride and helium

    DOEpatents

    Wootton, Roy E.

    1980-01-01

    High-voltage electrical apparatus includes an outer housing at low potential, an inner electrode disposed within the outer housing at high potential with respect thereto, and support means for insulatably supporting the inner electrode within the outer housing. Conducting particles contaminate the interior of the outer housing, and an insulating gas electrically insulates the inner electrode from the outer housing even in the presence of the conducting particles. The insulating gas is comprised of sulfur hexafluoride at a partial pressure of from about 2.9 to about 3.4 atmospheres absolute, and helium at a partial pressure from about 1.1 to about 11.4 atmospheres absolute. The sulfur hexafluoride comprises between 20 and 65 volume percent of the insulating gas.

  1. Metastable densities in rf-driven atmospheric pressure microplasma jets in argon and helium

    NASA Astrophysics Data System (ADS)

    Boeke, Marc; Spiekermeier, Stefan; Winter, Joerg

    2016-09-01

    Rf-driven atmospheric pressure microplasma jets (μ-APPJ) are usually operated in the homogeneous glow mode (α-mode). At higher powers the glow discharge becomes unstable due to thermal instabilities and turns into a constricted γ-like discharge (constricted mode), which can damage the jet due to the significantly increased temperature in this operation mode. To prevent these instabilities, rf-driven μ-APPJs are predominantly operated in helium since it provides a better thermal conductivity than argon. However, since argon is much more cost-effective, it is worthwhile to achieve a stable operation of the μ-APPJ using argon as feed gas. Metastable atoms play an important role in the stability of atmospheric pressure discharges, since they pose an important source of electrons via stepwise ionization and penning ionization. To understand the basic processes that lead to the transition from α- to the constricted mode, helium and argon metastable densities have been determined in the μ-APPJ in different operation modes using tunable diode laser absorption spectroscopy (TDLAS). Supported by DFG within (FOR1123).

  2. High-pressure microfluidics

    NASA Astrophysics Data System (ADS)

    Hjort, K.

    2015-03-01

    When using appropriate materials and microfabrication techniques, with the small dimensions the mechanical stability of microstructured devices allows for processes at high pressures without loss in safety. The largest area of applications has been demonstrated in green chemistry and bioprocesses, where extraction, synthesis and analyses often excel at high densities and high temperatures. This is accessible through high pressures. Capillary chemistry has been used since long but, just like in low-pressure applications, there are several potential advantages in using microfluidic platforms, e.g., planar isothermal set-ups, large local variations in geometries, dense form factors, small dead volumes and precisely positioned microstructures for control of reactions, catalysis, mixing and separation. Other potential applications are in, e.g., microhydraulics, exploration, gas driven vehicles, and high-pressure science. From a review of the state-of-art and frontiers of high pressure microfluidics, the focus will be on different solutions demonstrated for microfluidic handling at high pressures and challenges that remain.

  3. Liquid Hydrogen Propellant Tank Sub-Surface Pressurization with Gaseous Helium

    NASA Technical Reports Server (NTRS)

    Stephens, J. R.; Cartagena, W.

    2015-01-01

    A series of tests were conducted to evaluate the performance of a propellant tank pressurization system with the pressurant diffuser intentionally submerged beneath the surface of the liquid. Propellant tanks and pressurization systems are typically designed with the diffuser positioned to apply pressurant gas directly into the tank ullage space when the liquid propellant is settled. Space vehicles, and potentially propellant depots, may need to conduct tank pressurization operations in micro-gravity environments where the exact location of the liquid relative to the diffuser is not well understood. If the diffuser is positioned to supply pressurant gas directly to the tank ullage space when the propellant is settled, then it may become partially or completely submerged when the liquid becomes unsettled in a microgravity environment. In such case, the pressurization system performance will be adversely affected requiring additional pressurant mass and longer pressurization times. This series of tests compares and evaluates pressurization system performance using the conventional method of supplying pressurant gas directly to the propellant tank ullage, and then supplying pressurant gas beneath the liquid surface. The pressurization tests were conducted on the Engineering Development Unit (EDU) located at Test Stand 300 at NASA Marshall Space Flight Center (MSFC). EDU is a ground based Cryogenic Fluid Management (CFM) test article supported by Glenn Research Center (GRC) and MSFC. A 150 ft3 propellant tank was filled with liquid hydrogen (LH2). The pressurization system used regulated ambient helium (GHe) as a pressurant, a variable position valve to maintain flow rate, and two identical independent pressurant diffusers. The ullage diffuser was located in the forward end of the tank and was completely exposed to the tank ullage. The submerged diffuser was located in the aft end of the tank and was completely submerged when the tank liquid level was 10% or greater

  4. Measurement of quasi-isentropic compressibility of helium and deuterium at pressures of 1500-2000 GPa

    SciTech Connect

    Mochalov, M. A. Il'kaev, R. I.; Fortov, V. E.; Mikhailov, A. L.; Makarov, Yu. M.; Arinin, V. A.; Blikov, A. O.; Baurin, A. Yu.; Komrakov, V. A.; Ogorodnikov, V. A.; Ryzhkov, A. V.; Pronin, E. A.; Yukhimchuk, A. A.

    2012-10-15

    The quasi-isentropic compressibility of helium and deuterium plasmas at pressures of up to 1500-2000 GPa has been measured using devices with spherical geometry and an X-ray diagnostic complex comprising three betatrons and a multichannel imaging system with electro-optic gamma detectors. A deuterium density of 4.5 g/cm{sup 3} and a helium density of 3.8 g/cm{sup 3} have been obtained at pressures of 2210 and 1580 GPa, respectively. The internal energy of a deuterium plasma at the indicated pressure is about 1 MJ/cm{sup 3}, which is about 100 times greater than the specific energy of condensed chemical explosives. Analysis of the obtained data shows that the degree of helium ionization under the achieved plasma compression parameters is about 0.9.

  5. Temporally, spatially, and spectrally resolved barrier discharge produced in trapped helium gas at atmospheric pressure

    SciTech Connect

    Chiper, Alina Silvia; Popa, Gheorghe

    2013-06-07

    Experimental study was made on induced effects by trapped helium gas in the pulsed positive dielectric barrier discharge (DBD) operating in symmetrical electrode configuration at atmospheric pressure. Using fast photography technique and electrical measurements, the differences in the discharge regimes between the stationary and the flowing helium are investigated. It was shown experimentally that the trapped gas atmosphere (TGA) has notable impact on the barrier discharge regime compared with the influence of the flowing gas atmosphere. According to our experimental results, the DBD discharge produced in trapped helium gas can be categorized as a multi-glow (pseudo-glow) discharge, each discharge working in the sub-normal glow regime. This conclusion is made by considering the duration of current pulse (few {mu}s), their maximum values (tens of mA), the presence of negative slope on the voltage-current characteristic, and the spatio-temporal evolution of the most representative excited species in the discharge gap. The paper focuses on the space-time distribution of the active species with a view to better understand the pseudo-glow discharge mechanism. The physical basis for these effects was suggested. A transition to filamentary discharge is suppressed in TGA mode due to the formation of supplementary source of seed electrons by surface processes (by desorption of electrons due to vibrationally excited nitrogen molecules, originated from barriers surfaces) rather than volume processes (by enhanced Penning ionisation). Finally, we show that the pseudo-glow discharge can be generated by working gas trapping only; maintaining unchanged all the electrical and constructive parameters.

  6. Quality improvement of environmental secondary electron detector signal using helium gas in variable pressure scanning electron microscopy.

    PubMed

    Oho, Eisaku; Suzuki, Kazuhiko; Yamazaki, Sadao

    2007-01-01

    The quality of the image signal obtained from the environmental secondary electron detector (ESED) employed in a variable pressure (VP) SEM can be dramatically improved by using helium gas. The signal-to-noise ratio (SNR) increases gradually in the range of the pressures that can be used in our modified SEM. This method is especially useful in low-voltage VP SEM as well as in a variety of SEM operating conditions, because helium gas can more or less maintain the amount of unscattered primary electrons. In order to measure the SNR precisely, a digital scan generator system for obtaining two images with identical views is employed as a precondition.

  7. Numerical Modeling of Helium Pressurization System of Propulsion Test Article (PTA)

    NASA Technical Reports Server (NTRS)

    Steadman, Todd; Majumdar, Alok; Holt, Kimberly

    2001-01-01

    A transient model of the Propulsion Test Article (PTA) Helium Pressurization System was developed using the Generalized Fluid System Simulation Program (GFSSP). The model included feed lines from the facility interface to the engine purge interface and Liquid Oxygen (LOX) and Rocket Propellant 1 (RP-1) tanks, the propellant tanks themselves including ullage space and propellant feed lines to their respective pump interfaces. GFSSP's capability was extended to model a control valve to maintain ullage pressure within a specified limit and pressurization processes such as heat transfer between ullage gas, propellant and the tank wall. The purpose of the model is to predict the flow system characteristics in the entire pressurization system during 80 seconds of lower feed system priming, 420 seconds of fuel and LOX pump priming and 150 seconds of engine firing. Subsequent to the work presented here, the PTA model has been updated to include the LOX and RP-1 pumps, while the pressurization option itself has been modified to include the effects of mass transfer. This updated model will be compared with PTA test data as it becomes available.

  8. A comparison between characteristics of atmospheric-pressure plasma jets sustained by nanosecond- and microsecond-pulse generators in helium

    SciTech Connect

    Zhang, Cheng; Shao, Tao Wang, Ruixue; Yan, Ping; Zhou, Zhongsheng; Zhou, Yixiao

    2014-10-15

    Power source is an important parameter that can affect the characteristics of atmospheric-pressure plasma jets (APPJs), because it can play a key role on the discharge characteristics and ionization process of APPJs. In this paper, the characteristics of helium APPJs sustained by both nanosecond-pulse and microsecond-pulse generators are compared from the aspects of plume length, discharge current, consumption power, energy, and optical emission spectrum. Experimental results showed that the pulsed APPJ was initiated near the high-voltage electrode with a small curvature radius, and then the stable helium APPJ could be observed when the applied voltage increased. Moreover, the discharge current of the nanosecond-pulse APPJ was larger than that of the microsecond-pulse APPJ. Furthermore, although the nanosecond-pulse generator consumed less energy than the microsecond-pulse generator, longer plume length, larger instantaneous power per pulse and stronger spectral line intensity could be obtained in the nanosecond-pulse excitation case. In addition, some discussion indicated that the rise time of the applied voltage could play a prominent role on the generation of APPJs.

  9. DC negative corona discharge in atmospheric pressure helium: transition from the corona to the ‘normal’ glow regime

    NASA Astrophysics Data System (ADS)

    Hasan, Nusair; Antao, Dion S.; Farouk, Bakhtier

    2014-06-01

    Direct current (dc) negative corona discharges in atmospheric pressure helium are simulated via detailed numerical modeling. Simulations are conducted to characterize the discharges in atmospheric helium for a pin plate electrode configuration. A self-consistent two-dimensional hybrid model is developed to simulate the discharges and the model predictions are validated with experimental measurements. The discharge model considered consists of momentum and energy conservation equations for a multi-component (electrons, ions, excited species and neutrals) gas mixture, conservation equations for each component of the mixture and state relations. A drift-diffusion approximation for the electron and the ion fluxes is used. A model for the external circuit driving the discharge is also considered and solved along with the discharge model. Many of the key features of a negative corona discharge, namely non-linear current-voltage characteristics, spatially flat cathode current density and glow-like discharge in the high current regime are displayed in the predictions. A transition to the ‘normal’ glow discharge from the corona discharge regime is also observed. The transition is identified from the calculated current-voltage characteristic curve and is characterized by the radial growth of the negative glow and the engulfment of the cathode wire.

  10. Adsorption removal of carbon dioxide from the helium coolant of high-temperature gas-cooled reactors

    SciTech Connect

    Varezhin, A.V.; Fedoseenkov, A.N.; Khrulev, A.A.; Metlik, I.V.; Zel venskii, Y.D.

    1986-10-01

    This paper conducts experiments on the removal of CO/sub 2/ from helium by means of a Soviet-made adsorbent under the conditions characteristic of high-temperature gas-cooled reactor cleaning systems. The adsorption of CO/sub 2/ from helium was studied under dynamic conditions with a fixed layer of adsorbent in a flow-through apparatus with an adsorber 16 mm in diameter. The analysis of the helium was carried out by means of a TVT chromatograph. In order to compare the adsorption of CO/sub 2/ on CaA zeolite under dynamic conditions from the helium stream under pressure with the equilibrium adsorption on the basis of pure CO/sub 2/, the authors determined the adsorption isotherm at 293 K by the volumetric method over a range of CO/sub 2/ equilibrium pressures from 260 to 11,970 Pa. Reducing the adsorption temperature to 273 K leads to a considerable reduction in the energy costs for regeneration, owing to the increase in adsorption and the decrease in the number of regeneration cycles; the amount of the heating gas used is reduced to less than half.

  11. Prevention of High Blood Pressure

    MedlinePlus

    ... page from the NHLBI on Twitter. Prevention of High Blood Pressure Healthy lifestyle habits, proper use of medicines, and ... prevent high blood pressure or its complications. Preventing High Blood Pressure Onset Healthy lifestyle habits can help prevent high ...

  12. Helium-Recycling Plant

    NASA Technical Reports Server (NTRS)

    Cook, Joseph

    1996-01-01

    Proposed system recovers and stores helium gas for reuse. Maintains helium at 99.99-percent purity, preventing water vapor from atmosphere or lubricating oil from pumps from contaminating gas. System takes in gas at nearly constant low back pressure near atmospheric pressure; introduces little or no back pressure into source of helium. Concept also extended to recycling of other gases.

  13. Electronic Structure of Crystalline 4He at High Pressure

    SciTech Connect

    Mao, H.K.; Cai, Y.; Shirley, E.L.; Ding, Y.; Eng, P.; Chow, P.; Xiao, Y.; Shu, J.; Hemley, R.J.; Kao, C.C.; Mao, W.L.

    2010-10-29

    Using inelastic x-ray scattering techniques, we have succeeded in probing the high-pressure electronic structure of helium at 300 K. Helium has the widest known valence-conduction band gap of all materials a property whose high-pressure response has been inaccessible to direct measurements. We observed a rich electron excitation spectrum, including a cutoff edge above 23 eV, a sharp exciton peak showing linear volume dependence, and a series of excitations and continuum at 26 to 45 eV. We determined the electronic dispersion along the {Gamma}-M direction over two Brillouin zones, and provided a quantitative picture of the helium exciton beyond the simplified Wannier-Frenkel description.

  14. Propagation of atmospheric pressure helium plasma jet into ambient air at laminar gas flow

    NASA Astrophysics Data System (ADS)

    Pinchuk, M.; Stepanova, O.; Kurakina, N.; Spodobin, V.

    2017-05-01

    The formation of an atmospheric pressure plasma jet (APPJ) in a gas flow passing through the discharge gap depends on both gas-dynamic properties and electrophysical parameters of the plasma jet generator. The paper presents the results of experimental and numerical study of the propagation of the APPJ in a laminar flow of helium. A dielectric-barrier discharge (DBD) generated inside a quartz tube equipped with a coaxial electrode system, which provided gas passing through it, served as a plasma source. The transition of the laminar regime of gas flow into turbulent one was controlled by the photography of a formed plasma jet. The corresponding gas outlet velocity and Reynolds numbers were revealed experimentally and were used to simulate gas dynamics with OpenFOAM software. The data of the numerical simulation suggest that the length of plasma jet at the unvarying electrophysical parameters of DBD strongly depends on the mole fraction of ambient air in a helium flow, which is established along the direction of gas flow.

  15. Helium permeability of different structure pyrolytic carbon coatings on graphite prepared at low temperature and atmosphere pressure

    NASA Astrophysics Data System (ADS)

    Song, Jinliang; Zhao, Yanling; Zhang, Wenting; He, Xiujie; Zhang, Dongsheng; He, Zhoutong; Gao, Yantao; Jin, Chan; Xia, Huihao; Wang, Jianqiang; Huai, Ping; Zhou, Xingtai

    2016-01-01

    Low density isotropic pyrolytic carbon (IPyC) and high density anisotropic pyrolytic carbon (APyC) coatings have been prepared at low temperature and atmosphere pressure. Helium gas permeabilities of nuclear graphite coated with IPyC and APyC of different thickness are studied using a vacuum apparatus. Both the permeation rates of the treated graphite gradually decrease with the increasing thickness of the coatings. The IPyC and APyC coatings can reduce the gas permeability coefficient of the samples by three and five orders of magnitude, respectively. The permeability difference is related to the microscopic structure, i.e., pores, as confirmed by scanning electron microscopy, mercury injection and X-ray tomography experiments. The changes of the permeability owing to heat cycles are observed to be negligible.

  16. Use of Interrupted Helium Flow in the Analysis of Vapor Samples with Flowing Atmospheric-Pressure Afterglow-Mass Spectrometry.

    PubMed

    Storey, Andrew P; Zeiri, Offer M; Ray, Steven J; Hieftje, Gary M

    2017-02-01

    The flowing atmospheric-pressure afterglow (FAPA) source was used for the mass-spectrometric analysis of vapor samples introduced between the source and mass spectrometer inlet. Through interrupted operation of the plasma-supporting helium flow, helium consumption is greatly reduced and dynamic gas behavior occurs that was characterized by schlieren imaging. Moreover, mass spectra acquired immediately after the onset of helium flow exhibit a signal spike before declining and ultimately reaching a steady level. This initial signal appears to be due to greater interaction of sample vapor with the afterglow of the source when helium flow resumes. In part, the initial spike in signal can be attributed to a pooling of analyte vapor in the absence of helium flow from the source. Time-resolved schlieren imaging of the helium flow during on and off cycles provided insight into gas-flow patterns between the FAPA source and the MS inlet that were correlated with mass-spectral data. Graphical Abstract ᅟ.

  17. Modeling of High-voltage Breakdown in Helium

    NASA Astrophysics Data System (ADS)

    Xu, Liang; Khrabrov, Alexander; Kaganovich, Igor; Sommerer, Timothy

    2016-09-01

    We investigate the breakdown in extremely high reduced electric fields (E/N) between parallel-plate electrodes in helium. The left branch of the Paschen curve in the voltage range of 20-350kV and inter-electrode gap range of 0.5-3.5cm is studied analytically and with Monte-Carlo/PIC simulations. The model incorporates electron, ion, and fast neutral species whose energy-dependent anisotropic scattering, as well as backscattering at the electrodes, is carefully taken into account. Our model demonstrates that (1) anisotropic scattering is indispensable for producing reliable results at such high voltage and (2) due to the heavy species backscattered at cathode, breakdown can occur even without electron- and ion-induced ionization of the background gas. Fast atoms dominate in the breakdown process more and more as the applied voltage is increased, due to their increasing ionization cross-section and to the copious flux of energetic fast atoms generated in charge-exchange collisions.

  18. Breakdown in helium in high-voltage open discharge with subnanosecond current front rise

    SciTech Connect

    Schweigert, I. V. Alexandrov, A. L.; Bokhan, P. A.; Zakrevskiy, Dm. E.

    2016-07-15

    Investigations of high-voltage open discharge in helium have shown a possibility of generation of current pulses with subnanosecond front rise, due to ultra-fast breakdown development. The open discharge is ignited between two planar cathodes with mesh anode in the middle between them. For gas pressure 6 Torr and 20 kV applied voltage, the rate of current rise reaches 500 A/(cm{sup 2} ns) for current density 200 A/cm{sup 2} and more. The time of breakdown development was measured for different helium pressures and a kinetic model of breakdown in open discharge is presented, based on elementary reactions for electrons, ions and fast atoms. The model also includes various cathode emission processes due to cathode bombardment by ions, fast atoms, electrons and photons of resonant radiation with Doppler shift of frequency. It is shown, that the dominating emission processes depend on the evolution of the discharge voltage during the breakdown. In the simulations, two cases of voltage behavior were considered: (i) the voltage is kept constant during the breakdown; (ii) the voltage is reduced with the growth of current. For the first case, the exponentially growing current is maintained due to photoemission by the resonant photons with Doppler-shifted frequency. For the second case, the dominating factor of current growth is the secondary electron emission. In both cases, the subnanosecond rise of discharge current was obtained. Also the effect of gas pressure on breakdown development was considered. It was found that for 20 Torr gas pressure the time of current rise decreases to 0.1 ns, which is in agreement with experimental data.

  19. Extending Helium Partial Pressure Measurement Technology to JET DTE2 and ITER

    SciTech Connect

    Klepper, C Christopher; Biewer, Theodore M; Douai, D.; Hillis, Donald Lee; Marcus, Chris; Kruezi, Uron

    2016-01-01

    The detection limit for helium (He) partial pressure monitoring via the Penning discharge optical emission diagnostic, mainly used for tokamak divertor effluent gas analysis, is shown here to be possible for He concentrations down to 0.1% in predominantly deuterium effluents. This result from a dedicated laboratory study means that the technique can now be extended to intrinsically (non-injected) He produced as fusion reaction ash in deuterium-tritium experiments. The paper also examines threshold ionization mass spectroscopy as a potential backup to the optical technique, but finds that further development is needed to attain with plasma pulse-relevant response times. Both these studies are presented in the context of continuing development of plasma pulse-resolving, residual gas analysis for the upcoming JET deuterium-tritium campaign (DTE-2) and for ITER.

  20. Extending helium partial pressure measurement technology to JET DTE2 and ITER

    NASA Astrophysics Data System (ADS)

    Klepper, C. C.; Biewer, T. M.; Kruezi, U.; Vartanian, S.; Douai, D.; Hillis, D. L.; Marcus, C.

    2016-11-01

    The detection limit for helium (He) partial pressure monitoring via the Penning discharge optical emission diagnostic, mainly used for tokamak divertor effluent gas analysis, is shown here to be possible for He concentrations down to 0.1% in predominantly deuterium effluents. This result from a dedicated laboratory study means that the technique can now be extended to intrinsically (non-injected) He produced as fusion reaction ash in deuterium-tritium experiments. The paper also examines threshold ionization mass spectroscopy as a potential backup to the optical technique, but finds that further development is needed to attain with plasma pulse-relevant response times. Both these studies are presented in the context of continuing development of plasma pulse-resolving, residual gas analysis for the upcoming JET deuterium-tritium campaign (DTE2) and for ITER.

  1. Helium Atmospheric Pressure Plasma Jet: Diagnostics and Application for Burned Wounds Healing

    NASA Astrophysics Data System (ADS)

    Topala, Ionut; Nastuta, Andrei

    A new field of plasma applications developed in the last years, entitled plasma medicine, has focused the attention of many peoples from plasma ­community on biology and medicine. Subjects that involve plasma physics and technology (e.g. living tissue treatment or wound healing, cancer cell apoptosis, blood coagulation, sterilization and decontamination) are nowadays in study in many laboratories. In this paper we present results on optical and electrical diagnosis of a helium ­atmospheric pressure plasma jet designed for medical use. This type of plasma jet was used for improvement of the wound healing process. We observed a more rapid macroscopic healing of the plasma treated wounds in comparison with the control group.

  2. Correlation between helium atmospheric pressure plasma jet (APPJ) variables and plasma induced DNA damage

    NASA Astrophysics Data System (ADS)

    Adhikari, Ek R.; Ptasinska, Sylwia

    2016-09-01

    A helium atmospheric pressure plasma jet (APPJ) source with a dielectric capillary and two tubular electrodes was used to induce damage in aqueous plasmid DNA. The fraction of different types of DNA damage (i.e., intact or undamaged, double strand breaks (DSBs), and single strand breaks (SSBs)) that occurred as the result of plasma irradiation was quantified through analysis of agarose gel electrophoresis images. The total DNA damage increased with an increase in both flow rate and duration of irradiation, but decreased with an increase in distance between the APPJ and sample. The average power of the plasma was calculated and the length of APPJ was measured for various flow rates and voltages applied. The possible effects of plasma power and reactive species on DNA damage are discussed.

  3. Liquid Hydrogen Regulated Low Pressure High Flow Pneumatic Panel AFT Arrow Analysis

    NASA Technical Reports Server (NTRS)

    Jones, Kelley, M.

    2013-01-01

    Project Definition: Design a high flow pneumatic regulation panel to be used with helium and hydrogen. The panel will have two circuits, one for gaseous helium (GHe) supplied from the GHe Movable Storage Units (MSUs) and one for gaseous hydrogen (GH2) supplied from an existing GH2 Fill Panel. The helium will supply three legs; to existing panels and on the higher pressure leg and Simulated Flight Tanks (SFTs) for the lower pressure legs. The hydrogen line will pressurize a 33,000 gallon vacuum jacketed vessel.

  4. High Pressure Biomass Gasification

    SciTech Connect

    Agrawal, Pradeep K

    2016-07-29

    According to the Billion Ton Report, the U.S. has a large supply of biomass available that can supplement fossil fuels for producing chemicals and transportation fuels. Agricultural waste, forest residue, and energy crops offer potential benefits: renewable feedstock, zero to low CO2 emissions depending on the specific source, and domestic supply availability. Biomass can be converted into chemicals and fuels using one of several approaches: (i) biological platform converts corn into ethanol by using depolymerization of cellulose to form sugars followed by fermentation, (ii) low-temperature pyrolysis to obtain bio-oils which must be treated to reduce oxygen content via HDO hydrodeoxygenation), and (iii) high temperature pyrolysis to produce syngas (CO + H2). This last approach consists of producing syngas using the thermal platform which can be used to produce a variety of chemicals and fuels. The goal of this project was to develop an improved understanding of the gasification of biomass at high pressure conditions and how various gasification parameters might affect the gasification behavior. Since most downstream applications of synags conversion (e.g., alcohol synthesis, Fischer-Tropsch synthesis etc) involve utilizing high pressure catalytic processes, there is an interest in carrying out the biomass gasification at high pressure which can potentially reduce the gasifier size and subsequent downstream cleaning processes. It is traditionally accepted that high pressure should increase the gasification rates (kinetic effect). There is also precedence from coal gasification literature from the 1970s that high pressure gasification would be a beneficial route to consider. Traditional approach of using thermogravimetric analyzer (TGA) or high-pressure themogravimetric analyzer (PTGA) worked well in understanding the gasification kinetics of coal gasification which was useful in designing high pressure coal gasification processes. However

  5. Effect of additive oxygen gas on cellular response of lung cancer cells induced by atmospheric pressure helium plasma jet

    PubMed Central

    Joh, Hea Min; Choi, Ji Ye; Kim, Sun Ja; Chung, T. H.; Kang, Tae-Hong

    2014-01-01

    The atmospheric pressure helium plasma jet driven by pulsed dc voltage was utilized to treat human lung cancer cells in vitro. The properties of plasma plume were adjusted by the injection type and flow rate of additive oxygen gas in atmospheric pressure helium plasma jet. The plasma characteristics such as plume length, electric current and optical emission spectra (OES) were measured at different flow rates of additive oxygen to helium. The plasma plume length and total current decreased with an increase in the additive oxygen flow rate. The electron excitation temperature estimated by the Boltzmann plot from several excited helium emission lines increased slightly with the additive oxygen flow. The oxygen atom density in the gas phase estimated by actinometry utilizing argon was observed to increase with the additive oxygen flow. The concentration of intracellular reactive oxygen species (ROS) measured by fluorescence assay was found to be not exactly proportional to that of extracellular ROS (measured by OES), but both correlated considerably. It was also observed that the expression levels of p53 and the phospho-p53 were enhanced in the presence of additive oxygen flow compared with those from the pure helium plasma treatment. PMID:25319447

  6. Effect of additive oxygen gas on cellular response of lung cancer cells induced by atmospheric pressure helium plasma jet.

    PubMed

    Joh, Hea Min; Choi, Ji Ye; Kim, Sun Ja; Chung, T H; Kang, Tae-Hong

    2014-10-16

    The atmospheric pressure helium plasma jet driven by pulsed dc voltage was utilized to treat human lung cancer cells in vitro. The properties of plasma plume were adjusted by the injection type and flow rate of additive oxygen gas in atmospheric pressure helium plasma jet. The plasma characteristics such as plume length, electric current and optical emission spectra (OES) were measured at different flow rates of additive oxygen to helium. The plasma plume length and total current decreased with an increase in the additive oxygen flow rate. The electron excitation temperature estimated by the Boltzmann plot from several excited helium emission lines increased slightly with the additive oxygen flow. The oxygen atom density in the gas phase estimated by actinometry utilizing argon was observed to increase with the additive oxygen flow. The concentration of intracellular reactive oxygen species (ROS) measured by fluorescence assay was found to be not exactly proportional to that of extracellular ROS (measured by OES), but both correlated considerably. It was also observed that the expression levels of p53 and the phospho-p53 were enhanced in the presence of additive oxygen flow compared with those from the pure helium plasma treatment.

  7. Measurement of O and OH radical produced by an atmospheric-pressure helium plasma jet nearby rat skin

    NASA Astrophysics Data System (ADS)

    Yonemori, Seiya; Ono, Ryo

    2013-09-01

    Atmospheric-pressure helium plasma jet is getting much attention because it enables many kinds of plasma applications including biomedical application such as sterilization and cancer treatment. In biomedical plasma applications, it is though that active species like ions and radicals play important role. Especially, OH radical and O atom is very chemically reactive that they are deemed as major factors in cancer treatment. In this study, O and OH density distribution and its temporal behavior nearby rat skin were measured to demonstrate actual application. Plasma discharge was under AC10 kVp-p, 10 kHz with 1.5 slm (standard litter per minute) of helium gas flow. OH density was around 1 ppm and O atom density was around 10 ppm at maximum. We also measured time-evolution of OH and O atom density. Both OH and O density was almost constant between discharge pulses because lifetime of active species could be prolonged in helium. And density distribution of both species varied depending on helium flow rate and water concentration on the surface; on rat skin or on the grass surface. Those results suggest the production mechanisms and provision mechanisms of O atom and OH radical by an atmospheric-pressure helium plasma jet. This work is partially supported by the Grant-in-Aid for Science Research by the Ministry of Education, Culture, Sport, Science and Technology.

  8. Comparative study of high voltage bushing designs suitable for apparatus containing cryogenic helium gas

    NASA Astrophysics Data System (ADS)

    Rodrigo, H.; Graber, L.; Kwag, D. S.; Crook, D. G.; Trociewitz, B.

    2013-10-01

    The high voltage bushing forms a critical part of any termination on cables, transformers and other power system devices. Cryogenic entities such as superconducting cables or fault current limiters add more complexity to the design of the bushing. Even more complex are bushings designed for superconducting devices which are cooled by high pressure helium gas. When looking for a bushing suitable for dielectric cable tests in a helium gas cryostat no appropriate device could be found that fulfilled the criterion regarding partial discharge inception voltage level. Therefore we decided to design and manufacture a bushing in-house. In the present work we describe the dielectric tests and operational experience on three types of bushings: One was a modified commercially available ceramics feed through which we adopted for our special need. The second bushing was made of an epoxy resin, with an embedded copper squirrel cage arrangement at the flange, extending down about 30 cm into the cold end of the bushing. This feature reduced the electric field on the surface of the bushing to a negligible value. The third bushing was based on a hollow body consisting of glass fiber reinforced polymer and stainless steel filled with liquid nitrogen. The measurements showed that the dielectric quality of all three bushings exceeded the requirements for the intended purpose. The partial discharge (PD) data from these studies will be used for the design and fabrication of a cable termination for a specialized application on board a US Navy ship.

  9. Pulsed Discharge Helium Ionization Detector for Highly Sensitive Aquametry.

    PubMed

    Mowry, Curtis D; Pimentel, Adam S; Sparks, Elizabeth S; Moorman, Matthew W; Achyuthan, Komandoor E; Manginell, Ronald P

    2016-01-01

    Trace moisture quantitation is crucial in medical, civilian and military applications. Current aquametry technologies are limited by the sample volume, reactivity, or interferences, and/or instrument size, weight, power, cost, and complexity. We report for the first time on the use of a pulsed discharge helium ionization detector (PDHID-D2) (∼196 cm(3)) for the sensitive (limit of detection, 0.047 ng; 26 ppm), linear (r(2) >0.99), and rapid (< 2 min) quantitation of water using a small (0.2 - 5.0 μL) volume of liquid or gas. The relative humidity sensitivity was 0.22% (61.4 ppmv) with a limit of detection of less than 1 ng moisture with gaseous samples. The sensitivity was 10 to 100 to fold superior to competing technologies without the disadvantages inherent to these technologies. The PDHID-D2, due to its small footprint and low power requirement, has good size, weight, and power-portability (SWAPP) factors. The relatively low cost (∼$5000) and commercial availability of the PDHID-D2 makes our technique applicable to highly sensitive aquametry.

  10. High pressure furnace

    DOEpatents

    Morris, Donald E.

    1993-01-01

    A high temperature high pressure furnace has a hybrid partially externally heated construction. A metallic vessel fabricated from an alloy having a composition of at least 45% nickel, 15% chrome, and 10% tungsten is utilized (the preferred alloy including 55% nickel, 22% chrome, 14% tungsten, 2% molybdenum, 3% iron (maximum) and 5% cobalt (maximum). The disclosed alloy is fabricated into 11/4 or 2 inch, 32 mm or 50 mm bar stock and has a length of about 22 inches, 56 cm. This bar stock has an aperture formed therein to define a closed high temperature, high pressure oxygen chamber. The opposite and closed end of the vessel is provided with a small blind aperture into which a thermocouple can be inserted. The closed end of the vessel is inserted into an oven, preferably heated by standard nickel chrome electrical elements and having a heavily insulated exterior.

  11. High pressure oxygen furnace

    DOEpatents

    Morris, Donald E.

    1992-01-01

    A high temperature high pressure oxygen furnace having a hybrid partially externally heated construction is disclosed. A metallic bar fabricated from an alloy having a composition of at least 45% nickel, 15% chrome, and 10% tungsten is utilized (the preferred alloy including 55% nickel, 22% chrome, 14% tungsten, 2% molybdenum, 3% iron (maximum) and 5% cobalt (maximum). The disclosed alloy is fabricated into 11/4 inch bar stock and has a length of about 17 inches. This bar stock is gun drilled for over 16 inches of its length with 0.400 inch aperture to define a closed high temperature, high pressure oxygen chamber. The opposite and closed end of the bar is provided with a small support aperture into which both a support and a thermocouple can be inserted. The closed end of the gun drilled bar is inserted into an oven, preferably heated by standard nickel chrome electrical elements and having a heavily insulated exterior.

  12. High pressure oxygen furnace

    DOEpatents

    Morris, D.E.

    1992-07-14

    A high temperature high pressure oxygen furnace having a hybrid partially externally heated construction is disclosed. A metallic bar fabricated from an alloy having a composition of at least 45% nickel, 15% chrome, and 10% tungsten is utilized, the preferred alloy including 55% nickel, 22% chrome, 14% tungsten, 2% molybdenum, 3% iron (maximum) and 5% cobalt (maximum). The disclosed alloy is fabricated into 11/4 inch bar stock and has a length of about 17 inches. This bar stock is gun drilled for over 16 inches of its length with 0.400 inch aperture to define a closed high temperature, high pressure oxygen chamber. The opposite and closed end of the bar is provided with a small support aperture into which both a support and a thermocouple can be inserted. The closed end of the gun drilled bar is inserted into an oven, preferably heated by standard nickel chrome electrical elements and having a heavily insulated exterior. 5 figs.

  13. High pressure furnace

    DOEpatents

    Morris, D.E.

    1993-09-14

    A high temperature high pressure furnace has a hybrid partially externally heated construction. A metallic vessel fabricated from an alloy having a composition of at least 45% nickel, 15% chrome, and 10% tungsten is utilized (the preferred alloy including 55% nickel, 22% chrome, 14% tungsten, 2% molybdenum, 3% iron (maximum) and 5% cobalt (maximum)). The disclosed alloy is fabricated into 11/4 or 2 inch, 32 mm or 50 mm bar stock and has a length of about 22 inches, 56 cm. This bar stock has an aperture formed therein to define a closed high temperature, high pressure oxygen chamber. The opposite and closed end of the vessel is provided with a small blind aperture into which a thermocouple can be inserted. The closed end of the vessel is inserted into an oven, preferably heated by standard nickel chrome electrical elements and having a heavily insulated exterior. 19 figures.

  14. HIGH PRESSURE GAS REGULATOR

    DOEpatents

    Ramage, R.W.

    1962-05-01

    A gas regulator operating on the piston and feedback principle is described. The device is particularly suitable for the delicate regulation of high pressure, i.e., 10,000 psi and above, gas sources, as well as being perfectly adaptable for use on gas supplies as low as 50 psi. The piston is adjustably connected to a needle valve and the movement of the piston regulates the flow of gas from the needle valve. The gas output is obtained from the needle valve. Output pressure is sampled by a piston feedback means which, in turn, regulates the movement of the main piston. When the output is other than the desired value, the feedback system initiates movement of the main piston to allow the output pressure to be corrected or to remain constant. (AEC)

  15. Extremely low flow tracheal gas insufflation of helium-oxygen mixture improves gas exchange in a rabbit model of piston-type high-frequency oscillatory ventilation.

    PubMed

    Baba, Atsushi; Nakamura, Tomohiko; Aikawa, Tetsuya; Koike, Kenichi

    2013-04-08

    The purpose of this study was to show the effects of the tracheal gas insufflation (TGI) technique on gas exchange using helium-oxygen mixtures during high-frequency oscillatory ventilation (HFOV). We hypothesized that a helium-oxygen mixture delivered into the trachea using the TGI technique (0.3 L/min) would enhance gas exchange during HFOV. Three rabbits were prepared and ventilated by HFOV with carrier 70% helium/oxygen or 70% nitrogen/oxygen gas mixture with TGI in a crossover study. Changing the gas mixture from nitrogen70% to helium70% and back was performed three times per animal with constant ventilation parameters. Compared with the nitrogen-oxygen mixture, the helium-oxygen mixture of TGI reduced PaCO2 by 7.6 mmHg (p < 0.01) and improved PaO2 by 14 mmHg (p < 0.01). Amplitude during TGI was significantly lower with the helium-oxygen mixture than with the nitrogen-oxygen mixture (p < 0.01) and did not significantly affect mean airway pressure. This study demonstrated that a helium-oxygen mixture delivered into the trachea using the TGI technique would enhance CO2 elimination and improve oxygenation during HFOV.

  16. Extremely low flow tracheal gas insufflation of helium-oxygen mixture improves gas exchange in a rabbit model of piston-type high-frequency oscillatory ventilation

    PubMed Central

    2013-01-01

    Objective The purpose of this study was to show the effects of the tracheal gas insufflation (TGI) technique on gas exchange using helium-oxygen mixtures during high-frequency oscillatory ventilation (HFOV). We hypothesized that a helium-oxygen mixture delivered into the trachea using the TGI technique (0.3 L/min) would enhance gas exchange during HFOV. Methods Three rabbits were prepared and ventilated by HFOV with carrier 70% helium/oxygen or 70% nitrogen/oxygen gas mixture with TGI in a crossover study. Changing the gas mixture from nitrogen70% to helium70% and back was performed three times per animal with constant ventilation parameters. Results Compared with the nitrogen-oxygen mixture, the helium-oxygen mixture of TGI reduced PaCO2 by 7.6 mmHg (p < 0.01) and improved PaO2 by 14 mmHg (p < 0.01). Amplitude during TGI was significantly lower with the helium-oxygen mixture than with the nitrogen-oxygen mixture (p < 0.01) and did not significantly affect mean airway pressure. Conclusions This study demonstrated that a helium-oxygen mixture delivered into the trachea using the TGI technique would enhance CO2 elimination and improve oxygenation during HFOV. PMID:23566050

  17. Thermophysical properties of Helium-4 from 0.8 to 1500 K with pressures to 2000 MPa

    NASA Technical Reports Server (NTRS)

    Arp, Vincent D.; Mccarty, Robert D.

    1989-01-01

    Tabular summary data of the thermophysical properties of fluid helium are given for temperatures from 0.8 to 1500 K, with pressures to 2000 MPa between 75 and 300 K, or to 100 MPa outside of this temperature band. Properties include density, specific heats, enthalpy, entropy, internal energy, sound velocity, expansivity, compressibility, thermal conductivity, and viscosity. The data are calculated from a computer program which is available from the National Institute of Standards and Technology. The computer program is based on carefully fitted state equations for both normal and superfluid helium.

  18. On the dynamic response of pressure transmission lines in the research of helium-charged free piston Stirling engines

    NASA Technical Reports Server (NTRS)

    Miller, Eric L.; Dudenhoefer, James E.

    1989-01-01

    The signal distortion inherent to pressure transmission lines in free-piston Stirling engine research is discussed. Based on results from classical analysis, guidelines are formulated to describe the dynamic response properties of a volume-terminated transmission tube for applications involving the helium-charged free-piston Stirling engines. The underdamped flow regime is described, the primary resonance frequency is derived, and the pressure phase and amplitude distortion are discussed. The scope and limitation of the dynamic response analysis are considered.

  19. Gas flow rate dependence of the discharge characteristics of a helium atmospheric pressure plasma jet interacting with a substrate

    NASA Astrophysics Data System (ADS)

    Yan, Wen; Economou, Demetre J.

    2017-10-01

    A 2D (axisymmetric) computational study of the discharge characteristics of an atmospheric pressure plasma jet as a function of gas flow rate was performed. The helium jet emerged from a dielectric tube, with an average gas flow velocity in the range 2.5–20 m s‑1 (1 atm, 300 K) in a nitrogen ambient, and impinged on a substrate a short distance dowstream. The effect of the substrate conductivity (conductror versus insulator) was also studied. Whenever possible, simulation predictions were compared with published experimental observations. Discharge ignition and propagation in the dielectric tube were hardly affected by the He gas flow velocity. Most properties of the plasma jet, however, depended sensitively on the He gas flow velocity, which determined the concentration distributions of helium and nitrogen in the mixing layer forming in the gap between the tube exit and the substrate. At low gas flow velocity, the plasma jet evolved from a hollow (donut-shaped) feature to one where the maximum of electron density was on axis. When the gas flow velocity was high, the plasma jet maintained its hollow structure until it struck the substrate. For a conductive substrate, the radial ion fluxes to the surface were relatively uniform over a radius of ~0.4–0.8 mm, and the dominant ion flux was that of He+. For a dielectric substrate, the radial ion fluxes to the surface peaked on the symmetry axis at low He gas flow velocity, but a hollow ion flux distribution was observed at high gas flow velocity. At the same time, the main ion flux switched from N2+ to He2+ as the He gas flow velocity increased from a low to a high value. The diameter of the plasma ‘footprint’ on the substrate first increased with increasing He gas flow velocity, and eventually saturated with further increases in velocity.

  20. DC-driven plasma gun: self-oscillatory operation mode of atmospheric-pressure helium plasma jet comprised of repetitive streamer breakdowns

    NASA Astrophysics Data System (ADS)

    Wang, Xingxing; Shashurin, Alexey

    2017-02-01

    This paper presents and studies helium atmospheric pressure plasma jet comprised of a series of repetitive streamer breakdowns, which is driven by pure DC high voltage (self-oscillatory behavior). The repetition frequency of the breakdowns is governed by the geometry of discharge electrodes/surroundings and gas flow rate. Each next streamer is initiated when the electric field on the anode tip recovers after the previous breakdown and reaches the breakdown threshold value of about 2.5 kV cm-1. One type of the helium plasma gun designed using this operational principle is demonstrated. The gun operates on about 3 kV DC high voltage and is comprised of the series of the repetitive streamer breakdowns at a frequency of about 13 kHz.

  1. Protein destruction by a helium atmospheric pressure glow discharge: Capability and mechanisms

    SciTech Connect

    Deng, X. T.; Shi, J. J.; Kong, M. G.

    2007-04-01

    Biological sterilization represents one of the most exciting applications of atmospheric pressure glow discharges (APGD). Despite the fact that surgical instruments are contaminated by both microorganisms and proteinaceous matters, sterilization effects of APGD have so far been studied almost exclusively for microbial inactivation. This work presents the results of a detailed investigation of the capability of a helium-oxygen APGD to inactivate proteins deposited on stainless-steel surfaces. Using a laser-induced fluorescence technique for surface protein measurement, a maximum protein reduction of 4.5 logs is achieved by varying the amount of the oxygen admixture into the background helium gas. This corresponds to a minimum surface protein of 0.36 femtomole/mm{sup 2}. It is found that plasma reduction of surface-borne protein is through protein destruction and degradation, and that its typically biphasic reduction kinetics is influenced largely by the thickness profile of the surface protein. Also presented is a complementary study of possible APGD protein inactivation mechanisms. By interplaying the protein inactivation kinetics with optical emission spectroscopy, it is shown that the main protein-destructing agents are excited atomic oxygen (via the 777 and 844 nm emission channels) and excited nitride oxide (via the 226, 236, and 246 nm emission channels). It is also demonstrated that the most effective protein reduction is achieved possibly through a synergistic effect between atomic oxygen and nitride oxide. This study is a useful step toward a full confirmation of the efficacy of APGD as a sterilization technology for surgical instruments contaminated by prion proteins.

  2. Protein destruction by a helium atmospheric pressure glow discharge: Capability and mechanisms

    NASA Astrophysics Data System (ADS)

    Deng, X. T.; Shi, J. J.; Kong, M. G.

    2007-04-01

    Biological sterilization represents one of the most exciting applications of atmospheric pressure glow discharges (APGD). Despite the fact that surgical instruments are contaminated by both microorganisms and proteinaceous matters, sterilization effects of APGD have so far been studied almost exclusively for microbial inactivation. This work presents the results of a detailed investigation of the capability of a helium-oxygen APGD to inactivate proteins deposited on stainless-steel surfaces. Using a laser-induced fluorescence technique for surface protein measurement, a maximum protein reduction of 4.5 logs is achieved by varying the amount of the oxygen admixture into the background helium gas. This corresponds to a minimum surface protein of 0.36 femtomole/mm2. It is found that plasma reduction of surface-borne protein is through protein destruction and degradation, and that its typically biphasic reduction kinetics is influenced largely by the thickness profile of the surface protein. Also presented is a complementary study of possible APGD protein inactivation mechanisms. By interplaying the protein inactivation kinetics with optical emission spectroscopy, it is shown that the main protein-destructing agents are excited atomic oxygen (via the 777 and 844 nm emission channels) and excited nitride oxide (via the 226, 236, and 246 nm emission channels). It is also demonstrated that the most effective protein reduction is achieved possibly through a synergistic effect between atomic oxygen and nitride oxide. This study is a useful step toward a full confirmation of the efficacy of APGD as a sterilization technology for surgical instruments contaminated by prion proteins.

  3. Living with High Blood Pressure

    MedlinePlus

    ... page from the NHLBI on Twitter. Living With High Blood Pressure If you have high blood pressure, the best thing to do is to talk ... help you track your blood pressure. Pregnancy Planning High blood pressure can cause problems for mother and baby. High ...

  4. Plasma detachment study of high density helium plasmas in the Pilot-PSI device

    NASA Astrophysics Data System (ADS)

    Hayashi, Y.; Ješko, K.; van der Meiden, H. J.; Vernimmen, J. W. M.; Morgan, T. W.; Ohno, N.; Kajita, S.; Yoshikawa, M.; Masuzaki, S.

    2016-12-01

    We have investigated plasma detachment phenomena of high-density helium plasmas in the linear plasma device Pilot-PSI, which can realize a relevant ITER SOL/Divertor plasma condition. The experiment clearly indicated plasma detachment features such as drops in the plasma pressure and particle flux along the magnetic field lines that were observed under the condition of high neutral pressure; a feature of flux drop was parameterized using the degree of detachment (DOD) index. Fundamental plasma parameters such as electron temperature (T e) and electron density in the detached recombining plasmas were measured by different methods: reciprocating electrostatic probes, Thomson scattering (TS), and optical emission spectroscopy (OES). The T e measured using single and double probes corresponded to the TS measurement. No anomalies in the single probe I-V characteristics, observed in other linear plasma devices [16, 17, 36], appeared under the present condition in the Pilot-PSI device. A possible reason for this difference is discussed by comparing the different linear devices. The OES results are also compared with the simulation results of a collisional radiative (CR) model. Further, we demonstrated more than 90% of parallel particle and heat fluxes were dissipated in a short length of 0.5 m under the high neutral pressure condition in Pilot-PSI.

  5. Studies of helium based drift chamber gases for high-luminosity low energy machines

    NASA Astrophysics Data System (ADS)

    Boyarski, A.; Briggs, D.; Burchat, P. R.

    1992-02-01

    Future high luminosity low energy machines will need low mass tracking chambers in order to minimize multiple scattering of the relatively low momentum tracks produced at these facilities. A drift chamber using a helium based gas rather than a conventional argon based gas would greatly reduce the amount of multiple scattering. This paper summarizes measurements of the drift velocity and position resolution for gas mixtures of helium with CO2 and isobutane and helium with DME. Good spatial resolutions are obtained. A design of a drift chamber with only 0.12 percent of a radiation length (gas plus wire) over a 60 cm tracking distance is presented.

  6. Studies of helium based drift chamber gases for high-luminosity low energy machines

    NASA Astrophysics Data System (ADS)

    Boyarski, Adam; Briggs, Don; Burchat, Patricia R.

    1992-12-01

    Future high luminosity low energy machines will need low mass tracking chambers in order to minimize multiple scattering of the relatively low momentum tracks produced at these facilities. A drift chamber using a helium based gas rather than a conventional argon based gas would greatly reduce the amount of multiple scattering. This paper summarizes measurements of the drift velocity and position resolution for gas mixtures of helium with CO 2 and isobutane and helium with DME. Good spatial resolutions are obtained. A design of a drift chamber with only 0.12% of a radiation length (gas plus wire) over a 60 cm tracking distance is presented.

  7. Influence of dielectric materials on radial uniformity in non-equilibrium atmospheric pressure helium plasma

    NASA Astrophysics Data System (ADS)

    Oda, Akinori; Komori, Kyohei

    2015-09-01

    Non-equilibrium atmospheric pressure plasma has been utilized for various technological applications such as surface treatment, materials processing, bio-medical and bio-logical applications. For optimum control of the plasma for the above applications, numerous experimental and theoretical investigations on the plasma have been reported. Especially, controlling radial uniformity of the plasma are very important for utilizing materials processing. In this paper, an axially-symmetric three-dimensional fluid model, which is composed of the continuity equation for charged and neutral species, the Poisson equation, and the energy conservation equation for electrons, of non-equilibrium atmospheric pressure helium plasma has been developed. Then, influence of dielectric properties (e.g. relative permittivity, secondary electron emission coefficient, etc.) of dielectric materials on radial plasma uniformity (i.e. radial distributions of electron density, ion density, electric field in the plasma) was examined. This work was partly supported by KAKENHI (No. 26420247), and a ``Grant for Advanced Industrial Technology Development (No. 11B06004d)'' in 2011 from the New Energy and Industrial Technology Development Organization (NEDO) of Japan.

  8. Floating Pressure Conversion and Equipment Upgrades of Two 3.5kw, 20k, Helium Refrigerators

    NASA Technical Reports Server (NTRS)

    Homan, Jonathan; Linza, Robert; Garcia, Sam; Vargas, Gerardo; Lauterbach, John; Ganni, Venkatarao (Rao); Sidi-Yekhlef, Ahmed; Creel, Jonathan; Norton, Robert; Urbin, John; hide

    2008-01-01

    Two helium refrigerators, each rated for 3.5KW at 20K, are used at NASA s Johnson Space Center (JSC) in Building No. 32 to provide cryo-pumping within two large thermal-vacuum chambers. These refrigerators were originally commissioned in 1996. Equipment refurbishment and upgrades to the controls of these refrigerators were recently completed. This paper describes some of the mechanical and control issues that necessitated the equipment refurbishment and controls change-over. It will describe the modifications and the new process control which allows the refrigerators to take advantage of the Ganni Cycle "floating pressure" control technology. The upgrades -- the controls philosophy change-over to the floating pressure control technology and the newly refurbished equipment -- have greatly improved the performance, stability, and efficiency of these two refrigerators. The upgrades have also given the operators more information and details about the operational status of the main components (compressors, expanders etc.) of the refrigerators at all operating conditions (i.e.: at various loads in the vacuum chambers). Capabilities, configuration, and performance data pre, and post, upgrading will be presented.

  9. Floating Pressure Conversion and Equipment Upgrades of Two 3.5kw, 20k, Helium Refrigerators

    NASA Technical Reports Server (NTRS)

    Homan, Jonathan; Linza, Robert; Garcia, Sam; Vargas, Gerardo; Lauterbach, John; Ganni, Venkatarao (Rao); Sidi-Yekhlef, Ahmed; Creel, Jonathan; Norton, Robert; Urbin, John; Howe, Don

    2008-01-01

    Two helium refrigerators, each rated for 3.5KW at 20K, are used at NASA s Johnson Space Center (JSC) in Building No. 32 to provide cryo-pumping within two large thermal-vacuum chambers. These refrigerators were originally commissioned in 1996. Equipment refurbishment and upgrades to the controls of these refrigerators were recently completed. This paper describes some of the mechanical and control issues that necessitated the equipment refurbishment and controls change-over. It will describe the modifications and the new process control which allows the refrigerators to take advantage of the Ganni Cycle "floating pressure" control technology. The upgrades -- the controls philosophy change-over to the floating pressure control technology and the newly refurbished equipment -- have greatly improved the performance, stability, and efficiency of these two refrigerators. The upgrades have also given the operators more information and details about the operational status of the main components (compressors, expanders etc.) of the refrigerators at all operating conditions (i.e.: at various loads in the vacuum chambers). Capabilities, configuration, and performance data pre, and post, upgrading will be presented.

  10. Influence of excitation frequency on helium metastable density in atmospheric pressure DBD

    NASA Astrophysics Data System (ADS)

    Boisvert, J.-S.; Sadeghi, N.; Margot, J.; Massines, F.

    2016-09-01

    Diffuse dielectric barrier discharges in atmospheric-pressure helium was sustained over a wide range of excitation frequencies (50 kHz to 15 MHz). Emission spectroscopy and resonant absorption and laser absorption on He(23S) metastable atoms have been used to characterize different plasma regimes, which with increasing frequency changes from a low pressure glow discharge (APGD) to Townsend-like mode (TL) and finally to a continuously sustained plasma. This later can be in Ω mode (with uniform E-field) or RF- α mode (with sheath formation). Depending on applied power, the time-averaged He(23S) density remains below 3 1016 m-3 in TL and Ω modes, can reach 7 1016 m-3 in APGD and RF- α modes and up to 4 1017 m-3 in a combination of APGD and RF- α modes (Hybrid). Time-resolved He(23S) densities show an overshoot on the ignition phase, which in RF- α mode can be attributed to a secondary source of ionization involving metastable atoms.

  11. Cryogenic High Pressure Sensor Module

    NASA Technical Reports Server (NTRS)

    Chapman, John J. (Inventor); Shams, Qamar A. (Inventor); Powers, William T. (Inventor)

    1999-01-01

    A pressure sensor is provided for cryogenic, high pressure applications. A highly doped silicon piezoresistive pressure sensor is bonded to a silicon substrate in an absolute pressure sensing configuration. The absolute pressure sensor is bonded to an aluminum nitride substrate. Aluminum nitride has appropriate coefficient of thermal expansion for use with highly doped silicon at cryogenic temperatures. A group of sensors, either two sensors on two substrates or four sensors on a single substrate are packaged in a pressure vessel.

  12. Cryogenic, Absolute, High Pressure Sensor

    NASA Technical Reports Server (NTRS)

    Chapman, John J. (Inventor); Shams. Qamar A. (Inventor); Powers, William T. (Inventor)

    2001-01-01

    A pressure sensor is provided for cryogenic, high pressure applications. A highly doped silicon piezoresistive pressure sensor is bonded to a silicon substrate in an absolute pressure sensing configuration. The absolute pressure sensor is bonded to an aluminum nitride substrate. Aluminum nitride has appropriate coefficient of thermal expansion for use with highly doped silicon at cryogenic temperatures. A group of sensors, either two sensors on two substrates or four sensors on a single substrate are packaged in a pressure vessel.

  13. Homogeneous nucleation rate measurements of 1-propanol in helium: the effect of carrier gas pressure.

    PubMed

    Brus, David; Zdímal, Vladimír; Stratmann, Frank

    2006-04-28

    Kinetics of homogeneous nucleation in supersaturated vapor of 1-propanol was studied using an upward thermal diffusion cloud chamber. Helium was used as a noncondensable carrier gas and the influence of its pressure on observed nucleation rates was investigated. The isothermal nucleation rates were determined by a photographic method that is independent on any nucleation theory. In this method, the trajectories of growing droplets are recorded using a charge coupled device camera and the distribution of local nucleation rates is determined by image analysis. The nucleation rate measurements of 1-propanol were carried out at four isotherms 260, 270, 280, and 290 K. In addition, the pressure dependence was investigated on the isotherms 290 K (50, 120, and 180 kPa) and 280 K (50 and 120 kPa). The isotherm 270 K was measured at 25 kPa and the isotherm 260 K at 20 kPa. The experiments confirm the earlier observations from several thermal diffusion chamber investigations that the homogeneous nucleation rate of 1-propanol tends to increase with decreasing total pressure in the chamber. In order to reduce the possibility that the observed phenomenon is an experimental artifact, connected with the generally used one-dimensional description of transfer processes in the chamber, a recently developed two-dimensional model of coupled heat, mass, and momentum transfer inside the chamber was used and results of both models were compared. It can be concluded that the implementation of the two-dimensional model does not explain the observed effect. Furthermore the obtained results were compared both to the predictions of the classical theory and to the results of other investigators using different experimental devices. Plotting the experimental data on the so-called Hale plot shows that our data seem to be consistent both internally and also with the data of others. Using the nucleation theorem the critical cluster sizes were obtained from the slopes of the individual isotherms

  14. Time-resolved vacuum-ultraviolet emission (λ  =  60-120 nm) from a high pressure DBD-excited helium plasma: formation mechanisms of the fast component

    NASA Astrophysics Data System (ADS)

    Carman, R. J.; Ganesan, R.; Kane, D. M.

    2016-03-01

    We report time and wavelength resolved studies of the vacuum-ultraviolet (VUV) emission from a windowless dielectric barrier discharge (DBD) in helium. Short-pulse voltage excitation is utilised to clearly resolve the fast and slow temporal components of the Hopfield continuum between λ  =  60-120 nm. Experimental results and theoretical modelling of the spectral distributions indicate that the two components of the VUV emission must originate from the same radiating molecular state—\\text{He}2\\ast≤ft({{\\text{A}}1}Σ\\text{u}+\\right) , and that two distinct pumping mechanisms populate this state. The time evolution of the fast component is found to correlate with that from the (0,0) molecular transition \\text{He}2\\ast≤ft({{\\text{E}}1}{{\\Pi}\\text{g}}-~{{\\text{A}}1}Σ\\text{u}+\\right) (λ  =  513.4 nm). Thus the \\text{He}2\\ast≤ft({{\\text{A}}1}{}Σ\\text{u}+\\right) state is initially rapidly pumped via radiative cascade from higher \\text{He}2\\ast(n=3) molecular states. In addition, the observed band emissions from the molecular \\text{He}2\\ast≤ft({{\\text{E}}1}{{\\Pi}\\text{g}}\\right) v=0 and \\text{He}2\\ast≤ft({{\\text{F}}1}Σ\\text{u}+\\right) v=0 states and the line emissions from the atomic He*(n  =  3) states all exhibit similar temporal behaviour during the discharge excitation period. Our results are consistent with the recent report of Frost et al (J. Phys. B 34 1569 2001) concerning the existence of a so-called ‘neglected channel’ to fast \\text{He}2\\ast production from He*(n  =  3) atomic state precursors.

  15. Collisional-radiative model of helium microwave discharges at atmospheric pressure

    NASA Astrophysics Data System (ADS)

    Santos, M.; Alves, L. L.; Gadonna, K.; Belmonte, T.

    2011-10-01

    This paper presents a stationary collisional-radiative model to describe the behavior of helium microwave discharges (2.45 GHz), produced in cylindrical geometry (1 mm radius) at atmospheric pressure. The model couples the rate balance equations for the charged particles (electrons, He+ and He2+ions), the He(n <= 6) excited states and the He2*excimers, to the two-term homogeneous and stationary electron Boltzmann equation,. The latter is solved using a coherent set of electron cross sections, adjusted to ensure good predictions of the swarm parameters and the Townsend ionization coefficient. The model was solved for typical 5x1014 cm-3 electron density and 2500 K gas temperature, yielding [He2+]/[He+] ~ 0.92 and [He2*]/[He] ~ 3.4x10-8. Results show also that the He2+ions are produced mainly from the 3-body conversion of He+ ions and lost by the corresponding reverse reaction together with diffusion and dissociative recombination. The He2*is produced by a 3-body reaction involving the 23P states and by the electron-stabilized recombination of He2+and is lost by electron dissociation. This paper presents a stationary collisional-radiative model to describe the behavior of helium microwave discharges (2.45 GHz), produced in cylindrical geometry (1 mm radius) at atmospheric pressure. The model couples the rate balance equations for the charged particles (electrons, He+ and He2+ions), the He(n <= 6) excited states and the He2*excimers, to the two-term homogeneous and stationary electron Boltzmann equation,. The latter is solved using a coherent set of electron cross sections, adjusted to ensure good predictions of the swarm parameters and the Townsend ionization coefficient. The model was solved for typical 5x1014 cm-3 electron density and 2500 K gas temperature, yielding [He2+]/[He+] ~ 0.92 and [He2*]/[He] ~ 3.4x10-8. Results show also that the He2+ions are produced mainly from the 3-body conversion of He+ ions and lost by the corresponding reverse reaction together

  16. Pressure Dome for High-Pressure Electrolyzer

    NASA Technical Reports Server (NTRS)

    Norman, Timothy; Schmitt, Edwin

    2012-01-01

    A high-strength, low-weight pressure vessel dome was designed specifically to house a high-pressure [2,000 psi (approx. = 13.8 MPa)] electrolyzer. In operation, the dome is filled with an inert gas pressurized to roughly 100 psi (approx. = 690 kPa) above the high, balanced pressure product oxygen and hydrogen gas streams. The inert gas acts to reduce the clamping load on electrolyzer stack tie bolts since the dome pressure acting axially inward helps offset the outward axial forces from the stack gas pressure. Likewise, radial and circumferential stresses on electrolyzer frames are minimized. Because the dome is operated at a higher pressure than the electrolyzer product gas, any external electrolyzer leak prevents oxygen or hydrogen from leaking into the dome. Instead the affected stack gas stream pressure rises detectably, thereby enabling a system shutdown. All electrical and fluid connections to the stack are made inside the pressure dome and require special plumbing and electrical dome interfaces for this to be accomplished. Further benefits of the dome are that it can act as a containment shield in the unlikely event of a catastrophic failure. Studies indicate that, for a given active area (and hence, cell ID), frame outside diameter must become ever larger to support stresses at higher operating pressures. This can lead to a large footprint and increased costs associated with thicker and/or larger diameter end-plates, tie-rods, and the frames themselves. One solution is to employ rings that fit snugly around the frame. This complicates stack assembly and is sometimes difficult to achieve in practice, as its success is strongly dependent on frame and ring tolerances, gas pressure, and operating temperature. A pressure dome permits an otherwise low-pressure stack to operate at higher pressures without growing the electrolyzer hardware. The pressure dome consists of two machined segments. An O-ring is placed in an O-ring groove in the flange of the bottom

  17. Discharge physics and influence of the modulation on helium DBD modes in the medium-frequency range at atmospheric pressure

    NASA Astrophysics Data System (ADS)

    Boisvert, Jean-Sébastien; Margot, Joëlle; Massines, Françoise

    2017-04-01

    In this paper the recently reported hybrid mode (a dielectric barrier discharge (DBD) excited by an electric field oscillating at about 1 MHz) is investigated using space and time-resolved imaging together with electrical measurements. In contrast with the helium low-frequency DBD, at 1.6 MHz the light emission is desynchronized with the discharge current. It rather depends on the enhanced rate of stepwise excitation resulting from the massive secondary emission occurring 0.15Ƭ after the discharge current maximum (Ƭ is the excitation wave period). The consequence of ion impacts on the dielectric surfaces is a higher gas and dielectric temperatures as compared to typical helium DBDs. The electrical behavior and the gas temperature of a pulsed dielectric-barrier discharge operated at 1.6 MHz are also described in this paper as a function of the repetition rate (varying from 1 Hz to 10 kHz). The gas temperature is reduced when repetition rates higher or equal to 10 Hz is used. This is related to the gas renewal rate of 8.3 Hz, i.e., gas residence time of 120 ms in our conditions. In addition, due to the memory effect in the gas, the gas gap voltage decreases as the repetition rate increases. However, beyond 100 Hz, the power decreases and the gas gap voltage increases again. As a consequence, for a given power density, the optimal repetition rate is 100 Hz which minimizes the gas temperature without reducing the power density. Contribution to the topical issue "The 15th International Symposium on High Pressure Low Temperature Plasma Chemistry (HAKONE XV)", edited by Nicolas Gherardi and Tomáš Hoder

  18. HIGH PRESSURE DIES

    DOEpatents

    Wilson, W.B.

    1960-05-31

    A press was invented for subjecting specimens of bismuth, urania, yttria, or thoria to high pressures and temperatures. The press comprises die parts enclosing a space in which is placed an electric heater thermally insulated from the die parts so as not to damage them by heat. The die parts comprise two opposed inner frustoconical parts and an outer part having a double frustoconical recess receiving the inner parts. The die space decreases in size as the inner die parts move toward one another against the outer part and the inner parts, though very hard, do not fracture because of the mode of support provided by the outer part.

  19. High pressure ratio cryocooler with integral expander and heat exchanger

    NASA Astrophysics Data System (ADS)

    Crunkleton, J. A.; Smith, J. L., Jr.; Iwasa, Y.

    A new 1 W, 4.2 K cryocooler is under development that is intended to miniaturize helium temperature refrigeration systems using a high-pressure-ratio Collins-type cycle. The configuration resulted from optimization studies of a saturated vapor compression (SCV) cycle that employs miniature parallel-plate heat exchangers. The basic configuration is a long displacer in a close-fitting, thin-walled cylinder. The displacer-to-cylinder gap is the high-pressure passage of the heat exchanger, and the low-pressure passage is formed by a thin tube over the OD of the cylinder. A solenoid-operated inlet valve admits 40 atm helium to the displacer-to-cylinder gap at room temperature, while the solenoid-operated exhaust valve operates at 4 atm. The single-stage cryocooler produces 1 W of refrigeration at 40 K without precooling and at 20 K with liquid nitrogen precooling.

  20. Helium ion microscopy for high-resolution visualization of the articular cartilage collagen network.

    PubMed

    Vanden Berg-Foels, W S; Scipioni, L; Huynh, C; Wen, X

    2012-05-01

    The articular cartilage collagen network is an important research focus because network disruption results in cartilage degeneration and patient disability. The recently introduced helium ion microscope (HIM), with its smaller probe size, longer depth of field and charge neutralization, has the potential to overcome the inherent limitations of electron microscopy for visualization of collagen network features, particularly at the nanoscale. In this study, we evaluated the capabilities of the helium ion microscope for high-resolution visualization of the articular cartilage collagen network. Images of rabbit knee cartilage were acquired with a helium ion microscope; comparison images were acquired with a field emission scanning electron microscope (FE-SEM) and a transmission electron microscope (TEM). Sharpness of example high-resolution helium ion microscope and field emission scanning electron microscope images was quantified using the 25-75% rise distance metric. The helium ion microscope was able to acquire high-resolution images with unprecedented clarity, with greater sharpness and three-dimensional-like detail of nanoscale fibril morphologies and fibril connections, in samples without conductive coatings. These nanoscale features could not be resolved by field emission scanning electron microscopy, and three-dimensional network structure could not be visualized with transmission electron microscopy. The nanoscale three-dimensional-like visualization capabilities of the helium ion microscope will enable new avenues of investigation in cartilage collagen network research. © 2012 The Authors Journal of Microscopy © 2012 Royal Microscopical Society.

  1. Chromium at High Pressure

    NASA Astrophysics Data System (ADS)

    Jaramillo, Rafael

    2012-02-01

    Chromium has long served as the archetype of spin density wave magnetism. Recently, Jaramillo and collaborators have shown that Cr also serves as an archetype of magnetic quantum criticality. Using a combination of x-ray diffraction and electrical transport measurements at high pressures and cryogenic temperatures in a diamond anvil cell, they have demonstrated that the N'eel transition (TN) can be continuously suppressed to zero, with no sign of a concurrent structural transition. The order parameter undergoes a broad regime of exponential suppression, consistent with the weak coupling paradigm, before deviating from a BCS-like ground state within a narrow but accessible quantum critical regime. The quantum criticality is characterized by mean field scaling of TN and non mean field scaling of the transport coefficients, which points to a fluctuation-induced reconstruction of the critical Fermi surface. A comparison between pressure and chemical doping as means to suppress TN sheds light on different routes to the quantum critical point and the relevance of Fermi surface nesting and disorder at this quantum phase transition. The work by Jaramillo et al. is broadly relevant to the study of magnetic quantum criticality in a physically pure and theoretically tractable system that balances elements of weak and strong coupling. [4pt] [1] R. Jaramillo, Y. Feng, J. Wang & T. F. Rosenbaum. Signatures of quantum criticality in pure Cr at high pressure. Proc. Natl. Acad. Sci. USA 107, 13631 (2010). [0pt] [2] R. Jaramillo, Y. Feng, J. C. Lang, Z. Islam, G. Srajer, P. B. Littlewood, D. B. McWhan & T. F. Rosenbaum. Breakdown of the Bardeen-Cooper-Schrieffer ground state at a quantum phase transition. Nature 459, 405 (2009).

  2. On the dynamic response of pressure transmission lines in the research of helium-charged free piston Stirling engines

    NASA Technical Reports Server (NTRS)

    Miller, Eric L.; Dudenhoefer, James E.

    1989-01-01

    In free piston Stirling engine research the integrity of both amplitude and phase of the dynamic pressure measurements is critical to the characterization of cycle dynamics and thermodynamics. It is therefore necessary to appreciate all possible sources of signal distortion when designing pressure measurement systems for this type of research. The signal distortion inherent to pressure transmission lines is discussed. Based on results from classical analysis, guidelines are formulated to describe the dynamic response properties of a volume-terminated transmission tube for applications involving helium-charged free piston Stirling engines. The scope and limitations of the dynamic response analysis are considered.

  3. Helium Pressure Shift of the Hyperfine Clock Transition in Hg-201(+)

    NASA Technical Reports Server (NTRS)

    Larigani, S. Taghavi; Burt, E. A.; Tjoelker, R. L.

    2010-01-01

    There are two stable odd isotopes of mercury with singly ionized hyperfine structure suitable for a microwave atomic clock: Hg-199(+) and Hg-201(+). We are investigating the viability of a trapped ion clock based on Hg-201(+) in a configuration that uses a buffer gas to increase ion loading efficiency and counter ion heating from rf trapping fields. Traditionally, either helium or neon is used as the buffer gas at approx. 10(exp -5) torr to confine mercury ions near room temperature. In addition to the buffer gas, other residual background gasses such as H2O, N2, O2, CO, CO2, and CH2 may be present in trace quantities. Collisions between trapped ions and buffer gas or background gas atoms/molecules produce a momentary shift of the ion clock transition frequency and constitute one of the largest systematic effects in this type of clock. Here we report an initial measurement of the He pressure shift in Hg-201(+) and compare this to Hg-199(+).

  4. Array of surface-confined glow discharges in atmospheric pressure helium: Modes and dynamics

    SciTech Connect

    Li, D.; Liu, D. X. E-mail: mglin5g@gmail.com; Nie, Q. Y.; Li, H. P.; Chen, H. L.; Kong, M. G. E-mail: mglin5g@gmail.com

    2014-05-19

    Array of atmospheric pressure surface discharges confined by a two-dimensional hexagon electrode mesh is studied for its discharge modes and temporal evolution so as to a theoretical underpinning to their growing applications in medicine, aerodynamic control, and environmental remediation. Helium plasma surface-confined by one hexagon-shaped rim electrode is shown to evolve from a Townsend mode to a normal and abnormal glow mode, and its evolution develops from the rim electrodes as six individual microdischarges merging in the middle of the hexagon mesh element. Within one hexagon element, microdischarges remain largely static with the mesh electrode being the instantaneous cathode, but move towards the hexagon center when the electrode is the instantaneous anode. On the entire array electrode surface, plasma ignition is found to beat an unspecific hexagon element and then spreads to ignite surrounding hexagon elements. The spreading of microdischarges is in the form of an expanding circle at a speed of about 3 × 10{sup 4} m/s, and their quenching starts in the location of the initial plasma ignition. Plasma modes influence how input electrical power is used to generate and accelerate electrons and as such the reaction chemistry, whereas plasma dynamics are central to understand and control plasma instabilities. The present study provides an important aspect of plasma physics of the atmospheric surface-confined discharge array and a theoretical underpinning to its future technological innovation.

  5. Helium Pressure Shift of the Hyperfine Clock Transition in Hg-201(+)

    NASA Technical Reports Server (NTRS)

    Larigani, S. Taghavi; Burt, E. A.; Tjoelker, R. L.

    2010-01-01

    There are two stable odd isotopes of mercury with singly ionized hyperfine structure suitable for a microwave atomic clock: Hg-199(+) and Hg-201(+). We are investigating the viability of a trapped ion clock based on Hg-201(+) in a configuration that uses a buffer gas to increase ion loading efficiency and counter ion heating from rf trapping fields. Traditionally, either helium or neon is used as the buffer gas at approx. 10(exp -5) torr to confine mercury ions near room temperature. In addition to the buffer gas, other residual background gasses such as H2O, N2, O2, CO, CO2, and CH2 may be present in trace quantities. Collisions between trapped ions and buffer gas or background gas atoms/molecules produce a momentary shift of the ion clock transition frequency and constitute one of the largest systematic effects in this type of clock. Here we report an initial measurement of the He pressure shift in Hg-201(+) and compare this to Hg-199(+).

  6. Three-dimensional simulation of microwave-induced helium plasma under atmospheric pressure

    SciTech Connect

    Zhao, G. L.; Hua, W. Guo, S. Y.; Liu, Z. L.

    2016-07-15

    A three-dimensional model is presented to investigate helium plasma generated by microwave under atmospheric pressure in this paper, which includes the physical processes of electromagnetic wave propagation, electron and heavy species transport, gas flow, and heat transfer. The model is based on the fluid approximation calculation and local thermodynamic equilibrium assumption. The simulation results demonstrate that the maxima of the electron density and gas temperature are 4.79 × 10{sup 17 }m{sup −3} and 1667 K, respectively, for the operating conditions with microwave power of 500 W, gas flow rate of 20 l/min, and initial gas temperature of 500 K. The electromagnetic field distribution in the plasma source is obtained by solving Helmholtz equation. Electric field strength of 2.97 × 10{sup 4 }V/m is obtained. There is a broad variation on microwave power, gas flow rate, and initial gas temperature to obtain deeper information about the changes of the electron density and gas temperature.

  7. Electron properties of the plume of an atmospheric pressure helium plasma jet

    NASA Astrophysics Data System (ADS)

    Adress, Wameedh; Nedanovska, Elena; Nersisyan, Gagik; Riley, David; Graham, William

    2013-09-01

    Atmospheric pressure plasma, APP, jets, are now attracting great interest because of their potential uses in many applications; for example surface modification and plasma medicine. These applications require an insight into their plasma chemistry, which is strongly influenced by the electron energy distribution function. Here we report the use of Thomson scattering to measure the electron properties in the plume created by a 20 kHz, 2mm diameter helium APP jet operating into the open air. A 532 nm Nd:YAG laser beam is focussed into the plasma plume. The temporally and spatially resolved spectra of light at 90° to the laser direction is detected. The spectra contain light from Thomson Scattering from electrons, along with Rayleigh and Raman scattering from atoms and molecules. These components are resolved in a manner similar to that described in ref 1. Our measurements reveal a ``ring-like'' radial distribution of both the electron density and temperature, with outer values of ~ 7×1013 cm-3 and 0.4 eV and inner values of ~ 2×1013 cm-3 and 0.1 eV respectively at 4 mm from the end of the quartz tube.

  8. Production and provision mechanisms of OH radical of an atmospheric-pressure helium plasma jet

    NASA Astrophysics Data System (ADS)

    Yonemori, Seiya; Ono, Ryo; Oda, Tetsuji

    2012-10-01

    An atmospheric-pressure helium plasma jet is getting much attention because of its low heat load. It is known that active species such as OH radical play important role in many plasma processes, for example, in plasma medical care or in plasma sterilization. When using the plasma jet for surface treatment, it is important that the amount of OH radical provided into objectives. We measured OH density in the vicinity of the surface of objectives using laser induced fluorescence (LIF). The plasma jet was generated when AC 8 kHz, 10 kV was applied. When the plasma jet extended onto the dry glass surface, the maximum OH density was 0.2 ppm. On the other hand, the maximum OH density was 1 ppm when the plasma jet extended onto the wet surface. In addition, time-evolution of OH density between two successive voltage pulses was measured. On the edge of the plasma jet, OH density was at maximum and rapidly decreased between two pulses. Those results suggest that there are three ways of OH production; first, the dissociation of H2O included in discharge gas; secondly, the dissociation of H2O included in the ambient air; finally, the dissociation of H2O evaporates from the wet surface.

  9. Numerical simulation of a direct current glow discharge in atmospheric pressure helium

    NASA Astrophysics Data System (ADS)

    Yin, Zeng-Qian; Wang, Yan; Zhang, Pan-Pan; Zhang, Qi; Li, Xue-Chen

    2016-12-01

    Characteristics of a direct current (DC) discharge in atmospheric pressure helium are numerically investigated based on a one-dimensional fluid model. The results indicate that the discharge does not reach its steady state till it takes a period of time. Moreover, the required time increases and the current density of the steady state decreases with increasing the gap width. Through analyzing the spatial distributions of the electron density, the ion density and the electric field at different discharge moments, it is found that the DC discharge starts with a Townsend regime, then transits to a glow regime. In addition, the discharge operates in a normal glow mode or an abnormal glow one under different parameters, such as the gap width, the ballast resistors, and the secondary electron emission coefficients, judged by its voltage-current characteristics. Project supported by the National Natural Science Foundation of China (Grant Nos. 11575050 and 10805013), the Midwest Universities Comprehensive Strength Promotion Project, the Natural Science Foundation of Hebei Province, China (Grant Nos. A2016201042 and A2015201092), and the Research Foundation of Education Bureau of Hebei Province, China (Grant No. LJRC011).

  10. Comment on "The thermodynamical instability induced by pressure ionization in fluid helium" [Phys. Plasmas 23, 112709 (2016)

    NASA Astrophysics Data System (ADS)

    Quan, W. L.

    2017-06-01

    In a recent paper, Li et al. [Phys. Plasmas 23, 112709 (2016)] reported the instability induced by pressure ionization in fluid helium based on minimization of Helmholtz free energy within chemical picture. Here, I argue that their calculations may have some bugs directly resulting in the so-called instability, because a problematic iterative strategy also produces a similar, but mathematically incorrect instability that can be removed by improving iterative strategy.

  11. High pressure capillary connector

    DOEpatents

    Renzi, Ronald F.

    2005-08-09

    A high pressure connector capable of operating at pressures of 40,000 psi or higher is provided. This connector can be employed to position a first fluid-bearing conduit that has a proximal end and a distal end to a second fluid-bearing conduit thereby providing fluid communication between the first and second fluid-bearing conduits. The connector includes (a) an internal fitting assembly having a body cavity with (i) a lower segment that defines a lower segment aperture and (ii) an interiorly threaded upper segment, (b) a first member having a first member aperture that traverses its length wherein the first member aperture is configured to accommodate the first fluid-bearing conduit and wherein the first member is positioned in the lower segment of the internal fitting assembly, and (c) a second member having a second member aperture that traverses its length wherein the second member is positioned in the upper segment of the fitting assembly and wherein a lower surface of the second member is in contact with an upper surface of the first member to assert a compressive force onto the first member and wherein the first member aperture and the second member aperture are coaxial.

  12. What Causes High Blood Pressure?

    MedlinePlus

    ... can cause high blood pressure. Renin-Angiotensin-Aldosterone System The renin-angiotensin-aldosterone system makes angiotensin and ... blood volumes and high blood pressure. Sympathetic Nervous System Activity The sympathetic nervous system has important functions ...

  13. High Blood Pressure Fact Sheet

    MedlinePlus

    ... this? Submit What's this? Submit Button Related CDC Web Sites Heart Disease Stroke High Blood Pressure Salt ... Prevent and Control Chronic Diseases Million Hearts® WISEWOMAN Web Sites with More Information About High Blood Pressure ...

  14. High blood pressure and diet

    MedlinePlus

    ... this page: //medlineplus.gov/ency/article/007483.htm High blood pressure and diet To use the sharing features on ... diet is a proven way to help control high blood pressure . These changes can also help you lose weight ...

  15. Effects of metastable species in helium and argon atmospheric pressure plasma jets (APPJs) on inactivation of periodontopathogenic bacteria

    NASA Astrophysics Data System (ADS)

    Yoon, Sung-Young; Kim, Kyoung-Hwa; Seol, Yang-Jo; Kim, Su-Jeong; Bae, Byeongjun; Huh, Sung-Ryul; Kim, Gon-Ho

    2016-05-01

    The helium and argon have been widely used as discharge gases in atmospheric pressure plasma jets (APPJs) for bacteria inactivation. The APPJs show apparent different in bullet propagation speed and bacteria inactivation rate apparently vary with discharge gas species. This work shows that these two distinctive features of APPJs can be linked through one factor, the metastable energy level. The effects of helium and argon metastable species on APPJ discharge mechanism for reactive oxygen nitrogen species (RONS) generation in APPJs are investigated by experiments and numerical estimation. The discharge mechanism is investigated by using the bullet velocity from the electric field which is obtained with laser induced fluorescence (LIF) measurement. The measured electric field also applied on the estimation of RONS generation, as electron energy source term in numerical particle reaction. The estimated RONS number is verified by comparing NO and OH densities to the inactivation rate of periodontitis bacteria. The characteristic time for bacteria inactivation of the helium-APPJ was found to be 1.63 min., which is significantly less than that of the argon-APPJ, 12.1 min. In argon-APPJ, the argon metastable preserve the energy due to the lack of the Penning ionization. Thus the surface temperature increase is significantly higher than helium-APPJ case. It implies that the metastable energy plays important role in both of APPJ bullet propagation and bacteria inactivation mechanism.

  16. Dielectric barrier discharges in helium at atmospheric pressure: experiments and model in the needle-plane geometry

    NASA Astrophysics Data System (ADS)

    Radu, I.; Bartnikas, R.; Wertheimer, M. R.

    2003-06-01

    We present an experimental and numerical modelling study of dielectric barrier discharges in pure, flowing helium at atmospheric pressure, in a 3.0 mm length needle-plane gap. Ultra-high speed imaging and synchronous, real-time dual detection (optical-electrical) diagnostics have been carried out. The high-voltage electrode was a hyperboloidal steel needle with a sharp point of 40 mum radius, while the grounded electrode was covered with 1.6 mm of Al2O3. The surface of the latter was either bare (case 1) or coated with ~20 nm of semiconducting graphite (case 2) or metallic aluminium (case 3), all at floating potential. Axial [z(t)] and radial [r(t)] time-evolutions (leq2 mus) of discharge propagation across the gap were found to depend very strongly upon surface charging or conduction (cases 1-3). A two-dimensional model of the needle-plane discharge, based on coupled solution of the continuity equations for electrons, ions and excited neutral particles and of Poisson's equation, was found to agree very well with the observed [r,z](t) behaviour.

  17. High Blood Pressure - Multiple Languages

    MedlinePlus

    ... Well-Being 8 - High Blood Pressure - العربية (Arabic) MP3 Siloam Family Health Center High Blood Pressure - العربية ( ... Being 8 - High Blood Pressure - myanma bhasa (Burmese) MP3 Siloam Family Health Center Chinese, Simplified (Mandarin dialect) ( ...

  18. Controlling your high blood pressure

    MedlinePlus

    ... medlineplus.gov/ency/patientinstructions/000101.htm Controlling your high blood pressure To use the sharing features on this page, ... JavaScript. Hypertension is another term used to describe high blood pressure. High blood pressure can lead to: Stroke Heart ...

  19. [High Pressure Gas Tanks

    NASA Technical Reports Server (NTRS)

    Quintana, Rolando

    2002-01-01

    Four high-pressure gas tanks, the basis of this study, were especially made by a private contractor and tested before being delivered to NASA Kennedy Space Center. In order to insure 100% reliability of each individual tank the staff at KSC decided to again submit the four tanks under more rigorous tests. These tests were conducted during a period from April 10 through May 8 at KSC. This application further validates the predictive safety model for accident prevention and system failure in the testing of four high-pressure gas tanks at Kennedy Space Center, called Continuous Hazard Tracking and Failure Prediction Methodology (CHTFPM). It is apparent from the variety of barriers available for a hazard control that some barriers will be more successful than others in providing protection. In order to complete the Barrier Analysis of the system, a Task Analysis and a Biomechanical Study were performed to establish the relationship between the degree of biomechanical non-conformities and the anomalies found within the system on particular joints of the body. This relationship was possible to obtain by conducting a Regression Analysis to the previously generated data. From the information derived the body segment with the lowest percentage of non-conformities was the neck flexion with 46.7%. Intense analysis of the system was conducted including Preliminary Hazard Analysis (PHA), Failure Mode and Effect Analysis (FMEA), and Barrier Analysis. These analyses resulted in the identification of occurrences of conditions, which may be becoming hazardous in the given system. These conditions, known as dendritics, may become hazards and could result in an accident, system malfunction, or unacceptable risk conditions. A total of 56 possible dendritics were identified. Work sampling was performed to observe the occurrence each dendritic. The out of control points generated from a Weighted c control chart along with a Pareto analysis indicate that the dendritics "Personnel not

  20. Fetoscopy under gas amniodistension: pressure-dependent influence of helium vs nitrous oxide on fetal goats.

    PubMed

    Till, Holger; Yeung, Chung Kwong; Bower, Wendy; Shi, Yimin; Tian, Q; Chu, W; Yip, H Y; Tse, J

    2007-07-01

    Recently, gas amniodistension has been advocated for fetoscopic surgery to employ ergonomics similar to laparoscopy. However, neither the optimal type of gas nor its physiological influence on the fetus have been clearly outlined yet. This study investigates the impact of helium (HE) vs nitrous oxide (N2O) on fetal goats during fetoscopy. We insufflated either HE or N2O in 12 pregnant goats (15 fetuses; HE = 7, N2O = 8), then increased the pressures from 0, 4, 7, to 10 mm Hg in 30-minute intervals and recorded the fetal and maternal vital parameters. Finally, whole-body computed tomography to asses for intracorporeal gas was performed. All fetuses survived. Mean fetal vital signs showed no significant differences between HE or N2O at specific pressure levels. In detail, HE/N2O at 0 vs 10 mm Hg caused a fetal temperature decrease (32.9 degrees C/33.2 degrees C vs 32 degrees C/32.5 degrees C), heart rate increase in the N2O group (100/102 vs 102/121 beats per minute), and no significant change in arterial pressure (45.8/48.3 vs 53.7/46.7 mm Hg). The PO2 was adequate (3.7/3.3 vs 3.7/2.9 kPa), whereas the pH remained unchanged (7.4/7.3 vs 7.3/7.3). However, fetal pCO2 was elevated in the N2O group before insufflation (5.5/7.2 vs 6.8/8.0 kPa) owing to maternal hypoventilation (maternal PCO2: 4.9/5.8 vs 5.0/5.4 kPa), correction of which was slower in the fetus than in the maternal animal. Computed tomography ruled out intracorporeal gas accumulation. Neither HE nor N2O impose significant physiological harm for the fetus. Heating of the gas and maternal anesthesia seem essential. Considering the potential teratogenicity of N2O, however, HE could be the favorable environment for fetoscopic procedures under gas amniodistension.

  1. Plasma action on helium flow in cold atmospheric pressure plasma jet experiments

    NASA Astrophysics Data System (ADS)

    Darny, T.; Pouvesle, J.-M.; Fontane, J.; Joly, L.; Dozias, S.; Robert, E.

    2017-10-01

    In this work, helium flow modifications, visualized by schlieren imaging, induced by the plasma generated in a plasma jet have been studied in conditions used for biomedical treatments (jet being directed downwards with a low helium flow rate). It has been shown that the plasma action can shift up to few centimeters downstream the effects of buoyancy, which allows to the helium flow to reach a target below in conditions for which it is not the case when the plasma is off. This study reveals the critical role of large and long lifetime negative ions during repetitive operations in the kHz regime, inducing strong modifications in the gas propagation. The cumulative added streamwise momentum transferred to ambient air surrounding molecules resulting from a series of applied voltage pulses induces a gradual built up of a helium channel on tens of millisecond timescale. In some conditions, a remarkable stable cylindrical helium channel can be generated to the target with plasma supplied by negative polarity voltage pulses whereas a disturbed flow results from positive polarity operation. This has a direct effect on air penetration in the helium channel and then on the reactive species production over the target which is of great importance for biomedical applications. It has also been shown that with an appropriate combination of negative and positive polarity pulses, it is possible to benefit from both polarity features in order to optimize the plasma plume propagation and plasma delivery to a target.

  2. Afterglow chemistry of atmospheric-pressure helium-oxygen plasmas with humid air impurity

    NASA Astrophysics Data System (ADS)

    Murakami, Tomoyuki; Niemi, Kari; Gans, Timo; O'Connell, Deborah; Graham, William G.

    2014-04-01

    The formation of reactive species in the afterglow of a radio-frequency-driven atmospheric-pressure plasma in a fixed helium-oxygen feed gas mixture (He+0.5%O2) with humid air impurity (a few hundred ppm) is investigated by means of an extensive global plasma chemical kinetics model. As an original objective, we explore the effects of humid air impurity on the biologically relevant reactive species in an oxygen-dependent system. After a few milliseconds in the afterglow environment, the densities of atomic oxygen (O) decreases from 1015 to 1013 cm-3 and singlet delta molecular oxygen (O2(1D)) of the order of 1015 cm-3 decreases by a factor of two, while the ozone (O3) density increases from 1014 to 1015 cm-3. Electrons and oxygen ionic species, initially of the order of 1011 cm-3, recombine much faster on the time scale of some microseconds. The formation of atomic hydrogen (H), hydroxyl radical (OH), hydroperoxyl (HO2), hydrogen peroxide (H2O2), nitric oxide (NO) and nitric acid (HNO3) resulting from the humid air impurity as well as the influence on the afterglow chemistry is clarified with particular emphasis on the formation of dominant reactive oxygen species (ROS). The model suggests that the reactive species predominantly formed in the afterglow are major ROS O2(1D) and O3 (of the order of 1015 cm-3) and rather minor hydrogen- and nitrogen-based reactive species OH, H2O2, HNO3 and NO2/NO3, of which densities are comparable to the O-atom density (of the order of 1013 cm-3). Furthermore, the model quantitatively reproduces the experimental results of independent O and O3 density measurements.

  3. Helium recovery and purification at CHMFL

    NASA Astrophysics Data System (ADS)

    Li, J.; Meng, Q.; Ouyang, Z.; Shi, L.; Ai, X.; Chen, X.

    2017-02-01

    Currently, rising demand and declining reserves of helium have led to dramatic increases in the helium price. The High Magnetic Field Laboratory of Chinese Academy of Sciences (CHMFL) has made efforts since its foundation to increase the percentage of helium recovered. The piping network connects all the helium experimental facilities to the recovery system, and even exhaust ports of pressure relief valves and vacuum pumps are also connected. In each year, about 30,000 cubic meters helium gas is recovered. The recovery gas is purified, liquefied and supplied to the users again. This paper will provide details about the helium recovery and purification system at CHMFL, including system flowchart, components, problems and solutions.

  4. Investigation on streamers propagating into a helium jet in air at atmospheric pressure: Electrical and optical emission analysis

    NASA Astrophysics Data System (ADS)

    Gazeli, K.; Svarnas, P.; Vafeas, P.; Papadopoulos, P. K.; Gkelios, A.; Clément, F.

    2013-09-01

    The plasma produced due to streamers guided by a dielectric tube and a helium jet in atmospheric air is herein studied electrically and optically. Helium streamers are produced inside the dielectric tube of a coaxial dielectric-barrier discharge and, upon exiting the tube, they propagate into the helium jet in air. The axisymmetric velocity field of the neutral helium gas while it penetrates the air is approximated with the PISO algorithm. At the present working conditions, turbulence helium flow is avoided. The system is driven by sinusoidal high voltage of variable amplitude (0-11 kV peak-to-peak) and frequency (5-20 kHz). It is clearly shown that a prerequisite for streamer development is a continuous flow of helium, independently of the sustainment or not of the dielectric-barrier discharge. A parametric study is carried out by scanning the range of the operating parameters of the system and the optimal operational window for the longest propagation path of the streamers in air is determined. For this optimum, the streamer current impulses and the spatiotemporal progress of the streamer UV-visible emission are recorded. The streamer mean propagation velocity is as well measured. The formation of copious reactive emissive species is then considered (in terms of intensity and rotational temperatures), and their evolution along the streamer propagation path is mapped. The main claims of the present work contribute to the better understanding of the physicochemical features of similar systems that are currently applied to various interdisciplinary engineering fields, including biomedicine and material processing.

  5. Chemical kinetics and reactive species in atmospheric pressure helium-oxygen plasmas with humid-air impurities

    NASA Astrophysics Data System (ADS)

    Murakami, Tomoyuki; Niemi, Kari; Gans, Timo; O'Connell, Deborah; Graham, William G.

    2013-02-01

    In most applications helium-based plasma jets operate in an open-air environment. The presence of humid air in the plasma jet will influence the plasma chemistry and can lead to the production of a broader range of reactive species. We explore the influence of humid air on the reactive species in radio frequency (rf)-driven atmospheric-pressure helium-oxygen mixture plasmas (He-O2, helium with 5000 ppm admixture of oxygen) for wide air impurity levels of 0-500 ppm with relative humidities of from 0% to 100% using a zero-dimensional, time-dependent global model. Comparisons are made with experimental measurements in an rf-driven micro-scale atmospheric pressure plasma jet and with one-dimensional semi-kinetic simulations of the same plasma jet. These suggest that the plausible air impurity level is not more than hundreds of ppm in such systems. The evolution of species concentration is described for reactive oxygen species, metastable species, radical species and positively and negatively charged ions (and their clusters). Effects of the air impurity containing water humidity on electronegativity and overall plasma reactivity are clarified with particular emphasis on reactive oxygen species.

  6. Helium Accepts Back-Donation In Highly Polar Complexes: New Insights into the Weak Chemical Bond.

    PubMed

    Nunzi, Francesca; Cesario, Diego; Pirani, Fernando; Belpassi, Leonardo; Frenking, Gernot; Grandinetti, Felice; Tarantelli, Francesco

    2017-07-20

    We studied the puzzling stability and short distances predicted by theory for helium adducts with some highly polar molecules, such as BeO or AuF. On the basis of high-level quantum-chemical calculations, we carried out a detailed analysis of the charge displacement occurring upon adduct formation. For the first time we have unambiguously ascertained that helium is able not only to donate electron density, but also, unexpectedly, to accept electron density in the formation of weakly bound adducts with highly polar substrates. The presence of a large dipole moment induces a large electric field at He, which lowers its 2p orbital energy and enables receipt of π electron density. These findings offer unprecedented important clues toward the design and synthesis of stable helium compounds.

  7. High-pressure neutron diffraction

    SciTech Connect

    Xu, Hongwu

    2011-01-10

    This lecture will cover progress and prospect of applications of high-pressure neutron diffraction techniques to Earth and materials sciences. I will first introduce general high-pressure research topics and available in-situ high-pressure techniques. Then I'll talk about high-pressure neutron diffraction techniques using two types of pressure cells: fluid-driven and anvil-type cells. Lastly, I will give several case studies using these techniques, particularly, those on hydrogen-bearing materials and magnetic transitions.

  8. Helium Storage and Transfer Subsystem design description. Revision

    SciTech Connect

    1987-07-01

    The Helium Storage and Transfer Subsystem (HSTS) consists of two parts. The first consists of nine (9) high pressure storage tanks containing helium at 15.6 MPa (2250 psig). These tanks provide makeup and purge helium at a rate of 1216 kg per y (2680 lb/y) to the various helium users, including circulator bearing seals, analysis packages, and cooling system surge tanks. The second, larger part of the system, provides for the low pressure storage of 6078 kg (13,400 lb) of primary coolant helium in 180 storage tanks at 7.0 MPa (1000 psig). The system serves all four (4) reactor modules. The low pressure storage part of the system receives helium from the discharge of Helium Purification Subsystem (HPS) and is activated during depressurization and pumpup operations only. It is not required to operate continuously. Storage capacity is provided for primary helium coolant from two reactor modules. However, since depressurization and pumpup operations are performed for only one reactor module at a time, two 50% capacity low pressure transfer compressors are provided having a total transfer capacity of 340 am{sup 3}/h (200 acfm) which is sufficient to service one module. High pressure helium is supplied continuously to all the four reactor modules simultaneously from the high pressure storage tanks. These tanks are replaced periodically with fresh tanks.

  9. High Blood Pressure in Pregnancy

    MedlinePlus

    ... of the baby. Controlling your blood pressure during pregnancy and getting regular prenatal care are important for ... your baby. Treatments for high blood pressure in pregnancy may include close monitoring of the baby, lifestyle ...

  10. The effects of added hydrogen on a helium atmospheric-pressure plasma jet ambient desorption/ionization source.

    PubMed

    Wright, Jonathan P; Heywood, Matthew S; Thurston, Glen K; Farnsworth, Paul B

    2013-03-01

    We present mass spectrometric data demonstrating the effect that hydrogen has on a helium-based dielectric-barrier discharge (DBD) atmospheric-pressure plasma jet used as an ambient desorption/ionization (ADI) source. The addition of 0.9 % hydrogen to the helium support gas in a 35-W plasma jet increased signals for a range of test analytes, with enhancement factors of up to 68, without proportional increases in background levels. The changes in signal levels result from a combination of changes in the desorption kinetics from the surface and increased ion production in the gas phase. The enhancement in ADI-MS performance despite the quenching of key plasma species reported in earlier studies suggests that ionization with a H2/He plasma jet is the result of an alternate mechanism involving the direct generation of ionized hydrogen.

  11. Influence of nitrogen impurities on the population of plasma species in atmospheric-pressure helium microwave plasmas

    NASA Astrophysics Data System (ADS)

    Muñoz, J.; Margot, J.; Benhacene-Boudam, M. K.

    2012-02-01

    The characteristics of a helium microwave plasma produced at atmospheric pressure have been studied by means of laser induced fluorescence and emission spectroscopy. The influence of nitrogen impurities on discharge parameters (electron density and gas temperature) has been studied together with the variation of the He metastable (23S and 21S) populations. A strong decrease of the He metastable densities for nitrogen concentrations as small as 1% was found. The dependence of the populations of nitrogen molecular and atomic species has been examined as a function of the electron density and nitrogen concentration in helium. Comparison with a theoretical model accounting for the presence of nitrogen in the discharge shows that Penning ionization by both atomic and molecular nitrogen play an important role on the metastable quenching.

  12. High cycle fatigue behavior of Incoloy 800H in a simulated high-temperature gas-cooled reactor helium environment

    SciTech Connect

    Soo, P.; Sabatini, R.L.; Epel, L.G.; Hare, J.R. Sr.

    1980-01-01

    The current study was an attempt to evaluate the high cycle fatigue strength of Incoloy 800H in a High-Temperature Gas-Cooled Reactor helium environment containing significant quantities of moisture. As-heat-treated and thermally-aged materials were tested to determine the effects of long term corrosion in the helium test gas. Results from in-helium tests were compared to those from a standard air environment. It was found that the mechanisms of fatigue failure were very complex and involved recovery/recrystallization of the surface ground layer on the specimens, sensitization, hardness changes, oxide scale integrity, and oxidation at the tips of propagation cracks. For certain situations a corrosion-fatigue process seems to be controlling. However, for the helium environment studied, there was usually no aging or test condition for which air gave a higher fatigue strength.

  13. Flux of OH and O radicals onto a surface by an atmospheric-pressure helium plasma jet measured by laser-induced fluorescence

    NASA Astrophysics Data System (ADS)

    Yonemori, Seiya; Ono, Ryo

    2014-03-01

    The atmospheric-pressure helium plasma jet is of emerging interest as a cutting-edge biomedical device for cancer treatment, wound healing and sterilization. Reactive oxygen species such as OH and O radicals are considered to be major factors in the application of biological plasma. In this study, density distribution, temporal behaviour and flux of OH and O radicals on a surface are measured using laser-induced fluorescence. A helium plasma jet is generated by applying pulsed high voltage of 8 kV with 10 kHz using a quartz tube with an inner diameter of 4 mm. To evaluate the relation between the surface condition and active species production, three surfaces are used: dry, wet and rat skin. When the helium flow rate is 1.5 l min-1, radial distribution of OH density on the rat skin surface shows a maximum density of 1.2 × 1013 cm-3 at the centre of the plasma-mediated area, while O atom density shows a maximum of 1.0 × 1015 cm-3 at 2.0 mm radius from the centre of the plasma-mediated area. Their densities in the effluent of the plasma jet are almost constant during the intervals of the discharge pulses because their lifetimes are longer than the pulse interval. Their density distribution depends on the helium flow rate and the surface humidity. With these results, OH and O production mechanisms in the plasma jet and their flux onto the surface are discussed.

  14. High Blood Pressure

    MedlinePlus

    ... is at rest between beats Health care workers write blood pressure numbers with the systolic number above ... available to discuss recent findings and ongoing research projects about health conditions and social determinants that disproportionately ...

  15. High Blood Pressure (Hypertension)

    MedlinePlus

    ... Practice healthy coping techniques, such as muscle relaxation, deep breathing or meditation. Getting regular physical activity and ... blood pressure at home. Practice relaxation or slow, deep breathing. Practice taking deep, slow breaths to help ...

  16. High Blood Pressure (Hypertension)

    MedlinePlus

    ... can improve your health in other ways. Mastering stress management techniques can lead to other behavior changes — including those that reduce your blood pressure. When looking for ways to manage stress, remember that you have many options. For example: ...

  17. A high throughput spectrometer system for helium ash detection on JET

    SciTech Connect

    Hillis, D.L.; Fehling, D.T.; Bell, R.E.; Johnson, D.W.; Zastrow, K.-D.; Meigs, A.; Negus, C.; Giroud, C.; Stamp, M.

    2004-10-01

    Acquiring information about helium ash production and transport is fundamental for future burning plasma devices, such as International Thermonuclear Experimental Reactor, since the helium ash must be continuously removed from the plasma to prevent the dilution of the deuterium-tritium (DT) fuel. This diagnostic for future JET DT operation uses charge-exchange recombination spectroscopy (CXRS) in conjunction with the JET neutral heating beam to measure the helium density at 20 radial locations across the JET plasma via the 4686 A He{sup +} line and an array of heated 1 mm quartz fibers. The CXRS diagnostic utilizes a high throughput short focal length spectrometer with f/1.8 input optics, two entrance slits, a holographic transmission grating, and refractive optics. The detector is a thinned back-illuminated charge coupled device that has high quantum efficiency, a 10 MHz readout speed, and a time resolution of 5 ms.

  18. Pressure cryocooling protein crystals

    DOEpatents

    Kim, Chae Un [Ithaca, NY; Gruner, Sol M [Ithaca, NY

    2011-10-04

    Preparation of cryocooled protein crystal is provided by use of helium pressurizing and cryocooling to obtain cryocooled protein crystal allowing collection of high resolution data and by heavier noble gas (krypton or xenon) binding followed by helium pressurizing and cryocooling to obtain cryocooled protein crystal for collection of high resolution data and SAD phasing simultaneously. The helium pressurizing is carried out on crystal coated to prevent dehydration or on crystal grown in aqueous solution in a capillary.

  19. Pressure drop of two-phase helium along long cryogenic flexible transfer lines to support a superconducting RF operation at its cryogenic test stand.

    PubMed

    Chang, M H; Tsai, M H; Wang, Ch; Lin, M C; Chung, F T; Yeh, M S; Chang, L H; Lo, C H; Yu, T C; Chen, L J; Liu, Z K

    2016-01-01

    Establishing a stand-alone cryogenic test stand is of vital importance to ensure the highly reliable and available operation of superconducting radio-frequency module in a synchrotron light source. Operating a cryogenic test stand relies strongly on a capability to deliver two-phase helium along long cryogenic transfer lines. A newly constructed cryogenic test stand with flexible cryogenic transfer lines of length 220 m at National Synchrotron Radiation Research Center is required to support a superconducting radio-frequency module operated at 126.0 kPa with a 40-W dynamic load for a long-term reliability test over weeks. It is designed based on a simple analytical approach with the introduction of a so-called tolerance factor that serves to estimate the pressure drops in transferring a two-phase helium flow with a substantial transfer cryogenic heat load. Tolerance factor 1.5 is adopted based on safety factor 1.5 commonly applied in cryogenic designs to estimate the total mass flow rate of liquid helium demanded. A maximum 60-W dynamic load is verified with experiment measured with heater power 60 W instead after the cryogenic test stand has been installed. Aligning the modeled cryogenic accumulated static heat load with the results measured in situ, actual tolerance factor 1.287 is obtained. The feasibility and validity of our simple analytical approach with actual tolerance factor 1.287 have been scrutinized by using five test cases with varied operating conditions. Calculated results show the discrepancies of the pressure drops between the estimated and measured values for both liquid helium and cold gaseous helium transfer lines have an underestimate 0.11 kPa and an overestimate 0.09 kPa, respectively. A discrepancy is foreseen, but remains acceptable for engineering applications from a practical point of view. The simple analytical approach with the introduction of a tolerance factor can provide not only insight into optimizing the choice of each lossy

  20. A theoretical and experimental study of pressure broadening of the oxygen A-band by helium

    SciTech Connect

    Grimminck, Dennis L. A. G.; Spiering, Frans R.; Janssen, Liesbeth M. C.; Avoird, Ad van der; Zande, Wim J. van der; Groenenboom, Gerrit C.

    2014-05-28

    The rotationally resolved magnetic dipole absorption spectrum of the oxygen A-band b{sup 1}Σ{sub g}{sup +}(v=0)←X{sup 3}Σ{sub g}{sup −}(v=0) perturbed by collisions with helium was studied theoretically using the impact approximation. To calculate the relaxation matrix, scattering calculations were performed on a newly computed helium-oxygen (b{sup 1}Σ{sub g}{sup +}) interaction potential as well as on a helium-oxygen (X{sup 3}Σ{sub g}{sup −}) interaction potential from the literature. The calculated integrated line cross sections and broadening coefficients are in good agreement with experimental results from the literature. Additionally, cavity ring-down experiments were performed in the wings of the spectral lines for a quantitative study of line-mixing, i.e., the redistribution of rotational line intensities by helium-oxygen collisions. It is shown that inclusion of line-mixing in the theory is required to reproduce the experimentally determined absolute absorption strengths as a function of the density of the helium gas.

  1. High accuracy heat capacity measurements through the lambda transition of helium with very high temperature resolution

    NASA Technical Reports Server (NTRS)

    Fairbanks, W. M.; Lipa, J. A.

    1984-01-01

    A measurement of the heat capacity singularity of helium at the lambda transition was performed with the aim of improving tests of the Renormalization Group (RG) predictions for the static thermodynamic behavior near the singularity. The goal was to approach as closely as possible to the lambda-point while making heat capacity measurements of high accuracy. To do this, a new temperature sensor capable of unprecedented resolution near the lambda-point, and two thermal control systems were used. A short description of the theoretical background and motivation is given. The initial apparatus and results are also described.

  2. Electronic Structure of Crystalline 4He at High Pressures

    SciTech Connect

    Mao, Ho Kwang; Shirley, Eric L.; Ding, Yang; Eng, Peter; Cai, Yong Q.; Chow, Paul; Xiao, Yuming; Jinfu Shu, A=Kao, Chi-Chang; Hemley, Russell J.; Kao, Chichang; Mao, Wendy L.; /Stanford U., Geo. Environ. Sci. /SLAC

    2011-01-10

    Using inelastic X-ray scattering techniques, we have succeeded in probing the high-pressure electronic structure of helium crystal at 300 K which has the widest known electronic energy bandgap of all materials, that was previously inaccessible to measurements due to the extreme energy and pressure range. We observed rich electron excitation spectrum, including a cut-off edge above 23 eV, a sharp exciton peak showing linear volume dependence, and a series of excitations and continuum at 26 to 45 eV. We determined electronic dispersion along the {Gamma}-M direction over two Brillouin zones, and provided a quantitative picture of the helium exciton beyond the simplified Wannier-Frenkel description.

  3. Bench experiments comparing simulated inspiratory effort when breathing helium-oxygen mixtures to that during positive pressure support with air.

    PubMed

    Martin, Andrew R; Katz, Ira M; Jenöfi, Katharina; Caillibotte, Georges; Brochard, Laurent; Texereau, Joëlle

    2012-10-03

    Inhalation of helium-oxygen (He/O2) mixtures has been explored as a means to lower the work of breathing of patients with obstructive lung disease. Non-invasive ventilation (NIV) with positive pressure support is also used for this purpose. The bench experiments presented herein were conducted in order to compare simulated patient inspiratory effort breathing He/O2 with that breathing medical air, with or without pressure support, across a range of adult, obstructive disease patterns. Patient breathing was simulated using a dual-chamber mechanical test lung, with the breathing compartment connected to an ICU ventilator operated in NIV mode with medical air or He/O2 (78/22 or 65/35%). Parabolic or linear resistances were inserted at the inlet to the breathing chamber. Breathing chamber compliance was also varied. The inspiratory effort was assessed for the different gas mixtures, for three breathing patterns, with zero pressure support (simulating unassisted spontaneous breathing), and with varying levels of pressure support. Inspiratory effort increased with increasing resistance and decreasing compliance. At a fixed resistance and compliance, inspiratory effort increased with increasing minute ventilation, and decreased with increasing pressure support. For parabolic resistors, inspiratory effort was lower for He/O2 mixtures than for air, whereas little difference was measured for nominally linear resistance. Relatively small differences in inspiratory effort were measured between the two He/O2 mixtures. Used in combination, reductions in inspiratory effort provided by He/O2 and pressure support were additive. The reduction in inspiratory effort afforded by breathing He/O2 is strongly dependent on the severity and type of airway obstruction. Varying helium concentration between 78% and 65% has small impact on inspiratory effort, while combining He/O2 with pressure support provides an additive reduction in inspiratory effort. In addition, breathing He/O2 alone may

  4. High Power Ion Heating in Helium and Hydrogen Plasmas for Advanced Plasma Thrusters

    NASA Astrophysics Data System (ADS)

    Ando, Akira; Hagiwara, Tatsuya; Domon, Masakazu; Taguchi, Takahiro

    High power ion cyclotron resonance heating is performed in a fast-flowing plasma operated with hydrogen and helium gases. Ion heating is clearly observed in hydrogen plasma as well as in helium plasma. The resonance region of magnetic field is broader and wave absorption efficiency is higher in hydrogen plasma than those in helium plasma. The thermal energy of the heated ions is converted to the kinetic energy of the exhaust plume by passing through a diverging magnetic nozzle set in a downstream region. In the magnetic nozzle energy conversion occurred as keeping the magnetic moment constant, but some discrepancy was observed in larger gradient of magnetic field. The kinetic energy of the exhaust plume is successfully controlled by an input power of radio-frequency wave, which is one of the key technologies for the Variable Specific Impulse Magnetoplasma Rocket (VASIMR) type plasma thruster.

  5. The High Pressure Nervous Syndrome and Other High Pressure Effects.

    DTIC Science & Technology

    Many of the problems of exposing man to a high pressure environment depend overtly on the properties of gases in the gaseous phase--such as the...or to changes in pressure. These are the subject of this chapter. The distinction is an arbitrary one, since both hyperbaric arthralgia and the high

  6. Comparison of melting and crystallization behaviors of polylactide under high-pressure CO2, N2, and He

    NASA Astrophysics Data System (ADS)

    Nofar, M.; Tabatabaei, A.; Ameli, A.; Park, C. B.

    2014-05-01

    This study investigated the melting and crystallization behaviors of polylactide (PLA) under high-pressure CO2, N2, and helium (He) using a high-pressure differential scanning calorimeter. The results showed that the PLA's melting temperature was depressed only in contact with pressurized CO2 where at high CO2 pressures the lubricating gas molecules induced more imperfect melt and cold crystals during the cooling and heating cycles, respectively. PLA's melt crystallization was analyzed during nonisothermal processes. Despite the effect of dissolved CO2 that expedited the PLA's crystallization rate, N2 showed almost a neutral impact on the PLA's crystallization kinetics. Because of the lower solubility, N2 gas content dissolved in the PLA had a diminutive plasticization effect, and thereby it could only counterbalance its negative hydraulic pressure effect. Moreover, as the helium pressure increased, the PLA's final crystallinity was reduced due to the dominant effect of helium's hydraulic pressure.

  7. Gas Temperature Determination in Argon-Helium Plasma at Atmospheric Pressure using van der Waals Broadening

    SciTech Connect

    Munoz, Jose; Yubero, Cristina; Calzada, Maria Dolores; Dimitrijevic, Milan S.

    2008-10-22

    The use of the van der Waals broadening of Ar atomic lines to determine the gas temperature in Ar-He plasmas, taking into account both argon and helium atoms as perturbers, has been analyzed. The values of the gas temperature inferred from this broadening have been compared with those obtained from the spectra of the OH molecular species in the discharge.

  8. D0 Silicon Upgrade: Gas Helium Storage Tank Pressure Vessel Engineering Note

    SciTech Connect

    Rucinski, Russ; /Fermilab

    1996-11-11

    This is to certify that Beaird Industries, Inc. has done a white metal blast per SSPC-SP5 as required per specifications on the vessel internal. Following the blast, a black light inspection was performed by Beaird Quality Control personnel to assure that all debris, grease, etc. was removed and interior was clean prior to closing vessel for helium test.

  9. High pressure storage vessel

    SciTech Connect

    Liu, Qiang

    2013-08-27

    Disclosed herein is a composite pressure vessel with a liner having a polar boss and a blind boss a shell is formed around the liner via one or more filament wrappings continuously disposed around at least a substantial portion of the liner assembly combined the liner and filament wrapping have a support profile. To reduce susceptible to rupture a locally disposed filament fiber is added.

  10. Voltage and pressure scaling of streamer dynamics in a helium plasma jet with N{sub 2} co-flow

    SciTech Connect

    Leiweke, Robert J.; Ganguly, Biswa N.; Scofield, James D.

    2014-08-15

    Positive polarity applied voltage and gas pressure dependent scaling of cathode directed streamer propagation properties in helium gas flow guided capillary dielectric barrier discharge have been quantified from streamer velocity, streamer current, and streamer optical diameter measurements. All measurements of the non-stochastic streamer properties have been performed in a variable gas pressure glass cell with N{sub 2} co-flow and under self-consistent Poisson electric field dominated conditions to permit data comparison with 2-D streamer dynamics models in air/nitrogen. The streamer optical diameter was found to be nearly independent of both gas pressures, from 170 Torr up to 760 Torr, and also for applied voltages from 6 to 11 kV at 520 Torr. The streamer velocity was found to increase quadratically with increased applied voltage. These observed differences in the 2-D scaling properties of ionization wave sustained cathode directed streamer propagation in helium flow channel with N{sub 2} annular co-flow compared to the streamer propagation in air or nitrogen have been shown to be caused by the remnant ionization distribution due to large differences in the dissociative recombination rates of He{sub 2}{sup +} versus N{sub 4}{sup +} ions, for this 5 kHz repetition rate applied voltage pulse generated streamers.

  11. Analyzing the Use of Gaseous Helium as a Pressurant with Cryogenic Propellants with Thermodynamic Venting System Modelling and Test Data

    NASA Astrophysics Data System (ADS)

    Hedayat, A.; Nelson, S. L.; Hastings, L. J.; Flachbart, R. H.; Vermilion, D. J.; Tucker, S. P.

    2008-03-01

    Cryogens are viable candidate propellants for NASA's Lunar and Mars exploration programs. To provide adequate mass flow to the system's engines and/or prevent feed system cavitation, gaseous helium (GHe) is frequently considered as a pressurant. A Thermodynamic Venting System (TVS) is designed to maintain tank pressure during low gravity operations without propellant resettling. Tests were conducted in the Marshall Space Flight Center (MSFC) Multi-purpose Hydrogen Test Bed (MHTB) to evaluate the effects of GHe pressurant on pressure control performance of a TVS with liquid hydrogen (LH2) and nitrogen (LN2) test liquids. The TVS used comprises a recirculation pump, a Joule-Thomson (J-T) expansion valve, and a parallel flow concentric tube heat exchanger combined with a longitudinal spray bar. A small amount of liquid extracted from the tank recirculation line was passed through the J-T valve and then through the heat exchanger, extracting thermal energy from the bulk liquid and ullage and thereby enabling pressure control. The LH2/GHe tests were performed at fill levels of 90%, 50%, and 25%, and LN2/GHe tests were conducted at fill levels of 50% and 25%. Moreover, each test was conducted with a specified tank ullage pressure control band. A one-dimensional TVS performance program was used to analyze and correlate the test data. Predictions were compared with test data of ullage pressure and temperature and bulk liquid saturation pressure and temperature.

  12. Stroke and High Blood Pressure

    MedlinePlus

    ... Disease Venous Thromboembolism Aortic Aneurysm More How High Blood Pressure Can Lead to Stroke Updated:May 3,2017 ... This content was last reviewed October 2016. High Blood Pressure • Home • Get the Facts About HBP • Know Your ...

  13. Electrokinetically pumped high pressure sprays

    DOEpatents

    Schoeniger, Joseph S.; Paul, Phillip H.; Schoeniger, Luke

    2002-01-01

    An electrokinetic pump capable of producing high pressure is combined with a nozzle having a submicron orifice to provide a high pressure spray device. Because of its small size, the device can be contained within medical devices such as an endoscope for delivering biological materials such as DNA, chemo therapeutic agents, or vaccines to tissues and cells.

  14. Electrokinetically pumped high pressure sprays

    DOEpatents

    Schoeniger, Joseph S.; Paul, Phillip H.; Schoeniger, Luke

    2005-11-01

    An electrokinetic pump capable of producing high pressure is combined with a nozzle having a submicron orifice to provide a high pressure spray device. Because of its small size, the device can be contained within medical devices such as an endoscope for delivering biological materials such as DNA, chemo therapeutic agents, or vaccines to tissues and cells.

  15. Managing High Blood Pressure Medications

    MedlinePlus

    ... Artery Disease Venous Thromboembolism Aortic Aneurysm More Managing High Blood Pressure Medications Updated:Jan 3,2017 When your doctor ... health. This content was last reviewed October 2016. High Blood Pressure • Home • Get the Facts About HBP • Know Your ...

  16. High Blood Pressure and Women

    MedlinePlus

    ... Peripheral Artery Disease Venous Thromboembolism Aortic Aneurysm More High Blood Pressure and Women Updated:Dec 14,2016 Pregnancy and ... Women . This content was last reviewed October 2016. High Blood Pressure • Home • Get the Facts About HBP • Know Your ...

  17. High Pressure Equation of State Studies Using Ethanol-Methanol And Argon As Pressure Medium

    NASA Astrophysics Data System (ADS)

    Godwal, B. K.; Speziale, S.; Clark, S.; Yan, J.; Jeanloz, R.

    2008-12-01

    Experimental high pressure studies are extremely important to planetary science, material science and to the development of condensed matter theory. With experimental difficulties in creating the extreme pressure temperature conditions appropriate to planetary interiors, the approach used is to obtain the thermodynamic data on materials of interest by extrapolating the condensed matter theory which has been benchmarked with the outcome of high pressure experiments to the available high pressures. However the high pressure data used to match the theory heavily depends on the use of pressure media; like ethanol-methanol, silicon oil, argon and helium. Unfortunately still there exist controversy in the literature even with the use of helium as pressure medium as illustrated by the unsettled debate on Zn and Os among different groups. We have measured the equation of state of intermetallic compound AuIn2 and Cd0.8Hg0.2 alloy using ethanol-methanol and argon to the pressure of 20 GPa to confirm the appearance of anomalies in the data due to occurrence of subtle electronic phase transitions. However these anomalies can also be attributed to oriented lattice strains and local non-hydrostatic conditions. We have tried to remove these at room temperature by stabilizing the sample in argon medium in the diamond anvil cell with proper annealing as indicated by the uniformity of the pressure across the sample by ruby fluorescence measurements. We will present the data revealing the electronic transition in AuIn2 at 2.7 GPa and in Cd0.8Hg0.2 near 9 and 18 GPa.

  18. Perfusion-diffusion compartmental models describe cerebral helium kinetics at high and low cerebral blood flows in sheep.

    PubMed

    Doolette, David J; Upton, Richard N; Grant, Cliff

    2005-03-01

    This study evaluated the relative importance of perfusion and diffusion mechanisms in compartmental models of blood:tissue helium exchange in the brain. Helium has different physiochemical properties from previously studied gases, and is a common diluent gas in underwater diving where decompression schedules are based on theoretical models of inert gas kinetics. Helium kinetics across the cerebrum were determined during and after 15 min of helium inhalation, at separate low and high steady states of cerebral blood flow in seven sheep under isoflurane anaesthesia. Helium concentrations in arterial and sagittal sinus venous blood were determined using gas chromatographic analysis, and sagittal sinus blood flow was monitored continuously. Parameters and model selection criteria of various perfusion-limited or perfusion-diffusion compartmental models of the brain were estimated by simultaneous fitting of the models to the sagittal sinus helium concentrations for both blood flow states. Purely perfusion-limited models fitted the data poorly. Models that allowed a diffusion-limited exchange of helium between a perfusion-limited tissue compartment and an unperfused deep compartment provided better overall fit of the data and credible parameter estimates. Fit to the data was also improved by allowing countercurrent diffusion shunt of helium between arterial and venous blood. These results suggest a role of diffusion in blood:tissue helium equilibration in brain.

  19. Perfusion–diffusion compartmental models describe cerebral helium kinetics at high and low cerebral blood flows in sheep

    PubMed Central

    Doolette, David J; Upton, Richard N; Grant, Cliff

    2005-01-01

    This study evaluated the relative importance of perfusion and diffusion mechanisms in compartmental models of blood:tissue helium exchange in the brain. Helium has different physiochemical properties from previously studied gases, and is a common diluent gas in underwater diving where decompression schedules are based on theoretical models of inert gas kinetics. Helium kinetics across the cerebrum were determined during and after 15 min of helium inhalation, at separate low and high steady states of cerebral blood flow in seven sheep under isoflurane anaesthesia. Helium concentrations in arterial and sagittal sinus venous blood were determined using gas chromatographic analysis, and sagittal sinus blood flow was monitored continuously. Parameters and model selection criteria of various perfusion-limited or perfusion–diffusion compartmental models of the brain were estimated by simultaneous fitting of the models to the sagittal sinus helium concentrations for both blood flow states. Purely perfusion-limited models fitted the data poorly. Models that allowed a diffusion-limited exchange of helium between a perfusion-limited tissue compartment and an unperfused deep compartment provided better overall fit of the data and credible parameter estimates. Fit to the data was also improved by allowing countercurrent diffusion shunt of helium between arterial and venous blood. These results suggest a role of diffusion in blood:tissue helium equilibration in brain. PMID:15649976

  20. High pressure ices

    PubMed Central

    Hermann, Andreas; Ashcroft, N. W.; Hoffmann, Roald

    2012-01-01

    H2O will be more resistant to metallization than previously thought. From computational evolutionary structure searches, we find a sequence of new stable and meta-stable structures for the ground state of ice in the 1–5 TPa (10 to 50 Mbar) regime, in the static approximation. The previously proposed Pbcm structure is superseded by a Pmc21 phase at p = 930 GPa, followed by a predicted transition to a P21 crystal structure at p = 1.3 TPa. This phase, featuring higher coordination at O and H, is stable over a wide pressure range, reaching 4.8 TPa. We analyze carefully the geometrical changes in the calculated structures, especially the buckling at the H in O-H-O motifs. All structures are insulating—chemistry burns a deep and (with pressure increase) lasting hole in the density of states near the highest occupied electronic levels of what might be component metallic lattices. Metallization of ice in our calculations occurs only near 4.8 TPa, where the metallic C2/m phase becomes most stable. In this regime, zero-point energies much larger than typical enthalpy differences suggest possible melting of the H sublattice, or even the entire crystal. PMID:22207625

  1. Medications for High Blood Pressure

    MedlinePlus

    ... Products For Consumers Home For Consumers Consumer Updates Medications for High Blood Pressure Share Tweet Linkedin Pin ... all their lives. back to top Types of Medications FDA has approved many medications to treat high ...

  2. High pressure synthesis gas fermentation

    SciTech Connect

    Not Available

    1991-01-01

    Construction of the high pressure gas phase fermentation system is nearing completion. All non-explosion proof components will be housed separately in a gas-monitored plexiglas cabinet. A gas-monitoring system has been designed to ensure the safety of the operations in case of small or large accidental gas releases. Preliminary experiments investigating the effects of high pressure on Clostridium 1jungdahlii have shown that growth and CO uptake are not negatively affected and CO uptake by an increased total pressure of 100 psig at a syngas partial pressure of 10 psig.

  3. Nanomaterials under high-pressure.

    PubMed

    San-Miguel, Alfonso

    2006-10-01

    The use of high-pressure for the study and elaboration of homogeneous nanostructures is critically reviewed. Size effects, the interaction between nanostructures and guest species or the interaction of the nanosystem with the pressure transmitting medium are emphasized. Phase diagrams and the possibilities opened by the combination of pressure and temperature for the elaboration of new nanomaterials is underlined through the examination of three different systems: nanocrystals, nano-cage materials which include fullerites and group-14 clathrates, and single wall nanotubes. This tutorial review is addressed to scientist seeking an introduction or a panoramic view of the study of nanomaterials under high-pressure.

  4. Ultra high vacuum pumping system and high sensitivity helium leak detector

    DOEpatents

    Myneni, Ganapati Rao

    1997-01-01

    An improved helium leak detection method and apparatus are disclosed which increase the leak detection sensitivity to 10.sup.-13 atm cc s.sup.-1. The leak detection sensitivity is improved over conventional leak detectors by completely eliminating the use of o-rings, equipping the system with oil-free pumping systems, and by introducing measured flows of nitrogen at the entrances of both the turbo pump and backing pump to keep the system free of helium background. The addition of dry nitrogen flows to the system reduces backstreaming of atmospheric helium through the pumping system as a result of the limited compression ratios of the pumps for helium.

  5. Ultra high vacuum pumping system and high sensitivity helium leak detector

    DOEpatents

    Myneni, G.R.

    1997-12-30

    An improved helium leak detection method and apparatus are disclosed which increase the leak detection sensitivity to 10{sup {minus}13} atm cc/s. The leak detection sensitivity is improved over conventional leak detectors by completely eliminating the use of o-rings, equipping the system with oil-free pumping systems, and by introducing measured flows of nitrogen at the entrances of both the turbo pump and backing pump to keep the system free of helium background. The addition of dry nitrogen flows to the system reduces back streaming of atmospheric helium through the pumping system as a result of the limited compression ratios of the pumps for helium. 2 figs.

  6. High-Pressure Vibrational Spectroscopy.

    NASA Astrophysics Data System (ADS)

    Pogson, Mark

    1987-09-01

    Available from UMI in association with The British Library. Requires signed TDF. The study of solids at high pressure and variable temperature enables development of accurate interatomic potential functions over wide ranges of interatomic distances. A review of the main models used in the determination of these potentials is given in Chapter one. A discussion of phonon frequency as a variable physical parameter reflecting the interatomic potential is given. A high pressure Raman study of inorganic salts of the types MSCN, (M = K,Rb,Cs & NH_4^+ ) and MNO_2, (M = K,Na) has been completed. The studies have revealed two new phases in KNO_2 and one new phase in NaNO _2 at high pressure. The accurate phonon shift data have enabled the determination of the pure and biphasic stability regions of the phases of KNO _2. A discussion of the B1, B2 relationship of univalent nitrites is also given. In the series of thiocyanates studied new phases have been found in all four materials. In both the potassium and rubidium salts two new phases have been detected, and in the ceasium salt one new phase has been detected, all at high pressure, from accurate phonon shift data. These transitions are discussed in terms of second-order mechanisms with space groups suggested for all phases, based on Landau's theory of second-order phase transitions. In the ammonium salt one new phase has been detected. This new phase transition has been interpreted as a second-order transition. The series of molecular crystals CH_3 HgX, (X = Cl,Br & I) has been studied at high pressure and at variable temperature. In Chapter five, their phase behaviour at high pressure is detailed along with the pressure dependencies of their phonon frequencies. In the chloride and the bromide two new phases have been detected. In the bromide one has been detected at high temperature and one at high pressure, and latter being interpreted as the stopping of the methyl rotation. In the chloride one phase has been found at

  7. Safety aspects of atmospheric pressure helium plasma jet operation on skin: In vivo study on mouse skin.

    PubMed

    Kos, Spela; Blagus, Tanja; Cemazar, Maja; Filipic, Gregor; Sersa, Gregor; Cvelbar, Uros

    2017-01-01

    Biomedical applications of plasma require its efficacy for specific purposes and equally importantly its safety. Herein the safety aspects of cold plasma created with simple atmospheric pressure plasma jet produced with helium gas and electrode discharge are evaluated in skin damage on mouse, at different duration of exposure and gas flow rates. The extent of skin damage and treatments are systematically evaluated using stereomicroscope, labelling with fluorescent dyes, histology, infrared imaging and optical emission spectroscopy. The analyses reveal early and late skin damages as a consequence of plasma treatment, and are attributed to direct and indirect effects of plasma. The results indicate that direct skin damage progresses with longer treatment time and increasing gas flow rates which reflect changes in plasma properties. With increasing flow rates, the temperature on treated skin grows and the RONS formation rises. The direct effects were plasma treatment dependent, whereas the disclosed late-secondary effects were more independent on discharge parameters and related to diffusion of RONS species. Thermal effects and skin heating are related to plasma-coupling properties and are separated from the effects of other RONS. It is demonstrated that cumulative topical treatment with helium plasma jet could lead to skin damage. How these damages can be mitigated is discussed in order to provide guidance, when using atmospheric pressure plasma jets for skin treatments.

  8. Flow field analysis of high-speed helium turboexpander for cryogenic refrigeration and liquefaction cycles

    NASA Astrophysics Data System (ADS)

    Sam, Ashish Alex; Ghosh, Parthasarathi

    2017-03-01

    Turboexpander constitutes one of the vital components of Claude cycle based helium refrigerators and liquefiers that are gaining increasing technological importance. These turboexpanders which are of radial inflow in configuration are generally high-speed micro turbines, due to the low molecular weight and density of helium. Any improvement in efficiency of these machines requires a detailed understanding of the flow field. Computational Fluid Dynamics analysis (CFD) has emerged as a necessary tool for the determination of the flow fields in cryogenic turboexpanders, which is often not possible through experiments. In the present work three-dimensional transient flow analysis of a cryogenic turboexpander for helium refrigeration and liquefaction cycles were performed using Ansys CFX®, to understand the flow field of a high-speed helium turboexpander, which in turn will help in taking appropriate decisions regarding modifications of established design methodology for improved efficiency of these machines. The turboexpander is designed based on Balje's nsds diagram and the inverse design blade profile generation formalism prescribed by Hasselgruber and Balje. The analyses include the study of several losses, their origins, the increase in entropy due to these losses, quantification of losses and the effects of various geometrical parameters on these losses. Through the flow field analysis it was observed that in the nozzle, flow separation at the nozzle blade suction side and trailing edge vortices resulted in loss generation, which calls for better nozzle blade profile. The turbine wheel flow field analysis revealed that the significant geometrical parameters of the turbine wheel blade like blade inlet angle, blade profile, tip clearance height and trailing edge thickness need to be optimised for improved performance of the turboexpander. The detailed flow field analysis in this paper can be used to improve the mean line design methodology for turboexpanders used

  9. High Blood Pressure Increasing Worldwide

    MedlinePlus

    ... other ways to control blood pressure, including healthy lifestyle choices and maintaining a normal weight, Roth said. Murray said some of the factors responsible for the worldwide increase in high blood pressure are unhealthy diets and obesity. In addition, in developing countries, more people are ...

  10. Numerical Modeling of the Atmospheric-Pressure Helium Plasma Formed During Spark-to-Glow Discharge Transition

    NASA Astrophysics Data System (ADS)

    Demkin, V. P.; Melnichuk, S. V.

    2017-06-01

    Results of numerical experiment on modeling of the atmospheric-pressure plasma formed during the spark-to-glow discharge transition in helium in low-current non-stationary plasmatron are presented. The numerical experiment is performed using the developed 2D physical and mathematical plasma model in the drift-diffusion approximation. Results of numerical calculation of the dynamics of discharge evolution are confirmed by the experimental data on the atmospheric-pressure plasma dynamics formed in the plasmatron during the spark-to-glow discharge transition. It is demonstrated that with preset initial conditions characteristic for spark breakdown, further discharge evolution leads to the formation of the near-cathode zone of the potential drop and the pulsed behavior of the electric current of the discharge. After the current pulse, the discharge transforms into the quasi-stationary mode with parameters characteristic for the glow discharge with monotonically increasing electric current and transverse dimensions of the plasma column.

  11. Thermal hydraulic performance testing of printed circuit heat exchangers in a high-temperature helium test facility

    SciTech Connect

    Sai K. Mylavarapu; Xiaodong Sun; Richard E. Glosup; Richard N. Christensen; Michael W. Patterson

    2014-04-01

    In high-temperature gas-cooled reactors, such as a very high temperature reactor (VHTR), an intermediate heat exchanger (IHX) is required to efficiently transfer the core thermal output to a secondary fluid for electricity generation with an indirect power cycle and/or process heat applications. Currently, there is no proven high-temperature (750–800 °C or higher) compact heat exchanger technology for high-temperature reactor design concepts. In this study, printed circuit heat exchanger (PCHE), a potential IHX concept for high-temperature applications, has been investigated for their heat transfer and pressure drop characteristics under high operating temperatures and pressures. Two PCHEs, each having 10 hot and 10 cold plates with 12 channels (semicircular cross-section) in each plate are fabricated using Alloy 617 plates and tested for their performance in a high-temperature helium test facility (HTHF). The PCHE inlet temperature and pressure were varied from 85 to 390 °C/1.0–2.7 MPa for the cold side and 208–790 °C/1.0–2.7 MPa for the hot side, respectively, while the mass flow rate of helium was varied from 15 to 49 kg/h. This range of mass flow rates corresponds to PCHE channel Reynolds numbers of 950 to 4100 for the cold side and 900 to 3900 for the hot side (corresponding to the laminar and laminar-to-turbulent transition flow regimes). The obtained experimental data have been analyzed for the pressure drop and heat transfer characteristics of the heat transfer surface of the PCHEs and compared with the available models and correlations in the literature. In addition, a numerical treatment of hydrodynamically developing and hydrodynamically fully-developed laminar flow through a semicircular duct is presented. Relations developed for determining the hydrodynamic entrance length in a semicircular duct and the friction factor (or pressure drop) in the hydrodynamic entry length region for laminar flow through a semicircular duct are given. Various

  12. Dynamical response of helium bubble motion to irradiation with high-energy self-ions in aluminum at high temperature.

    SciTech Connect

    Ono, K.; Miyamoto, M.; Arakawa, K.; Birtcher, R. C.; Materials Science Division; Shimane Univ.; Osaka Univ.

    2009-02-21

    Brownian-type motion of helium bubbles in aluminum and its dynamical response to irradiation with 100-keV Al{sup +} ions at high temperatures has been studied using in situ irradiation and transmission electron microscopy. It is found that, for most bubbles, the Brownian-type motion is retarded under irradiation, while the mobility returns when the irradiation is stopped. In contrast, under irradiation, a small number of bubbles display exceptionally rapid motion associated with the change in bubble size. These effects are discussed in terms of the dynamical interaction of helium bubbles with cascade damage formed by the high-energy self-ion irradiation.

  13. Steam Oxidation at High Pressure

    SciTech Connect

    Holcomb, Gordon R.; Carney, Casey

    2013-07-19

    A first high pressure test was completed: 293 hr at 267 bar and 670{degrees}C; A parallel 1 bar test was done for comparison; Mass gains were higher for all alloys at 267 bar than at 1 bar; Longer term exposures, over a range of temperatures and pressures, are planned to provide information as to the commercial implications of pressure effects; The planned tests are at a higher combination of temperatures and pressures than in the existing literature. A comparison was made with longer-term literature data: The short term exposures are largely consistent with the longer-term corrosion literature; Ferritic steels--no consistent pressure effect; Austenitic steels--fine grain alloys less able to maintain protective chromia scale as pressure increases; Ni-base alloys--more mass gains above 105 bar than below. Not based on many data points.

  14. High-pressure optical studies

    SciTech Connect

    Drickamer, H.G.

    1981-01-01

    High pressure experimentation may concern intrinsically high pressure phenomena, or it may be used to gain a better understanding of states or processes at one atmosphere. The latter application is probably more prevelant in condensed matter physics. Under this second rubric one may either use high pressure to perturb various electronic energy levels and from this pressure tuning characterize states or processes, or one can use pressure to change a macroscopic parameter in a controlled way, then measure the effect on some molecular property. In this paper, the pressure tuning aspect is emphasized, with a lesser discussion of macroscopic - molecular relationships. In rare earth chelates the efficiency of 4f-4f emission of the rare earth is controlled by the feeding from the singlet and triplet levels of the organic ligand. These ligand levels can be strongly shifted by pressure. A study of the effect of pressure on the emission efficiency permits one to understand the effect of ligand modification at one atmosphere. Photochromic crystals change color upon irradiation due to occupation of a metastable ground state. In thermochromic crystals, raising the temperature accomplishes the same results. For a group of molecular crystals (anils) at high pressure, the metastable state can be occupied at room temperature. The relative displacement of the energy levels at high pressure also inhibits the optical process. Effects on luminescence intensity are shown to be consistent. In the area of microscopic - molecular relationships, the effect of viscosity and dielectric properties on rates of non-radiative (thermal) and radiative emission, and on peak energy for luminescence is demonstrated. For systems which can emit from either of two excited states depending on the interaction with the environment, the effect of rigidity of the medium on the rate of rearrangement of the excited state is shown.

  15. High School Press Pressures.

    ERIC Educational Resources Information Center

    Rogers, Luella P.

    History shows that the high school press suffers through cycles that reflect economic factors and cultural climates within communities, states, and the nation. The direction of that cycle in the 1960s and early 1970s was toward more open, free-flowing information by a vigorous student press, but those economic and cultural signs now are pointing…

  16. High School Press Pressures.

    ERIC Educational Resources Information Center

    Rogers, Luella P.

    History shows that the high school press suffers through cycles that reflect economic factors and cultural climates within communities, states, and the nation. The direction of that cycle in the 1960s and early 1970s was toward more open, free-flowing information by a vigorous student press, but those economic and cultural signs now are pointing…

  17. Practical protein removal using atmospheric-pressure helium plasma for densely packed gold nanoparticle arrays assembled by ferritin-based encapsulation/transport system

    NASA Astrophysics Data System (ADS)

    Hashimoto, Tatsuya; Zettsu, Nobuyuki; Zheng, Bin; Fukuta, Megumi; Yamashita, Ichiro; Uraoka, Yukiharu; Watanabe, Heiji

    2012-08-01

    We propose using atmospheric-pressure helium (AP He) plasma to efficiently remove the ferritin protein shells surrounding gold nanoparticles (GNPs). The high density GNPs assembled on a substrate by using a ferritin-based encapsulation/transport system were exposed to He radicals with a high internal energy to decompose their outer protein shells. In contrast to the conventional methods, AP-plasma treatment was found to suppress the aggregation of adjacent GNPs and produce densely packed and isolated GNP arrays. Consequently, we obtained an intense and sharp surface plasmon band from the plasma-treated GNP arrays. The clear response of their plasmonic behavior according to a refractive index of the surrounding media demonstrated that the proposed method had a significant advantage when fabricating GNP-based plasmonic devices.

  18. High pressure ceramic joint

    DOEpatents

    Ward, Michael E.; Harkins, Bruce D.

    1993-01-01

    Many recuperators have components which react to corrosive gases and are used in applications where the donor fluid includes highly corrosive gases. These recuperators have suffered reduced life, increased service or maintenance, and resulted in increased cost. The present joint when used with recuperators increases the use of ceramic components which do not react to highly corrosive gases. Thus, the present joint used with the present recuperator increases the life, reduces the service and maintenance, and reduces the increased cost associated with corrosive action of components used to manufacture recuperators. The present joint is comprised of a first ceramic member, a second ceramic member, a mechanical locking device having a groove defined in one of the first ceramic member and the second ceramic member. The joint and the mechanical locking device is further comprised of a refractory material disposed in the groove and contacting the first ceramic member and the second ceramic member. The present joint mechanically provides a high strength load bearing joint having good thermal cycling characteristics, good resistance to a corrosive environment and good steady state strength at elevated temperatures.

  19. High pressure ceramic joint

    DOEpatents

    Ward, M.E.; Harkins, B.D.

    1993-11-30

    Many recuperators have components which react to corrosive gases and are used in applications where the donor fluid includes highly corrosive gases. These recuperators have suffered reduced life, increased service or maintenance, and resulted in increased cost. The present joint when used with recuperators increases the use of ceramic components which do not react to highly corrosive gases. Thus, the present joint used with the present recuperator increases the life, reduces the service and maintenance, and reduces the increased cost associated with corrosive action of components used to manufacture recuperators. The present joint is comprised of a first ceramic member, a second ceramic member, a mechanical locking device having a groove defined in one of the first ceramic member and the second ceramic member. The joint and the mechanical locking device is further comprised of a refractory material disposed in the groove and contacting the first ceramic member and the second ceramic member. The present joint mechanically provides a high strength load bearing joint having good thermal cycling characteristics, good resistance to a corrosive environment and good steady state strength at elevated temperatures. 4 figures.

  20. High pressure synthesis gas fermentation

    SciTech Connect

    Not Available

    1992-01-01

    The construction of the high pressure gas phase fermentation system has been completed. Photographs of the various components of the system are presented, along with an operating procedure for the equipment.

  1. High Blood Pressure and Pregnancy

    MedlinePlus

    ... damage. Some women with gestational hypertension eventually develop preeclampsia. Chronic hypertension. Chronic hypertension is high blood pressure ... determine when it began. Chronic hypertension with superimposed preeclampsia. This condition occurs in women with chronic hypertension ...

  2. What Is High Blood Pressure?

    MedlinePlus

    ... consistently too high. How your blood pressure and circulatory system work In order to survive and function properly, ... and organs need the oxygenated blood that your circulatory system carries throughout the body. When the heart beats, ...

  3. High Pressure Industrial Water Facility

    NASA Technical Reports Server (NTRS)

    1992-01-01

    In conjunction with Space Shuttle Main Engine testing at Stennis, the Nordberg Water Pumps at the High Pressure Industrial Water Facility provide water for cooling the flame deflectors at the test stands during test firings.

  4. Bench experiments comparing simulated inspiratory effort when breathing helium-oxygen mixtures to that during positive pressure support with air

    PubMed Central

    2012-01-01

    Background Inhalation of helium-oxygen (He/O2) mixtures has been explored as a means to lower the work of breathing of patients with obstructive lung disease. Non-invasive ventilation (NIV) with positive pressure support is also used for this purpose. The bench experiments presented herein were conducted in order to compare simulated patient inspiratory effort breathing He/O2 with that breathing medical air, with or without pressure support, across a range of adult, obstructive disease patterns. Methods Patient breathing was simulated using a dual-chamber mechanical test lung, with the breathing compartment connected to an ICU ventilator operated in NIV mode with medical air or He/O2 (78/22 or 65/35%). Parabolic or linear resistances were inserted at the inlet to the breathing chamber. Breathing chamber compliance was also varied. The inspiratory effort was assessed for the different gas mixtures, for three breathing patterns, with zero pressure support (simulating unassisted spontaneous breathing), and with varying levels of pressure support. Results Inspiratory effort increased with increasing resistance and decreasing compliance. At a fixed resistance and compliance, inspiratory effort increased with increasing minute ventilation, and decreased with increasing pressure support. For parabolic resistors, inspiratory effort was lower for He/O2 mixtures than for air, whereas little difference was measured for nominally linear resistance. Relatively small differences in inspiratory effort were measured between the two He/O2 mixtures. Used in combination, reductions in inspiratory effort provided by He/O2 and pressure support were additive. Conclusions The reduction in inspiratory effort afforded by breathing He/O2 is strongly dependent on the severity and type of airway obstruction. Varying helium concentration between 78% and 65% has small impact on inspiratory effort, while combining He/O2 with pressure support provides an additive reduction in inspiratory effort

  5. Electrokinetic high pressure hydraulic system

    DOEpatents

    Paul, Phillip H.; Rakestraw, David J.

    2000-01-01

    A compact high pressure hydraulic pump having no moving mechanical parts for converting electric potential to hydraulic force. The electrokinetic pump, which can generate hydraulic pressures greater than 2500 psi, can be employed to compress a fluid, either liquid or gas, and manipulate fluid flow. The pump is particularly useful for capillary-base systems. By combining the electrokinetic pump with a housing having chambers separated by a flexible member, fluid flow, including high pressure fluids, is controlled by the application of an electric potential, that can vary with time.

  6. Electrokinetic high pressure hydraulic system

    DOEpatents

    Paul, Phillip H.; Rakestraw, David J.; Arnold, Don W.; Hencken, Kenneth R.; Schoeniger, Joseph S.; Neyer, David W.

    2003-06-03

    An electrokinetic high pressure hydraulic pump for manipulating fluids in capillary-based system. The pump uses electro-osmotic flow to provide a high pressure hydraulic system, having no moving mechanical parts, for pumping and/or compressing fluids, for providing valve means and means for opening and closing valves, for controlling fluid flow rate, and manipulating fluid flow generally and in capillary-based systems (microsystems), in particular. The compact nature of the inventive high pressure hydraulic pump provides the ability to construct a micro-scale or capillary-based HPLC system that fulfills the desire for small sample quantity, low solvent consumption, improved efficiency, the ability to run samples in parallel, and field portability. Control of pressure and solvent flow rate is achieved by controlling the voltage applied to an electrokinetic pump.

  7. Electrokinetic high pressure hydraulic system

    DOEpatents

    Paul, Phillip H.; Rakestraw, David J.; Arnold, Don W.; Hencken, Kenneth R.; Schoeniger, Joseph S.; Neyer, David W.

    2001-01-01

    An electrokinetic high pressure hydraulic pump for manipulating fluids in capillary-based systems. The pump uses electro-osmotic flow to provide a high pressure hydraulic system, having no moving mechanical parts, for pumping and/or compressing fluids, for providing valve means and means for opening and closing valves, for controlling fluid flow rate, and manipulating fluid flow generally and in capillary-based systems (Microsystems), in particular. The compact nature of the inventive high pressure hydraulic pump provides the ability to construct a micro-scale or capillary-based HPLC system that fulfills the desire for small sample quantity, low solvent consumption, improved efficiency, the ability to run samples in parallel, and field portability. Control of pressure and solvent flow rate is achieved by controlling the voltage applied to an electrokinetic pump.

  8. Hyperfine structure measurement of 87Rb atoms injected into superfluid helium as highly energetic ion beam

    NASA Astrophysics Data System (ADS)

    Imamura, Kei; Furukawa, Takeshi; Yang, Xiaofei; Fujita, Tomomi; Wakui, Takashi; Mitsuya, Yousuke; Hayasaka, Miki; Ichikawa, Yuichi; Hatakeyama, Atsushi; Kobayashi, Tohru; Odashima, Hitoshi; Ueno, Hideki; Matsuo, Yukari; Orochi Collaboration

    2014-09-01

    We have developed a new nuclear laser spectroscopy technique that is called OROCHI (Optical RI-atoms Observation in Condensed Helium as Ioncatcher). In OROCHI, highly energetic ion beam is injected into superfluid helium (He II) and is trapped as atoms. Hyperfine structure (HFS) and Zeeman splitting of trapped atoms is measured using laser-microwave (MW)/radiofrequency (RF) double resonance method. We deduce nuclear moments and spin values from the measured splittings, respectively So far, we measured Zeeman splitting of 84-87Rb atoms To evaluate the validity of the OROCHI method, it is necessary to investigate the following two points not only for Zeeman but also for HFS splitings. (i) What is the accuracy in frequency in our measurement? (ii) How high beam intensity is necessary to observe resonance spectra? For this purpose we conducted online experiment using 87Rb beam and measured the HFS splitting of injected 87Rb atoms in He II.

  9. Influence of the excitation frequency on the density of helium metastable atoms in an atmospheric pressure dielectric barrier discharge

    NASA Astrophysics Data System (ADS)

    Boisvert, J.-S.; Sadeghi, N.; Margot, J.; Massines, F.

    2017-01-01

    Diffuse dielectric barrier discharges in atmospheric-pressure helium can be sustained over a wide range of excitation frequencies (from, but not restricted, 25 kHz to 15 MHz). The aim of the present paper is to identify the specific characteristics of the discharge modes that can be sustained in this frequency range, namely, the atmospheric-pressure Townsend-like discharge (APTD-L) mode, the atmospheric-pressure glow discharge (APGD) mode, the Ω mode, the hybrid mode, and the RF-α mode. This is achieved experimentally, by measuring the density of helium metastable atoms, which are known to play a driving role on the discharge kinetics. This density is measured by means of two absorption spectroscopy methods, one using a spectral lamp and the other one using a diode laser as a light source. The first one provides the time-averaged atom densities in the singlet He(21S) and triplet He(23S) metastable states, while with the second one we access the time-resolved density of He(23S) atoms. Time-averaged measurements indicate that the He(23S) density is relatively low in the APTD-L, the Ω and the RF-α modes ( <4 ×1016 m-3 ) slightly higher in the APGD mode ( 2 -7 ×1016 m-3 ), and still higher ( >1 ×1017 m-3 ) in the hybrid mode. The hybrid mode is exclusively observed for frequencies from 0.2 to 3 MHz. However, time-resolved density measurement shows that at 1 MHz and below, the hybrid mode is not continuously sustained. Instead, the discharge oscillates between the Ω and the hybrid mode with a switching frequency about the kilohertz. This explains the significantly lower power required to sustain the plasma as compared to above 1 MHz.

  10. High-pressure dc glow discharges in hollow diamond cathodes

    NASA Astrophysics Data System (ADS)

    Truscott, B. S.; Turner, C.; May, P. W.

    2016-04-01

    We report the generation and characterization of dc helium microdischarges at several times atmospheric pressure in monolithic diamond hollow-cathode devices having cavity diameters on the order of 100 μm. I-V characteristics indicated operation in the glow discharge regime even at nearly 10 atm, while spectroscopic measurements of the N2 C3Πu  →  B3Πg emission returned rotational temperatures always around 420 K, with a pressure-dependent vibrational population distribution. The variation of breakdown voltage with pressure closely followed Paschen’s law, but with offsets in both axes that we tentatively ascribe to strong diffusive loss and a partial thermalization of electron energies under the high pressures considered here.

  11. Intergranular fracture in irradiated Inconel X-750 containing very high concentrations of helium and hydrogen

    NASA Astrophysics Data System (ADS)

    Judge, Colin D.; Gauquelin, Nicolas; Walters, Lori; Wright, Mike; Cole, James I.; Madden, James; Botton, Gianluigi A.; Griffiths, Malcolm

    2015-02-01

    In recent years, it has been observed that Inconel X-750 spacers in CANDU reactors exhibits lower ductility with reduced load carrying capacity following irradiation in a reactor environment. The fracture behaviour of ex-service material was also found to be entirely intergranular at high doses. The thermalized flux spectrum in a CANDU reactor leads to transmutation of 58Ni to 59Ni. The 59Ni itself has unusually high thermal neutron reaction cross-sections of the type: (n, γ), (n, p), and (n, α). The latter two reactions, in particular, contribute to a significant enhancement of the atomic displacements in addition to creating high concentrations of hydrogen and helium within the material. Microstructural examinations by transmission electron microscopy (TEM) have confirmed the presence of helium bubbles in the matrix and aligned along grain boundaries and matrix-precipitate interfaces. Helium bubble size and density are found to be highly dependent on the irradiation temperature and material microstructure; the bubbles are larger within grain boundary precipitates. TEM specimens extracted from fracture surfaces and crack tips provide information that is consistent with crack propagation along grain boundaries due to the presence of He bubbles.

  12. The carrier gas pressure effect in a laminar flow diffusion chamber, homogeneous nucleation of n-butanol in helium.

    PubMed

    Hyvärinen, Antti-Pekka; Brus, David; Zdímal, Vladimír; Smolík, Jiri; Kulmala, Markku; Viisanen, Yrjö; Lihavainen, Heikki

    2006-06-14

    Homogeneous nucleation rate isotherms of n-butanol+helium were measured in a laminar flow diffusion chamber at total pressures ranging from 50 to 210 kPa to investigate the effect of carrier gas pressure on nucleation. Nucleation temperatures ranged from 265 to 280 K and the measured nucleation rates were between 10(2) and 10(6) cm(-3) s(-1). The measured nucleation rates decreased as a function of increasing pressure. The pressure effect was strongest at pressures below 100 kPa. This negative carrier gas effect was also temperature dependent. At nucleation temperature of 280 K and at the same saturation ratio, the maximum deviation between nucleation rates measured at 50 and 210 kPa was about three orders of magnitude. At nucleation temperature of 265 K, the effect was negligible. Qualitatively the results resemble those measured in a thermal diffusion cloud chamber. Also the slopes of the isothermal nucleation rates as a function of saturation ratio were different as a function of total pressure, 50 kPa isotherms yielded the steepest slopes, and 210 kPa isotherms the shallowest slopes. Several sources of inaccuracies were considered in the interpretation of the results: uncertainties in the transport properties, nonideal behavior of the vapor-carrier gas mixture, and shortcomings of the used mathematical model. Operation characteristics of the laminar flow diffusion chamber at both under-and over-pressure were determined to verify a correct and stable operation of the device. We conclude that a negative carrier gas pressure effect is seen in the laminar flow diffusion chamber and it cannot be totally explained with the aforementioned reasons.

  13. Analyzing the Use of Gaseous Helium as a Pressurant with Cryogenic Propellants with Thermodynamic Venting System Modelling and Test Data

    NASA Technical Reports Server (NTRS)

    Hedayat, A.; Nelson, S.L.; Hastings, L.J.; Flachbart, R.H.; Vermillion, D.J.; Tucker, S.P.

    2007-01-01

    Cryogens are viable candidate propellants for NASA's Lunar and Mars exploration programs. To provide adequate mass flow to the system's engines and/or to prevent feed system cavitation, gaseous helium (GHe) is frequently considered as a pressurant. During low gravity operations, a Thermodynamic Venting System (TVS) is designed to maintain tank pressure during low gravity operations without propellant resettling. Therefore, a series of tests were conducted in the Multi-purpose Hydrogen Test Bed (MHTB) of Marshall Space Flight Center (MSFC) in order to evaluate the effects of GHe pressurant on pressure control performance of a TVS with liquid hydrogen (LH2) and nitrogen (LN2) as the test liquids. The TVS used in these test series consists of a recirculation pump, Joule-Thomson (J-T) expansion valve, and a parallel flow concentric tube heat exchanger combined with a longitudinal spray bar. Using a small amount of liquid extracted from the tank recirculation line, passing it through the J-T valve, and then through the heat exchanger, thermal energy is extracted from the bulk liquid and ullage thereby enabling pressure control. The LH2/GHe tests were performed at fill levels of 90%, 50%, and 25% and LN2/GHe tests were conducted at fill levels of 50% and 25%. Moreover, each test was conducted with a specified tank ullage pressure control band. A one-dimensional TVS performance program was used to analyze and correlate the test data. Predictions and comparisons with test data of ullage pressure and temperature and bulk liquid saturation pressure and temperature with test data are presented.

  14. Effects of Oxygen Concentration on Pulsed Dielectric Barrier Discharge in Helium-Oxygen Mixture at Atmospheric Pressure

    NASA Astrophysics Data System (ADS)

    Wang, Xiaolong; Tan, Zhenyu; Pan, Jie; Chen, Xinxian

    2016-08-01

    In this work the effects of O2 concentration on the pulsed dielectric barrier discharge in helium-oxygen mixture at atmospheric pressure have been numerically researched by using a one-dimensional fluid model in conjunction with the chosen key species and chemical reactions. The reliability of the used model has been examined by comparing the calculated discharge current with the reported experiments. The present work presents the following significant results. The dominative positive and negative particles are He2+ and O2-, respectively, the densities of the reactive oxygen species (ROS) get their maxima nearly at the central position of the gap, and the density of the ground state O is highest in the ROS. The increase of O2 concentration results in increasingly weak discharge and the time lag of the ignition. For O2 concentrations below 1.1%, the density of O is much higher than other species, the averaged dissipated power density presents an evident increase for small O2 concentration and then the increase becomes weak. In particular, the total density of the reactive oxygen species reaches its maximums at the O2 concentration of about 0.5%. This characteristic further convinces the experimental observation that the O2 concentration of 0.5% is an optimal O2/He ratio in the inactivation of bacteria and biomolecules when radiated by using the plasmas produced in a helium oxygen mixture. supported by the Fundamental Research Funds of Shandong University, China (No. 2016JC016)

  15. Experimental Determination of Spatial and Temporal Discharge Parameters for an Ambient Pressure Dielectric Barrier Discharge in Helium

    NASA Astrophysics Data System (ADS)

    Bures, Brian; Bourham, Mohamed

    2004-11-01

    Ambient pressure Dielectric Barrier Discharges (DBD's) are studied for a number of applications. Barrier discharges composed primarily of inert gases are potentially useful for the production of intense excimer light, sterilization of thermally sensitive materials and control of insects for quarantine. The neutral bremsstrahlung technique is used to determine spatial variations of electron density and electron temperature in a parallel plate, helium (99.9% by vol) dielectric barrier discharge operated at an average power density between 50 and 75 mW/cm^3. The applied frequency is varied between 2 kHz and 6 kHz. The time average electron density suggests a more intense discharge near the surface of the electrodes than the bulk of the discharge for all frequencies and power densities. When moving parallel to the electrodes, the electron temperature remains constant, while the electron density is constant within 20% of the average value. A monochromator tuned to a nitrogen ion line (391.4 nm) and a helium line (706.5 nm) has a more intense emission when the electrode is negatively biased.

  16. FAST TRACK COMMUNICATION: Contrasting characteristics of sub-microsecond pulsed atmospheric air and atmospheric pressure helium-oxygen glow discharges

    NASA Astrophysics Data System (ADS)

    Walsh, J. L.; Liu, D. X.; Iza, F.; Rong, M. Z.; Kong, M. G.

    2010-01-01

    Glow discharges in air are often considered to be the ultimate low-temperature atmospheric pressure plasmas for numerous chamber-free applications. This is due to the ubiquitous presence of air and the perceived abundance of reactive oxygen and nitrogen species in air plasmas. In this paper, sub-microsecond pulsed atmospheric air plasmas are shown to produce a low concentration of excited oxygen atoms but an abundance of excited nitrogen species, UV photons and ozone molecules. This contrasts sharply with the efficient production of excited oxygen atoms in comparable helium-oxygen discharges. Relevant reaction chemistry analysed with a global model suggests that collisional excitation of O2 by helium metastables is significantly more efficient than electron dissociative excitation of O2, electron excitation of O and ion-ion recombination. These results suggest different practical uses of the two oxygen-containing atmospheric discharges, with air plasmas being well suited for nitrogen and UV based chemistry and He-O2 plasmas for excited atomic oxygen based chemistry.

  17. High-pressure creep tests

    NASA Technical Reports Server (NTRS)

    Bhattacharyya, S.; Lamoureux, J.; Hales, C.

    1986-01-01

    The automotive Stirling engine, presently being developed by the U.S. Department of Energy and NASA, uses high-pressure hydrogen as a working fluid; its long-term effects on the properties of alloys are relatively unknown. Hence, creep-rupture testing of wrought and cast high-temperature alloys in high-pressure hydrogen is an essential part of the research supporting the development of the Stirling cycle engine. Attention is given to the design, development, and operation of a 20 MPa hydrogen high-temperature multispecimen creep-rupture possessing high sensitivity. This pressure vessel allows for the simultaneous yet independent testing of six specimens. The results from one alloy, XF-818, are presented to illustrate how reported results are derived from the raw test data.

  18. Optical emission spectroscopic diagnostics of a non-thermal atmospheric pressure helium-oxygen plasma jet for biomedical applications

    NASA Astrophysics Data System (ADS)

    Thiyagarajan, Magesh; Sarani, Abdollah; Nicula, Cosmina

    2013-06-01

    In this work, we have applied optical emission spectroscopy diagnostics to investigate the characteristics of a non-thermal atmospheric pressure helium plasma jet. The discharge characteristics in the active and afterglow region of the plasma jet, that are critical for biomedical applications, have been investigated. The voltage-current characteristics of the plasma discharge were analyzed and the average plasma power was measured to be around 18 W. The effect of addition of small fractions of oxygen at 0.1%-0.5% on the plasma jet characteristics was studied. The addition of oxygen resulted in a decrease in plasma plume length due to the electronegativity property of oxygen. Atomic and molecular lines of selected reactive plasma species that are considered to be useful to induce biochemical reactions such as OH transitions A2Σ+(ν=0,1)→X2Π(Δν =0) at 308 nm and A2Σ+(ν=0,1)→X2Π(Δν =1) at 287 nm, O I transitions 3p5P→3s5S0 at 777.41 nm, and 3p3P→3s3S0 at 844.6 nm, N2(C-B) second positive system with electronic transition C3Πu→B3Πg in the range of 300-450 nm and N2+(B-X) first negative system with electronic transition B2Σu+→X2Σg+(Δν =0) at 391.4 nm have been studied. The atomic emission lines of helium were identified, including the He I transitions 3p3P0→2s3S at 388.8 nm, 3p1P0→ 2s1S at 501.6 nm, 3d3D→2p3P0 at 587.6 nm, 3d1D→2p1P0 at 667.8 nm, 3s3S1→2p3P0 at 706.5 nm, 3s1S0→2p1P0 at 728.1 nm, and Hα transition 2p-3d at 656.3 nm. Using a spectral fitting method, the OH radicals at 306-312 nm, the rotational and vibrational temperatures equivalent to gas temperatures of the discharge was measured and the effective non-equilibrium nature of the plasma jet was demonstrated. Our results show that, in the entire active plasma region, the gas temperature remains at 310 ± 25 K and 340 ± 25 K and it increases to 320 ± 25 K and 360 ± 25 K in the afterglow region of the plasma jet for pure helium and helium/oxygen (0.1%) mixture

  19. Review of Membranes for Helium Separation and Purification

    PubMed Central

    Scholes, Colin A.; Ghosh, Ujjal K.

    2017-01-01

    Membrane gas separation has potential for the recovery and purification of helium, because the majority of membranes have selectivity for helium. This review reports on the current state of the research and patent literature for membranes undertaking helium separation. This includes direct recovery from natural gas, as an ancillary stage in natural gas processing, as well as niche applications where helium recycling has potential. A review of the available polymeric and inorganic membranes for helium separation is provided. Commercial gas separation membranes in comparable gas industries are discussed in terms of their potential in helium separation. Also presented are the various membrane process designs patented for the recovery and purification of helium from various sources, as these demonstrate that it is viable to separate helium through currently available polymeric membranes. This review places a particular focus on those processes where membranes are combined in series with another separation technology, commonly pressure swing adsorption. These combined processes have the most potential for membranes to produce a high purity helium product. The review demonstrates that membrane gas separation is technically feasible for helium recovery and purification, though membranes are currently only applied in niche applications focused on reusing helium rather than separation from natural sources. PMID:28218644

  20. Review of Membranes for Helium Separation and Purification.

    PubMed

    Scholes, Colin A; Ghosh, Ujjal K

    2017-02-17

    Membrane gas separation has potential for the recovery and purification of helium, because the majority of membranes have selectivity for helium. This review reports on the current state of the research and patent literature for membranes undertaking helium separation. This includes direct recovery from natural gas, as an ancillary stage in natural gas processing, as well as niche applications where helium recycling has potential. A review of the available polymeric and inorganic membranes for helium separation is provided. Commercial gas separation membranes in comparable gas industries are discussed in terms of their potential in helium separation. Also presented are the various membrane process designs patented for the recovery and purification of helium from various sources, as these demonstrate that it is viable to separate helium through currently available polymeric membranes. This review places a particular focus on those processes where membranes are combined in series with another separation technology, commonly pressure swing adsorption. These combined processes have the most potential for membranes to produce a high purity helium product. The review demonstrates that membrane gas separation is technically feasible for helium recovery and purification, though membranes are currently only applied in niche applications focused on reusing helium rather than separation from natural sources.

  1. High-Speed Rainbow Schlieren Deflectometry Analysis of Helium Jets Flowing into Air for Microgravity Applications

    NASA Technical Reports Server (NTRS)

    Leptuch, Peter A.

    2002-01-01

    The flow phenomena of buoyant jets have been analyzed by many researchers in recent years. Few, however have studied jets in microgravity conditions, and the exact nature of the flow under these conditions has until recently been unknown. This study seeks to extend the work done by researchers at the university of Oklahoma in examining and documenting the behavior of helium jets in micro-gravity conditions. Quantitative rainbow schlieren deflectometry data have been obtained for helium jets discharging vertically into quiescent ambient air from tubes of several diameters at various flow rates using a high-speed digital camera. These data have obtained before, during and after the onset of microgravity conditions. High-speed rainbow schlieren deflectometry has been developed for this study with the installation and use of a high-speed digital camera and modifications to the optical setup. Higher temporal resolution of the transitional phase between terrestrial and micro-gravity conditions has been obtained which has reduced the averaging effect of longer exposure times used in all previous schlieren studies. Results include color schlieren images, color time-space images (temporal evolution images), frequency analyses, contour plots of hue and contour plots of helium mole fraction. The results, which focus primarily on the periods before and during the onset of microgravity conditions, show that the pulsation of the jets normally found in terrestrial gravity ("earth"-gravity) conditions cease, and the gradients in helium diminish to produce a widening of the jet in micro-gravity conditions. In addition, the results show that the disturbance propagate upstream from a downstream source.

  2. High pressure synthesis gas conversion. Task 3: High pressure profiles

    SciTech Connect

    Not Available

    1993-05-01

    The purpose of this research project was to build and test a high pressure fermentation system for the production of ethanol from synthesis gas. The fermenters, pumps, controls, and analytical system were procured or fabricated and assembled in our laboratory. This system was then used to determine the effects of high pressure on growth and ethanol production by C. 1jungdahlii. The limits of cell concentration and mass transport relationships were found in CSTR and immobilized cell reactors (ICR). The minimum retention times and reactor volumes were found for ethanol production in these reactors.

  3. Electrochemical studies at high pressure

    SciTech Connect

    Cruanes, M.T.

    1993-01-01

    This research has dealt with the development and application of a methodology that permits electrochemical measurements at high pressure. The initial efforts focused on the design and construction of an electrochemical cell functional at hydrostatic pressures as high as 10 kbar. This cell was equipped with an Ag/AgCl/KCl (0.1M) reference electrode which provides reliable control of the potential at all pressures. The potential of this reference electrode can be considered to be constant with pressure. Measurements of formal potentials (E[degrees][prime]) of several transition-metal complexes vs the Ag/AgCl electrode rendered volumes of reactions whose magnitudes support the prediction of the negligible pressure dependence of the reference electrode. The main systems that have been investigated at high pressure are surface-modified electrodes. The author studied the effect of compression on the dynamics of charge transport in quaternized poly(4-vinylpyridine) (QPVP) films placed on gold electrodes, loaded with potassium ferricyanide, and equilibrated in potassium nitrate. Pressure accomplished the continuous change in the structure of the polymer network. This change causes a pronounced restriction in the propagation of charge and in the motion of mass. This high-pressure methodology has also allowed the spatial characterization of electron transfer events taking place between a gold electrode and ferrocene molecules covalently attached to the end of 1-undodecanethiol chains self-assembled on the electrode surface. The volumes of reaction and activation for the oxidation process are both positive, indicating that a volume expansion is associated with the formation of ferricinium. A model is proposed in which the creation of a vacancy in the self-assembled monolayer, for the accommodation of the ferricinium ion or a charge-compensating anion, is coupled with the electron transfer step.

  4. Cryogenic filter method produces super-pure helium and helium isotopes

    NASA Technical Reports Server (NTRS)

    Hildebrandt, A. F.

    1964-01-01

    Helium is purified when cooled in a low pressure environment until it becomes superfluid. The liquid helium is then filtered through iron oxide particles. Heating, cooling and filtering processes continue until the purified liquid helium is heated to a gas.

  5. High-resolution mass spectrometric study of pure helium droplets, and droplets doped with krypton

    NASA Astrophysics Data System (ADS)

    Schöbel, H.; Bartl, P.; Leidlmair, C.; Denifl, S.; Echt, O.; Märk, T. D.; Scheier, P.

    2011-07-01

    Mass spectra of doped and undoped helium droplets are presented. The high resolution of the time-of-flight spectrometer ( m/ Δm ≅ 5000) makes it possible to fully resolve small helium cluster ions from impurities and to unambiguously identify abundance anomalies in the size distribution of He n +. The yield of He4 + shows the well-known enhancement relative to other small cluster ions when the expansion changes from sub- to supercritical, provided the electron energy exceeds a value of 40 ± 1 eV, the threshold for formation of electronically excited ions. Upon doping with krypton, pure Kr n + cluster ions containing up to 41 Kr atoms are observed. The spectra exhibit abundance anomalies at 13, 16, 19, 22 & 23, 26 and 29, in agreement with spectra obtained by ionization of bare krypton clusters that are formed in neat supersonic beams. Mixed clusters He m Kr+ indicate closure of a solvation shell at m = 12.

  6. Helium circulator design considerations for modular high temperature gas-cooled reactor plant

    SciTech Connect

    McDonald, C.F.; Nichols, M.K.

    1986-12-01

    Efforts are in progress to develop a standard modular high temperature gas-cooled reactor (MHTGR) plant that is amenable to design certification and serial production. The MHTGR reference design, based on a steam cycle power conversion system, utilizes a 350 MW(t) annular reactor core with prismatic fuel elements. Flexibility in power rating is afforded by utilizing a multiplicity of the standard module. The circulator, which is an electric motor-driven helium compressor, is a key component in the primary system of the nuclear plant, since it facilitates thermal energy transfer from the reactor core to the steam generator; and, hence, to the external turbo-generator set. This paper highlights the helium circulator design considerations for the reference MHTGR plant and includes a discussion on the major features of the turbomachine concept, operational characteristics, and the technology base that exists in the US.

  7. Electronic phenomena at high pressure

    SciTech Connect

    Drickamer, H.G.

    1981-01-01

    High pressure research is undertaken either to investigate intrinsically high pressure phenomena or in order to get a better understanding of the effect of the chemical environment on properties or processes at one atmosphere. Studies of electronic properties which fall in each area are presented. Many molecules and complexes can assume in the excited state different molecular arrangements and intermolecular forces depending on the medium. Their luminescence emission is then very different in a rigid or a fluid medium. With pressure one can vary the viscosity of the medium by a factor of 10/sup 7/ and thus control the distribution and rate of crossing between the excited state conformations. In rare earth chelates the efficiency of 4f-4f emission of the rare earth is controlled by the feeding from the singlet and triplet levels of the organic ligand. These ligand levels can be strongly shifted by pressure. A study of the effect of pressure on the emission efficiency permits one to understand the effect of ligand chemistry at one atmosphere. At high pressure electronic states can be sufficiently perturbed to provide new ground states. In EDA complexes these new ground states exhibit unusual chemical reactivity and new products.

  8. Helium and hydrogen plasma waveguides for high-intensity laser channeling

    NASA Astrophysics Data System (ADS)

    Zgadzaj, Rafal Bogumil

    The results of cross polarized pump-probe experiments in preformed He plasma waveguides are reported. Pump and probe have same wavelength and duration of 800nm and 80fs respectively. Peak pump intensity is Iguided = 0.2x1018 W/cm2 ˜1000 Iprobe. Single shot probe spectra and mode profiles at the channel exit are discriminated from the pump with a polarization analyzer and captured at various relative time delays Deltat. Frequency-domain interference (FDI) between the probe and a weak depolarized component of the pump is observed for |Deltat| ≳ 100fs. Although the depolarized component is nearly undetectable through measurement of pump leakage alone, FDI sensitively reveals its substantially non-Gaussian structure. The possible depolarization mechanisms are analyzed. When probe is positioned at the leading edge of the pump, Deltat ≲ 0, its spectrum suffers a blue shift not measurable in the transmitted pump itself. The evidence suggests the channel interior is fully ionized and the partially formed channel ends are the origin of both depolarization and blue shift. A robust, pulsed, differentially-pumped plasma channel generation cell for high intensity guiding experiments has been developed. The design includes an axicon lens, windows for transverse interferometry, and permits injection of one or two different gases (main gas plus high Z seed gas) with several millisecond injection times and simultaneous 0.1ms pressure sensing resolution. Very well formed plasma waveguides have been formed in helium as well as hydrogen, at repeatable and well controlled pressures up to 1000Torr, with very uniform interior density, rapid density drop at boundaries, and very low exterior density. The possible danger associated with the use of large amounts of hydrogen was considered and a complex safety system was designed, constructed and used. Extensive analysis of channel profile reconstruction through transverse interferometry was performed. This includes an intuitive

  9. Cluster dynamics modeling of the effect of high dose irradiation and helium on the microstructure of austenitic stainless steels

    NASA Astrophysics Data System (ADS)

    Brimbal, Daniel; Fournier, Lionel; Barbu, Alain

    2016-01-01

    A mean field cluster dynamics model has been developed in order to study the effect of high dose irradiation and helium on the microstructural evolution of metals. In this model, self-interstitial clusters, stacking-fault tetrahedra and helium-vacancy clusters are taken into account, in a configuration well adapted to austenitic stainless steels. For small helium-vacancy cluster sizes, the densities of each small cluster are calculated. However, for large sizes, only the mean number of helium atoms per cluster size is calculated. This aspect allows us to calculate the evolution of the microstructural features up to high irradiation doses in a few minutes. It is shown that the presence of stacking-fault tetrahedra notably reduces cavity sizes below 400 °C, but they have little influence on the microstructure above this temperature. The binding energies of vacancies to cavities are calculated using a new method essentially based on ab initio data. It is shown that helium has little effect on the cavity microstructure at 300 °C. However, at higher temperatures, even small helium production rates such as those typical of sodium-fast-reactors induce a notable increase in cavity density compared to an irradiation without helium.

  10. Properties of carbon-based structures synthesized in nuclear reactions induced by bremsstrahlung γ quanta with threshold energy of 10 MeV at helium pressure of 1.1 kbar

    NASA Astrophysics Data System (ADS)

    Didyk, A. Yu.; Wiśniewski, R.

    2016-07-01

    Helium gas with an initial pressure of about 1.1 kbar inside a high-pressure chamber (HeHPC) has been irradiated by bremsstrahlung γ quanta with a threshold energy of 10 MeV for 1.0 × 105 s produced by an electron-beam current of 22-24 μA. After opening the HeHPC, the residual pressure of helium is equal to 430 bar. Synthesized black foils with a variety of other objects are found inside the HeHPC. They are located on the inner surfaces of the reaction chamber made of high-purity copper (99.99%), the entrance the window of γ quanta made of beryllium bronze and a copper container of nuclear and chemical reaction products. Elemental analysis with the use of scanning electron microscopy and X-ray microprobe analysis has revealed that the foils contain predominantly carbon and small quantities of other elements from carbon to iron. The results are in good agreement with the cycle of investigations of the authors devoted to the γ-quanta irradiation of dense hydrogen and helium gases in the presence (absence) of metals in a reaction chamber.

  11. Measurements of heat transfer to helium II at atmospheric pressure in a confined geometry

    SciTech Connect

    Warren, R.P.; Caspi, S.

    1981-08-01

    Recently the enhanced heat removal capability of unsaturated superfluid helium II has been exploited in fusion and accelerator dipole magnets. In superfluid the internal convection mechanism dominates the heat removal process and orientation with respect to gravity becomes of secondary importance. Heat transfer, however, can be influenced by the thermodynamic state of the liquid, especially with regard to possible phase transformations. The transformation from non-saturated He II must involve an He I state before the film boiling transition is experienced. Some steady state measurements of heat transfer to non-saturated He II have been previously reported. In typical magnet designs, cooling passages between turns result from gaps between the electrical insulation, and are typically on the order of a fraction of a millimeter. The purpose of the work reported here is to measure the attenuation of the heat transfer within such a restrictive geometry.

  12. High pressure neon arc lamp

    DOEpatents

    Sze, Robert C.; Bigio, Irving J.

    2003-07-15

    A high pressure neon arc lamp and method of using the same for photodynamic therapies is provided. The high pressure neon arc lamp includes a housing that encloses a quantity of neon gas pressurized to about 500 Torr to about 22,000 Torr. At each end of the housing the lamp is connected by electrodes and wires to a pulse generator. The pulse generator generates an initial pulse voltage to breakdown the impedance of the neon gas. Then the pulse generator delivers a current through the neon gas to create an electrical arc that emits light having wavelengths from about 620 nanometers to about 645 nanometers. A method for activating a photosensitizer is provided. Initially, a photosensitizer is administered to a patient and allowed time to be absorbed into target cells. Then the high pressure neon arc lamp is used to illuminate the target cells with red light having wavelengths from about 620 nanometers to about 645 nanometers. The red light activates the photosensitizers to start a chain reaction that may involve oxygen free radicals to destroy the target cells. In this manner, a high pressure neon arc lamp that is inexpensive and efficiently generates red light useful in photodynamic therapy is provided.

  13. High pressure liquid level monitor

    DOEpatents

    Bean, Vern E.; Long, Frederick G.

    1984-01-01

    A liquid level monitor for tracking the level of a coal slurry in a high-pressure vessel including a toroidal-shaped float with magnetically permeable bands thereon disposed within the vessel, two pairs of magnetic field generators and detectors disposed outside the vessel adjacent the top and bottom thereof and magnetically coupled to the magnetically permeable bands on the float, and signal processing circuitry for combining signals from the top and bottom detectors for generating a monotonically increasing analog control signal which is a function of liquid level. The control signal may be utilized to operate high-pressure control valves associated with processes in which the high-pressure vessel is used.

  14. Coherent diffractive imaging of single helium nanodroplets with a high harmonic generation source.

    PubMed

    Rupp, Daniela; Monserud, Nils; Langbehn, Bruno; Sauppe, Mario; Zimmermann, Julian; Ovcharenko, Yevheniy; Möller, Thomas; Frassetto, Fabio; Poletto, Luca; Trabattoni, Andrea; Calegari, Francesca; Nisoli, Mauro; Sander, Katharina; Peltz, Christian; J Vrakking, Marc; Fennel, Thomas; Rouzée, Arnaud

    2017-09-08

    Coherent diffractive imaging of individual free nanoparticles has opened routes for the in situ analysis of their transient structural, optical, and electronic properties. So far, single-shot single-particle diffraction was assumed to be feasible only at extreme ultraviolet and X-ray free-electron lasers, restricting this research field to large-scale facilities. Here we demonstrate single-shot imaging of isolated helium nanodroplets using extreme ultraviolet pulses from a femtosecond-laser-driven high harmonic source. We obtain bright wide-angle scattering patterns, that allow us to uniquely identify hitherto unresolved prolate shapes of superfluid helium droplets. Our results mark the advent of single-shot gas-phase nanoscopy with lab-based short-wavelength pulses and pave the way to ultrafast coherent diffractive imaging with phase-controlled multicolor fields and attosecond pulses.Diffraction imaging studies of free individual nanoparticles have so far been restricted to XUV and X-ray free - electron laser facilities. Here the authors demonstrate the possibility of using table-top XUV laser sources to image prolate shapes of superfluid helium droplets.

  15. A novel scheme to handle highly pulsed loads with a standard helium refrigerator

    SciTech Connect

    Slack, D.

    1994-12-31

    Helium refrigerator performance degrades rapidly when it has to handle a varying or pulsed heat load. A novel scheme is presented to handle highly pulsed 4.5 K cryogenic loads with a standard helium refrigerator by isolating it from these pulses. The scheme uses a relatively simple arrangement of control valves, heat exchangers, and a storage dewar. Applications include pulsed tokamak machines such as TPX (Tokamak Physics Experiment) and ITER (International Thermonuclear Experimental Reactor). For example, the TPX (currently in the conceptual design phase in a DoE contract) requires an average 4.5 K refrigerator capacity of about 10 kW; however, pulsed loads caused by eddy current and nuclear heating will exceed 100 kW. The scheme presented here provides a method for handling these pulsed loads. Because of the simple and proven nature of the components involved and the thermodynamic properties of the helium, the system could be implemented for projects such as TPX or ITER with little or no development.

  16. A novel scheme to handle highly pulsed loads with a standard helium refrigerator

    SciTech Connect

    Slack, D.S.

    1993-06-30

    Helium refrigerator performance degrades rapidly when it has to handle a varying or pulsed heat load. A novel scheme is presented to handle highly pulsed 4.5 K cryogenic loads with a standard helium refrigerator by isolating it from these pulses. The scheme uses a relatively simple arrangement of control valves, heat exchangers, and a storage dewar. Applications include pulsed tokamak machines such as TPX (Tokamak Physics Experiment) and ITER (International Thermonuclear Experimental Reactor). For example, the TPX (currently in the conceptual design phase in a DoE contract) requires an average 4.5 K refrigerator capacity of about 10 kW; however, pulsed loads caused by eddy current and nuclear heating will exceed 100 kW. The scheme presented here provides a method for handling these pulsed loads. Because of the simple and proven nature of the components involved and the thermodynamic properties of the helium, the system could be implemented for projects such as TPX or ITER with little or no development.

  17. Design of an improved high cooling power 4 K GM cryocooler and helium compressor

    NASA Astrophysics Data System (ADS)

    Hao, X. H.

    2015-12-01

    High cooling power 4 K cryocoolers are in high demand given their broad applications in such fields as magnetic resonance imaging (MRI) and low temperature superconductors. ARS has recently designed and developed a high cooling power 4 K pneumatic-drive GM cryocooler which achieves a typical cooling power of 1.75 W/4.2 K. Steady input power of our newly developed helium compressor supplied to the cold head is 11.8 kW at 60 Hz. The operational speed of the cold head is 30 RPM. The effects of geometries and operational conditions on the cooling performance of this 4 K GM cryocooler are also experimentally tested.

  18. Concept Design for a High Temperature Helium Brayton Cycle with Interstage Heating and Cooling

    SciTech Connect

    Wright, Steven A.; Vernon, Milton E.; Pickard, Paul S.

    2013-12-01

    The primary metric for the viability of these next generation nuclear power plants will be the cost of generated electricity. One important component in achieving these objectives is the development of power conversion technologies that maximize the electrical power output of these advanced reactors for a given thermal power. More efficient power conversion systems can directly reduce the cost of nuclear generated electricity and therefore advanced power conversion cycle research is an important area of investigation for the Generation IV Program. Brayton cycles using inert or other gas working fluids, have the potential to take advantage of the higher outlet temperature range of Generation IV systems and allow substantial increases in nuclear power conversion efficiency, and potentially reductions in power conversion system capital costs compared to the steam Rankine cycle used in current light water reactors. For the Very High Temperature Reactor (VHTR), Helium Brayton cycles which can operate in the 900 to 950 C range have been the focus of power conversion research. Previous Generation IV studies examined several options for He Brayton cycles that could increase efficiency with acceptable capital cost implications. At these high outlet temperatures, Interstage Heating and Cooling (IHC) was shown to provide significant efficiency improvement (a few to 12%) but required increased system complexity and therefore had potential for increased costs. These scoping studies identified the potential for increased efficiency, but a more detailed analysis of the turbomachinery and heat exchanger sizes and costs was needed to determine whether this approach could be cost effective. The purpose of this study is to examine the turbomachinery and heat exchanger implications of interstage heating and cooling configurations. In general, this analysis illustrates that these engineering considerations introduce new constraints to the design of IHC systems that may require

  19. Anxiety: A Cause of High Blood Pressure?

    MedlinePlus

    ... Conditions High blood pressure (hypertension) Can anxiety cause high blood pressure? Answers from Sheldon G. Sheps, M.D. Anxiety doesn't cause long-term high blood pressure (hypertension). But episodes of anxiety can cause dramatic, ...

  20. High Blood Pressure: Medicines to Help You

    MedlinePlus

    ... For Consumers Consumer Information by Audience For Women High Blood Pressure--Medicines to Help You Share Tweet Linkedin Pin ... Click here for the Color Version (PDF 533KB) High blood pressure is a serious illness. High blood pressure is ...

  1. Effects of particle size, helium gas pressure and microparticle dose on the plasma concentration of indomethacin after bombardment of indomethacin-loaded poly-L-lactic acid microspheres using a Helios gun system.

    PubMed

    Uchida, Masaki; Natsume, Hideshi; Kobayashi, Daisuke; Sugibayashi, Kenji; Morimoto, Yasunori

    2002-05-01

    We investigated the effects of the particle size of indomethacin-loaded poly-L-lactic acid microspheres (IDM-loaded PLA MS), the helium pressure used to accelerate the particles, and the bombardment dose of PLA MS on the plasma concentration of IDM after bombarding with IDM-loaded PLA MS of different particle size ranges, 20-38, 44-53 and 75-100 microm, the abdomen of hairless rats using the Helios gene gun system (Helios gun system). Using larger particles and a higher helium pressure, produced an increase in the plasma IDM concentration and the area under the plasma concentration-time curve (AUC) and resultant F (relative bioavailability with respect to intracutaneous injection) of IDM increased by an amount depending on the particle size and helium pressure. Although a reduction in the bombardment dose led to a decrease in C(max) and AUC, F increased on decreasing the bombardment dose. In addition, a more efficient F was obtained after bombarding with IDM-loaded PLA MS of 75-100 microm in diameter at each low dose in different sites of the abdomen compared with that after bolus bombardment with a high dose (dose equivalent). These results suggest that the bombardment injection of drug-loaded microspheres by the Helios gun system is a very useful tool for delivering a variety of drugs in powder form into the skin and systemic circulation.

  2. High-pressure cooling of protein crystals without cryoprotectants.

    PubMed

    Kim, Chae Un; Kapfer, Raphael; Gruner, Sol M

    2005-07-01

    Flash-cooling of protein crystals is the best known method to effectively mitigate radiation damage in macromolecular crystallography. To prevent physical damage to crystals upon cooling, suitable cryoprotectants must usually be found, a process that is time-consuming and in some cases unsuccessful. A method is described to cool protein crystals in high-pressure helium gas without the need for penetrative cryoprotectants. The method involves mounting protein crystals from the native mother liquor in a cryoloop with a droplet of oil, pressurizing the crystal to 200 MPa in He gas, cooling the crystal under pressure and then releasing the pressure. The crystal is then removed from the apparatus under liquid nitrogen and handled thereafter like a normal cryocooled crystal. Results are presented from three representative proteins. Dramatic improvement in diffraction quality in terms of resolution and mosaicity was observed in all cases. A mechanism for the pressure cooling is proposed involving high-density amorphous (HDA) ice which is produced at high pressure and is metastable at room pressure and 110 K.

  3. High-pressure water facility

    NASA Technical Reports Server (NTRS)

    2006-01-01

    NASA Test Operations Group employees, from left, Todd Pearson, Tim Delcuze and Rodney Wilkinson maintain a water pump in Stennis Space Center's high-pressure water facility. The three were part of a group of employees who rode out Hurricane Katrina at the facility and helped protect NASA's rocket engine test complex.

  4. High-pressure water facility

    NASA Image and Video Library

    2006-02-15

    NASA Test Operations Group employees, from left, Todd Pearson, Tim Delcuze and Rodney Wilkinson maintain a water pump in Stennis Space Center's high-pressure water facility. The three were part of a group of employees who rode out Hurricane Katrina at the facility and helped protect NASA's rocket engine test complex.

  5. High-pressure water facility

    NASA Technical Reports Server (NTRS)

    2006-01-01

    NASA Test Operations Group employees, from left, Todd Pearson, Tim Delcuze and Rodney Wilkinson maintain a water pump in Stennis Space Center's high-pressure water facility. The three were part of a group of employees who rode out Hurricane Katrina at the facility and helped protect NASA's rocket engine test complex.

  6. High pressure paint gun injuries.

    PubMed

    Booth, C M

    1977-11-19

    Despite their use for the past 20 years the dangers of injuries from high pressure paint guns are not widely known. Two cases treated incorrectly through ignorance in our casualty department resulted in amputation of digits. Paint solvents are far moe damaging than paint of grease injection. All cases should be treated urgently by an experienced surgeon as fairly extensive surgery may be needed.

  7. High Pressure Treatment in Foods

    PubMed Central

    Torres Bello, Edwin Fabian; González Martínez, Gerardo; Klotz Ceberio, Bernadette F.; Rodrigo, Dolores; Martínez López, Antonio

    2014-01-01

    High hydrostatic pressure (HHP), a non-thermal technology, which typically uses water as a pressure transfer medium, is characterized by a minimal impact on food characteristics (sensory, nutritional, and functional). Today, this technology, present in many food companies, can effectively inactivate bacterial cells and many enzymes. All this makes HHP very attractive, with very good acceptance by consumers, who value the organoleptic characteristics of products processed by this non-thermal food preservation technology because they associate these products with fresh-like. On the other hand, this technology reduces the need for non-natural synthetic additives of low consumer acceptance. PMID:28234332

  8. High Pressure Treatment in Foods.

    PubMed

    Bello, Edwin Fabian Torres; Martínez, Gerardo González; Ceberio, Bernadette F Klotz; Rodrigo, Dolores; López, Antonio Martínez

    2014-08-19

    High hydrostatic pressure (HHP), a non-thermal technology, which typically uses water as a pressure transfer medium, is characterized by a minimal impact on food characteristics (sensory, nutritional, and functional). Today, this technology, present in many food companies, can effectively inactivate bacterial cells and many enzymes. All this makes HHP very attractive, with very good acceptance by consumers, who value the organoleptic characteristics of products processed by this non-thermal food preservation technology because they associate these products with fresh-like. On the other hand, this technology reduces the need for non-natural synthetic additives of low consumer acceptance.

  9. High pressure rinsing system comparison

    SciTech Connect

    D. Sertore; M. Fusetti; P. Michelato; Carlo Pagani; Toshiyasu Higo; Jin-Seok Hong; K. Saito; G. Ciovati; T. Rothgeb

    2007-06-01

    High pressure rinsing (HPR) is a key process for the surface preparation of high field superconducting cavities. A portable apparatus for the water jet characterization, based on the transferred momentum between the water jet and a load cell, has been used in different laboratories. This apparatus allows to collected quantitative parameters that characterize the HPR water jet. In this paper, we present a quantitative comparison of the different water jet produced by various nozzles routinely used in different laboratories for the HPR process

  10. High-field/high-pressure ESR

    NASA Astrophysics Data System (ADS)

    Sakurai, T.; Okubo, S.; Ohta, H.

    2017-07-01

    We present a historical review of high-pressure ESR systems with emphasis on our recent development of a high-pressure, high-field, multi-frequency ESR system. Until 2000, the X-band system was almost established using a resonator filled with dielectric materials or a combination of the anvil cell and dielectric resonators. Recent developments have shifted from that in the low-frequency region, such as X-band, to that in multi-frequency region. High-pressure, high-field, multi-frequency ESR systems are classified into two types. First are the systems that use a vector network analyzer or a quasi-optical bridge, which have high sensitivity but a limited frequency region; the second are like our system, which has a very broad frequency region covering the THz region, but lower sensitivity. We will demonstrate the usefulness of our high-pressure ESR system, in addition to its experimental limitations. We also discuss the recent progress of our system and future plans.

  11. High pressure laser plasma studies. [energy pathways in He-Ar gas mixtures at low pressure

    NASA Technical Reports Server (NTRS)

    Wells, W. E.

    1980-01-01

    The operation of a nuclear pumped laser, operating at a wavelength of 1.79 micron m on the 3d(1/2-4p(3/2) transition in argon with helium-3 as the majority gas is discussed. The energy pathways in He-Ar gas were investigated by observing the effects of varying partial pressures on the emissions of levels lying above the 4p level in argon during a pulsed afterglow. An attempt is made to determine the population mechanisms of the 3d level in pure argon by observing emission from the same transition in a high pressure plasma excited by a high energy electron beam. Both collisional radiative and dissociative recombination are discussed.

  12. Formation of Pyrylium from Aromatic Systems with a Helium:Oxygen Flowing Atmospheric Pressure Afterglow (FAPA) Plasma Source

    NASA Astrophysics Data System (ADS)

    Badal, Sunil P.; Ratcliff, Tyree D.; You, Yi; Breneman, Curt M.; Shelley, Jacob T.

    2017-06-01

    The effects of oxygen addition on a helium-based flowing atmospheric pressure afterglow (FAPA) ionization source are explored. Small amounts of oxygen doped into the helium discharge gas resulted in an increase in abundance of protonated water clusters by at least three times. A corresponding increase in protonated analyte signal was also observed for small polar analytes, such as methanol and acetone. Meanwhile, most other reagent ions (e.g., O2 +·, NO+, etc.) significantly decrease in abundance with even 0.1% v/v oxygen in the discharge gas. Interestingly, when analytes that contained aromatic constituents were subjected to a He:O2-FAPA, a unique (M + 3)+ ion resulted, while molecular or protonated molecular ions were rarely detected. Exact-mass measurements revealed that these (M + 3)+ ions correspond to (M - CH + O)+, with the most likely structure being pyrylium. Presence of pyrylium-based ions was further confirmed by tandem mass spectrometry of the (M + 3)+ ion compared with that of a commercially available salt. Lastly, rapid and efficient production of pyrylium in the gas phase was used to convert benzene into pyridine. Though this pyrylium-formation reaction has not been shown before, the reaction is rapid and efficient. Potential reactant species, which could lead to pyrylium formation, were determined from reagent-ion mass spectra. Thermodynamic evaluation of reaction pathways was aided by calculation of the formation enthalpy for pyrylium, which was found to be 689.8 kJ/mol. Based on these results, we propose that this reaction is initiated by ionized ozone (O3 +·), proceeds similarly to ozonolysis, and results in the neutral loss of the stable CHO2 · radical. [Figure not available: see fulltext.

  13. Excitation Mechanism of H, He, C, and F Atoms in Metal-Assisted Atmospheric Helium Gas Plasma Induced by Transversely Excited Atmospheric-Pressure CO2 Laser Bombardment

    NASA Astrophysics Data System (ADS)

    Lie, Zener Sukra; Khumaeni, Ali; Kurihara, Kazuyoshi; Kurniawan, Koo Hendrik; Lee, Yong Inn; Fukumoto, Ken-ichi; Kagawa, Kiichiro; Niki, Hideaki

    2011-12-01

    To clarify the excitation mechanism of hydrogen in transversely excited atmospheric-pressure (TEA) CO2 laser-induced helium gas plasma, atomic emission characteristics of H, C, F, and He were studied using a Teflon sheet (thickness of 2 mm) attached to a metal subtarget. The TEA CO2 laser (750 mJ, 200 ns) was focused on the Teflon sheet in the surrounding He gas at 1 atm. Atomic emissions of H, C, F, and He occurred with a long lifetime, a narrow spectrum width, and a low-background spectrum. The correlation emission intensity curves of H--He and F--He indicated a parabolic functions. To explain the emission characteristics, we offered a model in which helium metastable atoms (He*) play an important role in the excitation processes; namely, atoms collide with helium metastable atoms (He*) to be ionized by the Penning effect, and then recombine with electrons to produce excited states, from which atomic emissions occur.

  14. Excitation Mechanism of H, He, C, and F Atoms in Metal-Assisted Atmospheric Helium Gas Plasma Induced by Transversely Excited Atmospheric-Pressure CO2 Laser Bombardment

    NASA Astrophysics Data System (ADS)

    Sukra Lie, Zener; Khumaeni, Ali; Kurihara, Kazuyoshi; Hendrik Kurniawan, Koo; Inn Lee, Yong; Fukumoto, Ken-ichi; Kagawa, Kiichiro; Niki, Hideaki

    2011-12-01

    To clarify the excitation mechanism of hydrogen in transversely excited atmospheric-pressure (TEA) CO2 laser-induced helium gas plasma, atomic emission characteristics of H, C, F, and He were studied using a Teflon sheet (thickness of 2 mm) attached to a metal subtarget. The TEA CO2 laser (750 mJ, 200 ns) was focused on the Teflon sheet in the surrounding He gas at 1 atm. Atomic emissions of H, C, F, and He occurred with a long lifetime, a narrow spectrum width, and a low-background spectrum. The correlation emission intensity curves of H-He and F-He indicated a parabolic functions. To explain the emission characteristics, we offered a model in which helium metastable atoms (He*) play an important role in the excitation processes; namely, atoms collide with helium metastable atoms (He*) to be ionized by the Penning effect, and then recombine with electrons to produce excited states, from which atomic emissions occur.

  15. Observation of the stratified glow mode in helium/argon gas-confined barrier discharge at atmospheric pressure

    NASA Astrophysics Data System (ADS)

    Wu, Shuqun; Dong, Xi; Mao, Wenhao; Jiang, Jun; Yue, Yuanfu; Lu, Xinpei; Zhang, Chaohai

    2017-09-01

    A diffuse He gas-confined barrier discharge insulated by an Ar gas layer instead of a solid dielectric is reported for the first time. It is unexpected to observe that the diffuse Ar plasma attached to the electrode is generated along with the He plasma. The Ar/He/Ar plasma layers with diffuse appearance are visually separated by dark space and thus form the stratified glow. The presence of the stratified mode is largely dependent on the applied voltage, the Ar flow rate and the diameter of the helium gas flow. As the diameter of the helium gas flow decreases from 2.5 mm to 0.9 mm, the discharge mode transits from a stratified glow to filamentary with the amplitude of the discharge current increasing from 0.28 mA to 3.8 A. High-speed photographs of the stratified glow show that the plasma is ignited at the He/Ar gaseous interface, and then expands uniformly towards both the He and Ar gas layers. After the plasma front in He gas layer is quenched at the opposite gaseous interface, the plasma volume starts expanding towards the periphery of the electrode, similar to the dielectric barrier glow discharge.

  16. Mechanism of bullet-to-streamer transition in water surface incident helium atmospheric pressure plasma jet (APPJ)

    NASA Astrophysics Data System (ADS)

    Yoon, Sung-Young; Kim, Gon-Ho; Kim, Su-Jeong; Bae, Byeongjun; Kim, Seong Bong; Ryu, Seungmin; Yoo, Suk Jae

    2016-09-01

    The mechanism of bullet to streamer transition of helium-APPJ bullet on the electrolyte surface was investigated. The APPJ was discharged in pin-to-ring DBD reactor system with helium gas by applying the ac-driven voltage at a frequency of 10 kHz. The water evaporation was controlled via saline temperature. The temporal- and 2-dimensional spatially- resolved plasma properties are monitored by optical diagnostics. During the APPJ bullet propagation from reactor to electrolyte surface, the transition of bullet from streamer was recognized from the high speed image, hydrogen beta emission line, and bullet propagation speed. The He metastable species density profiles from the tunable diode laser absorption spectroscopy (TDLAS) showed the metastable lost the energy near electrolyte surface. It is found that the bullet transited to streamer when the water fraction reached to 29%. This can be fascinating result to study the plasma physics liquid surface, non-fixed boundary. Acknowledgements: This work was partly supported by R&D Program of `Plasma Advanced Technology for Agriculture and Food (Plasma Farming)' through the National Fusion Research Institute of Korea (NFRI) funded by the Government fund was carried out as part.

  17. A high-pressure carbon dioxide gasdynamic laser

    NASA Technical Reports Server (NTRS)

    Kuehn, D. M.

    1973-01-01

    A carbon dioxide gasdynamic laser was operated over a range of reservoir pressure and temperature, test-gas mixture, and nozzle geometry. A significant result is the dominant influence of nozzle geometry on laser power at high pressure. High reservoir pressure can be effectively utilized to increase laser power if nozzle geometry is chosen to efficiently freeze the test gas. Maximum power density increased from 3.3 W/cu cm of optical cavity volume for an inefficient nozzle to 83.4 W/cu cm at 115 atm for a more efficient nozzle. Variation in the composition of the test gas also caused large changes in laser power output. Most notable is the influence of the catalyst (helium or water vapor) that was used to depopulate the lower vibrational state of the carbon dioxide. Water caused an extreme deterioration of laser power at high pressure (100 atm), whereas, at low pressure the laser for the two catalysts approached similar values. It appears that at high pressure the depopulation of the upper laser level of the carbon dioxide by the water predominates over the lower state depopulation, thus destroying the inversion.

  18. High-speed pressure clamp.

    PubMed

    Besch, Stephen R; Suchyna, Thomas; Sachs, Frederick

    2002-10-01

    We built a high-speed, pneumatic pressure clamp to stimulate patch-clamped membranes mechanically. The key control element is a newly designed differential valve that uses a single, nickel-plated piezoelectric bending element to control both pressure and vacuum. To minimize response time, the valve body was designed with minimum dead volume. The result is improved response time and stability with a threefold decrease in actuation latency. Tight valve clearances minimize the steady-state air flow, permitting us to use small resonant-piston pumps to supply pressure and vacuum. To protect the valve from water contamination in the event of a broken pipette, an optical sensor detects water entering the valve and increases pressure rapidly to clear the system. The open-loop time constant for pressure is 2.5 ms for a 100-mmHg step, and the closed-loop settling time is 500-600 micros. Valve actuation latency is 120 micros. The system performance is illustrated for mechanically induced changes in patch capacitance.

  19. Comments on "Sensitive analysis of carbon, chromium and silicon in steel using picosecond laser induced low pressure helium plasma"

    NASA Astrophysics Data System (ADS)

    Zaytsev, Sergey M.; Popov, Andrey M.; Zorov, Nikita B.; Labutin, Timur A.

    2016-04-01

    In the paper "Sensitive analysis of carbon, chromium and silicon in steel using picosecond laser induced low pressure helium plasma" by Syahrun Nur Abdulmadjid, Nasrullah Idris, Marincan Pardede, Eric Jobiliong, Rinda Hedwig, Zener Sukra Lie, Hery Suyanto, May On Tjia, Koo Hendrik Kurniawan and Kiichiro Kagawa [Spectrochim. Acta Part B 114 (2015) 1-6], the authors presented experimental study to demonstrate the sensitive detection of C, Cr and Si in low-alloy steels under low pressure He atmosphere. Although the use of only UV-VIS spectral range for determination of these elements seems to be a beneficial, the point that needs to be commented is the result of carbon determination with the use of C I 247.856 nm line. Thermodynamic modeling based on the NIST and R. Kurucz data for the different excitation conditions in plasma demonstrates that it is hardly possible to distinguish any carbon signal due to significantly intensive iron line Fe II 247.857 nm. Authors are kindly requested to re-consider this part of their study.

  20. Pressure - Density Isotherms of HELIUM-3 Gas Below 1.3 K.

    NASA Astrophysics Data System (ADS)

    Cameron, James Allen

    The second virial coefficient of He('3) gas and the absolute temperature of the gas were determined at five different temperatures below 1.3 K. The technique used involved measuring pressure and density simultaneously at different points along on isotherm and using the virial equation to determine the temperature and the second virial coefficient. The results are in good agreement with empirical calculations of the second virial coefficient which are based on measurements made at higher temperatures. The measurements of temperature, while only known to within (+OR-)1.5 mK, confirm the widespread belief that the T(,62) temperature scale is in error by several mK. Pressure and density were measured in-situ, using superconducting microwave cavities. These eliminate many sources of error which have in the past made measurements inaccurate below 1.5 K. The density and pressure could be related to changes in the resonant frequencies of the cavities. The frequency of one cavity, which contained the He('3) gas was proportional to the dielectric constant of the gas. The Clausius-Mossotti relationship was used to determine the density as a function of the dielectric constant. The pressure was measured using a reentrant cavity with a flexible diaphragm forming one end wall. The pressure of the gas flexed this diaphragm, changing the frequency of the cavity. A room temperature mercury manometer was used to provide a frequency vs. pressure calibration of this cavity.

  1. SiC-based optical interferometry at high pressures and temperatures for pressure and chemical sensing

    NASA Astrophysics Data System (ADS)

    Dakshinamurthy, Surendramohan; Quick, Nathaniel R.; Kar, Aravinda

    2006-05-01

    Crystalline silicon carbide is a chemically inert wide band gap semiconductor with good mechanical strength and oxidation-resistant properties at elevated temperatures, which make it a good sensor material for harsh environments such as combustion chambers and turbine systems. For such cases, optical sensors are generally superior to electrical sensors in many aspects such as responsivity, detectivity, and sensitivity. This paper presents a wireless technique for pressure and chemical sensing based on the pressure-and temperature-dependent refractive indices of silicon carbide. A helium-neon laser with a wavelength of 632.8 nm was used as a probe laser to obtain the complementary Airy pattern of the laser power reflected off a silicon carbide wafer segment at high temperatures (up to 300 °C) and pressures (up to 400 psi). The interference patterns revealed unique characteristics for nitrogen and argon test gases. This pattern is different at the same pressure and temperature for the two gases, indicating the chemical sensing selectivity capability of silicon carbide. Also the pattern changes with pressures for the same gas, indicating the pressure sensing capability. The refractive index of silicon carbide has been obtained for different pressures and temperatures using the interference pattern. A three-layer model has been employed to determine the refractive indices of the gases using the reflected power data.

  2. High pressure and high temperature apparatus

    DOEpatents

    Voronov, Oleg A.

    2005-09-13

    A design for high pressure/high temperature apparatus and reaction cell to achieve .about.30 GPa pressure in .about.1 cm volume and .about.100 GPa pressure in .about.1 mm volumes and 20-5000.degree. C. temperatures in a static regime. The device includes profiled anvils (28) action on a reaction cell (14, 16) containing the material (26) to be processed. The reaction cell includes a heater (18) surrounded by insulating layers and screens. Surrounding the anvils are cylindrical inserts and supporting rings (30-48) whose hardness increases towards the reaction cell. These volumes may be increased considerably if applications require it, making use of presses that have larger loading force capability, larger frames and using larger anvils.

  3. Polarization of the light from the 3P(1)-2S(1) transition in proton beam excited helium. Ph.D. Thesis; [target gas pressure effects

    NASA Technical Reports Server (NTRS)

    Weinhous, M. S.

    1973-01-01

    Measurements of the polarization of the light from the 3 1p-2 1s transition in proton beam excited Helium have shown both a proton beam energy and Helium target gas pressure dependence. Results for the linear polarization fraction range from +2.6% at 100 keV proton energy to -5.5% at 450 keV. The zero crossover occurs at approximately 225 keV. This is in good agreement with other experimental work in the field, but in poor agreement with theoretical predictions. Measurements at He target gas pressures as low as .01 mtorr show that the linear polarization fraction is still pressure dependent at .01 mtorr.

  4. Negative ion productions in high velocity collision between small carbon clusters and Helium atom target

    NASA Astrophysics Data System (ADS)

    M, Chabot; K, Béroff; T, Pino; G, Féraud; N, Dothi; Padellec A, Le; G, Martinet; S, Bouneau; Y, Carpentier

    2012-11-01

    We measured absolute double capture cross section of Cn+ ions (n=1,5) colliding, at 2.3 and 2.6 a.u velocities, with an Helium target atom and the branching ratios of fragmentation of the so formed electronically excited anions Cn-*. We also measured absolute cross section for the electronic attachment on neutral Cn clusters colliding at same velocities with He atom. This is to our knowledge the first measurement of neutral-neutral charge exchange in high velocity collision.

  5. Deep Burn Develpment of Transuranic Fuel for High-Temperature Helium-Cooled Reactors - July 2010

    SciTech Connect

    Snead, Lance Lewis; Besmann, Theodore M; Collins, Emory D; Bell, Gary L

    2010-08-01

    The DB Program Quarterly Progress Report for April - June 2010, ORNL/TM/2010/140, was distributed to program participants on August 4. This report discusses the following: (1) TRU (transuranic elements) HTR (high temperature helium-cooled reactor) Fuel Modeling - (a) Thermochemical Modeling, (b) 5.3 Radiation Damage and Properties; (2) TRU HTR Fuel Qualification - (a) TRU Kernel Development, (b) Coating Development, (c) ZrC Properties and Handbook; and (3) HTR Fuel Recycle - (a) Recycle Processes, (b) Graphite Recycle, (c) Pyrochemical Reprocessing - METROX (metal recovery from oxide fuel) Process Development.

  6. Surprisingly Large Generation and Retention of Helium and Hydrogen in Pure Nickel Irradiated at High Temperatures and High Neutron Exposures

    SciTech Connect

    Greenwood, Lawrence R.; Garner, Francis A.; Oliver, Brian M.; Grossbeck, Martin L.; Wolfer, W. G.

    2004-04-01

    Hydrogen and helium measurements in pure nickel irradiated to 100 dpa in HFIR at temperatures between 300 and 600C show higher gas concentrations than predicted from fast-neutron reactions and the two-step 58Ni(n,g)59Ni(n,p and n,a) reactions. This additional gas production suggests previously unidentified nuclear sources of helium and possibly hydrogen that assert themselves at very high neutron exposure. The elevated hydrogen measurements are especially surprising since it is generally accepted that hydrogen is very mobile in nickel at elevated temperatures and therefore is easily lost, never reaching large concentrations. However, it appears that relatively large hydrogen concentrations can be reached and retained for many years after irradiation at reactor-relevant temperatures. These new effects may have a significant impact on the performance of nickel-bearing alloys at high neutron fluences in both fission and fusion reactor irradiations.

  7. Helium detection in gas mixtures by laser-induced breakdown spectroscopy.

    PubMed

    Eseller, Kemal E; Yueh, Fang-Yu; Singh, Jagdish P; Melikechi, Noureddine

    2012-03-01

    Laser-induced breakdown spectroscopy (LIBS) has been evaluated as a tool for monitoring trace levels of helium in gas mixtures consisting mostly of hydrogen. Calibration data for helium in hydrogen was investigated at different helium concentration levels. At high concentrations of helium (>7.25%), the LIBS signal is quenched due to Penning ionization. The hydrogen alpha line (656.28 nm) was observed to broaden as the concentration of helium impurities in the hydrogen gas mixture increased. The helium line at 587.56 nm was selected as the analyte line for helium impurity detection. The effects of laser energy, the delay time between the laser pulse and data acquisition, and the gas pressure on the LIBS signal of helium were investigated to determine the optimum conditions for helium detection. The LIBS signal from the helium line at 587.56 nm shows good linear correlation with helium concentration for He concentrations below 1%. Thus, LIBS can be reliably used to detect the low levels of helium. The limit of detection for helium was found to be 78 ppm. © 2012 Optical Society of America

  8. High-pressure injection injuries.

    PubMed

    Neal, N C; Burke, F D

    1991-11-01

    A retrospective review of the 11 patients attending the Hand Unit at the Derbyshire Royal Infirmary over the last 5 years with high-pressure injection injuries is presented. The machines and materials that cause these injuries are outlined and the methods of treatment and rehabilitation are described in detail. The study demonstrates the morbidity of high-pressure injection injuries, particularly those inflicted by paint spray guns, and highlights a frequent delay between injury and decompression of the injured part. We wish to emphasize the importance of early diagnosis, referral, exploration and rehabilitation to ensure an optimal outcome, and to point out that failure to refer early is becoming an increasing focus of negligence claims.

  9. Electron emission in collisions of fast highly charged bare ions with helium atoms

    NASA Astrophysics Data System (ADS)

    Mondal, Abhoy; Mandal, Chittranjan; Purkait, Malay

    2016-01-01

    We have studied the electron emission from ground state helium atom in collision with fast bare heavy ions at intermediate and high incident energies. In the present study, we have applied the present three-body formalism of the three Coulomb wave (3C-3B) model and the previously adopted four-body formalism of the three Coulomb wave (3C-4B). To represent the active electron in the helium atom in the 3C-3B model, the initial bound state wavefunction is chosen to be hydrogenic with an effective nuclear charge. The wavefunction for the ejected electron in the exit channel has been approximated to be a Coulomb continuum wavefunction with same effective nuclear charge. Effectively the continuum-continuum correlation effect has been considered in the present investigation. Here we have calculated the energy and angular distribution of double differential cross sections (DDCS) at low and high energy electron emission from helium atom. The large forward-backward asymmetry is observed in the angular distribution which is explained in terms of the two-center effect (TCE). Our theoretical results are compared with available experimental results as well as other theoretical calculations based on the plain wave Born approximation (PWBA), continuum-distorted wave (CDW) approximation, continuum-distorted wave eikonal-initial state (CDW-EIS) approximation, and the corresponding values obtained from the 3C-4B model [S. Jana, R. Samanta, M. Purkait, Phys. Scr. 88, 055301 (2013)] respectively. It is observed that the four-body version of the present investigation produces results which are in better agreement with experimental observations for all cases.

  10. High pressure paint gun injuries.

    PubMed Central

    Booth, C M

    1977-01-01

    Despite their use for the past 20 years the dangers of injuries from high pressure paint guns are not widely known. Two cases treated incorrectly through ignorance in our casualty department resulted in amputation of digits. Paint solvents are far moe damaging than paint of grease injection. All cases should be treated urgently by an experienced surgeon as fairly extensive surgery may be needed. Images FIG 1 FIG 2 FIG 3 FIG 4 PMID:589172

  11. High Blood Pressure (Hypertension) (For Parents)

    MedlinePlus

    ... Old Feeding Your 1- to 2-Year-Old High Blood Pressure (Hypertension) KidsHealth > For Parents > High Blood Pressure (Hypertension) A ... posture, and medications. continue Long-Term Effects of High Blood Pressure When someone has high blood pressure, the heart ...

  12. High-pressure hydrogen testing of single crystal superalloys for advanced rocket engine turbopump turbine blades

    NASA Technical Reports Server (NTRS)

    Parr, R. A.; Alter, W. S.; Johnston, M. H.; Strizak, J. P.

    1985-01-01

    A screening program to determine the effects of high pressure hydrogen on selected candidate materials for advanced single crystal turbine blade applications is examined. The alloys chosen for the investigation are CM SX-2, CM SX-4C, Rene N-4, and PWA1480. Testing is carried out in hydrogen and helium at 34 MPa and room temperature, with both notched and unnotched single crystal specimens. Results show a significant variation in susceptibility to Hydrogen Environment Embrittlement (HEE) among the four alloys and a marked difference in fracture topography between hydrogen and helium environment specimens.

  13. High-pressure hydrogen testing of single crystal superalloys for advanced rocket engine turbopump turbine blades

    NASA Technical Reports Server (NTRS)

    Alter, W. S.; Parr, R. A.; Johnston, M. H.; Strizak, J. P.

    1984-01-01

    A screening program to determine the effects of high pressure hydrogen on selected candidate materials for advanced single crystal turbine blade applications is examined. The alloys chosen for the investigation are CM SX-2, CM SX-4C, Rene N-4, and PWA1480. Testing is carried out in hydrogen and helium at 34 MPa and room temperature, with both notched and unnotched single crystal specimens. Results show a significant variation in susceptibility to Hydrogen Environment Embrittlement (HEE) among the four alloys and a marked difference in fracture topography between hydrogen and helium environment specimens.

  14. Intergranular fracture in irradiated Inconel X-750 containing very high concentrations of helium and hydrogen

    SciTech Connect

    Judge, Colin D.; Gauquelin, Nicolas; Walters, Lori; Wright, Mike; Cole, James I.; Madden, James; Botton, Gianluigi A.; Griffiths, Malcolm

    2015-02-01

    In recent years, it has been determined that Inconel X-750 CANDU spacers have lost strength and material ductility following irradiation in reactor. The irradiated fracture behaviour of ex-service material was also found to be entirely intergranular. The heavily thermalized flux spectrum in a CANDU reactor results in transmutation of 58Ni to 59Ni. The 59Ni itself has unusually high thermal neutron reaction cross-sections of the type: (n, γ), (n, p), and (n,α). The latter two reactions, in particular, contribute to a significant enhancement of the atomic displacements in addition to creating high concentrations of hydrogen and helium within the material. Metallographic examinations by transmission electron microscopy (TEM) have confirmed the presence of helium bubbles in the matrix and aligned along grain boundaries and matrix-precipitate interfaces. He bubble size and density are found to be highly dependent on the irradiation temperature and material microstructure; the bubbles are larger within grain boundary precipitates. TEM specimens extracted from fracture surfaces and crack tips give direct evidence linking crack propagation with grain boundary He bubbles.

  15. High-energy electron-impact excitation process: The generalized oscillator strengths of helium

    NASA Astrophysics Data System (ADS)

    Han, Xiao-Ying; Li, Jia-Ming

    2006-12-01

    The high-energy electron impact excitation cross sections are directly proportional to the generalized oscillator strengths (GOSs) of the target (an atom or molecule). In the present work, the GOSs of helium from the ground state to nS1 , nP1 , nD1 (n→∞) and adjacent continuum excited states are calculated by a modified R -matrix code within the first Born approximation. In order to treat the bound-bound and bound-continuum transitions in a unified manner, the GOS density (GOSD) is defined based on the quantum defect theory. The GOSD surfaces of S1 , P1 , and D1 channels are calculated and tested stringently by the recent experiments. With the recommended GOSD surfaces with sufficient accuracy, the GOSDs (i.e., GOSs) from the ground state into all nS1 , nP1 , and nD1 excited states of helium can be obtained by interpolation. Thus, the high-energy electron impact excitation cross sections of all these excited states can be readily obtained. In addition to the high-energy electron impact excitation cross sections, a scheme to calculate the cross sections in the entire incident energy range is discussed.

  16. High pressure xenon ionization detector

    DOEpatents

    Markey, J.K.

    1989-11-14

    A method is provided for detecting ionization comprising allowing particles that cause ionization to contact high pressure xenon maintained at or near its critical point and measuring the amount of ionization. An apparatus is provided for detecting ionization, the apparatus comprising a vessel containing a ionizable medium, the vessel having an inlet to allow high pressure ionizable medium to enter the vessel, a means to permit particles that cause ionization of the medium to enter the vessel, an anode, a cathode, a grid and a plurality of annular field shaping rings, the field shaping rings being electrically isolated from one another, the anode, cathode, grid and field shaping rings being electrically isolated from one another in order to form an electric field between the cathode and the anode, the electric field originating at the anode and terminating at the cathode, the grid being disposed between the cathode and the anode, the field shaping rings being disposed between the cathode and the grid, the improvement comprising the medium being xenon and the vessel being maintained at a pressure of 50 to 70 atmospheres and a temperature of 0 to 30 C. 2 figs.

  17. High pressure xenon ionization detector

    DOEpatents

    Markey, John K.

    1989-01-01

    A method is provided for detecting ionization comprising allowing particles that cause ionization to contact high pressure xenon maintained at or near its critical point and measuring the amount of ionization. An apparatus is provided for detecting ionization, the apparatus comprising a vessel containing a ionizable medium, the vessel having an inlet to allow high pressure ionizable medium to enter the vessel, a means to permit particles that cause ionization of the medium to enter the vessel, an anode, a cathode, a grid and a plurality of annular field shaping rings, the field shaping rings being electrically isolated from one another, the anode, cathode, grid and field shaping rings being electrically isolated from one another in order to form an electric field between the cathode and the anode, the electric field originating at the anode and terminating at the cathode, the grid being disposed between the cathode and the anode, the field shaping rings being disposed between the cathode and the grid, the improvement comprising the medium being xenon and the vessel being maintained at a pressure of 50 to 70 atmospheres and a temperature of 0.degree. to 30.degree. C.

  18. High pressure synthesis gas fermentation

    SciTech Connect

    Not Available

    1991-01-01

    The purpose of this research project is to build and test a pressure fermentation system for the production of ethanol from synthesis gas. The fermenters, pumps, controls, and analytical system will be procured or fabricated and assembled in our laboratory. This system will then be used to determine the effects of high pressure on growth and ethanol production by clostridium ljungdahlii. The limits of cell concentration and mass transport relationships will be found in continuous stirred tank reactor and immobilized cell reactors. The minimum retention times and reactor volumes will be found for ethanol production in these reactors. Retention times of a few seconds are expected to result from these experiments. 2 figs., 2 tabs.

  19. Observation of a superfluid component within solid helium.

    PubMed

    Lauter, H; Apaja, V; Kalinin, I; Kats, E; Koza, M; Krotscheck, E; Lauter, V V; Puchkov, A V

    2011-12-23

    We demonstrate by neutron scattering that a localized superfluid component exists at high pressures within solid helium in aerogel. Its existence is deduced from the observation of two sharp phonon-roton spectra which are clearly distinguishable from modes in bulk superfluid helium. These roton excitations exhibit different roton gap parameters than the roton observed in the bulk fluid at freezing pressure. One of the roton modes disappears after annealing the samples. Comparison with theoretical calculations suggests that the model that reproduces the observed data best is that of superfluid double layers within the solid and at the helium-substrate interface.

  20. Optical Nanoscopy of High Tc Cuprate Nanoconstriction Devices Patterned by Helium Ion Beams

    NASA Astrophysics Data System (ADS)

    Gozar, A.; Litombe, N. E.; Hoffman, Jennifer E.; Božović, I.

    2017-03-01

    Helium-ion beams (HIB) focused to sub-nanometer scales have emerged as powerful tools for high-resolution imaging as well as nano-scale lithography, ion milling or deposition. Quantifying irradiation effects is essential for reliable device fabrication but most of the depth profiling information is provided by computer simulations rather than experiment. Here, we use atomic force microscopy (AFM) combined with scanning near-field optical microscopy (SNOM) to provide three-dimensional (3D) dielectric characterization of high-temperature superconductor devices fabricated by HIB. By imaging the infrared dielectric response we find that amorphization caused by the nominally 0.5 nm HIB extends throughout the entire 26.5 nm thickness of the cuprate film and by about 500 nm laterally. This unexpectedly widespread structural and electronic damage can be attributed to a Helium depth distribution substantially modified by internal device interfaces. Our study introduces AFM-SNOM as a quantitative nano-scale tomographic technique for non-invasive 3D characterization of irradiation damage in a wide variety of devices.

  1. Optical nanoscopy of high Tc cuprate nanoconstriction devices patterned by helium ion beams

    DOE PAGES

    Gozar, Adrian; Litombe, N. E.; Hoffman, Jennifer E.; ...

    2017-02-06

    Helium ion beams (HIB) focused to subnanometer scales have emerged as powerful tools for high-resolution imaging as well as nanoscale lithography, ion milling, or deposition. Quantifying irradiation effects is an essential step toward reliable device fabrication, but most of the depth profiling information is provided by computer simulations rather than the experiment. Here, we demonstrate the use of atomic force microscopy (AFM) combined with scanning near-field optical microscopy (SNOM) to provide three-dimensional (3D) dielectric characterization of high-temperature superconductor devices fabricated by HIB. By imaging the infrared dielectric response obtained from light demodulation at multiple harmonics of the AFM tapping frequency,more » we find that amorphization caused by the nominally 0.5 nm HIB extends throughout the entire 26.5 nm thickness of the cuprate film and by ~500 nm laterally. This unexpectedly widespread damage in morphology and electronic structure can be attributed to a helium depth distribution substantially modified by the internal device interfaces. Lastly, our study introduces AFM-SNOM as a quantitative tomographic technique for noninvasive 3D characterization of irradiation damage in a wide variety of nanoscale devices.« less

  2. High aspect ratio AFM Probe processing by helium-ion-beam induced deposition.

    PubMed

    Onishi, Keiko; Guo, Hongxuan; Nagano, Syoko; Fujita, Daisuke

    2014-11-01

    A Scanning Helium Ion Microscope (SHIM) is a high resolution surface observation instrument similar to a Scanning Electron Microscope (SEM) since both instruments employ finely focused particle beams of ions or electrons [1]. The apparent difference is that SHIMs can be used not only for a sub-nanometer scale resolution microscopic research, but also for the applications of very fine fabrication and direct lithography of surfaces at the nanoscale dimensions. On the other hand, atomic force microscope (AFM) is another type of high resolution microscopy which can measure a three-dimensional surface morphology by tracing a fine probe with a sharp tip apex on a specimen's surface.In order to measure highly uneven and concavo-convex surfaces by AFM, the probe of a high aspect ratio with a sharp tip is much more necessary than the probe of a general quadrangular pyramid shape. In this paper we report the manufacture of the probe tip of the high aspect ratio by ion-beam induced gas deposition using a nanoscale helium ion beam of SHIM.Gas of platinum organic compound was injected into the sample surface neighborhood in the vacuum chamber of SHIM. The decomposition of the gas and the precipitation of the involved metal brought up a platinum nano-object in a pillar shape on the normal commercial AFM probe tip. A SHIM system (Carl Zeiss, Orion Plus) equipped with the gas injection system (OmniProbe, OmniGIS) was used for the research. While the vacuum being kept to work, we injected platinum organic compound ((CH3)3(CH3C5H4)Pt) into the sample neighborhood and irradiated the helium ion beam with the shape of a point on the apex of the AFM probe tip. It is found that we can control the length of the Pt nano-pillar by irradiation time of the helium ion beam. The AFM probe which brought up a Pt nano-pillar is shown in Figure 1. It is revealed that a high-aspect-ratio Pt nano-pillar of ∼40nm diameter and up to ∼2000 nm length can be grown. In addition, for possible heating

  3. Numerical Simulations of Pressure Spikes within a Cylindrical Launch Tube due to a Bursting Helium Flask

    DTIC Science & Technology

    2011-11-09

    objective of these tests was to determine the failure mode of the hydrogen fuel flask and the extent of fragmentation damage. The test demonstrated that...the hydrogen fuel flask and the extent of fragmentation damage. The test demonstrated that the fragmentation damage to the XFC launcher tube was...Above 50 atm pressure, the system deviates from ideal gas law behavior as shown by the red curve. This curve was obtained using the Cheetah 6.0

  4. High pressure single crystal and powder XRD study for neighborite

    NASA Astrophysics Data System (ADS)

    Liu, H.

    2016-12-01

    After Murakami et al. (2004) identified the post-perovskite (ppv) phase transition in MgSiO3 perovskite (pv) at pressures and temperatures consistent with the onset of Earth's D" layer, lots of post-perovskite type phase transitions were founded in other similar systems. These discoveries provided a better understanding of heterogeneous structures and seismic anisotropy observed in the controversial region of the lower mantle. With previous experimental evidence showing the analogue system of neighborite NaMgF3 will transform from pv to ppv at 30 GPa, we performed high quality single crystal XRD experiment, which led to a more precise structure determination. Using helium as pressure medium, one metastable low symmetric phase before the pv-ppv structure transition was discovered, whose total energy was calculated as well. The comparison between single crystal and powder XRD data will be presented, and potential application will be discussed.

  5. Pressure-broadening of water transitions near 7180 cm-1 by helium isotopes

    NASA Astrophysics Data System (ADS)

    Campbell, H. M.; Havey, D. K.

    2013-05-01

    In this study, pressure-broadening parameters for several H2O transitions near 7180 cm-1 are obtained which describe collisions with 3He and 4He. The sensitivity of those parameters to choice of theoretical line profile (Galatry vs. Voigt) is investigated. H2O is an important species in atmospheric chemistry and astronomy. Because of this, basic fundamental research, which explores the nature of the H2O spectrum in the presence of different gases of varying physical properties, can provide useful reference data which can be applied in the fields of atmospheric and planetary remote sensing. Measurements were made using an intensity-modulated laser photoacoustic spectrometer. Results from the present work show that Galatry line profiles, with a constrained narrowing parameter, more accurately describe experimental spectra than Voigt profiles over a wide range of experimental pressure conditions. Average pressure-broadening parameters were found to be 0.0216 cm-1/atm and 0.0209 cm-1/atm for H2O in 3He and 4He, respectively, and were compared to a literature model for the mass-dependence of line broadening. Specific values were obtained for each transition with nominal combined uncertainties of 2-6%.

  6. Pressure-broadening of water transitions near 7180 cm(-1) by helium isotopes.

    PubMed

    Campbell, H M; Havey, D K

    2013-05-15

    In this study, pressure-broadening parameters for several H2O transitions near 7180 cm(-1) are obtained which describe collisions with (3)He and (4)He. The sensitivity of those parameters to choice of theoretical line profile (Galatry vs. Voigt) is investigated. H2O is an important species in atmospheric chemistry and astronomy. Because of this, basic fundamental research, which explores the nature of the H2O spectrum in the presence of different gases of varying physical properties, can provide useful reference data which can be applied in the fields of atmospheric and planetary remote sensing. Measurements were made using an intensity-modulated laser photoacoustic spectrometer. Results from the present work show that Galatry line profiles, with a constrained narrowing parameter, more accurately describe experimental spectra than Voigt profiles over a wide range of experimental pressure conditions. Average pressure-broadening parameters were found to be 0.0216 cm(-1)/atm and 0.0209 cm(-1)/atm for H2O in (3)He and (4)He, respectively, and were compared to a literature model for the mass-dependence of line broadening. Specific values were obtained for each transition with nominal combined uncertainties of 2-6%. Copyright © 2013. Published by Elsevier B.V.

  7. Interacting kinetics of neutral and ionic species in an atmospheric-pressure helium-oxygen plasma with humid air impurities

    NASA Astrophysics Data System (ADS)

    Murakami, Tomoyuki; Niemi, Kari; Gans, Timo; O'Connell, Deborah; Graham, William G.

    2013-08-01

    We unravel the complex chemistry in both the neutral and ionic systems of a radio-frequency-driven atmospheric-pressure plasma in a helium-oxygen mixture (He-0.5% O2) with air impurity levels from 0 to 500 ppm of relative humidity from 0% to 100% using a zero-dimensional, time-dependent global model. Effects of humid air impurity on absolute densities and the dominant production and destruction pathways of biologically relevant reactive neutral species are clarified. A few hundred ppm of air impurity crucially changes the plasma from a simple oxygen-dependent plasma to a complex oxygen-nitrogen-hydrogen plasma. The density of reactive oxygen species decreases from 1016 to 1015 cm-3, which in turn results in a decrease in the overall chemical reactivity. Reactive nitrogen species (1013 cm-3), atomic hydrogen and hydroxyl radicals (1011-1014 cm-3) are generated in the plasma. With 500 ppm of humid air impurity, the densities of positively charged ions and negatively charged ions slightly increase and the electron density slightly decreases (to the order of 1011 cm-3). The electronegativity increases up to 2.3 compared with 1.5 without air admixture. Atomic hydrogen, hydroxyl radicals and oxygen ions significantly contribute to the production and destruction of reactive oxygen and reactive nitrogen species.

  8. Space and time structure of helium pulsed surface-wave discharges at intermediate pressures (5-50 Torr)

    NASA Astrophysics Data System (ADS)

    Hamdan, Ahmad; Valade, Fabrice; Margot, Joëlle; Vidal, François; Matte, Jean-Pierre

    2017-01-01

    In this paper, the ignition and development of a plasma created by pulsed surface wave discharges (PSWDs) was experimentally investigated using time-resolved imaging techniques and optical spectroscopy in helium at intermediate gas pressures between 5 and 50 Torr. We found that the ionization front moves at a few km s-1 during the ignition phase and decreases to hundreds of m s-1 after only some tens of µs. Once the plasma has reached a sufficient length, a standing wave pattern is observed in the light emission of the discharge. We attribute its formation to the reflection of the surface wave on the ionization front, which results in a pattern of nodes and antinodes. We have also determined the time and space evolution of the gas temperature. It is shown that the gas temperature increases from the room temperature value to a plateau at several hundreds of degrees over a short time (typically 100 µs). These results supports those obtained by light emission imaging and also show that the standing wave pattern does not affect the gas temperature.

  9. The Creation of Long-Lived Multielectron Bubbles in Superfluid Helium

    NASA Astrophysics Data System (ADS)

    Fang, Jieping; Tempere, J.; Silvera, Isaac F.

    2017-04-01

    Multielectron bubbles (MEBs) in liquid helium were first observed in the late 1970s, but their properties have never been explored experimentally due to their short lifetimes. MEBs in liquid helium are predicted to have dynamic instabilities for zero or positive pressures, and stability for negative pressures. We report the production of long-lived MEBs in a novel cell filled with helium at static negative pressures. MEBs were extracted from the vapor sheath of a heated filament loop embedded in the superfluid helium and were observed by high-speed photography as they rose in the helium under buoyant forces. In earlier studies we found that MEBs created in this way had large amplitude oscillations and were unstable to decay. By creating MEBs at temperatures just under the lambda point, these oscillations are rapidly damped and the MEBs relax toward a spherical shape and stability as they rise in the helium.

  10. High Pressure Electrolyzer System Evaluation

    NASA Technical Reports Server (NTRS)

    Prokopius, Kevin; Coloza, Anthony

    2010-01-01

    This report documents the continuing efforts to evaluate the operational state of a high pressure PEM based electrolyzer located at the NASA Glenn Research Center. This electrolyzer is a prototype system built by General Electric and refurbished by Hamilton Standard (now named Hamilton Sunstrand). It is capable of producing hydrogen and oxygen at an output pressure of 3000 psi. The electrolyzer has been in storage for a number of years. Evaluation and testing was performed to determine the state of the electrolyzer and provide an estimate of the cost for refurbishment. Pressure testing was performed using nitrogen gas through the oxygen ports to ascertain the status of the internal membranes and seals. It was determined that the integrity of the electrolyzer stack was good as there were no appreciable leaks in the membranes or seals within the stack. In addition to the integrity testing, an itemized list and part cost estimate was produced for the components of the electrolyzer system. An evaluation of the system s present state and an estimate of the cost to bring it back to operational status was also produced.

  11. Silicon nanowires under high pressure

    NASA Astrophysics Data System (ADS)

    Wang, Yuejian

    2009-03-01

    Silicon nanowires (Si NWs), one-dimensional single crystalline, have recently drawn extensive attention, thanks to their robust applications in electrical and optical devices as well as in the strengthening of diamond/SiC superhard composites. Here, we conducted high-pressure synchrotron diffraction experiments in a diamond anvil cell to study phase transitions and compressibility of Si NWs. Our results revealed that the onset pressure for the Si I-II transformation in Si NWs is approximately 2.0 GPa lower than previously determined values for bulk Si, a trend that is consistent with the analysis of misfit in strain energy. The bulk modulus of Si-I NWs derived from the pressure-volume measurements is 123 GPa, which is comparable to that of Si-V NWs but 25% larger than the reported values for bulk silicon. The reduced compressibility in Si NWs indicates that the unique wire-like structure in nanoscale plays vital roles in the elastic behavior of condensed matter..

  12. Wound helium pressurant tank development for 2nd stage of Ariane 4 launcher

    NASA Astrophysics Data System (ADS)

    Valy, Y.; Coquet, P.

    1990-06-01

    The manufacture of a wound pressurant tank for the second stage of the Ariane 4 launcher is described. The goal of the manufacturing process is to save 26 kg per tank resulting in an overall savings of 78 kg for the second stage. This is equivalent to an extra mass payload of about 20 kg. The technical requirements of the tank are described. Development requirements and approach are outlined. Qualification standards of the design and qualification tests are described. Tank behavior is checked using acoustic emission and ultrasonic inspection.

  13. Improved high pressure turbine shroud

    NASA Technical Reports Server (NTRS)

    Bessen, I. I.; Rigney, D. V.; Schwab, R. C.

    1977-01-01

    A new high pressure turbine shroud material has been developed from the consolidation of prealloyed powders of Ni, Cr, Al and Y. The new material, a filler for cast turbine shroud body segments, is called Genaseal. The development followed the identification of oxidation resistance as the primary cause of prior shroud deterioration, since conversion to oxides reduces erosion resistance and increases spalling under thermal cycled engine conditions. The NICrAlY composition was selected in preference to NIAL and FeCRALY alloys, and was formulated to a prescribed density range that offers suitable erosion resistance, thermal conductivity and elastic modulus for improved behavior as a shroud.

  14. Electokinetic high pressure hydraulic system

    DOEpatents

    Paul, Phillip H.; Rakestraw, David J.

    2000-01-01

    A compact high pressure hydraulic system having no moving parts for converting electric potential to hydraulic force and for manipulating fluids. Electro-osmotic flow is used to provide a valve and means to compress a fluid or gas in a capillary-based system. By electro-osmotically moving an electrolyte between a first position opening communication between a fluid inlet and outlet and a second position closing communication between the fluid inlet and outlet the system can be configured as a valve. The system can also be used to generate forces as large as 2500 psi that can be used to compress a fluid, either a liquid or a gas.

  15. Nano Materials Under High Pressures

    SciTech Connect

    Karmakar, S.; Garg, Nandini; Sharma, Surinder M.

    2010-12-01

    Materials comprising of units or particles of the size of a few nano-meters have significantly different high pressure behavior than their bulk counterparts. This is abundantly elucidated in our studies on transition metals encapsulated in carbon nanotubes. Carbon nanotubes filled with Argon also show that it affects the behavior of tubes as well as argon. Studies on nano-crystalline Si displays an interesting crystalline-amorphous reversible transition, unique of its kind in elemental solids. We also demonstrate that in some cases of nanocrystalline samples, a phase perceived to be an intermediate-transient may be actually realized.

  16. A cryogenic high pressure cell for inelastic neutron scattering measurements of quantum fluids and solids

    SciTech Connect

    Carmichael, Justin R; Omar Diallo, Souleymane

    2013-01-01

    We present our new development of a high pressure cell for inelastic neutron scattering measurements of helium at ultra-low temperatures. The cell has a large sample volume of ~140 cm3, and a working pressure of ~70 bar, with a relatively thin wall-thickness (1.1 mm) - thanks to the high yield strength aluminum used in the design. Two variants of this cell have been developed; one with permanently joined components using electron-beam welding and explosion welding, methods that have little or no impact on the global heat treatment of the cell, and another with modular and interchangeable components, which include a capacitance pressure gauge, that can be sealed using traditional indium wire technique. The performance of the cell has been tested in recent measurements on superfluid liquid helium near the solidification line.

  17. Noble gas partitioning between metal and silicate under high pressures.

    PubMed

    Matsuda, J; Sudo, M; Ozima, M; Ito, K; Ohtaka, O; Ito, E

    1993-02-05

    Measurements of noble gas (helium, neon, argon, krypton, and xenon) partitioning between silicate melt and iron melt under pressures up to 100 kilobars indicate that the partition coefficients are much less than unity and that they decrease systematically with increasing pressure. The results suggest that the Earth's core contains only negligible amounts of noble gases if core separation took place under equilibrium conditions.

  18. High temperature creep of a helium-implanted titanium aluminide alloy

    NASA Astrophysics Data System (ADS)

    Magnusson, Per; Chen, Jiachao; Hoffelner, Wolfgang

    2011-09-01

    The creep properties of an intermetallic alloy Ti-46Al-2W-0.5Si (at%) including strain rate and time to fracture were investigated in vacuum using helium-implanted and non-implanted samples, at a temperature of 1073 K and a stress of 200 MPa. The implantation was performed using 24 MeV He-ions, homogeneously implanting the samples with up to 1333 appm (atomic parts per million) helium. The size and location of helium bubbles were determined with transmission electron microscopy (TEM). Samples implanted with helium content above 10 appm exhibited strong helium embrittlement, reducing both the time to fracture and the elongation at fracture. The corresponding critical helium bubble size r c was determined to 10 nm.

  19. Time evolution of nanosecond runaway discharges in air and helium at atmospheric pressure

    SciTech Connect

    Yatom, S.; Vekselman, V.; Krasik, Ya. E.

    2012-12-15

    Time- and space-resolved fast framing photography was employed to study the discharge initiated by runaway electrons in air and He gas at atmospheric pressure. Whereas in the both cases, the discharge occurs in a nanosecond time scale and its front propagates with a similar velocity along the cathode-anode gap, the later stages of the discharge differ significantly. In air, the main discharge channels develop and remain in the locations with the strongest field enhancement. In He gas, the first, diode 'gap bridging' stage, is similar to that obtained in air; however, the development of the discharge that follows is dictated by an explosive electron emission from micro-protrusions on the edge of the cathode. These results allow us to draw conclusions regarding the different conductivity of the plasma produced in He and air discharges.

  20. Time evolution of nanosecond runaway discharges in air and helium at atmospheric pressure

    NASA Astrophysics Data System (ADS)

    Yatom, S.; Vekselman, V.; Krasik, Ya. E.

    2012-12-01

    Time- and space-resolved fast framing photography was employed to study the discharge initiated by runaway electrons in air and He gas at atmospheric pressure. Whereas in the both cases, the discharge occurs in a nanosecond time scale and its front propagates with a similar velocity along the cathode-anode gap, the later stages of the discharge differ significantly. In air, the main discharge channels develop and remain in the locations with the strongest field enhancement. In He gas, the first, diode "gap bridging" stage, is similar to that obtained in air; however, the development of the discharge that follows is dictated by an explosive electron emission from micro-protrusions on the edge of the cathode. These results allow us to draw conclusions regarding the different conductivity of the plasma produced in He and air discharges.

  1. Diagnostics and active species formation in an atmospheric pressure helium sterilization plasma source

    NASA Astrophysics Data System (ADS)

    Simon, A.; Anghel, S. D.; Papiu, M.; Dinu, O.

    2009-01-01

    Systematic spectroscopic studies and diagnostics of an atmospheric pressure radiofrequency (13.56 MHz) He plasma is presented. The discharge is an intrinsic part of the resonant circuit of the radiofrequency oscillator and was obtained using a monoelectrode type torch, at various gas flow-rates (0.1-6.0 l/min) and power levels (0-2 W). As function of He flow-rate and power the discharge has three developing stages: point-like plasma, spherical plasma and ellipsoidal plasma. The emission spectra of the plasma were recorded and investigated as function of developing stages, flow-rates and plasma power. The most important atomic and molecular components were identified and their evolution was studied as function of He flow-rate and plasma power towards understanding basic mechanisms occurring in this type of plasma. The characteristic temperatures (vibrational Tvibr, rotational Trot and excitation Texc) and the electron number density (ne) were determined.

  2. High pressure apparatus for magnetization measurements

    SciTech Connect

    Uwatoko, Y.; Hotta, T.; Mori, H.

    1997-10-01

    A hydrostatic high pressure micro cell for studying heavy-fermion materials in a commercial magnetometer is developed. Experiments of pressures up to 10 kbar and temperature range 2 K {le} T {le} 300 K have been carried out. The sensitivity of measurement of under high pressure is as same as ambient pressure one within experimental error.

  3. Surface modifications induced by high fluxes of low energy helium ions.

    PubMed

    Tanyeli, İrem; Marot, Laurent; Mathys, Daniel; van de Sanden, Mauritius C M; De Temmerman, Gregory

    2015-04-28

    Several metal surfaces, such as titanium, aluminum and copper, were exposed to high fluxes (in the range of 10(23) m(-2) s(-1)) of low energy (<100 eV) Helium (He) ions. The surfaces were analyzed by scanning electron microscopy and to get a better understanding on morphology changes both top view and cross sectional images were taken. Different surface modifications, such as voids and nano pillars, are observed on these metals. The differences and similarities in the development of surface morphologies are discussed in terms of the material properties and compared with the results of similar experimental studies. The results show that He ions induced void growth and physical sputtering play a significant role in surface modification using high fluxes of low energy He ions.

  4. Surface Modifications Induced by High Fluxes of Low Energy Helium Ions

    PubMed Central

    Tanyeli, İrem; Marot, Laurent; Mathys, Daniel; van de Sanden, Mauritius C. M.; De Temmerman, Gregory

    2015-01-01

    Several metal surfaces, such as titanium, aluminum and copper, were exposed to high fluxes (in the range of 1023 m−2s−1) of low energy (<100 eV) Helium (He) ions. The surfaces were analyzed by scanning electron microscopy and to get a better understanding on morphology changes both top view and cross sectional images were taken. Different surface modifications, such as voids and nano pillars, are observed on these metals. The differences and similarities in the development of surface morphologies are discussed in terms of the material properties and compared with the results of similar experimental studies. The results show that He ions induced void growth and physical sputtering play a significant role in surface modification using high fluxes of low energy He ions. PMID:25919912

  5. Bedside assessment of the effects of positive end-expiratory pressure on lung inflation and recruitment by the helium dilution technique and electrical impedance tomography.

    PubMed

    Mauri, Tommaso; Eronia, Nilde; Turrini, Cecilia; Battistini, Marta; Grasselli, Giacomo; Rona, Roberto; Volta, Carlo Alberto; Bellani, Giacomo; Pesenti, Antonio

    2016-10-01

    Higher positive end-expiratory pressure might induce lung inflation and recruitment, yielding enhanced regional lung protection. We measured positive end-expiratory pressure-related lung volume changes by electrical impedance tomography and by the helium dilution technique. We also used electrical impedance tomography to assess the effects of positive end-expiratory pressure on regional determinants of ventilator-induced lung injury. A prospective randomized crossover study was performed on 20 intubated adult patients: 12 with acute hypoxemic respiratory failure and 8 with acute respiratory distress syndrome. Each patient underwent protective controlled ventilation at lower (7 [7, 8] cmH2O) and higher (12 [12, 13] cmH2O) positive end-expiratory pressures. At the end of each phase, we collected ventilation, helium dilution, and electrical impedance tomography data. Positive end-expiratory pressure-induced changes in lung inflation and recruitment measured by electrical impedance tomography and helium dilution showed close correlations (R (2) = 0.78, p < 0.001 and R (2) = 0.68, p < 0.001, respectively) but with relatively variable limits of agreement. At higher positive end-expiratory pressure, recruitment was evident in all lung regions (p < 0.01) and heterogeneity of tidal ventilation distribution was reduced by increased tidal volume distending the dependent lung (p < 0.001); in the non-dependent lung, on the other hand, compliance decreased (p < 0.001) and tidal hyperinflation significantly increased (p < 0.001). In the subgroup of ARDS patients (but not in the whole study population) tidal hyperinflation in the dependent lung regions decreased at higher positive end-expiratory pressure (p = 0.05), probably indicating higher potential for recruitment. Close correlations exist between bedside assessment of positive end-expiratory pressure-induced changes in lung inflation and recruitment by the helium dilution and electrical impedance tomography

  6. Influence of the ionization-energy losses of high-energy bismuth ions on the development of helium blisters in silicon

    SciTech Connect

    Reutov, V. F. Dmitriev, S. N.; Sohatsky, A. S.; Zaluzhnyi, A. G.

    2015-10-15

    Understanding the behavior of helium in solids under conditions of intense ionizing radiation is of particular interest in solving many problems of nuclear, fusion, and space materials science and also in microelectronics. The observed effect of suppressing the formation of helium blisters on the surface of helium ion-doped silicon as a result of irradiation with high-energy bismuth ions is reported in this publication. It is suggested that a possible decrease in the concentration of helium atoms in silicon is due to their radiationinduced desorption from the area of doping in terms of the high-impact ionization of bismuth ions.

  7. Method of producing a high pressure gas

    DOEpatents

    Bingham, Dennis N.; Klingler, Kerry M.; Zollinger, William T.

    2006-07-18

    A method of producing a high pressure gas is disclosed and which includes providing a container; supplying the container with a liquid such as water; increasing the pressure of the liquid within the container; supplying a reactant composition such as a chemical hydride to the liquid under pressure in the container and which chemically reacts with the liquid to produce a resulting high pressure gas such as hydrogen at a pressure of greater than about 100 pounds per square inch of pressure; and drawing the resulting high pressure gas from the container.

  8. Helium atmospheric pressure plasma jets interacting with wet cells: delivery of electric fields

    NASA Astrophysics Data System (ADS)

    Norberg, Seth A.; Johnsen, Eric; Kushner, Mark J.

    2016-05-01

    The use of atmospheric pressure plasma jets (APPJs) in plasma medicine have produced encouraging results in wound treatment, surface sterilization, deactivation of bacteria, and treatment of cancer cells. It is known that many of the reactive oxygen and nitrogen species produced by the APPJ are critical to these processes. Other key components to treatment include the ion and photon fluxes, and the electric fields produced in cells by the ionization wave of the APPJ striking in the vicinity of the cells. These relationships are often complicated by the cells being covered by a thin liquid layer—wet cells. In this paper, results from a computational investigation of the interaction of APPJs with tissue beneath a liquid layer are discussed. The emphasis of this study is the delivery of electric fields by an APPJ sustained in He/O2  =  99.8/0.2 flowing into humid air to cells lying beneath water with thickness of 200 μm. The water layer represents the biological fluid typically covering tissue during treatment. Three voltages were analyzed—two that produce a plasma effluent that touches the surface of the water layer and one that does not touch. The effect of the liquid layer thickness, 50 μm to 1 mm, was also examined. Comparisons were made of the predicted intracellular electric fields to those thresholds used in the field of bioelectronics.

  9. The broadening of the calcium resonance line in a high-temperature helium atmosphere. [solar and white dwarf atmospheric studies

    NASA Technical Reports Server (NTRS)

    Driver, R. D.; Snider, J. L.

    1976-01-01

    The paper describes experimental measurements of the shape of the Ca I resonance line at 4227 A in a high-temperature helium atmosphere. A ballistic piston compressor was used to produce hot helium in the temperature range from 3000 to 7000 K and the number-density range from 2 to 4 by 10 to the 20th power per cu cm, which conditions approximate those postulated for the atmospheres of certain cool white-dwarf stars. The Boltzmann temperature of the calcium atoms was measured by the brightness-emissivity method, the absorption line shape was measured with a twelve-channel polychromator, and the helium kinetic temperature was calculated from the equation of an ideal gas. The observed deviation from thermodynamic equilibrium is illustrated. The value of the ratio of the damping constant to the helium number density at 5000 K is found to be 45 (+ or - 4) by 10 to the -22nd power A cu cm, or 4.7 (+ or - 0.4) by 10 to the -9th power rad/s cu cm. It is noted that no existing line-broadening calculation for the calcium-helium system is consistent with the present results. Recent studies of the 4227-A line in spectra of the sun and the white dwarf van Maanen 2 are discussed.

  10. The broadening of the calcium resonance line in a high-temperature helium atmosphere. [solar and white dwarf atmospheric studies

    NASA Technical Reports Server (NTRS)

    Driver, R. D.; Snider, J. L.

    1976-01-01

    The paper describes experimental measurements of the shape of the Ca I resonance line at 4227 A in a high-temperature helium atmosphere. A ballistic piston compressor was used to produce hot helium in the temperature range from 3000 to 7000 K and the number-density range from 2 to 4 by 10 to the 20th power per cu cm, which conditions approximate those postulated for the atmospheres of certain cool white-dwarf stars. The Boltzmann temperature of the calcium atoms was measured by the brightness-emissivity method, the absorption line shape was measured with a twelve-channel polychromator, and the helium kinetic temperature was calculated from the equation of an ideal gas. The observed deviation from thermodynamic equilibrium is illustrated. The value of the ratio of the damping constant to the helium number density at 5000 K is found to be 45 (+ or - 4) by 10 to the -22nd power A cu cm, or 4.7 (+ or - 0.4) by 10 to the -9th power rad/s cu cm. It is noted that no existing line-broadening calculation for the calcium-helium system is consistent with the present results. Recent studies of the 4227-A line in spectra of the sun and the white dwarf van Maanen 2 are discussed.

  11. Optical calibration of pressure sensors for high pressures and temperatures

    SciTech Connect

    Goncharov, A F; Gregoryanz, E; Zaug, J M; Crowhurst, J C

    2004-10-04

    We present the results of Raman scattering measurements of diamond ({sup 12}C) and of cubic boron nitride (cBN), and fluorescence measurements of ruby, Sm:YAG, and SrB{sub 4}O{sub 7}:Sm{sup 2+} in the diamond anvil cell (DAC) at high pressures and temperatures. These measurements were accompanied by synchrotron x-ray diffraction measurements on gold. We have extended the room-temperature calibration of Sm:YAG in a quasihydrostatic regime up to 100 GPa. The ruby scale is shown to systematically underestimate pressure at high pressures and temperatures compared with all other sensors. On this basis, we propose a new high-temperature ruby pressure scale that should be valid to at least 100 GPa and 850 K. Historically, the accurate determination of pressure at high temperature and ultrahigh pressure has been extremely difficult. In fact, the lack of a general pressure scale nullifies, to a significant extent, the great innovations that have been made in recent years in DAC experimental techniques [1]. Now, more than ever a scale is required whose accuracy is comparable with that of the experimental data. Since pressure in the DAC is dependent on temperature (due to thermal pressure and also to changes in the properties of the materials that constitute the DAC) such a scale requires quantitative, and separate measurements of pressure and temperature.

  12. High-pressure microhydraulic actuator

    DOEpatents

    Mosier, Bruce P [San Francisco, CA; Crocker, Robert W [Fremont, CA; Patel, Kamlesh D [Dublin, CA

    2008-06-10

    Electrokinetic ("EK") pumps convert electric to mechanical work when an electric field exerts a body force on ions in the Debye layer of a fluid in a packed bed, which then viscously drags the fluid. Porous silica and polymer monoliths (2.5-mm O.D., and 6-mm to 10-mm length) having a narrow pore size distribution have been developed that are capable of large pressure gradients (250-500 psi/mm) when large electric fields (1000-1500 V/cm) are applied. Flowrates up to 200 .mu.L/min and delivery pressures up to 1200 psi have been demonstrated. Forces up to 5 lb-force at 0.5 mm/s (12 mW) have been demonstrated with a battery-powered DC-DC converter. Hydraulic power of 17 mW (900 psi@ 180 uL/min) has been demonstrated with wall-powered high voltage supplies. The force and stroke delivered by an actuator utilizing an EK pump are shown to exceed the output of solenoids, stepper motors, and DC motors of similar size, despite the low thermodynamic efficiency.

  13. Electrical Transport Experiments at High Pressure

    SciTech Connect

    Weir, S

    2009-02-11

    High-pressure electrical measurements have a long history of use in the study of materials under ultra-high pressures. In recent years, electrical transport experiments have played a key role in the study of many interesting high pressure phenomena including pressure-induced superconductivity, insulator-to-metal transitions, and quantum critical behavior. High-pressure electrical transport experiments also play an important function in geophysics and the study of the Earth's interior. Besides electrical conductivity measurements, electrical transport experiments also encompass techniques for the study of the optoelectronic and thermoelectric properties of materials under high pressures. In addition, electrical transport techniques, i.e., the ability to extend electrically conductive wires from outside instrumentation into the high pressure sample chamber have been utilized to perform other types of experiments as well, such as high-pressure magnetic susceptibility and de Haas-van Alphen Fermi surface experiments. Finally, electrical transport techniques have also been utilized for delivering significant amounts of electrical power to high pressure samples, for the purpose of performing high-pressure and -temperature experiments. Thus, not only do high-pressure electrical transport experiments provide much interesting and valuable data on the physical properties of materials extreme compression, but the underlying high-pressure electrical transport techniques can be used in a number of ways to develop additional diagnostic techniques and to advance high pressure capabilities.

  14. Dense Plasma Focus With High Energy Helium Beams for Radiological Source Replacement

    NASA Astrophysics Data System (ADS)

    Schmidt, Andrea; Ellsworth, Jennifer; Falabella, Steve; Link, Anthony; Rusnak, Brian; Sears, Jason; Tang, Vincent

    2014-10-01

    A dense plasma focus (DPF) is a compact accelerator that can produce intense high energy ion beams (multiple MeV). It could be used in place of americium-beryllium (AmBe) neutron sources in applications such as oil well logging if optimized to produce high energy helium beams. AmBe sources produce neutrons when 5.5 MeV alphas emitted from the Am interact with the Be. However, due to the very small alpha-Be cross section for alphas <2 MeV, an AmBe source replacement would have to accelerate ~0.15 μC of He to 2 + MeV in order to produce 107 neutrons per pulse. We are using our particle in cell (PIC) model in LSP of a 4 kJ dense plasma focus discharge to guide the optimization of a compact DPF for the production of high-energy helium beam. This model is fluid for the run-down phase, and then transitions to fully kinetic prior to the pinch in order to include kinetic effects such as ion beam formation and anomalous resistivity. An external pulsed-power driver circuit is used at the anode-cathode boundary. Simulations will be benchmarked to He beam measurements using filtered and time-of-flight Faraday cup diagnostics. This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. This work supported by US DOE/NA-22 Office of Non-proliferation Research and Development. Computing support for this work came from the LLNL Institutional Computing Grand Challenge program.

  15. High blood pressure and eye disease

    MedlinePlus

    ... this page: //medlineplus.gov/ency/article/000999.htm High blood pressure and eye disease To use the sharing features on this page, please enable JavaScript. High blood pressure can damage blood vessels in the retina . The ...

  16. Avoid the Consequences of High Blood Pressure

    MedlinePlus

    ... Aneurysm More Avoid the Consequences of High Blood Pressure Infographic Updated:Oct 31,2016 View a downloadable version of this infographic High Blood Pressure • Home • Get the Facts About HBP • Know Your ...

  17. Corrosion and Creep of Candidate Alloys in High Temperature Helium and Steam Environments for the NGNP

    SciTech Connect

    Was, Gary; Jones, J. W.

    2013-06-21

    This project aims to understand the processes by which candidate materials degrade in He and supercritical water/steam environments characteristic of the current NGNP design. We will focus on understanding the roles of temperature, and carbon and oxygen potential in the 750-850 degree C range on both uniform oxidation and selective internal oxidation along grain boundaries in alloys 617 and 800H in supercritical water in the temperature range 500-600 degree C; and examining the application of static and cyclic stresses in combination with impure He environments in the temperature rang 750-850 degree C; and examining the application of static and cyclic stresses in combination with impure He environments in the temperature range 750-850 degree C over a range of oxygen and carbon potentials in helium. Combined, these studies wil elucidate the potential high damage rate processes in environments and alloys relevant to the NGNP.

  18. High-Speed Rainbow Schlieren Visualization of an Oscillating Helium Jet Undergoing Gravitational Change

    NASA Technical Reports Server (NTRS)

    Leptuch, Peter A.; Agrawal, Ajay K.

    2005-01-01

    Rainbow schlieren deflectometry combined with high-speed digital imaging was used to study buoyancy effects on flow structure of a helium jet discharged vertically into air. The experimental data were taken using the 2.2-sec drop tower facility at the NASA John H. Glenn Research Center in Cleveland, Ohio. The test conditions pertained to jet Reynolds number of 490 and jet Richardson number of 0.11, for which buoyancy is often considered unimportant. Experimental results show global oscillations at a frequency of 27 Hz in Earth gravity. In microgravity, the jet oscillations vanished and the jet width increased. Results provide a direct physical evidence of the importance of buoyancy on the flow structure of low-density gas jets at a Richardson number considered too small to account for gravity.

  19. Operational Characteristics of a Helium Microwave-Induced Plasma at Atmospheric Pressure.

    DTIC Science & Technology

    1981-01-26

    high energy - density plasma and its short longitudinal dimension permits close spatial and photometric monitoring system proximity between the plasma and different types of sampling devices. Examination of the electron density, excitation temperature and rotational temperature in this microwave plasma reveals its unusual character and suggests certain mechanisms of operation.

  20. Two modes of interfacial pattern formation by atmospheric pressure helium plasma jet-ITO interactions under positive and negative polarity

    NASA Astrophysics Data System (ADS)

    Liu, Zhijie; Liu, Dingxin; Xu, Dehui; Cai, Haifeng; Xia, Wenjie; Wang, Bingchuan; Li, Qiaosong; Kong, Michael G.

    2017-05-01

    In this paper, we report the observation of an interfacial pattern formation on the ITO surface by atmospheric pressure helium plasma jet-ITO interactions. By changing the voltage polarity of positive and negative pulses, the interfacial phenomenon displays two different pattern modes, i.e. a double ring pattern with a combination of homogeneous and filamentous modes as well as a single ring pattern with a homogeneous mode. The reasons may mainly be attributed to the spread of a radially outward traveling surface ionization wave that would cause electric field distributions and charge accumulations on the ITO surface. The spatial-temporal distribution of \\text{N}2+≤ft({{B}2}{\\sum}\\text{u}+\\right) , He(3s3S), and O(3p5P) emissions are diagnosed to better understand the formation mechanism and the differences of plasma jet patterns under positive and negative polarities. Results show that the distribution of \\text{N}2+≤ft({{B}2}{\\sum}\\text{u}+\\right) emission is the main contributor for generating the filament structure in a double ring pattern for positive polarity, the homogeneous mode pattern mainly depends on the distribution of O(3p5P) emission for positive and negative polarity. Additionally, in order to further systematically understand the behaviors of plasma jet patterns, some parametric results, such as behaviors versus pulse peak voltage, dielectric material, pulse repetition rate, and flow rate are investigated. Some interesting phenomena and additional insights for the plasma jet pattern are found with different parametric conditions. This study might help to better understand effects of plasma jets in interaction with surfaces, or its application in the medical sector.

  1. Selective fibronectin adsorption against albumin and enhanced stem cell attachment on helium atmospheric pressure glow discharge treated titanium

    NASA Astrophysics Data System (ADS)

    Han, Inho; Vagaska, Barbora; Joo Park, Bong; Lee, Mi Hee; Jin Lee, Seung; Park, Jong-Chul

    2011-06-01

    Successful tissue integration of implanted medical devices depends on appropriate initial cellular response. In this study, the effect of helium atmospheric pressure glow discharge (He-APGD) treatment of titanium on selective protein adsorption and the initial attachment processes and focal adhesion formation of osteoprogenitor cells and stem cells were examined. Titanium disks were treated in a self-designed He-APGD system. Initial attachment of MC3T3-E1 mouse pre-osteoblasts and human mesenchymal stem cells (MSCs) was evaluated by MTT assay and plasma membrane staining followed by morphometric analysis. Fibronectin adsorption was investigated by Enzyme-Linked ImmunoSorbant Assay. MSCs cell attachment to treated and non-treated titanium disks coated with different proteins was verified also in serum-free culture. Organization of actin cytoskeleton and focal adhesions was evaluated microscopically. He-APGD treatment effectively modified the titanium surfaces by creating a super-hydrophilic surface, which promoted selectively higher adsorption of fibronectin, a protein of critical importance for cell/biomaterial interaction. In two different types of cells, the He-APGD treatment enhanced the number of attaching cells as well as their attachment area. Moreover, cells had higher organization of actin cytoskeleton and focal adhesions. Faster acceptance of the material by the progenitor cells in the early phases of tissue integration after the implantation may significantly reduce the overall healing time; therefore, titanium treatment with He-APGD seems to be an effective method of surface modification of titanium for improving its tissue inductive properties.

  2. An Evaluation of Ultra-High Pressure Regulator for Robotic Lunar Landing Spacecraft

    NASA Technical Reports Server (NTRS)

    Burnside, Christopher; Trinh, Huu; Pedersen, Kevin

    2011-01-01

    The Robotic Lunar Lander Development (RLLD) Project Office at NASA Marshall Space Flight Center (MSFC) has studied several lunar surface science mission concepts. These missions focus on spacecraft carrying multiple science instruments and power systems that will allow extended operations on the lunar surface. Initial trade studies of launch vehicle options for these mission concepts indicate that the spacecraft design will be significantly mass-constrained. To minimize mass and facilitate efficient packaging, the notional propulsion system for these landers has a baseline of an ultra-high pressure (10,000 psig) helium pressurization system that has been used on Defense missiles. The qualified regulator is capable of short duration use; however, the hardware has not been previously tested at NASA spacecraft requirements with longer duration. Hence, technical risks exist in using this missile-based propulsion component for spacecraft applications. A 10,000-psig helium pressure regulator test activity is being carried out as part of risk reduction testing for MSFC RLLD project. The goal of the test activity is to assess the feasibility of commercial off-the-shelf ultra-high pressure regulator by testing with a representative flight mission profile. Slam-start, gas blowdown, water expulsion, lock-up, and leak tests are also performed on the regulator to assess performance under various operating conditions. The preliminary test results indicated that the regulator can regulate helium to a stable outlet pressure of 740 psig within the +/- 5% tolerance band and maintain a lock-up pressure less than +5% for all tests conducted. Numerous leak tests demonstrated leakage less than 10-3 standard cubic centimeters per second (SCCS) for internal seat leakage at lock-up and less than10-5 SCCS for external leakage through the regulator ambient reference cavity. The successful tests have shown the potential for 10,000 psig helium systems in NASA spacecraft and have reduced risk

  3. Creep Crack Growth Behavior of Alloys 617 and 800H in Air and Impure Helium Environments at High Temperatures

    NASA Astrophysics Data System (ADS)

    Grierson, D. S.; Cao, G.; Brooks, P.; Pezzi, P.; Glaudell, A.; Kuettel, D.; Fischer, G.; Allen, T.; Sridharan, K.; Crone, W. C.

    2017-03-01

    The environmental degradation of intermediate heat exchanger (IHX) materials in impure helium has been identified as an area with major ramifications on the design of very high-temperature reactors (VHTR). It has been reported that in some helium environments, non-ductile failure is a significant failure mode for Alloy 617 with long-term elevated-temperature service. Non-ductile failure of intermediate exchangers can result in catastrophic consequences; unfortunately, the knowledge of creep crack initiation and creep crack growth (CCG) in candidate alloys is limited. Current codes and code cases for the candidate alloys do not provide specific guidelines for effects of impure helium on the high-temperature behavior. The work reported here explores creep crack growth characterization of Alloy 617 and Alloy 800H at elevated temperatures in air and in impure helium environments, providing information on the reliability of these alloys in VHTR for long-term service. Alloy 617 was found to exhibit superior CCG resistance compared to Alloy 800H. For Alloy 617 tested at 973 K (700 °C), a notable increase in the resistance to crack growth was measured in air compared to that measured in the helium environment; CCG results for Alloy 800H suggest that air and helium environments produce similar behavior. Testing of grain boundary-engineered (GBE) Alloy 617 samples revealed that, although the technique produces superior mechanical properties in many respects, the GBE samples exhibited inferior resistance to creep crack growth compared to the other Alloy 617 samples tested under similar conditions. Grain size is noted as a confounding factor in creep crack growth resistance.

  4. Creep Crack Growth Behavior of Alloys 617 and 800H in Air and Impure Helium Environments at High Temperatures

    NASA Astrophysics Data System (ADS)

    Grierson, D. S.; Cao, G.; Brooks, P.; Pezzi, P.; Glaudell, A.; Kuettel, D.; Fischer, G.; Allen, T.; Sridharan, K.; Crone, W. C.

    2016-11-01

    The environmental degradation of intermediate heat exchanger (IHX) materials in impure helium has been identified as an area with major ramifications on the design of very high-temperature reactors (VHTR). It has been reported that in some helium environments, non-ductile failure is a significant failure mode for Alloy 617 with long-term elevated-temperature service. Non-ductile failure of intermediate exchangers can result in catastrophic consequences; unfortunately, the knowledge of creep crack initiation and creep crack growth (CCG) in candidate alloys is limited. Current codes and code cases for the candidate alloys do not provide specific guidelines for effects of impure helium on the high-temperature behavior. The work reported here explores creep crack growth characterization of Alloy 617 and Alloy 800H at elevated temperatures in air and in impure helium environments, providing information on the reliability of these alloys in VHTR for long-term service. Alloy 617 was found to exhibit superior CCG resistance compared to Alloy 800H. For Alloy 617 tested at 973 K (700 °C), a notable increase in the resistance to crack growth was measured in air compared to that measured in the helium environment; CCG results for Alloy 800H suggest that air and helium environments produce similar behavior. Testing of grain boundary-engineered (GBE) Alloy 617 samples revealed that, although the technique produces superior mechanical properties in many respects, the GBE samples exhibited inferior resistance to creep crack growth compared to the other Alloy 617 samples tested under similar conditions. Grain size is noted as a confounding factor in creep crack growth resistance.

  5. Feedthrough Seal For High-Pressure Vessel

    NASA Technical Reports Server (NTRS)

    Williams, R.; Mullins, O.; Smith, D.; Teasley, G.

    1984-01-01

    Combination of ceramic and plastic withstands many depressurizations. Stack of washers surrounds leadthrough electrode. Under pressure washers expand to fill leadthrough hole in high-pressure vessel. Seal thus formed withstands 20 or more pressurization/depressurization cycles. Seal composed of neoprene, polytetrafluoroethylene, nylon and high-purity, high-density commercial alumina ceramic.

  6. Invited article: High-pressure techniques for condensed matter physics at low temperature.

    PubMed

    Feng, Yejun; Jaramillo, R; Wang, Jiyang; Ren, Yang; Rosenbaum, T F

    2010-04-01

    Condensed matter experiments at high pressure accentuate the need for accurate pressure scales over a broad range of temperatures, as well as placing a premium on a homogeneous pressure environment. However, challenges remain in diamond anvil cell technology, including both the quality of various pressure transmitting media and the accuracy of secondary pressure scales at low temperature. We directly calibrate the ruby fluorescence R1 line shift with pressure at T=4.5 K using high-resolution x-ray powder diffraction measurements of the silver lattice constant and its known equation of state up to P=16 GPa. Our results reveal a ruby pressure scale at low temperatures that differs by 6% from the best available ruby scale at room T. We also use ruby fluorescence to characterize the pressure inhomogeneity and anisotropy in two representative and commonly used pressure media, helium and methanol:ethanol 4:1, under the same preparation conditions for pressures up to 20 GPa at T=5 K. Contrary to the accepted wisdom, both media show equal levels of pressure inhomogeneity measured over the same area, with a consistent DeltaP/P per unit area of +/-1.8 %/(10(4) microm(2)) from 0 to 20 GPa. The helium medium shows an essentially constant deviatoric stress of 0.021+/-0.011 GPa up to 16 GPa, while the methanol:ethanol mixture shows a similar level of anisotropy up to 10 GPa, above which the anisotropy increases. The quality of both pressure media is further examined under the more stringent requirements of single crystal x-ray diffraction at cryogenic temperature. For such experiments we conclude that the ratio of sample-to-pressure chamber volume is a critical parameter in maintaining sample quality at high pressure, and may affect the choice of pressure medium.

  7. Invited Article: High-pressure techniques for condensed matter physics at low temperature

    NASA Astrophysics Data System (ADS)

    Feng, Yejun; Jaramillo, R.; Wang, Jiyang; Ren, Yang; Rosenbaum, T. F.

    2010-04-01

    Condensed matter experiments at high pressure accentuate the need for accurate pressure scales over a broad range of temperatures, as well as placing a premium on a homogeneous pressure environment. However, challenges remain in diamond anvil cell technology, including both the quality of various pressure transmitting media and the accuracy of secondary pressure scales at low temperature. We directly calibrate the ruby fluorescence R1 line shift with pressure at T=4.5 K using high-resolution x-ray powder diffraction measurements of the silver lattice constant and its known equation of state up to P=16 GPa. Our results reveal a ruby pressure scale at low temperatures that differs by 6% from the best available ruby scale at room T. We also use ruby fluorescence to characterize the pressure inhomogeneity and anisotropy in two representative and commonly used pressure media, helium and methanol:ethanol 4:1, under the same preparation conditions for pressures up to 20 GPa at T=5 K. Contrary to the accepted wisdom, both media show equal levels of pressure inhomogeneity measured over the same area, with a consistent ΔP /P per unit area of ±1.8%/(104 μm2) from 0 to 20 GPa. The helium medium shows an essentially constant deviatoric stress of 0.021±0.011 GPa up to 16 GPa, while the methanol:ethanol mixture shows a similar level of anisotropy up to 10 GPa, above which the anisotropy increases. The quality of both pressure media is further examined under the more stringent requirements of single crystal x-ray diffraction at cryogenic temperature. For such experiments we conclude that the ratio of sample-to-pressure chamber volume is a critical parameter in maintaining sample quality at high pressure, and may affect the choice of pressure medium.

  8. Invited article : High pressure standards for condensed matter physics at low temperature.

    SciTech Connect

    Feng, Y.; Jaramillo, R.; Wang, J.; Ren, Y.; Rosenbaum, T. F.; Univ. of Chicago

    2010-04-01

    Condensed matter experiments at high pressure accentuate the need for accurate pressure scales over a broad range of temperatures, as well as placing a premium on a homogeneous pressure environment. However, challenges remain in diamond anvil cell technology, including both the quality of various pressure transmitting media and the accuracy of secondary pressure scales at low temperature. We directly calibrate the ruby fluorescence R1 line shift with pressure at T = 4.5 K using high-resolution x-ray powder diffraction measurements of the silver lattice constant and its known equation of state up to P = 16 GPa. Our results reveal a ruby pressure scale at low temperatures that differs by 6% from the best available ruby scale at room T. We also use ruby fluorescence to characterize the pressure inhomogeneity and anisotropy in two representative and commonly used pressure media, helium and methanol:ethanol 4:1, under the same preparation conditions for pressures up to 20 GPa at T = 5 K. Contrary to the accepted wisdom, both media show equal levels of pressure inhomogeneity measured over the same area, with a consistent {Delta}P/P per unit area of {+-}1.8?%/(10{sup 4}{mu}m{sup 2}) from 0 to 20 GPa. The helium medium shows an essentially constant deviatoric stress of 0.021{+-}/{+-}0.011 GPa up to 16 GPa, while the methanol:ethanol mixture shows a similar level of anisotropy up to 10 GPa, above which the anisotropy increases. The quality of both pressure media is further examined under the more stringent requirements of single crystal x-ray diffraction at cryogenic temperature. For such experiments we conclude that the ratio of sample-to-pressure chamber volume is a critical parameter in maintaining sample quality at high pressure, and may affect the choice of pressure medium.

  9. Helium temperature measurements in a hot filament magnetic mirror plasma using high resolution Doppler spectroscopy

    NASA Astrophysics Data System (ADS)

    Knott, S.; McCarthy, P. J.; Ruth, A. A.

    2016-09-01

    Langmuir probe and spectroscopic diagnostics are used to routinely measure electron temperature and density over a wide operating range in a reconfigured Double Plasma device at University College Cork, Ireland. The helium plasma, generated through thermionic emission from a negatively biased tungsten filament, is confined by an axisymmetric magnetic mirror configuration using two stacks of NdFeB permanent magnets, each of length 20 cm and diameter 3 cm placed just outside the 15 mm water cooling jacket enclosing a cylindrical vacuum vessel of internal diameter 25 cm. Plasma light is analysed using a Fourier Transform-type Bruker spectrometer with a highest achievable resolution of 0.08 cm-1 . In the present work, the conventional assumption of room temperature ions in the analysis of Langmuir probe data from low temperature plasmas is examined critically using Doppler spectroscopy of the 468.6 nm He II line. Results for ion temperatures obtained from spectroscopic data for a variety of engineering parameters (discharge voltage, gas pressure and plasma current) will be presented.

  10. High Pressure Composite Overwrapped Pressure Vessel (COPV) Development Tests at Cryogenic Temperatures

    NASA Technical Reports Server (NTRS)

    Ray, David M.; Greene, Nathanael J.; Revilock, Duane; Sneddon, Kirk; Anselmo, Estelle

    2008-01-01

    Development tests were conducted to evaluate the performance of 2 COPV designs at cryogenic temperatures. This allows for risk reductions for critical components for a Gaseous Helium (GHe) Pressurization Subsystem for an Advanced Propulsion System (APS) which is being proposed for NASA s Constellation project and future exploration missions. It is considered an advanced system since it uses Liquid Methane (LCH4) as the fuel and Liquid Oxygen (LO2) as the oxidizer for the propellant combination mixture. To avoid heating of the propellants to prevent boil-off, the GHe will be stored at subcooled temperatures equivalent to the LO2 temperature. Another advantage of storing GHe at cryogenic temperatures is that more mass of the pressurized GHe can be charged in to a vessel with a smaller volume, hence a smaller COPV, and this creates a significant weight savings versus gases at ambient temperatures. The major challenge of this test plan is to verify that a COPV can safely be used for spacecraft applications to store GHe at a Maximum Operating Pressure (MOP) of 4,500 psig at 140R to 160R (-320 F to -300 F). The COPVs for these tests were provided by ARDE , Inc. who developed a resin system to use at cryogenic conditions and has the capabilities to perform high pressure testing with LN2.

  11. High-Pressure Lightweight Thrusters

    NASA Technical Reports Server (NTRS)

    Holmes, Richard; McKechnie, Timothy; Shchetkovskiy, Anatoliy; Smirnov, Alexander

    2013-01-01

    Returning samples of Martian soil and rock to Earth is of great interest to scientists. There were numerous studies to evaluate Mars Sample Return (MSR) mission architectures, technology needs, development plans, and requirements. The largest propulsion risk element of the MSR mission is the Mars Ascent Vehicle (MAV). Along with the baseline solid-propellant vehicle, liquid propellants have been considered. Similar requirements apply to other lander ascent engines and reaction control systems. The performance of current state-ofthe- art liquid propellant engines can be significantly improved by increasing both combustion temperature and pressure. Pump-fed propulsion is suggested for a single-stage bipropellant MAV. Achieving a 90-percent stage propellant fraction is thought to be possible on a 100-kg scale, including sufficient thrust for lifting off Mars. To increase the performance of storable bipropellant rocket engines, a high-pressure, lightweight combustion chamber was designed. Iridium liner electrodeposition was investigated on complex-shaped thrust chamber mandrels. Dense, uniform iridium liners were produced on chamber and cylindrical mandrels. Carbon/carbon composite (C/C) structures were braided over iridium-lined mandrels and densified by chemical vapor infiltration. Niobium deposition was evaluated for forming a metallic attachment flange on the carbon/ carbon structure. The new thrust chamber was designed to exceed state-of-the-art performance, and was manufactured with an 83-percent weight savings. High-performance C/Cs possess a unique set of properties that make them desirable materials for high-temperature structures used in rocket propulsion components, hypersonic vehicles, and aircraft brakes. In particular, more attention is focused on 3D braided C/Cs due to their mesh-work structure. Research on the properties of C/Cs has shown that the strength of composites is strongly affected by the fiber-matrix interfacial bonding, and that weakening

  12. A compact bellows-driven diamond anvil cell for high-pressure, low-temperature magnetic measurements.

    PubMed

    Feng, Yejun; Silevitch, D M; Rosenbaum, T F

    2014-03-01

    We present the design of an efficient bellows-controlled diamond anvil cell that is optimized for use inside the bores of high-field superconducting magnets in helium-3 cryostats, dilution refrigerators, and commercial physical property measurement systems. Design of this non-magnetic pressure cell focuses on in situ pressure tuning and measurement by means of a helium-filled bellows actuator and fiber-coupled ruby fluorescence spectroscopy, respectively. We demonstrate the utility of this pressure cell with ac susceptibility measurements of superconducting, ferromagnetic, and antiferromagnetic phase transitions to pressures exceeding 8 GPa. This cell provides an opportunity to probe charge and magnetic order continuously and with high resolution in the three-dimensional Magnetic Field-Pressure-Temperature parameter space.

  13. A compact bellows-driven diamond anvil cell for high-pressure, low-temperature magnetic measurements

    NASA Astrophysics Data System (ADS)

    Feng, Yejun; Silevitch, D. M.; Rosenbaum, T. F.

    2014-03-01

    We present the design of an efficient bellows-controlled diamond anvil cell that is optimized for use inside the bores of high-field superconducting magnets in helium-3 cryostats, dilution refrigerators, and commercial physical property measurement systems. Design of this non-magnetic pressure cell focuses on in situ pressure tuning and measurement by means of a helium-filled bellows actuator and fiber-coupled ruby fluorescence spectroscopy, respectively. We demonstrate the utility of this pressure cell with ac susceptibility measurements of superconducting, ferromagnetic, and antiferromagnetic phase transitions to pressures exceeding 8 GPa. This cell provides an opportunity to probe charge and magnetic order continuously and with high resolution in the three-dimensional Magnetic Field-Pressure-Temperature parameter space.

  14. Vorticity matching in superfluid helium

    NASA Astrophysics Data System (ADS)

    Samuels, David C.

    1991-12-01

    Recent experiments have rekindled interest in high Reynolds number flows using superfluid helium. In a continuing series of experiments, the flow of helium II through various devices (smooth pipes, corrugated pipes, valves, venturies, turbine flowmeters, and coanda flowmeters for example) was investigated. In all cases, the measured values (typically, mass flow rates and pressure drops) were found to be well described by classical relations for high Reynolds flows. This is unexpected since helium II consists of two interpenetrating fluids; one fluid with nonzero viscosity (the normal fluid) and one with zero viscosity (the superfluid). Only the normal fluid component should directly obey classical relations. Since the experiments listed above only measure the external behavior of the flow (i.e., pressure drops over devices), there is a great deal of room for interpretation of their results. One possible interpretation is that in turbulent flows the normal fluid and the superfluid velocity fields are somehow 'locked' together, presumably by the mutual friction force between the superfluid vortex filaments and the normal fluid. We refer to this locking together of the two fluids as 'vorticity matching.'

  15. Manufacturing Diamond Under Very High Pressure

    NASA Technical Reports Server (NTRS)

    Voronov, Oleg

    2007-01-01

    A process for manufacturing bulk diamond has been made practical by the invention of the High Pressure and Temperature Apparatus capable of applying the combination of very high temperature and high pressure needed to melt carbon in a sufficiently large volume. The apparatus includes a reaction cell wherein a controlled static pressure as high as 20 GPa and a controlled temperature as high as 5,000 C can be maintained.

  16. Risk Factors for High Blood Pressure

    MedlinePlus

    ... to achieve target blood pressure goals with treatment. Overweight You are more likely to develop prehypertension or high blood pressure if you’re overweight or obese . The terms “overweight” and “obese” refer ...

  17. Diagnostics of a supersonic jet in a high-pressure background by infrared absorption

    NASA Astrophysics Data System (ADS)

    Baldacchini, G.; Marchetti, S.; Montelatici, V.

    1982-10-01

    Using a diode laser we have measured infrared absorption of molecular beams of ammonia and freon-12, expanding in a volume evacuated at relatively high pressures (10 -4-10 -2 bar). The effects of the background gas seem to be negligible. We observed large deviations from a Boltzman rotational energy distribution, as well as the formation of molecular complexes. Rotational temperatures as low as 10 K have been obtained in a beam of freon-12 mixed with helium.

  18. Properties of materials in high pressure hydrogen at cryogenic, room, and elevated temperatures

    NASA Technical Reports Server (NTRS)

    Harris, J. A., Jr.; Vanwanderham, M. C.

    1973-01-01

    Various tests were conducted to determine the mechanical properties of 12 alloys that are commonly used or proposed for use in pressurized gaseous hydrogen or hydrogen containing environments. Properties determined in the hydrogen environments were compared to properties determined in a pure helium environment at the same conditions to establish environmental degradation. The specific mechanical properties tested include: high-cycle fatigue, low-cycle fatigue, fracture mechanics, creep-rupture, and tensile.

  19. Helium damage and helium effusion in fully stabilised zirconia

    NASA Astrophysics Data System (ADS)

    Damen, P. M. G.; Matzke, Hj.; Ronchi, C.; Hiernaut, J.-P.; Wiss, T.; Fromknecht, R.; van Veen, A.; Labohm, F.

    2002-05-01

    Fully stabilised zirconia (FSZ) samples have been implanted with helium-ions of different energies (200 keV and 1 MeV) and with different fluences (1.4×10 13-1.4×10 16 He +/cm 2). Neutron depth profiling (NDP) for different annealing temperatures and effusion experiments in two different experimental systems with different thermal annealings have been performed on these samples. The samples were analysed by electron microscopy during the various annealing stages. For the low-fluence samples, the diffusion of helium is probably caused by vacancy assisted interstitial diffusion with an activation energy of 1.6 eV. In the highest fluence samples probably high pressure bubbles are formed during thermal annealing.

  20. High blood pressure in women.

    PubMed

    Calhoun, D A; Oparil, S

    1997-01-01

    There is a sexual dimorphism in blood pressure of humans and experimental animals: males tend to have higher blood pressure than females with functional ovaries, while ovariectomy or menopause tends to abolish the sexual dimorphism and cause females to develop a "male" pattern of blood pressure. Hypertensive male laboratory animals tend to have NaCl-sensitive blood pressure, while females are NaCl resistant unless their ovaries are removed, in which case NaCl sensitivity appears. The hormonal basis of NaCl sensitivity of blood pressure and of the sexual dimorphism of hypertension remains to be defined. Synthetic estrogens and progestins, as found in oral contraceptives, tend to elevate blood pressure, while naturally occurring estrogens lower it, or have no effect. Hypertension increases cardiovascular risk in women, as well as men, although the benefits of antihypertensive treatment have been more difficult to demonstrate in women. In the population of the United States, women are more aware of their hypertension, more likely to be treated medically, and more likely to have their blood pressure controlled.

  1. High pressure pulsed capillary viscometry

    NASA Technical Reports Server (NTRS)

    Smith, R. L.; Walowitt, J. A.; Pan, C. H. T.

    1972-01-01

    An analytical and test program was conducted in order to establish the feasibility of a multichamber pulsed-capillary viscometer. The initial design incorporated a piston, ram, and seals which produced measured pulses up to 30,000 psi in the closed chamber system. Pressure pulses from one to ten milliseconds were investigated in a system volume of 1 cuin. Four test fluids: a MIL-L-7808, a 5P4E polyphenyl ether, a MIL-L-23699A, and a synthetic hydrocarbon were examined in the test pressure assembly. The pressure-viscosity coefficient and viscosity delay time were determined for the MIL-L-7808 lubricant tested.

  2. The effects of proton irradiation on the microstructural and mechanical property evolution of inconel X-750 with high concentrations of helium

    NASA Astrophysics Data System (ADS)

    Judge, C. D.; Bhakhri, V.; Jiao, Z.; Klassen, R. J.; Was, G.; Botton, G. A.; Griffiths, M.

    2017-08-01

    Ni-based alloys, which are used in nuclear applications with a high thermal flux, are shown to contain a high density of helium bubbles within the matrix and aligned along grain boundaries, resulting in lost strength and ductility. In the current investigation, material with and without helium is irradiated with protons up to approximately 60 dpa and 18 000 appm helium. With the use of advanced microscopy and nano-indentation, the microstructural evolution and mechanical hardening has been characterized. The addition of helium decreases the rate of disordering of the gamma prime phase, and suppresses void swelling by forming a region with a high density of helium bubbles, and thereby inhibiting the mobility of freely-migrating point defects. Mechanical hardening from proton-irradiation is consistent with neutron-irradiated Inconel X-750 and Alloy 718.

  3. Simulation study on retention and reflection from tungsten carbide under high fluence of helium ions

    NASA Astrophysics Data System (ADS)

    Ono, T.; Kawamura, T.; Kenmotsu, T.; Yamamura, Y.

    2001-03-01

    We have studied, with a Monte Carlo simulation code ACAT-DIFFUSE, the fluence-dependence of the amount of helium atoms retained in tungsten carbide at room temperature under helium ion bombardment. The retention behavior may be understood qualitatively in terms of irradiation-dependent diffusion coefficient assumed and range. The re-emission, reflection and sputtering from tungsten carbide under helium ion irradiation were derived and compared with each other. We have discussed the retention curves for incident energy of 5 keV at incident angles of 0° and 80° and of 500 eV at 0°. The energy spectra of helium atoms reflected from tungsten carbide for incident energy of 500 eV at 0° and 80° were compared with those from graphite and tungsten.

  4. Statistical mechanics of light elements at high pressure. VII - A perturbative free energy for arbitrary mixtures of H and He

    NASA Technical Reports Server (NTRS)

    Hubbard, W. B.; Dewitt, H. E.

    1985-01-01

    A model free energy is presented which accurately represents results from 45 high-precision Monte Carlo calculations of the thermodynamics of hydrogen-helium mixtures at pressures of astrophysical and planetophysical interest. The free energy is calculated using free-electron perturbation theory (dielectric function theory), and is an extension of the expression given in an earlier paper in this series. However, it fits the Monte Carlo results more accurately, and is valid for the full range of compositions from pure hydrogen to pure helium. Using the new free energy, the phase diagram of mixtures of liquid metallic hydrogen and helium is calculated and compared with earlier results. Sample results for mixing volumes are also presented, and the new free energy expression is used to compute a theoretical Jovian adiabat and compare the adiabat with results from three-dimensional Thomas-Fermi-Dirac theory. The present theory gives slightly higher densities at pressures of about 10 megabars.

  5. Statistical mechanics of light elements at high pressure. VII - A perturbative free energy for arbitrary mixtures of H and He

    NASA Technical Reports Server (NTRS)

    Hubbard, W. B.; Dewitt, H. E.

    1985-01-01

    A model free energy is presented which accurately represents results from 45 high-precision Monte Carlo calculations of the thermodynamics of hydrogen-helium mixtures at pressures of astrophysical and planetophysical interest. The free energy is calculated using free-electron perturbation theory (dielectric function theory), and is an extension of the expression given in an earlier paper in this series. However, it fits the Monte Carlo results more accurately, and is valid for the full range of compositions from pure hydrogen to pure helium. Using the new free energy, the phase diagram of mixtures of liquid metallic hydrogen and helium is calculated and compared with earlier results. Sample results for mixing volumes are also presented, and the new free energy expression is used to compute a theoretical Jovian adiabat and compare the adiabat with results from three-dimensional Thomas-Fermi-Dirac theory. The present theory gives slightly higher densities at pressures of about 10 megabars.

  6. Generation of reactive oxygen and nitrogen species and its effects on DNA damage in lung cancer cells exposed to atmospheric pressure helium/oxygen plasma jets

    NASA Astrophysics Data System (ADS)

    Chung, Tae Hun; Joh, Hea Min; Kim, Sun Ja; Choi, Ji Ye; Kang, Tae-Hong

    2016-09-01

    We investigated the effects of the operating parameters on the generation of reactive oxygen and nitrogen species (RONS) in the gas and liquid phases exposed to atmospheric pressure a pulsed-dc helium plasma jets. The densities of reactive species including OH radicals were obtained at the plasma-liquid surface and inside the plasma-treated liquids using ultraviolet absorption spectroscopy and chemical probe method. And the nitrite concentration was detected by Griess assay. The data are very suggestive that there is a strong correlation among the production of RONS in the plasmas and liquids. Exposure of plasma to cancer cells increases the cellular levels of RONS, which has been linked to apoptosis and the damage of cellular proteins, and may also indirectly cause structural damage to DNA. To identify the correlation between the production of RONS in cells and plasmas, various assay analyses were performed on plasma treated human lung cancer cells (A549) cells. In addition, the effect of additive oxygen gas on the plasma-induced oxidative stress in cancer cells was investigated. It was observed that DNA damage was significantly increased with helium/oxygen plasma compared to with pure helium plasma.

  7. Photoionization study of doubly-excited helium at ultra-high resolution

    SciTech Connect

    Kaindl, G.; Schulz, K.; Domke, M.

    1997-04-01

    Ever since the pioneering work of Madden & Codling and Cooper, Fano & Prats on doubly-excited helium in the early sixties, this system may be considered as prototypical for the study of electron-electron correlations. More detailed insight into these states could be reached only much later, when improved theoretical calculations of the optically-excited {sup 1}P{sup 0} double-excitation states became available and sufficiently high energy resolution ({delta}E=4.0 meV) was achieved. This allowed a systematic investigation of the double-excitation resonances of He up to excitation energies close to the double-ionization threshold, I{sub infinity}=79.003 eV, which stimulated renewed theoretical interest into these correlated electron states. The authors report here on striking progress in energy resolution in this grazing-incidence photon-energy range of grating monochromators and its application to hitherto unobservable states of doubly-excited He. By monitoring an extremely narrow double-excitation resonance of He, with a theoretical lifetime width of less than or equal to 5 {mu}eV, a resolution of {delta}E=1.0 meV (FWHM) at 64.1 eV could be achieved. This ultra-high spectral resolution, combined with high photon flux, allowed the investigation of new Rydberg resonances below the N=3 ionization threshold, I{sub 3}, as well as a detailed comparison with ab-initio calculations.

  8. Helium beam shadowing for high spatial resolution patterning of antibodies on microstructured diagnostic surfaces.

    PubMed

    Cacao, Eliedonna; Sherlock, Tim; Nasrullah, Azeem; Kemper, Steven; Knoop, Jennifer; Kourentzi, Katerina; Ruchhoeft, Paul; Stein, Gila E; Atmar, Robert L; Willson, Richard C

    2013-12-01

    We have developed a technique for the high-resolution, self-aligning, and high-throughput patterning of antibody binding functionality on surfaces by selectively changing the reactivity of protein-coated surfaces in specific regions of a workpiece with a beam of energetic helium particles. The exposed areas are passivated with bovine serum albumin (BSA) and no longer bind the antigen. We demonstrate that patterns can be formed (1) by using a stencil mask with etched openings that forms a patterned exposure, or (2) by using angled exposure to cast shadows of existing raised microstructures on the surface to form self-aligned patterns. We demonstrate the efficacy of this process through the patterning of anti-lysozyme, anti-Norwalk virus, and anti-Escherichia coli antibodies and the subsequent detection of each of their targets by the enzyme-mediated formation of colored or silver deposits, and also by binding of gold nanoparticles. The process allows for the patterning of three-dimensional structures by inclining the sample relative to the beam so that the shadowed regions remain unaltered. We demonstrate that the resolution of the patterning process is of the order of hundreds of nanometers, and that the approach is well-suited for high throughput patterning.

  9. Helium beam shadowing for high spatial resolution patterning of antibodies on microstructured diagnostic surfaces

    PubMed Central

    Cacao, Eliedonna; Sherlock, Tim; Nasrullah, Azeem; Kemper, Steven; Knoop, Jennifer; Kourentzi, Katerina; Ruchhoeft, Paul; Stein, Gila E; Atmar, Robert L; Willson, Richard C

    2013-01-01

    Abstract We have developed a technique for the high-resolution, self-aligning, and high-throughput patterning of antibody binding functionality on surfaces by selectively changing the reactivity of protein-coated surfaces in specific regions of a workpiece with a beam of energetic helium particles. The exposed areas are passivated with bovine serum albumin (BSA) and no longer bind the antigen. We demonstrate that patterns can be formed (1) by using a stencil mask with etched openings that forms a patterned exposure, or (2) by using angled exposure to cast shadows of existing raised microstructures on the surface to form self-aligned patterns. We demonstrate the efficacy of this process through the patterning of anti-lysozyme, anti-Norwalk virus, and anti-Escherichia coli antibodies and the subsequent detection of each of their targets by the enzyme-mediated formation of colored or silver deposits, and also by binding of gold nanoparticles. The process allows for the patterning of three-dimensional structures by inclining the sample relative to the beam so that the shadowed regions remain unaltered. We demonstrate that the resolution of the patterning process is of the order of hundreds of nanometers, and that the approach is well-suited for high throughput patterning. PMID:24706125

  10. Confined helium on Lagrange meshes.

    PubMed

    Baye, D; Dohet-Eraly, J

    2015-12-21

    The Lagrange-mesh method has the simplicity of a calculation on a mesh and can have the accuracy of a variational method. It is applied to the study of a confined helium atom. Two types of confinement are considered. Soft confinements by potentials are studied in perimetric coordinates. Hard confinement in impenetrable spherical cavities is studied in a system of rescaled perimetric coordinates varying in [0,1] intervals. Energies and mean values of the distances between electrons and between an electron and the helium nucleus are calculated. A high accuracy of 11 to 15 significant figures is obtained with small computing times. Pressures acting on the confined atom are also computed. For sphere radii smaller than 1, their relative accuracies are better than 10(-10). For larger radii up to 10, they progressively decrease to 10(-3), still improving the best literature results.

  11. Optical calibration of pressure sensors for high pressures and temperatures

    SciTech Connect

    Goncharov, Alexander F.; Zaug, Joseph M.; Crowhurst, Jonathan C.; Gregoryanz, Eugene

    2005-05-01

    We present the results of Raman-scattering measurements of diamond ({sup 12}C) and of cubic boron nitride, and fluorescence measurements of ruby, Sm:yttrium aluminum garnet (Sm:YAG), and SrB{sub 4}O{sub 7}:Sm{sup 2+} in the diamond anvil cell at high pressures and temperatures. These measurements were accompanied by synchrotron x-ray-diffraction measurements on gold. We have extended the room-temperature calibration of Sm:YAG in a quasihydrostatic regime up to 100 GPa. The ruby scale is found to systematically underestimate pressure at high pressures and temperatures compared with all the other sensors. On this basis, we propose an alternative high-temperature ruby pressure scale that is valid to at least 100 GPa and 850 K.

  12. High pressure synthesis gas conversion. Final report

    SciTech Connect

    Not Available

    1993-05-01

    The purpose of this research project is to build and test a high pressure fermentation system for the production of ethanol from synthesis gas. The fermenters, pumps, controls, and analytical system were procured or fabricated and assembled in our laboratory. This system was then used to determine the effects of high pressure on growth and ethanol production by Clostridium ljungdahlii. The limits of cell concentration and mass transport relationships were found in CSTR and immobilized cell reactors (ICR). The minimum retention times and reactor volumes were found for ethanol production in these reactors. A maximum operating pressure of 150 psig has been shown to be possible for C. ljungdahlli with the medium of Phillips et al. This medium was developed for atmospheric pressure operation in the CSTR to yield maximum ethanol concentrations and thus is not best for operation at elevated pressures. It is recommended that a medium development study be performed for C. ljungdahlii at increased pressure. Cell concentration, gas conversion and product concentration profiles were presented for C. ljungdahlii as a function of gas flow rate, the variable which affects bacterium performance the most. This pressure was chosen as a representative pressure over the 0--150 psig operating pressure range for the bacterium. Increased pressure negatively affected ethanol productivity probably due to the fact that medium composition was designed for atmospheric pressure operation. Medium development at increased pressure is necessary for high pressure development of the system.

  13. The effect of high-pressure gases on the solubility and crystallization of L-isoleucine

    NASA Astrophysics Data System (ADS)

    Furuta, Satoshi; Rousseau, Ronald W.; Teja, Amyn S.

    1995-02-01

    The effect of dissolved gases on the morphology and purity of L-isoleucine crystals obtained by cooling crystallization from aqueous solutions was studied. The system investigated consisted of L-isoleucine, containing small amounts of L-leucine and L-valine. The presence of high-pressure carbon dioxide, nitrous oxide, and freon-22 caused a decrease in the solubility of the amino acid by about 10%; whereas the solubility remained the same in the presence of high-pressure helium. The morphology of L-isoleucine crystals obtained by cooling crystallization of the solutions remained unchanged with or without the dissolved gases, as did the amount of the impurities present.

  14. High Precision Pressure Measurement with a Funnel

    ERIC Educational Resources Information Center

    Lopez-Arias, T.; Gratton, L. M.; Oss, S.

    2008-01-01

    A simple experimental device for high precision differential pressure measurements is presented. Its working mechanism recalls that of a hydraulic press, where pressure is supplied by insufflating air under a funnel. As an application, we measure air pressure inside a soap bubble. The soap bubble is inflated and connected to a funnel which is…

  15. High Precision Pressure Measurement with a Funnel

    ERIC Educational Resources Information Center

    Lopez-Arias, T.; Gratton, L. M.; Oss, S.

    2008-01-01

    A simple experimental device for high precision differential pressure measurements is presented. Its working mechanism recalls that of a hydraulic press, where pressure is supplied by insufflating air under a funnel. As an application, we measure air pressure inside a soap bubble. The soap bubble is inflated and connected to a funnel which is…

  16. Surface studies and implanted helium measurements following NOVA high-yield DT experiments

    SciTech Connect

    Stoyer, M.A.; Hudson, G.B.

    1997-02-18

    This paper presents the results of three March 6, 1996 direct-drive high-yield DT NOVA experiments and provides `proof-of-principal` results for the quantitative measurement of energetic He ions. Semiconductor quality Si wafers and an amorphous carbon wafer were exposed to NOVA high-yield implosions. Surface damage was sub-micron in general, although the surface ablation was slightly greater for the carbon wafer than for the Si wafers. Melting of a thin ({approx} 0.1{mu}) layer of Si was evident from microscopic investigation. Electron microscopy indicated melted blobs of many different metals (e.g. Al, Au, Ta, Fe alloys, Cu and even Cd) on the surfaces. The yield measured by determining the numbers of atoms of implanted {sup 4}He and {sup 3}He indicate the number of DT fusions to be 9.1({plus_minus}2.3) X 10{sup 12} and DD fusions to be 4.8({plus_minus}1.0) x 10{sup 10}, respectively. The helium DT fusion yield is slightly lower than that of the Cu activation measurement, which was 1.3({plus_minus}0.l) x 10{sup 13} DT fusions.

  17. Metallicity of boron carbides at high pressure

    NASA Astrophysics Data System (ADS)

    Dekura, Haruhiko; Shirai, Koun; Yanase, Akira

    2010-03-01

    Electronic structure of semiconducting boron carbide at high pressure has been theoretically investigated, because of interests in the positive pressure dependence of resistivity, in the gap closure, and in the phase transition. The most simplest form B12(CCC) is assumed. Under assumptions of hydrostatic pressure and neglecting finite-temperature effects, boron carbide is quite stable at high pressure. The crystal of boron carbide is stable at least until a pressure higher than previous experiments showed. The gap closure occurs only after p=600 GPa on the assumption of the original crystal symmetry. In the low pressure regime, the pressure dependence of the energy gap almost diminishes, which is an exceptional case for semiconductors, which could be one of reasons for the positive pressure dependence of resistivity. A monotonous increase in the apex angle of rhombohedron suggests that the covalent bond continues to increase. The C chain inserted in the main diagonal of rhombohedral structure is the chief reason of this stability.

  18. High-pressure fiber optic acoustic sensor

    NASA Astrophysics Data System (ADS)

    Huang, Zhengyu; Deng, Jiangdong; Peng, Wei; Pickrell, Gary R.; Wang, Anbo

    2004-12-01

    This paper describes a diaphragm-based external Fabry-Perot interferometric (EFPI) fiber acoustic sensor with pressure-isolation structure. The structure minimizes the crosstalk generated by environmental pressure while enables considerable amount of acoustic signal power being delivered to the sensor, which allows the sensor to work in high-pressure environment. The detailed analysis on sensor design, pressure isolation and sensor fabrication as well as sensor performance are presented.

  19. NETL- High-Pressure Combustion Research Facility

    SciTech Connect

    2013-07-08

    NETL's High-Pressure Combustion Facility is a unique resource within the National Laboratories system. It provides the test capabilities needed to evaluate new combustion concepts for high-pressure, high-temperature hydrogen and natural gas turbines. These concepts will be critical for the next generation of ultra clean, ultra efficient power systems.

  20. NETL- High-Pressure Combustion Research Facility

    ScienceCinema

    None

    2016-07-12

    NETL's High-Pressure Combustion Facility is a unique resource within the National Laboratories system. It provides the test capabilities needed to evaluate new combustion concepts for high-pressure, high-temperature hydrogen and natural gas turbines. These concepts will be critical for the next generation of ultra clean, ultra efficient power systems.