Sample records for high pressures implications

  1. Phase diagram for ammonia-water mixtures at high pressures - Implications for icy satellites

    NASA Technical Reports Server (NTRS)

    Cynn, H. C.; Boone, S.; Koumvakalis, A.; Nicol, M.; Stevenson, D. J.

    1989-01-01

    The (NH3)x(H2O)1-x phase diagram for X from 0 to 0.50 has been reexamined at temperatures from 125 K to 400 K and at pressures from 6.0 GPa using diamond anvil cells, and the implications of the findings for icy satellites are addressed. Titan is likely to have a thicker NH3-H2O ocean than previously suspected, because the stability field of NH3-H2O is found to be smaller than previously supposed. The implications for methane and ammonia volcanism on Titan are briefly discussed. The experimentally observed reactivity between the liquid and iron may also have implications for planetary and satellite evolution.

  2. Inactivation of a diverse set of shiga toxin-producing Escherichia coli in ground beef by high pressure processing

    USDA-ARS?s Scientific Manuscript database

    Shiga Toxin-Producing Escherichia coli (STEC) are frequently implicated in foodborne illness outbreaks and recalls of ground beef. In this study we determined the High Pressure Processing (HPP) D-10 value (the processing conditions needed to reduce the microbial population by 1 log) of 39 individua...

  3. Effect of high pressure impact on the survival of Shiga Toxin-producing Escherichia coli ('Big Six' and 0157) in ground beef

    USDA-ARS?s Scientific Manuscript database

    High pressure processing (HPP) is a safe and effective technology for improving food safety while maintaining food quality attributes. Non-O157:H7 Shiga Toxin-producing Escherichia coli (STEC) have been increasingly implicated in foodborne illness outbreaks and recalls, and the USDA Food Safety Ins...

  4. California Conference on High Blood Pressure Control in the Spanish-Speaking Community (Los Angeles, California, April 1-2, 1978). Summary Report.

    ERIC Educational Resources Information Center

    National Institutes of Health (DHEW), Bethesda, MD. High Blood Pressure Information Center.

    As part of the National High Blood Pressure Education Program effort, the conference explored the implications and impact of the prevalence of hypertension in Spanish-speaking populations in California. Approximately 150 experts in health fields, representing all levels of government, public and private health care providers, consumers, and health…

  5. High pressure ices are not the end of the story for large icy moons habitability: experimental studies of salts effects on high pressure ices and the implications for icy worlds large hydrosphere structure and chemical evolution

    NASA Astrophysics Data System (ADS)

    Journaux, Baptiste; Abramson, Evan; Brown, J. Michael; Bollengier, Olivier

    2017-10-01

    The presence of several phases of deep high-pressure ices in large icy moons hydrosphere has often been pointed as a major limitation for the habitability of an uppermost ocean. As they are gravitationally stable bellow liquid H2O, they are thought to act as a chemical barrier between the rocky bed and the ocean. Solutes, including salt species such as NaCl and MgSO4, have been suggested inside icy world oceans from remote sensing, magnetic field measurements and chondritic material alteration models. Unfortunately, the pressures and temperatures inside these hydrospheres are very different from the one found in Earth aqueous environments, so most of our current thermodynamic databases do not cover the range of conditions relevant for modeling realistically large icy worlds interiors.Recent experimental results have shown that the presence of solutes, and more particularly salts, in equilibrium with high pressure ices have large effects on the stability, buoyancy and chemistry of all the phases present at these extreme conditions.In particular brines have been measured to be sometimes more dense than the high pressure ices at melting conditions, possibly creating several oceanic layer "sandwiched" in between two ices shells or in contact with the rocky bed.Other effects currently being investigated by our research group also covers ice melting curve depressions that depend on the salt species and incorporation of solutes inside the crystallographic lattice of high pressure ices. Both of these could have very important implication at the planetary scale, enabling thicker/deeper liquid oceans, and allowing chemical transportation through the high pressure ice layer in large icy worlds.We will present the latest results obtained in-situ using diamond anvil cell high pressure allowing to probe the density, chemistry and thermodynamic properties of high pressure ice and aqueous solutions in equilibrium with Na-Mg-SO4-Cl ionic species.We will also discuss the new planetary evolution scenarios implied by these new material and thermodynamic properties and how this could suggest the existence of new habitable environments in large icy worlds, even when high pressure ices dominate the total volume of the hydrosphere.

  6. Variations in the WNK1 gene modulates the effect of dietary intake of sodium and potassium on blood pressure determination.

    PubMed

    Osada, Yuko; Miyauchi, Rie; Goda, Toshinao; Kasezawa, Nobuhiko; Horiike, Hiromi; Iida, Mariko; Sasaki, Satoshi; Yamakawa-Kobayashi, Kimiko

    2009-08-01

    WNK lysine-deficient protein kinase 1 (WNK1) is a member of the WNK family of serine/threonine kinases with no lysine (K), and these kinases have been implicated as important modulators of salt homeostasis in the kidney. It is well known that high dietary sodium and low dietary potassium have been implicated in the etiology of increased blood pressure. However, the blood pressure response to dietary sodium and potassium intake varies considerably among individuals. In this study, we have detected that the haplotypes of the WNK1 gene are associated with blood pressure variations in the general Japanese population. In addition, we investigated the interactions between the haplotypes of the WNK1 gene and dietary sodium and potassium intake for determining inter-individual variations in blood pressure. Our data support the hypothesis that part of the variation in blood pressure response to dietary sodium and potassium intake among individuals can be explained by variations in the WNK1 gene.

  7. Recent experimental data may point to a greater role for osmotic pressures in the subsurface

    USGS Publications Warehouse

    Neuzil, C.E.; Provost, A.M.

    2009-01-01

    Uncertainty about the origin of anomalous fluid pressures in certain geologic settings has caused researchers to take a second look at osmosis, or flow driven by chemical potential differences, as a pressure‐generating process in the subsurface. Interest in geological osmosis has also increased because of an in situ experiment by Neuzil (2000) suggesting that Pierre Shale could generate large osmotic pressures when highly compacted. In the last few years, additional laboratory and in situ experiments have greatly increased the number of data on osmotic properties of argillaceous formations, but they have not been systematically examined. In this paper we compile these data and explore their implications for osmotic pressure generation in subsurface systems. Rather than base our analysis on osmotic efficiencies, which depend strongly on concentration, we calculated values of a quantity we term osmotic specific surface area (Aso) that, in principle, is a property of the porous medium only. The Aso values are consistent with a surprisingly broad spectrum of osmotic behavior in argillaceous formations, and all the formations tested exhibited at least a modest ability to generate osmotic pressure. It appears possible that under appropriate conditions some formations can be highly effective osmotic membranes able to generate osmotic pressures exceeding 30 MPa (3 km of head) at porosities as high as ∼0.1 and pressures exceeding 10 MPa at porosities as high as ∼0.2. These findings are difficult to reconcile with the lack of compelling field evidence for osmotic pressures, and we propose three explanations for the disparity: (1) Our analysis is flawed and argillaceous formations are less effective osmotic membranes than it suggests; (2) the necessary subsurface conditions, significant salinity differences within intact argillaceous formations, are rare; or (3) osmotic pressures are unlikely to be detected and are not recognized when encountered. The last possibility, that osmotic pressures routinely escape detection or are attributed to other mechanisms, has important implications for understanding subsurface flow regimes.

  8. Pressure Variations in Metamorphic Rocks: Implications for the Interpretation of Petrographic Observations

    NASA Astrophysics Data System (ADS)

    Tajčmanová, Lucie

    2014-05-01

    Metamorphic petrologists and structural geologists, using direct measurements, bring the only direct observational constrains for validating geodynamic models. Therefore, petrological and structural geological observations are essential for the quality and reproducibility of geodynamic reconstructions and models. One of the important assumptions for geodynamic reconstructions arises from the pressure and temperature estimates in the petrology analysis. Pressure is commonly converted to depth through the equation for lithostatic pressure and so the original position of the rock sample within the Earth's interior can be constrained. The current assumption that the studied sample corresponds to uniform pressure may not be correct, and if so, it has serious implications. Increasing evidence from analytical data shows that pressure is not constant even on a grain scale, posing new challenges because, if ignored, it leads to an incorrect use of petrology data in constraining geodynamic models. Well known examples of the preservation of coesite and diamond in a host mineral like garnet show that high pressure inclusions are preserved during decompression. Tajčmanová et al. (2014) has shown that grain-scale pressure variations can develop and that these pressure variations allow compositional zoning in minerals preserved over geological time scales. A new unconventional barometric method based on equilibrium under pressure variations has been developed . Such pressure variations are also connected with differences in fluid pressure in open systems and can be thus observed at all scales. Tajčmanová L., Podladchikov Y., Powell R., Moulas E., Vrijmoed J. and Connolly J. (2014). Grain scale pressure variations and chemical equilibrium in high-grade metamorphic rocks.Journal of Metamorphic Geology, doi:10.1111/jmg.12066 This work was supported by ERC starting grant 335577 to Lucie Tajcmanova

  9. Shock pressures in igneous processes: Implications for K/T events

    NASA Astrophysics Data System (ADS)

    Rice, Alan

    The seismicity initiating the May 18, 1980 catastrophic eruption at Mt. St. Helens indicates an explosion occurred at depth generating an average pressure of about 500 kbar. Such pressures fall off with distance from the magma chamber although jointing, fractures, etc. may act as stress concentrators to extend the radius of formation of shocked minerals as far as a kilometer. Shocked minerals are not to be expected from the magma itself as high temperatures would anneal such features but temperatures fall away rapidly enough from the chamber wall to allow retention even of such possible exotics as stishovite. The subsequent kinetics of the failure of the north slope support these pressures as do thermodynamic considerations and nucleation kinetics of CO2 exsolution from magmatic melt. Confining pressures (e.g., overburden head) are not a limiting factor. Unconfined detonations in open air yield pressures to several megabars although some recent arguments asserted to be volcanological would indicate open air bursts greater than one bar to be impossible. Further, it has been indicated that pressure estimates from ballistic considerations have been too high and large phenocryst content in the discharge material argues against high pressure explosions. In the first instance, sonic choking and volatile diffusion time constraints make these assessments implausible and in the second instance, both theoretical and geological considerations provide for the phenocryst distributions under explosive situations. These results and recent discoveries of high levels of iridium in volcanic ash in the Antarctic blue ice have implication for K/T boundary events, mass extinctions and endoexplosions. The geographical breadth of volcanic activity attending the K-T transition (e.g., Antarctic volcanism as well as the Deccan Traps) indicates a global mechanism and suggests a large portion of the mantle experienced convective surge as occurs at high Rayleigh number flow. Scaling to mantle conditions yields episodicities of the same order as the 30 my intervals.

  10. Sixteen years of change in the global terrestrial human footprint and implications for biodiversity conservation

    NASA Astrophysics Data System (ADS)

    Venter, Oscar; Sanderson, Eric W.; Magrach, Ainhoa; Allan, James R.; Beher, Jutta; Jones, Kendall R.; Possingham, Hugh P.; Laurance, William F.; Wood, Peter; Fekete, Balázs M.; Levy, Marc A.; Watson, James E. M.

    2016-08-01

    Human pressures on the environment are changing spatially and temporally, with profound implications for the planet's biodiversity and human economies. Here we use recently available data on infrastructure, land cover and human access into natural areas to construct a globally standardized measure of the cumulative human footprint on the terrestrial environment at 1 km2 resolution from 1993 to 2009. We note that while the human population has increased by 23% and the world economy has grown 153%, the human footprint has increased by just 9%. Still, 75% the planet's land surface is experiencing measurable human pressures. Moreover, pressures are perversely intense, widespread and rapidly intensifying in places with high biodiversity. Encouragingly, we discover decreases in environmental pressures in the wealthiest countries and those with strong control of corruption. Clearly the human footprint on Earth is changing, yet there are still opportunities for conservation gains.

  11. Sixteen years of change in the global terrestrial human footprint and implications for biodiversity conservation

    PubMed Central

    Venter, Oscar; Sanderson, Eric W.; Magrach, Ainhoa; Allan, James R.; Beher, Jutta; Jones, Kendall R.; Possingham, Hugh P.; Laurance, William F.; Wood, Peter; Fekete, Balázs M.; Levy, Marc A.; Watson, James E. M.

    2016-01-01

    Human pressures on the environment are changing spatially and temporally, with profound implications for the planet's biodiversity and human economies. Here we use recently available data on infrastructure, land cover and human access into natural areas to construct a globally standardized measure of the cumulative human footprint on the terrestrial environment at 1 km2 resolution from 1993 to 2009. We note that while the human population has increased by 23% and the world economy has grown 153%, the human footprint has increased by just 9%. Still, 75% the planet's land surface is experiencing measurable human pressures. Moreover, pressures are perversely intense, widespread and rapidly intensifying in places with high biodiversity. Encouragingly, we discover decreases in environmental pressures in the wealthiest countries and those with strong control of corruption. Clearly the human footprint on Earth is changing, yet there are still opportunities for conservation gains. PMID:27552116

  12. Formation of wadsleyite in a shock experiment - implications for the duration of shock events in meteorite parent bodies

    NASA Astrophysics Data System (ADS)

    Tschauner, O.; Asimow, P. D.; Ahrens, T. J.; Kostandova, N.; Sinogeikin, S.

    2007-12-01

    We report the first observation of the high-pressure silicate phase wadsleyite in the recovery products of a shock experiment. Wadsleyite was detected by micro-X ray diffraction and EBSD. Wadsleyite grew from melt which formed by chemical reaction of periclase and silica during shock. Our findings show that the growth rate of high pressure silicate phases in shock-generated melts can be of the order of m/s and is probably not diffusion controlled. Our finding has important implications for the time scale of shock events recorded by meteorites and indicates that the presence of high pressure silicates found in shocked meteorites does not necessarily imply large impactor sizes. This work was supported by the NNSA Cooperative Agreement DOE-FC88-01NV14049 and NASA/Goddard grants under awards NNG04GP57G and NNG04GI07G. Use of the HPCAT facility was supported by DOE-BES, DOE-NNSA, NSF, DOD -TACOM, and the W.M. Keck Foundation. APS is supported by DOE-BES under Contract No. W-31-109-Eng-38.

  13. Decomposition of silicon carbide at high pressures and temperatures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Daviau, Kierstin; Lee, Kanani K. M.

    We measure the onset of decomposition of silicon carbide, SiC, to silicon and carbon (e.g., diamond) at high pressures and high temperatures in a laser-heated diamond-anvil cell. We identify decomposition through x-ray diffraction and multiwavelength imaging radiometry coupled with electron microscopy analyses on quenched samples. We find that B3 SiC (also known as 3C or zinc blende SiC) decomposes at high pressures and high temperatures, following a phase boundary with a negative slope. The high-pressure decomposition temperatures measured are considerably lower than those at ambient, with our measurements indicating that SiC begins to decompose at ~ 2000 K at 60more » GPa as compared to ~ 2800 K at ambient pressure. Once B3 SiC transitions to the high-pressure B1 (rocksalt) structure, we no longer observe decomposition, despite heating to temperatures in excess of ~ 3200 K. The temperature of decomposition and the nature of the decomposition phase boundary appear to be strongly influenced by the pressure-induced phase transitions to higher-density structures in SiC, silicon, and carbon. The decomposition of SiC at high pressure and temperature has implications for the stability of naturally forming moissanite on Earth and in carbon-rich exoplanets.« less

  14. Pathophysiology and implications of intradialytic hypertension.

    PubMed

    Van Buren, Peter Noel

    2017-07-01

    Intradialytic hypertension occurs regularly in 10--15% of hemodialysis patients. A large observational study recently showed that intradialytic hypertension of any magnitude increased mortality risk comparable to the most severe degrees of intradialytic hypotension. The present review review discusses the most recent evidence underlying the pathophysiology of intradialytic hypertension and implications for its management. Patients with intradialytic hypertension typically have small interdialytic weight gains, but bioimpedance spectroscopy shows these patients have significant chronic extracellular volume excess. Intradialytic hypertension patients have lower albumin and predialysis urea nitrogen levels, which may contribute to small reductions in osmolarity that prevents blood pressure decreases. Intradialytic vascular resistance surges remain implicated as the driving force for blood pressure increases, but mediators other than endothelin-1 may be responsible. Beyond dry weight reduction, the only controlled intervention shown to interrupt the blood pressure increase is lowering dialysate sodium. Patients with recurrent intradialytic hypertension should be identified as high-risk patients. Dry weight should be re-evaluated, even if patients do not clinically appear volume overloaded. Antihypertensive drugs should be prescribed because of the persistently elevated ambulatory blood pressure. Dialysate sodium reduction should be considered, although the long term effects of this intervention are uncertain.

  15. Disproportionation of marokite at high pressures and temperatures with geophysical implications

    NASA Astrophysics Data System (ADS)

    Liu, Lin-gun

    1983-07-01

    Natural marokite (CaMn 2O 4) has been studied at high pressures and temperatures using a diamond-anvil press coupled with laser heating in the pressure range 100-250 kbar. A mixture of marokite, CaMnO 3 (perovskite) and MnO (rocksalt) has been observed in all runs in the above pressure range by X-ray diffraction study of the quenched samples. It was interpreted that marokite disproportionates into the mixture CaMnO 3 (perovskite) + MnO (rocksalt) at pressures below 100 kbar. A general comparison of the molar volume for all known compounds having the marokite-related structures (including CaFe 2O 4 and CaTi 2O 4) with those for a mixture of perovskite plus rocksalt structures suggested that the mixture is more stable than the marokite-related structures at high pressures, as confirmed by the present experimental result. The CaFe 2O 4-modification of common nepheline (NaAlSiO 4) is also suggested to be unstable relative to the component oxides of α-NaAlO 2 + SiO 2 (stishovite) at high pressures.

  16. Ethics of emergency department triage: SAEM position statement. SAEM Ethics Committee (Society for Academic Emergency Medicine).

    PubMed

    1995-11-01

    Emergency department overcrowding, the growth of managed care, and the high cost of emergency care are creating pressures to triage patients away from U.S. EDs. Paradoxically, this pressure to limit patient access to EDs has increased in spite of federal laws that restrict patient triage and transfer. The latter regulations view EDs as the safety net for the U.S. health care system. The SAEM Ethics Committee evaluated the ethical implications of policies that triage patients out of the ED prior to complete evaluation and treatment. The committee used these implications to develop practical guidelines, which are reported.

  17. Is Charismatic Leadership Effective When Workers Are Pressured To Be Good Citizens?

    PubMed

    Horn, Dewaynna; Mathis, Christopher J; Robinson, Sammie L; Randle, Natasha

    2015-01-01

    Prior research has explored how employees' perceptions of their leaders impact their work attitudes and behaviors. Studies have shown that charismatic leaders motivate individuals to be more engaged and to exhibit more organizational citizenship behaviors. This study considers how a moderator, citizenship pressure, affects how charismatic leaders might inspire their followers to go above and beyond and be more engaged in their work. Using a sample of 243 workers, this study's findings show that charismatic leadership has a stronger positive effect on job engagement when employees perceive less citizenship pressure. Citizenship pressure did not moderate the relationship between charismatic leadership and organizational citizenship behavior. Implications of this study include an examination of the moderating influence of citizenship pressure, a relatively new construct. Practically, the implications may shed some light on leadership factors that encourage increased effort from employees and greater employee engagement. More specifically, findings suggest that persons are motivated to exhibit more OCBs to meet high expectations of charismatic leaders. However, when seeking engagement, feeling pressure to perform these OCBs has a reverse effect as more job engagement results with less citizenship pressure. Future research suggestions and limitations are discussed.

  18. High pressure study of water-salt systems, phase equilibria, partitioning, thermodynic properties and implication for large icy worlds hydrospheres.

    NASA Astrophysics Data System (ADS)

    Journaux, B.; Brown, J. M.; Abramson, E.; Petitgirard, S.; Pakhomova, A.; Boffa Ballaran, T.; Collings, I.

    2017-12-01

    Water salt systems are predicted to be present in deep hydrosphere inside water-rich planetary bodies, following water/rock chemical interaction during early differentiation stages or later hydrothermal activity. Unfortunately the current knowledge of the thermodynamic and physical properties of aqueous salt mixtures at high pressure and high temperature is still insufficient to allow realistic modeling of the chemical or dynamic of thick planetary hydrospheres. Recent experimental results have shown that the presence of solutes, and more particularly salts, in equilibrium with high pressure ices have large effects on the stability fields, buoyancy and chemistry of all the phases present at these extreme conditions. Effects currently being investigated by our research group also covers ice melting curve depressions that depend on the salt species and incorporation of solutes inside the crystallographic lattice of high pressure ices. Both of these could have very important implication at the planetary scale, enabling thicker/deeper liquid oceans, and allowing chemical transportation through the high pressure ice layer in large icy worlds. We will present the latest results obtained in-situ using diamond anvil cell, coupled with Synchrotron X-Ray diffraction, Raman Spectroscopy and optical observations, allowing to probe the crystallographic structure, equations of state, partitioning and phase boundary of high pressure ice VI and VII in equilibrium with Na-Mg-SO4-Cl ionic species at high pressures (1-10 GPa). The difference in melting behavior depending on the dissolved salt species was characterized, suggesting differences in ionic speciation at liquidus conditions. The solidus P-T conditions were also measured as well as an increase of lattice volumes interpreted as an outcome of ionic incorporation in HP ice during incongruent crystallization. The measured phase diagrams, lattice volumes and important salt incorporations suggest a more complex picture of the structure, dynamic and evolution of icy worlds hydrospheres that could allow, among others, deep liquid reservoirs, chemical transport at the solid state through HP ices layers and/or complex dynamic due to salt exsolutions at HP ices solid-solid phase boundaries.

  19. Instrumental record of debris flow initiation during natural rainfall: Implications for modeling slope stability

    Treesearch

    David R. Montgomery; Kevin M. Schmidt; William E. Dietrich; Jim McKean

    2009-01-01

    The middle of a hillslope hollow in the Oregon Coast Range failed and mobilized as a debris flow during heavy rainfall in November 1996. Automated pressure transducers recorded high spatial variability of pore water pressure within the area that mobilized as a debris flow, which initiated where local upward flow from bedrock developed into overlying colluvium....

  20. Measurements of high-pressure CO2 absorption near 2.0 μm and implications on tunable diode laser sensor design

    NASA Astrophysics Data System (ADS)

    Rieker, G. B.; Jeffries, J. B.; Hanson, R. K.

    2009-01-01

    A tunable diode laser (TDL) is used to measure the absorption spectra of the R46 through R54 transitions of the 20012 ←00001 band of CO2 near 2.0 μm (5000 cm-1) at room temperature and pressures to 10 atm (densities to 9.2 amagat). Spectra are recorded using direct absorption spectroscopy and wavelength modulation spectroscopy with second-harmonic detection (WMS-2f) in a mixture containing 11% CO2 in air. The direct absorption spectra are influenced by non-Lorentzian effects including finite-duration collisions which perturb far-wing absorption, and an empirical χ-function correction to the Voigt line shape is shown to greatly reduce error in the spectral model. WMS-2f spectra are shown to be at least a factor of four less-influenced by non-Lorentzian effects in this region, making this approach more resistant to errors in the far-wing line shape model and allowing a comparison between the spectral parameters of HITRAN and a new database which includes pressure-induced shift coefficients. The implications of these measurements on practical, high-pressure CO2 sensor design are discussed.

  1. Melt production in large-scale impact events: Implications and observations at terrestrial craters

    NASA Technical Reports Server (NTRS)

    Grieve, Richard A. F.; Cintala, Mark J.

    1992-01-01

    The volume of impact melt relative to the volume of the transient cavity increases with the size of the impact event. Here, we use the impact of chondrite into granite at 15, 25, and 50 km s(sup -1) to model impact-melt volumes at terrestrial craters in crystalline targets and explore the implications for terrestrial craters. Figures are presented that illustrate the relationships between melt volume and final crater diameter D(sub R) for observed terrestrial craters in crystalline targets; also included are model curves for the three different impact velocities. One implication of the increase in melt volumes with increasing crater size is that the depth of melting will also increase. This requires that shock effects occurring at the base of the cavity in simple craters and in the uplifted peaks of central structures at complex craters record progressively higher pressures with increasing crater size, up to a maximum of partial melting (approx. 45 GPa). Higher pressures cannot be recorded in the parautochthonous rocks of the cavity floor as they will be represented by impact melt, which will not remain in place. We have estimated maximum recorded pressures from a review of the literature, using such observations as planar features in quartz and feldspar, diaplectic glasses of feldspar and quartz, and partial fusion and vesiculation, as calibrated with estimates of the pressures required for their formation. Erosion complicates the picture by removing the surficial (most highly shocked) rocks in uplifted structures, thereby reducing the maximum shock pressures observed. In addition, the range of pressures that can be recorded is limited. Nevertheless, the data define a trend to higher recorded pressures with crater diameter, which is consistent with the implications of the model. A second implication is that, as the limit of melting intersects the base of the cavity, central topographic peaks will be modified in appearance and ultimately will not occur. That is, the peak will first develop a central depression, due to the flow of low-strength melted materials, when the melt volume begins to intersect the transient-cavity base.

  2. High pressure experimental studies on Na3Fe(PO4)(CO3) and Na3Mn(PO4)(CO3): Extensive pressure behaviors of carbonophosphates family

    NASA Astrophysics Data System (ADS)

    Gao, Jing; Huang, Weifeng; Wu, Xiang; Qin, Shan

    2018-04-01

    Carbon-bearing phases in the Earth's interior have profound implications for the long-term Earth carbon cycle. Here we investigate high-pressure behaviors of carbonophosphates bonshtedtite Na3Fe(PO4)(CO3) and sidorenkite Na3Mn(PO4)(CO3) in diamond anvil cells up to ∼12 GPa at room temperature. Modifications in in situ synchrotron X-ray diffraction patterns and Raman spectra confirm the structural stability of carbonophosphates within the pressure region. Fitting the third-order Birch-Murnaghan equation of state to the volume compression curve, the isothermal bulk modulus parameters are obtained to be K0 = 56(1) GPa, K0' = 3.3(1), V0 = 303.3(3) Å3 for Na3Fe(PO4)(CO3) and K0 = 54(1) GPa, K0' = 3.4(1), V0 = 313.4(2) Å3 for Na3Mn(PO4)(CO3). Crystallographic axes exhibit an elastic anisotropy with a more compressible c-axis relative to the ab-plane. An inverse linear correlation between the K0 value and the ionic radius of M2+ (M = Mg, Fe, Mn) is well determined for carbonophosphates. The pressure-dependence responsiveness of [PO4] and [CO3] in carbonophosphates show a negative relationship to the M2+ radius. We also discussed the effect of [PO4] group on the structural variations and high-pressure behaviors of carbonates. Furthermore, the geochemical properties of carbonophosphates hold implications to diamond genesis.

  3. Carbon and Hydrogen Isotope Fractionation in Lipid Biosynthesis of Piezophilic Bacteria - Implications for Studying Microbial Metabolism and Carbon Cycle in Deep Biosphere

    NASA Astrophysics Data System (ADS)

    Fang, J.; Dasgupta, S.; Zhang, L.; Li, J.; Kato, C.; Bartlett, D.

    2012-12-01

    Piezophiles are pressure-loving microorganisms, which reproduce preferentially or exclusively at pressures greater than atmospheric pressure. In this study, we examined stable carbon and hydrogen isotope fractionation in fatty acid biosynthesis of a piezophilic bacterium Moritella japonica DSK1. The bacterium was grown to stationary phase at hydrstatic pressures of 0.1, 10, 20, and 50 MPa (mega-passcal) in media prepared using sterilized natural seawater supplied with glucose as the sole carbon source. Bacterial cell biomass and individual fatty acids exhibited consistent pressure-dependent carbon and hydrogen isotope fractionations relative to substrates. Average carbon isotope fractionation (delta(FA-glucose)) at high pressures was much higher than that for surface bacteria: -15.7, -15.3, and -18.3‰ at 10, 20, and 50 MPa, respectively. For deltaD, fatty acids are more depleted in D relative to glucose than to water. Monounsaturated fatty acids are more depleted in D than corresponding saturated fatty acids by as much as 36‰. Polyunsaturated fatty acids are most depleted in D. For example, DHA (22:6omega3) has the most negative hydrogen isotope ratio (-170.91‰) (delta(FA-glucose) = -199, delta(FA-water) = -176). The observed isotope effects can be ascribed to the kinetics of enzymatic reactions that are affected by hydrostatic pressure and to operating of two independent lipid biosynthetic pathways of the piezophilic bacteria. Given that most of the biosphere lives under high pressures, our results have important important implications for studying microbial metabolism and carbon cycle in the deep biosphere.

  4. High-pressure metallization of FeO and implications for the earth's core

    NASA Technical Reports Server (NTRS)

    Knittle, Elise; Jeanloz, Raymond

    1986-01-01

    The phase diagram of FeO has been experimentally determined to pressures of 155 GPa and temperatures of 4000 K using shock-wave and diamond-cell techniques. A metallic phase of FeO is observed at pressures greater than 70 GPa and temperatures exceeding 1000 K. The metallization of FeO at high pressures implies that oxygen can be present as the light alloying element of the earth's outer core, in accord with the geochemical predictions of Ringwood (1977 and 1979). The high pressures necessary for this metallization suggest that the core has acquired its composition well after the initial stages of the earth's accretion. Direct experimental observations at elevated pressures and temperatures indicate that core-forming alloy can react chemically with oxides such as those forming the mantle. The core and mantle may never have reached complete chemical equilibrium, however. If this is the case, the core-mantle boundary is likely to be a zone of active chemical reactions.

  5. Alexandrite as a high-temperature pressure calibrant, and implications for the ruby-fluorescence scale

    NASA Technical Reports Server (NTRS)

    Jahren, A. H.; Kruger, M. B.; Jeanloz, Raymond

    1992-01-01

    The wavelength shifts of the R1 and R2 fluorescence lines of alexandrite (BeAl2O4:Cr(+3)) have been experimentally calibrated against the ruby-fluorescence scale as a function of both hydrostatic and nonhydrostatic pressures between 0 and 50 GPa, and simultaneously as a function of temperatures between 290 and 550 K. It is found that the pressure-temperature cross derivative of the fluorescence wavelength shifts are negligible for both ruby and alexandrite.

  6. Arab doctors, evolving society and corruption: a medical student's perspective.

    PubMed

    Alamri, Yassar

    2015-01-01

    Doctors, especially junior doctors, face immense pressure in their day-to-day work. As a result, the rates of depression and anxiety are particularly high in this demanding profession. The pressure, which is compounded by constantly being under societal scrutiny, can unfortunately drive the doctor to breaking point. However, we can help doctors deal with these pressures in a more meaningful way if we make them aware of their wider environment (within a social paradigm) and the implications of their actions.

  7. Design with high strength steel: A case of failure and its implications

    NASA Astrophysics Data System (ADS)

    Rahka, Klaus

    1992-10-01

    A recent proof test failure of a high strength steel pressure vessel is scrutinized. Apparent deficiencies in the procedures to account for elasto-plastic local strain are indicated for the applicable routine (code) strength calculations. Tentative guidance is given for the use of material tensile fracture strain and its strain state (plane strain) correction in fracture margin estimation. A hypothesis that the calculated local strain is comparable with a gauge length weighted tensile ductility for fracture to initiate at a notch root is given. A discussion about the actual implications of the failure case and the suggested remedy in the light of the ASME Boiler and Pressure Vessel Code section 3 and 8 is presented. Further needs for research and development are delineated. Possible yield and ductility related design limits and their use as material quality indices are discussed.

  8. Partner Pressure, Victimization History, and Alcohol: Women’s Condom-Decision Abdication Mediated by Mood and Anticipated Negative Partner Reaction

    PubMed Central

    George, William H.; Davis, Kelly Cue; Masters, N. Tatiana; Kajumulo, Kelly F.; Stappenbeck, Cynthia A.; Norris, Jeanette; Heiman, Julia R.; Staples, Jennifer M.

    2015-01-01

    Highly intoxicated versus sober women were evaluated using multi-group path analyses to test the hypothesis that sexual victimization history would interact with partner pressure to forgo condom use, resulting in greater condom-decision abdication – letting the man decide whether or not to use a condom. After beverage administration, community women (n=408) projected themselves into a scenario depicting a male partner exerting high or low pressure for unprotected sex. Mood, anticipated negative reactions from the partner, and condom-decision abdication were assessed. In both control and alcohol models, high pressure increased anticipated negative partner reaction, and positive mood was associated with increased abdication. In the alcohol model, victimization predicted abdication via anticipated negative partner reaction, and pressure decreased positive mood and abdication. In the control model, under high pressure, victimization history severity was positively associated with abdication. Findings implicate condom-decision abdication as an important construct in understanding how women’s sexual victimization histories may exert sustained impact on sexual interactions. PMID:26340952

  9. Prevalence of sedentary lifestyle in individuals with high blood pressure.

    PubMed

    Guedes, Nirla Gomes; Lopes, Marcos Venícios de Oliveira; Moreira, Rafaella Pessoa; Cavalcante, Tahissa Frota; de Araujo, Thelma Leite

    2010-01-01

    To identify the prevalence of a sedentary lifestyle in individuals with high blood pressure. This cross-sectional study was conducted among 310 individuals with high blood pressure. The prevalence of the diagnosis of sedentary lifestyle was 60%. The more common defining characteristics were "lack of physical conditioning" and "lack of practice for physical exercises." The nursing diagnosis was associated with age and presence of diabetes. Individuals who presented with a sedentary lifestyle related to lack of motivation were significantly younger. This study showed a high prevalence of "sedentary lifestyle" and its associations with age and the presence of diabetes. IMPLICATIONS TO NURSING PRACTICE: The acknowledgement of "sedentary lifestyle" contributes to the choice for nursing interventions that promote physical activity centered on the subject and the surroundings.

  10. New transformations between crystalline and amorphous ice

    NASA Technical Reports Server (NTRS)

    Hemley, R. J.; Chen, L. C.; Mao, H. K.

    1989-01-01

    High-pressure optical and spectroscopic techniques were used to obtain directly the ice I(h) - hda-ice transformation in a diamond-anvil cell, and the stability of the amorphous form is examined as functions of pressure and temperature. It is demonstrated that hda-ice transforms abruptly at 4 GPa and 77 K to a crystalline phase close in structure to orientationally disordered ice-VII and to a more highly ordered, ice-VIII-like structure at higher temperatures. This is the first time that an amorphous solid is observed to convert to a crystalline solid at low temperatures by compression alone. Phase transitions of this type may be relevant on icy planetary satellites, and there may also be implications for the high-pressure behavior of silica.

  11. Feeling the pressure: Attitudes about volunteering and their effect on civic and political behaviors.

    PubMed

    Bode, Leticia

    2017-06-01

    This article examines the evolving nature of volunteering among American youth, ages 12 to 17, focusing on emergent pressures to volunteer, as required by high schools or to improve one's employment or education prospects after graduation. Using survey data (N = 736, mean age = 14.78, 75.1% white, 49.1% female), it finds these pressures are prevalent, related to a desire to volunteer, and both of these motivations are positively associated with volunteering. It further concludes that volunteering supplements, rather than replaces or subsumes both online and offline political behaviors among youth. This has important implications for how we understand the role of volunteering in the youngest American age cohorts, and practical implications for educators and civic proponents in terms of determining what actually increases volunteering activity. Copyright © 2017 The Foundation for Professionals in Services for Adolescents. Published by Elsevier Ltd. All rights reserved.

  12. Pressure and temperature dependence kinetics study of the NO + BrO yielding NO2 + Br reaction - Implications for stratospheric bromine photochemistry

    NASA Technical Reports Server (NTRS)

    Watson, R. T.; Sander, S. P.; Yung, Y. L.

    1979-01-01

    The reactivity of NO with BrO radicals over a wide range of pressure (100-700 torr) and temperature (224-398 K) is investigated using the flash photolysis-ultraviolet absorption technique. The flash photolysis system consists of a high-pressure xenon arc light source, a reaction cell/gas filter/flash lamp combination, and a 216.5 half-meter monochromator/polychromator/spectrography for wavelength selectivity. The details of the reaction and its corresponding Arrhenius expression are identified. The results are compared with previous measurements, and atmospheric implications of the reaction are discussed. The NO + BrO yielding NO2 + Br reaction is shown to be important in controlling the concentration ratios of BrO/Br and BrO/HBr in the stratosphere, but this reaction does not affect the catalytic efficiency of BrOx in ozone destruction.

  13. Pressure demagnetization of synthetic Al substituted hematite and its implications for planetary studies

    NASA Astrophysics Data System (ADS)

    Jiang, Zhaoxia; Rochette, Pierre; Liu, Qingsong; Gattacceca, Jérôme; Yu, Yongjae; Barrón, Vidal; Torrent, José

    2013-11-01

    Magnetic minerals can undergo high pressures during their formation and subsequent evolution, which can modify both their intrinsic magnetic properties and remanent magnetization. Aluminum-substituted hematite (Al-hematite) occurs in significant proportion in many soils and sediments, especially in temperate and warm areas. In this work we investigated the effect of high hydrostatic pressures on the magnetic remanence of two series of synthetic Al-hematites. A pressure of 1.44 GPa resulted in 50% reduction of the isothermal remanent magnetization (IRM), which was more effective than alternating field (AF) demagnetization with the largest peak field of 120 mT. In addition, repeated application of the same pressure leads to further demagnetization. Aluminum substitution may increase the resistance to the pressure effect by decreasing particle size and generating defects in magnetic lattices, which results in an increase in coercivity. Our study contributes to understanding the effects of pressure on rocks from the interior of Earth and other planets as well as shocked planetary surfaces, which is significant for future planetary studies.

  14. Shock wave equation of state of serpentine to 150 GPa - Implications for the occurrence of water in the earth's lower mantle

    NASA Technical Reports Server (NTRS)

    Tyburczy, James A.; Duffy, Thomas S.; Ahrens, Thomas J.; Lange, Manfred A.

    1991-01-01

    The shock wave equation of state of Mg end-member serpentine was determined to 150 GPa by examining the shock properties of three polycrystalline serpentines: (1) a lizardite serpentine found near Globe (Arizona), (2) an antigorite serpentine from Thurman (New York), and (3) a chrysotile serpentine from Quebec (Canada). The shock wave experiments were carried out using either a two-stage light gas gun or a 40-mm bore propellant. The shock equation of state that was obtained is shown to exhibit four distinct regions: a low-pressure phase, a mixed phase region, a high-pressure phase, and a very high-pressure phase. The high-pressure density and sound speed of an H2O-rich magnesium silicate determined from these experiments indicate that the observed seismic properties of the lower mantle allow the existence of several weight percent of water in the lower mantle.

  15. Passive landfill gas emission - Influence of atmospheric pressure and implications for the operation of methane-oxidising biofilters.

    PubMed

    Gebert, Julia; Groengroeft, Alexander

    2006-01-01

    A passively vented landfill site in Northern Germany was monitored for gas emission dynamics through high resolution measurements of landfill gas pressure, flow rate and composition as well as atmospheric pressure and temperature. Landfill gas emission could be directly related to atmospheric pressure changes on all scales as induced by the autooscillation of air, diurnal variations and the passage of pressure highs and lows. Gas flux reversed every 20 h on average, with 50% of emission phases lasting only 10h or less. During gas emission phases, methane loads fed to a connected methane oxidising biofiltration unit varied between near zero and 247 g CH4 h(-1)m(-3) filter material. Emission dynamics not only influenced the amount of methane fed to the biofilter but also the establishment of gas composition profiles within the biofilter, thus being of high relevance for biofilter operation. The duration of the gas emission phase emerged as most significant variable for the distribution of landfill gas components within the biofilter.

  16. Inactivation of Salmonella and Escherichia coli O157:H7 on artificially contaminated alfalfa seeds using high hydrostatic pressure.

    PubMed

    Neetoo, Hudaa; Chen, Haiqiang

    2010-05-01

    Alfalfa sprouts contaminated with Salmonella and Escherichia coli O157:H7 have been implicated in several outbreaks of foodborne illnesses in recent years. The seed used for sprouting appears to be the primary source of pathogens. Seed decontamination prior to sprouting presents a unique challenge for the sprouting industry since cells of the pathogenic survivors although undetectable after sanitizing treatments, can potentially multiply back to hazardous levels. The focus of this study was to therefore test the efficacy of high hydrostatic pressure to eliminate a approximately 5 log CFU/g load of Salmonella and E. coli O157:H7 on alfalfa seeds. Pressure treatment of 600 MPa for up to 25 min at 20 degrees C could not result in complete inactivation of Salmonella. High-pressure treatment was then carried out either at sub-ambient (4 degrees C) or elevated (40, 45 and 50 degrees C) temperatures to test the ability of high pressure to eliminate Salmonella. Pressure treatment at 4 and 20 degrees C did not deliver any satisfactory inactivation of Salmonella while high pressure at elevated temperatures achieved complete kill. Pre-soaking seeds prior to high-pressure treatment also enhanced pressure inactivation of Salmonella but at the expense of seed viability. High-pressure treatment of 500 MPa for 2 min at 45 degrees C was able to eliminate wild-type Salmonella and E. coli O157:H7 strains without bringing about any appreciable decrease in the seed viability. Copyright (c) 2009 Elsevier Ltd. All rights reserved.

  17. Analysis of Qualitative Interviews about the Impact of Information Technology on Pressure Ulcer Prevention Programs: Implications for the Wound Ostomy Continence Nurse

    PubMed Central

    Shepherd, Marilyn Murphy; Wipke-Tevis, Deidre D.; Alexander, Gregory L.

    2015-01-01

    Purpose The purpose of this study was to compare pressure ulcer prevention programs in 2 long term care facilities (LTC) with diverse Information Technology Sophistication (ITS), one with high sophistication and one with low sophistication, and to identify implications for the Wound Ostomy Continence Nurse (WOC Nurse) Design Secondary analysis of narrative data obtained from a mixed methods study. Subjects and Setting The study setting was 2 LTC facilities in the Midwestern United States. The sample comprised 39 staff from 2 facilities, including 26 from a high ITS facility and 13 from the low ITS facility. Respondents included Certified Nurse Assistants,, Certified Medical Technicians, Restorative Medical Technicians, Social Workers, Registered Nurses, Licensed Practical Nurses, Information Technology staff, Administrators, and Directors. Methods This study is a secondary analysis of interviews regarding communication and education strategies in two longterm care agencies. This analysis focused on focus group interviews, which included both direct and non-direct care providers. Results Eight themes (codes) were identified in the analysis. Three themes are presented individually with exemplars of communication and education strategies. The analysis revealed specific differences between the high ITS and low ITS facility in regards to education and communication involving pressure ulcer prevention. These differences have direct implications for WOC nurses consulting in the LTC setting. Conclusions Findings from this study suggest that effective strategies for staff education and communication regarding PU prevention differ based on the level of ITS within a given facility. Specific strategies for education and communication are suggested for agencies with high ITS and agencies with low ITS sophistication. PMID:25945822

  18. Diamond-anvil cell observations of a new methane hydrate phase in the 100-MPa pressure range

    USGS Publications Warehouse

    Chou, I.-Ming; Sharma, A.; Burruss, R.C.; Hemley, R.J.; Goncharov, A.F.; Stern, L.A.; Kirby, S.H.

    2001-01-01

    A new high-pressure phase of methane hydrate has been identified based on its high optical relief, distinct pressure-temperature phase relations, and Raman spectra. In-situ optical observations were made in a hydrothermal diamond-anvil cell at temperatures between -40?? and 60 ??C and at pressures up to 900 MPa. Two new invariant points were located at -8.7 ??C and 99 MPa for the assemblage consisting of the new phase, structure I methane hydrate, ice Ih, and water, and at 35.3 ??C and 137 MPa for the new phase-structure I methane hydrate-water-methane vapor. Existence of the new phase is critical for understanding the phase relations among the hydrates at low to moderate pressures, and may also have important implications for understanding the hydrogen bonding in H2O and the behavior of water in the planetary bodies, such as Europa, of the outer solar system.

  19. High pressure elasticity and thermal properties of depleted uranium

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jacobsen, M. K., E-mail: mjacobsen@lanl.gov; Velisavljevic, N., E-mail: nenad@lanl.gov

    2016-04-28

    Studies of the phase diagram of uranium have revealed a wealth of high pressure and temperature phases. Under ambient conditions the crystal structure is well defined up to 100 gigapascals (GPa), but very little information on thermal conduction or elasticity is available over this same range. This work has applied ultrasonic interferometry to determine the elasticity, mechanical, and thermal properties of depleted uranium to 4.5 GPa. Results show general strengthening with applied load, including an overall increase in acoustic thermal conductivity. Further implications are discussed within. This work presents the first high pressure studies of the elasticity and thermal properties ofmore » depleted uranium metal and the first real-world application of a previously developed containment system for making such measurements.« less

  20. High pressure elasticity and thermal properties of depleted uranium

    DOE PAGES

    Jacobsen, M. K.; Velisavljevic, N.

    2016-04-28

    Studies of the phase diagram of uranium have revealed a wealth of high pressure and temperature phases. Under ambient conditions the crystal structure is well defined up to 100 gigapascals (GPa), but very little information on thermal conduction or elasticity is available over this same range. This work has applied ultrasonic interferometry to determine the elasticity, mechanical, and thermal properties of depleted uranium to 4.5 GPa. Results show general strengthening with applied load, including an overall increase in acoustic thermal conductivity. Further implications are discussed within. Lastly, this work presents the first high pressure studies of the elasticity and thermalmore » properties of depleted uranium metal and the first real-world application of a previously developed containment system for making such measurements.« less

  1. Pyroxenes and olivines: Structural implications of shock-wave data for high pressure phases

    NASA Technical Reports Server (NTRS)

    Jeanloz, R.; Ahrens, T. J.

    1975-01-01

    The nature of the shock-induced, high-pressure phases of olivine and pyroxene rocks is examined in the light of data for the densities of a new class of perovskite-related silicate structures. Also examined are some new Hugoniot and release adiabat data for bronzite. Reexamining available shock data for magnesian pyroxenes and olivines leads to the conclusion that they define a mixed phase (or disequilibrium) region to about the 100 GPa range, related to the kinetics of phase transformation in these silicates. By recognizing this point, certain discrepancies in previous interpretations of shock data can be explained. A set of theoretical Hugonoits for pyroxene and olivine stoichiometry, perovskite-bearing assemblages was constructed based on their properties deduced from high-pressure work, showing that the shock data is compatible with transformations to perovskites in the 45-7GPa region. Finally, the shock data indicate very similar properties for olivine and pyroxene at high pressures making them both equally likely candidates for the lower mantle.

  2. Performance Breakdown in Sport: The Roles of Reinvestment and Verbal Knowledge

    ERIC Educational Resources Information Center

    Maxwell, J. P.; Masters, R. S. W.; Poolton, J. M.

    2006-01-01

    Optimal performance is the goal of all athletes, particularly when rewards are high. However, in pressure situations, many athletes perform suboptimally despite a high motivation to succeed. One of the more popular theories addressing performance breakdown under stress implicates self-focused attention. Attention directed to the self may interfere…

  3. Test Anxiety and High-Stakes Test Performance between School Settings: Implications for Educators

    ERIC Educational Resources Information Center

    von der Embse, Nathaniel; Hasson, Ramzi

    2012-01-01

    With the enactment of standards-based accountability in education, high-stakes tests have become the dominant method for measuring school effectiveness and student achievement. Schools and educators are under increasing pressure to meet achievement standards. However, there are variables which may interfere with the authentic measurement of…

  4. Surface air quality implications of volcanic injection heights

    NASA Astrophysics Data System (ADS)

    Thomas, Manu Anna; Brännström, Niklas; Persson, Christer; Grahn, Håkan; von Schoenberg, Pontus; Robertson, Lennart

    2017-10-01

    Air quality implications of volcanic eruptions have gained increased attention recently in association with the 2010 Icelandic eruption that resulted in the shut-down of European air space. The emission amount, injection height and prevailing weather conditions determine the extent of the impact through the spatio-temporal distribution of pollutants. It is often argued that in the case of a major eruption in Iceland, like Laki in 1783-1784, that pollutants injected high into the atmosphere lead to substantially increased concentrations of sulfur compounds over continental Europe via long-range transport in the jet stream and eventual large-scale subsidence in a high-pressure system. Using state-of-the-art simulations, we show that the air quality impact of Icelandic volcanoes is highly sensitive to the injection height. In particular, it is the infinitesimal injections into the lower half of the troposphere, rather than the substantial injections into the upper troposphere/lower stratosphere that contribute most to increased pollutant concentrations, resulting in atmospheric haze over mainland Europe/Scandinavia. Besides, the persistent high pressure system over continental Europe/Scandinavia traps the pollutants from dispersing, thereby prolonging the haze.

  5. Subjective time pressure: general or domain specific?

    PubMed

    Kleiner, Sibyl

    2014-09-01

    Chronic time pressure has been identified as a pervasive societal problem, exacerbated by high demands of the labor market and the home. Yet time pressure has not been disaggregated and examined separately across home and work contexts, leaving many unanswered questions regarding the sources and potentially stressful consequences of time pressure. Using data collected in the United States General Social Survey waves 2002 and 2004, this study disaggregates time pressure into the domains of home and work, and asks whether considering time pressures within distinct work and home contexts reveals distinct predictors or associations with stress. Findings show that both predictors and stress associations differ across work and home pressures, revealing both methodological and theoretical implications for the study of time pressure and work and family life more generally. Copyright © 2014 Elsevier Inc. All rights reserved.

  6. Raman study of opal at high pressure

    NASA Astrophysics Data System (ADS)

    Farfan, G.; Wang, S.; Mao, W. L.

    2011-12-01

    More commonly known for their beauty and lore as gemstones, opals are also intriguing geological materials which may have potential for materials science applications. Opal lacks a definite crystalline structure, and is composed of an amorphous packing of hydrated silica (SiO2) spheroids, which provides us with a unique nano-scaled mineraloid with properties unlike those of other amorphous materials like glass. Opals from different localities were studied at high pressure using a diamond anvil cell to apply pressure and Raman spectroscopy to look at changes in bonding as pressure was increased. We first tested different samples from Virgin Valley, NV, Spencer, ID, Juniper Ridge, OR, and Australia, which contain varying amounts of water at ambient conditions, using Raman spectroscopy to determine if they were opal-CT (semicrystalline cristobalite-trydimite volcanic origin) or opal-A (amorphous sedimentary origin). We then used x-ray diffraction and Raman spectroscopy in a diamond anvil cell to see how their bonding and structure changed under compression and to determine what effect water content had on their high pressure behavior. Comparison of our results on opal to other high pressure studies of amorphous materials like glass has implications from a geological and materials science standpoint.

  7. The change in orientation of subsidiary shears near faults containing pore fluid under high pressure

    USGS Publications Warehouse

    Byerlee, J.

    1992-01-01

    Byerlee, J., 1992. The change in orientation of subsidiary shears near faults containing pore fluid under high pressure. In: T. Mikumo, K. Aki, M. Ohnaka, L.J. Ruff and P.K.P. Spudich (Editors), Earthquake Source Physics and Earthquake Precursors. Tectonophysics, 211: 295-303. The mechanical effects of a fault containing near-lithostatic fluid pressure in which fluid pressure decreases monotonically from the core of the fault zone to the adjacent country rock is considered. This fluid pressure distribution has mechanical implications for the orientation of subsidiary shears around a fault. Analysis shows that the maximum principal stress is oriented at a high angle to the fault in the country rock where the pore pressure is hydrostatic, and rotates to 45?? to the fault within the fault zone where the pore pressure is much higher. This analysis suggests that on the San Andreas fault, where heat flow constraints require that the coefficient of friction for slip on the fault be less than 0.1, the pore fluid pressure on the main fault is 85% of the lithostatic pressure. The observed geometry of the subsidiary shears in the creeping section of the San Andreas are broadly consistent with this model, with differences that may be due to the heterogeneous nature of the fault. ?? 1992.

  8. Phase relations in iron-rich systems and implications for the earth's core

    NASA Technical Reports Server (NTRS)

    Anderson, William W.; Svendsen, Bob; Ahrens, Thomas J.

    1987-01-01

    Recent experimental data concerning the properties of iron, iron sulfide, and iron oxide at high pressures are combined with theoretical arguments to constrain the probable behavior of the Fe-rich portions of the Fe-O and Fe-S phase diagrams. Phase diagrams are constructed for the Fe-S-O system at core pressures and temperatures. These properties are used to evaluate the current temperature distribution and composition of the core.

  9. High-Pressure Polymorphism in Orthoamphiboles

    NASA Astrophysics Data System (ADS)

    Finkelstein, G. J.; Zhang, D.; Shelton, H.; Dera, P.

    2017-12-01

    Amphiboles are double-chain silicate minerals that are the structurally hydrated counterpart to single-chain, anhydrous pyroxenes. They may play an important role in the earth as a carrier for volatiles in subduction zones, as well as a generator for seismic anisotropy in the upper mantle. Recent work has described previously unrecognized high-pressure polymorphism at low temperatures in a variety of pyroxene minerals, which may be relevant for the structure and dynamics of thick, cold, subducted slabs. However, high-pressure polymorphism in amphiboles above a few GPa in pressure has not been well explored, and if similar polymorphism to pyroxenes exists in this mineral family, it may affect the extent and depth of volatile transport in amphiboles, as well as their rheological properties. At low temperatures and high pressures, orthopyroxenes undergo crystal structure transitions at lower pressures than clinopyroxenes (10-30 GPa vs. > 50 GPa), so for this study we have investigated polymorphism in the anthophyllite-gedrite (Al-free and Al rich) orthoamphibole solid solution series. Using neon gas-loaded diamond anvil cells, we compressed both phases to a maximum pressure of 31 GPa, and observed transitions to new monoclinic structures in both endmembers. In this presentation, we will discuss the details of these transitions and implications for the earth's interior.

  10. Van Hove singularities and spectral smearing in high-temperature superconducting H3S

    NASA Astrophysics Data System (ADS)

    Quan, Yundi; Pickett, Warren E.

    2016-03-01

    The superconducting phase of hydrogen sulfide at Tc=200 K observed by Drozdov and collaborators at pressures around 200 GPa is simple bcc I m 3 ¯m H3S from a combination of theoretical and experimental confirmation. The various "extremes" that are involved—high pressure implying extreme reduction of volume, extremely high H phonon energy scale around 1400 K, extremely high temperature for a superconductor—necessitates a close look at new issues raised by these characteristics in relation to high Tc itself. First principles methods are applied to analyze the H3S electronic structure, beginning with the effect of sulfur and then focusing on the origin and implications of the two van Hove singularities (vHs) providing an impressive peak in the density of states near the Fermi energy. Implications arising from strong coupling Migdal-Eliashberg theory are studied. It becomes evident that electron spectral density smearing due to virtual phonon emission and absorption must be accounted for in a correct understanding of this unusual material and to obtain accurate theoretical predictions. Means for increasing Tc in H3S -like materials are noted.

  11. Effect of solvent on absorption spectra of all-trans-{beta}-carotene under high pressure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, W. L.; Zheng, Z. R.; Liu, Z. G.

    The absorption spectra of all-trans-{beta}-carotene in n-hexane and carbon disulfide (CS{sub 2}) solutions are measured under high pressure at ambient temperature. The common redshift and broadening in the spectra are observed. Simulation of the absorption spectra was performed by using the time-domain formula of the stochastic model. The pressure dependence of the 0-0 band wavenumber is in agreement with the Bayliss theory at pressure higher than 0.2 GPa. The deviation of the linearity at lower pressure is ascribed to the reorientation of the solvent molecules. Both the redshift and broadening are stronger in CS{sub 2} than that in n-hexane becausemore » of the more sensitive pressure dependence of dispersive interactions in CS{sub 2} solution. The effect of pressure on the transition moment is explained with the aid of a simple model involving the relative dimension, location, and orientation of the solute and solvent molecules. The implication of these results for light-harvesting functions of carotenoids in photosynthesis is also discussed.« less

  12. Calibrated dilatometer exercise to probe thermoplastic properties of coal in pressurized CO 2

    DOE PAGES

    Romanov, Vyacheslav N.; Lynn, Ronald J.; Warzinski, Robert P.

    2017-07-03

    This research was aimed at testing a hypothesis, that at elevated CO 2 pressure coal can soften at temperatures well below those obtained in the presence of other gases. That could have serious negative implications for injection of CO 2 into deep coal seams. Here, we have examined the experimental design issues and procedures used in the previously published studies, and experimentally investigated the physical behavior of a similar coal in the presence of CO 2 as a function of pressure and temperature, using the same high-pressure micro-dilatometer refurbished and carefully calibrated for this purpose. No notable reduction in coalmore » softening temperature was observed in this study.« less

  13. Calibrated dilatometer exercise to probe thermoplastic properties of coal in pressurized CO 2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Romanov, Vyacheslav N.; Lynn, Ronald J.; Warzinski, Robert P.

    This research was aimed at testing a hypothesis, that at elevated CO 2 pressure coal can soften at temperatures well below those obtained in the presence of other gases. That could have serious negative implications for injection of CO 2 into deep coal seams. Here, we have examined the experimental design issues and procedures used in the previously published studies, and experimentally investigated the physical behavior of a similar coal in the presence of CO 2 as a function of pressure and temperature, using the same high-pressure micro-dilatometer refurbished and carefully calibrated for this purpose. No notable reduction in coalmore » softening temperature was observed in this study.« less

  14. High pressure hydrogen stabilised by quantum nuclear motion

    NASA Astrophysics Data System (ADS)

    Needs, Richard; Monserrat, Bartomeu; Pickard, Chris

    Hydrogen under extreme pressures is of fundamental interest, as it might exhibit exotic physical phenomena, and of practical interest, as it is a major component of many astrophysical objects. Structure searches have been successful at identifying promising candidates for the known phases of high pressure hydrogen. However, these searches have so far been restricted to the location of minima of the potential energy landscape. In this talk, we will describe a new structure searching method, ``saddle-point ab initio random structure searching'' (sp-AIRSS), that allows us to identify structures associated with saddle points of the potential energy landscape. Using sp-AIRSS, we find two new high-pressure hydrogen structures that exhibit a harmonic dynamical instability, but quantum and thermal anharmonic motion render them dynamically stable. These structures are formed by mixed layers of strongly and softly bound hydrogen molecules, and become thermodynamically competitive at the highest pressures reached in experiment. The experimental implications of these new structures will also be discussed. BM is supported by Robinson College, Cambridge, and the Cambridge Philosophical Society. RJN and CJP are supported by the Engineering and Physical Sciences Research Council (EPSRC) of the UK.

  15. Modeling attitude towards drug treament: the role of internal motivation, external pressure, and dramatic relief.

    PubMed

    Conner, Bradley T; Longshore, Douglas; Anglin, M Douglas

    2009-04-01

    Motivation for change has historically been viewed as the crucial element affecting responsiveness to drug treatment. Various external pressures, such as legal coercion, may engender motivation in an individual previously resistant to change. Dramatic relief may be the change process that is most salient as individuals internalize such external pressures. Results of structural equation modeling on data from 465 drug users (58.9% male; 21.3% Black, 34.2% Hispanic/Latino, and 35.1% White) entering drug treatment indicated that internal motivation and external pressure significantly and positively predicted dramatic relief and that dramatic relief significantly predicted attitudes towards drug treatment: chi (2) = 142.20, df = 100, p < 0.01; Robust Comparative Fit Index = 0.97, Root Mean Squared Error of Approximation = 0.03. These results indicate that when external pressure and internal motivation are high, dramatic relief is also likely to be high. When dramatic relief is high, attitudes towards drug treatment are likely to be positive. The findings indicate that interventions to get individuals into drug treatment should include processes that promote Dramatic Relief. Implications for addictions health services are discussed.

  16. The effects of high-pressure treatments on Campylobacter jejuni in ground poultry products containing polyphosphate additives.

    PubMed

    Gunther, Nereus W; Sites, Joseph; Sommers, Christopher

    2015-09-01

    Marinades containing polyphosphates have been previously implicated in the enhanced survival of Campylobacter spp. in poultry product exudates. The enhanced Campylobacter survival has been attributed primarily to the ability of some polyphosphates to change the pH of the exudate to one more amenable to Campylobacter. In this study a ground poultry product contaminated with a 6 strain Campylobacter jejuni cocktail was utilized to determine if the efficiency of high-hydrostatic-pressure treatments was negatively impacted by the presence of commonly utilized polyphosphates. Two polyphosphates, hexametaphosphate and sodium tripolyphosphate, used at 2 concentrations, 0.25 and 0.5%, failed to demonstrate any significant negative effects on the efficiency of inactivation of C. jejuni by high-pressure treatment. However, storage at 4°C of the ground poultry samples containing C. jejuni after high-pressure treatment appeared to provide a synergistic effect on Campylobacter inactivation. High-pressure treatment in conjunction with 7 d of storage at 4°C resulted in a mean reduction in C. jejuni survival that was larger than the sum of the individual reductions caused by high pressure or 4°C storage when applied separately. Published by Oxford University Press on behalf of Poultry Science Association 2015. This work is written by (a) US Government employee(s) and is in the public domain in the US.

  17. Coordination of Fe, Ga and Ge in high pressure glasses by Moessbauer, Raman and X-ray absorption spectroscopy, and geological implications

    NASA Technical Reports Server (NTRS)

    Fleet, M. E.; Henderson, G. S.; Herzberg, C. T.; Crozier, E. D.; Osborne, M. D.; Scarfe, C. M.

    1984-01-01

    For some time, it has been recognized that the structure of silicate liquids has a great bearing on such magma properties as viscosity, diffusivity, and thermal expansion and on the extrapolation of thermodynamic quantities outside of the experimentally measurable range. In this connection it is vital to know if pressure imposes changes in melt structure similar to the pressure-induced reconstructive transformations in crystals. In the present study on 1 bar and high pressure glasses, an investigation is conducted regarding the coordination of Fe(3+) in Fe silicate glasses by Moessbauer spectroscopy. Raman spectroscopy is employed to explore the coordinations of Ge(4+) in GeO2 glasses and of Ga(3+) in NaGa silicate glasses, while the coordination of Ga(3+) in NaGaSiO4 glasses is studied with the aid of methods of X-ray absorption spectroscopy.

  18. Coordination of Fe, Ga and Ge in high pressure glasses by Moessbauer, Raman and X-ray absorption spectroscopy, and geological implications

    NASA Astrophysics Data System (ADS)

    Fleet, M. E.; Herzberg, C. T.; Henderson, G. S.; Crozier, E. D.; Osborne, M. D.; Scarfe, C. M.

    1984-07-01

    For some time, it has been recognized that the structure of silicate liquids has a great bearing on such magma properties as viscosity, diffusivity, and thermal expansion and on the extrapolation of thermodynamic quantities outside of the experimentally measurable range. In this connection it is vital to know if pressure imposes changes in melt structure similar to the pressure-induced reconstructive transformations in crystals. In the present study on 1 bar and high pressure glasses, an investigation is conducted regarding the coordination of Fe(3+) in Fe silicate glasses by Moessbauer spectroscopy. Raman spectroscopy is employed to explore the coordinations of Ge(4+) in GeO2 glasses and of Ga(3+) in NaGa silicate glasses, while the coordination of Ga(3+) in NaGaSiO4 glasses is studied with the aid of methods of X-ray absorption spectroscopy.

  19. New gas phase inorganic ion cluster species and their atmospheric implications

    NASA Technical Reports Server (NTRS)

    Maerk, T. D.; Peterson, K. I.; Castleman, A. W., Jr.

    1980-01-01

    Recent experimental laboratory observations, with high-pressure mass spectroscopy, have revealed the existence of previously unreported species involving water clustered to sodium dimer ions, and alkali metal hydroxides clustered to alkali metal ions. The important implications of these results concerning the existence of such species are here discussed, as well as how from a practical aspect they confirm the stability of certain cluster species proposed by Ferguson (1978) to explain masses recently detected at upper altitudes using mass spectrometric techniques.

  20. Implications of Peer Pressure for Adolescent Nursing Research: A Concept Analysis Approach.

    PubMed

    Pittman, Alison F

    2018-01-02

    The influence of peers is widely held as a significant factor in child and adolescent development. As health care providers seek ways to improve the health of children and adolescents, peer pressure must be examined. This article analyzes peer pressure and its relationship to the health of children and adolescents. Defining attributes of peer pressure are discussed, including incomplete identity formation, the presence of a peer influence, and a need for approval. Antecedents and consequences of peer pressure are also explored. Methods of measuring peer pressure are discussed, along with implications for health care research in the pediatric population.

  1. Silicone pressure-reducing pads for the prevention and treatment of pressure ulcers.

    PubMed

    Hughes, Maria A

    2014-06-01

    Pressure ulcers, a key quality of care indicator, cause emotional distress to the patient, affecting quality of life. They also have significant financial implications for the NHS. Pressure ulcer prevention and management are fundamental aspects of nursing. This article reports on the Wirral Community Trust's policy and guidelines for the maintenance of skin integrity. Tissue viability nurses have a duty to review and assess new prevention devices and dressings as they become available to ensure a high standard of care is provided. A report of an evaluation of the use of KerraPro in combination with current best practice guidelines for the prevention or treatment of pressure ulcers is provided. The author concludes that silicone pressure-reducing pads are a valuable tool in the prevention and treatment of pressure ulcers when used in combination with recommendations from the latest guidelines.

  2. Olivine Slip-system Activity at High Pressure: Implications for Upper-Mantle Rheology and Seismic Anisotropy (Invited)

    NASA Astrophysics Data System (ADS)

    Raterron, P.; Castelnau, O.; Geenen, T.; Merkel, S.

    2013-12-01

    The past decade abounded in technical developments allowing the investigation of materials rheology at high pressure (P > 3 GPa) [1]. This had a significant impact on our understanding of olivine rheology in the Earth asthenosphere, where P is in the range 3 - 13 GPa. A dislocation slip-system transition induced by pressure has been documented in dry Fe-bearing olivine [2]; it induces changes in olivine aggregate lattice preferred orientation (LPO) [3,4], which may explain the seismic velocity anisotropy attenuation observed at depths > 200 km in the upper mantle [5]. Deformation experiments carried out on olivine single crystals at high pressure allowed quantifying the effect of P on individual slip system activities [6]. Integration of these data, together with data on lattice friction arising from computational models (e.g., [7]), into analytical or mean-field numerical models for aggregate plasticity gave insight on the viscosity and LPO of olivine aggregates deformed at geological conditions in the dislocation creep regime [8,9]. We will review these recent findings and their implications for upper mantle rheology and seismic anisotropy. [1] Raterron & Merkel, 2009, J. Sync. Rad., 16, 748 ; [2] Raterron et al., 2009, PEPI, 172, 74 ; [3] Jung et al., 2009, Nature Geoscience, 2, 73 ; [4] Ohuchi et al., 2011, EPSL, 304, 55 ; [5] Mainprice et al., 2005, Nature, 433, 731 ; [6] Raterron et al., 2012, PEPI, 200-201, 105 ; [7] Durinck et al., 2007, EJM, 19, 631 ; [8] Castelnau et al., 2010, C.R. Physique, 11, 304 ; [9] Raterron et al., 2011, PEPI, 188, 26

  3. Theory for planetary exospheres: III. Radiation pressure effect on the Circular Restricted Three Body Problem and its implication on planetary atmospheres

    NASA Astrophysics Data System (ADS)

    Beth, A.; Garnier, P.; Toublanc, D.; Dandouras, I.; Mazelle, C.

    2016-12-01

    The planetary exospheres are poorly known in their outer parts, since the neutral densities are low compared with the instruments detection capabilities. The exospheric models are thus often the main source of information at such high altitudes. We present a new way to take into account analytically the additional effect of the stellar radiation pressure on planetary exospheres. In a series of papers, we present with a Hamiltonian approach the effect of the radiation pressure on dynamical trajectories, density profiles and escaping thermal flux. Our work is a generalization of the study by Bishop and Chamberlain [1989] Icarus, 81, 145-163. In this third paper, we investigate the effect of the stellar radiation pressure on the Circular Restricted Three Body Problem (CR3BP), called also the photogravitational CR3BP, and its implication on the escape and the stability of planetary exospheres, especially for hot Jupiters. In particular, we describe the transformation of the equipotentials and the location of the Lagrange points, and we provide a modified equation for the Hill sphere radius that includes the influence of the radiation pressure. Finally, an application to the hot Jupiter HD 209458b and hot Neptune GJ 436b reveals the existence of a blow-off escape regime induced by the stellar radiation pressure.

  4. The importance of a high rectal pressure on strain in constipated patients: implications for biofeedback therapy.

    PubMed

    Mazor, Y; Hansen, R; Prott, G; Kellow, J; Malcolm, A

    2017-03-01

    A subset of patients with chronic constipation display a relatively high manometric rectal pressure on strain. We hypothesized that these patients represent a unique phenotype of functional defecatory disorder (FDD) and would benefit from undergoing anorectal biofeedback (BF). Of 138 consecutive patients with chronic constipation and symptoms of FDD, 19 were defined as having a high rectal pressure on strain, using a statistically derived cut-off of 78 mm Hg. This subset was compared with remaining patients in regard to baseline clinical profile and physiology, and outcome of BF. There was a greater representation of males in the high rectal pressure group. Their constipation score, impact of bowel dysfunction on quality of life and satisfaction with bowel habits did not differ from the remaining patients. Eighty-four percent of patients in the high group successfully expelled the rectal balloon and 95% displayed paradoxical anal contraction on strain (P<.05 compared with the remaining patients). Following BF, 89% of patients in the high group reduced their rectal pressure to normal. End of BF treatment outcomes improved significantly, and to a similar degree, in both groups. We have identified a subgroup of patients with dyssynergic symptoms but without a formal Rome III diagnosis of FDD, who were characterized by a high straining rectal pressure. Although these patients displayed some physiological differences to the patients with lower straining rectal pressure, they suffer similarly. Importantly, we have shown that these patients can respond favorably to anorectal BF. © 2016 John Wiley & Sons Ltd.

  5. Shock Response and Phase Transitions of MgO at Planetary Impact Conditions.

    PubMed

    Root, Seth; Shulenburger, Luke; Lemke, Raymond W; Dolan, Daniel H; Mattsson, Thomas R; Desjarlais, Michael P

    2015-11-06

    The moon-forming impact and the subsequent evolution of the proto-Earth is strongly dependent on the properties of materials at the extreme conditions generated by this violent collision. We examine the high pressure behavior of MgO, one of the dominant constituents in Earth's mantle, using high-precision, plate impact shock compression experiments performed on Sandia National Laboratories' Z Machine and extensive quantum calculations using density functional theory (DFT) and quantum Monte Carlo (QMC) methods. The combined data span from ambient conditions to 1.2 TPa and 42 000 K, showing solid-solid and solid-liquid phase boundaries. Furthermore our results indicate that under impact the solid and liquid phases coexist for more than 100 GPa, pushing complete melting to pressures in excess of 600 GPa. The high pressure required for complete shock melting has implications for a broad range of planetary collision events.

  6. Shock response and phase transitions of MgO at planetary impact conditions

    DOE PAGES

    Root, Seth; Shulenburger, Luke; Lemke, Raymond W.; ...

    2015-11-04

    The moon-forming impact and the subsequent evolution of the proto-Earth is strongly dependent on the properties of materials at the extreme conditions generated by this violent collision. We examine the high pressure behavior of MgO, one of the dominant constituents in Earth’s mantle, using high-precision, plate impact shock compression experiments performed on Sandia National Laboratories’ Z Machine and extensive quantum calculations using density functional theory (DFT) and quantum Monte Carlo (QMC) methods. The combined data span from ambient conditions to 1.2 TPa and 42,000 K, showing solid-solid and solid-liquid phase boundaries. Furthermore our results indicate that under impact the solidmore » and liquid phases coexist for more than 100 GPa, pushing complete melting to pressures in excess of 600 GPa. Furthermore, the high pressure required for complete shock melting has implications for a broad range of planetary collision events.« less

  7. Ambulatory blood pressure profiles in familial dysautonomia.

    PubMed

    Goldberg, Lior; Bar-Aluma, Bat-El; Krauthammer, Alex; Efrati, Ori; Sharabi, Yehonatan

    2018-02-12

    Familial dysautonomia (FD) is a rare genetic disease that involves extreme blood pressure fluctuations secondary to afferent baroreflex failure. The diurnal blood pressure profile, including the average, variability, and day-night difference, may have implications for long-term end organ damage. The purpose of this study was to describe the circadian pattern of blood pressure in the FD population and relationships with renal and pulmonary function, use of medications, and overall disability. We analyzed 24-h ambulatory blood pressure monitoring recordings in 22 patients with FD. Information about medications, disease severity, renal function (estimated glomerular filtration, eGFR), pulmonary function (forced expiratory volume in 1 s, FEV1) and an index of blood pressure variability (standard deviation of systolic pressure) were analyzed. The mean (± SEM) 24-h blood pressure was 115 ± 5.6/72 ± 2.0 mmHg. The diurnal blood pressure variability was high (daytime systolic pressure standard deviation 22.4 ± 1.5 mmHg, nighttime 17.2 ± 1.6), with a high frequency of a non-dipping pattern (16 patients, 73%). eGFR, use of medications, FEV1, and disability scores were unrelated to the degree of blood pressure variability or to dipping status. This FD cohort had normal average 24-h blood pressure, fluctuating blood pressure, and a high frequency of non-dippers. Although there was evidence of renal dysfunction based on eGFR and proteinuria, the ABPM profile was unrelated to the measures of end organ dysfunction or to reported disability.

  8. Inert gas narcosis disrupts encoding but not retrieval of long term memory.

    PubMed

    Hobbs, Malcolm; Kneller, Wendy

    2015-05-15

    Exposure to increased ambient pressure causes inert gas narcosis of which one symptom is long-term memory (LTM) impairment. Narcosis is posited to impair LTM by disrupting information encoding, retrieval (self-guided search), or both. The effect of narcosis on the encoding and retrieval of LTM was investigated by testing the effect of learning-recall pressure and levels of processing (LoP) on the free-recall of word lists in divers underwater. All participants (n=60) took part in four conditions in which words were learnt and then recalled at either low pressure (1.4-1.9atm/4-9msw) or high pressure (4.4-5.0atm/34-40msw), as manipulated by changes in depth underwater: low-low (LL), low-high(LH), high-high (HH), and high-low (HL). In addition, participants were assigned to either a deep or shallow processing condition, using LoP methodology. Free-recall memory ability was significantly impaired only when words were initially learned at high pressure (HH & HL conditions). When words were learned at low pressure and then recalled at low pressure (LL condition) or high pressure (LH condition) free-recall was not impaired. Although numerically superior in several conditions, deeper processing failed to significantly improve free-recall ability in any of the learning-recall conditions. This pattern of results support the hypothesis that narcosis disrupts encoding of information into LTM, while retrieval appears to be unaffected. These findings are discussed in relation to similar effects reported by some memory impairing drugs and the practical implications for workers in pressurised environments. Copyright © 2015 Elsevier Inc. All rights reserved.

  9. A twin study of cardiac reactivity and its relationship to parental blood pressure.

    PubMed

    Carroll, D; Hewitt, J K; Last, K A; Turner, J R; Sims, J

    1985-01-01

    The cardiac reactivity of 40 monozygotic and 40 dizygotic pairs of young male twins was monitored during psychological challenge, as afforded by a video game. The observed pattern of variation could not be accounted for solely by environmental factors. In fact, a simple genetic model that implicated additive genetic effects, along with those stemming from individual environments, best fitted the data. In addition, cardiac reactions were substantially greater for subjects whose parents both had relatively elevated blood pressure. Overall, these data suggest individual differences in cardiac reactivity have a heritable component, and that high reactivity may be a precursor of elevated blood pressure.

  10. The nature of the pressure-induced metallization of FeO and its implications to the core-mantle boundary

    USGS Publications Warehouse

    Sherman, David M.

    1989-01-01

    The pressure and temperature-induced metallization of FeO discovered by Knittle et al (1986) is here argued to result from a Mott transition associated with increased Fe(3d)-Fe(3d) orbital overlap at high pressures. Consequently, it is here argued that a lower mantle containing only these phases should be electrically insulating. Finally, the formation of itinerant d-electrons in FeO may be a necessary, if not sufficient, condition for the apparent alloying of FeO with Fe. Such alloying may allow oxygen to be incorporated into the outer core. -from Author

  11. Shock temperatures in silica glass - Implications for modes of shock-induced deformation, phase transformation, and melting with pressure

    NASA Technical Reports Server (NTRS)

    Schmitt, Douglas R.; Ahrens, Thomas J.

    1989-01-01

    Observations of shock-induced radiative thermal emissions are used to determine the gray body temperatures and emittances of silica glass under shock compression between 10 and 30 GPa. The results suggest that fused quartz deforms heterogeneously in this shock pressure range. It is shown that the 10-16 GPa range coincides with the permanent densification region, while the 16-30 GPa range coincides with the inferred mixed phase region along the silica glass Hugoniot. Low emittances in the mixed phase region are thought to represent the melting temperature of the high-pressure phase, stishovite. Also, consideration is given to the effects of pressure on melting relations for the system SiO2-Mg2SiO4.

  12. Shear-driven instability in zirconium at high pressure and temperature and its relationship to phase-boundary behaviors

    DOE PAGES

    Jacobsen, Matthew K.; Velisavljevic, Nenad; Kono, Yoshio; ...

    2017-04-05

    Evidence in support of a shear driven anomaly in zirconium at elevated temperatures and pressures has been determined through the combined use of ultrasonic, diffractive, and radiographic techniques. Implications that these have on the phase diagram are explored through thermoacoustic parameters associated with the elasticity and thermal characteristics. In particular, our results illustrate a deviating phase boundary between the α and ω phases, referred to as a kink, at elevated temperatures and pressures. Furthermore, pair distribution studies of this material at more extreme temperatures and pressures illustrate the scale on which diffusion takes place in this material. Possible interpretation ofmore » these can be made through inspection of shear-driven anomalies in other systems.« less

  13. Shear-driven instability in zirconium at high pressure and temperature and its relationship to phase-boundary behaviors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jacobsen, M. K.; Velisavljevic, N.; Kono, Y.

    2017-04-01

    Evidence in support of a shear driven anomaly in zirconium at elevated temperatures and pressures has been determined through the combined use of ultrasonic, diffractive, and radiographic techniques. Implications that these have on the phase diagram are explored through thermoacoustic parameters associated with the elasticity and thermal characteristics. In particular, our results illustrate a deviating phase boundary between the α and ω phases, referred to as a kink, at elevated temperatures and pressures. Further, pair distribution studies of this material at more extreme temperatures and pressures illustrate the scale on which diffusion takes place in this material. Possible interpretation ofmore » these can be made through inspection of shear-driven anomalies in other systems.« less

  14. Global Pressures on Education Research: Quality, Utility, and Infrastructure

    ERIC Educational Resources Information Center

    Herrington, Carolyn D.; Summers, Katherine P.

    2014-01-01

    This article provides an overview of issues likely to drive educational research globally over the next decade, and it examines the "Asia Pacific Education Review" ("APER")'s role in responding to these issues, shaping research agendas, and delivering high-quality research. We also look at the implications of these…

  15. Effect of high pressure treatment on the survival of Shiga-Toxin producing Escherichia coli in strawberries

    USDA-ARS?s Scientific Manuscript database

    Most fresh produce, such as strawberries, receives minimal processing and is often eaten raw. Contamination of produce with pathogenic bacteria may occur during growth, harvest, processing, transportation, and storage and presents a serious public health risk. Strawberries have been implicated in ...

  16. Modeling Attitude towards Drug Treament: The Role of Internal Motivation, External Pressure, and Dramatic Relief

    PubMed Central

    Longshore, Douglas; Anglin, M. Douglas

    2009-01-01

    Motivation for change has historically been viewed as the crucial element affecting responsiveness to drug treatment. Various external pressures, such as legal coercion, may engender motivation in an individual previously resistant to change. Dramatic relief may be the change process that is most salient as individuals internalize such external pressures. Results of structural equation modeling on data from 465 drug users (58.9% male; 21.3% Black, 34.2% Hispanic/Latino, and 35.1% White) entering drug treatment indicated that internal motivation and external pressure significantly and positively predicted dramatic relief and that dramatic relief significantly predicted attitudes towards drug treatment: χ2=142.20, df=100, p<0.01; Robust Comparative Fit Index=0.97, Root Mean Squared Error of Approximation=0.03. These results indicate that when external pressure and internal motivation are high, dramatic relief is also likely to be high. When dramatic relief is high, attitudes towards drug treatment are likely to be positive. The findings indicate that interventions to get individuals into drug treatment should include processes that promote Dramatic Relief. Implications for addictions health services are discussed. PMID:18535908

  17. Numerical analysis of stress distribution in the upper arm tissues under an inflatable cuff: Implications for noninvasive blood pressure measurement

    NASA Astrophysics Data System (ADS)

    Deng, Zhipeng; Liang, Fuyou

    2016-10-01

    An inflatable cuff wrapped around the upper arm is widely used in noninvasive blood pressure measurement. However, the mechanical interaction between cuff and arm tissues, a factor that potentially affects the accuracy of noninvasive blood pressure measurement, remains rarely addressed. In the present study, finite element (FE) models were constructed to quantify intra-arm stresses generated by cuff compression, aiming to provide some theoretical evidence for identifying factors of importance for blood pressure measurement or explaining clinical observations. Obtained results showed that the simulated tissue stresses were highly sensitive to the distribution of cuff pressure on the arm surface and the contact condition between muscle and bone. In contrast, the magnitude of cuff pressure and small variations in elastic properties of arm soft tissues had little influence on the efficiency of pressure transmission in arm tissues. In particular, it was found that a thickened subcutaneous fat layer in obese subjects significantly reduced the effective pressure transmitted to the brachial artery, which may explain why blood pressure overestimation occurs more frequently in obese subjects in noninvasive blood pressure measurement.

  18. A (1)H-NMR study on the effect of high pressures on beta-lactoglobulin.

    PubMed

    Belloque, J; López-Fandiño, R; Smith, G M

    2000-09-01

    1H NMR was used to study the effect of high pressure on changes in the structure of beta-lactoglobulin (beta-Lg), particularly the strongly bonded regions, the "core". beta-Lg was exposed to pressures ranging from 100 to 400 MPa at neutral pH. After depressurization and acidification to pH 2.0, (1)H NMR spectra were taken. Pressure-induced unfolding was studied by deuterium exchange. Refolding was also evaluated. Our results showed that the core was unaltered at 100 MPa but increased its conformational flexibility at >/=200 MPa. Even though the core was highly flexible at 400 MPa, its structure was found to be identical to the native structure after equilibration back to atmospheric pressure. It is suggested that pressure-induced aggregates are formed by beta-Lg molecules maintaining most of their structure, and the intermolecular -SS- bonds, formed by -SH/-SS- exchange reaction, are likely to involve C(66)-C(160) rather than C(106)-C(119). In addition, the beta-Lg variants A and B could be distinguished in a (1)H NMR spectrum from a solution made with the AB mixed variant, by the differences in chemical shifts of M(107) and C(106); structural implications are discussed. Under pressure, the core of beta-Lg A seemed to unfold faster than that of beta-LgB. The structural recovery of the core was full for both variants.

  19. The effect of pressure on the hydration structure around hydrophobic solute: A molecular dynamics simulation study

    NASA Astrophysics Data System (ADS)

    Sarma, Rahul; Paul, Sandip

    2012-03-01

    Molecular dynamics simulations are performed to study the effects of pressure on the hydrophobic interactions between neopentane molecules immersed in water. Simulations are carried out for five different pressure values ranging from 1 atm to 8000 atm. From potential of mean force calculations, we find that with enhancement of pressure, there is decrease in the well depth of contact minimum (CM) and the relative stability of solvent separated minimum over CM increases. Lower clustering of neopentane at high pressure is also observed in association constant and cluster-structure analysis. Selected site-site radial distribution functions suggest efficient packing of water molecules around neopentane molecules at elevated pressure. The orientational profile calculations of water molecules show that the orientation of water molecules in the vicinity of solute molecule is anisotropic and this distribution becomes flatter as we move away from the solute. Increasing pressure slightly changes the water distribution. Our hydrogen bond properties and dynamics calculations reveal pressure-induced formation of more and more number of water molecules with five and four hydrogen bond at the expense of breaking of two and three hydrogen bonded water molecules. We also find lowering of water-water continuous hydrogen bond lifetime on application of pressure. Implication of these results for relative dispersion of hydrophobic molecules at high pressure are discussed.

  20. On the Normal Force Mechanotransduction of Human Umbilical Vein Endothelial Cells

    NASA Astrophysics Data System (ADS)

    Vahabikashi, Amir; Wang, Qiuyun; Wilson, James; Wu, Qianhong; Vucbmss Team

    2016-11-01

    In this paper, we report a cellular biomechanics study to examine the normal force mechanotransduction of Human Umbilical Vein Endothelial Cells (HUVECs) with their implications on hypertension. Endothelial cells sense mechanical forces and adjust their structure and function accordingly. The mechanotransduction of normal forces plays a vital role in hypertension due to the higher pressure buildup inside blood vessels. Herein, HUVECs were cultured to full confluency and then exposed to different mechanical loadings using a novel microfluidic flow chamber. One various pressure levels while keeps the shear stress constant inside the flow chamber. Three groups of cells were examined, the control group (neither shear nor normal stresses), the normal pressure group (10 dyne/cm2 of shear stress and 95 mmHg of pressure), and the hypertensive group (10 dyne/cm2 of shear stress and 142 mmHg of pressure). Cellular response characterized by RT-PCR method indicates that, COX-2 expressed under normal pressure but not high pressure; Mn-SOD expressed under both normal and high pressure while this response was stronger for normal pressure; FOS and e-NOS did not respond under any condition. The differential behavior of COX-2 and Mn-SOD in response to changes in pressure, is instrumental for better understanding the pathogenesis of hypertensive cardiovascular diseases. This research was supported by the National Science Foundation under Award #1511096.

  1. Melting relations in the iron-sulfur system at ultra-high pressures - Implications for the thermal state of the earth

    NASA Technical Reports Server (NTRS)

    Williams, Quentin; Jeanloz, Raymond

    1990-01-01

    The melting temperatures of FeS-troilite and of a 10-wt-pct sulfur iron alloy have been measured to pressures of 120 and 90 GPa, respectively. The results document that FeS melts at a temperature of 4100 (+ or - 300) K at the pressure of the core-mantle boundary. Eutecticlike behavior persists in the iron-sulfur system to the highest pressures of measurements, in marked contrast to the solid-solutionlike behavior observed at high pressures in the iron-iron oxide system. Iron with 10-wt-pct sulfur melts at a similar temperature as FeS at core-mantle boundary conditions. If the sole alloying elements of iron within the core are sulfur and oxygen and the outer core is entirely liquid, the minimum temperature at the top of the outer core is 4900 (+ or - 400) K. Calculations of mantle geotherms dictate that there must be a temperature increase of between 1000 and 2000 K across thermal boundary layers within the mantle. If D-double-prime is compositionally stratified, it could accommodate the bulk of this temperature jump.

  2. A novel marker in pregnant with preeclampsia: renalase.

    PubMed

    Yılmaz, Zehra Vural; Akkaş, Elif; Yıldırım, Tolga; Yılmaz, Rahmi; Erdem, Yunus

    2017-04-01

    Preeclampsia is characterized by an increase in high blood pressure and decrease in GFR and proteinuria, however, the underlying mechanisms are still unclear. Renalase is a recently discovered protein implicated in regulation of blood pressure in humans. Plasma concentrations of serum renalase were measured in healthy controls, healthy pregnant and pregnant with preeclampsia matched for age, gestational age, in the third trimester of pregnancy. Serum renalase levels were compared in pregnant with and without preeclampsia and non-pregnant controls. Factors associated with serum renalase levels in pregnancies were also evaluated. In healthy pregnant serum renalase levels were significantly higher than in controls. However, pregnant with preeclampsia had lower renalase levels than healthy controls. Serum renalase levels were inversely associated with blood pressure levels and positively correlated with glomerular filtration rate. The results indicated that the development of preeclampsia in pregnant is accompanied by altered serum renalase levels. High blood pressure and kidney damage that characterize this disorder are mediated at least in part by low renalase levels.

  3. Iron Speciation in Minerals and Melts at High Pressure: Implications for the Redox Evolution of the Early Mantle

    NASA Astrophysics Data System (ADS)

    Armstrong, K.; Frost, D. J.; McCammon, C. A.; Rubie, D. C.; Boffa Ballaran, T.; Miyajima, N.

    2016-12-01

    During the differentiation of the early Earth, the silicates of the mantle must have been in equilibrium with core-forming metal iron, as indicated by the depletion of siderophile elements from the mantle. Studies of ancient rocks suggest that by at least 3.9 Ga, the upper mantle was 4-5 log units more oxidized than metal saturation implies (Delano 2001). The process(es) by which the mantle was oxidized is unclear, but has implications for the timing of accretion, differentiation, and volatile delivery to the early Earth, as well as evolution of the early atmosphere. One plausible oxidation mechanism is suggested by the tendency of high-pressure silicate minerals to favor Fe3+ over Fe2+ in their structures, even at metal saturation. This preference in the lower mantle mineral bridgmanite has been proposed to drive the disproportionation reaction of FeO to form Fe­2O3 and iron metal (Frost and McCammon 2008). We have performed experiments at the Ru-RuO2 fO2 buffer which show that silicate melts may mirror this behavior and Fe3+ may be stabilized with pressure for a constant fO2; by 21 GPa, the previously observed trend of Fe3+ decreasing with pressure (O'Neill, 2006) reverses and ferric iron content had increased. If this is also the case at lower oxygen fugacities, FeO disproportionation may have occurred at the base of an early magma ocean, establishing a redox gradient similar to what is presumed for the mantle today. Here we report results of further multianvil and diamond anvil cell experiments exploring the plausibility of FeO disproportionation driving mantle oxidation. Experiments investigating Fe speciation in high pressure melts at variable fO2 will be discussed along with results of diamond anvil cell experiments investigating ferric iron content of lower mantle minerals at metal saturation.

  4. Ultrasonic Sound Velocity of Diopside Liquid Under High Pressure and High Temperature Conditions

    NASA Astrophysics Data System (ADS)

    Xu, M.; Jing, Z.; Chantel, J.; Yu, T.; Wang, Y.; Jiang, P.

    2017-12-01

    The equation of state (EOS) of silicate liquids is of great significance to the understanding of the dynamics and differentiation of the magmatic systems in Earth and other terrestrial planets. Sound velocity of silicate liquids measured at high pressure can provide direct information on the bulk modulus and its pressure derivative and hence tightly constrain the EOS of silicate liquids. In addition, the sound velocity data can be directly compared to seismic observations to infer the presence of melts in the mantle. While the sound velocity for silicate liquids at ambient pressure has been well established, the high-pressure sound velocity data are still lacking due to experimental challenges. In this study, we successfully determined the sound velocities of diopside (CaMgSi2O6) liquid in a multi-anvil apparatus under high pressure-high temperature conditions from 1 to 4 GPa and 1973 to 2473 K by the ultrasonic interferometry in conjunction with synchrotron X-ray techniques. Diopside was chosen to study because it is not only one of the most important phases in the Earth's upper mantle, but also an end-member composition of model basalt. It is thus an ideal simplified melt composition in the upper mantle. Besides, diopside liquid has been studied by ambient-pressure ultrasonic measurements (e.g., Ai and Lange, 2008) and shock-wave experiments at much higher pressure (e.g., Asimow and Ahrens, 2010), which allows comparison with our results over a large pressure range. Our high-pressure results on the sound velocity of Di liquid are consistent with the ambient-pressure data and show an increase of velocity with pressure (from 3039 m/s at 0.1 GPa to 4215 m/s at 3.5 GPa). Fitting to the Murnaghan EOS gives an isentropic bulk modulus (Ks) of 24.8 GPa and its pressure dependence (K'S) of 7.8. These are consistent with the results from shock-wave experiments on Di liquid (Asimow and Ahrens, 2010), indicating that the technique used in this study is capable to accurately determine the sound velocity of silicate liquids at high pressures. We will use these results to better constrain the hard sphere EOS model for silicate liquids (Jing and Karato, 2011), with implications to the stability of melt layers in the deep mantle under gravity and the presence of partial melts in low velocity zones in the mantle.

  5. The last stage of Earth's formation: Increasing the pressure

    NASA Astrophysics Data System (ADS)

    Lock, S. J.; Stewart, S. T.; Mukhopadhyay, S.

    2017-12-01

    A range of high-energy, high-angular momentum (AM) giant impacts have been proposed as a potential trigger for lunar origin. High-energy, high-AM collisions create a previously unrecognized planetary object, called a synestia. Terrestrial synestias exceed the corotation limit for a rocky planet, forming an extended structure with a corotating inner region and disk-like outer region. We demonstrate that the internal pressures of Earth-like planets do not increase monotonically during the giant impact stage, but can vary substantially in response to changes in rotation and thermal state. The internal pressures in an impact-generated synestia are much lower than in condensed, slowly rotating planets of the same mass. For example, the core-mantle boundary (CMB) pressure can be as low as 60 GPa for a synestia with Earth mass and composition, compared to 136 GPa in the present-day Earth. The lower pressures are due to the low density and rapid rotation of the post-impact structure. After a high-AM Moon-forming impact, the internal pressures in the interior of the synestia would have increased to present-day Earth values in two stages: first by vapor condensation and second by removal of AM from the Earth during the tidal evolution of the Moon. The pressure evolution of the Earth has several implications. Metal-silicate equilibration after the impact would have occurred at much lower pressures than has previously been assumed. The observed moderately siderophile element abundances in the mantle may be consistent with equilibration at the bottom of a deep, lower-pressure magma ocean. In addition, the pressure at the CMB during cooling is coincident with, or lower than, the proposed intersection of liquid adiabats with the mantle liquidus. The mantle would hence freeze from the bottom up and there would be no basal magma ocean. The subsequent pressure increase and tidal heating due to the Moon's orbital evolution likely induces melting in the lowermost mantle. Increasing pressure in the upper mantle also leads to exothermic and endothermic phase changes potentially producing partial melts in the mid-mantle. High-pressure partial melts could produce precursor material for the seismically and chemically anomalous regions that are observed in the lower mantle today.

  6. Insects at low pressure: applications to artificial ecosystems and implications for global windborne distribution

    NASA Technical Reports Server (NTRS)

    Cockell, C.; Catling, D.; Waites, H.

    1999-01-01

    Insects have a number of potential roles in closed-loop life support systems. In this study we examined the tolerance of a range of insect orders and life stages to drops in atmospheric pressure using a terrestrial atmosphere. We found that all insects studied could tolerate pressures down to 100 mb. No effects on insect respiration were noted down to 500 mb. Pressure toleration was not dependent on body volume. Our studies demonstrate that insects are compatible with plants in low-pressure artificial and closed-loop ecosystems. The results also have implications for arthropod colonization and global distribution on Earth.

  7. Intersections of Accountability and Special Education: The Social Justice Implications of Policy and Practice

    ERIC Educational Resources Information Center

    Castro-Villarreal, Felicia; Nichols, Sharon L.

    2016-01-01

    High-stakes testing accountability has wreaked havoc on America's public schools. Since the passage of NCLB in 2001, virtually every public school student has experienced the pressures of preparing for, practicing, and taking standardized state exams, the results of which have had significant consequences for their schools, teachers, and…

  8. The effects of high pressure treatments on C. jejuni in ground poultry products containing polyphosphate additives

    USDA-ARS?s Scientific Manuscript database

    Marinades containing polyphosphates have been previously implicated in the enhanced survival of Campylobacter spp. in poultry product exudates. The enhanced Campylobacter survival was attributed primarily to the ability of some polyphosphates to change the pH of the exudate to one more amenable to ...

  9. High-pressure chemistry of hydrocarbons relevant to planetary interiors and inertial confinement fusion

    NASA Astrophysics Data System (ADS)

    Kraus, D.; Hartley, N. J.; Frydrych, S.; Schuster, A. K.; Rohatsch, K.; Rödel, M.; Cowan, T. E.; Brown, S.; Cunningham, E.; van Driel, T.; Fletcher, L. B.; Galtier, E.; Gamboa, E. J.; Laso Garcia, A.; Gericke, D. O.; Granados, E.; Heimann, P. A.; Lee, H. J.; MacDonald, M. J.; MacKinnon, A. J.; McBride, E. E.; Nam, I.; Neumayer, P.; Pak, A.; Pelka, A.; Prencipe, I.; Ravasio, A.; Redmer, R.; Saunders, A. M.; Schölmerich, M.; Schörner, M.; Sun, P.; Turner, S. J.; Zettl, A.; Falcone, R. W.; Glenzer, S. H.; Döppner, T.; Vorberger, J.

    2018-05-01

    Diamond formation in polystyrene (C8H8)n, which is laser-compressed and heated to conditions around 150 GPa and 5000 K, has recently been demonstrated in the laboratory [Kraus et al., Nat. Astron. 1, 606-611 (2017)]. Here, we show an extended analysis and comparison to first-principles simulations of the acquired data and their implications for planetary physics and inertial confinement fusion. Moreover, we discuss the advanced diagnostic capabilities of adding high-quality small angle X-ray scattering and spectrally resolved X-ray scattering to the platform, which shows great prospects of precisely studying the kinetics of chemical reactions in dense plasma environments at pressures exceeding 100 GPa.

  10. Scaling laws for AC gas breakdown and implications for universality

    NASA Astrophysics Data System (ADS)

    Loveless, Amanda M.; Garner, Allen L.

    2017-10-01

    The reduced dependence on secondary electron emission and electrode surface properties makes radiofrequency (RF) and microwave (MW) plasmas advantageous over direct current (DC) plasmas for various applications, such as microthrusters. Theoretical models relating molecular constants to alternating current (AC) breakdown often fail due to incomplete understanding of both the constants and the mechanisms involved. This work derives simple analytic expressions for RF and MW breakdown, demonstrating the transition between these regimes at their high and low frequency limits, respectively. We further show that the limiting expressions for DC, RF, and MW breakdown voltage all have the same universal scaling dependence on pressure and gap distance at high pressure, agreeing with experiment.

  11. Induced and permanent magnetism on the moon - Structural and evolutionary implications.

    NASA Technical Reports Server (NTRS)

    Sonett, C. P.; Dyal, P.; Colburn, D. S.; Mihalov, J. D.; Parkin, C. W.; Smith, B. F.; Schubert, G.; Schwartz, K.

    1971-01-01

    It is shown that the moon possesses an extraordinary response to induction from the solar wind due to a combination of a high interior electrical conductivity together with a relatively resistive crustal layer into which the solar wind dynamic pressure forces back the induced field. The dark side response, devoid of solar wind pressure, is approximately that expected for the vacuum case. These data permit an assessment of the interior conductivity and an estimate of the thermal gradient in the crustal region. The discovery of a large permanent magnetic field at the Apollo 12 site corresponds approximately to the paleomagnetic residues discovered in both Apollo 11 and 12 rock samples. The implications regarding an early lunar magnetic field are discussed and it is shown that among the various conjectures regarding the early field the most prominent are either an interior dynamo or an early approach to the earth though no extant model is free of difficulties.

  12. Structural and electronic properties of high pressure phases of lead chalcogenides

    NASA Astrophysics Data System (ADS)

    Petersen, John; Scolfaro, Luisa; Myers, Thomas

    2012-10-01

    Lead chalcogenides, most notably PbTe and PbSe, have become an active area of research due to their thermoelectric properties. The high figure of merit (ZT) of these materials has brought much attention to them, due to their ability to convert waste heat into electricity. Variation in synthesis conditions gives rise to a need for analysis of structural and thermoelectric properties of these materials at different pressures. In addition to the NaCl structure at ambient conditions, lead chalcogenides have a dynamic orthorhombic (Pnma) intermediate phase and a higher pressure yet stable CsCl phase. By altering the lattice constant, we simulate the application of external pressure; this has notable effects on ground state total energy, band gap, and structural phase. Using the General Gradient Approximation (GGA) in Density Functional Theory (DFT), we calculate the phase transition pressures by finding the differences in enthalpy from total energy calculations. For each phase, elastic constants, bulk modulus, shear modulus, Young's modulus, and hardness are calculated, using two different approaches. In addition to structural properties, we analyze the band structure and density of states at varying pressures, paying special note to thermoelectric implications.

  13. High-pressure metamorphism in the southern New England Orogen: Implications for long-lived accretionary orogenesis in eastern Australia

    NASA Astrophysics Data System (ADS)

    Phillips, G.; Offler, R.; Rubatto, D.; Phillips, D.

    2015-09-01

    New geochemical, metamorphic, and isotopic data are presented from high-pressure metamorphic rocks in the southern New England Orogen (eastern Australia). Conventional and optimal thermobarometry are augmented by U-Pb zircon and 40Ar/39Ar phengite dating to define pressure-temperature-time (P-T-t) histories for the rocks. The P-T-t histories are compared with competing geodynamic models for the Tasmanides, which can be summarized as (i) a retreating orogen model, the Tasmanides formed above a continuous, west dipping, and eastward retreating subduction zone, and (ii) a punctuated orogen model, the Tasmanides formed by several arc accretion, subduction flip, and/or transference events. Whereas both scenarios are potentially supported by the new data, an overlap between the timing of metamorphic recrystallization and key stages of Tasmanides evolution favors a relationship between a single, long-lived subduction zone and the formation, exhumation, and exposure of the high-pressure rocks. By comparison with the retreating orogen model, the following links with the P-T-t histories emerge: (i) exhumation and underplating of oceanic eclogite during the Delamerian Orogeny, (ii) recrystallization of underplated and exhuming high-pressure rocks at amphibolite facies conditions coeval with a period of rollback, and (iii) selective recrystallization of high-pressure rocks at blueschist facies conditions, reflecting metamorphism in a cooled subduction zone. The retreating orogen model can also account for the anomalous location of the Cambrian-Ordovician high-pressure rocks in the Devonian-Carboniferous New England Orogen, where sequential rollback cycles detached and translated parts of the leading edge of the overriding plate to the next, younger orogenic cycle.

  14. Stepping Up the Pressure: Arousal Can Be Associated with a Reduction in Male Aggression

    PubMed Central

    Ward, Andrew; Mann, Traci; Westling, Erika H.; Creswell, J. David; Ebert, Jeffrey P.; Wallaert, Matthew

    2009-01-01

    The attentional myopia model of behavioral control (Mann & Ward, 2007) was tested in an experiment investigating the relationship between physiological arousal and aggression. Drawing on previous work linking arousal and narrowed attentional focus, the model predicts that arousal will lead to behavior that is relatively disinhibited in situations in which promoting pressures to aggress are highly salient. In situations in which inhibitory pressures are more salient, the model predicts behavior that is relatively restrained. In the experiment, 81 male undergraduates delivered noise-blasts against a provoking confederate while experiencing either high or low levels of physiological arousal and, at the same time, being exposed to cues that served either to promote or inhibit aggression. In addition to supporting the predictions of the model, this experiment provided some of the first evidence for enhanced control of aggression under conditions of heightened physiological arousal. Implications for interventions designed to reduce aggression are discussed. PMID:18561301

  15. Occupational pressure-targeting organisational factors to ameliorate occupational dysfunction.

    PubMed

    Loh, Siew Yim; Than, Winn; Quek, Kia Fatt

    2011-12-01

    Chronic pressure at work has debilitating impact on healthcare employers (e.g. reduced productivity, high costs, poor patient care) and on female healthcare employees (e.g. sickness, dysfunction). This paper highlights relationship at work as the key occupational source of work-stress which is organisational in nature. A cross-sectional study (n = 230) was conducted using the Pressure Management Inventory on several female dominated health professions within a large public hospital. Analysis of variance was used to show relationship between sources and outcome of pressure. Linear regressions were used to predict which sources of pressure (IV) was linked to the outcomes of occupational pressure (DV). The number one source of occupational pressure is relationships at work (i.e. with supervisors), and not workload. 'Relationship' is also the key predictor of several negative outcomes of pressure at work. Analysis of variance showed significant differences in two sources of pressures, i.e. Workload (P = 0.04) and Home-work balance (P = 0.03). This paper provides insights into the occupational pressure of women health professionals by highlighting the organisational sources of pressure and the implications for preventing occupational dysfunction secondary to stress at work.

  16. Structural State and Elastic Properties of Perovskites in the Earth's Mantle

    NASA Astrophysics Data System (ADS)

    Ross, N. L.; Angel, R. J.; Zhao, J.

    2005-12-01

    Recent advances in laboratory-based single-crystal X-ray diffraction techniques for measuring the intensities of diffraction from crystals held in situ at high pressures in the diamond-anvil cell have been used to determine the role of polyhedral compression in the response of 2:4 and 3:3 GdFeO3-type perovskites to high pressure [1]. These new data clearly demonstrate that, contrary to previous belief, the compression of the octahedral sites is significant and that the evolution of the perovskite structure with pressure is controlled by a new principle; that of equipartition of bond-valence strain across the structure [2]. This new paradigm, together with the minimal information available from high- pressure powder diffraction studies, may provide the possibility of predicting the structural state and elastic properties of perovskites of any composition at mantle pressures and temperatures. Cation partioning between silicate perovskites and other phases should then be predictable through the application of a Brice-style model [3]. The geochemical implications of this type of analysis will be presented as well as the possibility for extending these measurements to higher pressures. References [1] e.g. Zhao, Ross & Angel (2004) Phys Chem Miner. 31: 299; Ross, Zhao,. & Angel (2004). J. Solid State Chemistry 177:1276. [2] Zhao, Ross, & Angel (2004). Acta Cryst. B60:263 [3] e.g Walter et al. (2004) Geochim Cosmochim Acta 68:4267; Blundy & Wood (1994) Nature 372:452

  17. Implications of Dynamic Pressure Transducer Mounting Variations on Measurements in Pyrotechnic Test Apparatus

    NASA Technical Reports Server (NTRS)

    Dibbern, Andreas; Crisafulli, Jeffrey; Hagopia, Michael; McDougle, Stephen H.; Saulsberry, Regor L.

    2009-01-01

    Accurate dynamic pressure measurements are often difficult to make within small pyrotechnic devices, and transducer mounting difficulties can cause data anomalies that lead to erroneous conclusions. Delayed initial pressure response followed by data ringing has been observed when using miniaturized pressure transducer mounting adapters required to interface transducers to small test chambers. This delayed pressure response and ringing, combined with a high data acquisition rate, has complicated data analysis. This paper compares the output signal characteristics from different pressure transducer mounting options, where the passage distance from the transducer face to the pyrotechnic chamber is varied in length and diameter. By analyzing the data and understating the associated system dynamics, a more realistic understanding of the actual dynamic pressure variations is achieved. Three pressure transducer mounting configurations (elongated, standard, and face/flush mount) were simultaneously tested using NASA standard initiators in closed volume pressure bombs. This paper also presents results of these pressure transducer mounting configurations as a result of a larger NASA Engineering and Safety Center pyrovalve test project. Results from these tests indicate the improved performance of using face/flush mounted pressure transducers in this application. This type of mounting improved initial pressure measurement response time by approximately 19 s over standard adapter mounting, eliminating most of the lag time; provided a near step-function type initial pressure increase; and greatly reduced data ringing in high data acquisition rate systems. The paper goes on to discuss other issues associated with the firing and instrumentation that are important for the tester to understand.

  18. High-volume resistance training session acutely diminishes respiratory muscle strength.

    PubMed

    Hackett, Daniel A; Johnson, Nathan A; Chow, Chin-Moi

    2012-01-01

    This study investigated the effect of a high-volume compared to a low-volume resistance training session on maximal inspiratory pressure (MIP) and maximal expiratory pressure (MEP). Twenty male subjects with resistance training experience (6.2 ± 3.2 y), in a crossover trial, completed two resistance training protocols (high-volume: 5 sets per exercise; low-volume: 2 sets per exercise) and a control session (no exercise) on 3 separate occasions. MIP and MEP decreased by 13.6% (p < 0.01) and 14.7% (p < 0.01) respectively from pre-session MIP and MEP, following the high-volume session. MIP and MEP were unaffected following the low-volume or the control sessions. MIP returned to pre-session values after 40 minutes, whereas MEP remained significantly reduced after 60 minutes post-session by 9.2% compared to pre-session (p < 0.01). The findings suggest that the high-volume session significantly decreased MIP and MEP post-session, implicating a substantially increased demand on the respiratory muscles and that adequate recovery is mandatory following this mode of training. Key pointsRespiratory muscular strength performance is acutely diminished following a high-volume whole-body resistance training session.Greater ventilatory requirements and generation of IAP during the high-volume resistance training session may have contributed to the increased demand placed on the respiratory muscles.Protracted return of respiratory muscular strength performance to baseline levels may have implications for individuals prior to engaging in subsequent exercise bouts.

  19. Melting curve of SiO2 at multimegabar pressures: implications for gas giants and super-Earths.

    PubMed

    González-Cataldo, Felipe; Davis, Sergio; Gutiérrez, Gonzalo

    2016-05-23

    Ultrahigh-pressure phase boundary between solid and liquid SiO2 is still quite unclear. Here we present predictions of silica melting curve for the multimegabar pressure regime, as obtained from first principles molecular dynamics simulations. We calculate the melting temperatures from three high pressure phases of silica (pyrite-, cotunnite-, and Fe2P-type SiO2) at different pressures using the Z method. The computed melting curve is found to rise abruptly around 330 GPa, an increase not previously reported by any melting simulations. This is in close agreement with recent experiments reporting the α-PbO2-pyrite transition around this pressure. The predicted phase diagram indicates that silica could be one of the dominant components of the rocky cores of gas giants, as it remains solid at the core of our Solar System's gas giants. These results are also relevant to model the interior structure and evolution of massive super-Earths.

  20. Melting curve of SiO2 at multimegabar pressures: implications for gas giants and super-Earths

    PubMed Central

    González-Cataldo, Felipe; Davis, Sergio; Gutiérrez, Gonzalo

    2016-01-01

    Ultrahigh-pressure phase boundary between solid and liquid SiO2 is still quite unclear. Here we present predictions of silica melting curve for the multimegabar pressure regime, as obtained from first principles molecular dynamics simulations. We calculate the melting temperatures from three high pressure phases of silica (pyrite-, cotunnite-, and Fe2P-type SiO2) at different pressures using the Z method. The computed melting curve is found to rise abruptly around 330 GPa, an increase not previously reported by any melting simulations. This is in close agreement with recent experiments reporting the α-PbO2–pyrite transition around this pressure. The predicted phase diagram indicates that silica could be one of the dominant components of the rocky cores of gas giants, as it remains solid at the core of our Solar System’s gas giants. These results are also relevant to model the interior structure and evolution of massive super-Earths. PMID:27210813

  1. First-principles theory of iron up to earth-core pressures: Structural, vibrational, and elastic properties

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Soederlind, P.; Moriarty, J.A.; Wills, J.M.

    1996-06-01

    {ital Ab} {ital initio} electronic-structure calculations, based on density-functional theory and a full-potential linear-muffin-tin-orbital method, have been used to predict crystal-structure phase stabilities, elastic constants, and Brillouin-zone-boundary phonons for iron under compression. Total energies for five crystal structures, bcc, fcc, bct, hcp, and dhcp, have been calculated over a wide volume range. In agreement with experiment and previous theoretical calculations, a magnetic bcc ground state is obtained at ambient pressure and a nonmagnetic hcp ground state is found at high pressure, with a predicted bcc {r_arrow} hcp phase transition at about 10 GPa. Also in agreement with very recent diamond-anvil-cellmore » experiments, a metastable dhcp phase is found at high pressure, which remains magnetic and consequently accessible at high temperature up to about 50 GPa. In addition, the bcc structure becomes mechanically unstable at pressures above 2 Mbar (200 GPa) and a metastable, but still magnetic, bct phase ({ital c}/{ital a} {approx_equal} 0.875) develops. For high-pressure nonmagnetic iron, fcc and hcp elastic constants and fcc phonon frequencies have been calculated to above 4 Mbar. These quantities rise smoothly with pressure, but an increasing tendency towards elastic anisotropy as a function of compression is observed, and this has important implications for the solid inner-core of the earth. The fcc elastic-constant and phonon data have also been used in combination with generalized pseudopotential theory to develop many-body interatomic potentials, from which high-temperature thermodynamic properties and melting can be obtained. In this paper, these potentials have been used to calculate full fcc and hcp phonon spectra and corresponding Debye temperatures as a function of compression. {copyright} {ital 1996 The American Physical Society.}« less

  2. A synoptic climatology for forest fires in the NE US and future implications for GCM simulations

    Treesearch

    Yan Qing; Ronald Sabo; Yiqiang Wu; J.Y. Zhu

    1994-01-01

    We studied surface-pressure patterns corresponding to reduced precipitation, high evaporation potential, and enhanced forest-fire danger for West Virginia, which experienced extensive forest-fire damage in November 1987. From five years of daily weather maps we identified eight weather patterns that describe distinctive flow situations throughout the year. Map patterns...

  3. Physical Vapor Transport of Lead Telluride

    NASA Technical Reports Server (NTRS)

    Palosz, W.

    1997-01-01

    Mass transport properties of physical vapor transport of PbTe are investigated. Thermochemical analysis of the system and its implications for the growth conditions are discussed. The effect of the material preparation and pre-processing on the stoichiometry and residual gas pressure and composition, and on related mass flux is shown. A procedure leading to high mass transport rates is presented.

  4. First principles investigation of high pressure behavior of FeOOH-AlOOH-phase H (MgSiO4H2) system.

    NASA Astrophysics Data System (ADS)

    Tsuchiya, J.; Thompson, E. C.; Tsuchiya, T.; Nishi, M.; Kuwayama, Y.

    2017-12-01

    It has been believed that water is carried into the deep Earth's interior by hydrous minerals such as the dense hydrous magnesium silicates (DHMSs) in the descending cold plate. A numbers of researches have been conducted so far about the high pressure behaviors of DHMSs. In recent years, we found new DHMS, phase H, at lower mantle pressure condition and the solid solution between phase H and d-AlOOH has been proposed as the most important carrier of water in the deepest part of Earth's mantle (Tsuchiya 2013 GRL, Nishi et al. 2014 Nature Geo., Ohira et al. 2014 EPSL). However, those hydrous minerals are actually not denser than surrounding (dry) mantle minerals (Tsuchiya and Mookherjee 2015 Scientific Reports) and the gravitational stability in deeper part of the Earth is questionable. Therefore, the effects of denser element such as Fe on the stability of DHMS are intimately connected to the ability of transportation of water into Earth's deep interiors. In order to assess the effect of Fe on the phase relation of phase H and d-AlOOH, we first investigated the high pressure behavior of the end-member composition of this system, the e-FeOOH. We have found the new high pressure transformation of FeOOH in the lower mantle conditions both theoretically and experimentally(Nishi et al. 2017 Nature). Here we show high pressure structures and the physical properties of FeOOH-AlOOH-phase H system using first principles calculation and discuss the possible geophysical implications of these phases.

  5. Implications of pressure diffusion for shock waves

    NASA Technical Reports Server (NTRS)

    Ram, Ram Bachan

    1989-01-01

    The report deals with the possible implications of pressure diffusion for shocks in one dimensional traveling waves in an ideal gas. From this new hypothesis all aspects of such shocks can be calculated except shock thickness. Unlike conventional shock theory, the concept of entropy is not needed or used. Our analysis shows that temperature rises near a shock, which is of course an experimental fact; however, it also predicts that very close to a shock, density increases faster than pressure. In other words, a shock itself is cold.

  6. Neural control of vascular reactions: impact of emotion and attention.

    PubMed

    Okon-Singer, Hadas; Mehnert, Jan; Hoyer, Jana; Hellrung, Lydia; Schaare, Herma Lina; Dukart, Juergen; Villringer, Arno

    2014-03-19

    This study investigated the neural regions involved in blood pressure reactions to negative stimuli and their possible modulation by attention. Twenty-four healthy human subjects (11 females; age = 24.75 ± 2.49 years) participated in an affective perceptual load task that manipulated attention to negative/neutral distractor pictures. fMRI data were collected simultaneously with continuous recording of peripheral arterial blood pressure. A parametric modulation analysis examined the impact of attention and emotion on the relation between neural activation and blood pressure reactivity during the task. When attention was available for processing the distractor pictures, negative pictures resulted in behavioral interference, neural activation in brain regions previously related to emotion, a transient decrease of blood pressure, and a positive correlation between blood pressure response and activation in a network including prefrontal and parietal regions, the amygdala, caudate, and mid-brain. These effects were modulated by attention; behavioral and neural responses to highly negative distractor pictures (compared with neutral pictures) were smaller or diminished, as was the negative blood pressure response when the central task involved high perceptual load. Furthermore, comparing high and low load revealed enhanced activation in frontoparietal regions implicated in attention control. Our results fit theories emphasizing the role of attention in the control of behavioral and neural reactions to irrelevant emotional distracting information. Our findings furthermore extend the function of attention to the control of autonomous reactions associated with negative emotions by showing altered blood pressure reactions to emotional stimuli, the latter being of potential clinical relevance.

  7. The effect of hydrostatic pressure up to 1.61 GPa on the Morin transition of hematite-bearing rocks: Implications for planetary crustal magnetization

    NASA Astrophysics Data System (ADS)

    Bezaeva, Natalia S.; Demory, François; Rochette, Pierre; Sadykov, Ravil A.; Gattacceca, Jérôme; Gabriel, Thomas; Quesnel, Yoann

    2015-12-01

    We present new experimental data on the dependence of the Morin transition temperature (TM) on hydrostatic pressure up to 1.61 GPa, obtained on a well-characterized multidomain hematite-bearing sample from a banded iron formation. We used a nonmagnetic high-pressure cell for pressure application and a Superconducting Quantum Interference Device magnetometer to measure the isothermal remanent magnetization (IRM) under pressure on warming from 243 K to room temperature (T0). IRM imparted at T0 under pressure in 270 mT magnetic field (IRM270mT) is not recovered after a cooling-warming cycle. Memory effect under pressure was quantified as IRM recovery decrease of 10%/GPa. TM, determined on warming, reaches T0 under hydrostatic pressure 1.38-1.61 GPa. The pressure dependence of TM up to 1.61 GPa is positive and essentially linear with a slope dTM/dP = (25 ± 2) K/GPa. This estimate is more precise than previous ones and allows quantifying the effect of a pressure wave on the upper crust magnetization, with special emphasis on Mars.

  8. Resolving Discrepancies in the Measurements of the Interfacial Tension for the CO2 + H2O Mixture by Computer Simulation.

    PubMed

    Müller, Erich A; Mejía, Andrés

    2014-04-03

    Literature values regarding the pressure dependence of the interfacial tension of the system of carbon dioxide (CO2) + water (H2O) show an unexplained divergence and scatter at the transition between low-pressure gas-liquid equilibrium and the high-pressure liquid-liquid equilibrium. We employ the Statistical Associating Fluid Theory (SAFT) and canonical molecular dynamics simulations based on the corresponding coarse grained force field to map out the phase diagram of the mixture and the interfacial tension for this system. We showcase how at ambient temperatures a triple point (gas-liquid-liquid) is expected and detail the implications that the appearance of the third phase has on the interfacial tensions of the system.

  9. Thermal conductivity of H2O-CH3OH mixtures at high pressures: Implications for the dynamics of icy super-Earths outer shells

    NASA Astrophysics Data System (ADS)

    Hsieh, Wen-Pin; Deschamps, Frédéric

    2015-10-01

    Thermal conductivity of H2O-volatile mixtures at extreme pressure-temperature conditions is a key factor to determine the heat flux and profile of the interior temperature in icy bodies. We use time domain thermoreflectance and stimulated Brillouin scattering combined with diamond anvil cells to study the thermal conductivity and sound velocity of water (H2O)-methanol (CH3OH) mixtures to pressures as high as 12 GPa. Compared to pure H2O, the presence of 5-20 wt % CH3OH significantly reduces the thermal conductivity and sound velocity when the mixture becomes ice VI-CH3OH and ice VII-CH3OH phases at high pressures, indicating that the heat transfer is hindered within the icy body. We then apply these results to model the heat transfer through the icy mantles of super-Earths, assuming that these mantles are animated by thermal convection. Our calculations indicate that the decrease of thermal conductivity due to the presence of 10 wt % CH3OH induces a twofold decrease of the power transported by convection.

  10. Morphology and dynamics of explosive vents

    NASA Astrophysics Data System (ADS)

    Gisler, Galen R.; Galland, Olivier; Haug, Øystein T.

    2014-05-01

    Eruptive processes in nature produce a wide variety of morphologies, including cone sheets, dykes, sills, and pipes. The choice of a particular eruptive style is determined partly by local inhomogeneities, and partly by the gross overall properties of the country rock and the physical properties of the eruptive fluid. In this study we report on experimental and numerical designed to capture a range of morphologies in an eruptive system. Using dimensional analysis we link the experimental and numerical work together and draw implications for field studies. Our experimental work uses silica flour in a Hele-Shaw cell, with air as the eruptive fluid. A phase diagram demonstrates a separation between two distinct morphologies, with vertical structures occurring at high pressure or low depth of fill and diagonal ones at low pressure or high depth of fill. In the numerical work the eruptive fluid is a mixture of basaltic magma, supercritical water, and carbon dioxide, and the ambient material is a fill of basalt with varying material properties. In the numerical work we see three distinct morphologies: vertical pipes are produced at high pressures and softer backgrounds, diagonal pipes at lower pressures and stiffer backgrounds, while horizontal sills are produced in intermediate regimes.

  11. Gas Hydrate Stability at Low Temperatures and High Pressures with Applications to Mars and Europa

    NASA Technical Reports Server (NTRS)

    Marion, G. M.; Kargel, J. S.; Catling, D. C.

    2004-01-01

    Gas hydrates are implicated in the geochemical evolution of both Mars and Europa [1- 3]. Most models developed for gas hydrate chemistry are based on the statistical thermodynamic model of van der Waals and Platteeuw [4] with subsequent modifications [5-8]. None of these models are, however, state-of-the-art with respect to gas hydrate/electrolyte interactions, which is particularly important for planetary applications where solution chemistry may be very different from terrestrial seawater. The objectives of this work were to add gas (carbon dioxide and methane) hydrate chemistries into an electrolyte model parameterized for low temperatures and high pressures (the FREZCHEM model) and use the model to examine controls on gas hydrate chemistries for Mars and Europa.

  12. Magnetically Orchestrated Formation of Diamond at Lower Temperatures and Pressures

    NASA Astrophysics Data System (ADS)

    Little, Reginald B.; Lochner, Eric; Goddard, Robert

    2005-01-01

    Man's curiosity and fascination with diamonds date back to ancient times. The knowledge of the many properties of diamond is recorded during Biblical times. Antoine Lavoisier determined the composition of diamond by burning in O2 to form CO2. With the then existing awareness of graphite as carbon, the race began to convert graphite to diamond. The selective chemical synthesis of diamond has been pursued by Cagniard, Hannay, Moisson and Parson. On the basis of the thermodynamically predicted equilibrium line of diamond and graphite, P W Bridgman attempted extraordinary conditions of high temperature (>2200°C) and pressure (>100,000 atm) for the allotropic conversion of graphite to diamond. H T Hall was the first to successfully form bulk diamond by realizing the kinetic restrictions to Bridgman's (thermodynamic) high pressure high temperature direct allotropic conversion. Moreover, Hall identified catalysts for the faster kinetics of diamond formation. H M Strong determined the import of the liquid catalyst during Hall's catalytic synthesis. W G Eversole discovered the slow metastable low pressure diamond formation by pyrolytic chemical vapor deposition with the molecular hydrogen etching of the rapidly forming stable graphitic carbon. J C Angus determined the import of atomic hydrogen for faster etching for faster diamond growth at low pressure. S Matsumoto has developed plasma and hot filament technology for faster hydrogen and carbon radical generations at low pressure for faster diamond formation. However the metastable low pressure chemical vapor depositions by plasma and hot filament are prone to polycrystalline films. From Bridgman to Hall to Eversole, Angus and Matsumoto, much knowledge has developed of the importance of pressure, temperature, transition metal catalyst, liquid state of metal (metal radicals atoms) and the carbon radical intermediates for diamond synthesis. Here we advance this understanding of diamond formation by demonstrating the external magnetic organization of carbon, metal and hydrogen radicals for lower temperature and pressure synthesis. Here we show that strong static external magnetic field (>15 T) enhances the formation of single crystal diamond at lower pressure and even atmospheric pressure with implications for much better, faster high quality diamond formation by magnetization of current high pressure and temperature technology.

  13. Bubble continuous positive airway pressure in a human immunodeficiency virus-infected infant

    PubMed Central

    McCollum, E. D.; Smith, A.; Golitko, C. L.

    2014-01-01

    SUMMARY World Health Organization-classified very severe pneumonia due to Pneumocystis jirovecii infection is recognized as a life-threatening condition in human immunodeficiency virus (HIV) infected infants. We recount the use of nasal bubble continuous positive airway pressure (BCPAP) in an HIV-infected African infant with very severe pneumonia and treatment failure due to suspected infection with P. jirovecii. We also examine the potential implications of BCPAP use in resource-poor settings with a high case index of acute respiratory failure due to HIV-related pneumonia, but limited access to mechanical ventilation. PMID:21396221

  14. Laser-driven shock experiments on precompressed water: Implications for "icy" giant planets.

    PubMed

    Lee, Kanani K M; Benedetti, L Robin; Jeanloz, Raymond; Celliers, Peter M; Eggert, Jon H; Hicks, Damien G; Moon, Stephen J; Mackinnon, Andrew; Da Silva, Luis B; Bradley, David K; Unites, Walter; Collins, Gilbert W; Henry, Emeric; Koenig, Michel; Benuzzi-Mounaix, Alessandra; Pasley, John; Neely, David

    2006-07-07

    Laser-driven shock compression of samples precompressed to 1 GPa produces high-pressure-temperature conditions inducing two significant changes in the optical properties of water: the onset of opacity followed by enhanced reflectivity in the initially transparent water. The onset of reflectivity at infrared wavelengths can be interpreted as a semiconductor<-->electronic conductor transition in water, and is found at pressures above approximately 130 GPa for single-shocked samples precompressed to 1 GPa. Our results indicate that conductivity in the deep interior of "icy" giant planets is greater than realized previously because of an additional contribution from electrons.

  15. Behavior of Explosives Under Pressure in a Diamond Anvil Cell

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Foltz, M F

    2006-06-20

    Diamond anvil cell (DAC) studies can yield information about the pressure dependence of materials and reactions under conditions comparable to shock loading. The pressure gradient across the face of the diamonds is often deliberately minimized to create uniform pressure over much of the sample and a simplified data set. To reach very high pressures (30-40 GPa), however, it may be necessary to use ''softer'', high nitrogen content diamonds that are more susceptible to bending under pressure. The resulting enhanced pressure gradient then provides a view of high-pressure behavior under anisotropic conditions similar to those found at the burn front inmore » a bulk sample. We discuss visual observations of pressure-induced changes relative to variations in burn rate of several explosives (Triaminotrinitrobenzene, Nitromethane, CL-20) in the DAC. The burn rate behavior of both Nitromethane (NM) and Triaminotrinitrobenzene (TATB) were previously reported for pressures up to {approx}40 GPa. Nitromethane showed a near monotonic increase in burn rate to a maximum at {approx}30 GPa after which the burn rate decreased, all without color change. At higher pressures, the TATB samples had shiny (metallic) polycrystalline zones or inclusions where the pressure was highest in the sample. Around the shiny zones was a gradation of color (red to yellow) that appeared to follow the pressure gradient. The color changes are believed related to disturbances in the resonance structure of this explosive as the intermolecular separations decrease with pressure. The color and type of residue found in unvented gaskets after the burn was complete also varied with pressure. The four polymorphs of CL-20 ({alpha}, {beta}, {gamma}, {var_epsilon}-Hexanitrohexaazaisowurtzitane, HNIW) did not change color up to the highest pressure applied ({approx}30 GPa), and each polymorph demonstrated a distinctly different burn rate signature. One polymorph {beta} was so sensitive to laser ignition over a narrow pressure range that the sample could not be aligned with a low power laser without ignition. The burn rate for that one polymorph could only be measured at pressures above and below that unique pressure. This anomalous ignition threshold is discussed with respect to the matrix of possible polymorphs, most of which have not been isolated in the laboratory. The changes in behavior, color and reaction rates of all samples are discussed with respect to possible implications to chemistry at high pressure.« less

  16. Pressure-induced magneto-structural transition in iron via a modified solid-state nudged elastic band method

    NASA Astrophysics Data System (ADS)

    Zarkevich, Nikolai A.; Johnson, Duane D.

    2015-03-01

    Materials under pressure may exhibit critical electronic and structural transitions that affect equation of states, as known for superconductors and the magneto-structural transformations of iron with both geophysical and planetary implications. While experiments often use constant-pressure (diamond-anvil cell, DAC) measurements, many theoretical results address a constant-volume transitions, which avoid issues with magnetic collapse but cannot be directly compared to experiment. We establish a modified solid-state nudge elastic band (MSS-NEB) method to handle magnetic systems that may exhibit moment (and volume) collapse during transformation. We apply it to the pressure-induced transformation in iron between the low-pressure body-centered cubic (bcc) and the high-pressure hexagonal close-packed (hcp) phases, find the bcc-hcp equilibrium coexistence pressure and a transitional pathway, and compare to shock and DAC experiments. We use methods developed with support by the U.S. Department of Energy (DE-FG02-03ER46026 and DE-AC02-07CH11358). Ames Laboratory is operated for the DOE by Iowa State University under contract DE-AC02-07CH11358.

  17. Sound velocity measurement in liquid water up to 25 GPa and 900 K: Implications for densities of water at lower mantle conditions

    NASA Astrophysics Data System (ADS)

    Asahara, Yuki; Murakami, Motohiko; Ohishi, Yasuo; Hirao, Naohisa; Hirose, Kei

    2010-01-01

    We extended the pressure range of sound velocity measurements for liquid water to 25 GPa and 900 K along the melting curve using a laser heated diamond anvil cell with a combined system of Brillouin scattering and synchrotron X-ray diffraction. Experimental pressure and temperature were obtained by solving simultaneous equations: the melting curve of ice and the equation of state for gold. The sound velocities obtained in liquid water at high pressures and melting temperatures were converted to density using Murnaghan's equation of state by fitting a parameter of the pressure derivative of bulk modulus at 1 GPa. The results are in good agreement with the values predicted by a previously reported equation of state for water based on sound velocity measurements. The equation of state for water obtained in this study could be applicable to water released by dehydration reactions of dense hydrous magnesium silicate phases in cold subducting slabs at lower mantle conditions, although the validity of Murnaghan's equation of state for water should be evaluated in a wider pressure and temperature ranges. The present velocity data provides the basis for future improvement of the accurate thermodynamic model for water at high pressures.

  18. High-pressure phases transitions in SnO2 to 117 GPa: Implications for silica

    NASA Astrophysics Data System (ADS)

    Shieh, S. R.; Kubo, A.; Duffy, T. S.; Prakapenka, V. B.; Shen, G.

    2005-12-01

    Cassiterite (SnO2) is regarded to be a good analog material for silica as both SnO2 and SiO2 are group IV-B metal dioxides. The high-pressure behavior of SnO2 has been the subject of many previous investigations extending up to 49 GPa and in addition to the rutile structure, three high-pressure phases, CaCl2-type, α-PbO2-type, and pyrite-type were observed. Better knowledge of high-pressure phases of SnO2 will be useful to understand the behavior of silica at deep mantle conditions. In addition, high-pressure metal dioxide phases may qualify as superhard solids. Our study will also provide insights into interpretation of shock compression data. Pure natural cassiterite (SnO2) powder was compressed in a diamond anvil cell using an argon medium. Pressure was determined from the equation of state of platinum. In situ monochromatic x-ray diffraction at high pressure was carried out at the GSECARS, Advanced Photon Source. High temperatures were achieved using double-sided laser heating . Three heating cycles were conducted with total heating times up to 30 minutes. Our diffraction results on SnO2 demonstrate the existence of four phase transitions to 117 GPa. The observed sequence of high-pressure phases for SnO2 is rutile-type, CaCl2-type, pyrite-type, ZrO2 orthorhombic phase I (Pbca), cotunnite-type. Our observations of the first three phases are generally in agreement with earlier studies. The orthorhombic phase I and cotunnite-type structures were observed in SnO2 for the first time. The Pbca phase is found at 50-74 GPa during room-temperature compression. The cotunnite-type structure was synthesized when SnO2 was heated at 74 GPa and 1200 K. The cotunnite-type form was observed during compression between 54-117 GPa. Fitting the pressure-volume data for the high-pressure phases to the second-order Birch-Murnaghan equation of state yields a bulk modulus of 259(26) GPa for the Pbca phase and 417(7) GPa for the cotunnite-type phase. Rietveld profile refinements were also carried out successfully for these two phases.

  19. Lunar and Planetary Science XXXV: Viewing the Lunar Interior Through Titanium-Colored Glasses

    NASA Technical Reports Server (NTRS)

    2004-01-01

    The session"Viewing the Lunar Interior Through Titanium-Colored Glasses" included the following reports:Consequences of High Crystallinity for the Evolution of the Lunar Magma Ocean: Trapped Plagioclase; Low Abundances of Highly Siderophile Elements in the Lunar Mantle: Evidence for Prolonged Late Accretion; Fast Anorthite Dissolution Rates in Lunar Picritic Melts: Petrologic Implications; Searching the Moon for Aluminous Mare Basalts Using Compositional Remote-Sensing Constraints II: Detailed analysis of ROIs; Origin of Lunar High Titanium Ultramafic Glasses: A Hybridized Source?; Ilmenite Solubility in Lunar Basalts as a Function of Temperature and Pressure: Implications for Petrogenesis; Garnet in the Lunar Mantle: Further Evidence from Volcanic Glasses; Preliminary High Pressure Phase Relations of Apollo 15 Green C Glass: Assessment of the Role of Garnet; Oxygen Fugacity of Mare Basalts and the Lunar Mantle. Application of a New Microscale Oxybarometer Based on the Valence State of Vanadium; A Model for the Origin of the Dark Ring at Orientale Basin; Petrology and Geochemistry of LAP 02 205: A New Low-Ti Mare-Basalt Meteorite; Thorium and Samarium in Lunar Pyroclastic Glasses: Insights into the Composition of the Lunar Mantle and Basaltic Magmatism on the Moon; and Eu2+ and REE3+ Diffusion in Enstatite, Diopside, Anorthite, and a Silicate Melt: A Database for Understanding Kinetic Fractionation of REE in the Lunar Mantle and Crust.

  20. Effects of nucleotides on the denaturation of F actin: a differential scanning calorimetry and FTIR spectroscopy study.

    PubMed

    Bombardier, H; Wong, P; Gicquaud, C

    1997-07-30

    We have utilized DSC and high pressure FTIR spectroscopy to study the specificity and mechanism by which ATP protects actin against heat and pressure denaturation. Analysis of the thermograms shows that ATP raises the transition temperature Tm for actin from 69.6 to 75.8 degrees C, and the calorimetric enthalpy, deltaH, from 680 to 990 kJ/mole. Moreover, the peak becomes sharper indicating a more cooperative process. Among the other nucleotide triphosphates, only UTP increases the Tm by 2.5 degrees C, whereas GTP and CTP have negligable effects; ADP and AMP are less active, increasing the Tm by 2.1 and 1.6 degrees C, respectively. Therefore, gamma phosphate plays a key role in this protection, but its hydrolysis is not implicated since the nonhydrolysable analogue of ATP, ATP-PNP have the same activity as ATP. FTIR spectroscopy demonstrates that ATP also protects actin against high pressure denaturation. Analysis of the amide I band during the increase in pressure clearly illustrates that ATP protects particularly a region rich in beta-sheets of the actin molecule.

  1. Muscle changes with eccentric exercise: Implications on earth and in space

    NASA Technical Reports Server (NTRS)

    Hargens, Alan R.; Parazynski, Scott; Aratow, Michael; Friden, Jan

    1989-01-01

    Recent investigations of fluid pressure, morpholo gy, and enzyme activities of skeletal muscle exercised eccentrically or concentrically in normal human subjects are reviewed. Intramuscular pressures were measured before, during, and after submaximal exercise and correlated with subjective muscle soreness, fiber size, water content, and blood indices of muscle enzymes. High intensity eccentric exercise is characterized by post exercise pain, elevated intramuscular pressures, and swelling of both type 1 and 2 fibers as compared to concentric exercise. Thus, long periods of unaccustomed, high level eccentric contraction may cause muscle injury, fiber swelling, fluid accumulation, elevated intramuscular pressure, and delayed muscle soreness. Training regimens of progressively increasing eccentric exercise, however, cause less soreness and are extremely efficacious in increasing muscle mass and strength. It is proposed that on Earth, postural muscles are uniquely adapted to low levels of prolonged eccentric contraction that are absent during weightlessness. The almost complete absence of eccentric exercise in space may be an important contributor to muscle atrophy and therefore equipment should be designed to integrate eccentric contractions into exercise protocols for long-term spaceflight.

  2. Effect of acute high-intensity resistance exercise on optic nerve sheath diameter and ophthalmic artery blood flow pulsatility.

    PubMed

    Lefferts, W K; Hughes, W E; Heffernan, K S

    2015-12-01

    Exertional hypertension associated with acute high-intensity resistance exercise (RE) increases both intravascular and intracranial pressure (ICP), maintaining cerebrovascular transmural pressure. Carotid intravascular pressure pulsatility remains elevated after RE. Whether ICP also remains elevated after acute RE in an attempt to maintain the vessel wall transmural pressure is unknown. Optic nerve sheath diameter (ONSD), a valid proxy of ICP, was measured in 20 participants (6 female; 24 ± 4 yr, 24.2 ± 3.9 kg m(-)(2)) at rest (baseline), following a time-control condition, and following RE (5 sets, 5 repetition maximum bench press, 5 sets 10 repetition maximum biceps curls) using ultrasound. Additionally, intracranial hemodynamic pulsatility index (PI) was assessed in the ophthalmic artery (OA) by using Doppler. Aortic pulse wave velocity (PWV) was obtained from synthesized aortic pressure waveforms obtained via a brachial oscillometric cuff and carotid pulse pressure was measured by using applanation tonometry. Aortic PWV (5.2 ± 0.5-6.0 ± 0.7 m s(-1), P < 0.05) and carotid pulse pressure (45 ± 17-59 ± 19 mm Hg, P < 0.05) were significantly elevated post RE compared with baseline. There were no significant changes in ONSD (5.09 ± 0.7-5.09 ± 0.7 mm, P > 0.05) or OA flow PI (1.35 ± 0.2-1.38 ± 0.3, P > 0.05) following acute RE. In conclusion, during recovery from acute high-intensity RE, there are increases in aortic stiffness and extracranial pressure pulsatility in the absence of changes in ICP and flow pulsatility. These findings may have implications for alterations in cerebral transmural pressure and cerebral aneurysmal wall stress following RE.

  3. The Effect of Iron and Aluminium Incorporation on the Single-Crystal Elasticity of Bridgmanite at High Pressure.

    NASA Astrophysics Data System (ADS)

    Kurnosov, A.; Marquardt, H.; Boffa Ballaran, T.; Frost, D. J.

    2015-12-01

    MgSiO3 bridgmanite constitutes about 70% by volume of the Earth's lower mantle and likely governs the physical behavior of this region. Chemical substitutions in MgSiO3 bridgmanite involving Al and Fe may explain seismic velocity anomalies observed in the Earth's lower mantle [1-3]. However, the effects of these substitutions on the anisotropic elastic properties of bridgmanite at high pressure and temperature are still experimentally unconstrained. Here, we present data of internally consistent measurements of the single-crystal elastic properties of Mg0.88Fe0.12Si0.09Al0.11O3 bridgmanite at high-pressures. Two differently oriented single-crystals of brigmanite have been double-side polished and cut as two semi-disks using a FEI Scios Focused Ion Beam (FIB) machine [4]. Two semi-disks, one for each of the crystallographic orientations, were loaded together in the pressure chamber of a diamond anvil cell with helium as a pressure-transmitting medium. Simultaneous measurements of density and sound velocities have been made on both crystals at high pressures using single-crystal X-ray diffraction and Brillouin spectroscopy in order to obtain self-consistent data, which do not depend on a secondary pressure scale. The Brillouin data at each pressure were fitted for both crystals simultaneously in order to reduce correlations among the elastic constants Cij. Our approach allows determining the single-crystal elastic properties of bridgmanite as a function of pressure, derived independently of a secondary pressure. We will use our results for Al-Fe-bearing bridgmanite to discuss the effects of chemical substitution on the high-pressure elasticity of bridgmanite and implications for the interpretation of seismic heterogeneities in Earth's lower mantle. [1] Ni et al. (2005), Geophys. J. Int. 161, 283-294. [2] Masters et al. (2000), AGU Monograph Series, 117, 63-87. [3] Garnero et al. (2005), The Geological Society of America Special Paper, 430, 79-101. [4] Marquardt et al. (2012), American Mineralogist, 97, 299-304.

  4. Lead zirconate titanate thin films directly on copper electrodes for ferroelectric, dielectric and piezoelectric applications

    NASA Astrophysics Data System (ADS)

    Kingon, Angus I.; Srinivasan, Sudarsan

    2005-03-01

    Replacement of noble metal electrodes by base metals significantly lowers the cost of ferroelectric, piezoelectric and dielectric devices. Here, we demonstrate that it is possible to process lead zirconate (Pb(Zr0.52Ti0.48)O3, or PZT) thin films directly on base metal copper foils. We explore the impact of the oxygen partial pressure during processing, and demonstrate that high-quality films and interfaces can be achieved through control of the oxygen partial pressure within a narrow window predicted by thermodynamic stability considerations. This demonstration has broad implications, opening up the possibility of the use of low-cost, high-conductivity copper electrodes for a range of Pb-based perovskite materials, including PZT films in embedded printed circuit board applications for capacitors, varactors and sensors; multilayer PZT piezoelectric stacks; and multilayer dielectric and electrostrictive devices based on lead magnesium niobate-lead titanate. We also point out that the capacitors do not fatigue on repeated switching, unlike those with Pt noble metal electrodes. Instead, they appear to be fatigue-resistant, like capacitors with oxide electrodes. This may have implications for ferroelectric non-volatile memories.

  5. Equation of state and spin crossover of (Mg,Fe)O at high pressure, with implications for explaining topographic relief at the core-mantle boundary

    DOE PAGES

    Solomatova, Natalia V.; Jackson, Jennifer M.; Sturhahn, Wolfgang; ...

    2016-05-01

    Iron-bearing periclase is thought to represent a significant fraction of Earth’s lower mantle. However, the concentration of iron in (Mg,Fe)O is not well constrained at all mantle depths. Therefore, understanding the effect of iron on the density and elastic properties of this phase plays a major role in interpreting seismically observed complexity in the deep Earth. Here in this paper, we examine the high-pressure behavior of polycrystalline (Mg,Fe)O containing 48 mol% FeO, loaded hydrostatically with neon as a pressure medium. Using X-ray diffraction and synchrotron Mössbauer spectroscopy, we measure the equation of state to about 83 GPa and hyperfine parametersmore » to 107 GPa at 300 K. A gradual volume drop corresponding to a high-spin (HS) to low-spin (LS) crossover is observed between ~45 and 83 GPa with a volume drop of 1.85% at 68.8(2.7) GPa, the calculated spin transition pressure. Using a newly formulated spin crossover equation of state, the resulting zero-pressure isothermal bulk modulus K 0T,HS for the HS state is 160(2) GPa with a K' 0T,HS of 4.12(14) and a V 0,HS of 77.29(0) Å 3. For the LS state, the K 0T,LS is 173(13) GPa with a K' 0T,LS fixed to 4 and a V 0,LS of 73.64(94) Å 3. To confirm that the observed volume drop is due to a spin crossover, the quadrupole splitting (QS) and isomer shift (IS) are determined as a function of pressure. At low pressures, the Mössbauer spectra are well explained with two Fe 2+-like sites. At pressure between 44 and 84, two additional Fe 2+-like sites with a QS of 0 are required, indicative of low-spin iron. Above 84 GPa, two low-spin Fe 2+-like sites with increasing weight fraction explain the data well, signifying the completion of the spin crossover. To systematically compare the effect of iron on the equation of state parameters for (Mg,Fe)O, a spin crossover equation of state was fitted to the pressure-volume data of previous measurements. Our results show that K 0,HS is insensitive to iron concentration between 10 to 60 mol% FeO, while the spin transition pressure and width generally increases from about 50–80 and 2–25 GPa, respectively. A key implication is that iron-rich (Mg,Fe)O at the core-mantle boundary would likely contain a significant fraction of high-spin (less dense) iron, contributing a positive buoyancy to promote observable topographic relief in tomographic images of the lowermost mantle.« less

  6. Uniaxial Pressure and High-Field Effects on Superconducting Single-Crystal CeCoIn5

    NASA Astrophysics Data System (ADS)

    Johnson, Scooter David

    We have measured the a.c. susceptibility response of single-crystal CeCoIn 5 under uniaxial pressure up to 4.07 kbar and in d.c. field parallel to the c axis up to 5 T. From these measurements we report on several pressure and field characteristics of the superconducting state. The results are divided into 3 chapters: (1) We find a non-linear dependence of the superconducting transition temperature Tc on pressure, with a maximum close to 2 kbar. The transition also broadens significantly as pressure increases. We model the broadening as a product of non-uniform pressure and discuss its implications for the pressure dependence of the transition temperature. We relate our measurements to previous theoretical work. (2) We provided evidence and pressure dependence for the FFLO phase with field and pressure along the c axis. The FFLO phase boundary is temperature independent and tracks with the suppression to lower fields of the upper critical field with pressure. We also report the strengthening of the Pauli-limited field in this orientation by calculating the increase of the orbitally-limited field with uniaxial pressure. (3) We extract the critical current using the Bean critical state model and compare it to the expected Ginzberg-Landau behavior. We find that the exponent of the critical current depends on uniaxial pressure and d.c. field. Within a d.c. field the pressure dependence of the exponent may be obscured by the field effect. We have also measured resistivity, susceptibility, and specific heat of high-quality single-crystal YIn3 below 1 K and present a refinement of Tc from previous measurements. We make suggestions for experimental comparisons to the heavy fermion family CeXIn5, (X = Rh, Ir, Co) and the parent compound CeIn3.

  7. X-ray Raman scattering study of MgSiO3 glass at high pressure: Implication for triclustered MgSiO3 melt in Earth's mantle

    PubMed Central

    Lee, Sung Keun; Lin, Jung-Fu; Cai, Yong Q.; Hiraoka, Nozomu; Eng, Peter J.; Okuchi, Takuo; Mao, Ho-kwang; Meng, Yue; Hu, Michael Y.; Chow, Paul; Shu, Jinfu; Li, Baosheng; Fukui, Hiroshi; Lee, Bum Han; Kim, Hyun Na; Yoo, Choong-Shik

    2008-01-01

    Silicate melts at the top of the transition zone and the core-mantle boundary have significant influences on the dynamics and properties of Earth's interior. MgSiO3-rich silicate melts were among the primary components of the magma ocean and thus played essential roles in the chemical differentiation of the early Earth. Diverse macroscopic properties of silicate melts in Earth's interior, such as density, viscosity, and crystal-melt partitioning, depend on their electronic and short-range local structures at high pressures and temperatures. Despite essential roles of silicate melts in many geophysical and geodynamic problems, little is known about their nature under the conditions of Earth's interior, including the densification mechanisms and the atomistic origins of the macroscopic properties at high pressures. Here, we have probed local electronic structures of MgSiO3 glass (as a precursor to Mg-silicate melts), using high-pressure x-ray Raman spectroscopy up to 39 GPa, in which high-pressure oxygen K-edge features suggest the formation of tricluster oxygens (oxygen coordinated with three Si frameworks; [3]O) between 12 and 20 GPa. Our results indicate that the densification in MgSiO3 melt is thus likely to be accompanied with the formation of triculster, in addition to a reduction in nonbridging oxygens. The pressure-induced increase in the fraction of oxygen triclusters >20 GPa would result in enhanced density, viscosity, and crystal-melt partitioning, and reduced element diffusivity in the MgSiO3 melt toward deeper part of the Earth's lower mantle. PMID:18535140

  8. Physical understanding of the tropical cyclone wind-pressure relationship.

    PubMed

    Chavas, Daniel R; Reed, Kevin A; Knaff, John A

    2017-11-08

    The relationship between the two common measures of tropical cyclone intensity, the central pressure deficit and the peak near-surface wind speed, is a long-standing problem in tropical meteorology that has been approximated empirically yet lacks physical understanding. Here we provide theoretical grounding for this relationship. We first demonstrate that the central pressure deficit is highly predictable from the low-level wind field via gradient wind balance. We then show that this relationship reduces to a dependence on two velocity scales: the maximum azimuthal-mean azimuthal wind speed and half the product of the Coriolis parameter and outer storm size. This simple theory is found to hold across a hierarchy of models spanning reduced-complexity and Earth-like global simulations and observations. Thus, the central pressure deficit is an intensity measure that combines maximum wind speed, storm size, and background rotation rate. This work has significant implications for both fundamental understanding and risk analysis, including why the central pressure better explains historical economic damages than does maximum wind speed.

  9. Regulation of glottal closure and airflow in a three-dimensional phonation model: Implications for vocal intensity control

    PubMed Central

    Zhang, Zhaoyan

    2015-01-01

    Maintaining a small glottal opening across a large range of voice conditions is critical to normal voice production. This study investigated the effectiveness of vocal fold approximation and stiffening in regulating glottal opening and airflow during phonation, using a three-dimensional numerical model of phonation. The results showed that with increasing subglottal pressure the vocal folds were gradually pushed open, leading to increased mean glottal opening and flow rate. A small glottal opening and a mean glottal flow rate typical of human phonation can be maintained against increasing subglottal pressure by proportionally increasing the degree of vocal fold approximation for low to medium subglottal pressures and vocal fold stiffening at high subglottal pressures. Although sound intensity was primarily determined by the subglottal pressure, the results suggest that, to maintain small glottal opening as the sound intensity increases, one has to simultaneously tighten vocal fold approximation and/or stiffen the vocal folds, resulting in increased glottal resistance, vocal efficiency, and fundamental frequency. PMID:25698022

  10. Is there a functional neural correlate of individual differences in cardiovascular reactivity?

    PubMed

    Gianaros, Peter J; May, J Christopher; Siegle, Greg J; Jennings, J Richard

    2005-01-01

    The present study tested whether individuals who differ in the magnitude of their blood pressure reactions to a behavioral stressor also differ in their stressor-induced patterns of functional neural activation. Sixteen participants (7 men, 9 women aged 47 to 72 years) were classified as high (n = 8) or low (n = 8) blood pressure reactors by the magnitude and temporal consistency of their systolic blood pressure (SBP) reaction to a Stroop color-word interference stressor. Both high and low SBP reactors completed this Stroop stressor while their task-related changes in blood pressure and functional neural activity were assessed in a blocked functional magnetic resonance imaging design. In both high and low SBP reactors, the Stroop-stressor engaged the anterior cingulate, orbitofrontal, insular, posterior parietal, and the dorsolateral prefrontal regions of the cortex, the thalamus, and the cerebellum. Compared with low reactors, however, high reactors not only showed a larger magnitude increase in SBP to the Stroop stressor, but also an increased activation of the posterior cingulate cortex. A behavioral stressor that is used widely in cardiovascular reactivity research, the Stroop stressor, engages brain systems that are thought to support both stressor processing and cardiovascular reactivity. Increased activation of the posterior cingulate, a brain region implicated in vigilance to the environment and evaluative emotional processes, may be a functional neural correlate of an individual's tendency to show large-magnitude (exaggerated) blood pressure reactions to behavioral stressors.

  11. Hydrogen and related materials at high density: Physics, chemistry and planetary implications

    NASA Technical Reports Server (NTRS)

    Hemley, R. J.; Mao, H. K.; Duffy, T. S.; Goncharov, A.; Vos, W.; Zha, C. S.; Eggert, J. H.; Li, M.; Hanfland, M.

    1994-01-01

    Recent studies of low-Z molecular materials including hydrogen to multimegabar pressures (less than 300 GPa) have uncovered a range of phenomena relevant to understanding the nature of the interiors of the outer planets and their satellites. Synchrotron x ray diffraction measurements (to 42 GPa) have been used to determine the crystal structure of the solid (hexagonal-close packed) and equation of state. Sound velocities in fluid and solid hydrogen (to 24 GPa) have been inverted to obtain elastic constants and aggregate bulk and shear moduli. In addition, an improved intermolecular potential has been determined which fits both static and shock-wave data. Use of the new potential for the molecular envelope of Jupiter suggests the need for major revisions of existing Jovian models or a reanalysis of reported free oscillations for the planet. Studies at higher pressures (greater than 100 GPa) reveal a sequence of pressure-induced symmetry-breaking transitions in molecular hydrogen, giving rise to three high-pressure phases (1, 2, and 3). Phase 1 is the rotationally disordered hcp phase which persists from low pressure to well above 100 GPa at high temperature (e.g., 300 K). Phase 2 is a low-temperature, high-pressure phase (transition at 100 GPa and 77 K in H2) with spectral features indicative of partial rotational ordering and crystallographic distortion. The transition to Phase 3 at 150 GPa is accompanied by a weakening of the molecular bond, gradual changes in orientational ordering, strong enhancement of the infrared intramolecular vibrational absorption, and strong intermolecular interactions similar to those of ambient-pressure network solids. Studies of the phase diagram reveal a triple point near 130 K and 160 GPa. Higher pressure measurements of vibrational spectra place a lower bound of approximately 250 GPa on the predicted transition pressure for dissociation of molecular hydrogen to form a monatomic metal.

  12. A culture of striving augments use of working memory? Implications for attention control.

    PubMed

    Buszard, Tim; Masters, Rich S W

    2017-01-01

    A culture of striving was notable in the developmental background of many of the elite and super elite athletes in the Hardy et al. Critically, a culture of striving was credited with a positive influence on a range of issues relevant to elite sports performance, including performance under pressure. Of the six athletes who did not reveal a culture of striving, five reported the greatest difficulty performing in high-pressure situations. We suspect that a culture of striving facilitates the development of attention control ability, which subsequently assists performance under pressure. We discuss attention control from the perspective of working memory and hypothesize that a culture of striving trains individuals to maximize their working memory capacity. © 2017 Elsevier B.V. All rights reserved.

  13. The renal compartment: a hydraulic view.

    PubMed

    Cruces, Pablo; Salas, Camila; Lillo, Pablo; Salomon, Tatiana; Lillo, Felipe; Hurtado, Daniel E

    2014-12-01

    The hydraulic behavior of the renal compartment is poorly understood. In particular, the role of the renal capsule on the intrarenal pressure has not been thoroughly addressed to date. We hypothesized that pressure and volume in the renal compartment are not linearly related, similar to other body compartments. The pressure-volume curve of the renal compartment was obtained by injecting fluid into the renal pelvis and recording the rise in intrarenal pressure in six anesthetized and mechanically ventilated piglets, using a catheter Camino 4B® inserted into the renal parenchyma. In healthy kidneys, pressure has a highly nonlinear dependence on the injected volume, as revealed by an exponential fit to the data (R (2) = 0.92). On the contrary, a linear relation between pressure and volume is observed in decapsulated kidneys. We propose a biomechanical model for the renal capsule that is able to explain the nonlinear pressure-volume dependence for moderate volume increases. We have presented experimental evidence and a theoretical model that supports the existence of a renal compartment. The mechanical role of the renal capsule investigated in this work may have important implications in elucidating the role of decompressive capsulotomy in reducing the intrarenal pressure in acutely injured kidneys.

  14. Superionic Phases of the 1:1 Water–Ammonia Mixture

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bethkenhagen, Mandy; Cebulla, Daniel; Redmer, Ronald

    We report four structures for the 1:1 water–ammonia mixture showing superionic behavior at high temperature with the space groups P4/ nmm, Ima2, Pma2, and Pm, which have been identified from evolutionary random structure search calculations at 0 K. Analyzing the respective pair distribution functions and diffusive properties the superionic phase is found to be stable in a temperature range between 1000 and 6000 K for pressures up to 800 GPa. We propose a high-pressure phase diagram of the water–ammonia mixture for the first time and compare the self-diffusion coefficients in the mixture to the ones found in water and ammonia.more » Lastly, possible implications on the interior structure of the giant planets Uranus and Neptune are discussed.« less

  15. Superionic Phases of the 1:1 Water–Ammonia Mixture

    DOE PAGES

    Bethkenhagen, Mandy; Cebulla, Daniel; Redmer, Ronald; ...

    2015-09-21

    We report four structures for the 1:1 water–ammonia mixture showing superionic behavior at high temperature with the space groups P4/ nmm, Ima2, Pma2, and Pm, which have been identified from evolutionary random structure search calculations at 0 K. Analyzing the respective pair distribution functions and diffusive properties the superionic phase is found to be stable in a temperature range between 1000 and 6000 K for pressures up to 800 GPa. We propose a high-pressure phase diagram of the water–ammonia mixture for the first time and compare the self-diffusion coefficients in the mixture to the ones found in water and ammonia.more » Lastly, possible implications on the interior structure of the giant planets Uranus and Neptune are discussed.« less

  16. Muonium in Stishovite: Implications for the Possible Existence of Neutral Atomic Hydrogen in the Earth's Deep Mantle

    PubMed Central

    Funamori, Nobumasa; Kojima, Kenji M.; Wakabayashi, Daisuke; Sato, Tomoko; Taniguchi, Takashi; Nishiyama, Norimasa; Irifune, Tetsuo; Tomono, Dai; Matsuzaki, Teiichiro; Miyazaki, Masanori; Hiraishi, Masatoshi; Koda, Akihiro; Kadono, Ryosuke

    2015-01-01

    Hydrogen in the Earth's deep interior has been thought to exist as a hydroxyl group in high-pressure minerals. We present Muon Spin Rotation experiments on SiO2 stishovite, which is an archetypal high-pressure mineral. Positive muon (which can be considered as a light isotope of proton) implanted in stishovite was found to capture electron to form muonium (corresponding to neutral hydrogen). The hyperfine-coupling parameter and the relaxation rate of spin polarization of muonium in stishovite were measured to be very large, suggesting that muonium is squeezed in small and anisotropic interstitial voids without binding to silicon or oxygen. These results imply that hydrogen may also exist in the form of neutral atomic hydrogen in the deep mantle. PMID:25675890

  17. Extracurricular involvement among affluent youth: a scapegoat for "ubiquitous achievement pressures"?

    PubMed

    Luthar, Suniya S; Shoum, Karen A; Brown, Pamela J

    2006-05-01

    It has been suggested that over-scheduling of upper-class youth might underlie the high distress and substance use documented among them. This assumption was tested by considering suburban 8th graders' involvement in different activities along with their perceptions of parental attitudes toward achievement. Results indicated negligible evidence for deleterious effects of high extracurricular involvement per se. Far more strongly implicated was perceived parent criticism for both girls and boys as well as the absence of after-school supervision. Low parent expectations connoted significant vulnerability especially for boys. The findings indicate that at least among early adolescents, converging scientific and media reports may have scapegoated extracurricular involvements, to some degree, as an index of ubiquitous achievement pressures in affluent communities. ((c) 2006 APA, all rights reserved).

  18. Muonium in Stishovite: Implications for the Possible Existence of Neutral Atomic Hydrogen in the Earth's Deep Mantle

    NASA Astrophysics Data System (ADS)

    Funamori, Nobumasa; Kojima, Kenji M.; Wakabayashi, Daisuke; Sato, Tomoko; Taniguchi, Takashi; Nishiyama, Norimasa; Irifune, Tetsuo; Tomono, Dai; Matsuzaki, Teiichiro; Miyazaki, Masanori; Hiraishi, Masatoshi; Koda, Akihiro; Kadono, Ryosuke

    2015-02-01

    Hydrogen in the Earth's deep interior has been thought to exist as a hydroxyl group in high-pressure minerals. We present Muon Spin Rotation experiments on SiO2 stishovite, which is an archetypal high-pressure mineral. Positive muon (which can be considered as a light isotope of proton) implanted in stishovite was found to capture electron to form muonium (corresponding to neutral hydrogen). The hyperfine-coupling parameter and the relaxation rate of spin polarization of muonium in stishovite were measured to be very large, suggesting that muonium is squeezed in small and anisotropic interstitial voids without binding to silicon or oxygen. These results imply that hydrogen may also exist in the form of neutral atomic hydrogen in the deep mantle.

  19. Population pressures: threat to democracy.

    PubMed

    1992-06-01

    The desire for political freedom and representative government is spreading throughout the world. The stability of democratic bodies is dependent on wise leaders, foreign aid, and slowing population growth. Rapid population growth strains political institutions and increases pressure on services. A Population Crisis Committee study found that only a few democratic countries with serious demographic pressures remained stable. The most stable countries were ones with lower levels of population pressure. Most of the 31 unstable countries were in Africa and in a band stretching from the Middle East to South Asia, and almost all had serious demographic pressures. Only 5 stable countries had high or very high demographic pressures. Since countries in the world are interdependent, population pressures have adverse consequences everywhere. Population pressures in the developing world are considered enhanced by the rapid growth of cities. Both the developed and the developing world face the problems of clogged highways, loss of wilderness, polluted lakes and streams, and stifling smog and acid rain conditions. The sociopolitical implications of demographic changes vary from country to country, but rapid growth and maldistribution of population strains existing political, social, and economic structures and relations between nations. Urban areas are the arena for clashes of cultures, competition for scarce housing and jobs, the breakdown of traditional family and social structures, and juxtapositions of extreme wealth next to extreme poverty. The growth of independent nation states since the 1940s has not allowed much time for development of effective political institutions. There are many obstacles to national unity and popular political participation. The potential for political instability is correlated with a number of factors: large youth populations in overcrowded cities with too high expectations and limited opportunities, diverse and intense ethnic and religious factors, and oppressive governments which violate human rights. Rapid growth has a harmful impact on the environment.

  20. Elastic wave velocities of iron-bearing Ringwoodite (Mg0.8Fe0.2)2SiO2 to 12GPa at room temperature

    NASA Astrophysics Data System (ADS)

    Higo, Y.; Li, B.; Inoue, T.; Irifune, T.; Libermann, R. C.

    2002-12-01

    At present, it is widely accepted that olivine is the most important mineral in the Earth's upper mantle. The elastic property changes associated with the phase transformations to its high-pressure polymorphs are very important parameters to constrain the composition of the mantle transition zone. In this study, we measured the elastic wave velocity of iron-bearing Ringwoodite (Mg0.8Fe0.2)2SiO4. The specimen was hot-pressed at 18GPa and 1273K in a 2000-ton Uniaxial Split Sphere Apparatus (ORANGE-2000: GRC at ehime university). The recovered polycrystalline specimen was characterized by x-ray diffraction, EPMA, ultrasonic techniques, and the density was determined by Archimedes' method, and found to be single-phase and fine-grained. Bench top measurements of the compressional and shear wave velocities yielded Vp=9.10 km/s and Vs=5.52 km/s. High-pressure ultrasonic measurement was carried out in a 1000-ton Uniaxial Split-Cylinder Apparatus (USCA-1000: SUNY) at pressures up to 12GPa at room temperature using ZnTe as internal pressure marker. The sample was surrounded by lead to minimize the deviatoric stress. Also in this experiment, the travel times of the Al2O3 buffer rod were used for pressure calculation. The travel times of the buffer rod under the same cell geometry have been calibrated as a function of sample pressure by the thermal equation of state of NaCl using in-situ X-ray diffraction techniques. The results of our high-pressure experiment, including the elastic moduli and their pressure dependence, effect of iron on the elastic moduli, as well as their implication for the mantle transition zone, will be presented.

  1. Micro-structured heat exchanger for cryogenic mixed refrigerant cycles

    NASA Astrophysics Data System (ADS)

    Gomse, D.; Reiner, A.; Rabsch, G.; Gietzelt, T.; Brandner, J. J.; Grohmann, S.

    2017-12-01

    Mixed refrigerant cycles (MRCs) offer a cost- and energy-efficient cooling method for the temperature range between 80 and 200 K. The performance of MRCs is strongly influenced by entropy production in the main heat exchanger. High efficiencies thus require small temperature gradients among the fluid streams, as well as limited pressure drop and axial conduction. As temperature gradients scale with heat flux, large heat transfer areas are necessary. This is best achieved with micro-structured heat exchangers, where high volumetric heat transfer areas can be realized. The reliable design of MRC heat exchangers is challenging, since two-phase heat transfer and pressure drop in both fluid streams have to be considered simultaneously. Furthermore, only few data on the convective boiling and condensation kinetics of zeotropic mixtures is available in literature. This paper presents a micro-structured heat exchanger designed with a newly developed numerical model, followed by experimental results on the single-phase pressure drop and their implications on the hydraulic diameter.

  2. Impact of pressure and temperature on CO2-brine-mica contact angles and CO2-brine interfacial tension: Implications for carbon geo-sequestration.

    PubMed

    Arif, Muhammad; Al-Yaseri, Ahmed Z; Barifcani, Ahmed; Lebedev, Maxim; Iglauer, Stefan

    2016-01-15

    Precise characterization of wettability of CO2-brine-rock system and CO2-brine interfacial tension at reservoir conditions is essential as they influence capillary sealing efficiency of caprocks, which in turn, impacts the structural and residual trapping during CO2 geo-sequestration. In this context, we have experimentally measured advancing and receding contact angles for brine-CO2-mica system (surface roughness ∼12nm) at different pressures (0.1MPa, 5MPa, 7MPa, 10MPa, 15MPa, 20MPa), temperatures (308K, 323K, and 343K), and salinities (0wt%, 5wt%, 10wt%, 20wt% and 30wt% NaCl). For the same experimental matrix, CO2-brine interfacial tensions have also been measured using the pendant drop technique. The results indicate that both advancing and receding contact angles increase with pressure and salinity, but decrease with temperature. On the contrary, CO2-brine interfacial tension decrease with pressure and increase with temperature. At 20MPa and 308K, the advancing angle is measured to be ∼110°, indicating CO2-wetting. The results have been compared with various published literature data and probable factors responsible for deviations have been highlighted. Finally we demonstrate the implications of measured data by evaluating CO2 storage heights under various operating conditions. We conclude that for a given storage depth, reservoirs with lower pressures and high temperatures can store larger volumes and thus exhibit better sealing efficiency. Copyright © 2015 Elsevier Inc. All rights reserved.

  3. Corroboration of in vivo cartilage pressures with implications for synovial joint tribology and osteoarthritis causation.

    PubMed

    Morrell, Kjirste C; Hodge, W Andrew; Krebs, David E; Mann, Robert W

    2005-10-11

    Pressures on normal human acetabular cartilage have been collected from two implanted instrumented femoral head hemiprostheses. Despite significant differences in subjects' gender, morphology, mobility, and coordination, in vivo pressure measurements from both subjects covered similar ranges, with maximums of 5-6 MPa in gait, and as high as 18 MPa in other movements. Normalized for subject weight and height (nMPa), for free-speed walking the maximum pressure values were 25.2 for the female subject and 24.5 for the male subject. The overall maximum nMPa values were 76.2 for the female subject during rising from a chair at 11 months postoperative and 82.3 for the male subject while descending steps at 9 months postoperative. These unique in vivo data are consistent with corresponding cadaver experiments and model analyses. The collective results, in vitro data, model studies, and now corroborating in vivo data support the self-pressurizing "weeping" theory of synovial joint lubrication and provide unique information to evaluate the influence of in vivo pressure regimes on osteoarthritis causation and the efficacy of augmentations to, and substitutions for, natural cartilage.

  4. A comparison of types and thicknesses of adhesive felt padding in the reduction of peak plantar pressure of the foot: a case report.

    PubMed

    Curran, Michael J; Ratcliffe, Connor; Campbell, Jackie

    2015-09-24

    This case report will have implications for any area of medicine that aims to redistribute plantar pressure away from a particular area of the foot. This could be for example in the short-term care of people with diabetes, people who have insensate feet and people with poor blood supply to the foot coupled with plantar ulceration. The aim of the study was to investigate which type and thickness of Hapla felt padding is the most effective at redistributing plantar pressure of the foot. This case report is the first of its kind. The participant was a healthy 50-year-old white man with a high peak plantar pressure over the second metatarsal head of both feet; he required removal of a plantar callus on a periodic basis. The reader should note that different types of Hapla felt padding provide different forms of redistribution of plantar pressure on the foot. In the clinic it may be useful to measure peak plantar pressure using F-Scan before deciding on the most appropriate type of felt padding.

  5. Cellular pressure and volume regulation and implications for cell mechanics

    NASA Astrophysics Data System (ADS)

    Jiang, Hongyuan; Sun, Sean

    2013-03-01

    In eukaryotic cells, small changes in cell volume can serve as important signals for cell proliferation, death and migration. Volume and shape regulation also directly impacts the mechanics of the cell and multi-cellular tissues. Recent experiments found that during mitosis, eukaryotic cells establish a preferred steady volume and pressure, and the steady volume and pressure can robustly adapt to large osmotic shocks. Here we develop a mathematical model of cellular pressure and volume regulation, incorporating essential elements such as water permeation, mechano-sensitive channels, active ion pumps and active stresses in the actomyosin cortex. The model can fully explain the available experimental data, and predicts the cellular volume and pressure for several models of cell cortical mechanics. Furthermore, we show that when cells are subjected to an externally applied load, such as in an AFM indentation experiment, active regulation of volume and pressure leads to complex cellular response. We found the cell stiffness highly depends on the loading rate, which indicates the transport of water and ions might contribute to the observed viscoelasticity of cells.

  6. Blood pressure and risk of cancer progression - A possible connection with salt and voltage-gated sodium channel.

    PubMed

    Djamgoz, Mustafa B A

    2015-11-01

    Although it is well known that high blood pressure promotes cancer, the underlying cause(s) is not well understood. Here, we advance the hypothesis that the extracellular sodium level could be a contributing factor. The hypothesis is based upon emerging evidence showing (i) that voltage-gated sodium channels are expressed de novo in cancer cells and tissues, and (ii) that the influx of sodium from the extracellular medium into cancer cells, mediated by the channel activity, promotes their metastatic potential. Clinical and lifestyle implications of the hypothesis are discussed. Copyright © 2015 Elsevier Ltd. All rights reserved.

  7. Modeling of Spark Gap Performance

    DTIC Science & Technology

    1983-06-01

    MODELING OF SPARK GAP PERFORMANCE* A. L. Donaldson, R. Ness, M. Hagler, M. Kristiansen Department of Electrical Engineering and L. L. Hatfield...gas pressure, and chaJ:ging rate on the voltage stability of high energy spark gaps is discussed. Implications of the model include changes in...an extremely useful, and physically reasonable framework, from which the properties of spark gaps under a wide variety of experimental conditions

  8. An electrochemical study of hydrogen uptake and elimination by bare and gold-plated waspaloy

    NASA Technical Reports Server (NTRS)

    Danford, M. D.; Deramus, G. E., Jr.; Lowery, J. R.

    1984-01-01

    Two electrochemical methods for the determination of hydrogen concentrations in metals are discussed and evaluated. The take-up of hydrogen at a pressure of 5000 psi by Waspaloy metal was determined experimentally at 24 C. It was found that the metal becomes saturated with hydrogen after an exposure time of about 1 hr. For samples charged with hydrogen at high pressure, most of the hydrogen is contained in the interstitial solid solution of the metal. For electrolytically charged samples, most of the hydrogen is contained as surface and subsurface hydrides. Hydrogen elimination rates were determined for these two cases, with the rate for electrolytically charged samples being greater by over a factor of two. Theoretical effects of high temperature and pressure on hydrogen take-up and elimination by bare and gold plated Waspaloy metal was considered. The breakthrough point for hydrogen at 5000 psi, determined experimentally, lies between a gold thickness of 0.0127 mm (0.0005 in.) and 0.0254 mm (0.001 in.) at 24 C. Electropolishing was found to greatly reduce the uptake of hydrogen at high pressure by Waspaloy metal at 24 C. Possible implications of the results obtained, as they apply to the turbine disk of the space shuttle main engine, are discussed.

  9. The influence of weather and environment on pulmonary embolism: pollutants and fossil fuels.

    PubMed

    Clauss, Ralf; Mayes, Julian; Hilton, Paul; Lawrenson, Ross

    2005-01-01

    Previous publications have highlighted seasonal variations in the incidence of thrombosis and pulmonary embolism, and that weather patterns can influence these. While medical risk factors for pulmonary thrombo-embolism such as age, obesity, hypercoagulable states, cancer, previous thrombo-embolism, immobility, limb paralysis, surgery, major illness, trauma, hypotension, tachypnoea and right ventricular hypokinesis are not directly implicated regarding environmental factors such as weather, they could be influenced indirectly by these. This would be especially relevant in polluted areas that are associated with a higher pulmonary embolism risk. Routine nuclear medicine lung ventilation/perfusion studies (V/Q scans) of 2071 adult patients referred to the nuclear medicine department of the Royal Surrey County Hospital in Guildford, UK, between January 1998 and October 2002 were reviewed and 316 of these patients were classified as positive for pulmonary embolism with high probability scan on PIOPED criteria. The occurrence of positive scans was compared to environmental factors such as temperature, humidity, vapour pressure, air pressure and rainfall. Multiple linear regression was used to establish the significance of these relations. The incidence of pulmonary embolism was positively related to vapour pressure and rainfall. The most significant relation was to vapour pressure (p=0.010) while rainfall was less significant (p=0.017). There was no significant relation between pulmonary embolism and air pressure, humidity or temperature. It is postulated that rainfall and water vapour may be contributary factors in thrombosis and pulmonary embolism by way of pollutants that are carried as condensation nuclei in micro-droplets of water. In particular, fossil fuel pollutants are implicated as these condensation nuclei. Pollutants may be inhaled by populations exposed to windborne vapour droplets in cities or airports. Polluted vapour droplets may be absorbed by the lung to hasten coagulation cascades in the blood. This may lead to thrombosis and increased pulmonary embolism under high vapour pressure conditions. With combined factors such as pre-existing ill health or immobility on long flights, the risk of thrombosis and consequent embolism might increase substantially.

  10. Expert Performance and Time Pressure: Implications for Automation Failures in Aviation

    DTIC Science & Technology

    2016-09-30

    Sciences , 7, 454-459. Fitts, P. M. (Ed.), (1951). Human engineering for an effective air navigation and control system. Washington, DC: National...expert performance. Implications for the aviation domain are discussed. 15. SUBJECT TERMS Decision Making , Time Pressure, Error, Situational Awareness...automation interaction has been a challenge for human factors for quite some time and its relevance continues to grow (e.g., Bainbridge, 1983; de Winter

  11. Albite dissociation reaction in the Northwest Africa 8275 shocked LL chondrite and implications for its impact history

    NASA Astrophysics Data System (ADS)

    Miyahara, Masaaki; Ohtani, Eiji; Yamaguchi, Akira

    2017-11-01

    An impact event recorded in the Northwest Africa (NWA) 8275 LL7 ordinary chondrite was investigated based on high-pressure mineralogy of pervasive shock-melt veins present in the rock. NWA 8275 consists of olivine, low-Ca pyroxene, plagioclase (albite-oligoclase composition), and minor high-Ca pyroxene, K-feldspar, phosphate minerals, metallic Fe-Ni and iron sulfide. Plagioclase and K-feldspar grains near the shock-melt veins have become amorphous, although no high-pressure polymorphs of olivine and pyroxene were identified in or adjacent the shock-melt veins. Raman spectroscopy and focused ion beam (FIB)-assisted transmission electron microscopy (TEM) observations reveal that plagioclase entrained around the center portion of the shock-melt veins has dissociated into a jadeite + coesite assemblage. Alternately stacked jadeite and coesite crystals occur in the original plagioclase. On approaching the host rock/shock-melt vein, only jadeite is present. Based on the high-pressure polymorph assemblage, the shock pressure and temperature conditions recorded in the shock-melt veins are ∼3-12 GPa and ∼1973-2373 K, respectively. Following a Rankine-Hugoniot relationship, the impact velocity was at least ∼0.45-1.54 km/s. The duration of high-pressure and high-temperature (HPHT) conditions required for the albite dissociation reaction is estimated a maximum of ∼4-5 s using the phase transition rate of albite, implying that a body of up to ∼9-12 km across collided with the parent body of NWA 8275. The coexistence of jadeite and coesite, the latter of which rarely accompanies jadeite in shocked ordinary chondrites, as a dissociation product of albite requires relatively long duration HPHT conditions. Thus, the impact event recorded in NWA 8275 was likely caused by a larger-than-typical projectile.

  12. Sub-glacial Origin of the Hot Springs Bay Valley hydrothermal System, Akutan, Alaska

    NASA Astrophysics Data System (ADS)

    Stelling, P. L.; Tobin, B.; Knapp, P.

    2015-12-01

    Exploration for geothermal energy in Hot Springs Bay Valley (HSBV) on Akutan Island, Alaska, has revealed a rich hydrothermal history, including what appears to be a stage of peak activity during a significant glacial period. Alteration mineralogy observed in 754 m of drill core recovered from the outflow zone is dominated by chlorite and includes minor smectite clays, a suite of zeolite species and several moderately high-temperature hydrothermal minerals (epidote/clinozoisite, prehnite, adularia and wairakite). The latter minerals each have minimum formation temperatures exceeding 200 oC, and fluid inclusion results in related calcite crystals indicate temperatures of formation to be as high as 275 oC, some 100 oC hotter than the modern boiling point with depth (BPD) curve at that depth (>62 m). In order to maintain liquid temperatures this high, the pressure during mineralization must have been substantially greater (~680 bar), a pressure change equivalent to erosion of ~280 m of rock (ρ=2.5 g/cm3). Although glacial erosion rates are too low (0.034 mm/yr; Bekele et al., 2003) for this amount of erosion to occur in a single glaciation, glacial melting and ablation are substantially more rapid (~100 mm/yr; Bekele et al., 2003; Person et al., 2012). Thus, a more probable scenario than pure erosion is that peak hydrothermal conditions occurred during a large glacial event, with the added pressure from the overlying ice allowing the high temperature minerals to form closer to the ground surface. Subsequent melting of the ice eroded upper tributary valleys and upper levels of the originally smectite-rich alteration assemblage, explaining the paucity of swelling clays in the region. We present mineralogical, fluid inclusion and geochronologic evidence to support these conclusions, and discuss the general implications of sub-glacial hydrothermal system formation and geothermal resource potential. References: Bekele, E., Rostron, B. and Person, M. (2003) Fluid pressure implications of erosional unloading, basin hydrodynamics and glaciation in the Alberta Basin, Western Canada. J. of Geochem. Exploration, 78-79, 143-7. Person, M., Bense, V., Cohen, D. and Banerjee, A, (2012). Models of ice-sheet hydrogeologic interactions: a review. Geofluids, 12, 58-78

  13. A theoretical study of the hydrogen-storage potential of (H2)4CH4 in metal organic framework materials and carbon nanotubes.

    PubMed

    Li, Q; Thonhauser, T

    2012-10-24

    The hydrogen-methane compound (H(2))(4)CH(4)-or for short H4M-is one of the most promising hydrogen-storage materials. This van der Waals compound is extremely rich in molecular hydrogen: 33.3 mass%, not including the hydrogen bound in CH(4); including it, we reach even 50.2 mass%. Unfortunately, H4M is not stable under ambient pressure and temperature, requiring either low temperature or high pressure. In this paper, we investigate the properties and structure of the molecular and crystalline forms of H4M, using ab initio methods based on van der Waals DFT (vdW-DF). We further investigate the possibility of creating the pressures required to stabilize H4M through external agents such as metal organic framework (MOF) materials and carbon nanotubes, with very encouraging results. In particular, we find that certain MOFs can create considerable pressure for H4M in their cavities, but not enough to stabilize it at room temperature, and moderate cooling is still necessary. On the other hand, we find that all the investigated carbon nanotubes can create the high pressures required for H4M to be stable at room temperature, with direct implications for new and exciting hydrogen-storage applications.

  14. Sound velocities of the 23 Å phase at high pressure and implications for seismic velocities in subducted slabs

    NASA Astrophysics Data System (ADS)

    Cai, N.; Chen, T.; Qi, X.; Inoue, T.; Li, B.

    2017-12-01

    Dense hydrous phases are believed to play an important role in transporting water back into the deep interior of the Earth. Recently, a new Al-bearing hydrous Mg-silicate, named the 23 Å phase (ideal composition Mg12Al2Si4O16(OH)14), was reported (Cai et al., 2015), which could be a very important hydrous phase in subducting slabs. Here for the first time we report the measurements of the compressional and shear wave velocities of the 23 Å phase under applied pressures up to 14 GPa and room temperature, using a bulk sample with a grain size of less than 20 μm and density of 2.947 g/cm3. The acoustic measurements were conducted in a 1000-ton uniaxial split-cylinder multi-anvil apparatus using ultrasonic interferometry techniques (Li et al., 1996). The pressures were determined in situ by using an alumina buffer rod as the pressure marker (Wang et al., 2015). A dual-mode piezoelectric transducer enabled us to measure P and S wave travel times simultaneously, which in turn allowed a precise determination of the sound velocities and elastic bulk and shear moduli at high pressures. A fit to the acoustic data using finite strain analysis combined with a Hashin-Shtrikman (HS) bounds calculation yields: Ks0 = 113.3 GPa, G0 = 42.8 GPa, and K' = 3.8, G' = 1.9 for the bulk and shear moduli and their pressure derivatives. The velocities (especially for S wave) of this 23 Å phase (ambient Vp = 7.53 km/s, Vs = 3.72 km/s) are lower than those of phase A, olivine, pyrope, etc., while the Vp/Vs ratio (from 2.02 to 1.94, decreasing with increasing pressure) is quite high. These results suggest that a hydrous assemblage containing 23 Å phase should be distinguishable from a dry one at high pressure and temperature conditions relevant to Al-bearing subducted slabs.

  15. Experimental study of thermal conductivity at high pressures: Implications for the deep Earth’s interior

    DOE PAGES

    Goncharov, Alexander F.; Lobanov, Sergey S.; Tan, Xiaojing; ...

    2015-02-24

    Lattice thermal conductivity of ferropericlase and radiative thermal conductivity of iron bearing magnesium silicate perovskite (bridgmanite) – the major mineral of Earth’s lower mantle– has been measured at room temperature up to 30 and 46 GPa, respectively, using time domain thermoreflectance and optical spectroscopy techniques in diamond anvil cells. The results provide new constraints for the pressure dependencies of the thermal conductivities of Fe bearing minerals. The lattice thermal conductivity of ferropericlase (Mg 0.9Fe 0.1)O is 5.7(6) W/(m*K) at ambient conditions, which is almost 10 times smaller than that of pure MgO; however, it increases with pressure much faster (6.1(7)%/GPamore » vs 3.6%/GPa). The radiative conductivity of Mg 0.94Fe 0.06SiO 3 bridgmanite single crystal agrees with previously determined values at ambient pressure; it is almost pressure-independent in the investigated pressure range. Furthermore, our results confirm the reduced radiative conductivity scenario for the Earth’s lower mantle, while the assessment of the heat flow through the core-mantle boundary still requires in situ measurements at the relevant pressure-temperature conditions.« less

  16. Organizational Strategies to Implement Hospital Pressure Ulcer Prevention Programs: Findings from a National Survey

    PubMed Central

    SOBAN, LYNN M.; KIM, LINDA; YUAN, ANITA H.; MILTNER, REBECCA S.

    2017-01-01

    Aim To describe the presence and operationalization of organizational strategies to support implementation of pressure ulcer prevention programs across acute care hospitals in a large, integrated healthcare system. Background Comprehensive pressure ulcer programs include nursing interventions such as use of a risk assessment tool and organizational strategies such as policies and performance monitoring to embed these interventions into routine care. The current literature provides little detail about strategies used to implement pressure ulcer prevention programs. Methods Data were collected by an email survey to all Chief Nursing Officers in Veterans Health Administration acute care hospitals. Descriptive and bivariate statistics were used to summarize survey responses and evaluate relationships between some variables. Results Organizational strategies that support pressure ulcer prevention program implementation (policy, committee, staff education, wound care specialists, and use of performance data) were reported at high levels. Considerable variations were noted in how these strategies were operationalized within individual hospitals. Conclusion Organizational strategies to support implementation of pressure ulcer preventive programs are often not optimally operationalized to achieve consistent, sustainable performance. Implications for Nursing Management The results of this study highlight the role and influence of nurse leaders on pressure ulcer prevention program implementation. PMID:27487972

  17. Perceiving social pressure not to feel negative predicts depressive symptoms in daily life.

    PubMed

    Dejonckheere, Egon; Bastian, Brock; Fried, Eiko I; Murphy, Sean C; Kuppens, Peter

    2017-09-01

    Western societies often overemphasize the pursuit of happiness, and regard negative feelings such as sadness or anxiety as maladaptive and unwanted. Despite this emphasis on happiness, the amount of people suffering from depressive complaints is remarkably high. To explain this apparent paradox, we examined whether experiencing social pressure not to feel sad or anxious could in fact contribute to depressive symptoms. A sample of individuals (n = 112) with elevated depression scores (Patient Health Questionnaire [PHQ-9] ≥ 10) took part in an online daily diary study in which they rated their depressive symptoms and perceived social pressure not to feel depressed or anxious for 30 consecutive days. Using multilevel VAR models, we investigated the temporal relation between this perceived social pressure and depressive symptoms to determine directionality. Primary analyses consistently indicated that experiencing social pressure predicts increases in both overall severity scores and most individual symptoms of depression, but not vice versa. A set of secondary analyses, in which we adopted a network perspective on depression, confirmed these findings. Using this approach, centrality analysis revealed that perceived social pressure not to feel negative plays an instigating role in depression, reflected by the high out- and low instrength centrality of this pressure in the various depression networks. Together, these findings indicate how perceived societal norms may contribute to depression, hinting at a possible malignant consequence of society's denouncement of negative emotions. Clinical implications are discussed. © 2017 Wiley Periodicals, Inc.

  18. Preferred orientation in experimentally deformed stishovite: implications for deformation mechanisms

    DOE PAGES

    Kaercher, Pamela M.; Zepeda-Alarcon, Eloisa; Prakapenka, Vitali B.; ...

    2014-11-07

    Although the crystal structure of the high pressure SiO 2 polymorph stishovite has been studied in detail, little is known about the development of crystallographic preferred orientation (CPO) during deformation in stishovite. Insight into CPO and associated deformation mechanics of stishovite would provide important information for understanding subduction of quartz-bearing crustal rocks into the mantle. To study CPO development, we converted a natural sample of flint to stishovite in a laser heated diamond anvil cell and compressed the stishovite aggregate up to 38 GPa. We collected diffraction patterns in radial geometry to examine in situ development of crystallographic preferred orientationmore » and find that (001) poles preferentially align with the compression direction. Viscoplastic self-consistent modeling suggests the most likely slip systems at high pressure and ambient temperature are pyramidal and basal slip.« less

  19. Chemical environments of submarine hydrothermal systems. [supporting abiogenetic theory

    NASA Technical Reports Server (NTRS)

    Shock, Everett L.

    1992-01-01

    The paper synthesizes diverse information about the inorganic geochemistry of submarine hydrothermal systems, provides a description of the fundamental physical and chemical properties of these systems, and examines the implications of high-temperature, fluid-driven processes for organic synthesis. Emphasis is on a few general features, i.e., pressure, temperature, oxidation states, fluid composition, and mineral alteration, because these features will control whether organic synthesis can occur in hydrothermal systems.

  20. Petrogenesis of Miller Range 07273, a new type of anomalous melt breccia: Implications for impact effects on the H chondrite asteroid

    NASA Astrophysics Data System (ADS)

    Ruzicka, Alex M.; Hutson, Melinda; Friedrich, Jon M.; Rivers, Mark L.; Weisberg, Michael K.; Ebel, Denton S.; Ziegler, Karen; Rumble, Douglas; Dolan, Alyssa A.

    2017-09-01

    Miller Range 07273 is a chondritic melt breccia that contains clasts of equilibrated ordinary chondrite set in a fine-grained (<5 μm), largely crystalline, igneous matrix. Data indicate that MIL was derived from the H chondrite parent asteroid, although it has an oxygen isotope composition that approaches but falls outside of the established H group. MIL also is distinctive in having low porosity, cone-like shapes for coarse metal grains, unusual internal textures and compositions for coarse metal, a matrix composed chiefly of clinoenstatite and omphacitic pigeonite, and troilite veining most common in coarse olivine and orthopyroxene. These features can be explained by a model involving impact into a porous target that produced brief but intense heating at high pressure, a sudden pressure drop, and a slower drop in temperature. Olivine and orthopyroxene in chondrule clasts were the least melted and the most deformed, whereas matrix and troilite melted completely and crystallized to nearly strain-free minerals. Coarse metal was largely but incompletely liquefied, and matrix silicates formed by the breakdown during melting of albitic feldspar and some olivine to form pyroxene at high pressure (>3 GPa, possibly to 15-19 GPa) and temperature (>1350 °C, possibly to ≥2000 °C). The higher pressures and temperatures would have involved back-reaction of high-pressure polymorphs to pyroxene and olivine upon cooling. Silicates outside of melt matrix have compositions that were relatively unchanged owing to brief heating duration.

  1. Gut–Brain Axis in Regulation of Blood Pressure

    PubMed Central

    Yang, Tao; Zubcevic, Jasenka

    2017-01-01

    Hypertension (HTN) is an escalating health issue worldwide. It is estimated that 1.56 billion people will suffer from high blood pressure (BP) by 2025. Recent studies reported an association between gut dysbiosis and HTN, thus proposing interesting avenues for novel treatments of this condition. The sympathetic nervous system (SNS) and the immune system (IS) play a recognized role in the onset and progression of HTN, while reciprocal communication between gut microbiota and the brain can regulate BP by modulating the interplay between the IS and SNS. This review presents the current state of the science implicating brain-gut connection in HTN, highlighting potential pathways of their interaction in control of BP. PMID:29118721

  2. Anal Fissure

    PubMed Central

    Beaty, Jennifer Sam; Shashidharan, M.

    2016-01-01

    Anal fissure (fissure-in-ano) is a very common anorectal condition. The exact etiology of this condition is debated; however, there is a clear association with elevated internal anal sphincter pressures. Though hard bowel movements are implicated in fissure etiology, they are not universally present in patients with anal fissures. Half of all patients with fissures heal with nonoperative management such as high fiber diet, sitz baths, and pharmacological agents. When nonoperative management fails, surgical treatment with lateral internal sphincterotomy has a high success rate. In this chapter, we will review the symptoms, pathophysiology, and management of anal fissures. PMID:26929749

  3. An Extended Trajectory Mechanics Approach for Calculating the Path of a Pressure Transient: Derivation and Illustration

    NASA Astrophysics Data System (ADS)

    Vasco, D. W.

    2018-04-01

    Following an approach used in quantum dynamics, an exponential representation of the hydraulic head transforms the diffusion equation governing pressure propagation into an equivalent set of ordinary differential equations. Using a reservoir simulator to determine one set of dependent variables leaves a reduced set of equations for the path of a pressure transient. Unlike the current approach for computing the path of a transient, based on a high-frequency asymptotic solution, the trajectories resulting from this new formulation are valid for arbitrary spatial variations in aquifer properties. For a medium containing interfaces and layers with sharp boundaries, the trajectory mechanics approach produces paths that are compatible with travel time fields produced by a numerical simulator, while the asymptotic solution produces paths that bend too strongly into high permeability regions. The breakdown of the conventional asymptotic solution, due to the presence of sharp boundaries, has implications for model parameter sensitivity calculations and the solution of the inverse problem. For example, near an abrupt boundary, trajectories based on the asymptotic approach deviate significantly from regions of high sensitivity observed in numerical computations. In contrast, paths based on the new trajectory mechanics approach coincide with regions of maximum sensitivity to permeability changes.

  4. Environmental impacts and regulatory policy implications of spray disposal of dredged material in Louisiana wetlands

    USGS Publications Warehouse

    Cahoon, D.R.; Cowan, J.H.

    1988-01-01

    The capabilities of a new wetland dredging technology were assessed along with associated newly developed state and federal regulatory policies to determine if policy expectations realistically match the technological achievement. Current regulatory practices require amelioration of spoil bank impacts upon abandonment of an oil/gas well, but this may not occur for many years or decades, if at all. Recently, a dreding method (high-pressure spray spoil disposal) was developed that does not create a spoil bank in the traditional sense. Its potential for reducing environmental impacts was recognized immediately by regulatory agencies for whom minimizing spoil bank impacts is a major concern. The use of high-pressure spray disposal as a suitable alternative to traditional dreding technology has been adopted as policy even though its value as a management tool has never been tested or verified. A qualitative evaluation at two spoil disposal sites in saline marsh indicates that high-pressure spray disposal may indeed have great potential to minimize impacts, but most of this potential remains unverified. Also, some aspects of current regulatory policy may be based on unrealistic expectations as to the ability of this new technology to minimize or eliminate spoil bank impacts.

  5. Pressure Wave Propagation along the Décollement of the Nankai Accretionary Wedge: Implications for Aseismic Slip Events

    NASA Astrophysics Data System (ADS)

    Joshi, A.; Appold, M. S.

    2015-12-01

    Seismic and hydrologic observations of the Nankai subduction zone made by the Ocean Drilling Program suggest that pore fluid pressures within the accretionary wedge décollement are highly overpressured to near lithostatic values below depths of 2 km beneath the sea floor as a result of sediment diagenesis and dehydration of the subducting oceanic plate. This overpressured zone is also observed to discharge pulses of high fluid pressure that migrate up-dip along the décollement at rates of 1's of km/day. These high pressure pulses along the décollement may cause large enough reductions in the local effective stress to account for aseismic slip events that have been found to propagate also at rates of 1's of km/day. Because elevated fluid pressure and correspondingly decreased effective stress can lead to a dilation of porosity, the pressure waves may become effective agents of fluid transport that can travel more quickly than fluids flowing in the background Darcian flow regime. The purpose of the present study was to seek theoretical confirmation that pressure waves are able to travel quickly enough to account for the seismic and hydrological observations documented. This confirmation was sought through a transient one-dimensional numerical solution to the differential fluid mass conservation equation for an elastic porous medium. Results of the numerical simulations show that when overpressures at depths greater than 2 km in the décollement exceed lithostatic pressure by at least 3%, pressure waves are formed that migrate up-dip at rates fast enough to account for aseismic slip over a broad range of geologic conditions. Pressure waves spawned from these depths in the décollement may travel fast enough to account for aseismic slip when overpressures there are as low as 99% of lithostatic pressure, but require low specific storage of 3×10-6 m-1, high sensitivity of permeability to effective stress, low permeability no higher than about 10-21 m2 at depths below 2 km in the décollement, and an accurate accounting of the decrease in fluid viscosity with increasing depth. Thus, pressure waves could account for aseismic slip in the Nankai accretionary wedge if conditions were near the limits of geologically reasonable ranges.

  6. High-pressure behaviour of serpentine and elasticity systematics of hydrous and nominally anhydrous phases

    NASA Astrophysics Data System (ADS)

    Fumagalli, P.; Mookherjee, M.; Stixrude, L. P.

    2006-12-01

    Serpentine, talc and brucite occur in oceanic crust as alteration products of ultramafic rocks. As mineral phases occurring in the subduction zone setting, both along the slab and within the mantle wedge, they are possible candidates for carrying and tranfer of water to the deep earth. This is manifested by serpentine mud volcanoes, high electrical conductivities, magnetic and seismic anomalies. At high pressure talc transforms to the 10 Å phase. Both the 10 Å phase and serpentine eventually transfer their water content to other dense hydrous magnesium silicates stable at depth greater than 200 km. Most of the mantle's water budget may be contained in nominally anhydrous phases in which hydrogen occurs as non-stoichiometric defects. In order to evaluate the potential for remote detection of mantle water via seismology, we have investigated the elasticity systematics of hydrous phases, supplementing literature data with a new ab initio theoretical study of serpentine. Serpentine shows unusual high-pressure behavior. We predict a symmetry preserving phase transformation involving a proton flip near 25 GPa, and elastic instability at somewhat higher pressures that may be related with experimentally observed amorphization. Results of compression for the low-pressure phase is well represented by a fourth order Birch-Murnaghan finite strain expression with Ko= 81 GPa, Ko'= 9.12 and KoKo"= -142, where K is the bulk modulus, prime indicates pressure derivatives, and O refers to zero pressure. The elastic constant tensor reveals large acoustic anisotropy (41 % in VP) and seismic wave velocities that are significantly higher than those inferred from experiments on serpentinites. We find that serpentine and many other hydrous and nominally anhydrous phases conform closely to generalized Birch's laws in VP, VS, and VB versus density space. Coherent patterns emerge only if hydroxyls are treated as single "atomic" units in the computation of mean atomic weight, suggesting important implications for the understanding of the influence of hydrogen on mineral elasticity.

  7. Monitoring transient changes within overpressured regions of subduction zones using ambient seismic noise.

    PubMed

    Chaves, Esteban J; Schwartz, Susan Y

    2016-01-01

    In subduction zones, elevated pore fluid pressure, generally linked to metamorphic dehydration reactions, has a profound influence on the mechanical behavior of the plate interface and forearc crust through its control on effective stress. We use seismic noise-based monitoring to characterize seismic velocity variations following the 2012 Nicoya Peninsula, Costa Rica earthquake [M w (moment magnitude) 7.6] that we attribute to the presence of pressurized pore fluids. Our study reveals a strong velocity reduction (~0.6%) in a region where previous work identified high forearc pore fluid pressure. The depth of this velocity reduction is constrained to be below 5 km and therefore not the result of near-surface damage due to strong ground motions; rather, we posit that it is caused by fracturing of the fluid-pressurized weakened crust due to dynamic stresses. Although pressurized fluids have been implicated in causing coseismic velocity reductions beneath the Japanese volcanic arc, this is the first report of a similar phenomenon in a subduction zone setting. It demonstrates the potential to identify pressurized fluids in subduction zones using temporal variations of seismic velocity inferred from ambient seismic noise correlations.

  8. ROHO Dry floatation technology: implications for clinical practice.

    PubMed

    Stephen-Haynes, Jackie

    2009-09-01

    This article discusses the aetiology of pressure ulcers, the clinical and financial cost of pressure ulcer prevention and the need for pressure reducing equipment. The role of Dry floatation in pressure ulcer prevention and management is explored. How Dry floatation technology works is discussed and its use within clinical practice is highlighted. The evidence to support Dry floatation is presented.

  9. Derivation of intermediate to silicic magma from the basalt analyzed at the Vega 2 landing site, Venus.

    PubMed

    Shellnutt, J Gregory

    2018-01-01

    Geochemical modeling using the basalt composition analyzed at the Vega 2 landing site indicates that intermediate to silicic liquids can be generated by fractional crystallization and equilibrium partial melting. Fractional crystallization modeling using variable pressures (0.01 GPa to 0.5 GPa) and relative oxidation states (FMQ 0 and FMQ -1) of either a wet (H2O = 0.5 wt%) or dry (H2O = 0 wt%) parental magma can yield silicic (SiO2 > 60 wt%) compositions that are similar to terrestrial ferroan rhyolite. Hydrous (H2O = 0.5 wt%) partial melting can yield intermediate (trachyandesite to andesite) to silicic (trachydacite) compositions at all pressures but requires relatively high temperatures (≥ 950°C) to generate the initial melt at intermediate to low pressure whereas at high pressure (0.5 GPa) the first melts will be generated at much lower temperatures (< 800°C). Anhydrous partial melt modeling yielded mafic (basaltic andesite) and alkaline compositions (trachybasalt) but the temperature required to produce the first liquid is very high (≥ 1130°C). Consequently, anhydrous partial melting is an unlikely process to generate derivative liquids. The modeling results indicate that, under certain conditions, the Vega 2 composition can generate silicic liquids that produce granitic and rhyolitic rocks. The implication is that silicic igneous rocks may form a small but important component of the northeast Aphrodite Terra.

  10. Derivation of intermediate to silicic magma from the basalt analyzed at the Vega 2 landing site, Venus

    PubMed Central

    2018-01-01

    Geochemical modeling using the basalt composition analyzed at the Vega 2 landing site indicates that intermediate to silicic liquids can be generated by fractional crystallization and equilibrium partial melting. Fractional crystallization modeling using variable pressures (0.01 GPa to 0.5 GPa) and relative oxidation states (FMQ 0 and FMQ -1) of either a wet (H2O = 0.5 wt%) or dry (H2O = 0 wt%) parental magma can yield silicic (SiO2 > 60 wt%) compositions that are similar to terrestrial ferroan rhyolite. Hydrous (H2O = 0.5 wt%) partial melting can yield intermediate (trachyandesite to andesite) to silicic (trachydacite) compositions at all pressures but requires relatively high temperatures (≥ 950°C) to generate the initial melt at intermediate to low pressure whereas at high pressure (0.5 GPa) the first melts will be generated at much lower temperatures (< 800°C). Anhydrous partial melt modeling yielded mafic (basaltic andesite) and alkaline compositions (trachybasalt) but the temperature required to produce the first liquid is very high (≥ 1130°C). Consequently, anhydrous partial melting is an unlikely process to generate derivative liquids. The modeling results indicate that, under certain conditions, the Vega 2 composition can generate silicic liquids that produce granitic and rhyolitic rocks. The implication is that silicic igneous rocks may form a small but important component of the northeast Aphrodite Terra. PMID:29584745

  11. New perspectives on potential hydrogen storage materials using high pressure.

    PubMed

    Song, Yang

    2013-09-21

    In addressing the global demand for clean and renewable energy, hydrogen stands out as the most suitable candidate for many fuel applications that require practical and efficient storage of hydrogen. Supplementary to the traditional hydrogen storage methods and materials, the high-pressure technique has emerged as a novel and unique approach to developing new potential hydrogen storage materials. Static compression of materials may result in significant changes in the structures, properties and performance that are important for hydrogen storage applications, and often lead to the formation of unprecedented phases or complexes that have profound implications for hydrogen storage. In this perspective article, 22 types of representative potential hydrogen storage materials that belong to four major classes--simple hydride, complex hydride, chemical hydride and hydrogen containing materials--were reviewed. In particular, their structures, stabilities, and pressure-induced transformations, which were reported in recent experimental works together with supporting theoretical studies, were provided. The important contextual aspects pertinent to hydrogen storage associated with novel structures and transitions were discussed. Finally, the summary of the recent advances reviewed and the insight into the future research in this direction were given.

  12. The Edgecombe County (NC) High Blood Pressure Control Program: II. Barriers to the use of medical care among hypertensives.

    PubMed Central

    James, S A; Wagner, E H; Strogatz, D S; Beresford, S A; Kleinbaum, D G; Williams, C A; Cutchin, L M; Ibrahim, M A

    1984-01-01

    As the initial step in a five-year project to improve control of high blood pressure in Edgecombe County, North Carolina, a survey was conducted in 1980 to determine the prevalence of hypertension and to identify factors which might constitute barriers to the use of medical care by hypertensives. This report summarizes the findings for the 539 hypertensives identified through the baseline survey. In general, Black hypertensives reported more access problems than Whites. Within race, however, males and females differed very little on selected measures of potential access to medical care. Among women, lower scores on potential access were strongly associated with being untreated, whereas for men, concerns about the safety of anti-hypertensive drug therapy were associated with being unaware. On a summary measure of the actual use of medical care in response to symptoms, both male and female treated hypertensives scored higher than their untreated counterparts. The implications of these and other findings for community-based blood pressure control activities are discussed. PMID:6711721

  13. Integrated Flight Performance Analysis of a Launch Abort System Concept

    NASA Technical Reports Server (NTRS)

    Tartabini, Paul V.

    2007-01-01

    This paper describes initial flight performance analyses conducted early in the Orion Project to support concept feasibility studies for the Crew Exploration Vehicle s Launch Abort System (LAS). Key performance requirements that significantly affect abort capability are presented. These requirements have implications on sizing the Abort Motor, tailoring its thrust profile to meet escape requirements for both launch pad and high drag/high dynamic pressure ascent aborts. Additional performance considerations are provided for the Attitude Control Motor, a key element of the Orion LAS design that eliminates the need for ballast and provides performance robustness over a passive control approach. Finally, performance of the LAS jettison function is discussed, along with implications on Jettison Motor sizing and the timing of the jettison event during a nominal mission. These studies provide an initial understanding of LAS performance that will continue to evolve as the Orion design is matured.

  14. A cost-effectiveness analysis of two different repositioning strategies for the prevention of pressure ulcers.

    PubMed

    Marsden, Grace; Jones, Katie; Neilson, Julie; Avital, Liz; Collier, Mark; Stansby, Gerard

    2015-12-01

    To assess the cost effectiveness of two repositioning strategies and inform the 2014 National Institute for Health and Care Excellence clinical guideline recommendations on pressure ulcer prevention. Pressure ulcers are distressing events, caused when skin and underlying tissues are placed under pressure sufficient to impair blood supply. They can have a substantial impact on quality of life and have significant resource implications. Repositioning is a key prevention strategy, but can be resource intensive, leading to variation in practice. This economic analysis was conducted to identify the most cost-effective repositioning strategy for the prevention of pressure ulcers. The economic analysis took the form of a cost-utility model. The clinical inputs to the model were taken from a systematic review of clinical data. The population in the model was older people in a nursing home. The economic model was developed with members of the guideline development group and included costs borne by the UK National Health Service. Outcomes were expressed as costs and quality adjusted life years. Despite being marginally more clinically effective, alternating 2 and 4 hourly repositioning is not a cost-effective use of UK National Health Service resources (compared with 4 hourly repositioning) for this high risk group of patients at a cost-effectiveness threshold of £20,000 per quality adjusted life years. These results were used to inform the clinical guideline recommendations for those who are at high risk of developing pressure ulcers. © 2015 John Wiley & Sons Ltd.

  15. Conference Proceedings of Operational Loads Data Held at Sienna, Italy on 2-6 April 1984

    DTIC Science & Technology

    1984-08-01

    new designs , e.g. highly agile, unconventional lay-outs, largely constructed of composite materials and heavily dependent upon active control ...significance of severe discrete gusts at low level, or the fatigue implications of flight control system design characteristics. For all these reasons, we... control technology is clearly going to have a major impact on military aircraft design . User pressure for greater structural efficiency is going to increase

  16. Studies of Cost Effective Structures Design for Future Space Systems - Summary

    DTIC Science & Technology

    1968-06-01

    low-cost steels , such as HY-150, in high-pressure tankage for lower stages of launch vehicles. Specific implications are: 1) A new, two-stage Earth...relationships for each of these types obviously differ from one to another. In some cases, structures and mechanisms show similar behaviors . The way...necessary before reuse. Research efforts should also be directed at the configuration and pack- aging of expensive launch vehicle components so that

  17. Cyclic hydrostatic pressure and particles increase synthesis of 1,25-dihydroxyvitamin D3 by human macrophages in vitro.

    PubMed

    Evans, C E; Mylchreest, S; Mee, A P; Berry, J L; Andrew, J G

    2006-01-01

    1,25-Dihydroxyvitamin D(3) has a pivotal role in bone resorption and osteoclast activity. As activated macrophages are known to synthesise 1,25-dihydroxyvitamin D(3), this study examined whether pressure modulated its synthesis. Pressure and particles have been shown to increase synthesis of pro-resorptive cytokines and other factors by cultured macrophages. Human peripheral blood macrophages were isolated, cultured and exposed to pressure (similar to that found in the human joint) and/or particles. Synthesis of 1,25-dihydroxyvitamin D(3) by macrophages was assayed using high pressure liquid chromatography and in situ hybridization. Synthesis of 1,25-dihydroxyvitamin D(3) but not 24,25-dihydroxyvitamin D(3) was increased in macrophages under pressure. In situ hybridization demonstrated an increase in 1alpha-hydroxylase expression in response to pressure or particles and simultaneous exposure to both stimuli generated higher expression of 1alpha-hydroxylase. In conclusion, this is the first study to demonstrate that mechanical loading, in the form of pressure, stimulates 1,25-dihydroxyvitamin D(3) synthesis in human macrophages. These findings have implications for the in vivo situation, as they suggest that 1,25-dihydroxyvitamin D(3) could be one factor stimulating osteoclastic bone resorption in pathologies, such as arthritis or implant loosening, where intra-articular or intra-osseous pressure is raised or where wear particles interact with macrophages.

  18. Toward measurements of volatile behavior at realistic pressure and temperature conditions in planetary deep interiors. (Invited)

    NASA Astrophysics Data System (ADS)

    McWilliams, R. S.

    2013-12-01

    Laboratory studies of volatiles at high pressure are constantly challenged to achieve conditions directly relevant to planets. While dynamic compression experiments are confined to adiabatic pathways that frequently exceed relevant temperatures due to the low densities and bulk moduli of volatile samples, static compression experiments are often complicated by sample reactivity and mobility before reaching relevant temperatures. By combining the speed of dynamic compression with the flexibility of experimental path afforded by static compression, optical spectroscopy measurements in volatiles such as H, N, and Ar have been demonstrated at previously-unexplored planetary temperature (up to 11,000 K) and pressure (up to 150 GPa). These optical data characterize the electronic properties of extreme states and have implications for bonding, transport, and mixing behavior in volatiles within planets. This work was conducted in collaboration with D.A. Dalton and A.F. Goncharov (Carnegie Institution of Washington) and M.F. Mahmood (Howard University).

  19. Obstructive sleep apnoea treatment and fasting lipids: a comparative effectiveness study.

    PubMed

    Keenan, Brendan T; Maislin, Greg; Sunwoo, Bernie Y; Arnardottir, Erna Sif; Jackson, Nicholas; Olafsson, Isleifur; Juliusson, Sigurdur; Schwab, Richard J; Gislason, Thorarinn; Benediktsdottir, Bryndis; Pack, Allan I

    2014-08-01

    Obstructive sleep apnoea (OSA) is associated with cardiovascular disease. Dyslipidaemia has been implicated as a mechanism linking OSA with atherosclerosis, but no consistent associations with lipids exist for OSA or positive airway pressure treatment. We assessed the relationships between fasting lipid levels and obesity and OSA severity, and explored the impact of positive airway pressure treatment on 2-year fasting lipid level changes. Analyses included moderate-to-severe OSA patients from the Icelandic Sleep Apnoea Cohort. Fasting morning lipids were analysed in 613 untreated participants not on lipid-lowering medications at baseline. Patients were then initiated on positive airway pressure and followed for 2 years. Sub-classification using propensity score quintiles, which aimed to replicate covariate balance associated with randomised trials and, therefore, minimise selection bias and allow causal inference, was used to design the treatment group comparisons. 199 positive airway pressure adherent patients and 118 non-users were identified. At baseline, obesity was positively correlated with triglycerides and negatively correlated with total cholesterol, and low-density and high-density lipoprotein cholesterol. A small correlation was observed between the apnoea/hypopnoea index and high-density lipoprotein cholesterol. No effect of positive airway pressure adherence on 2-year fasting lipid changes was observed. Results do not support the concept of changes in fasting lipids as a primary mechanism for the increased risk of atherosclerotic cardiovascular disease in OSA. ©ERS 2014.

  20. Inspiratory Resistance Maintains Arterial Pressure During Central Hypovolemia: Implications For Treatment Of Combat Casualties With Severe Hemorrhage

    DTIC Science & Technology

    2006-11-01

    negative pressure , thus drawing venous blood from extrathoracic cavities into the heart and lungs. We review here a series of experiments that demonstrate... blood pressure in normovolemia and hypovolemia; (b) increase cerebral blood flow velocity; (c) reset cardiac baroreflex function to a higher operating...range for blood pressure ; (d) lower intracranial pressure ; and (e) reduce orthostatic symptoms. In this brief review, we present evidence that

  1. ELM mitigation with pellet ELM triggering and implications for PFCs and plasma performance in ITER

    DOE PAGES

    Baylor, Larry R.; Lang, P. T.; Allen, Steve L.; ...

    2014-10-05

    The triggering of rapid small edge localized modes (ELMs) by high frequency pellet injection has been proposed as a method to prevent large naturally occurring ELMs that can erode the ITER plasma facing components. Deuterium pellet injection has been used to successfully demonstrate the on-demand triggering of edge localized modes (ELMs) at much higher rates and with much smaller intensity than natural ELMs. The proposed hypothesis for the triggering mechanism of ELMs by pellets is the local pressure perturbation resulting from reheating of the pellet cloud that can exceed the local high-n ballooning mode threshold where the pellet is injected.more » Nonlinear MHD simulations of the pellet ELM triggering show destabilization of high-n ballooning modes by such a local pressure perturbation. A review of the recent pellet ELM triggering results from ASDEX Upgrade (AUG), DIII-D, and JET reveals that a number of uncertainties about this ELM mitigation technique still remain. These include the heat flux impact pattern on the divertor and wall from pellet triggered and natural ELMs, the necessary pellet size and injection location to reliably trigger ELMs, and the level of fueling to be expected from ELM triggering pellets and synergy with larger fueling pellets. The implications of these issues for pellet ELM mitigation in ITER and its impact on the PFCs are presented along with the design features of the pellet injection system for ITER.« less

  2. ELM mitigation with pellet ELM triggering and implications for PFCs and plasma performance in ITER

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baylor, Larry R.; Lang, P.; Allen, S. L.

    2015-08-01

    The triggering of rapid small edge localized modes (ELMs) by high frequency pellet injection has been proposed as a method to prevent large naturally occurring ELMs that can erode the ITER plasma facing components (PFCs). Deuterium pellet injection has been used to successfully demonstrate the on-demand triggering of edge localized modes (ELMs) at much higher rates and with much smaller intensity than natural ELMs. The proposed hypothesis for the triggering mechanism of ELMs by pellets is the local pressure perturbation resulting from reheating of the pellet cloud that can exceed the local high-n ballooning mode threshold where the pellet ismore » injected. Nonlinear MHD simulations of the pellet ELM triggering show destabilization of high-n ballooning modes by such a local pressure perturbation.A review of the recent pellet ELM triggering results from ASDEX Upgrade (AUG), DIII-D, and JET reveals that a number of uncertainties about this ELM mitigation technique still remain. These include the heat flux impact pattern on the divertor and wall from pellet triggered and natural ELMs, the necessary pellet size and injection location to reliably trigger ELMs, and the level of fueling to be expected from ELM triggering pellets and synergy with larger fueling pellets. The implications of these issues for pellet ELM mitigation in ITER and its impact on the PFCs are presented along with the design features of the pellet injection system for ITER.« less

  3. Computation of acoustic ressure fields produced in feline brain by high-intensity focused ultrasound

    NASA Astrophysics Data System (ADS)

    Omidi, Nazanin

    In 1975, Dunn et al. (JASA 58:512-514) showed that a simple relation describes the ultrasonic threshold for cavitation-induced changes in the mammalian brain. The thresholds for tissue damage were estimated for a variety of acoustic parameters in exposed feline brain. The goal of this study was to improve the estimates for acoustic pressures and intensities present in vivo during those experimental exposures by estimating them using nonlinear rather than linear theory. In our current project, the acoustic pressure waveforms produced in the brains of anesthetized felines were numerically simulated for a spherically focused, nominally f1-transducer (focal length = 13 cm) at increasing values of the source pressure at frequencies of 1, 3, and 9 MHz. The corresponding focal intensities were correlated with the experimental data of Dunn et al. The focal pressure waveforms were also computed at the location of the true maximum. For low source pressures, the computed waveforms were the same as those determined using linear theory, and the focal intensities matched experimentally determined values. For higher source pressures, the focal pressure waveforms became increasingly distorted, with the compressional amplitude of the wave becoming greater, and the rarefactional amplitude becoming lower than the values calculated using linear theory. The implications of these results for clinical exposures are discussed.

  4. Intramuscular pressures for monitoring different tasks and muscle conditions

    NASA Technical Reports Server (NTRS)

    Sejersted, O. M.; Hargens, A. R.

    1995-01-01

    Intramuscular fluid pressure (IMP) can easily be measured in man and animals. It follows the law of Laplace which means that it is determined by the tension of the muscle fibers, the recording depth and by fiber geometry (fiber curvature or pennation angle). Thick, bulging muscles create high IMPs (up to 1000 mmHg) and force transmission to tendons becomes inefficient. High resting or postexercise IMPs are indicative of a compartment syndrome due to muscle swelling within a low-compliance osseofascial boundary. IMP increases linearly with force (torque) independent of the mode or speed of contraction (isometric, eccentric, concentric). IMP is also a much better predictor of muscle force than the EMG signal. During prolonged low-force isometric contractions, cyclic variations in IMP are seen. Since IMP influences muscle blood flow through the muscle pump, autoregulating vascular elements, and compression of the intramuscular vasculature, alterations in IMP have important implications for muscle function.

  5. On the Yield Strength of Oceanic Lithosphere

    NASA Astrophysics Data System (ADS)

    Jain, Chhavi; Korenaga, Jun; Karato, Shun-ichiro

    2017-10-01

    The yield strength of oceanic lithosphere determines the mode of mantle convection in a terrestrial planet, and low-temperature plasticity in olivine aggregates is generally believed to govern the plastic rheology of the stiffest part of lithosphere. Because, so far, proposed flow laws for this mechanism exhibit nontrivial discrepancies, we revisit the recent high-pressure deformation data of Mei et al. (2010) with a comprehensive inversion approach based on Markov chain Monte Carlo sampling. Our inversion results indicate that the uncertainty of the relevant flow law parameters is considerably greater than previously thought. Depending on the choice of flow law parameters, the strength of oceanic lithosphere would vary substantially, carrying different implications for the origin of plate tectonics on Earth. To reduce the flow law ambiguity, we suggest that it is important to establish a theoretical basis for estimating macroscopic stress in high-pressure experiments and also to better utilize marine geophysical observations.

  6. High concentration biotherapeutic formulation and ultrafiltration: Part 1 pressure limits.

    PubMed

    Lutz, Herb; Arias, Joshua; Zou, Yu

    2017-01-01

    High therapeutic dosage requirements and the desire for ease of administration drive the trend to subcutaneous administration using delivery systems such as subcutaneous pumps and prefilled syringes. Because of dosage volume limits, prefilled syringe administration requires higher concentration liquid formulations, limited to about 30 cP or roughly 100-300 g L -1 for mAb's. Ultrafiltration (UF) processes are routinely used to formulate biological therapeutics. This article considers pressure constraints on the UF process that may limit its ability to achieve high final product concentrations. A system hardware analysis shows that the ultrafiltration cassette pressure drop is the major factor limiting UF systems. Additional system design recommendations are also provided. The design and performance of a new cassette with a lower feed channel flow resistance is described along with 3D modeling of feed channel pressure drop. The implications of variations in cassette flow channel resistance for scaling up and setting specifications are considered. A recommendation for a maximum pressure specification is provided. A review of viscosity data and theory shows that molecular engineering, temperature, and the use of viscosity modifying excipients including pH adjustment can be used to achieve higher concentrations. The combined use of a low pressure drop cassette with excipients further increased final concentrations by 35%. Guidance is provided on system operation to control hydraulics during final concentration. These recommendations should allow one to design and operate systems to routinely achieve the 30 cP target final viscosity capable of delivery using a pre-filled syringe. © 2016 American Institute of Chemical Engineers Biotechnol. Prog., 33:113-124, 2017. © 2016 American Institute of Chemical Engineers.

  7. Polymerization of amino acids under high-pressure conditions: Implication to chemical evolution on the early Earth

    NASA Astrophysics Data System (ADS)

    Kakegawa, T.; Ohara, S.; Ishiguro, T.; Abiko, H.; Nakazawa, H.

    2008-12-01

    Prebiotic polymerization of amino acids is the most fundamental reaction to promote the chemical evolution for origin of life. Polymerization of amino acids is the dehydration reaction. This questions as to if submarine hydrothermal conditions, thus hydrated enironments, were appropreate for peptide formations. Our previous experiments implied that non-aqueous and high-pressure environments (more than 20 MPa) would be suitable for polymerization of amino acids (Ohara et al., 2006). This leads to the hypothesis that the first peptides may have formed in the Hadean oceanic crustal environments, where dehydration proceeded with availability of appropriate temperatures and pressures. In the present study, experiments simulating the crustal conditions were performed with various pressures (1-175 MPa) and temperatures (100- 200 C degree) using autoclaves. Purified powders (100 mg) of alanine, glycine, valine and aspartic acid were used in the experiments without mixing water in order to examine the solid-solid reactions. The products were analyzed using HPLC and LC-MS. Results indicate that: (1) longer time is required to form peptide compared to those of previous aqueous experiments; (2) pressure has a role to limit the production of melanoidine and cyclic amino acids, which are inhibitors for elongation of peptides; (3) glycine was polymerized up to 11-mer, which was not formed in any previous experiments without catalyses; (4) valine was polymerized up to 3-mer; and (5) aspartic acid was polymerized to 4-mer, accompanied with production of other amino acids. It is noteworthy that high-pressure environments favor all examined polymerization reactions. Such situations would have happened inside of deep oceanic crusts of the early Earth.

  8. Effects of Al content on water partitioning between orthopyroxene and olivine: Implications for lithosphere-asthenosphere boundary

    NASA Astrophysics Data System (ADS)

    Sakurai, Moe; Tsujino, Noriyoshi; Sakuma, Hiroshi; Kawamura, Katsuyuki; Takahashi, Eiichi

    2014-08-01

    To investigate the partitioning coefficient of water between orthopyroxene (Opx) and olivine (Ol) (D(Opx/Ol)) under low-water concentrations (3˜387 wt. ppm) similar to the Earth's mantle conditions, high-pressure experiments have been conducted at pressures of 1.5-6 GPa and a temperature of 1573 K. The experiments were performed with Kawai-type multi-anvil and piston-cylinder apparatus by using starting materials of natural Ol and synthetic Opx with various Al contents. The water contents were obtained with a vacuum type Fourier transform infrared spectrometer (FT-IR6100, IRT5000). IR-spectra of Ol and Al-bearing Opx in this study are similar to those obtained by high-pressure experiments (Bai and Kohlstedt, 1993) and natural rocks (Grant et al., 2007), respectively. It is believed that broad bands in IR spectra of natural Opx are due to effect of crystal distortion by large Al substitution. On the contrary, IR-spectra of Al-free Opx are not consistent with those reported by Rauch and Keppler (2002) likely because of the large difference of water fugacity. D(Al-free Opx/Ol) is ˜1 at all pressure conditions or decreases with increasing pressure. However, the water contents of Al-bearing Opx are significantly larger than those of Ol at the same conditions. In addition, the effect of Al concentration in Opx on D(Opx/Ol) becomes larger with increasing pressure. The high Al content in Opx significantly increases D(Opx/Ol) and the trend increases with increasing pressure. D(Opx/Ol) drops sharply at the pressure at which the Al concentration of Opx becomes nearly 0 in the Earth's mantle conditions. This conclusion indicates that viscosity of the upper mantle decreases sharply at depths larger than those in which orthopyroxene contains no Al. The dramatic change of D(Opx/Ol) may explain the lithosphere-asthenosphere boundary beneath oceans and continents.

  9. Adolescent habitual caffeine consumption and hemodynamic reactivity during rest, psychosocial stress, and recovery.

    PubMed

    James, Jack E; Baldursdottir, Birna; Johannsdottir, Kamilla R; Valdimarsdottir, Heiddis B; Sigfusdottir, Inga Dora

    2018-07-01

    Most adolescents regularly consume caffeine. Whereas observational studies have suggested that coffee may be cardio-protective, pharmacological experimentation with adults shows that caffeine at dietary doses increases blood pressure, thereby implicating regular caffeine consumption as a potential source of harm for cardiovascular health. The present study was in response to the dearth of caffeine research among younger consumers. It was hypothesised that compared to the consumption of little or no caffeine, adolescents who habitually consume caffeine have overall higher blood pressure and increased vascular resistance. Using a quasi-experimental design, continuous measurements of blood pressure, cardiac output, and total peripheral resistance were taken non-invasively from adolescents (n = 333) aged 14-15 years and 18-19 years who reported "low", "moderate", or "high" levels of caffeine intake. Measurements were conducted when participants generally had negligible or low systematic caffeine levels while at rest, during stress, and during recovery from stress. Whereas habitual caffeine consumption did not predict blood pressure level, higher caffeine intake was associated with modestly increased vascular resistance during all phases of the experiment (i.e., at rest, during stress, and during recovery from stress). Present findings are important because they suggest that early exposure to caffeine may lead to persistent increases in vascular resistance, which in turn is an acknowledged risk factor for the development of hypertension. These results highlight the need for further studies of adolescents to determine the robustness of any persistent caffeine-related hemodynamic effects, and the implications such effects could have for long-term cardiovascular health. Copyright © 2018 Elsevier Inc. All rights reserved.

  10. Fluid resuscitation following a burn injury: implications of a mathematical model of microvascular exchange.

    PubMed

    Bert, J; Gyenge, C; Bowen, B; Reed, R; Lund, T

    1997-03-01

    A validated mathematical model of microvascular exchange in thermally injured humans has been used to predict the consequences of different forms of resuscitation and potential modes of action of pharmaceuticals on the distribution and transport of fluid and macromolecules in the body. Specially, for 10 and/or 50 per cent burn surface area injuries, predictions are presented for no resuscitation, resuscitation with the Parkland formula (a high fluid and low protein formulation) and resuscitation with the Evans formula (a low fluid and high protein formulation). As expected, Parkland formula resuscitation leads to interstitial accumulation of excess fluid, while use of the Evans formula leads to interstitial accumulation of excessive amounts of proteins. The hypothetical effects of pharmaceuticals on the transport barrier properties of the microvascular barrier and on the highly negative tissue pressure generated postburn in the injured tissue were also investigated. Simulations predict a relatively greater amelioration of the acute postburn edema through modulation of the postburn tissue pressure effects.

  11. Measuring static seated pressure distributions and risk for skin pressure ulceration in ice sledge hockey players.

    PubMed

    Darrah, Shaun D; Dicianno, Brad E; Berthold, Justin; McCoy, Andrew; Haas, Matthew; Cooper, Rory A

    2016-01-01

    To determine whether sledge hockey players with physical disability have higher average seated pressures compared to non-disabled controls. Fifteen age-matched controls without physical disability and 15 experimental participants with physical disability were studied using a pressure mapping device to determine risk for skin pressure ulceration and the impact of cushioning and knee angle positioning on seated pressure distributions. Regardless of participant group, cushioning, or knee angle, average seated pressures exceeded clinically acceptable seated pressures. Controls had significantly higher average seated pressures than the disability group when knees were flexed, both with the cushion (p = 0.013) and without (p = 0.015). Knee extension showed significantly lower average pressures in controls, both with the cushion (p < 0.001) and without (p < 0.001). Placement of the cushion resulted in significantly lower average pressure in controls when knees were extended (p = 0.024) but not when flexed (p = 0.248). Placement of the cushion resulted in no difference in pressure (p = 0.443) in the disability group. Pressures recorded indicate high risk for skin ulceration. Cushioning was effective only in the control group with knees extended. That knee extension significantly lowered average seated pressures is important, as many sledge hockey players utilize positioning with larger knee flexion angles. Implications for Rehabilitation Ice sledge hockey is a fast growing adaptive sport. Adaptive sports have been associated with several positive improvements in overall health and quality of life, though may be putting players at risk for skin ulceration. Measured static seated pressure in sledges greatly exceeds current clinically accepted clinical guidelines. With modern improvements in wheelchair pressure relief/cushioning there are potential methods for improvement of elevated seated pressure in ice hockey sledges.

  12. Stability and anisotropy of (FexNi1-x)2O under high pressure and implications in Earth's and super-Earths' core.

    PubMed

    Huang, Shengxuan; Wu, Xiang; Qin, Shan

    2018-01-10

    Oxygen is thought to be an important light element in Earth's core but the amount of oxygen in Earth's core remains elusive. In addition, iron-rich iron oxides are of great interest and significance in the field of geoscience and condensed matter physics. Here, static calculations based on density functional theory demonstrate that I4/mmm-Fe 2 O is dynamically and mechanically stable and becomes energetically favorable with respect to the assemblage of hcp-Fe and [Formula: see text]-FeO above 270 GPa, which indicates that I4/mmm-Fe 2 O can be a strong candidate phase for stable iron-rich iron oxides at high pressure, perhaps even at high temperature. The elasticity and anisotropy of I4/mmm-(Fe x Ni 1-x ) 2 O at high pressures are also determined. Based on these results, we have derived the upper limit of oxygen to be 4.3 wt% in Earth's lower outer core. On the other hand, I4/mmm-(Fe x Ni 1-x ) 2 O with high AV S is likely to exist in a super-Earth's or an ocean planet's solid core causing the locally seismic heterogeneity. Our results not only give some clues to explore and synthesize novel iron-rich iron oxides but also shed light on the fundamental information of oxygen in the planetary core.

  13. Plantar pressures are elevated in people with longstanding diabetes-related foot ulcers during follow-up

    PubMed Central

    Fernando, Malindu E.; Crowther, Robert G.; Lazzarini, Peter A.; Yogakanthi, Saiumaeswar; Sangla, Kunwarjit S.; Buttner, Petra; Jones, Rhondda; Golledge, Jonathan

    2017-01-01

    Objective High plantar pressures are implicated in the development of diabetes-related foot ulcers. Whether plantar pressures remain high in patients with chronic diabetes-related foot ulcers over time is uncertain. The primary aim of this study was to compare plantar pressures at baseline and three and six months later in participants with chronic diabetes-related foot ulcers (cases) to participants without foot ulcers (controls). Methods Standardised protocols were used to measure mean peak plantar pressure and pressure-time integral at 10 plantar foot sites (the hallux, toes, metatarsals 1 to 5, mid-foot, medial heel and lateral heel) during barefoot walking. Measurements were performed at three study visits: baseline, three and six months. Linear mixed effects random-intercept models were utilised to assess whether plantar pressures differed between cases and controls after adjusting for age, sex, body mass index, neuropathy status and follow-up time. Standardised mean differences (Cohen’s d) were used to measure effect size. Results Twenty-one cases and 69 controls started the study and 16 cases and 63 controls completed the study. Cases had a higher mean peak plantar pressure at several foot sites including the toes (p = 0.005, Cohen’s d = 0.36) and mid-foot (p = 0.01, d = 0.36) and a higher pressure-time integral at the hallux (p<0.001, d = 0.42), metatarsal 1 (p = 0.02, d = 0.33) and mid-foot (p = 0.04, d = 0.64) compared to controls throughout follow-up. A reduction in pressure-time integral at multiple plantar sites over time was detected in all participants (p<0.05, respectively). Conclusions Plantar pressures assessed during gait are higher in diabetes patients with chronic foot ulcers than controls at several plantar sites throughout prolonged follow-up. Long term offloading is needed in diabetes patients with diabetes-related foot ulcers to facilitate ulcer healing. PMID:28859075

  14. Effects of solvent evaporation conditions on solvent vapor annealed cylinder-forming block polymer thin films

    NASA Astrophysics Data System (ADS)

    Grant, Meagan; Jakubowski, William; Nelson, Gunnar; Drapes, Chloe; Baruth, A.

    Solvent vapor annealing is a less time and energy intensive method compared to thermal annealing, to direct the self-assembly of block polymer thin films. Periodic nanostructures have applications in ultrafiltration, magnetic arrays, or other structures with nanometer dimensions, driving its continued interest. Our goal is to create thin films with hexagonally packed, perpendicular aligned cylinders of poly(lactide) in a poly(styrene) matrix that span the thickness of the film with low anneal times and low defect densities, all with high reproducibility, where the latter is paramount. Through the use of our computer-controlled, pneumatically-actuated, purpose-built solvent vapor annealing chamber, we have the ability to monitor and control vapor pressure, solvent concentration within the film, and solvent evaporation rate with unprecedented precision and reliability. Focusing on evaporation, we report on two previously unexplored areas, chamber pressure during solvent evaporation and the flow rate of purging gas aiding the evaporation. We will report our exhaustive results following atomic force microscopy analysis of films exposed to a wide range of pressures and flow rates. Reliably achieving well-ordered films, while occurring within a large section of this parameter space, was correlated with high-flow evaporation rates and low chamber pressures. These results have significant implications on other methods of solvent annealing, including ``jar'' techniques.

  15. Thermal infrared spectroscopy and modeling of experimentally shocked plagioclase feldspars

    USGS Publications Warehouse

    Johnson, J. R.; Horz, F.; Staid, M.I.

    2003-01-01

    Thermal infrared emission and reflectance spectra (250-1400 cm-1; ???7???40 ??m) of experimentally shocked albite- and anorthite-rich rocks (17-56 GPa) demonstrate that plagioclase feldspars exhibit characteristic degradations in spectral features with increasing pressure. New measurements of albite (Ab98) presented here display major spectral absorptions between 1000-1250 cm-1 (8-10 ??m) (due to Si-O antisymmetric stretch motions of the silica tetrahedra) and weaker absorptions between 350-700 cm-1 (14-29 ??m) (due to Si-O-Si octahedral bending vibrations). Many of these features persist to higher pressures compared to similar features in measurements of shocked anorthite, consistent with previous thermal infrared absorption studies of shocked feldspars. A transparency feature at 855 cm-1 (11.7 ??m) observed in powdered albite spectra also degrades with increasing pressure, similar to the 830 cm-1 (12.0 ??m) transparency feature in spectra of powders of shocked anorthite. Linear deconvolution models demonstrate that combinations of common mineral and glass spectra can replicate the spectra of shocked anorthite relatively well until shock pressures of 20-25 GPa, above which model errors increase substantially, coincident with the onset of diaplectic glass formation. Albite deconvolutions exhibit higher errors overall but do not change significantly with pressure, likely because certain clay minerals selected by the model exhibit absorption features similar to those in highly shocked albite. The implication for deconvolution of thermal infrared spectra of planetary surfaces (or laboratory spectra of samples) is that the use of highly shocked anorthite spectra in end-member libraries could be helpful in identifying highly shocked calcic plagioclase feldspars.

  16. Solidus and liquidus profiles of chondritic mantle: Implication for melting of the Earth across its history

    NASA Astrophysics Data System (ADS)

    Andrault, Denis; Bolfan-Casanova, Nathalie; Nigro, Giacomo Lo; Bouhifd, Mohamed A.; Garbarino, Gaston; Mezouar, Mohamed

    2011-04-01

    We investigated the melting properties of a synthetic chondritic primitive mantle up to core-mantle boundary (CMB) pressures, using laser-heated diamond anvil cell. Melting criteria are essentially based on the use of X-rays provided by synchrotron radiation. We report a solidus melting curve lower than previously determined using optical methods. The liquidus curve is found between 300 and 600 K higher than the solidus over the entire lower mantle. At CMB pressures (135 GPa), the chondritic mantle solidus and liquidus reach 4150 (± 150) K and 4725 (± 150) K, respectively. We discuss that the lower mantle is unlikely to melt in the D″-layer, except if the highest estimate of the temperature profile at the base of the mantle, which is associated with a very hot core, is confirmed. Therefore, recent suggestions of partial melting in the lowermost mantle based on seismic observations of ultra-low velocity zones indicate either (1) a outer core exceeding 4150 K at the CMB or (2) the presence of chemical heterogeneities with high concentration of fusible elements. Our observations of a high liquidus temperature as well as a large gap between solidus and liquidus temperatures have important implications for the properties of the magma ocean during accretion. Not only complete melting of the lower mantle would require excessively high temperatures, but also, below liquidus temperatures partial melting should take place over a much larger depth interval than previously thought. In addition, magma adiabats suggest very high surface temperatures in case of a magma ocean that would extend to more than 40 GPa, as suggested by siderophile metal-silicate partitioning data. Such high surface temperature regime, where thermal blanketing is inefficient, points out to a transient character of the magma ocean, with a very fast cooling rate.

  17. Single-crystal equations of state of magnesiowüstite at high pressures

    DOE PAGES

    Finkelstein, Gregory J.; Jackson, Jennifer M.; Sturhahn, Wolfgang; ...

    2017-08-01

    Solid solutions of (Mg,Fe)O with high iron enrichment may be an important component of ultralow-velocity zones at Earth’s core-mantle boundary. However, to date there have been few high-precision studies on the elastic properties of these materials. In this study we present results on the compression of (Mg 0.22Fe 0.78)O magnesiowüstite in both neon and helium pressure media using single-crystal diffraction to ~55 GPa. In addition, our sample was characterized by time-domain synchrotron Mössbauer spectroscopy at ambient pressure using an extended time range that resulted in vastly improved energy resolution. The combination of these high-resolution techniques tightly constrains the presence ofmore » a defect-structure component at room pressure due to 4.7 mol% tetrahedrally-coordinated ferric iron, resulting in a renormalized composition of (Mg 0.215Fe 0.762⟂ 0.023)O. Both high-pressure diffraction datasets are well described by a 3rd-order Birch-Murnaghan equation of state. The best fit-parameters for a crystal with cubic structure in helium are K 0T = 148(3) GPa, K' 0T = 4.09(12), and V 0 = 78.87(6) Å 3. Increasing differential stress in the neon-containing sample chamber was correlated with increasing apparent distortion of the initially cubic unit cell, requiring a lower-symmetry hexagonal cell to fit the data above ~20 GPa. For fit equations of state, we determine the pressure-dependent correlation ellipses for the equation of state parameters and compare with previously published single-crystal diffraction data from (Mg,Fe)O crystals in a helium medium. We make two main observations from the datasets using a helium pressure medium: K 0T decreases as a function of increasing iron content from periclase to wüstite and K' 0T is consistent with an approximately constant value of 4.0 that is independent of iron content, at least up to (Mg,Fe)O containing ~78 mol% FeO. Finally, in combination with previously reported thermal parameters, we compute the density of Mw78 at core-mantle boundary conditions and discuss the implications.« less

  18. Single-crystal equations of state of magnesiowüstite at high pressures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Finkelstein, Gregory J.; Jackson, Jennifer M.; Sturhahn, Wolfgang

    Solid solutions of (Mg,Fe)O with high iron enrichment may be an important component of ultralow-velocity zones at Earth’s core-mantle boundary. However, to date there have been few high-precision studies on the elastic properties of these materials. In this study we present results on the compression of (Mg 0.22Fe 0.78)O magnesiowüstite in both neon and helium pressure media using single-crystal diffraction to ~55 GPa. In addition, our sample was characterized by time-domain synchrotron Mössbauer spectroscopy at ambient pressure using an extended time range that resulted in vastly improved energy resolution. The combination of these high-resolution techniques tightly constrains the presence ofmore » a defect-structure component at room pressure due to 4.7 mol% tetrahedrally-coordinated ferric iron, resulting in a renormalized composition of (Mg 0.215Fe 0.762⟂ 0.023)O. Both high-pressure diffraction datasets are well described by a 3rd-order Birch-Murnaghan equation of state. The best fit-parameters for a crystal with cubic structure in helium are K 0T = 148(3) GPa, K' 0T = 4.09(12), and V 0 = 78.87(6) Å 3. Increasing differential stress in the neon-containing sample chamber was correlated with increasing apparent distortion of the initially cubic unit cell, requiring a lower-symmetry hexagonal cell to fit the data above ~20 GPa. For fit equations of state, we determine the pressure-dependent correlation ellipses for the equation of state parameters and compare with previously published single-crystal diffraction data from (Mg,Fe)O crystals in a helium medium. We make two main observations from the datasets using a helium pressure medium: K 0T decreases as a function of increasing iron content from periclase to wüstite and K' 0T is consistent with an approximately constant value of 4.0 that is independent of iron content, at least up to (Mg,Fe)O containing ~78 mol% FeO. Finally, in combination with previously reported thermal parameters, we compute the density of Mw78 at core-mantle boundary conditions and discuss the implications.« less

  19. Carbon dioxide-water clathrate as a reservoir of CO2 on Mars

    NASA Technical Reports Server (NTRS)

    Dobrovolskis, A.; Ingersell, A. P.

    1975-01-01

    It has been suggested that the residual polar caps of Mars contain a resorvoir of permanently frozen carbon dioxide which is controlling the atmospheric pressure. However, observational data and models of the polar heat balance suggest that the temperatures of the Martian poles are too high for solid CO2 to survive permanently. On the other hand, the icelike compound carbon dioxide-water clathrate could function as a CO2 reservoir instead of solid CO2, because it is stable at higher temperatures. This paper shows that the permanent polar caps may contain several millibars of CO2 in the form of clathrate, and discusses the implications of this permanent clathrate reservoir for the present and past atmospheric pressure on Mars.

  20. Stringent limits on the amplitude of Alfvénic perturbations at high-beta

    NASA Astrophysics Data System (ADS)

    Squire, J.; Quataert, E.; Schekochihin, A. A.; Bale, S. D.; Chen, C. H. K.; Strumik, M.

    2016-12-01

    It is shown that low-collisionality plasmas cannot support linearly polarized shear-Alfvén fluctuations above a critical amplitude δB⊥/B0 ˜ β-1/2, where β is the ratio of thermal to magnetic pressure. Above this cutoff, a developing fluctuation will generate a pressure anisotropy that is sufficient to destabilize itself through the parallel firehose instability. This causes the wave frequency to approach zero, interrupting the fluctuation before any oscillation. The magnetic field lines rapidly relax into a sequence of angular zig-zag structures. Such a restrictive bound on shear-Alfvén-wave amplitudes has interesting implications for magnetized turbulence in weakly collisional plasmas, in particular for the solar wind at 1AU where β 1.

  1. Effect of Longitudinal Oscillations on Downward Flame Spread over Thin Solid Fuels

    NASA Technical Reports Server (NTRS)

    Nayagam, Vedha; Sacksteder, Kurt

    2013-01-01

    Downward flame spread rates over vertically vibrated thin fuel samples are measured in air at one atmospheric pressure under normal gravity. Unlike flame spread against forced-convective flows, the present results show that with increasing vibration acceleration the flame spread rate increases before being blown off at high acceleration levels causing flame extinction. A simple scaling analysis seems to explain this phenomenon, which may have important implications to flammability studies including in microgravity environments.

  2. Crystallization conditions of porphyritic high-K calc-alkaline granitoids in the extreme northeastern Borborema Province, NE Brazil, and geodynamic implications

    NASA Astrophysics Data System (ADS)

    Campos, Benedita Cleide Souza; Vilalva, Frederico Castro Jobim; Nascimento, Marcos Antônio Leite do; Galindo, Antônio Carlos

    2016-10-01

    An integrated textural and chemical study on amphibole, biotite, plagioclase, titanite, epidote, and magnetite was conducted in order to estimate crystallization conditions, along with possible geodynamic implications, for six Ediacaran porphyritic high-K calc-alkaline granite plutons (Monte das Gameleiras, Barcelona, Acari, Caraúbas, Tourão, and Catolé do Rocha) intrusive into Archean to Paleoproterozoic rocks of the São José do Campestre (SJCD) and Rio Piranhas-Seridó (RPSD) domains, northern Borborema Province. The studied rocks include mainly porphyritic leucocratic monzogranites, as well as quartz-monzonites and granodiorites. Textures are marked by K-feldspar megacrysts (5-15 cm long) in a fine-to medium-grained matrix composed of quartz, plagioclase, amphibole, biotite, as well as titanite, epidote, Fesbnd Ti oxides, allanite, apatite, and zircon as accessory minerals. Amphibole, biotite and titanite share similar compositional variations defined by increasing Al and Fe, and decreasing Mg contents from the plutons emplaced into the SJCP (Monte das Gameleiras and Barcelona) towards those in the RPSD (Acari, Caraúbas, Tourão, and Catolé do Rocha). Estimated intensive crystallization parameters reveal a weak westward range of increasing depth of emplacement, pressure and temperature in the study area. The SJCD plutons (to the east) crystallized at shallower crustal depths (14-21 km), under slightly lower pressure (3.8-5.5 kbar) and temperature (701-718 °C) intervals, and high to moderate oxygen fugacity conditions (+0.8 < ΔFQM < +2.0). On the other hand, the RPSD plutons (to the west) were emplaced at slightly deeper depths (18-23 km), under higher, yet variable pressures (4.8-6.2 kbar), temperatures (723-776 °C), and moderate to low oxygen fugacity conditions (-1.0 < ΔFQM < +1.8). These results reinforce the contrasts between the tectono-strutuctural domains of São José do Campestre and Rio Piranhas-Seridó in the northern Borborema Province.

  3. Two-phase convection in the high-pressure ice layer of the large icy moons: geodynamical implications

    NASA Astrophysics Data System (ADS)

    Kalousova, K.; Sotin, C.; Tobie, G.; Choblet, G.; Grasset, O.

    2015-12-01

    The H2O layers of large icy satellites such as Ganymede, Callisto, or Titan probably include a liquid water ocean sandwiched between the deep high-pressure ice layer and the outer ice I shell [1]. It has been recently suggested that the high-pressure ice layer could be decoupled from the silicate core by a salty liquid water layer [2]. However, it is not clear whether accumulation of liquids at the bottom of the high-pressure layer is possible due to positive buoyancy of water with respect to high-pressure ice. Numerical simulation of this two-phase (i.e. ice and water) problem is challenging, which explains why very few studies have self-consistently handled the presence and transport of liquids within the solid ice [e.g. 3]. While using a simplified description of water production and transport, it was recently showed in [4] that (i) a significant fraction of the high-pressure layer reaches the melting point and (ii) the melt generation and its extraction to the overlying ocean significantly influence the global thermal evolution and interior structure of the large icy moons.Here, we treat the high-pressure ice layer as a compressible mixture of solid ice and liquid water [5]. Several aspects are investigated: (i) the effect of the water formation on the vigor of solid-state convection and its influence on the amount of heat that is transferred from the silicate mantle to the ocean; (ii) the fate of liquids within the upper thermal boundary layer - whether they freeze or reach the ocean; and (iii) the effect of salts and volatile compounds (potentially released from the rocky core) on the melting/freezing processes. Investigation of these aspects will allow us to address the thermo-chemical evolution of the internal ocean which is crucial to evaluate the astrobiological potential of large icy moons. This work has been performed at the Jet Propulsion Laboratory, California Institute of Technology, under contract to NASA. [1] Hussmann et al. (2007), Treatise of Geophysics, 10.15, 509-539. [2] Vance et al. (2014), Planet. Space Sci., 96, 62-70. [3] Kalousova et al. (2014), J. Geophys. Res. Planets, 119(3), 532-549. [4] Tobie et al. (2014), AGU, P43C-3999. [5] Soucek et al. (2014), Geophys. Astro. Fluid, 108(6), 639-666.

  4. Structural relaxation of vitreous albite near Tg and implications for transport properties of the supercooled liquid at high pressure

    NASA Astrophysics Data System (ADS)

    Gaudio, S. J.; Lesher, C. E.

    2012-12-01

    We estimate the glass transition temperature, Tg, for vitreous/amorphous albite between 0 and 7.7 GPa by tracking the progress of densification following high-temperature annealing experiments with run durations equal to 5τ (when τ=100 s). Tg decreases by 54 K/GPa up to 2.6 GPa, and thereafter shows a weak negative pressure dependence. This behavior mimics the negative pressure dependence of viscosity of albite liquid shown by [1]; however, we do not find a change in the sign of ∂Tg/∂P at least up to 7.7 GPa as reported in some isothermal ∂η/∂P, and ∂DO/∂P data sets. Our high field (21.8 T) 27Al MAS NMR measurements of recovered glasses rapidly quenched from super-Tg conditions possess trace amounts of high coordinated Al at 2.6 GPa and only ˜17% by 5.5 GPa. This suggests that the decrease in Tg (and viscosity at low temperature) results dominantly from topological rearrangement of the supercooled melt structure and not changes to Al or Si coordination number and connectivity of the network. In fact, at Tg from 0 to 8 GPa, the XNBO, or network connectivity, is unchanged [2] and at 7.7 GPa, we find the proportion of high coordinated Al is still ˜35%. Convergence in the timescales of relaxation at Tg(P) and the onset of Na mobility to 6 GPa documented by high-pressure electrical conductivity measurements [3] implies that the fragility of albite melt increases with pressure up to ˜4-5 GPa, without changing the effective polymerization of the melt. In contrast, fragility appears to decrease with pressure in partially depolymerized silicate melts. Such differences in fragility can be used for extrapolation of activation energy based models for viscous flow to high pressure. [1] Kushiro, 1978, EPSL, 41; Brearley et al., 1986, GCA, 50; Brearley and Montana, 1989, GCA, 53; Poe et al., 1997, Science, 276; Suzuki et al., 2002, Phys. Chem. Miner., 29; Funakoshi et al., 2002, J. Phys.: Condens. Matter., 14; Behrens and Schulze, 2003, Am. Min., 88. [2] Lee et al. 2004, GCA, 68; [3] Bagdassarov et al., 2004, Phys. Chem. Glasses, 45.

  5. Electrical and thermal conductivity of Fe-C alloy at high pressure: implications for effects of carbon on the geodynamo of the Earth's core

    NASA Astrophysics Data System (ADS)

    Zhang, C.; Lin, J. F.; Liu, Y.; Feng, S.; Jin, C.; Yoshino, T.

    2017-12-01

    Thermal conductivity of iron alloy in the Earth's core plays a crucial role in constraining the energetics of the geodynamo and the thermal evolution of the planet. Studies on the thermal conductivity of iron reveal the importance of the effects of light elements and high temperature. Carbon has been proposed to be a candidate light element in Earth's core for its meteoritic abundance and high-pressure velocity-density profiles of iron carbides (e.g., Fe7C3). In this study, we employed four-probe van der Pauw method in a diamond anvil cell to measure the electrical resistivity of pure iron, iron carbon alloy, and iron carbides at high pressures. These studies were complimented with synchrotron X-ray diffraction and focused ion beam (FIB) analyses. Our results show significant changes in the electrical conductivity of these iron-carbon alloys that are consistent previous reports with structural and electronic transitions at high pressures, indicating that these transitions should be taken into account in evaluating the electrical and thermal conductivity at high pressure. To apply our results to understand the thermal conduction in the Earth's core, we have compared our results with literature values for the electrical and thermal conductivity of iron alloyed with light elements (C, Si) at high pressures. These comparisons permit the validity of the Wiedemann-Franz law and Matthiessen's rule for the effects of light elements on the thermal conductivity of the Earth's core. We found that an addition of a light element such as carbon has an strong effect on the reducing the thermal conductivity of Earth's core, but the magnitude of the alloying effect strongly depends on the identity of the light element and the crystal and electronic structures. Based on our results and literature values, we have modelled the electrical and thermal conductivity of iron-carbon alloy at Earth's core pressure-temperature conditions to the effects on the heat flux in the Earth's core. In this presentation, we will address how carbon as a potential light element in the Earth's core can significantly affect our view of the heat flux across the core-mantle boundary and geodynamo of our planet.

  6. Water Flow Testing and Unsteady Pressure Analysis of a Two-Bladed Liquid Oxidizer Pump Inducer

    NASA Technical Reports Server (NTRS)

    Schwarz, Jordan B.; Mulder, Andrew; Zoladz, Thomas

    2011-01-01

    The unsteady fluid dynamic performance of a cavitating two-bladed oxidizer turbopump inducer was characterized through sub-scale water flow testing. While testing a novel inlet duct design that included a cavitation suppression groove, unusual high-frequency pressure oscillations were observed. With potential implications for inducer blade loads, these high-frequency components were analyzed extensively in order to understand their origins and impacts to blade loading. Water flow testing provides a technique to determine pump performance without the costs and hazards associated with handling cryogenic propellants. Water has a similar density and Reynolds number to liquid oxygen. In a 70%-scale water flow test, the inducer-only pump performance was evaluated. Over a range of flow rates, the pump inlet pressure was gradually reduced, causing the flow to cavitate near the pump inducer. A nominal, smooth inducer inlet was tested, followed by an inlet duct with a circumferential groove designed to suppress cavitation. A subsequent 52%-scale water flow test in another facility evaluated the combined inducer-impeller pump performance. With the nominal inlet design, the inducer showed traditional cavitation and surge characteristics. Significant bearing loads were created by large side loads on the inducer during synchronous cavitation. The grooved inlet successfully mitigated these loads by greatly reducing synchronous cavitation, however high-frequency pressure oscillations were observed over a range of frequencies. Analytical signal processing techniques showed these oscillations to be created by a rotating, multi-celled train of pressure pulses, and subsequent CFD analysis suggested that such pulses could be created by the interaction of rotating inducer blades with fluid trapped in a cavitation suppression groove. Despite their relatively low amplitude, these high-frequency pressure oscillations posed a design concern due to their sensitivity to flow conditions and test scale. The amplitude and frequency of oscillations varied considerably over the pump s operating space, making it difficult to predict blade loads.

  7. Is the Heart a Pressure or Flow Generator? Possible Implications and Suggestions for Cardiovascular Pedagogy

    ERIC Educational Resources Information Center

    Mitchell, Jamie R.

    2015-01-01

    In this article, a physiology instructor with primarily a cardiovascular (CV) background has wondered what approach to take, with both novice and senior learners, when it comes to delivering material on the pressure or flow generation of the heart. A debate surrounds the pressure propulsion versus flow generation theories, where some understand…

  8. Perspective: New Recommendations for the Treatment of Systemic Hypertension and their Potential Implications for Glaucoma Management.

    PubMed

    De Moraes, Carlos Gustavo; Cioffi, George A; Weinreb, Robert N; Liebmann, Jeffrey M

    2018-05-10

    There is compelling evidence that low systemic blood pressure is associated with glaucoma prevalence and progression. Recently, new guidelines for treatment of systemic hypertension have been implemented and recommend lower target blood pressure. These guidelines may have implications on the rates of glaucoma progression seen in clinical practice and how clinicians should be prepared to identify patients at risk. More importantly, a new paradigm to monitor glaucoma progression is patients treated for systemic hypertension may be warranted in light of these recent changes.

  9. Impact of high-intensity concurrent training on cardiovascular risk factors in persons with multiple sclerosis - pilot study.

    PubMed

    Keytsman, Charly; Hansen, Dominique; Wens, Inez; O Eijnde, Bert

    2017-10-27

    High-intensity concurrent training positively affects cardiovascular risk factors. Because this was never investigated in multiple sclerosis, the present pilot study explored the impact of this training on cardiovascular risk factors in this population. Before and after 12 weeks of high-intense concurrent training (interval and strength training, 5 sessions per 2 weeks, n = 16) body composition, resting blood pressure and heart rate, 2-h oral glucose tolerance (insulin sensitivity, glycosylated hemoglobin, blood glucose and insulin concentrations), blood lipids (high- and low-density lipoprotein, total cholesterol, triglyceride levels) and C-reactive protein were analyzed. Twelve weeks of high-intense concurrent training significantly improved resting heart rate (-6%), 2-h blood glucose concentrations (-13%) and insulin sensitivity (-24%). Blood pressure, body composition, blood lipids and C-reactive protein did not seem to be affected. Under the conditions of this pilot study, 12 weeks of concurrent high-intense interval and strength training improved resting heart rate, 2-h glucose and insulin sensitivity in multiple sclerosis but did not affect blood C-reactive protein levels, blood pressure, body composition and blood lipid profiles. Further, larger and controlled research investigating the effects of high-intense concurrent training on cardiovascular risk factors in multiple sclerosis is warranted. Implications for rehabilitation High-intensity concurrent training improves cardiovascular fitness. This pilot study explores the impact of this training on cardiovascular risk factors in multiple sclerosis. Despite the lack of a control group, high-intense concurrent training does not seem to improve cardiovascular risk factors in multiple sclerosis.

  10. Cost Implications of Uncertainty in CO{sub 2} Storage Resource Estimates: A Review

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Anderson, Steven T., E-mail: sanderson@usgs.gov

    Carbon capture from stationary sources and geologic storage of carbon dioxide (CO{sub 2}) is an important option to include in strategies to mitigate greenhouse gas emissions. However, the potential costs of commercial-scale CO{sub 2} storage are not well constrained, stemming from the inherent uncertainty in storage resource estimates coupled with a lack of detailed estimates of the infrastructure needed to access those resources. Storage resource estimates are highly dependent on storage efficiency values or storage coefficients, which are calculated based on ranges of uncertain geological and physical reservoir parameters. If dynamic factors (such as variability in storage efficiencies, pressure interference,more » and acceptable injection rates over time), reservoir pressure limitations, boundaries on migration of CO{sub 2}, consideration of closed or semi-closed saline reservoir systems, and other possible constraints on the technically accessible CO{sub 2} storage resource (TASR) are accounted for, it is likely that only a fraction of the TASR could be available without incurring significant additional costs. Although storage resource estimates typically assume that any issues with pressure buildup due to CO{sub 2} injection will be mitigated by reservoir pressure management, estimates of the costs of CO{sub 2} storage generally do not include the costs of active pressure management. Production of saline waters (brines) could be essential to increasing the dynamic storage capacity of most reservoirs, but including the costs of this critical method of reservoir pressure management could increase current estimates of the costs of CO{sub 2} storage by two times, or more. Even without considering the implications for reservoir pressure management, geologic uncertainty can significantly impact CO{sub 2} storage capacities and costs, and contribute to uncertainty in carbon capture and storage (CCS) systems. Given the current state of available information and the scarcity of (data from) long-term commercial-scale CO{sub 2} storage projects, decision makers may experience considerable difficulty in ascertaining the realistic potential, the likely costs, and the most beneficial pattern of deployment of CCS as an option to reduce CO{sub 2} concentrations in the atmosphere.« less

  11. Cost implications of uncertainty in CO2 storage resource estimates: A review

    USGS Publications Warehouse

    Anderson, Steven T.

    2017-01-01

    Carbon capture from stationary sources and geologic storage of carbon dioxide (CO2) is an important option to include in strategies to mitigate greenhouse gas emissions. However, the potential costs of commercial-scale CO2 storage are not well constrained, stemming from the inherent uncertainty in storage resource estimates coupled with a lack of detailed estimates of the infrastructure needed to access those resources. Storage resource estimates are highly dependent on storage efficiency values or storage coefficients, which are calculated based on ranges of uncertain geological and physical reservoir parameters. If dynamic factors (such as variability in storage efficiencies, pressure interference, and acceptable injection rates over time), reservoir pressure limitations, boundaries on migration of CO2, consideration of closed or semi-closed saline reservoir systems, and other possible constraints on the technically accessible CO2 storage resource (TASR) are accounted for, it is likely that only a fraction of the TASR could be available without incurring significant additional costs. Although storage resource estimates typically assume that any issues with pressure buildup due to CO2 injection will be mitigated by reservoir pressure management, estimates of the costs of CO2 storage generally do not include the costs of active pressure management. Production of saline waters (brines) could be essential to increasing the dynamic storage capacity of most reservoirs, but including the costs of this critical method of reservoir pressure management could increase current estimates of the costs of CO2 storage by two times, or more. Even without considering the implications for reservoir pressure management, geologic uncertainty can significantly impact CO2 storage capacities and costs, and contribute to uncertainty in carbon capture and storage (CCS) systems. Given the current state of available information and the scarcity of (data from) long-term commercial-scale CO2 storage projects, decision makers may experience considerable difficulty in ascertaining the realistic potential, the likely costs, and the most beneficial pattern of deployment of CCS as an option to reduce CO2 concentrations in the atmosphere.

  12. Pressure dependence of the absolute rate constant for the reaction OH + C2H2 from 228 to 413K

    NASA Technical Reports Server (NTRS)

    Michael, J. V.; Nava, D. F.; Borokowski, R. P.; Payne, W. A.; Stief, L. J.

    1980-01-01

    The pressure dependence of absolute rate constants for the reaction of OH + C2H2 yields products has been examined at five temperatures ranging from 228 to 413 K. The experimental techniques which was used is flash photolysis-resonance fluoresence. OH was produced by water photolysis and hydroxyl resonance fluorescent photons were measured by multiscaling techniques. The results indicate that the low pressure bimolecular rate constant is 4 x 10 the the minus 13th power cu cm molecule (-1) s(-1) over the temperature range studied. A substantial increase in the bimolecular rate constant with an increase in pressure was observed at all temperatures except 228 K. This indicates the importance of initial adduct formation and subsequent stablization. The high pressure results are well represented by the Arrhenius expression (k sub bi) sub infinity = (6.83 + or - 1.19) x 10 to the minus 12th power exp(-646 + or - 47/T)cu cm molecule (-1) s(-1). The results are compared to previous investigated and are theoretically discussed. The implications of these results on modeling of terrestrial and planetary atmospheres and also in combustion chemistry are discussed.

  13. Functional morphology of the lower esophageal sphincter and crural diaphragm determined by three-dimensional high-resolution esophago-gastric junction pressure profile and CT imaging.

    PubMed

    Mittal, Ravinder K; Zifan, Ali; Kumar, Dushyant; Ledgerwood-Lee, Melissa; Ruppert, Erika; Ghahremani, Gary

    2017-09-01

    The smooth muscles of the lower esophageal sphincter (LES) and skeletal muscles of the crural diaphragm (CD) provide a closure/antireflux barrier mechanism at the esophago-gastric junction (EGJ). A number of questions in regard to the pressure profile of the LES and CD remain unclear, e.g., 1 ) Why is the LES pressure profile circumferentially asymmetric, 2 ) Is the crural diaphragm (CD) contraction also circumferentially asymmetric, and 3 ) Where is the LES and CD pressure profile located in the anatomy of the esophagus and stomach? The three-dimensional (3-D) high-resolution esophageal manometry (HRM) catheter can record a detailed profile of the EGJ pressure; however, it does not allow the determination of the circumferential orientation of individual pressure transducers in vivo. We used computed tomography (CT) scan imaging in combination with 3-D EGJ pressure recordings to determine the functional morphology of the LES and CD and its relationship to the EGJ anatomy. A 3-D-HRM catheter with 96 transducers (12 rings, 7.5 mm apart, located over 9-cm length of the catheter, with eight transducers in each ring, 45° apart (Medtronics), was used to record the EGJ pressure in 10 healthy subjects. A 0.5-mm diameter metal ball (BB) was taped to the catheter, adjacent to transducer 1 of the catheter. The EGJ was recorded under the following conditions: 1 ) end-expiration (LES pressure) before swallow, after swallow, and after edrophonium hydrochloride; and 2 ) peak inspiration (crural diaphragm contraction) for tidal inspiration and forced maximal inspiration. A CT scan was performed to localize the circumferential orientation of the BB. The CT scan imaging allowed the determination of the circumferential orientation of the LES and CD pressure profiles. The LES pressure under the three end-expiration conditions were different; however, the shape of the pressure profile was unique with the LES length longer toward the lesser curvature of the stomach as compared with the greater curvature. The pressure profile revealed circular and axial pressure asymmetry, with greatest pressure and shortest cranio-caudal length on the left (close to the angle of His). The CD contraction with tidal and forced inspiration increases pressure in the cranial half of the LES pressure profile, and it was placed horizontally across the recording. The CD, esophagus, and stomach were outlined in the CT scan images to construct a 3-D anatomy of the region; it revealed that the hiatus (CD) is placed obliquely across the esophagus; however, because of the bend of the esophagus to the left at the upper edge of the hiatus, the two were placed at right angle to each other, which resulted in a horizontal pressure profile of the CD on the LES. Our observations suggest a unique shape of the LES, CD, and the anatomical relationship between the two, which provides a possible explanation as to why the LES pressure shows circumferential and axial asymmetry. Our findings have implication for the length and circumferential orientation of myotomy incision required for the ablation of LES pressure in achalasia esophagus. NEW & NOTEWORTHY We used computed tomography scan imaging with three-dimensional esophago-gastric junction (EGJ) pressure recordings to determine functional morphology of the lower esophageal sphincter (LES) and crural diaphragm and its relationship to EGJ anatomy. The LES pressure profile was unique with the LES length longer and pressures lower toward the lesser curvature of the stomach, as compared with the greater curvature. Our findings have implications for the length and circumferential orientation of myotomy incision required for the ablation of LES pressure in the achalasia esophagus. Copyright © 2017 the American Physiological Society.

  14. Messengers from the deep: Fossil wadsleyite-chromite microstructures from the Mantle Transition Zone.

    PubMed

    Satsukawa, Takako; Griffin, William L; Piazolo, Sandra; O'Reilly, Suzanne Y

    2015-11-13

    Investigations of the Mantle Transition Zone (MTZ; 410-660 km deep) by deformation experiments and geophysical methods suggest that the MTZ has distinct rheological properties, but their exact cause is still unclear due to the lack of natural samples. Here we present the first direct evidence for crystal-plastic deformation by dislocation creep in the MTZ using a chromitite from the Luobusa peridotite (E. Tibet). Chromite grains show exsolution of diopside and SiO2, suggesting previous equilibration in the MTZ. Electron backscattered diffraction (EBSD) analysis reveals that olivine grains co-existing with exsolved phases inside chromite grains and occurring on chromite grain boundaries have a single pronounced crystallographic preferred orientation (CPO). This suggests that olivine preserves the CPO of a high-pressure polymorph (wadsleyite) before the high-pressure polymorph of chromite began to invert and exsolve. Chromite also shows a significant CPO. Thus, the fine-grained high-pressure phases were deformed by dislocation creep in the MTZ. Grain growth in inverted chromite produced an equilibrated microstructure during exhumation to the surface, masking at first sight its MTZ deformation history. These unique observations provide a window into the deep Earth, and constraints for interpreting geophysical signals and their geodynamic implications in a geologically robust context.

  15. Measurements of mineral thermal conductivity at high pressures and temperatures with the laser-heated diamond anvil cell

    NASA Astrophysics Data System (ADS)

    McGuire, C. P.; Rainey, E.; Kavner, A.

    2016-12-01

    The high-pressure, high-temperature thermal conductivities of lower mantle oxides and silicates play an important role in governing the heat flow across the core-mantle boundary, and the thermal conductivity of core materials determines, at first order, the power required to run the geodynamo. Uncertainties in the pressure-dependence and compositional-dependence of thermal conductivities has complicated our understanding of the heat flow in the deep earth and has implications for the geodynamo mechanism (Buffett, 2012). The goal of this study is to measure how thermal conductivity varies with pressure and composition using a technique that combines temperature measurements as a function of power input in the laser-heated diamond anvil cell (LHDAC) with a model of three-dimensional heat flow (Rainey & Kavner, 2014). In one set of experiments, we measured temperature versus laser-power for iron, iron silicide, and stainless steel (Fe:Cr:Ni = 70:19:11 wt%), using a variety of insulating layers. In another set of experiments, we measured temperature vs. laser power for a series of Fe-bearing periclase (Mg1-x,FexO) samples, with compositions ranging from x = .24 to x = .78. These experiments were conducted up to pressures of 25 GPa and temperatures of 2800 K. A numerical model for heat conduction in the LHDAC is used to forward model the temperature versus laser power curves at successive pressures, solving for the change in thermal conductivity of the material required to best reproduce the measurements. The heat flow model is implemented using a finite element full-approximation storage (FAS) multi-grid solver, which allows for efficient computation with flexible inputs for geometry and material properties in the diamond anvil cell (Rainey et al., 2013). We use the results of our experiments and model to extract pressure and compositional dependencies of thermal conductivity for the materials described herein. The results are used to help constrain models of the thermal properties of core and mantle materials.

  16. Blood Pressure Genetic Risk Score Predicts Blood Pressure Responses to Dietary Sodium and Potassium: The GenSalt Study (Genetic Epidemiology Network of Salt Sensitivity).

    PubMed

    Nierenberg, Jovia L; Li, Changwei; He, Jiang; Gu, Dongfeng; Chen, Jichun; Lu, Xiangfeng; Li, Jianxin; Wu, Xigui; Gu, C Charles; Hixson, James E; Rao, Dabeeru C; Kelly, Tanika N

    2017-12-01

    We examined the association between genetic risk score (GRS) for blood pressure (BP), based on single nucleotide polymorphisms identified in previous BP genome-wide association study meta-analyses, and salt and potassium sensitivity of BP among participants of the GenSalt study (Genetic Epidemiology Network of Salt Sensitivity). The GenSalt study was conducted among 1906 participants who underwent a 7-day low-sodium (51.3 mmol sodium/d), 7-day high-sodium (307.8 mmol sodium/d), and 7-day high-sodium plus potassium (60 mmol potassium/d) intervention. BP was measured 9× at baseline and at the end of each intervention period using a random zero sphygmomanometer. Associations between systolic BP (SBP), diastolic BP, and mean arterial pressure GRS and respective SBP, diastolic BP, and mean arterial pressure responses to the dietary interventions were assessed using mixed linear regression models that accounted for familial dependencies and adjusted for age, sex, field center, body mass index, and baseline BP. As expected, baseline SBP, diastolic BP, and mean arterial pressure significantly increased per quartile increase in GRS ( P =2.7×10 -8 , 9.8×10 -8 , and 6.4×10 -6 , respectively). In contrast, increasing GRS quartile conferred smaller SBP, diastolic BP, and mean arterial pressure responses to the low-sodium intervention ( P =1.4×10 -3 , 0.02, and 0.06, respectively) and smaller SBP responses to the high-sodium and potassium interventions ( P =0.10 and 0.05). In addition, overall findings were similar when examining GRS as a continuous measure. Contrary to our initial hypothesis, we identified an inverse relationship between BP GRS and salt and potassium sensitivity of BP. These data may provide novel implications on the relationship between BP responses to dietary sodium and potassium and hypertension. © 2017 American Heart Association, Inc.

  17. Vitrification of polymer solutions as a function of solvent quality, analyzed via vapor pressures

    NASA Astrophysics Data System (ADS)

    Bercea, Maria; Wolf, Bernhard A.

    2006-05-01

    Vapor pressures (headspace sampling in combination with gas chromatography) and glass transition temperatures [differential scanning calorimetry (DSC)] have been measured for solutions of polystyrene (PS) in either toluene (TL) (10-70°C) or cyclohexane (CH) (32-60°C) from moderately concentrated solutions up to the pure polymer. As long as the mixtures are liquid, the vapor pressure of TL (good solvent) is considerably lower than that of CH (theta solvent) under other identical conditions. These differences vanish upon the vitrification of the solutions. For TL the isothermal liquid-solid transition induced by an increase of polymer concentration takes place within a finite composition interval at constant vapor pressure; with CH this phenomenon is either absent or too insignificant to be detected. For PS solutions in TL the DSC traces look as usual, whereas these curves may become bimodal for solutions in CH. The implications of the vitrification of the polymer solutions for the determination of Flory-Huggins interaction parameters from vapor pressure data are discussed. A comparison of the results for TL/PS with recently published data on the same system demonstrates that the experimental method employed for the determination of vapor pressures plays an important role at high polymer concentrations and low temperatures.

  18. Cynicism, anger and cardiovascular reactivity during anger recall and human-computer interaction.

    PubMed

    Why, Yong Peng; Johnston, Derek W

    2008-06-01

    Cynicism moderated by interpersonal anger has been found to be related to cardiovascular reactivity. This paper reports two studies; Study 1 used an Anger Recall task, which aroused interpersonal anger, while participants in Study 2 engaged in a multitasking computer task, which aroused non-interpersonal anger via systematic manipulation of the functioning of the computer mouse. The Cynicism by State Anger interaction was significant for blood pressure arousal in Study 2 but not for Study 1: in Study 2, when State Anger was high, cynicism was positively related to blood pressure arousal but when State Anger was low, cynicism was negatively related to blood pressure arousal. For both studies, when State Anger was low, cynicism was positively related to cardiac output arousal and negatively related to vascular arousal. The results suggest that Cynicism-State Anger interaction can be generalised to non-social anger-arousing situations for hemodynamic processes but blood pressure reactivity is task-dependent. The implication for the role of job control and cardiovascular health during human-computer interactions is discussed.

  19. Thermal and Evolved Gas Analysis of Hydromagnesite and Nesquehonite: Implications for Remote Thermal Analysis on Mars

    NASA Technical Reports Server (NTRS)

    Lauer, H. V., Jr.; Ming, D. W.; Golden, D. C.; Lin, I.-C.; Boynton, W. V.

    2000-01-01

    Volatile-bearing minerals (e.g., Fe-oxyhydroxides, phyllosilicates, carbonates, and sulfates) may be important phases on the surface of Mars. In order to characterize these potential phases the Thermal Evolved-Gas Analyzer (TEGA), which was onboard the Mars Polar Lander, was to have performed differential scanning calorimetry (DSC) and evolved-gas analysis of soil samples collected from the surface. The sample chamber in TEGA operates at about 100 mbar (approximately 76 torr) with a N2, carrier gas flow of 0.4 seem. Essentially, no information exists on the effects of reduced pressure on the thermal properties of volatile-bearing minerals. In support of TEGA, we have constructed a laboratory analog for TEGA from commercial instrumentation. We connected together a commercial differential scanning calorimeter, a quadruple mass spectrometer, a vacuum pump, digital pressure gauge, electronic mass flow meter, gas "K" bottles, gas dryers, and high and low pressure regulators using a collection of shut off and needle valves. Our arrangement allows us to vary and control the pressure and carrier gas flow rate inside the calorimeter oven chamber.

  20. Elasticity of Orthoenstatite at High Pressure and Temperature: Implications for the Origin of Low VP/VS Zones in the Mantle Wedge

    NASA Astrophysics Data System (ADS)

    Qian, Wangsheng; Wang, Wenzhong; Zou, Fan; Wu, Zhongqing

    2018-01-01

    Orthopyroxene (opx) is an important mineral in petrologic models for the upper mantle. Its elastic properties are fundamental for understanding the chemical composition and geodynamics of the upper mantle. Here we calculate the elastic properties of orthoenstatite (MgSiO3), the Mg end-member orthopyroxene under upper mantle pressure and temperature conditions using first principle calculations with local density approximation. Bulk and shear moduli increase nonlinearly with pressure at mantle temperatures, but the shear modulus and VS show very weak pressure dependence in comparison with VP. Compared to other major minerals in the upper mantle, orthoenstatite has the lowest compressional velocities (VP), shear velocities (VS), and VP/VS ratio down to the depth of approximately 300 km. The enrichment of opx in the upper mantle can cause the unusually low VP/VS observed in the mantle wedge.

  1. High-pressure behavior of intermediate scapolite: compressibility, structure deformation and phase transition

    NASA Astrophysics Data System (ADS)

    Lotti, Paolo; Comboni, Davide; Merlini, Marco; Hanfland, Michael

    2018-05-01

    Scapolites are common volatile-bearing minerals in metamorphic rocks. In this study, the high-pressure behavior of an intermediate member of the scapolite solid solution series (Me47), chemical formula (Na1.86Ca1.86K0.23Fe0.01)(Al4.36Si7.64)O24[Cl0.48(CO3)0.48(SO4)0.01], has been investigated up to 17.79 GPa, by means of in situ single-crystal synchrotron X-ray diffraction. The isothermal elastic behavior of the studied scapolite has been described by a III-order Birch-Murnaghan equation of state, which provided the following refined parameters: V 0 = 1110.6(7) Å3, {K_{{V_0}}} = 70(2) GPa ({β _{{V_0}}} = 0.0143(4) GPa-1) and {K_{{V}}^' = 4.8(7). The refined bulk modulus is intermediate between those previously reported for Me17 and Me68 scapolite samples, confirming that the bulk compressibility among the solid solution increases with the Na content. A discussion on the P-induced structure deformation mechanisms of tetragonal scapolite at the atomic scale is provided, along with the implications of the reported results for the modeling of scapolite stability. In addition, a single-crystal to single-crystal phase transition, which is displacive in character, has been observed toward a triclinic polymorph at 9.87 GPa. The high-pressure triclinic polymorph was found to be stable up to the highest pressure investigated.

  2. Effects of hydrostatic pressure on monoaminergic activity in the brain of a tropical wrasse, Halicoeres trimaculatus: possible implication for controlling tidal-related reproductive activity.

    PubMed

    Takemura, Akihiro; Shibata, Yoriko; Takeuchi, Yuki; Hur, Sung-Pyo; Sugama, Nozomi; Badruzzaman, Md

    2012-01-01

    Most wrasse species in tropical waters exhibit daily spawning synchrony with a preference for high tide. Fish perceive tidal rhythm cues through sensory organs and activate the brain-pituitary-gonadal endocrine axis for synchronous gonadal maturation, although how the tidal-related spawning cycle is controlled endogenously is not known. The purpose of this study was to examine whether hydrostatic pressure has an impact on brain monoamine levels and reproductive activities in the threespot wrasse Halichoeres trimaculatus. The contents of dopamine (DA), 3,4-dihydroxyphenylacetic acid (DOPAC), serotonin (5-HT), and 5-hydroxyindoleacetic acid (5-HIAA) in the brain were measured using high-performance liquid chromatography and an electrochemical detection system. Exposing the fish to hydrostatic pressure occurring at a 3-m depth (~30 kPa) resulted in an increase in 5-HIAA/5-HT over 3h and a decrease in DOPAC/DA over 6h. No changes in gonadosomatic index or oocyte diameter were observed between the groups when female fish were reared at 0-m and 3-m depth for 3h. Hydrostatic pressure did not alter pituitary mRNA abundance of follicle stimulating hormone-β or luteinizing hormone-β. However, in vitro culture of ovaries from pressurized fish in the presence of human chorionic gonadotropin resulted in an increase in 17α,20β-dihydroxy-4-pregnen-3-one in the medium. These results suggest that hydrostatic pressure activates oocyte maturation through brain monoaminergic activity in this tropical wrasse species. Copyright © 2011 Elsevier Inc. All rights reserved.

  3. Cyclic Explosivity in High Elevation Phreatomagmatic Eruptions at Ocean Island Volcanoes: Implications for Aquifer Pressurization and Volcano Flank Destabilization.

    NASA Astrophysics Data System (ADS)

    Tarff, R.; Day, S. J.; Downes, H.; Seghedi, I.

    2015-12-01

    Groundwater heating and pressurization of aquifers trapped between dikes in ocean island volcanoes has been proposed as a mechanism for destabilizing and triggering large-volume flank collapses. Previous modelling has indicated that heat transfer from sustained magma flow through dikes during eruption has the potential to produce destabilizing levels of pressure on time scales of 4 to 400 days, if the aquifers remain confined. Here we revisit this proposal from a different perspective. We examine evidence for pressure variations in dike-confined aquifers during eruptions at high elevation vents on ocean island volcanoes. Initially magmatic, these eruptions change to mostly small-volume explosive phreatomagmatic activity. A recent example is the 1949 eruption on La Palma, Canary Islands. Some such eruptions involve sequences of larger-volume explosive phases or cycles, including production of voluminous low-temperature, pyroclastic density currents (PDC). Here we present and interpret data from the Cova de Paul crater eruption (Santo Antao, Cape Verde Islands). The phreatomagmatic part of this eruption formed two cycles, each culminating with eruption of PDCs. Compositional and textural variations in the products of both cycles indicate that the diatreme fill began as coarse-grained and permeable which allowed gas to escape. During the eruption, the fill evolved to a finer grained, poorly sorted, less permeable material, in which pore fluid pressures built up to produce violent explosive phases. This implies that aquifers adjacent to the feeder intrusion were not simply depressurized at the onset of phreatomagmatic explosivity but experienced fluctuations in pressure throughout the eruption as the vent repeatedly choked and emptied. In combination with fluctuations in magma supply rate, driving of aquifer pressurization by cyclical vent choking will further complicate the prediction of flank destabilization during comparable eruptions on ocean island volcanoes.

  4. Influence of critical closing pressure on systemic vascular resistance and total arterial compliance: A clinical invasive study.

    PubMed

    Chemla, Denis; Lau, Edmund M T; Hervé, Philippe; Millasseau, Sandrine; Brahimi, Mabrouk; Zhu, Kaixian; Sattler, Caroline; Garcia, Gilles; Attal, Pierre; Nitenberg, Alain

    2017-12-01

    Systemic vascular resistance (SVR) and total arterial compliance (TAC) modulate systemic arterial load, and their product is the time constant (Tau) of the Windkessel. Previous studies have assumed that aortic pressure decays towards a pressure asymptote (P∞) close to 0mmHg, as right atrial pressure is considered the outflow pressure. Using these assumptions, aortic Tau values of ∼1.5seconds have been documented. However, a zero P∞ may not be physiological because of the high critical closing pressure previously documented in vivo. To calculate precisely the Tau and P∞ of the Windkessel, and to determine the implications for the indices of systemic arterial load. Aortic pressure decay was analysed using high-fidelity recordings in 16 subjects. Tau was calculated assuming P∞=0mmHg, and by two methods that make no assumptions regarding P∞ (the derivative and best-fit methods). Assuming P∞=0mmHg, we documented a Tau value of 1372±308ms, with only 29% of Windkessel function manifested by end-diastole. In contrast, Tau values of 306±109 and 353±106ms were found from the derivative and best-fit methods, with P∞ values of 75±12 and 71±12mmHg, and with ∼80% completion of Windkessel function. The "effective" resistance and compliance were ∼70% and ∼40% less than SVR and TAC (area method), respectively. We did not challenge the Windkessel model, but rather the estimation technique of model variables (Tau, SVR, TAC) that assumes P∞=0. The study favoured a shorter Tau of the Windkessel and a higher P∞ compared with previous studies. This calls for a reappraisal of the quantification of systemic arterial load. Crown Copyright © 2017. Published by Elsevier Masson SAS. All rights reserved.

  5. Responses to LBNP in men with varying profiles of strength and aerobic capacity: Implications for flight crews

    NASA Technical Reports Server (NTRS)

    Convertino, Victor A.; Mathes, Karen L.; Lasley, Mary L.; Tomaselli, Clare Marie; Frey, Mary Anne Bassett; Hoffler, G. Wyckliffe

    1993-01-01

    Hemodynamic and hormonal responses to lower-body negative pressure (LBNP) were examined in 24 healthy men to test the hypothesis that responsiveness of reflex control of blood pressure during orthostatic stress is associated with strength and/or aerobic capacity. Subjects underwent treadmill tests to determine peak oxygen uptake (peak VO2) and isokinetic dynamo meter tests to determine leg strength. Based on predetermined criteria, the subjects were classified into one of four fitness profiles of six subjects each matched for age, height, and weight: (1) low strength/low aerobic fitness; (2) low strength/high aerobic fitness; (3) high strength/low aerobic fitness; and (4) high strength/high aerobic fitness. Following 90 min of 6 degree head-down tilt (HDT), each subject underwent graded LBNP through -50 mmHg or presyncope, with maximal duration 15 min. All groups exhibited typical hemodynamic, hormonal, and fluid shift responses during LBNP, with no intergroup differences except for catecholamines. Seven subjects, distributed among the four fitness profiles, became presyncopal. Subjects who showed greatest reduction in mean arterial pressure (MAP) during LBNP had greater elevations in vasopressin and lesser increases in heart rate and peripheral resistance. Peak VO2 nor leg strength were correlated with fall in MAP or with syncopal episodes. We conclude that neither aerobic nor strength fitness characteristics are good predictors of responses to LBNP stress.

  6. Occurrence of high-beta superthermal plasma events in the close environment of Jupiter's bow shock as observed by Ulysses

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Marhavilas, P. K.; Sarris, E. T.; Anagnostopoulos, G. C.

    2011-01-04

    The ratio of the plasma pressure to the magnetic field pressure (or of their energy densities) which is known as the plasma parameter 'beta'({beta}) has important implications to the propagation of energetic particles and the interaction of the solar wind with planetary magnetospheres. Although in the scientific literature the contribution of the superthermal particles to the plasma pressure is generally assumed negligible, we deduced, by analyzing energetic particles and magnetic field measurements recorded by the Ulysses spacecraft, that in a series of events, the energy density contained in the superthermal tail of the particle distribution is comparable to or evenmore » higher than the energy density of the magnetic field, creating conditions of high-beta plasma. More explicitly, in this paper we analyze Ulysses/HI-SCALE measurements of the energy density ratio (parameter {beta}{sub ep}) of the energetic ions'(20 keV to {approx}5 MeV) to the magnetic field's in order to find occurrences of high-beta ({beta}{sub ep}>1) superthermal plasma conditions in the environment of the Jovian magnetosphere, which is an interesting plasma laboratory and an important source of emissions in our solar system. In particular, we examine high-beta ion events close to Jupiter's bow shock, which are produced by two processes: (a) bow shock ion acceleration and (b) ion leakage from the magnetosphere.« less

  7. Abnormal pressures as hydrodynamic phenomena

    USGS Publications Warehouse

    Neuzil, C.E.

    1995-01-01

    So-called abnormal pressures, subsurface fluid pressures significantly higher or lower than hydrostatic, have excited speculation about their origin since subsurface exploration first encountered them. Two distinct conceptual models for abnormal pressures have gained currency among earth scientists. The static model sees abnormal pressures generally as relict features preserved by a virtual absence of fluid flow over geologic time. The hydrodynamic model instead envisions abnormal pressures as phenomena in which flow usually plays an important role. This paper develops the theoretical framework for abnormal pressures as hydrodynamic phenomena, shows that it explains the manifold occurrences of abnormal pressures, and examines the implications of this approach. -from Author

  8. Probabilistic Modeling of Intracranial Pressure Effects on Optic Nerve Biomechanics

    NASA Technical Reports Server (NTRS)

    Ethier, C. R.; Feola, Andrew J.; Raykin, Julia; Myers, Jerry G.; Nelson, Emily S.; Samuels, Brian C.

    2016-01-01

    Altered intracranial pressure (ICP) is involved/implicated in several ocular conditions: papilledema, glaucoma and Visual Impairment and Intracranial Pressure (VIIP) syndrome. The biomechanical effects of altered ICP on optic nerve head (ONH) tissues in these conditions are uncertain but likely important. We have quantified ICP-induced deformations of ONH tissues, using finite element (FE) and probabilistic modeling (Latin Hypercube Simulations (LHS)) to consider a range of tissue properties and relevant pressures.

  9. Viability and metal reduction of Shewanella oneidensis MR-1 under CO2 stress: implications for ecological effects of CO2 leakage from geologic CO2 sequestration.

    PubMed

    Wu, Bing; Shao, Hongbo; Wang, Zhipeng; Hu, Yandi; Tang, Yinjie J; Jun, Young-Shin

    2010-12-01

    To study potential ecological impacts of CO(2) leakage to shallow groundwater and soil/sediments from geologic CO(2) sequestration (GCS) sites, this work investigated the viability and metal reduction of Shewanella oneidensis MR-1 under CO(2) stress. While MR-1 could grow under high-pressure nitrogen gas (500 psi), the mix of 1% CO(2) with N(2) at total pressures of 15 or 150 psi significantly suppressed the growth of MR-1, compared to the N(2) control. When CO(2) partial pressures were over 15 psi, the growth of MR-1 stopped. The reduced bacterial viability was consistent with the pH decrease and cellular membrane damage under high pressure CO(2). After exposure to 150 psi CO(2) for 5 h, no viable cells survived, the cellular contents were released, and microscopy images confirmed significant cell structure deformation. However, after a relatively short exposure (25 min) to 150 psi CO(2), MR-1 could fully recover their growth within 24 h after the stress was removed, and the reduction of MnO(2) by MR-1 was observed right after the stress was removed. Furthermore, MR-1 survived better if the cells were aggregated rather than suspended, or if pH buffering minerals, such as calcite, were present. To predict the cell viability under different CO(2) pressures and exposure times, a two-parameter mathematical model was developed.

  10. Pupils' Pressure Models and Their Implications for Instruction.

    ERIC Educational Resources Information Center

    Kariotoglou, P.; Psillos, D.

    1993-01-01

    Discusses a study designed to investigate pupils' conceptions about fluids and particularly liquids in equilibrium, with reference to the concept of pressure. Based upon the results obtained, several mental models of how pupils understand liquids in equilibrium were proposed. (ZWH)

  11. Modeling Thermal Pressurization Around Shallow Dikes Using Temperature-Dependent Hydraulic Properties: Implications for Deformation Around Intrusions

    NASA Astrophysics Data System (ADS)

    Townsend, Meredith R.

    2018-01-01

    Pressurization and flow of groundwater around igneous intrusions depend in part on the hydraulic diffusivity of the host rocks and processes that enhance diffusivity, such as fracturing, or decrease diffusivity, such as mineral precipitation during chemical alteration. Characterizing and quantifying the coupled effects of alteration, pore pressurization, and deformation have significant implications for deformation around intrusions, geothermal energy, contact metamorphism, and heat transfer at mid-ocean ridges. Fractures around dikes at Ship Rock, New Mexico, indicate that pore pressures in the host rocks exceeded hydrostatic conditions by at least 15 MPa following dike emplacement. Hydraulic measurements and petrographic analysis indicate that mineral precipitation clogged the pores of the host rock, reducing porosity from 0.25 to <0.10 and reducing permeability by 5 orders of magnitude. Field data from Ship Rock are used to motivate and constrain numerical models for thermal pore fluid pressurization adjacent to a meter-scale dike, using temperature-dependent hydraulic properties in the host rock as a proxy for porosity loss by mineral precipitation during chemical alteration. Reduction in permeability by chemical alteration has a negligible effect on pressurization. However, reduction in porosity by mineral precipitation increases fluid pressure by constricting pore volume and is identified as a potentially significant source of pressure. A scaling relationship is derived to determine when porosity loss becomes important; if permeability is low enough, pressurization by porosity loss outweighs pressurization by thermal expansion of fluids.

  12. When Mothers and Fathers Are Seen as Disproportionately Valuing Achievements: Implications for Adjustment Among Upper Middle Class Youth

    PubMed Central

    Ciciolla, Lucia; Curlee, Alexandria S.; Karageorge, Jason; Luthar, Suniya S.

    2016-01-01

    High achievement expectations and academic pressure from parents have been implicated in rising levels of stress and reduced well-being among adolescents. In this study of affluent, middle-school youth, we examined how perceptions of parents' emphasis on achievement (relative to prosocial behavior) influenced youth's psychological adjustment and school performance, and examined perceived parental criticism as a possible moderator of this association. The data were collected from 506 (50% female) middle school students from a predominately white, upper-middle-class community. Students reported their perceptions of parents' values by rank ordering a list of achievement- and prosocial-oriented goals based on what they believed was most valued by their mothers and fathers for them (the child) to achieve. The data also included students' reports of perceived parental criticism, internalizing symptoms, externalizing symptoms, and self-esteem, as well as school-based data on grade point average and teacher-reported classroom behavior. Person-based analyses revealed six distinct latent classes based on perceptions of both mother and father emphases on achievement. Class comparisons showed a consistent pattern of healthier child functioning, including higher school performance, higher self-esteem, and lower psychological symptoms, in association with low to neutral parental achievement emphasis, whereas poorer child functioning was associated with high parental achievement emphasis. In variable-based analyses, interaction effects showed elevated maladjustment when high maternal achievement emphasis coexisted with high (but not low) perceived parental criticism. Results of the study suggest that to foster early adolescents' well-being in affluent school settings, parents focus on prioritizing intrinsic, prosocial values that promote affiliation and community, at least as much as, or more than, they prioritize academic performance and external achievement; and strive to limit the amount of criticism and pressure they place on their children. PMID:27830404

  13. Baroreflex-Mediated Heart Rate and Vascular Resistance Responses 24 h after Maximal Exercise

    DTIC Science & Technology

    2003-01-01

    of normal physiological function in bedridden patients and astronauts. The implication for failure of CVP and plasma volume to return to baseline... FUNCTION , BLOOD PRES- SURE, CENTRAL VENOUS PRESSURE, PHENYLEPHRINE, NECK PRESSURE, LOWER BODY NEGATIVE PRESSURE, COUNTERMEASURES Increased incidence of...orthostatic hypotension and intol-erance in humans is associated with vascular hypovole-mia and attenuated cardiovascular reflex functions

  14. Single European currency and Monetary Union. Macroeconomic implications for pharmaceutical spending.

    PubMed

    Kanavos, P

    1998-01-01

    This article examines the potential implications of introducing a single currency among the Member States of the European Union for national pharmaceutical prices and spending. In doing so, it provides a brief account of the direct effects of introducing a single currency on pharmaceutical business. These are static in nature and include the elimination of exchange rate volatility and transaction costs, increased price transparency and limited potential for parallel trade. It subsequently analyses the potential medium and long term macroeconomic policy choices facing the Member States and their impact on pharmaceutical spending following the introduction of a single currency. These include policy directions in order to meet the Maastricht convergence criteria in the run-up to forming an Economic and Monetary Union (EMU) and the implications of EMU on national macroeconomic policy thereafter. This article argues that the necessity for tight fiscal policies across the EU and, in particular, in those Member States facing high budget deficits and overall debt levels, will continue to exert considerable downward pressure on pharmaceutical spending.

  15. The high-pressure phase transitions of hydroxides

    NASA Astrophysics Data System (ADS)

    Nishi, M.; Kuwayama, Y.; Tsuchiya, J.; Tsuchiya, T.; Irifune, T.

    2017-12-01

    The discovery of new high-pressure hydrous minerals has important implications for understanding the structure, dynamics, and evolution of the Earth, since hydrogen significantly affects the physical properties and stabilities of Earth's constituent minerals. Whereas hydrous minerals commonly dehydrate under pressures of around a few tens of gigapascals (GPa) and at temperature around 1,500 K, those with CaCl2-type crystal structure, MgSiO4H2 phase H, δ-AlOOH and ɛ-FeOOH, are known to be stable at pressures corresponding to the lower mantle. However, although the CaCl2-type hydroxides were suggested to form a solid solution owing to their similar crystal structure, there are few experimental studies on the stability of the hydroxide in such multicomponent. Moreover, ab initio calculations have predicted that some CaCl2-type hydroxides transform to pyrite-type structure at higher pressures. Here, we conducted high pressure-temperature experiments on pure AlOOH, FeOOH, and their solid solutions, with the aid of these first-principles predictions. We use in situ X-ray measurements in conjunction with a multi-anvil apparatus to study the high-pressure behaviour of hydroxides in the multicomponent system under middle lower mantle conditions. Solid solutions in wide compositional ranges between CaCl2-type δ-AlOOH and ɛ-FeOOH were recognized from X-ray diffraction patterns. Also, unit cell volume of FeOOH and (Al,Fe)OOH significantly decreased accompanied with the spin transition of iron at 50 GPa. Thus, the wide compositional ranges in CaCl2-type hydroxide are maintained beyond the depth of the middle lower mantle, where the spin transition of iron occurs. We used a laser-heated diamond anvil cell in order to study the stability of AlOOH and FeOOH at higher pressures above 70 GPa. We observed that ɛ-FeOOH transforms to the pyrite-type structure at above 80 GPa, which is consistent with the theoretical prediction. At conditions above 190 GPa and 2,500 K, we observed the phase transition of δ-AlOOH to its higher pressure phase at above 170 GPa although further experimental study should be required to determine the precise structure. Based on these experimental and theoretical results, the stability and phase transitions of hydrous phases in the lower mantle will be discussed.

  16. Structure and Stability of High-Pressure Dolomite with Implications for the Earth's Deep Carbon Cycle

    NASA Astrophysics Data System (ADS)

    Solomatova, N. V.; Asimow, P. D.

    2014-12-01

    Carbon is subducted into the mantle primarily in the form of metasomatically calcium-enriched basaltic rock, calcified serpentinites and carbonaceous ooze. The fate of these carbonates in subduction zones is not well understood. End-member CaMg(CO3)2 dolomite typically breaks down into two carbonates at 2-7 GPa, which may further decompose to oxides and CO2-bearing fluid. However, high-pressure X-ray diffraction experiments have recently shown that the presence of iron may be sufficient to stabilize dolomite I to high pressures, allowing the transformation to dolomite II at 17 GPa and subsequently to dolomite III at 35 GPa [1][2]. Such phases may be a principal host for deeply subducted carbon. The structure and equation of state of these high-pressure phases is debated and the effect of varying concentrations of iron is unknown, creating a need for theoretical calculations. Here we compare calculated dolomite structures to experimentally observed phases. Using the Vienna ab-initio simulation package (VASP) interfaced with a genetic algorithm that predicts crystal structures (USPEX), a monoclinic phase with space group 5 ("dolomite sg5") was found for pure end-member dolomite. Dolomite sg5 has a lower energy than reported dolomite structures and an equation of state that resembles that of dolomite III. It is possible that dolomite sg5 is not achieved experimentally due to a large energy barrier and a correspondingly large required volume drop, resulting in the transformation to metastable dolomite II. Due to the complex energy landscape for candidate high-pressure dolomite structures, it is likely that several competing polymorphs exist. Determining the behavior of high-pressure Ca-Mg-Fe(-Mn) dolomite phases in subduction environments is critical for our understanding of the Earth's deep carbon cycle and supercell calculations with Fe substitution are in progress. [1] Mao, Z., Armentrout, M., Rainey, E., Manning, C. E., Dera, P., Prakapenka, V. B., and Kavner, A. (2011). Dolomite III: A new candidate lower mantle carbonate. Geophy. Res. Lett., 38(22). [2] Merlini, M., Crichton, W. A., Hanfland, M., Gemmi, M., Müller, H., Kupenko, I., and Dubrovinsky, L. (2012). Structures of dolomite at ultrahigh pressure and their influence on the deep carbon cycle. Proc. Nat. Acad. Sci., 109(34), 13509-13514.

  17. Using Sandia's Z Machine and Density Functional Theory Simulations to Understand Planetary Materials

    NASA Astrophysics Data System (ADS)

    Root, Seth

    2017-06-01

    The use of Z, NIF, and Omega have produced many breakthrough results in high pressure physics. One area that has greatly benefited from these facilities is the planetary sciences. The high pressure behavior of planetary materials has implications for numerous geophysical and planetary processes. The continuing discovery of exosolar super-Earths demonstrates the need for accurate equation of state data to better inform our models of their interior structures. Planetary collision processes, such as the moon-forming giant impact, require understanding planetary materials over a wide-range of pressures and temperatures. Using Z, we examined the shock compression response of some common planetary materials: MgO, Mg2SiO4, and Fe2O3 (hematite). We compare the experimental shock compression measurements with density functional theory (DFT) based quantum molecular dynamics (QMD) simulations. The combination of experiment and theory provides clearer understanding of planetary materials properties at extreme conditions. Sandia National Laboratories is a multi-mission laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

  18. High altitude-related hypertensive crisis and acute kidney injury in an asymptomatic healthy individual.

    PubMed

    Gilbert-Kawai, Edward; Martin, Daniel; Grocott, Michael; Levett, Denny

    2016-01-01

    High-altitude exposure causes a mild to moderate rise in systolic and diastolic blood pressure. This case report describes the first documented case of a hypertensive crisis at altitude, as well as the first report of the occurrence of acute kidney injury in the context of altitude-related hypertension. A healthy, previously normotensive 30-year old, embarked on a trek to Everest Base Camp (5300 m). During his 11-day ascent the subject developed increasingly worsening hypertension. In the absence of symptoms, the individual initially elected to remain at altitude as had previously been the plan. However, an increase in the severity of his hypertension to a peak of 223/119 mmHg resulted in a decision to descend. On descent he was found to have an acute kidney injury that subsequently resolved spontaneously. His blood pressure reverted to normal at sea level and subsequent investigations including a transthoracic echocardiogram, cardiac magnetic resonance imaging, renal ultrasound, and urinary catecholamines were normal. This report challenges the view that transient rises in blood pressure at altitude are without immediate risk. We review the evidence that altitude induces hypertension and discuss the implications for the management of hypertension at altitude.

  19. Potential implications of dose and diet for the effects of cocoa flavanols on cardiometabolic function.

    PubMed

    Davison, Kade; Howe, Peter R C

    2015-11-18

    The metabolic syndrome is a pathological state whereby cardiovascular and metabolic dysfunction coexist and typically progress in a mutual feed-forward manner to further dysfunction and ultimately disease. The health and function of the vascular endothelium is integral in this phenomenon and thus represents a logical target for intervention. Consumption of foods high in cocoa flavanols has demonstrated a capacity to markedly improve endothelial function and key markers of the metabolic syndrome including blood pressure and insulin sensitivity. The typically high energy content of foods containing sufficient doses of cocoa flavanols has caused some reservations around its therapeutic use, but this is dependent upon the particulars of the food matrix used. Further to this, the food matrix appears to influence the dose response curve of cocoa flavanols, particularly on blood pressure, with dark chocolate appearing to be 8 times more effective in systolic blood pressure reduction than a cocoa powder drink for the equivalent dose of flavanol. Cocoa flavanol consumption conclusively demonstrates a positive impact on cardiometabolic function; however, more research is needed to understand how best to consume it to maximize the benefit while avoiding excessive fat and sugar consumption.

  20. Potential application of high hydrostatic pressure to eliminate Escherichia coli O157:H7 on alfalfa sprouted seeds.

    PubMed

    Neetoo, Hudaa; Ye, Mu; Chen, Haiqiang

    2008-12-10

    Sprouts eaten raw are increasingly being perceived as hazardous foods as they have been implicated in Escherichia coli O157:H7 outbreaks where the seeds were found to be the likely source of contamination. The objective of our study was to evaluate the potential of using high hydrostatic pressure (HHP) technology for alfalfa seed decontamination. Alfalfa seeds inoculated with a cocktail of five strains of E. coli O157:H7 were subjected to pressures of 500 and 600 MPa for 2 min at 20 degrees C in a dry or wet (immersed in water) state. Immersing seeds in water during pressurization considerably enhanced inactivation of E. coli O157:H7 achieving reductions of 3.5 log and 5.7 log at 500 and 600 MPa, respectively. When dry seeds were pressurized, both pressure levels reduced the counts by <0.7 log. To test the efficacy of HHP to completely decontaminate seeds whilst meeting the FDA requirement of 5 log reductions, seeds inoculated with a ~5 log CFU/g of E. coli O157:H7 were pressure-treated at 600 and 650 MPa at 20 degrees C for holding times of 2 to 20 min. A >5 log reduction in the population was achieved when 600 MPa was applied for durations of > or =6 min although survivors were still detected by enrichment. When the pressure was stepped up to 650 MPa, the threshold time required to achieve complete elimination was 15 min. Un-inoculated seeds pressure-treated at 650 MPa for 15 min at 20 degrees C successfully sprouted achieving a germination rate identical to untreated seeds after eight days of sprouting. These results therefore demonstrate the promising application of HHP on alfalfa seeds to eliminate the risk of E. coli O157:H7 infections associated with consumption of raw alfalfa sprouts.

  1. van Hove Singularities and Spectral Smearing in High Temperature Superconducting H3S

    NASA Astrophysics Data System (ADS)

    Quan, Yundi; Pickett, Warren E.

    The superconducting phase of hydrogen sulfide at Tc=200 K observed by Drozdov and collaborators at pressures around 200 GPa is simple bcc Im 3 m H3S reopens questions about what is achievable in high Tc. The various ''extremes'' that are involved - pressure, implying extreme reduction of volume, extremely high H phonon energy scale around 1400K, extremely high temperature for a superconductor - necessitate a close look at new issues raised by these characteristics in relation to high Tc. We have applied first principles methods to analyze the H3S electronic structure, particularly the van Hove singularities (vHs) and the effect of sulfur. Focusing on the two closely spaced vHs near the Fermi level that give rise to the impressively sharp peak in the density of states, the implications of strong coupling Migdal-Eliashberg theory are assessed. The electron spectral density smearing due to virtual phonon emission and absorption, as done in earlier days for A15 superconductors, must be included explicitly to obtain accurate theoretical predictions and a correct understanding. Means for increasing Tc in H3S-like materials will be mentioned. NSF DMR Grant 1207622.

  2. Fractionation products of basaltic komatiite magmas at lower crustal pressures: implications for genesis of silicic magmas in the Archean

    NASA Astrophysics Data System (ADS)

    Mandler, B. E.; Grove, T. L.

    2015-12-01

    Hypotheses for the origin of crustal silicic magmas include both partial melting of basalts and fractional crystallization of mantle-derived melts[1]. Both are recognized as important processes in modern environments. When it comes to Archean rocks, however, partial melting hypotheses dominate the literature. Tonalite-trondhjemite-granodiorite (TTG)-type silicic magmas, ubiquitous in the Archean, are widely thought to be produced by partial melting of subducted, delaminated or otherwise deeply buried hydrated basalts[2]. The potential for a fractional crystallization origin for TTG-type magmas remains largely unexplored. To rectify this asymmetry in approaches to modern vs. ancient rocks, we have performed experiments at high pressures and temperatures to closely simulate fractional crystallization of a basaltic komatiite magma in the lowermost crust. These represent the first experimental determinations of the fractionation products of komatiite-type magmas at elevated pressures. The aim is to test the possibility of a genetic link between basaltic komatiites and TTGs, which are both magmas found predominantly in Archean terranes and less so in modern environments. We will present the 12-kbar fractionation paths of both Al-depleted and Al-undepleted basaltic komatiite magmas, and discuss their implications for the relative importance of magmatic fractionation vs. partial melting in producing more evolved, silicic magmas in the Archean. [1] Annen et al., J. Petrol., 47, 505-539, 2006. [2] Moyen J-F. & Martin H., Lithos, 148, 312-336, 2012.

  3. Instability induced by orthopyroxene phase transformation and implications for deep earthquakes below 300 km depth

    NASA Astrophysics Data System (ADS)

    Shi, F.; Wang, Y.; Zhang, J.; Yu, T.; Zhu, L.

    2017-12-01

    Global earthquake occurrence rate falls exponentially from the surface to 300 km depth, and then peaks again near 500 km depth. Unassisted frictional sliding will not function at depth below the brittle-ductile transition depth (10-15 km) because increasing pressure trends to inhibit frictional sliding and increasing temperature promotes ductile flow. Two main hypotheses have been proposed and demonstrated in the laboratory for the generation of earthquakes at depth, including dehydration embrittlement (e.g., Rayleigh and Paterson, 1965) for intermediate-depth (70-300 km) earthquakes, metastable olivine phase transformation induced anticrack faulting (e.g., Green and Burnley, 1989) for deep-focus (410-660 km) earthquakes. However, the possibility of earthquake generation by pyroxene phase transformation, another important constituent mineral in the upper mantle and transition zone has never been explored in the laboratory. Here we report axial deformation experiments on hypersthene [(Mg,Fe)SiO3], which has the same structure as enstatite, with the phase transformation to high-pressure monoclinic phase (same structure as the high-pressure clinoenstatite) occurring at lower pressures, in a deformation-DIA (D-DIA) apparatus interfaced with an acoustic emission (AE) monitoring system. Our results show that hypersthene deformed within its stability field (<2GPa and 1000 oC) behaves in a ductile manner without any AE activity. In contrast, numerous AE events were observed during the deformation of metastable hyposthene in its high pressure monoclinic phase field (>5GPa, 1000-1300 oC). This finding provides an additional viable mechanism for earthquakes at depths >300km and moonquakes at 700 - 1200 km depths. Reference: Barcheck, C. Grace, et al. EPSL,349 (2012): 153-160;van Keken, Peter E., et al.JGR,116.B1 (2011);Green II, H. W., and P. C. Burnley. Nature 341.6244 (1989): 733-737.

  4. Solubility of Sulfur in Shergottitic Silicate Melts Up to 0.8 GPA: Implications for S Contents of Shergottites

    NASA Technical Reports Server (NTRS)

    Righter, K.; Pando, K.M.; Danielson, L.

    2009-01-01

    Shergottites have high S contents (1300 to 4600 ppm; [1]), but it is unclear if they are sulfide saturated or under-saturated. This issue has fundamental implications for determining the long term S budget of the martian surface and atmosphere (from mantle degassing), as well as evolution of the highly siderophile elements (HSE) Au, Pd, Pt, Re, Rh, Ru, Ir, and Os, since concentrations of the latter are controlled by sulfide stability. Resolution of sulfide saturation depends upon temperature, pressure, oxygen fugacity (and FeO), and magma composition [2]. Expressions derived from experimental studies allow prediction of S contents, though so far they are not calibrated for shergottitic liquids [3-5]. We have carried out new experiments designed to test current S saturation models, and then show that existing calibrations are not suitable for high FeO and low Al2O3 compositions characteristic of shergottitic liquids. The new results show that existing models underpredict S contents of sulfide saturated shergottitic liquids by a factor of 2.

  5. Extraordinary intelligence and the care of infants

    PubMed Central

    Piantadosi, Steven T.; Kidd, Celeste

    2016-01-01

    We present evidence that pressures for early childcare may have been one of the driving factors of human evolution. We show through an evolutionary model that runaway selection for high intelligence may occur when (i) altricial neonates require intelligent parents, (ii) intelligent parents must have large brains, and (iii) large brains necessitate having even more altricial offspring. We test a prediction of this account by showing across primate genera that the helplessness of infants is a particularly strong predictor of the adults’ intelligence. We discuss related implications, including this account’s ability to explain why human-level intelligence evolved specifically in mammals. This theory complements prior hypotheses that link human intelligence to social reasoning and reproductive pressures and explains how human intelligence may have become so distinctive compared with our closest evolutionary relatives. PMID:27217560

  6. Long-time aging in 3 mol.% yttria-stabilized tetragonal zirconia polycrystals at human body temperature.

    PubMed

    Keuper, Melanie; Berthold, Christoph; Nickel, Klaus Georg

    2014-02-01

    We present new findings on the low-temperature degradation of yttria-stabilized zirconia at 37°C over several years and at high and low partial pressures of water. With the aid of focused ion beam cross-section confirmation studies we are able to show an extensive linear, continuous degradation without retardation, even at low temperatures and low water pressures. The characteristic layer growth and its inferred rate constant imply a lifetime of tens of years under simple tension and open the possibility of studying the longevity of these ceramics more rigorously. In addition, we show reproducibility complications of accelerated aging tests by the use of different autoclaves and possible implications for standardized procedures. Copyright © 2013 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  7. The 2017 American College of Cardiology/American Heart Association vs Hypertension Canada High Blood Pressure Guidelines and Potential Implications.

    PubMed

    Goupil, Rémi; Lamarre-Cliche, Maxime; Vallée, Michel

    2018-05-01

    In this report we examine the differences between the 2017 Hypertension Canada and 2017 American College of Cardiology and American Heart Association (ACC/AHA) blood pressure (BP) guidelines regarding the proportions of individuals with a diagnosis of hypertension, BP above thresholds for treatment initiation, and BP below targets using the CARTaGENE cohort. Compared with the 2017 Canadian guidelines, the 2017 ACC/AHA guidelines would result in increases of 8.7% in hypertension diagnosis and 3.4% of individuals needing treatment, with 17.2% having a different BP target. In conclusion, implementing the 2017 ACC/AHA hypertension guidelines in Canada could result in major effects for millions of Canadians. Copyright © 2018 Canadian Cardiovascular Society. Published by Elsevier Inc. All rights reserved.

  8. Melting relations in the Fe-S-Si system at high pressure and temperature: implications for the planetary core

    NASA Astrophysics Data System (ADS)

    Sakairi, Takanori; Ohtani, Eiji; Kamada, Seiji; Sakai, Takeshi; Sakamaki, Tatsuya; Hirao, Naohisa

    2017-12-01

    The phase and melting relations in the Fe-S-Si system were determined up to 60 GPa by using a double-sided laser-heated diamond anvil cell combined with X-ray diffraction. On the basis of the X-ray diffraction patterns, we confirmed that hcp/fcc Fe-Si alloys and Fe3S are stable phases under subsolidus conditions in the Fe-S-Si system. Both solidus and liquidus temperatures are significantly lower than the melting temperature of pure Fe and both increase with pressure. The slopes of the Fe-S-Si liquidus and solidus curves determined here are smaller than the adiabatic temperature gradients of the liquid cores of Mercury and Mars. Thus, crystallization of their cores started at the core-mantle boundary region.

  9. Eruptive dynamics during magma decompression: a laboratory approach

    NASA Astrophysics Data System (ADS)

    Spina, L.; Cimarelli, C.; Scheu, B.; Wadsworth, F.; Dingwell, D. B.

    2013-12-01

    A variety of eruptive styles characterizes the activity of a given volcano. Indeed, eruptive styles can range from effusive phenomena to explosive eruptions, with related implications for hazard management. Rapid changes in eruptive style can occur during an ongoing eruption. These changes are, amongst other, related to variations in the magma ascent rate, a key parameter affecting the eruptive style. Ascent rate is in turn dependent on several factors such as the pressure in the magma chamber, the physical properties of the magma and the rate at which these properties change. According to the high number of involved parameters, laboratory decompression experiments are the best way to achieve quantitative information on the interplay of each of those factors and the related impact on the eruption style, i.e. by analyzing the flow and deformation behavior of the transparent volatile-bearing analogue fluid. We carried out decompression experiments following different decompression paths and using silicone oil as an analogue for the melt, with which we can simulate a range of melt viscosity values. For a set of experiments we added rigid particles to simulate the presence of crystals in the magma. The pure liquid or suspension was mounted into a transparent autoclave and pressurized to different final pressures. Then the sample was saturated with argon for a fixed amount of time. The decompression path consists of a slow decompression from the initial pressure to the atmospheric condition. Alternatively, samples were decompressed almost instantaneously, after established steps of slow decompression. The decompression path was monitored with pressure transducers and a high-speed video camera. Image analysis of the videos gives quantitative information on the bubble distribution with respect to depth in the liquid, pressure and time of nucleation and on their characteristics and behavior during the ongoing magma ascent. Furthermore, we also monitored the evolution of the expanding height of the silicone oil column with time after the decompression, due to the exsolution of the volatile argon and subsequent bubble growth. Contrastingly, autoclave-wall resolved shear strain of bubbles promotes rapid coalescence until a critical point when permeable outgassing is more efficient than continuing exsolution and bubble growth. At this point the column destabilizes and partially collapses. Collapse progresses until the top of the column is again impermeable and outgassing-driven column expansion resumes. This process repeats in cycles of growth, deformation, destabilization and densification until the melt is at equilibrium saturation with argon and the column collapses completely. We propose that direct observation of the timescales of growth and collapse of a decompressing, shearing column has important implications for decompression-driven rapid conduit ascent of low-viscosity, low-crystallinity magmas. Therefore, even at high exsolution rates, permeable outgassing can transiently retard magma ascent.

  10. The Motivation-Cognition Interface in Learning and Decision-Making.

    PubMed

    Maddox, W Todd; Markman, Arthur B

    2010-04-01

    In this article we discuss how incentive motivations and task demands affect performance. We present a three-factor framework that suggests that performance is determined from the interaction of global incentives, local incentives, and the psychological processes needed to achieve optimal task performance. We review work that examines the implications of the motivation-cognition interface in classification, choice and on phenomena such as stereotype threat and performance pressure. We show that under some conditions stereotype threat and pressure accentuate performance. We discuss the implications of this work for neuropsychological assessment, and outline a number of challenges for future research.

  11. Policy implications of the next world demographic transition.

    PubMed

    Harbison, Sarah F; Robinson, Warren C

    2002-03-01

    Although the world demographic transition from high to low fertility appears to be nearing its completion, observed in perspective, this is the latest in a series of such transitions stretching back into prehistory. A stable new equilibrium is far from inevitable; indeed, it is unlikely. Many countries are experiencing below-replacement-level fertility, and this trend is spreading. Couples are now able to choose their family size, free of the traditional pressures to bear children that was characteristic of most traditional societies. In fact, most societal pressures for the last generation have been distinctly antinatalist, in response to the enormous attention paid by the media to the "population bomb" agenda. This antinatalist attitude is changing, however, and what seems more likely than either a stationary or declining world population is a new growth cycle reflecting a resurgence of fertility as a response to growing material affluence and potential technological mastery of environmental challenges. Societal pressures and policies will play a role in this transition as they did in earlier ones.

  12. Vibrational Spectroscopic Studies of Reduced-Sensitivity RDX under Static Compression

    NASA Astrophysics Data System (ADS)

    Wong, Chak

    2005-07-01

    Explosives formulations with Reduced- Sensitivity RDX showed reduced shock sensitivity using NOL Large Scale Gap Test, compared with similar formulations using normal RDX. Molecular processes responsible for the reduction of sensitivity are unknown and are crucial for formulation development. Vibrational spectroscopy at static high pressure may shed light to the mechanisms responsible for the reduced shock sensitivity as shown by the NOL Large Scale Gap Test. SIRDX, a form of Reduced- Sensitivity RDX, was subjected to static compression at ambient temperature in a Merrill-Bassett sapphire cell from ambient to about 6 GPa. The spectroscopic techniques used were Raman and Fourier-Transformed IR (FTIR). The pressure dependence of the Raman mode frequencies of SIRDX was determined and compared with that of normal RDX. The behavior of SIRDX near the pressure at which normal RDX, at ambient temperature, undergoes a phase transition from the α to the γ polymorph will be presented. Implications to the reduction in sensitivity will be discussed.

  13. Buffered and unbuffered dike emplacement on Earth and Venus - Implications for magma reservoir size, depth, and rate of magma replenishment

    NASA Technical Reports Server (NTRS)

    Parfitt, E. A.; Head, J. W., III

    1993-01-01

    Models of the emplacement of lateral dikes from magma chambers under constant (buffered) driving pressure conditions and declining (unbuffered) driving pressure conditions indicate that the two pressure scenarios lead to distinctly different styles of dike emplacement. In the unbuffered case, the lengths and widths of laterally emplaced dikes will be severely limited and the dike lengths will be highly dependent on chamber size; this dependence suggests that average dike length can be used to infer the dimensions of the source magma reservoir. On Earth, the characteristics of many mafic-dike swarms suggest that they were emplaced in buffered conditions (e.g., the Mackenzie dike swarm in Canada and some dikes within the Scottish Tertiary). On Venus, the distinctive radial fractures and graben surrounding circular to oval features and edifices on many size scales and extending for hundreds to over a thousand km are candidates for dike emplacement in buffered conditions.

  14. Benign Intracranial Hypertension with Particular Reference to Its Occurrence in Fat Young Women

    PubMed Central

    Wilson, Donald H.; Gardner, W. James

    1966-01-01

    Benign intracranial hypertension (pseudotumor cerebri), a syndrome common to a number of disorders, is characterized by headaches and blurred vision. The patient is alert and has papilledema without localizing signs. Air studies show normal ventricles under increased pressure. The authors describe 61 consecutive cases of this pseudotumour, 48 of which were in fat young women, and propose that this group represents a clinical entity that has hitherto received little attention. In these 61 patients, 40 complete-exchange pneumoencephalograms showed normal ventricles, normal fluid volume and prominent cortical sulci. In 32, subtemporal decompression resulted in prompt and lasting relief. Three patients had late convulsive seizures after surgery. Seven patients had nasal quadrantanopsias, the implications of which are discussed. The authors believe that the high intracranial pressure in this condition is due to cerebral hyperemia, not brain edema. Further investigation will perhaps demonstrate a relationship between obesity, vascular dilatation and increased intracranial pressure. ImagesFig. 1 PMID:5296376

  15. Temperature measurements of shocked silica aerogel foam.

    PubMed

    Falk, K; McCoy, C A; Fryer, C L; Greeff, C W; Hungerford, A L; Montgomery, D S; Schmidt, D W; Sheppard, D G; Williams, J R; Boehly, T R; Benage, J F

    2014-09-01

    We present recent results of equation-of-state (EOS) measurements of shocked silica (SiO_{2}) aerogel foam at the OMEGA laser facility. Silica aerogel is an important low-density pressure standard used in many high energy density experiments, including the novel technique of shock and release. Due to its many applications, it has been a heavily studied material and has a well-known Hugoniot curve. This work then complements the velocity and pressure measurements with additional temperature data providing the full EOS information within the warm dense matter regime for the temperature interval of 1-15 eV and shock velocities between 10 and 40 km/s corresponding to shock pressures of 0.3-2 Mbar. The experimental results were compared with hydrodynamic simulations and EOS models. We found that the measured temperature was systematically lower than suggested by theoretical calculations. Simulations provide a possible explanation that the emission measured by optical pyrometry comes from a radiative precursor rather than from the shock front, which could have important implications for such measurements.

  16. Density-Pressure Profiles of Fe-Bearing MgSiO3 Liquid: Effects of Valence and Spin States, and Implications for the Chemical Evolution of the Lower Mantle

    NASA Astrophysics Data System (ADS)

    Karki, Bijaya B.; Ghosh, Dipta B.; Maharjan, Charitra; Karato, Shun-ichiro; Park, Jeffrey

    2018-05-01

    Density is a key property controlling the chemical state of Earth's interior. Our knowledge about the density of relevant melt compositions is currently poor at deep-mantle conditions. Here we report results from first-principles molecular-dynamics simulations of Fe-bearing MgSiO3 liquids considering different valence and spin states of iron over the whole mantle pressure conditions. Our simulations predict the high-spin to low-spin transition in both ferrous and ferric iron in the silicate liquid to occur gradually at pressures around 100 GPa. The calculated iron-induced changes in the melt density (about 8% increase for 25% iron content) are primarily due to the difference in atomic mass between Mg and Fe, with smaller contributions (<2%) from the valence and spin states. A comparison of the predicted density of mixtures of (Mg,Fe)(Si,Fe)O3 and (Mg,Fe)O liquids with the mantle density indicates that the density contrast between the melt and residual-solid depends strongly on pressure (depth): in the shallow lower mantle (depths < 1,000 km), the melt is lighter than the solids, whereas in the deep lower mantle (e.g., the D″ layer), the melt density exceeds the mantle density when iron content is relatively high and/or melt is enriched with Fe-rich ferropericlase.

  17. The fragmentation threshold and implications for explosive eruptions

    NASA Astrophysics Data System (ADS)

    Kennedy, B.; Spieler, O.; Kueppers, U.; Scheu, B.; Mueller, S.; Taddeucci, J.; Dingwell, D.

    2003-04-01

    The fragmentation threshold is the minimum pressure differential required to cause a porous volcanic rock to form pyroclasts. This is a critical parameter when considering the shift from effusive to explosive eruptions. We fragmented a variety of natural volcanic rock samples at room temperature (20oC) and high temperature (850oC) using a shock tube modified after Aldibirov and Dingwell (1996). This apparatus creates a pressure differential which drives fragmentation. Pressurized gas in the vesicles of the rock suddenly expands, blowing the sample apart. For this reason, the porosity is the primary control on the fragmentation threshold. On a graph of porosity against fragmentation threshold, our results from a variety of natural samples at both low and high temperatures all plot on the same curve and show the threshold increasing steeply at low porosities. A sharp decrease in the fragmentation threshold occurs as porosity increases from 0- 15%, while a more gradual decrease is seen from 15- 85%. The high temperature experiments form a curve with less variability than the low temperature experiments. For this reason, we have chosen to model the high temperature thresholds. The curve can be roughly predicted by the tensile strength of glass (140 MPa) divided by the porosity. Fractured phenocrysts in the majority of our samples reduces the overall strength of the sample. For this reason, the threshold values can be more accurately predicted by % matrix x the tensile strength/ porosity. At very high porosities the fragmentation threshold varies significantly due to the effect of bubble shape and size distributions on the permeability (Mueller et al, 2003). For example, high thresholds are seen for samples with very high permeabilities, where gas flow reduces the local pressure differential. These results allow us to predict the fragmentation threshold for any volcanic rock for which the porosity and crystal contents are known. During explosive eruptions, the fragmentation threshold may be exceeded in two ways: (1) by building an overpressure within the vesicles above the fragmentation threshold or (2) by unloading and exposing lithostatically pressurised magma to lower pressures. Using this data, we can in principle estimate the height of dome collapse or amount of overpressure necessary to produce an explosive eruption.

  18. Hydrogen-bearing iron peroxide and its implications to the deep Earth

    NASA Astrophysics Data System (ADS)

    Liu, J.; Hu, Q.; Kim, D. Y.; Wu, Z.; Wang, W.; Alp, E. E.; Yang, L.; Xiao, Y.; Meng, Y.; Chow, P.; Greenberg, E.; Prakapenka, V. B.; Mao, H. K.; Mao, W. L.

    2017-12-01

    Hydrous materials subducted into the deep mantle may play a significant role in the geophysical and geochemical processes of the lower mantle through geological time, but their roles have not become clear yet in the region. Hydrogen-bearing iron peroxide (FeO2Hx) was recently discovered to form through dehydrogenation of goethite (e.g., FeOOH) and the reaction between hematite (Fe2O3) and water under deep lower mantle conditions. We conducted synchrotron Mössbauer, X-ray absorption, and X-ray emission spectroscopy measurements to investigate the electronic spin and valence states of iron in hydrogen-bearing iron peroxide (FeO2Hx) in-situ at high pressures. Combined with theoretical calculations and other high-pressure experiments (i.e., nuclear resonant inelastic x-ray scattering spectroscopy and X-ray diffraction coupled with laser-heated diamond-anvil cell techniques), we find that the intriguing properties of FeO2Hx could shed light on the origin of a number of the observed geochemical and geophysical anomalies in the deep Earth.

  19. Fluid helium at conditions of giant planetary interiors

    PubMed Central

    Stixrude, Lars; Jeanloz, Raymond

    2008-01-01

    As the second most-abundant chemical element in the universe, helium makes up a large fraction of giant gaseous planets, including Jupiter, Saturn, and most extrasolar planets discovered to date. Using first-principles molecular dynamics simulations, we find that fluid helium undergoes temperature-induced metallization at high pressures. The electronic energy gap (band gap) closes at 20,000 K at a density half that of zero-temperature metallization, resulting in electrical conductivities greater than the minimum metallic value. Gap closure is achieved by a broadening of the valence band via increased s–p hydridization with increasing temperature, and this influences the equation of state: The Grüneisen parameter, which determines the adiabatic temperature–depth gradient inside a planet, changes only modestly, decreasing with compression up to the high-temperature metallization and then increasing upon further compression. The change in electronic structure of He at elevated pressures and temperatures has important implications for the miscibility of helium in hydrogen and for understanding the thermal histories of giant planets.

  20. Predicting levels of Latino depression: acculturation, acculturative stress, and coping.

    PubMed

    Torres, Lucas

    2010-04-01

    Past research has noted that aspects of living in the United States place Latinos at risk for experiencing psychological problems. However, the specific features of the adaptation process that contribute to depression remain unclear. The purpose of the present study was to investigate the ability of acculturation, acculturative stress, and coping to predict membership into low, medium, and high groups of depression among Latinos. Within a group of 148 Latino adults from the community, a multinomial logistic regression revealed that an Anglo orientation, English competency pressures, and active coping differentiated high from low depression and that a Latino orientation and, to some extent, the pressure to acculturate distinguished medium from low depression. These results highlight a pattern of characteristics that function as risk and protective factors in relation to level of symptom severity. The findings are discussed in terms of implications for Latino mental health, including considerations for intervention and prevention. PsycINFO Database Record (c) 2010 APA, all rights reserved.

  1. Remote Linkages to Anomalous Winter Atmospheric Ridging over the Northeastern Pacific

    NASA Technical Reports Server (NTRS)

    Swain, Daniel L.; Singh, Deepti; Horton, Daniel E.; Mankin, Justin S.; Ballard, Tristan C.; Diffenbaugh, Noah S.

    2017-01-01

    Severe drought in California between 2013 and 2016 has been linked to the multiyear persistence of anomalously high atmospheric pressure over the northeastern Pacific Ocean, which deflected the Pacific storm track northward and suppressed regional precipitation during California's winter 'rainy season.' Multiple hypotheses have emerged regarding why this high pressure ridge near the west coast of North America was so resilient-including unusual sea surface temperature patterns in the Pacific Ocean, reductions in Arctic sea ice, random atmospheric variability, or some combination thereof. Here we explore relationships between previously documented atmospheric conditions over the North Pacific and several potential remote oceanic and cryospheric influences using both observational data and a large ensemble of climate model simulations. Our results suggest that persistent wintertime atmospheric ridging similar to that implicated in California's 2013-2016 drought can at least partially be linked to unusual Pacific sea surface temperatures, and that Pacific Ocean conditions may offer some degree of cool-season foresight in this region despite the presence of substantial internal variability.

  2. Remote Linkages to Anomalous Winter Atmospheric Ridging Over the Northeastern Pacific

    NASA Astrophysics Data System (ADS)

    Swain, Daniel L.; Singh, Deepti; Horton, Daniel E.; Mankin, Justin S.; Ballard, Tristan C.; Diffenbaugh, Noah S.

    2017-11-01

    Severe drought in California between 2013 and 2016 has been linked to the multiyear persistence of anomalously high atmospheric pressure over the northeastern Pacific Ocean, which deflected the Pacific storm track northward and suppressed regional precipitation during California's winter "rainy season." Multiple hypotheses have emerged regarding why this high pressure ridge near the west coast of North America was so resilient—including unusual sea surface temperature patterns in the Pacific Ocean, reductions in Arctic sea ice, random atmospheric variability, or some combination thereof. Here we explore relationships between previously documented atmospheric conditions over the North Pacific and several potential remote oceanic and cryospheric influences using both observational data and a large ensemble of climate model simulations. Our results suggest that persistent wintertime atmospheric ridging similar to that implicated in California's 2013-2016 drought can at least partially be linked to unusual Pacific sea surface temperatures and that Pacific Ocean conditions may offer some degree of cool-season foresight in this region despite the presence of substantial internal variability.

  3. Development and evaluation of a self-regulating alternating pressure air cushion.

    PubMed

    Nakagami, Gojiro; Sanada, Hiromi; Sugama, Junko

    2015-03-01

    To investigate the effect of alternating air cells of a newly developed dynamic cushion on interface pressure and tissue oxygenation levels. This cross-over experimental study included 19 healthy volunteers. The dynamic cushion used has an automatic self-regulating alternating pressure air-cell system with 35 small and four large air cells for maintaining posture while seated. This cushion also has 17 bottoming-out detectors that automatically inflate the air cells to release a high interface pressure. To assess the effect of this alternating system, participants sat on the new cushion with an alternating system or static system for 30 min and then performed push-ups. The interface pressure was monitored by pressure-sensitive and conductive ink film sensors and tissue oxygenation levels were monitored by near-infrared spectroscopy. A reactive hyperaemia indicator was calculated using tissue oxygenation levels as an outcome measure. The peak interface pressure was not significantly different between the groups. The reactive hyperaemia indicator was significantly higher in the static group than in the alternating group. An alternating system has beneficial effects on blood oxygenation levels without increasing interface pressure. Therefore, our new cushion is promising for preventing pressure ulcers with patients with limited ability to perform push-ups. Implications for Rehabilitation A dynamic cushion was developed, which consists of a uniquely-designed air-cell layout, detectors for bottoming out, and an alternating system with multiple air-cell lines. The alternating system did not increase interface pressure and it significantly reduced reactive hyperaemia after 30 min of sitting in healthy volunteers. This cushion is a new option for individuals who require stable posture but have limitations in performing scheduled push-ups for prevention of pressure ulcers.

  4. Lack of association between chronic exposure to biomass fuel smoke and markers of right ventricular pressure overload at high altitude

    PubMed Central

    Caravedo, Maria A.; Painschab, Matthew S.; Davila-Roman, Victor G.; De Ferrari, Aldo; Gilman, Robert H.; Vasquez-Villar, Angel D.; Pollard, Suzanne L.; Miranda, J. Jaime; Checkley, William

    2014-01-01

    Background Chronic exposure to biomass fuel smoke has been implicated in the development of pulmonary hypertension and right ventricular pressure/volume overload through activation of inflammation, increase in vascular resistance and endothelial dysfunction. We sought to compare N-terminal pro-B-type natriuretic peptide (NT-pro-BNP) and echocardiography-derived pulmonary artery systolic pressure (PASP) levels in a high-altitude population-based study in Peru with and without chronic exposure to biomass fuel smoke. Methods NT-pro-BNP levels were measured in 519 adults (275 with and 244 without chronic exposure to biomass fuel smoke). Participants answered sociodemographics and clinical history questionnaires, underwent a clinical examination and blood testing for cardiopulmonary biomarkers. PASP was measured in a subgroup of 153 (31%) subjects. Results The study group consisted of 280 men (54%) and 239 women (46%). Average age was 56 years and average body mass index was 27 kg/m2. In multivariable analysis, there was no association between chronic exposure to biomass fuel smoke and NT-pro-BNP (p=0.31) or PASP (p=0.31). In the subgroup in which both NT-pro-BNP levels and PASP were measured, there was strong evidence of an association between these two variables (ρ=0.24, 95% CI 0.09-0.39; p=0.003). We found that age, high sensitivity C-reactive protein, being male and systolic blood pressure were positively associated with NT-pro-BNP levels whereas body mass index, LDL/HDL ratio and HOMA-IR were negatively associated (all p<0.01). Conclusions In this population-based study in a high-altitude setting, neither NT-pro-BNP levels nor echocardiography-derived PASP were associated with chronic exposure to biomass fuel smoke. PMID:25440802

  5. 'It's a cultural expectation...' The pressure on medical trainees to work independently in clinical practice.

    PubMed

    Kennedy, Tara J T; Regehr, Glenn; Baker, G Ross; Lingard, Lorelei A

    2009-07-01

    Medical trainees demonstrate a reluctance to ask for help unless they believe it is absolutely necessary, a situation which could impact on the safety of patients. This study aimed to develop a theoretical exploration of the pressure on medical trainees to be independent and to generate theory-based approaches to the implications for patient safety of this pressure towards independent working. In Phase 1, 88 teaching team members from internal and emergency medicine were observed during clinical activities (216 hours), and 65 participants completed brief interviews. In Phase 2, 36 in-depth interviews were conducted using video vignettes. Data collection and analysis employed grounded theory methodology. Participants conceived that the pressure towards independence in clinical work originated in trainees' desire to lay claim to the identity of a doctor (as a member of a group of autonomous high achievers), and in organisational issues such as heavy workloads and constant evaluations. The identity and organisational issues related to the pressure towards independence were explored through the lenses of established theories from education and psychology. Consideration of Lave and Wenger's situated learning theory suggests that giving attention to the 'independent doctor' ideal, through measures such as involving trainees when their supervisors ask for help, could impact the safety of teaching team practice. Amalberti et al.'s migration model explains how pressures to maximise productivity and individual gain may cause teaching teams to migrate beyond the boundaries of safe practice and suggests that managing triggers (such as workload and high-stakes evaluations) for violations of safe practice might improve safety. Implementation and evaluation of these theory-based approaches to the safety of teaching team practice would contribute to a better understanding of the links between trainee independence and patient safety.

  6. Unusual Electronic Structures of CO2 at Deep Mantle Pressures

    NASA Astrophysics Data System (ADS)

    Shieh, S. R.; Jarrige, I.; Hiraoka, N.; Wu, M.; Tse, J.; MI, Z.; Kaci, L.; Cai, Y.

    2011-12-01

    Carbon dioxide (CO2) is an important planetary gas phase found in the Venus, Earth and Mars. The high-pressure behavior of CO2 will have important implications for understanding the evolution and dynamics of planetary interiors. CO2 shows six solid phases and one amorphous phase at various pressure and temperature conditions. However, knowledge of its electronic structure remains unclear and may provide clues for the stability fields. Here we report the electronic structures of CO2 at high pressure and room temperature. The high-pressure inelastic x-ray scattering measurements of CO2 were conducted at beamline BL12XU, SPring-8. A monochromatic beam with incident energy about 10 KeV was focused to a size of 20 by 30 um2. The inelastic x-ray scattering photons were collected at about 35 degrees and a solid state Si detector with resolution of about 1.4 eV was used. Each spectrum was collected for 8-20 hours. Our oxygen K-edge results show that a strong pi resonance peak and some weak sigma peaks were observed in CO2-I. For the carbon K-edge of CO2-I, only a single strong pi resonance peak and a weak broad sigma peak at 313 eV was observed. This unique feature of carbon K-edge spectrum differs from those of graphite and diamond. Furthermore, we found that feature of oxygen K-edge spectra showed change at above 7.4 GPa, indicating the phase transition to CO2-III at pressure lower than those of x-ray diffraction reports. Moreover, at about 50 GPa, both oxygen and carbon K-edge of CO2 exhibit dramatic feature change and could be attributed to polymerization phenomena. It is found that only theoretical calculations including excitonic effects reproduced the experimental trend and indicate polymerization has occurred at 50 GPa and 300 K.

  7. Teaching Techniques of Resistance to Unwarranted Social Pressure

    ERIC Educational Resources Information Center

    Richey, Harold W.

    1976-01-01

    Literature examining compliance with majority opinion, obedience to authority, maladaptive implications of such conformity and ways to counteract it is presented. Suggestions are given for making students aware of conformity and techniques of appropriate resistance. The special problem of peer group pressure for adolescents is considered. (Author)

  8. Results from the Trial Using Motivational Interviewing, Positive Affect, and Self-Affirmation in African Americans with Hypertension (TRIUMPH).

    PubMed

    Boutin-Foster, Carla; Offidani, Emanuela; Kanna, Balavenkatesh; Ogedegbe, Gbenga; Ravenell, Joseph; Scott, Ebony; Rodriguez, Anna; Ramos, Rosio; Michelen, Walid; Gerber, Linda M; Charlson, Mary

    2016-01-21

    Our objective was to determine the effectiveness of combining positive affect and self-affirmation strategies with motivational interviewing in achieving blood pressure control among hypertensive African Americans (AA) compared with AA hypertensives in an education-only control group. Randomized trial. Ambulatory practices in the South Bronx and Harlem, New York City. African American adults with uncontrolled hypertension. Participants were randomized to a positive affect and self-affirmation intervention or an education control group. The positive affect and self-affirmation intervention involved having participants think about things that made them happy and that reminded them of their core values on a daily basis. These strategies were reinforced every two months through motivational interviewing. The control arm received a workbook of strategies on blood pressure control. All participants were called every two months for one year. Blood pressure control rate. A total of 238 participants were randomized. The average age was 56 ± 11 years, approximately 70% were female, 80% were not married, and up to 70% had completed high school. There was no difference in control rates between the intervention and the control group. However, at one year, female participants were more likely to be controlled. Participants with high depressive symptoms or high perceived stress at baseline were less likely to be controlled. While this study did not demonstrate an intervention effect, it does provide important insight into the psychosocial factors that may underlie blood pressure control in African Americans. Implications for future behavioral intervention trials are discussed.

  9. Instrumental record of debris flow initiation during natural rainfall: Implications for modeling slope stability

    USGS Publications Warehouse

    Montgomery, D.R.; Schmidt, K.M.; Dietrich, W.E.; McKean, J.

    2009-01-01

    The middle of a hillslope hollow in the Oregon Coast Range failed and mobilized as a debris flow during heavy rainfall in November 1996. Automated pressure transducers recorded high spatial variability of pore water pressure within the area that mobilized as a debris flow, which initiated where local upward flow from bedrock developed into overlying colluvium. Postfailure observations of the bedrock surface exposed in the debris flow scar reveal a strong spatial correspondence between elevated piezometric response and water discharging from bedrock fractures. Measurements of apparent root cohesion on the basal (Cb) and lateral (Cl) scarp demonstrate substantial local variability, with areally weighted values of Cb = 0.1 and Cl = 4.6 kPa. Using measured soil properties and basal root strength, the widely used infinite slope model, employed assuming slope parallel groundwater flow, provides a poor prediction of hydrologie conditions at failure. In contrast, a model including lateral root strength (but neglecting lateral frictional strength) gave a predicted critical value of relative soil saturation that fell within the range defined by the arithmetic and geometric mean values at the time of failure. The 3-D slope stability model CLARA-W, used with locally observed pore water pressure, predicted small areas with lower factors of safety within the overall slide mass at sites consistent with field observations of where the failure initiated. This highly variable and localized nature of small areas of high pore pressure that can trigger slope failure means, however, that substantial uncertainty appears inevitable for estimating hydrologie conditions within incipient debris flows under natural conditions. Copyright 2009 by the American Geophysical Union.

  10. High-pressure behavior of iron-nickel-cobalt phosphides and its implications for meteorites and planetary cores

    NASA Astrophysics Data System (ADS)

    Dera, P.; Lavina, B.; Borkowski, L. A.; Downs, R. T.; Prewitt, C. T.; Prakapenka, V.; Rivers, M. L.; Sutton, S.; Boctor, N.

    2008-12-01

    Minerals with composition (Fe,Ni)xP, are rare, but important accessory phases present in iron and chondrite meteorites. The occurrence of these minerals in meteoritic samples is believed to originate either from the equilibrium condensation of protoplanetary materials taking place in solar nebulae or from crystallization processes in the cores of parent bodies. Fe-Ni phosphides are considered an important candidate for a minor phase present in Earth's core, and at least partially responsible for the observed core density deficit with respect to pure Fe. We report results of high-pressure high-temperature single-crystal X- ray diffraction experiments with end-members belonging to the (Fe,Ni,Co)2P family, including Fe2P, Ni2P and Co2P. A new phase transition to the Co2Si-type structure (allabogdanite) has been found in Fe2P barringerite at 8.0 GPa, upon heating. The high-pressure phase can be quenched metastably to ambient conditions and then, if heated again, it transforms back to barringerite. Ni2P barringerite does not undergo transformation to allabogdanite structure up to 50 GPa, but instead exhibits incongruent melting with formation of pyrite-type NiP2 and Ni-P glass. Our results indicate that the presence of allabogdanite in meteoritic samples places two important constraints on the thermodynamic history of the meteorite. First, it imposes a minimum pressure and temperature for the formation of the Fe2P, and additionally rules out any higher temperature low pressure alterations. If present in the Earth's core, Fe2P will have the allabogdanite rather than the barringerite structure. Crystal chemical trends in the compressibility of (Fe,Ni,Co)2P minerals, as well as polymorphic transition paths are analyzed in the context of Earth and planetary core composition and properties.

  11. Modification of structural disorder by hydrostatic pressure in the superconducting cuprate YBa 2 Cu 3 O 6.73

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huang, H.; Jang, H.; Fujita, M.

    Here, compelling efforts to improve the critical temperature (T c) of superconductors have been made through high-pressure application. Understanding the underlying mechanism behind such improvements is critically important; however, much remains unclear. Here we studied ortho-III YBa 2Cu 3O 6.73 (YBCO) using x-ray scattering under hydrostatic pressure (HP) up to ~6.0GPa. We found the reinforced oxygen order of YBCO under HP, revealing an oxygen rearrangement in the Cu-O layer, which evidently shows the charge-transfer phenomenon between the CuO 2 plane and Cu-O layer. Concurrently, we also observed no disorder-pinned charge-density-wave signature in CuO 2 plane under HP. This indicates thatmore » the oxygen rearrangement modifies the quenched disorder state in the CuO 2 plane. Using these results, we appropriately explain why pressure condition can achieve higher T c compared with the optimal T c under ambient pressure in YBa 2Cu 3O 6+x. As an implication of these results, finally we have discussed that the change in disorder could make it easier for YBa 2Cu 3O 6+x to undergo a transition to the nematic order under an external magnetic field.« less

  12. Modification of structural disorder by hydrostatic pressure in the superconducting cuprate YBa2Cu3O6.73

    NASA Astrophysics Data System (ADS)

    Huang, H.; Jang, H.; Fujita, M.; Nishizaki, T.; Lin, Y.; Wang, J.; Ying, J.; Smith, J. S.; Kenney-Benson, C.; Shen, G.; Mao, W. L.; Kao, C.-C.; Liu, Y.-J.; Lee, J.-S.

    2018-05-01

    Compelling efforts to improve the critical temperature (Tc) of superconductors have been made through high-pressure application. Understanding the underlying mechanism behind such improvements is critically important; however, much remains unclear. Here we studied ortho-III YBa2Cu3O6.73 (YBCO) using x-ray scattering under hydrostatic pressure (HP) up to ˜6.0 GPa . We found the reinforced oxygen order of YBCO under HP, revealing an oxygen rearrangement in the Cu-O layer, which evidently shows the charge-transfer phenomenon between the Cu O2 plane and Cu-O layer. Concurrently, we also observed no disorder-pinned charge-density-wave signature in Cu O2 plane under HP. This indicates that the oxygen rearrangement modifies the quenched disorder state in the Cu O2 plane. Using these results, we appropriately explain why pressure condition can achieve higher Tc compared with the optimal Tc under ambient pressure in YBa2Cu3O6 +x . As an implication of these results, finally we have discussed that the change in disorder could make it easier for YBa2Cu3O6 +x to undergo a transition to the nematic order under an external magnetic field.

  13. Modification of structural disorder by hydrostatic pressure in the superconducting cuprate YBa 2 Cu 3 O 6.73

    DOE PAGES

    Huang, H.; Jang, H.; Fujita, M.; ...

    2018-05-09

    Here, compelling efforts to improve the critical temperature (T c) of superconductors have been made through high-pressure application. Understanding the underlying mechanism behind such improvements is critically important; however, much remains unclear. Here we studied ortho-III YBa 2Cu 3O 6.73 (YBCO) using x-ray scattering under hydrostatic pressure (HP) up to ~6.0GPa. We found the reinforced oxygen order of YBCO under HP, revealing an oxygen rearrangement in the Cu-O layer, which evidently shows the charge-transfer phenomenon between the CuO 2 plane and Cu-O layer. Concurrently, we also observed no disorder-pinned charge-density-wave signature in CuO 2 plane under HP. This indicates thatmore » the oxygen rearrangement modifies the quenched disorder state in the CuO 2 plane. Using these results, we appropriately explain why pressure condition can achieve higher T c compared with the optimal T c under ambient pressure in YBa 2Cu 3O 6+x. As an implication of these results, finally we have discussed that the change in disorder could make it easier for YBa 2Cu 3O 6+x to undergo a transition to the nematic order under an external magnetic field.« less

  14. Composition dependence of spin transition in (Mg,Fe)SiO 3 bridgmanite

    DOE PAGES

    Dorfman, Susannah M.; Badro, James; Rueff, Jean -Pascal; ...

    2015-10-01

    Spin transitions in (Mg,Fe)SiO 3 bridgmanite have important implications for the chemistry and dynamics of Earth’s lower mantle, but have been complex to characterize in experiments. We examine the spin state of Fe in highly Fe-enriched bridgmanite synthesized from enstatites with measured compositions (Mg 0.61Fe 0.38Ca 0.01)SiO 3 and (Mg 0.25Fe 0.74Ca 0.01)SiO 3. Bridgmanite was synthesized at 78-88 GPa and 1800-2400 K and X-ray emission spectra were measured on decompression to 1 bar (both compositions) and compression to 126 GPa ((Mg 0.61Fe 0.38Ca 0.01)SiO 3 only) without additional laser heating. Observed spectra confirm that Fe in these bridgmanites ismore » dominantly high spin in the lower mantle. However, the total spin moment begins to decrease at ~50 GPa in the 74% FeSiO 3 composition. Lastly, these results support density functional theory predictions of a lower spin transition pressure in highly Fe-enriched bridgmanite and potentially explain the high solubility of FeSiO 3 in bridgmanite at pressures corresponding to Earth’s deep lower mantle.« less

  15. In silico modelling of directed evolution: Implications for experimental design and stepwise evolution.

    PubMed

    Wedge, David C; Rowe, William; Kell, Douglas B; Knowles, Joshua

    2009-03-07

    We model the process of directed evolution (DE) in silico using genetic algorithms. Making use of the NK fitness landscape model, we analyse the effects of mutation rate, crossover and selection pressure on the performance of DE. A range of values of K, the epistatic interaction of the landscape, are considered, and high- and low-throughput modes of evolution are compared. Our findings suggest that for runs of or around ten generations' duration-as is typical in DE-there is little difference between the way in which DE needs to be configured in the high- and low-throughput regimes, nor across different degrees of landscape epistasis. In all cases, a high selection pressure (but not an extreme one) combined with a moderately high mutation rate works best, while crossover provides some benefit but only on the less rugged landscapes. These genetic algorithms were also compared with a "model-based approach" from the literature, which uses sequential fixing of the problem parameters based on fitting a linear model. Overall, we find that purely evolutionary techniques fare better than do model-based approaches across all but the smoothest landscapes.

  16. Carbonation by fluid-rock interactions at high-pressure conditions: Implications for carbon cycling in subduction zones

    NASA Astrophysics Data System (ADS)

    Piccoli, Francesca; Vitale Brovarone, Alberto; Beyssac, Olivier; Martinez, Isabelle; Ague, Jay J.; Chaduteau, Carine

    2016-07-01

    Carbonate-bearing lithologies are the main carbon carrier into subduction zones. Their evolution during metamorphism largely controls the fate of carbon, regulating its fluxes between shallow and deep reservoirs. Recent estimates predict that almost all subducted carbon is transferred into the crust and lithospheric mantle during subduction metamorphism via decarbonation and dissolution reactions at high-pressure conditions. Here we report the occurrence of eclogite-facies marbles associated with metasomatic systems in Alpine Corsica (France). The occurrence of these marbles along major fluid-conduits as well as textural, geochemical and isotopic data indicating fluid-mineral reactions are compelling evidence for the precipitation of these carbonate-rich assemblages from carbonic fluids during metamorphism. The discovery of metasomatic marbles brings new insights into the fate of carbonic fluids formed in subducting slabs. We infer that rock carbonation can occur at high-pressure conditions by either vein-injection or chemical replacement mechanisms. This indicates that carbonic fluids produced by decarbonation reactions and carbonate dissolution may not be directly transferred to the mantle wedge, but can interact with slab and mantle-forming rocks. Rock-carbonation by fluid-rock interactions may have an important impact on the residence time of carbon and oxygen in subduction zones and lithospheric mantle reservoirs as well as carbonate isotopic signatures in subduction zones. Furthermore, carbonation may modulate the emission of CO2 at volcanic arcs over geological time scales.

  17. The Limits of Life in the Deep Subsurface - Implications for the Origin of Life

    NASA Astrophysics Data System (ADS)

    Baross, John

    2013-06-01

    There are very few environments on Earth where life is absent. Microbial life has proliferated into habitats that span nearly every imaginable physico-chemical variable. Only the availability of liquid water and temperature are known to prevent the growth of organisms. The other extreme physical and chemical variables, such as pH, pressure, high concentrations of solutes, damaging radiation, and toxic metals, are life-prohibiting factors for most organisms but not for all. The deep subsurface environments span all of the extreme conditions encountered by life including habitat conditions not yet explored, such as those that combine high temperature, high and low pH and extreme pressures. Some of the ``extremophile'' microorganisms inhabiting the deep subsurface environments have been shown to be among the most ``ancient'' of extant life. Their genomes and physiologies have led to a broader understanding of the geological settings of early life, the most ancient energy pathways, and the importance of water/rock interactions and tectonics in the origin and early evolution of life. The case can now be made that deep subsurface environments contributed to life's origin and provided the habitat(s) for the earliest microbial communities. However, there is much more to be done to further our understanding on the role of moderate to high pressures and temperatures on the chemical and biochemical ``steps'' leading to life, and on the evolution and physiology of both ancient and present-day subsurface microbial communities.

  18. Pressure effect on dissimilatory sulfate reduction

    NASA Astrophysics Data System (ADS)

    Williamson, A. J.; Carlson, H. K.; Coates, J. D.

    2015-12-01

    Biosouring is the production of H2S by sulfate reducing microorganisms (SRM) in-situ or in the produced fluids of oil reservoirs. Sulfide is explosive, toxic and corrosive which can trigger equipment and transportation failure, leading to environmental catastrophe. As oil exploration and reservoir development continue, subsequent enhanced recovery is occurring in progressively deeper formations and typical oil reservoir pressures range from 10-50 MPa. Therefore, an understanding of souring control effects will require an accurate understanding of the influence of pressure on SRM metabolism and the efficacy of souring control treatments at high pressure. Considerable work to date has focussed on souring control at ambient pressure; however, the influence of pressure on biogeochemical processes and souring treatments in oil reservoirs is poorly understood. To explore the impact of pressure on SRM, wild type Desulfovibrio alaskensis G20 (isolated from a producing oil well in Ventura County, California) was grown under a range of pressures (0.1-14 MPa) at 30 °C. Complete sulfate reduction occurred in all pressures tested within 3 days, but microbial growth was inhibited with increasing pressure. Bar-seq identified several genes associated with flagella biosynthesis (including FlhB) and assembly as important for survival at elevated pressure and fitness was confirmed using individual transposon mutants. Flagellar genes have previously been implicated with biofilm formation and confocal microscopy on glass slides incubated with wild type D. alaskensis G20 showed more biomass associated with surfaces under pressure, highlighting the link between pressure, flagellar and biofilm formation. To determine the effect of pressure on the efficacy of SRM inhibitors, IC50 experiments were conducted and D. alaskensis G20 showed a greater resistance to nitrate and the antibiotic chloramphenicol, but a lower resistance to perchlorate. These results will be discussed in the context of deep subsurface microbiology and oil reservoir biosouring. Overall, this work furthers our understanding of oil reservoir biogeochemistry and highlights the impact of pressure on biofilm formation and biosouring strategies.

  19. Implications of Negative Pressure Imaging for Microcrack Detection and Salmonella Contamination in Shell Eggs

    USDA-ARS?s Scientific Manuscript database

    Microcracks in eggshells are difficult for human graders to detect and pose an important food safety risk. Negative pressure imaging technology has been developed with 99.6% accuracy in detecting microcracks. A study was conducted to determine if the microcrack detection system would increase pene...

  20. Time burden of caring and depression among parents of individuals with cerebral palsy.

    PubMed

    Park, Eun-Young; Nam, Su-Jung

    2018-01-30

    The presence of an individual with disability in a family affects the whole family. Families of individuals with cerebral palsy (CP) experience increased psychological anxiety and financial problems; specifically, parents tend to feel time pressure and struggle to maintain their social and cultural activities. t-Tests and ANOVA with post hoc Tukey tests were used to compare caregiving time, time pressure, and depression between parents. Multivariate logistic regression analysis was used to examine the effect of caregiving time and time pressure on depression in parents. Regarding depression, 58 (38.2%) respondents scored ≥16 on the Center for Epidemiological Studies - Depression scale. Respondents supporting a preschool child spent more time than those supporting adults did; those supporting adults reported less time pressure than those supporting individuals of other ages. Caregiving time's effect on depression was not supported, whereas increased time pressure raised the risk of depression. The frequency of depression among parents supporting individuals with CP exceeded preceding findings. Time pressure due to support appears to directly predict depression. Total time spent caring appears unrelated to depression. Implications for Rehabilitation It is necessary to prepare various community and family support systems in order to relieve parental caregivers' burden and exhaustion. Interventions should focus on parents with higher time pressure than parents with high caregiving time. Physical and psychological difficulties experienced by parents supporting a child with a disability vary with the child's life stage, meaning that families' care burden partly depends on the age of the individual with disabilities.

  1. Cardiovascular reactivity to acute psychological stress following sleep deprivation.

    PubMed

    Franzen, Peter L; Gianaros, Peter J; Marsland, Anna L; Hall, Martica H; Siegle, Greg J; Dahl, Ronald E; Buysse, Daniel J

    2011-10-01

    Psychological stress and sleep disturbances are highly prevalent and are both implicated in the etiology of cardiovascular diseases. Given the common co-occurrence of psychological distress and sleep disturbances including short sleep duration, this study examined the combined effects of these two factors on blood pressure reactivity to immediate mental challenge tasks after well-rested and sleep-deprived experimental conditions. Participants (n = 20) were healthy young adults free from current or past sleep, psychiatric, or major medical disorders. Using a within-subjects crossover design, we examined acute stress reactivity under two experimental conditions: after a night of normal sleep in the laboratory and after a night of total sleep deprivation. Two standardized psychological stress tasks were administered, a Stroop color-word naming interference task and a speech task, which were preceded by a prestress baseline period and followed by a poststress recovery period. Each period was 10 minutes in duration, and blood pressure recordings were collected every 2.5 minutes throughout each period. Mean blood pressure responses during stress and recovery periods were examined with a mixed-effects analysis of covariance, controlling for baseline blood pressure. There was a significant interaction between sleep deprivation and stress on systolic blood pressure (F(2,82.7) = 4.05, p = .02). Systolic blood pressure was higher in the sleep deprivation condition compared with the normal sleep condition during the speech task and during the two baseline periods. Sleep deprivation amplified systolic blood pressure increases to psychological stress. Sleep loss may increase cardiovascular risk by dysregulating stress physiology.

  2. New petrological and age data from the eclogite province in the central segment of the Greenlandic Caledonides

    NASA Astrophysics Data System (ADS)

    Nagel, Thorsten; Fassmer, Kathrin; Froitzheim, Niko; Fonseca, Raul; Sprung, Peter

    2017-04-01

    The Caledonian orogen in northeastern Greenland is a 1200 km long, west-vergent nappe pile mirroring the much better explored Caledonides in Scandinavia. The Greenlandic orogen has traditionally been viewed as the retro-wedge of the Scandinavian Caledonides, which is generally accepted to be the result of west-directed subduction of the Iapetus oceanic realm and the Baltic continental margin. This concept, however, is challenged by the finding of widely distributed high-pressure metamorphism as well as the large amount of horizontal shortening accommodated in the Greenlandic nappe pile (Gasser 2014, and references therein). While eclogites in Liverpool Land in the very south have been interpreted to belong to a window into Baltica, the vast domains of eclogite-bearing basement in the central segment of the orogen are attributed to the Lauretian continental margin. Existing ages for high-pressure metamorphism in this area using U-Pb-zircon and Sm-Nd-garnet dating scatter at 420-390 Ma with an exceptionally young age of 370-330 Ma found for the so far only ultrahigh-pressure location in a very internal position of the orogen (e.g. Gilotti et al. 2004). Eclogite-facies metamorphism in Greenland seems thus coeval to or even younger than the main Scandian orogeny in Scandinavia. However, the relatively high temperatures of metamorphism leave room for the interpretation of the Sm-Nd ages as cooling ages. We present petrologic and Lu-Hf-garnet-age data from three locations in the central eclogite province in Greenland and discuss the implications for tectonic scenarios. Investigated rocks are high-temperature eclogites/high-pressure mafic granulites, and garnet pyroxenites. Samples from the well-known location Danmarkshavn record ultra-high-pressure metamorphic conditions by means of SiO2-exsolutions in clinopyroxene and thermobarometric results. An eclogite yielded a Lu-Hf garnet-whole-rock age of 360 Ma thus confirming the existing young age for ultrahigh-pressure metamorphism obtained 140 kilometers away. Samples from the two other locations (Sondre Mellemland and Store Koldewey) preserve the typical high-temperature eclogite-facies conditions and yield ages of 385 Ma and 400 Ma, respectively. Our results suggest that ultrahigh-pressure rocks in northeastern Greenland may be much wider distributed than presently known and corroborate the existence of very young isotopic ages in these rocks. They also confirm the existing Sm-Nd ages around 400 Ma in the majority of eclogites leaving us with the puzzling conclusion that the Laurentian and Baltic margins were apparently subducted at the same time in opposite directions. Gasser D (2014): The Caledonides of Greenland, Svalbard and other Arctic areas: status of research and open questions. In Corfu F et al. (2014): New Perspectives on the Caledonides of Scandinavia and Related Areas. GSL SP, 390, 93-129. Gilotti JA, et al. (2004): Devonian to Carboniferous collision in the Greenland Caledonides: U-Pb zircon and Sm-Nd ages of high-pressure and ultrahigh-pressure metamorphism. CMP, 148, 216 - 235.

  3. Comparison between gradient-dependent hydraulic conductivities of roots using the root pressure probe: the role of pressure propagations and implications for the relative roles of parallel radial pathways.

    PubMed

    Bramley, Helen; Turner, Neil C; Turner, David W; Tyerman, Stephen D

    2007-07-01

    Hydrostatic pressure relaxations with the root pressure probe are commonly used for measuring the hydraulic conductivity (Lp(r)) of roots. We compared the Lp(r) of roots from species with different root hydraulic properties (Lupinus angustifolius L. 'Merrit', Lupinus luteus L. 'Wodjil', Triticum aestivum L. 'Kulin' and Zea mays L. 'Pacific DK 477') using pressure relaxations, a pressure clamp and osmotic gradients to induce water flow across the root. Only the pressure clamp measures water flow under steady-state conditions. Lp(r) determined by pressure relaxations was two- to threefold greater than Lp(r) from pressure clamps and was independent of the direction of water flow. Lp(r) (pressure clamp) was two- to fourfold higher than for Lp(r) (osmotic) for all species except Triticum aestivum where Lp(r) (pressure clamp) and Lp(r) (osmotic) were not significantly different. A novel technique was developed to measure the propagation of pressure through roots to investigate the cause of the differences in Lp(r). Root segments were connected between two pressure probes so that when root pressure (P(r)) was manipulated by one probe, the other probe recorded changes in P(r). Pressure relaxations did not induce the expected kinetics in pressure in the probe at the other end of the root when axial hydraulic conductance, and probe and root capacitances were accounted for. An electric circuit model of the root was constructed that included an additional capacitance in the root loaded by a series of resistances. This accounted for the double exponential kinetics for intact roots in pressure relaxation experiments as well as the reduced response observed with the double probe experiments. Although there were potential errors with all the techniques, we considered that the measurement of Lp(r) using the pressure clamp was the most unambiguous for small pressure changes, and provided that sufficient time was allowed for pressure propagation through the root. The differences in Lp(r) from different methods of measurement have implications for the models describing water transport through roots and the potential role of aquaporins.

  4. Heart Rate Variability Moderates the Association Between Separation-Related Psychological Distress and Blood Pressure Reactivity Over Time.

    PubMed

    Bourassa, Kyle J; Hasselmo, Karen; Sbarra, David A

    2016-08-01

    Divorce is a stressor associated with long-term health risk, though the mechanisms of this effect are poorly understood. Cardiovascular reactivity is one biological pathway implicated as a predictor of poor long-term health after divorce. A sample of recently separated and divorced adults (N = 138) was assessed over an average of 7.5 months to explore whether individual differences in heart rate variability-assessed by respiratory sinus arrhythmia-operate in combination with subjective reports of separation-related distress to predict prospective changes in cardiovascular reactivity, as indexed by blood pressure reactivity. Participants with low resting respiratory sinus arrhythmia at baseline showed no association between divorce-related distress and later blood pressure reactivity, whereas participants with high respiratory sinus arrhythmia showed a positive association. In addition, within-person variation in respiratory sinus arrhythmia and between-persons variation in separation-related distress interacted to predict blood pressure reactivity at each laboratory visit. Individual differences in heart rate variability and subjective distress operate together to predict cardiovascular reactivity and may explain some of the long-term health risk associated with divorce. © The Author(s) 2016.

  5. A platform-based foot pressure/shear sensor

    NASA Astrophysics Data System (ADS)

    Chang, Chun-Te; Liu, Chao Shih; Soetanto, William; Wang, Wei-Chih

    2012-04-01

    The proposed research is aimed at developing, fabricating and implementing a flexible fiber optic bend loss sensor for the measurement of plantar pressure and shear stress for diabetic patients. The successful development of the sensor will greatly impact the study of diabetic foot ulcers by allowing clinicians to measure a parameter (namely, shear stress) that has been implicated in ulceration, but heretofore, has not been routinely quantified on high risk patients. A full-scale foot pressure/shear sensor involves a tactile sensor array using intersecting optical waveguides is presented. The basic configuration of the optical sensor systems incorporates a mesh that is comprised of two sets of parallel optical waveguide planes; the planes are configured so the parallel rows of waveguides of the top and bottom planes are perpendicular to each other. The planes are sandwiched together creating one sensing sheet. Two-dimensional information is determined by measuring the loss of light from each of the waveguide to map the overall pressure distribution. The shifting of the layers relative to each other allows determination of the shear stress in the plane of the sensor. This paper presents latest development and improvement in the sensors design. Fabrication and results from the latest tests will be described.

  6. Salt and essential hypertension: pathophysiology and implications for treatment.

    PubMed

    Garfinkle, Michael A

    2017-06-01

    Essential hypertension is common and is associated with significant morbidity and mortality. However, questions remain as to the exact physiological mechanisms underlying this disease. First, we discuss how essential hypertension may be largely a result of a maladaptation to a high-salt diet and that high blood pressure, rather than being an inactive side effect of high salt intake, may be an adaptive mechanism to improve salt secretion. Next, we explain how any physiological state that reduces urinary sodium concentrating ability may increase an individual's risk for salt-induced hypertension. Finally, we conclude that natriuresis is a crucial criterion for effective long-term pharmacologic treatment of essential hypertension. Copyright © 2017 American Society of Hypertension. Published by Elsevier Inc. All rights reserved.

  7. Ultrahigh vacuum and high-pressure coadsorption of CO and H2 on Pd(111): A combined SFG, TDS, and LEED study

    NASA Astrophysics Data System (ADS)

    Morkel, Matthias; Rupprechter, Günther; Freund, Hans-Joachim

    2003-11-01

    Sum frequency generation (SFG) vibrational spectroscopy was carried out in conjunction with thermal desorption spectroscopy, low-energy electron diffraction, and Auger electron spectroscopy to examine the coadsorption of CO and H2 on Pd(111). Sequential dosing as well as various CO/H2 mixtures was utilized to study intermolecular interactions between CO and H2. Preadsorbed CO effectively prevented the dissociative adsorption of hydrogen for CO coverages ⩾0.33 ML. While preadsorbed hydrogen was able to hinder CO adsorption at low temperature (100 K), hydrogen was replaced from the surface by CO at 150 K. When 1:1 mixtures of CO/H2 were used at 100 K, hydrogen selectively hindered CO adsorption on on-top sites, while above ˜125 K no blocking of CO adsorption was observed. The observations are explained in terms of mutual site blocking, of a CO-H phase separation, and of a CO-assisted hydrogen dissolution in the Pd bulk. The temperature-dependent site blocking effect of hydrogen is attributed to the ability (inability) of surface hydrogen to diffuse into the Pd bulk above (below) ˜125 K. Nonlinear optical SFG spectroscopy allowed us to study these effects not only in ultrahigh vacuum but also in a high-pressure environment. Using an SFG-compatible ultrahigh vacuum-high-pressure cell, spectra of 1:10 CO/H2 mixtures were acquired up to 55 mbar and 550 K, with simultaneous gas chromatographic and mass spectrometric gas phase analysis. Under reaction conditions, CO coverages ⩾0.5 ML were observed which strongly limit H2 adsorption and thus may be partly responsible for the low CO hydrogenation rate. The high-pressure and high-temperature SFG spectra also showed indications of a reversible surface roughening or a highly dynamic (not perfectly ordered) CO adsorbate phase. Implications of the observed adsorbate structures on catalytic CO hydrogenation on supported Pd nanoparticles are discussed.

  8. Temperature estimation from molecular nitrogen UV spectra in atmospheric pressure plasmas

    NASA Astrophysics Data System (ADS)

    Pepper, Keenan; Kim, Yongho; Kim, Jihun

    2008-11-01

    Atmospheric pressure plasmas have many potential applications to fuel processing, surface treatment, and manipulation of chemical reactions. These plasmas are often non-thermal, which means different species are not in equilibrium and have different effective temperatures. This is critical for many applications because it allows high concentrations of reactive species to be produced without using a prohibitive amount of power. In the present work, numerical software was developed to estimate the vibrational and rotational temperatures (Tvib and Trot) of N2 molecules from their ultraviolet emission spectra. The electron temperature Te can also be estimated by comparing the N2 spectrum to that of the N2^+ molecular ion. This technique is applied to several plasma sources including audio frequency, RF, and microwave devices. The results are presented and their implications for practical applications are discussed.

  9. Handbook of dehumidification technology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brundrett, G.W.

    1987-01-01

    This book shows how dehumidification can alleviate environmental problems in human and industrial spheres which carry major cost implications. The applications of dehumidification, sorbent, air cycle and refrigerant are outlined but the main emphasis is placed on the refrigerant cycle because its applications and product range are the most extensive. A more detailed review of the main applications and opportunities such as housing condensation problems, protection and control in industry and energy saving for swimming pools then follows. Specialist sections on food and flowers and the drying of pressurized gases precede chapters on future developments, economic aspects and a usefulmore » list of further information sources including active research centres. The Contents discussed are: Introduction . Principles . Design considerations for refrigerant dehumidifiers . Domestic applications and dehumidifiers . Swimming pools . Industrial dehumidification . Food and flowers . Drying high pressure gases . Future trends . Economics . Further sources of information.« less

  10. Intake of dietary salt and drinking water: Implications for the development of age-related macular degeneration

    PubMed Central

    Hollborn, Margrit; Kohen, Leon; Wiedemann, Peter

    2016-01-01

    Purpose Systemic hypertension is a risk factor of age-related retinal diseases such as diabetic retinopathy and age-related macular degeneration. High intake of dietary salt and low intake of water increase extracellular osmolality resulting in hypertension, in particular in salt-sensitive individuals. This review summarizes the present knowledge regarding the impact of salt and water intake on the regulation of blood pressure, retinal function, and the development of age-related retinal diseases. Methods A literature search of the Medline database and a summary of recent studies that used human RPE cells. Results The salt sensitivity of the blood pressure and plasma osmolality increase with age, and body water deficits are common in older individuals. High plasma osmolality has adverse effects in the retina. In RPE cells, high osmolality induces expression and secretion of angiogenic factors, such as vascular endothelial growth factor (VEGF), placental growth factor, and basic fibroblast growth factor, and expression of aquaporin-5, a water channel implicated in transepithelial water transport. The transcriptional activities of hypoxia-inducible factor-1 (HIF-1) and nuclear factor of activated T cell 5 (NFAT5) are critical for the production of VEGF in response to salt-induced osmotic stress. Salt-induced osmotic stress also induces priming of the NLRP3 inflammasome and activates inflammatory enzymes in RPE cells. Conclusions Raised plasma osmolality may aggravate age-related retinal diseases by stimulation of local inflammation and angiogenic factor production in the RPE. Alterations in salt and water consumption, and of minerals that stimulate renal salt excretion, may offer nutritional approaches to prevent age-related retinal disorders, in particular in salt-sensitive individuals and individuals who show signs of body dehydration. PMID:28031693

  11. Intake of dietary salt and drinking water: Implications for the development of age-related macular degeneration.

    PubMed

    Bringmann, Andreas; Hollborn, Margrit; Kohen, Leon; Wiedemann, Peter

    2016-01-01

    Systemic hypertension is a risk factor of age-related retinal diseases such as diabetic retinopathy and age-related macular degeneration. High intake of dietary salt and low intake of water increase extracellular osmolality resulting in hypertension, in particular in salt-sensitive individuals. This review summarizes the present knowledge regarding the impact of salt and water intake on the regulation of blood pressure, retinal function, and the development of age-related retinal diseases. A literature search of the Medline database and a summary of recent studies that used human RPE cells. The salt sensitivity of the blood pressure and plasma osmolality increase with age, and body water deficits are common in older individuals. High plasma osmolality has adverse effects in the retina. In RPE cells, high osmolality induces expression and secretion of angiogenic factors, such as vascular endothelial growth factor (VEGF), placental growth factor, and basic fibroblast growth factor, and expression of aquaporin-5, a water channel implicated in transepithelial water transport. The transcriptional activities of hypoxia-inducible factor-1 (HIF-1) and nuclear factor of activated T cell 5 (NFAT5) are critical for the production of VEGF in response to salt-induced osmotic stress. Salt-induced osmotic stress also induces priming of the NLRP3 inflammasome and activates inflammatory enzymes in RPE cells. Raised plasma osmolality may aggravate age-related retinal diseases by stimulation of local inflammation and angiogenic factor production in the RPE. Alterations in salt and water consumption, and of minerals that stimulate renal salt excretion, may offer nutritional approaches to prevent age-related retinal disorders, in particular in salt-sensitive individuals and individuals who show signs of body dehydration.

  12. Thermodynamic Equations of State for Aqueous Solutions Applied to Deep Icy Satellite and Exoplanet Oceans

    NASA Astrophysics Data System (ADS)

    Vance, S.; Brown, J. M.; Bollengier, O.; Journaux, B.; Sotin, C.; Choukroun, M.; Barnes, R.

    2014-12-01

    Supporting life in icy world or exoplanet oceans may require global seafloor chemical reactions between water and rock. Such interactions have been regarded as limited in larger icy worlds such as Ganymede and Titan, where ocean depths approach 800 km and GPa pressures (>10katm). If the oceans are composed of pure water, such conditions are consistent with the presence of dense ice phases V and VI that cover the rocky seafloor. Exoplanets with oceans can obtain pressures sufficient to generate ices VII and VIII. We have previously demonstrated temperature gradients in such oceans on the order of 20 K or more, resulting from fluid compressibility in a deep adiabatic ocean based on our experimental work. Accounting for increases in density for highly saline oceans leads to the possibility of oceans perched under and between high pressure ices. Ammonia has the opposite effect, instead decreasing ocean density, as reported by others and confirmed by our laboratory measurements in the ammonia water system. Here we report on the completed equation of state for aqueous ammonia derived from our prior measurements and optimized global b-spline fitting methods We use recent diamond anvil cell measurements for water and ammonia to extend the equation of state to 400°C and beyond 2 GPa, temperatures and pressures applicable to icy worlds and exoplanets. Densities show much less temperature dependence but comparabe high-pressure derivatives to previously published ammonia-water properties derived for application to Titan (Croft et al. 1988). Thermal expansion is in better agreement with the more self-consistent equation of state of Tillner-Roth and Friend (1998). We also describe development of a planetary NaCl equation of state using recent measurements of phase boundaries and sound speeds. We examine implications of realistic ocean-ice thermodynamics for Titan and exoplanet interiors using the methodology recently applied to Ganymede for oceans dominated by MgSO4. High pressure ices should not be present on Titan if its ocean composition is Dead-Sea like, as recently inferred from tidal dissipation and topography, and if Titan's moment of inertia has the published value of C/MR2 = 0.3414.

  13. The reaction H + C4H2 - Absolute rate constant measurement and implication for atmospheric modeling of Titan

    NASA Technical Reports Server (NTRS)

    Nava, D. F.; Mitchell, M. B.; Stief, L. J.

    1986-01-01

    The absolute rate constant for the reaction H + C4H2 has been measured over the temperature (T) interval 210-423 K, using the technique of flash photolysis-resonance fluorescence. At each of the five temperatures employed, the results were independent of variations in C4H2 concentration, total pressure of Ar or N2, and flash intensity (i.e., the initial H concentration). The rate constant, k, was found to be equal to 1.39 x 10 to the -10th exp (-1184/T) cu cm/s, with an error of one standard deviation. The Arrhenius parameters at the high pressure limit determined here for the H + C4H2 reaction are consistent with those for the corresponding reactions of H with C2H2 and C3H4. Implications of the kinetic carbon chemistry results, particularly those at low temperature, are considered for models of the atmospheric carbon chemistry of Titan. The rate of this reaction, relative to that of the analogous, but slower, reaction of H + C2H2, appears to make H + C4H2 a very feasible reaction pathway for effective conversion of H atoms to molecular hydrogen in the stratosphere of Titan.

  14. Trends in Adult Education with Implications for Vocational Education. Occasional Paper No. 13.

    ERIC Educational Resources Information Center

    Kreitlow, Burton W.

    A discussion is presented of adult education, current trends within the area, and their implications for adult and vocational education programs. The document contains the lecture and a question and answer session. The following sections are presented: (1) overview, defining adult education; (2) major trends, discussing societal pressures for…

  15. Race and Racelessness in CMO Marketing: Exploring Charter Management Organizations' Racial Construction and Its Implications

    ERIC Educational Resources Information Center

    Hernández, Laura E.

    2016-01-01

    As schools face growing competitive pressures, researchers have investigated the increasing reliance on marketing and its implications for various racial and socioeconomic groups. Although research has expanded our knowledge of marketing's gatekeeping qualities, it has less often considered the manner in which school marketing efforts contribute…

  16. Climatic Variations in Tropical West African Rainfall and the Implications for Military Planners

    DTIC Science & Technology

    2008-06-01

    perturbation pressure isobars. There is a ridge in (a) and a trough in (b) at the equator and to the east of the forcing region. Note that the pressure...Climatology course project team), CDR Eric Buch (C6F Oceanographer), Mr. Samson Brand (NRL Monterey), VADM Paul Gaffney (ret.), Prof. Russell Elsberry, LT...pressure isobars. There is a ridge in (a) and a trough in (b) at the equator and to the east of the forcing region. Note that the pressure to the west

  17. Estimating Dermal Transfer of Copper Particles from the Surfaces of Pressure-Treated Lumber and Implications for Exposure

    EPA Science Inventory

    Lumber pressure-treated with micronized copper was examined for the release of copper and copper micro/nanoparticles using a surface wipe method to simulate dermal transfer. In 2003, the wood industry began replacing CCA treated lumber products for residential use with copper ba...

  18. Implications of Operational Pressure on CSSE PGS Design

    NASA Technical Reports Server (NTRS)

    Lee, Ryan

    2008-01-01

    The Constellation Spacesuit Element (CSSE) was required to support crew survival (CS); launch, entry, and abort (LEA) scenarios; zero gravity (0-g) extravehicular activity (EVA) (both unscheduled and contingency); and planetary EVA. Operation of the CSSE in all of these capacities required a pressure garment subsystem (PGS) that would operate efficiently through various pressure profiles. The PGS team initiated a study to determine the appropriate operational pressure profile of the CSSE and how this selection would affect the design of the CSSE PGS. This study included an extensive review of historical PGS operational pressure selection and the operational effects of those pressures, the presentation of four possible pressure paradigm options for use by the CSSE, the risks and design impacts of these options, and the down-selected pressure option.

  19. Experimental study and thermodynamic modeling of the phase relation in the Fe-S-Si system with implications for the distribution of S and Si in a partially solidified core

    NASA Astrophysics Data System (ADS)

    Tao, R.; Fei, Y.

    2017-12-01

    Planetary cooling leads to solidification of any initially molten metallic core. Some terrestrial cores (e.g. Mercury) are formed and differentiated under relatively reduced conditions, and they are thought to be composed of Fe-S-Si. However, there are limited understanding of the phase relations in the Fe-S-Si system at high pressure and temperature. In this study, we conducted high-pressure experiments to investigate the phase relations in the Fe-S-Si system up to 25 GPa. Experimental results show that the liquidus and solidus in this study are slightly lower than those in the Fe-S binary system for the same S concentration in liquid at same pressure. The Fe3S, which is supposed to be the stable sub-solidus S-bearing phase in the Fe-S binary system above 17 GPa, is not observed in the Fe-S-Si system at 21 GPa. Almost all S prefers to partition into liquid, while the distribution of Si between solid and liquid depends on experimental P and T conditions. We obtained the partition coefficient log(KDSi) by fitting the experimental data as a function of P, T and S concentration in liquid. At a constant pressure, the log(KDSi) linearly decreases with 1/T(K). With increase of pressure, the slopes of linear correlation between log(KDSi) and 1/T(K) decreases, indicating that more Si partitions into solid at higher pressure. In order to interpolate and extrapolate the phase relations over a wide pressure and temperature range, we established a comprehensive thermodynamic model in the Fe-S-Si system. The results will be used to constrain the distribution of S and Si between solid inner core and liquid outer core for a range of planet sizes. A Si-rich solid inner core and a S-rich liquid outer core are suggested for an iron-rich core.

  20. Probing the Hydrogen Sublattice of FeHx with High-Pressure Neutron Diffraction

    NASA Astrophysics Data System (ADS)

    Murphy, C. A.; Guthrie, M.; Boehler, R.; Somayazulu, M.; Fei, Y.; Molaison, J.; dos Santos, A. M.

    2013-12-01

    The combination of seismic, cosmochemical, and mineral physics observations have revealed that Earth's iron-rich core must contain some light elements, such as hydrogen, carbon, oxygen, silicon, and/or sulfur. Therefore, understanding the influence of these light elements on the structural, thermoelastic, and electronic properties of iron is important for constraining the composition of this remote layer of the Earth and, in turn, providing constraints on planetary differentiation and core formation models. The high-pressure structural and magnetic properties of iron hydride (FeHx) have previously been studied using synchrotron x-ray diffraction and Mössbauer spectroscopy. Such experiments revealed that the double hexagonal close-packed (dhcp) structure of FeHx is stable above a pressure of ~5 GPa and up to at least 80 GPa at 300 K [1]. In addition, dhcp-FeHx is ferromagnetic at low-pressures, but undergoes a magnetic collapse around 22 GPa [2]. X-ray experiments provide valuable insight into the properties of FeHx, but such techniques are largely sensitive to the iron component because it is difficult to detect the hydrogen sublattice with x-rays. Therefore, neutron diffraction has been used to investigate metastable FeHx, which is formed by quenching the high-pressure phase to liquid nitrogen temperatures and probing the sample at ambient pressure [3]. However, such neutron experiments have been limited to formation pressures below 10 GPa, and cannot be performed at ambient temperature. Here we present the first in-situ investigation of FeHx at 300 K using high-pressure neutron diffraction experiments performed at the Spallation Neutrons and Pressure Diffractometer (SNAP) instrument at the Spallation Neutron Source, Oak Ridge National Laboratory. In order to achieve pressures of ~50 GPa, we loaded iron samples with a hydrogen gas pressure medium into newly designed large-volume panoramic diamond-anvil cells (DACs) for neutron diffraction experiments [4; 5]. We will present the details of our DAC preparations and results of our in-situ structural refinements of dhcp-FeHx up to ~50 GPa. Together with previous investigations of the thermoelastic and electronic properties of FeHx [2; 6], we will discuss implications for the composition of Earth's iron-rich core. References: 1. N. Hirao et al. (2004), Geophys. Res. Lett., 31, L06616, doi:10.1029/2003GL019380. 2. W.L. Mao et al. (2004), Geophys. Res. Lett., 31, L15618, doi:10.1029/2004GL020541. 3. V.E. Antonov et al. (2002), J. Phys.: Condens. Matter, 14, 6427-6445, doi:10.1088/0953-8984/14/25/311. 4. M. Guthrie et al. (2013), ACA Transactions, 44, in press. 5. R. Boehler et al. (2013), High Press. Res., in press, doi:10.1080/08957959.2013.823197. 6. Y. Shibazaki et al. (2012), Earth Planet. Sci. Lett., 313-314, 79-85, doi:10.1016/j.epsl.2011.11.002.

  1. Roughness of stylolites: implications of 3D high resolution topography measurements.

    PubMed

    Schmittbuhl, J; Renard, F; Gratier, J P; Toussaint, R

    2004-12-03

    Stylolites are natural pressure-dissolution surfaces in sedimentary rocks. We present 3D high resolution measurements at laboratory scales of their complex roughness. The topography is shown to be described by a self-affine scaling invariance. At large scales, the Hurst exponent is zeta(1) approximately 0.5 and very different from that at small scales where zeta(2) approximately 1.2. A crossover length scale at around L(c)=1 mm is well characterized. Measurements are consistent with a Langevin equation that describes the growth of a stylolitic interface as a competition between stabilizing long range elastic interactions at large scales or local surface tension effects at small scales and a destabilizing quenched material disorder.

  2. The shale gas boom and the need for rational policy.

    PubMed

    Finkel, Madelon; Hays, Jake; Law, Adam

    2013-07-01

    High-volume, slick water hydraulic fracturing of shale relies on pumping millions of gallons of surface water laced with toxic chemicals and sand under high pressure to create fractures to release the flow of gas. The process, however, has the potential to cause serious and irreparable damage to the environment and the potential for harm to human and animal health. At issue is how society should form appropriate policy in the absence of well-designed epidemiological studies and health impact assessments. The issue is fraught with environmental, economic, and health implications, and federal and state governments must establish detailed safeguards and ensure regulatory oversight, both of which are presently lacking in states where hydraulic fracturing is allowed.

  3. Age of donor alters the effect of cyclic hydrostatic pressure on production by human macrophages and osteoblasts of sRANKL, OPG and RANK

    PubMed Central

    Evans, CE; Mylchreest, S; Andrew, JG

    2006-01-01

    Background Cyclic hydrostatic pressure within bone has been proposed both as a stimulus of aseptic implant loosening and associated bone resorption and of bone formation. We showed previously that cyclical hydrostatic pressure influenced macrophage synthesis of several factors linked to osteoclastogenesis. The osteoprotegerin/soluble receptor activator of NF-kappa β ligand /receptor activator of NF-kappa β (OPG/ RANKL/ RANK) triumvirate has been implicated in control of bone resorption under various circumstances. We studied whether cyclical pressure might affect bone turnover via effects on OPG/ sRANKL/ RANK. Methods In this study, cultures of human osteoblasts or macrophages (supplemented with osteoclastogenic factors) or co-cultures of macrophages and osteoblasts (from the same donor), were subjected to cyclic hydrostatic pressure. Secretion of OPG and sRANKL was assayed in the culture media and the cells were stained for RANK and osteoclast markers. Data were analysed by nonparametric statistics. Results In co-cultures of macrophages and osteoblasts, pressure modulated secretion of sRANKL or OPG in a variable manner. Examination of the OPG:sRANKL ratio in co cultures without pressurisation showed that the ratio was greater in donors <70 years at the time of operation (p < 0.05 Mann Whitney U) than it was in patients >70 years. However, with pressure the difference in the OPG:sRANKL ratios between young and old donors was not significant. It was striking that in some patients the OPG:sRANKL ratio increased with pressure whereas in some it decreased. The tendency was for the ratio to decrease with pressure in patients younger than 70 years, and increase in patients ≥ 70 years (Fishers exact p < 0.01). Cultures of osteoblasts alone showed a significant increase in both sRANKL and OPG with pressure, and again there was a decrease in the ratio of OPG:RANKL. Secretion of sRANKL by cultures of macrophages alone was not modulated by pressure. Only sRANKL was assayed in this study, but transmembrane RANKL may also be important in this system. Macrophages subjected to pressure (both alone and in co-culture) stained more strongly for RANK on immunohistochemstry than non-pressurized controls and 1,25-dihydroxyvitamin D3 (1,25 D3) further increased this. Immunocytochemical staining also demonstrated that more cells in pressurized co-cultures exhibited osteoclast markers (tartrate-resistant acid phosphatase, vitronectin receptor and multinuclearity) than did unpressurized controls. Conclusion These data show that in co-cultures of osteoblasts and macrophages the ratio of OPG : sRANKL was decreased by pressure in younger patients but increased in older patients. As falls in this ratio promote bone resorption, this finding may be important in explaining the relatively high incidence of osteolysis around orthopaedic implants in young patients. The finding that secretion of OPG and sRANKL by osteoblasts in monoculture was sensitive to hydrostatic pressure, and that hydrostatic pressure stimulated the differentiation of macrophages into cells exhibiting osteoclast markers indicates that both osteoblasts and preosteoclasts are sensitive to cyclic pressure. However, the effects of pressure on cocultures were not simply additive and coculture appears useful to examine the interaction of these cell types. These findings have implications for future therapies for aseptic loosening and for the development of tests to predict the development of this condition. PMID:16519799

  4. Mineralogical study of brown olivine in Northwest Africa 1950 shergottite and implications for the formation mechanism of iron nanoparticles

    NASA Astrophysics Data System (ADS)

    Takenouchi, Atsushi; Mikouchi, Takashi; Kogure, Toshihiro

    2017-12-01

    Martian meteorites, in particular shergottites, contain darkened olivine (so-called "brown olivine") whose color is induced by iron nanoparticles formed in olivine during a shock event. The formation process and conditions of brown olivine have been discussed in the Northwest Africa 2737 (NWA 2737) chassignite. However, formation conditions of brown olivine in NWA 2737 cannot be applied to shergottites because NWA 2737 has a different shock history from that of shergottites. Therefore, this study observed brown olivine in the NWA 1950 shergottite and discusses the general formation process and conditions of brown olivine in shergottites. Our observation of NWA 1950 revealed that olivine is heterogeneously darkened between and within grains different from brown olivine in NWA 2737. XANES analysis showed that brown olivine contains small amounts of Fe3+ and TEM/STEM observation revealed that there is no SiO-rich phase around iron metal nanoparticles. These observations indicate that iron nanoparticles were formed by a disproportionation reaction of olivine (3Fe2+olivine → Fe0metal + 2Fe3+olivine + Volivine, where Volivine means a vacancy in olivine). Some parts of brown olivine show lamellar textures in SEM observation and Raman peaks in addition to those expected for olivine, implying that brown olivine experienced a phase transition (to e.g., ringwoodite). In order to induce heterogeneous darkening, heterogeneous high temperature of about 1500-1700 K and shock duration of at least 90 ms are required. This heterogeneous high temperature resulted in high postshock temperature (>900 K) inducing back-transformation of most high-pressure phases. Therefore, in spite of lack of high-pressure phases, NWA 1950 (= Martian meteorites with brown olivine) experienced higher pressure and temperature compared to other highly shocked meteorite groups.

  5. The W-W02 Oxygen Fugacity Buffer at High Pressures and Temperatures: Implications for f02 Buffering and Metal-silicate Partitioning

    NASA Technical Reports Server (NTRS)

    Shofner, G. A.; Campbell, A. J.; Danielson, L.; Righter, K.

    2013-01-01

    Oxygen fugacity (fO2) controls multivalent phase equilibria and partitioning of redox-sensitive elements, and it is important to understand this thermodynamic parameter in experimental and natural systems. The coexistence of a metal and its oxide at equilibrium constitutes an oxygen buffer which can be used to control or calculate fO2 in high pressure experiments. Application of 1-bar buffers to high pressure conditions can lead to inaccuracies in fO2 calculations because of unconstrained pressure dependencies. Extending fO2 buffers to pressures and temperatures corresponding to the Earth's deep interior requires precise determinations of the difference in volume (Delta) V) between the buffer phases. Synchrotron x-ray diffraction data were obtained using diamond anvil cells (DAC) and a multi anvil press (MAP) to measure unit cell volumes of W and WO2 at pressures and temperatures up to 70 GPa and 2300 K. These data were fitted to Birch-Murnaghan 3rd-order thermal equations of state using a thermal pressure approach; parameters for W are KT = 306 GPa, KT' = 4.06, and aKT = 0.00417 GPa K-1. Two structural phase transitions were observed for WO2 at 4 and 32 GPa with structures in P21/c, Pnma and C2/c space groups. Equations of state were fitted for these phases over their respective pressure ranges yielding the parameters KT = 190, 213, 300 GPa, KT' = 4.24, 5.17, 4 (fixed), and aKT = 0.00506, 0.00419, 0.00467 GPa K-1 for the P21/c, Pnma and C2/c phases, respectively. The W-WO2 buffer (WWO) was extended to high pressure by inverting the W and WO2 equations of state to obtain phase volumes at discrete pressures (1-bar to 100 GPa, 1 GPa increments) along isotherms (300 to 3000K, 100 K increments). The slope of the absolute fO2 of the WWO buffer is positive with increasing temperature up to approximately 70 GPa and is negative above this pressure. The slope is positive along isotherms from 1000 to 3000K with increasing pressure up to at least 100 GPa. The WWO buffer is at a higher fO2 than the IW buffer at pressures lower than 40 GPa, and the magnitude of this difference decreases at higher pressures. This qualitatively indicates an increasingly lithophile character for W at higher pressures. The WWO buffer was quantitatively applied to W metal-silicate partitioning by using the WWO-IW buffer difference in combination with literature data on W metal-silicate partitioning to model the exchange coefficient (KD) for the Fe-W exchange reaction. This approach captures the pressure dependence of W metal-silicate partitioning using the WWO-IW buffer difference and models the activities of the components in the silicate and metallic phases using an expression of the Gibbs excess energy of mixing. Calculation of KD along a peridotite liquidus predicts a decrease in W siderophility at higher pressures that supports the qualitative behavior predicted by the WWO-IW buffer difference, and agrees with findings of others. Comparing the competing effects of temperature and pressure on W metal-silicate partitioning, our results indicate that pressure exerts a greater effect.

  6. Evolution of Abnormally Low Pressure at Bravo Dome and its Implications for Carbon Capture and Storage (CCS)

    NASA Astrophysics Data System (ADS)

    Akhbari, D.; Hesse, M. A.

    2015-12-01

    Carbon capture and storage allows reductions of the rapidly rising CO2 from fossil fuel-based power generation, if large storage rates and capacities can be achieved. The injection of large fluid volumes at high rates leads to a build-up of pore-pressure in the storage formation that may induce seismicity and compromise the storage security. Many natural CO2 fields in midcontinent US, in contrast, are under-pressured rather than over-pressured suggesting that natural processes reduce initial over-pressures and generate significant under-pressures. The question is therefore to understand the sequence of process(es) that allow the initial over-pressure to be eliminated and the under-pressure to be maintained over geological periods of time. We therefore look into pressure evolution in Bravo Dome, one of the largest natural CO2 accumulations in North America, which stores 1.3 Gt of CO2. Bravo Dome is only 580-900 m deep and is divided into several compartments with near gas-static pressure (see Figure). The pre-production gas pressures in the two main compartments that account for 70% of the mass of CO2 stored at Bravo Dome are more than 6 MPa below hydrostatic pressure. Here we show that the under-pressure in the Bravo Dome CO2 reservoir is maintained by hydrological compartmentalization over millennial timescales and generated by a combination of processes including cooling, erosional unloading, limited leakage into overlying formations, and CO2 dissolution into brine. Herein, we introduce CO2 dissolution into brine as a new process that reduce gas pressure in a compartmentalized reservoir and our results suggest that it may contribute significantly to reduce the initial pressure build-up due to injection. Bravo Dome is the first documented case of pressure drop due to CO2 dissolution. To have an accurate prediction of pressure evolution in Bravo Dome, our models must include geomechanics and thermodynamics for the reservoir while they account for the pressure changes due to the CO2 dissolution.

  7. Cardioprotective cryptides derived from fish and other food sources: generation, application, and future markets.

    PubMed

    Mora, Leticia; Hayes, Maria

    2015-02-11

    The primary function of dietary protein is to provide amino acids for protein synthesis. However, protein is also a source of latent bioactive peptides or cryptides with potential health benefits including the control and regulation of blood pressure. Hypertension or high blood pressure is one of the major, controllable risk factors in the development of cardiovascular disease (CVD), and it is also implicated in the development of myocardial infarction, heart failure, and end-stage diabetes. Cryptides can act on various systems of the body including the circulatory, gastrointestinal (GI), nervous, skeletal, and respiratory systems. A number of studies carried out to date have examined the health benefits of food protein isolates and hydrolysates. This review provides an overview of existing blood pressure regulating peptides and products derived from fish and other protein sources and hydrolysates. It discusses the methods used currently to generate and identify cryptides from these sources and their application in food and pharmaceutical products. It also looks at the current market for protein-derived peptides and peptide-containing products, legislation governing their use, and the future development of research in this area.

  8. Temperature measurements of shocked silica aerogel foam

    DOE PAGES

    Falk, K.; McCoy, C. A.; Fryer, C. L.; ...

    2014-09-12

    We present recent results of equation-of-state (EOS) measurements of shocked silica (SiO2) aerogel foam at the OMEGA laser facility. Silica aerogel is an important low-density pressure standard used in many high energy density experiments, including the novel technique of shock and release. Due to its many applications, it has been a heavily studied material and has a well-known Hugoniot curve. This work then complements the velocity and pressure measurements with additional temperature data providing the full EOS information within the warm dense matter regime for the temperature interval of 1–15 eV and shock velocities between 10 and 40 km/s correspondingmore » to shock pressures of 0.3–2 Mbar. The experimental results were compared with hydrodynamic simulations and EOS models. We found that the measured temperature was systematically lower than suggested by theoretical calculations. As a result, simulations provide a possible explanation that the emission measured by optical pyrometry comes from a radiative precursor rather than from the shock front, which could have important implications for such measurements.« less

  9. Fenestral pore size in the internal elastic lamina affects transmural flow distribution in the artery wall.

    PubMed

    Tada, S; Tarbell, J M

    2001-06-01

    Interstitial flow through the subendothelial intima and media of an artery wall was simulated numerically to investigate the water flow distribution through fenestral pores which affects the wall shear stress on smooth muscle cells right beneath the internal elastic lamina (IEL). A two-dimensional analysis using the Brinkman model of porous media flow was performed. It was observed that the hydraulic permeability of the intimal layer should be much greater than that of the media in order to predict a reasonable magnitude for the pressure drop across the subendothelial intima and IEL (about 23 mostly at a 70 mm Hg luminal pressure). When Ki was set equal to the value in the media, this pressure drop was unrealistically high. Furthermore, the higher value of Ki produced a nearly uniform distribution of water flow through a simple array of fenestral pores all having the same diameters (1.2 microm), whereas when Ki was set at the value in the media, the flow distribution through fenestral pores was highly nonuniform and nonphysiologic. A deformable intima model predicted a nonuniform flow distribution at high pressure (180 mm Hg). Damage to the IEL was simulated by introducing a large fenestral pore (up to 17.8 microm) into the array. A dramatic increase in flow through the large pore was observed implying an altered fluid mechanical environment on the smooth muscle cells near the large pore which has implications for intimal hyperplasia and atherosclerosis. The model also predicted that the fluid shear stress on the bottom surface of an endothelial cell is on the order of 10 dyne/cm2, a level which can affect cell function.

  10. Extended Solids of Carbon Monoxide formed from Re2(CO)12

    NASA Astrophysics Data System (ADS)

    Ciezak-Jenkins, Jennifer

    Extended solids are formed from simple molecular gases under extreme P/T and are of considerable interest as high-energy-density materials. It has been postulated that a transformation from a single-bonded polymeric-like material back to the more stable triply-bonded diatomic phase would be a highly exothermic process yielding large amounts of energy. The extended polymeric solid of CO was first reported and recovered from high pressure conditions in 2005. Although the material was found to have potentially interesting energetic properties, it showed a number of stability issues, degrading into CO2 and graphitic carbon over 3 to 5 days. As such, our lab has been focused on the identification of methods to increase the metastability of the recovered solid. Metal carbonyls offer one such route for stabilization. In this talk, our progress in the study of the synthesis, characterization, and recovery of extended solids of CO starting from Re2(CO)12\\ to pressures near 50 GPa will be presented. I will discuss the analysis and the implications of these results. New opportunities and challenges that have arisen in the course of our studies that will be pursued in the future will also be presented. Ref

  11. Maturation of heart rate and blood pressure variability during sleep in term-born infants.

    PubMed

    Yiallourou, Stephanie R; Sands, Scott A; Walker, Adrian M; Horne, Rosemary S C

    2012-02-01

    Abnormal blood pressure control is implicated in the sudden infant death syndrome (SIDS). However, no data exist on normal development of blood pressure control during infancy. This study assessed maturation of autonomic control of blood pressure and heart rate during sleep within the first 6 months of life. Term infants (n = 31) were studied longitudinally at 2-4 weeks, 2-3 months, and 5-6 months postnatal age. Infants underwent daytime polysomnography at each age studied. Blood pressure and heart rate were recorded during quiet (QS) and active (AS) sleep in undisturbed baseline and head-up tilt conditions. Autonomic control was assessed using spectral indices of blood pressure and heart rate variability (BPV and HRV) in ranges of low frequency (LF, reflecting sympathetic + parasympathetic activity) and high frequency (HF, parasympathetic activity), total power (LF+HF), and LF/HF ratio (sympathovagal balance). With increasing postnatal age and predominantly during QS, HRV-LF, HRV-HF, and HRV total power increased, while HRV-LF/HF decreased. BPV-LF/HF also decreased with postnatal age. All changes were evident in both baseline and head-up tilt conditions. BPV-LF and BPV total power during tilts were markedly reduced in QS versus AS at each age. In sleeping infants, sympathetic vascular modulation of the circulation decreases with age, while parasympathetic control of heart rate is strengthened. These normative data will aid in the early identification of conditions where autonomic function is impaired, such as in SIDS.

  12. Human Cardiovascular Adaptation to Weightlessness

    NASA Technical Reports Server (NTRS)

    Norsk, Peter

    2011-01-01

    Entering weightlessness (0 G) induces immediately a shift of blood and fluid from the lower to the upper parts of the body inducing expansion of the cardiac chambers (Bungo et al. 1986; Charles & Lathers 1991; Videbaek & Norsk 1997). For many years the effects of sudden 0 G on central venous pressure (CVP) was discussed, and it puzzled researchers that CVP compared to the 1-G supine position decreased during the initial hours of spaceflight, when at the same time left atrial diameter increased (Buckey et al. 1996). By measuring esophageal pressure as an estimate of inter-pleural pressure, it was later shown that this pressure decreases more than CVP does during 0 G induced by parabolic flights (Videbaek & Norsk 1997). Thus, transmural CVP is increased, which distends the cardiac chambers. This unique lung-heart interaction whereby 1) inter-pleural pressure decreases and 2) central blood volume is expanded is unique for 0 G. Because transmural CVP is increased, stroke volume increases according to the law of Frank-Starling leading to an increase in cardiac output, which is maintained increased during months of 0 G in space to levels of some 25% above that of the 1-G seated position (Norsk unpublished). Simultaneously, sympathetic nervous activity is at the level of the upright 1-G posture, which is difficult to explain based on the high stroke volume and decreased blood pressure and systemic vascular resistance. This paradox should be explored and the mechanisms revealed, because it might have implications for estimating the cardiovascular risk of travelling in space.

  13. A Synchrotron Mössbauer Spectroscopy Study of a Hydrated Iron-Sulfate at High Pressures

    NASA Astrophysics Data System (ADS)

    Perez, T. M.; Finkelstein, G. J.; Solomatova, N. V.; Jackson, J. M.

    2017-12-01

    Szomolnokite is a monohydrated ferrous iron sulfate mineral, FeSO4*H2O, where the ferrous iron atoms are in octahedral coordination with four corners shared with SO4 and two with H2O. While somewhat rare on Earth, szomolnokite has been detected on the surface of Mars along with several other hydrated sulfates and suggested to occur near the surface of Venus [1,2]. It is not clear if these sulfates are a result of reactions occurring at depth driven by changes in the behavior of iron in the sulfate. To date, only a few high-pressure studies have been conducted on hydrated iron sulfates using Mössbauer spectroscopy. Our study represents a first step towards understanding of the electronic environment of iron in a monohydrated sulfate at pressure. Using a hydrostatic helium pressure-transmitting medium, the pressure dependence of iron's site-specific behavior in a synthetic szomolnokite powdered sample was explored up to about 100 GPa with time-resolved synchrotron Mössbauer spectroscopy at the Advanced Photon Source of Argonne National Laboratory. At 1 bar, the Mössbauer spectrum is well described by three Fe2+-like sites, consistent with conventional Mössbauer spectra reported in Dyar et al. [3]. At pressures up to 20 GPa, changes in the hyperfine parameters are most likely due to a structural phase transition. Above this pressure, a fourth site is required to explain the time-spectra. Changes in the electronic configuration of iron, such as those due to a phase transition and/or a spin crossover, will affect the material's compressibility and transport properties. We will compare our high-pressure trends with those of other iron-bearing phases and discuss the relative influence on the dynamics of terrestrial planetary interiors. 1. Bishop et al. (2014) What Lurks in the Martian Rocks and Soil? Investigations of Sulfates, Phosphates, and Perchlorates. Spectral and thermal properties of perchlorate salts and implications for Mars. Am. Min. 99(8-9), 1580-1592. Wendt et al. (2011) Sulfates and iron oxides in Ophir Chasma, Mars, based on OMEGA and CRISM observations. Icarus 213(1). 86-103. 2. Barsukov et al. (1982) The crust of Venus: theoretical models of chemical and mineral composition. JGR, 87(S01). 3. Dyar et al. (2013) Mössbauer parameters of iron in sulfate minerals. Am. Min. DOI: 10.2138/am.2013.4604.

  14. Endpoint design for future renal denervation trials - Novel implications for a new definition of treatment response to renal denervation.

    PubMed

    Lambert, Thomas; Nahler, Alexander; Rohla, Miklos; Reiter, Christian; Grund, Michael; Kammler, Jürgen; Blessberger, Hermann; Kypta, Alexander; Kellermair, Jörg; Schwarz, Stefan; Starnawski, Jennifer A; Lichtenauer, Michael; Weiss, Thomas W; Huber, Kurt; Steinwender, Clemens

    2016-10-01

    Defining an adequate endpoint for renal denervation trials represents a major challenge. A high inter-individual and intra-individual variability of blood pressure levels as well as a partial or total non-adherence on antihypertensive drugs hamper treatment evaluations after renal denervation. Blood pressure measurements at a single point in time as used as primary endpoint in most clinical trials on renal denervation, might not be sufficient to discriminate between patients who do or do not respond to renal denervation. We compared the traditional responder classification (defined as systolic 24-hour blood pressure reduction of -5mmHg six months after renal denervation) with a novel definition of an ideal respondership (based on a 24h blood pressure reduction at no point in time, one, or all follow-up timepoints). We were able to re-classify almost a quarter of patients. Blood pressure variability was substantial in patients traditionally defined as responders. On the other hand, our novel classification of an ideal respondership seems to be clinically superior in discriminating sustained from pseudo-response to renal denervation. Based on our observations, we recommend that the traditional response classification should be reconsidered and possibly strengthened by using a composite endpoint of 24h-BP reductions at different follow-up-visits. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  15. Static compression of Fe 0.83Ni 0.09Si 0.08 alloy to 374 GPa and Fe 0.93Si 0.07 alloy to 252 GPa: Implications for the Earth's inner core

    NASA Astrophysics Data System (ADS)

    Asanuma, Hidetoshi; Ohtani, Eiji; Sakai, Takeshi; Terasaki, Hidenori; Kamada, Seiji; Hirao, Naohisa; Ohishi, Yasuo

    2011-10-01

    The pressure-volume equations of state of iron-nickel-silicon alloy Fe 0.83Ni 0.09Si 0.08 (Fe-9.8 wt.% Ni-4.0 wt.% Si) and iron-silicon alloy Fe 0.93Si 0.07 (Fe-3.4 wt.% Si) have been investigated up to 374 GPa and 252 GPa, respectively. The present compression data covered pressures of the Earth's core. We confirmed that both Fe 0.83Ni 0.09Si 0.08 and Fe 0.93Si 0.07 alloys remain in the hexagonal close packed structure at all pressures studied. We obtained the density of these alloys at the pressure of the inner core boundary (ICB), 330 GPa at 300 K by fitting the compression data to the third order Birch-Murnaghan equation of state. Using these density values combined with the previous data for hcp-Fe, hcp-Fe 0.8Ni 0.2, and hcp-Fe 0.84Si 0.16 alloys and comparing with the density of the PREM inner core, we estimated the Ni and Si contents of the inner core. The Si content of the inner core estimated here is slightly greater than that estimated previously based on the sound velocity measurement of the hcp-Fe-Ni-Si alloy at high pressure.

  16. NONLINEAR EVOLUTION OF THE RADIATION-DRIVEN MAGNETO-ACOUSTIC INSTABILITY

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fernandez, Rodrigo; Socrates, Aristotle

    2013-04-20

    We examine the nonlinear development of unstable magnetosonic waves driven by a background radiative flux-the radiation-driven magneto-acoustic instability (RMI, a.k.a. the ''photon bubble'' instability). The RMI may serve as a persistent source of density, radiative flux, and magnetic field fluctuations in stably stratified, optically thick media. The conditions for instability are present in a variety of astrophysical environments and do not require the radiation pressure to dominate or the magnetic field to be strong. Here, we numerically study the saturation properties of the RMI, covering three orders of magnitude in the relative strength of radiation, magnetic field, and gas energies.more » Two-dimensional, time-dependent radiation-magnetohydrodynamic simulations of local, stably stratified domains are conducted with Zeus-MP in the optically thick, highly conducting limit. Our results confirm the theoretical expectations of Blaes and Socrates in that the RMI operates even in gas-pressure-dominated environments that are weakly magnetized. The saturation amplitude is a monotonically increasing function of the ratio of radiation to gas pressure. Keeping this ratio constant, we find that the saturation amplitude peaks when the magnetic pressure is comparable to the radiation pressure. We discuss the implications of our results for the dynamics of magnetized stellar envelopes, where the RMI should act as a source of sub-photospheric perturbations.« less

  17. Titan's Interior Chemical Composition: Possible Important Phase Transitions

    NASA Astrophysics Data System (ADS)

    Howard, Michael; Fried, L. E.; Khare, B. N.; McKay, C. P.

    2008-09-01

    We study the interior composition of Titan using thermal chemical equilibrium calculations that are valid to high pressures and temperatures. The equations of state are based on exponential-6 fluid theory and have been validated against experimental data up to a few Mbars in pressure and approximately 20000K in temperature. In addition to CHNO molecules, we account for multi-phases of carbon, water and a variety of metals such as Al and Fe, and their oxides. With these fluid equations of state, chemical equilibrium is calculated for a set of product species. As the temperature and pressure evolves for increasing depth in the interior, the chemical equilibrium shifts. We assume that Titan is initially composed of comet material, which we assume to be solar, except for hydrogen, which we take to be depleted by a factor 1/1000. We find that a significant amount of nitrogen is in the form of N2, rather than NH3. Moreover, above 12 kbars pressure, as is the interior pressure of Titan, a significant amount of the carbon is in the form of graphite, rather than CO2 and CH4. We discuss the implications of these results for understanding the atmospheric and surface composition of Titan. This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.

  18. Quantifying the effects of external shear loads on arterial and venous blood flow: implications for pressure ulcer development.

    PubMed

    Manorama, Abinand; Meyer, Ronald; Wiseman, Robert; Bush, Tamara Reid

    2013-06-01

    Forces applied to the skin cause a decrease in regional blood flow. This decrease in blood flow can cause tissue necrosis and lead to the formation of deep, penetrating wounds called pressure ulcers. These wounds are detrimental to individuals with compromised health, such as the elderly and spinal-cord injured. Although surface pressure is known to be a primary risk factor for developing a pressure ulcer, a seated individual rarely experiences pressure alone but rather combined loading which includes pressure as well as shear force on the skin. However, little research has been conducted to quantify the effects of shear forces on blood flow. Fifteen men were tested in a magnetic resonance imaging scanner under no load, a normal load, and a combination of normal and shear loads. Changes in arterial and venous blood flow in the forearm were measured using magnetic resonance angiography phase-contrast imaging. The blood flow in the anterior interosseous artery and basilic vein of the forearm decreased with the application of normal loads, and decreased further with the addition of shear loads. Marginal to significant differences at a 90% confidence level (P=0.08, 0.10) were observed, and medium to high effect sizes (0.3 to 0.5) were obtained. Based on these results, shear force is an important factor to consider in relation to pressure ulcer propagation and prevention, and hence, future prevention approaches should also focus on mitigating shear loads. Copyright © 2013 Elsevier Ltd. All rights reserved.

  19. Effects of intermediate wettability on entry capillary pressure in angular pores.

    PubMed

    Rabbani, Harris Sajjad; Joekar-Niasar, Vahid; Shokri, Nima

    2016-07-01

    Entry capillary pressure is one of the most important factors controlling drainage and remobilization of the capillary-trapped phases as it is the limiting factor against the two-phase displacement. It is known that the entry capillary pressure is rate dependent such that the inertia forces would enhance entry of the non-wetting phase into the pores. More importantly the entry capillary pressure is wettability dependent. However, while the movement of a meniscus into a strongly water-wet pore is well-defined, the invasion of a meniscus into a weak or intermediate water-wet pore especially in the case of angular pores is ambiguous. In this study using OpenFOAM software, high-resolution direct two-phase flow simulations of movement of a meniscus in a single capillary channel are performed. Interface dynamics in angular pores under drainage conditions have been simulated under constant flow rate boundary condition at different wettability conditions. Our results shows that the relation between the half corner angle of pores and contact angle controls the temporal evolution of capillary pressure during the invasion of a pore. By deviating from pure water-wet conditions, a dip in the temporal evolution of capillary pressure can be observed which will be pronounced in irregular angular cross sections. That enhances the pore invasion with a smaller differential pressure. The interplay between the contact angle and pore geometry can have significant implications for enhanced remobilization of ganglia in intermediate contact angles in real porous media morphologies, where pores are very heterogeneous with small shape factors. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  20. Lifetime racism and blood pressure changes during pregnancy: implications for fetal growth.

    PubMed

    Hilmert, Clayton J; Dominguez, Tyan Parker; Schetter, Christine Dunkel; Srinivas, Sindhu K; Glynn, Laura M; Hobel, Calvin J; Sandman, Curt A

    2014-01-01

    Research suggests that exposure to racism partially explains why African American women are 2 to 3 times more likely to deliver low birth weight and preterm infants. However, the physiological pathways by which racism exerts these effects are unclear. This study examined how lifetime exposure to racism, in combination with maternal blood pressure changes during pregnancy, was associated with fetal growth. African American pregnant women (n = 39) reported exposure to childhood and adulthood racism in several life domains (e.g., at school, at work), which were experienced directly or indirectly, meaning vicariously experienced when someone close to them was treated unfairly. A research nurse measured maternal blood pressure at 18 to 20 and 30 to 32 weeks gestation. Standardized questionnaires and trained interviewers assessed maternal demographics. Neonatal length of gestation and birth weight data were collected from medical charts. Childhood racism interacted with diastolic blood pressure to predict birth weight. Specifically, women with two or more domains of indirect exposure to racism in childhood and increases in diastolic blood pressure between 18 and 32 weeks had lower gestational age adjusted birth weight than the other women. A similar pattern was found for direct exposure to racism in childhood. Increases in diastolic blood pressure between the second and third trimesters predicted lower birth weight, but only when racism exposure in childhood (direct or indirect) was relatively high. Understanding pregnant African American women's lifetime direct and indirect experiences with racism in combination with prenatal blood pressure may improve identification of highest risk subgroups within this population. 2014 APA, all rights reserved

  1. Isovolumic relaxation time varies predictably with its time constant and aortic and left atrial pressures: implications for the noninvasive evaluation of ventricular relaxation.

    PubMed

    Thomas, J D; Flachskampf, F A; Chen, C; Guererro, J L; Picard, M H; Levine, R A; Weyman, A E

    1992-11-01

    The isovolumic relaxation time (IVRT) is an important noninvasive index of left ventricular diastolic function. Despite its widespread use, however, the IVRT has not been related analytically to invasive parameters of ventricular function. Establishing such a relationship would make the IVRT more useful by itself and perhaps allow it to be combined more precisely with other noninvasive parameters of ventricular filling. The purpose of this study was to validate such a quantitative relationship. Assuming isovolumic relaxation to be a monoexponential decay of ventricular pressure (pv) to a zero-pressure asymptote, it was postulated that the time interval from aortic valve closure (when pv = p(o)) until mitral valve opening (when pv = left atrial pressure, pA) would be given analytically by IVRT = tau[log(p(o))-log(pA)], where tau is the time constant of isovolumic relaxation and log is to the base e. To test this hypothesis we analyzed data from six canine experiments in which ventricular preload and afterload were controlled nonpharmacologically. In addition, tau was adjusted with the use of beta-adrenergic blockade and calcium infusion, as well as with hypothermia. In each experiment data were collected before and after the surgical formation of mitral stenosis, performed to permit the study of a wide range of left atrial pressures. High-fidelity left atrial, left ventricular, and aortic root pressures were digitized, the IVRT was measured from the aortic dicrotic notch until the left atrioventricular pressure crossover point, and tau was calculated by nonlinear least-squares regression.(ABSTRACT TRUNCATED AT 250 WORDS)

  2. Shock-induced CO2 loss from CaCO3: Implications for early planetary atmospheres

    NASA Technical Reports Server (NTRS)

    Lange, M. A.; Ahrens, T. J.

    1984-01-01

    Recovered samples from shock recovery experiments on single crystal calcite were subjected to thermogravimetric analysis to determine the amount of post-shock CO2, the decarbonization interval and the activation energy, for the removal of remaining CO2 in shock-loaded calcite. Comparison of post-shock CO2 with that initially present determines shock-induced CO2 loss as a function of shock pressure. Incipient to complete CO2 loss occurs over a pressure range of approximately 10 to approximately 70 GPa. Optical and scanning electron microscopy reveal structural changes, which are related to the shock-loading. The occurrence of dark, diffuse areas, which can be resolved as highly vesicular areas as observed with a scanning electron microscope are interpreted as representing quenched partial melts, into which shock-released CO2 was injected. The experimental results are used to constrain models of shock-produced, primary CO2 atmospheres on the accreting terrestrial planets.

  3. 40Ar* loss in experimentally deformed muscovite and biotite with implications for 40Ar/39Ar geochronology of naturally deformed rocks

    USGS Publications Warehouse

    Cosca, Michael; Stunitz, Holger; Bourgiex, Anne-Lise; Lee, John P.

    2011-01-01

    The effects of deformation on radiogenic argon (40Ar*) retentivity in mica are described from high pressure experiments performed on rock samples of peraluminous granite containing euhedral muscovite and biotite. Cylindrical cores, ~15 mm in length and 6.25 mm in diameter, were drilled from granite collected from the South Armorican Massif in northwestern France, loaded into gold capsules, and weld-sealed in the presence of excess water. The samples were deformed at a pressure of 10 kb and a temperature of 600 degrees C over a period 29 of hours within a solid medium assembly in a Griggs-type triaxial hydraulic deformation apparatus. Overall shortening in the experiments was approximately 10%. Transmitted light and secondary and backscattered electron imaging of the deformed granite samples reveals evidence of induced defects and for significant physical grain size reduction by kinking, cracking, and grain segmentation of the micas.

  4. Evaluative pressure in mothers: effects of situation, maternal, and child characteristics on autonomy supportive versus controlling behavior.

    PubMed

    Grolnick, Wendy S; Price, Carrie E; Beiswenger, Krista L; Sauck, Christine C

    2007-07-01

    This study examined the effects of situational pressure and maternal characteristics (social contingent self-worth, controlling parenting attitudes) on mothers' autonomy support versus control in the social domain. Sixty 4th-grade children and their mothers worked on a laboratory task in preparation for meeting new children, with mothers in either an evaluation (mothers told their child would be evaluated by other children) or no-evaluation (no mention of evaluation) condition. Mothers in the evaluation condition spent more time giving answers to their children. Mothers with controlling parenting attitudes exhibited more controlling behavior. Further, mothers with high social contingent self-worth in the evaluation condition were most controlling. Results suggest the importance of interactions between situations and maternal characteristics in determining levels of mothers' autonomy support versus control and have implications for helping parents support children's autonomy. Copyright 2007 APA.

  5. Head-on collisions of localized pressure excitations in derivative cubic relaxing media: dynamical structure survey

    NASA Astrophysics Data System (ADS)

    Youssoufa, Saliou; Kamgang Kuetche, Victor; Crepin Kofane, Timoleon

    2015-02-01

    In the wake of the recent derivation of the new cubic nonlinear evolution equation of high-frequency pressure perturbations of a barothropic medium under relaxation (Kuetche V K et al 2014 J. Math. Phys. 55 052702), we closely investigate the head-on collisions of some typical localized waveguide excitations, which are solutions to the previous system. From the viewpoint of Hirota's formalism, we delve into the structural scattering features of the interacting waves mentioned above. As a result, we find that there might exist some ‘characteristic’ amplitude ratio of the interacting waves at which the scattering changes its features. Accordingly, we provide an illustration of the previous result within the depiction of the interactions between three single soliton solutions alongside the phase-shift of each particle. Following these depictions, we address some physical implications of the results as well as the different potential applications.

  6. New High Pressure Phase of CaCO3: Implication for the Deep Diamond Formation

    NASA Astrophysics Data System (ADS)

    Mao, Z.; Li, X.; Zhang, Z.; Lin, J. F.; Ni, H.; Prakapenka, V.

    2017-12-01

    Surface carbon can be transported to the Earth's deep interior through sinking subduction slabs. Carbonates, including CaCO3, MgCO3 and MgCa(CO3)2, are important carbon carriers for the deep carbon cycle. Experimental studies on the phase stability of carbonates with coexisting mantle minerals at relevant pressure and temperature conditions are thus important for understanding the deep carbon cycle. In particular, recent petrological studies have revealed the evidence for the transportation of CaCO3 to the depth at least of the top lower mantle by analyzing the diamond inclusions. Yet the phase stability of CaCO3 at relevant pressure and temperature conditions of the top lower mantle is still unclear. Previous single-crystal study has shown that CaCO3 transforms from the CaCO3-III structure to CaCO3-VI at 15 GPa and 300 K. The CaCO3-VI is stable at least up to 40 GPa at 300 K. At high temperatures, CaCO3 in the aragonite structure will directly transform into the post-aragonite structure at 40 GPa. However, a recent theoretical study predicted a new phase of CaCO3 with a space group of P21/c between 32 and 48 GPa which is different from previous experimental results. In this study, we have investigated the phase stability of CaCO3 at high pressure-temperature conditions using synchrotron X-ray diffraction in laser-heated diamond anvil cells. We report the discovery of a new phase of CaCO3 at relevant pressure-temperature conditions of the top lower mantle which is consistent with previous theoretical predictions. This new phase is an important carrier for the transportation of carbon to the Earth's lower mantle and crucial for growing deep diamonds in the region.

  7. Experimental and theoretical identification of a high-pressure polymorph of Ga{sub 2}S{sub 3} with α-Bi{sub 2}Te{sub 3}-type structure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lai, Xiaojing; Zhu, Feng; Qin, Shan

    Since the discovery of α-phase Bi{sub 2}Te{sub 3}, Sb{sub 2}Te{sub 3}, and Bi{sub 2}Se{sub 3} as 3D topological insulators, many experimental and theoretical studies of A{sub 2}B{sub 3}-type chalcogenides have been performed to search for new materials with interesting elastic and electric properties at ambient and extreme conditions. In this study, high-pressure properties of Ga{sub 2}S{sub 3} have been characterized by in situ synchrotron X-ray diffraction (XRD), X-ray absorption near edge structure measurements, and Density-functional theory (DFT) calculations. At ∼16.0 GPa, a phase transition of α′-Ga{sub 2}S{sub 3} (Cc and Z = 4) is observed experimentally to a new polymorph, which is indentifiedmore » to be the tetradymite-type or α-Bi{sub 2}Te{sub 3}-type crystal structure (R3{sup ¯}m and Z = 3) by laser-annealing XRD experiments and DFT calculations. The isothermal pressure-volume relationship of Ga{sub 2}S{sub 3} is well described by the second-order Birch-Murnaghan equation of state with K{sub 0} = 59(2) GPa and K{sub 0}{sup ′} = 4 (fixed) for the α′-Ga{sub 2}S{sub 3}, and K{sub 0} = 91(3) GPa, and K{sub 0}{sup ′} = 4 (fixed) for the tetradymite-type phase. In addition, band gap of α′-Ga{sub 2}S{sub 3} decreases on compression and the tetradymite-type Ga{sub 2}S{sub 3} exhibits metallization based on DFT calculations. The pressure-induced phase transition accompanying by changes of elastic and electrical properties may give some implications to other chalcogenides under high pressure.« less

  8. Sound velocity measurements of dhcp-FeHx up to 70 GPa using inelastic X-ray scattering: Implications for the abundance of hydrogen in the Earth's core

    NASA Astrophysics Data System (ADS)

    Shibazaki, Y.; Ohtani, E.; Fukui, H.; Sakai, T.; Kamada, S.; Baron, A. Q.; Nishitani, N.; Hirao, N.; Takemura, K.

    2011-12-01

    The Earth's interior has been directly investigated by seismic wave propagation and normal mode oscillation. In particular, the distributions of density and sound velocity are available to study the Earth's core (e.g. PREM). The inner core, which is solid state, is approximately 3 % less dense than pure iron (a core density deficit), and it is considered that the core consists of iron and light elements, such as hydrogen, carbon, oxygen, silicon, and sulfur. In this work, in order to constrain the abundance of hydrogen in the Earth's core by matching the density and sound velocity of FeHx to those of PREM, we determined the compressional sound velocity of iron hydride at high pressure using inelastic X-ray scattering (IXS). The IXS experiments and in situ X-ray diffraction (XRD) experiments were conducted up to 70 GPa and room temperature. High-pressure conditions were generated using a symmetric diamond anvil cell (DAC) with tungsten gaskets. Hydrogen initially pressurized to 0.18 GPa was loaded to the sample chamber. The IXS experiments were performed at BL35XU of the SPring-8 facility in Japan. The XRD experiments at high pressure were carried out by the angle dispersive method at BL10XU of the SPring-8 facility in Japan. The each XRD pattern of FeHx was collected after each IXS measurement in order to obtain directly the density of FeHx. Over the range of pressure studied, the diffraction lines of double-hexagonal close-packed (dhcp)-FeHx were observed and there were no diffraction lines of iron. We show that FeHx follows Birch's law for Vp above 37 GPa, namely a linear dependence between velocity and density. The estimated Vp, extrapolated to core conditions, is compared with PREM. Our results provide that the Earth's inner core could contain about 0.2 wt% hydrogen.

  9. Boundary pressure of inter-connection of Fe-Ni-S melt in olivine based on in-situ X-ray tomography: Implication to core formation in asteroids

    NASA Astrophysics Data System (ADS)

    Terasaki, H.; Urakawa, S.; Uesugi, K.; Nakatsuka, A.; Funakoshi, K.; Ohtani, E.

    2011-12-01

    Interconnectivity of Fe-alloy melt in crystalline silicates is important property for the core formation mechanism in planetary interior. In previous studies, the interconnectivity of Fe-alloy melt has been studied based on textural observation of recovered samples from high pressure and temperature. However, there is no observation under high pressure and temperature. We have developed 80-ton uni-axial press for X-ray computed micro-tomography (X-CT) and performed X-CT measurement under high pressure (Urakawa et al. 2010). Here we report X-CT measurement of Fe-Ni-S melt in crystalline olivine and interconnectivity of the melt up to 3.5 GPa and 1273 K. X-CT measurements were carried out at BL20B2 beamline, SPring-8 synchrotron facility. The sample was powder mixture of Fe-Ni-S and olivine, which was enclosed in graphite capsule. Heating was performed using a cylindrical graphite furnace. Pressure was generated using opposed toroidal-shape WC anvil. The uni-axial press was set on the rotational stage and X-ray radiography image of the sample was collected using CCD camera from 0°to 180°with 0.3° step. 3-D image of the sample was obtained by reconstructing the 2-D radiography image. The 3-D CT image shows that the size of the Fe-Ni-S melt increased significantly compared to that before melting below 2.5 GPa, suggesting that the melt was interconnected in olivine crystals. On the other hand, 3-D texture of the sample at 3.5 GPa did not show difference from that before melting. Therefore, the boundary of inter-connection of Fe-Ni-S melt is likely to locate between 2.5 and 3.5 GPa. This result is important application for the core formation mechanism especially in small bodies, such as differentiated asteroids.

  10. Processing of Bulk YBa2Cu3O(7-x) High Temperature Superconductor Materials for Gravity Modification Experiments and Performance Under AC Levitation

    NASA Technical Reports Server (NTRS)

    Koczor, Ronald; Noever, David; Hiser, Robert

    1999-01-01

    We have previously reported results using a high precision gravimeter to probe local gravity changes in the neighborhood of bulk-processed high temperature superconductor disks. Others have indicated that large annular disks (on the order of 25cm diameter) and AC levitation fields play an essential role in their observed experiments. We report experiments in processing such large bulk superconductors. Successful results depend on material mechanical characteristics, and pressure and heat treat protocols. Annular disks having rough dimensions of 30cm O.D., 7cm I.D. and 1 cm thickness have been routinely fabricated and tested under AC levitation fields ranging from 45 to 300OHz. Implications for space transportation initiatives and power storage flywheel technology will be discussed.

  11. Geologic Setting of Mosul Dam and Its Engineering Implications

    DTIC Science & Technology

    2007-09-01

    thought that an increase in vol- ume, produced during alteration of interbedded anhydrite to gypsum, generated sufficient pressure to fracture the...construction.. ..................................................................23 Figure 8. Geologic sections with water- pressure test values and...contains fragments or clasts of limestone, dolomite , or larger pieces of insoluble rocks of collapsed material. The upper portion of the accumulation

  12. Time Demands of Caring for Children with Autism: What Are the Implications for Maternal Mental Health?

    ERIC Educational Resources Information Center

    Sawyer, Michael G.; Bittman, Michael; La Greca, Annette M.; Crettenden, Angela D.; Harchak, Taylor F.; Martin, Jon

    2010-01-01

    This study examined the relationship between maternal mental health problems and both caregiving time and experience of time pressure for 216 mothers of children with autism. Data describing caregiving time was obtained using 24-h time-diaries. Standard questionnaires were used to assess time pressure, social support, children's emotional and…

  13. Rural Latino caregivers' beliefs and behaviors around their children's salt consumption.

    PubMed

    Hoeft, Kristin S; Guerra, Claudia; Gonzalez-Vargas, M Judy; Barker, Judith C

    2015-04-01

    Prevalence of high blood pressure has been increasing in U.S. children, with implications for long term health consequences. Sodium consumption, a modifiable risk factor for high blood pressure, is above recommended limits and increasing. Very little is known about Latino caregiver beliefs and behaviors around their children's salt consumption. In California's Central Valley, qualitative interviews in Spanish investigated low-income caregivers' views and understandings of their children's dietary salt consumption. Thirty individual interviews and 5 focus groups were conducted (N=61). Interview transcripts were translated and transcribed, coded and thematically analyzed. Seven primary topic areas around children's salt intake and its impact on health were identified: children's favorite foods, children's dietary salt sources, superiority of home-cooked foods, salty and sweet foods, managing salt for health, developing children's tastes, and adding salt added at the table. Parents recognize common sources of sodium such as "junk food" and processed food and made efforts to limit their children's consumption of these foods, but may overlook other significant sodium sources, particularly bread, cheese, prepared soups and sports drinks. Caregivers recognize excess salt as unhealthy for children, but don't believe health problems (like high blood pressure) can occur in young children. Nevertheless, they made efforts to limit how much salt their children consumed through a variety of strategies; school meals were a source of high sodium that they felt were outside of their control. Latino caregivers are concerned about their children's salt intake and attempt to limit consumption, but some common sources of sodium are under-recognized. Copyright © 2014 Elsevier Ltd. All rights reserved.

  14. Radon and material radiopurity assessment for the NEXT double beta decay experiment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cebrián, S.; Dafni, T.; González-Díaz, D.

    The ”Neutrino Experiment with a Xenon TPC” (NEXT), intended to investigate the neutrinoless double beta decay using a high-pressure xenon gas TPC filled with Xe enriched in {sup 136}Xe at the Canfranc Underground Laboratory in Spain, requires ultra-low background conditions demanding an exhaustive control of material radiopurity and environmental radon levels. An extensive material screening process is underway for several years based mainly on gamma-ray spectroscopy using ultra-low background germanium detectors in Canfranc but also on mass spectrometry techniques like GDMS and ICPMS. Components from shielding, pressure vessel, electroluminescence and high voltage elements and energy and tracking readout planes havemore » been analyzed, helping in the final design of the experiment and in the construction of the background model. The latest measurements carried out will be presented and the implication on NEXT of their results will be discussed. The commissioning of the NEW detector, as a first step towards NEXT, has started in Canfranc; in-situ measurements of airborne radon levels were taken there to optimize the system for radon mitigation and will be shown too.« less

  15. Low pressure radon diffusion - A laboratory study and its implications for lunar venting

    NASA Technical Reports Server (NTRS)

    Friesen, L. J.; Adams, J. A. S.

    1976-01-01

    Results of a study of radon migration through columns of fine particulate materials, at total pressures of 0.02-0.2 torr, are reported. Materials studied were: NBS Glass Spheres (SRM 1003), Emerson & Cuming Eccospheres (IG-101), activated coconut charcoal, Lipaci obsidian, and W-1 Standard Diabase. Rates of diffusion were used to derive heats of adsorption for radon on the materials tested. The most reliable values found clustered around 8-9 kcal/mole. These high heats of adsorption, if typical for most materials, combined with low percentages of radon emanation by lunar soils found by other researchers, imply that random walk diffusion will not be an important mechanism for redistributing the radon and the radon daughters produced in the lunar regolith. In particular, since random walk migration is not a sufficient mechanism to account for localized high concentrations of radon-222 and its daughter polonium-210 observed by the Apollo 15 and 16 command modules, an alternative mechanism is proposed, in which radon would be swept to the surface by other gases during intermittent venting events.

  16. First insights on the organic species from the high resolution mass spectrometer ROSINA DFMS on-board the Rosetta spacecraft

    NASA Astrophysics Data System (ADS)

    Le Roy, L.; Altwegg, K.; Berthelier, J. J.; Calmonte, U.; Dhooghe, F.; Fiethe, B.; Fuselier, S.; Gombosi, T. I.; Rubin, M.; Tzou, C. Y.

    2014-12-01

    Starting in August 2014, the ROSINA experiment will characterize the composition and dynamics of 67P/Churyumov-Gerasimenko's coma. ROSINA consists of a suite of three instruments: a pressure sensor (COPS: COmetary Pressure Sensor) and two mass spectrometers: the Reflectron Time of Flight mass spectrometer (RTOF) and the Double Focusing Mass Spectrometer (DFMS). Here we will focus on the first results obtained by DFMS, the high-resolution mass spectrometer of ROSINA. DFMS is a traditional magnetic mass spectrometer that combines an electrostatic analyzer for energy analysis with a magnet for momentum analysis. To date, DFMS is the highest mass resolution mass spectrometer in space, with resolution (m/Δm = 3000 at 1% of the peak height at 28 amu/q). It will be able to resolve CO from N2 at m/z= 28 amu/q or 12CH and 13C at m/z= 13 amu/q. We will present the first results of DFMS: the detection of organic species and their implication for the origin of cometary material.

  17. Paleoproterozoic high-pressure metamorphism in the northern North China Craton and implications for the Nuna supercontinent

    PubMed Central

    Wan, Bo; Windley, Brian F.; Xiao, Wenjiao; Feng, Jianyun; Zhang, Ji'en

    2015-01-01

    The connection between the North China Craton (NCC) and contiguous cratons is important for the configuration of the Nuna supercontinent. Here we document a new Paleoproterozoic high-pressure (HP) complex dominated by garnet websterite on the northern margin of the NCC. The peak metamorphism of the garnet websterite was after ∼1.90 Ga when it was subducted to eclogite facies at ∼2.4 GPa, then exhumed back to granulite facies at ∼0.9 GPa before ∼1.82 Ga. The rock associations with their structural relationships and geochemical affinities are comparable to those of supra-subduction zone ophiolites, and supported by subduction-related signatures of gabbros and basalts. We propose that a ∼1.90 Ga oceanic fragment was subducted and exhumed into an accretionary complex along the northern margin of the NCC. Presence of the coeval Sharyzhalgai complex with comparable HP garnet websterites in the southern Siberian active margin favours juxtaposition against the NCC in the Paleoproterozoic. PMID:26388458

  18. Massive production of abiotic methane during subduction evidenced in metamorphosed ophicarbonates from the Italian Alps

    PubMed Central

    Vitale Brovarone, Alberto; Martinez, Isabelle; Elmaleh, Agnès; Compagnoni, Roberto; Chaduteau, Carine; Ferraris, Cristiano; Esteve, Imène

    2017-01-01

    Alteration of ultramafic rocks plays a major role in the production of hydrocarbons and organic compounds via abiotic processes on Earth and beyond and contributes to the redistribution of C between solid and fluid reservoirs over geological cycles. Abiotic methanogenesis in ultramafic rocks is well documented at shallow conditions, whereas natural evidence at greater depths is scarce. Here we provide evidence for intense high-pressure abiotic methanogenesis by reduction of subducted ophicarbonates. Protracted (≥0.5–1 Ma), probably episodic infiltration of reduced fluids in the ophicarbonates and methanogenesis occurred from at least ∼40 km depth to ∼15–20 km depth. Textural, petrological and isotopic data indicate that methane reached saturation triggering the precipitation of graphitic C accompanied by dissolution of the precursor antigorite. Continuous infiltration of external reducing fluids caused additional methane production by interaction with the newly formed graphite. Alteration of high-pressure carbonate-bearing ultramafic rocks may represent an important source of abiotic methane, with strong implications for the mobility of deep C reservoirs. PMID:28223715

  19. Lunar and Planetary Science XXXV: Terrestrial Planets: Building Blocks and Differentiation

    NASA Technical Reports Server (NTRS)

    2004-01-01

    The session "Terrestrial Planets: Building Blocks and Differentiation: included the following topics:Magnesium Isotopes in the Earth, Moon, Mars, and Pallasite Parent Body: High-Precision Analysis of Olivine by Laser-Ablation Multi-Collector ICPMS; Meteoritic Constraints on Collision Rates in the Primordial Asteroid Belt and Its Origin; New Constraints on the Origin of the Highly Siderophile Elements in the Earth's Upper Mantle; Further Lu-Hf and Sm-Nd Isotopic Data on Planetary Materials and Consequences for Planetary Differentiation; A Deep Lunar Magma Ocean Based on Neodymium, Strontium and Hafnium Isotope Mass Balance Partial Resetting on Hf-W System by Giant Impacts; On the Problem of Metal-Silicate Equilibration During Planet Formation: Significance for Hf-W Chronometry ; Solid Metal-Liquid Metal Partitioning of Pt, Re, and Os: The Effect of Carbon; Siderophile Element Abundances in Fe-S-Ni-O Melts Segregated from Partially Molten Ordinary Chondrite Under Dynamic Conditions; Activity Coefficients of Silicon in Iron-Nickel Alloys: Experimental Determination and Relevance for Planetary Differentiation; Reinvestigation of the Ni and Co Metal-Silicate Partitioning; Metal/Silicate Paritioning of P, Ga, and W at High Pressures and Temperatures: Dependence on Silicate Melt Composition; and Closure of the Fe-S-Si Liquid Miscibility Gap at High Pressure and Its Implications for Planetary Core Formation.

  20. Pressure in a cavity under unsteady conditions

    NASA Astrophysics Data System (ADS)

    Ershov, N. S.

    A transparent Venturi tube equipped with an inductive sensor and an inlet pulser has been used to measure pressure inside a cavity, both in cold and hot water. It is found that at frequencies up to 25 Hz, pressure inside the cavity remains constant and is equal to the steam elasticity over cold and hot water. It is suggested that evaporation and condensation are controlling, rather than accompanying, processes in the dynamics of cavitation. Implications of the results for cavitation pumps are briefly discussed.

  1. Hydrostatic pressure modifies the action of octanol and atropine on frog endplate conductance.

    PubMed Central

    Ashford, M. L.; Macdonald, A. G.; Wann, K. T.

    1984-01-01

    The effects of octanol, ethanol and atropine were examined on the time course of decay (tau D) of miniature endplate currents (m.e.p.cs) in the frog neuromuscular junction at normal and high pressure. Octanol (25-100 microM) decreased reversibly the tau D of m.e.p.cs in a dose-dependent manner, 100 microM reducing tau D to 0.39 of the control value. Higher concentrations (200-500 microM) additionally depressed the amplitude of m.e.p.cs. Hydrostatic pressure (3.19 and 5.25 MPa) reduced the tau D of octanol (25-100 microM)-shortened m.e.p.cs. Thus 3.19 MPa and 5.25 MPa reduced the tau D in the presence of 100 microM octanol to 0.75 and 0.78 of the octanol treated values. This effect was not completely reversed on decompression. The m.e.p.c. amplitude is reversibly decreased by pressure in the presence of octanol. Hydrostatic pressure (3.19-15.55 MPa) did not modify the effect of ethanol on tau D. At 10.40 and 15.55 MPa the tau D was increased equally in the absence or presence of ethanol. Atropine (60 microM) reduced the tau D and amplitude of m.e.p.cs to 0.33 and 0.63 of the control values. These effects were completely reversible. Hydrostatic pressure (3.19 and 5.25 MPa) reduced the tau D of atropine-shortened m.e.p.cs to 0.82 and 0.77 of the atropine-treated values respectively. This effect was not completely reversed on decompression. Hydrostatic pressure also reversibly depressed the amplitude of atropine-treated m.e.p.cs. The implications of these drug-hydrostatic pressure interactions are discussed. PMID:6333262

  2. Survival of endospores of Bacillus subtilis on spacecraft surfaces under simulated martian environments: implications for the forward contamination of Mars

    NASA Technical Reports Server (NTRS)

    Schuerger, Andrew C.; Mancinelli, Rocco L.; Kern, Roger G.; Rothschild, Lynn J.; McKay, Christopher P.

    2003-01-01

    Experiments were conducted in a Mars simulation chamber (MSC) to characterize the survival of endospores of Bacillus subtilis under high UV irradiation and simulated martian conditions. The MSC was used to create Mars surface environments in which pressure (8.5 mb), temperature (-80, -40, -10, or +23 degrees C), gas composition (Earth-normal N2/O2 mix, pure N2, pure CO2, or a Mars gas mix), and UV-VIS-NIR fluence rates (200-1200 nm) were maintained within tight limits. The Mars gas mix was composed of CO2 (95.3%), N2 (2.7%), Ar (1.7%), O2 (0.2%), and water vapor (0.03%). Experiments were conducted to measure the effects of pressure, gas composition, and temperature alone or in combination with Mars-normal UV-VIS-NIR light environments. Endospores of B. subtilis, were deposited on aluminum coupons as monolayers in which the average density applied to coupons was 2.47 x 10(6) bacteria per sample. Populations of B. subtilis placed on aluminum coupons and subjected to an Earth-normal temperature (23 degrees C), pressure (1013 mb), and gas mix (normal N2/O2 ratio) but illuminated with a Mars-normal UV-VIS-NIR spectrum were reduced by over 99.9% after 30 sec exposure to Mars-normal UV fluence rates. However, it required at least 15 min of Mars-normal UV exposure to reduce bacterial populations on aluminum coupons to non-recoverable levels. These results were duplicated when bacteria were exposed to Mars-normal environments of temperature (-10 degrees C), pressure (8.5 mb), gas composition (pure CO2), and UV fluence rates. In other experiments, results indicated that the gas composition of the atmosphere and the temperature of the bacterial monolayers at the time of Mars UV exposure had no effects on the survival of bacterial endospores. But Mars-normal pressures (8.5 mb) were found to reduce survival by approximately 20-35% compared to Earth-normal pressures (1013 mb). The primary implications of these results are (a) that greater than 99.9% of bacterial populations on sun-exposed surfaces of spacecraft are likely to be inactivated within a few tens of seconds to a few minutes on the surface of Mars, and (b) that within a single Mars day under clear-sky conditions bacterial populations on sun-exposed surfaces of spacecraft will be sterilized. Furthermore, these results suggest that the high UV fluence rates on the martian surface can be an important resource in minimizing the forward contamination of Mars. c2003 Elsevier Inc. All rights reserved.

  3. Elevated blood pressure, race/ethnicity, and C-reactive protein levels in children and adolescents.

    PubMed

    Lande, Marc B; Pearson, Thomas A; Vermilion, Roger P; Auinger, Peggy; Fernandez, Isabel D

    2008-12-01

    Adult hypertension is independently associated with elevated C-reactive protein levels, after controlling for obesity and other cardiovascular risk factors. The objective of this study was to determine, with a nationally representative sample of children, whether the relationship between elevated blood pressure and C-reactive protein levels may be evident before adulthood. Cross-sectional data for children 8 to 17 years of age who participated in the National Health and Nutrition Examination Survey between 1999 and 2004 were analyzed. Bivariate analyses compared children with C-reactive protein levels of >3 mg/L versus or=95th percentile and 1.3% had diastolic blood pressure of >or=95th percentile. Children with C-reactive protein levels of >3 mg/L had higher systolic blood pressure, compared with children with C-reactive protein levels of or=95th percentile was independently associated with C-reactive protein levels in boys but not girls. Subset analyses according to race/ethnicity demonstrated that the independent association of elevated systolic blood pressure with C-reactive protein levels was largely limited to black boys. These data indicate that there is interplay between race/ethnicity, elevated systolic blood pressure, obesity, and inflammation in children, a finding that has potential implications for disparities in cardiovascular disease later in life.

  4. Pressure buffering by the tympanic membrane. In vivo measurements of middle ear pressure fluctuations during elevator motion.

    PubMed

    Padurariu, Simona; de Greef, Daniël; Jacobsen, Henrik; Nlandu Kamavuako, Ernest; Dirckx, Joris J; Gaihede, Michael

    2016-10-01

    The tympanic membrane (TM) represents a pressure buffer, which contributes to the overall pressure regulation of the middle ear (ME). This buffer capacity is based on its viscoelastic properties combined with those of the attached ossicular chain, muscles and ligaments. The current work presents a set of in vivo recordings of the ME pressure variations normally occurring in common life: elevator motion. This is defined as a situation of smooth ambient pressure increase or decrease on a limited range and at a low rate of pressure change. Based on these recordings, the purpose was a quantitative analysis of the TM buffer capacity including the TM compliance. The pressure changes in seven normal adult ME's with intact TM's were continuously recorded directly inside the ME cavity during four different elevator trips using a high precision instrument. The TM buffer capacity was determined by the ratio between the changes in ME and the ambient pressure. Further, the ME volumes were calculated by Boyle's Law from pressure recordings during inflation-deflation tests; subsequently the TM compliance could also be calculated. Finally, the correlation between the ME volume and buffer function was determined. Twenty-one elevator trips could be used for the analysis. The overall mean TM pressure buffering capacity was 23.3% (SEM = 3.4), whereas the mean overall compliance was 28.9 × 10 -3  μL/Pa (SEM = 4.8). A strong negative linear correlation was found between the TM buffer capacity and the ME volumes (R 2  = 0.92). These results were in fair agreement with the literature obtained in clinical as well as temporal bone experiments, and they provide an in vivo reference for the normal ME function as well as for ME modeling. The TM buffer capacity was found more efficient in smaller mastoids. Possible clinical implications are discussed. Copyright © 2015 Elsevier B.V. All rights reserved.

  5. Backrest position in prevention of pressure ulcers and ventilator-associated pneumonia: Conflicting recommendations

    PubMed Central

    Burk, Ruth Srednicki; Jo Grap, Mary

    2013-01-01

    Pressure ulcers and ventilator-associated pneumonia (VAP) are both common in acute and critical care settings and are considerable sources of morbidity, mortality, and health care costs. To prevent pressure ulcers, guidelines limit bed backrest elevation to less than 30 degrees, whereas recommendations to reduce VAP include use of backrest elevations of 30 degrees or more. Although a variety of risk factors beyond patient position have been identified for both pressure ulcers and VAP, this article will focus on summarizing the major evidence for each of these apparently conflicting positioning strategies and discuss implications for practice in managing mechanically ventilated patients with risk factors for both pressure ulcers and VAP. PMID:22819601

  6. Chemical Reactions Between Fe and H2O up to Megabar Pressures and Implications for Water Storage in the Earth's Mantle and Core

    NASA Astrophysics Data System (ADS)

    Yuan, Liang; Ohtani, Eiji; Ikuta, Daijo; Kamada, Seiji; Tsuchiya, Jun; Naohisa, Hirao; Ohishi, Yasuo; Suzuki, Akio

    2018-02-01

    We investigated the phase relations of the Fe-H2O system at high pressures based on in situ X-ray diffraction experiments and first-principles calculations and demonstrate that FeHx and FeO are present at pressures less than 78 GPa. A recently reported pyrite-structured FeO2 was identified in the Fe-H2O system at pressures greater than 78 GPa after laser heating. The phase observed in this study has a unit cell volume 8%-11% larger than that of FeO2, produced in the Fe-O binary system reported previously, suggesting that hydrogen might be retained in a FeO2Hx crystal structure. Our observations indicate that H2O is likely introduced into the deep Earth through reaction between iron and water during the accretion and separation of the metallic core. Additionally, reaction between Fe and H2O would occur at the core-mantle boundary, given water released from hydrous subducting slabs that intersect with the metallic core. Accumulation of volatile-bearing iron compounds may provide new insights into the enigmatic seismic structures observed at the base of the lower mantle.

  7. Studies of Brazilian meteorites. III - Origin and history of the Angra dos Reis achondrite

    NASA Technical Reports Server (NTRS)

    Prinz, M.; Keil, K.; Hlava, P. F.; Berkley, J. L.; Gomes, C. B.; Curvello, W. S.

    1977-01-01

    The mineral composition of the Angra dos Reis meteorite, which fell in 1869, is described. This achondrite contains phases reported in a meteorite for the first time. Petrofabric analysis shows that fassaite has a preferred orientation and lineation, which is interpreted as being due to cumulus processes, possibly the effect of post-depositional magmatic current flow or laminar flow of a crystalline mush. The mineral chemistry indicates crystallization from a highly silica-undersaturated melt at low pressure. Several aspects of the mineral composition are discussed with reference to the implications of crystallization conditions.

  8. Exploring K-12 mathematics course progression: implications for collegiate success in Florida

    NASA Astrophysics Data System (ADS)

    Campbell, Bethany; Varney, Christopher; Wade, Aaron

    Increasingly, Florida college students are pressured to change their major as few times as possible and take only required classes, all in order to ``Finish in Four, Save More''. If they fail to do so, they may be subject to penalties such as Excess Hour Fees. Partially as a result of this, students wishing to study STEM are at a significant disadvantage if they enter college unprepared to take calculus their first semester. We explore the various ``paths to success'' to STEM degrees, defined by entering college having taken calculus in high school, starting from fifth grade onwards.

  9. Graphite solubility and co-vesiculation in basalt-like melts at one-ATM

    NASA Technical Reports Server (NTRS)

    Colson, R. O.

    1993-01-01

    The identity and source of the vapor phase that caused lunar lava-fountaining and vesiculation in lunar basalts continues to be of interest because of its implications for the composition and state of the lunar interior and because of its implications for lunar resources. In light of the apparent near-absence of H2O on the Moon, it has been suggested that the vapor phase may be CO2-CO. This premise is supported by the presence of carbon on the surface of volcanic glass beads. However, although the rapid exsolution of CO2 from a melt during decompression may be consistent with firefountaining, it fails to provide a satisfying explanation for vesiculation in mare basalt where exsolution of the gas phase would more reasonably be related to cooling/crystallization at low pressure rather than decompression from high pressure. Also, geochemical trends in lunar volcanic glasses suggest that their source has an oxygen fugacity more reducing than the iron-wustite buffer, an oxygen fugacity that is inconsistent with presence of dissolved CO2-CO at depth. The results of experiments in which a vesicular 'basalt' is produced from a melt equilibrated with graphite and pure CO gas at one atmosphere pressure are reported. The vesiculation is apparently related to exsolution of CO or a CO species during cooling of the melt or growth of quench crystals. Additionally, particulate carbon dispersed through the quenched sample suggests that elemental carbon is either in solution in the melt prior to quenching or tends to go into suspension perhaps as colloid-like particles. These two observations may provide insight into the nature of fire-fountaining and vesiculation on the Moon.

  10. Phase development in the Bi 2Sr 2CaCu 2O y system . Effects of oxygen pressure

    NASA Astrophysics Data System (ADS)

    List, F. A.; Hsu, H.; Cavin, O. B.; Porter, W. D.; Hubbard, C. R.; Kroeger, D. M.

    1992-11-01

    Studies have been undertaken using thermal analysis, in conjunction with high-temperature and room temperature X-ray diffraction, fraction, to elucidate phase relationships during thermal processing of thick films of initially phase pure Bi 2Sr 2CaCu 2O y (2212) on silver substrates in various oxygen-containing atmospheres (0.001 to 100% O 2). Exothermic events on cooling at 10°C/min from a partially liquid state vary with oxygen partial pressure and can be grouped into three sets (I-III). Set I is prominent for 0.001% and 0.1% O 2 in the range of 740-775°C and is believed to be associated with the crystallization of a Cu-free ∼ Bi 5Sr 3Ca 1 oxide phase. Set II results from the crystallization of 2212; it is observed for p(O 2)≥1.0% in the temperature range 800-870°C. Set III appears for 21% and 100% O 2 in the temperature range 880-910°C, and its origin is not clear from the results of this study. Subsequent room temperature X-ray diffraction from these samples suggests that in general high oxygen partial pressures (100% O 2) tend to favor the formation of Bi 2Sr 2CuO 6 (2201), whereas low oxygen partial pressures (0.001-0.1% O 2) lead to the formation of a Cu-free, Bi-Sr-Ca oxide phase. The 2212 phase forms at this cooling rate predominantly for intermediate oxygen partial pressures (7.6-21% O 2). High-temperature X-ray diffraction during cooling (2°C/h) from the partially liquid state shows a pronounced dependence of the order of evolution of crystalline 2212 and 2201 phases on p(O 2). For an oxygen partial pressure of 1.0% the formation of 2212 precedes that of 2201, whereas for 0.01% O 2 2201 crystallizes at a higher temperature than 2212. The implications of these results pertaining to thermal processing of thick 2212 films are discussed.

  11. Phase equilibria in the nominally Al65Cu23Fe12 system at 3, 5 and 21 GPa: Implications for the quasicrystal-bearing Khatyrka meteorite

    NASA Astrophysics Data System (ADS)

    Stagno, Vincenzo; Bindi, Luca; Steinhardt, Paul J.; Fei, Yingwei

    2017-10-01

    Two of the three natural quasiperiodic crystals found in the Khatyrka meteorite show a composition within the Al-Cu-Fe system. Icosahedrite, with formula Al63Cu24Fe13, coexists with the new Al62Cu31Fe7 quasicrystal plus additional Al-metallic minerals such as stolperite (AlCu), kryachkoite [(Al,Cu)6(Fe,Cu)], hollisterite (AlFe3), khatyrkite (Al2Cu) and cupalite (AlCu), associated to high-pressure phases like ringwoodite/ahrensite, coesite, and stishovite. These high-pressure minerals represent the evidence that most of the Khatyrka meteoritic fragments formed at least at 5 GPa and 1200 °C, if not at more extreme conditions. On the other hand, experimental studies on phase equilibria within the representative Al-Cu-Fe system appear mostly limited to ambient pressure conditions, yet. This makes the interpretation of the coexisting mineral phases in the meteoritic sample quite difficult. We performed experiments at 3, 5 and 21 GPa and temperatures of 800-1500 °C using the multi-anvil apparatus to investigate the phase equilibria in the Al65Cu23Fe12 system representative of the first natural quasicrystal, icosahedrite. Our results, supported by single-crystal X-ray diffraction and analyses by scanning electron microscopy, confirm the stability of icosahedrite at high pressure and temperature along with additional coexisting Al-bearing phases representative of khatyrkite and stolperite as those found in the natural meteorite. One reversal experiment performed at 5 GPa and 1200 °C shows the formation of the icosahedral quasicrystal from a pure Al, Cu and Fe mixture, a first experimental synthesis of icosahedrite under those conditions. Pressure appears to not play a major role in the distribution of Al, Cu and Fe between the coexisting phases, icosahedrite in particular. Results from this study extend our knowledge on the stability of icosahedral AlCuFe at higher temperature and pressure than previously examined, and provide a new constraint on the stability of icosahedrite.

  12. An evaluation of factors influencing pore pressure in accretionary complexes: Implications for taper angle and wedge mechanics

    USGS Publications Warehouse

    Saffer, D.M.; Bekins, B.A.

    2006-01-01

    At many subduction zones, accretionary complexes form as sediment is off-scraped from the subducting plate. Mechanical models that treat accretionary complexes as critically tapered wedges of sediment demonstrate that pore pressure controls their taper angle by modifying basal and internal shear strength. Here, we combine a numerical model of groundwater flow with critical taper theory to quantify the effects of sediment and de??collement permeability, sediment thickness, sediment partitioning between accretion and underthrusting, and plate convergence rate on steady state pore pressure. Our results show that pore pressure in accretionary wedges can be viewed as a dynamically maintained response to factors which drive pore pressure (source terms) and those that limit flow (permeability and drainage path length). We find that sediment permeability and incoming sediment thickness are the most important factors, whereas fault permeability and the partitioning of sediment have a small effect. For our base case model scenario, as sediment permeability is increased, pore pressure decreases from near-lithostatic to hydrostatic values and allows stable taper angles to increase from ??? 2.5?? to 8??-12.5??. With increased sediment thickness in our models (from 100 to 8000 m), increased pore pressure drives a decrease in stable taper angle from 8.4??-12.5?? to 15?? to <4??) with increased sediment thickness (from <1 to 7 km). One key implication is that hydrologic properties may strongly influence the strength of the crust in a wide range of geologic settings. Copyright 2006 by the American Geophysical Union.

  13. A new pressure ulcer conceptual framework

    PubMed Central

    Coleman, Susanne; Nixon, Jane; Keen, Justin; Wilson, Lyn; McGinnis, Elizabeth; Dealey, Carol; Stubbs, Nikki; Farrin, Amanda; Dowding, Dawn; Schols, Jos MGA; Cuddigan, Janet; Berlowitz, Dan; Jude, Edward; Vowden, Peter; Schoonhoven, Lisette; Bader, Dan L; Gefen, Amit; Oomens, Cees WJ; Nelson, E Andrea

    2014-01-01

    Aim This paper discusses the critical determinants of pressure ulcer development and proposes a new pressure ulcer conceptual framework. Background Recent work to develop and validate a new evidence-based pressure ulcer risk assessment framework was undertaken. This formed part of a Pressure UlceR Programme Of reSEarch (RP-PG-0407-10056), funded by the National Institute for Health Research. The foundation for the risk assessment component incorporated a systematic review and a consensus study that highlighted the need to propose a new conceptual framework. Design Discussion Paper. Data Sources The new conceptual framework links evidence from biomechanical, physiological and epidemiological evidence, through use of data from a systematic review (search conducted March 2010), a consensus study (conducted December 2010–2011) and an international expert group meeting (conducted December 2011). Implications for Nursing A new pressure ulcer conceptual framework incorporating key physiological and biomechanical components and their impact on internal strains, stresses and damage thresholds is proposed. Direct and key indirect causal factors suggested in a theoretical causal pathway are mapped to the physiological and biomechanical components of the framework. The new proposed conceptual framework provides the basis for understanding the critical determinants of pressure ulcer development and has the potential to influence risk assessment guidance and practice. It could also be used to underpin future research to explore the role of individual risk factors conceptually and operationally. Conclusion By integrating existing knowledge from epidemiological, physiological and biomechanical evidence, a theoretical causal pathway and new conceptual framework are proposed with potential implications for practice and research. PMID:24684197

  14. Influence of harvesting pressure on demographic tactics: Implications for wildlife management

    USGS Publications Warehouse

    Servanty, S.; Gaillard, J.-M.; Ronchi, F.; Focardi, S.; Baubet, E.; Gimenez, O.

    2011-01-01

    Demographic tactics within animal populations are shaped by selective pressures. Exploitation exerts additional pressures so that differing demographic tactics might be expected among populations with differences in levels of exploitation. Yet little has been done so far to assess the possible consequences of exploitation on the demographic tactics of mammals, even though such information could influence the choice of effective management strategies. Compared with similar-sized ungulate species, wild boar Sus scrofa has high reproductive capabilities, which complicates population management. Using a perturbation analysis, we investigated how population growth rates (??) and critical life-history stages differed between two wild boar populations monitored for several years, one of which was heavily harvested and the other lightly harvested. Asymptotic ?? was 1??242 in the lightly hunted population and 1??115 in the heavily hunted population, while the ratio between the elasticity of adult survival and juvenile survival was 2??63 and 1??27, respectively. A comparative analysis including 21 other ungulate species showed that the elasticity ratio in the heavily hunted population was the lowest ever observed. Compared with expected generation times of similar-sized ungulates (more than 6years), wild boar has a fast life-history speed, especially when facing high hunting pressure. This is well illustrated by our results, where generation times were 3??6years in the lightly hunted population and only 2??3years in the heavily hunted population. High human-induced mortality combined with non-limiting food resources accounted for the accelerated life history of the hunted population because of earlier reproduction. Synthesis and applications. For wild boar, we show that when a population is facing a high hunting pressure, increasing the mortality in only one age-class (e.g. adults or juveniles) may not allow managers to limit population growth. We suggest that simulations of management strategies based on context-specific demographic models are useful for selecting interventions for population control. This type of approach allows the assessment of population response to exploitation by considering a range of plausible scenarios, improving the chance of selecting appropriate management actions. ?? 2011 The Authors. Journal of Applied Ecology ?? 2011 British Ecological Society.

  15. Comet Impacts as a Source of Methane on Titan

    NASA Astrophysics Data System (ADS)

    Howard, Michael; Goldman, N.; Vitello, P. A.

    2006-12-01

    We model comet impacts on Titan as a possible source of atmospheric methane. That is, we study the formation of methane in comet impacts using chemical equilibrium calculations coupled with arbitrary Lagrange-Eulerian (ALE) hydrodynamics. That is, we study the chemical transformation of comet material under high pressure and temperature conditions as it impacts Titan. We assume that the comet is composed of ice, graphite, nitrogen and some hydrocarbons. For certain pressure and temperature regimes, in chemical equilibrium, a significant amount of ice and graphite can be transformed into methane. As a result, we find that a significant amount of methane can be formed in comet collisions on Titan. The methane is formed in the post-impact vapor clouds that form as the comet material expands and cools. We use molecular dynamics to construct an equation of state for the ice surface structures and the comet material. We also study kinetic processes for methane formation during the expansion and cooling phase. We discuss the implication of our results for comets as a possible source of abiotic methane on Titan and its implications on the origin of life. We also discuss the various uncertainties in our model. * This work was performed under the auspices of the U.S. Department of Energy by University of California, Lawrence Livermore National Laboratory under Contract W-7405-Eng-48.

  16. The Shale Gas Boom and the Need for Rational Policy

    PubMed Central

    Finkel, Madelon; Law, Adam

    2013-01-01

    High-volume, slick water hydraulic fracturing of shale relies on pumping millions of gallons of surface water laced with toxic chemicals and sand under high pressure to create fractures to release the flow of gas. The process, however, has the potential to cause serious and irreparable damage to the environment and the potential for harm to human and animal health. At issue is how society should form appropriate policy in the absence of well-designed epidemiological studies and health impact assessments. The issue is fraught with environmental, economic, and health implications, and federal and state governments must establish detailed safeguards and ensure regulatory oversight, both of which are presently lacking in states where hydraulic fracturing is allowed. PMID:23678928

  17. Organizational Influences on Health Professionals' Experiences of Moral Distress in PICUs.

    PubMed

    Wall, Sarah; Austin, Wendy J; Garros, Daniel

    2016-03-01

    This article reports the findings of a qualitative study (secondary analysis) that explored the organizational influences on moral distress for health professionals working in pediatric intensive care units (PICUs) across Canada. Participants were recruited to the study from PICUs across Canada. The PICU is a high-tech, fast-paced, high-pressure environment where caregivers frequently face conflict and ethical tension in the care of critically ill children. A number of themes including relationships with management, organizational structure and processes, workload and resources, and team dynamics were identified. This study provides a rare and important multi-disciplinary perspective on this topic and the findings have implications for administrators and leaders who seek to improve the moral climate of healthcare delivery.

  18. Extracurricular Involvement Among Affluent Youth: A Scapegoat for “Ubiquitous Achievement Pressures”?

    PubMed Central

    Luthar, Suniya S.; Shoum, Karen A.; Brown, Pamela J.

    2007-01-01

    It has been suggested that overscheduling of upper-class youth might underlie the high distress and substance use documented among them. This assumption was tested by considering suburban 8th graders’ involvement in different activities along with their perceptions of parental attitudes toward achievement. Results indicated negligible evidence for deleterious effects of high extracurricular involvement per se. Far more strongly implicated was perceived parent criticism for both girls and boys as well as the absence of after-school supervision. Low parent expectations connoted significant vulnerability especially for boys. The findings indicate that at least among early adolescents, converging scientific and media reports may have scapegoated extracurricular involvements, to some degree, as an index of ubiquitous achievement pressures in affluent communities. PMID:16756447

  19. Climate signature of Northwest U.S. precipitation Extremes

    NASA Astrophysics Data System (ADS)

    Kushnir, Y.; Nakamura, J.

    2017-12-01

    The climate signature of precipitation extremes in the Northwest U.S. - the region that includes Oregon, Washington, Idaho, Montana and Wyoming - is studied using composite analysis of atmospheric fields leading to and associated with extreme rainfall events. A K-Medoids cluster analysis is applied to winter (November-February) months, maximum 5-day precipitation amounts calculated from 1-degree gridded daily rainfall between 1950/51 and 2013/14. The clustering divides the region into three sub-regions: one over the far eastern part of the analysis domain, includeing most of Montana and Wyoming. Two other sub-regions are in the west, lying north and south of the latitude of 45N. Using the time series corresponding to the Medoid centers, we extract the largest (top 5%) monthly extreme events to form the basis for the composite analysis. The main circulation feature distinguishing a 5-day extreme precipitation event in the two western sub-regions of the Northwest is the presence of a large, blocking, high pressure anomaly over the Gulf of Alaska about a week before the beginning of the 5-day intense precipitation event. The high pressure center intensifies considerably with time, drifting slowly westward, up to a day before the extreme event. During that time, a weak low pressure centers appears at 30N, to the southwest of the high, deepening as it moves east. As the extreme rainfall event is about to begin, the now deep low is encroaching on the Northwest coast while its southern flank taps well south into the subtropical Pacific, drawing moisture from as south as 15N. During the 5-day extreme precipitation event the high pressure center moves west and weakens while the now intense low converges large amounts of subtropical moisture to precipitate over the western Northwest. The implication of this analysis for extended range prediction is assessed.

  20. Choking under monitoring pressure: being watched by the experimenter reduces executive attention.

    PubMed

    Belletier, Clément; Davranche, Karen; Tellier, Idriss S; Dumas, Florence; Vidal, Franck; Hasbroucq, Thierry; Huguet, Pascal

    2015-10-01

    Performing more poorly given one's skill level ("choking") is likely in situations that offer an incentive if a certain outcome is achieved (outcome pressure) or when one is being watched by others-especially when one's performance is being evaluated (monitoring pressure). According to the choking literature, outcome pressure is associated with reduced executive control of attention, whereas monitoring pressure is associated with increased, yet counterproductive, attention to skill processes. Here, we show the first evidence that monitoring pressure-being watched by the experimenter-may lead individuals with higher working memory to choke on a classic measure of executive control-just the task effect thought to result from outcome pressure. Not only does this finding help refine our understanding of the processes underlying choking under monitoring pressure, but it also leads to a new look at classic audience effects, with an important implication for experimental psychology.

  1. TRPC5 channels participate in pressure-sensing in aortic baroreceptors

    PubMed Central

    Lau, On-Chai; Shen, Bing; Wong, Ching-On; Tjong, Yung-Wui; Lo, Chun-Yin; Wang, Hui-Chuan; Huang, Yu; Yung, Wing-Ho; Chen, Yang-Chao; Fung, Man-Lung; Rudd, John Anthony; Yao, Xiaoqiang

    2016-01-01

    Blood pressure is maintained within a normal physiological range by a sophisticated regulatory mechanism. Baroreceptors serve as a frontline sensor to detect the change in blood pressure. Nerve signals are then sent to the cardiovascular control centre in the brain in order to stimulate baroreflex responses. Here, we identify TRPC5 channels as a mechanical sensor in aortic baroreceptors. In Trpc5 knockout mice, the pressure-induced action potential firings in the afferent nerve and the baroreflex-mediated heart rate reduction are attenuated. Telemetric measurements of blood pressure demonstrate that Trpc5 knockout mice display severe daily blood pressure fluctuation. Our results suggest that TRPC5 channels represent a key pressure transducer in the baroreceptors and play an important role in maintaining blood pressure stability. Because baroreceptor dysfunction contributes to a variety of cardiovascular diseases including hypertension, heart failure and myocardial infarction, our findings may have important future clinical implications. PMID:27411851

  2. Blood Pressure Changes in Relation to Arsenic Exposure in a U.S. Pregnancy Cohort

    PubMed Central

    Farzan, Shohreh F.; Chen, Yu; Wu, Fen; Jiang, Jieying; Liu, Mengling; Baker, Emily; Korrick, Susan A.

    2015-01-01

    Background Inorganic arsenic exposure has been related to the risk of increased blood pressure based largely on cross-sectional studies conducted in highly exposed populations. Pregnancy is a period of particular vulnerability to environmental insults. However, little is known about the cardiovascular impacts of arsenic exposure during pregnancy. Objectives We evaluated the association between prenatal arsenic exposure and maternal blood pressure over the course of pregnancy in a U.S. population. Methods The New Hampshire Birth Cohort Study is an ongoing prospective cohort study in which > 10% of participant household wells exceed the arsenic maximum contaminant level of 10 μg/L established by the U.S. EPA. Total urinary arsenic measured at 24–28 weeks gestation was measured and used as a biomarker of exposure during pregnancy in 514 pregnant women, 18–45 years of age, who used a private well in their household. Outcomes were repeated blood pressure measurements (systolic, diastolic, and pulse pressure) recorded during pregnancy. Results Using linear mixed effects models, we estimated that, on average, each 5-μg/L increase in urinary arsenic was associated with a 0.15-mmHg (95% CI: 0.02, 0.29; p = 0.022) increase in systolic blood pressure per month and a 0.14-mmHg (95% CI: 0.02, 0.25; p = 0.021) increase in pulse pressure per month over the course of pregnancy. Conclusions In our U.S. cohort of pregnant women, arsenic exposure was associated with greater increases in blood pressure over the course of pregnancy. These findings may have important implications because even modest increases in blood pressure impact cardiovascular disease risk. Citation Farzan SF, Chen Y, Wu F, Jiang J, Liu M, Baker E, Korrick SA, Karagas MR. 2015. Blood pressure changes in relation to arsenic exposure in a U.S. pregnancy cohort. Environ Health Perspect 123:999–1006; http://dx.doi.org/10.1289/ehp.1408472 PMID:25793356

  3. Long-term implications of low fertility in Kerala, India.

    PubMed

    Rajan, S I; Zachariah, K C

    1998-09-01

    This study reviewed patterns of low fertility in Kerala state, India, and the implications for employment, the elderly, the marriage squeeze, and education. The total fertility rate (TFR) in Kerala declined from 5.6 to 1.7 children/woman during 1951-93. In 1993, infant mortality was 13/1000 live births. The demographic transition was enhanced by high population density and state policies and programs. Economic conditions are poor. Unemployment in 1997-98 was 10% of total Indian unemployment, despite Kerala's having only 3.4% of total population. Unemployment is high among the educated and those aged 15-29 years. Kerala has a high level of migrant population. Health conditions are good in Kerala. Mortality is low; life expectancy at birth is high, especially among females. The TFR varied from 1.6 in Emakulam to 3.4 in Malappuram districts during 1984-90. Only 5 districts in 1990 had above-replacement fertility. Continued patterns of fertility decline suggest that zero population growth may occur in 25-30 years. The implications of the age distribution are that the school-age population will decline, as will the need for youth products and services. The demographic pressure on unemployment will not decline until after 2021. The proportion in the labor force will begin to decline after 2000. The proportion aged 50-64 years out of total population will increase to 35.5% by 2021. By 2001, the number of females aged 20-24 years will almost equal the number of males aged 25-29 years. In 2021, if old-age benefits are extended to all elderly, the cost will rise to Rs. 138 million. Elderly voters will be 1 in 5 in 2021.

  4. Effects of psychological distress on blood pressure in adolescents.

    PubMed

    Weinrich, S; Weinrich, M; Hardin, S; Gleaton, J; Pesut, D J; Garrison, C

    2000-10-01

    This cross-sectional survey measured relationships among blood pressure and measures of psychologic distress, family structure, and economic status in a sample of adolescents exposed to Hurricane Hugo. Spielberger's Anger Scale and Derogatis' Brief Symptom Inventory were used. Data analysis revealed 5% of the 1079 adolescents were hypertensive. Multiple regression analyses revealed the following predictors of higher diastolic blood pressure: African-American race, recipient of subsidized lunch, exposure to Hurricane Hugo, and higher anger-in scores in males. The effects of a catastrophic event such as a hurricane on blood pressure and the effects of introjected anger have implications for both health care consumers and providers.

  5. Partitioning of Pd Between Fe-S-C and Mantle Liquids at High Pressure and Temperature: Implications for Core Formation

    NASA Technical Reports Server (NTRS)

    Righter, K.; Humayun, M.; Danielson, L.

    2007-01-01

    One of the most elusive geochemical aspects of the early Earth has been explaining the near chondritic relative abundances of the highly siderophile elements (HSE; Au, Re and the platinum group elements) in Earth's primitive upper mantle (PUM). Perhaps they were delivered to the Earth after core formation, by late addition of carbonaceous chondrite material. However, the recognition that many moderately siderophile elements can be explained by high pressure and temperature (PT) metal-silicate equilibrium, leads to the question whether high PT equilibrium can also explain the HSE concentrations. Answers to this question have been slowed by experimental difficulties (nugget effect and very low solubilities). But two different perspectives have emerged from recent studies. One perspective is that D(M/S) for HSE at high PT are not low enough to explain terrestrial mantle depletions of these elements (for Pd and Pt). A second perspective is D(M/S) are reduced substantially at high PT and even low enough to explain terrestrial mantle depletions (for Au and Pt). Issues complicating interpretation of all experiments include use of MgO- and FeO-free silicate melts, and S-free and FeNi metal-free systems. In addition, conclusions for Pt rest on an interpretation that the tiny metallic nuggets plaguing many such experiments, were formed upon quench. There is not agreement on this issue, and the general question of HSE solubility at high PT remains unresolved

  6. Prevalence and implications of a difference in systolic blood pressure between one arm and the other in vascular surgical patients.

    PubMed

    Durrand, J W; Batterham, A M; O'Neill, B R; Danjoux, G R

    2013-12-01

    Inter-arm differences in blood pressure may confound haemodynamic management in vascular surgery. We evaluated 898 patients in the vascular pre-assessment clinic to determine the prevalence of inter-arm differences in systolic and mean arterial pressure, quantify the consequent risk of clinical error in siting monitoring peri-operatively and evaluate systolic inter-arm difference as a predictor of all-cause mortality (median follow-up 49 months). The prevalence of a systolic inter-arm difference ≥ 15 mmHg was 26% (95% CI 23-29%). The prevalence of an inter-arm mean arterial pressure difference ≥ 10 mmHg was 26% (95% CI 23-29%) and 11% (95% CI 9-13%) for a difference ≥ 15 mmHg. Monitoring could be erroneously sited in an arm reading lower for systolic pressure once in every seven to nine patients. The hazard ratio for a systolic inter-arm difference ≥ 15 mmHg vs < 15 mmHg was 1.03 (95% CI 0.78-1.36, p = 0.84). Large inter-arm blood pressure differences are common in this population, with a high potential for monitoring errors. Systolic inter-arm difference was not associated with medium-term mortality. [Correction added on 17 October 2013, after first online publication: In the Summary the sentence beginning 'We evaluated 898 patients' was corrected from (median (IQR [range]) follow-up 49 months) to read (median follow up 49 months)]. © 2013 The Association of Anaesthetists of Great Britain and Ireland.

  7. Extent of, and variables associated with, blood pressure variability among older subjects.

    PubMed

    Morano, Arianna; Ravera, Agnese; Agosta, Luca; Sappa, Matteo; Falcone, Yolanda; Fonte, Gianfranco; Isaia, Gianluca; Isaia, Giovanni Carlo; Bo, Mario

    2018-02-23

    Blood pressure variability (BPV) may have prognostic implications for cardiovascular risk and cognitive decline; however, BPV has yet to be studied in old and very old people. Aim of the present study was to evaluate the extent of BPV and to identify variables associated with BPV among older subjects. A retrospective study of patients aged ≥ 65 years who underwent 24-h ambulatory blood pressure monitoring (ABPM) was carried out. Three different BPV indexes were calculated for systolic and diastolic blood pressure (SBP and DBP): standard deviation (SD), coefficient of variation (CV), and average real variability (ARV). Demographic variables and use of antihypertensive medications were considered. The study included 738 patients. Mean age was 74.8 ± 6.8 years. Mean SBP and DBP SD were 20.5 ± 4.4 and 14.6 ± 3.4 mmHg. Mean SBP and DBP CV were 16 ± 3 and 20 ± 5%. Mean SBP and DBP ARV were 15.7 ± 3.9 and 11.8 ± 3.6 mmHg. At multivariate analysis older age, female sex and uncontrolled mean blood pressure were associated with both systolic and diastolic BPV indexes. The use of calcium channel blockers and alpha-adrenergic antagonists was associated with lower systolic and diastolic BPV indexes, respectively. Among elderly subjects undergoing 24-h ABPM, we observed remarkably high indexes of BPV, which were associated with older age, female sex, and uncontrolled blood pressure values.

  8. The future of high energy gamma ray astronomy and its potential astrophysical implications

    NASA Technical Reports Server (NTRS)

    Fichtel, C. E.

    1982-01-01

    Future satellites should carry instruments having over an order of magnitude greater sensitivity than those flown thus far as well as improved energy and angular resolution. The information to be obtained from these experiments should greatly enhance knowledge of: the very energetic and nuclear processes associated with compact objects; the structure of our galaxy; the origin and dynamic pressure effects of the cosmic rays; the high energy particles and energetic processes in other galaxies; and the degree of matter-antimatter symmetry of the universe. The relevant aspects of extragalactic gamma ray phenomena are emphasized along with the instruments planned. The high energy gamma ray results of forthcoming programs such as GAMMA-1 and the Gamma Ray Observatory should justify even more sophisticated telescopes. These advanced instruments might be placed on the space station currently being considered by NASA.

  9. Maturation of Heart Rate and Blood Pressure Variability during Sleep in Term-Born Infants

    PubMed Central

    Yiallourou, Stephanie R.; Sands, Scott A.; Walker, Adrian M.; Horne, Rosemary S.C.

    2012-01-01

    Study Objectives: Abnormal blood pressure control is implicated in the sudden infant death syndrome (SIDS). However, no data exist on normal development of blood pressure control during infancy. This study assessed maturation of autonomic control of blood pressure and heart rate during sleep within the first 6 months of life. Participants: Term infants (n = 31) were studied longitudinally at 2-4 weeks, 2-3 months, and 5-6 months postnatal age. Interventions: Infants underwent daytime polysomnography at each age studied. Blood pressure and heart rate were recorded during quiet (QS) and active (AS) sleep in undisturbed baseline and head-up tilt conditions. Measurements and Results: Autonomic control was assessed using spectral indices of blood pressure and heart rate variability (BPV and HRV) in ranges of low frequency (LF, reflecting sympathetic + parasympathetic activity) and high frequency (HF, parasympathetic activity), total power (LF+HF), and LF/HF ratio (sympathovagal balance). With increasing postnatal age and predominantly during QS, HRV-LF, HRV-HF, and HRV total power increased, while HRV-LF/HF decreased. BPV-LF/HF also decreased with postnatal age. All changes were evident in both baseline and head-up tilt conditions. BPV-LF and BPV total power during tilts were markedly reduced in QS versus AS at each age. Conclusions: In sleeping infants, sympathetic vascular modulation of the circulation decreases with age, while parasympathetic control of heart rate is strengthened. These normative data will aid in the early identification of conditions where autonomic function is impaired, such as in SIDS. Citation: Yiallourou SR; Sands SA; Walker AM; Horne RSC. Maturation of heart rate and blood pressure variability during sleep in term-born infants. SLEEP 2012;35(2):177-186. PMID:22294807

  10. Heterosocial involvement, peer pressure for thinness, and body dissatisfaction among young adolescent girls.

    PubMed

    Gondoli, Dawn M; Corning, Alexandra F; Salafia, Elizabeth H Blodgett; Bucchianeri, Michaela M; Fitzsimmons, Ellen E

    2011-03-01

    The purpose of this study was to examine longitudinal connections among young adolescent heterosocial involvement (i.e., mixed-sex interactions), peer pressure for thinness, and body dissatisfaction. Three years of self-report questionnaire data were collected from 88 adolescent girls as they completed 6th through 8th grades. Results indicated that the relation between heterosocial involvement and body dissatisfaction was mediated by perceived peer pressure for thinness. Within this model, heterosocial involvement was associated with greater peer pressure for thinness. In turn, peer pressure for thinness was associated with greater body dissatisfaction. Results are discussed in terms of their implications for prevention and intervention efforts aimed at girls during their middle-school years. Copyright © 2010 Elsevier Ltd. All rights reserved.

  11. Backrest position in prevention of pressure ulcers and ventilator-associated pneumonia: conflicting recommendations.

    PubMed

    Burk, Ruth Srednicki; Grap, Mary Jo

    2012-01-01

    Pressure ulcers and ventilator-associated pneumonia (VAP) are both common in acute and critical care settings and are considerable sources of morbidity, mortality, and health care costs. To prevent pressure ulcers, guidelines limit bed backrest elevation to less than 30 degrees, whereas recommendations to reduce VAP include use of backrest elevations of 30 degrees or more. Although a variety of risk factors beyond patient position have been identified for both pressure ulcers and VAP, this article will focus on summarizing the major evidence for each of these apparently conflicting positioning strategies and discuss implications for practice in managing mechanically ventilated patients with risk factors for both pressure ulcers and VAP. Copyright © 2012 Elsevier Inc. All rights reserved.

  12. Compositions of micas in peraluminous granitoids of the eastern Arabian shield - Implications for petrogenesis and tectonic setting of highly evolved, rare-metal enriched granites

    USGS Publications Warehouse

    du Bray, E.A.

    1994-01-01

    Compositions and pleochroism of micas in fourteen peraluminous alkali-feldspar granites in the eastern part of the Late Proterozoic Arabian Shield are unlike those of micas (principally biotite) in most calc-alkaline granitoid rocks. Compositions of these micas are distinguished by elevated abundances of Li2O, F, and numerous cations and by low MgO abundances. These micas, constituents of highly evolved rare-metal enriched granitoids, represent an iron-lithium substitution series that ranges from lithium-poor siderophyllite to lithium-rich ferroan lepidolite. The eastern Arabian Shield also hosts six epizonal granitoids that contain colorless micas. Compositions of these micas, mostly muscovite, and their host granitoids are distinct from those of the iron-lithium micas and their host granitoids. Compositions of the analyzed micas have a number of petrogenetic implications. The twenty granitoids containing these micas form three compositional groups that reflect genesis in particular tectonic regimes; mica compositions define the same three groups. The presence of magmatic muscovite in six of these shallowly crystallized granitoids conflicts with experimental data indicating muscovite stability at pressures greater than 3 kbar. Muscovite in the Arabian granitoids probably results from its non-ideal composition; the presence of muscovite cannot be used as a pressure indicator. Finally, mineral/matrix partition coefficients are significantly greater than 1.0 for a number of cations, the rare-earth elements in particular, in many of the analyzed iron-lithium micas. Involvement of these types of micas in partial melting or fractionation processes can have a major influence on silicate liquid compositions. ?? 1994 Springer-Verlag.

  13. Pressures of Partial Crystallization of Magmas Along Transforms: Implications for Crustal Accretion

    NASA Astrophysics Data System (ADS)

    Scott, J. L.; Zerda, C.; Brown, D.; Ciaramitaro, S. C.; Barton, M.

    2016-12-01

    Plate spreading at mid-ocean ridges is responsible for the creation of most of the crust on earth. The ridge system is very complex and many questions remain unresolved. Among these is the nature of magma plumbing systems beneath transform faults. Pervious workers have suggested that increased conductive cooling along transforms promotes higher pressures of partial crystallization, and that this explains the higher partial pressures of crystallization inferred for magmas erupted along slow spreading ridges compared to magmas erupted along faster spreading ridges. To test this hypothesis, we undertook a detailed analysis of pressures of partial crystallization for magmas erupted at 3 transforms along the fast to intermediate spreading East Pacific Rise(Blanco, Clipperton, and Siqueiros) and 3 transforms along the slow spreading Mid Atlantic Ridge(Famous Transform B, Kane, and 15°20'N). Pressures of partial crystallization were calculated from the compositions of glasses (quenched liquids) lying along the P (and T) dependent olivine, plagioclase, and augite cotectic using the method described by Kelley and Barton (2008). Published analyses of mid-ocean ridge basalt glasses sampled from these transforms and surrounding ridge segments were used as input data. Samples with anomalous chemical compositions and samples that yielded pressures associated with unrealistically large uncertainties were filtered out of the database. The pressures of partial crystallization for the remaining 916 samples ranged from 0 to 520 MPa with the great majority ( 95%) of sample returning pressures of less than 300 MPa. Pressures of < 300 MPa are within error of the pressure range associated with partial crystallization within oceanic crust with a thickness of 7 km. Higher (sub-crustal) pressures (>300 MPa) are associated with a small number of samples from the Pacific segments. Except for the Blanco, pressures of partial crystallization do not increase as transforms are approached. These observations contrast with those of previous workers, who reported anomalously high pressures (up to 1000 MPa) for a large number of samples erupted near both Atlantic and Pacific Transforms. We conclude that higher rates of cooling along transform does not have a major effect on the onset of partial crystallization along the mid-ocean ridges

  14. Pressures on DoD’s Budget Over the Next Decade

    DTIC Science & Technology

    2016-11-16

    Congressional Budget Office Pressures on DoD’s Budget Over the Next Decade Presentation at the Professional Services Council 2016 Vision Federal...E Outline • Fiscal Situation • Implications of Budget Control Act • Internal Pressures on DoD’s Budget 2C O N G R E S S I O N A L B U D G E T O F F...I C E Deficits or Surpluses Under CBO’s Baseline for FY 2016 CBO’s Baseline Projection Source: Congressional Budget Office, An Update to the

  15. The Influence of Tag Presence on the Mortality of Juvenile Chinook Salmon Exposed to Simulated Hydroturbine Passage: Implications for Survival Estimates and Management of Hydroelectric Facilities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carlson, Thomas J.; Brown, Richard S.; Stephenson, John R.

    Each year, millions of fish have telemetry tags (acoustic, radio, inductive) surgically implanted to assess their passage and survival through hydropower facilities. One route of passage of particular concern is through hydro turbines, in which fish may be exposed to a range of potential injuries, including barotraumas from rapid decompression. The change in pressure from acclimation to exposure (nadir) has been found to be an important factor in predicting the likelihood of mortality and injury for juvenile Chinook salmon undergoing rapid decompression associated with simulated turbine passage. The presence of telemetry tags has also been shown to influence the likelihoodmore » of injury and mortality for juvenile Chinook salmon. This research investigated the likelihood of mortality and injury for juvenile Chinook salmon carrying telemetry tags and exposed to a range of simulated turbine passage. Several factors were examined as predictors of mortal injury for fish undergoing rapid decompression, and the ratio of pressure change and tag burden were determined to be the most predictive factors. As the ratio of pressure change and tag burden increase, the likelihood of mortal injury also increases. The results of this study suggest that previous survival estimates of juvenile Chinook salmon passing through hydro turbines may have been biased due to the presence of telemetry tags, and this has direct implications to the management of hydroelectric facilities. Realistic examples indicate how the bias in turbine passage survival estimates could be 20% or higher, depending on the mass of the implanted tags and the ratio of acclimation to exposure pressures. Bias would increase as the tag burden and pressure ratio increase, and have direct implications on survival estimates. It is recommended that future survival studies use the smallest telemetry tags possible to minimize the potential bias that may be associated with carrying the tag.« less

  16. Dressings and topical agents for preventing pressure ulcers.

    PubMed

    Moore, Zena E H; Webster, Joan

    2013-08-18

    Pressure ulcers, which are localised injury to the skin, or underlying tissue or both, occur when people are unable to reposition themselves to relieve pressure on bony prominences. Pressure ulcers are often difficult to heal, painful and impact negatively on the individual's quality of life. The cost implications of pressure ulcer treatment are considerable, compounding the challenges in providing cost effective, efficient health services. Efforts to prevent the development of pressure ulcers have focused on nutritional support, pressure redistributing devices, turning regimes and the application of various topical agents and dressings designed to maintain healthy skin, relieve pressure and prevent shearing forces. Although products aimed at preventing pressure ulcers are widely used, it remains unclear which, if any, of these approaches are effective in preventing the development of pressure ulcers. To evaluate the effects of dressings and topical agents on the prevention of pressure ulcers, in people of any age without existing pressure ulcers, but considered to be at risk of developing a pressure ulcer, in any healthcare setting. In February 2013 we searched the following electronic databases to identify reports of relevant randomised clinical trials (RCTs): the Cochrane Wounds Group Specialised Register; the Cochrane Central Register of Controlled Trials (CENTRAL) (The Cochrane Library); Database of Abstracts of Reviews of Effects (The Cochrane Library); Ovid MEDLINE; Ovid MEDLINE (In-Process & Other Non-Indexed Citations); Ovid EMBASE; and EBSCO CINAHL. We included RCTs evaluating the use of dressings, topical agents, or topical agents with dressings, compared with a different dressing, topical agent, or combined topical agent and dressing, or no intervention or standard care, with the aim of preventing the development of a pressure ulcer. We assessed trials for their appropriateness for inclusion and for their risk of bias. This was done by two review authors working independently, using pre-determined inclusion and quality criteria. Five trials (940 participants) of unclear or high risk of bias compared a topical agent with a placebo. Four of these trials randomised by individual and one by cluster. When results from the five trials were combined, the risk ratio (RR) was 0.78 (95% CI 0.47 to 1.31; P value 0.35) indicating no overall beneficial effect of the topical agents. When the cluster randomised trial was omitted from the analysis, use of topical agents reduced the pressure ulcer incidence by 36%; RR 0.64 (95% CI 0.49 to 0.83; P value 0.0008).Four trials (561 participants), all of which were of high or unclear risk of bias, showed that dressings applied over bony prominences reduced pressure ulcer incidence; RR 0.21 (95% CI 0.09 to 0.51; P value 0.0006). There is insufficient evidence from RCTs to support or refute the use of topical agents applied over bony prominences to prevent pressure ulcers. Although the incidence of pressure ulcers was reduced when dressings were used to protect the skin, results were compromised by the low quality of the included trials. These trials contained substantial risk of bias and clinical heterogeneity (variations in populations and interventions); consequently, results should be interpreted as inconclusive. Further well designed trials addressing important clinical, quality of life and economic outcomes are justified, based on the incidence of the problem and the high costs associated with pressure ulcer management.

  17. The Kinetic-Molecular and Thermodynamic Approaches to Osmotic Pressure: A Study of Dispute in Physical Chemistry and the Implications for Chemistry Education

    ERIC Educational Resources Information Center

    De Berg, Kevin C.

    2006-01-01

    Osmotic pressure proves to be a useful topic for illustrating the disputes brought to bear on the chemistry profession when mathematics was introduced into its discipline. Some chemists of the late 19th century thought that the introduction of mathematics would destroy that "chemical feeling" or "experience" so necessary to the practice of…

  18. Impact melting of carbonates from the Chicxulub crater

    NASA Astrophysics Data System (ADS)

    Jones, A. P.; Claeys, P.; Heuschkel, S.

    We have recently interpreted distinctive feathery-textured spinifex carbonate in the upper part of the Chicxulub suevite breccia as quenched carbonate melts (Jones et al. 1998); these distinctive fragments make up to 10 vol% of the breccia. Carbonate clasts and spherules occurring in the ejecta-rich basal part of the coarse clastic sequence, which marks the K/T boundary all around the Gulf of Mexico, may represent distal quenched droplets of carbonate liquids. In seeking to explain this widespread carbonate impact-melting phenomenon, we have re-examined the available experimental evidence. The important decarbonation reaction for calcite CaCO3=CaO+CO2 is inhibited by very small pressures up to temperatures >2000 K. We conclude that massive decarbonation by direct shock pressure is unlikely without attainment of temperatures >4000 K. Therefore, decarbonation generally can only occur during post-shock cooling for carbonates at low pressure (< 10 bars). We assume that post-shock cooling is quasi-thermodynamic, and provide a general P-T model for carbonate spanning 11 orders of magnitude in pressure (atmosphere to core). Subtle differences in sample preconditioning can probably explain the wildly divergent experimental shock data. A major planetary implication for the formation of the Earth's early atmosphere is that impacts on limestone would be less likely to have contributed substantial CO2 than has previously been assumed. Lastly, we note that carbonate melts at high pressures serve as excellent catalysts for diamond growth, and may have contributed to the widespread formation of some impact diamond.

  19. Rural Latino caregivers’ beliefs and behaviors around their children’s salt consumption

    PubMed Central

    Hoeft, Kristin S.; Guerra, Claudia; Gonzalez-Vargas, M. Judy; Barker, Judith C.

    2015-01-01

    Background Prevalence of high blood pressure has been increasing in U.S. children, with implications for long term health consequences. Sodium consumption, a modifiable risk factor for high blood pressure, is above recommended limits and increasing. Very little is known about Latino caregiver beliefs and behaviors around their children’s salt consumption. Methods In California’s Central Valley, qualitative interviews in Spanish investigated low-income caregivers’ views and understandings of their children’s dietary salt consumption. Thirty individual interviews and 5 focus groups were conducted (N=61). Interview transcripts were translated and transcribed, coded and thematically analyzed. Results Seven primary topic areas around children’s salt intake and its impact on health were identified: children’s favorite foods, children’s dietary salt sources, superiority of home-cooked foods, salty and sweet foods, managing salt for health, developing children’s tastes, and adding salt added at the table. Parents recognize common sources of sodium such as “junk food” and processed food and made efforts to limit their children’s consumption of these foods, but may overlook other significant sodium sources, particularly bread, cheese, prepared soups and sports drinks. Caregivers recognize excess salt as unhealthy for children, but don’t believe health problems (like high blood pressure) can occur in young children. Nevertheless, they made efforts to limit how much salt their children consumed through a variety of strategies; school meals were a source of high sodium that they felt were outside of their control. Conclusion Latino caregivers are concerned about their children’s salt intake and attempt to limit consumption, but some common sources of sodium are under-recognized. PMID:25481770

  20. Elasticity of Single-Crystal Phase D across the Spin Transitions of Ferrous and Ferric Iron in the Lower Mantle

    NASA Astrophysics Data System (ADS)

    Wu, X.; Lin, J. F.; Liu, J.; Mao, Z.; Guo, X.; Yoshino, T.; McCammon, C. A.; Xiao, Y.; Prakapenka, V.

    2014-12-01

    Phase D, the densest hydrous magnesium silicate synthesized at the Earth's mantle P-T conditions thus far, has been proposed to be a potential candidate for transportation of H2O into the lower mantle by subduction of the hydrated oceanic lithosphere. A certain amount of iron, the most abundant transition metal element in the Earth's interior, is expected to be incorporated into the phase D. Here we synthesized high-quality single-crystal Fe,Al-bearing Phase D (Mg0.89Fe0.11Al0.37Si1.55H2.65O6, ~13.3wt% H2O) with grain sizes of ~200 micron using the Kawai multianvil apparatus at 21 GPa and 1200 °C at the Institute for Study of the Earth's Interior, University of Oakayama, Japan. Conventional Mössbauer results indicate that the sample contains both ferrous and ferric iron that occupy the octahedral sites of the hexagonal structure. In situ high-pressure single crystal XRD and NFS experiments were performed up to megabar pressures at 13IDD beamline (GSECARS) and 16IDD beamline (HPCAT) of the Advanced Photon Source, respectively. Both experimental results clearly show that both Fe2+ and Fe3+ undergo a HS-LS transition at high pressures. High-resolution XRD results further indicate an abnormal compression behavior at approximately 37 GPa that can be linked with the previously proposed hydrogen bond symmetrization. Elasticity of phase D has a marked influence by the two-step spin transitions of both Fe2+ and Fe3+ and the hydrogen bond symmetrization, presenting in the seismic wave model, which is of implication for our understanding of the deep-Earth geophysics and geochemistry especially along the subducted slabs.

  1. Global direct pressures on biodiversity by large-scale metal mining: Spatial distribution and implications for conservation.

    PubMed

    Murguía, Diego I; Bringezu, Stefan; Schaldach, Rüdiger

    2016-09-15

    Biodiversity loss is widely recognized as a serious global environmental change process. While large-scale metal mining activities do not belong to the top drivers of such change, these operations exert or may intensify pressures on biodiversity by adversely changing habitats, directly and indirectly, at local and regional scales. So far, analyses of global spatial dynamics of mining and its burden on biodiversity focused on the overlap between mines and protected areas or areas of high value for conservation. However, it is less clear how operating metal mines are globally exerting pressure on zones of different biodiversity richness; a similar gap exists for unmined but known mineral deposits. By using vascular plants' diversity as a proxy to quantify overall biodiversity, this study provides a first examination of the global spatial distribution of mines and deposits for five key metals across different biodiversity zones. The results indicate that mines and deposits are not randomly distributed, but concentrated within intermediate and high diversity zones, especially bauxite and silver. In contrast, iron, gold, and copper mines and deposits are closer to a more proportional distribution while showing a high concentration in the intermediate biodiversity zone. Considering the five metals together, 63% and 61% of available mines and deposits, respectively, are located in intermediate diversity zones, comprising 52% of the global land terrestrial surface. 23% of mines and 20% of ore deposits are located in areas of high plant diversity, covering 17% of the land. 13% of mines and 19% of deposits are in areas of low plant diversity, comprising 31% of the land surface. Thus, there seems to be potential for opening new mines in areas of low biodiversity in the future. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. Remodeling of Aorta Extracellular Matrix as a Result of Transient High Oxygen Exposure in Newborn Rats: Implication for Arterial Rigidity and Hypertension Risk

    PubMed Central

    Castro, Michele M.; Cloutier, Anik; Bertagnolli, Mariane; Sartelet, Hervé; Germain, Nathalie; Comte, Blandine; Schulz, Richard; DeBlois, Denis; Nuyt, Anne Monique

    2014-01-01

    Neonatal high-oxygen exposure leads to elevated blood pressure, microvascular rarefaction, vascular dysfunction and arterial (aorta) rigidity in adult rats. Whether structural changes are present in the matrix of aorta wall is unknown. Considering that elastin synthesis peaks in late fetal life in humans, and early postnatal life in rodents, we postulated that transient neonatal high-oxygen exposure can trigger premature vascular remodelling. Sprague Dawley rat pups were exposed from days 3 to 10 after birth to 80% oxygen (vs. room air control) and were studied at 4 weeks. Blood pressure and vasomotor response of the aorta to angiotensin II and to the acetylcholine analogue carbachol were not different between groups. Vascular superoxide anion production was similar between groups. There was no difference between groups in aortic cross sectional area, smooth muscle cell number or media/lumen ratio. In oxygen-exposed rats, aorta elastin/collagen content ratio was significantly decreased, the expression of elastinolytic cathepsin S was increased whereas collagenolytic cathepsin K was decreased. By immunofluorescence we observed an increase in MMP-2 and TIMP-1 staining in aortas of oxygen-exposed rats whereas TIMP-2 staining was reduced, indicating a shift in the balance towards degradation of the extra-cellular matrix and increased deposition of collagen. There was no significant difference in MMP-2 activity between groups as determined by gelatin zymography. Overall, these findings indicate that transient neonatal high oxygen exposure leads to vascular wall alterations (decreased elastin/collagen ratio and a shift in the balance towards increased deposition of collagen) which are associated with increased rigidity. Importantly, these changes are present prior to the elevation of blood pressure and vascular dysfunction in this model, and may therefore be contributory. PMID:24743169

  3. Suppressed anger, evaluative threat, and cardiovascular reactivity: a tripartite profile approach.

    PubMed

    Jorgensen, Randall S; Kolodziej, Monika E

    2007-11-01

    Despite decades of theory and research implicating suppressed anger in the development of cardiovascular disorders involving cardiovascular reactivity (CVR), to date the theoretical components of low anger expression, guilt feelings over agonistic reactions, and defensive strivings to avoid social disapproval have not been used conjointly to profile suppressed anger for the prediction of CVR. The purpose of this study, then, was to cluster analyze measures of anger expression, hostility guilt, and social defensiveness to create a suppressed anger profile (low anger expression, high hostility guilt, high social defensiveness) and a non-suppressed profile from a sample of college males. Social evaluative threat may be a potent stressor for people who defensively suppress anger expression. Thus, to examine the combined effects of suppressed anger and social evaluative threat, participants, prior to telling a story to a Thematic Apperception Card (TAT), were randomly assigned to either a high-threat (story will be compared to stories created by the mentally ill) or a low-threat condition (story used to study effects of talking on cardiovascular responses). Blood pressure (BP) and heart rate (HR) were monitored during a rest period and the subsequent TAT card period. As predicted, suppressed anger males in the high-threat condition showed the highest levels of diastolic BP and HR change from the rest period. The suppressed anger group's systolic BP reactivity was independent of threat manipulation. Research implications are discussed.

  4. Melting of Fe and Fe0.9Ni0.1 alloy at high pressures

    NASA Astrophysics Data System (ADS)

    Zhang, D.; Jackson, J. M.; Zhao, J.; Sturhahn, W.; Alp, E. E.; Hu, M. Y.; Toellner, T.

    2014-12-01

    Cosmochemical studies suggest that the cores of terrestrial planets are primarily composed of Fe alloyed with about 5 to 10 wt% Ni, plus some light elements (e.g., McDonough and Sun 1995). Thus, the high pressure melting curve of Fe0.9Ni0.1 is considered to be an important reference for characterizing the cores of terrestrial planets. We have determined the melting points of fcc-structured Fe and Fe0.9Ni0.1 up to 86 GPa using an in-situ method that monitors the atomic dynamics of the Fe atoms in the sample, synchrotron Mössbauer spectroscopy (Jackson et al. 2013). A laser heated diamond anvil cell is used to provide the high pressure-high temperature environmental conditions, and in-situ X-ray diffraction is used to constrain the pressure of the sample. To eliminate the influence of temperature fluctuations experienced by the sample on the determination of melting, we develop a Fast Temperature Readout (FasTeR) spectrometer. The FasTeR spectrometer features a fast reading rate (>100 Hz), a high sensitivity, a large dynamic range and a well-constrained focus. By combining the melting curve of fcc-structured Fe0.9Ni0.1 alloy determined in our study and the fcc-hcp phase boundary from Komabayashi et al. (2012), we calculate the fcc-hcp-liquid triple point of Fe0.9Ni0.1. Using this triple point and the thermophysical parameters from a nuclear resonant inelastic X-ray scattering study on hcp-Fe (Murphy et al. 2011), we compute the melting curve of hcp-structured Fe0.9Ni0.1. We will discuss our new experimental results with implications for the cores of Venus, Earth and Mars. Select references: McDonough & Sun (1995): The composition of the Earth. Chem. Geol. 120, 223-253. Jackson et al. (2013): Melting of compressed iron by monitoring atomic dynamics, EPSL, 362, 143-150. Komabayashi et al. (2012): In situ X-ray diffraction measurements of the fcc-hcp phase transition boundary of an Fe-Ni alloy in an internally heated diamond anvil cell, PCM, 39, 329-338. Murphy et al. (2011): Melting and thermal pressure of hcp-Fe from the phonon density of states, PEPI, 188, 114-120.

  5. Estimating right ventricular stroke work and the pulsatile work fraction in pulmonary hypertension.

    PubMed

    Chemla, Denis; Castelain, Vincent; Zhu, Kaixian; Papelier, Yves; Creuzé, Nicolas; Hoette, Susana; Parent, Florence; Simonneau, Gérald; Humbert, Marc; Herve, Philippe

    2013-05-01

    The mean pulmonary artery pressure (mPAP) replaces mean systolic ejection pressure (msePAP) in the classic formula of right ventricular stroke work (RVSW) = (mPAP - RAP) × stroke volume, where RAP is mean right atrial pressure. Only the steady work is thus taken into account, not the pulsatile work, whereas pulmonary circulation is highly pulsatile. Our retrospective, high-fidelity pressure study tested the hypothesis that msePAP was proportional to mPAP, and looked at the implications for RVSW. Eleven patients with severe, precapillary pulmonary hypertension (PH) (six patients with idiopathic pulmonary arterial hypertension and five with chronic thromboembolic PH; mPAP = 57 ± 10 mm Hg) were studied at rest and during mild to moderate exercise. Eight non-PH control subjects were also studied at rest (mPAP = 16 ± 2 mm Hg). The msePAP was averaged from end diastole to dicrotic notch. In the full data set (53 pressure-flow points), mPAP ranged from 14 to 99.5 mm Hg, cardiac output from 2.38 to 11.1 L/min, and heart rate from 53 to 163 beats/min. There was a linear relationship between msePAP and mPAP (r² = 0.99). The msePAP matched 1.25 mPAP (bias, -0.5 ± 2.6 mm Hg). Results were similar in the resting non-PH group and in resting and the exercising PH group. This implies that the classic formula markedly underestimates RVSW and that the pulsatile work may be a variable 20% to 55% fraction of RVSW, depending on RAP and mPAP. At rest, RVSW in patients with PH was twice as high as that of the non-PH group (P < .05), but pulsatile work fraction was similar between the two groups (26 ± 4% vs 24 ± 1%) because of the counterbalancing effects of high RAP (11 ± 5 mm Hg vs 4 ± 2 mm Hg), which increases the fraction, and high mPAP, which decreases the fraction. Our study favored the use of an improved formula that takes into account the variable pulsatile work fraction: RVSW = (1.25 mPAP - RAP) × stroke volume. Increased RAP and increased mPAP have opposite effects on the pulsatile work fraction.

  6. High-pressure phase relations and thermodynamic properties of CaAl 4Si 2O 11 CAS phase

    NASA Astrophysics Data System (ADS)

    Akaogi, M.; Haraguchi, M.; Yaguchi, M.; Kojitani, H.

    2009-03-01

    Phase relations in CaAl4Si2O11 were examined at 12-23 GPa and 1000-1800 °C by multianvil experiments. A three-phase mixture of grossular, kyanite and corundum is stable below about 13 GPa at 1000-1800 °C. At higher pressure and at temperature below about 1200 °C, a mixture of grossular, stishovite and corundum is stable, indicating the decomposition of kyanite. Above about 1200 °C, CaAl4Si2O11 CAS phase is stable at pressure higher than about 13 GPa. The triple point is placed at 14.7 GPa and 1280 °C. The equilibrium boundary of formation of CAS phase from the mixture of grossular, kyanite and corundum has a small negative slope, and that from the mixture of grossular, stishovite and corundum has a strongly negative slope, while the decomposition boundary of kyanite has a small positive slope. Enthalpies of the transitions were measured by high-temperature drop-solution calorimetry. The enthalpy of formation of CaAl4Si2O11 CAS phase from the mixture of grossular, kyanite and corundum was 139.5 ± 15.6 kJ/mol, and that from the mixture of grossular, stishovite and corundum was 94.2 ± 15.4 kJ/mol. The transition boundaries calculated using the measured enthalpy data were consistent with those determined by the high-pressure experiments. The boundaries in this study are placed about 3 GPa higher in pressure and about 200 °C lower in temperature than those by Zhai and Ito [Zhai, S., Ito, E., 2008. Phase relations of CaAl4Si2O11 at high-pressure and high-temperature with implications for subducted continental crust into the deep mantle. Phys. Earth Planet. Inter. 167, 161-167]. Combining the thermodynamic data measured in this study with those in the literature, dissociation boundary of CAS phase into a mixture of Ca-perovskite, corundum and stishovite and that of grossular into Ca-perovskite plus corundum were calculated to further constrain the stability field of CAS phase. The result suggests that the stability of CAS phase would be limited at the bottom of transition zone and top of the lower mantle, when sediments are subducted into the deep mantle. It is also suggested that CAS phase may be stable at the depth of the upper part of the lower mantle, when partial melting of basalt occurs at the depth.

  7. Impact of change over time in self-reported discrimination on blood pressure: implications for inequities in cardiovascular risk for a multi-racial urban community.

    PubMed

    LeBrón, Alana M W; Schulz, Amy J; Mentz, Graciela; Reyes, Angela G; Gamboa, Cindy; Israel, Barbara A; Viruell-Fuentes, Edna A; House, James S

    2018-01-21

    The 21st century has seen a rise in racism and xenophobia in the United States. Few studies have examined the health implications of heightened institutional and interpersonal racism. This study examines changes in reported discrimination and associations with blood pressure over time among non-Latino Blacks (NLBs), Latinos, and non-Latino Whites (NLWs) in an urban area, and variations by nativity among Latinos. Data from a probability sample of NLB, Latino, and NLW Detroit, Michigan residents were collected in 2002-2003, with follow-up at the same addresses in 2007-2008. Surveys were completed at 80% of eligible housing units in 2008 (n = 460). Of those, 219 participants were interviewed at both time points and were thus included in this analysis. Discrimination patterns across racial/ethnic groups and associations with blood pressure were examined using generalized estimating equations. From 2002 to 2008, NLBs and Latinos reported heightened interpersonal and institutional discrimination, respectively, compared with NLWs. There were no differences in associations between interpersonal discrimination and blood pressure. Increased institutional discrimination was associated with stronger increases in systolic and diastolic blood pressure for NLBs than NLWs, with no differences between Latinos and NLWs. Latino immigrants experienced greater increases in blood pressure with increased interpersonal and institutional discrimination compared to US-born Latinos. Together, these findings suggest that NLBs and Latinos experienced heightened discrimination from 2002 to 2008, and that increases in institutional discrimination were more strongly associated with blood pressure elevation among NLBs and Latino immigrants compared to NLWs and US-born Latinos, respectively. These findings suggest recent increases in discrimination experienced by NLBs and Latinos, and that these increases may exacerbate racial/ethnic health inequities.

  8. Mindful maths: reducing the impact of stereotype threat through a mindfulness exercise.

    PubMed

    Weger, Ulrich W; Hooper, Nic; Meier, Brian P; Hopthrow, Tim

    2012-03-01

    Individuals who experience stereotype threat - the pressure resulting from social comparisons that are perceived as unfavourable - show performance decrements across a wide range of tasks. One account of this effect is that the cognitive pressure triggered by such threat drains the same cognitive (or working-memory) resources that are implicated in the respective task. The present study investigates whether mindfulness can be used to moderate stereotype threat, as mindfulness has previously been shown to alleviate working-memory load. Our results show that performance decrements that typically occur under stereotype threat can indeed be reversed when the individual engages in a brief (5 min) mindfulness task. The theoretical implications of our findings are discussed. Crown Copyright © 2011. Published by Elsevier Inc. All rights reserved.

  9. Cardiovascular risks in firefighters: implications for occupational health nurse practice.

    PubMed

    Byczek, Lance; Walton, Surrey M; Conrad, Karen M; Reichelt, Paul A; Samo, Daniel G

    2004-02-01

    Limited cardiovascular risk data are available for firefighters. This cross sectional study of data collected during annual physical examinations described the prevalence of cardiovascular risk factors among firefighters (N = 200) and examined relationships between body mass index (BMI) and other cardiovascular risk factors. Evidence based guidelines were used to determine prevalence of cardiovascular risk factors and Framingham risk scoring was used to estimate probability of coronary heart disease (CHD). Firefighters ranged in age from 22 to 64 with a mean of 41. The prevalence of obesity, elevated total cholesterol, and elevated blood pressure in firefighters exceeded Healthy People 2010 targets. In addition, their prevalence of obesity, low high density lipoprotein (HDL), high low density lipoprotein (LDL), and high total cholesterol levels was higher relative to the general population. Elevated body mass index (BMI) values had positive significant (p < or = .01) associations with elevated blood pressures, triglycerides, and glucose levels, and a negative significant (p < .05) association with lower HDL cholesterol levels. Fire department worksite health and fitness policies and programs should proactively target firefighters' cardiovascular risks. Future firefighter related intervention research will benefit from considering not only the individual determinants of cardiovascular disease, but also the ecological framework that includes the influences of workplace and external environmental factors.

  10. The potential for climate-driven bathymetric range shifts: sustained temperature and pressure exposures on a marine ectotherm, Palaemonetes varians

    PubMed Central

    Morris, J. P.; Thatje, S.; Cottin, D.; Oliphant, A.; Brown, A.; Shillito, B.; Ravaux, J.; Hauton, C.

    2015-01-01

    Range shifts are of great importance as a response for species facing climate change. In the light of current ocean-surface warming, many studies have focused on the capacity of marine ectotherms to shift their ranges latitudinally. Bathymetric range shifts offer an important alternative, and may be the sole option for species already at high latitudes or those within enclosed seas; yet relevant data are scant. Hydrostatic pressure (HP) and temperature have wide ranging effects on physiology, importantly acting in synergy thermodynamically, and therefore represent key environmental constraints to bathymetric migration. We present data on transcriptional regulation in a shallow-water marine crustacean (Palaemonetes varians) at atmospheric and high HP following 168-h exposures at three temperatures across the organisms’ thermal scope, to establish the potential physiological limit to bathymetric migration by neritic fauna. We observe changes in gene expression indicative of cellular macromolecular damage, disturbances in metabolic pathways and a lack of acclimation after prolonged exposure to high HP. Importantly, these effects are ameliorated (less deleterious) at higher temperatures, and exacerbated at lower temperatures. These data, alongside previously published behavioural and heat-shock analyses, have important implications for our understanding of the potential for climate-driven bathymetric range shifts PMID:26716003

  11. Asymmetric bubble collapse and jetting in generalized Newtonian fluids

    NASA Astrophysics Data System (ADS)

    Shukla, Ratnesh K.; Freund, Jonathan B.

    2017-11-01

    The jetting dynamics of a gas bubble near a rigid wall in a non-Newtonian fluid are investigated using an axisymmetric simulation model. The bubble gas is assumed to be homogeneous, with density and pressure related through a polytropic equation of state. An Eulerian numerical description, based on a sharp interface capturing method for the shear-free bubble-liquid interface and an incompressible Navier-Stokes flow solver for generalized fluids, is developed specifically for this problem. Detailed simulations for a range of rheological parameters in the Carreau model show both the stabilizing and destabilizing non-Newtonian effects on the jet formation and impact. In general, for fixed driving pressure ratio, stand-off distance and reference zero-shear-rate viscosity, shear-thinning and shear-thickening promote and suppress jet formation and impact, respectively. For a sufficiently large high-shear-rate limit viscosity, the jet impact is completely suppressed. Thresholds are also determined for the Carreau power-index and material time constant. The dependence of these threshold rheological parameters on the non-dimensional driving pressure ratio and wall stand-off distance is similarly established. Implications for tissue injury in therapeutic ultrasound will be discussed.

  12. Predator confusion is sufficient to evolve swarming behaviour

    PubMed Central

    Olson, Randal S.; Hintze, Arend; Dyer, Fred C.; Knoester, David B.; Adami, Christoph

    2013-01-01

    Swarming behaviours in animals have been extensively studied owing to their implications for the evolution of cooperation, social cognition and predator–prey dynamics. An important goal of these studies is discerning which evolutionary pressures favour the formation of swarms. One hypothesis is that swarms arise because the presence of multiple moving prey in swarms causes confusion for attacking predators, but it remains unclear how important this selective force is. Using an evolutionary model of a predator–prey system, we show that predator confusion provides a sufficient selection pressure to evolve swarming behaviour in prey. Furthermore, we demonstrate that the evolutionary effect of predator confusion on prey could in turn exert pressure on the structure of the predator's visual field, favouring the frontally oriented, high-resolution visual systems commonly observed in predators that feed on swarming animals. Finally, we provide evidence that when prey evolve swarming in response to predator confusion, there is a change in the shape of the functional response curve describing the predator's consumption rate as prey density increases. Thus, we show that a relatively simple perceptual constraint—predator confusion—could have pervasive evolutionary effects on prey behaviour, predator sensory mechanisms and the ecological interactions between predators and prey. PMID:23740485

  13. Predator confusion is sufficient to evolve swarming behaviour.

    PubMed

    Olson, Randal S; Hintze, Arend; Dyer, Fred C; Knoester, David B; Adami, Christoph

    2013-08-06

    Swarming behaviours in animals have been extensively studied owing to their implications for the evolution of cooperation, social cognition and predator-prey dynamics. An important goal of these studies is discerning which evolutionary pressures favour the formation of swarms. One hypothesis is that swarms arise because the presence of multiple moving prey in swarms causes confusion for attacking predators, but it remains unclear how important this selective force is. Using an evolutionary model of a predator-prey system, we show that predator confusion provides a sufficient selection pressure to evolve swarming behaviour in prey. Furthermore, we demonstrate that the evolutionary effect of predator confusion on prey could in turn exert pressure on the structure of the predator's visual field, favouring the frontally oriented, high-resolution visual systems commonly observed in predators that feed on swarming animals. Finally, we provide evidence that when prey evolve swarming in response to predator confusion, there is a change in the shape of the functional response curve describing the predator's consumption rate as prey density increases. Thus, we show that a relatively simple perceptual constraint--predator confusion--could have pervasive evolutionary effects on prey behaviour, predator sensory mechanisms and the ecological interactions between predators and prey.

  14. Singing whales generate high levels of particle motion: implications for acoustic communication and hearing?

    PubMed Central

    Kaplan, Maxwell B.; Lammers, Marc O.

    2016-01-01

    Acoustic signals are fundamental to animal communication, and cetaceans are often considered bioacoustic specialists. Nearly all studies of their acoustic communication focus on sound pressure measurements, overlooking the particle motion components of their communication signals. Here we characterized the levels of acoustic particle velocity (and pressure) of song produced by humpback whales. We demonstrate that whales generate acoustic fields that include significant particle velocity components that are detectable over relatively long distances sufficient to play a role in acoustic communication. We show that these signals attenuate predictably in a manner similar to pressure and that direct particle velocity measurements can provide bearings to singing whales. Whales could potentially use such information to determine the distance of signalling animals. Additionally, the vibratory nature of particle velocity may stimulate bone conduction, a hearing modality found in other low-frequency specialized mammals, offering a parsimonious mechanism of acoustic energy transduction into the massive ossicles of whale ears. With substantial concerns regarding the effects of increasing anthropogenic ocean noise and major uncertainties surrounding mysticete hearing, these results highlight both an unexplored pathway that may be available for whale acoustic communication and the need to better understand the biological role of acoustic particle motion. PMID:27807249

  15. Phase relations of Fe-Si-Ni alloys at core conditions: Implications for the Earth inner core

    NASA Astrophysics Data System (ADS)

    Fiquet, G.; Boulard, E.; Auzende, A.; Antonangeli, D.; Badro, J.; Morard, G.; Siebert, J.; Perrillat, J.; Mezouar, M.

    2008-12-01

    The Earth core consists of a liquid outer core and a solid inner core, which are believed to be made predominantly of iron (Fe). Among all crystallographic structures proposed, a consensus has more or less emerged with the hexagonal closed packed structure -hcp- for iron. The question of the structure of this alloy at core conditions, in particular in vicinity of the melting line is however still largely debated. Among others, a possible thermal and chemical stabilization of body-centered cubic iron in the Earth's core has indeed been proposed with the theoretical calculations of Vocadlo et al. [Nature, 424, 536, 2003]. Recent X-ray experiments have shown the existence of such a bcc structure above 220 GPa at high-temperature for iron- nickel alloys [Dubrovinsky et al., Science, 316, 1880, 2007]. It is also known from density systematics that the Earth's core is made of iron alloyed with light elements [see Poirier, Phys. Earth Planet. Int., 85, 319, 1994]. We recently proposed a compositional model for the Earth's inner core from a systematic study of the effect of light elements on sound velocities at high pressure. Our preferred core model is an inner core which contains 2.3 wt % silicon and traces of oxygen [see Badro et al., Earth Planet. Sci. Lett., 254, 233, 2007 for more details]. Recent studies, however, suggest that small amount of silicon or nickel can substantially affect the phase relations and thermodynamic properties of iron alloys. We present results from an X-ray diffraction carried out at ESRF at high-pressure and high-temperature, using a state-of-the-art double sided laser heating system. We address the question of the structure of this alloy at core conditions. Two different alloys have been synthesized for this experiment, with Fe : 92.4, Si : 3.7, Ni 3.9 and Fe: 88.4, Si: 7.3, Ni: 4.3 in wt %, so as to satisfy the core preferred compositional model described in Badro et al. [2007]. The samples were loaded in a diamond anvil cell with neon as pressure transmitting medium transmitting medium, and subsequently analyzed by diffraction collected on a CCD detector during laser-heating at pressure. Experiments were carried out between 20 and 200 GPa, and 1500-5000 K. Our results show an increase of the pressure transition from bcc to hcp with increasing silicon content, with much more precise pressure transitions than previously published. X-ray diffraction pattern contain fcc or hcp at high-temperature and high-pressure conditions. If an expansion of the fcc stability field is observed with increasing silicon and/or nickel content, our observations show a wide stability of hcp-iron alloys up to 200 GPa and high-temperature. These results are discussed in the light of recent experimental and theoretical investigations.

  16. Magma reservoirs and neutral buoyancy zones on Venus - Implications for the formation and evolution of volcanic landforms

    NASA Technical Reports Server (NTRS)

    Head, James W.; Wilson, Lionel

    1992-01-01

    The production of magma reservoirs and neutral buoyancy zones (NBZs) on Venus and the implications of their development for the formation and evolution of volcanic landforms are examined. The high atmospheric pressure on Venus reduces volatile exsolution and generally serves to inhibit the formation of NBZs and shallow magma reservoirs. For a range of common terrestrial magma-volatile contents, magma ascending and erupting near or below mean planetary radius (MPR) should not stall at shallow magma reservoirs; such eruptions are characterized by relatively high total volumes and effusion rates. For the same range of volatile contents at 2 km above MPR, about half of the cases result in the direct ascent of magma to the surface and half in the production of neutral buoyancy zones. NBZs and shallow magma reservoirs begin to appear as gas content increases and are nominally shallower on Venus than on earth. For a fixed volatile content, NBZs become deeper with increasing elevation: over the range of elevations treated in this study (-1 km to +4.4 km) depths differ by a factor of 2-4. Factors that may account for the low height of volcanoes on Venus are discussed.

  17. A review of the contrasting behavior of two magmatic volatiles: Chlorine and carbon dioxide

    USGS Publications Warehouse

    Lowenstern, J. B.

    2000-01-01

    Chlorine (Cl) and carbon dioxide (CO2) are common magmatic volatiles with contrasting behaviors. CO2 solubility increases with pressure whereas Cl solubility shows relatively little pressure or temperature effect. CO2 speciation changes with silicate melt composition, dissolving as carbonate in basaltic magmas and molecular CO2 in more silicic compositions. In H2O-bearing systems, the strongly non-ideal behavior of alkali chlorides causes unmixing of the volatile phase to form a H2O-rich vapor and a hydrosaline phase with important implications for the maximum concentration of Cl in magmas. Addition of CO2 to magma hastens immiscibility at crustal pressures (<500 MPa), inducing the formation of CO2-rich vapors and Cl-rich hydrosaline melts. (C) 2000 Elsevier Science B.V. All rights reserved.Chlorine (Cl) and carbon dioxide (CO2) are common magmatic volatiles with contrasting behaviors. CO2 solubility increases with pressure whereas Cl solubility shows relatively little pressure or temperature effect. CO2 speciation changes with silicate melt composition, dissolving as carbonate in basaltic magmas and molecular CO2 in more silicic compositions. In H2O-bearing systems, the strongly non-ideal behavior of alkali chlorides causes unmixing of the volatile phase to form a H2O-rich vapor and a hydrosaline phase with important implications for the maximum concentration of Cl in magmas. Addition of CO2 to magma hastens immiscibility at crustal pressures (<500 MPa), inducing the formation of CO2-rich vapors and Cl-rich hydrosaline melts.

  18. Melting and vibrational properties of planetary materials under deep Earth conditions

    NASA Astrophysics Data System (ADS)

    Jackson, Jennifer

    2013-06-01

    The large chemical, density, and dynamical contrasts associated with the juxtaposition of a liquid iron-dominant alloy and silicates at Earth's core-mantle boundary (CMB) are associated with a rich range of complex seismological features. For example, seismic heterogeneity at this boundary includes small patches of anomalously low sound velocities, called ultralow-velocity zones. Their small size (5 to 40 km thick) and depth (about 2800 km) present unique challenges for seismic characterization and geochemical interpretation. In this contribution, we will present recent nuclear resonant inelastic x-ray scattering measurements on iron-bearing silicates, oxides, and metals, and their application towards our understanding of Earth's interior. Specifically, we will present measurements on silicates and oxide minerals that are important in Earth's upper and lower mantles, as well as iron to over 1 megabar in pressure. The nuclear resonant inelastic x-ray scattering method provides specific vibrational information, e.g., the phonon density of states, and in combination with compression data permits the determination of sound velocities and other vibrational information under high pressure and high temperature. For example, accurate determination of the sound velocities and density of chemically complex Earth materials is essential for understanding the distribution and behavior of minerals and iron-alloys with depth. The high statistical quality of the data in combination with high energy resolution and a small x-ray focus size permit accurate evaluation of the vibrational-related quantities of iron-bearing Earth materials as a function of pressure, such as the Grüneisen parameter, thermal pressure, sound velocities, and iron isotope fractionation quantities. Finally, we will present a novel method detecting the solid-liquid phase boundary of compressed iron at high temperatures using synchrotron Mössbauer spectroscopy. Our approach is unique because the dynamics of the iron atoms are monitored. This process is described by the Lamb-Mössbauer factor, which is related to the mean-square displacement of the iron atoms. We will discuss the implications of our results as they relate to Earth's core and core-mantle boundary regions.

  19. Green supply chain management in China

    NASA Astrophysics Data System (ADS)

    Zhu, Qinghua; Sarkis, Joseph

    2004-02-01

    Globalization results in both pressure and drivers for Chinese enterprise to improve their environmental performance. As a developing country, China has to balance economic and environmental performance. Green supply chain management (GSCM) is emerging to be an important approach for Chinese enterprises to improve performance, possibly on both these dimensions. Using empirical results from 89 respondents on GSCM practice in Chinese manufacturing enterprises, we examine the relationships between pressures, practice and performance. The results will look at multiple dimensions of GSCM practice and performance, as well as various pressures they face. Discussion of the results will include practical implications for organizations, not only in China, but internationally who face similar pressures and seek to implement similar programs.

  20. Water Quality Interaction with Alkaline Phosphatase in the Ganga River: Implications for River Health.

    PubMed

    Yadav, Amita; Pandey, Jitendra

    2017-07-01

    Carbon, nitrogen and phosphorus inputs through atmospheric deposition, surface runoff and point sources were measured in the Ganga River along a gradient of increasing human pressure. Productivity variables (chlorophyll a, gross primary productivity, biogenic silica and autotrophic index) and heterotrophy (respiration, substrate induced respiration, biological oxygen demand and fluorescein diacetate hydrolysis) showed positive relationships with these inputs. Alkaline phosphatase (AP), however, showed an opposite trend. Because AP is negatively influenced by available P, and eutrophy generates a feedback on P fertilization, the study implies that the alkaline phosphatase can be used as a high quality criterion for assessing river health.

  1. AMS implications of charge-changing during acceleration

    NASA Astrophysics Data System (ADS)

    Knies, D. L.; Grabowski, K. S.; Cetina, C.; Demoranville, L. T.; Dougherty, M. R.; Mignerey, A. C.; Taylor, C. L.

    2007-08-01

    The NRL Accelerator Mass Spectrometer facility was recently reconfigured to incorporate a modified Cameca IMS 6f Secondary Ion Mass Spectrometer as a high-performance ion source. The NRL accelerator facility supplants the mass spectrometer portion of the IMS 6f instrument. As part of the initial testing of the combined instrument, charge-state scans were performed under various conditions. These provided the basis for studying the effects of terminal gas pressure on the process of charge-changing during acceleration. A combined system of transmission-micro-channel plate and energy detector was found to remove ghost beams produced from Pd charge-changing events in the accelerator tube.

  2. Crew collaboration in space: a naturalistic decision-making perspective

    NASA Technical Reports Server (NTRS)

    Orasanu, Judith

    2005-01-01

    Successful long-duration space missions will depend on the ability of crewmembers to respond promptly and effectively to unanticipated problems that arise under highly stressful conditions. Naturalistic decision making (NDM) exploits the knowledge and experience of decision makers in meaningful work domains, especially complex sociotechnical systems, including aviation and space. Decision making in these ambiguous, dynamic, high-risk environments is a complex task that involves defining the nature of the problem and crafting a response to achieve one's goals. Goal conflicts, time pressures, and uncertain outcomes may further complicate the process. This paper reviews theory and research pertaining to the NDM model and traces some of the implications for space crews and other groups that perform meaningful work in extreme environments. It concludes with specific recommendations for preparing exploration crews to use NDM effectively.

  3. Titan's Interior Chemical Composition: A Thermochemical Assessment*

    NASA Astrophysics Data System (ADS)

    Howard, Michael; Zaug, J. M.; Khare, B. N.; McKay, C. P.

    2007-10-01

    We study the interior composition of Titan using thermal chemical equilibrium calculations that are valid to high pressures and temperatures. The equations of state are based on exponential-6 fluid theory and have been validated against experimental data up to a few Mbars in pressure and approximately 20000K in temperature. In addition to CHNO molecules, we account for multi-phases of carbon, water and a variety of metals such as Al and Fe, and their oxides. With these fluid equations of state, chemical equilibrium is calculated for a set of product species. As the temperature and pressure evolves for increasing depth in the interior, the chemical equilibrium shifts. We assume that Titan is initially composed of comet material, which we assume to be solar, except for hydrogen, which we take to be depleted by a factor 1/690. We find that a significant amount of nitrogen is in the form of n2, rather than nh3. Moreover, above 12 kbars, as is the interior pressure of Titan, a significant amount of the carbon is in the form of graphite, rather than co2 and ch4. We discuss the implications of these results for understanding the atmospheric and surface composition of Titan. • This work was performed under the auspices of the U.S. Department of Energy by the University of California Lawrence Livermore National Laboratory under contract No. W-7405-Eng-48.

  4. Laboratory triggering of stick-slip events by oscillatory loading in the presence of pore fluid with implications for physics of tectonic tremor

    USGS Publications Warehouse

    Bartlow, Noel M.; Lockner, David A.; Beeler, Nicholas M.

    2012-01-01

    The physical mechanism by which the low-frequency earthquakes (LFEs) that make up portions of tectonic (also called non-volcanic) tremor are created is poorly understood. In many areas of the world, tectonic tremor and LFEs appear to be strongly tidally modulated, whereas ordinary earthquakes are not. Anomalous seismic wave speeds, interpreted as high pore fluid pressure, have been observed in regions that generate tremor. Here we build upon previous laboratory studies that investigated the response of stick-slip on artificial faults to oscillatory, tide-like loading. These previous experiments were carried out using room-dry samples of Westerly granite, at one effective stress. Here we augment these results with new experiments on Westerly granite, with the addition of varying effective stress using pore fluid at two pressures. We find that raising pore pressure, thereby lowering effective stress can significantly increase the degree of correlation of stick-slip to oscillatory loading. We also find other pore fluid effects that become important at higher frequencies, when the period of oscillation is comparable to the diffusion time of pore fluid into the fault. These results help constrain the conditions at depth that give rise to tidally modulated LFEs, providing confirmation of the effective pressure law for triggering and insights into why tremor is tidally modulated while earthquakes are at best only weakly modulated.

  5. Characterizing the continuously acquired cardiovascular time series during hemodialysis, using median hybrid filter preprocessing noise reduction.

    PubMed

    Wilson, Scott; Bowyer, Andrea; Harrap, Stephen B

    2015-01-01

    The clinical characterization of cardiovascular dynamics during hemodialysis (HD) has important pathophysiological implications in terms of diagnostic, cardiovascular risk assessment, and treatment efficacy perspectives. Currently the diagnosis of significant intradialytic systolic blood pressure (SBP) changes among HD patients is imprecise and opportunistic, reliant upon the presence of hypotensive symptoms in conjunction with coincident but isolated noninvasive brachial cuff blood pressure (NIBP) readings. Considering hemodynamic variables as a time series makes a continuous recording approach more desirable than intermittent measures; however, in the clinical environment, the data signal is susceptible to corruption due to both impulsive and Gaussian-type noise. Signal preprocessing is an attractive solution to this problem. Prospectively collected continuous noninvasive SBP data over the short-break intradialytic period in ten patients was preprocessed using a novel median hybrid filter (MHF) algorithm and compared with 50 time-coincident pairs of intradialytic NIBP measures from routine HD practice. The median hybrid preprocessing technique for continuously acquired cardiovascular data yielded a dynamic regression without significant noise and artifact, suitable for high-level profiling of time-dependent SBP behavior. Signal accuracy is highly comparable with standard NIBP measurement, with the added clinical benefit of dynamic real-time hemodynamic information.

  6. Thermal conductivity characteristics of dewatered sewage sludge by thermal hydrolysis reaction.

    PubMed

    Song, Hyoung Woon; Park, Keum Joo; Han, Seong Kuk; Jung, Hee Suk

    2014-12-01

    The purpose of this study is to quantify the thermal conductivity of sewage sludge related to reaction temperature for the optimal design of a thermal hydrolysis reactor. We continuously quantified the thermal conductivity of dewatered sludge related to the reaction temperature. As the reaction temperature increased, the dewatered sludge is thermally liquefied under high temperature and pressure by the thermal hydrolysis reaction. Therefore, the bound water in the sludge cells comes out as free water, which changes the dewatered sludge from a solid phase to slurry in a liquid phase. As a result, the thermal conductivity of the sludge was more than 2.64 times lower than that of the water at 20. However, above 200, it became 0.704 W/m* degrees C, which is about 4% higher than that of water. As a result, the change in physical properties due to thermal hydrolysis appears to be an important factor for heat transfer efficiency. Implications: The thermal conductivity of dewatered sludge is an important factor the optimal design of a thermal hydrolysis reactor. The dewatered sludge is thermally liquefied under high temperature and pressure by the thermal hydrolysis reaction. The liquid phase slurry has a higher thermal conductivity than pure water.

  7. Nonthermally dominated electron acceleration during magnetic reconnection in a low- β plasma

    DOE PAGES

    Li, Xiaocan; Guo, Fan; Li, Hui; ...

    2015-09-24

    By means of fully kinetic simulations, we investigate electron acceleration during magnetic reconnection in a nonrelativistic proton–electron plasma with conditions similar to solar corona and flares. We demonstrate that reconnection leads to a nonthermally dominated electron acceleration with a power-law energy distribution in the nonrelativistic low-β regime but not in the high-β regime, where β is the ratio of the plasma thermal pressure and the magnetic pressure. The accelerated electrons contain most of the dissipated magnetic energy in the low-β regime. A guiding-center current description is used to reveal the role of electron drift motions during the bulk nonthermal energization.more » We find that the main acceleration mechanism is a Fermi-type acceleration accomplished by the particle curvature drift motion along the electric field induced by the reconnection outflows. Although the acceleration mechanism is similar for different plasma β, low-β reconnection drives fast acceleration on Alfvénic timescales and develops power laws out of thermal distribution. Thus, the nonthermally dominated acceleration resulting from magnetic reconnection in low-β plasma may have strong implications for the highly efficient electron acceleration in solar flares and other astrophysical systems.« less

  8. Interplay between microorganisms and geochemistry in geological carbon storage

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Altman, Susan J.; Kirk, Matthew Fletcher; Santillan, Eugenio-Felipe U.

    Researchers at the Center for Frontiers of Subsurface Energy Security (CFSES) have conducted laboratory and modeling studies to better understand the interplay between microorganisms and geochemistry for geological carbon storage (GCS). We provide evidence of microorganisms adapting to high pressure CO 2 conditions and identify factors that may influence survival of cells to CO 2 stress. Factors that influenced the ability of cells to survive exposure to high-pressure CO 2 in our experiments include mineralogy, the permeability of cell walls and/or membranes, intracellular buffering capacity, and whether cells live planktonically or within biofilm. Column experiments show that, following exposure tomore » acidic water, biomass can remain intact in porous media and continue to alter hydraulic conductivity. Our research also shows that geochemical changes triggered by CO 2 injection can alter energy available to populations of subsurface anaerobes and that microbial feedbacks on this effect can influence carbon storage. Our research documents the impact of CO 2 on microorganisms and in turn, how subsurface microorganisms can influence GCS. Furthermore, we conclude that microbial presence and activities can have important implications for carbon storage and that microorganisms should not be overlooked in further GCS research.« less

  9. Anionic Pt in Silicate Melts at Low Oxygen Fugacity: Speciation, Partitioning and Implications for Core Formation Processes on Asteroids

    NASA Technical Reports Server (NTRS)

    Medard, E.; Martin, A. M.; Righter, K.; Malouta, A.; Lee, C.-T.

    2017-01-01

    Most siderophile element concentrations in planetary mantles can be explained by metal/ silicate equilibration at high temperature and pressure during core formation. Highly siderophile elements (HSE = Au, Re, and the Pt-group elements), however, usually have higher mantle abundances than predicted by partitioning models, suggesting that their concentrations have been set by late accretion of material that did not equilibrate with the core. The partitioning of HSE at the low oxygen fugacities relevant for core formation is however poorly constrained due to the lack of sufficient experimental constraints to describe the variations of partitioning with key variables like temperature, pressure, and oxygen fugacity. To better understand the relative roles of metal/silicate partitioning and late accretion, we performed a self-consistent set of experiments that parameterizes the influence of oxygen fugacity, temperature and melt composition on the partitioning of Pt, one of the HSE, between metal and silicate melts. The major outcome of this project is the fact that Pt dissolves in an anionic form in silicate melts, causing a dependence of partitioning on oxygen fugacity opposite to that reported in previous studies.

  10. Tiny timekeepers witnessing high-rate exhumation processes.

    PubMed

    Zhong, Xin; Moulas, Evangelos; Tajčmanová, Lucie

    2018-02-02

    Tectonic forces and surface erosion lead to the exhumation of rocks from the Earth's interior. Those rocks can be characterized by many variables including peak pressure and temperature, composition and exhumation duration. Among them, the duration of exhumation in different geological settings can vary by more than ten orders of magnitude (from hours to billion years). Constraining the duration is critical and often challenging in geological studies particularly for rapid magma ascent. Here, we show that the time information can be reconstructed using a simple combination of laser Raman spectroscopic data from mineral inclusions with mechanical solutions for viscous relaxation of the host. The application of our model to several representative geological settings yields best results for short events such as kimberlite magma ascent (less than ~4,500 hours) and a decompression lasting up to ~17 million years for high-pressure metamorphic rocks. This is the first precise time information obtained from direct microstructural observations applying a purely mechanical perspective. We show an unprecedented geological value of tiny mineral inclusions as timekeepers that contributes to a better understanding on the large-scale tectonic history and thus has significant implications for a new generation of geodynamic models.

  11. Interplay between microorganisms and geochemistry in geological carbon storage

    DOE PAGES

    Altman, Susan J.; Kirk, Matthew Fletcher; Santillan, Eugenio-Felipe U.; ...

    2016-02-28

    Researchers at the Center for Frontiers of Subsurface Energy Security (CFSES) have conducted laboratory and modeling studies to better understand the interplay between microorganisms and geochemistry for geological carbon storage (GCS). We provide evidence of microorganisms adapting to high pressure CO 2 conditions and identify factors that may influence survival of cells to CO 2 stress. Factors that influenced the ability of cells to survive exposure to high-pressure CO 2 in our experiments include mineralogy, the permeability of cell walls and/or membranes, intracellular buffering capacity, and whether cells live planktonically or within biofilm. Column experiments show that, following exposure tomore » acidic water, biomass can remain intact in porous media and continue to alter hydraulic conductivity. Our research also shows that geochemical changes triggered by CO 2 injection can alter energy available to populations of subsurface anaerobes and that microbial feedbacks on this effect can influence carbon storage. Our research documents the impact of CO 2 on microorganisms and in turn, how subsurface microorganisms can influence GCS. Furthermore, we conclude that microbial presence and activities can have important implications for carbon storage and that microorganisms should not be overlooked in further GCS research.« less

  12. A Modeled Analysis of Telehealth Methods for Treating Pressure Ulcers after Spinal Cord Injury

    PubMed Central

    Smith, Mark W.; Hill, Michelle L.; Hopkins, Karen L.; Kiratli, B. Jenny; Cronkite, Ruth C.

    2012-01-01

    Home telehealth can improve clinical outcomes for conditions that are common among patients with spinal cord injury (SCI). However, little is known about the costs and potential savings associated with its use. We developed clinical scenarios that describe common situations in treatment or prevention of pressure ulcers. We calculated the cost implications of using telehealth for each scenario and under a range of reasonable assumptions. Data were gathered primarily from US Department of Veterans Affairs (VA) administrative records. For each scenario and treatment method, we multiplied probabilities, frequencies, and costs to determine the expected cost over the entire treatment period. We generated low-, medium-, and high-cost estimates based on reasonable ranges of costs and probabilities. Telehealth care was less expensive than standard care when low-cost technology was used but often more expensive when high-cost, interactive devices were installed in the patient's home. Increased utilization of telehealth technology (particularly among rural veterans with SCI) could reduce the incidence of stage III and stage IV ulcers, thereby improving veterans' health and quality of care without increasing costs. Future prospective studies of our present scenarios using patients with various healthcare challenges are recommended. PMID:22969798

  13. Plastic deformation of polycrystalline MgO up to 1250 K and 65 GPa

    NASA Astrophysics Data System (ADS)

    Merkel, S.; Liermann, H.; Miyagi, L. M.; Wenk, H.

    2009-12-01

    Understanding the development of lattice preferred orientations (LPO) in polycrystals is critical to constrain the anisotropy and dynamics of the Earth mantle. Until recently, it was not possible to study LPO under high pressure and high temperature. The introduction of the deformation-DIA (D-DIA) and radial diffraction experiments in the diamond anvil cell (DAC) have extended the range of pressures and temperatures that can be accessed. However, the pressure range accessible in the D-DIA remains limited (up to 19 GPa, 1) and LPO measurements in the DAC have been performed at 300 K (2). Recently, we have designed a new DAC that can be used to study LPO in polycrystalline samples up to temperatures of 1300 K and pressures of 65 GPa (3). In this study, we use this new device for the study of MgO up to 65 GPa and 1250 K. Four samples of polycrystalline MgO were deformed in the DAC at constant temperature: 300, 600, 900, and 1250 K. At each temperature, we study the development of stress and LPO as the sample is compressed between ambient and high pressures (up to 65 GPa). In all cases, we collect diffraction data in a radial geometry that can be used to extract lattice strains and LPO in the sample. A comparison of the LPO measured in the experiment and results of visco-plastic self-consistent models can be used to extract information about the active deformation mechanisms in the sample (2). Similarly, the measured lattice strains can be compared to results of an elasto-plastic self-consistent model to extract information on average stress, stress distribution among grains, and active deformation in the sample (4). Details of the measurements along with the LPO measured in the experiments will be presented. We will also discuss the implication of those results for our understanding of the behavior of MgO in the deep mantle. 1- N. Nishiyama, Y. Wang, M. L. Rivers, S. R. Sutton, D. Cookson, Rheology of e-iron up to 19 GPa and 600 K in the D-DIA, Geophys. Res. Lett., 34, L23304 (2007) 2- S. Merkel, H.-R. Wenk, J. Shu, G. Shen, P. Gillet, H.-K. Mao, R. J. Hemley, Deformation of polycrystalline MgO at pressures of the lower mantle J. Geophys. Res., 107, 2271 (2002) 3- H.-P. Liermann, S. Merkel, L. Miyagi, H.-R. Wenk, G. Shen, H. Cynn, W.J. Evans, New Experimental Method for In Situ Determination of Material Textures at Simultaneous High-Pressure and Temperature by Means of Radial Diffraction in the Diamond Anvil Cell, Review of Scientific Instruments, in press 4- S. Merkel, C.N. Tomé, H.-R. Wenk, A modeling analysis of the influence of plasticity on high pressure deformation of hcp-Co Phys. Rev. B, 79, 064110, 2009

  14. Evidence of elevated pressure and temperature during burial of the Salem Limestone in south-central Indiana, USA, and its implications for surprisingly deep burial

    NASA Astrophysics Data System (ADS)

    Ambers, Clifford P.

    2001-09-01

    A minor, normal fault related to compaction of the grainstone shoal facies of the Salem Limestone in south-central Indiana provides an unusual opportunity to test the pressure and temperature of both faulting and associated stylolitization. Syn-deformational sphalerite occurs in voids along the fault where it intersects an organic-rich shale parting in the sand flat facies overlying the grainstone. The sphalerite contains fluid inclusions that can be used for microthermobaric measurements. Most fluid inclusions in the sphalerite are demonstrably cogenetic with the host sphalerite and of the two-phase aqueous type common in Indiana, although many contain petroleum and others contain gas. Crushing tests in kerosene indicate that the aqueous inclusions contain dissolved methane in varying amounts as high as 1000 ppm. Microthermometry shows that late sphalerite growth, late fault movement, and late stylolitization all occurred as conditions approached 108°C and 292 bars. This pressure is in accord with a normal, basinal, geothermal gradient of 32.5°C/km that would produce the observed temperature under hydrostatic conditions at a burial depth of 2.7 km using an average fluid density of 1.1 g/cm 3. These results serve as a reminder that fluid inclusions in diagenetic minerals hold important temperature and pressure information regarding burial diagenesis of Paleozoic rocks across the North American midcontinent. Detailed study of dissolved gases in fluids trapped in disseminated sphalerite that is common across the midcontinent could help resolve the enigma of sedimentary rocks with high thermal maturity exposed at the surface across the region.

  15. The ice VII-ice X phase transition with implications for planetary interiors

    NASA Astrophysics Data System (ADS)

    Aarestad, B.; Frank, M. R.; Scott, H.; Bricker, M.; Prakapenka, V.

    2008-12-01

    A significant amount of research on the high pressure polymorphs of H2O have detailed the lattice structure and density of these phases, namely ice VI, ice VII, and ice X. These high pressure ices are noteworthy as they may comprise a considerable part of the interior of large icy planets and satellites. However, there is a dearth of data on how the incorporation of an impurity, charged or non-charged, affects the ice VII-ice X transition. This study examined the ice VII-ice X transition that occurs at approximately 62 GPa with a pure system and two select impure systems. Solutions of pure H2O, 1.6 mole percent NaCl in H2O, and 1.60 mole percent CH3OH in H2O were compressed in a diamond anvil cell (DAC). The experiments were performed at the GSECARS 13-BM-D beam line at the Advanced Photon Source at Argonne National Laboratory. Powder diffraction data of the ice samples were collected using monochromatic X-ray radiation, 0.2755 Å, and a MAR 345 online imaging system at intervals of approximately 2 GPa up to ~71.5, ~74.5, and ~68 GPa, respectively. Analyses of the data provided volume-pressure relations (at 298 K) which were used to detail the ice VII-ice X phase transition. The pressure of the phase transition, based upon an interpretation of the X-ray diffraction data, was found to vary as a function of the impurity type. Thus, the depth of the ice VII-ice X phase transition within an ice-rich planetary body can be influenced by trace-level impurities.

  16. Design and development of a direct injection system for cryogenic engines

    NASA Astrophysics Data System (ADS)

    Mutumba, Angela; Cheeseman, Kevin; Clarke, Henry; Wen, Dongsheng

    2018-04-01

    The cryogenic engine has received increasing attention due to its promising potential as a zero-emission engine. In this study, a new robust liquid nitrogen injection system was commissioned and set up to perform high-pressure injections into an open vessel. The system is used for quasi-steady flow tests used for the characterisation of the direct injection process for cryogenic engines. An electro-hydraulic valve actuator provides intricate control of the valve lift, with a minimum cycle time of 3 ms and a frequency of up to 20 Hz. With additional sub-cooling, liquid phase injections from 14 to 94 bar were achieved. Results showed an increase in the injected mass with the increase in pressure, and decrease in temperature. The injected mass was also observed to increases linearly with the valve lift. Better control of the injection process, minimises the number of variables, providing more comparable and repeatable sets of data. Implications of the results on the engine performance were also discussed.

  17. Pressure induced structural transitions in Lead Chalcogenides and its influence on thermoelectric properties

    NASA Astrophysics Data System (ADS)

    Petersen, John; Spinks, Michael; Borges, Pablo; Scolfaro, Luisa

    2012-03-01

    Lead chalcogenides, most notably PbTe and PbSe, have become an active area of research due to their thermoelectric (TE) properties. The high figure of merit (ZT) of these materials has brought much attention to them, due to their ability to convert waste heat into electricity, with a possible application being in engine exhaust. Here, we examine the effects of altering the lattice parameter on total ground state energy and the band gap using first principles calculations performed within Density Functional Theory and the Projector Augmented Wave approach and the Vienna Ab-initio Simulation Package (VASP-PAW) code. Both PbTe and PbSe, in NaCl, orthorhombic, and CsCl structures are considered. It is found that altering the lattice parameter, which is analogous to applying external pressure on the material experimentally, has notable effects on both ground state energy and the band gap. The implications of this behavior in the TE properties of these materials are analyzed.

  18. Pore Fluid Extraction by Reactive Solitary Waves in 3-D

    NASA Astrophysics Data System (ADS)

    Omlin, Samuel; Malvoisin, Benjamin; Podladchikov, Yury Y.

    2017-09-01

    In the lower crust, viscous compaction is known to produce solitary porosity and fluid pressure waves. Metamorphic (de)volatilization reactions can also induce porosity changes in response to the propagating fluid pressure anomalies. Here we present results from high-resolution simulations using Graphic Processing Unit parallel processing with a model that includes both viscous (de)compaction and reaction-induced porosity changes. Reactive porosity waves propagate in a manner similar to viscous porosity waves, but through a different mechanism involving fluid release and trap in the solid by reaction. These waves self-generate from red noise or an ellipsoidal porosity anomaly with the same characteristic size and abandon their source region to propagate at constant velocity. Two waves traveling at different velocities pass through each other in a soliton-like fashion. Reactive porosity waves thus provide an additional mechanism for fluid extraction at shallow depths with implications for ore formation, diagenesis, metamorphic veins formation, and fluid extraction from subduction zones.

  19. Effect of light elements on the sound velocities in solid iron: Implications for the composition of Earth's core

    NASA Astrophysics Data System (ADS)

    Badro, James; Fiquet, Guillaume; Guyot, François; Gregoryanz, Eugene; Occelli, Florent; Antonangeli, Daniele; d'Astuto, Matteo

    2007-02-01

    We measured compressional sound velocities in light element alloys of iron (FeO, FeSi, FeS, and FeS2) at high-pressure by inelastic X-ray scattering. This dataset provides new mineralogical constraints on the composition of Earth's core, and completes the previous sets formed by the pressure-density systematics for these compounds. Based on the combination of these datasets and their comparison with radial seismic models, we propose an average composition model of the Earth's core. We show that the incorporation of small amounts of silicon or oxygen is compatible with geophysical observations and geochemical abundances. The effect of nickel on the calculated light element contents is shown to be negligible. The preferred core model derived from our measurements is an inner core which contains 2.3 wt.% silicon and traces of oxygen, and an outer core containing 2.8 wt.% silicon and around 5.3 wt.% oxygen.

  20. The A-B transition in superfluid helium-3 under confinement in a thin slab geometry

    PubMed Central

    Zhelev, N.; Abhilash, T. S.; Smith, E. N.; Bennett, R. G.; Rojas, X.; Levitin, L.; Saunders, J.; Parpia, J. M.

    2017-01-01

    The influence of confinement on the phases of superfluid helium-3 is studied using the torsional pendulum method. We focus on the transition between the A and B phases, where the A phase is stabilized by confinement and a spatially modulated stripe phase is predicted at the A–B phase boundary. Here we discuss results from superfluid helium-3 contained in a single 1.08-μm-thick nanofluidic cavity incorporated into a high-precision torsion pendulum, and map the phase diagram between 0.1 and 5.6 bar. We observe only small supercooling of the A phase, in comparison to bulk or when confined in aerogel, with evidence for a non-monotonic pressure dependence. This suggests that an intrinsic B-phase nucleation mechanism operates under confinement. Both the phase diagram and the relative superfluid fraction of the A and B phases, show that strong coupling is present at all pressures, with implications for the stability of the stripe phase. PMID:28671184

  1. Implications from the Use of Non-timber Forest Products on the Consumption of Wood as a Fuel Source in Human-Dominated Semiarid Landscapes

    NASA Astrophysics Data System (ADS)

    Cavalcanti, Maria Clara B. T.; Ramos, Marcelo Alves; Araújo, Elcida L.; Albuquerque, Ulysses P.

    2015-08-01

    Little is known about what possible effects on wood resources might be caused by non-timber forest products (NTFPs). Here, we assessed the patterns of fuelwood consumption related to an NTFP ( Caryocar coriaceum) oil extraction and how this non-domestic activity can indirectly increase the use pressure on fuelwood species in a protected area, semiarid of Brazil. We conducted semi-structured interviews, in situ inventories, phytosociological surveys, and analyses of wood quality to identify the set of woody plants used in oil production. Householders use large volumes of dry wood and a set of woody species, which are highly exploited. Additionally, many preferred species have low fuel potential and suffer much use pressure. The best fuelwood species are underused, what requires management strategies to improve their potential as a source of energy. As a result, we suggest some conservation and management actions of fuelwood resources related to the use of NTFPs.

  2. Implications of a High Angular Resolution Image of the Sunyaev-Zel'Dovich Effect in RXJ1347-1145

    NASA Technical Reports Server (NTRS)

    Mason, B. S.; Dicker, S. R.; Korngut, P. M.; Devlin, M.; Cotton, W. D.; Koch, P. M.; Molnar, S. M.; Sievers, J.; Aguirre, J. E.; Benford, D.; hide

    2010-01-01

    The most X-ray luminous cluster known, RXJ1347-1145 (z = 0.45), has been the object of extensive study across the electromagnetic spectrum. We have imaged the Sunyaev-Zel'dovich effect (SZE) at 90 GHz (lambda = 33 mm) in RXJ1347-1145 at 10" resolution with the 64 pixel MUSTANG bolometer array on the Green Bank Telescope, confirming a previously reported strong, localized enhancement of the SZE 20" to the southeast of the center of X-ray emission. This enhancement of the SZE has been interpreted as shock-heated (>20keV) gas caused by an ongoing major (low mass ratio) merger event. Our data support this interpretation. We also detect a pronounced asymmetry in the projected cluster pressure profile, with the pressure just east of the cluster core approx. 1.6x higher than just to the west. This is the highest resolution image of the SZE made to date.

  3. "Cheating under pressure: A self-protection model of workplace cheating behavior": Correction to Mitchel et al. (2017).

    PubMed

    2018-01-01

    Reports an error in "Cheating Under Pressure: A Self-Protection Model of Workplace Cheating Behavior" by Marie S. Mitchell, Michael D. Baer, Maureen L. Ambrose, Robert Folger and Noel F. Palmer ( Journal of Applied Psychology , Advanced Online Publication, Aug 14, 2017, np). In the article, the fit statistics in Study 3 were reported in error. The fit of the measurement model is: Χ²(362) = 563.66, p = .001; CFI = .94; SRMR = .05; RMSEA = .04. The fit of the SEM model is: Χ²(362) = 563.66, p = .001; CFI = .94; SRMR = .05; RMSEA = .04. (The following abstract of the original article appeared in record 2017-34937-001.) Workplace cheating behavior is unethical behavior that seeks to create an unfair advantage and enhance benefits for the actor. Although cheating is clearly unwanted behavior within organizations, organizations may unknowingly increase cheating as a byproduct of their pursuit of high performance. We theorize that as organizations place a strong emphasis on high levels of performance, they may also enhance employees' self-interested motives and need for self-protection. We suggest that demands for high performance may elicit performance pressure-the subjective experience that employees must raise their performance efforts or face significant consequences. Employees' perception of the need to raise performance paired with the potential for negative consequences is threatening and heightens self-protection needs. Driven by self-protection, employees experience anger and heightened self-serving cognitions, which motivate cheating behavior. A multistudy approach was used to test our predictions. Study 1 developed and provided validity evidence for a measure of cheating behavior. Studies 2 and 3 tested our predictions in time-separated field studies. Results from Study 2 demonstrated that anger mediates the effects of performance pressure on cheating behavior. Study 3 replicated the Study 2 findings, and extended them to show that self-serving cognitions also mediate the effects of performance pressure on cheating behavior. Implications of our findings for theory and practice are provided. (PsycINFO Database Record (c) 2018 APA, all rights reserved).

  4. Magnetic transition and sound velocities of Fe 3S at high pressure: implications for Earth and planetary cores

    NASA Astrophysics Data System (ADS)

    Lin, Jung-Fu; Fei, Yingwei; Sturhahn, Wolfgang; Zhao, Jiyong; Mao, Ho-kwang; Hemley, Russell J.

    2004-09-01

    Magnetic, elastic, thermodynamic, and vibrational properties of the most iron-rich sulfide, Fe3S, known to date have been studied with synchrotron Mössbauer spectroscopy (SMS) and nuclear resonant inelastic X-ray scattering (NRIXS) up to 57 GPa at room temperature. The magnetic hyperfine fields derived from the time spectra of the synchrotron Mössbauer spectroscopy show that the low-pressure magnetic phase displays two magnetic hyperfine field sites and that a magnetic collapse occurs at 21 GPa. The magnetic to non-magnetic transition significantly affects the elastic, thermodynamic, and vibrational properties of Fe3S. The magnetic collapse of Fe3S may also affect the phase relations in the iron-sulfur system, changing the solubility of sulfur in iron under higher pressures. Determination of the physical properties of the non-magnetic Fe3S phase is important for the interpretation of the amount and properties of sulfur present in the planetary cores. Sound velocities of Fe3S obtained from the measured partial phonon density of states (PDOS) for 57Fe incorporated in the alloy show that Fe3S has higher compressional and shear wave velocity than those of hcp-Fe and hcp-Fe0.92Ni0.08 alloy under high pressures, making sulfur a potential light element in the Earth's core based on geophysical arguments. The VP and VS of the non-magnetic Fe3S follow a Birch's law trend whereas the slopes decrease in the magnetic phase, indicating that the decrease of the magnetic moment significantly affects the sound velocities. If the Martian core is in the solid state containing 14.2 wt.% sulfur, it is likely that the non-magnetic Fe3S phase is a dominant component and that our measured sound velocities of Fe3S can be used to construct the corresponding velocity profile of the Martian core. It is also conceivable that Fe3P and Fe3C undergo similar magnetic phase transitions under high pressures.

  5. Cheating under pressure: A self-protection model of workplace cheating behavior.

    PubMed

    Mitchell, Marie S; Baer, Michael D; Ambrose, Maureen L; Folger, Robert; Palmer, Noel F

    2018-01-01

    [Correction Notice: An Erratum for this article was reported in Vol 103(1) of Journal of Applied Psychology (see record 2017-44052-001). In the article, the fit statistics in Study 3 were reported in error. The fit of the measurement model is: Χ²(362) = 563.66, p = .001; CFI = .94; SRMR = .05; RMSEA = .04. The fit of the SEM model is: Χ²(362) = 563.66, p = .001; CFI = .94; SRMR = .05; RMSEA = .04.] Workplace cheating behavior is unethical behavior that seeks to create an unfair advantage and enhance benefits for the actor. Although cheating is clearly unwanted behavior within organizations, organizations may unknowingly increase cheating as a byproduct of their pursuit of high performance. We theorize that as organizations place a strong emphasis on high levels of performance, they may also enhance employees' self-interested motives and need for self-protection. We suggest that demands for high performance may elicit performance pressure-the subjective experience that employees must raise their performance efforts or face significant consequences. Employees' perception of the need to raise performance paired with the potential for negative consequences is threatening and heightens self-protection needs. Driven by self-protection, employees experience anger and heightened self-serving cognitions, which motivate cheating behavior. A multistudy approach was used to test our predictions. Study 1 developed and provided validity evidence for a measure of cheating behavior. Studies 2 and 3 tested our predictions in time-separated field studies. Results from Study 2 demonstrated that anger mediates the effects of performance pressure on cheating behavior. Study 3 replicated the Study 2 findings, and extended them to show that self-serving cognitions also mediate the effects of performance pressure on cheating behavior. Implications of our findings for theory and practice are provided. (PsycINFO Database Record (c) 2018 APA, all rights reserved).

  6. Southern Ocean Response to NADW Changes

    NASA Technical Reports Server (NTRS)

    Rind, David; Schmidt, G.; Russell, G.; deMenocal, P.; Hansen, James E. (Technical Monitor)

    2000-01-01

    The possibility of North Atlantic Deep Water (NADW) changes in both past and future climates has raised the issue of how the Southern Ocean would respond. Recent experiments with the GISS coupled atmosphere-ocean model have shown that a "bipolar see-saw" between NADW production and Antarctic Bottom Water (AABW) production in the Weddell Sea can occur in conjunction with freshening of the North Atlantic. However, this effect operates not through a slow ocean response but via a rapid atmospheric mechanism. As NADW reduces, colder temperatures in the North Atlantic, and Northern Hemisphere in general, are associated with higher surface pressure (increased atmospheric mass). Reduced mass in the Southern Hemisphere occurs in response, with lower pressure over the South Pole (an EOF #1 effect, the "high phase" of the Antarctic Oscillation).The lower pressure is associated with stronger west winds that generate an intensified Antarctic Circumpolar Current (ACC), which leads to longitudinal heat divergence in the South Atlantic (and heat convergence in the Southern Indian Ocean). Colder temperatures in the Weddell Sea region lead to sea ice growth, increased salinity and surface water density, and greater Weddell Sea Bottom Water production. Increased poleward transport of heat occurs in the South Atlantic in conjunction with increased bottom water production, but its convergence at high latitudes is not sufficient to offset the longitudinal heat divergence due to the intensified ACC. The colder temperatures at high latitudes in the South Atlantic increase the latitudinal temperature gradient, baroclinic instability, eddy energy and eddy poleward transport of momentum, helping to maintain the lower pressure over the pole in an interactive manner. The heat flux convergence in the Indian Ocean provides a warming tendency in that region, and overall global production of AABW remains unchanged. These results have implications for the interpretation of the ice core records of the last deglaciation, but may also be relevant for changes during the Holocene and perhaps even in response to increased CO2 forcing,

  7. Implications of elastic wave velocities for Apollo 17 rock powders

    NASA Technical Reports Server (NTRS)

    Talwani, P.; Nur, A.; Kovach, R. L.

    1974-01-01

    Ultrasonic P- and S-wave velocities of lunar rock powders 172701, 172161, 170051, and 175081 were measured at room temperature and to 2.5 kb confining pressure. The results compare well with those of terrestrial volcanic ash and powdered basalt. P-wave velocity values up to pressures corresponding to a lunar depth of 1.4 km preclude cold compaction alone as an explanation for the observed seismic velocity structure at the Apollo 17 site. Application of small amounts of heat with simultaneous application of pressure causes rock powders to achieve equivalence of seismic velocities for competent rocks.

  8. The importance of correct patient positioning in theatres and implications of mal-positioning.

    PubMed

    Adedeji, Rimi; Oragui, Emeka; Khan, Wasim; Maruthainar, Nimalan

    2010-04-01

    Patient positioning in theatre pertains to how a patient is transferred and positioned for a specific procedure. Patient safety is a central focus of care within the NHS and every healthcare practitioner must ensure that patients are protected from harm where possible. Mal-positioning of the patient has important implications in terms of associated problems of pressure sores, nerve compressions, deep vein thrombosis and compartment syndrome, and should be avoided.

  9. Constant electrical resistivity of Ni along the melting boundary up to 9 GPa

    NASA Astrophysics Data System (ADS)

    Silber, Reynold E.; Secco, Richard A.; Yong, Wenjun

    2017-07-01

    Characterization of transport properties of liquid Ni at high pressures has important geophysical implications for terrestrial planetary interiors, because Ni is a close electronic analogue of Fe and it is also integral to Earth's core. We report measurements of the electrical resistivity of solid and liquid Ni at pressures 3-9 GPa using a 3000 t multianvil large volume press. A four-wire method, in conjunction with a rapid acquisition meter and polarity switch, was used to overcome experimental challenges such as melt containment and maintaining sample geometry and to mitigate the extreme reactivity/solubility of liquid Ni with most thermocouple and electrode materials. Thermal conductivity is calculated using the Wiedemann-Franz law. Electrical resistivity of solid Ni exhibits the expected P dependence and is consistent with earlier experimental values. Within experimental uncertainties, our results indicate that resistivity of liquid Ni remains invariant along the P-dependent melting boundary, which is in disagreement with earlier prediction for liquid transition metals. The potential reasons for such behavior are examined qualitatively through the impact of P-independent local short-range ordering on electron mean free path and the possibility of constant Fermi surface at the onset of Ni melting. Correlation among metals obeying the Kadowaki-Woods ratio and the group of late transition metals with unfilled d-electron band displaying anomalously shallow melting curves suggests that on the melting boundary, Fe may exhibit the same resistivity behavior as Ni. This could have important implications for the heat flow in the Earth's core.

  10. Clinical Implications of Sleep Disordered Breathing in Acute Myocardial Infarction

    PubMed Central

    Aronson, Doron; Nakhleh, Morad; Zeidan-Shwiri, Tawfiq; Mutlak, Michael; Lavie, Peretz; Lavie, Lena

    2014-01-01

    Background Sleep disordered breathing (SDB), characterized by nightly intermittent hypoxia, is associated with multiple pathophysiologic alterations that may adversely affect patients with acute myocardial infarction (AMI). This prospective study investigated whether the metabolic perturbations associated with SDB are present when these patients develop AMI and if they affect clinical outcomes. Methods We prospectively enrolled 180 AMI patients. SDB was defined as oxygen desaturation index (ODI) >5 events/hour based on a Watch Pat-100 sleep study. Blood samples were obtained for high-sensitivity C-reactive protein (hs-CRP) and markers of oxidative stress (lipid peroxides [PD] and serum paraoxonase-1 [PON-1] (arylesterase activity). Echocardiography was performed to evaluate cardiac dimensions and pulmonary artery systolic pressure. Results SDB was present in 116 (64%) patients. Hs-CRP levels, PD and PON-1 were similar in patients with and without SDB. Echocardiography revealed higher left atrial dimension (4.1±0.5 vs 3.8±0.5 cm; P = 0.003) and a significant positive correlation between ODI and pulmonary artery systolic pressure (r = 0.41, P<0.0001). After a median follow up of 68 months, no significant differences were observed between the study groups with regard to clinical outcomes, including death, heart failure, myocardial infarction and unstable angina. Conclusion There is a high prevalence of previously undiagnosed SDB among patients with AMI. SDB in the setting of AMI is associated with higher pulmonary artery systolic pressure. SDB was not associated with adverse clinical outcomes. PMID:24523943

  11. Systematic assessment of fault stability in the Northern Niger Delta Basin, Nigeria: Implication for hydrocarbon prospects and increased seismicities

    NASA Astrophysics Data System (ADS)

    Adewole, E. O.; Healy, D.

    2017-03-01

    Accurate information on fault networks, the full stress tensor, and pore fluid pressures are required for quantifying the stability of structure-bound hydrocarbon prospects, carbon dioxide sequestration, and drilling prolific and safe wells, particularly fluid injections wells. Such information also provides essential data for a proper understanding of superinduced seismicities associated with areas of intensive hydrocarbon exploration and solid minerals mining activities. Pressure and stress data constrained from wells and seismic data in the Northern Niger Delta Basin (NNDB), Nigeria, have been analysed in the framework of fault stability indices by varying the maximum horizontal stress direction from 0° to 90°, evaluated at depths of 2 km, 3.5 km and 4 km. We have used fault dips and azimuths interpreted from high resolution 3D seismic data to calculate the predisposition of faults to failures in three faulting regimes (normal, pseudo-strike-slip and pseudo-thrust). The weighty decrease in the fault stability at 3.5 km depth from 1.2 MPa to 0.55 MPa demonstrates a reduction of the fault strength by high magnitude overpressures. Pore fluid pressures > 50 MPa have tendencies to increase the risk of faults to failure in the study area. Statistical analysis of stability indices (SI) indicates faults dipping 50°-60°, 80°-90°, and azimuths ranging 100°-110° are most favourably oriented for failure to take place, and thus likely to favour migrations of fluids given appropriate pressure and stress conditions in the dominant normal faulting regime of the NNDB. A few of the locally assessed stability of faults show varying results across faulting regimes. However, the near similarities of some model-based results in the faulting regimes explain the stability of subsurface structures are greatly influenced by the maximum horizontal stress (SHmax) direction and magnitude of pore fluid pressures.

  12. Weight Status and Blood Pressure among Adolescent African American Males: The Jackson Heart KIDS Pilot Study.

    PubMed

    Bruce, Marino A; Beech, Bettina M; Griffith, Derek M; Thorpe, Roland J

    2015-08-07

    Obesity had not been considered a significant factor contributing to high levels of hypertension among African American males until recently. Epidemiologic research on heart disease among males has primarily focused on adults; however, the significant rise in obesity and hypertension prevalence among African American boys indicates that studies examining the relationship between excess body weight and elevated blood pressure among this high-risk population are critically needed. The purpose of our study was to examine the degree to which weight status has implications for elevated blood pressure among young African American males. The data for this cross-sectional study were drawn from adolescent males (N=105), aged 12-19 years and who participated in the Jackson Heart KIDS Pilot Study - an offspring cohort study examining cardiovascular disease risks among adolescent descendants of Jackson Heart Study participants. Blood pressure was the primary outcome of interest and weight status was a key independent variable. Other covariates were fruit and vegetable consumption, physical activity, sleep, and stress. Approximately 49% of adolescent males in the study were overweight or obese. Bivariate and multiple variable analyses suggest that obesity may be correlated with elevated diastolic blood pressure (DBP) levels among African American boys. Results from ordinary least squared regression analysis indicate that the DBP for boys carrying excess weight was 4.2 mm Hg (P<.01) higher than the corresponding DBP for their normal weight counterparts, after controlling for age, fruit and vegetable consumption, physical activity, and sleep. Additional studies are needed to specify the manner through which excess weight and weight gain can accelerate the development and progression of CVD-related diseases among African American males over the life course, thereby providing evidenced-based information for tailored interventions that can reduce risks for premature morbidity, disability, and mortality among this group.

  13. Methodological comparison of active- and passive-driven oscillations in blood pressure; implications for the assessment of cerebral pressure-flow relationships.

    PubMed

    Smirl, Jonathan D; Hoffman, Keegan; Tzeng, Yu-Chieh; Hansen, Alex; Ainslie, Philip N

    2015-09-01

    We examined the between-day reproducibility of active (squat-stand maneuvers)- and passive [oscillatory lower-body negative pressure (OLBNP) maneuvers]-driven oscillations in blood pressure. These relationships were examined in both younger (n = 10; 25 ± 3 yr) and older (n = 9; 66 ± 4 yr) adults. Each testing protocol incorporated rest (5 min), followed by driven maneuvers at 0.05 (5 min) and 0.10 (5 min) Hz to increase blood-pressure variability and improve assessment of the pressure-flow dynamics using linear transfer function analysis. Beat-to-beat blood pressure, middle cerebral artery velocity, and end-tidal partial pressure of CO2 were monitored. The pressure-flow relationship was quantified in the very low (0.02-0.07 Hz) and low (0.07-0.20 Hz) frequencies (LF; spontaneous data) and at 0.05 and 0.10 Hz (driven maneuvers point estimates). Although there were no between-age differences, very few spontaneous and OLBNP transfer function metrics met the criteria for acceptable reproducibility, as reflected in a between-day, within-subject coefficient of variation (CoV) of <20%. Combined CoV data consist of LF coherence (15.1 ± 12.2%), LF gain (15.1 ± 12.2%), and LF normalized gain (18.5 ± 10.9%); OLBNP data consist of 0.05 (12.1 ± 15.%) and 0.10 (4.7 ± 7.8%) Hz coherence. In contrast, the squat-stand maneuvers revealed that all metrics (coherence: 0.6 ± 0.5 and 0.3 ± 0.5%; gain: 17.4 ± 12.3 and 12.7 ± 11.0%; normalized gain: 16.7 ± 10.9 and 15.7 ± 11.0%; and phase: 11.6 ± 10.2 and 17.3 ± 10.8%) at 0.05 and 0.10 Hz, respectively, were considered biologically acceptable for reproducibility. These findings have important implications for the reliable assessment and interpretation of cerebral pressure-flow dynamics in humans. Copyright © 2015 the American Physiological Society.

  14. Methodological comparison of active- and passive-driven oscillations in blood pressure; implications for the assessment of cerebral pressure-flow relationships

    PubMed Central

    Hoffman, Keegan; Tzeng, Yu-Chieh; Hansen, Alex; Ainslie, Philip N.

    2015-01-01

    We examined the between-day reproducibility of active (squat-stand maneuvers)- and passive [oscillatory lower-body negative pressure (OLBNP) maneuvers]-driven oscillations in blood pressure. These relationships were examined in both younger (n = 10; 25 ± 3 yr) and older (n = 9; 66 ± 4 yr) adults. Each testing protocol incorporated rest (5 min), followed by driven maneuvers at 0.05 (5 min) and 0.10 (5 min) Hz to increase blood-pressure variability and improve assessment of the pressure-flow dynamics using linear transfer function analysis. Beat-to-beat blood pressure, middle cerebral artery velocity, and end-tidal partial pressure of CO2 were monitored. The pressure-flow relationship was quantified in the very low (0.02-0.07 Hz) and low (0.07–0.20 Hz) frequencies (LF; spontaneous data) and at 0.05 and 0.10 Hz (driven maneuvers point estimates). Although there were no between-age differences, very few spontaneous and OLBNP transfer function metrics met the criteria for acceptable reproducibility, as reflected in a between-day, within-subject coefficient of variation (CoV) of <20%. Combined CoV data consist of LF coherence (15.1 ± 12.2%), LF gain (15.1 ± 12.2%), and LF normalized gain (18.5 ± 10.9%); OLBNP data consist of 0.05 (12.1 ± 15.%) and 0.10 (4.7 ± 7.8%) Hz coherence. In contrast, the squat-stand maneuvers revealed that all metrics (coherence: 0.6 ± 0.5 and 0.3 ± 0.5%; gain: 17.4 ± 12.3 and 12.7 ± 11.0%; normalized gain: 16.7 ± 10.9 and 15.7 ± 11.0%; and phase: 11.6 ± 10.2 and 17.3 ± 10.8%) at 0.05 and 0.10 Hz, respectively, were considered biologically acceptable for reproducibility. These findings have important implications for the reliable assessment and interpretation of cerebral pressure-flow dynamics in humans. PMID:26183476

  15. Sound velocity measurements of CaSiO3 perovskite under lower mantle pressures

    NASA Astrophysics Data System (ADS)

    Kudo, Y.; Hirose, K.

    2010-12-01

    The chemical composition of the lower mantle and the distribution of subducted crustal materials in the lower mantle can be constrained by the comparison of seismological observations with laboratory measurements of sound velocities of expected constituent minerals in lower mantle conditions. To date, sound velocities of two major constituent minerals of the lower mantle, namely magnesium silicate perovskite and ferropericlase have been well studied although the data are mostly limited to low temperature (300 K). On the other hand, another major mineral, CaSiO3-perovskite appears in both peridtite (~7 wt.%) and subducted basaltic crusts (~23 wt.%) at the lower mantle pressure-temperature conditions. In spite of its abundance in those rocks, little is known about acoustic velocity, mostly because it cannot be quenched to the ambient pressure. Synthesis and measurement should be made under pressure, which has been a challenging project for the current experimental techniques. We have conducted sound velocity measurements of polycrystalline CaSiO3 perovskite by a combination of a diamond anvil cell (DAC) and Brillouin scattering spectroscopy. High-pressure was generated by the DAC with a pair of 300-micron culet diamond anvils. Calcium silicate perovskite was synthesized from gel by laser annealing in the DAC with the CO2 laser. A tetragonal perovskite structure was confirmed by the X-ray diffraction at the station BL10XU, SPring-8. Brillouin scattering measurements were made at 300 K under pressures corresponding to the middle lower mantle conditions. Results demonstrate that the S-wave velocity is significantly lower than previous theoretical results. We will discuss the possible source for this discrepancy and resulting implications for the lower mantle materials.

  16. The effects of genes implicated in cardiovascular disease on blood-pressure response to treatment among treatment-naïve hypertensive African Americans in the GenHAT study

    PubMed Central

    Do, Anh N; Lynch, Amy I; Claas, Steven A; Boerwinkle, Eric; Davis, Barry R; Ford, Charles E; Eckfeldt, John H; Tiwari, Hemant K; Arnett, Donna K; Irvin, Marguerite R

    2015-01-01

    African Americans have the highest prevalence of hypertension in the United States. Blood-pressure control is important to reduce cardiovascular disease (CVD)-related morbidity and mortality in this ethnic group. Genetic variants have been found to be associated with BP response to treatment. Previous pharmacogenetic studies of blood-pressure response to treatment in African Americans suffer limitations of small sample size as well as a limited number of candidate genes, and often focused on one antihypertensive treatment. Using 1,131 African-American treatment naïve participants from the Genetics of Hypertension Associated Treatment (GenHAT) Study, we examined whether variants in 35 candidate genes might modulate blood-pressure response to four different antihypertensive medications, including an angiotensin converting enzyme (ACE) inhibitor (lisinopril), a calcium channel blocker (amlodipine), and an α-adrenergic blocker (doxazosin) as compared to a thiazide diuretic (chlorthalidone) after 6 months of follow-up. Several suggestive gene by treatment interactions were identified. For example, among participants with two minor alleles of REN rs6681776, diastolic blood-pressure response was much improved on doxazosin compared to chlorthalidone (on average −9.49 mmHg vs. −1.70 mmHg) (P=0.007). Although several suggestive loci were identified, none of the findings passed significance criteria after correction for multiple testing. Given the impact of hypertension and its sequelae in this population, this research highlights the potential for genetic factors to contribute to blood-pressure response to treatment. Continued concerted research efforts focused on genetics are needed to improve treatment response in this high risk group. PMID:26791477

  17. Effects of hypobaric pressure on human skin: implications for cryogen spray cooling (part II).

    PubMed

    Aguilar, Guillermo; Franco, Walfre; Liu, Jie; Svaasand, Lars O; Nelson, J Stuart

    2005-02-01

    Clinical results have demonstrated that dark purple port wine stain (PWS) birthmarks respond favorably to laser induced photothermolysis after the first three to five treatments. Nevertheless, complete blanching is rarely achieved and the lesions stabilize at a red-pink color. In a feasibility study (Part I), we showed that local hypobaric pressure on PWS human skin prior to laser irradiation induced significant lesion blanching. The objective of the present study (Part II) is to investigate the effects of hypobaric pressures on the efficiency of cryogen spray cooling (CSC), a technique that assists laser therapy of PWS and other dermatoses. Experiments were carried out within a suction cup and vacuum chamber to study the effect of hypobaric pressure on the: (1) interaction of cryogen sprays with human skin; (2) spray atomization; and (3) thermal response of a model skin phantom. A high-speed camera was used to acquire digital images of spray impingement on in vivo human skin and spray cones generated at different hypobaric pressures. Subsequently, liquid cryogen was sprayed onto a skin phantom at atmospheric and 17, 34, 51, and 68 kPa (5, 10, 15, and 20 in Hg) hypobaric pressures. A fast-response temperature sensor measured sub-surface phantom temperature as a function of time. Measurements were used to solve an inverse heat conduction problem to calculate surface temperatures, heat flux, and overall heat extraction at the skin phantom surface. Under hypobaric pressures, cryogen spurts did not produce skin indentation and only minimal frost formation. Sprays also showed shorter jet lengths and better atomization. Lower minimum surface temperatures and higher overall heat extraction from skin phantoms were reached. The combined effects of hypobaric pressure result in more efficient cryogen evaporation that enhances heat extraction and, therefore, improves the epidermal protection provided by CSC. (c) 2005 Wiley-Liss, Inc.

  18. Iron spin transitions in the lower mantle

    NASA Astrophysics Data System (ADS)

    McCammon, C.; Dubrovinsky, L.; Potapkin, V.; Glazyrin, K.; Kantor, A.; Kupenko, I.; Prescher, C.; Sinmyo, R.; Smirnov, G.; Chumakov, A.; Rüffer, R.

    2012-04-01

    Iron has the ability to adopt different electronic configurations (spin states), which can significantly influence mantle properties and dynamics. It is now generally accepted as a result of studies over the past decade that ferrous iron in (Mg,Fe)O undergoes a high-spin to low-spin transition in the mid-part of the lower mantle; however results on (Mg,Fe)(Si,Al)O3 perovskite, the dominant phase of the lower mantle, remain controversial. Identifying spin transitions in (Mg,Fe)(Si,Al)O3 perovskite presents a significant challenge. X-ray emission spectroscopy provides information on the bulk spin number, but cannot separate individual contributions. Nuclear forward scattering measures hyperfine interactions, but is not well suited to complex materials due to the non-uniqueness of fitting models. Energy-domain Mössbauer spectroscopy generally enables an unambiguous resolution of all hyperfine parameters which can be used to infer spin states; however high pressure measurements using conventional radioactive point sources require extremely long counting times. To solve this problem, we have developed an energy-domain synchrotron Mössbauer source that enables rapid measurement of spectra under extreme conditions (both high pressure and high temperature) with a quality generally sufficient to unambiguously deconvolute even highly complex spectra. We have used the newly developed method to measure high quality Mössbauer spectra of different compositions of (Mg,Fe)O and (Mg,Fe)(Si,Al)O3 perovskite at pressures up to 122 GPa and temperatures up to 2400 K. Experiments were carried out at the European Synchrotron Radiation Facility on the nuclear resonance beamline ID18 equipped with a portable laser heating system for diamond anvil cells. Our results confirm previous observations for (Mg,Fe)O that show a broad spin crossover region at high pressures and high temperatures, and show unambiguously that ferric iron in (Mg,Fe)(Si,Al)O3 perovskite remains in the high-spin state at conditions throughout the lower mantle. Electrical conductivity data of (Mg,Fe)(Si,Al)O3 perovskite are known to show a drop in conductivity above 50 GPa, which combined with our new results suggests that the currently controversial high-pressure transition of ferrous iron is indeed due to a high-spin to intermediate-spin transition at conditions near the top of the lower mantle. Our current picture of iron in the lower mantle is therefore of a relatively homogeneous spin state in (Mg,Fe)(Si,Al)O3 perovskite throughout most of the lower mantle: intermediate-spin ferrous iron and high-spin ferric iron. Different spin states are expected in ferrous iron in (Mg,Fe)(Si,Al)O3 perovskite only at the very top of the lower mantle (high spin) and at the very bottom (low spin). There is a broad transition from high-spin to low-spin ferrous iron in (Mg,Fe)O in the mid part of the lower mantle. Implications of these results for mantle properties and dynamics will be presented.

  19. The Relationship of Foot Shape and Sensitivity to Comfort of Shoe-Inserts

    DTIC Science & Technology

    1998-07-30

    tension of the plantar fascia have been implicated by several authors as a cause of plan tar fasciitis which results in symptomatic heel pain and...Pressure distribution Relationship Between Foot Sensitivity and Plantar Pressure RESULTS AND DISCUSSION The shoe and insert factors Factor Sl...sensitivity of the plantar surface of the foot). For activities which are typical for army personal the choice of an appropriate shoe is essential

  20. Compressional and shear wave velocities in granular materials to 2.5 kilobars

    NASA Technical Reports Server (NTRS)

    Talwani, P.; Nur, A.; Kovach, R. L.

    1973-01-01

    The velocities of seismic compressional waves and, for the first time, shear wave velocities in silica sand, volcanic ash, and basalt powder were determined under hydrostatic confining pressures to 2.5 kb. Simultaneously, the porosity of these materials was obtained as a function of confining pressure. The presented results have important implications for the self-compaction hypothesis that has been postulated to explain the lunar near-surface seismic velocity variation.

  1. State and Local Governments: Fiscal Pressures Could Have Implications for Future Delivery of Intergovernmental Programs. Report to the Ranking Member, Committee on the Budget, House of Representatives. GAO-10-899

    ERIC Educational Resources Information Center

    Czerwinski, Stanley J.

    2010-01-01

    State and local governments work in partnership with the federal government to implement numerous intergovernmental programs. Fiscal pressures for state and local governments may exist when spending is expected to outpace revenues for the long term. GAO (Government Accountability Office) was asked to examine (1) the long-term fiscal pressures…

  2. Warm Pressurant Gas Effects on the Static Bubble Point Pressure for Cryogenic LADs

    NASA Technical Reports Server (NTRS)

    Hartwig, Jason W.; McQuillen, John; Chato, Daniel J.

    2014-01-01

    This paper presents experimental results for the liquid hydrogen and nitrogen bubble point tests using warm pressurant gases conducted at the NASA Glenn Research Center. The purpose of the test series was to determine the effect of elevating the temperature of the pressurant gas on the performance of a liquid acquisition device (LAD). Three fine mesh screen samples (325x2300, 450x2750, 510x3600) were tested in liquid hydrogen and liquid nitrogen using cold and warm non-condensable (gaseous helium) and condensable (gaseous hydrogen or nitrogen) pressurization schemes. Gases were conditioned from 0K - 90K above the liquid temperature. Results clearly indicate degradation in bubble point pressure using warm gas, with a greater reduction in performance using condensable over non-condensable pressurization. Degradation in the bubble point pressure is inversely proportional to screen porosity, as the coarsest mesh demonstrated the highest degradation. Results here have implication on both pressurization and LAD system design for all future cryogenic propulsion systems. A detailed review of historical heated gas tests is also presented for comparison to current results.

  3. Salt partitioning between water and high-pressure ices. Implication for the dynamics and habitability of icy moons and water-rich planetary bodies

    NASA Astrophysics Data System (ADS)

    Journaux, Baptiste; Daniel, Isabelle; Petitgirard, Sylvain; Cardon, Hervé; Perrillat, Jean-Philippe; Caracas, Razvan; Mezouar, Mohamed

    2017-04-01

    Water-rich planetary bodies including large icy moons and ocean exoplanets may host a deep liquid water ocean underlying a high-pressure icy mantle. The latter is often considered as a limitation to the habitability of the uppermost ocean because it would limit the availability of nutrients resulting from the hydrothermal alteration of the silicate mantle located beneath the deep ice layer. To assess the effects of salts on the physical properties of high-pressure ices and therefore the possible chemical exchanges and habitability inside H2O-rich planetary bodies, we measured partitioning coefficients and densities in the H2O-RbI system up to 450 K and 4 GPa; RbI standing as an experimentally amenable analog of NaCl in the H2O-salt solutions. We measured the partitioning coefficient of RbI between the aqueous fluid and ices VI and VII, using in-situ Synchrotron X-ray Fluorescence (XRF). With in-situ X-ray diffraction, we measured the unit-cell parameters and the densities of the high-pressure ice phases in equilibrium with the aqueous fluid, at pressures and temperatures relevant to the interior of planetary bodies. We conclude that RbI is strongly incompatible towards ice VI with a partitioning coefficient Kd(VI-L) = 5.0 (± 2.1) ṡ10-3 and moderately incompatible towards ice VII, Kd(VII-L) = 0.12 (± 0.05). RbI significantly increases the unit-cell volume of ice VI and VII by ca. 1%. This implies that RbI-poor ice VI is buoyant compared to H2O ice VI while RbI-enriched ice VII is denser than H2O ice VII. These new experimental results might profoundly impact the internal dynamics of water-rich planetary bodies. For instance, an icy mantle at moderate conditions of pressure and temperature will consist of buoyant ice VI with low concentration of salt, and would likely induce an upwelling current of solutes towards the above liquid ocean. In contrast, a deep and/or thick icy mantle of ice VII will be enriched in salt and hence would form a stable chemical boundary layer on top of the silicate mantle. Such a contrasted dynamics in the aqueous-ice VI-ice VII system would greatly influence the migration of nutrients towards the uppermost liquid ocean, thus controlling the habitability of moderate to large H2O-rich planetary bodies in our solar system (e.g., Ganymede, Titan, Calisto) and beyond.

  4. Numerical simulation of the hydrodynamical combustion to strange quark matter in the trapped neutrino regime

    NASA Astrophysics Data System (ADS)

    Ouyed, Amir; Ouyed, Rachid; Jaikumar, Prashanth

    2018-02-01

    We simulate and study the microphysics of combustion (flame burning) of two flavored quark matter (u,d) to three flavored quark matter (u,d,s) in a trapped neutrino regime applicable to conditions prevailing in a hot proto-neutron star. The reaction-diffusion-advection equations for (u,d) to (u,d,s) combustion are coupled with neutrino transport, which is modeled through a flux-limited diffusion scheme. The flame speed is proportional to initial lepton fraction because of the release of electron chemical potential as heat, and reaches a steady-state burning speed of (0.001-0.008)c. We find that the burning speed is ultimately driven by the neutrino pressure gradient, given that the pressure gradient induced by quarks is opposed by the pressure gradients induced by electrons. This suggests, somewhat counter-intuitively, that the pressure gradients that drive the interface are controlled primarily by leptonic weak decays rather than by the quark Equation of State (EOS). In other words, the effects of the leptonic weak interaction, including the corresponding weak decay rates and the EOS of electrons and neutrinos, are at least as important as the uncertainties related to the EOS of high density matter. We find that for baryon number densities nB ≤ 0.35 fm-3, strong pressure gradients induced by leptonic weak decays drastically slow down the burning speed, which is thereafter controlled by the much slower burning process driven by backflowing downstream matter. We discuss the implications of our findings to proto-neutron stars.

  5. Magnitude of long-term non-lithostatic pressure variations in lithospheric processes: insight from thermo-mechanical subduction/collision models

    NASA Astrophysics Data System (ADS)

    Gerya, Taras

    2014-05-01

    On the one hand, the principle of lithostatic pressure is habitually used in metamorphic geology to calculate paleo-depths of metamorphism from mineralogical pressure estimates given by geobarometry. On the other hand, it is obvious that this lithostatic (hydrostatic) pressure principle should only be valid for an ideal case of negligible deviatoric stresses during the long-term development of the entire tectono-metamorphic system - the situation, which newer comes to existence in natural lithospheric processes. The question is therefore not "Do non-lithostatic pressure variations exist?" but " What is the magnitude of long-term non-lithostatic pressure variations in various lithospheric processes, which can be recorded by mineral equilibria of respective metamorphic rocks?". The later question is, in particular, relevant for various types of high-pressure (HP) and ultrahigh-pressure (UHP) rocks, which are often produced in convergent plate boundary settings (e.g., Hacker and Gerya, 2013). This question, can, in particular, be answered with the use of thermo-mechanical models of subduction/collision processes employing realistic P-T-stress-dependent visco-elasto-brittle/plastic rheology of rocks. These models suggest that magnitudes of pressure deviations from lithostatic values can range >50% underpressure to >100% overpressure, mainly in the regions of bending of rheologically strong mantle lithosphere (Burg and Gerya, 2005; Li et al., 2010). In particular, strong undepresures along normal faults forming within outer rise regions of subducting plates can be responsible for downward water suction and deep hydration of oceanic slabs (Faccenda et al., 2009). Weaker HP and UHP rocks of subduction/collision channels are typically subjected to lesser non-lithostatic pressure variations with characteristic magnitudes ranging within 10-20% from the lithostatic values (Burg and Gerya, 2005; Li et al., 2010). The strength of subducted crustal rocks and the degree of confinement of the subduction/collision channel are the key factors controlling this magnitude (Burg and Gerya, 2005; Li et al., 2010). High-temperature (>700 C) UHP rocks formed by continental crust subduction typically demonstrate negligible non-lithostatic pressure variations at peak metamorphic conditions, although these variations can be larger at the prograde stage (Gerya et al., 2008; Li et al., 2010). However, the variability of tectonic mechanisms by which UHP rocks can form (e.g., Sizova et al., 2012; Hacker and Gerya, 2013) precludes generalization of this result for all types of UHP-complexes. References Burg, J.-P., Gerya, T.V. (2005) Viscous heating and thermal doming in orogenic metamorphism: numerical modeling and geological implications. J. Metamorph. Geol., 23, 75-95. Faccenda, M., Gerya, T.V., Burlini, L. (2009) Deep slab hydration induced by bending related variations in tectonic pressure. Nature Geoscience, 2, 790-793. Gerya T.V., Perchuk, L.L., Burg J.-P. (2008) Transient hot channels: perpetrating and regurgitating ultrahigh-pressure, high temperature crust-mantle associations in collision belts. Lithos, 103, 236-256. Hacker, B., Gerya, T.V. (2013) Paradigms, new and old, for ultrahigh-pressure tectonism. Tectonophysics, 603, 79-88. Li, Z., Gerya, T.V., Burg, J.P. (2010) Influence of tectonic overpressure on P-T paths of HP-UHP rocks in continental collision zones: Thermomechanical modelling. J. Metamorphic Geol., 28, 227-247. Sizova, E., Gerya, T., Brown M. (2012) Exhumation mechanisms of melt-bearing ultrahigh pressure crustal rocks during collision of spontaneously moving plates. Journal of Metamorphic Geology, 30, 927-955.

  6. Association of Carbon Monoxide exposure with blood pressure among pregnant women in rural Ghana: Evidence from GRAPHS.

    PubMed

    Quinn, Ashlinn K; Ae-Ngibise, Kenneth Ayuurebobi; Jack, Darby W; Boamah, Ellen Abrafi; Enuameh, Yeetey; Mujtaba, Mohammed Nuhu; Chillrud, Steven N; Wylie, Blair J; Owusu-Agyei, Seth; Kinney, Patrick L; Asante, Kwaku Poku

    2016-03-01

    The Ghana Randomized Air Pollution and Health Study (GRAPHS) is a community-level randomized-controlled trial of cookstove interventions for pregnant women and their newborns in rural Ghana. Given that household air pollution from biomass burning may be implicated in adverse cardiovascular outcomes, we sought to determine whether exposure to carbon monoxide (CO) from woodsmoke was associated with blood pressure (BP) among 817 adult women. Multivariate linear regression models were used to evaluate the association between CO exposure, determined with 72 hour personal monitoring at study enrollment, and BP, also measured at study enrollment. At the time of these assessments, women were in the first or second trimester of pregnancy. A significant positive association was found between CO exposure and diastolic blood pressure (DBP): on average, each 1 ppm increase in exposure to CO was associated with 0.43 mmHg higher DBP [0.01, 0.86]. A non-significant positive trend was also observed for systolic blood pressure (SBP). This study is one of very few to have examined the relationship between household air pollution and blood pressure among pregnant women, who are at particular risk for hypertensive complications. The results of this cross-sectional study suggest that household air pollution from wood-burning fires is associated with higher blood pressure, particularly DBP, in pregnant women at early to mid-gestation. The clinical implications of the observed association toward the eventual development of chronic hypertension and/or hypertensive complications of pregnancy remain uncertain, as few of the women were overtly hypertensive at this point in their pregnancies. Copyright © 2015 Elsevier GmbH. All rights reserved.

  7. Alterations in MAST suit pressure with changes in ambient temperature.

    PubMed

    Sanders, A B; Meislin, H W; Daub, E

    1983-01-01

    A study was undertaken to test the hypothesis that change in ambient air temperature has an effect on MAST suit pressure according to the ideal gas law. Two different MAST suits were tested on Resusci-Annie dummies. The MAST suits were applied in a cold room at 4.4 degrees C and warmed to 44 degrees C. Positive linear correlations were found in nine trials, but the two suits differed in their rate of increase in pressure. Three trials using humans were conducted showing increased pressure with temperature but at a lesser rate than with dummies. A correlation of 0.5 to 1.0 mm Hg increase in MAST suit pressure for each 1.0 degrees C increase in ambient temperature was found. Implications are discussed for the use of the MAST suit in environmental conditions where the temperature changes.

  8. River and Wetland Food Webs in Australia's Wet-Dry Tropics: General Principles and Implications for Management.

    NASA Astrophysics Data System (ADS)

    Douglas, M. M.; Bunn, S. E.; Davies, P. M.

    2005-05-01

    The tropical rivers of northern Australia are internationally recognised for their high ecological and cultural values. They have largely unmodified flow regimes and are comparatively free of the impacts associated with intensive land use. However, there is growing demand for agricultural development and existing pressures, such as weeds and feral animals, threaten their ecological integrity. Using the international literature to provide a conceptual framework and drawing on limited published and unpublished data on rivers in northern Australia, we have derived five general principles about food webs and related ecosystem processes that both characterise tropical rivers of northern Australia and have important implications for their management. These are: (1) Seasonal hydrology is a strong driver of ecosystem processes and food web structure; (2) Hydrological connectivity is largely intact and underpins important terrestrial-aquatic food web subsidies; (3) River and wetland food webs are strongly dependent on algal production; (4) A few common macroconsumers species have a strong influence on benthic food webs; (5) Omnivory is widespread and food chains are short. These principles have implications for the management and protection of tropical rivers and wetlands of northern Australia and provide a framework for the formation of testable hypotheses in future research programs.

  9. What Futurists Believe: Implications for Home Economists.

    ERIC Educational Resources Information Center

    Berenbaum, Shawna

    1992-01-01

    The challenges that the future will present to the home economist will be many. Technological, scientific, economic, environmental, climatic, social, political, institutional, and personal pressures will cause changes that will be favorable and unfavorable. (JOW)

  10. Cardiovascular Implications of Erectile Dysfunction

    MedlinePlus

    ... the penis are not able to dilate during sexual stimulation because of endothelial dysfunction, the penis cannot fill ... blood to the penis to dilate better during sexual stimulation. The PDE5-Is decrease blood pressure a little ...

  11. High temperature deformation mechanisms of L12-containing Co-based superalloys

    NASA Astrophysics Data System (ADS)

    Titus, Michael Shaw

    Ni-based superalloys have been used as the structural material of choice for high temperature applications in gas turbine engines since the 1940s, but their operating temperature is becoming limited by their melting temperature (Tm =1300degrees C). Despite decades of research, no viable alternatives to Ni-based superalloys have been discovered and developed. However, in 2006, a ternary gamma' phase was discovered in the Co-Al-W system that enabled a new class of Co-based superalloys to be developed. These new Co-based superalloys possess a gamma-gamma' microstructure that is nearly identical to Ni-based superalloys, which enables these superalloys to achieve extraordinary high temperature mechanical properties. Furthermore, Co-based alloys possess the added benefit of exhibiting a melting temperature of at least 100degrees C higher than commercial Ni-based superalloys. Superalloys used as the structural materials in high pressure turbine blades must withstand large thermomechanical stresses imparted from the rotating disk and hot, corrosive gases present. These stresses induce time-dependent plastic deformation, which is commonly known as creep, and new superalloys must possess adequate creep resistance over a broad range of temperature in order to be used as the structural materials for high pressure turbine blades. For these reasons, this research focuses on quantifying high temperature creep properties of new gamma'-containing Co-based superalloys and identifying the high temperature creep deformation mechanisms. The high temperature creep properties of new Co- and CoNi-based alloys were found to be comparable to Ni-based superalloys with respect to minimum creep rates and creep-rupture lives at 900degrees C up to the solvus temperature of the gamma' phase. Co-based alloys exhibited a propensity for extended superlattice stacking fault formation in the gamma' precipitates resulting from dislocation shearing events. When Ni was added to the Co-based compositions, this mode of shearing altered such that extended antiphase boundaries formed in the gamma' precipitates. These high temperature shearing mechanisms differ from Ni-based superalloys, where shearing occurs via APB-coupled dislocations. High resolution electron microscopy studies revealed chemical fluctuations of solute near stacking faults and antiphase boundaries in the gamma' phases. These chemical fluctuations were found to significantly reduce the stacking fault energy, which was calculated via first-principles. The implications for these chemical fluctuations on creep strength were determined, and new models for precipitate shearing will be presented. Furthermore, the implications for the design of new Co- and CoNi-based compositions will be discussed.

  12. Electrical conductivity of basaltic and carbonatite melt-bearing peridotites at high pressures: Implications for melt distribution and melt fraction in the upper mantle

    NASA Astrophysics Data System (ADS)

    Yoshino, Takashi; Laumonier, Mickael; McIsaac, Elizabeth; Katsura, Tomoo

    2010-07-01

    Electrical impedance measurements were performed on two types of partial molten samples with basaltic and carbonatitic melts in a Kawai-type multi-anvil apparatus in order to investigate melt fraction-conductivity relationships and melt distribution of the partial molten mantle peridotite under high pressure. The silicate samples were composed of San Carlos olivine with various amounts of mid-ocean ridge basalt (MORB), and the carbonate samples were a mixture of San Carlos olivine with various amounts of carbonatite. High-pressure experiments on the silicate and carbonate systems were performed up to 1600 K at 1.5 GPa and up to at least 1650 K at 3 GPa, respectively. The sample conductivity increased with increasing melt fraction. Carbonatite-bearing samples show approximately one order of magnitude higher conductivity than basalt-bearing ones at the similar melt fraction. A linear relationship between log conductivity ( σbulk) and log melt fraction ( ϕ) can be expressed well by the Archie's law (Archie, 1942) ( σbulk/ σmelt = Cϕn) with parameters C = 0.68 and 0.97, n = 0.87 and 1.13 for silicate and carbonate systems, respectively. Comparison of the electrical conductivity data with theoretical predictions for melt distribution indicates that the model assuming that the grain boundary is completely wetted by melt is the most preferable melt geometry. The gradual change of conductivity with melt fraction suggests no permeability jump due to melt percolation at a certain melt fraction. The melt fraction of the partial molten region in the upper mantle can be estimated to be 1-3% and ˜ 0.3% for basaltic melt and carbonatite melt, respectively.

  13. The onset of alpine pastoral systems in the Eastern Alps

    NASA Astrophysics Data System (ADS)

    Oeggl, Klaus; Festi, Daniela; Putzer, Andreas

    2015-04-01

    Since the discovery of the Neolithic glacier mummy "Ötzi" in the nival belt of the main Alpine ridge, the onset of alpine pasture is matter of a highly controversial debate both in archaeology and in palaeo-ecology of the Eastern Alps. The implication is that his sojourn in the high-altitudes of the Alps is considered to be connected with pastoral nomadism. Regrettably any archaeological evidence for the existence of such Neolithic alpine pastoral systems is missing up to now and the assumption is based on palynological data only. However, also the palynological record is ambiguous, because pasture indicators in the alpine regions react positive on grazing as well as on fertilization induced by a higher runoff of precipitation. Thus alpine pasture indicators reflect both grazing pressure and climatic change. Anyhow, alpine pastoral systems are a common practice in Alpine animal husbandry, but from an economic point of view such a seasonal vertical transhumance is costly. There are three main reasons for its practice: i) climatic, ii) economic (mainly in connection with population pressure or mining activities), and iii) cultural ideology. In this study we tested the above mentioned reasons in an interdisciplinary study on the beginning of pastoral activities in high altitudes in the central part of the Eastern Alps. This is conducted by palynological analyses of peat deposits situated in the vicinity of the timberline (1600 - 2400 m a.s.l.) combined with archaeological surveys. The investigated sites are located in traditional Alpine transhumance regions and aligned on a transect through the central part of the Eastern Alps. The studies reveal that grazing pressure is reflected since the Bronze Age, which is corroborated by archaeological findings in the vicinity of the investigated sites.

  14. Equations of state and anisotropy of Fe-Ni-Si alloys

    NASA Astrophysics Data System (ADS)

    Morrison, R. A.; Jackson, J. M.; Sturhahn, W.; Zhang, D.; Greenberg, E.

    2017-12-01

    Seismic observations provide constraints on the density, bulk sound speed, and bulk modulus of Earth's inner core, and x-ray diffraction (XRD) experiments can experimentally constrain such properties of iron alloys. The deviation of these seismically-inferred values from the properties of iron suggests the presence of light elements (e.g. Si, O, S, C, H) inside the core. While cosmochemical studies suggest Earth's core is composed primarily of iron alloyed with 5 wt% nickel, existing experimental XRD studies constraining pressure-density relations have predominantly focused on iron and iron alloyed with light elements, while neglecting the effect of nickel. In this study, we present high-precision equations of state for bcc- and hcp-structured Fe0.91Ni0.09 and Fe0.80Ni0.10Si0.10 using powder XRD at room temperature up to 167 GPa and 175 GPa, respectively. By using tungsten powder as a pressure calibrant and helium as a pressure transmitting medium, we minimize error due to pressure calibration and non-hydrostatic stresses. The results are high fidelity equations of state (EOS). By systematically comparing our findings to an established EOS of hcp-Fe [Dewaele et al. 2006], we constrain the effect of nickel and silicon on the density, bulk sound speed, and bulk modulus of iron alloys, which is a critical step towards constraining the inner core's composition. We find that for iron alloys, high quality ambient temperature EOSs can dramatically improve the extrapolated high temperature equations of state to inner core conditions. By combining seismic observations and their associated uncertainties with our data and existing Fe light-element-alloy EOSs, we estimate their densities, bulk moduli, and bulk sound speeds at inner core conditions and propose an experimentally and seismologically consistent range of inner core compositions. Additionally, we obtain an unprecedented constraint on the effect of nickel and silicon on the axial ratio of iron alloys. Nickel has a measurably distinct effect on the c/a axial ratio of iron, as does alloying iron-nickel with silicon. We investigate the relationship between the c/a axial ratio and elastic anisotropy of iron alloys and discuss the implications for inner core seismic anisotropy.

  15. Pressure-resisting cell for high-pressure, high-resolution nuclear magnetic resonance measurements at very high magnetic fields

    NASA Astrophysics Data System (ADS)

    Yamada, H.; Nishikawa, K.; Honda, M.; Shimura, T.; Akasaka, K.; Tabayashi, K.

    2001-02-01

    A pressure-resisting cell system has been developed for high-pressure high-resolution nuclear magnetic resonance (NMR) measurements up to a maximum pressure of 600 MPa. This cell system is capable of performing high-pressure experiments with any standard spectrometer, including modern high field NMR machines. A full description of the high-pressure NMR assembly mounted on a 750 MHz spectrometer is presented along with a detailed explanation of the procedure for preparing the pressure-resisting quartz and glass cells.

  16. Remote Dynamic Earthquake Triggering in Shale Gas Basins in Canada and Implications for Triggering Mechanisms

    NASA Astrophysics Data System (ADS)

    Harrington, Rebecca M.; Liu, Yajing; Wang, Bei; Kao, Honn; Yu, Hongyu

    2017-04-01

    Here we investigate the occurrence of remote dynamic triggering in three sedimentary basins in Canada where recent fluid injection activity is correlated with increasing numbers of earthquakes. In efforts to count as many small, local earthquakes as possible for the statistical test of triggering, we apply a multi-station matched-filter detection method to continuous waveforms to detect uncataloged local earthquakes in 10-day time windows surrounding triggering mainshocks occurring between 2013-2015 with an estimated local peak ground velocity exceeding 0.01 cm/s. We count the number of earthquakes in 24-hour bins and use a statistical p-value test to determine if the changes in seismicity levels after the mainshock waves have passed are statistically significant. The p-value tests show occurrences of triggering following transient stress perturbations of < 10 kPa at all three sites that suggest local faults may remain critically stressed over periods similar to the time frame of our study ( 2 years) or longer, potentially due to maintained high pore pressures in tight shale formations following injection. The time window over which seismicity rates change varies at each site, with more delayed triggering occurring at sites where production history is longer. The observations combined with new modeling results suggest that the poroelastic response of the medium may be the dominant factor influencing instantaneous triggering, particularly in low-permeability tight shales. At sites where production history is longer and permeabilities have been increased, both pore pressure diffusion and the poroelastic response of the medium may work together to promote both instantaneous and delayed triggering. Not only does the interplay of the poroelastic response of the medium and pore pressure diffusion have implications for triggering induced earthquakes near injection sites, but it may be a plausible explanation for observations of instantaneous and delayed earthquake triggering in general.

  17. Deep Boreholes Seals Subjected to High P, T conditions – Preliminary Experimental Studies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Caporuscio, Florie Andre; Norskog, Katherine Elizabeth; Maner, James Lavada

    The objective of this planned experimental work is to evaluate physio-chemical processes for ‘seal’ components and materials relevant to deep borehole disposal. These evaluations will encompass multi-laboratory efforts for the development of seals concepts and application of Thermal-Mechanical-Chemical (TMC) modeling work to assess barrier material interactions with subsurface fluids, their stability at high temperatures, and the implications of these processes to the evaluation of thermal limits. Deep borehole experimental work will constrain the Pressure, Temperature (P, T) conditions which “seal” material will experience in deep borehole crystalline rock repositories. The rocks of interest to this study include the silicic (graniticmore » gneiss) end members. The experiments will systematically add components to capture discrete changes in both water and EBS component chemistries.« less

  18. Platinum Partitioning at Low Oxygen Fugacity: Implications for Core Formation Processes

    NASA Technical Reports Server (NTRS)

    Medard, E.; Martin, A. M.; Righter, K.; Lanziroti, A.; Newville, M.

    2016-01-01

    Highly siderophile elements (HSE = Au, Re, and the Pt-group elements) are tracers of silicate / metal interactions during planetary processes. Since most core-formation models involve some state of equilibrium between liquid silicate and liquid metal, understanding the partioning of highly siderophile elements (HSE) between silicate and metallic melts is a key issue for models of core / mantle equilibria and for core formation scenarios. However, partitioning models for HSE are still inaccurate due to the lack of sufficient experimental constraints to describe the variations of partitioning with key variable like temperature, pressure, and oxygen fugacity. In this abstract, we describe a self-consistent set of experiments aimed at determining the valence of platinum, one of the HSE, in silicate melts. This is a key information required to parameterize the evolution of platinum partitioning with oxygen fugacity.

  19. Urotensin II modulates hepatic fibrosis and portal hemodynamic alterations in rats.

    PubMed

    Kemp, William; Kompa, Andrew; Phrommintikul, Arintaya; Herath, Chandana; Zhiyuan, Jia; Angus, Peter; McLean, Catriona; Roberts, Stuart; Krum, Henry

    2009-10-01

    The influence of circulating urotensin II (UII) on liver disease and portal hypertension is unknown. We aimed to evaluate whether UII executes a pathogenetic role in the development of hepatic fibrosis and portal hypertension. UII was administered by continuous infusion over 4 wk in 20 healthy rats divided into three treatment groups, controls (saline, n = 7), low dose (UII, 1 nmol x kg(-1) x h(-1), n = 8), and high dose (UII, 3 nmol x kg(-1) x h(-1), n = 5). Hemodynamic parameters and morphometric quantification of fibrosis were assessed, and profibrotic cytokines and fibrosis markers were assayed in hepatic tissue. UII induced a significant dose-dependent increase in portal venous pressure (5.8 +/- 0.4, 6.4 +/- 0.3, and 7.6 +/- 0.7, respectively, P = 0.03). High-dose UII infusion was associated with an increase in hepatic transcript for transforming growth factor-beta (P < 0.05) and platelet-derived growth factor-beta (P = 0.06). Liver tissue hydroxyproline was elevated in the high-dose group (P < 0.05). No systemic hemodynamic alterations were noted. We concluded that UII infusion elevates portal pressure and induces hepatic fibrosis in normal rats. This response may be mediated via induction of fibrogenic cytokines. These findings have pathophysiological implications in human liver disease where increased plasma UII levels have been observed.

  20. Warm Pressurant Gas Effects on the Liquid Hydrogen Bubble Point

    NASA Technical Reports Server (NTRS)

    Hartwig, Jason W.; McQuillen, John B.; Chato, David J.

    2013-01-01

    This paper presents experimental results for the liquid hydrogen bubble point tests using warm pressurant gases conducted at the Cryogenic Components Cell 7 facility at the NASA Glenn Research Center in Cleveland, Ohio. The purpose of the test series was to determine the effect of elevating the temperature of the pressurant gas on the performance of a liquid acquisition device. Three fine mesh screen samples (325 x 2300, 450 x 2750, 510 x 3600) were tested in liquid hydrogen using cold and warm noncondensible (gaseous helium) and condensable (gaseous hydrogen) pressurization schemes. Gases were conditioned from 0 to 90 K above the liquid temperature. Results clearly indicate a degradation in bubble point pressure using warm gas, with a greater reduction in performance using condensable over noncondensible pressurization. Degradation in the bubble point pressure is inversely proportional to screen porosity, as the coarsest mesh demonstrated the highest degradation. Results here have implication on both pressurization and LAD system design for all future cryogenic propulsion systems. A detailed review of historical heated gas tests is also presented for comparison to current results.

  1. The seasonal CO2 cycle on Mars - An application of an energy balance climate model

    NASA Technical Reports Server (NTRS)

    James, P. B.; North, G. R.

    1982-01-01

    Energy balance climate models of the Budyko-Sellers variety are applied to the carbon-dioxide cycle on Mars. Recent data available from the Viking mission, in particular the seasonal pressure variations measured by Viking landers, are used to constrain the models. No set of parameters was found for which a one-dimensional model parameterized in terms of ground temperature gave an adequate fit to the observed pressure variations. A modified, two-dimensional model including the effects of dust storms and the polar hood reasonably reproduces the pressure curve, however. The implications of these results for Martian climate changes are discussed.

  2. Ballistic piston fissioning plasma experiment.

    NASA Technical Reports Server (NTRS)

    Miller, B. E.; Schneider, R. T.; Thom, K.; Lalos, G. T.

    1971-01-01

    The production of fissioning uranium plasma samples such that the fission fragment stopping distance is less than the dimensions of the plasma is approached by using a ballistic piston device for the compression of uranium hexafluoride. The experimental apparatus is described. At room temperature the gun can be loaded up to 100 torr UF6 partial pressure, but at compression a thousand fold increase of pressure can be obtained at a particle density on the order of 10 to the 19th power per cu cm. Limited spectral studies of UF6 were performed while obtaining the pressure-volume data. The results obtained and their implications are discussed.

  3. Analyzing threshold pressure limitations in microfluidic transistors for self-regulated microfluidic circuits.

    PubMed

    Kim, Sung-Jin; Yokokawa, Ryuji; Takayama, Shuichi

    2012-12-03

    This paper reveals a critical limitation in the electro-hydraulic analogy between a microfluidic membrane-valve (μMV) and an electronic transistor. Unlike typical transistors that have similar on and off threshold voltages, in hydraulic μMVs, the threshold pressures for opening and closing are significantly different and can change, even for the same μMVs depending on overall circuit design and operation conditions. We explain, in particular, how the negative values of the closing threshold pressures significantly constrain operation of even simple hydraulic μMV circuits such as autonomously switching two-valve microfluidic oscillators. These understandings have significant implications in designing self-regulated microfluidic devices.

  4. Chemo-mechanics of salt damage in stone.

    PubMed

    Flatt, Robert J; Caruso, Francesco; Sanchez, Asel Maria Aguilar; Scherer, George W

    2014-09-11

    Many porous materials are damaged by pressure exerted by salt crystals growing in their pores. This is a serious issue in conservation science, geomorphology, geotechnical engineering and concrete materials science. In all cases, a central question is whether crystallization pressure will cause damage. Here we present an experiment in which the crystallization pressure and the pore saturation are varied in a controlled way. We demonstrate that a strain energy failure criterion can be used to predict when damage will occur. The experiment considered is the most widely used means to study the susceptibility to salt crystallization, so quantification of this test has far-reaching implications.

  5. Order of the major constituents in sign languages: implications for all language

    PubMed Central

    Napoli, Donna Jo; Sutton-Spence, Rachel

    2014-01-01

    A survey of reports of sign order from 42 sign languages leads to a handful of generalizations. Two accounts emerge, one amodal and the other modal. We argue that universal pressures are at work with respect to some generalizations, but that pressure from the visual modality is at work with respect to others. Together, these pressures conspire to make all sign languages order their major constituents SOV or SVO. This study leads us to the conclusion that the order of S with regard to verb phrase (VP) may be driven by sensorimotor system concerns that feed universal grammar. PMID:24860523

  6. Time pressure undermines performance more under avoidance than approach motivation.

    PubMed

    Roskes, Marieke; Elliot, Andrew J; Nijstad, Bernard A; De Dreu, Carsten K W

    2013-06-01

    Four experiments were designed to test the hypothesis that performance is particularly undermined by time pressure when people are avoidance motivated. The results supported this hypothesis across three different types of tasks, including those well suited and those ill suited to the type of information processing evoked by avoidance motivation. We did not find evidence that stress-related emotions were responsible for the observed effect. Avoidance motivation is certainly necessary and valuable in the self-regulation of everyday behavior. However, our results suggest that given its nature and implications, it seems best that avoidance motivation is avoided in situations that involve (time) pressure.

  7. Passively actuated valve

    DOEpatents

    Modro, S. Michael; Ougouag, Abderrafi M.

    2005-09-20

    A passively actuated valve for isolating a high pressure zone from a low pressure zone and discontinuing the isolation when the pressure in the high pressure zone drops below a preset threshold. If the pressure in the high pressure zone drops below the preset threshold, the valve opens and allows flow from the high pressure zone to the low pressure zone. The valve remains open allowing pressure equalization and back-flow should a pressure inversion between the two pressure zone occur.

  8. A Closer Look at Schlemm's Canal Cell Physiology: Implications for Biomimetics.

    PubMed

    Dautriche, Cula N; Tian, Yangzi; Xie, Yubing; Sharfstein, Susan T

    2015-09-21

    Among ocular pathologies, glaucoma is the second leading cause of progressive vision loss, expected to affect 80 million people worldwide by 2020. A primary cause of glaucoma appears to be damage to the conventional outflow tract. Conventional outflow tissues, a composite of the trabecular meshwork and the Schlemm's canal, regulate and maintain homeostatic responses to intraocular pressure. In glaucoma, filtration of aqueous humor into the Schlemm's canal is hindered, leading to an increase in intraocular pressure and subsequent damage to the optic nerve, with progressive vision loss. The Schlemm's canal encompasses a unique endothelium. Recent advances in culturing and manipulating Schlemm's canal cells have elucidated several aspects of their physiology, including ultrastructure, cell-specific marker expression, and biomechanical properties. This review highlights these advances and discusses implications for engineering a 3D, biomimetic, in vitro model of the Schlemm's canal endothelium to further advance glaucoma research, including drug testing and gene therapy screening.

  9. Impact-induced devolatilization and hydrogen isotopic fractionation of serpentine: Implications for planetary accretion

    NASA Technical Reports Server (NTRS)

    Tyburczy, James A.; Krishnamurthy, R. V.; Epstein, Samuel; Ahrens, Thomas J.

    1988-01-01

    Impact-induced devolatilization of porous serpentine was investigated using two independent experimental methods, the gas recovery and the solid recovery method, each yielding nearly identical results. For shock pressures near incipient devolatilization, the hydrogen isotopic composition of the evolved H2O is very close to that of the starting material. For shock pressures at which up to 12 percent impact-induced devolatilization occurs, the bulk evolved gas is significantly lower in deuterium than the starting material. There is also significant reduction of H2O to H2 in gases recovered at these higher shock pressures, probably caused by reaction of evolved H2O with the metal gas recovery fixture. Gaseous H2O-H2 isotopic fractionation suggests high temperature isotopic equilibrium between the gaseous species, indicating initiation of devolatilization at sites of greater than average energy deposition. Bulk gas-residual solid isotopic fractionations indicate nonequilibrium, kinetic control of gas-solid isotopic ratios. Impact-induced hydrogen isotopic fractionation of hydrous silicates during accretion can strongly affect the long-term planetary isotopic ratios of planetary bodies, leaving the interiors enriched in deuterium. Depending on the model used for extrapolation of the isotopic fractionation to devolatilization fractions greater than those investigated experimentally can result from this process.

  10. Contextual influences on safer sex negotiation among female sex workers (FSWs) in Hong Kong: the role of non-governmental organizations (NGOs), FSWs' managers, and clients.

    PubMed

    Cheng, Shannon S Y; Mak, Winnie W S

    2010-05-01

    Despite social-cognitive interventions to increase safer sex awareness, condom use among female sex workers (FSWs) continued to be inconsistent. To account for the possible influences of contextual factors that may hinder or promote FSWs' safer sex negotiation and condom use, the present study examined the effects of non-governmental organizations (NGOs), FSWs' managers, and clients on FSWs' negotiation efficacy and condom-use efficacy, and the effects of efficacy on condom use. One hundred and nineteen FSWs in Hong Kong completed a questionnaire that focused on their perceived influences of NGOs, managers, and clients toward safer sex negotiation and condom use. Hierarchical regression results showed that whereas NGOs' influence and clients' support were positively related to negotiation self-efficacy, managers' pressure, and clients' pressure were negatively related to negotiation self-efficacy. Managers' pressure was negatively related to condom-use self-efficacy. Logistic regression results showed that FSWs with high condom-use self-efficacy was 24 times more likely to use condom in the previous six months than their counterparts. The present study indicated the importance of social contexts in affecting FSWs' safer sex negotiation and condom-use self-efficacy. Implications on preventive programs for FSWs, managers, and clients were discussed.

  11. The Influence of Body Mass Index, Sex, & Muscle Activation on Pressure Distribution During Lateral Falls on the Hip.

    PubMed

    Pretty, Steven P; Martel, Daniel R; Laing, Andrew C

    2017-12-01

    Hip fracture incidence rates are influenced by body mass index (BMI) and sex, likely through mechanistic pathways that influence dynamics of the pelvis-femur system during fall-related impacts. The goal of this study was to extend our understanding of these impact dynamics by investigating the effects of BMI, sex, and local muscle activation on pressure distribution over the hip region during lateral impacts. Twenty participants underwent "pelvis-release experiments" (which simulate a lateral fall onto the hip), including muscle-'relaxed' and 'contracted' trials. Males and low-BMI individuals exhibited 44 and 55% greater peak pressure, as well as 66 and 56% lower peripheral hip force, compared to females and high-BMI individuals, respectively. Local muscle activation increased peak force by 10%, contact area by 17%, and peripheral hip force by 11% compared to relaxed trials. In summary, males and low-BMI individuals exhibited more concentrated loading over the greater trochanter. Muscle activation increased peak force, but this force was distributed over a larger area, preventing increased localized loading over the greater trochanter. These findings suggest potential value in incorporating sex, gender, and muscle activation-specific force distributions as inputs into computational tissue-level models, and have implications for the design of personalized protective devices including wearable hip protectors.

  12. Understanding the role of pore size homogeneity in the water transport through graphene layers.

    PubMed

    Su, Jiaye; Zhao, Yunzhen; Fang, Chang

    2018-06-01

    Graphene is a versatile 2D material and attracts an increasing amount of attention from a broad scientific community, including novel nanofluidic devices. In this work, we use molecular dynamics simulations to study the pressure driven water transport through graphene layers, focusing on the pore size homogeneity, realized by the arrangement of two pore sizes. For a given layer number, we find that water flux exhibits an excellent linear behavior with pressure, in agreement with the prediction of the Hagen-Poiseuille equation. Interestingly, the flux for concentrated pore size distribution is around two times larger than that of a uniform distribution. More surprisingly, under a given pressure, the water flux changes in an opposite way for these two distributions, where the flux ratio almost increases linearly with the layer number. For the largest layer number, more distributions suggest the same conclusion that higher water flux can be attained for more concentrated pore size distributions. Similar differences for the water translocation time and occupancy are also identified. The major reason for these results should clearly be due to the hydrogen bond and density profile distributions. Our results are helpful to delineate the exquisite role of pore size homogeneity, and should have great implications for the design of high flux nanofluidic devices and inversely the detection of pore structures.

  13. Periodic table of virus capsids: implications for natural selection and design.

    PubMed

    Mannige, Ranjan V; Brooks, Charles L

    2010-03-04

    For survival, most natural viruses depend upon the existence of spherical capsids: protective shells of various sizes composed of protein subunits. So far, general evolutionary pressures shaping capsid design have remained elusive, even though an understanding of such properties may help in rationally impeding the virus life cycle and designing efficient nano-assemblies. This report uncovers an unprecedented and species-independent evolutionary pressure on virus capsids, based on the the notion that the simplest capsid designs (or those capsids with the lowest "hexamer complexity", C(h)) are the fittest, which was shown to be true for all available virus capsids. The theories result in a physically meaningful periodic table of virus capsids that uncovers strong and overarching evolutionary pressures, while also offering geometric explanations to other capsid properties (rigidity, pleomorphy, auxiliary requirements, etc.) that were previously considered to be unrelatable properties of the individual virus. Apart from describing a universal rule for virus capsid evolution, our work (especially the periodic table) provides a language with which highly diverse virus capsids, unified only by geometry, may be described and related to each other. Finally, the available virus structure databases and other published data reiterate the predicted geometry-derived rules, reinforcing the role of geometry in the natural selection and design of virus capsids.

  14. The effect of consumer pressure and abiotic stress on positive plant interactions are mediated by extreme climatic events.

    PubMed

    Filazzola, Alessandro; Liczner, Amanda Rae; Westphal, Michael; Lortie, Christopher J

    2018-01-01

    Environmental extremes resulting from a changing climate can have profound implications for plant interactions in desert communities. Positive interactions can buffer plant communities from abiotic stress and consumer pressure caused by climatic extremes, but limited research has explored this empirically. We tested the hypothesis that the mechanism of shrub facilitation on an annual plant community can change with precipitation extremes in deserts. During years of extreme drought and above-average rainfall in a desert, we measured plant interactions and biomass while manipulating a soil moisture gradient and reducing consumer pressure. Shrubs facilitated the annual plant community at all levels of soil moisture through reductions in microclimatic stress in both years and herbivore protection in the wet year only. Shrub facilitation and the high rainfall year contributed to the dominance of a competitive annual species in the plant community. Precipitation patterns in deserts determine the magnitude and type of facilitation mechanisms. Moreover, shrub facilitation mediates the interspecific competition within the associated annual community between years with different rainfall amounts. Examining multiple drivers during extreme climate events is a challenging area of research, but it is a necessary consideration given forecasts predicting that these events will increase in frequency and magnitude. © 2017 The Authors. New Phytologist © 2017 New Phytologist Trust.

  15. Challenges in translational research: the views of addiction scientists.

    PubMed

    Ostergren, Jenny E; Hammer, Rachel R; Dingel, Molly J; Koenig, Barbara A; McCormick, Jennifer B

    2014-01-01

    To explore scientists' perspectives on the challenges and pressures of translating research findings into clinical practice and public health policy. We conducted semi-structured interviews with a purposive sample of 20 leading scientists engaged in genetic research on addiction. We asked participants for their views on how their own research translates, how genetic research addresses addiction as a public health problem and how it may affect the public's view of addiction. Most scientists described a direct translational route for their research, positing that their research will have significant societal benefits, leading to advances in treatment and novel prevention strategies. However, scientists also pointed to the inherent pressures they feel to quickly translate their research findings into actual clinical or public health use. They stressed the importance of allowing the scientific process to play out, voicing ambivalence about the recent push to speed translation. High expectations have been raised that biomedical science will lead to new prevention and treatment modalities, exerting pressure on scientists. Our data suggest that scientists feel caught in the push for immediate applications. This overemphasis on rapid translation can lead to technologies and applications being rushed into use without critical evaluation of ethical, policy, and social implications, and without balancing their value compared to public health policies and interventions currently in place.

  16. Singing whales generate high levels of particle motion: implications for acoustic communication and hearing?

    PubMed

    Mooney, T Aran; Kaplan, Maxwell B; Lammers, Marc O

    2016-11-01

    Acoustic signals are fundamental to animal communication, and cetaceans are often considered bioacoustic specialists. Nearly all studies of their acoustic communication focus on sound pressure measurements, overlooking the particle motion components of their communication signals. Here we characterized the levels of acoustic particle velocity (and pressure) of song produced by humpback whales. We demonstrate that whales generate acoustic fields that include significant particle velocity components that are detectable over relatively long distances sufficient to play a role in acoustic communication. We show that these signals attenuate predictably in a manner similar to pressure and that direct particle velocity measurements can provide bearings to singing whales. Whales could potentially use such information to determine the distance of signalling animals. Additionally, the vibratory nature of particle velocity may stimulate bone conduction, a hearing modality found in other low-frequency specialized mammals, offering a parsimonious mechanism of acoustic energy transduction into the massive ossicles of whale ears. With substantial concerns regarding the effects of increasing anthropogenic ocean noise and major uncertainties surrounding mysticete hearing, these results highlight both an unexplored pathway that may be available for whale acoustic communication and the need to better understand the biological role of acoustic particle motion. © 2016 The Author(s).

  17. Oscillatory fluid flow in deformable tubes: Implications for pore-scale hydromechanics from comparing experimental observations with theoretical predictions.

    PubMed

    Kurzeja, Patrick; Steeb, Holger; Strutz, Marc A; Renner, Jörg

    2016-12-01

    Oscillatory flow of four fluids (air, water, two aqueous sodium-tungstate solutions) was excited at frequencies up to 250 Hz in tubes of two materials (steel, silicone) covering a wide range in length, diameter, and thickness. The hydrodynamical response was characterized by phase shift and amplitude ratio between pressures in an upstream (pressure excitation) and a downstream reservoir connected by the tubes. The resulting standing flow waves reflect viscosity-controlled diffusive behavior and inertia-controlled wave behavior for oscillation frequencies relatively low and high compared to Biot's critical frequency, respectively. Rigid-tube theories correspond well with the experimental results for steel tubes filled with air or water. The wave modes observed for silicone tubes filled with the rather incompressible liquids or air, however, require accounting for the solid's shear and bulk modulus to correctly predict speed of pressure propagation and deformation mode. The shear mode may be responsible for significant macroscopic attenuation in porous materials with effective frame-shear moduli lower than the bulk modulus of the pore fluid. Despite notable effects of the ratio of densities and of acoustic and shear velocity of fluid and solid, Biot's frequency remains an approximate indicator of the transition from the viscosity to the inertia controlled regime.

  18. Understanding the role of pore size homogeneity in the water transport through graphene layers

    NASA Astrophysics Data System (ADS)

    Su, Jiaye; Zhao, Yunzhen; Fang, Chang

    2018-06-01

    Graphene is a versatile 2D material and attracts an increasing amount of attention from a broad scientific community, including novel nanofluidic devices. In this work, we use molecular dynamics simulations to study the pressure driven water transport through graphene layers, focusing on the pore size homogeneity, realized by the arrangement of two pore sizes. For a given layer number, we find that water flux exhibits an excellent linear behavior with pressure, in agreement with the prediction of the Hagen–Poiseuille equation. Interestingly, the flux for concentrated pore size distribution is around two times larger than that of a uniform distribution. More surprisingly, under a given pressure, the water flux changes in an opposite way for these two distributions, where the flux ratio almost increases linearly with the layer number. For the largest layer number, more distributions suggest the same conclusion that higher water flux can be attained for more concentrated pore size distributions. Similar differences for the water translocation time and occupancy are also identified. The major reason for these results should clearly be due to the hydrogen bond and density profile distributions. Our results are helpful to delineate the exquisite role of pore size homogeneity, and should have great implications for the design of high flux nanofluidic devices and inversely the detection of pore structures.

  19. Post-buckling of a pressured biopolymer spherical shell with the mode interaction

    NASA Astrophysics Data System (ADS)

    Zhang, Lei; Ru, C. Q.

    2018-03-01

    Imperfection sensitivity is essential for mechanical behaviour of biopolymer shells characterized by high geometric heterogeneity. The present work studies initial post-buckling and imperfection sensitivity of a pressured biopolymer spherical shell based on non-axisymmetric buckling modes and associated mode interaction. Our results indicate that for biopolymer spherical shells with moderate radius-to-thickness ratio (say, less than 30) and smaller effective bending thickness (say, less than 0.2 times average shell thickness), the imperfection sensitivity predicted based on the axisymmetric mode without the mode interaction is close to the present results based on non-axisymmetric modes with the mode interaction with a small (typically, less than 10%) relative errors. However, for biopolymer spherical shells with larger effective bending thickness, the maximum load an imperfect shell can sustain predicted by the present non-axisymmetric analysis can be significantly (typically, around 30%) lower than those predicted based on the axisymmetric mode without the mode interaction. In such cases, a more accurate non-axisymmetric analysis with the mode interaction, as given in the present work, is required for imperfection sensitivity of pressured buckling of biopolymer spherical shells. Finally, the implications of the present study to two specific types of biopolymer spherical shells (viral capsids and ultrasound contrast agents) are discussed.

  20. Phase portraits analysis of a barothropic system: The initial value problem

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kuetche, Victor Kamgang, E-mail: vkuetche@yahoo.fr; Department of Physics, Faculty of Science, University of Yaounde I, P.O. Box 812, Yaounde; The Abdus Salam International Center for Theoretical Physics, Strada Costiera 11, 34014 Trieste

    2014-05-15

    In this paper, we investigate the phase portraits features of a barothropic relaxing medium under pressure perturbations. In the starting point, we show within a third-order of accuracy that the previous system is modeled by a “dissipative” cubic nonlinear evolution equation. Paying particular attention to high-frequency perturbations of the system, we solve the initial value problem of the system both analytically and numerically while unveiling the existence of localized multivalued waveguide channels. Accordingly, we find that the “dissipative” term with a “dissipative” parameter less than some limit value does not destroy the ambiguous solutions. We address some physical implications ofmore » the results obtained previously.« less

  1. Thermal, dynamic and compositional aspects of the core-forming Earth

    NASA Technical Reports Server (NTRS)

    Stevenson, D. J.

    1985-01-01

    Core formation is the most important and singular differentiation event in the history of a terrestrial planet. It almost certainly involved the downward migration of a partially or wholly molten iron alloy through a silicate and oxide mantle, and was contemporaneous with accretion. Several important, unresolved issues which have implications for mantle and core geochemistry, the thermal history of the Earth, and the origin of geomagnetism are addressed: whether the early Earth was molten; whether core formation involved low or high pressure geochemistry, or both; early Earth mantle homogenization; whether equilibration established between core forming material and the mantle through which it migrated; and how much iron is stranded and unable to reach the core.

  2. Pheochromocytoma/Paraganglioma: Review of perioperative management of blood pressure and update on genetic mutations associated with pheochromocytoma

    PubMed Central

    Fishbein, Lauren; Orlowski, Robert; Cohen, Debbie

    2015-01-01

    Pheochromocytomas and paragangliomas are rare tumors with high morbidity, due to excessive catecholamine secretion, even though the majority of tumors are benign. The use of perioperative blockade regimens, together with improved surgical techniques, has greatly impacted the perioperative morbidity associated with these tumors. The old dogma of the “tumor of tens” no longer holds true. For example, at least one-third of all pheochromocytomas and paragangliomas are hereditary with mutations in one of ten well characterized susceptibility genes, and one-quarter of all tumors are malignant. This review will focus on the perioperative management of pheochromocytoma and paragangliomas and the clinical implications of the associated genetic mutations. PMID:23730992

  3. Change Is In the Air: What You Need to Know About Pharmacy Ventilation Under United States Pharmacopeia <800>.

    PubMed

    Laniewicz, Cheryl

    2017-01-01

    On July 1, 2018, United States Pharmacopeia <800> takes effect in those states that adopt it, and the discussion within this article may be applicable to those states that develop their own standards. United States Pharmacopeia <800> changes requirements for storage and compounding of hazardous drugs. The new requirements have important implications for air management and ventilation in some pharmacies. This article discusses how United States Pharmacopeia <800> compares to United States Pharmacopeia <797>, how the changes impact room ventilation and pressurization requirements, and how high-performance airflow control systems that ensure compliance and safety are impacted. Copyright© by International Journal of Pharmaceutical Compounding, Inc.

  4. An organizational assessment of disruptive clinician behavior: findings and implications.

    PubMed

    Walrath, Jo M; Dang, Deborah; Nyberg, Dorothy

    2013-01-01

    This study investigated registered nurses' (RNs) and physicians' (MD) experiences with disruptive behavior, triggers, responses, and impacts on clinicians, patients, and the organization. Using the Disruptive Clinician Behavior Survey for Hospital Settings, it was found that RNs experienced a significantly higher frequency of disruptive behaviors and triggers than MDs; MDs (45% of 295) and RNs (37% of 689) reported that their peer's disruptive behavior affected them most negatively. The most frequently occurring trigger was pressure from high census, volume, and patient flow; 189 incidences of harm to patients as a result of disruptive behavior were reported. Findings provide organizational leaders with evidence to customize interventions to strengthen the culture of safety.

  5. Effects of chemical, physical, and technological processes on the nature of food allergens.

    PubMed

    Poms, Roland E; Anklam, Elke

    2004-01-01

    A review is presented of studies of different processing techniques and their effect on the allergenicity and antigenicity of certain allergenic foods. An overview of investigated technologies is given with regard to their impact on the protein structure and their potential application in the production of hypoallergenic foods. The use of physical processes (such as heating, high pressure, microparticulation, ultrafiltration, and irradiation), chemical processes (such as proteolysis, fermentation, and refining by extraction), and biotechnological approaches, as well as the effects of these processes on individual allergenic foods, are included. Additionally, the implications of food processing for food allergen analysis with respect to food safety assessment and industrial quality control are briefly discussed.

  6. Implications of Sub-Hydrostatic Pressures in the Bravo Dome Natural CO2 Reservoir for the Long-Term Security of Geological Carbon Dioxide Storage

    NASA Astrophysics Data System (ADS)

    Akhbari, D.; Hesse, M. A.; Larson, T.

    2014-12-01

    The Bravo Dome field in northeast New Mexico is one of the largest gas accumulations worldwide and the largest natural CO2 accumulation in North America. The field is only 580-900 m deep and located in the Permian Tubb sandstone that unconformably overlies the granitic basement. Sathaye et al. (2014) estimated that 1.3 Gt of CO2 is stored at the reservoir. A major increase in the pore pressure relative to the hydrostatic pressure is expected due to the large amount of CO2 injected into the reservoir. However, the pre-production gas pressures indicate that most parts of the reservoir are approximately 5 MPa below hydrostatic pressure. Three processes could explain the under pressure in the Bravo Dome reservoir; 1) erosional unloading, 2) CO2 dissolution into the ambient brine, 3) cooling of CO2after injection. Analytical solutions suggest that an erosion rate of 180 m/Ma is required to reduce the pore pressures to the values observed at Bravo Dome. Given that the current erosion rate is only 5 m/Ma (Nereson et al. 2013); the sub-hydrostatic pressures at Bravo Dome are likely due to CO2dissolution and cooling. To investigate the impact of CO2 dissolution on the pore pressure we have developed new analytical solutions and conducted laboratory experiments. We assume that gaseous CO2 was confined to sandstones during emplacement due to the high entry pressure of the siltstones. After emplacement the CO2 dissolves in to the brine contained in the siltstones and the pressure in the sandstones declines. Assuming the sandstone-siltstone system is closed, the pressure decline due to CO2 dissolution is controlled by a single dimensionless number, η = KHRTVw /Vg. Herein, KH is Henry's constant, R is ideal gas constant, T is temperature, Vw is water volume, and Vg is CO2 volume. The pressure drop is controlled by the ratio of water volume to CO2 volume and η varies between 0.1 to 8 at Bravo Dome. This corresponds to pressure drops between 0.8-7.5 MPa and can therefore account for the observed 5 MPa drop in pore pressures at Bravo Dome. This is consistent with geochemical observation suggesting significant dissolution of CO2 at Bravo Dome (Gilfillan 2009). The observation of sub-hydrostatic pressures in CO2 reservoirs is important because they illustrate that CO2 dissolution may mitigate problems due to injection induced overpressure in the long-term.

  7. Shallow fractionation signature of phase chemistry in Taburiente lavas, La Palma, Canary Islands: Results of MELTS modeling

    NASA Astrophysics Data System (ADS)

    Guetschow, H. A.; Nelson, B. K.

    2002-12-01

    Depth of crystal fractionation influences the chemical evolution of ocean island basalts and has significant implications for the physical structures of these volcanoes. In contrast to dominantly shallow systems such as Hawaii, a range of fractionation depths have been reported for Canary Islands lavas. Magmas erupted on La Palma preserve fluid- and melt-inclusion evidence for high-pressure (> 10 kbar) crystallization (Klügel et al., 1998; Hansteen et al., 1998; Nikogosian et al., 2002). If high-pressure fractional crystallization were an early and dominant process, it would generate specific patterns in rock and phase chemistry of eruptive sequences. Alkalic basalts from Taburiente volcano display coherent major element trends consistent with evolution dominated by fractional crystallization while their phenocryst compositions, trace elements, and isotopic trends require mixing between multiple sources. The current model confirms the importance of both fractionation and mixing to achieve the full range of lavas observed. A low-pressure (1 kbar) thermodynamic fractional crystallization model performed with the MELTS (Ghiorso and Sack, 1995) software closely reproduces major element trends from two stratigraphic sequences. This model also predicts the observed sequence of groundmass clinopyroxene compositions and phenocryst zoning reversals. In all low pressure simulations, olivine remains a modally significant liquidus phase during the first 20% and last 30% of the crystallization sequence, resulting in a negative correlation between the CaO and Fo content of olivine. These results are consistent with the presence of olivine phenocrysts that bear petrographic evidence of early crystallization, as well as observed compositional trends of groundmass olivine and clinopyroxene in Taburiente lavas. MELTS models that include an initial period of high pressure (12 kbar) clinopyroxene fractionation produce major element trends comparable to the low pressure model, but also produce high modal volumes of low CaO, high MgO clinopyroxene that are not observed in sections we studied. Removal of such a large quantity of clinopyroxene from the liquid increases the TiO2 and CaO of later-crystallized clinopyroxene to concentrations not observed in our studied sections, and restricts the MgO and FeO* to smaller ranges than observed. Olivine fractionation is restricted to short duration and low abundance late in the crystallization sequence, which is not evident petrographically. The total compositional range of clinopyroxene and olivine crystals observed throughout this suite of rocks is larger than any generated by a single-source MELTS model. Combined with stratigraphically controlled Pb isotope variations it indicates magma mixing and fractionation at low pressures dominates the petrologic diversity in these sections. Hansteen, TH, Klügel, A., Schmincke, H.-U, 1998. Contrib. Min. Pet. 132, 48-64. Klügel, A, 1998. Contrib. Min. Pet. 131, 237-257. Nikogosian, IK, Elliott, T, Touret, JLR. 2002. Chem. Geo. 183, 169-193. Ghiorso, MS, and Sack, RO. Contrib. Min. Pet. 119, 197-212.

  8. Differential high pressure survival in stationary-phase Escherichia coli MG1655

    NASA Astrophysics Data System (ADS)

    Griffin, Patrick L.; Kish, Adrienne; Steele, Andrew; Hemley, Russell J.

    2011-06-01

    Hydrostatic pressure exerts a profound influence on nearly all facets of cellular structure and function with exposures to sufficiently high pressure leading to microbial inactivation. We report the first observation of a persistent, pressure-resistant subpopulation within stationary-phase samples of Escherichia coli MG1655, a mesophilic bacterium adapted to surface pressure. This high pressure-resistant subpopulation exhibits pressure survival ranging from 0.6 to 2.0 orders of magnitude greater survival than high pressure treatments at pressures of 225-400 MPa. We also examine some aspects of pressure treatment protocol that may influence the measurements of high pressure survival.

  9. Overpressure Prediction From Seismic Data: Implications on Drilling Safety

    NASA Astrophysics Data System (ADS)

    Osinowo, O. O.; Oladunjoye, M. A.; Olayinka, A. I.

    2007-12-01

    High rate of sediment influx into the Niger Delta via river Niger coupled with high rate of basin subsidence, very thick clayey members of Agbada and Akata Formations as well as prevailing presence of growth faults had been identified as the main factors responsible for overpressure generation and preservation in the Niger Delta basin. Analysis of porosity dependent parameters such as interval transit times and interval velocities derived from the seismic records of a field in the Western Niger Delta revealed the presence of overpressured formation at depth of 8670 feet, which is the top of the overpressured zone. The plot of interval transit times against depth gave a positive deflection from normal at the region of overpressure while interval velocity plot gave negative deflection; the ratio of this deviation in both cases is as high as 1.52. Pressure gradient in the upper, normally pressured part of the field was determined to be 0.465 psi/ft., which is within the established normal pressure gradient range in Niger Delta, while the abnormal formation pressure gradient in the overpressured region was determined to be 0.96 psi/ft., and this is also within the published abnormal pressure gradient range of 0.71 to 1.1 psi/ft. in Niger Delta. Formation fracture pressure gradients were determined from the formation pressure information to be 0.66psi/ft. in the upper part of the field and 1.2psi/ft. in the overpressured horizon. Mud weight window (MWW); mud density range necessary to prevent formation kick without initiating hydraulic fracturing was determined to be 10.2 to 12.5lbm/gal in the upper part of the field and 22.1 to 22.63lbm/gal in the overpressured horizon. MWW is indispensable for the selection of the mud pump type, capacity, pumping rate and mud densities at different formation pressure regimes. Overpressure prediction is also requisite for drilling program design, casing design as well as rig capacity choice before spudding. It is necessary to reduce well construction risk, save drilling hour as well as cut down drilling cost. If adequate predictions are not taken however, drilling hazards known as blowout may occur. Blowout, an uncontrollable flow of formation fluid into the well has made oil exploration and exploitation activities in Niger Delta, Southern Nigeria, a curse for the people rather than a blessing because considerable numbers of wells blew out during well construction activities, hence the characteristic oil spill which had degraded the environment, making fishing operation, a source of livelihood of the people difficult. Therefore the need for overpressure prediction as a guide for safe drilling, especially in unfamiliar exploration environments.

  10. Fluid pressure development beneath the décollement at the Nankai subduction zone: its implications for slow earthquakes

    NASA Astrophysics Data System (ADS)

    Hirose, T.; Kamiya, N.; Yamamoto, Y.; Heuer, V.; Inagaki, F.; Kubo, Y.

    2017-12-01

    Pore fluid pressure along a fault zone is very important for understanding earthquake generation processes in subduction zones. However, quantitative constraints on the pore pressure are quite limited. Here we report two estimates of the pore pressure developed within the underthrust sediments in the Nankai Trough off Cape Muroto, Japan, using the shipboard data obtained during IODP Expedition 370 (Heuer et al., 2017). First estimates are based on the depth trend of porosity data in the lower Shikoku Basin (LSB) facies, in which the décollement zone has propagated. Porosities in the LSB facies generally decrease with depth, but turn to increase by 5-7% below the décollement zone at 760 mbsf. Deeper than 830 mbsf, porosities resume a general compaction trend. By applying the method followed by Screaton et al. (2002) in which the downward porosity-increase is reflected by an excess pore pressure, we estimated the highest excess pore pressure of 4.2 MPa (λ* = 0.4: a ratio of excess pore pressure to effective overburden stress) at 1020 mbsf within the underthrust sediments. Another estimate is based on the analysis of upwelling drilling-mud flow from the borehole, which is a direct evidence the development of overpressure. We assumed that the borehole penetrated a disc-shaped high pore pressure zone with 10 m thickness and the steady-state flow. Then the pore pressure for a given radius of the disc-shaped zone, which is necessary for explaining the observed flow rate, was calculated using Darcy's law. The calculation yields that the pore pressure exceeded by 2-4 MPa above hydrostatic in case of the 10-13 m2 permeability and the 100-1000 m radius of the disc-shaped zone. Our analysis indicates a significant development of excess pore pressure beneath the décollement zone, most likely at the depth of 1020 mbsf where the highest overpressure was estimated from the downhole porosity trend and also an anomaly in relative hydrocarbon gas concentrations. Friction experiments by Sawai et al. (2016) show that a transition from stable to unstable slip behavior appears with increasing pore fluid pressure that is a prerequisite for the generation of slow earthquakes. Thus, slow earthquakes that occurred off Cape Muroto (Obara & Kato, 2016) can be attributed with the observed significant overpressure beneath the décollement.

  11. Fate of a mutation in a fluctuating environment

    PubMed Central

    Cvijović, Ivana; Good, Benjamin H.; Jerison, Elizabeth R.; Desai, Michael M.

    2015-01-01

    Natural environments are never truly constant, but the evolutionary implications of temporally varying selection pressures remain poorly understood. Here we investigate how the fate of a new mutation in a fluctuating environment depends on the dynamics of environmental variation and on the selective pressures in each condition. We find that even when a mutation experiences many environmental epochs before fixing or going extinct, its fate is not necessarily determined by its time-averaged selective effect. Instead, environmental variability reduces the efficiency of selection across a broad parameter regime, rendering selection unable to distinguish between mutations that are substantially beneficial and substantially deleterious on average. Temporal fluctuations can also dramatically increase fixation probabilities, often making the details of these fluctuations more important than the average selection pressures acting on each new mutation. For example, mutations that result in a trade-off between conditions but are strongly deleterious on average can nevertheless be more likely to fix than mutations that are always neutral or beneficial. These effects can have important implications for patterns of molecular evolution in variable environments, and they suggest that it may often be difficult for populations to maintain specialist traits, even when their loss leads to a decline in time-averaged fitness. PMID:26305937

  12. Assessing health in an urban neighborhood: community process, data results and implications for practice.

    PubMed

    Idali Torres, M

    1998-06-01

    This article examines the community process and data results of a health assessment conducted in an urban neighborhood of a middle-size city in Western Massachusetts. It describes the four-stage development process of the Health Assessment Project (HAP), a collaboration of the UMASS School of Public Health faculty and students, community based organizations and youth residents: (1) planning with a contemporary participatory approach, (2) implementing the data collection with traditional survey methodology, (3) tailoring the data analysis for a presentation at a community forum and report, and (4) incorporating the community's reaction to data results. In addition, it presents selected data results on health conditions of individual household members and perceived community health concerns and resources. Salient data results include high rates of chronic health conditions such as asthma and other respiratory problems among residents 0-18, back pain and other musculoskeletal among younger adults 19-54, and high blood pressure and other cardi-circulatory problems among older adults age 55 and older. The three most prevalent perceived community concerns are substance abuse, gangs and drug dealing. Identified community resources include sources of (1) providers of primary care, (2) health information as family/friends and Spanish media, (3) social activity such as churches and schools. Finally, this paper concludes by discussing implications for community health practice.

  13. Diffusion and convection in collagen gels: implications for transport in the tumor interstitium.

    PubMed Central

    Ramanujan, Saroja; Pluen, Alain; McKee, Trevor D; Brown, Edward B; Boucher, Yves; Jain, Rakesh K

    2002-01-01

    Diffusion coefficients of tracer molecules in collagen type I gels prepared from 0-4.5% w/v solutions were measured by fluorescence recovery after photobleaching. When adjusted to account for in vivo tortuosity, diffusion coefficients in gels matched previous measurements in four human tumor xenografts with equivalent collagen concentrations. In contrast, hyaluronan solutions hindered diffusion to a lesser extent when prepared at concentrations equivalent to those reported in these tumors. Collagen permeability, determined from flow through gels under hydrostatic pressure, was compared with predictions obtained from application of the Brinkman effective medium model to diffusion data. Permeability predictions matched experimental results at low concentrations, but underestimated measured values at high concentrations. Permeability measurements in gels did not match previous measurements in tumors. Visualization of gels by transmission electron microscopy and light microscopy revealed networks of long collagen fibers at lower concentrations along with shorter fibers at high concentrations. Negligible assembly was detected in collagen solutions pregelation. However, diffusion was similarly hindered in pre and postgelation samples. Comparison of diffusion and convection data in these gels and tumors suggests that collagen may obstruct diffusion more than convection in tumors. These findings have significant implications for drug delivery in tumors and for tissue engineering applications. PMID:12202388

  14. Fabric symmetry of low anisotropic rocks inferred from ultrasonic sounding: Implications for the geomechanical models

    NASA Astrophysics Data System (ADS)

    Přikryl, Richard; Lokajíček, Tomáš; Pros, Zdeněk; Klíma, Karel

    2007-02-01

    The geomechanical models were established based on the absence or presence of certain rock fabric elements — texture (crystallographic preferred orientation), microstructure (shape preferred orientation) and microcracks (flat voids). The proposed models include both (i) the ideal material showing random texture and structure but no microcracks, i.e. the material which is hardly to be found in nature, and (ii) the materials possessing various combinations of fabric elements that show different spatial arrangements. The mutual relationship between those parameters and seismic and geomechanical properties are discussed. Selected models were experimentally verified during laboratory experiments. These consist of measurement of P-wave velocities in 132 independent directions under several confining pressures in the range 0.1-400 MPa. From measured data 3D P-wave patterns can be constructed and the influence of microcracks and of texture and structure on the rock seismic anisotropy can be determined. The seismic anisotropy established at different levels of confining pressure can be used for the interpretation of rock fabric symmetry of rocks showing low anisotropy in macroscale and for the selection of directions in which the geomechanical test can be performed. The measured P-wave velocities were then mathematically processed by using a fitting function V=V+k·P-v·10 which reflects contribution of P-wave velocity in the mineral skeleton of an ideal sample without microcracks extrapolated to the atmospheric pressure level from high confining pressure interval (ca. 200-400 MPa) ( v0), linear compressibility of the samples ( kv), and confining pressure during which most of the cracks are closed ( P0). These parameters improve the understanding of the response of various rock fabric elements on increasing confinement and corresponding changes in elasticity. The observed seismic and geomechanical anisotropies reflect intensity of the fabric of rock-forming minerals and microcracks. The magnitude of seismic anisotropy measured at atmospheric pressure corresponds to the anisotropy of static elastic modulus and is governed by the spatial arrangement of microcracks. The magnitude of strength anisotropy (uniaxial compressive strength) correlates more likely to the seismic anisotropy determined at high confining pressure and is connected to the preferred orientations (either CPO or SPO or both) of rock-forming minerals.

  15. Arctic Ocean Freshwater Content and Its Decadal Memory of Sea-Level Pressure

    NASA Astrophysics Data System (ADS)

    Johnson, Helen L.; Cornish, Sam B.; Kostov, Yavor; Beer, Emma; Lique, Camille

    2018-05-01

    Arctic freshwater content (FWC) has increased significantly over the last two decades, with potential future implications for the Atlantic meridional overturning circulation downstream. We investigate the relationship between Arctic FWC and atmospheric circulation in the control run of a coupled climate model. Multiple linear lagged regression is used to extract the response of total Arctic FWC to a hypothetical step increase in the principal components of sea-level pressure. The results demonstrate that the FWC adjusts on a decadal timescale, consistent with the idea that wind-driven ocean dynamics and eddies determine the response of Arctic Ocean circulation and properties to a change in surface forcing, as suggested by idealized models and theory. Convolving the response of FWC to a change in sea-level pressure with historical sea-level pressure variations reveals that the recent observed increase in Arctic FWC is related to natural variations in sea-level pressure.

  16. On testing models for the pressure-strain correlation of turbulence using direct simulations

    NASA Technical Reports Server (NTRS)

    Speziale, Charles G.; Gatski, Thomas B.; Sarkar, Sutanu

    1992-01-01

    Direct simulations of homogeneous turbulence have, in recent years, come into widespread use for the evaluation of models for the pressure-strain correlation of turbulence. While work in this area has been beneficial, the increasingly common practice of testing the slow and rapid parts of these models separately in uniformly strained turbulent flows is shown in this paper to be unsound. For such flows, the decomposition of models for the total pressure-strain correlation into slow and rapid parts is ambiguous. Consequently, when tested in this manner, misleading conclusions can be drawn about the performance of pressure-strain models. This point is amplified by illustrative calculations of homogeneous shear flow where other pitfalls in the evaluation of models are also uncovered. More meaningful measures for testing the performance of pressure-strain models in uniformly strained turbulent flows are proposed and the implications for turbulence modeling are discussed.

  17. Identification of a Very High Cuff Pressure by Manual Palpation of the External Cuff Balloon on an Endotracheal Tube.

    PubMed

    Hedberg, Pia; Eklund, Carolina; Högqvist, Sandra

    2015-06-01

    The most common complication due to intubation is a high cuff pressure. A high cuff pressure can cause postanesthetic tracheal mucosal injuries in patients undergoing surgery. The aim of this cross-sectional study was to describe whether anesthetic nurses and anesthesiologists identified a very high cuff pressure by manual palpation of the external cuff balloon on an endotracheal tube. An airway device was intubated with an endotracheal tube cuffed to 95 cm H2O. Each participant palpated the external cuff balloon and then filled out a questionnaire, including estimation of the cuff pressure and user frequency of the cuff pressure manometer. The results showed that 89.1% estimated that the cuff pressure was high. Among the participants who rated the cuff pressure as high, 44.8% rated the pressure as quite high and 60.6% rated the pressure as very high. There was no significant relationship between profession and skill in identifying a very high cuff pressure (P = .843) or between work experience and skill in terms of identifying a very high cuff pressure (P = .816). These findings indicate that 10% of patients are at risk of tracheal erosion because of a high cuff pressure.

  18. The effect of anisotropic heat transport on magnetic islands in 3-D configurations

    NASA Astrophysics Data System (ADS)

    Schlutt, M. G.; Hegna, C. C.

    2012-08-01

    An analytic theory of nonlinear pressure-induced magnetic island formation using a boundary layer analysis is presented. This theory extends previous work by including the effects of finite parallel heat transport and is applicable to general three dimensional magnetic configurations. In this work, particular attention is paid to the role of finite parallel heat conduction in the context of pressure-induced island physics. It is found that localized currents that require self-consistent deformation of the pressure profile, such as resistive interchange and bootstrap currents, are attenuated by finite parallel heat conduction when the magnetic islands are sufficiently small. However, these anisotropic effects do not change saturated island widths caused by Pfirsch-Schlüter current effects. Implications for finite pressure-induced island healing are discussed.

  19. Effects of high-energy particles on accretion flows onto a super massive black hole

    NASA Astrophysics Data System (ADS)

    Kimura, Shigeo

    We study effects of high-energy particles on the accretion flow onto a supermassive black hole and luminosities of escaping particles such as protons, neutrons, gamma-rays, and neutrinos. We formulate a one-dimensional model of the two-component accretion flow consisting of thermal particles and high-energy particles, supposing that some fraction of viscous dissipation energy is converted to the acceleration of high-energy particles. The thermal component is governed by fluid dynamics while the high-energy particles obey the moment equations of the diffusion-convection equation. By solving the time evolution of these equations, we obtain advection dominated flows as steady state solutions. Effects of the high-energy particles on the flow structure turn out to be very small because the compressional heating is so effective that the thermal component always provides the major part of the pressure. We calculate luminosities of escaping particles for these steady solutions. For a broad range of mass accretion rates, escaping particles can extract the energy about one-thousandth of the accretion energy. We also discuss some implications on relativistic jet production by escaping particles.

  20. Pressure and temperature effects on fuels with varying octane sensitivity at high load in SI engines

    DOE PAGES

    Szybist, James P.; Splitter, Derek A.

    2017-01-06

    The octane sensitivity (S), defined as the difference between the Research Octane Number (RON) and the Motor Octane Number (MON), is of increasing interest in spark ignition (SI) engines because of its relevance to knock resistance at boosted high load conditions. In this study, three fuels with nearly constant RON (99.2-100) and varying S (S = 0, 6.5, and 12) are operated at the knock limited spark advance (KLSA) at nominal engine loads of 10, 15, and 20 bar IMEP in a single cylinder SI engine with side-mount direct injection fueling, at λ =1 stoichiometry. At each load condition, themore » intake manifold temperature is swept from 35 °C to 95 °C to alter the temperature and pressure history of the charge. Results show that at the 10 bar IMEP condition, knock resistance is inversely proportional to fuel S where the S=0 fuel is the most knock resist, but as load increases the trend reverses and knock resistance becomes proportional to fuel S, and the S=12 fuel is the most knock resistant. The reversal of knock resistance as a function of S with load it is attributed to changing fuel ignition delay, as bulk gas intermediate temperature heat release (ITHR) is observed for the S = 0 several crank angles prior to the spark command and ITHR magnitude is a function of increasing intake temperature. As intake temperature continued to increase, the S=0 fuel transitioned from ITHR to low-temperature heat release (LTHR) prior to the spark event. At the highest load and intake temperature, 95 C, the S=0 fuel exhibits distinct LTHR and negative temperature coefficient (NTC), and the intermediate S value fuel (S=6.5) exhibited distinct ITHR behavior several crank angles prior to the spark command. However, for the tested conditions, the S=12 fuel exhibits neither ITHR nor LTHR. To understand the measured trends, chemical kinetic modeling is used to elucidate the fuel specific dependencies on in-cylinder temperature and pressure history. Lastly, the bulk gas composition change that occurs for fuels and conditions exhibiting ITHR and LTHR is analyzed in the modeling, including their implications on flame speed and combustion stability at late phasing. Furthermore, the combined findings illustrate the commonality and utility of fuel S, ITHR, LTHR, and NTC across a wide range of conditions, and the associated implications of fuel S in highly boosted modern GDI SI engines relative to the RON and MON tests.« less

Top