Science.gov

Sample records for high pressure metallization

  1. High Pressure Solution Kinetics of Metal Complexes.

    ERIC Educational Resources Information Center

    Suvachittanont, Surapong

    1983-01-01

    Describes use of activation volumes derived from the effect of pressure reaction rates in aiding the understanding of reaction mechanism. Topics discussed include determination and interpretation of activation volumes, high pressure equipment/techniques, and application of activation volumes in mechanistic elucidation of several inorganic…

  2. Osmium Metal Studied under High Pressure and Nonhydrostatic Stress

    SciTech Connect

    Weinberger,M.; Tolbert, S.; Kavner, A.

    2008-01-01

    Interest in osmium as an ultra-incompressible material and as an analog for the behavior of iron at high pressure has inspired recent studies of its mechanical properties. We have measured elastic and plastic deformation of Os metal at high pressures using in situ high pressure x-ray diffraction in the radial geometry. We show that Os has the highest yield strength observed for any pure metal, supporting up to 10 GPa at a pressure of 26 GPa. Furthermore, our data indicate changes in the nonhydrostatic apparent c/a ratio and clear lattice preferred orientation effects at pressures above 15 GPa.

  3. Superconductivity in the metallic elements at high pressures

    NASA Astrophysics Data System (ADS)

    Hamlin, J. J.

    2015-07-01

    Although the highest superconducting critical temperature, Tc , found in an elemental solid at ambient pressure is 9.2 K (niobium), under the application of ultra-high pressures, several elements exhibit Tc values near or above 20 K. This review includes a survey of the occurrence and understanding of pressure-induced superconductivity in the subset of elements that are metallic at ambient pressure. A particular focus is directed towards those elements that display the highest superconducting critical temperatures or exhibit substantial increases in Tc with pressure. A separate article in this issue by Shimizu will cover pressure-induced superconductivity in elements that are insulating at ambient pressure.

  4. Ignition of metals in high pressure oxygen

    NASA Technical Reports Server (NTRS)

    Bransford, J. W.

    1985-01-01

    A description of an experimental facility used to determine the ignition and combustion characteristics of metallic materials is given. The results obtained for aluminum 6061, 302 stainless steel, and the nickel alloy - N06625 are presented.

  5. High Pressure Synthesis of Transition Metal Carbonyls.

    ERIC Educational Resources Information Center

    Hagen, A. P.; And Others

    1979-01-01

    Presents an experiment which uses readily available starting materials and inexpensive equipment for synthesis of transition metal carbonyls at 1000 atm and which is intended to give students experience in techniques used in research and industry. Safety precautions are emphasized. (Author/SA)

  6. Rare-earth-metal nitridophosphates through high-pressure metathesis.

    PubMed

    Kloss, Simon David; Schnick, Wolfgang

    2015-09-14

    Developing a synthetic method to target an broad spectrum of unknown phases can lead to fascinating discoveries. The preparation of the first rare-earth-metal nitridophosphate LiNdP4 N8 is reported. High-pressure solid-state metathesis between LiPN2 and NdF3 was employed to yield a highly crystalline product. The in situ formed LiF is believed to act both as the thermodynamic driving force and as a flux to aiding single-crystal formation in dimensions suitable for crystal structure analysis. Magnetic properties stemming from Nd(3+) ions were measured by SQUID magnetometry. LiNdP4 N8 serves as a model system for the exploration of rare-earth-metal nitridophosphates that may even be expanded to transition metals. High-pressure metathesis enables the systematic study of these uncharted regions of nitride-based materials with unprecedented properties. PMID:26352033

  7. Rare-earth-metal nitridophosphates through high-pressure metathesis.

    PubMed

    Kloss, Simon David; Schnick, Wolfgang

    2015-09-14

    Developing a synthetic method to target an broad spectrum of unknown phases can lead to fascinating discoveries. The preparation of the first rare-earth-metal nitridophosphate LiNdP4 N8 is reported. High-pressure solid-state metathesis between LiPN2 and NdF3 was employed to yield a highly crystalline product. The in situ formed LiF is believed to act both as the thermodynamic driving force and as a flux to aiding single-crystal formation in dimensions suitable for crystal structure analysis. Magnetic properties stemming from Nd(3+) ions were measured by SQUID magnetometry. LiNdP4 N8 serves as a model system for the exploration of rare-earth-metal nitridophosphates that may even be expanded to transition metals. High-pressure metathesis enables the systematic study of these uncharted regions of nitride-based materials with unprecedented properties.

  8. Dynamic high pressure: Why it makes metallic fluid hydrogen

    NASA Astrophysics Data System (ADS)

    Nellis, W. J.

    2015-09-01

    Metallic fluid H has been made by dynamic compression decades after Wigner and Huntington (WH) predicted its existence in 1935. The density at which it was made is within a few percent of the density predicted by WH. Metallic fluid H was achieved by multiple-shock compression of liquid H2, which is quasi-isentropic and thermally equilibrated. That is, the compressions were isentropic but for enough temperature and entropy to drive the crossover to completion from H2 to H at 9-fold compression. The metallic fluid is highly degenerate: T/TF≈0.014. The basic ideas of dynamic compression, also known as supersonic, adiabatic, nonlinear hydrodynamics, were developed in the last half of the Nineteenth Century in European universities. Today dynamic compression is generally unfamiliar to the scientific community, which impedes general understanding as to why fluid H becomes metallic at a pressure observable in a laboratory. The purposes of this paper are to (i) present a brief review of dynamic compression and its affects on materials, (ii) review considerations that led to the sample holder designed specifically to make metallic fluid H, and (iii) present a brief inter-comparison of dynamic and static methods to achieve high pressure relative to their prospects for making metallic H.

  9. Metal/Silicate Partitioning at High Pressures and Temperatures

    NASA Technical Reports Server (NTRS)

    Shofner, G.; Campbell, A.; Danielson, L.; Righter, K.; Rahman, Z.

    2010-01-01

    The behavior of siderophile elements during metal-silicate segregation, and their resulting distributions provide insight into core formation processes. Determination of partition coefficients allows the calculation of element distributions that can be compared to established values of element abundances in the silicate (mantle) and metallic (core) portions of the Earth. Moderately siderophile elements, including W, are particularly useful in constraining core formation conditions because they are sensitive to variations in T, P, oxygen fugacity (fO2), and silicate composition. To constrain the effect of pressure on W metal/silicate partitioning, we performed experiments at high pressures and temperatures using a multi anvil press (MAP) at NASA Johnson Space Center and laser-heated diamond anvil cells (LHDAC) at the University of Maryland. Starting materials consisted of natural peridotite mixed with Fe and W metals. Pressure conditions in the MAP experiments ranged from 10 to 16 GPa at 2400 K. Pressures in the LHDAC experiments ranged from 26 to 58 GPa, and peak temperatures ranged up to 5000 K. LHDAC experimental run products were sectioned by focused ion beam (FIB) at NASA JSC. Run products were analyzed by electron microprobe using wavelength dispersive spectroscopy. Liquid metal/liquid silicate partition coefficients for W were calculated from element abundances determined by microprobe analyses, and corrected to a common fO2 condition of IW-2 assuming +4 valence for W. Within analytical uncertainties, W partitioning shows a flat trend with increasing pressure from 10 to 16 GPa. At higher pressures, W becomes more siderophile, with an increase in partition coefficient of approximately 0.5 log units.

  10. Thermal conductance of metal-diamond interfaces at high pressure.

    PubMed

    Hohensee, Gregory T; Wilson, R B; Cahill, David G

    2015-01-01

    The thermal conductance of interfaces between metals and diamond, which has a comparatively high Debye temperature, is often greater than can be accounted for by two-phonon processes. The high pressures achievable in a diamond anvil cell (DAC) can significantly extend the metal phonon density of states to higher frequencies, and can also suppress extrinsic effects by greatly stiffening interface bonding. Here we report time-domain thermoreflectance measurements of metal-diamond interface thermal conductance up to 50 GPa in the DAC for Pb, Au0.95Pd0.05, Pt and Al films deposited on type 1A natural [100] and type 2A synthetic [110] diamond anvils. In all cases, the thermal conductances increase weakly or saturate to similar values at high pressure. Our results suggest that anharmonic conductance at metal-diamond interfaces is controlled by partial transmission processes, where a diamond phonon that inelastically scatters at the interface absorbs or emits a metal phonon. PMID:25744853

  11. Thermal conductance of metal-diamond interfaces at high pressure.

    PubMed

    Hohensee, Gregory T; Wilson, R B; Cahill, David G

    2015-03-06

    The thermal conductance of interfaces between metals and diamond, which has a comparatively high Debye temperature, is often greater than can be accounted for by two-phonon processes. The high pressures achievable in a diamond anvil cell (DAC) can significantly extend the metal phonon density of states to higher frequencies, and can also suppress extrinsic effects by greatly stiffening interface bonding. Here we report time-domain thermoreflectance measurements of metal-diamond interface thermal conductance up to 50 GPa in the DAC for Pb, Au0.95Pd0.05, Pt and Al films deposited on type 1A natural [100] and type 2A synthetic [110] diamond anvils. In all cases, the thermal conductances increase weakly or saturate to similar values at high pressure. Our results suggest that anharmonic conductance at metal-diamond interfaces is controlled by partial transmission processes, where a diamond phonon that inelastically scatters at the interface absorbs or emits a metal phonon.

  12. Thermal conductance of metal-diamond interfaces at high pressure

    NASA Astrophysics Data System (ADS)

    Hohensee, Gregory T.; Wilson, R. B.; Cahill, David G.

    2015-03-01

    The thermal conductance of interfaces between metals and diamond, which has a comparatively high Debye temperature, is often greater than can be accounted for by two-phonon processes. The high pressures achievable in a diamond anvil cell (DAC) can significantly extend the metal phonon density of states to higher frequencies, and can also suppress extrinsic effects by greatly stiffening interface bonding. Here we report time-domain thermoreflectance measurements of metal-diamond interface thermal conductance up to 50 GPa in the DAC for Pb, Au0.95Pd0.05, Pt and Al films deposited on type 1A natural [100] and type 2A synthetic [110] diamond anvils. In all cases, the thermal conductances increase weakly or saturate to similar values at high pressure. Our results suggest that anharmonic conductance at metal-diamond interfaces is controlled by partial transmission processes, where a diamond phonon that inelastically scatters at the interface absorbs or emits a metal phonon.

  13. Magnetism In 3d Transition Metals at High Pressures

    SciTech Connect

    Iota, V

    2006-02-09

    This research project examined the changes in electronic and magnetic properties of transition metals and oxides under applied pressures, focusing on complex relationship between magnetism and phase stability in these correlated electron systems. As part of this LDRD project, we developed new measurement techniques and adapted synchrotron-based electronic and magnetic measurements for use in the diamond anvil cell. We have performed state-of-the-art X-ray spectroscopy experiments at the dedicated high-pressure beamline HP-CAT (Sector 16 Advanced Photon Source, Argonne National Laboratory), maintained in collaboration with of University of Nevada, Las Vegas and Geophysical Laboratory of The Carnegie Institution of Washington. Using these advanced measurements, we determined the evolution of the magnetic order in the ferromagnetic 3d transition metals (Fe, Co and Ni) under pressure, and found that at high densities, 3d band broadening results in diminished long range magnetic coupling. Our experiments have allowed us to paint a unified picture of the effects of pressure on the evolution of magnetic spin in 3d electron systems. The technical and scientific advances made during this LDRD project have been reported at a number of scientific meetings and conferences, and have been submitted for publication in technical journals. Both the technical advances and the physical understanding of correlated systems derived from this LDRD are being applied to research on the 4f and 5f electron systems under pressure.

  14. Soft metal plating enables hard metal seal to operate successfully in low temperature, high pressure environment

    NASA Technical Reports Server (NTRS)

    Lamvermeyer, D. J.

    1967-01-01

    Soft metal plating of hard metal lip seal enables successful operation of seal in a cryogenic fluid line under high pressure. The seal is coated with a thin film of 24 carat gold on the lip area to provide antigall and seal properties.

  15. Dynamic high pressure: why it makes metallic fluid hydrogen

    NASA Astrophysics Data System (ADS)

    Nellis, William

    2015-06-01

    Metallic fluid H (MFH) was made by dynamic compression decades after Wigner and Huntington (WH) predicted it in 1935. The density of MFH is within a few percent of the density predicted by WH. MFH was made by multiple-shock compression of liquid H2, which process is quasi-isentropic and thermally equilibrated. The compressions were isentropic but produced enough dissipation as temperature T and entropy S to drive the crossover from insulating H2 to metallic H at 9-fold compressed atomic H density. T and S were tuned by temporally shaping the applied pressure pulse such that H2 dissociated to H at sufficiently high density to make a highly degenerate metal. The basic ideas of dynamic compression, also known as supersonic, adiabatic, nonlinear hydrodynamics, were developed in the last half of the Nineteenth Century. Our purposes are to (i) present a brief review of dynamic compression and its affects on materials, (ii) review considerations that led to the sample holder designed specifically to make MFH, and (iii) present a inter-comparison of dynamic and static methods relative to their prospects for making metallic H.

  16. High pressure die casting of Fe-based metallic glass

    NASA Astrophysics Data System (ADS)

    Ramasamy, Parthiban; Szabo, Attila; Borzel, Stefan; Eckert, Jürgen; Stoica, Mihai; Bárdos, András

    2016-10-01

    Soft ferromagnetic Fe-based bulk metallic glass key-shaped specimens with a maximum and minimum width of 25.4 and 5 mm, respectively, were successfully produced using a high pressure die casting (HPDC) method, The influence of die material, alloy temperature and flow rate on the microstructure, thermal stability and soft ferromagnetic properties has been studied. The results suggest that a steel die in which the molten metal flows at low rate and high temperature can be used to produce completely glassy samples. This can be attributed to the laminar filling of the mold and to a lower heat transfer coefficient, which avoids the skin effect in the steel mold. In addition, magnetic measurements reveal that the amorphous structure of the material is maintained throughout the key-shaped samples. Although it is difficult to control the flow and cooling rate of the molten metal in the corners of the key due to different cross sections, this can be overcome by proper tool geometry. The present results confirm that HPDC is a suitable method for the casting of Fe-based bulk glassy alloys even with complex geometries for a broad range of applications.

  17. High pressure die casting of Fe-based metallic glass

    PubMed Central

    Ramasamy, Parthiban; Szabo, Attila; Borzel, Stefan; Eckert, Jürgen; Stoica, Mihai; Bárdos, András

    2016-01-01

    Soft ferromagnetic Fe-based bulk metallic glass key-shaped specimens with a maximum and minimum width of 25.4 and 5 mm, respectively, were successfully produced using a high pressure die casting (HPDC) method, The influence of die material, alloy temperature and flow rate on the microstructure, thermal stability and soft ferromagnetic properties has been studied. The results suggest that a steel die in which the molten metal flows at low rate and high temperature can be used to produce completely glassy samples. This can be attributed to the laminar filling of the mold and to a lower heat transfer coefficient, which avoids the skin effect in the steel mold. In addition, magnetic measurements reveal that the amorphous structure of the material is maintained throughout the key-shaped samples. Although it is difficult to control the flow and cooling rate of the molten metal in the corners of the key due to different cross sections, this can be overcome by proper tool geometry. The present results confirm that HPDC is a suitable method for the casting of Fe-based bulk glassy alloys even with complex geometries for a broad range of applications. PMID:27725780

  18. High Pressure/Temperature Metal Silicate Partitioning of Tungsten

    NASA Technical Reports Server (NTRS)

    Shofner, G. A.; Danielson, L.; Righter, K.; Campbell, A. J.

    2010-01-01

    The behavior of chemical elements during metal/silicate segregation and their resulting distribution in Earth's mantle and core provide insight into core formation processes. Experimental determination of partition coefficients allows calculations of element distributions that can be compared to accepted values of element abundances in the silicate (mantle) and metallic (core) portions of the Earth. Tungsten (W) is a moderately siderophile element and thus preferentially partitions into metal versus silicate under many planetary conditions. The partitioning behavior has been shown to vary with temperature, silicate composition, oxygen fugacity, and pressure. Most of the previous work on W partitioning has been conducted at 1-bar conditions or at relatively low pressures, i.e. <10 GPa, and in two cases at or near 20 GPa. According to those data, the stronger influences on the distribution coefficient of W are temperature, composition, and oxygen fugacity with a relatively slight influence in pressure. Predictions based on extrapolation of existing data and parameterizations suggest an increased pressured dependence on metal/ silicate partitioning of W at higher pressures 5. However, the dependence on pressure is not as well constrained as T, fO2, and silicate composition. This poses a problem because proposed equilibration pressures for core formation range from 27 to 50 GPa, falling well outside the experimental range, therefore requiring exptrapolation of a parametereized model. Higher pressure data are needed to improve our understanding of W partitioning at these more extreme conditions.

  19. Transport properties of liquid metal hydrogen under high pressures

    NASA Technical Reports Server (NTRS)

    Brown, R. C.; March, N. H.

    1972-01-01

    A theory is developed for the compressibility and transport properties of liquid metallic hydrogen, near to its melting point and under high pressure. The interionic force law is assumed to be of the screened Coulomb type, because hydrogen has no core electrons. The random phase approximation is used to obtain the structure factor S(k) of the system in terms of the Fourier transform of this force law. The long wavelenth limit of the structure factor S(o) is related to the compressibility, which is much lower than that of alkali metals at their melting points. The diffusion constant at the melting point is obtained in terms of the Debye frequency, using a frequency spectrum analogous with the phonon spectrum of a solid. A similar argument is used to obtain the combined shear and bulk viscosities, but these depend also on S(o). The transport coefficients are found to be about the same size as those of alkali metals at their melting points.

  20. Dislocations and Plasticity in bcc Transition Metals at High Pressure

    SciTech Connect

    Yang, L H; Tang, M; Moriarty, J A

    2009-01-23

    Using first-principles electronic structure calculations, quantum-based atomistic simulations and atomistically informed dislocation dynamics (DD) simulations, we have studied individual dislocation behavior and the multiscale modeling of single-crystal plasticity in the prototype bcc transition metals Ta, Mo and V under both ambient and high pressure conditions. The primary focus in this work is on the pressure-dependent structure, mobility and interaction of a/2<111> screw dislocations, which dominate the plastic deformation properties of these materials. At the electronic scale, first-principles calculations of elasticity, ideal strength and generalized stacking fault energy surfaces have been used to validate quantum-based multi-ion interatomic potentials. At the atomistic scale, these potentials have been used in flexible Green's function boundary condition simulations to study the core structure, Peierls stress {tau}{sub P}, thermally activated kink-pair formation and mobility below {tau}{sub P}, and phonon-drag mobility above {tau}{sub P}. These results have then been distilled into analytic velocity laws and used directly in predictive microscale DD simulations of flow stress and resolved yield stress over wide ranges of pressure, temperature and strain rate.

  1. High pressure behavior of 3d transition metal carbonates

    NASA Astrophysics Data System (ADS)

    Farfan, G. A.; Wang, S.; Boulard, E.; Mao, W. L.

    2012-12-01

    Understanding the behavior of carbon-rich phases in Earth's lower mantle is critical for modeling the global carbon cycle since the lower mantle may be the major repository for carbon in our planet. We were interested in the behavior of carbonates containing 3d transition metals, which can exhibit unusual properties at extreme conditions. Thus, we studied siderite (FeCO3) and rhodochrosite (MnCO3) at high pressure using a diamond anvil cell coupled with Raman spectroscopy, X-ray diffraction (XRD) and X-ray emission spectroscopy. In siderite we observed a high to low spin transition and associated volume collapse at approximately 46 GPa which is consistent with previous reports. Our Raman data show that the C-O bonds soften when the Fe2+ volume collapses (Farfan et al, 2012). In contrast, our XES results indicate that the Mn2+ in rhodochrosite does not undergo a spin transition like siderite up to 50 GPa. We observed a new Raman peak emerging above 48 GPa, which is a similar pressure at which a new structure was found in a previous XRD study.

  2. Pressure Resistance Welding of High Temperature Metallic Materials

    SciTech Connect

    N. Jerred; L. Zirker; I. Charit; J. Cole; M. Frary; D. Butt; M. Meyer; K. L. Murty

    2010-10-01

    Pressure Resistance Welding (PRW) is a solid state joining process used for various high temperature metallic materials (Oxide dispersion strengthened alloys of MA957, MA754; martensitic alloy HT-9, tungsten etc.) for advanced nuclear reactor applications. A new PRW machine has been installed at the Center for Advanced Energy Studies (CAES) in Idaho Falls for conducting joining research for nuclear applications. The key emphasis has been on understanding processing-microstructure-property relationships. Initial studies have shown that sound joints can be made between dissimilar materials such as MA957 alloy cladding tubes and HT-9 end plugs, and MA754 and HT-9 coupons. Limited burst testing of MA957/HT-9 joints carried out at various pressures up to 400oC has shown encouraging results in that the joint regions do not develop any cracking. Similar joint strength observations have also been made by performing simple bend tests. Detailed microstructural studies using SEM/EBSD tools and fatigue crack growth studies of MA754/HT-9 joints are ongoing.

  3. Reinvestigation of high pressure polymorphism in hafnium metal

    SciTech Connect

    Pandey, K. K. Sharma, Surinder M.; Gyanchandani, Jyoti; Dey, G. K.; Somayazulu, M.; Sikka, S. K.

    2014-06-21

    There has been a recent controversy about the high pressure polymorphism of Hafnium (Hf). Unlike, the earlier known α→ω structural transition at 38 ± 8 GPa, at ambient temperature, Hrubiak et al. [J. Appl. Phys. 111, 112612 (2012)] did not observe it till 51 GPa. They observed this transition only at elevated temperatures. We have reinvestigated the room temperature phase diagram of Hf, employing x-ray diffraction (XRD) and DFT based first principles calculations. Experimental investigations have been carried out on several pure and impure Hf samples and also with different pressure transmitting media. Besides demonstrating the significant role of impurity levels on the high pressure phase diagram of Hf, our studies re-establish room temperature α→ω transition at high pressures, even in quasi-hydrostatic environment. We observed this transition in pure Hf with equilibrium transition pressure P{sub o} = 44.5 GPa; however, with large hysteresis. The structural sequence, transition pressures, the lattice parameters, the c/a ratio and its variation with compression for the α and ω phases as predicted by our ab-initio scalar relativistic (SR) calculations are found to be in good agreement with our experimental results of pure Hf.

  4. Reinvestigation of high pressure polymorphism in hafnium metal

    NASA Astrophysics Data System (ADS)

    Pandey, K. K.; Gyanchandani, Jyoti; Somayazulu, M.; Dey, G. K.; Sharma, Surinder M.; Sikka, S. K.

    2014-06-01

    There has been a recent controversy about the high pressure polymorphism of Hafnium (Hf). Unlike, the earlier known α→ω structural transition at 38 ± 8 GPa, at ambient temperature, Hrubiak et al. [J. Appl. Phys. 111, 112612 (2012)] did not observe it till 51 GPa. They observed this transition only at elevated temperatures. We have reinvestigated the room temperature phase diagram of Hf, employing x-ray diffraction (XRD) and DFT based first principles calculations. Experimental investigations have been carried out on several pure and impure Hf samples and also with different pressure transmitting media. Besides demonstrating the significant role of impurity levels on the high pressure phase diagram of Hf, our studies re-establish room temperature α→ω transition at high pressures, even in quasi-hydrostatic environment. We observed this transition in pure Hf with equilibrium transition pressure Po = 44.5 GPa; however, with large hysteresis. The structural sequence, transition pressures, the lattice parameters, the c/a ratio and its variation with compression for the α and ω phases as predicted by our ab-initio scalar relativistic (SR) calculations are found to be in good agreement with our experimental results of pure Hf.

  5. Preparation of metal nanosuspensions by high-pressure DC-sputtering on running liquids

    SciTech Connect

    Wagener, M.; Murty, B.S.; Guenther, B.

    1997-09-01

    A modified VERL-process (vacuum evaporation on running liquids) employing high pressure magnetron sputtering has been used for the preparation of suspensions with metal nanoparticles. The method has been tested for Ag- and Fe-suspensions by varying the pressure of the Argon sputtering atmosphere in the range of 1 to 30 Pa. A narrow particle size distribution with a mean particle size ranging from 5--18 nm has been found. The mean particle size increases with increasing Argon pressure in the pressure range under investigation. A descriptive model for the process of particle formation as a function of sputtering gas pressure is given.

  6. Properties of high-density, well-ordered, and high-energy metallic glass phase designed by pressurized quenching

    NASA Astrophysics Data System (ADS)

    Miyazaki, Narumasa; Lo, Yu-Chieh; Wakeda, Masato; Ogata, Shigenobu

    2016-08-01

    We applied gigapascal-level compressive hydrostatic pressure to the melt-quenching process of metallic glass to obtain a unique high-pressure glass state with high density that is well-ordered yet has high energy. This state contradicts the common understanding that high-density, well-ordered metallic glass states have low energy. Through molecular dynamics simulations, we found that the high-pressure glass state of the metallic glass Zr50Cu40Al10 has a rich anti-free volume and that its relaxation is dominated by the annihilation of full icosahedra and the rich anti-free volume. The aging rate of the high-pressure metallic glass state (energy reduction rate) is almost the same as that of typical high-energy metallic glass, suggesting that it has a lifetime similar to that of a typical high-energy metallic glass that has been experimentally realized and reported previously [Wakeda et al., Sci. Rep. 5, 10545 (2015)]. Thus, the high-pressure phase can be realized even under the experimental cooling rate, suggesting its suitability for practical applications.

  7. High-temperature, high-pressure bonding of nested tubular metallic components

    DOEpatents

    Quinby, Thomas C.

    1980-01-01

    This invention is a tool for effecting high-temperature, high-compression bonding between the confronting faces of nested, tubular, metallic components. In a typical application, the tool is used to produce tubular target assemblies for irradiation in nuclear reactors or particle accelerators, the target assembly comprising a uranium foil and an aluminum-alloy substrate. The tool preferably is composed throughout of graphite. It comprises a tubular restraining member in which a mechanically expandable tubular core is mounted to form an annulus with the member. The components to be bonded are mounted in nested relation in the annulus. The expandable core is formed of individually movable, axially elongated segments whose outer faces cooperatively define a cylindrical pressing surface and whose inner faces cooperatively define two opposed, inwardly tapered, axial bores. Tapered rams extend respectively into the bores. The loaded tool is mounted in a conventional hot-press provided with evacuation means, heaters for maintaining its interior at bonding temperature, and hydraulic cylinders for maintaining a selected inwardly directed pressure on the tapered rams. With the hot-press evacuated and the loaded tool at the desired temperature, the cylinders are actuated to apply the selected pressure to the rams. The rams in turn expand the segmented core to maintain the nested components in compression against the restraining member. These conditions are maintained until the confronting faces of the nested components are joined in a continuous, uniform bond characterized by high thermal conductivity.

  8. High-temperature, high-pressure bonding of nested tubular metallic components

    DOEpatents

    Quinby, T.C.

    A tool is described for effecting high-temperature, high-compression bonding between the confronting faces of nested, tubular, metallic components. In a typical application, the tool is used to produce tubular target assemblies for irradiation in nuclear reactors or particle accelerators. The target assembly comprising a uranum foil and an aluninum-alloy substrate. The tool is composed of graphite. It comprises a tubular restraining member in which a mechanically expandable tubular core is mounted to form an annulus. The components to be bonded are mounted in nested relation in the annulus. The expandable core is formed of individually movable, axially elongated segments whose outer faces cooperatively define a cylindrical pressing surface and whose inner faces cooperatively define two opposed, inwardly tapered, axial bores. Tapered rams extend into the bores. The loaded tool is mounted in a conventional hot-press provided with evacuation means, heaters for maintaining its interior at bonding temperature, and hydraulic cylinders for maintaining a selected inwardly directed pressure on the tapered rams. With the hot-press evacuated and the loaded tool at the desired temperature, the cylinders are actuated to apply the selected pressure to the rams. The rams in turn expand the segmented core to maintain the nested components in compression against the restraining member. These conditions are maintained until the confronting faces of the nested components are joined in a continuous, uniform bond characterized by high thermal conductivity.

  9. Molecular Surface Chemistry by Metal Single Crystals and Nanoparticles from Vacuum to High Pressure.

    SciTech Connect

    Somorjai, Gabor A.; Park, Jeong Y.

    2008-04-05

    Model systems for studying molecular surface chemistry have evolved from single crystal surfaces at low pressure to colloidal nanoparticles at high pressure. Low pressure surface structure studies of platinum single crystals using molecular beam surface scattering and low energy electron diffraction techniques probe the unique activity of defects, steps and kinks at the surface for dissociation reactions (H-H, C-H, C-C, O{double_bond}O bonds). High-pressure investigations of platinum single crystals using sum frequency generation vibrational spectroscopy have revealed the presence and the nature of reaction intermediates. High pressure scanning tunneling microscopy of platinum single crystal surfaces showed adsorbate mobility during a catalytic reaction. Nanoparticle systems are used to determine the role of metal-oxide interfaces, site blocking and the role of surface structures in reactive surface chemistry. The size, shape and composition of nanoparticles play important roles in determining reaction activity and selectivity.

  10. Glass formation and cluster evolution in the rapidly solidified monatomic metallic liquid Ta under high pressure

    NASA Astrophysics Data System (ADS)

    Jiang, Dejun; Wen, Dadong; Tian, Zean; Liu, Rangsu

    2016-12-01

    Molecular dynamics (MD) simulations have been performed to examine the glass formation and cluster evolution during the rapid solidification of monatomic metallic liquid Ta under high pressure. The atomic structures in the systems are characterized by the radical distribution function (RDF), Honeycutt-Anderson (H-A) bond-type index method and cluster-type index method (CTIM). It is observed that the defective icosahedra play the critical role in the formation of Ta monatomic metallic glasses (MGs) rather than (12 0 12 0) perfect icosahedra, which have been identified as the basic local atomic units in many multi-component MGs. With the increase of pressure P, the fraction of icosahedral type clusters decreases remarkably in Ta MGs, while the fraction of bcc type clusters rises evidently. The evolution of vitrification degree (DSRO or DMRO) of the rapidly cooled metal Ta system further reveals that a higher pressure P is disadvantageous to the formation of Ta monatomic MGs. The weaker glass forming ability (GFA) of liquid metal Ta obtained under higher pressure P can be contributed to the decrease of DSRO or DMRO which is induced by increasing high pressure P to some extent.

  11. Metallization and Hall-effect of Mg{sub 2}Ge under high pressure

    SciTech Connect

    Li, Yuqiang; Gao, Yang; Han, Yonghao Liu, Cailong; Peng, Gang; Ke, Feng; Gao, Chunxiao; Wang, Qinglin; Ma, Yanzhang

    2015-10-05

    The electrical transport properties of Mg{sub 2}Ge under high pressure were studied with the in situ temperature-dependent resistivity and Hall-effect measurements. The theoretically predicted metallization of Mg{sub 2}Ge was definitely found around 7.4 GPa by the temperature-dependent resistivity measurement. Other two pressure-induced structural phase transitions were also reflected by the measurements. Hall-effect measurement showed that the dominant charge carrier in the metallic Mg{sub 2}Ge was hole, indicating the “bad metal” nature of Mg{sub 2}Ge. The Hall mobility and charge carrier concentration results pointed out that the electrical transport behavior in the antifluorite phase was controlled by the increase quantity of drifting electrons under high pressure, but in both anticotunnite and Ni{sub 2}In-type phases it was governed by the Hall mobility.

  12. High pressure metal-silicate partitioning of Ni, Co, V, Cr, Si, and O

    NASA Astrophysics Data System (ADS)

    Fischer, Rebecca A.; Nakajima, Yoichi; Campbell, Andrew J.; Frost, Daniel J.; Harries, Dennis; Langenhorst, Falko; Miyajima, Nobuyoshi; Pollok, Kilian; Rubie, David C.

    2015-10-01

    The distributions of major and minor elements in Earth's core and mantle were primarily established by high pressure, high temperature metal-silicate partitioning during core segregation. The partitioning behaviors of moderately siderophile elements can be used to constrain the pressure-temperature conditions of core formation and the core's composition. We performed experiments to study the partitioning of Ni, Co, V, Cr, Si, and O between silicate melt and Fe-rich metallic melt in a multianvil press and diamond anvil cell, up to 100 GPa and 5700 K. Combining our new results with data from 18 previous studies, we parameterized the effects of pressure, temperature, and metallic melt composition on partitioning. Ni and Co partitioning are insensitive to composition. At low pressures, these elements become less siderophile with increasing temperature, with this trend reversing above ∼45 GPa. V and Cr partitioning are much more sensitive to metallic melt composition and less sensitive to pressure. Partitioning of Si and O are insensitive to pressure, but with strong and moderate temperature dependences, respectively. Our new parameterizations of Ni and Co partitioning suggest that the Earth's distributions of these elements can be matched by single-stage core-mantle equilibration at 54 ± 5 GPa and 3300-3400 K. These conditions would result in 8.5 ± 1.4 wt% Si and 1.6 ± 0.3 wt% O in the core, compatible with the core's measured density. However, this single-stage model matches the Earth's V and Cr distributions less well. We also incorporated our parameterizations into models of multi-stage core formation over evolving pressure-temperature-oxygen fugacity conditions, reproducing the Earth's Ni and Co distributions while simultaneously producing a core whose light element composition is consistent with its density.

  13. High-pressure metallization of FeO and implications for the earth's core

    NASA Technical Reports Server (NTRS)

    Knittle, Elise; Jeanloz, Raymond

    1986-01-01

    The phase diagram of FeO has been experimentally determined to pressures of 155 GPa and temperatures of 4000 K using shock-wave and diamond-cell techniques. A metallic phase of FeO is observed at pressures greater than 70 GPa and temperatures exceeding 1000 K. The metallization of FeO at high pressures implies that oxygen can be present as the light alloying element of the earth's outer core, in accord with the geochemical predictions of Ringwood (1977 and 1979). The high pressures necessary for this metallization suggest that the core has acquired its composition well after the initial stages of the earth's accretion. Direct experimental observations at elevated pressures and temperatures indicate that core-forming alloy can react chemically with oxides such as those forming the mantle. The core and mantle may never have reached complete chemical equilibrium, however. If this is the case, the core-mantle boundary is likely to be a zone of active chemical reactions.

  14. High Throughput Atomic Layer Deposition Processes: High Pressure Operations, New Reactor Designs, and Novel Metal Processing

    NASA Astrophysics Data System (ADS)

    Mousa, MoatazBellah Mahmoud

    Atomic Layer Deposition (ALD) is a vapor phase nano-coating process that deposits very uniform and conformal thin film materials with sub-angstrom level thickness control on various substrates. These unique properties made ALD a platform technology for numerous products and applications. However, most of these applications are limited to the lab scale due to the low process throughput relative to the other deposition techniques, which hinders its industrial adoption. In addition to the low throughput, the process development for certain applications usually faces other obstacles, such as: a required new processing mode (e.g., batch vs continuous) or process conditions (e.g., low temperature), absence of an appropriate reactor design for a specific substrate and sometimes the lack of a suitable chemistry. This dissertation studies different aspects of ALD process development for prospect applications in the semiconductor, textiles, and battery industries, as well as novel organic-inorganic hybrid materials. The investigation of a high pressure, low temperature ALD process for metal oxides deposition using multiple process chemistry revealed the vital importance of the gas velocity over the substrate to achieve fast depositions at these challenging processing conditions. Also in this work, two unique high throughput ALD reactor designs are reported. The first is a continuous roll-to-roll ALD reactor for ultra-fast coatings on porous, flexible substrates with very high surface area. While the second reactor is an ALD delivery head that allows for in loco ALD coatings that can be executed under ambient conditions (even outdoors) on large surfaces while still maintaining very high deposition rates. As a proof of concept, part of a parked automobile window was coated using the ALD delivery head. Another process development shown herein is the improvement achieved in the selective synthesis of organic-inorganic materials using an ALD based process called sequential vapor

  15. High-pressure chemistry of hydrogen in metals: in situ study of iron hydride.

    PubMed

    Badding, J V; Hemley, R J; Mao, H K

    1991-07-26

    Optical observations and x-ray diffraction measurements of the reaction between iron and hydrogen at high pressure to form iron hydride are described. The reaction is associated with a sudden pressure-induced expansion at 3.5 gigapascals of iron samples immersed in fluid hydrogen. Synchrotron x-ray diffraction measurements carried out to 62 gigapascals demonstrate that iron hydride has a double hexagonal close-packed structure, a cell volume up to 17% larger than pure iron, and a stoichiometry close to FeH. These results greatly extend the pressure range over which the technologically important iron-hydrogen phase diagram has been characterized and have implications for problems ranging from hydrogen degradation and embrittlement of ferrous metals to the presence of hydrogen in Earth's metallic core.

  16. Argon excimer emission from high-pressure microdischarges in metal capillaries

    NASA Astrophysics Data System (ADS)

    Sankaran, R. Mohan; Giapis, Konstantinos P.; Moselhy, Mohamed; Schoenbach, Karl H.

    2003-12-01

    We report on argon excimer emission from high-pressure microdischarges formed inside metal capillaries with or without gas flow. Excimer emission intensity from a single tube increases linearly with gas pressure between 400 and 1000 Torr. Higher discharge current also results in initial intensity gains until gas heating causes saturation or intensity drop. Argon flow through the discharge intensifies emission perhaps by gas cooling. Emission intensity was found to be additive in prealigned dual microdischarges, suggesting that an array of microdischarges could produce a high-intensity excimer source.

  17. Theoretical confirmation of a high-pressure rhombohedral phase in vanadium metal

    SciTech Connect

    Lee, B; Rudd, R E; Klepeis, J; Soderlind, P; Landa, A

    2007-02-27

    Recent diamond-anvil-cell (DAC) experiments revealed a new phase in vanadium metal at high pressure. Here we present results from first-principles electronic-structure calculations confirming the existence of such phase. The new phase is due to a rhombohedral distortion of the body-centered-cubic (bcc) ambient-pressure phase. The calculated transition pressure of 0.84 Mbar and density compare favorably with the measured data. Interestingly, a re-entrant bcc phase is discovered at an ultra high pressure, close to the limit of DAC experimental capabilities, of about 2.8 Mbar. We show, extending prior work, that the phase transitions in vanadium are driven by subtle electronic-structure effects.

  18. Phase transition and metallization of FeO at high pressures and temperatures

    SciTech Connect

    Fischer, Rebecca A.; Campbell, Andrew J.; Lord, Oliver T.; Shofner, Gregory A.; Dera, Przemyslaw; Prakapenka, Vitali B.

    2012-05-10

    Wuestite, Fe{sub 1-x}O, is an important component in the mineralogy of Earth's lower mantle and may also be a component of the core. Therefore its high pressure-temperature behavior, including its electronic structure, is essential to understanding the nature and evolution of Earth's deep interior. We performed X-ray diffraction and radiometric measurements on wuestite in a laser-heated diamond anvil cell, finding an insulator-metal transition at high pressures and temperatures. Our data show a negative slope for this apparently isostructural phase boundary, which is characterized by a volume decrease and emissivity increase. The metallic phase of FeO is stable at conditions of the lower mantle and core, which has implications for the high P-T character of Fe-O bonds, magnetic field propagation, and lower mantle conductivity.

  19. Pressure-induced metallization of dense (H₂S)₂H₂ with high-Tc superconductivity.

    PubMed

    Duan, Defang; Liu, Yunxian; Tian, Fubo; Li, Da; Huang, Xiaoli; Zhao, Zhonglong; Yu, Hongyu; Liu, Bingbing; Tian, Wenjing; Cui, Tian

    2014-01-01

    The high pressure structures, metallization, and superconductivity of recently synthesized H2-containing compounds (H2S)2H2 are elucidated by ab initio calculations. The ordered crystal structure with P1 symmetry is determined, supported by the good agreement between theoretical and experimental X-ray diffraction data, equation of states, and Raman spectra. The Cccm structure is favorable with partial hydrogen bond symmetrization above 37 GPa. Upon further compression, H2 molecules disappear and two intriguing metallic structures with R3m and Im-3m symmetries are reconstructive above 111 and 180 GPa, respectively. The predicted metallization pressure is 111 GPa, which is approximately one-third of the currently suggested metallization pressure of bulk molecular hydrogen. Application of the Allen-Dynes-modified McMillan equation for the Im-3m structure yields high Tc values of 191 K to 204 K at 200 GPa, which is among the highest values reported for H2-rich van der Waals compounds and MH3 type hydride thus far.

  20. Zr-based bulk metallic glass as a cylinder material for high pressure apparatuses

    SciTech Connect

    Komatsu, Kazuki; Munakata, Koji; Matsubayashi, Kazuyuki; Uwatoko, Yoshiya; Yokoyama, Yoshihiko; Sugiyama, Kazumasa; Matsuda, Masaaki

    2015-05-12

    Zirconium-based bulk metallic glass (Zr-based BMG) has outstanding properties as a cylinder mate- rial for piston-cylinder high pressure apparatuses and is especially useful for neutron scattering. The piston-cylinder consisting of a Zr-based BMG cylinder with outer/inner diameters of 8.8/2.5 mm sustains pressures up to 1.81 GPa and ruptured at 2.0 GPa, with pressure values determined by the superconduct- ing temperature of lead. The neutron attenuation of Zr-based BMG is similar to that of TiZr null-scattering alloy and more transparent than that of CuBe alloy. No contamination of sharp Bragg reflections is observed in the neutron diffraction pattern for Zr-based BMG. The magnetic susceptibility of Zr-based BMG is similar to that of CuBe alloy; this leads to a potential application for measurements of magnetic properties under pressure.

  1. Correlated structural and electronic phase transformations in transition metal chalcogenide under high pressure

    NASA Astrophysics Data System (ADS)

    Li, Chunyu; Ke, Feng; Hu, Qingyang; Yu, Zhenhai; Zhao, Jinggeng; Chen, Zhiqiang; Yan, Hao

    2016-04-01

    Here, we report comprehensive studies on the high-pressure structural and electrical transport properties of the layered transition metal chalcogenide (Cr2S3) up to 36.3 GPa. A structural phase transition was observed in the rhombohedral Cr2S3 near 16.5 GPa by the synchrotron angle dispersive X-ray diffraction measurement using a diamond anvil cell. Through in situ resistance measurement, the electric resistance value was detected to decrease by an order of three over the pressure range of 7-15 GPa coincided with the structural phase transition. Measurements on the temperature dependence of resistivity indicate that it is a semiconductor-to-metal transition in nature. The results were also confirmed by the electronic energy band calculations. Above results may shed a light on optimizing the performance of Cr2S3 based applications under extreme conditions.

  2. X-ray Compton scattering experiments for fluid alkali metals at high temperatures and pressures

    SciTech Connect

    Matsuda, K. Fukumaru, T.; Kimura, K.; Yao, M.; Tamura, K.; Katoh, M.; Kajihara, Y.; Inui, M.; Itou, M.; Sakurai, Y.

    2015-08-17

    We have developed a high-pressure vessel and a cell for x-ray Compton scattering measurements of fluid alkali metals. Measurements have been successfully carried out for alkali metal rubidium at elevated temperatures and pressures using synchrotron radiation at SPring-8. The width of Compton profiles (CPs) of fluid rubidium becomes narrow with decreasing fluid density, which indicates that the CPs sensitively detect the effect of reduction in the valence electron density. At the request of all authors of the paper, and with the agreement of the Proceedings Editor, an updated version of this article was published on 10 September 2015. The original article supplied to AIP Publishing was not the final version and contained PDF conversion errors in Formulas (1) and (2). The errors have been corrected in the updated and re-published article.

  3. Friction-induced ignition of metals in high-pressure oxygen

    NASA Technical Reports Server (NTRS)

    Schoenman, Len; Stoltzfus, Joel; Kazaroff, John

    1988-01-01

    Data are presented on friction-induced metal ignition (such as occurring as a result of the possible rubbing of oxygen-pressurized hydrostatic bearings and turbine blade tips) in a high-presure oxygen environment. Friction heating tests were carried out at oxygen pressures from 1 to 300 atm and surface speeds from 10 to 33 m/sec, using the NASA/White Sands Test Facility. Test results are presented on the rubbing of like material pairs spanning a wide range of burn factors and on that of dissimilar metal pairs having significantly different burn factors, indicating that the burn factor is a suitable index for rank ordering in ignition resistance for the most, but not all, materials.

  4. Structural phase stability in group IV metals under static high pressure

    SciTech Connect

    Velisavljevic, Nenad; Chesnut, Garry N; Dattelbaum, Dana M; Vohra, Yogesh K; Stemshorn, Andrew

    2009-01-01

    In group IV metals (Ti, Zr, and Hf) room temperature compression leads to a martensitic transformation from a ductile {alpha} to a brittle {omega} phase. {alpha} {yields} {omega} phase boundary decreases to lower pressure at high temperature and can limit the use of group IV metals in industrial applications. There is a large discrepancy in the transition pressure reported in literature, with some of the variation attributed to experimental conditions (i.e. hydrostatic vs. non-hydrostatic). Shear deformation in non-hydrostatic experiments drives {alpha} {yields} {omega} transition and decreases transition pressure. Impurities can also aid or suppress {alpha} {yields} {omega} transition. By performing x-ray diffraction experiments on samples in a diamond anvil cell we show that interstitial impurities, such as C, N, and O can obstruct {alpha} {yields} {omega} transition and stabilize {alpha} phase to higher pressure. We also show that reduction in grain size can also influence {alpha} {yields} {omega} phase boundary and help stabilize {alpha} phase to higher pressure under non-hydrostatic conditions.

  5. Oxygen Fugacity at High Pressure: Equations of State of Metal-Oxide Pairs

    NASA Technical Reports Server (NTRS)

    Campbell A. J.; Danielson, L.; Righter, K.; Wang, Y.; Davidson, G.; Wang, Y.

    2006-01-01

    Oxygen fugacity (fO2) varies by orders of magnitude in nature, and can induce profound changes in the chemical state of a substance, and also in the chemical equilibrium of multicomponent systems. One prominent area in high pressure geochemistry, in which fO2 is widely recognized as a principal controlling factor, is that of metal-silicate partitioning of siderophile trace elements (e.g., [1]). Numerous experiments have shown that high pressures and temperatures can significantly affect metal/silicate partitioning of siderophile and moderately siderophile elements. Parameterization of these experimental results over P, T, X, and fO2 can allow the observed siderophile element composition of the mantle to be associated with particular thermodynamic conditions [2]. However, this is best done only if quantitative control exists over each thermodynamic variable relevant to the experiments. The fO2 values for many of these partitioning experiments were determined relative to a particular metal-oxide buffer (e.g., Fe-FeO (IW), Ni-NiO (NNO), Co-CoO, Re-ReO2 (RRO)), but the parameterization of all experimental results is weakened by the fact that the pressure-induced relative changes between these buffer systems are imprecisely known.

  6. High-Pressure Multi-Mbar Conductivity Experiments on Hydrogen: The Quest for Solid Metallic Hydrogen

    SciTech Connect

    Jackson, D

    2007-02-07

    Ultra-dense hydrogen has long been the subject of intense experimental and theoretical research due to the fascinating physics which arises from this supposedly simple system. The properties of ultra-dense hydrogen also have important implications for planetary physics, since the interiors of the giant planets Jupiter and Saturn are believed to consist of cores of dense, metallic hydrogen. Finally, ultra-dense hydrogen is of direct programmatic interest, and multiple-shock compression experiments on hydrogen to the metallic state have stimulated the accelerated development of new hydrogen equation-of-state (EOS) models used for ICF and other applications. The focus of our research has often been described as the ''Holy Grail'' of high-pressure physics research: The metallization of solid hydrogen. Metallic hydrogen has long been considered to be the prototypical system for the study of insulator-to-metal (I-M) transitions. Although metallic hydrogen (Z=1) may superficially appear to be a very simple material, it is in fact an extremely challenging system for theoretical analysis due to the presence of large zero-point atomic motions and the complete absence of any core electrons. Thus, solid metallic hydrogen promises to be a fascinating material. Among its predicted properties is the possibility of being a high temperature superconductor with a critical temperature T{sub c} of the order of {approx} 100K [1]. The successful metallization of solid hydrogen would be a groundbreaking scientific discovery and open up new frontiers in science and possibly technology as well.

  7. High pressure phase-transformation induced texture evolution and strengthening in zirconium metal: Experiment and modeling

    DOE PAGES

    Yu, Xiaohui; Zhang, Ruifeng; Weldon, David; Vogel, Sven C.; Zhang, Jianzhong; Brown, Donald W.; Wang, Yanbin; Reiche, Helmut M.; Wang, Shanmin; Du, Shiyu; et al

    2015-07-28

    We studied the phase-transition induced texture changes and strengthening mechanism for zirconium metal under quasi-hydrostatic compression and uni-axial deformation under confined high pressure using the deformation-DIA (D-DIA) apparatus. It is shown that the experimentally obtained texture for ω-phase Zr can be qualitatively described by combining a subset of orientation variants previously proposed in two different models. The determined flow stress for the high-pressure ω-phase is 0.5–1.2 GPa, more than three times higher than that of the α-phase. Using first-principles calculations, we investigated the mechanical and electronic properties of the two Zr polymorphs. We find that the observed strengthening can bemore » attributed to the relatively strong directional bonding in the ω phase, which significantly increases its shear plastic resistance over the α-phase Zr. The present findings provide an alternate route for Zr metal strengthening by high-pressure phase transformation.« less

  8. High pressure phase-transformation induced texture evolution and strengthening in zirconium metal: Experiment and modeling

    SciTech Connect

    Yu, Xiaohui; Zhang, Ruifeng; Weldon, David; Vogel, Sven C.; Zhang, Jianzhong; Brown, Donald W.; Wang, Yanbin; Reiche, Helmut M.; Wang, Shanmin; Du, Shiyu; Jin, Changqing; Zhao, Yusheng

    2015-07-28

    We studied the phase-transition induced texture changes and strengthening mechanism for zirconium metal under quasi-hydrostatic compression and uni-axial deformation under confined high pressure using the deformation-DIA (D-DIA) apparatus. It is shown that the experimentally obtained texture for ω-phase Zr can be qualitatively described by combining a subset of orientation variants previously proposed in two different models. The determined flow stress for the high-pressure ω-phase is 0.5–1.2 GPa, more than three times higher than that of the α-phase. Using first-principles calculations, we investigated the mechanical and electronic properties of the two Zr polymorphs. We find that the observed strengthening can be attributed to the relatively strong directional bonding in the ω phase, which significantly increases its shear plastic resistance over the α-phase Zr. The present findings provide an alternate route for Zr metal strengthening by high-pressure phase transformation.

  9. Highly stable liquid metal-based pressure sensor integrated with a microfluidic channel.

    PubMed

    Jung, Taekeon; Yang, Sung

    2015-05-21

    Pressure measurement is considered one of the key parameters in microfluidic systems. It has been widely used in various fields, such as in biology and biomedical fields. The electrical measurement method is the most widely investigated; however, it is unsuitable for microfluidic systems because of a complicated fabrication process and difficult integration. Moreover, it is generally damaged by large deflection. This paper proposes a thin-film-based pressure sensor that is free from these limitations, using a liquid metal called galinstan. The proposed pressure sensor is easily integrated into a microfluidic system using soft lithography because galinstan exists in a liquid phase at room temperature. We investigated the characteristics of the proposed pressure sensor by calibrating for a pressure range from 0 to 230 kPa (R2 > 0.98) using deionized water. Furthermore, the viscosity of various fluid samples was measured for a shear-rate range of 30-1000 s(-1). The results of Newtonian and non-Newtonian fluids were evaluated using a commercial viscometer and normalized difference was found to be less than 5.1% and 7.0%, respectively. The galinstan-based pressure sensor can be used in various microfluidic systems for long-term monitoring with high linearity, repeatability, and long-term stability.

  10. Highly Stable Liquid Metal-Based Pressure Sensor Integrated with a Microfluidic Channel

    PubMed Central

    Jung, Taekeon; Yang, Sung

    2015-01-01

    Pressure measurement is considered one of the key parameters in microfluidic systems. It has been widely used in various fields, such as in biology and biomedical fields. The electrical measurement method is the most widely investigated; however, it is unsuitable for microfluidic systems because of a complicated fabrication process and difficult integration. Moreover, it is generally damaged by large deflection. This paper proposes a thin-film-based pressure sensor that is free from these limitations, using a liquid metal called galinstan. The proposed pressure sensor is easily integrated into a microfluidic system using soft lithography because galinstan exists in a liquid phase at room temperature. We investigated the characteristics of the proposed pressure sensor by calibrating for a pressure range from 0 to 230 kPa (R2 > 0.98) using deionized water. Furthermore, the viscosity of various fluid samples was measured for a shear-rate range of 30–1000 s−1. The results of Newtonian and non-Newtonian fluids were evaluated using a commercial viscometer and normalized difference was found to be less than 5.1% and 7.0%, respectively. The galinstan-based pressure sensor can be used in various microfluidic systems for long-term monitoring with high linearity, repeatability, and long-term stability. PMID:26007732

  11. Highly stable liquid metal-based pressure sensor integrated with a microfluidic channel.

    PubMed

    Jung, Taekeon; Yang, Sung

    2015-01-01

    Pressure measurement is considered one of the key parameters in microfluidic systems. It has been widely used in various fields, such as in biology and biomedical fields. The electrical measurement method is the most widely investigated; however, it is unsuitable for microfluidic systems because of a complicated fabrication process and difficult integration. Moreover, it is generally damaged by large deflection. This paper proposes a thin-film-based pressure sensor that is free from these limitations, using a liquid metal called galinstan. The proposed pressure sensor is easily integrated into a microfluidic system using soft lithography because galinstan exists in a liquid phase at room temperature. We investigated the characteristics of the proposed pressure sensor by calibrating for a pressure range from 0 to 230 kPa (R2 > 0.98) using deionized water. Furthermore, the viscosity of various fluid samples was measured for a shear-rate range of 30-1000 s(-1). The results of Newtonian and non-Newtonian fluids were evaluated using a commercial viscometer and normalized difference was found to be less than 5.1% and 7.0%, respectively. The galinstan-based pressure sensor can be used in various microfluidic systems for long-term monitoring with high linearity, repeatability, and long-term stability. PMID:26007732

  12. Characterization of the metal particles fraction in ceramic matrix composites fabricated under high pressure

    SciTech Connect

    Konopka, K. . E-mail: Kako@inmat.pw.edu.pl; Bucki, J.J.; Gierlotka, S.; Kurzydlowski, K.J.

    2006-06-15

    This paper presents preliminary results concerning Al{sub 2}O{sub 3}-Ni composites fabricated by sintering under a high pressure of 7.7 GPa, at a temperature below the melting temperature of nickel. The microstructure of composites was characterized by scanning and transmission electron microscopy. Quantitative measurements of size, shape and distribution of metal particles were based on image analysis. A correlation between the size of the Ni particles and their location has been found. Small Ni particles, with a grain size in the range of 50-500 nm, are mostly located inside the ceramic grains. Some Ni particles are also situated at the grain boundaries, and large particles are surrounded by ceramic grains. The shape of the ceramic grains suggests that the ceramic powder particles underwent deformation during the process of consolidation under high pressure.

  13. Metal-Silicate Partitioning of Various Siderophile Elements at High Pressure and High Temperatures: a Diamond Anvil Cell Study

    NASA Astrophysics Data System (ADS)

    Badro, J.; Blanchard, I.; Siebert, J.

    2015-12-01

    Core formation is the major chemical fractionation that occurred on Earth. This event is widely believed to have happened at pressures of at least 40 GPa and temperatures exceeding 3000 K. It has left a significant imprint on the chemistry of the mantle by removing most of the siderophile (iron-loving) elements from it. Abundances of most siderophile elements in the bulk silicate Earth are significantly different than those predicted from experiments at low P-T. Among them, vanadium, chromium, cobalt and gallium are four siderophile elements which abundances in the mantle have been marked by core formation processes. Thus, understand their respective abundance in the mantle can help bringing constraints on the conditions of Earth's differentiation. We performed high-pressure high-temperature experiments using laser heating diamond anvil cell to investigate the metal-silicate partitioning of those four elements. Homogeneous glasses doped in vanadium, chromium, cobalt and gallium were synthesized using a levitation furnace and load inside the diamond anvil cell along with metallic powder. Samples were recovered using a Focused Ion Beam and chemically analyzed using an electron microprobe. We investigate the effect of pressure, temperature and metal composition on the metal-silicate partitioning of V, Cr, Co and Ga. Three previous studies focused on V, Cr and Co partitioning at those conditions of pressure and temperature, but none explore gallium partitioning at the relevant extreme conditions of core formation. We will present the first measurements of gallium metal-silicate partitioning performed at the appropriate conditions of pressure and temperature of Earth's differentiation.

  14. Quasi-two-dimensional metallic hydrogen inside di-phosphide at high pressure

    NASA Astrophysics Data System (ADS)

    Degtyarenko, N. N.; Mazur, E. A.

    2016-09-01

    The method of mathematical modelling was used for the calculation of the structural, electronic, phononic, and other characteristics of various normal phases of phosphorus hydrides with stoichiometry PHk. It was shown that the di-phosphine may form 2D lattice of the metallic hydrogen in it, stabilized by phosphorus atoms under high hydrostatic pressure. The resulting structure with the elements of H-P-H has a locally stable (or metastable) phonon spectrum. The properties of di-phosphine were compared with the properties of similar structures such as the sulphur hydrides.

  15. High-pressure oxygen test evaluations. [impact tests/metals - space shuttles

    NASA Technical Reports Server (NTRS)

    Schwinghamer, R. J.; Key, C. F.

    1974-01-01

    The relevance of impact sensitivity testing to the development of the space shuttle main engine is discussed in the light of the special requirements for the engine. The background and history of the evolution of liquid and gaseous oxygen testing techniques and philosophy is discussed also. The parameters critical to reliable testing are treated in considerable detail, and test apparatus and procedures are described and discussed. Materials threshold sensitivity determination procedures are considered and a decision logic diagram for sensitivity threshold determination was plotted. Finally, high-pressure materials sensitivity test data are given for selected metallic and nonmetallic materials.

  16. Hydrogen production reaction with a metal oxide catalyst in high pressure high temperature water

    NASA Astrophysics Data System (ADS)

    Watanabe, M.; Takahashi, M.; Inomata, H.

    2008-07-01

    Hydrogen production from biomass was attempted in high pressure high temperature water at 573 K by adopting partial oxidation to increase the yield of H2 via CO production in the presence of ZnO. The results revealed that an addition of H2O2 as an oxidant to the reaction of glucose and sugarcane bagasse brought about the trend of increasing the yields of H2, CO, and CO2. However, the sensitivity of H2 yield on H2O2 amount was different from those of CO and CO2, namely the excess amount of H2O2 tends to decrease the H2 yield with giving a maximum at a certain H2O2 amount. These indicated that the controllability of partial oxidation would be a key factor for maximizing the H2 yield through biomass conversion by partial oxidative gasification in high pressure high temperature water

  17. Metal-silicate Partitioning at High Pressure and Temperature: Experimental Methods and a Protocol to Suppress Highly Siderophile Element Inclusions.

    PubMed

    Bennett, Neil R; Brenan, James M; Fei, Yingwei

    2015-01-01

    Estimates of the primitive upper mantle (PUM) composition reveal a depletion in many of the siderophile (iron-loving) elements, thought to result from their extraction to the core during terrestrial accretion. Experiments to investigate the partitioning of these elements between metal and silicate melts suggest that the PUM composition is best matched if metal-silicate equilibrium occurred at high pressures and temperatures, in a deep magma ocean environment. The behavior of the most highly siderophile elements (HSEs) during this process however, has remained enigmatic. Silicate run-products from HSE solubility experiments are commonly contaminated by dispersed metal inclusions that hinder the measurement of element concentrations in the melt. The resulting uncertainty over the true solubility and metal-silicate partitioning of these elements has made it difficult to predict their expected depletion in PUM. Recently, several studies have employed changes to the experimental design used for high pressure and temperature solubility experiments in order to suppress the formation of metal inclusions. The addition of Au (Re, Os, Ir, Ru experiments) or elemental Si (Pt experiments) to the sample acts to alter either the geometry or rate of sample reduction respectively, in order to avoid transient metal oversaturation of the silicate melt. This contribution outlines procedures for using the piston-cylinder and multi-anvil apparatus to conduct solubility and metal-silicate partitioning experiments respectively. A protocol is also described for the synthesis of uncontaminated run-products from HSE solubility experiments in which the oxygen fugacity is similar to that during terrestrial core-formation. Time-resolved LA-ICP-MS spectra are presented as evidence for the absence of metal-inclusions in run-products from earlier studies, and also confirm that the technique may be extended to investigate Ru. Examples are also given of how these data may be applied. PMID:26132380

  18. High Pressure Metal-Silicate Partitioning of Molybdenum and Constraints on Core Formation

    NASA Astrophysics Data System (ADS)

    Burkemper, L. K.; Agee, C. B.; Garcia, K. A.

    2011-12-01

    Over 12 new high pressure Mo metal-silicate partitioning experiments were performed in the pressure (P) and temperature (T) range of 3-8 GPa and 2173-2373 K. Parameterization of our data and literature data, limited to experiments with an Fe-rich metal phase and no light elements, produces a PT solution set that is compatible with the magma ocean hypothesis, and can be used to further constrain core formation models. The goal of these models is to reproduce the siderophile element abundances observed in Earth's mantle. The mantle is depleted in siderophile elements relative to chondrites as a result of their affinity for the metal phase during core formation. Metal-silicate partitioning experiments on the siderophile elements Ni and Co have provided valuable constraints on the PT conditions of core formation. Li and Agee (1996) showed that at 2273 K and pressures above 28 GPa, equilibrium core formation, such as in a magma ocean, can explain the observed mantle depletion of Ni and Co. Compared to Ni and Co, there is a paucity of data on the siderophile element Mo, especially at high pressure. Only 15 partitioning experiments have been performed at pressures above 1.5 GPa, which leads to large errors when the results are extrapolated to the higher pressure conditions of core formation. Consequentially, Mo has been left out of most core formation models such as those proposed by Rubie et al. (2011) and Wade and Wood (2005). Increasing the number of Mo partitioning data points will provide much needed additional constraints on core formation. All of our experiments were performed on a Walker-type multi-anvil press at the Institute of Meteoritics. Run products were analyzed by EPMA with a 20 μm broad beam. Crushable MgO capsules were used in all experiments. With this capsule material there is significant MgO infiltration into the silicate; however, MgO is already part of the system so it is more ideal than graphite capsules which impart a significant carbon component

  19. Small-Scale Metal Tanks for High Pressure Storage of Fluids

    NASA Technical Reports Server (NTRS)

    London, Adam (Inventor)

    2016-01-01

    Small scale metal tanks for high-pressure storage of fluids having tank factors of more than 5000 meters and volumes of ten cubic inches or less featuring arrays of interconnected internal chambers having at least inner walls thinner than gage limitations allow. The chambers may be arranged as multiple internal independent vessels. Walls of chambers that are also portions of external tank walls may be arcuate on the internal and/or external surfaces, including domed. The tanks may be shaped adaptively and/or conformally to an application, including, for example, having one or more flat outer walls and/or having an annular shape. The tanks may have dual-purpose inlet/outlet conduits of may have separate inlet and outlet conduits. The tanks are made by fusion bonding etched metal foil layers patterned from slices of a CAD model of the tank. The fusion bonded foil stack may be further machined.

  20. Acoustic anisotropy of hcp metals at high pressure: the example of cobalt

    NASA Astrophysics Data System (ADS)

    Antonangeli, D.; Occelli, F.; Aracne, C.; Farber, D.; Guyot, F.; Requardt, H.; Fiquet, G.; Krisch, M.

    2003-04-01

    Beyond studies of the bulk properties of the Earth's core, seismological studies show that the inner core is elastically anisotropic (e.g. Woodhouse et al., Geophys. Res. Lett. 13, 1549, 1986). with an axial symmetry and an amplitude of about 3%, with the fast direction oriented parallel to the Earth's rotation axis. Several hypotheses have been proposed to explain this feature, however the anisotropy of hcp iron at very high pressure is not quantitatively known. Indeed, theoretical results predict a rather low intrinsic anisotropy, almost requiring a perfect alignment of iron hcp crystals in order to account for the observed seismic anisotropy (Stixrude and Cohen, Science, 267, 1972, 1995). On the other hand, texture x-ray diffraction measurements of iron at very high-pressure (Mao et al., Nature 399, 280, 1999; Wenk et al., Nature 405, 1044, 2000) indicate a large compressional-wave anisotropy which relieves the "perfect alignment" textural constraint. The anisotropy proposed by texture measurements, when compared to calculations, is not only different in magnitude, but as well in direction. In order to settle these discrepancies among the various indirect experimental techniques and theory, a direct experimental determination of the elastic constants of hcp iron and their evolution with pressure and temperature is needed. However, obtaining single crystals of hcp-Fe at high pressure is currently not possible. To address the issue of elastic anisotropy, we present results obtained on cobalt. Unlike iron, hcp cobalt is stable at room temperature and ambient pressure to at least 79 GPa (Fujihisa and Takemura, Phys. Rev. B 54, 5, 1996). Cobalt is located next to iron in the 3d transition metals classification and exhibits similar thermo-elastic behaviour in its highly compact hcp-structure, which should make of cobalt a good proxy for iron at high-pressure. The five independent elastic constants (C11, C33, C44, C12, C13) and their pressure dependence have been

  1. Calculation of Oxygen Fugacity in High Pressure Metal-Silicate Experiments and Comparison to Standard Approaches

    NASA Technical Reports Server (NTRS)

    Righter, K.; Ghiorso, M.

    2009-01-01

    Calculation of oxygen fugacity in high pressure and temperature experiments in metal-silicate systems is usually approximated by the ratio of Fe in the metal and FeO in the silicate melt: (Delta)IW=2*log(X(sub Fe)/X(sub FeO)), where IW is the iron-wustite reference oxygen buffer. Although this is a quick and easy calculation to make, it has been applied to a huge variety of metallic (Fe- Ni-S-C-O-Si systems) and silicate liquids (SiO2, Al2O3, TiO2, FeO, MgO, CaO, Na2O, K2O systems). This approach has surely led to values that have little meaning, yet are applied with great confidence, for example, to a terrestrial mantle at "IW-2". Although fO2 can be circumvented in some cases by consideration of Fe-M distribution coefficient, these do not eliminate the effects of alloy or silicate liquid compositional variation, or the specific chemical effects of S in the silicate liquid, for example. In order to address the issue of what the actual value of fO2 is in any given experiment, we have calculated fO2 from the equilibria 2Fe (metal) + SiO2 (liq) + O2 = Fe2SiO4 (liq).

  2. Zr-based bulk metallic glass as a cylinder material for high pressure apparatuses

    DOE PAGES

    Komatsu, Kazuki; Munakata, Koji; Matsubayashi, Kazuyuki; Uwatoko, Yoshiya; Yokoyama, Yoshihiko; Sugiyama, Kazumasa; Matsuda, Masaaki

    2015-05-12

    Zirconium-based bulk metallic glass (Zr-based BMG) has outstanding properties as a cylinder mate- rial for piston-cylinder high pressure apparatuses and is especially useful for neutron scattering. The piston-cylinder consisting of a Zr-based BMG cylinder with outer/inner diameters of 8.8/2.5 mm sustains pressures up to 1.81 GPa and ruptured at 2.0 GPa, with pressure values determined by the superconduct- ing temperature of lead. The neutron attenuation of Zr-based BMG is similar to that of TiZr null-scattering alloy and more transparent than that of CuBe alloy. No contamination of sharp Bragg reflections is observed in the neutron diffraction pattern for Zr-based BMG.more » The magnetic susceptibility of Zr-based BMG is similar to that of CuBe alloy; this leads to a potential application for measurements of magnetic properties under pressure.« less

  3. High-Pressure Synthesis of Metal-Ceramic Nano-Composites

    NASA Technical Reports Server (NTRS)

    Gierlotka, S.; Palosz, B.; Ekimov, E.; Grzanka, E.; Stelmakh, S.; Lojkowski, W.; Bismayer, U.; Palosz, W.; Rose, M. Franklin (Technical Monitor)

    2001-01-01

    The major problems in fabrication of nano-crystal line materials form nano-powders are: (1), coarsening of the initial nano-size grains, (2), insufficient densification (high concentration of pores), and, (3), conversion of diamond into graphite (for diamond-based ceramics). We have developed a novel technique of the synthesis of nano-composite materials applying very high (up to about 10 GPa) pressures. In this technique, one component is pre-compacted and placed next to another having a lower melting point temperature. The whole sample is pressed and the temperature raised above the melting point of the second component, what results in the melt getting pressed into the (nano-size) pores of the compact. Upon subsequent crystallization the melt forms the second nanophase. The process is fast, on the order of seconds, and the temperatures are relatively low what prevents, or at least significantly reduces coarsening of the starting nanophase grains. Also, conversion of diamond into graphite can be prevented. The technique allows for control of the final product properties through a proper selection of (1) the initial compact density and grain size, (2) chemical composition of the source, and (3) the temperature and pressure of the process. The application of the technique to the synthesis of SiC and diamond with Si, Ge, and different metals. Results of the in-situ investigation of the synthesis process by synchrotron X-ray diffraction technique will be presented.

  4. High temperature pressure gauge

    DOEpatents

    Echtler, J. Paul; Scandrol, Roy O.

    1981-01-01

    A high temperature pressure gauge comprising a pressure gauge positioned in fluid communication with one end of a conduit which has a diaphragm mounted in its other end. The conduit is filled with a low melting metal alloy above the diaphragm for a portion of its length with a high temperature fluid being positioned in the remaining length of the conduit and in the pressure gauge.

  5. High pressure phase transition in metallic LaB 6: Raman and X-ray diffraction studies

    NASA Astrophysics Data System (ADS)

    Teredesai, Pallavi; Muthu, D. V. S.; Chandrabhas, N.; Meenakshi, S.; Vijayakumar, V.; Modak, P.; Rao, R. S.; Godwal, B. K.; Sikka, S. K.; Sood, A. K.

    2004-03-01

    High pressure Raman and angle dispersive X-ray diffraction (ADXRD) measurements on the metallic hexaboride LaB 6 have been carried out upto the pressures of about 20 GPa. The subtle phase transition around 10 GPa indicated in Raman measurements is confirmed by ADXRD experiments to be a structural change from cubic to orthorhombic phase. Ab-initio electronic band structure calculations using full potential linear augmented plane wave method carried out as a function of pressure show that this transition is driven by the interception of Fermi level by electronic band minimum around the transition pressure.

  6. Spectral Changes in Metal Halide and High-Pressure Sodium Lamps Equipped with Electronic Dimming

    NASA Technical Reports Server (NTRS)

    Bubenheim, David L.; Sargis, Raman; Wilson, David

    1995-01-01

    Electronic dimming of high-intensity discharge lamps offers control of Photosynthetic Photon Flux (PPF) but is often characterized as causing significant spectral changes. Growth chambers with 400-W Metal Halide (MH) and High-Pressure Sodium (HPS) lamps were equipped with a dimmer system using Silicon-Controlled Rectifiers (SCR) as high-speed switches. Phase control operation turned the line power off for some period of the alternating current cycle. At full power, the electrical input to HPS and MH lamps was 480 W (root mean squared) and could be decreased to 267 W and 428 W, respectively, before the arc was extinguished. Concomitant with this decrease in input power, PPF decreased by 60% in HPS and 50% in MH. The HPS lamp has characteristic spectral peaks at 589 and 595 nm. As power to the HPS lamps was decreased, the 589-nm peak remained constant while the 595-nm peak decreased, equaling the 589-nm peak at 345-W input, and 589-nm peak was almost absent at 270-W input. The MH lamp has a broader spectral output but also has a peak at 589 nm and another smaller peak at 545 nm. As input power approached 428 W, the 589-nm peak shifted to 570 nm. While the spectrum changed as input power was decreased in the MH and HPS lamps, the phytochrome equilibrium ratio (P(sub ft):P(sub tot)) remains unchanged for both lamp types.

  7. Structure change, layer sliding, and metallization in high-pressure MoS2

    NASA Astrophysics Data System (ADS)

    Tosatti, Erio; Hromadova, Liliana; Martonak, Roman

    2013-03-01

    Based on ab initio calculations and metadynamics simulations, we predict that 2H-MoS2, a layered insulator, will metallize under pressures in excess of 20-30 GPa. In the same pressure range, simulations and enthalpy optimization predict a structural transition. Reminiscent of this material's frictional properties, free mutual sliding of layers takes place at this transition, where the original 2Hc stacking changes to a 2Ha stacking typical of 2H-NbSe2, a transformation which explains for the first time previously mysterious X-ray diffraction data. Phonon and electron phonon calculations suggest that metallic pristine MoS2 will require ultrahigh pressures in order to develop superconductivity. Supported by EU-Japan Project LEMSUPER, by a SNF Sinergia Project, and by the Slovak Research and Development Agency

  8. Metal-sulfide melt non-interconnectivity in silicates, even at high pressure, high temperature, and high melt fractions

    SciTech Connect

    Minarik, W.G.; Ryerson, F.J.

    1996-01-01

    The authors have investigated the textural microstructure of iron-nickel-sulfur melts in contact with olivine, pyroxene, and the modified-spinel polymorph of olivine. The experiments were conducted at 1,500 C and pressures ranging from 1 to 17 GPa. For compositions more metal-rich than the monosulfide, including the eutectic composition, the metal sulfide melt has a dihedral angle greater than 60{degree} and does not form an interconnected grain-edge fluid. Increasing pressure does not measurably alter the dihedral angles. Textural evolution results in coarsening of the sulfide melt pockets, resulting in large pockets surrounded by many silicate grains and separated from one another by melt-free grain edges. Chemical communication between these large pockets is limited to lattice and grain-boundary diffusion. Due to the large interfacial energy between sulfide melt and silicates, sulfide melts are unable to separate from solid silicate via grain-boundary percolation and remain stranded in isolated melt pockets. Sulfide melt in excess of the critical melt fraction (5--25%) will develop a transient interconnectivity as sulfide collects into larger melt pockets and interconnectivity is pinched off. Efficient separation of core-forming sulfide melts from silicate requires either melting of the silicate matrix or a very large fraction of metal-sulfide melt (perhaps as large as 40%).

  9. Metallization and superconductivity of BeH{sub 2} under high pressure

    SciTech Connect

    Wang, Ziwei; Zhu, Li; Wang, Hui Ma, Yanming; Yao, Yansun; Liu, Hanyu; Iitaka, Toshiaki

    2014-03-28

    Pressure-induced metallization and potential superconductivity of BeH{sub 2} has been a topic of interest. In the present study, we extensively explored the crystal structures of BeH{sub 2} in a wide pressure range of 0–300 GPa using an unbiased structure searching method coupled with first-principles density functional calculations. A series of pressure-induced structural transformations are predicted for BeH{sub 2}, as Ibam (α phase) → P-3m1 (phase II) → R-3m (phase III) → Cmcm (phase IV). Calculated pressures of phase transition are 25, 140, and 202 GPa, respectively. The phase II is isostructural to the well-known 1T structure of transition metal dichalcogenides, which is composed of covalent bonded BeH{sub 2} slabs stacked along the perpendicular direction by van der Waals forces. The phase III is constructed by the same BeH{sub 2} slabs, but differs from the phase II in the stacking sequence. The α phase, phase II, and phase III all have insulating electronic states while their band gaps decrease as pressure increases. We predicted that BeH{sub 2} reaches a metallic state by a III → IV phase transition, instead of a direct band gap closure in phase III. The phase IV has a three-dimensional extended Be-H network formed by edge-sharing BeH{sub 8} polyhedrons with delocalized electrons. Electron-phonon coupling calculations implemented using linear response theory on the metallic BeH{sub 2} predict a large electron-phonon coupling parameter of 0.63, leading to an estimation of superconducting transition temperature (T{sub c}) of ∼38 K at 250 GPa.

  10. FY07 LDRD Final Report Synthesis under High Pressure and Temperature of New Metal Nitrides

    SciTech Connect

    Crowhurst, J C; Sadigh, B; Aberg, D; Zaug, J M; Goncharov, A F

    2008-09-23

    The original aim of this LDRD was to determine with unprecedented precision the melting curve of iron to geophysically relevant pressures. In the course of developing much of the technology and techniques required to obtain this information we have encountered and studied novel chemical reactions some of whose products are stable or metastable under ambient conditions. Specifically we have synthesized nitrides of the platinum group metals including platinum, iridium, and palladium. We have also carried out in depth first principles theoretical investigations into the nature of these materials. We believed that the scientific impact of continuing this work would be greater than that of the original goals of this project. Indeed the work has led to a number of high profile publications with additional publications in preparation. While nitrides of the transition metals are generally of tremendous technological importance, those of the noble metals in particular have enjoyed much experimental and theoretical attention in the very short time since they were first synthesized. The field was and clearly remains open for further study. While the scientific motivation for this research is different from that originally proposed, many of the associated methods in which we have now gained experience are similar or identical. These include use of the diamond anvil cell combined with technologies to generate high temperatures, the in-situ technique of Raman scattering using our purpose-built, state-of-the-art system, analytical techniques for determining the composition of recovered samples such as x-ray photoelectron spectroscopy, and finally synchrotron-based techniques such as x-ray diffraction for structural and equation of state determinations. Close interactions between theorists and experimentalists has and will continue to allow our group to rapidly and reliably interpret complicated results on the structure and dynamics of these compounds and also additional novel

  11. Metal-silicate partitioning of lithophile elements at high pressures and temperatures

    NASA Astrophysics Data System (ADS)

    Chidester, B.; Rahman, Z.; Righter, K.; Campbell, A. J.

    2015-12-01

    Trace element abundances in Earth's core were established during core-mantle differentiation and metal-silicate equilibration processes early in the planet's history. The core has been suggested as a possible reservoir in which the presence of nominally lithophile elements can explain the observance of non-chondritic ratios of some of these elements in surface rocks (e.g. Nb/Ta, Th/U and Mg/Si)[1-2]. Additionally, several of these elements (U, Th and K) are long-lived sources of radiogenic heat and could be important for explaining the geomagnetic field early in Earth's history. Based on their metal-silicate partitioning behavior at near ambient conditions, it is frequently assumed that uranium and other strongly lithophile elements are present in the core at only trivial abundances. However, core formation took place at a variety of conditions, reaching pressures and temperatures well above those in which most metal-silicate partitioning measurements were obtained[3]. Here we report metal-silicate partitioning data of lithophile elements such as U and Mg, as well as partially siderophile elements Si and S, at conditions more relevant to metal segregation and core formation in a magma ocean. Laser heated diamond anvil methods were used to obtain pressures of 30-70 GPa and temperatures up to 5200 K. FIB/EM methods were used to section the recovered samples and measure the quenched metal and silicate melt compositions. We find that even strongly lithophile elements such as U and Mg partition measurably into the metal phase under extreme P-T conditions. References: [1]Wade, J. and Wood, B. J., Nature, 109 (2001) [2]Allegre et al. EPSL, 134 (1995) [3]Rubie, et al. Icarus, 248 (2015)

  12. Lightweight, all-metal hose assembly has high flexibility and strength over wide range of temperature and pressure

    NASA Technical Reports Server (NTRS)

    Bessing, L. L.

    1966-01-01

    Lightweight flexible, metal braid reinforced hose assembly is used in high and low pressure oxygen, helium, and hydrogen systems. These hose assemblies have been successfully used on the Saturn-2 stage to provide joints of sufficient flexibility to absorb movement resulting from temperature variations.

  13. Anomalous compression behavior in lanthanum/cerium-based metallic glasses under high pressure.

    SciTech Connect

    Zeng, Q. S.; Li, Y. C.; Feng, C. M.; Liermann, P.; Somayazulu, M.; Shen, G. Y.; Mao, H. K.; Ren, Y.; Liu, J.; Hu, T. D.; Jiang, J. Z.; ICNSM and Laboratory of New-Structured Materials; Zhejiang Univ.; Chinese Academy of Sciences; Carnegie Inst. of Washington

    2007-01-01

    In situ high-pressure x-ray diffraction, low-temperature resistivity, and magnetization experiments were performed on a La{sub 32}Ce{sub 32}Al{sub 16}Ni{sub 5}Cu{sub 15} bulk metallic glass (BMG). A sudden change in compressibility at {approx}14 GPa and a rapid increase of resistivity at {approx}12 K were detected, whereas magnetic phase transformation and magnetic field dependence of the low-temperature resistivity do not occur at temperatures down to 4.2 K. An interaction between conduction electrons and the two-level systems is suggested to explain the temperature and field dependences of resistivity of the BMG alloy. Although the cause of the unusual change in compressibility at {approx}14 GPa is not clear, we believe that it could be linked with the unique electron structure of cerium in the amorphous matrix. An electronic phase transition in BMG alloys, most likely a second-order amorphous-to-amorphous phase transition, is suggested.

  14. Spectral Changes in Metal Halide and High-pressure Sodium Lamps Equipped with Electronic Dimming

    NASA Technical Reports Server (NTRS)

    Bubenheim, David L.; Sargis, Raman; Wilson, David

    1995-01-01

    Electronic dimming of high-intensity discharge lamps offers control of photosynthetic photon flux (PPF) but is often characterized as causing significant spectral changes. Growth chambers with 400-W metal halide (MH) and high-pressure sodium (HPS) lamps were equipped with a dimmer system using silicon-controlled rectifiers (SCR) as high-speed switches. Phase control operation turned the line power off for some period of the alternating current cycle. At full power, the electrical input to HPS and MH lamps was 480 W (root mean squared) and could be decreased to 267 W and 428 W, respectively, before the arc was extinguished. Concomitant with this decrease in input power, PPF decreased by 60% in HPS and 50% in MH. The HPS lamp has characteristic spectral peaks at 589 and 595 nm. As power to the HPS lamps was decreased, the 589-nm peak remained constant while the 595-nm peak decreased, equaling the 589-nm peak at 345-W input, and the 589-nm peak was almost absent at 270-W input. The MH lamp has a broader spectral output but also has a peak at 589 nm and another smaller peak at 545 nm. As input power to the MH lamps decreased, the peak at 589 diminished to equal the 545-nm peak. As input power approached 428 W, the 589-nm peak shifted to 570 nm. While the spectrum changed as input power was decreased in the MH and HPS lamps, the phytochrome equilibrium ratio (P(sub fr):P(sub tot)) remains unchanged for both lamp types.

  15. High Blood Pressure

    MedlinePlus

    ... version High Blood Pressure Overview What is blood pressure? Blood pressure is the amount of force that your ... called your blood pressure. What is high blood pressure? High blood pressure (also called hypertension) occurs when your blood ...

  16. Origin of Metallization of FeO at High Temperatures and Pressures from First-principles DFT-DMFT Computations

    NASA Astrophysics Data System (ADS)

    Cohen, R. E.; Haule, K.

    2012-12-01

    Experiments and theory show that FeO metallizes at high temperatures (~2000K) and pressures (~80 GPa) [1]. The theory used is based on many-body theory for a quantum impurity self-consistently embedded in a crystal described by band theory, or DFT+Dynamical Mean Field Theory (DMFT). Here we discuss the origin of the metallization. We use an LAPW basis set, and the lattice terms are evaluated using the WIEN2K LAPW code. The impurity model is solved using continuous time quantum Monte Carlo (CTQMC). Temperature enters explicitly, so we made special efforts to understand high temperature behavior. The computations are fully self-consistent, including the impurity levels and crystal field splitting, and the total energy is evaluated using the full potential and charge density of the lattice plus impurity models. We find with increasing pressure in paramagnetic FeO in a cubic lattice a high-spin low-spin transition, with a wide transition region between characterized by intermediate occupancies of the t2g and eg states between. We find that at 300K cubic FeO remains insulating to a factor of two compression (over 600 GPa), except for a small region of high spin metal. However, at high temperatures (e.g. 2000K) a metallic state is found under compression. The metallization occurs from thermal fluctuations among different multiplets representing high- and low-spin states. Implications for the Earth will be discussed. [1] Ohta, K., Cohen, R. E., Hirose, K., Haule, K., Shimizu, K. & Ohishi, Y. Experimental and Theoretical Evidence for Pressure-Induced Metallization in FeO with Rocksalt-Type Structure. Phys. Rev. Lett. 108, 026403 (2012).

  17. High pressure mechanical seal

    NASA Technical Reports Server (NTRS)

    Babel, Henry W. (Inventor); Fuson, Phillip L. (Inventor); Chickles, Colin D. (Inventor); Jones, Cherie A. (Inventor); Anderson, Raymond H. (Inventor)

    1995-01-01

    A relatively impervious mechanical seal is formed between the outer surface of a tube and the inside surface of a mechanical fitting of a high pressure fluid or hydraulic system by applying a very thin soft metal layer onto the outer surface of the hard metal tube and/or inner surface of the hard metal fitting, prior to swaging the fitting onto the tube. The thickness of such thin metal layer is independent of the size of the tube and/or fittings. Many metals and alloys of those metals exhibit the requisite softness, including silver, gold, nickel, tin, platinum, indium, rhodium and cadmium. Suitably, the coating is about 0.0025 millimeters (0.10 mils) in thickness. After swaging, the tube and fitting combination exhibits very low leak rates on the order or 10.sup.-8 cubic centimeters per second or less as meaured using the Helium leak test.

  18. High pressure mechanical seal

    NASA Technical Reports Server (NTRS)

    Babel, Henry W. (Inventor); Anderson, Raymond H. (Inventor)

    1996-01-01

    A relatively impervious mechanical seal is formed between the outer surface of a tube and the inside surface of a mechanical fitting of a high pressure fluid or hydraulic system by applying a very thin soft metal layer onto the outer surface of the hard metal tube and/or inner surface of the hard metal fitting. The thickness of such thin metal layer is independent of the size of the tube and/or fittings. Many metals and alloys of those metals exhibit the requisite softness, including silver, gold, tin, platinum, indium, rhodium and cadmium. Suitably, the coating is about 0.0025 millimeters (0.10 mils) in thickness. After compression, the tube and fitting combination exhibits very low leak rates on the order or 10.sup.-8 cubic centimeters per second or less as measured using the Helium leak test.

  19. Pressure-Induced Amorphization and a New High Density Amorphous Metallic Phase in Matrix-Free Ge Nanoparticles.

    PubMed

    Corsini, Niccolo R C; Zhang, Yuanpeng; Little, William R; Karatutlu, Ali; Ersoy, Osman; Haynes, Peter D; Molteni, Carla; Hine, Nicholas D M; Hernandez, Ignacio; Gonzalez, Jesus; Rodriguez, Fernando; Brazhkin, Vadim V; Sapelkin, Andrei

    2015-11-11

    Over the last two decades, it has been demonstrated that size effects have significant consequences for the atomic arrangements and phase behavior of matter under extreme pressure. Furthermore, it has been shown that an understanding of how size affects critical pressure-temperature conditions provides vital guidance in the search for materials with novel properties. Here, we report on the remarkable behavior of small (under ~5 nm) matrix-free Ge nanoparticles under hydrostatic compression that is drastically different from both larger nanoparticles and bulk Ge. We discover that the application of pressure drives surface-induced amorphization leading to Ge-Ge bond overcompression and eventually to a polyamorphic semiconductor-to-metal transformation. A combination of spectroscopic techniques together with ab initio simulations were employed to reveal the details of the transformation mechanism into a new high density phase-amorphous metallic Ge.

  20. Entropy-scaling laws for diffusion coefficients in liquid metals under high pressures

    SciTech Connect

    Cao, Qi-Long Shao, Ju-Xiang; Wang, Fan-Hou; Wang, Pan-Pan

    2015-04-07

    Molecular dynamic simulations on the liquid copper and tungsten are used to investigate the empirical entropy-scaling laws D{sup *}=A exp(BS{sub ex}), proposed independently by Rosenfeld and Dzugutov for diffusion coefficient, under high pressure conditions. We show that the scaling laws hold rather well for them under high pressure conditions. Furthermore, both the original diffusion coefficients and the reduced diffusion coefficients exhibit an Arrhenius relationship D{sub M}=D{sub M}{sup 0} exp(−E{sub M}/K{sub B}T), (M=un,R,D) and the activation energy E{sub M} increases with increasing pressure, the diffusion pre-exponential factors (D{sub R}{sup 0} and D{sub D}{sup 0}) are nearly independent of the pressure and element. The pair correlation entropy, S{sub 2}, depends linearly on the reciprocal temperature S{sub 2}=−E{sub S}/T, and the activation energy, E{sub S}, increases with increasing pressure. In particular, the ratios of the activation energies (E{sub un}, E{sub R}, and E{sub D}) obtained from diffusion coefficients to the activation energy, E{sub S}, obtained from the entropy keep constants in the whole pressure range. Therefore, the entropy-scaling laws for the diffusion coefficients and the Arrhenius law are linked via the temperature dependence of entropy.

  1. Benzene under high pressure: A story of molecular crystals transforming to saturated networks, with a possible intermediate metallic phase

    SciTech Connect

    Wen, Xiao-Dong; Hoffmann, Roald; Ashcroft, N. W.

    2011-01-01

    In a theoretical study, benzene is compressed up to 300 GPa. The transformations found between molecular phases generally match the experimental findings in the moderate pressure regime (<20 GPa): phase I (Pbca) is found to be stable up to 4 GPa, while phase II (P43212) is preferred in a narrow pressure range of 4–7 GPa. Phase III (P21/c) is at lowest enthalpy at higher pressures. Above 50 GPa, phase V (P21 at 0 GPa; P21/c at high pressure) comes into play, slightly more stable than phase III in the range of 50–80 GP, but unstable to rearrangement to a saturated, four-coordinate (at C), one-dimensional polymer. Actually, throughout the entire pressure range, crystals of graphane possess lower enthalpy than molecular benzene structures; a simple thermochemical argument is given for why this is so. In several of the benzene phases there nevertheless are substantial barriers to rearranging the molecules to a saturated polymer, especially at low temperatures. Even at room temperature these barriers should allow one to study the effect of pressure on the metastable molecular phases. Molecular phase III (P21/c) is one such; it remains metastable to higher pressures up to ~200 GPa, at which point it too rearranges spontaneously to a saturated, tetracoordinate CH polymer. At 300 K the isomerization transition occurs at a lower pressure. Nevertheless, there may be a narrow region of pressure, between P = 180 and 200 GPa, where one could find a metallic, molecular benzene state. We explore several lower dimensional models for such a metallic benzene. We also probe the possible first steps in a localized, nucleated benzene polymerization by studying the dimerization of benzene molecules. Several new (C6H6)2 dimers are predicted.

  2. Structure, Mobility, and Composition of Transition Metal Catalyst Surfaces. High-Pressure Scanning Tunneling Microscopy and Ambient-Pressure X-ray Photoelectron Spectroscopy Studies

    SciTech Connect

    Zhu, Zhongwei

    2013-12-06

    Surface structure, mobility, and composition of transition metal catalysts were studied by high-pressure scanning tunneling microscopy (HP-STM) and ambient-pressure X-ray photoelectron spectroscopy (AP-XPS) at high gas pressures. HP-STM makes it possible to determine the atomic or molecular rearrangement at catalyst surfaces, particularly at the low-coordinated active surface sites. AP-XPS monitors changes in elemental composition and chemical states of catalysts in response to variations in gas environments. Stepped Pt and Cu single crystals, the hexagonally reconstructed Pt(100) single crystal, and Pt-based bimetallic nanoparticles with controlled size, shape and composition, were employed as the model catalysts for experiments in this thesis.

  3. First-principles thermoelasticity of transition metals at high pressure: Tantalum prototype in the quasiharmonic limit

    NASA Astrophysics Data System (ADS)

    Orlikowski, Daniel; Söderlind, Per; Moriarty, John A.

    2006-08-01

    The thermoelastic properties of tantalum have been investigated over its theoretical high-pressure bcc solid phase (up to 26000K at 10Mbar ) using an advanced first-principles approach that accurately accounts for cold, electron-thermal, and ion-thermal contributions in materials where anharmonic effects are small. Specifically, we have combined ab initio full-potential linear-muffin-tin-orbital electronic-structure calculations for the cold and electron-thermal contributions to the elastic moduli with phonon contributions for the ion-thermal part calculated using model generalized pseudopotential theory. For the latter, a summation of terms over the Brillouin zone is performed within the quasiharmonic approximation, where each term is composed of a strain derivative of the phonon frequency at a particular k point. At ambient pressure, the resulting temperature dependence of the Ta elastic moduli is in excellent agreement with ultrasonic measurements. The experimentally observed anomalous behavior of C44 at low temperatures is shown to originate from the electron-thermal contribution. At higher temperatures, the main contribution to the temperature dependence of the elastic moduli comes from thermal expansion, but inclusion of the electron- and ion-thermal contributions is essential to obtain quantitative agreement with experiment. In addition, the pressure dependence of the moduli at ambient temperature compares well with recent diamond-anvil-cell measurements to 1.05Mbar . Moreover, the calculated longitudinal and bulk sound velocities in polycrystalline Ta at higher pressure and temperature in the vicinity of shock melting (˜3Mbar) agree well with data obtained from shock experiments. However, at high temperatures along the melt curve above 1Mbar , the B' shear modulus becomes negative, indicating the onset of unexpectedly strong anharmonic effects. Finally, the assumed temperature dependence of the Steinberg-Guinan strength model obtained from scaling with the

  4. HIGH-PRESSURE PHYSICS. Direct observation of an abrupt insulator-to-metal transition in dense liquid deuterium.

    PubMed

    Knudson, M D; Desjarlais, M P; Becker, A; Lemke, R W; Cochrane, K R; Savage, M E; Bliss, D E; Mattsson, T R; Redmer, R

    2015-06-26

    Eighty years ago, it was proposed that solid hydrogen would become metallic at sufficiently high density. Despite numerous investigations, this transition has not yet been experimentally observed. More recently, there has been much interest in the analog of this predicted metallic transition in the dense liquid, due to its relevance to planetary science. Here, we show direct observation of an abrupt insulator-to-metal transition in dense liquid deuterium. Experimental determination of the location of this transition provides a much-needed benchmark for theory and may constrain the region of hydrogen-helium immiscibility and the boundary-layer pressure in standard models of the internal structure of gas-giant planets.

  5. Simulating Solidification in Metals at High Pressure: The Drive to Petascale Computing

    SciTech Connect

    Streitz, F; Glosli, J; Patel, M

    2006-07-26

    We investigate solidification in metal systems ranging in size from 64,000 to 524,288,000 atoms on the IBM BlueGene/L computer at LLNL. Using the newly developed ddcMD code, we achieve performance rates as high as 103 TFlops, with a performance of 101.7 TFlop sustained over a 7 hour run on 131,072 cpus. We demonstrate superb strong and weak scaling. Our calculations are significant as they represent the first atomic-scale model of metal solidification to proceed, without finite size effects, from spontaneous nucleation and growth of solid out of the liquid, through the coalescence phase, and into the onset of coarsening. Thus, our simulations represent the first step towards an atomistic model of nucleation and growth that can directly link atomistic to mesoscopic length scales.

  6. Polyamorphism of a Ce-based bulk metallic glass by high-pressure and high-temperature density measurements

    NASA Astrophysics Data System (ADS)

    Decremps, F.; Morard, G.; Garbarino, G.; Casula, M.

    2016-02-01

    Metallic glasses are of recent interest worldwide due to their remarkable physicochemical properties which can be put in relation with their crystalline counterparts. Among them, cerium-based metallic glasses (Ce-MGs) have unique features such as the existence of polyamorphism under pressure, which is unexpected in these spatially compact systems. While a phase transition between amorphous phases with change of density and local structure has been previously detected, the corresponding structural variation under pressure was not clearly identified due to difficulties in performing accurate measurements and reliable analysis. In this work, angle dispersive x-ray diffraction experiments of Ce69Al10Cu20Co1 bulk metallic glass have been performed up to 16 GPa along two distinct isotherms (300 and 340 K). All of the diffuse signals have then been processed in order to extract the structure factor S (Q ) , the pair distribution g (r ) , the atomic density ρ , and the compressibility as a function of pressure and temperature. These are crucial probes to fully characterize the phase diagram, and they clearly confirm the existence of a link between polyamorphism in Ce-MGs and the γ ⇆ α transition in pure cerium. Finally, owing to the presence of a critical point in pure solid Ce, the existence of such a feature is discussed here for Ce-MGs.

  7. Work-Hardening Induced Tensile Ductility of Bulk Metallic Glasses via High-Pressure Torsion

    NASA Astrophysics Data System (ADS)

    Joo, Soo-Hyun; Pi, Dong-Hai; Setyawan, Albertus Deny Heri; Kato, Hidemi; Janecek, Milos; Kim, Yong Chan; Lee, Sunghak; Kim, Hyoung Seop

    2015-04-01

    The mechanical properties of engineering materials are key for ensuring safety and reliability. However, the plastic deformation of BMGs is confined to narrow regions in shear bands, which usually result in limited ductilities and catastrophic failures at low homologous temperatures. The quasi-brittle failure and lack of tensile ductility undercut the potential applications of BMGs. In this report, we present clear tensile ductility in a Zr-based BMG via a high-pressure torsion (HPT) process. Enhanced tensile ductility and work-hardening behavior after the HPT process were investigated, focusing on the microstructure, particularly the changed free volume, which affects deformation mechanisms (i.e., initiation, propagation, and obstruction of shear bands). Our results provide insights into the basic functions of hydrostatic pressure and shear strain in the microstructure and mechanical properties of HPT-processed BMGs.

  8. Work-hardening induced tensile ductility of bulk metallic glasses via high-pressure torsion.

    PubMed

    Joo, Soo-Hyun; Pi, Dong-Hai; Setyawan, Albertus Deny Heri; Kato, Hidemi; Janecek, Milos; Kim, Yong Chan; Lee, Sunghak; Kim, Hyoung Seop

    2015-04-23

    The mechanical properties of engineering materials are key for ensuring safety and reliability. However, the plastic deformation of BMGs is confined to narrow regions in shear bands, which usually result in limited ductilities and catastrophic failures at low homologous temperatures. The quasi-brittle failure and lack of tensile ductility undercut the potential applications of BMGs. In this report, we present clear tensile ductility in a Zr-based BMG via a high-pressure torsion (HPT) process. Enhanced tensile ductility and work-hardening behavior after the HPT process were investigated, focusing on the microstructure, particularly the changed free volume, which affects deformation mechanisms (i.e., initiation, propagation, and obstruction of shear bands). Our results provide insights into the basic functions of hydrostatic pressure and shear strain in the microstructure and mechanical properties of HPT-processed BMGs.

  9. Cryogenically formed prestressed composite fiber-metal structures for O2/N2 high pressure gas tanks.

    NASA Technical Reports Server (NTRS)

    Gleich, D.

    1971-01-01

    Demonstration of high-structural-performance ARDEFORM cryoformed 301 stainless-steel glass-fiber-reinforced (GFR) vessels by room temperature tests of 13 1/2-in. diam spheres. Tests verified that the structural performance of ARDEFORM spherical GFR vessels not only exceeded that of all metal construction, but also bettered previous GFR experimental results by 50%. Achievement of essentially the full strength of fiberglass in a spherical wrap pattern was again verified. Significant weight advantages for this construction are projected for O2/N2 high-pressure gas tanks for Space Shuttle environmental control/life support system missions.

  10. Structure and screening in molecular and metallic hydrogen at high pressure

    NASA Technical Reports Server (NTRS)

    Wood, D. M.; Ashcroft, N. W.

    1981-01-01

    A variational wavefunction is used to express the (spin restricted) Hartree-Fock energy as reciprocal lattice sums for static lattice FCC monatomic hydrogen and diatomic Pa3 molecular hydrogen. In the monatomic phase the hydrogenic orbital range closely parallels the inverse Thomas-Fermi wavevector; the corresponding energy E has a minimum of -0.929 Ryd/electron at r sub s = 1.67. For the diatomic phase E(r sub s) is similar, but the constituent energies, screening, and bond length reflect a qualitative change in the nature of the solid at r sub s = 2.8. This change is interpreted in terms of a transition from protons as structural units (at high density) to weakly interacting models (at low density). Insensitivity of the total energy to a rapid fall in the bond length suggests association with the rotational transition where the rapid molecular orientations characteristic of high pressures disappear and the molecules rotate freely at low pressure.

  11. High Blood Pressure (Hypertension)

    MedlinePlus

    ... Print Page Text Size: A A A Listen High Blood Pressure (Hypertension) Nearly 1 in 3 American adults has high ... weight. How Will I Know if I Have High Blood Pressure? High blood pressure is a silent problem — you ...

  12. Thermodynamics of the ferromagnetic phase transition in nearly half metallic CoS2 at high pressures

    SciTech Connect

    Elkin, F. S.; Zibrov, I. P.; Novikov, A. P.; Khasanov, S. S.; Sidorov, V. A.; Petrova, A. E.; Lograsso, Thomas A.; Thompson, J. D.; Stishov, S. M.

    2013-12-06

    The volume change and heat capacity at the ferromagnetic phase transition in COS2 were measured at high pressures using X-rays generated by the Argonne synchrotron light source and by ac-calorimetry, respectively. The transition entropy, calculated on the basis of these experimental data, drops along the transition line due to quantum degradation, as required by Nernst's law. The volume change increases strongly along the transition line, which is explained by specifics of the compressibility difference of coexisting phases that results from nearly half metallic nature of the ferromagnetic phase of COS2. (C) 2013 Elsevier Ltd. All rights reserved.

  13. High pressure furnace

    DOEpatents

    Morris, D.E.

    1993-09-14

    A high temperature high pressure furnace has a hybrid partially externally heated construction. A metallic vessel fabricated from an alloy having a composition of at least 45% nickel, 15% chrome, and 10% tungsten is utilized (the preferred alloy including 55% nickel, 22% chrome, 14% tungsten, 2% molybdenum, 3% iron (maximum) and 5% cobalt (maximum)). The disclosed alloy is fabricated into 11/4 or 2 inch, 32 mm or 50 mm bar stock and has a length of about 22 inches, 56 cm. This bar stock has an aperture formed therein to define a closed high temperature, high pressure oxygen chamber. The opposite and closed end of the vessel is provided with a small blind aperture into which a thermocouple can be inserted. The closed end of the vessel is inserted into an oven, preferably heated by standard nickel chrome electrical elements and having a heavily insulated exterior. 19 figures.

  14. High pressure furnace

    DOEpatents

    Morris, Donald E.

    1993-01-01

    A high temperature high pressure furnace has a hybrid partially externally heated construction. A metallic vessel fabricated from an alloy having a composition of at least 45% nickel, 15% chrome, and 10% tungsten is utilized (the preferred alloy including 55% nickel, 22% chrome, 14% tungsten, 2% molybdenum, 3% iron (maximum) and 5% cobalt (maximum). The disclosed alloy is fabricated into 11/4 or 2 inch, 32 mm or 50 mm bar stock and has a length of about 22 inches, 56 cm. This bar stock has an aperture formed therein to define a closed high temperature, high pressure oxygen chamber. The opposite and closed end of the vessel is provided with a small blind aperture into which a thermocouple can be inserted. The closed end of the vessel is inserted into an oven, preferably heated by standard nickel chrome electrical elements and having a heavily insulated exterior.

  15. High pressure oxygen furnace

    DOEpatents

    Morris, D.E.

    1992-07-14

    A high temperature high pressure oxygen furnace having a hybrid partially externally heated construction is disclosed. A metallic bar fabricated from an alloy having a composition of at least 45% nickel, 15% chrome, and 10% tungsten is utilized, the preferred alloy including 55% nickel, 22% chrome, 14% tungsten, 2% molybdenum, 3% iron (maximum) and 5% cobalt (maximum). The disclosed alloy is fabricated into 11/4 inch bar stock and has a length of about 17 inches. This bar stock is gun drilled for over 16 inches of its length with 0.400 inch aperture to define a closed high temperature, high pressure oxygen chamber. The opposite and closed end of the bar is provided with a small support aperture into which both a support and a thermocouple can be inserted. The closed end of the gun drilled bar is inserted into an oven, preferably heated by standard nickel chrome electrical elements and having a heavily insulated exterior. 5 figs.

  16. High pressure oxygen furnace

    DOEpatents

    Morris, Donald E.

    1992-01-01

    A high temperature high pressure oxygen furnace having a hybrid partially externally heated construction is disclosed. A metallic bar fabricated from an alloy having a composition of at least 45% nickel, 15% chrome, and 10% tungsten is utilized (the preferred alloy including 55% nickel, 22% chrome, 14% tungsten, 2% molybdenum, 3% iron (maximum) and 5% cobalt (maximum). The disclosed alloy is fabricated into 11/4 inch bar stock and has a length of about 17 inches. This bar stock is gun drilled for over 16 inches of its length with 0.400 inch aperture to define a closed high temperature, high pressure oxygen chamber. The opposite and closed end of the bar is provided with a small support aperture into which both a support and a thermocouple can be inserted. The closed end of the gun drilled bar is inserted into an oven, preferably heated by standard nickel chrome electrical elements and having a heavily insulated exterior.

  17. High-temperature, high-pressure hydrothermal synthesis, characterization, and structural relationships of mixed-alkali metals uranyl silicates

    NASA Astrophysics Data System (ADS)

    Chen, Yi-Hsin; Liu, Hsin-Kuan; Chang, Wen-Jung; Tzou, Der-Lii; Lii, Kwang-Hwa

    2016-04-01

    Three mixed-alkali metals uranyl silicates, Na3K3[(UO2)3(Si2O7)2]·2H2O (1), Na3Rb3[(UO2)3(Si2O7)2] (2), and Na6Rb4[(UO2)4Si12O33] (3), have been synthesized by high-temperature, high-pressure hydrothermal reactions at 550 °C and 1440 bar, and characterized by single-crystal X-ray diffraction, photoluminescence, and thermogravimetric analysis. Compound 1 and 2 are isostructural and contain layers of uranyl disilicate. The smaller cation, Na+, is located in the intralayer channels, whereas the larger cations, K+ and Rb+, and water molecule are located in the interlayer region. The absence of lattice water in 2 can be understood according to the valence-matching principle. The structure is related to that of a previously reported mixed-valence uranium(V,VI) silicate. Compound 3 adopts a 3D framework structure and contains a unique unbranched dreier fourfold silicate chain with the structural formula {uB,41∞}[3Si12O33] formed of Q2, Q3, and Q4 Si. The connectivity of the Si atoms in the Si12O3318- anion can be interpreted on the basis of Zintl-Klemm concept. Crystal data for compound 1: triclinic, P-1, a=5.7981(2) Å, b=7.5875(3) Å, c=12.8068(5) Å, α=103.593(2)°, β=102.879(2)°, γ=90.064(2)°, V=533.00(3) Å3, Z=1, R1=0.0278; compound 2: triclinic, P-1, a=5.7993(3) Å, b=7.5745(3) Å, c=12.9369(6) Å, α=78.265(2)°, β=79.137(2)°, γ=89.936(2)°, V=546.02(4) Å3, Z=1, R1=0.0287; compound 3: monoclinic, C2/m, a=23.748(1) Å, b=7.3301(3) Å, c=15.2556(7) Å, β=129.116(2)°, V=2060.4(2) Å3, Z=2, R1=0.0304.

  18. Determination of the metal/die interfacial heat transfer coefficient of high pressure die cast B390 alloy

    NASA Astrophysics Data System (ADS)

    Cao, Yongyou; Guo, Zhipeng; Xiong, Shoumei

    2012-07-01

    High-pressure die cast B390 alloy was prepared on a 350 ton cold chamber die casting machine. The metal/die interfacial heat transfer coefficient of the alloy was investigated. Considering the filling process, a "finger"-shaped casting was designed for the experiments. This casting consisted of five plates with different thicknesses (0.05 inch or 1.27 mm to 0.25 inch or 6.35 mm) as well as individual ingates and overflows. Experiments under various operation conditions were conducted, and temperatures were measured at various specific locations inside the die. Based on the results, the interfacial heat transfer coefficient and heat flux were determined by solving the inverse heat transfer problem. The influence of the mold-filling sequence, sensor locations, as well as processing parameters including the casting pressure, die temperature, and fast/slow shot speeds on the heat transfer coefficient were discussed.

  19. Chemical energy dissipation at surfaces under UHV and high pressure conditions studied using metal-insulator-metal and similar devices.

    PubMed

    Diesing, Detlef; Hasselbrink, Eckart

    2016-07-01

    Metal heterostructures have been used in recent years to gain insights into the relevance of energy dissipation into electronic degrees of freedom in surface chemistry. Non-adiabaticity in the surface chemistry results in the creation of electron-hole pairs, the number and energetic distribution of which need to be studied in detail. Several types of devices, such as metal-insulator-metal, metal-semiconductor and metal-semiconductor oxide-semiconductor, have been used. These devices operate by spatially separating the electrons from the holes, as an internal barrier allows only - or at least favours - transport from the top to the back electrode for one kind of carrier. An introduction into the matter, a survey of the literature and a critical discussion of the state of research is attempted. PMID:27186600

  20. Promoted Combustion of Metals in a High-Pressure, Flowing Oxygen Environment

    NASA Technical Reports Server (NTRS)

    Maes, M. J.; Stoltzfus, J. M.

    2001-01-01

    Traditional promoted combustion testing has used 0.125 inch diameter samples that are ignited in a pressurized, oxygen-enriched environment. Many years of testing this sample size have yielded useful data regarding threshold pressure, or the minimum oxygen pressure required to support self-sustained combustion. However, when a material is tested in a flowing system, the threshold pressure changes. White Sands Test Facility has developed a test system to burn samples in flowing gaseous oxygen. Current sample configurations are 0.5 inch diameter rods and 1.25 inch diameter pipes with pressures ranging up to 2000 psi and gas velocities reaching 200 ft/s. This paper describes the test apparatus, modifications made as the result of a fire, and a description of the tests currently being performed.

  1. High Blood Pressure

    MedlinePlus

    ... version of this page please turn Javascript on. High Blood Pressure What Is High Blood Pressure? High blood pressure is a common disease in ... the heart, kidneys, brain, and eyes. Types of High Blood Pressure There are two main types of high blood ...

  2. High Blood Pressure

    MedlinePlus

    ... page from the NHLBI on Twitter. Description of High Blood Pressure Español High blood pressure is a common disease ... defines high blood pressure severity levels. Stages of High Blood Pressure in Adults Stages Systolic (top number) Diastolic (bottom ...

  3. Jahn-Teller, polarity, and insulator-to-metal transition in BiMnO3 at high pressure.

    PubMed

    Guennou, Mael; Bouvier, Pierre; Toulemonde, Pierre; Darie, Céline; Goujon, Céline; Bordet, Pierre; Hanfland, Michael; Kreisel, Jens

    2014-02-21

    The interaction of coexisting structural instabilities in multiferroic materials gives rise to intriguing coupling phenomena and extraordinarily rich phase diagrams, both in bulk materials and strained thin films. Here we investigate the multiferroic BiMnO3 with its peculiar 6s2 electrons and four interacting mechanisms: electric polarity, octahedra tilts, magnetism, and cooperative Jahn-Teller distortion. We have probed structural transitions under high pressure by synchrotron x-ray diffraction and Raman spectroscopy up to 60 GPa. We show that BiMnO3 displays under pressure a rich sequence of five phases with a great variety of structures and properties, including a metallic phase above 53 GPa and, between 37 and 53 GPa, a strongly elongated monoclinic phase that allows ferroelectricity, which contradicts the traditional expectation that ferroelectricity vanishes under pressure. Between 7 and 37 GPa, the Pnma structure remains remarkably stable but shows a reduction of the Jahn-Teller distortion in a way that differs from the behavior observed in the archetypal orthorhombic Jahn-Teller distorted perovskite LaMnO3. PMID:24579610

  4. Experimental determination of Fe isotope fractionation between liquid metal, silicate and sulfide at high pressures and temperatures

    NASA Astrophysics Data System (ADS)

    Williams, H. M.; Wood, B. J.; Halliday, A. N.

    2007-12-01

    There is evidence for significant equilibrium Fe isotope fractionation (≤0.26‰/amu) between metal and troilite (FeS) in iron meteorites (Williams et al., EPSL (250) 2006) and a smaller fractionation (<0.1‰/amu) between metal and olivine in pallasites (Zhu et al., EPSL (200) 2002; Weyer et al., EPSL (240) 2005). Theory suggests that differences in iron oxidation state and coordination between metal, silicate and FeS will result in stable isotope fractionation (Polyakov and Mineev, GCA (64) 2000; Schauble et al., GCA (65) 2001). However, it is not yet clear if the apparent observed fractionations can be extrapolated to the pressure and temperature conditions of planetary core formation. We have investigated Fe isotope fractionation between silicate melt and liquid Fe-S alloys and between liquid iron and basaltic melt at pressure and temperature conditions of 2-2.5GPa and 1920-2150K using piston-cylinder partitioning experiments from previous studies (Kilburn and Wood EPSL (152) 1997; Gessmann and Wood, EPSL (200) 2002; Wood et al., EPSL (in revision) 2007). Metal, sulfide and silicate fractions were separated from mounted and sectioned experimental charges using a computer-controlled micromill (New Wave-Merchantek). Sample dissolution, Fe purification and isotopic analysis followed established procedures (Williams et al., EPSL (235) 2005). In agreement with another preliminary high-pressure experimental study (Poitrasson and Roskosz, LPSC XXXVIII 2007) we find no appreciable fractionation between liquid iron metal and basaltic melt. However, there is a resolvable Fe isotope fractionation between silicate melt and Fe-S alloy which ranges from 0.12±0.04 to 0.15±0.04‰/amu for separate experiments (errors are propagated based on the 2 SD errors of replicate analyses). The Fe isotope compositions of coexisting phases from these experiments define a positive linear relationship with a slope that is, within error, equal to unity, implying isotopic equilibrium. No

  5. Calculations of electrical transport properties of liquid metals at high pressures

    NASA Technical Reports Server (NTRS)

    Evans, R.; Jain, A.

    1972-01-01

    It is shown how the usual nearly-free-electron model for the electrical resistivity of simple liquid metals can be extended to the case of liquid transition metals such as iron. A simple prescription is given for calculating the resistivity at different densities and temperatures. As an application and example of the method, calculations on liquid iron at different densities were carried out and the resistivity of molten iron in the earth's outer core is estimated. The effects of alloying iron with other elements are also considered. The calculated conductivity of the outer core is well within the limit required for the dynamo model of the geomagnetic field and agrees well with some recent shock wave data.

  6. Super earth interiors and validity of Birch's Law for ultra-high pressure metals and ionic solids

    NASA Astrophysics Data System (ADS)

    Ware, Lucas Andrew

    2015-01-01

    Super Earths, recently detected by the Kepler Mission, expand the ensemble of known terrestrial planets beyond our Solar System's limited group. Birch's Law and velocity-density systematics have been crucial in constraining our knowledge of the composition of Earth's mantle and core. Recently published static diamond anvil cell experimental measurements of sound velocities in iron, a key deep element in most super Earth models, are inconsistent with each other with regard to the validity of Birch's Law. We examine the range of validity of Birch's Law for several metallic elements, including iron, and ionic solids shocked with a two-stage light gas gun into the ultra-high pressure, temperature fluid state and make comparisons to the recent static data.

  7. High blood pressure medicines

    MedlinePlus

    Hypertension - medicines ... blood vessel diseases. You may need to take medicines to lower your blood pressure if lifestyle changes ... blood pressure to the target level. WHEN ARE MEDICINES FOR HIGH BLOOD PRESSURE USED Most of the ...

  8. PbCl2 and SnCl2 at high-pressures as analogs for SiO2 metallization

    NASA Astrophysics Data System (ADS)

    Smart, T. J.; Diamond, M. R.; O'Bannon, E. F., III; Yan, J.; Stackhouse, S.; Godwal, B. K.; Jeanloz, R.; Williams, Q. C.

    2014-12-01

    PbCl2 and SnCl2 crystallize in the orthorhombic cotunnite structure, a high-pressure crystal structure of silica, making these salts important analogs for understanding the bonding properties of silicates at conditions of deep planetary interiors. Using infrared absorption (FTIR) spectroscopy to peak pressures of 50-70 GPa at room temperature, we document closure of the electronic energy gaps for both salts as they transition from ionic toward metallic states under compression. The gaps likely reflect the separation between occupied-states primarily associated with the anion, and unoccupied metal-ion states. Room-temperature x-ray diffraction to 80 GPa and first-principles calculations (density functional theory) reveal a continuous displacive transition in PbCl2 (orthorhombic I-II transition), which is expected to become metallic around 100 GPa; metallization of SnCl2 is anticipated near 80 GPa. High-pressure shock experiments show that fluid SiO2 is metallic at the high temperatures achieved in giant impacts (> 1-2 eV). Thus, the transition to metallic states of several crystalline AX2 analogs suggests that rocky matter may more generally become metallic inside large terrestrial planets. These studies imply a blurring between the traditional concepts of mantle and core, with metallic silicates potentially being present in crystalline form in the mantles and in liquid form in the cores of super-Earths.

  9. Prediction of the thermodynamic properties of metal-arsenate and metal-arsenite aqueous complexes to high temperatures and pressures and some geological consequences

    NASA Astrophysics Data System (ADS)

    Marini, Luigi; Accornero, Marina

    2007-07-01

    The standard thermodynamic properties at 25°C, 1 bar (Δ G {f/o}, Δ H {f/o}, S o, C {P/o}, V o, ω) and the coefficients of the revised Helgeson-Kirkham-Flowers equations of state were evaluated for several aqueous complexes formed by dissolved metals and either arsenate or arsenite ions. The guidelines of Shock and Helgeson (Geochim Cosmochim Acta 52:2009-2036, 1988) and Sverjensky et al. (Geochim Cosmochim Acta 61:1359-1412, 1997) were followed and corroborated with alternative approaches, whenever possible. The SUPCRT92 computer code was used to generate the log K of the destruction reactions of these metal-arsenate and metal-arsenite aqueous complexes at pressures and temperatures required by the EQ3/6 software package, version 7.2b. Apart from the AlAsO{4/o} and FeAsO{4/o} complexes, our log K at 25°C, 1 bar are in fair agreement with those of Whiting (MS Thesis, Colorado School of Mines, Golden, CO, 1992). Moreover, the equilibrium constants evaluated in this study are in good to fair agreement with those determined experimentally for the Ca-dihydroarsenate and Ca-hydroarsenate complexes at 40°C (Mironov et al., Russ J Inorg Chem 40:1690, 1995) and for Fe(III)-hydroarsenate complex at 25°C (Raposo et al., J Sol Chem 35:79-94, 2006), whereas the disagreement with the log K measured for the Ca-arsenate complex at 40°C (Mironov et al., Russ J Inorg Chem 40:1690, 1995) might be due to uncertainties in this measured value. The implications of aqueous complexing between dissolved metals and arsenate/arsenite ions were investigated for seawater, high-temperature geothermal liquids and acid mine drainage and aqueous solutions deriving from mixing of acid mine waters and surface waters.

  10. High blood pressure - infants

    MedlinePlus

    Hypertension - infants ... and blood vessels The health of the kidneys High blood pressure in infants may be due to kidney or ... blood vessel of the kidney) In newborn babies, high blood pressure is often caused by a blood clot in ...

  11. Chemical bonding in the outer core: high-pressure electronic structures of oxygen and sulfur in metallic iron

    USGS Publications Warehouse

    Sherman, David M.

    1991-01-01

    The electronic structures of oxygen and sulfur impurities in metallic iron are investigated to determine if pressure, temperature, and composition-induced changes in bonding might affect phase equilibria along the Fe-FeS and Fe-FeO binaries. -from Authors

  12. Microsoft excel spreadsheets for calculation of P-V-T relations and thermodynamic properties from equations of state of MgO, diamond and nine metals as pressure markers in high-pressure and high-temperature experiments

    NASA Astrophysics Data System (ADS)

    Sokolova, Tatiana S.; Dorogokupets, Peter I.; Dymshits, Anna M.; Danilov, Boris S.; Litasov, Konstantin D.

    2016-09-01

    We present Microsoft Excel spreadsheets for calculation of thermodynamic functions and P-V-T properties of MgO, diamond and 9 metals, Al, Cu, Ag, Au, Pt, Nb, Ta, Mo, and W, depending on temperature and volume or temperature and pressure. The spreadsheets include the most common pressure markers used in in situ experiments with diamond anvil cell and multianvil techniques. The calculations are based on the equation of state formalism via the Helmholtz free energy. The program was developed using Visual Basic for Applications in Microsoft Excel and is a time-efficient tool to evaluate volume, pressure and other thermodynamic functions using T-P and T-V data only as input parameters. This application is aimed to solve practical issues of high pressure experiments in geosciences and mineral physics.

  13. High Pressure Structure of Half-Metallic CrO2

    SciTech Connect

    Maddox, B; Yoo, C S; Kasinathan, D; Pickett, W E; Scalettar, R T

    2005-09-07

    Evidence for a structural phase transition from rutile {alpha}-CrO{sub 2} phase I (P4{sub 2}/mnm) to orthorhombic {beta}-CrO{sub 2} phase II (CaCl{sub 2}-like, Pnnm) is presented using angle-resolved synchrotron x-ray diffraction and high sensitivity confocal Raman spectroscopy. The transition to the CaCl{sub 2} structure, which appears to be second-order, occurs at 12 {+-} 3 GPa without any measurable discontinuity in volume, but is accompanied by an apparent increase in compressibility. Raman data are also presented to show further evidence for a second-order structural phase transition as well to demonstrate soft-mode behavior of the B{sub 1g} phonon mode.

  14. Modeling ductile metals under large strain, pressure and high strain rates incorporating damage and microstructure evolution

    NASA Astrophysics Data System (ADS)

    Iannitti, Gianluca; Bonora, Nicola; Ruggiero, Andrew; Dichiaro, Simone

    2011-06-01

    In this work, a constitutive modeling that couples plasticity, grain size evolution (due to plastic deformation and dynamic recrystallization) and ductile damage has been developed. The effect of grain size on the material yield stress (Hall-Petch) and on the melting temperature has been considered. The model has been used to investigate computationally the behaviour of high purity copper in dynamic tensile extrusion test (DTE). An extensive numerical simulation work, using implicit finite element code with direct integration, has been performed and the results have been compared with available experimental data. The major finding is that the proposed model is capable to predict most of the observed features such as the increase of material ductility with the decreasing average grain size, the overall number and size of fragments and the average grain size distribution in the fragment trapped into the dime.

  15. Modeling ductile metals under large strain, pressure and high strain rate incorporating damage and microstructure evolution

    NASA Astrophysics Data System (ADS)

    Iannitti, Gianluca; Bonora, Nicola; Ruggiero, Andrew; Dichiaro, Simone

    2012-03-01

    In this work, a constitutive modeling that couples plasticity, grain size evolution (due to plastic deformation and dynamic recrystallization) and ductile damage has been developed. The effect of grain size on the material yield stress (Hall-Petch) and on the melting temperature has been considered. The model has been used to investigate computationally the behavior of high purity copper in dynamic tensile extrusion test (DTE). An extensive numerical simulation work, using implicit finite element code with direct integration, has been performed and the results have been compared with available experimental data. The major finding is that the proposed model is capable to predict most of the observed features such as the increase of material ductility with the decreasing average grain size, the overall number and size of fragments and the average grain size distribution in the fragment trapped into the dime.

  16. High Blood Pressure (Hypertension)

    MedlinePlus

    ... For Consumers Consumer Information by Audience For Women High Blood Pressure (Hypertension) Share Tweet Linkedin Pin it More sharing options ... En Español Who is at risk? How is high blood pressure treated? Understanding your blood pressure: What do the ...

  17. Ceramic pressure housing with metal endcaps

    DOEpatents

    Downing, Jr., John P.; DeRoos, Bradley G.; Hackman, Donald J.

    1995-01-01

    A housing for the containment of instrumentation in a high pressure fluid environment that consists of a metallic endcap and ceramic cylinder bonded together. The improvement comprises a structure which results in the improved sealing of said housing as the fluid pressure increases. The cylindrical ceramic tube and endcap are dimensioned such that mechanical failure does not occur when exposed to the desired external operating pressures which includes up to 36,000 feet of water. The housing is designed to withstand the external operating pressures without being subject to mechanical failure or excessive deformation which results in the loss of pressure housing integrity via cracking or deformation of the ceramic tube, deformation of the endcap, or from failure of the bonding agent.

  18. Ceramic pressure housing with metal endcaps

    DOEpatents

    Downing, J.P. Jr.; DeRoos, B.G.; Hackman, D.J.

    1995-06-27

    A housing is disclosed for the containment of instrumentation in a high pressure fluid environment that consists of a metallic endcap and ceramic cylinder bonded together. The improvement comprises a structure which results in the improved sealing of said housing as the fluid pressure increases. The cylindrical ceramic tube and endcap are dimensioned such that mechanical failure does not occur when exposed to the desired external operating pressures which includes up to 36,000 feet of water. The housing is designed to withstand the external operating pressures without being subject to mechanical failure or excessive deformation which results in the loss of pressure housing integrity via cracking or deformation of the ceramic tube, deformation of the endcap, or from failure of the bonding agent. 9 figs.

  19. Discontinuity stresses in metallic pressure vessels

    NASA Technical Reports Server (NTRS)

    1971-01-01

    The state of the art, criteria, and recommended practices for the theoretical and experimental analyses of discontinuity stresses and their distribution in metallic pressure vessels for space vehicles are outlined. The applicable types of pressure vessels include propellant tanks ranging from main load-carrying integral tank structure to small auxiliary tanks, storage tanks, solid propellant motor cases, high pressure gas bottles, and pressurized cabins. The major sources of discontinuity stresses are discussed, including deviations in geometry, material properties, loads, and temperature. The advantages, limitations, and disadvantages of various theoretical and experimental discontinuity analysis methods are summarized. Guides are presented for evaluating discontinuity stresses so that pressure vessel performance will not fall below acceptable levels.

  20. Hypertension (High Blood Pressure)

    MedlinePlus

    ... pressure to live. Without it, blood can't flow through our bodies and carry oxygen to our vital organs. But when blood pressure gets too high — a condition called hypertension — it can lead to ...

  1. Melting of transition metals at high pressure and the influence of liquid frustration. I. The late metals Cu, Ni and Fe

    SciTech Connect

    Ross, M; Boehler, R; Errandonea, D

    2007-03-15

    This report focuses on the role that frustration, or preferred liquid local causes ordering, plays in the melting of transition metals. Specifically, Cu, Ni and Fe. It is proposed that for liquids of metals with partially filled d-bands (Ni and Fe) frustration caused by Peierls/Jahn-Teller distortion and pressure-induced s-d electron promotion provides a mechanism for creating and enhancing the stability of local structures. At the most elementary level, liquid structures are essentially impurities that lower the freezing point. In the case of transition metals with partially filled d-bands, the application of pressure induces s-d electron promotion increases the concentration of local structures. This leads to melting slopes for Ni and Fe that are considerably lower than measured for Cu, and lower than for theoretical predictions employing models in which liquid structures are neglected.

  2. High Blood Pressure in Pregnancy

    MedlinePlus

    ... The Health Information Center High Blood Pressure in Pregnancy What Is High Blood Pressure? Blood pressure is ... Are the Effects of High Blood Pressure in Pregnancy? Although many pregnant women with high blood pressure ...

  3. Optical conductivity measurements of GaTa4Se8 under high pressure: evidence of a bandwidth-controlled insulator-to-metal Mott transition.

    PubMed

    Ta Phuoc, V; Vaju, C; Corraze, B; Sopracase, R; Perucchi, A; Marini, C; Postorino, P; Chligui, M; Lupi, S; Janod, E; Cario, L

    2013-01-18

    The optical properties of a GaTa(4)Se(8) single crystal are investigated under high pressure. At ambient pressure, the optical conductivity exhibits a charge gap of ≈0.12 eV and a broad midinfrared band at ≈0.55 eV. As pressure is increased, the low energy spectral weight is strongly enhanced and the optical gap is rapidly filled, pointing to an insulator to metal transition around 6 GPa. The overall evolution of the optical conductivity demonstrates that GaTa(4)Se(8) is a Mott insulator which undergoes a bandwidth-controlled Mott metal-insulator transition under pressure, in remarkably good agreement with theory. With the use of our optical data and ab initio band structure calculations, our results were successfully compared to the (U/D, T/D) phase diagram predicted by dynamical mean field theory for strongly correlated systems.

  4. Features and regularities in behavior of thermoelectric properties of rare-earth, transition, and other metals under high pressure up to 20 GPa

    SciTech Connect

    Morozova, Natalia V.; Shchennikov, Vladimir V.; Ovsyannikov, Sergey V. E-mail: sergey2503@gmail.com

    2015-12-14

    We report results of systematic investigations of the thermoelectric properties of a number of rare-earth metals, transition metals, and other metals under high pressure up to 20 GPa at room temperature. We studied an effect of applied pressure on the Seebeck effect of scandium (Sc), yttrium (Y), lanthanum (La), europium (Eu), ytterbium (Yb), iron (Fe), manganese (Mn), chromium (Cr), gold (Au), tin (Sn), and CeNi alloy. We found that the high-pressure behavior of the thermopower of three rare-earth metals, namely, Sc, Y, and La, follows a general trend that has been established earlier in lanthanides, and addressed to a s → d electron transfer. Europium and ytterbium, on the contrary, showed a peculiar high-pressure behavior of the thermopower with peaks at near 0.7–1 GPa for Eu and 1.7–2.5 GPa for Yb. Chromium, manganese, and tin demonstrated a gradual and pronounced lowering of the absolute value of the thermopower with pressure. Above 9–11 GPa, the Seebeck coefficients of Mn and Sn were inverted, from n- to p-type for Mn and from p- to n-type for Sn. The Seebeck effect in iron was rather high as ∼16 μV/K and weakly varied with pressure up to ∼11 GPa. Above ∼11 GPa, it started to drop dramatically with pressure to highest pressure achieved 18 GPa. Upon decompression cycle the thermopower of iron returned to the original high values but demonstrated a wide hysteresis loop. We related this behavior in iron to the known bcc (α-Fe) → hcp (ε-Fe) phase transition, and proposed that the thermoelectricity of the α-Fe phase is mainly contributed by the spin Seebeck effect, likewise, the thermoelectricity of the ε-Fe phase—by the conventional diffusion thermopower. We compare the pressure dependencies of the thermopower for different groups of metals and figure out some general trends in the thermoelectricity of metals under applied stress.

  5. Investigating half-metallicity in PtXSb alloys (X=V, Mn, Cr, Co) at ambient and high pressure

    NASA Astrophysics Data System (ADS)

    Habbak, Enas L.; Shabara, Reham M.; Aly, Samy H.; Yehia, Sherif

    2016-08-01

    The structural, electronic, magnetic and elastic properties of half-Heusler alloys PtMnSb, PtVSb, PtCrSb and PtCoSb are investigated using first-principles calculation based on Density Functional Theory DFT. The Full Potential local Orbital (FPLO) method, within the General Gradient Approximation (GGA) and Local Spin Density Approximation (LSDA), have been used. The calculated structural, electronic and magnetic properties are in good agreement with available experimental and theoretical data. Using GGA approximation, only PtVSb shows a half-metallic behavior with a spin-down band gap and total magnetic moment of 0.802 eV and 2 μB respectively. Both of PtVSb and PtMnSb alloys are half-metallic with spin-down band gaps of 0.925 eV and 0.832 eV and magnetic moments of 2 μB and 4 μB respectively using LSDA approximation. The bulk modulus and its first pressure-derivative of these alloys are calculated using the modified Birch-Murnaghan equation of state (EOS). The effect of pressure on the lattice constant, energy gap and bulk modulus is investigated. Under pressure, PtMnSb and PtCrSb turn into half-metallic alloys at nearly 6 GPa and 27 GPa respectively using GGA approximation.

  6. The Thermal Pressure in Low Metallicity Galaxies

    NASA Astrophysics Data System (ADS)

    Wolfire, Mark; McKee, Christopher; Ostriker, Eve C.; Bolatto, Alberto; Jenkins, Edward

    2015-08-01

    The thermal pressure in the diffuse interstellar medium (ISM) is a relatively small fraction of the total ISM pressure yet it is extremely important for the evolution of the ISM phases. A multi-phase medium can exist between a range of thermal pressures Pmin < Pth < Pmax. The phase separation is driven by thermal instability and produces a cold (T ˜ 100 K) neutral atomic gas and a warm (T ˜ 8000 K) neutral atomic gas separated by thermally unstable gas. At thermal pressures greater than Pmax only the cold phase can exist and at thermal pressures less than Pmin only the warm phase can exist. The ISM is also highly turbulent and turbulence can both initiate the thermal phase transition and be produced in a rapid phase transition. Hydrodynamic modeling also points to a strong two-phase distribution (.e.g., Kim et al. 2011; Audit & Hennebelle 2010) with a median thermal pressure in the cold gas very near the expected two-phase pressure. Global, theoretical models including star-formation feedback have been developed for the molecular fraction in galactic disks using, at their core, the paradigm that thermal pressure determines the phase transitions to warm, cold, or multiphase medium (e.g., Krumholz et al. 2009; Ostriker et al. 2010).Here we present a phase diagram for a low metallicity galaxy using the Small Magellanic Clouds as an example. We find that although the heating rates and metallicities can differ by factors of 5 to 10 from the Milky Way, the resulting two-phase pressure and physical conditions of the phases are not very different from Galactic. We also confirm that a widely used fitting function for Pmin presented in Wolfire et al. 2003 provides an accurate prediction for the new results. We demonstrate how the variation in input parameters determine the final pressures and physical conditions.

  7. The W-W02 Oxygen Fugacity Buffer at High Pressures and Temperatures: Implications for f02 Buffering and Metal-silicate Partitioning

    NASA Technical Reports Server (NTRS)

    Shofner, G. A.; Campbell, A. J.; Danielson, L.; Righter, K.

    2013-01-01

    Oxygen fugacity (fO2) controls multivalent phase equilibria and partitioning of redox-sensitive elements, and it is important to understand this thermodynamic parameter in experimental and natural systems. The coexistence of a metal and its oxide at equilibrium constitutes an oxygen buffer which can be used to control or calculate fO2 in high pressure experiments. Application of 1-bar buffers to high pressure conditions can lead to inaccuracies in fO2 calculations because of unconstrained pressure dependencies. Extending fO2 buffers to pressures and temperatures corresponding to the Earth's deep interior requires precise determinations of the difference in volume (Delta) V) between the buffer phases. Synchrotron x-ray diffraction data were obtained using diamond anvil cells (DAC) and a multi anvil press (MAP) to measure unit cell volumes of W and WO2 at pressures and temperatures up to 70 GPa and 2300 K. These data were fitted to Birch-Murnaghan 3rd-order thermal equations of state using a thermal pressure approach; parameters for W are KT = 306 GPa, KT' = 4.06, and aKT = 0.00417 GPa K-1. Two structural phase transitions were observed for WO2 at 4 and 32 GPa with structures in P21/c, Pnma and C2/c space groups. Equations of state were fitted for these phases over their respective pressure ranges yielding the parameters KT = 190, 213, 300 GPa, KT' = 4.24, 5.17, 4 (fixed), and aKT = 0.00506, 0.00419, 0.00467 GPa K-1 for the P21/c, Pnma and C2/c phases, respectively. The W-WO2 buffer (WWO) was extended to high pressure by inverting the W and WO2 equations of state to obtain phase volumes at discrete pressures (1-bar to 100 GPa, 1 GPa increments) along isotherms (300 to 3000K, 100 K increments). The slope of the absolute fO2 of the WWO buffer is positive with increasing temperature up to approximately 70 GPa and is negative above this pressure. The slope is positive along isotherms from 1000 to 3000K with increasing pressure up to at least 100 GPa. The WWO buffer is at

  8. The evolution of model catalytic systems; studies of structure, bonding and dynamics from single crystal metal surfaces to nanoparticles, and from low pressure (<10(-3) Torr) to high pressure (>10(-3) Torr) to liquid interfaces.

    PubMed

    Somorjai, Gabor A; York, Roger L; Butcher, Derek; Park, Jeong Y

    2007-07-21

    The material and pressure gap has been a long standing challenge in the field of heterogeneous catalysis and have transformed surface science and biointerfacial research. In heterogeneous catalysis, the material gap refers to the discontinuity between well-characterized model systems and industrially relevant catalysts. Single crystal metal surfaces have been useful model systems to elucidate the role of surface defects and the mobility of reaction intermediates in catalytic reactivity and selectivity. As nanoscience advances, we have developed nanoparticle catalysts with lithographic techniques and colloidal syntheses. Nanoparticle catalysts on oxide supports allow us to investigate several important ingredients of heterogeneous catalysis such as the metal-oxide interface and the influence of noble metal particle size and surface structure on catalytic selectivity. Monodispersed nanoparticle and nanowire arrays were fabricated for use as model catalysts by lithographic techniques. Platinum and rhodium nanoparticles in the 1-10 nm range were synthesized in colloidal solutions in the presence of polymer capping agents. The most catalytically active systems are employed at high pressure or at solid-liquid interfaces. In order to study the high pressure and liquid interfaces on the molecular level, experimental techniques with which we bridged the pressure gap in catalysis have been developed. These techniques include the ultrahigh vacuum system equipped with high pressure reaction cell, high pressure Sum Frequency Generation (SFG) vibration spectroscopy, High Pressure Scanning Tunneling Microscopy (HP-STM), and High Pressure X-ray Photoemission Spectroscopy (HP-XPS), and Quartz Crystal Microbalance (QCM). In this article, we overview the development of experimental techniques and evolution of the model systems for the research of heterogeneous catalysis and biointerfacial studies that can shed light on the long-standing issues of materials and pressure gaps.

  9. Measurement of the differential pressure of liquid metals

    DOEpatents

    Metz, H.J.

    1975-09-01

    This patent relates to an improved means for measuring the differential pressure between any two points in a process liquid metal coolant loop, wherein the flow of liquid metal in a pipe is opposed by a permanent magnet liquid metal pump until there is almost zero flow shown by a magnetic type flowmeter. The pressure producing the liquid metal flow is inferred from the rate of rotation of the permanent magnet pump. In an alternate embodiment, a differential pressure transducer is coupled to a process pipeline by means of high-temperature bellows or diaphragm seals, and a permanent magnet liquid metal pump in the high-pressure transmission line to the pressure transducer can be utilized either for calibration of the transducer or for determining the process differential pressure as a function of the magnet pump speed. (auth)

  10. The effect of non-metallic inclusions on the fracture toughness master curve in high copper reactor pressure vessel welds

    NASA Astrophysics Data System (ADS)

    Oh, Yong-Jun; Lee, Bong-Sang; Hong, Jun-Hwa

    2002-03-01

    The fracture toughness of two high copper reactor pressure vessel welds having low upper shelf energy was evaluated in accordance with the master curve method of ASTM E1921. The resultant data were correlated to the metallurgical factors involved in the brittle fracture initiation to provide a metallurgical-based understanding of the master curve. The tests were performed using pre-cracked Charpy V-notched specimens and the master curve was made with an average of T0 values determined at different temperatures. In all specimens, the cleavage fracture initiated at non-metallic inclusion ranging from 0.7 to 3.5 μm in diameter showing a scatter with the specimens and testing temperatures. Temperature dependency of the triggering particle size was not found. The fracture toughness ( KJC) was inversely proportional to the square root of the triggering inclusion diameter ( di) at respective temperatures. From this relationship, we determined median KJC values which correspond to the average value of triggering inclusion diameter of all tested specimens and defined them as a modified median KJC ( K'JC(med) ). The obtained K'JC(med) values showed quite smaller deviation from the master curve at different temperatures than the experimental median KJC values. This suggests that the master curve is on the premise of a constant dimension of key microstructural factor in a material regardless of the testing temperature. But the inclusion size at trigger point played an important role in the absolute position of the master curve with temperature and the consequent T0 value.

  11. Thermal transport across high-pressure semiconductor-metal transition in Si and Si0.991Ge0.009

    NASA Astrophysics Data System (ADS)

    Hohensee, Gregory T.; Fellinger, Michael R.; Trinkle, Dallas R.; Cahill, David G.

    2015-05-01

    Time-domain thermoreflectance (TDTR) can be applied to metallic samples at high pressures in the diamond anvil cell and provide noncontact measurements of thermal transport properties. We have performed regular and beam-offset TDTR to establish the thermal conductivities of Si and Si0.991Ge0.009 across the semiconductor-metal phase transition and up to 45 GPa. The thermal conductivities of metallic Si and Si(Ge) are comparable to aluminum and indicative of predominantly electronic heat carriers. Metallic Si and Si(Ge) have an anisotropy of approximately 1.4, similar to that of beryllium, due to the primitive hexagonal crystal structure. We used the Wiedemann-Franz law to derive the associated electrical resistivity, and found it consistent with the Bloch-Grüneisen model.

  12. High pressure melt ejection

    SciTech Connect

    Tarbell, W.W.; Brockmann, J.E.; Pilch, M.

    1983-01-01

    Recent probabilistic risk assessments have identified the potential for reactor pressure vessel failure while the reactor coolant system is at elevated pressure. The analyses postulate that the blowdown of steam and hydrogen into the reactor cavity will cause the core material to be swept from the cavity region into the containment building. The High Pressure Melt Streaming (HIPS) program is an experimental study of the high pressure ejection of molten material and subsequent interactions within a concrete cavity. The program focuses on using prototypic system conditions and scaled models of reactor geometries to accurately simulate the ex-vessel processes during high-pressure accident sequences. Scaling analyses of the experiment show that the criteria established for core debris removal from the cavity are met or exceeded. Tests are performed at two scales, representing 1/10th and 1/20th linear reproductions of the Zion reactor plant. Results of the 1/20th scale tests are presented.

  13. High pressure ices

    PubMed Central

    Hermann, Andreas; Ashcroft, N. W.; Hoffmann, Roald

    2012-01-01

    H2O will be more resistant to metallization than previously thought. From computational evolutionary structure searches, we find a sequence of new stable and meta-stable structures for the ground state of ice in the 1–5 TPa (10 to 50 Mbar) regime, in the static approximation. The previously proposed Pbcm structure is superseded by a Pmc21 phase at p = 930 GPa, followed by a predicted transition to a P21 crystal structure at p = 1.3 TPa. This phase, featuring higher coordination at O and H, is stable over a wide pressure range, reaching 4.8 TPa. We analyze carefully the geometrical changes in the calculated structures, especially the buckling at the H in O-H-O motifs. All structures are insulating—chemistry burns a deep and (with pressure increase) lasting hole in the density of states near the highest occupied electronic levels of what might be component metallic lattices. Metallization of ice in our calculations occurs only near 4.8 TPa, where the metallic C2/m phase becomes most stable. In this regime, zero-point energies much larger than typical enthalpy differences suggest possible melting of the H sublattice, or even the entire crystal. PMID:22207625

  14. High-pressure microfluidics

    NASA Astrophysics Data System (ADS)

    Hjort, K.

    2015-03-01

    When using appropriate materials and microfabrication techniques, with the small dimensions the mechanical stability of microstructured devices allows for processes at high pressures without loss in safety. The largest area of applications has been demonstrated in green chemistry and bioprocesses, where extraction, synthesis and analyses often excel at high densities and high temperatures. This is accessible through high pressures. Capillary chemistry has been used since long but, just like in low-pressure applications, there are several potential advantages in using microfluidic platforms, e.g., planar isothermal set-ups, large local variations in geometries, dense form factors, small dead volumes and precisely positioned microstructures for control of reactions, catalysis, mixing and separation. Other potential applications are in, e.g., microhydraulics, exploration, gas driven vehicles, and high-pressure science. From a review of the state-of-art and frontiers of high pressure microfluidics, the focus will be on different solutions demonstrated for microfluidic handling at high pressures and challenges that remain.

  15. Suppression of Metal Inclusions and The Effect of Carbon on Pt Solubility in Haplobasalt at High Pressure and Temperature

    NASA Astrophysics Data System (ADS)

    Bennett, N. R.; Brenan, J.

    2011-12-01

    Reliable determination of highly siderophile element (HSE) distribution between metal and silicate melt is key to understanding the relative roles of equilibrium core-formation and ongoing accretion in establishing the observed level of these elements in the primitive upper mantle (PUM). Platinum is of particular interest among the HSE due to its parental role in the long-lived 190Pt-186Os isotopic system, with measured 186Os/188Os providing a time-integrated constraint on a chondritic Pt/Os ratio for the PUM. Two issues currently plague the results of metal solubility experiments designed to estimate partitioning between Fe-metal and silicate melt. Firstly, experiments to measure Pt solubility at the low fO2 relevant to core metal segregation show evidence for a highly dispersed, discrete metal phase. It is debated whether this phase is formed during quench, or is stable during the experiment; implied melt solubilities differ considerably depending on the interpretation. Secondly, past experiments have utilised graphite capsules, but the association of quenched CO vesicles with metal particles in quenched run products from the highest temperature experiments (T≥2300C) suggest that some HSEs (e.g. Au and Pt) may dissolve into molten silicate, in part, as a carbonyl species. The question is whether dissolved carbon can therefore enhance HSE solubility. Our work aims to resolve these issues. We have conducted piston-cylinder experiments at 2GPa and 1600-2300C, over an fO2 range of several log units, spanning iron-wustite. Capsules were made from either graphite or Pt-Ir-Fe alloy. The melt used in the experiments is an Fe-bearing basalt that forms a glass on quench. Experiments are analysed by LA-ICP-MS, allowing glass homogeneity to be assessed on a micron-scale. Our results show that, unlike previous studies, we have been able to suppress the formation of metal particles through the addition of small quantities of silicon metal to the experiment. Measured glass

  16. Prevention of High Blood Pressure

    MedlinePlus

    ... page from the NHLBI on Twitter. Prevention of High Blood Pressure Healthy lifestyle habits, proper use of medicines, and ... prevent high blood pressure or its complications. Preventing High Blood Pressure Onset Healthy lifestyle habits can help prevent high ...

  17. Pressure-induced superconductivity in europium metal

    SciTech Connect

    Debessai, M.; Matsuoka, T.; Hamlin, J.J.; Bi, W.; Meng, Y.; Shimizu, K.; Schilling, J.S.

    2010-05-24

    Of the 52 known elemental superconductors among the 92 naturally occurring elements in the periodic table, fully 22 only become superconducting under sufficiently high pressure. In the rare-earth metals, the strong local magnetic moments originating from the 4f shell suppress superconductivity. For Eu, however, Johansson and Rosengren have suggested that sufficiently high pressures should promote one of its 4f electrons into the conduction band, changing Eu from a strongly magnetic (J=7/2) 4f{sup 7}-state into a weak Van Vleck paramagnetic (J=0) 4f{sup 6}-state, thus opening the door for superconductivity, as in Am (5f{sup 6}). We report that Eu becomes superconducting above 1.8 K for pressures exceeding 80 GPa, T{sub c} increasing linearly with pressure to 142 GPa at the rate +15 mK/GPa. Eu thus becomes the 53rd elemental superconductor in the periodic table. Synchrotron x-ray diffraction studies to 92 GPa at ambient temperature reveal four structural phase transitions.

  18. Specific features of insulator-metal transitions under high pressure in crystals with spin crossovers of 3d ions in tetrahedral environment

    SciTech Connect

    Lobach, K. A. Ovchinnikov, S. G.; Ovchinnikova, T. M.

    2015-01-15

    For Mott insulators with tetrahedral environment, the effective Hubbard parameter U{sub eff} is obtained as a function of pressure. This function is not universal. For crystals with d{sup 5} configuration, the spin crossover suppresses electron correlations, while for d{sup 4} configurations, the parameter U{sub eff} increases after a spin crossover. For d{sup 2} and d{sup 7} configurations, U{sub eff} increases with pressure in the high-spin (HS) state and is saturated after the spin crossover. Characteristic features of the insulator-metal transition are considered as pressure increases; it is shown that there may exist cascades of several transitions for various configurations.

  19. What Is High Blood Pressure?

    MedlinePlus

    ... Blood Pressure Tools & Resources Stroke More What is High Blood Pressure? Updated:Aug 26,2016 High blood pressure, also ... content was last reviewed on 08/04/2014. High Blood Pressure • Home • About High Blood Pressure (HBP) Introduction What ...

  20. Diagnosis of High Blood Pressure

    MedlinePlus

    ... the NHLBI on Twitter. Diagnosis of High Blood Pressure For most patients, health care providers diagnose high ... 140/90 mmHg or above. Confirming High Blood Pressure A blood pressure test is easy and painless ...

  1. Electrical Transport Experiments at High Pressure

    SciTech Connect

    Weir, S

    2009-02-11

    High-pressure electrical measurements have a long history of use in the study of materials under ultra-high pressures. In recent years, electrical transport experiments have played a key role in the study of many interesting high pressure phenomena including pressure-induced superconductivity, insulator-to-metal transitions, and quantum critical behavior. High-pressure electrical transport experiments also play an important function in geophysics and the study of the Earth's interior. Besides electrical conductivity measurements, electrical transport experiments also encompass techniques for the study of the optoelectronic and thermoelectric properties of materials under high pressures. In addition, electrical transport techniques, i.e., the ability to extend electrically conductive wires from outside instrumentation into the high pressure sample chamber have been utilized to perform other types of experiments as well, such as high-pressure magnetic susceptibility and de Haas-van Alphen Fermi surface experiments. Finally, electrical transport techniques have also been utilized for delivering significant amounts of electrical power to high pressure samples, for the purpose of performing high-pressure and -temperature experiments. Thus, not only do high-pressure electrical transport experiments provide much interesting and valuable data on the physical properties of materials extreme compression, but the underlying high-pressure electrical transport techniques can be used in a number of ways to develop additional diagnostic techniques and to advance high pressure capabilities.

  2. HIGH PRESSURE GAS REGULATOR

    DOEpatents

    Ramage, R.W.

    1962-05-01

    A gas regulator operating on the piston and feedback principle is described. The device is particularly suitable for the delicate regulation of high pressure, i.e., 10,000 psi and above, gas sources, as well as being perfectly adaptable for use on gas supplies as low as 50 psi. The piston is adjustably connected to a needle valve and the movement of the piston regulates the flow of gas from the needle valve. The gas output is obtained from the needle valve. Output pressure is sampled by a piston feedback means which, in turn, regulates the movement of the main piston. When the output is other than the desired value, the feedback system initiates movement of the main piston to allow the output pressure to be corrected or to remain constant. (AEC)

  3. High pressure atomization

    NASA Astrophysics Data System (ADS)

    Bracco, F. V.

    1982-03-01

    The main objective of these grants has been to study the fundamental processes which lead to the atomization of high pressure jets injected into compressed gases through single hole nozzles. Specific topics include: Dependence of Spray Angle and Other Spray Parameters on Nozzle Design and Operating Conditions; Ultra High Speed Filming of Atomizing Jets; Mechanism of Breakup of Highly Super Heated Liquid Jets; Measurements of the Spray Angle of Atomizing Jets; Mechanism of Atomization of a Liquid Jet; Scaling of Transient Laminar, Turbulent, and Spray Jets; Computations of Drop Sizes in Pulsating Sprays and of Liquid Core Length in Vaporizing Sprays; and Scaling of Impulsively Started Sprays.

  4. Pressure-induced metallization of silane

    SciTech Connect

    Chen,X.; Struzhkin, V.; Song, Y.; Goncharov, A.; Ahart, M.; Liu, Z.; Mao, H.; Hemley, R.

    2008-01-01

    There is a great interest in electronic transitions in hydrogen-rich materials under extreme conditions. It has been recently suggested that the group IVa hydrides such as methane (CH4), silane (SiH4), and germane (GeH4) become metallic at far lower pressures than pure hydrogen at equivalent densities because the hydrogen is chemically compressed in group IVa hydride compounds. Here we report measurements of Raman and infrared spectra of silane under pressure. We find that SiH4 undergoes three phase transitions before becoming opaque at 27-30 GPa. The vibrational spectra indicate the material transforms to a polymeric (framework) structure in this higher pressure range. Room-temperature infrared reflectivity data reveal that the material exhibits Drude-like metallic behavior above 60 GPa, indicating the onset of pressure-induced metallization.

  5. Pair distribution function analysis: The role of structural degrees of freedom in the high-pressure insulator to metal transition of VO2

    NASA Astrophysics Data System (ADS)

    Baldini, M.; Postorino, P.; Malavasi, L.; Marini, C.; Chapman, K. W.; Mao, Ho-kwang

    2016-06-01

    The evolution of the local structure of VO2 was investigated across the pressure-induced insulator to metal transition (IMT) by means of pair distribution function measurements. The pressure behavior of the V-V and V-O bond lengths have been determined. The data demonstrated that the pressure-driven IMT is not activated by the suppression of the Peierls-type distortion. A clear octahedra symmetrization is observed in the metallic phase, suggesting a link between structural degree of freedom and the metallization process.

  6. High pressure ratio turbocharger

    SciTech Connect

    Woollenweber, W.E.

    1991-06-25

    This patent describes a turbocharger system for an internal combustion engine. It comprises means forming a turbine adapted to be driven by exhaust gas from an internal combustion engine comprising: a turbine wheel having a central core and outwardly extending vanes, the turbine wheel being rotatable about a central axis; a meridionally divided volute for exhaust gas surrounding the turbine wheel, the meridionally divided volute including a divider wall defining first and second volute passageways with openings at the turbine wheel; means forming a high-pressure compressor driven by the turbine means, the high-pressure compressor comprising: rotating compressor blades, the compressor blades adapted to be driven in rotation about the central axis by the turbine means to deliver a flow of air at high pressures for an internal combustion engine, and blades being moveable about longitudinal axes generally transverse to the central axis to impart positive or negative pre-whirl motion to the air leaving the stator blades prior to entering the rotating blades of the compressor stage; closure means for providing a flow of engine exhaust gas from one of the first and second volute passageways into the turbine wheel; and a control means for operating the closure means and the stator blades in synchronization.

  7. Living with High Blood Pressure

    MedlinePlus

    ... page from the NHLBI on Twitter. Living With High Blood Pressure If you have high blood pressure, the best thing to do is to talk ... help you track your blood pressure. Pregnancy Planning High blood pressure can cause problems for mother and baby. High ...

  8. Stroke and High Blood Pressure

    MedlinePlus

    ... Blood Pressure Tools & Resources Stroke More Stroke and High Blood Pressure Updated:Jan 6,2015 Stroke is a leading ... to heart disease and stroke. Start exploring today ! High Blood Pressure • Home • About High Blood Pressure (HBP) • Why HBP ...

  9. Pressure Dome for High-Pressure Electrolyzer

    NASA Technical Reports Server (NTRS)

    Norman, Timothy; Schmitt, Edwin

    2012-01-01

    A high-strength, low-weight pressure vessel dome was designed specifically to house a high-pressure [2,000 psi (approx. = 13.8 MPa)] electrolyzer. In operation, the dome is filled with an inert gas pressurized to roughly 100 psi (approx. = 690 kPa) above the high, balanced pressure product oxygen and hydrogen gas streams. The inert gas acts to reduce the clamping load on electrolyzer stack tie bolts since the dome pressure acting axially inward helps offset the outward axial forces from the stack gas pressure. Likewise, radial and circumferential stresses on electrolyzer frames are minimized. Because the dome is operated at a higher pressure than the electrolyzer product gas, any external electrolyzer leak prevents oxygen or hydrogen from leaking into the dome. Instead the affected stack gas stream pressure rises detectably, thereby enabling a system shutdown. All electrical and fluid connections to the stack are made inside the pressure dome and require special plumbing and electrical dome interfaces for this to be accomplished. Further benefits of the dome are that it can act as a containment shield in the unlikely event of a catastrophic failure. Studies indicate that, for a given active area (and hence, cell ID), frame outside diameter must become ever larger to support stresses at higher operating pressures. This can lead to a large footprint and increased costs associated with thicker and/or larger diameter end-plates, tie-rods, and the frames themselves. One solution is to employ rings that fit snugly around the frame. This complicates stack assembly and is sometimes difficult to achieve in practice, as its success is strongly dependent on frame and ring tolerances, gas pressure, and operating temperature. A pressure dome permits an otherwise low-pressure stack to operate at higher pressures without growing the electrolyzer hardware. The pressure dome consists of two machined segments. An O-ring is placed in an O-ring groove in the flange of the bottom

  10. Effects of carbonyl bond, metal cluster dissociation, and evaporation rates on predictions of nanotube production in high-pressure carbon monoxide

    NASA Technical Reports Server (NTRS)

    Scott, Carl D.; Smalley, Richard E.

    2003-01-01

    The high-pressure carbon monoxide (HiPco) process for producing single-wall carbon nanotubes (SWNTs) uses iron pentacarbonyl as the source of iron for catalyzing the Boudouard reaction. Attempts using nickel tetracarbonyl led to no production of SWNTs. This paper discusses simulations at a constant condition of 1300 K and 30 atm in which the chemical rate equations are solved for different reaction schemes. A lumped cluster model is developed to limit the number of species in the models, yet it includes fairly large clusters. Reaction rate coefficients in these schemes are based on bond energies of iron and nickel species and on estimates of chemical rates for formation of SWNTs. SWNT growth is measured by the conformation of CO2. It is shown that the production of CO2 is significantly greater for FeCO because of its lower bond energy as compared with that of NiCO. It is also shown that the dissociation and evaporation rates of atoms from small metal clusters have a significant effect on CO2 production. A high rate of evaporation leads to a smaller number of metal clusters available to catalyze the Boudouard reaction. This suggests that if CO reacts with metal clusters and removes atoms from them by forming MeCO, this has the effect of enhancing the evaporation rate and reducing SWNT production. The study also investigates some other reactions in the model that have a less dramatic influence.

  11. HIGH PRESSURE DIES

    DOEpatents

    Wilson, W.B.

    1960-05-31

    A press was invented for subjecting specimens of bismuth, urania, yttria, or thoria to high pressures and temperatures. The press comprises die parts enclosing a space in which is placed an electric heater thermally insulated from the die parts so as not to damage them by heat. The die parts comprise two opposed inner frustoconical parts and an outer part having a double frustoconical recess receiving the inner parts. The die space decreases in size as the inner die parts move toward one another against the outer part and the inner parts, though very hard, do not fracture because of the mode of support provided by the outer part.

  12. Metal-embedded optical fiber pressure sensor

    NASA Astrophysics Data System (ADS)

    Kidwell, J. J.; Berthold, John W.

    1991-02-01

    The paper reports the results of work to demonstrate the feasibility of embedding a metal-buffered optical fiber inside a thin metal diaphragm to create a pressure-sensitive transducer. A method was developed to embed butt-coupled optical fibers inside brass diaphragms. Butt-coupled fibers with two different end spacings were successfully embedded in the diaphragms. The pressure response of the diaphragms was calibrated by measuring the changes in light transmission through the butt coupling as a function of pressure. In addition to embedded fiber pressure sensors, this method may be useful for other applications. The calibration results indicate the method could be used to make connections between signal processors and optical fibers embedded in composites.

  13. High pressure capillary connector

    DOEpatents

    Renzi, Ronald F.

    2005-08-09

    A high pressure connector capable of operating at pressures of 40,000 psi or higher is provided. This connector can be employed to position a first fluid-bearing conduit that has a proximal end and a distal end to a second fluid-bearing conduit thereby providing fluid communication between the first and second fluid-bearing conduits. The connector includes (a) an internal fitting assembly having a body cavity with (i) a lower segment that defines a lower segment aperture and (ii) an interiorly threaded upper segment, (b) a first member having a first member aperture that traverses its length wherein the first member aperture is configured to accommodate the first fluid-bearing conduit and wherein the first member is positioned in the lower segment of the internal fitting assembly, and (c) a second member having a second member aperture that traverses its length wherein the second member is positioned in the upper segment of the fitting assembly and wherein a lower surface of the second member is in contact with an upper surface of the first member to assert a compressive force onto the first member and wherein the first member aperture and the second member aperture are coaxial.

  14. High Blood Pressure

    MedlinePlus

    Blood pressure is the force of your blood pushing against the walls of your arteries. Each time your heart ... it pumps blood into the arteries. Your blood pressure is highest when your heart beats, pumping the ...

  15. Hypertension (High Blood Pressure)

    MedlinePlus

    ... blood pressure with the development of a practical method to measure it. Physicians began to note associations between hypertension and risk of heart failure, stroke, and kidney failure. Although scientists had yet to prove that lowering blood pressure ...

  16. Three Toxic Heavy Metals in Open-Angle Glaucoma with Low-Teen and High-Teen Intraocular Pressure: A Cross-Sectional Study from South Korea

    PubMed Central

    Lee, Si Hyung; Kang, Eun Min; Kim, Gyu Ah; Kwak, Seung Woo; Kim, Joon Mo; Bae, Hyoung Won; Seong, Gong Je; Kim, Chan Yun

    2016-01-01

    Background To investigate the association between heavy metal levels and open-angle glaucoma (OAG) with low- and high-teen baseline intraocular pressure (IOP) using a population-based study design. Methods This cross-sectional study included 5,198 participants older than 19 years of age who participated in the Korean National Health and Nutrition Examination Survey (KNHANES) from 2008 to 2012 and had blood heavy metal levels available. The OAG with normal baseline IOP (IOP ≤ 21 mmHg) subjects were stratified into low-teen OAG (baseline IOP ≤ 15 mmHg) and high-teen OAG (15 mmHg < baseline IOP ≤ 21 mmHg), and the association between blood lead, mercury, and cadmium levels and glaucoma prevalence was assessed for low- and high-teen OAG. Results The adjusted geometric mean of blood cadmium levels was significantly higher in subjects with low-teen OAG than that of the non-glaucomatous group (P = 0.028), whereas there were no significant differences in blood lead and mercury levels. After adjusting for potential confounders, the low-teen OAG was positively associated with log-transformed blood cadmium levels (OR, 1.41; 95% confidence interval (CI), 1.03–1.93; P = 0.026). For high-teen OAG, log-transformed blood levels of the three heavy metals were not associated with disease prevalence. The association between log-transformed blood cadmium levels and low-teen OAG was significant only in men (OR, 1.65; 95% CI, 1.10–2.48; P = 0.016), and not in women (OR, 1.10; 95% CI, 0.66–1.85; P = 0.709). Conclusions The results of this study suggest that cadmium toxicity could play a role in glaucoma pathogenesis, particularly in men and in OAG with low-teen baseline IOP. PMID:27768724

  17. High Blood Pressure Fact Sheet

    MedlinePlus

    ... this? Submit What's this? Submit Button Related CDC Web Sites Heart Disease Stroke High Blood Pressure Salt ... Prevent and Control Chronic Diseases Million Hearts® WISEWOMAN Web Sites with More Information About High Blood Pressure ...

  18. What Causes High Blood Pressure?

    MedlinePlus

    ... page from the NHLBI on Twitter. Causes of High Blood Pressure Changes, either from genes or the environment, in ... and blood vessel structure and function. Biology and High Blood Pressure Researchers continue to study how various changes in ...

  19. Pressure-Induced Foaming of Metals

    NASA Astrophysics Data System (ADS)

    García-Moreno, Francisco; Mukherjee, Manas; Jiménez, Catalina; Banhart, John

    2015-05-01

    Pressure-induced foaming (PIF) of metals is a foaming technique in which blowing agent free compacted metal powders are foamed. The method consists of heating hot-compacted metallic precursors to above their melting temperature under gas overpressure and foaming them by pressure release. This study focuses on PIF of Al99.7 and AlSi7 alloys under both air or Ar and overpressures up to 9 bar. In situ x-ray radioscopy allows us to follow the foaming process and to perform quantitative analyses of expansion, foam morphology, and coalescence rate. Mass spectrometry helps to identify hydrogen as the foaming gas. Adsorbates on the former powder particles are found to be the primary gas source. Various advantages of this new method are identified and discussed.

  20. [High Pressure Gas Tanks

    NASA Technical Reports Server (NTRS)

    Quintana, Rolando

    2002-01-01

    Four high-pressure gas tanks, the basis of this study, were especially made by a private contractor and tested before being delivered to NASA Kennedy Space Center. In order to insure 100% reliability of each individual tank the staff at KSC decided to again submit the four tanks under more rigorous tests. These tests were conducted during a period from April 10 through May 8 at KSC. This application further validates the predictive safety model for accident prevention and system failure in the testing of four high-pressure gas tanks at Kennedy Space Center, called Continuous Hazard Tracking and Failure Prediction Methodology (CHTFPM). It is apparent from the variety of barriers available for a hazard control that some barriers will be more successful than others in providing protection. In order to complete the Barrier Analysis of the system, a Task Analysis and a Biomechanical Study were performed to establish the relationship between the degree of biomechanical non-conformities and the anomalies found within the system on particular joints of the body. This relationship was possible to obtain by conducting a Regression Analysis to the previously generated data. From the information derived the body segment with the lowest percentage of non-conformities was the neck flexion with 46.7%. Intense analysis of the system was conducted including Preliminary Hazard Analysis (PHA), Failure Mode and Effect Analysis (FMEA), and Barrier Analysis. These analyses resulted in the identification of occurrences of conditions, which may be becoming hazardous in the given system. These conditions, known as dendritics, may become hazards and could result in an accident, system malfunction, or unacceptable risk conditions. A total of 56 possible dendritics were identified. Work sampling was performed to observe the occurrence each dendritic. The out of control points generated from a Weighted c control chart along with a Pareto analysis indicate that the dendritics "Personnel not

  1. A theoretical model to study melting of metals under pressure

    NASA Astrophysics Data System (ADS)

    Kholiya, Kuldeep; Chandra, Jeewan

    2015-10-01

    On the basis of the thermal equation-of-state a simple theoretical model is developed to study the pressure dependence of melting temperature. The model is then applied to compute the high pressure melting curve of 10 metals (Cu, Mg, Pb, Al, In, Cd, Zn, Au, Ag and Mn). It is found that the melting temperature is not linear with pressure and the slope dTm/dP of the melting curve decreases continuously with the increase in pressure. The results obtained with the present model are also compared with the previous theoretical and experimental data. A good agreement between theoretical and experimental result supports the validity of the present model.

  2. Study of the compressibility of FeSi, MnSi, and CoS2 transition-metal compounds at high pressures

    NASA Astrophysics Data System (ADS)

    Brazhkin, V. V.; Dzhavadov, L. N.; El'kin, F. S.

    2016-07-01

    Silicides and sulfides of transition metals attract great attention of researchers because of a wide spectrum of interesting magnetic, electronic, and optical properties. The crystal structure of FeSi, MnSi, and CoSi silicides is P213(B20), whereas FeS2, CoS2, and MnS2 sulfides have a structure of pyrite Pa3. Despite the great interest in these systems and the cubic symmetry of crystals, the structure and compressibility of these compounds at high pressures are still insufficiently studied. There is a significant spread (more than a factor of two!) in the bulk modulus and its pressure derivative for a single compound. Most studies were performed under nonhydrostatic conditions. In this work, the compressibility of FeSi and MnSi silicides (at pressures up to 35 GPa) and CoS2 sulfide (up to 22 GPa) has been studied by the X-ray diffraction method in a diamond anvil cell with the use of helium as the softest pressure-transmitting medium. The values obtained for the bulk modulus and its derivative— B = 178 ±3 GPa and B p = 5.6 ± 0.5 for FeSi, B = 167 ± 3 GPa and B p ' = 4.6 ± 0.5 for MnSi, and B = 94 ± 2 GPa and B p ' = 6.9 ± 0.5 for CoS2—can be considered as the most reliable and can be used to test numerous theoretical models. The results for the compressibility of FeSi are important for the verification of models of the Earth's core.

  3. Magnetic and Superconducting Materials at High Pressures

    SciTech Connect

    Struzhkin, Viktor V.

    2015-03-24

    The work concentrates on few important tasks in enabling techniques for search of superconducting compressed hydrogen compounds and pure hydrogen, investigation of mechanisms of high-Tc superconductivity, and exploring new superconducting materials. Along that route we performed several challenging tasks, including discovery of new forms of polyhydrides of alkali metal Na at very high pressures. These experiments help us to establish the experimental environment that will provide important information on the high-pressure properties of hydrogen-rich compounds. Our recent progress in RIXS measurements opens a whole field of strongly correlated 3d materials. We have developed a systematic approach to measure major electronic parameters, like Hubbard energy U, and charge transfer energy Δ, as function of pressure. This technique will enable also RIXS studies of magnetic excitations in iridates and other 5d materials at the L edge, which attract a lot of interest recently. We have developed new magnetic sensing technique based on optically detected magnetic resonance from NV centers in diamond. The technique can be applied to study superconductivity in high-TC materials, to search for magnetic transitions in strongly correlated and itinerant magnetic materials under pressure. Summary of Project Activities; development of high-pressure experimentation platform for exploration of new potential superconductors, metal polyhydrides (including newly discovered alkali metal polyhydrides), and already known superconductors at the limit of static high-pressure techniques; investigation of special classes of superconducting compounds (high-Tc superconductors, new superconducting materials), that may provide new fundamental knowledge and may prove important for application as high-temperature/high-critical parameter superconductors; investigation of the pressure dependence of superconductivity and magnetic/phase transformations in 3d transition metal compounds, including

  4. High-pressure neutron diffraction

    SciTech Connect

    Xu, Hongwu

    2011-01-10

    This lecture will cover progress and prospect of applications of high-pressure neutron diffraction techniques to Earth and materials sciences. I will first introduce general high-pressure research topics and available in-situ high-pressure techniques. Then I'll talk about high-pressure neutron diffraction techniques using two types of pressure cells: fluid-driven and anvil-type cells. Lastly, I will give several case studies using these techniques, particularly, those on hydrogen-bearing materials and magnetic transitions.

  5. High Blood Pressure in Pregnancy

    MedlinePlus

    ... of the baby. Controlling your blood pressure during pregnancy and getting regular prenatal care are important for ... your baby. Treatments for high blood pressure in pregnancy may include close monitoring of the baby, lifestyle ...

  6. (High-pressure structural studies of promethium)

    SciTech Connect

    Haire, R.G.

    1988-11-15

    The primary object of the foreign travel was to carry out collaborative high-pressure structural studies at the European Institute for Transuranium Elements (EITU), Karlsruhe, Federal Republic of Germany. These studies reestablished previous collaborative investigations by ORNL and EITU that have been very productive scientifically during the past few years. The study during the present travel period was limited to a structural study of promethium metal under pressure.

  7. Nature of Pressure-induced Insulating States in Simple Metals

    NASA Astrophysics Data System (ADS)

    Naumov, Ivan; Hemley, Russell

    As experimentally established, all the alkali metals and heavy alkaline earth metals (Ca, Sr and Ba) become progressively less conductive on compression, at least up to some critical limit over a broad pressure range. Of these metals, Li and Na clearly undergo pressure-induced metal-insulator transitions, which may also be called reverse Mott transitions. Here, using group theory arguments and first-principles calculations, we show that such transitions can be understood in terms of band representations introduced by Zak. The valence bands in the insulating states are described by simple and composite band representations constructed from localized Wannier functions centered on points unoccupied by atoms. The character of the Wannier functions is closely related to the degree of s-p(-d) hybridization and reflects multi-center chemical bonding in these insulating states. The conditions under which an insulating state is allowed for structures having an integer number of atoms per primitive unit cell as well as re-entrant (i.e., metal-insulator-metal) transition sequences are detailed, resulting in predictions of semimetallic phases with flat surface states. The general principles developed are tested and applied to the alkali and alkaline earth metals, including elements where high-pressure insulating phases have been identified or reported (e.g., Li, Na, and Ca). This research was supported by EFree, an Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Science, Basic Energy Sciences under Award DESC0001057.

  8. Comparison of Conventional Deep Drawing, Hydromechanical Deep-Drawing and High Pressure Sheet Metal Forming by Numerical Experiments

    NASA Astrophysics Data System (ADS)

    Önder, I. Erkan; Tekkaya, A. Erman

    2005-08-01

    Increasing use of new technologies in automotive and aircraft applications requires intensive research and developments on sheet metal forming processes. This study focuses on the assessment of sheet hydroforming, hydro-mechanical deep drawing and conventional deep-drawing processes by performing a systematic analysis by numerical simulations. Circular, elliptic, rectangular and square cross-section cups have been selected for the geometry spectrum. Within the range of each cross section, depth, drawing ratio and fillet radii have been altered systematically. St14 stainless steel has been used as the material throughout the study. The deformation behavior has been described by an elasto-plastic material model and all numerical simulations have been carried out by using a dynamic-explicit commercial finite element code. During the analyses each workpiece is produced by the three competing processes. The analyses results such as sheet thickness distribution, necking, forming of radii etc., are used for assessing the success of each forming process alternative. The analyses revealed that depending on the workpiece geometry and dimensional properties certain processes are preferable for obtaining satisfactory products. The process windows for each process have been established based on the analyzed parameters of the three different product geometries. This data is expected to be useful for selecting the appropriate production process for a given workpiece geometry.

  9. Metallicity dependence of turbulent pressure and macroturbulence in stellar envelopes

    NASA Astrophysics Data System (ADS)

    Grassitelli, L.; Fossati, L.; Langer, N.; Simón-Díaz, S.; Castro, N.; Sanyal, D.

    2016-08-01

    Macroturbulence, introduced as a fudge to reproduce the width and shape of stellar absorption lines, reflects gas motions in stellar atmospheres. While in cool stars, it is thought to be caused by convection zones immediately beneath the stellar surface, the origin of macroturbulence in hot stars is still under discussion. Recent works established a correlation between the turbulent-to-total pressure ratio inside the envelope of stellar models and the macroturbulent velocities observed in corresponding Galactic stars. To probe this connection further, we evaluated the turbulent pressure that arises in the envelope convective zones of stellar models in the mass range 1-125 M⊙ based on the mixing-length theory and computed for metallicities of the Large and Small Magellanic Cloud. We find that the turbulent pressure contributions in models with these metallicities located in the hot high-luminosity part of the Hertzsprung-Russel (HR) diagram is lower than in similar models with solar metallicity, whereas the turbulent pressure in low-metallicity models populating the cool part of the HR-diagram is not reduced. Based on our models, we find that the currently available observations of hot massive stars in the Magellanic Clouds appear to support a connection between macroturbulence and the turbulent pressure in stellar envelopes. Multidimensional simulations of sub-surface convection zones and a larger number of high-quality observations are necessary to test this idea more rigorously.

  10. Pressurized tundish for controlling a continuous flow of molten metal

    DOEpatents

    Lewis, Thomas W.; Hamill, Jr., Paul E.; Ozgu, Mustafa R.; Padfield, Ralph C.; Rego, Donovan N.; Brita, Guido P.

    1990-01-01

    A pressurized tundish for controlling a continous flow of molten metal characterized by having a pair of principal compartments, one being essentially unpressurized and receiving molten metal introduced thereto, and the other being adapted for maintaining a controlled gaseous pressure over the surface of the fluid metal therein, whereby, by controlling the pressure within the pressurized chamber, metal exiting from the tundish is made to flow continually and at a controlled rate.

  11. Pressurized tundish for controlling a continuous flow of molten metal

    DOEpatents

    Lewis, T.W.; Hamill, P.E. Jr.; Ozgu, M.R.; Padfield, R.C.; Rego, D.N.; Brita, G.P.

    1990-07-24

    A pressurized tundish for controlling a continuous flow of molten metal is characterized by having a pair of principal compartments, one being essentially unpressurized and receiving molten metal introduced thereto, and the other being adapted for maintaining a controlled gaseous pressure over the surface of the fluid metal therein, whereby, by controlling the pressure within the pressurized chamber, metal exiting from the tundish is made to flow continually and at a controlled rate. 1 fig.

  12. High pressure electrical insulated feed thru connector

    DOEpatents

    Oeschger, Joseph E.; Berkeland, James E.

    1979-11-13

    A feed-thru type hermetic electrical connector including at least one connector pin feeding through an insulator block within the metallic body of the connector shell. A compression stop arrangement coaxially disposed about the insulator body is brazed to the shell, and the shoulder on the insulator block bears against this top in a compression mode, the high pressure or internal connector being at the opposite end of the shell. Seals between the pin and an internal bore at the high pressure end of the insulator block and between the insulator block and the metallic shell at the high pressure end are hermetically brazed in place, the first of these also functioning to transfer the axial compressive load without permitting appreciable shear action between the pin and insulator block.

  13. High Pressure Study on High Temperature Superconductors

    NASA Astrophysics Data System (ADS)

    Lin, Jauyn Grace

    In spite of the progress on the understanding of high-temperature superconductivity (HTS), there is still not sufficient evidence to differentiate one theoretical model from the others. In an attempt to relate the crystal structures of high-temperature superconductors (HTS's) to the mechanism of HTS, we have adopted a chemico-physical approach by examining the pressure-effect on the superconducting and transport properties of superconducting compound systems. Without exception, all compounds exhibiting superconductivity above 77 K, the boiling point of liquid nitrogen, are anisotropic structures consisting of layers of CuO_2 , metal element (R's; where R is R being Ca, Y or rare-earth element) and metal-oxide (MO's; where M is Ca, Ba, Sr, Cu, Hg, Tl, Bi or Pb). We have investigated under pressure the electrical and superconducting properties of four highly related systems with different R's, different numbers of MO layers, different numbers of CuO _2 layers and various anion dopings. The specific systems studied were: RBa_2Cu _3O_7 (R = Y, Yb, Tm, Ho, Dy, Gd, Sm and Nd), R_{1 -x}Pr_{x}Ba _2Cu_3O _7 (R = Yb and Dy), Y_2Ba _4Cu_{5 + m} O_{13 + m} (m = 1, 2 and 3), and Tl_2Ba _2Ca_{L-1}Cu _{2L-1}O_ {4 + 2L-delta} (L= 1,2 and 3, and 0 <= delta <= 0.1). We found that: (1) in R-123, R affects T _{c} due to its chemical pressure which, in turn, can lead to a modification in the electronic structure of HTS's, in contrast to the general belief that R is isolated from the superconducting CuO_2 layers and hence has no influence on T _{c}; (2) the absence of superconductivity in PrBa_2Cu_3O _7 may be due to the low carrier concentration and hole-localization, in contrast to the suggestion of pair-breaking; (3) there may exist a common optimal T_{c} for all members of the homologous series Y_2Ba _4Cu_{5 + m} O_{13 + m}, raising the possibility of a similar situation in other compound families; and (4) We have observed a universal T _{c}-behavior for HTS's. We believe that these

  14. Mantle highly siderophile element concentrations were not established through high-pressure metal-silicate equilibration in a deep magma ocean - New experimental data for Ru, Rh, Pd, Re, Ir, Pt.

    NASA Astrophysics Data System (ADS)

    Mann, Ute; Frost, Daniel J.; Becker, Harry; Audétat, Andreas; Rubie, David C.

    2010-05-01

    The 'highly siderophile' elements (HSE) Ru, Rh, Pd, Os, Ir, Pt, Re, and Au are known to have extremely high metal-silicate partition coefficients of > 104 at 1 bar and they should have consequently been completely removed from the silicate fraction of the Earth during metal-silicate equilibration in a magma ocean. However, they are present in the Earth's mantle in much higher concentrations than these 1 bar partition coefficients would predict and in approximately chondritic proportions. The main theory to explain the HSE inventory of the mantle pictures the late accretion of a highly oxidized, chondritic material after core/mantle differentiation had ceased that mixed a small concentration of these previously strongly depleted elements back into the mantle. Alternatively, it has been discussed, that high pressures and temperatures (e.g. 30-40 GPa, > 3000 K), as expected in a silicate magma ocean, might drastically lower the HSE partition coefficients to levels where metal-silicate partitioning alone would account for their abundances in the Earth's mantle. In this study metal - silicate partitioning data for Ru, Rh, Pd, Re and Pt have been determined by equilibrating liquid HSE-Fe-alloy (40 wt%) and molten peridotite (60 wt%) at 3-25 GPa and 2150 - 2500° C using multianvil technique. In most experiments the HSE's were added as a chip of previously alloyed metal to silicate and Fe-powder mixtures contained in MgO single crystal capsules. The bulk HSE concentration in the Fe-alloy was varied from 50 to 90 wt% which resulted in oxygen fugacities of -1.5 to +2 log units relative to the iron wüstite buffer (?IW). Metal compositions of the run products were determined with the electron microprobe while analyses of the quenched silicate liquid were carried out with laser ablation ICP-MS. Partitioning data were corrected for the fact that large concentrations of HSE were present in the metallic phase of our experiments, i.e. to the level of infinite dilution. Corrected

  15. Evaluation of interactions between metal ions and nonionic surfactants in high-concentration HCl using low-pressure high-performance liquid chromatography with low-flow-resistance polystyrene-based monolithic column.

    PubMed

    Hirano, Tomohiko; Kitagawa, Shinya; Ohtani, Hajime; Kinoshita, Takehiko; Ishigaki, Yuzo; Shibata, Nobuyuki; Nii, Susumu

    2013-10-01

    A method for evaluating the interactions between metal ions and nonionic surfactants in aqueous solutions containing high-concentration HCl, using gas pressure-driven low-pressure high-performance liquid chromatography (LP-HPLC) as a highly acid-resistant HPLC system, was developed. To construct the LP-HPLC for this purpose, poly(styrene-co-divinylbenzene)-based low-flow-resistance monolithic columns tolerant to highly acidic conditions were prepared using low-conversion thermal polymerization. Thermal polymerization at 65 °C for 1.5 h (monomer conversions, 33% for styrene and 59% for divinylbenzene) allowed preparation of a column with both high separation efficiency (around 60,000 plates m(-1) for alkylbenzenes) and a quite low back pressure of 0.14 MPa at a linear flow rate of 1 mm s(-1) (2.8 × 10(-13) m(2) in permeability). The base column prepared under the above conditions was coated with a nonionic surfactant, polyoxyethylene nonylphenyl ether (PONPE, average oxyethylene unit numbers (n) = 3, 7.5, 15, and 20), and used for evaluation of the interactions between PONPEs and metal ions in 6 M HCl. The interactions between PONPEs and Au(III), Ga(III), Fe(III), Zn(II), and Cu(II) were successfully evaluated using both breakthrough and chromatographic methods. Furthermore, a study of the effect of the polyoxyethylene (POE) chain length revealed that the use of PONPE with the longer POE moiety enhanced the magnitude of the interaction together with the increase in the amount of oxyethylene (OE) units coated on the monolith. Moreover, the interactions of metal ions with a single OE unit were almost constant in the range of n = 7.5-20, whereas the suppression of the interaction between Au(III) with the shortest PONPE chain (n = 3) was also observed. PMID:23884474

  16. High pressure storage vessel

    DOEpatents

    Liu, Qiang

    2013-08-27

    Disclosed herein is a composite pressure vessel with a liner having a polar boss and a blind boss a shell is formed around the liner via one or more filament wrappings continuously disposed around at least a substantial portion of the liner assembly combined the liner and filament wrapping have a support profile. To reduce susceptible to rupture a locally disposed filament fiber is added.

  17. Pressure-induced emergence of unusually high-frequency transverse excitations in a liquid alkali metal: Evidence of two types of collective excitations contributing to the transverse dynamics at high pressures

    SciTech Connect

    Bryk, Taras; Ruocco, G.; Scopigno, T.

    2015-09-14

    Unlike phonons in crystals, the collective excitations in liquids cannot be treated as propagation of harmonic displacements of atoms around stable local energy minima. The viscoelasticity of liquids, reflected in transition from the adiabatic to elastic high-frequency speed of sound and in absence of the long-wavelength transverse excitations, results in dispersions of longitudinal (L) and transverse (T) collective excitations essentially different from the typical phonon ones. Practically, nothing is known about the effect of high pressure on the dispersion of collective excitations in liquids, which causes strong changes in liquid structure. Here dispersions of L and T collective excitations in liquid Li in the range of pressures up to 186 GPa were studied by ab initio simulations. Two methodologies for dispersion calculations were used: direct estimation from the peak positions of the L/T current spectral functions and simulation-based calculations of wavenumber-dependent collective eigenmodes. It is found that at ambient pressure, the longitudinal and transverse dynamics are well separated, while at high pressures, the transverse current spectral functions, density of vibrational states, and dispersions of collective excitations yield evidence of two types of propagating modes that contribute strongly to transverse dynamics. Emergence of the unusually high-frequency transverse modes gives evidence of the breakdown of a regular viscoelastic theory of transverse dynamics, which is based on coupling of a single transverse propagating mode with shear relaxation. The explanation of the observed high-frequency shift above the viscoelastic value is given by the presence of another branch of collective excitations. With the pressure increasing, coupling between the two types of collective excitations is rationalized within a proposed extended viscoelastic model of transverse dynamics.

  18. High Pressure Electrochemistry: Application to silver halides

    NASA Astrophysics Data System (ADS)

    Havens, K.; Kavner, A.

    2007-12-01

    Electron and ion charge transfer processes help govern electrical conductivity and diffusive mass and heat transport properties in deep Earth minerals. In an attempt to understand how pressure influences charge transfer behavior, the halide silver bromide (AgBr) was studied under the influence of an electric potential difference applied across two electrodes in a diamond anvil cell. This study follows our previous work on AgI, which was found to dissociate to molecular iodine and silver metal due to pressure and voltage influences. We performed two sets of experiments on AgBr at high pressure in a diamond anvil cell: electrochemical dissociation and electrical resistance measurements. In our study, we were able to electrochemically dissociate AgBr at pressures of 0.25-1.6 GPa by applying a voltage across the electrodes in the diamond cell sample chamber. Ag metal grew visibly on the negatively-charged electrode when voltages varying from 0.1 V to 5 V were applied. Additionally, a dark blue color appeared in low pressure areas of the diamond cell and grew darker from both voltage application and light exposure, indicating photochemical effects. We found that the reaction area and growth rate of both metal and dark blue color strongly increased as voltage increased, but tended to decrease with greater pressure. The resistance across the cell was observed to be influenced by both pressure and light exposure. As the AgBr sample was exposed to visible light, the resistance dropped instantaneously, and after the light was turned off, the resistance increased on a timescale of 10's of seconds to minutes. Notably, at higher pressures, the AgBr showed less photosensitivity. Exploration of these metal halide systems has many potential applications. First, these experiments explore the pressure-dependence of photochemical and photovoltaic processes, and may spur development of pressure-tuned microscale electronic devices. Second, these experimental results can be used to

  19. Controlling your high blood pressure

    MedlinePlus

    Controlling hypertension ... when you wake up. For people with very high blood pressure, this is when they are most at risk ... 2014 evidence-based guideline for the management of high blood pressure in adults: report from the panel members appointed ...

  20. Electrokinetically pumped high pressure sprays

    DOEpatents

    Schoeniger, Joseph S.; Paul, Phillip H.; Schoeniger, Luke

    2005-11-01

    An electrokinetic pump capable of producing high pressure is combined with a nozzle having a submicron orifice to provide a high pressure spray device. Because of its small size, the device can be contained within medical devices such as an endoscope for delivering biological materials such as DNA, chemo therapeutic agents, or vaccines to tissues and cells.

  1. Electrokinetically pumped high pressure sprays

    SciTech Connect

    Schoeniger, Joseph S.; Paul, Phillip H.; Schoeniger, Luke

    2002-01-01

    An electrokinetic pump capable of producing high pressure is combined with a nozzle having a submicron orifice to provide a high pressure spray device. Because of its small size, the device can be contained within medical devices such as an endoscope for delivering biological materials such as DNA, chemo therapeutic agents, or vaccines to tissues and cells.

  2. CONDENSED MATTER: STRUCTURE, MECHANICAL AND THERMAL PROPERTIES: High-Pressure Annealing Effect on Glass Transformation Temperature of Zr41Ti14Cu12.5Ni10Be22.5 Bulk Metallic Glass

    NASA Astrophysics Data System (ADS)

    Li, Gong; Dong, Yan-Guo; Huang, Lei; He, Guo-Wei; Liu, Ri-Ping; Wang, Wen-Kui

    2009-08-01

    Zr41Ti14Cu12.5Ni10Be22.5 bulk metallic glasses (BMG) are annealed at a temperature of 603 K under ambient and high pressures in the range of 3-6 GPa. The effect of high pressure annealing on the nanocrystallization process of compressed specimens is investigated by x-ray diffraction, differential scanning calorimetry and transmission electron microscopy. Experimental results show that the grain size of the crystalline phase decreases with the increasing pressure. For the Zr41Ti14Cu12.5Ni10Be22.5 BMG annealing at 603 K in the pressure range of 0-6 GPa, the activation energy 159.68 kJ/mol and the activation volume ΔV* = 0.94 cm3/mol are determined. The mechanism for the effects of the high pressure on the nanocrystallization process of the BMG is discussed.

  3. Incompressibility of osmium metal at ultrahigh pressures and temperatures

    SciTech Connect

    Armentrout, Matt M.; Kavner, Abby

    2010-07-23

    Osmium is one of the most incompressible elemental metals, and is used as a matrix material for synthesis of ultrahard materials. To examine the behavior of osmium metal under extreme conditions of high pressure and temperature, we measured the thermal equation of state of osmium metal at pressures up to 50 GPa and temperatures up to 3000 K. X-ray diffraction measurements were conducted in the laser heated diamond anvil cell at GeoSoilEnviroCARS and the High Pressure at the Advanced Photon Source and beamline 12.2.2 at the advanced light source. Ambient temperature data give a zero pressure bulk modulus of 421 (3) GPa with a first pressure derivative fixed at 4. Fitting to a high temperature Birch-Murnaghan equation of state gives a room pressure thermal expansion of 1.51(0.06) x 10{sup -5} K{sup -1} with a first temperature derivative of 4.9(0.7) x 10{sup -9} K{sup -2} and the first temperature derivative of bulk modulus of be dK{sub 0}/dT = -0.055 (0.004). Fitting to a Mie-Grueneisen-Debye equation of state gives a Grueneisen parameter of 2.32 (0.08) with a q of 7.2 (1.4). A comparison of the high pressure, temperature behavior among Re, Pt, Os, shows that Os has the highest bulk modulus and lowest thermal expansion of the three, suggesting that Os-based ultrahard materials may be especially mechanically stable under extreme conditions.

  4. Pressure-volume properties of metallic bellows

    NASA Technical Reports Server (NTRS)

    Kiefling, Larry

    1989-01-01

    Metallic bellows are commonly used as segments of propellant feedlines for rocket-propelled vehicles to accommodate temperature-induced length variations, manufacturing tolerances, and gimbaling of the engines. These bellows sections deform radially and change volume when internal pressure varies, and the magnitude of such deformation is much higher than that for the straight, cylindrical segments of the line. The greater flexibility, or lesser stiffness, of the bellows, decreases the frequency of acoustic oscillations in the line. These acoustic oscillations are a major factor in the so-called POGO phenomena which have plagued most of the larger liquid rocket-propelled vehicles for many years. A method is developed to calculate the change in volume of a bellows due to a change in internal pressure. Results of an experiment are also presented along with a test-analysis comparison. The computer code is included.

  5. High-crystalline GaSb epitaxial films grown on GaAs(001) substrates by low-pressure metal-organic chemical vapor deposition

    NASA Astrophysics Data System (ADS)

    Wang, Lian-Kai; Liu, Ren-Jun; Lü, You; Yang, Hao-Yu; Li, Guo-Xing; Zhang, Yuan-Tao; Zhang, Bao-Lin

    2015-01-01

    Orthogonal experiments of GaSb films growth on GaAs(001) substrates have been designed and performed by using a low-pressure metal-organic chemical vapor deposition (LP-MOCVD) system. The crystallinities and microstructures of the produced films were comparatively analyzed to achieve the optimum growth parameters. It was demonstrated that the optimized GaSb thin film has a narrow full width at half maximum (358 arc sec) of the (004) ω-rocking curve, and a smooth surface with a low root-mean-square roughness of about 6 nm, which is typical in the case of the heteroepitaxial single-crystal films. In addition, we studied the effects of layer thickness of GaSb thin film on the density of dislocations by Raman spectra. It is believed that our research can provide valuable information for the fabrication of high-crystalline GaSb films and can promote the integration probability of mid-infrared devices fabricated on mainstream performance electronic devices. Project supported by the National Natural Science Foundation of China (Grant No. 61076010) and the International Science and Technology Cooperation Program of Science and Technology Bureau of Changchun, China (Grant No. 12ZX68).

  6. High pressure synthesis gas fermentation

    SciTech Connect

    Not Available

    1991-01-01

    Construction of the high pressure gas phase fermentation system is nearing completion. All non-explosion proof components will be housed separately in a gas-monitored plexiglas cabinet. A gas-monitoring system has been designed to ensure the safety of the operations in case of small or large accidental gas releases. Preliminary experiments investigating the effects of high pressure on Clostridium 1jungdahlii have shown that growth and CO uptake are not negatively affected and CO uptake by an increased total pressure of 100 psig at a syngas partial pressure of 10 psig.

  7. E-H mode transition of a high-power inductively coupled plasma torch at atmospheric pressure with a metallic confinement tube

    NASA Astrophysics Data System (ADS)

    Altenberend, Jochen; Chichignoud, Guy; Delannoy, Yves

    2012-08-01

    Inductively coupled plasma torches need high ignition voltages for the E-H mode transition and are therefore difficult to operate. In order to reduce the ignition voltage of an RF plasma torch with a metallic confinement tube the E-H mode transition was studied. A Tesla coil was used to create a spark discharge and the E-H mode transition of the plasma was then filmed using a high-speed camera. The electrical potential of the metallic confinement tube was measured using a high-voltage probe. It was found that an arc between the grounded injector and the metallic confinement tube is maintained by the electric field (E-mode). The transition to H-mode occurred at high magnetic fields when the arc formed a loop. The ignition voltage could be reduced by connecting the metallic confinement tube with a capacitor to the RF generator.

  8. High-Pressure Lightweight Thrusters

    NASA Technical Reports Server (NTRS)

    Holmes, Richard; McKechnie, Timothy; Shchetkovskiy, Anatoliy; Smirnov, Alexander

    2013-01-01

    Returning samples of Martian soil and rock to Earth is of great interest to scientists. There were numerous studies to evaluate Mars Sample Return (MSR) mission architectures, technology needs, development plans, and requirements. The largest propulsion risk element of the MSR mission is the Mars Ascent Vehicle (MAV). Along with the baseline solid-propellant vehicle, liquid propellants have been considered. Similar requirements apply to other lander ascent engines and reaction control systems. The performance of current state-ofthe- art liquid propellant engines can be significantly improved by increasing both combustion temperature and pressure. Pump-fed propulsion is suggested for a single-stage bipropellant MAV. Achieving a 90-percent stage propellant fraction is thought to be possible on a 100-kg scale, including sufficient thrust for lifting off Mars. To increase the performance of storable bipropellant rocket engines, a high-pressure, lightweight combustion chamber was designed. Iridium liner electrodeposition was investigated on complex-shaped thrust chamber mandrels. Dense, uniform iridium liners were produced on chamber and cylindrical mandrels. Carbon/carbon composite (C/C) structures were braided over iridium-lined mandrels and densified by chemical vapor infiltration. Niobium deposition was evaluated for forming a metallic attachment flange on the carbon/ carbon structure. The new thrust chamber was designed to exceed state-of-the-art performance, and was manufactured with an 83-percent weight savings. High-performance C/Cs possess a unique set of properties that make them desirable materials for high-temperature structures used in rocket propulsion components, hypersonic vehicles, and aircraft brakes. In particular, more attention is focused on 3D braided C/Cs due to their mesh-work structure. Research on the properties of C/Cs has shown that the strength of composites is strongly affected by the fiber-matrix interfacial bonding, and that weakening

  9. Microseparation, fluid pressure and flow in failures of metal-on-metal hip resurfacing arthroplasties

    PubMed Central

    Wroblewski, B. M.; Siney, P. D.; Fleming, P. A.

    2012-01-01

    Objectives Metal-on-metal (MoM) hip resurfacing was introduced into clinical practice because it was perceived to be a better alternative to conventional total hip replacement for young and active patients. However, an increasing number of reports of complications have arisen focusing on design and orientation of the components, the generation of metallic wear particles and serum levels of metallic ions. The procedure introduced a combination of two elements: large-dimension components and hard abrasive particles of metal wear. The objective of our study was to investigate the theory that microseparation of the articular surfaces draws in a high volume of bursal fluid and its contents into the articulation, and at relocation under load would generate high pressures of fluid ejection, resulting in an abrasive water jet. Methods This theoretical concept using MoM resurfacing components (head diameter 55 mm) was modelled mathematically and confirmed experimentally using a material-testing machine that pushed the head into the cup at a rate of 1000 mm/min until fully engaged. Results The mathematical model showed the pattern but not the force of fluid ejection, the highest pressures were expected when the separation of the components was only a fraction of one millimetre. The experimental work confirmed the results; with the mean peak ejection pressure of 43 763 N/m2 equivalent to 306 mmHg or 5 psi. Conclusions The mechanical effect of the high-pressure abrasive water jet is the likely cause of the spectrum of complications reported with metal-on-metal resurfacing. Investigating serum levels of metallic elements may not be the best method for assessing the local mechanical effects of the abrasive water jet. PMID:23610667

  10. On Pressure Wave Simulations in Liquid Metal Neutron Source Targets

    NASA Astrophysics Data System (ADS)

    Fetzer, Jana R.; Class, Andreas

    2014-11-01

    Sound waves generated by fluid flow at low Mach numbers is associated with separated scales and thus with difficulties to construct efficient numerical methods for their approximation. One method is the Multi Pressure Variables (MPV) approach introduced for aero-acoustic applications. The MPV approach is based on a single time scale multiple space scale asymptotic analysis derived for subsonic flow by an asymptotic series expansion in the Mach-number. Distinguished are the flow and acoustic length scales resulting in three pressure contribution, i.e. thermodynamic, acoustic and dynamic pressure which are discretized on numerical meshes of different resolution. We propose to apply MPV to analyse liquid metal cooled spallation targets with a pulsed proton beams. These targets are operating in high power neutron sources for fundamental research. The nearly instantaneous heating of the liquid metal results in volumetric expansion of inertia confined liquid and thus to high pressure waves, which represent a major lifetime limiting thread. Our development accompanies design activities for the META:LIC (MEgawatt TArget: Lead bIsmuth Cooled) target proposed for the European Spallation Source.

  11. Steam Oxidation at High Pressure

    SciTech Connect

    Holcomb, Gordon R.; Carney, Casey

    2013-07-19

    A first high pressure test was completed: 293 hr at 267 bar and 670{degrees}C; A parallel 1 bar test was done for comparison; Mass gains were higher for all alloys at 267 bar than at 1 bar; Longer term exposures, over a range of temperatures and pressures, are planned to provide information as to the commercial implications of pressure effects; The planned tests are at a higher combination of temperatures and pressures than in the existing literature. A comparison was made with longer-term literature data: The short term exposures are largely consistent with the longer-term corrosion literature; Ferritic steels--no consistent pressure effect; Austenitic steels--fine grain alloys less able to maintain protective chromia scale as pressure increases; Ni-base alloys--more mass gains above 105 bar than below. Not based on many data points.

  12. High School Press Pressures.

    ERIC Educational Resources Information Center

    Rogers, Luella P.

    History shows that the high school press suffers through cycles that reflect economic factors and cultural climates within communities, states, and the nation. The direction of that cycle in the 1960s and early 1970s was toward more open, free-flowing information by a vigorous student press, but those economic and cultural signs now are pointing…

  13. Risk Factors for High Blood Pressure

    MedlinePlus

    ... the NHLBI on Twitter. Risk Factors for High Blood Pressure Anyone can develop high blood pressure; however, age, ... can increase your risk for developing high blood pressure. Age Blood pressure tends to rise with age. About 65 ...

  14. High pressure ceramic joint

    DOEpatents

    Ward, M.E.; Harkins, B.D.

    1993-11-30

    Many recuperators have components which react to corrosive gases and are used in applications where the donor fluid includes highly corrosive gases. These recuperators have suffered reduced life, increased service or maintenance, and resulted in increased cost. The present joint when used with recuperators increases the use of ceramic components which do not react to highly corrosive gases. Thus, the present joint used with the present recuperator increases the life, reduces the service and maintenance, and reduces the increased cost associated with corrosive action of components used to manufacture recuperators. The present joint is comprised of a first ceramic member, a second ceramic member, a mechanical locking device having a groove defined in one of the first ceramic member and the second ceramic member. The joint and the mechanical locking device is further comprised of a refractory material disposed in the groove and contacting the first ceramic member and the second ceramic member. The present joint mechanically provides a high strength load bearing joint having good thermal cycling characteristics, good resistance to a corrosive environment and good steady state strength at elevated temperatures. 4 figures.

  15. High pressure ceramic joint

    DOEpatents

    Ward, Michael E.; Harkins, Bruce D.

    1993-01-01

    Many recuperators have components which react to corrosive gases and are used in applications where the donor fluid includes highly corrosive gases. These recuperators have suffered reduced life, increased service or maintenance, and resulted in increased cost. The present joint when used with recuperators increases the use of ceramic components which do not react to highly corrosive gases. Thus, the present joint used with the present recuperator increases the life, reduces the service and maintenance, and reduces the increased cost associated with corrosive action of components used to manufacture recuperators. The present joint is comprised of a first ceramic member, a second ceramic member, a mechanical locking device having a groove defined in one of the first ceramic member and the second ceramic member. The joint and the mechanical locking device is further comprised of a refractory material disposed in the groove and contacting the first ceramic member and the second ceramic member. The present joint mechanically provides a high strength load bearing joint having good thermal cycling characteristics, good resistance to a corrosive environment and good steady state strength at elevated temperatures.

  16. High pressure synthesis gas fermentation

    SciTech Connect

    Not Available

    1992-01-01

    The construction of the high pressure gas phase fermentation system has been completed. Photographs of the various components of the system are presented, along with an operating procedure for the equipment.

  17. Medications for High Blood Pressure

    MedlinePlus

    ... Consumers Home For Consumers Consumer Updates Medications for High Blood Pressure Share Tweet Linkedin Pin it More sharing options Linkedin Pin it Email Print Hypertension tends to worsen with age and you cannot ...

  18. Electrokinetic high pressure hydraulic system

    DOEpatents

    Paul, Phillip H.; Rakestraw, David J.

    2000-01-01

    A compact high pressure hydraulic pump having no moving mechanical parts for converting electric potential to hydraulic force. The electrokinetic pump, which can generate hydraulic pressures greater than 2500 psi, can be employed to compress a fluid, either liquid or gas, and manipulate fluid flow. The pump is particularly useful for capillary-base systems. By combining the electrokinetic pump with a housing having chambers separated by a flexible member, fluid flow, including high pressure fluids, is controlled by the application of an electric potential, that can vary with time.

  19. Pressurized Shell Molds For Metal-Matrix Composites

    NASA Technical Reports Server (NTRS)

    Kashalikar, Uday K.; Lusignea, Richard N.; Cornie, James

    1993-01-01

    Balanced-pressure molds used to make parts in complex shapes from fiber-reinforced metal-matrix composite materials. In single step, molding process makes parts in nearly final shapes; only minor finishing needed. Because molding pressure same on inside and outside, mold does not have to be especially strong and can be made of cheap, nonstructural material like glass or graphite. Fibers do not have to be cut to conform to molds. Method produces parts with high content of continuous fibers. Parts stiff but light in weight, and coefficients of thermal expansion adjusted. Parts resistant to mechanical and thermal fatigue superior to similar parts made by prior fabrication methods.

  20. Phonon Drag Dislocations at High Pressures

    SciTech Connect

    Wolfer, W.G.

    1999-10-19

    Phonon drag on dislocations is the dominant process which determines the flow stress of metals at elevated temperatures and at very high plastic deformation rates. The dependence of the phonon drag on pressure or density is derived using a Mie-Grueneisen equation of state. The phonon drag is shown to increase nearly linearly with temperature but to decrease with density or pressure. Numerical results are presented for its variation for shock-loaded copper and aluminum. In these cases, density and temperature increase simultaneously, resulting in a more modest net increase in the dislocation drag coefficient. Nevertheless, phonon drag increases by more than an order of magnitude during shock deformations which approach melting. Since the dependencies of elastic moduli and of the phonon drag coefficient on pressure and temperature are fundamentally different, the effect of pressure on the constitutive law for plastic deformation can not simply be accounted for by its effect on the elastic shear modulus.

  1. Electrokinetic high pressure hydraulic system

    DOEpatents

    Paul, Phillip H.; Rakestraw, David J.; Arnold, Don W.; Hencken, Kenneth R.; Schoeniger, Joseph S.; Neyer, David W.

    2003-06-03

    An electrokinetic high pressure hydraulic pump for manipulating fluids in capillary-based system. The pump uses electro-osmotic flow to provide a high pressure hydraulic system, having no moving mechanical parts, for pumping and/or compressing fluids, for providing valve means and means for opening and closing valves, for controlling fluid flow rate, and manipulating fluid flow generally and in capillary-based systems (microsystems), in particular. The compact nature of the inventive high pressure hydraulic pump provides the ability to construct a micro-scale or capillary-based HPLC system that fulfills the desire for small sample quantity, low solvent consumption, improved efficiency, the ability to run samples in parallel, and field portability. Control of pressure and solvent flow rate is achieved by controlling the voltage applied to an electrokinetic pump.

  2. Electrokinetic high pressure hydraulic system

    DOEpatents

    Paul, Phillip H.; Rakestraw, David J.; Arnold, Don W.; Hencken, Kenneth R.; Schoeniger, Joseph S.; Neyer, David W.

    2001-01-01

    An electrokinetic high pressure hydraulic pump for manipulating fluids in capillary-based systems. The pump uses electro-osmotic flow to provide a high pressure hydraulic system, having no moving mechanical parts, for pumping and/or compressing fluids, for providing valve means and means for opening and closing valves, for controlling fluid flow rate, and manipulating fluid flow generally and in capillary-based systems (Microsystems), in particular. The compact nature of the inventive high pressure hydraulic pump provides the ability to construct a micro-scale or capillary-based HPLC system that fulfills the desire for small sample quantity, low solvent consumption, improved efficiency, the ability to run samples in parallel, and field portability. Control of pressure and solvent flow rate is achieved by controlling the voltage applied to an electrokinetic pump.

  3. Pressure-induced metallization of molybdenum disulfide.

    PubMed

    Chi, Zhen-Hua; Zhao, Xiao-Miao; Zhang, Haidong; Goncharov, Alexander F; Lobanov, Sergey S; Kagayama, Tomoko; Sakata, Masafumi; Chen, Xiao-Jia

    2014-07-18

    X-ray diffraction, Raman spectroscopy, and electrical conductivity measurements of molybdenum disulfide MoS(2) are performed at pressures up to 81 GPa in diamond anvil cells. Above 20 GPa, we find discontinuous changes in Raman spectra and x-ray diffraction patterns which provide evidence for isostructural phase transition from 2H(c) to 2H(a) modification through layer sliding previously predicted theoretically. This first-order transition, which is completed around 40 GPa, is characterized by a collapse in the c-lattice parameter and volume and also by changes in interlayer bonding. After the phase transition completion, MoS(2) becomes metallic. The reversibility of the phase transition is identified from all these techniques. PMID:25083660

  4. Metals at high redshifts

    NASA Astrophysics Data System (ADS)

    Petitjean, Patrick

    The amount of metals present in the Universe and its cosmological evolution is a key issue for our understanding of how star formation proceeds from the collapse of the first objects to the formation of present day galaxies. We discuss here recent results at the two extremes of the density scale. 1. Part of the tenuous intergalactic medium (IGM) revealed by neutral hydrogen absorptions in the spectra of remote quasars (the so-called Lyman-α forest) contains metals. This is not surprising as there is a close interplay between the formation of galaxies and the evolution of the IGM. The IGM acts as the baryonic reservoir from which galaxies form, while star formation in the forming galaxies strongly influences the IGM by enrichment with metals and the emission of ionizing radiation. The spatial distribution of metals in the IGM is largely unknown however. The possibility remains that metals are associated with the filaments and sheets of the dark matter spatial distribution where stars are expected to form, whereas the space delineated by these features remains unpolluted. 2. Damped Lyman-α (DLA) systems observed in the spectra of high-redshift quasars are considered as the progenitors of present-day galaxies. Indeed, the large neutral hydrogen column densities observed and the presence of metals imply that the gas is somehow closely associated with regions of star formation. The nature of the absorbing objects is unclear however. It is probable that very different objects contribute to this population of absorption systems. Here we concentrate on summarizing the properties of the gas: presence of dust in small amount; nucleosynthesis signature and lack of H_2 molecules. The presence of H_2 molecules has been investigated in the course of a mini-survey with UVES at the VLT. The upper limits on the molecular fraction, f = 2N(H_2)/(2N(H_2)+N(HI)), derived in eight systems are in the range 1.2 ×10^-7 - 1.6 × 10^-5. There is no evidence in this sample for any

  5. Universal behavior of chalcogenides of rare-earth metals in the transition to a state with intermediate valence at high pressures

    SciTech Connect

    Tsiok, O. B.; Khvostantsev, L. G.; Brazhkin, V. V.

    2015-06-15

    Precision measurements of resistivity, thermopower, and volume are performed for TmS, TmSe, and TmTe under a hydrostatic pressure up to 8 GPa. Comparison of the transport properties and volume of TmTe and SmTe in the valence transition region demonstrates a complete analogy up to quantitative coincidence. It is shown that the thermopower of all thulium and samarium chalcogenides in the lattice collapse region and in subsequent rearrangement of the electron spectrum in a wide range of pressures follow a universal dependence corresponding the passage of the Fermi level through the peak of the density of states (DOS). The results are considered in the context of ideas about the exciton nature of the intermediate valence in chalcogenides of rare-earth metals.

  6. Glass Fiber Reinforced Metal Pressure Vessel Design Guide

    NASA Technical Reports Server (NTRS)

    Landes, R. E.

    1972-01-01

    The Engineering Guide presents curves and general equations for safelife design of lightweight glass fiber reinforced (GFR) metal pressure vessels operating under anticipated Space Shuttle service conditions. The high composite vessel weight efficiency is shown to be relatively insensitive to shape, providing increased flexibility to designers establishing spacecraft configurations. Spheres, oblate speroids, and cylinders constructed of GFR Inconel X-750, 2219-T62 aluminum, and cryoformed 301 stainless steel are covered; design parameters and performance efficiencies for each configuration are compared at ambient and cryogenic temperature for an operating pressure range of 690 to 2760 N/sq cm (1000 to 4000 psi). Design variables are presented as a function of metal shell operating to sizing (proof) stress ratios for use with fracture mechanics data generated under a separate task of this program.

  7. High pressure synthesis gas conversion. Task 3: High pressure profiles

    SciTech Connect

    Not Available

    1993-05-01

    The purpose of this research project was to build and test a high pressure fermentation system for the production of ethanol from synthesis gas. The fermenters, pumps, controls, and analytical system were procured or fabricated and assembled in our laboratory. This system was then used to determine the effects of high pressure on growth and ethanol production by C. 1jungdahlii. The limits of cell concentration and mass transport relationships were found in CSTR and immobilized cell reactors (ICR). The minimum retention times and reactor volumes were found for ethanol production in these reactors.

  8. Design guide for high pressure oxygen systems

    NASA Technical Reports Server (NTRS)

    Bond, A. C.; Pohl, H. O.; Chaffee, N. H.; Guy, W. W.; Allton, C. S.; Johnston, R. L.; Castner, W. L.; Stradling, J. S.

    1983-01-01

    A repository for critical and important detailed design data and information, hitherto unpublished, along with significant data on oxygen reactivity phenomena with metallic and nonmetallic materials in moderate to very high pressure environments is documented. This data and information provide a ready and easy to use reference for the guidance of designers of propulsion, power, and life support systems for use in space flight. The document is also applicable to designs for industrial and civilian uses of high pressure oxygen systems. The information presented herein are derived from data and design practices involving oxygen usage at pressures ranging from about 20 psia to 8000 psia equal with thermal conditions ranging from room temperatures up to 500 F.

  9. Pressure-induced phase transitions and metallization in VO2

    NASA Astrophysics Data System (ADS)

    Bai, Ligang; Li, Quan; Corr, Serena A.; Meng, Yue; Park, Changyong; Sinogeikin, Stanislav V.; Ko, Changhyun; Wu, Junqiao; Shen, Guoyin

    2015-03-01

    We report the results of pressure-induced phase transitions and metallization in VO2 based on synchrotron x-ray diffraction, electrical resistivity, and Raman spectroscopy. Our isothermal compression experiments at room temperature and 383 K show that the room temperature monoclinic phase (M 1 ,P 21/c ) and the high-temperature rutile phase (R ,P 42/m n m ) of VO2 undergo phase transitions to a distorted M 1 monoclinic phase (M 1' ,P 21/c ) above 13.0 GPa and to an orthorhombic phase (CaCl2-like, P n n m ) above 13.7 GPa, respectively. Upon further compression, both high-pressure phases transform into a new phase (phase X ) above 34.3 and 38.3 GPa at room temperature and 383 K, respectively. The room temperature M 1 -M 1' phase transition structurally resembles the R -CaCl2 phase transition at 383 K, suggesting a second-order displacive type of transition. Contrary to previous studies, our electrical resistivity results, Raman measurements, as well as ab initio calculations indicate that the new phase X , rather than the M 1' phase, is responsible for the metallization under pressure. The metallization mechanism is discussed based on the proposed crystal structure.

  10. Electronic phenomena at high pressure

    SciTech Connect

    Drickamer, H.G.

    1981-01-01

    High pressure research is undertaken either to investigate intrinsically high pressure phenomena or in order to get a better understanding of the effect of the chemical environment on properties or processes at one atmosphere. Studies of electronic properties which fall in each area are presented. Many molecules and complexes can assume in the excited state different molecular arrangements and intermolecular forces depending on the medium. Their luminescence emission is then very different in a rigid or a fluid medium. With pressure one can vary the viscosity of the medium by a factor of 10/sup 7/ and thus control the distribution and rate of crossing between the excited state conformations. In rare earth chelates the efficiency of 4f-4f emission of the rare earth is controlled by the feeding from the singlet and triplet levels of the organic ligand. These ligand levels can be strongly shifted by pressure. A study of the effect of pressure on the emission efficiency permits one to understand the effect of ligand chemistry at one atmosphere. At high pressure electronic states can be sufficiently perturbed to provide new ground states. In EDA complexes these new ground states exhibit unusual chemical reactivity and new products.

  11. Spray patternation at high pressure

    NASA Astrophysics Data System (ADS)

    Cohen, J. M.; Rosfjord, T. J.

    1989-07-01

    The spatial distribution of the fuel spray created by a gas turbine fuel injector has been measured at high pressure and temperature. A patternation system for measuring fuel spray mass flux distributions at high power conditions has been designed and operated. The facility has been designed to simulate the environment inside a gas turbine combustor as closely as possible. Results for a full scale gas turbine fuel injector have been obtained at high levels of pressure, temperature and liquid flowrate and compared with visual observations.

  12. Higher urinary heavy metal, phthalate, and arsenic but not parabens concentrations in people with high blood pressure, U.S. NHANES, 2011-2012.

    PubMed

    Shiue, Ivy

    2014-06-01

    Link between environmental chemicals and human health has emerged but not been completely examined in risk factors. Therefore, it was aimed to study the relationships of different sets of urinary environmental chemical concentrations and risk of high blood pressure (BP) in a national, population-based study. Data were retrieved from United States National Health and Nutrition Examination Surveys, 2011-2012 including demographics, BP readings, and urinary environmental chemical concentrations. Analyses included chi-square test, t-test and survey-weighted logistic regression modeling. After full adjustment (adjusting for urinary creatinine, age, sex, ethnicity, and body mass index), urinary cesium (OR 1.56, 95%CI 1.11-2.20, P = 0.014), molybden (OR 1.46, 95%CI 1.06-2.01, P = 0.023), manganese (OR 1.42, 95%CI 1.09-1.86, P = 0.012), lead (OR 1.58, 95%CI 1.28-1.96, P < 0.001), tin (OR 1.44, 95%CI 1.25-1.66, P < 0.001), antimony (OR 1.39, 95%CI 1.10-1.77, P = 0.010), and tungsten (OR 1.49, 95%CI 1.25-1.77, P < 0.001) concentrations were observed to be associated with high BP. People with higher urinary mono-2-ethyl-5-carboxypentyl phthalate (OR 1.33, 95%CI 1.00-1.62, P = 0.006), mono-n-butyl phthalate (OR 1.35, 95%CI 1.13-1.62, P = 0.002), mono-2-ethyl-5-hydroxyhexyl (OR 1.25, 95%CI 1.05-1.49, P = 0.014), mono-n-methyl phthalate (OR 1.26, 95%CI 1.07-1.48, P = 0.007), mono-2-ethyl-5-oxohexyl (OR 1.25, 95%CI 1.07-1.48, P = 0.009), and monobenzyl phthalate (OR 1.40, 95%CI 1.15-1.69, P = 0.002) tended to have high BP as well. However, there are no clear associations between environmental parabens and high BP, nor between pesticides and high BP. In addition, trimethylarsine oxide (OR 2.47, 95%CI 1.27-4.81, P = 0.011) and dimethylarsonic acid concentrations (OR 1.42, 95%CI 1.12-1.79, P = 0.006) were seen to be associated with high BP. In sum, urinary heavy metal, phthalate, and arsenic concentrations were associated with high BP, although the causal effect cannot be

  13. High pressure neon arc lamp

    DOEpatents

    Sze, Robert C.; Bigio, Irving J.

    2003-07-15

    A high pressure neon arc lamp and method of using the same for photodynamic therapies is provided. The high pressure neon arc lamp includes a housing that encloses a quantity of neon gas pressurized to about 500 Torr to about 22,000 Torr. At each end of the housing the lamp is connected by electrodes and wires to a pulse generator. The pulse generator generates an initial pulse voltage to breakdown the impedance of the neon gas. Then the pulse generator delivers a current through the neon gas to create an electrical arc that emits light having wavelengths from about 620 nanometers to about 645 nanometers. A method for activating a photosensitizer is provided. Initially, a photosensitizer is administered to a patient and allowed time to be absorbed into target cells. Then the high pressure neon arc lamp is used to illuminate the target cells with red light having wavelengths from about 620 nanometers to about 645 nanometers. The red light activates the photosensitizers to start a chain reaction that may involve oxygen free radicals to destroy the target cells. In this manner, a high pressure neon arc lamp that is inexpensive and efficiently generates red light useful in photodynamic therapy is provided.

  14. High-pressure well design

    SciTech Connect

    Krus, H.; Prieur, J.M. )

    1991-12-01

    Shell U.K. E and P (Shell Expro), operator in the U.K. North Sea on behalf of Shell and Esso, plans to drill 20 high-pressure oil and gas wells during the next 2 years. This paper reports that the well design is based on new standards developed after the U.K. Dept. of Energy restriction on high-pressure drilling in the autumn of 1988. Studies were carried out to optimize casing design and drilling performance on these wells. Several casing schemes, including a slim-hole option, were analyzed. The material specifications for casing and drillpipe were reviewed to ensure that they met the loads imposed during drilling, well- control, and well-testing operations. The requirement for sour-service material was weighted against possible H{sub 2}S adsorption by the mud film. As a result, a new drillstring and two high-pressure casing schemes have been specified. The high-pressure casing scheme used depends on the maximum expected surface pressure.

  15. High pressure liquid level monitor

    DOEpatents

    Bean, Vern E.; Long, Frederick G.

    1984-01-01

    A liquid level monitor for tracking the level of a coal slurry in a high-pressure vessel including a toroidal-shaped float with magnetically permeable bands thereon disposed within the vessel, two pairs of magnetic field generators and detectors disposed outside the vessel adjacent the top and bottom thereof and magnetically coupled to the magnetically permeable bands on the float, and signal processing circuitry for combining signals from the top and bottom detectors for generating a monotonically increasing analog control signal which is a function of liquid level. The control signal may be utilized to operate high-pressure control valves associated with processes in which the high-pressure vessel is used.

  16. SHELL - PRESSURE VOLUME PROPERTIES OF METALLIC BELLOWS

    NASA Technical Reports Server (NTRS)

    Kiefling, L.

    1994-01-01

    A majority of the liquid-fueled rocket vehicles developed in the past have been plagued by an instability known as POGO. The POGO phenomenon involves dynamics of the vehicle structure, dynamics of the propellant in the feedline, and the engine dynamic transfer function. Each of these three items must be accurately known in order to determine stability. Metallic bellows are commonly used as segments of propellant feedlines for rocket-propelled vehicles to accommodate temperature-induced length variations, manufacturing tolerances, and gimbaling of the engines. These bellows sections deform radially and change volume when internal pressure varies, and the magnitude of such deformation is much higher than that for the straight, cylindrical segments of the line. The greater flexibility of the bellows decreases the frequency of acoustic oscillations in the line. Calculating elastic stiffness is difficult due to the radial deformation of a bellows section. SHELL was developed specifically to calculate changes in volume of a bellows due to changes in internal pressure. Input to the program consists of tables describing the material, the geometry of the convolutions and loading. The output gives displacements and volume change that can be used for POGO or waterhammer analysis. SHELL is written in standard FORTRAN 77. This program was originally developed on a Univac 1100 series computer and has been successfully implemented on IBM 370 series computers running MVS and DEC VAX series computers running VMS. The main memory requirement for running SHELL under VMS is 116K. The program source code, IBM JCL for compiling and running SHELL, and sample input are provided with the program. SHELL is available on a 9-track 1600 BPI ASCII CARD IMAGE magnetic tape. This program was developed in 1989. IBM is a trademark of International Business Machines Corporation. DEC, VAX and VMS are registered trademarks of Digital Equipment Corporation. Univac 1100 is a trademark of Unisys

  17. High Blood Pressure: Medicines to Help You

    MedlinePlus

    ... For Consumers Consumer Information by Audience For Women High Blood Pressure--Medicines to Help You Share Tweet Linkedin Pin ... Click here for the Color Version (PDF 533KB) High blood pressure is a serious illness. High blood pressure is ...

  18. Avoid the Consequences of High Blood Pressure

    MedlinePlus

    ... Tools & Resources Stroke More Avoid the Consequences of High Blood Pressure Infographic Updated:Jun 19,2014 View a downloadable version of this infographic High Blood Pressure • Home • About High Blood Pressure (HBP) • Why HBP ...

  19. 14 CFR 23.571 - Metallic pressurized cabin structures.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Metallic pressurized cabin structures. 23... AIRCRAFT AIRWORTHINESS STANDARDS: NORMAL, UTILITY, ACROBATIC, AND COMMUTER CATEGORY AIRPLANES Structure Fatigue Evaluation § 23.571 Metallic pressurized cabin structures. For normal, utility, and...

  20. 14 CFR 23.571 - Metallic pressurized cabin structures.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Metallic pressurized cabin structures. 23... AIRCRAFT AIRWORTHINESS STANDARDS: NORMAL, UTILITY, ACROBATIC, AND COMMUTER CATEGORY AIRPLANES Structure Fatigue Evaluation § 23.571 Metallic pressurized cabin structures. For normal, utility, and...

  1. High pressure phase transition and superconductivity in transition metal nitride HfN and ZrN: An ab-initio study

    NASA Astrophysics Data System (ADS)

    Asvini Meenaatci, A. T.; prabha, S. Kanaga; palanichamy, R. Rajeswara; Iyakutti, K.

    2012-06-01

    The high pressure structural investigations of HfN and ZrN have been studies using ab initio calculations. It is predicted that ZrN undergoes a structural phase transition from NaCl to ZB structure at around 90.17GPa whereas there is no phase transition for HfN. However at higher pressure (at 108.67GPa) HfN undergo a phase transition from ZB to WC structure. Apart from this, the ground state properties, elastic constants and superconducting transition temperature are calculated and compared with the available results.

  2. High- and low-temperature-stable thermite composition for producing high-pressure, high-velocity gases

    DOEpatents

    Halcomb, Danny L.; Mohler, Jonathan H.

    1990-10-16

    A high- and low-temperature-stable thermite composition for producing high-pressure and high-velocity gases comprises an oxidizable metal, an oxidizing reagent, and a high-temperature-stable gas-producing additive selected from the group consisting of metal carbides and metal nitrides.

  3. High-pressure water facility

    NASA Technical Reports Server (NTRS)

    2006-01-01

    NASA Test Operations Group employees, from left, Todd Pearson, Tim Delcuze and Rodney Wilkinson maintain a water pump in Stennis Space Center's high-pressure water facility. The three were part of a group of employees who rode out Hurricane Katrina at the facility and helped protect NASA's rocket engine test complex.

  4. Birch's Law for high-pressure metals and ionic solids: Sound velocity data comparison between shock wave experiments and recent diamond anvil cell experiments

    NASA Astrophysics Data System (ADS)

    Boness, David; Ware, Lucas

    2015-06-01

    Sound velocity-density systematics has long been a fruitful way to take shock wave measurements on elements, alloys, oxides, rocks, and other materials, and allow reasonable extrapolation to densities found deep in the Earth. Recent detection of super-Earths has expanded interest in terrestrial planetary interiors to an even greater range of materials and pressures. Recent published DAC experimental measurements of sound velocities in iron and iron alloys, relevant to planetary cores, are inconsistent with each other with regard to the validity of Birch's Law, a linear relation between sound velocity and density. We examine the range of validity of Birch's Law for several shocked metallic elements, including iron, and shocked ionic solids and make comparisons to the recent DAC data.

  5. High pressure rinsing system comparison

    SciTech Connect

    D. Sertore; M. Fusetti; P. Michelato; Carlo Pagani; Toshiyasu Higo; Jin-Seok Hong; K. Saito; G. Ciovati; T. Rothgeb

    2007-06-01

    High pressure rinsing (HPR) is a key process for the surface preparation of high field superconducting cavities. A portable apparatus for the water jet characterization, based on the transferred momentum between the water jet and a load cell, has been used in different laboratories. This apparatus allows to collected quantitative parameters that characterize the HPR water jet. In this paper, we present a quantitative comparison of the different water jet produced by various nozzles routinely used in different laboratories for the HPR process

  6. High-speed pressure clamp.

    PubMed

    Besch, Stephen R; Suchyna, Thomas; Sachs, Frederick

    2002-10-01

    We built a high-speed, pneumatic pressure clamp to stimulate patch-clamped membranes mechanically. The key control element is a newly designed differential valve that uses a single, nickel-plated piezoelectric bending element to control both pressure and vacuum. To minimize response time, the valve body was designed with minimum dead volume. The result is improved response time and stability with a threefold decrease in actuation latency. Tight valve clearances minimize the steady-state air flow, permitting us to use small resonant-piston pumps to supply pressure and vacuum. To protect the valve from water contamination in the event of a broken pipette, an optical sensor detects water entering the valve and increases pressure rapidly to clear the system. The open-loop time constant for pressure is 2.5 ms for a 100-mmHg step, and the closed-loop settling time is 500-600 micros. Valve actuation latency is 120 micros. The system performance is illustrated for mechanically induced changes in patch capacitance.

  7. High pressure hollow electrode discharges

    SciTech Connect

    Schoenbach, K.H.; El-Habachi, A.; Shi, W.; Ciocca, M.

    1997-12-31

    Reduction of the cathode hole diameter into the submillimeter range has allowed the authors to extend the pressure range for hollow electrode discharge operation to values on the order of 50 Torr. In recent experiments with cathode holes of 0.2 mm diameter they obtained stable glow discharge operation up to approximately 900 Torr in argon. The current-voltage (I-V) characteristics of these discharges (with currents ranging from the ten`s of {micro}A to ten mA) show three distinct discharge modes: at low current, a discharge with positive differential resistivity, followed by a range with strong increase in current and reduction in voltage, and, at high current, again a resistive discharge mode. For low pressure (< 100 Torr) these modes correspond to the predischarge, hollow cathode discharge (sustained by pendulum electrons), and abnormal glow discharge, respectively. At higher pressure the discharge in the short gap system (anode-cathode distance: 0.25 mm) changes from a hollow cathode discharge to, what seems to be a pulseless partial glow discharge. In hollow cathode discharges operated in the torr range the electron energy distribution is known to be strongly non-maxwellian with a large concentration of electrons at energies greater than 30 eV. This holds also for hollow cathode discharge at high pressure and for partial discharges as indicated by the presence of strong excimer lines in the VUV spectrum of Ar-discharges at 128 nm and Xe-discharges at 172 nm. The resistive characteristic of high pressure hollow electrode discharges over a large range of current allows them to generate arrays of these discharges for use as flat panel, direct current, excimer lamps.

  8. High pressure and high temperature apparatus

    DOEpatents

    Voronov, Oleg A.

    2005-09-13

    A design for high pressure/high temperature apparatus and reaction cell to achieve .about.30 GPa pressure in .about.1 cm volume and .about.100 GPa pressure in .about.1 mm volumes and 20-5000.degree. C. temperatures in a static regime. The device includes profiled anvils (28) action on a reaction cell (14, 16) containing the material (26) to be processed. The reaction cell includes a heater (18) surrounded by insulating layers and screens. Surrounding the anvils are cylindrical inserts and supporting rings (30-48) whose hardness increases towards the reaction cell. These volumes may be increased considerably if applications require it, making use of presses that have larger loading force capability, larger frames and using larger anvils.

  9. High pressure synthesis gas conversion

    SciTech Connect

    Not Available

    1992-01-01

    A high pressure gas phase fermentation system has been constructed for the biological production of ethanol from coal synthesis gas. The reactors in the system consist of a 650 mL continuous stirred tank reactor and a 1 L continuous column reactor. The reactors are designed for individual or dual operation in series or parallel, with continuous gas and liquid feed. The system is housed in a constant temperature, explosion-proof room, equipped with gas leak detectors.

  10. Density measurements and structural properties of liquid and amorphous metals under high pressure studied by in situ X-ray scattering (Invited)

    NASA Astrophysics Data System (ADS)

    Morard, G.; Garbarino, G.; Andrault, D.; Antonangeli, D.; Guignot, N.; Siebert, J.; Roberge, M.; Boulard, E.; Lincot, A.; Denoeud, A.; Petitgirard, S.

    2013-12-01

    Density determination for crystalline materials under high pressure and high temperature is straightforward using X-ray diffraction. For liquid and amorphous materials, it is more complicated due to the absence of long-range order. Different high pressure techniques have been developed: in-situ X-ray absorption 1-4 or ex-situ sink/float method 5-8. However, these techniques suffer several limitations, such as the limited pressure range or the long exposure time required. We have implemented an in situ X-ray diffraction analysis method suitable for the determination of Pressure-Volume-Temperature equations of state (P-V-T EoS) in the critical case of liquid and amorphous materials over an extended thermodynamic range (T>2000 K and P> 40 GPa). This method is versatile, it can be applied to data obtained using various angle-dispersive X-ray diffraction high-pressure apparatus and, contrary to in situ X-ray absorption techniques, is independent from the sample geometry. Further advantage is the fast data acquisition (between 10 to 300 seconds integration time). Information on macroscopic bulk properties (density) and local atomic arrangement (pair distribution function g(r)) can be gathered in parallel. To illustrate the method, we present studies on liquid Fe-S alloys in Paris Edinburgh press and in laser-heated diamond anvil cell, and measurements on Ce glass in diamond anvil cell at room temperature. References 1 G. Shen, N. Sata, M. Newville et al., App. Phys. Lett. 81 (8), 1411 (2002). 2 C. Sanloup, F. Guyot, P. Gillet et al., Geophys. Res. Lett. 27 (6), 811 (2000). 3 Y. Katayama, K. Tsuji, O. Shimomura et al., J. Synch. Rad. 5, 1023 (1998). 4 T. Sato and N. Funamori, Phys. Rev. Lett. 101, 255502 (2008). 5 R. Knoche and R. W. Luth, Chem. Geol. 128, 229 (1996). 6 P.S. Balog, R.A. Secco, D.C. Rubie et al., J. Geophys. Res. 108 (B2), 2124 (2003). 7 C. B. Agee and D. Walker, J. Geophys. Res. 93 (B4), 3437 (1988). 8 E. Ohtani, A. Suzuki, and T. Kato, Proc. Jpn. Acad

  11. Poisson's Ratio and the Densification of Glass under High Pressure

    SciTech Connect

    Rouxel, T.; Ji, H.; Hammouda, T.; Moreac, A.

    2008-06-06

    Because of a relatively low atomic packing density, (C{sub g}) glasses experience significant densification under high hydrostatic pressure. Poisson's ratio ({nu}) is correlated to C{sub g} and typically varies from 0.15 for glasses with low C{sub g} such as amorphous silica to 0.38 for close-packed atomic networks such as in bulk metallic glasses. Pressure experiments were conducted up to 25 GPa at 293 K on silica, soda-lime-silica, chalcogenide, and bulk metallic glasses. We show from these high-pressure data that there is a direct correlation between {nu} and the maximum post-decompression density change.

  12. High pressure xenon ionization detector

    DOEpatents

    Markey, J.K.

    1989-11-14

    A method is provided for detecting ionization comprising allowing particles that cause ionization to contact high pressure xenon maintained at or near its critical point and measuring the amount of ionization. An apparatus is provided for detecting ionization, the apparatus comprising a vessel containing a ionizable medium, the vessel having an inlet to allow high pressure ionizable medium to enter the vessel, a means to permit particles that cause ionization of the medium to enter the vessel, an anode, a cathode, a grid and a plurality of annular field shaping rings, the field shaping rings being electrically isolated from one another, the anode, cathode, grid and field shaping rings being electrically isolated from one another in order to form an electric field between the cathode and the anode, the electric field originating at the anode and terminating at the cathode, the grid being disposed between the cathode and the anode, the field shaping rings being disposed between the cathode and the grid, the improvement comprising the medium being xenon and the vessel being maintained at a pressure of 50 to 70 atmospheres and a temperature of 0 to 30 C. 2 figs.

  13. High pressure xenon ionization detector

    DOEpatents

    Markey, John K.

    1989-01-01

    A method is provided for detecting ionization comprising allowing particles that cause ionization to contact high pressure xenon maintained at or near its critical point and measuring the amount of ionization. An apparatus is provided for detecting ionization, the apparatus comprising a vessel containing a ionizable medium, the vessel having an inlet to allow high pressure ionizable medium to enter the vessel, a means to permit particles that cause ionization of the medium to enter the vessel, an anode, a cathode, a grid and a plurality of annular field shaping rings, the field shaping rings being electrically isolated from one another, the anode, cathode, grid and field shaping rings being electrically isolated from one another in order to form an electric field between the cathode and the anode, the electric field originating at the anode and terminating at the cathode, the grid being disposed between the cathode and the anode, the field shaping rings being disposed between the cathode and the grid, the improvement comprising the medium being xenon and the vessel being maintained at a pressure of 50 to 70 atmospheres and a temperature of 0.degree. to 30.degree. C.

  14. Metal-silicate partitioning of Mo and W at high pressures and temperatures: Evidence for late accretion of sulphur to the Earth

    NASA Astrophysics Data System (ADS)

    Wade, Jon; Wood, Bernard J.; Tuff, James

    2012-05-01

    In order to place better constraints on the conditions of core formation on Earth and other planetary bodies we have performed experiments to determine the partitioning of Mo and W between liquid Fe-rich metal and liquid silicate at pressures of 1.5-24 GPa and temperatures of 1803-2723 K. Experiments performed in MgO capsules at 1.5 GPa/1923 K indicate that Mo is in the +4 oxidation state in the silicate at oxygen fugacities >2 log units below the IW (Fe-FeO) buffer. In contrast W6+ is the dominant tungsten oxidation state in the silicate at 1.5 GPa/1923 K and 1.8-3.3 log units below the IW buffer. When our 15 data for pressures between 6 and 24 GPa are combined with those of Cottrell et al. (2009) we find evidence neither for a change in oxidation state of W above 6 GPa nor for a change in pressure dependence of partitioning in the experimental fO2 range. Metal-silicate partitioning of both Mo and W shows strong dependence on silicate melt composition with both elements becoming more siderophile as the melt becomes more SiO2-rich. Although the trends in the partitioning data can be related to silicate melt composition in terms of the ratio of nonbridging oxygens to tetrahedral cations {NBO}/{T} we find that use of a regular solution model for the silicate melt results in a significantly better fit to the data. We combined our results with those in the literature to obtain partitioning equations applicable to the Earth. In terms of weight partitioning we define Diwt and (KDi) as follows: (DMowt)={[Mo]}/{[Mo]};(DFewt)={[Fe]}/{[Fe]};(KDMo)={(D}/{Mowt)(DFewt)2};(KDW)={(D}/{Wwt)(DFewt)3} The experimental data, when corrected for compositional effects, yield the following expressions for a pyrolite mantle: log(KDMo)=1.44-{143}/{T}- 167PT (0.19) log(KDW)=1.85-{6728}/{T}- 77PT (0.24) The value in brackets corresponds to 1 standard error of the fit. These expressions were combined with the continuous accretion model of Wade and Wood (2005) to investigate the constraints

  15. How Is High Blood Pressure Treated?

    MedlinePlus

    ... blood pressure and maintain normal blood pressure readings. Healthy Eating To help treat high blood pressure, health care ... Read more about the DASH eating plan. Heart-Healthy Eating Your health care provider also may recommend heart- ...

  16. High Pressure Electrolyzer System Evaluation

    NASA Technical Reports Server (NTRS)

    Prokopius, Kevin; Coloza, Anthony

    2010-01-01

    This report documents the continuing efforts to evaluate the operational state of a high pressure PEM based electrolyzer located at the NASA Glenn Research Center. This electrolyzer is a prototype system built by General Electric and refurbished by Hamilton Standard (now named Hamilton Sunstrand). It is capable of producing hydrogen and oxygen at an output pressure of 3000 psi. The electrolyzer has been in storage for a number of years. Evaluation and testing was performed to determine the state of the electrolyzer and provide an estimate of the cost for refurbishment. Pressure testing was performed using nitrogen gas through the oxygen ports to ascertain the status of the internal membranes and seals. It was determined that the integrity of the electrolyzer stack was good as there were no appreciable leaks in the membranes or seals within the stack. In addition to the integrity testing, an itemized list and part cost estimate was produced for the components of the electrolyzer system. An evaluation of the system s present state and an estimate of the cost to bring it back to operational status was also produced.

  17. High Pressure Hydrogen from First Principles

    NASA Astrophysics Data System (ADS)

    Morales, M. A.

    2014-12-01

    Typical approximations employed in first-principles simulations of high-pressure hydrogen involve the neglect of nuclear quantum effects (NQE) and the approximate treatment of electronic exchange and correlation, typically through a density functional theory (DFT) formulation. In this talk I'll present a detailed analysis of the influence of these approximations on the phase diagram of high-pressure hydrogen, with the goal of identifying the predictive capabilities of current methods and, at the same time, making accurate predictions in this important regime. We use a path integral formulation combined with density functional theory, which allows us to incorporate NQEs in a direct and controllable way. In addition, we use state-of-the-art quantum Monte Carlo calculations to benchmark the accuracy of more approximate mean-field electronic structure calculations based on DFT, and we use GW and hybrid DFT to calculate the optical properties of the solid and liquid phases near metallization. We present accurate predictions of the metal-insulator transition on the solid, including structural and optical properties of the molecular phase. This work was supported by the U.S. Department of Energy at the Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344 and by LDRD Grant No. 13-LW-004.

  18. Dynamic mechanical behavior and high pressure phase stability of a zirconium-based bulk metallic glass and its composite with tungsten

    NASA Astrophysics Data System (ADS)

    Martin, Morgana

    2008-10-01

    The research involved performing controlled impact experiments on BMG composites consisting of amorphous Zr57Nb5Cu 15:4Ni12:6Al10 (LM106 or Vitreloy106) with crystalline tungsten reinforcement particles. Monolithic LM106 was also examined to aid in the understanding of the composite. The mechanical behavior of the composite was investigated over a range of strain rates (10-3 s -1 to 106 s-1), stress states (compression, compression-shear, tension), and temperatures (RT to 600°C) to determine the dependence of mechanical properties and deformation and failure modes (i.e., homogeneous deformation vs. inhomogeneous shear banding) on these parameters. Mechanical testing in the quasi-static to intermediate strain-rate regimes was performed using an Instron, Drop Weight Tower, and Split Hopkinson Pressure Bar, respectively. High-strain-rate mechanical properties of the BMG-matrix composite and monolithic BMG were investigated using dynamic compression (reverse Taylor) and dynamic tension (spall) impact experiments performed using a gas gun instrumented with velocity interferometry and high-speed digital photography. These experiments provided information about dynamic strength and deformation modes, and allowed for validation of constitutive models via comparison of experimental and simulated transient deformation profiles and free surface velocity traces. Hugoniot equation of state measurements were performed on the monolithic BMG to investigate the high pressure phase stability of the glass and the possible implications of a high pressure phase transformation on mechanical properties. Specimens were recovered for post-impact microstructural and thermal analysis to gain information about the mechanisms of dynamic deformation and fracture, and to examine for possible shock-induced phase transformations of the amorphous phase. For the composite, mechanical testing revealed positive strain-rate sensitivity of its yield stress and negative strain-rate sensitivity of its

  19. Electrokinetic high pressure hydraulic system

    SciTech Connect

    Paul, P.H.; Rakestraw, D.J.

    2000-01-11

    A compact high pressure hydraulic system having no moving parts for converting electric potential to hydraulic force and for manipulating fluids. Electro-osmotic flow is used to provide a valve and means to compress a fluid or gas in a capillary-based system. By electro-osmotically moving an electrolyte between a first position opening communication between a fluid inlet and outlet and a second position closing communication between the fluid inlet and outlet the system can be configured as a valve. The system can also be used to generate forces as large as 2500 psi that can be used to compress a fluid, either a liquid or a gas.

  20. Brillouin scattering at high pressures

    SciTech Connect

    Grimsditch, M.; Polian, A.

    1988-02-01

    Technical advances which have made Brillouin scattering a useful tool in high pressure diamond anvil cell (DAC) studies, viz. multipassing and tandem operation of Fabry-Perot interferometers, are reviewed. Experimental aspects, such as allowed scattering geometries, are outlined and the data analysis required to transform Brillouin spectra into sound velocities and elastic constants is presented. Experimental results on H/sub 2/, N/sub 2/, Ar, and He are presented, and the close relationship between the Brillouin scattering results and equations of state is highlighted.

  1. Electokinetic high pressure hydraulic system

    DOEpatents

    Paul, Phillip H.; Rakestraw, David J.

    2000-01-01

    A compact high pressure hydraulic system having no moving parts for converting electric potential to hydraulic force and for manipulating fluids. Electro-osmotic flow is used to provide a valve and means to compress a fluid or gas in a capillary-based system. By electro-osmotically moving an electrolyte between a first position opening communication between a fluid inlet and outlet and a second position closing communication between the fluid inlet and outlet the system can be configured as a valve. The system can also be used to generate forces as large as 2500 psi that can be used to compress a fluid, either a liquid or a gas.

  2. Improved high pressure turbine shroud

    NASA Technical Reports Server (NTRS)

    Bessen, I. I.; Rigney, D. V.; Schwab, R. C.

    1977-01-01

    A new high pressure turbine shroud material has been developed from the consolidation of prealloyed powders of Ni, Cr, Al and Y. The new material, a filler for cast turbine shroud body segments, is called Genaseal. The development followed the identification of oxidation resistance as the primary cause of prior shroud deterioration, since conversion to oxides reduces erosion resistance and increases spalling under thermal cycled engine conditions. The NICrAlY composition was selected in preference to NIAL and FeCRALY alloys, and was formulated to a prescribed density range that offers suitable erosion resistance, thermal conductivity and elastic modulus for improved behavior as a shroud.

  3. Correlation of theory and experiment for high-pressure hydrogen

    NASA Technical Reports Server (NTRS)

    Hoover, W. G.; Ross, M.; Bender, C. F.; Rogers, F. J.; Olness, R. J.

    1972-01-01

    Recent quantum calculations and high-pressure experiments both agree on the magnitude of the forces with which hydrogen molecules interact. The calculated forces have to be determined in two steps: the repulsion is determined by Hartree-Fock calculations while the attraction is deduced semiempirically. The experimental forces are inferred from recent data on hydrogen shockcompressed to 214 kbar. The agreement indicates the usefulness of a pair-potential description of dense hydrogen and suggests, using potentials consistent with both theory and experiment, that pressures of at least 1.7 Mbar will be required to make metallic hydrogen. The expected lifetime of the metal at atmospheric pressure is very short.

  4. Elasticity of Hydrogen at High Pressures

    NASA Astrophysics Data System (ADS)

    Goncharov, A. F.; Decremps, F.; Gauthier, M.; Ayrinhac, S.; Antonangeli, D.; Freiman, Y. A.; Grechnev, A.; Tretyak, S. M.

    2015-12-01

    High-pressure elastic properties of hydrogen give insight into anisotropy, equation of state, thermodynamic properties, and intermolecular potentials of this material providing an important link to ultrahigh pressure behavior approaching transformation to metallic monatomic or molecular state. Here we present picosecond acoustics measurements of compressional sound velocities [1] combined with optical interferometry and Raman spectroscopy of H2 and D2 at 295 K up to 55 GPa. Using the equation of state determined previously [2], we deduced the transverse sound velocities and the Poisson's ratio up to 55 GPa. The latter shows a broad minimum near 45 GPa (c.f. Ref. [3]) providing a new experimentally proven insight into lattice dynamics of hydrogen at high pressure that can be compared to theoretical calculations of various levels [4]. [1] F. Decremps, M. Gauthier, S. Ayrinhac, L. Bove, L. Belliard, B. Perrin, M. Morand, G. Le Marchand, F. Bergame, J. Philippe, Ultrasonics, 56 (2015) 129-140. [2] P. Loubeyre, R. LeToullec, D. Hausermann, M. Hanfland, R.J. Hemley, H.K. Mao, L.W. Finger, Nature, 383 (1996) 702-704. [3] C.-s. Zha, T.S. Duffy, H.-k. Mao, R.J. Hemley, Phys. Rev. B, 48 (1993) 9246-9255. [4] Y.A. Freiman, A. Grechnev, S.M. Tretyak, A.F. Goncharov, E. Gregoryanz, Fizika Nizkikh Temperatur, 41 (2015) 571.

  5. Reconfigurable liquid metal circuits by Laplace pressure shaping

    NASA Astrophysics Data System (ADS)

    Cumby, Brad L.; Hayes, Gerard J.; Dickey, Michael D.; Justice, Ryan S.; Tabor, Christopher E.; Heikenfeld, Jason C.

    2012-10-01

    We report reconfigurable circuits formed by liquid metal shaping with <10 pounds per square inch (psi) Laplace and vacuum pressures. Laplace pressure drives liquid metals into microreplicated trenches, and upon release of vacuum, the liquid metal dewets into droplets that are compacted to 10-100× less area than when in the channel. Experimental validation includes measurements of actuation speeds exceeding 30 cm/s, simple erasable resistive networks, and switchable 4.5 GHz antennas. Such capability may be of value for next generation of simple electronic switches, tunable antennas, adaptive reflectors, and switchable metamaterials.

  6. Method of producing a high pressure gas

    DOEpatents

    Bingham, Dennis N.; Klingler, Kerry M.; Zollinger, William T.

    2006-07-18

    A method of producing a high pressure gas is disclosed and which includes providing a container; supplying the container with a liquid such as water; increasing the pressure of the liquid within the container; supplying a reactant composition such as a chemical hydride to the liquid under pressure in the container and which chemically reacts with the liquid to produce a resulting high pressure gas such as hydrogen at a pressure of greater than about 100 pounds per square inch of pressure; and drawing the resulting high pressure gas from the container.

  7. Helium atmospheric pressure plasma jets touching dielectric and metal surfaces

    NASA Astrophysics Data System (ADS)

    Norberg, Seth A.; Johnsen, Eric; Kushner, Mark J.

    2015-07-01

    Atmospheric pressure plasma jets (APPJs) are being investigated in the context plasma medicine and biotechnology applications, and surface functionalization. The composition of the surface being treated ranges from plastics, liquids, and biological tissue, to metals. The dielectric constant of these materials ranges from as low as 1.5 for plastics to near 80 for liquids, and essentially infinite for metals. The electrical properties of the surface are not independent variables as the permittivity of the material being treated has an effect on the dynamics of the incident APPJ. In this paper, results are discussed from a computational investigation of the interaction of an APPJ incident onto materials of varying permittivity, and their impact on the discharge dynamics of the plasma jet. The computer model used in this investigation solves Poisson's equation, transport equations for charged and neutral species, the electron energy equation, and the Navier-Stokes equations for the neutral gas flow. The APPJ is sustained in He/O2 = 99.8/0.2 flowing into humid air, and is directed onto dielectric surfaces in contact with ground with dielectric constants ranging from 2 to 80, and a grounded metal surface. Low values of relative permittivity encourage propagation of the electric field into the treated material and formation and propagation of a surface ionization wave. High values of relative permittivity promote the restrike of the ionization wave and the formation of a conduction channel between the plasma discharge and the treated surface. The distribution of space charge surrounding the APPJ is discussed.

  8. Optical calibration of pressure sensors for high pressures and temperatures

    SciTech Connect

    Goncharov, A F; Gregoryanz, E; Zaug, J M; Crowhurst, J C

    2004-10-04

    We present the results of Raman scattering measurements of diamond ({sup 12}C) and of cubic boron nitride (cBN), and fluorescence measurements of ruby, Sm:YAG, and SrB{sub 4}O{sub 7}:Sm{sup 2+} in the diamond anvil cell (DAC) at high pressures and temperatures. These measurements were accompanied by synchrotron x-ray diffraction measurements on gold. We have extended the room-temperature calibration of Sm:YAG in a quasihydrostatic regime up to 100 GPa. The ruby scale is shown to systematically underestimate pressure at high pressures and temperatures compared with all other sensors. On this basis, we propose a new high-temperature ruby pressure scale that should be valid to at least 100 GPa and 850 K. Historically, the accurate determination of pressure at high temperature and ultrahigh pressure has been extremely difficult. In fact, the lack of a general pressure scale nullifies, to a significant extent, the great innovations that have been made in recent years in DAC experimental techniques [1]. Now, more than ever a scale is required whose accuracy is comparable with that of the experimental data. Since pressure in the DAC is dependent on temperature (due to thermal pressure and also to changes in the properties of the materials that constitute the DAC) such a scale requires quantitative, and separate measurements of pressure and temperature.

  9. Pressurized metallurgy for high performance special steels and alloys

    NASA Astrophysics Data System (ADS)

    Jiang, Z. H.; Zhu, H. C.; Li, H. B.; L1, Y.; Liu, F. B.

    2016-07-01

    The pressure is one of the basic parameters which greatly influences the metallurgical reaction process and solidification of steels and alloys. In this paper the history and present situation of research and application of pressurized metallurgy, especially pressurized metallurgy for special steels and alloys have been briefly reviewed. In the following part the physical chemistry of pressurized metallurgy is summarized. It is shown that pressurizing may change the conditions of chemical reaction in thermodynamics and kinetics due to the pressure effect on gas volume, solubility of gas and volatile element in metal melt, activity or activity coefficient of components, and change the physical and chemical properties of metal melt, heat transfer coefficient between mould and ingot, thus greatly influencing phase transformation during the solidification process and the solidification structure, such as increasing the solidification nucleation rate, reducing the critical nucleation radius, accelerating the solidification speed and significant macro/micro-structure refinement, and eliminating shrinkage, porosity and segregation and other casting defects. In the third part the research works of pressured metallurgy performed by the Northeastern University including establishment of pressurized induction melting (PIM) and pressurized electroslag remelting (PESR) equipments and development of high nitrogen steels under pressure are described in detail. Finally, it is considered in the paper that application of pressurized metallurgy in manufacture of high performance special steels and alloys is a relatively new research area, and its application prospects will be very broad and bright.

  10. High-pressure microhydraulic actuator

    DOEpatents

    Mosier, Bruce P [San Francisco, CA; Crocker, Robert W [Fremont, CA; Patel, Kamlesh D [Dublin, CA

    2008-06-10

    Electrokinetic ("EK") pumps convert electric to mechanical work when an electric field exerts a body force on ions in the Debye layer of a fluid in a packed bed, which then viscously drags the fluid. Porous silica and polymer monoliths (2.5-mm O.D., and 6-mm to 10-mm length) having a narrow pore size distribution have been developed that are capable of large pressure gradients (250-500 psi/mm) when large electric fields (1000-1500 V/cm) are applied. Flowrates up to 200 .mu.L/min and delivery pressures up to 1200 psi have been demonstrated. Forces up to 5 lb-force at 0.5 mm/s (12 mW) have been demonstrated with a battery-powered DC-DC converter. Hydraulic power of 17 mW (900 psi@ 180 uL/min) has been demonstrated with wall-powered high voltage supplies. The force and stroke delivered by an actuator utilizing an EK pump are shown to exceed the output of solenoids, stepper motors, and DC motors of similar size, despite the low thermodynamic efficiency.

  11. High Blood Pressure May Hike Dementia Risk

    MedlinePlus

    ... medlineplus.gov/news/fullstory_161398.html High Blood Pressure May Hike Dementia Risk New statement from American ... MONDAY, Oct. 10, 2016 (HealthDay News) -- High blood pressure, particularly in middle age, might open the door ...

  12. High blood pressure and eye disease

    MedlinePlus

    ... this page: //medlineplus.gov/ency/article/000999.htm High blood pressure and eye disease To use the sharing features ... Hypertensive retinopathy is damage to the retina from high blood pressure. The retina is the layer of tissue at ...

  13. High conductivity composite metal

    DOEpatents

    Zhou, R.; Smith, J.L.; Embury, J.D.

    1998-01-06

    Electrical conductors and methods of producing them are disclosed, where the conductors possess both high strength and high conductivity. Conductors are comprised of carbon steel and a material chosen from a group consisting of copper, nickel, silver, and gold. Diffusion barriers are placed between these two materials. The components of a conductor are assembled and then the assembly is subjected to heat treating and mechanical deformation steps. 10 figs.

  14. High conductivity composite metal

    DOEpatents

    Zhou, Ruoyi; Smith, James L.; Embury, John David

    1998-01-01

    Electrical conductors and methods of producing them, where the conductors possess both high strength and high conductivity. Conductors are comprised of carbon steel and a material chosen from a group consisting of copper, nickel, silver, and gold. Diffusion barriers are placed between these two materials. The components of a conductor are assembled and then the assembly is subjected to heat treating and mechanical deformation steps.

  15. Influence of Metal Diboride and Dy2O3 Additions on Microstructure and Properties of MgB2 Fabricated at High Temperatures and under Pressure

    NASA Astrophysics Data System (ADS)

    Yang, Y.; Sumption, M. D.; Collings, E. W.

    2016-07-01

    High temperatures and under pressure (HTP) processing has been used to study the effects of chemical doping in MgB2. ZrB2, TiB2 and NbB2 were selected as additives since, like MgB2, they have an AlB2-type structure and similar lattice parameters. Dy2O3 was selected as it has been reported to generate nanoscale, secondary intragrain phases in MgB2. While C is known to enter the B-sublattice readily, attempts to dope Zr and other elements onto the Mg site have been less successful due to slow bulk diffusion, low solubility in MgB2, or both. We have used high-temperature, solid-state sintering (1500 °C), as well as excursions through the peritectic temperature (up to 1700 °C), to investigate both of these limitations. Bulk MgB2 samples doped with MB2 (M = Zr, Ti and Nb) and Dy2O3 additions were synthesized and then characterized. Lattice distortion and high densities of crystal defects were observed in the MgB2 grains around nano-sized MB2 inclusions, this highly defected band contributed to a large increase in Bc2 but was not large enough to increase the irreversibility field. In contrast, distributed intragrain precipitates were formed by Dy2O3 additions which did not change the lattice parameters, Tc, Tc distribution or Bc2 of MgB2, but modified the flux pinning.

  16. Influence of Metal Diboride and Dy2O3 Additions on Microstructure and Properties of MgB2 Fabricated at High Temperatures and under Pressure.

    PubMed

    Yang, Y; Sumption, M D; Collings, E W

    2016-07-13

    High temperatures and under pressure (HTP) processing has been used to study the effects of chemical doping in MgB2. ZrB2, TiB2 and NbB2 were selected as additives since, like MgB2, they have an AlB2-type structure and similar lattice parameters. Dy2O3 was selected as it has been reported to generate nanoscale, secondary intragrain phases in MgB2. While C is known to enter the B-sublattice readily, attempts to dope Zr and other elements onto the Mg site have been less successful due to slow bulk diffusion, low solubility in MgB2, or both. We have used high-temperature, solid-state sintering (1500 °C), as well as excursions through the peritectic temperature (up to 1700 °C), to investigate both of these limitations. Bulk MgB2 samples doped with MB2 (M = Zr, Ti and Nb) and Dy2O3 additions were synthesized and then characterized. Lattice distortion and high densities of crystal defects were observed in the MgB2 grains around nano-sized MB2 inclusions, this highly defected band contributed to a large increase in Bc2 but was not large enough to increase the irreversibility field. In contrast, distributed intragrain precipitates were formed by Dy2O3 additions which did not change the lattice parameters, Tc, Tc distribution or Bc2 of MgB2, but modified the flux pinning.

  17. Influence of Metal Diboride and Dy2O3 Additions on Microstructure and Properties of MgB2 Fabricated at High Temperatures and under Pressure

    PubMed Central

    Yang, Y.; Sumption, M. D.; Collings, E. W.

    2016-01-01

    High temperatures and under pressure (HTP) processing has been used to study the effects of chemical doping in MgB2. ZrB2, TiB2 and NbB2 were selected as additives since, like MgB2, they have an AlB2-type structure and similar lattice parameters. Dy2O3 was selected as it has been reported to generate nanoscale, secondary intragrain phases in MgB2. While C is known to enter the B-sublattice readily, attempts to dope Zr and other elements onto the Mg site have been less successful due to slow bulk diffusion, low solubility in MgB2, or both. We have used high-temperature, solid-state sintering (1500 °C), as well as excursions through the peritectic temperature (up to 1700 °C), to investigate both of these limitations. Bulk MgB2 samples doped with MB2 (M = Zr, Ti and Nb) and Dy2O3 additions were synthesized and then characterized. Lattice distortion and high densities of crystal defects were observed in the MgB2 grains around nano-sized MB2 inclusions, this highly defected band contributed to a large increase in Bc2 but was not large enough to increase the irreversibility field. In contrast, distributed intragrain precipitates were formed by Dy2O3 additions which did not change the lattice parameters, Tc, Tc distribution or Bc2 of MgB2, but modified the flux pinning. PMID:27406904

  18. High-pressure structural properties of tetramethylsilane

    NASA Astrophysics Data System (ADS)

    Zhen-Xing, Qin; Xiao-Jia, Chen

    2016-02-01

    High-pressure structural properties of tetramethylsilane are investigated by synchrotron powder x-ray diffraction at pressures up to 31.1 GPa and room temperature. A phase with the space group of Pnma is found to appear at 4.2 GPa. Upon compression, the compound transforms to two following phases: the phase with space groups of P21/c at 9.9 GPa and the phase with P2/m at 18.2 GPa successively via a transitional phase. The unique structural character of P21/c supports the phase stability of tetramethylsilane without possible decomposition upon heavy compression. The appearance of the P2/m phase suggests the possible realization of metallization for this material at higher pressure. Project supported by the Cultivation Fund of the Key Scientific and Technical Innovation Project from Ministry of Education of China (Grant No. 708070), the Fundamental Research Funds for the Central Universities, South China University of Technology (Grant No. 2014ZZ0069), the National Natural Science Foundation of China (Grant No. 51502189), and the Doctoral Project of Taiyuan University of Science and Technology, China (Grant No. 20132010).

  19. The High School Coach. A Pressure Position.

    ERIC Educational Resources Information Center

    Lackey, Donald

    1986-01-01

    In 1982 principals of 95 percent of Nebraska high schools responded to a questionnaire regarding amount and types of pressure coaches were under. Results regarding reasons for dismissal were compared with a 1975 study. The types of pressure, sources of pressure, pressure sports, and impact on coaches are discussed. (MT)

  20. Condensed matter at high shock pressures

    SciTech Connect

    Nellis, W.J.; Holmes, N.C.; Mitchell, A.C.; Radousky, H.B.; Hamilton, D.

    1985-07-12

    Experimental techniques are described for shock waves in liquids: Hugoniot equation-of-state, shock temperature and emission spectroscopy, electrical conductivity, and Raman spectroscopy. Experimental data are reviewed and presented in terms of phenomena that occur at high densities and temperatures in shocked He, Ar, N/sub 2/, CO, SiO/sub 2/-aerogel, H/sub 2/O, and C/sub 6/H/sub 6/. The superconducting properties of Nb metal shocked to 100 GPa (1 Mbar) and recovered intact are discussed in terms of prospects for synthesizing novel, metastable materials. Ultrahigh pressure data for Cu is reviewed in the range 0.3 to 6TPa (3 to 60 Mbar). 56 refs., 9 figs., 1 tab.

  1. Ceramic high pressure gas path seal

    NASA Technical Reports Server (NTRS)

    Liotta, G. C.

    1987-01-01

    Stage 1 ceramic shrouds (high pressure turbine gas path seal) were developed for the GE T700 turbine helicopter engine under the Army/NASA Contract NAS3-23174. This contract successfully proved the viability and benefits of a Stage 1 ceramic shroud for production application. Stage 1 ceramic shrouds were proven by extensive component and engine testing. This Stage 1 ceramic shroud, plasma sprayed ceramic (ZrOs-BY2O3) and bond coating (NiCrAlY) onto a cast metal backing, offers significant engine performance improvement. Due to the ceramic coating, the amount of cooling air required is reduced 20% resulting in a 0.5% increase in horsepower and a 0.3% decrease in specific fuel consumption. This is accomplished with a component which is lower in cost than the current production shroud. Stage 1 ceramic shrouds will be introduced into field service in late 1987.

  2. Condensation of liquid metals under low pressures

    SciTech Connect

    Elafify, M.M.

    1988-01-01

    The Direct Simulation Monte Carlo (DSMC) method is used to study one-dimensional condensation phenomena for a pure vapor or vapor/gas mixture. The results are fitted to an interpolation formula describing the condensation mass flux to provide a usable engineering correlation. For pure vapor, the DSMC results are compared with the available experimental data for condensation of mercury under low pressure. Results are compared also with some of the theoretical models. The comparison shows that the DSMC method is able to detect the qualitative behavior of the condensation mass flux, although it overestimates the mass flux by 20-30%. Compared with other introduced theoretical models, the DSMC method has the most-consistent representation of the qualitative behavior of the condensation mass flux. The method was also used to represent condensation in the presence of a noncondensable gas. A formal proof for choosing collision partners was introduced and applied in the case of condensation in the presence of a noncondensable gas. The method is applied to condensation of mercury in the presence of different monatomic noncondensable gases at different partial pressures.

  3. Manufacturing Diamond Under Very High Pressure

    NASA Technical Reports Server (NTRS)

    Voronov, Oleg

    2007-01-01

    A process for manufacturing bulk diamond has been made practical by the invention of the High Pressure and Temperature Apparatus capable of applying the combination of very high temperature and high pressure needed to melt carbon in a sufficiently large volume. The apparatus includes a reaction cell wherein a controlled static pressure as high as 20 GPa and a controlled temperature as high as 5,000 C can be maintained.

  4. High Blood Pressure: Unique to Older Adults

    MedlinePlus

    ... below to read more. High Blood Pressure and Edema : You may notice swelling in some parts of ... blood pressure. This buildup of fluids, called peripheral edema, usually occurs in your ankles, feet, lower legs, ...

  5. Shear viscosity of shocked metals at mega-bar pressures

    NASA Astrophysics Data System (ADS)

    Liu, Fu-Sheng

    2013-06-01

    Viscosity of metals at high pressures and temperatures has been one of the most concerned problems in weapon physics and geophysics, e.g., the shear viscosity coefficients of substances in earth's mantle and earth's core at mega-bar pressures are needed for understanding the core mantle convection in deep earth. But the experimental data is very scarce because the conventional measurement methods can hardly be applied to such compression conditions [1]. In this talk, the principle of small-disturbance perturbation method [2] is re-investigated based on both the analytic solution and the numerical solution of the two-dimentional shock flow of sinusoidal distubance on front. In numerical solution, the real viscosity, which governs the flow behind the shock front and the perturbation damping feature, and the artificial viscosity, whick controls the numerical oscillation, separately treated. The relation between the viscosity of flow and the damping features of perturbation amplitude is quantitatively established for the loading situations of Sakharov's [3] and a flyer-impact situation with a finite disturbance. The later is the theoretical basis to develop a new experimental method, called the flyer-impact small-disturbance method [4]. In the flyer-impact small-disturbance method, the two-stage light-gas gun is used to launch a metal flyer. When the flyer directly impacts on the wedge-shaped sample with a sinusoidal surface, a two-dimensional shock flow of sinusoidal distubance on its front is generated. The amplitude of disturbance and its dependance with propagation distance is measured by use of an electric pin-array probe or a fibre-array probe. Correspondingly, the solution of the flow is given by numerically solving the hydrodynamic equations by the finite difference technique to find out the quantative correlations among the amplitude decay, the initial distribution of flow, the amplitude of initial disturbance, the shear viscosity of the flow, and the material

  6. High pressure pulsed capillary viscometry

    NASA Technical Reports Server (NTRS)

    Smith, R. L.; Walowitt, J. A.; Pan, C. H. T.

    1972-01-01

    An analytical and test program was conducted in order to establish the feasibility of a multichamber pulsed-capillary viscometer. The initial design incorporated a piston, ram, and seals which produced measured pulses up to 30,000 psi in the closed chamber system. Pressure pulses from one to ten milliseconds were investigated in a system volume of 1 cuin. Four test fluids: a MIL-L-7808, a 5P4E polyphenyl ether, a MIL-L-23699A, and a synthetic hydrocarbon were examined in the test pressure assembly. The pressure-viscosity coefficient and viscosity delay time were determined for the MIL-L-7808 lubricant tested.

  7. Pressure-driven superconductivity in the transition-metal pentatelluride HfT e5

    NASA Astrophysics Data System (ADS)

    Qi, Yanpeng; Shi, Wujun; Naumov, Pavel G.; Kumar, Nitesh; Schnelle, Walter; Barkalov, Oleg; Shekhar, Chandra; Borrmann, Horst; Felser, Claudia; Yan, Binghai; Medvedev, Sergey A.

    2016-08-01

    The discovery of superconductivity in hafnium pentatelluride HfT e5 under high pressure is reported. Two structural phase transitions and metallization with superconductivity developing at around 5 GPa are observed. A maximal critical temperature of 4.8 K is attained at a pressure of 20 GPa, and superconductivity persists up to the maximum pressure of the study (42 GPa). The combination of electrical transport and crystal structure measurements as well as theoretical electronic structure calculations enables the construction of a phase diagram of HfT e5 under high pressure.

  8. High-pressure/high-temperature synthesis and characterization of the first palladium or platinum containing lithium transition-metal sulfides Li2M3S4 (M=Pd, Pt)

    NASA Astrophysics Data System (ADS)

    Heymann, Gunter; Niehaus, Oliver; Krüger, Hannes; Selter, Philipp; Brunklaus, Gunther; Pöttgen, Rainer

    2016-10-01

    The new lithium transition-metal sulfides Li2M3S4 (M=Pd, Pt) were obtained via multianvil high-pressure/high-temperature syntheses at 8 GPa and 1150 °C starting from a stoichiometric mixture of lithium nitride, sulfur, and palladium or platinum. Single crystal structure analyses indicated the space group P21/c (no. 14) with the following lattice parameters and refinement results: a=492.9(1), b=1005.9(2), c=614.9(2) pm, β=110.9 (1)°, R1=0.0165, wR2=0.0308 (all data) for Li2Pd3S4 and a=498.2(1), b=1005.5(2), c=613.0(2) pm, β=110.8(1)°, R1=0.0215, wR2=0.0450 (all data) for Li2Pt3S4. The crystal structures are built up from two distinct Pd/Pt sites, one of which is a special position (0,0,0), two sulfur sites, and one lithium site. The atoms Pd2/Pt2 form isolated square planar PdS4/PtS4 units, whereas the Pd1/Pt1 atoms form pairs of square planar PdS4/PtS4 units, which are connected via a common edge. These two structural motives built up a three-dimensional network structure by linking through common corners. The lithium atoms are positioned inside of the so formed channels. Li2M3S4 (M=Pd, Pt) are isostructural to the minerals jaguéite, Cu2Pd3Se4 and chrisstanleyite, Ag2Pd3Se4, which are up to now the only representatives of this structure type. Both compounds were studied with respect to their magnetic properties and can be classified as Pauli paramagnetic or diamagnetic. Regarding the possibility of lithium mobility inside the channels, of the structure, solid state 7Li NMR and high-temperature single crystal investigations revealed localization of the lithium atoms on their crystallographic sites.

  9. Statistical mechanics of light elements at high pressure. IV - A model free energy for the metallic phase. [for Jovian type planet interiors

    NASA Technical Reports Server (NTRS)

    Dewitt, H. E.; Hubbard, W. B.

    1976-01-01

    A large quantity of data on the thermodynamic properties of hydrogen-helium metallic liquids have been obtained in extended computer calculations in which a Monte Carlo code essentially identical to that described by Hubbard (1972) was used. A model free energy for metallic hydrogen with a relatively small mass fraction of helium is discussed, taking into account the definition of variables, a procedure for choosing the free energy, values for the fitting parameters, and the evaluation of the entropy constants. Possibilities concerning a use of the obtained data in studies of the interiors of the outer planets are briefly considered.

  10. Potassium and High Blood Pressure

    MedlinePlus

    ... in blood pressure to certain patterns of food consumption. For example, the D.A.S.H. (Dietary Approaches ... are good natural sources of potassium. Potassium-rich foods include: Sweet ... Levels Mean * ...

  11. Metal finishing wastewater pressure filter optimization

    SciTech Connect

    Norford, S.W.; Diener, G.A.; Martin, H.L.

    1992-01-01

    The 300-M Area Liquid Effluent Treatment Facility (LETF) of the Savannah River Site (SRS) is an end-of-pipe industrial wastewater treatment facility, that uses precipitation and filtration which is the EPA Best Available Technology economically achievable for a Metal Finishing and Aluminum Form Industries. The LETF consists of three close-coupled treatment facilities: the Dilute Effluent Treatment Facility (DETF), which uses wastewater equalization, physical/chemical precipitation, flocculation, and filtration; the Chemical Treatment Facility (CTF), which slurries the filter cake generated from the DETF and pumps it to interim-StatuS RCRA storage tanks; and the Interim Treatment/Storage Facility (IT/SF) which stores the waste from the CTF until the waste is stabilized/solidified for permanent disposal, 85% of the stored waste is from past nickel plating and aluminum canning of depleted uranium targets for the SRS nuclear reactors. Waste minimization and filtration efficiency are key to cost effective treatment of the supernate, because the waste filter cake generated is returned to the IT/SF. The DETF has been successfully optimized to achieve maximum efficiency and to minimize waste generation.

  12. Metal finishing wastewater pressure filter optimization

    SciTech Connect

    Norford, S.W.; Diener, G.A.; Martin, H.L.

    1992-12-31

    The 300-M Area Liquid Effluent Treatment Facility (LETF) of the Savannah River Site (SRS) is an end-of-pipe industrial wastewater treatment facility, that uses precipitation and filtration which is the EPA Best Available Technology economically achievable for a Metal Finishing and Aluminum Form Industries. The LETF consists of three close-coupled treatment facilities: the Dilute Effluent Treatment Facility (DETF), which uses wastewater equalization, physical/chemical precipitation, flocculation, and filtration; the Chemical Treatment Facility (CTF), which slurries the filter cake generated from the DETF and pumps it to interim-StatuS RCRA storage tanks; and the Interim Treatment/Storage Facility (IT/SF) which stores the waste from the CTF until the waste is stabilized/solidified for permanent disposal, 85% of the stored waste is from past nickel plating and aluminum canning of depleted uranium targets for the SRS nuclear reactors. Waste minimization and filtration efficiency are key to cost effective treatment of the supernate, because the waste filter cake generated is returned to the IT/SF. The DETF has been successfully optimized to achieve maximum efficiency and to minimize waste generation.

  13. High-Pressure Research in Mineral Physics

    NASA Astrophysics Data System (ADS)

    Hazen, Robert M.

    Advances in high-pressure science and technology have transformed solid Earth geophysics. In the last decade, high-pressure researchers have reproduced the full range of Earth pressure and temperature conditions in the laboratory, and they have synthesized single crystals of dense silicate phases, unknown at the Earth's surface yet suspected to comprise most of the Earth's volume. These and other extraordinary accomplishments are chronicled in High-Pressure Research in Mineral Physics, an outgrowth of the third U.S.-Japan High-Pressure seminar, held in Kahuku, Hawaii, January, 13-16, 1986. The well produced and reasonably priced volume is dedicated to Syun-iti Akimoto, dean of Japanese high-pressure research, who recently retired from the University of Tokyo. Akimoto's fascinating historical account of pressure research at the Institute for Solid State Physics at the University of Tokyo is the leadoff article.

  14. Making a Metal-Lined Composite-Overwrapped Pressure Vessel

    NASA Technical Reports Server (NTRS)

    DeLay, Tom

    2005-01-01

    process has been devised for the fabrication of a pressure vessel that comprises a composite-material (matrix/fiber) shell with a metal liner on its inner surface. The use of the composite material makes it possible for the tank to be strong enough to withstand the anticipated operating pressure and yet weigh less than does an equivalent all-metal tank. The metal liner is used as a barrier against permeation: In the absence of such a barrier, the pressurized gas in the tank could leak by diffusing through the composite-material shell. The figure depicts workpieces at four key stages in the process, which consists of the following steps: 1. A mandrel that defines the size and shape of the pressure vessel is made by either molding or machining a piece of tooling wax. 2. Silver paint is applied to the surface of the mandrel to make it electrically conductive. 3. The ends of the mandrel are fitted with metal bosses. 4. The mandrel is put into a plating bath, wherein the metal liner is electrodeposited. Depending on the applications, the liner metal could be copper, nickel, gold, or an alloy. Typical liner thicknesses range from 1 to 10 mils (0.025 to 0.25 mm). 5. The wax is melted from within, leaving the thin metal liner. 6. A hollow shaft that includes holes and fittings through which the liner can be pressurized is sealed to both ends of the liner. The liner is pressurized to stiffen (and hence stabilize) it for the next step. 7. The pressurized liner is placed in a filament-winding machine, which is then operated to cover the liner with multiple layers of an uncured graphite-fiber/epoxy-matrix or other suitable composite material. 8. The composite-overwrapped liner is cured in an oven. 9. The pressure is relieved and the shaft is removed. The tank is then ready for use. The process as described above accommodates variations: a) The mandrel could be made of a wax that melts at a higher temperature and not removed until the tank is cured in the oven. b) The tank need

  15. Helium atmospheric pressure plasma jets touching dielectric and metal surfaces

    SciTech Connect

    Norberg, Seth A. Johnsen, Eric; Kushner, Mark J.

    2015-07-07

    Atmospheric pressure plasma jets (APPJs) are being investigated in the context plasma medicine and biotechnology applications, and surface functionalization. The composition of the surface being treated ranges from plastics, liquids, and biological tissue, to metals. The dielectric constant of these materials ranges from as low as 1.5 for plastics to near 80 for liquids, and essentially infinite for metals. The electrical properties of the surface are not independent variables as the permittivity of the material being treated has an effect on the dynamics of the incident APPJ. In this paper, results are discussed from a computational investigation of the interaction of an APPJ incident onto materials of varying permittivity, and their impact on the discharge dynamics of the plasma jet. The computer model used in this investigation solves Poisson's equation, transport equations for charged and neutral species, the electron energy equation, and the Navier-Stokes equations for the neutral gas flow. The APPJ is sustained in He/O{sub 2} = 99.8/0.2 flowing into humid air, and is directed onto dielectric surfaces in contact with ground with dielectric constants ranging from 2 to 80, and a grounded metal surface. Low values of relative permittivity encourage propagation of the electric field into the treated material and formation and propagation of a surface ionization wave. High values of relative permittivity promote the restrike of the ionization wave and the formation of a conduction channel between the plasma discharge and the treated surface. The distribution of space charge surrounding the APPJ is discussed.

  16. Pressure-Induced Metallization and Superconductivity in InP and InN

    NASA Astrophysics Data System (ADS)

    Iyakutti, K.; Rejila, V.; Rajarajeswari, M.; Nirmala Louis, C.; Mahalakshmi, S.

    The electronic band structure, structural phase transition, metallization and superconducting transition of cubic zinc blende-type indium phosphide (InP) and indium nitride (InN), under pressure, are studied using TB-LMTO method. These indium compounds become metals and superconductors under high pressure but before that they undergo structural phase transition from ZnS to NaCl structure. The ground-state properties and band gap values are compared with the experimental and previous theoretical results. From our analysis, it is found that the metallization pressure increases with increase of lattice constant. The superconducting transition temperatures (Tc) of InP and InN are obtained as a function of pressure for both the ZnS and NaCl structures and these compounds are identified as pressure-induced superconductors. When pressure is increased Tc increases in both the normal (ZnS) and high pressure (NaCl) structures. The dependence of Tc on electron-phonon mass enhancement factor λ shows that InP and InN are electron-phonon mediated superconductors. The non-occurrence of metallization, phase transition and onset of superconductivity simultaneously in InP and InN are confirmed.

  17. Crystal structure of actinide metals at high compression

    SciTech Connect

    Fast, L.; Soederlind, P.

    1995-08-01

    The crystal structures of some light actinide metals are studied theoretically as a function of applied pressure. The first principles electronic structure theory is formulated in the framework of density functional theory, with the gradient corrected local density approximation of the exchange-correlation functional. The light actinide metals are shown to be well described as itinerant (metallic) f-electron metals and generally, they display a crystal structure which have, in agreement with previous theoretical suggestions, increasing degree of symmetry and closed-packing upon compression. The theoretical calculations agree well with available experimental data. At very high compression, the theory predicts closed-packed structures such as the fcc or the hcp structures or the nearly closed-packed bcc structure for the light actinide metals. A simple canonical band picture is presented to explain in which particular closed-packed form these metals will crystallize at ultra-high pressure.

  18. High pressure synthesis gas conversion. Final report

    SciTech Connect

    Not Available

    1993-05-01

    The purpose of this research project is to build and test a high pressure fermentation system for the production of ethanol from synthesis gas. The fermenters, pumps, controls, and analytical system were procured or fabricated and assembled in our laboratory. This system was then used to determine the effects of high pressure on growth and ethanol production by Clostridium ljungdahlii. The limits of cell concentration and mass transport relationships were found in CSTR and immobilized cell reactors (ICR). The minimum retention times and reactor volumes were found for ethanol production in these reactors. A maximum operating pressure of 150 psig has been shown to be possible for C. ljungdahlli with the medium of Phillips et al. This medium was developed for atmospheric pressure operation in the CSTR to yield maximum ethanol concentrations and thus is not best for operation at elevated pressures. It is recommended that a medium development study be performed for C. ljungdahlii at increased pressure. Cell concentration, gas conversion and product concentration profiles were presented for C. ljungdahlii as a function of gas flow rate, the variable which affects bacterium performance the most. This pressure was chosen as a representative pressure over the 0--150 psig operating pressure range for the bacterium. Increased pressure negatively affected ethanol productivity probably due to the fact that medium composition was designed for atmospheric pressure operation. Medium development at increased pressure is necessary for high pressure development of the system.

  19. 14 CFR 23.571 - Metallic pressurized cabin structures.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... Fatigue Evaluation § 23.571 Metallic pressurized cabin structures. Link to an amendment published at 76 FR... the following: (a) A fatigue strength investigation in which the structure is shown by tests, or by... both that catastrophic failure of the structure is not probable after fatigue failure, or...

  20. Design Guide for glass fiber reinforced metal pressure vessel

    NASA Technical Reports Server (NTRS)

    Landes, R. E.

    1973-01-01

    Design Guide has been prepared for pressure vessel engineers concerned with specific glass fiber reinforced metal tank design or general tank tradeoff study. Design philosophy, general equations, and curves are provided for safelife design of tanks operating under anticipated space shuttle service conditions.

  1. High Precision Pressure Measurement with a Funnel

    ERIC Educational Resources Information Center

    Lopez-Arias, T.; Gratton, L. M.; Oss, S.

    2008-01-01

    A simple experimental device for high precision differential pressure measurements is presented. Its working mechanism recalls that of a hydraulic press, where pressure is supplied by insufflating air under a funnel. As an application, we measure air pressure inside a soap bubble. The soap bubble is inflated and connected to a funnel which is…

  2. High-Entropy Metallic Glasses

    NASA Astrophysics Data System (ADS)

    Wang, W. H.

    2014-10-01

    The high-entropy alloys are defined as solid-solution alloys containing five or more than five principal elements in equal or near-equal atomic percent. The concept of high mixing entropy introduces a new way for developing advanced metallic materials with unique physical and mechanical properties that cannot be achieved by the conventional microalloying approach based on only a single base element. The metallic glass (MG) is the metallic alloy rapidly quenched from the liquid state, and at room temperature it still shows an amorphous liquid-like structure. Bulk MGs represent a particular class of amorphous alloys usually with three or more than three components but based on a single principal element such as Zr, Cu, Ce, and Fe. These materials are very attractive for applications because of their excellent mechanical properties such as ultrahigh (near theoretical) strength, wear resistance, and hardness, and physical properties such as soft magnetic properties. In this article, we review the formation and properties of a series of high-mixing-entropy bulk MGs based on multiple major elements. It is found that the strategy and route for development of the high-entropy alloys can be applied to the development of the MGs with excellent glass-forming ability. The high-mixing-entropy bulk MGs are then loosely defined as metallic glassy alloys containing five or more than five elements in equal or near-equal atomic percent, which have relatively high mixing entropy compared with the conventional MGs based on a single principal element. The formation mechanism, especially the role of the mixing entropy in the formation of the high-entropy MGs, is discussed. The unique physical, mechanical, chemical, and biomedical properties of the high-entropy MGs in comparison with the conventional metallic alloys are introduced. We show that the high-mixing-entropy MGs, along the formation idea and strategy of the high-entropy alloys and based on multiple major elements, might provide

  3. Pressure-Induced Confined Metal from the Mott Insulator Sr_{3}Ir_{2}O_{7}.

    PubMed

    Ding, Yang; Yang, Liuxiang; Chen, Cheng-Chien; Kim, Heung-Sik; Han, Myung Joon; Luo, Wei; Feng, Zhenxing; Upton, Mary; Casa, Diego; Kim, Jungho; Gog, Thomas; Zeng, Zhidan; Cao, Gang; Mao, Ho-Kwang; van Veenendaal, Michel

    2016-05-27

    The spin-orbit Mott insulator Sr_{3}Ir_{2}O_{7} provides a fascinating playground to explore insulator-metal transition driven by intertwined charge, spin, and lattice degrees of freedom. Here, we report high-pressure electric resistance and resonant inelastic x-ray scattering measurements on single-crystal Sr_{3}Ir_{2}O_{7} up to 63-65 GPa at 300 K. The material becomes a confined metal at 59.5 GPa, showing metallicity in the ab plane but an insulating behavior along the c axis. Such an unusual phenomenon resembles the strange metal phase in cuprate superconductors. Since there is no sign of the collapse of spin-orbit or Coulomb interactions in x-ray measurements, this novel insulator-metal transition is potentially driven by a first-order structural change at nearby pressures. Our discovery points to a new approach for synthesizing functional materials. PMID:27284666

  4. Pressure-Induced Confined Metal from the Mott Insulator Sr3 Ir2 O7

    NASA Astrophysics Data System (ADS)

    Ding, Yang; Yang, Liuxiang; Chen, Cheng-Chien; Kim, Heung-Sik; Han, Myung Joon; Luo, Wei; Feng, Zhenxing; Upton, Mary; Casa, Diego; Kim, Jungho; Gog, Thomas; Zeng, Zhidan; Cao, Gang; Mao, Ho-kwang; van Veenendaal, Michel

    2016-05-01

    The spin-orbit Mott insulator Sr3Ir2O7 provides a fascinating playground to explore insulator-metal transition driven by intertwined charge, spin, and lattice degrees of freedom. Here, we report high-pressure electric resistance and resonant inelastic x-ray scattering measurements on single-crystal Sr3Ir2O7 up to 63-65 GPa at 300 K. The material becomes a confined metal at 59.5 GPa, showing metallicity in the a b plane but an insulating behavior along the c axis. Such an unusual phenomenon resembles the strange metal phase in cuprate superconductors. Since there is no sign of the collapse of spin-orbit or Coulomb interactions in x-ray measurements, this novel insulator-metal transition is potentially driven by a first-order structural change at nearby pressures. Our discovery points to a new approach for synthesizing functional materials.

  5. Practical and highly sensitive elemental analysis for aqueous samples containing metal impurities employing electrodeposition on indium-tin oxide film samples and laser-induced shock wave plasma in low-pressure helium gas.

    PubMed

    Kurniawan, Koo Hendrik; Pardede, Marincan; Hedwig, Rinda; Abdulmadjid, Syahrun Nur; Lahna, Kurnia; Idris, Nasrullah; Jobiliong, Eric; Suyanto, Hery; Suliyanti, Maria Margaretha; Tjia, May On; Lie, Tjung Jie; Lie, Zener Sukra; Kurniawan, Davy Putra; Kagawa, Kiichiro

    2015-09-01

    We have conducted an experimental study exploring the possible application of laser-induced breakdown spectroscopy (LIBS) for practical and highly sensitive detection of metal impurities in water. The spectrochemical measurements were carried out by means of a 355 nm Nd-YAG laser within N2 and He gas at atmospheric pressures as high as 2 kPa. The aqueous samples were prepared as thin films deposited on indium-tin oxide (ITO) glass by an electrolysis process. The resulting emission spectra suggest that concentrations at parts per billion levels may be achieved for a variety of metal impurities, and it is hence potentially feasible for rapid inspection of water quality in the semiconductor and pharmaceutical industries, as well as for cooling water inspection for possible leakage of radioactivity in nuclear power plants. In view of its relative simplicity, this LIBS equipment offers a practical and less costly alternative to the standard use of inductively coupled plasma-mass spectrometry (ICP-MS) for water samples, and its further potential for in situ and mobile applications. PMID:26368882

  6. Liquid-metal pin-fin pressure drop by correlation in cross flow

    SciTech Connect

    Wang, Zhibi; Kuzay, T.M.; Assoufid, L.

    1994-08-01

    The pin-fin configuration is widely used as a heat transfer enhancement method in high-heat-flux applications. Recently, the pin-fin design with liquid-metal coolant was also applied to synchrotron-radiation beamline devices. This paper investigates the pressure drop in a pin-post design beamline mirror with liquid gallium as the coolant. Because the pin-post configuration is a relatively new concept, information in literature about pin-post mirrors or crystals is rare, and information about the pressure drop in pin-post mirrors with liquid metal as the coolant is even more sparse. Due to this the authors considered the cross flow in cylinder-array geometry, which is very similar to that of the pin-post, to examine the pressure drop correlation with liquid metals over pin fins. The cross flow of fluid with various fluid characteristics or properties through a tube bank was studied so that the results can be scaled to the pin-fin geometry with liquid metal as the coolant. Study lead to two major variables to influence the pressure drop: fluid properties, viscosity and density, and the relative length of the posts. Correlation of the pressure drop between long and short posts and the prediction of the pressure drop of liquid metal in the pin-post mirror and comparison with an existing experiment are addressed.

  7. Metallization and charge-transfer gap closure of transition-metal iodides under pressure

    SciTech Connect

    Chen, A. Li-Chung

    1993-05-01

    It is shown with resistivity and near-IR absorption measurements that NiI{sub 2}, CoI{sub 2}, and FeI{sub 2} metallize under pressure by closure of the charge-transfer energy gap at pressures of 17, 10, and 23 GPa, respectively, which is close to the antiferromagnetic-diamagnetic transition in NiI{sub 2} and CoI{sub 2}. Thus, the magnetic transitions probably are caused by the metallization; in NiI{sub 2} and CoI{sub 2}, the insulator-metal transitions are first order. Moessbauer and XRD data were also collected. Figs, 46 refs.

  8. Selected studies of magnetism at high pressure

    SciTech Connect

    Hearne, G.R.; Pasternak, M.P.; Taylor, R.D.

    1995-09-01

    Most previous studies of magnetism in various compounds under extreme conditions have been conducted over a wide pressure range at room temperature or over a wide range of cryogenic temperatures at pressures below 20 GPa (200 kbar). We present some of the most recent studies of magnetism over an extended range of temperatures and pressures far beyond 20 GPa, i.e., in regions of pressure-temperature (P-T) where magnetism has been largely unexplored. Recent techniques have permitted investigations of magnetism in selected 3d transition metal compounds in regions of P-T where physical properties may be drastically modified; related effects have often been seen in selected doping studies at ambient pressures.

  9. APPARATUS FOR HIGH PURITY METAL RECOVERY

    DOEpatents

    Magel, T.T.

    1959-02-10

    An apparatus is described for preparing high purity metal such as uranium, plutonium and the like from an impure mass of the same metal. The apparatus is arranged so that the impure metal is heated and swept by a stream of hydrogen gas bearing a halogen such as iodine. The volatiie metal halide formed is carried on to a hot filament where the metal halide is decomposed and the molten high purity metal is collected in a rceeiver below

  10. Heat transfer by condensation of low pressure metal vapors.

    NASA Technical Reports Server (NTRS)

    Huang, Y. S.; Lyman, F. A.; Lick, W. J.

    1972-01-01

    The film condensation of low pressure metal vapors on isothermal vertical flat plates or tubes is considered. The liquid film is treated as a thin layer in which the acceleration and pressure forces are negligible and across which the temperature distribution is linear. The average behavior of the vapor is found from the linearized one-dimensional vapor flow equations. In order to calculate the rate of condensation, a consistent distribution function for the vapor particles at the liquid-vapor interface is necessary and is determined. The result of the analysis is a set of algebraic equations from which one can predict the condensation rate of low pressure metal vapors. A large but continuous temperature decrease in the vapor is predicted and calculated.

  11. Design Strategies for Optically-Accessible, High-Temperature, High-Pressure Reactor

    SciTech Connect

    S. F. Rice; R. R. Steeper; C. A. LaJeunesse; R. G. Hanush; J. D. Aiken

    2000-02-01

    The authors have developed two optical cell designs for high-pressure and high-temperature fluid research: one for flow systems, and the other for larger batch systems. The flow system design uses spring washers to balance the unequal thermal expansions of the reactor and the window materials. A typical design calculation is presented showing the relationship between system pressure, operating temperature, and torque applied to the window-retaining nut. The second design employs a different strategy more appropriate for larger windows. This design uses two seals: one for the window that benefits from system pressure, and a second one that relies on knife-edge, metal-to-metal contact.

  12. Design strategies for optically-accessible, high-temperature, high-pressure reactor

    SciTech Connect

    S. F. Rice; R. R. Steeper; C. A. LaJeunesse; R. G. Hanush; J. D. Aiken

    2000-02-01

    The authors have developed two optical cell designs for high-pressure and high-temperature fluid research: one for flow systems, and the other for larger batch systems. The flow system design uses spring washers to balance the unequal thermal expansions of the reactor and the window materials. A typical design calculation is presented showing the relationship between system pressure, operating temperature, and torque applied to the window-retaining nut. The second design employs a different strategy more appropriate for larger windows. This design uses two seals: one for the window that benefits from system pressure, and a second one that relies on knife-edge, metal-to-metal contact.

  13. NETL- High-Pressure Combustion Research Facility

    ScienceCinema

    None

    2016-07-12

    NETL's High-Pressure Combustion Facility is a unique resource within the National Laboratories system. It provides the test capabilities needed to evaluate new combustion concepts for high-pressure, high-temperature hydrogen and natural gas turbines. These concepts will be critical for the next generation of ultra clean, ultra efficient power systems.

  14. NETL- High-Pressure Combustion Research Facility

    SciTech Connect

    2013-07-08

    NETL's High-Pressure Combustion Facility is a unique resource within the National Laboratories system. It provides the test capabilities needed to evaluate new combustion concepts for high-pressure, high-temperature hydrogen and natural gas turbines. These concepts will be critical for the next generation of ultra clean, ultra efficient power systems.

  15. Pressure effects on hydrogen atoms near the metal plane in the HCP phase of rare-earth metal trihydrides

    NASA Astrophysics Data System (ADS)

    Tunghathaithip, N.; Pakornchote, T.; Phaisangittisakul, N.; Bovornratanaraks, T.; Pinsook, U.

    2016-04-01

    Rare-earth metal trihydrides, REH3 (RE=Sc, Y, La), in the hcp phase were investigated under high pressure by the ab initio method. We concentrated on the behavior of hydrogen atoms which is affected by pressure. Two-thirds of the hydrogen atoms near the metal plane (Hm) were found to displace away from the metal plane as pressure increases. The trajectory of these squeezed hydrogen atoms is from a site near the metal plane, and moves past the plane of the tetragonal sites, and heads toward the nearest octahedral site. However, the rate of displacement depends on the local environment. LaH3 exhibits the least impediment on the Hm displacement while YH3 and ScH3 exhibit stronger impediment. Furthermore, our calculated Raman and IR active modes are in general agreement with the experimental data. The displacement of Hm can be used to explain the behavior of the Ov peak in Raman spectra, where it exists at low pressure and disappears at higher pressure in YH3 and ScH3.

  16. A study of the convective flow as a function of external parameters in a high-pressure metal halide discharge lamp (HgDyI3)

    NASA Astrophysics Data System (ADS)

    Hajji, S.; HadjSalah, S.; Benhalima, A.; Charrada, K.; Zissis, G.

    2016-06-01

    This paper deals with the modelling of the convection processes in metal-halide lamp discharges (HgDyI3). For this, we realized a 3D model, a steady, direct current powered and time-depending model for the solution of conservation equations relative to mass, momentum, and energy. After validation, this model was applied to the study of the effect of some parameters that have appeared on major transport phenomena of mass and energy in studying the lamp. Indeed, the electric current, the atomic ratio (Hg/Dy), and the effect of the convective transport have been studied.

  17. High pressure melting curves of silver, gold and copper

    SciTech Connect

    Hieu, Ho Khac

    2013-11-15

    In this work, based on the Lindemann's formula of melting and the pressure-dependent Grüneisen parameter, we have investigated the pressure effect on melting temperature of silver, gold and copper metals. The analytical expression of melting temperature as a function of volume compression has been derived. Our results are compared with available experimental data as well as with previous theoretical studies and the good and reasonable agreements are found. We also proposed the potential of this approach on predicting melting of copper at very high pressure.

  18. High pressure processing for food safety.

    PubMed

    Fonberg-Broczek, Monika; Windyga, B; Szczawiński, J; Szczawińska, M; Pietrzak, D; Prestamo, G

    2005-01-01

    Food preservation using high pressure is a promising technique in food industry as it offers numerous opportunities for developing new foods with extended shelf-life, high nutritional value and excellent organoleptic characteristics. High pressure is an alternative to thermal processing. The resistance of microorganisms to pressure varies considerably depending on the pressure range applied, temperature and treatment duration, and type of microorganism. Generally, Gram-positive bacteria are more resistant to pressure than Gram-negative bacteria, moulds and yeasts; the most resistant are bacterial spores. The nature of the food is also important, as it may contain substances which protect the microorganism from high pressure. This article presents results of our studies involving the effect of high pressure on survival of some pathogenic bacteria -- Listeria monocytogenes, Aeromonas hydrophila and Enterococcus hirae -- in artificially contaminated cooked ham, ripening hard cheese and fruit juices. The results indicate that in samples of investigated foods the number of these microorganisms decreased proportionally to the pressure used and the duration of treatment, and the effect of these two factors was statistically significant (level of probability, P high pressure treatment than L. monocytogenes and A. hydrophila. Mathematical methods were applied, for accurate prediction of the effects of high pressure on microorganisms. The usefulness of high pressure treatment for inactivation of microorganisms and shelf-life extention of meat products was also evaluated. The results obtained show that high pressure treatment extends the shelf-life of cooked pork ham and raw smoked pork loin up to 8 weeks, ensuring good micro-biological and sensory quality of the products.

  19. Multicomponent fuel vaporization at high pressures.

    SciTech Connect

    Torres, D. J.; O'Rourke, P. J.

    2002-01-01

    We extend our multicomponent fuel model to high pressures using a Peng-Robinson equation of state, and implement the model into KIVA-3V. Phase equilibrium is achieved by equating liquid and vapor fugacities. The latent heat of vaporization and fuel enthalpies are also corrected for at high pressures. Numerical simulations of multicomponent evaporation are performed for single droplets for a diesel fuel surrogate at different pressures.

  20. Cagelike diamondoid nitrogen at high pressures.

    PubMed

    Wang, Xiaoli; Wang, Yanchao; Miao, Maosheng; Zhong, Xin; Lv, Jian; Cui, Tian; Li, Jianfu; Chen, Li; Pickard, Chris J; Ma, Yanming

    2012-10-26

    Under high pressure, triply bonded molecular nitrogen dissociates into singly bonded polymeric nitrogen, a potential high-energy-density material. The discovery of stable high-pressure forms of polymeric nitrogen is of great interest. We report the striking stabilization of cagelike diamondoid nitrogen at high pressures predicted by first-principles structural searches. The diamondoid structure of polymeric nitrogen has not been seen in any other elements, and it adopts a highly symmetric body-centered cubic structure with lattice sites occupied by diamondoids, each of which consists of ten nitrogen atoms, forming a N(10) tetracyclic cage. Diamondoid nitrogen possesses a wide energy gap and is energetically most stable among all known polymeric structures above 263 GPa, a pressure that is accessible to a high-pressure experiment. Our findings represent a significant step toward the understanding of the behavior of solid nitrogen at extreme conditions.

  1. Cagelike diamondoid nitrogen at high pressures.

    PubMed

    Wang, Xiaoli; Wang, Yanchao; Miao, Maosheng; Zhong, Xin; Lv, Jian; Cui, Tian; Li, Jianfu; Chen, Li; Pickard, Chris J; Ma, Yanming

    2012-10-26

    Under high pressure, triply bonded molecular nitrogen dissociates into singly bonded polymeric nitrogen, a potential high-energy-density material. The discovery of stable high-pressure forms of polymeric nitrogen is of great interest. We report the striking stabilization of cagelike diamondoid nitrogen at high pressures predicted by first-principles structural searches. The diamondoid structure of polymeric nitrogen has not been seen in any other elements, and it adopts a highly symmetric body-centered cubic structure with lattice sites occupied by diamondoids, each of which consists of ten nitrogen atoms, forming a N(10) tetracyclic cage. Diamondoid nitrogen possesses a wide energy gap and is energetically most stable among all known polymeric structures above 263 GPa, a pressure that is accessible to a high-pressure experiment. Our findings represent a significant step toward the understanding of the behavior of solid nitrogen at extreme conditions. PMID:23215200

  2. Fuel droplet burning rates at high pressures.

    NASA Technical Reports Server (NTRS)

    Canada, G. S.; Faeth, G. M.

    1973-01-01

    Combustion of methanol, ethanol, propanol-1, n-pentane, n-heptane, and n-decane was observed in air under natural convection conditions, at pressures up to 100 atm. The droplets were simulated by porous spheres, with diameters in the range from 0.63 to 1.90 cm. The pressure levels of the tests were high enough so that near-critical combustion was observed for methanol and ethanol. Due to the high pressures, the phase-equilibrium models of the analysis included both the conventional low-pressure approach as well as high-pressure versions, allowing for real gas effects and the solubility of combustion-product gases in the liquid phase. The burning-rate predictions of the various theories were similar, and in fair agreement with the data. The high-pressure theory gave the best prediction for the liquid-surface temperatures of ethanol and propanol-1 at high pressure. The experiments indicated the approach of critical burning conditions for methanol and ethanol at pressures on the order of 80 to 100 atm, which was in good agreement with the predictions of both the low- and high-pressure analysis.

  3. High-pressure superconducting state in hydrogen

    NASA Astrophysics Data System (ADS)

    Duda, A. M.; Szczȩśniak, R.; Sowińska, M. A.; Kosiacka, A. H.

    2016-10-01

    The paper determines the thermodynamic parameters of the superconducting state in the metallic atomic hydrogen under the pressure at 1 TPa, 1.5 TPa, and 2.5 TPa. The calculations were conducted in the framework of the Eliashberg formalism. It has been shown that the critical temperature is very high (in the range from 301.2 K to 437.3 K), as well as high are the values of the electron effective mass (from 3.43me to 6.88me), where me denotes the electron band mass. The ratio of the low-temperature energy gap to the critical temperature explicitly violates the predictions of the BCS theory: 2 Δ (0) /kB TC ∈ < 4.84 , 5.85 > . Additionally, the free energy difference between the superconducting and normal state, the thermodynamic critical field, and the specific heat of the superconducting state have been determined. Due to the significant strong-coupling and retardation effects those quantities cannot be correctly described in the framework of the BCS theory.

  4. Laser techniques in high-pressure geophysics

    NASA Technical Reports Server (NTRS)

    Hemley, R. J.; Bell, P. M.; Mao, H. K.

    1987-01-01

    Laser techniques in conjunction with the diamond-anvil cell can be used to study high-pressure properties of materials important to a wide range of problems in earth and planetary science. Spontaneous Raman scattering of crystalline and amorphous solids at high pressure demonstrates that dramatic changes in structure and bonding occur on compression. High-pressure Brillouin scattering is sensitive to the pressure variations of single-crystal elastic moduli and acoustic velocities. Laser heating techniques with the diamond-anvil cell can be used to study phase transitions, including melting, under deep-earth conditions. Finally, laser-induced ruby fluorescence has been essential for the development of techniques for generating the maximum pressures now possible with the diamond-anvil cell, and currently provides a calibrated in situ measure of pressure well above 100 gigapascals.

  5. Design optimization of high pressure and high temperature piezoresistive pressure sensor for high sensitivity

    NASA Astrophysics Data System (ADS)

    Niu, Zhe; Zhao, Yulong; Tian, Bian

    2014-01-01

    This paper describes a design method for optimizing sensitivity of piezoresistive pressure sensor in high-pressure and high-temperature environment. In order to prove the method, a piezoresistive pressure sensor (HPTSS) is designed. With the purpose of increasing sensitivity and to improve the measurement range, the piezoresistive sensor adopts rectangular membrane and thick film structure. The configuration of piezoresistors is arranged according to the characteristic of the rectangular membrane. The structure and configuration of the sensor chip are analyzed theoretically and simulated by the finite element method. This design enables the sensor chip to operate in high pressure condition (such as 150 MPa) with a high sensitivity and accuracy. The silicon on insulator wafer is selected to guarantee the thermo stability of the sensor chip. In order to optimize the fabrication and improve the yield of production, an electric conduction step is devised. Series of experiments demonstrates a favorable linearity of 0.13% and a high accuracy of 0.48%. And the sensitivity of HTPSS is about six times as high as a conventional square-membrane sensor chip in the experiment. Compared with the square-membrane pressure sensor and current production, the strength of HPTTS lies in sensitivity and measurement. The performance of the HPTSS indicates that it could be an ideal candidate for high-pressure and high-temperature sensing in real application.

  6. Design optimization of high pressure and high temperature piezoresistive pressure sensor for high sensitivity.

    PubMed

    Niu, Zhe; Zhao, Yulong; Tian, Bian

    2014-01-01

    This paper describes a design method for optimizing sensitivity of piezoresistive pressure sensor in high-pressure and high-temperature environment. In order to prove the method, a piezoresistive pressure sensor (HPTSS) is designed. With the purpose of increasing sensitivity and to improve the measurement range, the piezoresistive sensor adopts rectangular membrane and thick film structure. The configuration of piezoresistors is arranged according to the characteristic of the rectangular membrane. The structure and configuration of the sensor chip are analyzed theoretically and simulated by the finite element method. This design enables the sensor chip to operate in high pressure condition (such as 150 MPa) with a high sensitivity and accuracy. The silicon on insulator wafer is selected to guarantee the thermo stability of the sensor chip. In order to optimize the fabrication and improve the yield of production, an electric conduction step is devised. Series of experiments demonstrates a favorable linearity of 0.13% and a high accuracy of 0.48%. And the sensitivity of HTPSS is about six times as high as a conventional square-membrane sensor chip in the experiment. Compared with the square-membrane pressure sensor and current production, the strength of HPTTS lies in sensitivity and measurement. The performance of the HPTSS indicates that it could be an ideal candidate for high-pressure and high-temperature sensing in real application.

  7. Infrared Spectra of High Pressure Carbon Monoxide

    SciTech Connect

    Evans, W J; Lipp, M J; Lorenzana, H E

    2001-09-21

    We report infrared (IR) spectroscopic measurements of carbon monoxide (CO) at high pressures. Although CO is one of the simplest heteronuclear diatomic molecules, it displays surprisingly complex behavior at high pressures and has been the subject of several studies [1-5]. IR spectroscopic studies of high pressures phases of CO provide data complementing results from previous studies and elucidating the nature of these phases. Though a well-known and widely utilized diagnostic of molecular systems, IR spectroscopy presents several experimental challenges to high pressure diamond anvil cell research. We present measurements of the IR absorption bands of CO at high pressures and experimentally illustrate the crucial importance of accurate normalization of IR spectra specially within regions of strong absorptions in diamond.

  8. High Pressure Hollow Cathode Discharges

    NASA Astrophysics Data System (ADS)

    Schoenbach, Karl H.; Tessnow, Thomas; Elhabachi, Ahmed

    1996-10-01

    The sustaining voltage of hollow cathode discharges is dependent on the product of pressure and cathode hole diameter. By reducing the dimension of the cathode hole to 0.2 mm we were able to operate micro-hollow cathode discharges at pressures up to 750 Torr in argon in a direct current mode. The current-voltage characteristics of the 0.2 mm cathode hole discharges was found to have a positive slope at currents below 0.25 mA. Up to this current level hollow cathode discharges can be operated in parallel without ballast. The negative slope observed above the threshold current seems to be due to the onset of thermionic electron emission caused by Joule heating of the cathode. This assumption is supported by the experimental observation that multi-hole operation without ballast even at currents far above the dc-threshold current was possible when the discharge was operated in a pulsed mode. The possibility of generating large arrays of ballast-free, pulsed micro-hollow cathode discharges suggests their use as flat panel light sources or electron sources.

  9. High pressure and high flowrate induction pumps with permanent magnets

    NASA Astrophysics Data System (ADS)

    Bucenieks, I. E.

    2003-12-01

    Theoretical evaluations and modelling experiments demonstrated a rather high efficiency of electromagnetic induction pumps (EMIP) basing on permanent magnets, in which an alternating travelling magnetic field, inducing electromagnetic dragging forces in liquid metal, is generated by a system of rotating permanent magnets with alternating polarity. Basing on the gained experience at producing real pumps for pure Pb and eutectic alloy Pb-Bi, the evaluation of parameters of much more powerful pumps for mercury developing a head pressure over 5 bars and so providing flow rates over 10 L/s, had been carried out to show their reliability. These powerful pumps are supposed to be used in the proposed European Spallation neutron Source (ESS), in which mercury will be operated as a spallation target material and a cooling fluid at the same time. Tables 2, Figs 5, Refs 8.

  10. High pressure gate valve failure

    SciTech Connect

    Place, M. Jr.; Kochera, J.W.

    1995-10-01

    Shell Oil Company was attempting to develop CRA (Corrosion Resistant Alloy) valves for use in those completions utilizing CRA tubing. The testing and development of new materials for CRA valves of both the solid and clad version were pursued. As part of this CRA valve development program, Shell Oil Company tried to reconcile the apparent discrepancy between unacceptable laboratory test results on 410 SS in sour environments with both the apparent success (when properly heat treated and at an acceptable hardness level) of this alloy in commercial sour use and the fact that it is fully accepted in NACE MR-01-75. A410 stainless steel valve was tested near the material yield strength at low H{sub 2}S partial pressures at the STF (Static Test Facility) in Mississippi. The valve failed by crack growth and body wall leakage while under test.

  11. Pressure-induced insulator-to-metal transition in α-SnWO4

    NASA Astrophysics Data System (ADS)

    Kuzmin, Alexei; Anspoks, Andris; Kalinko, Aleksandr; Timoshenko, Janis; Kalendarev, Robert; Nataf, Lucie; Baudelet, François; Irifune, Tetsuo; Roy, Pascale

    2016-05-01

    In-situ high-pressure W L1 and L3 edges x-ray absorption and mid-infrared spectroscopies complemented by first-principles calculations suggest the existence of pressure- induced insulator-to-metal transition in α-SnWO4 in the range of 5-7 GPa. Its origin is explained by a symmetrization of metal-oxygen octahedra due to a strong interaction of Sn 5s, W 5d and O 2p states along the b-axis direction, leading to a collapse of the band gap.

  12. New findings in static high-pressure science

    SciTech Connect

    Hemley, R.J.; Mao, H.-k.

    2010-11-16

    Recent static high P-T experiments using diamond anvil cell techniques reveal an array of phenomena and provide new links to dynamic compression experiments. Selected recent developments are reviewed, including new findings in hot dense hydrogen, the creation of new metals and superconductors, new transitions in molecular and other low-Z systems, the behavior of iron and transition metals, chemical changes of importance in geoscience and planetary science, and the creation of new classes of high-pressure devices based on CVD diamond. These advances have set the stage for the next set of developments in this rapidly growing area.

  13. Abnormally high formation pressures, Potwar Plateau, Pakistan

    USGS Publications Warehouse

    Law, B.E.; Shah, S.H.A.; Malik, M.A.

    1998-01-01

    Abnormally high formation pressures in the Potwar Plateau of north-central Pakistan are major obstacles to oil and gas exploration. Severe drilling problems associated with high pressures have, in some cases, prevented adequate evaluation of reservoirs and significantly increased drilling costs. Previous investigations of abnormal pressure in the Potwar Plateau have only identified abnormal pressures in Neogene rocks. We have identified two distinct pressure regimes in this Himalayan foreland fold and thrust belt basin: one in Neogene rocks and another in pre-Neogene rocks. Pore pressures in Neogene rocks are as high as lithostatic and are interpreted to be due to tectonic compression and compaction disequilibrium associated with high rates of sedimentation. Pore pressure gradients in pre-Neogene rocks are generally less than those in Neogene rocks, commonly ranging from 0.5 to 0.7 psi/ft (11.3 to 15.8 kPa/m) and are most likely due to a combination of tectonic compression and hydrocarbon generation. The top of abnormally high pressure is highly variable and doesn't appear to be related to any specific lithologic seal. Consequently, attempts to predict the depth to the top of overpressure prior to drilling are precluded.

  14. Simulations of rapid pressure-induced solidification in molten metals

    SciTech Connect

    Patel, M V; Streitz, F H

    2003-10-14

    The process of interest in this study is the solidification of a molten metal subjected to rapid pressurization. Most details about solidification occurring when the liquid-solid coexistence line is suddenly transversed along the pressure axis remain unknown. We present preliminary results from an ongoing study of this process for both simple models of metals (Cu) and more sophisticated material models (MGPT potentials for Ta). Atomistic (molecular dynamics) simulations are used to extract details such as the time and length scales that govern these processes. Starting with relatively simple potential models, we demonstrate how molecular dynamics can be used to study solidification. Local and global order parameters that aid in characterizing the phase have been identified, and the dependence of the solidification time on the phase space distance between the final (P,T) state and the coexistence line has been characterized.

  15. The synthesis of substances under high static pressures

    NASA Astrophysics Data System (ADS)

    Novikov, N. V.

    1986-05-01

    Phase transitions of many substances occur under extremely high pressures and temperatures. The development of such conditions is possible within a limited reaction vessel volume of a special high pressure apparatus. In order to obtain pressures of 5 to 8 GPa in a reaction volume a high-pressure apparatus is loaded by anvils of hydraulic presses whose working force is 1 to 10 MN. The heating of substances up to 1500-2000 K is carried out by direct current transmission or a reaction vessel is provided with special resistors. The high pressure apparatus (HPA) consists of a number of elements whose yield and heat conductivities differ. This defines the pressure and temperature gradients within the reaction vessel volume and throughout the HPA as a whole. The dimensions and the design pecularities of HPA substantially affect its temperature and pressure fields. The basic principles of the theory of large plastic deformations and those of the mechanics of deformation in solids are considered. The temperature and pressure fields in the HPA reaction volume of model shape and dimensions are defined as a result of solving associated non-linear non-stationary problems of electro- and heat-conductivity in HPA and those of thermal plasticity by the method of finite elements. The probable arrangement and volume of various phases (initial low pressure phase, synthesized high pressure phase and those of the solid and melted metal solvent) were investigated. The characteristics allowing the quantitative evaluation of the efficiency of the selected pressure level within the reaction vessel prior to the heating cycle were proved to be valid.

  16. Portable high precision pressure transducer system

    DOEpatents

    Piper, T.C.; Morgan, J.P.; Marchant, N.J.; Bolton, S.M.

    1994-04-26

    A high precision pressure transducer system is described for checking the reliability of a second pressure transducer system used to monitor the level of a fluid confined in a holding tank. Since the response of the pressure transducer is temperature sensitive, it is continually housed in an battery powered oven which is configured to provide a temperature stable environment at specified temperature for an extended period of time. Further, a high precision temperature stabilized oscillator and counter are coupled to a single board computer to accurately determine the pressure transducer oscillation frequency and convert it to an applied pressure. All of the components are powered by the batteries which during periods of availability of line power are charged by an on board battery charger. The pressure readings outputs are transmitted to a line printer and a vacuum fluorescent display. 2 figures.

  17. Portable high precision pressure transducer system

    DOEpatents

    Piper, Thomas C.; Morgan, John P.; Marchant, Norman J.; Bolton, Steven M.

    1994-01-01

    A high precision pressure transducer system for checking the reliability of a second pressure transducer system used to monitor the level of a fluid confined in a holding tank. Since the response of the pressure transducer is temperature sensitive, it is continually housed in an battery powered oven which is configured to provide a temperature stable environment at specified temperature for an extended period of time. Further, a high precision temperature stabilized oscillator and counter are coupled to a single board computer to accurately determine the pressure transducer oscillation frequency and convert it to an applied pressure. All of the components are powered by the batteries which during periods of availability of line power are charged by an on board battery charger. The pressure readings outputs are transmitted to a line printer and a vacuum florescent display.

  18. Combustion of liquid sprays at high pressures

    NASA Technical Reports Server (NTRS)

    Shearer, A. J.; Faeth, G. M.

    1977-01-01

    The combustion of pressure atomized fuel sprays in high pressure stagnant air was studied. Measurements were made of flame and spray boundaries at pressures in the range 0.1-9 MPa for methanol and n-pentane. At the higher test pressure levels, critical phenomena are important. The experiments are compared with theoretical predictions based on a locally homogeneous two-phase flow model. The theory correctly predicted the trends of the data, but underestimates flame and spray boundaries by 30-50 percent, indicating that slip is still important for the present experiments (Sauter mean diameters of 30 microns at atmospheric pressure under cold flow conditions). Since the sprays are shorter at high pressures, slip effects are still important even though the density ratio of the phases approach one another as the droplets heat up. The model indicates the presence of a region where condensed water is present within the spray and provides a convenient means of treating supercritical phenomena.

  19. Portable high precision pressure transducer system

    NASA Astrophysics Data System (ADS)

    Piper, T. C.; Morgan, J. P.; Marchant, N. J.; Bolton, S. M.

    A high precision pressure transducer system for checking the reliability of a second pressure transducer system used to monitor the level of a fluid confined in a holding tank is presented. Since the response of the pressure transducer is temperature sensitive, it is continually housed in a battery powered oven which is configured to provide a temperature stable environment at specified temperature for an extended period of time. Further, a high precision temperature stabilized oscillator and counter are coupled to a single board computer to accurately determine the pressure transducer oscillation frequency and convert it to an applied pressure. All of the components are powered by the batteries which during periods of availability of line power are charged by an on-board battery charger. The pressure readings outputs are transmitted to a line printer and a vacuum fluorescent display.

  20. High-Power Liquid-Metal Heat-Transfer Loop

    NASA Technical Reports Server (NTRS)

    Bhandari, Pradeep; Fujita, Toshio

    1991-01-01

    Proposed closed-loop system for transfer of thermal power operates at relatively high differential pressure between vapor and liquid phases of liquid-metal working fluid. Resembles "capillary-pumped" liquid-metal heat-transfer loop except electric field across permselective barrier of beta alumina keeps liquid and vapor separate at heat-input end. Increases output thermal power, contains no moving parts, highly reliable and well suited to long-term unattended operation.

  1. Melting curve of metals Cu, Ag and Au under pressure

    NASA Astrophysics Data System (ADS)

    Tam, Pham Dinh; Hoc, Nguyen Quang; Tinh, Bui Duc; Tan, Pham Duy

    2016-01-01

    In this paper, the dependence of the melting temperature of metals Cu, Ag and Au under pressure in the interval from 0 kbar to 40 kbar is studied by the statistical moment method (SMM). This dependence has the form of near linearity and the calculated slopes of melting curve are 3.9 for Cu, 5.7 for Ag and 6 for Au. These results are in good agreement with the experimental data.

  2. High-pressure mechanical instability in rocks

    USGS Publications Warehouse

    Byerlee, J.D.; Brace, W.F.

    1969-01-01

    At a confining pressure of a few kilobars, deformation of many sedimentary rocks, altered mafic rocks, porous volcanic rocks, and sand is ductile, in that instabilities leading to audible elastic shocks are absent. At pressures of 7 to 10 kilobars, however, unstable faulting and stick-slip in certain of these rocks was observed. This high pressure-low temperature instability might be responsible for earthquakes in deeply buried sedimentary or volcanic sequences.

  3. High-pressure mechanical instability in rocks.

    PubMed

    Byerlee, J D; Brace, W F

    1969-05-01

    At a confining pressure of a few kilobars, deformation of many sedimentary rocks, altered mafic rocks, porous volcanic rocks, and sand is ductile, in that instabilities leading to audible elastic shocks are absent. At pressures of 7 to 10 kilobars, however, unstable faulting and stick-slip in certain of these rocks was observed. This high pressure-low temperature instability might be responsible for earthquakes in deeply buried sedimentary or volcanic sequences.

  4. Compressibility of highly coordinated metal oxynitrides: LDA calculations

    NASA Astrophysics Data System (ADS)

    Lowther, J. E.

    2005-11-01

    The highest oxygen coordination number observed in any metal dioxide is when the material takes the cotunnite structure. This has been observed in several high pressure synthesized metal oxide based materials. Properties of similar hypothetical metal based oxynitrides are examined using ab initio electronic structure techniques. TaON in the cottunite, structure appears especially significant. Strong differences are found for the metal dioxide and the similar oxynitride depending on the metal’s character. The differences are attributed to the contribution of nitrogen to the density of states especially around the Fermi energy and a relative reduction in the volume of the unit cell.

  5. High-pressure layered structure of carbon disulfide

    NASA Astrophysics Data System (ADS)

    Naghavi, S. Shahab; Crespo, Yanier; MartoÅák, Roman; Tosatti, Erio

    2015-06-01

    Solid CS2 is superficially similar to CO2, with the same C m c a molecular crystal structure at low pressures, which has suggested similar phases also at high pressures. We carried out an extensive first-principles evolutionary search in order to identify the zero-temperature lowest-enthalpy structures of CS2 for increasing pressure up to 200 GPa. Surprisingly, the molecular C m c a phase does not evolve into β -cristobalite as in CO2 but transforms instead into phases HP2 and HP1, both recently described in high-pressure SiS2. HP1 in particular, with a wide stability range, is a layered P 21/c structure characterized by pairs of edge-sharing tetrahedra and is theoretically more robust than all other CS2 phases discussed so far. Its predicted Raman spectrum and pair correlation function agree with experiment better than those of β -cristobalite, and further differences are predicted between their respective IR spectra. The band gap of HP1-CS2 is calculated to close under pressure, yielding an insulator-metal transition near 50 GPa, in agreement with experimental observations. However, the metallic density of states remains modest above this pressure, suggesting a different origin for the reported superconductivity.

  6. Nonmetallization and band inversion in beryllium dicarbide at high pressure

    NASA Astrophysics Data System (ADS)

    Du, Henan; Feng, Wanxiang; Li, Fei; Wang, Dashuai; Zhou, Dan; Liu, Yanhui

    2016-05-01

    Carbides have attracted much attention owing to their interesting physical and chemical properties. Here, we systematically investigated global energetically stable structures of BeC2 in the pressure range of 0–100 GPa using a first-principles structural search. A transition from the ambient-pressure α-phase to the high-pressure β-phase was theoretically predicted. Chemical bonding analysis revealed that the predicted phase transition is associated with the transformation from sp2 to sp3 C-C hybridization. The electrical conductivity of the high-pressure phase changed from a metal (α-phase) to a narrow bandgap semiconductor (β-phase), and the β-phase had an inverted band structure with positive pressure dependence. Interestingly, the β-phase was a topological insulator with the metallic surface states protected by the time-reversal symmetry of the crystal. The results indicate that pressure modulates the electronic band structure of BeC2, which is an important finding for fundamental physics and for a wide range of potential applications in electronic devices.

  7. Nonmetallization and band inversion in beryllium dicarbide at high pressure

    PubMed Central

    Du, Henan; Feng, Wanxiang; Li, Fei; Wang, Dashuai; Zhou, Dan; Liu, Yanhui

    2016-01-01

    Carbides have attracted much attention owing to their interesting physical and chemical properties. Here, we systematically investigated global energetically stable structures of BeC2 in the pressure range of 0–100 GPa using a first-principles structural search. A transition from the ambient-pressure α-phase to the high-pressure β-phase was theoretically predicted. Chemical bonding analysis revealed that the predicted phase transition is associated with the transformation from sp2 to sp3 C-C hybridization. The electrical conductivity of the high-pressure phase changed from a metal (α-phase) to a narrow bandgap semiconductor (β-phase), and the β-phase had an inverted band structure with positive pressure dependence. Interestingly, the β-phase was a topological insulator with the metallic surface states protected by the time-reversal symmetry of the crystal. The results indicate that pressure modulates the electronic band structure of BeC2, which is an important finding for fundamental physics and for a wide range of potential applications in electronic devices. PMID:27198492

  8. Nonmetallization and band inversion in beryllium dicarbide at high pressure.

    PubMed

    Du, Henan; Feng, Wanxiang; Li, Fei; Wang, Dashuai; Zhou, Dan; Liu, Yanhui

    2016-01-01

    Carbides have attracted much attention owing to their interesting physical and chemical properties. Here, we systematically investigated global energetically stable structures of BeC2 in the pressure range of 0-100 GPa using a first-principles structural search. A transition from the ambient-pressure α-phase to the high-pressure β-phase was theoretically predicted. Chemical bonding analysis revealed that the predicted phase transition is associated with the transformation from sp(2) to sp(3) C-C hybridization. The electrical conductivity of the high-pressure phase changed from a metal (α-phase) to a narrow bandgap semiconductor (β-phase), and the β-phase had an inverted band structure with positive pressure dependence. Interestingly, the β-phase was a topological insulator with the metallic surface states protected by the time-reversal symmetry of the crystal. The results indicate that pressure modulates the electronic band structure of BeC2, which is an important finding for fundamental physics and for a wide range of potential applications in electronic devices. PMID:27198492

  9. The most incompressible metal osmium at static pressures above 750 gigapascals.

    PubMed

    Dubrovinsky, L; Dubrovinskaia, N; Bykova, E; Bykov, M; Prakapenka, V; Prescher, C; Glazyrin, K; Liermann, H-P; Hanfland, M; Ekholm, M; Feng, Q; Pourovskii, L V; Katsnelson, M I; Wills, J M; Abrikosov, I A

    2015-09-10

    Metallic osmium (Os) is one of the most exceptional elemental materials, having, at ambient pressure, the highest known density and one of the highest cohesive energies and melting temperatures. It is also very incompressible, but its high-pressure behaviour is not well understood because it has been studied so far only at pressures below 75 gigapascals. Here we report powder X-ray diffraction measurements on Os at multi-megabar pressures using both conventional and double-stage diamond anvil cells, with accurate pressure determination ensured by first obtaining self-consistent equations of state of gold, platinum, and tungsten in static experiments up to 500 gigapascals. These measurements allow us to show that Os retains its hexagonal close-packed structure upon compression to over 770 gigapascals. But although its molar volume monotonically decreases with pressure, the unit cell parameter ratio of Os exhibits anomalies at approximately 150 gigapascals and 440 gigapascals. Dynamical mean-field theory calculations suggest that the former anomaly is a signature of the topological change of the Fermi surface for valence electrons. However, the anomaly at 440 gigapascals might be related to an electronic transition associated with pressure-induced interactions between core electrons. The ability to affect the core electrons under static high-pressure experimental conditions, even for incompressible metals such as Os, opens up opportunities to search for new states of matter under extreme compression. PMID:26302297

  10. The most incompressible metal osmium at static pressures above 750 gigapascals

    NASA Astrophysics Data System (ADS)

    Dubrovinsky, L.; Dubrovinskaia, N.; Bykova, E.; Bykov, M.; Prakapenka, V.; Prescher, C.; Glazyrin, K.; Liermann, H.-P.; Hanfland, M.; Ekholm, M.; Feng, Q.; Pourovskii, L. V.; Katsnelson, M. I.; Wills, J. M.; Abrikosov, I. A.

    2015-09-01

    Metallic osmium (Os) is one of the most exceptional elemental materials, having, at ambient pressure, the highest known density and one of the highest cohesive energies and melting temperatures. It is also very incompressible, but its high-pressure behaviour is not well understood because it has been studied so far only at pressures below 75 gigapascals. Here we report powder X-ray diffraction measurements on Os at multi-megabar pressures using both conventional and double-stage diamond anvil cells, with accurate pressure determination ensured by first obtaining self-consistent equations of state of gold, platinum, and tungsten in static experiments up to 500 gigapascals. These measurements allow us to show that Os retains its hexagonal close-packed structure upon compression to over 770 gigapascals. But although its molar volume monotonically decreases with pressure, the unit cell parameter ratio of Os exhibits anomalies at approximately 150 gigapascals and 440 gigapascals. Dynamical mean-field theory calculations suggest that the former anomaly is a signature of the topological change of the Fermi surface for valence electrons. However, the anomaly at 440 gigapascals might be related to an electronic transition associated with pressure-induced interactions between core electrons. The ability to affect the core electrons under static high-pressure experimental conditions, even for incompressible metals such as Os, opens up opportunities to search for new states of matter under extreme compression.

  11. Myths about High Blood Pressure

    MedlinePlus

    ... sodium – and count the same toward total sodium consumption. Table salt is a combination of the two ... can be highly addictive. If you drink, limit consumption to no more than two drinks per day ...

  12. Small, high-pressure liquid hydrogen turbopump

    NASA Technical Reports Server (NTRS)

    Csomor, A.; Sutton, R.

    1977-01-01

    A high pressure, liquid hydrogen turbopump was designed, fabricated, and tested to a maximum speed of 9739 rad/s and a maximum pump discharge pressure of 2861 N/sq. cm. The approaches used in the analysis and design of the turbopump are described, and fabrication methods are discussed. Data obtained from gas generator tests, turbine performance calibration, and turbopump testing are presented.

  13. High-pressure differential scanning microcalorimeter.

    PubMed

    Senin, A A; Dzhavadov, L N; Potekhin, S A

    2016-03-01

    A differential scanning microcalorimeter for studying thermotropic conformational transitions of biopolymers at high pressure has been designed. The calorimeter allows taking measurements of partial heat capacity of biopolymer solutions vs. temperature at pressures up to 3000 atm. The principles of operation of the device, methods of its calibration, as well as possible applications are discussed. PMID:27036806

  14. High-pressure phase transitions of strontianite

    NASA Astrophysics Data System (ADS)

    Speziale, S.; Biedermann, N.; Reichmann, H. J.; Koch-Mueller, M.; Heide, G.

    2015-12-01

    Strontianite (SrCO3) is isostructural to aragonite, a major high-pressure polymorph of calcite. Thus it is a material of interest to investigate the high-pressure phase behavior of aragonite-group minerals. SrCO3 is a common component of natural carbonates and knowing its physical properties at high pressures is necessary to properly model the thermodynamic properties of complex carbonates, which are major crustal minerals but are also present in the deep Earth [Brenker et al., 2007] and control carbon cycling in the Earth's mantle. The few available high-pressure studies of SrCO3 disagree regarding both pressure stability and structure of the post-aragonite phase [Lin & Liu, 1997; Ono et al., 2005; Wang et al. 2015]. To clarify such controversies we investigated the high-pressure behavior of synthetic SrCO3 by Raman spectroscopy. Using a diamond anvil cell we compressed single-crystals or powder of strontianite (synthesized at 4 GPa and 1273 K for 24h in a multi anvil apparatus), and measured Raman scattering up to 78 GPa. SrCO3 presents a complex high-pressure behavior. We observe mode softening above 20 GPa and a phase transition at 25 - 26.9 GPa, which we interpret due to the CO3 groups rotation, in agreement with Lin & Liu [1997]. The lattice modes in the high-pressure phase show dramatic changes which may indicate a change from 9-fold coordinated Sr to a 12-fold-coordination [Ono, 2007]. Our results confirm that the high-pressure phase of strontianite is compatible with Pmmn symmetry. References Brenker, F.E. et al. (2007) Earth and Planet. Sci. Lett., 260, 1; Lin, C.-C. & Liu, L.-G. (1997) J. Phys. Chem. Solids, 58, 977; Ono, S. et al. (2005) Phys. Chem. Minerals, 32, 8; Ono, S. (2007) Phys. Chem. Minerals, 34, 215; Wang, M. et al. (2015) Phys Chem Minerals 42, 517.

  15. High-pressure crystallography of periodic and aperiodic crystals.

    PubMed

    Hejny, Clivia; Minkov, Vasily S

    2015-03-01

    More than five decades have passed since the first single-crystal X-ray diffraction experiments at high pressure were performed. These studies were applied historically to geochemical processes occurring in the Earth and other planets, but high-pressure crystallography has spread across different fields of science including chemistry, physics, biology, materials science and pharmacy. With each passing year, high-pressure studies have become more precise and comprehensive because of the development of instrumentation and software, and the systems investigated have also become more complicated. Starting with crystals of simple minerals and inorganic compounds, the interests of researchers have shifted to complicated metal-organic frameworks, aperiodic crystals and quasicrystals, molecular crystals, and even proteins and viruses. Inspired by contributions to the microsymposium 'High-Pressure Crystallography of Periodic and Aperiodic Crystals' presented at the 23rd IUCr Congress and General Assembly, the authors have tried to summarize certain recent results of single-crystal studies of molecular and aperiodic structures under high pressure. While the selected contributions do not cover the whole spectrum of high-pressure research, they demonstrate the broad diversity of novel and fascinating results and may awaken the reader's interest in this topic. PMID:25866659

  16. High-pressure crystallography of periodic and aperiodic crystals.

    PubMed

    Hejny, Clivia; Minkov, Vasily S

    2015-03-01

    More than five decades have passed since the first single-crystal X-ray diffraction experiments at high pressure were performed. These studies were applied historically to geochemical processes occurring in the Earth and other planets, but high-pressure crystallography has spread across different fields of science including chemistry, physics, biology, materials science and pharmacy. With each passing year, high-pressure studies have become more precise and comprehensive because of the development of instrumentation and software, and the systems investigated have also become more complicated. Starting with crystals of simple minerals and inorganic compounds, the interests of researchers have shifted to complicated metal-organic frameworks, aperiodic crystals and quasicrystals, molecular crystals, and even proteins and viruses. Inspired by contributions to the microsymposium 'High-Pressure Crystallography of Periodic and Aperiodic Crystals' presented at the 23rd IUCr Congress and General Assembly, the authors have tried to summarize certain recent results of single-crystal studies of molecular and aperiodic structures under high pressure. While the selected contributions do not cover the whole spectrum of high-pressure research, they demonstrate the broad diversity of novel and fascinating results and may awaken the reader's interest in this topic.

  17. High pressure study of acetophenone azine

    NASA Astrophysics Data System (ADS)

    Tang, X. D.; Ding, Z. J.; Zhang, Z. M.

    2009-02-01

    High pressure Raman spectra of acetophenone azine (APA) have been measured up to 17.7 GPa with a diamond anvil cell. Two crystalline-to-crystalline phase transformations are found at pressures about 3.6 and 5.8 GPa. A disappearance of external modes and the C-H vibration at pressures higher than 8.7 GPa suggests that the sample undergoes a phase transition to amorphous or orientationally disordered (plastic) state, and the amorphization was completed at about 12.1 GPa. The disordered state is unstable and, then, a polymerization transformation reaction occurs with a further pressure increase. After the pressure has been released, the polymerization state can remain at the ambient condition, indicating that the virgin crystalline state is not recovered. The results show that the phenomenon underlying the pressure induced phase transition of APA may involve profound changes in the coordination environments of the symmetric aromatic azine.

  18. Raman spectroscopy of triolein under high pressures

    NASA Astrophysics Data System (ADS)

    Tefelski, D. B.; Jastrzębski, C.; Wierzbicki, M.; Siegoczyński, R. M.; Rostocki, A. J.; Wieja, K.; Kościesza, R.

    2010-03-01

    This article presents results of the high pressure Raman spectroscopy of triolein. Triolein, a triacylglyceride (TAG) of oleic acid, is an unsaturated fat, present in natural oils such as olive oil. As a basic food component and an energy storage molecule, it has considerable importance for food and fuel industries. To generate pressure in the experiment, we used a high-pressure cylindrical chamber with sapphire windows, presented in (R.M. Siegoczyński, R. Kościesza, D.B. Tefelski, and A. Kos, Molecular collapse - modification of the liquid structure induced by pressure in oleic acid, High Press. Res. 29 (2009), pp. 61-66). Pressure up to 750 MPa was applied. A Raman spectrometer in "macro"-configuration was employed. Raman spectroscopy provides information on changes of vibrational modes related to structural changes of triolein under pressure. Interesting changes in the triglyceride C‒H stretching region at 2650-3100 cm-1 were observed under high-pressures. Changes were also observed in the ester carbonyl (C˭ O) stretching region 1700-1780 cm-1 and the C‒C stretching region at 1050-1150 cm-1. The overall luminescence of the sample decreased under pressure, making it possible to set longer spectrum acquisition time and obtain more details of the spectrum. The registered changes suggest that the high-pressure solid phase of triolein is organized as β-polymorphic, as was reported in (C. Akita, T. Kawaguchi, and F. Kaneko, Structural study on polymorphism of cis-unsaturated triacylglycerol: Triolein, J. Phys. Chem. B 110 (2006), pp. 4346-4353; E. Da Silva and D. Rousseau, Molecular order and thermodynamics of the solid-liquid transition in triglycerides via Raman spectroscopy, Phys. Chem. Chem. Phys. 10 (2008), pp. 4606-4613) (with temperature-induced phase transitions). The research has shown that Raman spectroscopy in TAGs under pressure reveals useful information about its structural changes.

  19. Let's Talk about High Blood Pressure and Stroke

    MedlinePlus

    ... Tools & Resources Stroke More Let's Talk About High Blood Pressure and Stroke Updated:Dec 9,2015 What is ... Blood Pressure? How Can I Reduce High Blood Pressure? High Blood Pressure and Stroke What Is Diabetes and How ...

  20. High-pressure structure made of rings with peripheral weldments of reduced thickness

    DOEpatents

    Leventry, Samuel C.

    1988-01-01

    A high-pressure structure having a circular cylindrical metal shell made of metal rings joined together by weldments and which have peripheral areas of reduced shell thickness at the weldments which permit a reduction in the amount of weld metal deposited while still maintaining sufficient circumferential or hoop stress strength.

  1. Ionic high-pressure form of elemental boron.

    PubMed

    Oganov, Artem R; Chen, Jiuhua; Gatti, Carlo; Ma, Yanzhang; Ma, Yanming; Glass, Colin W; Liu, Zhenxian; Yu, Tony; Kurakevych, Oleksandr O; Solozhenko, Vladimir L

    2009-02-12

    Boron is an element of fascinating chemical complexity. Controversies have shrouded this element since its discovery was announced in 1808: the new 'element' turned out to be a compound containing less than 60-70% of boron, and it was not until 1909 that 99% pure boron was obtained. And although we now know of at least 16 polymorphs, the stable phase of boron is not yet experimentally established even at ambient conditions. Boron's complexities arise from frustration: situated between metals and insulators in the periodic table, boron has only three valence electrons, which would favour metallicity, but they are sufficiently localized that insulating states emerge. However, this subtle balance between metallic and insulating states is easily shifted by pressure, temperature and impurities. Here we report the results of high-pressure experiments and ab initio evolutionary crystal structure predictions that explore the structural stability of boron under pressure and, strikingly, reveal a partially ionic high-pressure boron phase. This new phase is stable between 19 and 89 GPa, can be quenched to ambient conditions, and has a hitherto unknown structure (space group Pnnm, 28 atoms in the unit cell) consisting of icosahedral B(12) clusters and B(2) pairs in a NaCl-type arrangement. We find that the ionicity of the phase affects its electronic bandgap, infrared adsorption and dielectric constants, and that it arises from the different electronic properties of the B(2) pairs and B(12) clusters and the resultant charge transfer between them.

  2. Metabolic Activity of Bacteria at High Pressure

    NASA Astrophysics Data System (ADS)

    Picard, A.; Daniel, I.; Oger, P.

    2008-12-01

    Over the last 20 years, there has been increasing evidence for the presence of a large number of microbes in the oceanic subsurface. Such a habitat has a very low energy input because it is deprived of light. A few meters below the sediment surface, conditions are already anoxic in most cases, sulfate reduction and/or methanogenesis becoming thus the primary respiratory reactions of organic matter. Neither the fate of methanogenesis, nor the fate of Dissimilatory Metal-Reduction (DMR) has been investigated so far as a function of pressure. For this reason, we measured experimentally the pressure limits of microbial anaerobic energetic metabolism. In practice, we measured in situ the kinetics of selenite respiration by the bacterial model Shewanella oneidensis MR-1 under high hydrostatic pressure (HHP) between 0 and 150 MPa at 30°C. MR-1 stationary-phase cells were used in Luria-Bertani (LB) medium amended with lactate as an additional electron donor and sodium selenite as an electron acceptor. In situ measurements were performed by X- ray Absorption Near-Edge Structure (XANES) spectroscopy in both a diamond-anvil cell and an autoclave. A red precipitate of amorphous Se(0) was virtually observed at any pressure to 150 MPa. A progressive reduction of selenite Se(IV) into selenium Se(0) was also observed in the evolution of XANES spectra with time. All kinetics between 0.1 and 150 MPa can be adjusted to a first order kinetic law. MR-1 respires all available selenite up to 60 MPa. Above 60 MPa, the respiration yield decreases linearly as a function of pressure and reaches 0 at 155 ±5 MPa. This indicates that selenite respiration by Shewanella oneidensis MR-1 stops at about 155 MPa, whereas its growth is arrested at 50 MPa. Hence, the present results show that the respiration of selenium by the strain MR-1 occurs efficiently up to 60 MPa and 30°C, i.e. from the surface of a continental sediment to an equivalent depth of about 2 km, or beneath a 5-km water column and

  3. Rubber-induced uniform laser shock wave pressure for thin metal sheets microforming

    NASA Astrophysics Data System (ADS)

    Shen, Zongbao; Wang, Xiao; Liu, Huixia; Wang, Yayuan; Wang, Cuntang

    2015-02-01

    Laser shock microforming of thin metal sheets is a new high velocity forming technique, which employs laser shock wave to deform the thin metal sheets. The spatial distribution of forming pressure is mainly dependent on the laser beam. A new type of laser shock loading method is introduced which gives a uniform pressure distribution. A low density rubber is inserted between the laser beam and the thin metal sheets. The mechanism of rubber-induced smoothing effect on confined laser shock wave is proposed. Plasticine is used to perform the smoothing effect experiments due to its excellent material flow ability. The influence of rubber on the uniformity of laser shock wave pressure is studied by measuring the surface micro topography of the deformed plasticine. And the four holes forming experiment is used to verify the rubber-induced uniform pressure on thin metal sheets surface. The research results show the possibility of smoothing laser shock wave pressure using rubber. And the good surface quality can be obtained under rubber dynamic loading.

  4. Design of high pressure waterjet nozzles

    NASA Technical Reports Server (NTRS)

    Mazzoleni, Andre P.

    1994-01-01

    The Hydroblast Research Cell at Marshall Space Flight Center is used to investigate the use of high pressure waterjets to strip paint, grease, adhesive and thermal spray coatings from various substrates. Current methods of cleaning often use ozone depleting chemicals (ODC) such as chlorinated solvents. High pressure waterjet cleaning has proven to be a viable alternative to the use of solvents. A popular method of waterjet cleaning involves the use of a rotating, multijet, high pressure water nozzle which is robotically controlled. This method enables rapid cleaning of a large area, but problems such as incomplete coverage and damage to the substrate from the waterjet have been observed. This report summarizes research consisting of identifying and investigating the basic properties of rotating, multijet, high pressure water nozzles, and how particular designs and modes of operation affect such things as stripping rate, standoff distance and completeness of coverage. The study involved computer simulations, an extensive literature review, and experimental studies of different nozzle designs.

  5. Design of high pressure waterjet nozzles

    NASA Astrophysics Data System (ADS)

    Mazzoleni, Andre P.

    1994-10-01

    The Hydroblast Research Cell at Marshall Space Flight Center is used to investigate the use of high pressure waterjets to strip paint, grease, adhesive and thermal spray coatings from various substrates. Current methods of cleaning often use ozone depleting chemicals (ODC) such as chlorinated solvents. High pressure waterjet cleaning has proven to be a viable alternative to the use of solvents. A popular method of waterjet cleaning involves the use of a rotating, multijet, high pressure water nozzle which is robotically controlled. This method enables rapid cleaning of a large area, but problems such as incomplete coverage and damage to the substrate from the waterjet have been observed. This report summarizes research consisting of identifying and investigating the basic properties of rotating, multijet, high pressure water nozzles, and how particular designs and modes of operation affect such things as stripping rate, standoff distance and completeness of coverage. The study involved computer simulations, an extensive literature review, and experimental studies of different nozzle designs.

  6. High Blood Pressure and Kidney Disease

    MedlinePlus

    ... Information Center National Kidney Foundation Smokefree.gov MedlinePlus Kidney and Urologic Disease Organizations Many organizations provide support ... Alternate Language URL Español High Blood Pressure and Kidney Disease Page Content On this page: What is ...

  7. Preeclampsia and High Blood Pressure During Pregnancy

    MedlinePlus

    ... thrombophilia , or lupus • are obese •had in vitro fertilization What are the risks for my baby if ... blood cells. Hypertension: High blood pressure. In Vitro Fertilization: A procedure in which an egg is removed ...

  8. HIGH TEMPERATURE PRESSURE PROCESSING OF MIXED ALANATE COMPOUNDS

    SciTech Connect

    Berseth, P; Ragaiy Zidan, R; Donald Anton, D; Kirk Shanahan, K; Ashley Stowe, A

    2007-06-07

    Mixtures of light-weight elements and hydrides were investigated to increase the understanding of the chemical reactions that take place between various materials. This report details investigations we have made into mixtures that include NaAlH{sub 4}, LiAlH{sub 4}, MgH{sub 2}, Mg{sub 2}NiH{sub 4}, alkali(ne) hydrides, and early third row transition metals (V, Cr, Mn). Experimental parameters such as stoichiometry, heat from ball milling versus hand milling, and varying the temperature of high pressure molten state processing were studied to examine the effects of these parameters on the reactions of the complex metal hydrides.

  9. High pressure ceramic heat exchanger

    DOEpatents

    Harkins, B.D.; Ward, M.E.

    1998-09-22

    Many recuperators have components which react to corrosive gases and are used in applications where the donor fluid includes highly corrosive gases. These recuperators have suffered reduced life, increased service or maintenance, and resulted in increased cost. The present header assembly when used with recuperators reduces the brittle effect of a portion of the ceramic components. Thus, the present header assembly used with the present recuperator increases the life, reduces the service and maintenance, and reduces the increased cost associated with corrosive action of components used to manufacture recuperators. The present header assembly is comprised of a first ceramic member, a second ceramic member, a strengthening reinforcing member being in spaced relationship to the first ceramic member and the second ceramic member. The header assembly is further comprised of a refractory material disposed in contacting relationship with the first ceramic member, the second ceramic member and the strengthening reinforcing member. The present header assembly provides a high strength load bearing header assembly having good thermal cycling characteristics, good resistance to a corrosive environment and good steady state strength at elevated temperatures. 5 figs.

  10. High pressure ceramic heat exchanger

    DOEpatents

    Harkins, Bruce D.; Ward, Michael E.

    1999-01-01

    Many recuperators have components which react to corrosive gases and are used in applications where the donor fluid includes highly corrosive gases. These recuperators have suffered reduced life, increased service or maintenance, and resulted in increased cost. The present header assembly when used with recuperators reduces the brittle effect of a portion of the ceramic components. Thus, the present header assembly used with the present recuperator increases the life, reduces the service and maintenance, and reduces the increased cost associated with corrosive action of components used to manufacture recuperators. The present header assembly is comprised of a first ceramic member, a second ceramic member, a reinforcing member being in spaced relationship to the first ceramic member and the second ceramic member. The header assembly is further comprised of a refractory material disposed in contacting relationship with the first ceramic member, the second ceramic member and the reinforcing member and having a strengthening member wrapped around the refractory material. The present header assembly provides a high strength load bearing header assembly having good thermal cycling characteristics, good resistance to a corrosive environment and good steady state strength at elevated temperatures.

  11. High pressure ceramic heat exchanger

    DOEpatents

    Harkins, Bruce D.; Ward, Michael E.

    1998-01-01

    Many recuperators have components which react to corrosive gases and are used in applications where the donor fluid includes highly corrosive gases. These recuperators have suffered reduced life, increased service or maintenance, and resulted in increased cost. The present header assembly when used with recuperators reduces the brittle effect of a portion of the ceramic components. Thus, the present header assembly used with the present recuperator increases the life, reduces the service and maintenance, and reduces the increased cost associated with corrosive action of components used to manufacture recuperators. The present header assembly is comprised of a first ceramic member, a second ceramic member, a strengthening reinforcing member being in spaced relationship to the first ceramic member and the second ceramic member. The header assembly is further comprised of a refractory material disposed in contacting relationship with the first ceramic member, the second ceramic member and the strengthening reinforcing member. The present header assembly provides a high strength load bearing header assembly having good thermal cycling characteristics, good resistance to a corrosive environment and good steady state strength at elevated temperatures.

  12. High frequency pressure oscillator for microcryocoolers

    NASA Astrophysics Data System (ADS)

    Vanapalli, S.; ter Brake, H. J. M.; Jansen, H. V.; Zhao, Y.; Holland, H. J.; Burger, J. F.; Elwenspoek, M. C.

    2008-04-01

    Microminiature pulse tube cryocoolers should operate at a frequency of an order higher than the conventional macro ones because the pulse tube cryocooler operating frequency scales inversely with the square of the pulse tube diameter. In this paper, the design and experiments of a high frequency pressure oscillator is presented with the aim to power a micropulse tube cryocooler operating between 300 and 80K, delivering a cooling power of 10mW. Piezoelectric actuators operate efficiently at high frequencies and have high power density making them good candidates as drivers for high frequency pressure oscillator. The pressure oscillator described in this work consists of a membrane driven by a piezoelectric actuator. A pressure ratio of about 1.11 was achieved with a filling pressure of 2.5MPa and compression volume of about 22.6mm3 when operating the actuator with a peak-to-peak sinusoidal voltage of 100V at a frequency of 1kHz. The electrical power input was 2.73W. The high pressure ratio and low electrical input power at high frequencies would herald development of microminiature cryocoolers.

  13. High frequency pressure oscillator for microcryocoolers.

    PubMed

    Vanapalli, S; ter Brake, H J M; Jansen, H V; Zhao, Y; Holland, H J; Burger, J F; Elwenspoek, M C

    2008-04-01

    Microminiature pulse tube cryocoolers should operate at a frequency of an order higher than the conventional macro ones because the pulse tube cryocooler operating frequency scales inversely with the square of the pulse tube diameter. In this paper, the design and experiments of a high frequency pressure oscillator is presented with the aim to power a micropulse tube cryocooler operating between 300 and 80 K, delivering a cooling power of 10 mW. Piezoelectric actuators operate efficiently at high frequencies and have high power density making them good candidates as drivers for high frequency pressure oscillator. The pressure oscillator described in this work consists of a membrane driven by a piezoelectric actuator. A pressure ratio of about 1.11 was achieved with a filling pressure of 2.5 MPa and compression volume of about 22.6 mm(3) when operating the actuator with a peak-to-peak sinusoidal voltage of 100 V at a frequency of 1 kHz. The electrical power input was 2.73 W. The high pressure ratio and low electrical input power at high frequencies would herald development of microminiature cryocoolers.

  14. High pressure optical combustion probe

    SciTech Connect

    Woodruff, S.D.; Richards, G.A.

    1995-06-01

    The Department of Energy`s Morgantown Energy Technology Center has developed a combustion probe for monitoring flame presence and heat release. The technology involved is a compact optical detector of the OH radical`s UV fluorescence. The OH Monitor/Probe is designed to determine the flame presence and provide a qualitative signal proportional to the flame intensity. The probe can be adjusted to monitor a specific volume in the combustion zone to track spatial fluctuations in the flame. The probe is capable of nanosecond time response and is usually slowed electronically to fit the flame characteristics. The probe is a sapphire rod in a stainless steel tube which may be inserted into the combustion chamber and pointed at the flame zone. The end of the sapphire rod is retracted into the SS tube to define a narrow optical collection cone. The collection cone may be adjusted to fit the experiment. The fluorescence signal is collected by the sapphire rod and transmitted through a UV transmitting, fused silica, fiber optic to the detector assembly. The detector is a side window photomultiplier (PMT) with a 310 run line filter. A Hamamatsu photomultiplier base combined with a integral high voltage power supply permits this to be a low voltage device. Electronic connections include: a power lead from a modular DC power supply for 15 VDC; a control lead for 0-1 volts to control the high voltage level (and therefore gain); and a lead out for the actual signal. All low voltage connections make this a safe and easy to use device while still delivering the sensitivity required.

  15. Buoyancy and Pressure Effects on Bulk Metal-Oxygen Reactions

    NASA Technical Reports Server (NTRS)

    Abbud-Madrid, A.; McKnight, C.; Branch, M. C.; Daily, J. W.; Friedman, R. (Technical Monitor)

    1998-01-01

    The combustion behavior of metal-oxygen reactions if a weakly buoyant environment is studied to understand the rate-controlling mechanisms in the homogeneous and heterogeneous combustion of bulk metals. Cylindrical titanium and magnesium specimens are ignited in pure-oxygen at pressures ranging from 0.1 to 4.0 atm. Reduced gravity is obtained from an aircraft flying parabolic trajectories. A weakly buoyant environment is generated at low pressures under normal gravity and also at 1 atm under reduced gravity (0.01g). The similarity between these two experimental conditions comes from the p(exp 2)g buoyancy scale extracted from the Grashof number. Lower propagation rates of the molten interface on titanium samples are found at progressively lower pressures at 1 g. These rates are compared to theoretical results from heat conduction analyses with a diffusion/convection controlled reaction. The close agreement found between experimental and theoretical values indicate the importance values indicate the importance of natural convection enhanced oxygen transport on combustion rates. For magnesium, progressively longer burning times are experienced at lower pressures and 1 g. Under reduced gravity conditions at 1 atm, a burning time twice as long as in 1 g is exhibited. However, in this case, the validity of the p(exp 2)g buoyancy scale remains untested due to the inability to obtain steady gas-phase burning of the magnesium sample at 0.1 atm. Nevertheless, longer burning times and larger flame standoff distance at low pressures and at low gravity points to a diffusion/convection controlled reaction.

  16. Phonon triggered rhombohedral lattice distortion in vanadium at high pressure.

    PubMed

    Antonangeli, Daniele; Farber, Daniel L; Bosak, Alexei; Aracne, Chantel M; Ruddle, David G; Krisch, Michael

    2016-01-01

    In spite of the simple body-centered-cubic crystal structure, the elements of group V, vanadium, niobium and tantalum, show strong interactions between the electronic properties and lattice dynamics. Further, these interactions can be tuned by external parameters, such as pressure and temperature. We used inelastic x-ray scattering to probe the phonon dispersion of single-crystalline vanadium as a function of pressure to 45 GPa. Our measurements show an anomalous high-pressure behavior of the transverse acoustic mode along the (100) direction and a softening of the elastic modulus C44 that triggers a rhombohedral lattice distortion occurring between 34 and 39 GPa. Our results provide the missing experimental confirmation of the theoretically predicted shear instability arising from the progressive intra-band nesting of the Fermi surface with increasing pressure, a scenario common to all transition metals of group V. PMID:27539662

  17. Phonon triggered rhombohedral lattice distortion in vanadium at high pressure

    NASA Astrophysics Data System (ADS)

    Antonangeli, Daniele; Farber, Daniel L.; Bosak, Alexei; Aracne, Chantel M.; Ruddle, David G.; Krisch, Michael

    2016-08-01

    In spite of the simple body-centered-cubic crystal structure, the elements of group V, vanadium, niobium and tantalum, show strong interactions between the electronic properties and lattice dynamics. Further, these interactions can be tuned by external parameters, such as pressure and temperature. We used inelastic x-ray scattering to probe the phonon dispersion of single-crystalline vanadium as a function of pressure to 45 GPa. Our measurements show an anomalous high-pressure behavior of the transverse acoustic mode along the (100) direction and a softening of the elastic modulus C44 that triggers a rhombohedral lattice distortion occurring between 34 and 39 GPa. Our results provide the missing experimental confirmation of the theoretically predicted shear instability arising from the progressive intra-band nesting of the Fermi surface with increasing pressure, a scenario common to all transition metals of group V.

  18. Phonon triggered rhombohedral lattice distortion in vanadium at high pressure

    PubMed Central

    Antonangeli, Daniele; Farber, Daniel L.; Bosak, Alexei; Aracne, Chantel M.; Ruddle, David G.; Krisch, Michael

    2016-01-01

    In spite of the simple body-centered-cubic crystal structure, the elements of group V, vanadium, niobium and tantalum, show strong interactions between the electronic properties and lattice dynamics. Further, these interactions can be tuned by external parameters, such as pressure and temperature. We used inelastic x-ray scattering to probe the phonon dispersion of single-crystalline vanadium as a function of pressure to 45 GPa. Our measurements show an anomalous high-pressure behavior of the transverse acoustic mode along the (100) direction and a softening of the elastic modulus C44 that triggers a rhombohedral lattice distortion occurring between 34 and 39 GPa. Our results provide the missing experimental confirmation of the theoretically predicted shear instability arising from the progressive intra-band nesting of the Fermi surface with increasing pressure, a scenario common to all transition metals of group V. PMID:27539662

  19. High pressure electrides: a predictive chemical and physical theory.

    PubMed

    Miao, Mao-Sheng; Hoffmann, Roald

    2014-04-15

    Electrides, in which electrons occupy interstitial regions in the crystal and behave as anions, appear as new phases for many elements (and compounds) under high pressure. We propose a unified theory of high pressure electrides (HPEs) by treating electrons in the interstitial sites as filling the quantized orbitals of the interstitial space enclosed by the surrounding atom cores, generating what we call an interstitial quasi-atom, ISQ. With increasing pressure, the energies of the valence orbitals of atoms increase more significantly than the ISQ levels, due to repulsion, exclusion by the atom cores, effectively giving the valence electrons less room in which to move. At a high enough pressure, which depends on the element and its orbitals, the frontier atomic electron may become higher in energy than the ISQ, resulting in electron transfer to the interstitial space and the formation of an HPE. By using a He lattice model to compress (with minimal orbital interaction at moderate pressures between the surrounding He and the contained atoms or molecules) atoms and an interstitial space, we are able to semiquantitatively explain and predict the propensity of various elements to form HPEs. The slopes in energy of various orbitals with pressure (s > p > d) are essential for identifying trends across the entire Periodic Table. We predict that the elements forming HPEs under 500 GPa will be Li, Na (both already known to do so), Al, and, near the high end of this pressure range, Mg, Si, Tl, In, and Pb. Ferromagnetic electrides for the heavier alkali metals, suggested by Pickard and Needs, potentially compete with transformation to d-group metals. PMID:24702165

  20. High-Pressure Valve With Controlled Seating Force

    NASA Technical Reports Server (NTRS)

    Bradley, R. H.

    1987-01-01

    Poppet and seat less likely to be damaged by faulty operation. Improvements in widely-used high-pressure valve increase accuracy of preloading of poppet. Redesigned valve prevents metal shavings and other debris from developing during operation, installation, or removal. New features include secondary seal in cap. Belleville washers create precise value of seating force. If installer attempts to exceed force, torque limiter gives tactile and aural warning and makes further force increases difficult.

  1. High-pressure distillation is different

    SciTech Connect

    Brierley, R.J.P.

    1994-07-01

    Many fluid systems perform differently at higher pressures than at lower ones. This makes high-pressure distillation different, too. But it also offers significant opportunities to engineers, both those deciding on the types of equipment to specify at the design stage, and those responsible for making high-pressure columns work, getting the best out of them, and assessing whether they can be uprated. Indeed, in a number of cases, it has been possible to uprate columns substantially (in one case by 70%) by redesign of the trays, and by replacement of trays with packing. This article provides practical guidance, based on the author's 20 years of experience as a distillation specialist, on how to get the best out of high-pressure distillation.

  2. [The high pressure life of piezophiles].

    PubMed

    Oger, Philippe; Cario, Anaïs

    2014-01-01

    The deep biosphere is composed of very different biotopes located in the depth of the oceans, the ocean crust or the lithosphere. Although very different, deep biosphere biotopes share one common feature, high hydrostatic pressure. The deep biosphere is colonized by specific organisms, called piezophiles, that are able to grow under high hydrostatic pressure. Bacterial piezophiles are mainly psychrophiles belonging to five genera of γ-proteobacteria, Photobacterium, Shewanella, Colwellia, Psychromonas and Moritella, while piezophilic Archaea are mostly (hyper)thermophiles from the Thermococcales. None of these genera are specific for the deep biosphere. High pressure deeply impacts the activity of cells and cellular components, and reduces the activity of numerous key processes, eventually leading to cell death of piezosensitive organisms. Biochemical and genomic studies yield a fragmented view on the adaptive mechanisms in piezophiles. It is yet unclear whether piezophilic adaptation requires the modification of a few genes, or metabolic pathways, or a more profound reorganization of the genome, the fine tuning of gene expression to compensate the pressure-induced loss of activity of the proteins most affected by high pressure, or a stress-like physiological cell response. In contrast to what has been seen for thermophily or halophily, the adaptation to high pressure is diffuse in the genome and may concern only a small fraction of the genes. PMID:25474000

  3. Pressure induced Ag2Te polymorphs in conjunction with topological non trivial to metal transition

    NASA Astrophysics Data System (ADS)

    Zhu, J.; Oganov, A. R.; Feng, W. X.; Yao, Y. G.; Zhang, S. J.; Yu, X. H.; Zhu, J. L.; Yu, R. C.; Jin, C. Q.; Dai, X.; Fang, Z.; Zhao, Y. S.

    2016-08-01

    Silver telluride (Ag2Te) is well known as superionic conductor and topological insulator with polymorphs. Pressure induced three phase transitions in Ag2Te have been reported in previous. Here, we experimentally identified high pressure phase above 13 GPa of Ag2Te by using high pressure synchrotron x ray diffraction method in combination with evolutionary crystal structure prediction, showing it crystallizes into a monoclinic structure of space group C2/m with lattice parameters a = 6.081Å, b = 5.744Å, c = 6.797 Å, β = 105.53°. The electronic properties measurements of Ag2Te reveal that the topologically non-trivial semiconducting phase I and semimetallic phase II previously predicated by theory transformed into bulk metals for high pressure phases in consistent with the first principles calculations.

  4. High temperature, oxidation resistant noble metal-Al alloy thermocouple

    NASA Technical Reports Server (NTRS)

    Smialek, James L. (Inventor); Gedwill, Michael G. (Inventor)

    1994-01-01

    A thermocouple is disclosed. The thermocouple is comprised of an electropositive leg formed of a noble metal-Al alloy and an electronegative leg electrically joined to form a thermocouple junction. The thermocouple provides for accurate and reproducible measurement of high temperatures (600 - 1300 C) in inert, oxidizing or reducing environments, gases, or vacuum. Furthermore, the thermocouple circumvents the need for expensive, strategic precious metals such as rhodium as a constituent component. Selective oxidation of rhodium is also thereby precluded.

  5. Pressure sensor for high-temperature liquids

    DOEpatents

    Forster, George A.

    1978-01-01

    A pressure sensor for use in measuring pressures in liquid at high temperatures, especially such as liquid sodium or liquid potassium, comprises a soft diaphragm in contact with the liquid. The soft diaphragm is coupled mechanically to a stiff diaphragm. Pressure is measured by measuring the displacment of both diaphragms, typically by measuring the capacitance between the stiff diaphragm and a fixed plate when the stiff diaphragm is deflected in response to the measured pressure through mechanical coupling from the soft diaphragm. Absolute calibration is achieved by admitting gas under pressure to the region between diaphragms and to the region between the stiff diaphragm and the fixed plate, breaking the coupling between the soft and stiff diaphragms. The apparatus can be calibrated rapidly and absolutely.

  6. Fluid hydrogen at high density - Pressure ionization

    NASA Technical Reports Server (NTRS)

    Saumon, Didier; Chabrier, Gilles

    1992-01-01

    The Helmholtz-free-energy model for nonideal mixtures of hydrogen atoms and molecules by Saumon and Chabrier (1991) is extended to describe dissociation and ionization in similar mixtures in chemical equilibrium. A free-energy model is given that describes partial ionization in the pressure and temperature ionization region. The plasma-phase transition predicted by the model is described for hydrogen mixtures including such components as H2, H, H(+), and e(-). The plasma-phase transition has a critical point at Tc = 15,300 K and Pc = 0.614 Mbar, and thermodynamic instability is noted in the pressure-ionization regime. The pressure dissociation and ionization of fluid hydrogen are described well with the model yielding information on the nature of the plasma-phase transition. The model is shown to be valuable for studying dissociation and ionization in astrophysical objects and in high-pressure studies where pressure and temperature effects are significant.

  7. Yield strength of molybdenum at high pressures.

    PubMed

    Jing, Qiumin; Bi, Yan; Wu, Qiang; Jing, Fuqian; Wang, Zhigang; Xu, Jian; Jiang, Sheng

    2007-07-01

    In the diamond anvil cell technology, the pressure gradient approach is one of the three major methods in determining the yield strength for various materials at high pressures. In the present work, by in situ measuring the thickness of the sample foil, we have improved the traditional technique in this method. Based on this modification, the yield strength of molybdenum at pressures has been measured. Our main experimental conclusions are as follows: (1) The measured yield strength data for three samples with different initial thickness (100, 250, and 500 microm) are in good agreement above a peak pressure of 10 GPa. (2) The measured yield strength can be fitted into a linear formula Y=0.48(+/-0.19)+0.14(+/-0.01)P (Y and P denote the yield strength and local pressure, respectively, both of them are in gigapascals) in the local pressure range of 8-21 GPa. This result is in good agreement with both Y=0.46+0.13P determined in the pressure range of 5-24 GPa measured by the radial x-ray diffraction technique and the previous shock wave data below 10 GPa. (3) The zero-pressure yield strength of Mo is 0.5 GPa when we extrapolate our experimental data into the ambient pressure. It is close to the tensile strength of 0.7 GPa determined by Bridgman [Phys. Rev. 48, 825 (1934)] previously. The modified method described in this article therefore provides the confidence in determination of the yield strength at high pressures. PMID:17672772

  8. Material Strength at High Pressure LDRD Strategic Initiative Final Report

    SciTech Connect

    Lassila, D H; Bonner, B P; Bulatov, V V; Cazamias, J U; Chandler, E A; Farber, D L; Moriarty, J A; Zaug, J M

    2004-03-02

    Various aspects of the Laboratory's national security mission are now highly dependent on accurate computer code simulations of plastic flow (i.e., non-reversible deformation) of materials under conditions of high hydrostatic pressure. Strength models are typically dependent on pressure, temperature, and strain rate. Current strength models can not be extrapolated to high pressure because they are not based on the underlying mechanisms of plastic deformation. The critical need for predictive models of material strength, which describe flow stress in computer code simulations, has motivated LLNL's multiscale modeling efforts. Over the past three years, the ''Material Strength at High Pressure'' LDRD Strategic Initiative has established a framework for the development of predictive strength models for deformation of metals under conditions of high hydrostatic pressure. Deformation experiments have been developed to measure the effect of high pressure on the yield strength and work hardening behavior of high purity Mo and Ta single crystals. The over arching goal of the SI is to experimentally validate multiscale-modeling capabilities for deformation of metals under conditions of high pressure. The work performed and accomplished is a necessary next step in the development of predictive strength models. Our initial experimental results show that the influence of pressure is to dramatically increase the work hardening rate of Ta. Bridgman also observed this in experiments performed in the 1950's. Currently there is very little modern data on this phenomena, or theoretical understanding. The work started by this SI is a first step in a comprehensive understanding of plasticity under conditions of high pressure and we expect eventually to be able to incorporate the proper physics into dislocation dynamics (DD) simulations to capture the increase in work hardening that we observe experimentally. In the following sections we briefly describe the work that was performed in

  9. Sample injector for high pressure liquid chromatography

    DOEpatents

    Paul, Phillip H.; Arnold, Don W.; Neyer, David W.

    2001-01-01

    Apparatus and method for driving a sample, having a well-defined volume, under pressure into a chromatography column. A conventional high pressure sampling valve is replaced by a sample injector composed of a pair of injector components connected in series to a common junction. The injector components are containers of porous dielectric material constructed so as to provide for electroosmotic flow of a sample into the junction. At an appropriate time, a pressure pulse from a high pressure source, that can be an electrokinetic pump, connected to the common junction, drives a portion of the sample, whose size is determined by the dead volume of the common junction, into the chromatographic column for subsequent separation and analysis. The apparatus can be fabricated on a substrate for microanalytical applications.

  10. High pressure studies of potassium perchlorate

    NASA Astrophysics Data System (ADS)

    Pravica, Michael; Wang, Yonggang; Sneed, Daniel; Reiser, Sharissa; White, Melanie

    2016-09-01

    Two experiments are reported on KClO4 at extreme conditions. A static high pressure Raman study was first conducted to 18.9 GPa. Evidence for at least two new phases was observed: one between 2.4 and 7.7 GPa (possibly sluggish), and the second near 11.7 GPa. Then, the X-ray induced decomposition rate of potassium perchlorate (KClO4 → hν KCl + 2O2) was studied up to 15.2 GPa. The time-dependent growth of KCl and O2 was monitored. The decomposition rate slowed at higher pressures. We present the first direct evidence for O2 crystallization at higher pressures, demonstrating that O2 molecules aggregate at high pressure.

  11. Nitridation of silicon under high pressure

    SciTech Connect

    Heinrich, J. )

    1987-07-01

    The microstructure of reaction-bonded Si{sub 3}N{sub 4} was changed by nitriding Si powder compacts at 0, 1, and 50 MPa. The microstructural parameters were analyzed using light and scanning electron microscopy, XRD, and mercury pressure porosimetry. The influence of the nitriding gas pressure on the ratio of the crystallographic Si{sub 3}N{sub 4} phases {alpha} and {beta}, the pore size distribution, and the resulting mechanical properties has been investigated. High nitrogen pressure promotes the formation of {beta}-Si{sub 3}N{sub 4} and leads to a fine-grained homogeneous microstructure, with improved fracture strength and fracture toughness.

  12. High-pressure electrides: the chemical nature of interstitial quasiatoms.

    PubMed

    Miao, Mao-sheng; Hoffmann, Roald

    2015-03-18

    Building on our previous chemical and physical model of high-pressure electrides (HPEs), we explore the effects of interaction of electrons confined in crystals but off the atoms, under conditions of extreme pressure. Electrons in the quantized energy levels of voids or vacancies, interstitial quasiatoms (ISQs), effectively interact with each or with other atoms, in ways that are quite chemical. With the well-characterized Na HPE as an example, we explore the ionic limit, ISQs behaving as anions. A detailed comparison with known ionic compounds points to high ISQ charge density. ISQs may also form what appear to be covalent bonds with neighboring ISQs or real atoms, similarly confined. Our study looks specifically at quasimolecular model systems (two ISQs, a Li atom and a one-electron ISQ, a Mg atom and two ISQs), in a compression chamber made of He atoms. The electronic density due to the formation of bonding and antibonding molecular orbitals of the compressed entities is recognizable, and a bonding stabilization, which increases with pressure, is estimated. Finally, we use the computed Mg electride to understand metallic bonding in one class of electrides. In general, the space confined between atoms in a high pressure environment offers up quantized states to electrons. These ISQs, even as they lack centering nuclei, in their interactions with each other and neighboring atoms may show anionic, covalent, or metallic bonding, all the chemical features of an atom.

  13. High pressure oxygen utilization by NASA

    NASA Technical Reports Server (NTRS)

    Belles, F. E.

    1973-01-01

    Although NASA is not one of the country's major oxygen consumers, it uses oxygen under severe conditions including very high flow rates and pressure. Materials for such applications must be carefully selected for compatibility, because susceptibility to ignition increases as operating pressure is raised. Much work is needed, however to define the selection criteria. Some of the work in this area that is being performed under sponsorship of NASA's Aerospace Safety Research and Data Institute (ASRDI) is described.

  14. High Temperature Dynamic Pressure Measurements Using Silicon Carbide Pressure Sensors

    NASA Technical Reports Server (NTRS)

    Okojie, Robert S.; Meredith, Roger D.; Chang, Clarence T.; Savrun, Ender

    2014-01-01

    Un-cooled, MEMS-based silicon carbide (SiC) static pressure sensors were used for the first time to measure pressure perturbations at temperatures as high as 600 C during laboratory characterization, and subsequently evaluated in a combustor rig operated under various engine conditions to extract the frequencies that are associated with thermoacoustic instabilities. One SiC sensor was placed directly in the flow stream of the combustor rig while a benchmark commercial water-cooled piezoceramic dynamic pressure transducer was co-located axially but kept some distance away from the hot flow stream. In the combustor rig test, the SiC sensor detected thermoacoustic instabilities across a range of engine operating conditions, amplitude magnitude as low as 0.5 psi at 585 C, in good agreement with the benchmark piezoceramic sensor. The SiC sensor experienced low signal to noise ratio at higher temperature, primarily due to the fact that it was a static sensor with low sensitivity.

  15. Metal Matrix Composite LOX Turbopump Housing via Novel Tool-less Net-Shape Pressure Infiltration Casting Technology

    NASA Technical Reports Server (NTRS)

    Shah, Sandeep; Lee, Jonathan; Bhat, Biliyar; Wells, Doug; Gregg, Wayne; Marsh, Matthew; Genge, Gary; Forbes, John; Salvi, Alex; Cornie, James A.

    2003-01-01

    Metal matrix composites for propulsion components offer high performance and affordability, resulting in low weight and cost. The following sections in this viewgraph presentation describe the pressure infiltration casting of a metal matrix composite LOX turbopump housing: 1) Baseline Pump Design and Stress Analysis; 2) Tool-less Advanced Pressure Infiltration Casting Process; 3) Preform Splicing and Joining for Large Components such as Pump Housing; 4) Fullscale Pump Housing Redesign.

  16. Nitromethane decomposition under high static pressure.

    PubMed

    Citroni, Margherita; Bini, Roberto; Pagliai, Marco; Cardini, Gianni; Schettino, Vincenzo

    2010-07-29

    The room-temperature pressure-induced reaction of nitromethane has been studied by means of infrared spectroscopy in conjunction with ab initio molecular dynamics simulations. The evolution of the IR spectrum during the reaction has been monitored at 32.2 and 35.5 GPa performing the measurements in a diamond anvil cell. The simulations allowed the characterization of the onset of the high-pressure reaction, showing that its mechanism has a complex bimolecular character and involves the formation of the aci-ion of nitromethane. The growth of a three-dimensional disordered polymer has been evidenced both in the experiments and in the simulations. On decompression of the sample, after the reaction, a continuous evolution of the product is observed with a decomposition into smaller molecules. This behavior has been confirmed by the simulations and represents an important novelty in the scene of the known high-pressure reactions of molecular systems. The major reaction product on decompression is N-methylformamide, the smallest molecule containing the peptide bond. The high-pressure reaction of crystalline nitromethane under irradiation at 458 nm was also experimentally studied. The reaction threshold pressure is significantly lowered by the electronic excitation through two-photon absorption, and methanol, not detected in the purely pressure-induced reaction, is formed. The presence of ammonium carbonate is also observed. PMID:20608697

  17. Single Molecule Raman Spectroscopy Under High Pressure

    NASA Astrophysics Data System (ADS)

    Fu, Yuanxi; Dlott, Dana

    2014-06-01

    Pressure effects on surface-enhanced Raman scattering spectra of Rhdoamine 6G adsorbed on silver nanoparticle surfaces was studied using a confocal Raman microscope. Colloidal silver nanoparticles were treated with Rhodamine 6G (R6G) and its isotopically substituted partner, R6G-d4. Mixed isotopomers let us identify single-molecule spectra, since multiple-molecule spectra would show vibrational transitions from both species. The nanoparticles were embedded into a poly vinyl alcohol film, and loaded into a diamond anvil cell for the high-pressure Raman scattering measurement. Argon was the pressure medium. Ambient pressure Raman scattering spectra showed few single-molecule spectra. At moderately high pressure ( 1GPa), a surprising effect was observed. The number of sites with observable spectra decreased dramatically, and most of the spectra that could be observed were due to single molecules. The effects of high pressure suppressed the multiple-molecule Raman sites, leaving only the single-molecule sites to be observed.

  18. A high-temperature wideband pressure transducer

    NASA Technical Reports Server (NTRS)

    Zuckerwar, A. J.

    1975-01-01

    Progress in the development of a pressure transducer for measurement of the pressure fluctuations in the high temperature environment of a jet exhaust is reported. A condenser microphone carrier system was adapted to meet the specifications. A theoretical analysis is presented which describes the operation of the condenser microphone in terms of geometry, materials, and other physical properties. The analysis was used as the basis for design of a prototype high temperature microphone. The feasibility of connecting the microphone to a converter over a high temperature cable operating as a half-wavelength transmission line was also examined.

  19. Insulator-metal transition in highly compressed NiO.

    PubMed

    Gavriliuk, Alexander G; Trojan, Ivan A; Struzhkin, Viktor V

    2012-08-24

    The insulator-metal transition was observed experimentally in nickel monoxide (NiO) at very high pressures of ~240 GPa. The sample resistance becomes measurable at about 130 GPa and decreases substantially with the pressure increase to ~240 GPa. A sharp drop in resistance by about 3 orders of magnitude has been observed at ~240 GPa with a concomitant change of the resistance type from semiconducting to metallic. This is the first experimental observation of an insulator-metal transition in NiO, which was anticipated by Mott decades ago. From simple multielectron consideration, the metallic phase of NiO forms when the effective Hubbard energy U(eff) is almost equal to the estimated full bandwidth 2W. PMID:23002762

  20. Deformation of Single Crystal Molybdenum at High Pressure

    SciTech Connect

    Bonner, B P; Aracne, C; Farber, D L; Boro, C O; Lassila, D H

    2004-02-24

    Single crystal samples of micron dimensions oriented in the [001] direction were shortened 10 to 40% in uniaxial compression with superposed hydrostatic pressure to begin investigation of how the onset of yielding evolves with pressure. A testing machine based on opposed anvil geometry with precision pneumatic control of the applied force and capability to measure sub micron displacements was developed to produce shape changing deformation at pressure. The experiments extend observations of pressure dependent deformation to {approx}5Gpa at shortening rates of {approx}2*10{sup -4}. Samples have been recovered for post run characterization and analysis to determine if deformation mechanisms are altered by pressure. Experiments under hydrostatic pressure provide insight into the nature of materials under extreme conditions, and also provide a means for altering deformation behavior in a controlled fashion. The approach has a long history demonstrating that pressure enhances ductility in general, and produces enhanced hardening relative to that expected from normal cold work in the BCC metals Mo, Ta and Nb{sup 2}. The pressure hardening is in excess of that predicted from the measured increase in shear modulus at pressure, and therefore is likely due to a dislocation mechanism, such as suppression of kink pair formation or the interaction of forest dislocation cores, and not from lattice resistance. The effect has not been observed in FCC metals, suggesting a fundamental difference between deformation mechanisms at pressure for the two classes. The purpose of this letter is to investigate the origin of pressure hardening with new experiments that extend the pressure range beyond 3 GPa, the upper limit of conventional large sample (1cm{sup 3}) testing methods. Most previous high pressure deformation studies have been on poly crystals, relying on model dependent analysis to infer the maximum deviatoric stress that a deformed sample can support. In one experiment, a

  1. High pressure, high current, low inductance, high reliability sealed terminals

    DOEpatents

    Hsu, John S [Oak Ridge, TN; McKeever, John W [Oak Ridge, TN

    2010-03-23

    The invention is a terminal assembly having a casing with at least one delivery tapered-cone conductor and at least one return tapered-cone conductor routed there-through. The delivery and return tapered-cone conductors are electrically isolated from each other and positioned in the annuluses of ordered concentric cones at an off-normal angle. The tapered cone conductor service can be AC phase conductors and DC link conductors. The center core has at least one service conduit of gate signal leads, diagnostic signal wires, and refrigerant tubing routed there-through. A seal material is in direct contact with the casing inner surface, the tapered-cone conductors, and the service conduits thereby hermetically filling the interstitial space in the casing interior core and center core. The assembly provides simultaneous high-current, high-pressure, low-inductance, and high-reliability service.

  2. High pressure and high temperature behaviour of ZnO

    SciTech Connect

    Thakar, Nilesh A.; Bhatt, Apoorva D.; Pandya, Tushar C.

    2014-04-24

    The thermodynamic properties with the wurtzite (B4) and rocksalt (B1) phases of ZnO under high pressures and high temperatures have been investigated using Tait's Equation of state (EOS). The effects of pressures and temperatures on thermodynamic properties such as bulk modulus, thermal expansivity and thermal pressure are explored for both two structures. It is found that ZnO material gradually softens with increase of temperature while it hardens with the increment of the pressure. Our predicted results of thermodynamics properties for both the phases of ZnO are in overall agreement with the available data in the literature.

  3. Low-pressure performance of annular, high-pressure (40 atm) high-temperature (2480 K) combustion system

    NASA Technical Reports Server (NTRS)

    Wear, J. D.

    1980-01-01

    Experimental tests were conducted to develop a combustion system for a 40 atmosphere pressure, 2480 K exhaust gas temperature, turbine cooling facility. The tests were conducted in an existing facility with a maximum pressure capability of 10 atmospheres and where inlet air temperatures as high as 894 K could be attained. Exhaust gas temperatures were as high as 2365 K. Combustion efficiences were about 100 percent over a fuel air ratio range of 0.016 to 0.056. Combustion efficiency decreased at leaner and richer ratios when the inlet air temperature was 589 K. Data are presented that show the effect of fuel air ratio and inlet air temperature on liner metal temperature. Isothermal system pressure loss as a function of diffuser inlet Mach number is also presented. Data included exhaust gas pattern factors; unburned hydrocarbon, carbon monoxide, and oxides of nitrogen emission index values; and smoke numbers.

  4. Curved and conformal high-pressure vessel

    DOEpatents

    Croteau, Paul F.; Kuczek, Andrzej E.; Zhao, Wenping

    2016-10-25

    A high-pressure vessel is provided. The high-pressure vessel may comprise a first chamber defined at least partially by a first wall, and a second chamber defined at least partially by the first wall. The first chamber and the second chamber may form a curved contour of the high-pressure vessel. A modular tank assembly is also provided, and may comprise a first mid tube having a convex geometry. The first mid tube may be defined by a first inner wall, a curved wall extending from the first inner wall, and a second inner wall extending from the curved wall. The first inner wall may be disposed at an angle relative to the second inner wall. The first mid tube may further be defined by a short curved wall opposite the curved wall and extending from the second inner wall to the first inner wall.

  5. Fluid hydrogen at high density - Pressure dissociation

    NASA Technical Reports Server (NTRS)

    Saumon, Didier; Chabrier, Gilles

    1991-01-01

    A model for the Helmholtz free energy of fluid hydrogen at high density and high temperature is developed. This model aims at describing both pressure and temperature dissociation and ionization and bears directly on equations of state of partially ionized plasmas, as encountered in astrophysical situations and high-pressure experiments. This paper focuses on a mixture of hydrogen atoms and molecules and is devoted to the study of the phenomenon of pressure dissociation at finite temperatures. In the present model, the strong interactions are described with realistic potentials and are computed with a modified Weeks-Chandler-Andersen fluid perturbation theory that reproduces Monte Carlo simulations to better than 3 percent. Theoretical Hugoniot curves derived from the model are in excellent agreement with experimental data.

  6. High pressure chemistry of substituted acetylenes

    SciTech Connect

    Chellappa, Raja; Dattelbaum, Dana; Sheffield, Stephen; Robbins, David

    2011-01-25

    High pressure in situ synchrotron x-ray diffraction experiments were performed on substituted polyacetylenes: tert-butyl acetylene [TBA: (CH{sub 3}){sub 3}-C{triple_bond}CH] and ethynyl trimethylsilane [ETMS: (CH{sub 3}){sub 3}-Si{triple_bond}CH] to investigate pressure-induced chemical reactions. The starting samples were the low temperature crystalline phases which persisted metastably at room temperature and polymerized beyond 11 GPa and 26 GPa for TBA and ETMS respectively. These reaction onset pressures are considerably higher than what we observed in the shockwave studies (6.1 GPa for TBA and 6.6 GPa for ETMS). Interestingly, in the case of ETMS, it was observed with fluid ETMS as starting sample, reacts to form a semi-crystalline polymer (crystalline domains corresponding to the low-T phase) at pressures less than {approx}2 GPa. Further characterization using vibrational spectroscopy is in progress.

  7. A high pressure modulated molecular beam mass spectrometric sampling system

    NASA Technical Reports Server (NTRS)

    Stearns, C. A.; Kohl, F. J.; Fryburg, G. C.; Miller, R. A.

    1977-01-01

    The current state of understanding of free-jet high pressure sampling is critically reviewed and modifications of certain theoretical and empirical considerations are presented. A high pressure, free-jet expansion, modulated molecular beam, mass spectrometric sampling apparatus was constructed and this apparatus is described in detail. Experimental studies have demonstrated that the apparatus can be used to sample high temperature systems at pressures up to one atmosphere. Condensible high temperature gaseous species have been routinely sampled and the mass spectrometric detector has provided direct identification of sampled species. System sensitivity is better than one tenth of a part per million. Experimental results obtained with argon and nitrogen beams are presented and compared to theoretical predictions. These results and the respective comparison are taken to indicate acceptable performance of the sampling apparatus. Results are also given for two groups of experiments related to hot corrosion studies. The formation of gaseous sodium sulfate in doped methane-oxygen flames was characterized and the oxidative vaporization of metals was studied in an atmospheric pressure flowing gas system to which gaseous salt partial pressures were added.

  8. Exotic stable cesium polynitrides at high pressure

    DOE PAGES

    Peng, Feng; Han, Yunxia; Liu, Hanyu; Yao, Yansun

    2015-11-19

    New polynitrides containing metastable forms of nitrogen are actively investigated as potential high energy-density materials. Using a structure search method based on the CALYPSO methodology, we investigated the stable stoichiometries and structures of cesium polynitrides at high pressures. Along with the CsN3, we identified five new stoichiometric compounds (Cs3N, Cs2N, CsN, CsN2, and CsN5) with interesting structures that may be experimentally synthesizable at modest pressures (i.e., less than 50 GPa). Nitrogen species in the predicted structures have various structural forms ranging from single atom (N) to highly endothermic molecules (N2, N3 , N4, N5, N6) and chains (N∞). Polymeric chainsmore » of nitrogen were found in the high-pressure C2/c phase of CsN2. This structure contains a substantially high content of single N-N bonds that exceeds the previously known nitrogen chains in pure forms, and also exhibit metastability at ambient conditions. We also identified a very interesting CsN crystal that contains novel N44- anion. In conclusion, to our best knowledge, this is the first time a charged N4 species being reported. Results of the present study suggest that it is possible to obtain energetic polynitrogens in main-group nitrides under high pressure.« less

  9. Exotic stable cesium polynitrides at high pressure

    NASA Astrophysics Data System (ADS)

    Peng, Feng; Han, Yunxia; Liu, Hanyu; Yao, Yansun

    2015-11-01

    New polynitrides containing metastable forms of nitrogen are actively investigated as potential high-energy-density materials. Using a structure search method based on the CALYPSO methodology, we investigated the stable stoichiometries and structures of cesium polynitrides at high pressures. Along with the CsN3, we identified five new stoichiometric compounds (Cs3N, Cs2N, CsN, CsN2, and CsN5) with interesting structures that may be experimentally synthesizable at modest pressures (i.e., less than 50 GPa). Nitrogen species in the predicted structures have various structural forms ranging from single atom (N) to highly endothermic molecules (N2, N3, N4, N5, N6) and chains (N∞). Polymeric chains of nitrogen were found in the high-pressure C2/c phase of CsN2. This structure contains a substantially high content of single N-N bonds that exceeds the previously known nitrogen chains in pure forms, and also exhibit metastability at ambient conditions. We also identified a very interesting CsN crystal that contains novel N44- anion. To our best knowledge, this is the first time a charged N4 species being reported. Results of the present study suggest that it is possible to obtain energetic polynitrogens in main-group nitrides under high pressure.

  10. Exotic stable cesium polynitrides at high pressure

    PubMed Central

    Peng, Feng; Han, Yunxia; Liu, Hanyu; Yao, Yansun

    2015-01-01

    New polynitrides containing metastable forms of nitrogen are actively investigated as potential high-energy-density materials. Using a structure search method based on the CALYPSO methodology, we investigated the stable stoichiometries and structures of cesium polynitrides at high pressures. Along with the CsN3, we identified five new stoichiometric compounds (Cs3N, Cs2N, CsN, CsN2, and CsN5) with interesting structures that may be experimentally synthesizable at modest pressures (i.e., less than 50 GPa). Nitrogen species in the predicted structures have various structural forms ranging from single atom (N) to highly endothermic molecules (N2, N3, N4, N5, N6) and chains (N∞). Polymeric chains of nitrogen were found in the high-pressure C2/c phase of CsN2. This structure contains a substantially high content of single N-N bonds that exceeds the previously known nitrogen chains in pure forms, and also exhibit metastability at ambient conditions. We also identified a very interesting CsN crystal that contains novel N44− anion. To our best knowledge, this is the first time a charged N4 species being reported. Results of the present study suggest that it is possible to obtain energetic polynitrogens in main-group nitrides under high pressure. PMID:26581175

  11. High pressure water jet mining machine

    DOEpatents

    Barker, Clark R.

    1981-05-05

    A high pressure water jet mining machine for the longwall mining of coal is described. The machine is generally in the shape of a plowshare and is advanced in the direction in which the coal is cut. The machine has mounted thereon a plurality of nozzle modules each containing a high pressure water jet nozzle disposed to oscillate in a particular plane. The nozzle modules are oriented to cut in vertical and horizontal planes on the leading edge of the machine and the coal so cut is cleaved off by the wedge-shaped body.

  12. High pressure water jet cutting and stripping

    NASA Technical Reports Server (NTRS)

    Hoppe, David T.; Babai, Majid K.

    1991-01-01

    High pressure water cutting techniques have a wide range of applications to the American space effort. Hydroblasting techniques are commonly used during the refurbishment of the reusable solid rocket motors. The process can be controlled to strip a thermal protective ablator without incurring any damage to the painted surface underneath by using a variation of possible parameters. Hydroblasting is a technique which is easily automated. Automation removes personnel from the hostile environment of the high pressure water. Computer controlled robots can perform the same task in a fraction of the time that would be required by manual operation.

  13. Superelastic carbon spheres under high pressure

    NASA Astrophysics Data System (ADS)

    Li, Meifen; Guo, Junjie; Xu, Bingshe

    2013-03-01

    We report a superelastic deformation behavior of carbon spheres by the in situ Raman spectroscopy in a high-pressure diamond anvil cell. The carbon spheres produced by arc discharging in toluene have a mean diameter of 200 nm and an onion-like multilayer graphitic structure. We find that the elastic coefficients, during both the compression and decompression processes, remain a constant up to 10 GPa, indicating a superior high-pressure structural stability. Such superelastic behavior is related to the isotropic and concentric configuration of carbon spheres and provides additional insight into improving the microscopic mechanical properties of small-scale particles.

  14. High pressure freon decontamination of remote equipment

    SciTech Connect

    Wilson, C.E.

    1987-01-01

    A series of decontamination tests using high pressure FREON 113 was conducted in the 200 Area of the Hanford site. The intent of these tests was to evaluate the effectiveness of FREON 113 in decontamination of manipulator components, tools, and equipment items contaminated with mixed fission products. The test results indicated that high pressure FREON 113 is very effective in removing fissile material from a variety of objects and can reduce both the quantity and the volume of the radioactive waste material presently being buried.

  15. Effect of high pressure on the electrical resistivity of Ge−Te−In glasses

    SciTech Connect

    Prasad, K. N. N.; Varma, G. Sreevidya; Asokan, S.; Rukmani, K.

    2015-06-24

    The variation in the electrical resistivity of the chalcogenide glasses Ge{sub 15}Te{sub 85-x}In{sub x} has been studied as a function of high pressure for pressures up to 8.5GPa. All the samples studied undergo a semi-conductor to metallic transition in a continuous manner at pressures between 1.5-2.5GPa. The transition pressure at which the samples turn metallic increases with increase in percentage of Indium. This increase is a direct consequence of the increase in network rigidity with the addition of Indium. At a constant pressure of 0.5GPa, the normalized resistivity shows some signature of the existence of the intermediate phase. Samples recovered after a pressure cycle remain amorphous suggesting that the semi-conductor to metallic transition arises from a reduction of the band gap due to pressure or the movement of the Fermi level into the conduction or valence band.

  16. High -Pressure Synthesis and Characterization of Incompressible Titanium Pernitride

    NASA Astrophysics Data System (ADS)

    Bhadram, Venkata; Kim, Duck Young; Strobel, Timothy

    We report the discovery of a new transition-metal pernitride, TiN2, which was synthesized by reacting TiN with N2 at 73GPa in a laser-heated diamond anvil cell (DAC). Our in situ pressure dependent x-ray diffraction studies suggest that TiN2 is recoverable at ambient conditions in a crystal structure that contains single bonded nitrogen units (N2 dumbbells) embedded in the metal lattice and exhibits high bulk modulus (in the range 360-385 GPa) which is usually observed in superhard materials. We have performed ab initio calculations to understand the electronic properties and bonding nature in TiN2 and thereby elucidate the origin of incompressible behavior of this material which is rooted in the nearly filled anti-bonding states of the pernitride units. Although, study of transition metal pernitrides has been an active area of research for quite some time, most of the pernitrides synthesized so far are belong to noble metal group. To our knowledge, this is the first experimental report on TiN2 which is the only light metal pernitride exhibiting bonding-mechanical property relation that is usually seen in heavy metal pernitrides. This work was supported by Energy Frontier Research in Extreme Environments (EFree) Center, an Energy Frontier Research Center funded by the US Department of Energy, Office of Science under Award No. DE-SC0001057.

  17. Ultra-smooth metal surfaces generated by pressure-induced surface deformation of thin metal films

    NASA Astrophysics Data System (ADS)

    Logeeswaran, V. J.; Chan, M.-L.; Bayam, Y.; Saif Islam, M.; Horsley, D. A.; Li, X.; Wu, W.; Wang, S. Y.; Williams, R. S.

    2007-05-01

    We present a mechanical pressing technique for generating ultra-smooth surfaces on thin metal films by flattening the bumps, asperities, rough grains and spikes of a freshly vacuum deposited metal film. The method was implemented by varying the applied pressure from 100 MPa to 600 MPa on an e-beam evaporated silver film of thickness 1000 Å deposited on double-polished (100)-oriented silicon surfaces, resulting in a varying degree of film smoothness. The surface morphology of the thin film was studied using atomic force microscopy. Notably, at a pressure of ˜600 MPa an initial silver surface with 13-nm RMS roughness was plastically deformed and transformed to an ultra-flat plane with better than 0.1 nm RMS. Our demonstration with the e-beam evaporated silver thin film exhibits the potential for applications in decreasing the scattering-induced losses in optical metamaterials, plasmonic nanodevices and electrical shorts in molecular-scale electronic devices.

  18. From antiferromagnetic insulator to correlated metal in pressurized and doped LaMnPO.

    PubMed

    Simonson, J W; Yin, Z P; Pezzoli, M; Guo, J; Liu, J; Post, K; Efimenko, A; Hollmann, N; Hu, Z; Lin, H-J; Chen, C-T; Marques, C; Leyva, V; Smith, G; Lynn, J W; Sun, L L; Kotliar, G; Basov, D N; Tjeng, L H; Aronson, M C

    2012-07-01

    Widespread adoption of superconducting technologies awaits the discovery of new materials with enhanced properties, especially higher superconducting transition temperatures T(c). The unexpected discovery of high T(c) superconductivity in cuprates suggests that the highest T(c)s occur when pressure or doping transform the localized and moment-bearing electrons in antiferromagnetic insulators into itinerant carriers in a metal, where magnetism is preserved in the form of strong correlations. The absence of this transition in Fe-based superconductors may limit their T(c)s, but even larger T(c)s may be possible in their isostructural Mn analogs, which are antiferromagnetic insulators like the cuprates. It is generally believed that prohibitively large pressures would be required to suppress the effects of the strong Hund's rule coupling in these Mn-based compounds, collapsing the insulating gap and enabling superconductivity. Indeed, no Mn-based compounds are known to be superconductors. The electronic structure calculations and X-ray diffraction measurements presented here challenge these long held beliefs, finding that only modest pressures are required to transform LaMnPO, isostructural to superconducting host LaFeAsO, from an antiferromagnetic insulator to a metallic antiferromagnet, where the Mn moment vanishes in a second pressure-driven transition. Proximity to these charge and moment delocalization transitions in LaMnPO results in a highly correlated metallic state, the familiar breeding ground of superconductivity.

  19. Advanced composite fiber/metal pressure vessels for aircraft applications

    NASA Astrophysics Data System (ADS)

    Papanicolopoulos, Aleck

    1993-06-01

    Structural Composites Industries has developed, qualified, and delivered a number of high performance carbon epoxy overwrapped/seamless aluminum liner pressure vessels for use in military aircraft where low weight, low cost, high operating pressure and short lead time are the primary considerations. This paper describes product design, development, and qualification for a typical program. The vessel requirements included a munitions insensitivity criterion as evidenced by no fragmentation following impact by a .50 cal tumbling bullet. This was met by the development of a carbon-Spectra hybrid composite overwrap on a thin-walled seamless aluminum liner. The same manufacturing, inspection, and test processes that are used to produce lightweight, thin walled seamless aluminum lined carbon/epoxy overwrapped pressure vessels for satellite and other space applications were used to fabricate this vessel. This report focuses on the results of performance in the qualification testing.

  20. Raman study of opal at high pressure

    NASA Astrophysics Data System (ADS)

    Farfan, G.; Wang, S.; Mao, W. L.

    2011-12-01

    More commonly known for their beauty and lore as gemstones, opals are also intriguing geological materials which may have potential for materials science applications. Opal lacks a definite crystalline structure, and is composed of an amorphous packing of hydrated silica (SiO2) spheroids, which provides us with a unique nano-scaled mineraloid with properties unlike those of other amorphous materials like glass. Opals from different localities were studied at high pressure using a diamond anvil cell to apply pressure and Raman spectroscopy to look at changes in bonding as pressure was increased. We first tested different samples from Virgin Valley, NV, Spencer, ID, Juniper Ridge, OR, and Australia, which contain varying amounts of water at ambient conditions, using Raman spectroscopy to determine if they were opal-CT (semicrystalline cristobalite-trydimite volcanic origin) or opal-A (amorphous sedimentary origin). We then used x-ray diffraction and Raman spectroscopy in a diamond anvil cell to see how their bonding and structure changed under compression and to determine what effect water content had on their high pressure behavior. Comparison of our results on opal to other high pressure studies of amorphous materials like glass has implications from a geological and materials science standpoint.

  1. High pressure effects on allergen food proteins.

    PubMed

    Somkuti, Judit; Smeller, László

    2013-12-15

    There are several proteins, which can cause allergic reaction if they are inhaled or ingested. Our everyday food can also contain such proteins. Food allergy is an IgE-mediated immune disorder, a growing health problem of great public concern. High pressure is known to affect the structure of proteins; typically few hundred MPa pressure can lead to denaturation. That is why several trials have been performed to alter the structure of the allergen proteins by high pressure, in order to reduce its allergenicity. Studies have been performed both on simple protein solutions and on complex food systems. Here we review those allergens which have been investigated under or after high pressure treatment by methods capable of detecting changes in the secondary and tertiary structure of the proteins. We focus on those allergenic proteins, whose structural changes were investigated by spectroscopic methods under pressure in correlation with the observed allergenicity (IgE binding) changes. According to this criterion we selected the following allergen proteins: Mal d 1 and Mal d 3 (apple), Bos d 5 (milk), Dau c 1 (carrot), Gal d 2 (egg), Ara h 2 and Ara h 6 (peanut), and Gad m 1 (cod).

  2. High pressure turbomachinery ground test facility

    NASA Technical Reports Server (NTRS)

    Scheuermann, Patrick E.

    1992-01-01

    Turbomachinery test facilities are at present scarce to non-existent world-wide. The turbomachinery test facility at Stennis Space Center will provide for advanced development and research and development capabilities for liquid hydrogen/liquid oxygen propellant rocket engine components. The facility will provide ultra-high pressure via gas generators to deliver the needed turbine drive on various turbomachinery. State of the art process control systems will provide the vital pressure, temperature and flow requirements during tests. These systems will better control adverse transient conditions during start-up and shutdown, and by using advanced control theory, as well as incorporate test article health monitoring. Also, digital data acquisition systems will obtain high frequency (up to 20 KHz) and low frequency (up to 1 KHz) data during the test. Pressures of up to 15,000 psi will be generated to pressurize high pressure tanks supplying cryogens to various test article inlets thus pushing turbopump materials and manufacturing processes to their limits. By planning for future projects the test facility will be easily adaptable to multi-program test configurations over a range of thermodynamic positions.

  3. Cleaning of waste smelter slags and recovery of valuable metals by pressure oxidative leaching.

    PubMed

    Li, Yunjiao; Perederiy, Ilya; Papangelakis, Vladimiros G

    2008-04-01

    Huge quantities of slag, a waste solid product of pyrometallurgical operations by the metals industry are dumped continuously around the world, posing a potential environmental threat due to entrained values of base metals and sulfur. High temperature pressure oxidative acid leaching of nickel smelter slags was investigated as a process to facilitate slag cleaning and selective dissolution of base metals for economic recovery. Five key parameters, namely temperature, acid addition, oxygen overpressure, solids loading and particle size, were examined on the process performance. Base metal recoveries, acid and oxygen consumptions were accurately measured, and ferrous/ferric iron concentrations were also determined. A highly selective leaching of valuable metals with extractions of >99% for nickel and cobalt, >97% for copper, >91% for zinc and <2.2% for iron was successfully achieved for 20 wt.% acid addition and 25% solids loading at 200-300 kPa O(2) overpressure at 250 degrees C in 2h. The acid consumption was measured to be 38.5 kg H(2)SO(4)/t slag and the oxygen consumption was determined as 84 kg O(2)/t slag which is consistent with the estimated theoretical oxygen consumption. The as-produced residue containing less than 0.01% of base metals, hematite and virtually zero sulfidic sulfur seems to be suitable for safe disposal. The process seems to be able to claim economic recovery of base metals from slags and is reliable and feasible.

  4. Cleaning of waste smelter slags and recovery of valuable metals by pressure oxidative leaching.

    PubMed

    Li, Yunjiao; Perederiy, Ilya; Papangelakis, Vladimiros G

    2008-04-01

    Huge quantities of slag, a waste solid product of pyrometallurgical operations by the metals industry are dumped continuously around the world, posing a potential environmental threat due to entrained values of base metals and sulfur. High temperature pressure oxidative acid leaching of nickel smelter slags was investigated as a process to facilitate slag cleaning and selective dissolution of base metals for economic recovery. Five key parameters, namely temperature, acid addition, oxygen overpressure, solids loading and particle size, were examined on the process performance. Base metal recoveries, acid and oxygen consumptions were accurately measured, and ferrous/ferric iron concentrations were also determined. A highly selective leaching of valuable metals with extractions of >99% for nickel and cobalt, >97% for copper, >91% for zinc and <2.2% for iron was successfully achieved for 20 wt.% acid addition and 25% solids loading at 200-300 kPa O(2) overpressure at 250 degrees C in 2h. The acid consumption was measured to be 38.5 kg H(2)SO(4)/t slag and the oxygen consumption was determined as 84 kg O(2)/t slag which is consistent with the estimated theoretical oxygen consumption. The as-produced residue containing less than 0.01% of base metals, hematite and virtually zero sulfidic sulfur seems to be suitable for safe disposal. The process seems to be able to claim economic recovery of base metals from slags and is reliable and feasible. PMID:17728060

  5. HIGH PRESSURE COAL COMBUSTON KINETICS PROJECT

    SciTech Connect

    Stefano Orsino

    2005-03-30

    As part of the U.S. Department of Energy (DoE) initiative to improve the efficiency of coal-fired power plants and reduce the pollution generated by these facilities, DOE has funded the High-Pressure Coal Combustion Kinetics (HPCCK) Projects. A series of laboratory experiments were conducted on selected pulverized coals at elevated pressures with the specific goals to provide new data for pressurized coal combustion that will help extend to high pressure and validate models for burnout, pollutant formation, and generate samples of solid combustion products for analyses to fill crucial gaps in knowledge of char morphology and fly ash formation. Two series of high-pressure coal combustion experiments were performed using SRI's pressurized radiant coal flow reactor. The first series of tests characterized the near burner flame zone (NBFZ). Three coals were tested, two high volatile bituminous (Pittsburgh No.8 and Illinois No.6), and one sub-bituminous (Powder River Basin), at pressures of 1, 2, and 3 MPa (10, 20, and 30 atm). The second series of experiments, which covered high-pressure burnout (HPBO) conditions, utilized a range of substantially longer combustion residence times to produce char burnout levels from 50% to 100%. The same three coals were tested at 1, 2, and 3 MPa, as well as at 0.2 MPa. Tests were also conducted on Pittsburgh No.8 coal in CO2 entrainment gas at 0.2, 1, and 2 MPa to begin establishing a database of experiments relevant to carbon sequestration techniques. The HPBO test series included use of an impactor-type particle sampler to measure the particle size distribution of fly ash produced under complete burnout conditions. The collected data have been interpreted with the help of CFD and detailed kinetics simulation to extend and validate devolatilization, char combustion and pollutant model at elevated pressure. A global NOX production sub-model has been proposed. The submodel reproduces the performance of the detailed chemical reaction

  6. Static and dynamic high pressure experiments on cerium

    SciTech Connect

    Jensen, Brian J; Velisavljevic, Nenad; Cherne, Frank J; Stevens, Gerald; Tschauner, Oliver

    2011-01-25

    There is a scientific need to obtain dynamic data to develop and validate multi phase equation-of-state (EOS) models for metals. Experiments are needed to examine the relevant pure phases, to locate phase boundaries and the associated transition kinetics, and other material properties such as strength. Cerium is an ideal material for such work because it exhibits a complex multiphase diagram at relatively moderate pressures readily accessible using standard shock wave methods. In the current work, shock wave (dynamic) and diamond anvil cell (static) experiments were performed to examine the high pressure, low temperature region of the phase diagram to obtain EOS data and to search for the {alpha}-{var_epsilon} boundary. Past work examining the shock-melt transition and the low-pressure {gamma}-{alpha} transition will be presented in brief followed by details of recent results obtained from DAC and double-shock experiments.

  7. High Pressure Transport Studies of NdIn3

    NASA Astrophysics Data System (ADS)

    Purcell, Kenneth; Graf, David; Ebihara, Takao

    2015-03-01

    NdIn3 is a cubic antiferromagnetic metal that orders with a Neel temperature of 5.9 K and belongs to a family of rare earth intermetallic compounds RIn3 that have a cubic AuCu3-type crystal structure. At 0.5 K and the magnetic field applied in 100 direction, NdIn3 exhibits metamagnetic transitions at 7.8 T and 8.9 T before entering a field induced paramagnetic state at 11.1 T. We report high pressure transport studies of single crystal NdIn3 and the effect that pressure has on the Neel temperature, critical field, and metamagnetic transitions observed in the magnetoresistance. Comparisons to the behavior of the pressure induced superconductor CeIn3 will be discussed.

  8. High pressure combustion synthesis of aluminum nitride

    SciTech Connect

    Costantino, M.; Firpo, C. )

    1991-11-01

    We report initial results on the synthesis of monolithic aluminum nitride by burning Al--AlN mixtures in high pressure nitrogen. The objective is to synthesize economically large, near-theoretical density AlN parts. In this work, we begin with compacted mixtures of 10 {mu}m Al and 3 {mu}m AlN powder formed into 7.62 cm diameter by 3.81 cm thick disks having densities up to 60% of theoretical. Then, at N{sub 2} pressures up to 180 MPa (26 000 psi), we ignite the disk on one face. The fraction of Al converted to AlN, density, and severity of macroscopic cracking vary with N{sub 2} pressure and heat transfer from the sample. Presently, products are inhomogeneous, showing regions of relatively high porosity, regions with no porosity but with AlN in a matrix of Al, and regions of nearly theoretical density AlN.

  9. Wound cleansing by high pressure irrigation.

    PubMed

    Rodeheaver, G T; Pettry, D; Thacker, J G; Edgerton, M T; Edlich, R F

    1975-09-01

    All traumatic wounds are contaminated to some degree by both soil and bacteria. Specific infection potentiating factors in soil impair the defenses of the tissue and invite infection. These factors are small in size and resist removal by low pressure irrigation. The efficiency of wound irrigation is markedly improved by delivering the irrigant to the wound under continuous high pressure. Irrigation of the wound with saline solution delivered at 15 pounds per square inch removed 84.8 per cent of the soil infection potentiating factors from the wound. The residual infection potentiating factors remaining in the wound did not significantly impair tissue defenses. On the basis of these experimental studies, clinical studies are now being initiated to test the therapeutic value of high pressure irrigation in traumatic wounds in humans.

  10. Advanced Diagnostics for High Pressure Spray Combustion.

    SciTech Connect

    Skeen, Scott A.; Manin, Julien Luc; Pickett, Lyle M.

    2014-06-01

    The development of accurate predictive engine simulations requires experimental data to both inform and validate the models, but very limited information is presently available about the chemical structure of high pressure spray flames under engine- relevant conditions. Probing such flames for chemical information using non- intrusive optical methods or intrusive sampling techniques, however, is challenging because of the physical and optical harshness of the environment. This work details two new diagnostics that have been developed and deployed to obtain quantitative species concentrations and soot volume fractions from a high-pressure combusting spray. A high-speed, high-pressure sampling system was developed to extract gaseous species (including soot precursor species) from within the flame for offline analysis by time-of-flight mass spectrometry. A high-speed multi-wavelength optical extinction diagnostic was also developed to quantify transient and quasi-steady soot processes. High-pressure sampling and offline characterization of gas-phase species formed following the pre-burn event was accomplished as well as characterization of gas-phase species present in the lift-off region of a high-pressure n-dodecane spray flame. For the initial samples discussed in this work several species were identified, including polycyclic aromatic hydrocarbons (PAH); however, quantitative mole fractions were not determined. Nevertheless, the diagnostic developed here does have this capability. Quantitative, time-resolved measurements of soot extinction were also accomplished and the novel use of multiple incident wavelengths proved valuable toward characterizing changes in soot optical properties within different regions of the spray flame.

  11. What about African Americans and High Blood Pressure?

    MedlinePlus

    ANSWERS by heart Lifestyle + Risk Reduction High Blood Pressure What About African Americans and High Blood Pressure? The prevalence of high blood pressure in African Americans is among the highest in ...

  12. Abrasion and fracture testing in a high-pressure hydrogen environment

    NASA Technical Reports Server (NTRS)

    Sneesby, G. V.; Walker, R. J.

    1969-01-01

    Two devices are necessary for abrasion and fracture testing of materials evaluated for storage of hydrogen at high pressure for long periods. The first device abrades tensile specimens. The second device tests for fracture toughness of metals. Both devices permit testing in both yield and failure modes in high pressure hydrogen.

  13. Cobalt ferrite nanoparticles under high pressure

    SciTech Connect

    Saccone, F. D.; Ferrari, S.; Grinblat, F.; Bilovol, V.; Errandonea, D.

    2015-08-21

    We report by the first time a high pressure X-ray diffraction and Raman spectroscopy study of cobalt ferrite (CoFe{sub 2}O{sub 4}) nanoparticles carried out at room temperature up to 17 GPa. In contrast with previous studies of nanoparticles, which proposed the transition pressure to be reduced from 20–27 GPa to 7.5–12.5 GPa (depending on particle size), we found that cobalt ferrite nanoparticles remain in the spinel structure up to the highest pressure covered by our experiments. In addition, we report the pressure dependence of the unit-cell parameter and Raman modes of the studied sample. We found that under quasi-hydrostatic conditions, the bulk modulus of the nanoparticles (B{sub 0} = 204 GPa) is considerably larger than the value previously reported for bulk CoFe{sub 2}O{sub 4} (B{sub 0} = 172 GPa). In addition, when the pressure medium becomes non-hydrostatic and deviatoric stresses affect the experiments, there is a noticeable decrease of the compressibility of the studied sample (B{sub 0} = 284 GPa). After decompression, the cobalt ferrite lattice parameter does not revert to its initial value, evidencing a unit cell contraction after pressure was removed. Finally, Raman spectroscopy provides information on the pressure dependence of all Raman-active modes and evidences that cation inversion is enhanced by pressure under non-hydrostatic conditions, being this effect not fully reversible.

  14. High redshift quasars and high metallicities

    NASA Technical Reports Server (NTRS)

    Ferland, Gary J.

    1997-01-01

    A large-scale code called Cloudy was designed to simulate non-equilibrium plasmas and predict their spectra. The goal was to apply it to studies of galactic and extragalactic emission line objects in order to reliably deduce abundances and luminosities. Quasars are of particular interest because they are the most luminous objects in the universe and the highest redshift objects that can be observed spectroscopically, and their emission lines can reveal the composition of the interstellar medium (ISM) of the universe when it was well under a billion years old. The lines are produced by warm (approximately 10(sup 4)K) gas with moderate to low density (n less than or equal to 10(sup 12) cm(sup -3)). Cloudy has been extended to include approximately 10(sup 4) resonance lines from the 495 possible stages of ionization of the lightest 30 elements, an extension that required several steps. The charge transfer database was expanded to complete the needed reactions between hydrogen and the first four ions and fit all reactions with a common approximation. Radiative recombination rate coefficients were derived for recombination from all closed shells, where this process should dominate. Analytical fits to Opacity Project (OP) and other recent photoionization cross sections were produced. Finally, rescaled OP oscillator strengths were used to compile a complete set of data for 5971 resonance lines. The major discovery has been that high redshift quasars have very high metallicities and there is strong evidence that the quasar phenomenon is associated with the birth of massive elliptical galaxies.

  15. A field survey of metal binding to metallothionein and other cytosolic ligands in liver of eels using an on-line isotope dilution method in combination with size exclusion (SE) high pressure liquid chromatography (HPLC) coupled to Inductively Coupled Plasma time-of-flight Mass Spectrometry (ICP-TOFMS).

    PubMed

    Van Campenhout, Karen; Goenaga Infante, Heidi; Goemans, Geert; Belpaire, Claude; Adams, Freddy; Blust, Ronny; Bervoets, Lieven

    2008-05-15

    The effect of metal exposure on the accumulation and cytosolic speciation of metals in livers of wild populations of European eel with special emphasis on metallothioneins (MT) was studied. Four sampling sites in Flanders showing different degrees of heavy metal contamination were selected for this purpose. An on-line isotope dilution method in combination with size exclusion (SE) high pressure liquid chromatography (HPLC) coupled to Inductively Coupled Plasma time-of-flight Mass Spectrometry (ICP-TOFMS) was used to study the cytosolic speciation of the metals. The distribution of the metals Cd, Cu, Ni, Pb and Zn among cytosolic fractions displayed strong differences. The cytosolic concentration of Cd, Ni and Pb increased proportionally with the total liver levels. However, the cytosolic concentrations of Cu and Zn only increased above a certain liver tissue threshold level. Cd, Cu and Zn, but not Pb and Ni, were largely associated with the MT pool in correspondence with the environmental exposure and liver tissue concentrations. Most of the Pb and Ni and a considerable fraction of Cu and Zn, but not Cd, were associated to High Molecular Weight (HMW) fractions. The relative importance of the Cu and Zn in the HMW fraction decreased with increasing contamination levels while the MT pool became progressively more important. The close relationship between the cytosolic metal load and the total MT levels or the metals bound on the MT pool indicates that the metals, rather than other stress factors, are the major factor determining MT induction.

  16. Calorimetry at high-pressure using high-frequency Joule-heating

    NASA Astrophysics Data System (ADS)

    Geballe, Zachary; Struzhkin, Viktor

    2015-03-01

    Calorimetric measurements of materials at 1 to 100 GPa of pressure would provide intriguing tests of condensed matter theories, sensitive probes of chemical reactions during high-pressure synthesis, and useful inputs for models of the Earth's interior. We present the design and first results of quantitative heat capacity measurements at >10 GPa of pressure. High-frequency AC voltage heats a small metal strip pressed between diamond anvils, creating temperature oscillations whose amplitudes are determined from the higher harmonics of voltage. Thermal models show that frequencies >100 kHz are required to contain heat in the ng-mass samples, while electrical models show that frequencies >100 MHz are not practical. Our experimental results show that the heat capacity of iron and nickel can indeed be measured at high frequencies in diamond anvil cells, paving the way for studies of the energetics of a wide-variety of entropy-driven phase changes at high pressure.

  17. Sounding experiments of high pressure gas discharge

    SciTech Connect

    Biele, Joachim K.

    1998-07-10

    A high pressure discharge experiment (200 MPa, 5{center_dot}10{sup 21} molecules/cm{sup 3}, 3000 K) has been set up to study electrically induced shock waves. The apparatus consists of the combustion chamber (4.2 cm{sup 3}) to produce high pressure gas by burning solid propellant grains to fill the electrical pump chamber (2.5 cm{sup 3}) containing an insulated coaxial electrode. Electrical pump energy up to 7.8 kJ at 10 kV, which is roughly three times of the gas energy in the pump chamber, was delivered by a capacitor bank. From the current-voltage relationship the discharge develops at rapidly decreasing voltage. Pressure at the combustion chamber indicating significant underpressure as well as overpressure peaks is followed by an increase of static pressure level. These data are not yet completely understood. However, Lorentz forces are believed to generate pinching with subsequent pinch heating, resulting in fast pressure variations to be propagated as rarefaction and shock waves, respectively. Utilizing pure axisymmetric electrode initiation rather than often used exploding wire technology in the pump chamber, repeatable experiments were achieved.

  18. High temperature pressure coupled ultrasonic waveguide

    DOEpatents

    Caines, Michael J.

    1983-01-01

    A pressure coupled ultrasonic waveguide is provided to which one end may be attached a transducer and at the other end a high temperature material for continuous ultrasonic testing of the material. The ultrasonic signal is coupled from the waveguide into the material through a thin, dry copper foil.

  19. High Pressure Inactivation of HAV within Mussels

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The potential of hepatitis A virus (HAV) to be inactivated within Mediterranean mussels (Mytilus galloprovincialis) and blue mussels (Mytilus edulis) by high pressure processing was evaluated. HAV was bioaccumulated within mussels to approximately 6-log10 PFU by exposure of mussels to HAV-contamina...

  20. Influence of the reactive atmosphere on the formation of nanoparticles in the plasma plume induced by nanosecond pulsed laser irradiation of metallic targets at atmospheric pressure and high repetition rate

    NASA Astrophysics Data System (ADS)

    Girault, M.; Le Garrec, J.-L.; Mitchell, J. B. A.; Jouvard, J.-M.; Carvou, E.; Menneveux, J.; Yu, J.; Ouf, F.-X.; Carles, S.; Potin, V.; Pillon, G.; Bourgeois, S.; Perez, J.; Marco de Lucas, M. C.; Lavisse, L.

    2016-06-01

    The influence of a reactive atmosphere on the formation of nanoparticles (NPs) in the plasma plume generated by nanosecond pulsed laser irradiation of metal targets (Ti, Al, Ag) was probed in situ using Small Angle X-ray Scattering (SAXS). Air and different O2-N2 gas mixtures were used as reactive gas within atmospheric pressure. SAXS results showed the formation of NPs in the plasma-plume with a mean radius varying in the 2-5 nm range. A decrease of the NPs size with increasing the O2 percentage in the O2-N2 gas mixture was also showed. Ex situ observations by transmission electron microscopy and structural characterizations by X-ray diffraction and Raman spectroscopy were also performed for powders collected in experiments done using air as ambient gas. The stability of the different metal oxides is discussed as being a key parameter influencing the formation of NPs in the plasma-plume.

  1. Toroid cavities as NMR detectors in high pressure probes

    SciTech Connect

    Woelk, K.; Rathke, J.W.; Klingler, R.J.

    1993-03-01

    A cylindrical toroid cavity has been developed for application as an NMR detector for high sensitivity and high resolution spectroscopy in metal vessel probes. Those probes are used for in situ investigations at high temperature and pressure. Since the transmitted r.f. field is completely confined within the torus, the cavity can be placed inside the pressurized system without magnetic coupling to the metal vessel. Resonance frequencies up to 400 MHz make the toroid cavity detector especially suited for use in {sup 1}H and {sup 19}F spectroscopy. Typically achieved static {sup 1}H linewidths, measured on CHCl{sub 3} using cavities in Be-Cu pressure vessels, are 2.0 Hz. On the basis of theoretical considerations that include the radial dependence of the r.f. field within cylindrical or circular toroid detectors, equations were evolved to predict the signal intensity as a function of the pulse width. The equations precisely describe the deviations from the sinusoidal approximation, which is generally used for signal intensities derived from Helmholtz or solenoid coils.

  2. High-performance fiber/epoxy composite pressure vessels

    NASA Technical Reports Server (NTRS)

    Chiao, T. T.; Hamstad, M. A.; Jessop, E. S.; Toland, R. H.

    1978-01-01

    Activities described include: (1) determining the applicability of an ultrahigh-strength graphite fiber to composite pressure vessels; (2) defining the fatigue performance of thin-titanium-lined, high-strength graphite/epoxy pressure vessel; (3) selecting epoxy resin systems suitable for filament winding; (4) studying the fatigue life potential of Kevlar 49/epoxy pressure vessels; and (5) developing polymer liners for composite pressure vessels. Kevlar 49/epoxy and graphite fiber/epoxy pressure vessels, 10.2 cm in diameter, some with aluminum liners and some with alternation layers of rubber and polymer were fabricated. To determine liner performance, vessels were subjected to gas permeation tests, fatigue cycling, and burst tests, measuring composite performance, fatigue life, and leak rates. Both the metal and the rubber/polymer liner performed well. Proportionately larger pressure vessels (20.3 and 38 cm in diameter) were made and subjected to the same tests. In these larger vessels, line leakage problems with both liners developed the causes of the leaks were identified and some solutions to such liner problems are recommended.

  3. High pressure luminescence probes in polymers

    SciTech Connect

    Drickamer, H.G.

    1980-01-01

    High pressure luminescence has proved to be a very powerful tool for characterizing crystalline solids and liquids. Two problems involving glassy polymers are analyzed. In the first problem the excited states of azulene and its derivatives are used to probe intermolecular interactions in PMMA and PS. In the second problem the change in emission intensity with pressure from two excimer states of polyvinylcarbazole as a pure polymer and in dilute solution in polystyrene (PS), polymethylmethacrylate (PMMA) and polyisoliutylene (PIB) is studied. The relative emission from the two states depends strongly on the possibility for motion of polymer segments. The observations are related to the proximity to the glass transition.

  4. Preparation of uniform nanoparticles of ultra-high purity metal oxides, mixed metal oxides, metals, and metal alloys

    DOEpatents

    Woodfield, Brian F.; Liu, Shengfeng; Boerio-Goates, Juliana; Liu, Qingyuan; Smith, Stacey Janel

    2012-07-03

    In preferred embodiments, metal nanoparticles, mixed-metal (alloy) nanoparticles, metal oxide nanoparticles and mixed-metal oxide nanoparticles are provided. According to embodiments, the nanoparticles may possess narrow size distributions and high purities. In certain preferred embodiments, methods of preparing metal nanoparticles, mixed-metal nanoparticles, metal oxide nanoparticles and mixed-metal nanoparticles are provided. These methods may provide tight control of particle size, size distribution, and oxidation state. Other preferred embodiments relate to a precursor material that may be used to form nanoparticles. In addition, products prepared from such nanoparticles are disclosed.

  5. METAL FILTERS FOR PRESSURIZED FLUID BED COMBUSTION (PFBC) APPLICATIONS

    SciTech Connect

    M.A. Alvin

    2004-01-02

    Advanced coal and biomass-based gas turbine power generation technologies (IGCC, PFBC, PCFBC, and Hipps) are currently under development and demonstration. Efforts at the Siemens Westinghouse Power Corporation (SWPC) have been focused on the development and demonstration of hot gas filter systems as an enabling technology for power generation. As part of the demonstration effort, SWPC has been actively involved in the development of advanced filter materials and component configuration, has participated in numerous surveillance programs characterizing the material properties and microstructure of field-tested filter elements, and has undertaken extended, accelerated filter life testing programs. This report reviews SWPC's material and component assessment efforts, identifying the performance, stability, and life of porous commercial metal, advanced alloy, and intermetallic filters under simulated, pressurized fluidized-bed combustion (PFBC) conditions.

  6. Pressure induced metallization with absence of structural transition in layered molybdenum diselenide

    DOE PAGES

    Zhao, Zhao; Zhang, Haijun; Yuan, Hongtao; Wang, Shibing; Lin, Yu; Zeng, Qiaoshi; Xu, Gang; Liu, Zhenxian; Solanki, G. K.; Patel, K. D.; et al

    2015-06-19

    Layered transition-metal dichalcogenides have emerged as exciting material systems with atomically thin geometries and unique electronic properties. Pressure is a powerful tool for continuously tuning their crystal and electronic structures away from the pristine states. Here, we systematically investigated the pressurized behavior of MoSe2 up to ~60 GPa using multiple experimental techniques and ab-initio calculations. MoSe2 evolves from an anisotropic two-dimensional layered network to a three-dimensional structure without a structural transition, which is a complete contrast to MoS2. The role of the chalcogenide anions in stabilizing different layered patterns is underscored by our layer sliding calculations. MoSe2 possesses highly tunablemore » transport properties under pressure, determined by the gradual narrowing of its band-gap followed by metallization. The continuous tuning of its electronic structure and band-gap in the range of visible light to infrared suggest possible energy-variable optoelectronics applications in pressurized transition-metal dichalcogenides.« less

  7. Pressure induced metallization with absence of structural transition in layered molybdenum diselenide

    PubMed Central

    Zhao, Zhao; Zhang, Haijun; Yuan, Hongtao; Wang, Shibing; Lin, Yu; Zeng, Qiaoshi; Xu, Gang; Liu, Zhenxian; Solanki, G. K.; Patel, K. D.; Cui, Yi; Hwang, Harold Y.; Mao, Wendy L.

    2015-01-01

    Layered transition-metal dichalcogenides have emerged as exciting material systems with atomically thin geometries and unique electronic properties. Pressure is a powerful tool for continuously tuning their crystal and electronic structures away from the pristine states. Here, we systematically investigated the pressurized behavior of MoSe2 up to ∼60 GPa using multiple experimental techniques and ab-initio calculations. MoSe2 evolves from an anisotropic two-dimensional layered network to a three-dimensional structure without a structural transition, which is a complete contrast to MoS2. The role of the chalcogenide anions in stabilizing different layered patterns is underscored by our layer sliding calculations. MoSe2 possesses highly tunable transport properties under pressure, determined by the gradual narrowing of its band-gap followed by metallization. The continuous tuning of its electronic structure and band-gap in the range of visible light to infrared suggest possible energy-variable optoelectronics applications in pressurized transition-metal dichalcogenides. PMID:26088416

  8. Pressure induced metallization with absence of structural transition in layered molybdenum diselenide

    SciTech Connect

    Zhao, Zhao; Zhang, Haijun; Yuan, Hongtao; Wang, Shibing; Lin, Yu; Zeng, Qiaoshi; Xu, Gang; Liu, Zhenxian; Solanki, G. K.; Patel, K. D.; Cui, Yi; Hwang, Harold Y.; Mao, Wendy L.

    2015-06-19

    Layered transition-metal dichalcogenides have emerged as exciting material systems with atomically thin geometries and unique electronic properties. Pressure is a powerful tool for continuously tuning their crystal and electronic structures away from the pristine states. Here, we systematically investigated the pressurized behavior of MoSe2 up to ~60 GPa using multiple experimental techniques and ab-initio calculations. MoSe2 evolves from an anisotropic two-dimensional layered network to a three-dimensional structure without a structural transition, which is a complete contrast to MoS2. The role of the chalcogenide anions in stabilizing different layered patterns is underscored by our layer sliding calculations. MoSe2 possesses highly tunable transport properties under pressure, determined by the gradual narrowing of its band-gap followed by metallization. The continuous tuning of its electronic structure and band-gap in the range of visible light to infrared suggest possible energy-variable optoelectronics applications in pressurized transition-metal dichalcogenides.

  9. (Ultra) high pressure homogenization for continuous high pressure sterilization of pumpable foods - a review.

    PubMed

    Georget, Erika; Miller, Brittany; Callanan, Michael; Heinz, Volker; Mathys, Alexander

    2014-01-01

    Bacterial spores have a strong resistance to both chemical and physical hurdles and create a risk for the food industry, which has been tackled by applying high thermal intensity treatments to sterilize food. These strong thermal treatments lead to a reduction of the organoleptic and nutritional properties of food and alternatives are actively searched for. Innovative hurdles offer an alternative to inactivate bacterial spores. In particular, recent technological developments have enabled a new generation of high pressure homogenizer working at pressures up to 400 MPa and thus, opening new opportunities for high pressure sterilization of foods. In this short review, we summarize the work conducted on (ultra) high pressure homogenization (U)HPH to inactivate endospores in model and food systems. Specific attention is given to process parameters (pressure, inlet, and valve temperatures). This review gathers the current state of the art and underlines the potential of UHPH sterilization of pumpable foods while highlighting the needs for future work.

  10. (Ultra) High Pressure Homogenization for Continuous High Pressure Sterilization of Pumpable Foods – A Review

    PubMed Central

    Georget, Erika; Miller, Brittany; Callanan, Michael; Heinz, Volker; Mathys, Alexander

    2014-01-01

    Bacterial spores have a strong resistance to both chemical and physical hurdles and create a risk for the food industry, which has been tackled by applying high thermal intensity treatments to sterilize food. These strong thermal treatments lead to a reduction of the organoleptic and nutritional properties of food and alternatives are actively searched for. Innovative hurdles offer an alternative to inactivate bacterial spores. In particular, recent technological developments have enabled a new generation of high pressure homogenizer working at pressures up to 400 MPa and thus, opening new opportunities for high pressure sterilization of foods. In this short review, we summarize the work conducted on (ultra) high pressure homogenization (U)HPH to inactivate endospores in model and food systems. Specific attention is given to process parameters (pressure, inlet, and valve temperatures). This review gathers the current state of the art and underlines the potential of UHPH sterilization of pumpable foods while highlighting the needs for future work. PMID:25988118

  11. Apparatus for testing high pressure injector elements

    NASA Technical Reports Server (NTRS)

    Myers, William Neill (Inventor); Scott, Ewell M. (Inventor); Forbes, John C. (Inventor); Shadoan, Michael D. (Inventor)

    1995-01-01

    An apparatus for testing and evaluating the spray pattern of high pressure fuel injector elements for use in supplying fuel to combustion engines is presented. Prior art fuel injector elements were normally tested by use of low pressure apparatuses which did not provide a purge to prevent mist from obscuring the injector element or to prevent frosting of the view windows; could utilize only one fluid during each test; and had their viewing ports positioned one hundred eighty (180 deg) apart, thus preventing optimum use of laser diagnostics. The high pressure fluid injector test apparatus includes an upper hub, an upper weldment or housing, a first clamp and stud/nut assembly for securing the upper hub to the upper weldment, a standoff assembly within the upper weldment, a pair of window housings having view glasses within the upper weldment, an injector block assembly and purge plate within the upper weldment for holding an injector element to be tested and evaluated, a lower weldment or housing, a second clamp and stud/nut assembly for securing the lower weldment to the upper hub, a third clamp and stud/nut assembly for securing the lower hub to the lower weldment, mechanisms for introducing fluid under high pressure for testing an injector element, and mechanisms for purging the apparatus to prevent frosting of view glasses within the window housings and to permit unobstructed viewing of the injector element.

  12. Amorphous boron nitride at high pressure

    NASA Astrophysics Data System (ADS)

    Durandurdu, Murat

    2016-06-01

    The pressure-induced phase transformation in hexagonal boron nitrite and amorphous boron nitrite is studied using ab initio molecular dynamics simulations. The hexagonal-to-wurtzite phase transformation is successfully reproduced in the simulation with a transformation mechanism similar to one suggested in experiment. Amorphous boron nitrite, on the other hand, gradually transforms to a high-density amorphous phase with the application of pressure. This phase transformation is irreversible because a densified amorphous state having both sp3 and sp2 bonds is recovered upon pressure release. The high-density amorphous state mainly consists of sp3 bonds and its local structure is quite similar to recently proposed intermediate boron nitrite phases, in particular tetragonal structure (P42/mnm), rather than the known the wurtzite or cubic boron nitrite due to the existence of four membered rings and edge sharing connectivity. On the basis of this finding we propose that amorphous boron nitrite might be best candidate as a starting structure to synthesize the intermediate phase(s) at high pressure and temperature (probably below 800 °C) conditions.

  13. Apparatus for testing high pressure injector elements

    NASA Technical Reports Server (NTRS)

    Myers, William Neill (Inventor); Scott, Ewell M. (Inventor); Forbes, John C. (Inventor); Shadoan, Michael D. (Inventor)

    1993-01-01

    An apparatus for testing and evaluating the spray pattern of high pressure fuel injector elements for use in supplying fuel to combustion engines is presented. Prior art fuel injector elements were normally tested by use of low pressure apparatuses which did not provide a purge to prevent mist from obscuring the injector element or to prevent frosting of the view windows; could utilize only one fluid during each test; and had their viewing ports positioned one hundred eighty (180 deg) apart, thus preventing optimum use of laser diagnostics. The high pressure fluid injector test apparatus includes an upper hub, an upper weldment or housing, a first clamp and stud/nut assembly for securing the upper hub to the upper weldment, a standoff assembly within the upper weldment, a pair of window housings having view glasses within the upper weldment, an injector block assembly and purge plate within the upper weldment for holding an injector element to be tested and evaluated, a lower weldment or housing, a second clamp and stud/nut assembly for securing the lower weldment to the upper weldment, a lower hub, a third clamp and stud/nut assembly for securing the lower hub to the lower weldment, mechanisms for introducing fluid under high pressure for testing an injector element, and mechanisms for purging the apparatus to prevent frosting of view glasses within the window housings and to permit unobstructed viewing of the injector element.

  14. Research at Very High Pressures and High Temperatures

    ERIC Educational Resources Information Center

    Bundy, Francis P.

    1977-01-01

    Reviews research and apparatus utilized in the study of the states and characteristics of materials at very high temperatures and pressures. Includes three examples of the research being conducted. (SL)

  15. Effects of Rock High Pressure Strength on Penetration

    NASA Astrophysics Data System (ADS)

    Huang, Hongfa

    2011-06-01

    Perforating of oil/gas well creates communication tunnel between reservoir and wellbore. Shaped charges are widely used as perforators in oilfield industry. The liners of the charges are mostly made of powder metal to prevent solid slug clogging the entrance hole of well casing or locking the hole in perforating gun. High speed jet from the shaped charge pierces through perforating gun, well fluid, well casing, and then penetrates into reservoir formation. Prediction of jet penetration in reservoir rock is critical in modeling of well production. An analytical penetration model developed for solid rod by Tate and Alekseevskii is applied. However, strength of formation rock at high pressure needs to be measured. Lateral stress gauge measurements in plate impact tests are conducted. Piezoelectric pressure gauges are imbedded in samples to measure the longitudinal and transverse stress. The two stresses provide Hugoniot and material compressive strength. Indiana limestone, a typical rock in perforation testing, is selected as target sample material in the plate impact tests. Since target strength effect on penetration is more significant in late stage of penetration when the strength of material becomes significant compared to the impact pressure, all the impact tests are focused on lower impact pressure up to 9 GPa. The measurements show that the strength increases with impact pressure. The results are applied in the penetration calculations. The final penetration matches testing data very well.

  16. Small, high-pressure liquid oxygen turbopump

    NASA Technical Reports Server (NTRS)

    Csomor, A.; Sutton, R.

    1977-01-01

    A small, high-pressure, liquid oxygen turbopump was designed, fabricated, and tested. The pump was of a single-stage, centrifugal type; power to the pump was supplied by a single-stage, partial emission, axial-impulse turbine. Design conditions included an operating speed of 70,000 rpm, pump discharge pressure of 2977 N/sq cm (4318 psia), and a pump flowrate of 16.4 kg/s (36.21 lb/sec). The turbine was propelled by LO2/LH2 combustion products at 1041 K (1874 R) inlet temperature, and at a design pressure ratio of 1.424. The approaches used in the detail analysis and design of the turbopump are described, and fabrication methods are discussed. Data obtained from gas generator tests, turbine performance calibration, and turbopump testing are presented.

  17. Small, high-pressure, liquid oxygen turbopump

    NASA Technical Reports Server (NTRS)

    Csomor, A.

    1978-01-01

    A small, high-pressure, LOX turbopump was designed, fabricated, and tested. The pump was of a single-stage, centrifugal type; power to the pump was supplied by a single-stage, partial-admission, axial-impulse turbine. Design conditions included an operating speed of 7330 rad/sec (70,000 rpm) pump discharge pressure of 2977 N/sq cm (4318 psia), and a pump flowrate of 16.4 kg/s (36.21 lb/sec). The turbine was propelled by LOX/LH2 combustion products at 1041 K (1874 R) inlet temperature, and at a design pressure ratio of 1.424. Test data obtained with the turbopump are presented and mechanical performance is discussed.

  18. Evolution of the Surface Science of Catalysis from Single Crystals to Metal Nanoparticles under Pressure

    SciTech Connect

    Somorjai, Gabor A.; Park, Jeong Y.

    2008-03-06

    Vacuum studies of metal single crystal surfaces using electron and molecular beam scattering revealed that the surface atoms relocate when the surface is clean (reconstruction) and when it is covered by adsorbates (adsorbate induced restructuring). It was also discovered that atomic steps and other low coordination surface sites are active for breaking chemical bonds (H-H, O=O, C-H, C=O and C-C) with high reaction probability. Investigations at high reactant pressures using sum frequency generation (SFG)--vibrational spectroscopy and high pressure scanning tunneling microscopy (HPSTM) revealed bond breaking at low reaction probability sites on the adsorbate-covered metal surface, and the need for adsorbate mobility for continued turnover. Since most catalysts (heterogeneous, enzyme and homogeneous) are nanoparticles, colloid synthesis methods were developed to produce monodispersed metal nanoparticles in the 1-10 nm range and controlled shapes to use them as new model catalyst systems in two-dimensional thin film form or deposited in mesoporous three-dimensional oxides. Studies of reaction selectivity in multipath reactions (hydrogenation of benzene, cyclohexene and crotonaldehyde) showed that reaction selectivity depends on both nanoparticle size and shape. The oxide-metal nanoparticle interface was found to be an important catalytic site because of the hot electron flow induced by exothermic reactions like carbon monoxide oxidation.

  19. Topaz and Kyanite Luminescence Under High Pressure

    NASA Astrophysics Data System (ADS)

    O'Bannon, E. F., III; Williams, Q. C.

    2014-12-01

    The luminescence spectra of Cr3+ in heat-treated topaz Al2SiO4(OH,F)2 and natural kyanite Al2SiO5 were measured from 650 - 800 nm in a hydrostatic environment up to pressures of 15 GPa. The R1 and R2 peaks of topaz shift at average rates of 0.30 nm/GPa and 0.22 nm/GPa, respectively, implying that the deformation of the Cr3+ octahedra increases with pressure. Three peaks are fit under each R line of topaz at both room and high pressure, and these peaks are associated with different Al sites into which the Cr substitutes. The shift of the R lines in topaz under pressure is remarkably linear, which appears to be a general feature of many Cr3+-bearing oxides: the underlying cause of this linearity may lie in anharmonic coupling with lattice vibrations. In this context, we also characterize the frequency shifts of two vibronic peaks within topaz. The R1 and R2 peaks of kyanite shift at 0.37 nm/GPa and 0.88 nm/GPa respectively. Two peaks are fit under R1 and three peaks are fit under R2 of kyanite at both room and high pressure; this result is also consistent with three different Cr3+ sites in this material. The R lines in kyanite are notably optically anisotropic, depending strongly on crystallographic orientation: this is most strongly manifested in the R2 peak. The Cr3+ luminescence in these materials provides a sensitive probe of pressure-dependent shifts in the local geometry of the Al-sites in these materials, which are analyzed in the context of previous single-crystal x-ray diffraction measurements.

  20. High pressure microhollow cathode discharges in air

    SciTech Connect

    Khedr, M.A.; Stark, R.H.; Watson, B.; Schoenbach, K.H.

    1998-12-31

    Research on high pressure, large volume glow discharges in air is motivated by applications such as reflectors and absorbers for electromagnetic radiation, plasma processing, and the remediation of gaseous pollution. In order to prevent glow-to-arc transitions, which in high-pressure glow discharges start in the cathode region, it is proposed to use a plasma cathode consisting of an array of microhollow cathode discharges. To explore the conditions for stable operation of single 100 {micro}m microhollow cathode discharges in flowing air, the current-voltage characteristics, and the visual appearance of a 100 {micro}m microhollow cathode discharge were studied. The results show that the threshold current for the transition from a glow into a filamentary discharge varies inversely with pressure. At pressures of 400 Torr the current in the 100 {micro}m hollow cathode discharge must not exceed 0.5 mA in order for the discharge to be stable. The type of instability, which causes the transition from dc to fluctuating currents, is not known at this time, but the observed dependence of the threshold current from the gas pressure points to a thermal instability. Assuming that the White-Allis scaling law still holds for air discharges at pressures close to atmospheric, it is expected that reducing the cathode hole diameter to 50 {micro}m will allow us to operate microhollow cathode discharges at atmospheric air with currents of up to 0.25 mA. Experimental studies on the effect of the cathode dimensions and cathode material are underway and results will be discussed at the conference.

  1. Metal-induced decomposition of perchlorate in pressurized hot water.

    PubMed

    Hori, Hisao; Sakamoto, Takehiko; Tanabe, Takashi; Kasuya, Miu; Chino, Asako; Wu, Qian; Kannan, Kurunthachalam

    2012-10-01

    Decomposition of perchlorate (ClO(4)(-)) in pressurized hot water (PHW) was investigated. Although ClO(4)(-) demonstrated little reactivity in pure PHW up to 300°C, addition of zerovalent metals to the reaction system enhanced the decomposition of ClO(4)(-) to Cl(-) with an increasing order of activity of (no metal)≈Al < Cu < Zn < Ni < Fe: the addition of iron powder led to the most efficient decomposition of ClO(4)(-). When the iron powder was added to an aqueous ClO(4)(-) solution (104 μM) and the mixture was heated at 150°C, ClO(4)(-) concentration fell below 0.58 μM (58 μg L(-1), detection limit of ion chromatography) in 1 h, and Cl(-) was formed with the yield of 85% after 6 h. The decomposition was accompanied by transformation of the zerovalent iron to Fe(3)O(4). This method was successfully used in the decomposition of ClO(4)(-) in a water sample contaminated with this compound, following fireworks display at Albany, New York, USA.

  2. Metal-induced decomposition of perchlorate in pressurized hot water.

    PubMed

    Hori, Hisao; Sakamoto, Takehiko; Tanabe, Takashi; Kasuya, Miu; Chino, Asako; Wu, Qian; Kannan, Kurunthachalam

    2012-10-01

    Decomposition of perchlorate (ClO(4)(-)) in pressurized hot water (PHW) was investigated. Although ClO(4)(-) demonstrated little reactivity in pure PHW up to 300°C, addition of zerovalent metals to the reaction system enhanced the decomposition of ClO(4)(-) to Cl(-) with an increasing order of activity of (no metal)≈Al < Cu < Zn < Ni < Fe: the addition of iron powder led to the most efficient decomposition of ClO(4)(-). When the iron powder was added to an aqueous ClO(4)(-) solution (104 μM) and the mixture was heated at 150°C, ClO(4)(-) concentration fell below 0.58 μM (58 μg L(-1), detection limit of ion chromatography) in 1 h, and Cl(-) was formed with the yield of 85% after 6 h. The decomposition was accompanied by transformation of the zerovalent iron to Fe(3)O(4). This method was successfully used in the decomposition of ClO(4)(-) in a water sample contaminated with this compound, following fireworks display at Albany, New York, USA. PMID:22840541

  3. Development of Designer Diamond Technology for High Pressure High Temperature Experiments in Support of Stockpile Stewardship Program

    SciTech Connect

    Vohra, Yogesh, K.

    2009-10-28

    The role of nitrogen in the fabrication of designer diamond was systematically investigated by adding controlled amount of nitrogen in hydrogen/methane/oxygen plasma. This has led to a successful recipe for reproducible fabrication of designer diamond anvils for high-pressure high-temperature research in support of stockpile stewardship program. In the three-year support period, several designer diamonds fabricated with this new growth chemistry were utilized in high-pressure experiments at UAB and Lawrence Livermore National Laboratory. The designer diamond anvils were utilized in high-pressure studies on heavy rare earth metals, high pressure melting studies on metals, and electrical resistance measurements on iron-based layered superconductors under high pressures. The growth chemistry developed under NNSA support can be adapted for commercial production of designer diamonds.

  4. Exotic stable cesium polynitrides at high pressure

    SciTech Connect

    Peng, Feng; Han, Yunxia; Liu, Hanyu; Yao, Yansun

    2015-11-19

    New polynitrides containing metastable forms of nitrogen are actively investigated as potential high energy-density materials. Using a structure search method based on the CALYPSO methodology, we investigated the stable stoichiometries and structures of cesium polynitrides at high pressures. Along with the CsN3, we identified five new stoichiometric compounds (Cs3N, Cs2N, CsN, CsN2, and CsN5) with interesting structures that may be experimentally synthesizable at modest pressures (i.e., less than 50 GPa). Nitrogen species in the predicted structures have various structural forms ranging from single atom (N) to highly endothermic molecules (N2, N3 , N4, N5, N6) and chains (N). Polymeric chains of nitrogen were found in the high-pressure C2/c phase of CsN2. This structure contains a substantially high content of single N-N bonds that exceeds the previously known nitrogen chains in pure forms, and also exhibit metastability at ambient conditions. We also identified a very interesting CsN crystal that contains novel N44- anion. In conclusion, to our best knowledge, this is the first time a charged N4 species being reported. Results of the present study suggest that it is possible to obtain energetic polynitrogens in main-group nitrides under high pressure.

  5. Hypervalent Iodine with Linear Chain at High Pressure

    PubMed Central

    Wei, Shubo; Wang, Jianyun; Deng, Shiyu; Zhang, Shoutao; Li, Quan

    2015-01-01

    Iodine is an element of fascinating chemical complexity, and numerous hypervalent iodine compounds reveal vital value of applications in organic synthesis. Investigation of the synthesis and application of new type of hypervalent iodine compound has extremely significant meaning. Here, the formation of CsIn (n > 1) compounds is predicted up to 200 GPa using an effective algorithm. The current results show that CsI3 with space group of Pm-3n is thermodynamically stable under high pressure. Hypervalence phenomenon of iodine atoms in Pm-3n CsI3 with endless linear chain type structure appears under high pressure, which is in sharp contrast to the conventional understanding. Our study further reveals that Pm-3n CsI3 is a metallic phase with several energy bands crossing Fermi-surface, and the pressure creates a peculiar reverse electron donation from iodine to cesium. The electron-phonon coupling calculations have proposed superconductive potential of the metallic Pm-3n CsI3 at 10 GPa which is much lower than that of CsI (180 GPa). Our findings represent a significant step toward the understanding of the behavior of iodine compounds at extreme conditions. PMID:26399899

  6. Hypervalent Iodine with Linear Chain at High Pressure

    NASA Astrophysics Data System (ADS)

    Wei, Shubo; Wang, Jianyun; Deng, Shiyu; Zhang, Shoutao; Li, Quan

    2015-09-01

    Iodine is an element of fascinating chemical complexity, and numerous hypervalent iodine compounds reveal vital value of applications in organic synthesis. Investigation of the synthesis and application of new type of hypervalent iodine compound has extremely significant meaning. Here, the formation of CsIn (n > 1) compounds is predicted up to 200 GPa using an effective algorithm. The current results show that CsI3 with space group of Pm-3n is thermodynamically stable under high pressure. Hypervalence phenomenon of iodine atoms in Pm-3n CsI3 with endless linear chain type structure appears under high pressure, which is in sharp contrast to the conventional understanding. Our study further reveals that Pm-3n CsI3 is a metallic phase with several energy bands crossing Fermi-surface, and the pressure creates a peculiar reverse electron donation from iodine to cesium. The electron-phonon coupling calculations have proposed superconductive potential of the metallic Pm-3n CsI3 at 10 GPa which is much lower than that of CsI (180 GPa). Our findings represent a significant step toward the understanding of the behavior of iodine compounds at extreme conditions.

  7. Hypervalent Iodine with Linear Chain at High Pressure.

    PubMed

    Wei, Shubo; Wang, Jianyun; Deng, Shiyu; Zhang, Shoutao; Li, Quan

    2015-01-01

    Iodine is an element of fascinating chemical complexity, and numerous hypervalent iodine compounds reveal vital value of applications in organic synthesis. Investigation of the synthesis and application of new type of hypervalent iodine compound has extremely significant meaning. Here, the formation of CsIn (n > 1) compounds is predicted up to 200 GPa using an effective algorithm. The current results show that CsI3 with space group of Pm-3n is thermodynamically stable under high pressure. Hypervalence phenomenon of iodine atoms in Pm-3n CsI3 with endless linear chain type structure appears under high pressure, which is in sharp contrast to the conventional understanding. Our study further reveals that Pm-3n CsI3 is a metallic phase with several energy bands crossing Fermi-surface, and the pressure creates a peculiar reverse electron donation from iodine to cesium. The electron-phonon coupling calculations have proposed superconductive potential of the metallic Pm-3n CsI3 at 10 GPa which is much lower than that of CsI (180 GPa). Our findings represent a significant step toward the understanding of the behavior of iodine compounds at extreme conditions. PMID:26399899

  8. Collapsing Bubble in Metal for High Energy Density Physics Study

    SciTech Connect

    Ng, S F; Barnard, J J; Leung, P T; Yu, S S

    2011-04-13

    This paper presents a new idea to produce matter in the high energy density physics (HEDP) regime in the laboratory using an intense ion beam. A gas bubble created inside a solid metal may collapse by driving it with an intense ion beam. The melted metal will compress the gas bubble and supply extra energy to it. Simulations show that the spherical implosion ratio can be about 5 and at the stagnation point, the maximum density, temperature and pressure inside the gas bubble can go up to nearly 2 times solid density, 10 eV and a few megabar (Mbar) respectively. The proposed experiment is the first to permit access into the Mbar regime with existing or near-term ion facilities, and opens up possibilities for new physics gained through careful comparisons of simulations with measurements of quantities like stagnation radius, peak temperature and peak pressure at the metal wall.

  9. High-pressure neutron diffraction studies at LANSCE

    NASA Astrophysics Data System (ADS)

    Zhao, Yusheng; Zhang, Jianzhong; Xu, Hongwu; Lokshin, Konstantin A.; He, Duanwei; Qian, Jiang; Pantea, Cristian; Daemen, Luke L.; Vogel, Sven C.; Ding, Yang; Xu, Jian

    2010-06-01

    The development of neutron diffraction under extreme pressure ( P) and temperature ( T) conditions is highly valuable to condensed matter physics, crystal chemistry, materials science, and earth and planetary sciences. We have incorporated a 500-ton press TAP-98 into the HiPPO diffractometer at the Los Alamos Neutron Science Center (LANSCE) to conduct in situ high- P- T neutron diffraction experiments. We have developed a large gem-crystal anvil cell, ZAP, to conduct neutron diffraction experiments at high P. The ZAP cell can be used to integrate multiple experimental techniques such as neutron diffraction, laser spectroscopy, and ultrasonic interferometery. More recently, we have developed high- P low- T gas/liquid cells in conjunction with neutron diffraction. These techniques enable in situ and real-time examination of gas uptake/release processes and allow accurate, time-dependent determination of changes in crystal structure and related reaction kinetics. We have successfully used these techniques to study the equations of state, structural phase transitions, and thermo-mechanical properties of metals, ceramics, and minerals. We have conducted researches on the formation/decomposition kinetics of methane, CO2 and hydrogen hydrate clathrates, and hydrogen/CO2 adsorption of inclusion compounds such as metal-organic frameworks (MOFs). The aim of our research is to accurately map out phase relations and determine structural parameters (lattice constants, atomic positions, atomic thermal parameters, bond lengths, bond angles, etc.) in the P- T- X space. We are developing further high- P- T technology with a new 2000-ton press, TAPLUS-2000, and a ZIA (Deformation-DIA type) cubic anvil package to routinely achieve pressures up to 20 GPa and temperatures up to 2000 K. The design of a dedicated high- P neutron beamline, LAPTRON, is also underway for simultaneous high- P- T neutron diffraction, ultrasonic, calorimetry, radiography, and tomography studies. Studies based

  10. High-pressure droplet combustion studies

    NASA Technical Reports Server (NTRS)

    Mikami, Masato; Kono, M.; Sato, Junichi; Dietrich, Daniel L.; Williams, Forman A.

    1993-01-01

    This is a joint research program, pursued by investigators at the University of Tokyo, UCSD, and NASA Lewis Research Center. The focus is on high-pressure combustion of miscible binary fuel droplets. It involves construction of an experimental apparatus in Tokyo, mating of the apparatus to a NASA-Lewis 2.2-second drop-tower frame in San Diego, and performing experiments in the 2.2-second tower in Cleveland, with experimental results analyzed jointly by the Tokyo, UCSD, and NASA investigators. The project was initiated in December, 1990 and has now involved three periods of drop-tower testing by Mikami at Lewis. The research accomplished thus far concerns the combustion of individual fiber-supported droplets of mixtures of n-heptane and n-hexadecane, initially about 1 mm diameter, under free-fall microgravity conditions. Ambient pressures ranged up to 3.0 MPa, extending above the critical pressures of both pure fuels, in room-temperature nitrogen-oxygen atmospheres having oxygen mole fractions X of 0.12 and 0.13. The general objective is to study near-critical and super-critical combustion of these droplets and to see whether three-stage burning, observed at normal gravity, persists at high pressures in microgravity. Results of these investigations will be summarized here; a more complete account soon will be published.

  11. Picosecond High Pressure Gas Switch experiment

    SciTech Connect

    Cravey, W.R.; Freytag, E.K.; Goerz, D.A.; Poulsen, P.; Pincosy, P.A.

    1993-08-01

    A high Pressure Gas Switch has been developed and tested at LLNL. Risetimes on the order of 200 picoseconds have been observed at 1 kHz prf and 1 atmosphere pressures. Calculations show that switching closure times on the order of tens of picoseconds can be achieved at higher pressures and electric fields. A voltage hold-off of 1 MV/cm has been measured at 10 atmospheres and several MV/cm appears possible with the HPGS. With such high electric field levels, energy storage of tens of Joules in a reasonably sized package is achievable. Initial HPGS performance has been characterized using the WASP pulse generator at LLNL. A detailed description of the switch used for initial testing is given. Switch recovery times of 1-ms have been measured at 1 atmosphere. Data on the switching uniformity, voltage hold-off recovery, and pulse repeatability, is presented. In addition, a physics switch model is described and results are compared with experimental data. Modifications made to the WASP HV pulser in order to drive the HPGS will also be discussed. Recovery times of less than 1 ms were recorded without gas flow in the switch chambers. Low pressure synthetic air was used as the switch dielectric. Longer recovery times were required when it was necessary to over-voltage the switch.

  12. Use of thermodynamic properties of metal-gas systems as low-pressure standards

    NASA Technical Reports Server (NTRS)

    Lundin, C. E.

    1970-01-01

    Modified version of Sievert's apparatus accurately calibrates low pressure measuring instruments. Metal-gas system is composed of hydrogen in two-phase equilibrium with erbium to obtain reproducible hydrogen pressures.

  13. Structure of carbonate melts at high pressure

    NASA Astrophysics Data System (ADS)

    Hudspeth, J.; Sanloup, C.; Cochain, B.; Konopkova, Z.; Afonina, V.; Morgenroth, W.

    2015-12-01

    Carbonate melts are rare magmas with only a single active volcano (Oldoinyo Lengai,Tanzania [1]). They are of fundamental interest for their role in the Earth's deep carbon cycle and are of immense economic importance due to their affinity for REE strategic metals (niobium, uranium, tantalum, etc). They have remarkable physical properties such as very low viscosity [2] and magmatic temperatures for alkaline carbonate lavas [3] and it has been predicted that their compressibility could be significantly higher than that of silicate melts [4,5]. Despite the atomic structure of carbonate melts being fundamental for controlling their physical and chemical behavior in natural systems, very few structural studies have been reported and these have been largely computational. Here we present initial structural investigations of carbonate melts at mantle pressures using in situ x-ray diffraction in diamond anvil cells. The structure factor S(Q) is transformed to obtain the real space pair distribution function G(R) which describes the local and intermediate range atomic ordering allowing bond length and coordination number changes with pressure to be determined. [1] Krafft and Keller, Science 245:168-170, 1989 [2] Yono et al., Nat. Commun. 5:5091, 2014 [3] Dobson et al., Earth Planet. Sci. Lett. 143:207-215, 1996 [4] Genge et al., Earth Planet. Sci. Lett. 131:225-238, 1995 [5] Jones et al., Rev. Mineral. Geochem. 75:289-322, 2013

  14. High pressure liquid chromatographic gradient mixer

    DOEpatents

    Daughton, Christian G.; Sakaji, Richard H.

    1985-01-01

    A gradient mixer which effects the continuous mixing of any two miscible solvents without excessive decay or dispersion of the resultant isocratic effluent or of a linear or exponential gradient. The two solvents are fed under low or high pressure by means of two high performance liquid chromatographic pumps. The mixer comprises a series of ultra-low dead volume stainless steel tubes and low dead volume chambers. The two solvent streams impinge head-on at high fluxes. This initial nonhomogeneous mixture is then passed through a chamber packed with spirally-wound wires which cause turbulent mixing thereby homogenizing the mixture with minimum "band-broadening".

  15. High-pressure liquid chromatographic gradient mixer

    DOEpatents

    Daughton, C.G.; Sakaji, R.H.

    1982-09-08

    A gradient mixer effects the continuous mixing of any two miscible solvents without excessive decay or dispersion of the resultant isocratic effluent or of a linear or exponential gradient. The two solvents are fed under low or high pressure by means of two high performance liquid chromatographic pumps. The mixer comprises a series of ultra-low dead volume stainless steel tubes and low dead volume chambers. The two solvent streams impinge head-on at high fluxes. This initial nonhomogeneous mixture is then passed through a chamber packed with spirally-wound wires which cause turbulent mixing thereby homogenizing the mixture with minimum band-broadening.

  16. Water solubility in pyrope at high pressures

    NASA Astrophysics Data System (ADS)

    Mookherjee, M.; Karato, S.-

    2006-12-01

    To address how much water is stored within the Earth's mantle, we need to understand the water solubility in the nominally anhydrous minerals. Much is known about olivine and pyroxene. Garnet is another important component, approaching 40% by volume in the transition zone. Only two studies on water solubility in pyrope at high-pressures exist which contradict each other. Lu and Keppler (1997) observed increase in water solubility in a natural pyrope up to 200 ppm wt of water, till 10 GPa. They concluded that the proton is located in the interstitial site. Withers et al. (1998) on the contrary, observed increasing water content in Mg-rich pyrope till 6 GPa, then sudden decrease of water, beyond detection, at 7 GPa. Based on infrared spectra, Withers et al. (1998), concluded hydrogarnet (Si^{4+} replaced by 4H+ to form O4H4) substitution in synthetic magnesium rich pyrope. They argued that at high pressure owing to larger volume, hydrogarnet substitution is unstable and water is expelled out of garnet. In transition zone conditions, however, majorite garnet seems to contain around 600-700 ppm wt of water (Bolfan-Casanova et al. 2000; Katayama et al. 2003). The cause for such discrepancy is not clear and whether garnet could store a significant amount of water at mantle condition is unconstrained. In order to understand the solubility mechanism of water in pyrope at high-pressure, we have conducted high- pressure experiments on naturally occurring single crystals of pyrope garnet (from Arizona, Aines and Rossman, 1984). To ascertain water-saturated conditions, we use olivine single-crystal as an internal standard. Preliminary results indicate that natural pyrope is capable of dissolving water at high-pressures, however, water preferentially enters olivine than in pyrope. We are undertaking systematic study to estimate the solubility of water in pyrope as a function of pressure. This will enable us to develop solubility models to understand the defect mechanisms

  17. Cavity closure arrangement for high pressure vessels

    DOEpatents

    Amtmann, Hans H.

    1981-01-01

    A closure arrangement for a pressure vessel such as the pressure vessel of a high temperature gas-cooled reactor wherein a liner is disposed within a cavity penetration in the reactor vessel and defines an access opening therein. A closure is adapted for sealing relation with an annular mounting flange formed on the penetration liner and has a plurality of radially movable locking blocks thereon having outer serrations adapted for releasable interlocking engagement with serrations formed internally of the upper end of the penetration liner so as to effect high strength closure hold-down. In one embodiment, ramping surfaces are formed on the locking block serrations to bias the closure into sealed relation with the mounting flange when the locking blocks are actuated to locking positions.

  18. Low Cost, High Efficiency, High Pressure Hydrogen Storage

    SciTech Connect

    Mark Leavitt

    2010-03-31

    A technical and design evaluation was carried out to meet DOE hydrogen fuel targets for 2010. These targets consisted of a system gravimetric capacity of 2.0 kWh/kg, a system volumetric capacity of 1.5 kWh/L and a system cost of $4/kWh. In compressed hydrogen storage systems, the vast majority of the weight and volume is associated with the hydrogen storage tank. In order to meet gravimetric targets for compressed hydrogen tanks, 10,000 psi carbon resin composites were used to provide the high strength required as well as low weight. For the 10,000 psi tanks, carbon fiber is the largest portion of their cost. Quantum Technologies is a tier one hydrogen system supplier for automotive companies around the world. Over the course of the program Quantum focused on development of technology to allow the compressed hydrogen storage tank to meet DOE goals. At the start of the program in 2004 Quantum was supplying systems with a specific energy of 1.1-1.6 kWh/kg, a volumetric capacity of 1.3 kWh/L and a cost of $73/kWh. Based on the inequities between DOE targets and Quantum’s then current capabilities, focus was placed first on cost reduction and second on weight reduction. Both of these were to be accomplished without reduction of the fuel system’s performance or reliability. Three distinct areas were investigated; optimization of composite structures, development of “smart tanks” that could monitor health of tank thus allowing for lower design safety factor, and the development of “Cool Fuel” technology to allow higher density gas to be stored, thus allowing smaller/lower pressure tanks that would hold the required fuel supply. The second phase of the project deals with three additional distinct tasks focusing on composite structure optimization, liner optimization, and metal.

  19. High pressure hydrogen time projection chamber

    SciTech Connect

    Goulianos, K.

    1983-01-01

    We describe a high pressure hydrogen gas time projection chamber which consists of two cylindrical drift regions each 45 cm in diameter and 75 cm long. Typically, at 15 atm of H/sub 2/ with 2 kV/cm drift field and 7 kV on the 35..mu.. sense wires, the drift velocity is about 0.5 cm/..mu..sec and the spatial resolution +-200..mu...

  20. Small, high pressure liquid hydrogen turbopump

    NASA Technical Reports Server (NTRS)

    Csomor, A.; Warren, D. J.

    1980-01-01

    A high pressure, low capacity, liquid hydrogen turbopump was designed, fabricated, and tested. The design configuration of the turbopump is summarized and the results of the analytical and test efforts are presented. Approaches used to pin point the cause of poor suction performance with the original design are described and performance data are included with an axial inlet design which results in excellent suction capability.

  1. Ring-Constraint High-Pressure Torsion Process

    NASA Astrophysics Data System (ADS)

    Joo, Soo-Hyun; Kim, Hyoung Seop

    2016-07-01

    In this study, a constraint ring around a workpiece was employed in order to develop back pressure in addition to a compressive die pressure in high-pressure torsion (HPT) process. The influence of the constraint ring during the HPT process was analyzed using the finite element method and experimental analyses. Greater back pressure was developed when a ring of a stronger material enveloped the workpiece. In the experiments, fracture of a brittle material [ e.g., La-based bulk metallic glass (BMG)], was limited even at large shear strain (~315) during the ring-constraint HPT (RC-HPT) process due to reduced tensile stress at the edge of the deforming BMG workpiece. Furthermore, the RC-HPT process had beneficial effects on powder consolidation and bonding. The RC-HPT process exhibited smaller loss of material than did the conventional semi-constrained HPT process. The Cu disk produced by the powder RC-HPT had smaller grain sizes because back pressure generated more dislocations and finer grain size in the Cu workpiece.

  2. High Pressure - High Temperature Polymorphism in Ta: Resolving an Ongoing Experimental Controversy

    SciTech Connect

    Burkovsky, L; Chen, S P; Preston, D L; Belonoshko, A B; Rosengren, A; Mikhaylushkin, A S; Simak, S I; Moriarty, J A

    2010-04-07

    Phase diagrams of refractory metals remain essentially unknown. Moreover, there is an ongoing controversy over the high pressure (P) melting temperatures of these metals: results of diamond anvil cell (DAC) and shock wave experiments differ by at least a factor of two. From an extensive ab initio study on tantalum we discovered that the body-centered cubic phase, its physical phase at ambient conditions, transforms to another solid phase, possibly hexagonal omega phase, at high temperature (T). Hence the sample motion observed in DAC experiments is not due to melting but internal stresses accompanying a solid-solid transformation, as explained in more detail in our work. In view of our results on tantalum and previous work on molybdenum, as well as other published data, it is highly plausible that high-PT polymorphism is a general feature of Groups V and VI refractory metals.

  3. High temperature ceramic/metal joint structure

    DOEpatents

    Boyd, Gary L.

    1991-01-01

    A high temperature turbine engine includes a hybrid ceramic/metallic rotor member having ceramic/metal joint structure. The disclosed joint is able to endure higher temperatures than previously possible, and aids in controlling heat transfer in the rotor member.

  4. A search for chemical laser action in low pressure metal vapor flames. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Zwillenberg, M. L.

    1975-01-01

    Optical emissions were studied from low pressure (approximately 1 torr) dilute diffusion flames of Ca and Mg vapor with O2, N2O and mixtures of CCl4 and O2. The Ca flames with O2 and N2O revealed high vibrational excitation of the product CaO molecule (up to v=30). The flames with CCl4 revealed extreme nonequilibrium metal atom electronic excitation, up to the metal atom ionization limit (6.1 eV for Ca, 7.6 eV for Mg). The metal atom excited electronic state populations did not follow a Boltzmann distribution, but the excitation rates ('pumping rate') were found to obey an Arrhenius-type expression, with the electronic excitation energy playing the role of activation energy and a temperature of about 5000 K for triplet excited states and 2500 K for singlets (vs. approximately 500 K translational temperature).

  5. 7 CFR 58.219 - High pressure pumps and lines.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 3 2013-01-01 2013-01-01 false High pressure pumps and lines. 58.219 Section 58.219....219 High pressure pumps and lines. High pressure lines may be cleaned-in-place and shall be of such construction that dead ends, valves and the high pressure pumps can be disassembled for hand cleaning. The...

  6. 7 CFR 58.219 - High pressure pumps and lines.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 3 2011-01-01 2011-01-01 false High pressure pumps and lines. 58.219 Section 58.219....219 High pressure pumps and lines. High pressure lines may be cleaned-in-place and shall be of such construction that dead ends, valves and the high pressure pumps can be disassembled for hand cleaning. The...

  7. 7 CFR 58.219 - High pressure pumps and lines.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 3 2012-01-01 2012-01-01 false High pressure pumps and lines. 58.219 Section 58.219....219 High pressure pumps and lines. High pressure lines may be cleaned-in-place and shall be of such construction that dead ends, valves and the high pressure pumps can be disassembled for hand cleaning. The...

  8. 7 CFR 58.219 - High pressure pumps and lines.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 3 2014-01-01 2014-01-01 false High pressure pumps and lines. 58.219 Section 58.219....219 High pressure pumps and lines. High pressure lines may be cleaned-in-place and shall be of such construction that dead ends, valves and the high pressure pumps can be disassembled for hand cleaning. The...

  9. Prediction of Production Power for High-pressure Hydrogen by High-pressure Water Electrolysis

    NASA Astrophysics Data System (ADS)

    Kyakuno, Takahiro; Hattori, Kikuo; Ito, Kohei; Onda, Kazuo

    Recently the high attention for fuel cell electric vehicle (FCEV) is pushing to construct the hydrogen supplying station for FCEV in the world. The hydrogen pressure supplied at the current test station is intended to be high for increasing the FCEV’s driving distance. The water electrolysis can produce cleanly the hydrogen by utilizing the electricity from renewable energy without emitting CO2 to atmosphere, when it is compared to be the popular reforming process of fossil fuel in the industry. The power required for the high-pressure water electrolysis, where water is pumped up to high-pressure, may be smaller than the power for the atmospheric water electrolysis, where the produced atmospheric hydrogen is pumped up by compressor, since the compression power for water is much smaller than that for hydrogen gas. In this study the ideal water electrolysis voltage up to 70MPa and 523K is estimated referring to both the results by LeRoy et al up to 10MPa and 523K, and to the latest steam table. By using this high-pressure water electrolysis voltage, the power required for high-pressure hydrogen produced by the high-pressure water electrolysis method is estimated to be about 5% smaller than that by the atmospheric water electrolysis method, by assuming the compressor and pump efficiency of 50%.

  10. Engine having a high pressure hydraulic system and low pressure lubricating system

    DOEpatents

    Bartley, Bradley E.; Blass, James R.; Gibson, Dennis H.

    2000-01-01

    An engine includes a high pressure hydraulic system having a high pressure pump and at least one hydraulically-actuated device attached to an engine housing. A low pressure engine lubricating system is attached to the engine housing and includes a circulation conduit fluidly connected to an outlet from the high pressure pump.

  11. Sulfidation kinetics of dolomite at high pressure and high temperature

    SciTech Connect

    Misro, S.K.; Jadhav, R.; Gupta, H.; Agnihotri, R.; Chauk, S.; Fan, L.S.

    1999-07-01

    Kinetic studies of the dolomite sulfidation reaction are carried out at high pressure (15 atm) and high temperature (600--900 C) in a differential bed flow-through reactor. The dolomite particles are exposed to simulated coal gas environments and the extent of conversion determined. Experiments are carried out to determine the influence of total pressure, reaction temperature and partial pressure of H{sub 2}S on the extent of fully calcined dolomite (FCD) sulfidation. Based on the grain theory it is found that towards the later stages of the reaction the FCD sulfidation is product layer diffusion controlled. The reaction is found to be first order with respect to H{sub 2}S partial pressure. A low apparent activation energy of 4.6 kcal/gmol for the product layer diffusion controlled reaction is attributed to the presence of porous MgO along with the low porosity CaS product layer. A comparison of the performance of dolomite and limestone as sorbents for desulfurization shows that dolomite is a better sorbent with higher conversions even at higher CO{sub 2} partial pressures. The high pressure sulfidation kinetic data obtained in this study would be useful in understanding and optimizing the in-gasifier H{sub 2}S capture using dolomite sorbents.

  12. Very high-pressure orogenic garnet peridotites

    PubMed Central

    Liou, J. G.; Zhang, R. Y.; Ernst, W. G.

    2007-01-01

    Mantle-derived garnet peridotites are a minor component in many very high-pressure metamorphic terranes that formed during continental subduction and collision. Some of these mantle rocks contain trace amounts of zircon and micrometer-sized inclusions. The constituent minerals exhibit pre- and postsubduction microstructures, including polymorphic transformation and mineral exsolution. Experimental, mineralogical, petrochemical, and geochronological characterizations using novel techniques with high spatial, temporal, and energy resolutions are resulting in unexpected discoveries of new phases, providing better constraints on deep mantle processes. PMID:17519341

  13. Prediction of production power for high-pressure hydrogen by high-pressure water electrolysis

    NASA Astrophysics Data System (ADS)

    Onda, Kazuo; Kyakuno, Takahiro; Hattori, Kikuo; Ito, Kohei

    Recent attention focused on fuel cell electric vehicles (FCEVs) has created demand for the construction of hydrogen supply stations for FCEVs throughout the world. The hydrogen pressure supplied at the supply stations is intentionally high to increase the FCEVs driving mileage. Water electrolysis can produce clean hydrogen by utilizing electricity from renewable energy without CO 2 emission to the atmosphere when compared with the industrial fossil fuel reforming process. The power required for high-pressure water electrolysis, wherein water is pumped up to a high-pressure, may be less than the power required for atmospheric water electrolysis, wherein the produced atmospheric hydrogen is pumped by a compressor, since the compression power for water is much less than that for hydrogen-gas. In this study, the ideal water electrolysis voltage of up to 70 MPa and 250 °C is estimated by referring to both the results of LeRoy et al. up to 10 MPa and 250 °C, and the latest steam tables. Using this high-pressure water electrolysis voltage, the power required to produce high-pressure hydrogen by high-pressure water electrolysis is estimated to be about 5% less than that required for atmospheric water electrolysis, assuming compressor and pump efficiencies of 50%.

  14. High nitrogen pressure solution growth of GaN

    NASA Astrophysics Data System (ADS)

    Bockowski, Michal

    2014-10-01

    Results of GaN growth from gallium solution under high nitrogen pressure are presented. Basic of the high nitrogen pressure solution (HNPS) growth method is described. A new approach of seeded growth, multi-feed seed (MFS) configuration, is demonstrated. The use of two kinds of seeds: free-standing hydride vapor phase epitaxy GaN (HVPE-GaN) obtained from metal organic chemical vapor deposition (MOCVD)-GaN/sapphire templates and free-standing HVPE-GaN obtained from the ammonothermally grown GaN crystals, is shown. Depending on the seeds’ structural quality, the differences in the structural properties of pressure grown material are demonstrated and analyzed. The role and influence of impurities, like oxygen and magnesium, on GaN crystals grown from gallium solution in the MFS configuration is presented. The properties of differently doped GaN crystals are discussed. An application of the pressure grown GaN crystals as substrates for electronic and optoelectronic devices is reported.

  15. High pressure hydrocracking of vacuum gas oil to middle distillates

    NASA Astrophysics Data System (ADS)

    Lahiri, C. R.; Biswas, Dipa

    1986-05-01

    Hydrocracking of heavier petroleum fractions into lighter ones is of increasing importance today to meet the huge demand, particularly for gasoline and middle distillates. Much work on hydrocracking of a gas oil range feed stock to mainly gasoline using modified zeolite catalyst-base exchanged with metals (namely Ni, Pd, Mo, etc.) has been reported. In India, however, present demand is for a maximum amount of middle distillate. The present investigation was therefore aimed to maximize the yield of middle distillate (140-270°C boiling range) by hydrocracking a vacuum gas oil (365-450°C boiling range) fraction from an Indian Refinery at high hydrogen pressure and temperature. A zeolite catalyst-base exchanged with 4.5% Ni was chosen for the reaction. A high pressure batch reactor with a rocking arrangement was used for the study. No pretreatment of the feed stock for sulphur removal applied as the total sulphur in the feed was less than 2%. The process variables studied for the maximum yield of the middle distillate were temperature 300-450°C, pressure 100-200 bar and residence period 1-3 h at the feed to catalyst ratio of 9.3 (wt/wt). The optimum conditions for the maximum yield of 36% middle distillate of the product were: temperature 400°C, pressure 34.5 bar (initially) and residence period 2 h. A carbon balance of 90-92% was found for each run.

  16. Magnetic ordering temperatures in rare earth metal dysprosium under ultrahigh pressures

    NASA Astrophysics Data System (ADS)

    Samudrala, Gopi K.; Tsoi, Georgiy M.; Weir, Samuel T.; Vohra, Yogesh K.

    2014-04-01

    Magnetic ordering temperatures in heavy rare earth metal dysprosium (Dy) have been studied using an ultrasensitive electrical transport measurement technique in a designer diamond anvil cell to a pressure of 69 GPa and a temperature of 10 K. Previous studies using magnetic susceptibility measurements at high pressures were able to track magnetic ordering temperature only till 7 GPa in the hexagonal close packed (hcp) phase of Dy. Our studies indicate that the magnetic ordering temperature shows an abrupt drop of 80 K at the hcp-Sm phase transition followed by a gradual decrease that continues till 17 GPa. This is followed by a rapid increase in the magnetic ordering temperatures in the double hcp phase and finally leveling off in the distorted face centered cubic phase of Dy. Our studies reaffirm that 4f-shell remains localized in Dy and there is no loss of magnetic moment or 4f-shell delocalization for pressures up to 69 GPa.

  17. High-valent corrole metal complexes.

    PubMed

    Gross, Z

    2001-09-01

    This commentary concentrates on corrole complexes with the three metal ions that are most relevant to oxidation catalysis: chromium, manganese, and iron. Particular emphasis is devoted to the only recently introduced meso-triarylcorroles and a comparison with the traditionally investigated beta-pyrrole-substituted corroles. Based on a combination of spectroscopic methods, electrochemistry, and X-ray crystallography, it is concluded that in most high-valent metallocorroles the corrole is not oxidized. Both experimental (for (oxo)chromium(V) corrole) and computational (for (oxo)manganese(V) corrole) evidence indicate that the stabilization of high-valent metal ions by corroles originates from a combination of short metal-nitrogen bonds and large metal out-of-plane displacements in the corrole, which lead to quite unexpected interactions of the oxo-metal pi* orbitals with the in-plane orbitals of the corrole.

  18. Dissociation of methane under high pressure

    NASA Astrophysics Data System (ADS)

    Gao, Guoying; Oganov, Artem R.; Ma, Yanming; Wang, Hui; Li, Peifang; Li, Yinwei; Iitaka, Toshiaki; Zou, Guangtian

    2010-10-01

    Methane is an extremely important energy source with a great abundance in nature and plays a significant role in planetary physics, being one of the major constituents of giant planets Uranus and Neptune. The stable crystal forms of methane under extreme conditions are of great fundamental interest. Using the ab initio evolutionary algorithm for crystal structure prediction, we found three novel insulating molecular structures with P212121, Pnma, and Cmcm space groups. Remarkably, under high pressure, methane becomes unstable and dissociates into ethane (C2H6) at 95 GPa, butane (C4H10) at 158 GPa, and further, carbon (diamond) and hydrogen above 287 GPa at zero temperature. We have computed the pressure-temperature phase diagram, which sheds light into the seemingly conflicting observations of the unusually low formation pressure of diamond at high temperature and the failure of experimental observation of dissociation at room temperature. Our results support the idea of diamond formation in the interiors of giant planets such as Neptune.

  19. Dissociation of methane under high pressure.

    PubMed

    Gao, Guoying; Oganov, Artem R; Ma, Yanming; Wang, Hui; Li, Peifang; Li, Yinwei; Iitaka, Toshiaki; Zou, Guangtian

    2010-10-14

    Methane is an extremely important energy source with a great abundance in nature and plays a significant role in planetary physics, being one of the major constituents of giant planets Uranus and Neptune. The stable crystal forms of methane under extreme conditions are of great fundamental interest. Using the ab initio evolutionary algorithm for crystal structure prediction, we found three novel insulating molecular structures with P2(1)2(1)2(1), Pnma, and Cmcm space groups. Remarkably, under high pressure, methane becomes unstable and dissociates into ethane (C(2)H(6)) at 95 GPa, butane (C(4)H(10)) at 158 GPa, and further, carbon (diamond) and hydrogen above 287 GPa at zero temperature. We have computed the pressure-temperature phase diagram, which sheds light into the seemingly conflicting observations of the unusually low formation pressure of diamond at high temperature and the failure of experimental observation of dissociation at room temperature. Our results support the idea of diamond formation in the interiors of giant planets such as Neptune.

  20. Dissociation of methane under high pressure.

    PubMed

    Gao, Guoying; Oganov, Artem R; Ma, Yanming; Wang, Hui; Li, Peifang; Li, Yinwei; Iitaka, Toshiaki; Zou, Guangtian

    2010-10-14

    Methane is an extremely important energy source with a great abundance in nature and plays a significant role in planetary physics, being one of the major constituents of giant planets Uranus and Neptune. The stable crystal forms of methane under extreme conditions are of great fundamental interest. Using the ab initio evolutionary algorithm for crystal structure prediction, we found three novel insulating molecular structures with P2(1)2(1)2(1), Pnma, and Cmcm space groups. Remarkably, under high pressure, methane becomes unstable and dissociates into ethane (C(2)H(6)) at 95 GPa, butane (C(4)H(10)) at 158 GPa, and further, carbon (diamond) and hydrogen above 287 GPa at zero temperature. We have computed the pressure-temperature phase diagram, which sheds light into the seemingly conflicting observations of the unusually low formation pressure of diamond at high temperature and the failure of experimental observation of dissociation at room temperature. Our results support the idea of diamond formation in the interiors of giant planets such as Neptune. PMID:20950018

  1. High pressure volumetric measurements in dipalmitoylphosphatidylcholine bilayers.

    PubMed

    Tosh, R E; Collings, P J

    1986-07-10

    The one previously reported high pressure volumetric experiment on a phospholipid bilayer investigated a region of pressure between 0 and 25 MPa and obtained isothermal compressibility values for the liquid crystal and intermediate phases which differed by more than a factor of ten. We report new volumetric measurements around the main transition in dipalmitoylphosphatidylcholine (DPPC) from 0 to 100 MPa. The isothermal compressibility data for the two phases are of the same order of magnitude, and the experimentally determined coexistence curve, specific volume dependence, and volume discontinuity values are compared with the predictions of the phenomenological theory according to Sugar and Tarjan ((1982) Sov. Phys. Crystallogr. 27, 4-5). Significant discrepancies between this theory and experiment are found. Finally, the data indicate that steric interactions play a more dominant role in the main transition of phospholipid bilayers than in transitions in most thermotropic liquid crystals.

  2. Asymmetric Yield Function Based on the Stress Invariants for Pressure Sensitive Metals

    SciTech Connect

    Jeong Wahn Yoon; Yanshan Lou; Jong Hun Yoon; Michael V. Glazoff

    2014-05-01

    A general asymmetric yield function is proposed with dependence on the stress invariants for pressure sensitive metals. The pressure sensitivity of the proposed yield function is consistent with the experimental result of Spitzig and Richmond (1984) for steel and aluminum alloys while the asymmetry of the third invariant is preserved to model strength differential (SD) effect of pressure insensitive materials. The proposed yield function is transformed in the space of the stress triaxaility, the von Mises stress and the normalized invariant to theoretically investigate the possible reason of the SD effect. The proposed plasticity model is further extended to characterize the anisotropic behavior of metals both in tension and compression. The extension of the yield function is realized by introducing two distinct fourth-order linear transformation tensors of the stress tensor for the second and third invariants, respectively. The extended yield function reasonably models the evolution of yield surfaces for a zirconium clock-rolled plate during in-plane and through-thickness compression reported by Plunkett et al. (2007). The extended yield function is also applied to describe the orthotropic behavior of a face-centered cubic metal of AA 2008-T4 and two hexagonal close-packed metals of high-purity-titanium and AZ31 magnesium alloy. The orthotropic behavior predicted by the generalized model is compared with experimental results of these metals. The comparison validates that the proposed yield function provides sufficient predictability on SD effect and anisotropic behavior both in tension and compression. When it is necessary to consider r-value anisotropy, the proposed function is efficient to be used with nonassociated flow plasticity by introducing a separate plastic potential for the consideration of r-values as shown in Stoughton & Yoon (2004, 2009).

  3. Electron beam chemistry produces high purity metals

    NASA Technical Reports Server (NTRS)

    Philipp, W. H.; May, C. E.; Marsik, S. J.; Lad, R. A.

    1972-01-01

    Application of radiation chemistry for deposition of metals by irradiation of aqueous solutions with high energy electrons is presented. Design of reaction vessel for irradiation of solution is illustrated. Features of radiochemical technique and procedures followed are described.

  4. High-pressure chemistry of molecular solids: evidences for novel extended phases of carbon dioxide

    SciTech Connect

    Yoo, C S

    1999-07-22

    At high pressures and temperatures, many molecular solids become unstable and transform into denser extended phases. Recently, we have discovered evidences for two novel extended phases of carbon dioxide at high pressures and temperatures: (1) an ionic form of dimeric CO,, C02+C03*- at 8-13 GPa and above 2000 K [I] and (2) a polymeric phase CO,-V above 35 GPa and 1800 K [2,3]. These extended phases can be quenched at room temperature at low pressures, from which their molecular and crystal structures have been determined. These transitions occur to soften highly repulsive intermolecular potentials via delocalization of electrons at high pressures and temperatures. Based on these and other previous results, we conjecture that three fundamental mechanisms of high-pressure chemistry are ionization, polymerization, and metallization, occurring in high-density molecular solids and fluids. [carbon dioxide, polymeric COZ, ionic CO, dimer, high-pressure chemistry, electron delocalization

  5. 30 CFR 57.13021 - High-pressure hose connections.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false High-pressure hose connections. 57.13021... Air and Boilers § 57.13021 High-pressure hose connections. Except where automatic shutoff valves are...-pressure hose lines of 3/4-inch inside diameter or larger, and between high-pressure hose lines of...

  6. 30 CFR 57.13021 - High-pressure hose connections.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false High-pressure hose connections. 57.13021... Air and Boilers § 57.13021 High-pressure hose connections. Except where automatic shutoff valves are...-pressure hose lines of 3/4-inch inside diameter or larger, and between high-pressure hose lines of...

  7. 30 CFR 57.13021 - High-pressure hose connections.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false High-pressure hose connections. 57.13021... Air and Boilers § 57.13021 High-pressure hose connections. Except where automatic shutoff valves are...-pressure hose lines of 3/4-inch inside diameter or larger, and between high-pressure hose lines of...

  8. 30 CFR 57.13021 - High-pressure hose connections.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false High-pressure hose connections. 57.13021... Air and Boilers § 57.13021 High-pressure hose connections. Except where automatic shutoff valves are...-pressure hose lines of 3/4-inch inside diameter or larger, and between high-pressure hose lines of...

  9. 30 CFR 57.13021 - High-pressure hose connections.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false High-pressure hose connections. 57.13021... Air and Boilers § 57.13021 High-pressure hose connections. Except where automatic shutoff valves are...-pressure hose lines of 3/4-inch inside diameter or larger, and between high-pressure hose lines of...

  10. LHDAC setup for high temperature and high pressure studies

    SciTech Connect

    Patel, Nishant N. Meenakshi, S. Sharma, Surinder M.

    2014-04-24

    A ytterbium fibre laser (λ = 1.07 μm) based laser heated diamond anvil cell (LHDAC) facility has been recently set up at HP and SRPD, BARC for simultaneous high temperature and high pressure investigation of material properties. Synthesis of GaN was carried out at pressure of ∼9 GPa and temperature of ∼1925 K in a Mao-Bell type diamond anvil cell (DAC) using the LHDAC facility. The retrieved sample has been characterized using our laboratory based micro Raman setup.

  11. 49 CFR 192.621 - Maximum allowable operating pressure: High-pressure distribution systems.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 3 2013-10-01 2013-10-01 false Maximum allowable operating pressure: High-pressure distribution systems. 192.621 Section 192.621 Transportation Other Regulations Relating to... STANDARDS Operations § 192.621 Maximum allowable operating pressure: High-pressure distribution systems....

  12. High pressure phase transitions in lawsonite at simultaneous high pressure and temperature: A single crystal study

    NASA Astrophysics Data System (ADS)

    O'Bannon, E. F., III; Vennari, C.; Beavers, C. C. G.; Williams, Q. C.

    2015-12-01

    Lawsonite (CaAl2Si2O7(OH)2.H2O) is a hydrous mineral with a high overall water content of ~11.5 wt.%. It is a significant carrier of water in subduction zones to depths greater than ~150 km. The structure of lawsonite has been extensively studied under room temperature, high-pressure conditions. However, simultaneous high-pressure and high-temperature experiments are scarce. We have conducted synchrotron-based simultaneous high-pressure and temperature single crystal experiments on lawsonite up to a maximum pressure of 8.4 GPa at ambient and high temperatures. We used a natural sample of lawsonite from Valley Ford, California (Sonoma County). At room pressure and temperature lawsonite crystallizes in the orthorhombic system with Cmcm symmetry. Room temperature compression indicates that lawsonite remains in the orthorhombic Cmcm space group up to ~9.0 GPa. Our 5.0 GPa crystal structure is similar to the room pressure structure, and shows almost isotropic compression of the crystallographic axes. Unit cell parameters at 5.0 GPa are a- 5.7835(10), b- 8.694(2), and c- 13.009(3). Single-crystal measurements at simultaneous high-pressure and temperature (e.g., >8.0 GPa and ~100 oC) can be indexed to a monoclinic P-centered unit cell. Interestingly, a modest temperature increase of ~100 oC appears to initiate the orthorhombic to monoclinic phase transition at ~0.6-2.4 GPa lower than room temperature compression studies have shown. There is no evidence of dehydration or H atom disorder under these conditions. This suggests that the orthorhombic to monoclinic transition could be kinetically impeded at 298 K, and that monoclinic lawsonite could be the dominant water carrier through much of the depth range of upper mantle subduction processes.

  13. Glow discharges in high pressure microhollow cathodes

    NASA Astrophysics Data System (ADS)

    Boeuf, J.-P.; Pitchford, L. C.; Schoenbach, K. H.

    2004-09-01

    We have developed a model of high-pressure, microhollow cathode discharges (MHCDs) which has been used to predict the electrical characteristics and other properties of these discharges for comparison with experiment. The configuration studied here is an anode/dielectric/cathode sandwich in which a cylindrical hole with a diameter of some 100's of microns is pierced in the dielectric and in the cathode. Results from the model calculations in xenon at 100 torr and higher pressures show that the positive V-I (voltage-current) characteristic observed experimentally at low current corresponds to an abnormal glow discharge inside the cathode hole. At higher current, the V-I characteristic is that of a normal to slightly abnormal glow discharge between the anode and the outer face of the cathode. The change in slope of the V-I characteristic is consistent with experiment (provided metastables are taken into account). This shape was previously attribed to the onset of the classical hollow cathode effect, but we find no hollow cathode effect for pressures above about 30 torr and for 200 micron hole diameters.

  14. Test facility for high pressure plasmas

    SciTech Connect

    Block, R.; Laroussi, M.; Schoenbach, K.H.

    1999-07-01

    High pressure nonthermal plasmas are gaining increasing importance because of their wide range of applications, e.g. in air plasma ramparts, gas processing, surface treatment, thin film deposition, and chemical and biological decontamination. In order to compare various methods of plasma generation with respect to efficiency, development of instabilities, homogeneity, lifetime etc., a central test facility for high pressure plasmas is being established. The facility will allow one to study large volume (> 100 cm{sup 3}), nonthermal (gas temperature: < 2,000 K) plasmas over a large pressure range (10{sup {minus}6} Torr up to more than 1 atmosphere) in a standardized discharge cell. The setup was designed to generate plasmas in air as well as in gas mixtures. The available voltage range extends to 25 kV dc (10 kW power). The electrodes can be water cooled. Electrical diagnostics include a 400 Mhz, 2 GS/s 4-channel oscilloscope for current and voltage measurements and the detection of the onset of instabilities. For optical diagnostics, a CCD video camera is used to record the appearance of dc discharges. A high-speed light intensified CCD-camera (25 mm MCP with photocathode, gating speed: 200 ps, adjustable in 10 ps steps) allows to study the development of instabilities and can also be utilized in temporally resolved spectroscopic measurements. Optical emission spectroscopy allows one to determine plasma parameters such as electron density (through Stark broadening measurements) and gas temperature measurements. Interferometry is well suited for electron density measurements especially in weakly ionized plasmas.

  15. Conformable pressure vessel for high pressure gas storage

    DOEpatents

    Simmons, Kevin L.; Johnson, Kenneth I.; Lavender, Curt A.; Newhouse, Norman L.; Yeggy, Brian C.

    2016-01-12

    A non-cylindrical pressure vessel storage tank is disclosed. The storage tank includes an internal structure. The internal structure is coupled to at least one wall of the storage tank. The internal structure shapes and internally supports the storage tank. The pressure vessel storage tank has a conformability of about 0.8 to about 1.0. The internal structure can be, but is not limited to, a Schwarz-P structure, an egg-crate shaped structure, or carbon fiber ligament structure.

  16. High-Pressure Hydrogen from First-Principles

    NASA Astrophysics Data System (ADS)

    Morales, Miguel A.

    2014-03-01

    The main approximations typically employed in first-principles simulations of high-pressure hydrogen are the neglect of nuclear quantum effects (NQE) and the approximate treatment of electronic exchange and correlation, typically through a density functional theory (DFT) formulation. In this talk I'll present a detailed analysis of the influence of these approximations on the phase diagram of high-pressure hydrogen, with the goal of identifying the predictive capabilities of current methods and, at the same time, making accurate predictions in this important regime. We use a path integral formulation combined with density functional theory, which allows us to incorporate NQEs in a direct and controllable way. In addition, we use state-of-the-art quantum Monte Carlo calculations to benchmark the accuracy of more approximate mean-field electronic structure calculations based on DFT, and we use GW and hybrid DFT to calculate the optical properties of the solid and liquid phases near metallization. We present accurate predictions of the metal-insulator transition on the solid, including structural and optical properties of the molecular phase. MAM was supported by the U.S. Department of Energy at the Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344 and by LDRD Grant No. 13-LW-004.

  17. A picosecond high pressure gas switch

    SciTech Connect

    Cravey, W.R.; Poulsen, P.P.; Pincosy, P.A.

    1992-06-01

    Work is being done to develop a high pressure gas switch (HPGS) with picosecond risetimes for UWB applications. Pulse risetimes on the order of 200 picoseconds have been observed at 1 kHz prf and 1 atmosphere. Calculations show that switching closure times on the order of tens of picoseconds can be achieved at high pressures and higher electric fields. A voltage hold-off of 1 MV/cm has been measured at 10 atmospheres and several MV/cm appears possible with the HPGS. With these high electric field levels, energy storage of tens of Joules in a reasonably sized package is achievable. Initial HPGS performance has been characterized on the WASP pulse generator at LLNL. A detailed description of the switch used for initial testing is given. Switch recovery times of 1-ms have been measured at 1 atmosphere. Data on the switching uniformity, voltage hold-off recovery, and pulse repeatability, is presented. In addition, a physics switch model is described and results are compared with lab data.

  18. HIGH PRESSURE COAL COMBUSTION KINETICS PROJECT

    SciTech Connect

    Chris Guenther, Ph.D.

    2003-01-28

    SRI has completed the NBFZ test program, made modification to the experimental furnace for the HPBO test. The NBFZ datasets provide the information NEA needs to simulate the combustion and fuel-N conversion with detailed chemical reaction mechanisms. BU has determined a linear swell of 1.55 corresponding to a volumetric increase of a factor of 3.7 and a decrease in char density by the same factor. These results are highly significant, and indicate significantly faster burnout at elevated pressure due to the low char density and large diameter.

  19. Microbial Evolution at High Pressure: Deep Sea and Laboratory Studies

    NASA Astrophysics Data System (ADS)

    Bartlett, D. H.

    2011-12-01

    Elevated hydrostatic pressures are present in deep-sea and deep-Earth environments where this physical parameter has influenced the evolution and characteristics of life. Piezophilic (high-pressure-adapted) microbes have been isolated from diverse deep-sea settings, and would appear likely to occur in deep-subsurface habitats as well. In order to discern the factors enabling life at high pressure my research group has explored these adaptations at various levels, most recently including molecular analyses of deep-sea trench communities, and through the selective evolution of the model microbe Escherichia coli in the laboratory to progressively higher pressures. Much of the field work has focused on the microbes present in the deeper portions of the Puerto Rico Trench (PRT)and in the Peru-Chile Trench (PCT), from 6-8.5 km below the sea surface (~60-85 megapascals pressure). Culture-independent phylogenetic data on the Bacteria and Archaea present on particles or free-living, along with data on the microeukarya present was complemented with genomic analyses and the isolation and characterization of microbes in culture. Metagenomic analyses of the PRT revealed increased genome sizes and an overrepresentation at depth of sulfatases for the breakdown of sulfated polysaccharides and specific categories of transporters, including those associated with the transport of diverse cations or carboxylate ions, or associated with heavy metal resistance. Single-cell genomic studies revealed several linneages which recruited to the PRT metagenome far better than existing marine microbial genome sequences. analyses. Novel high pressure culture approaches have yielded new piezophiles including species preferring very low nutrient levels, those living off of hydrocarbons, and those adapted to various electron donor/electron acceptor combinations. In order to more specifically focus on functions enabling life at increased pressure selective evolution experiments were performed with

  20. Method transfer from high-pressure liquid chromatography to ultra-high-pressure liquid chromatography. II. Temperature and pressure effects.

    PubMed

    Åsberg, Dennis; Samuelsson, Jörgen; Leśko, Marek; Cavazzini, Alberto; Kaczmarski, Krzysztof; Fornstedt, Torgny

    2015-07-01

    The importance of the generated temperature and pressure gradients in ultra-high-pressure liquid chromatography (UHPLC) are investigated and compared to high-pressure liquid chromatography (HPLC). The drug Omeprazole, together with three other model compounds (with different chemical characteristics, namely uncharged, positively and negatively charged) were used. Calculations of the complete temperature profile in the column at UHPLC conditions showed, in our experiments, a temperature difference between the inlet and outlet of 16 °C and a difference of 2 °C between the column center and the wall. Through van't Hoff plots, this information was used to single out the decrease in retention factor (k) solely due to the temperature gradient. The uncharged solute was least affected by temperature with a decrease in k of about 5% while for charged solutes the effect was more pronounced, with k decreases up to 14%. A pressure increase of 500 bar gave roughly 5% increase in k for the uncharged solute, while omeprazole and the other two charged solutes gave about 25, 20 and 15% increases in k, respectively. The stochastic model of chromatography was applied to estimate the dependence of the average number of adsorption/desorption events (n) and the average time spent by a molecule in the stationary phase (τs) on temperature and pressure on peak shape for the tailing, basic solute. Increasing the temperature yielded an increase in n and decrease in τs which resulted in less skew at high temperatures. With increasing pressure, the stochastic modeling gave interesting results for the basic solute showing that the skew of the peak increased with pressure. The conclusion is that pressure effects are more pronounced for both retention and peak shape than the temperature effects for the polar or charged compounds in our study.