Belyaev, Victor; Solomatin, Alexey; Chausov, Denis
2013-02-25
Phase retardation of both extraordinary and ordinary polarized rays passing through a liquid crystal (LC) cell with homogeneous and inhomogeneous LC director distribution is calculated as a function of the LC pretilt angle θ₀ on the cell substrates in the range 0 ≤ θ₀ ≤ 90°. The LC pretilt on both substrates can have the same or opposite direction, thereby forming homogeneous, splay, or bend director configurations. At the same pretilt angle value, the largest phase retardation ΔΦ is observed in splay LC cells, whereas the smallest phase retardation is observed in bend cells. For the θ₀ values close to 0, 45°, and 90°, analytical approximations are derived, showing that phase retardation depends on LC birefringence variation.
NASA Astrophysics Data System (ADS)
Kwak, Musun; Chung, Hanrok; Kwon, Hyukmin; Kim, Jehyun; Han, Daekyung; Yi, Yoonseon; Lee, Sangmun; Lee, Chulgu; Cha, Sooyoul
Using frictional force microscopy (FFM), the friction surface characteristics were compared between twisted nematic (TN) mode and vertical alignment (VA) mode alignment films (AFs). The friction asymmetry was detected depending on temperature conditions on TN mode AF, but not on VA mode AF. The difference between two modes was explained by leaning intermolecular repulsion caused by the pre-tilt angle uniformity and the density of side chain. No level difference according to temperature conditions appeared when the pre-tilt angle were measured after liquid crystal (LC) injection.
Effects of alignment layer thickness on the pretilt angle of liquid crystals
NASA Astrophysics Data System (ADS)
Son, Jong-Ho; Zin, Wang-Cheol
2010-12-01
Mixture solutions of vertical- and planar-aligning polyimide precursors were coated on bare glass. The concentrations of the solutions were varied to control the thicknesses of the films. The resulting blend films were baked to induce imidization and then rubbed. The thicknesses (t) of the blend film and of the pure vertical-alignment film affected their surface energies; the pretilt angle can be fully controlled in the range 5.5°≤Θ0≤87° by adjusting t. The surface energy of pure planar-alignment layers was independent of t.
Tilted Liquid Crystal Alignment on Asymmetrically Grooved Porous Alumina Film
NASA Astrophysics Data System (ADS)
Maeda, Tsuyoshi; Hiroshima, Kohki
2005-06-01
This paper reports the achievement of tilted liquid crystal (LC) alignment on an anodic porous alumina (APA) film using microgrooves with asymmetric shapes and dozens of minute pores. The microgrooves with asymmetric shapes were formed by a rubbing technique. The minute pores were then produced by anodization. The LC pretilt angle was controlled by the shapes of the microgrooves and pores. The LC director was orientated in the same inclining direction as that of a rubbed polyimide (PI) film. The pretilt angle was in the range of 20 to 90°. This tilted LC alignment remains very stable against external forces such as thermal shock and intense light.
Deformation along the leading edge of the Maiella thrust sheet in central Italy
NASA Astrophysics Data System (ADS)
Aydin, Atilla; Antonellini, Marco; Tondi, Emanuele; Agosta, Fabrizio
2010-09-01
The eastern forelimb of the Maiella anticline above the leading edge of the underlying thrust displays a complex system of fractures, faults and a series of kink bands in the Cretaceous platform carbonates. The kink bands have steep limbs, display top-to-the-east shear, parallel to the overall transport direction, and are brecciated and faulted. A system of pervasive normal faults, trending sub-parallel to the strike of the mechanical layers, accommodates local extension generated by flexural slip. Two sets of strike-slip faults exist: one is left-lateral at a high angle to the main Maiella thrust; the other is right-lateral, intersecting the first set at an acute angle. The normal and strike-slip faults were formed by shearing across bed-parallel, strike-, and dip-parallel pressure solution seams and associated splays; the thrust faults follow the tilted mechanical layers along the steeper limb of the kink bands. The three pervasive, mutually-orthogonal pressure solution seams are pre-tilting. One set of low-angle normal faults, the oldest set in the area, is also pre-tilting. All other fault/fold structures appear to show signs of overlapping periods of activity accounting for the complex tri-shear-like deformation that developed as the front evolved during the Oligocene-Pliocene Apennine orogeny.
NASA Astrophysics Data System (ADS)
Kurihara, Ryuji; Furue, Hirokazu; Takahashi, Taiju; Yamashita, Tomo-o; Xu, Jun; Kobayashi, Shunsuke
2001-07-01
A photoalignment technique has been utilized for fabricating zigzag-defect-free ferroelectric liquid crystal displays (FLCDs) using polyimide RN-1199, -1286, -1266 (Nissan Chem. Ind.) and adopting oblique irradiation of unpolarized UV light. A rubbing technique was also utilized for comparison. It is shown that among these polyimide materials, RN-1199 is the best for fabricating defect-free cells with C-1 uniform states, but RN-1286 requires low energy to produce a photoaligned FLC phase. We have conducted an analytical investigation to clarify the conditions for obtaining zigzag-defect-free C-1 states, and it is theoretically shown that zigzag-defect-free C-1 state is obtained using a low azimuthal anchoring energy at a low pretilt angle, while a zigzag-defect-free C-2 state is obtained by increasing azimuthal anchoring energy above a critical value, also at a low pretilt angle. The estimated critical value of the azimuthal anchoring energy at which a transition from the C-1 state to the C-2 state occurs is 3×10-6 J/m2 for the FLC material FELIX M4654/100 (Clariant) used in this research; this value is shown to fall in a favorable range which is measured in an independent experiment.
Large polar pretilt for the liquid crystal homologous series alkylcyanobiphenyl
NASA Astrophysics Data System (ADS)
Huang, Zhibin; Rosenblatt, Charles
2005-01-01
Sufficiently strong rubbing of the polyimide alignment layer SE-1211 (Nissan Chemical Industries, Ltd.) results in a large pretilt of the liquid crystal director from the homeotropic orientation. The threshold rubbing strength required to induce nonzero pretilt is found to be a monotonic function of the number of methylene units in the homologous liquid crystal series alkylcyanobiphenyl. The results are discussed in terms of the dual easy axis model for alignment.
Naturally occurring reverse tilt domains in a high-pretilt alignment nematic liquid crystal
NASA Astrophysics Data System (ADS)
Wang, Ruiting; Atherton, Timothy J.; Zhu, Minhua; Petschek, Rolfe G.; Rosenblatt, Charles
2007-08-01
A cell whose substrates were coated with the polyamic acid SE1211 (Nissan Chemical Industries) and baked at high temperatures was filled with a nematic liquid crystal in the isotropic phase. On cooling into the nematic phase, naturally occurring and temporally and thermally robust reverse tilt domains separated by thin filamentlike walls were observed. The properties of these structures are reported.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Souza, R.F. de; Yang, D.-Ke; Lenzi, E.K.
2014-07-15
An analytical expression for the relaxation time of a nematic liquid crystal is obtained for the first time by considering the influence of surface viscosity, anchoring energy strength and cell gap, validated numerically by using the so-called relaxation method. This general equation for the molecular response time (τ{sub 0}) was derived for a vertical aligned cell and by solving an eigenvalue equation coming from the usual balance of torque equation in the Derzhanskii and Petrov formulation, recovering the usual equations in the appropriate limit. The results show that τ∼d{sup b}, where b=2 is observed only for strongly anchored cells, whilemore » for moderate to weak anchored cells, the exponent lies between 1 and 2, depending on both, surface viscosity and anchoring strength. We found that the surface viscosity is important when calculating the response time, specially for thin cells, critical for liquid crystal devices. The surface viscosity’s effect on the optical response time with pretilt is also explored. Our results bring new insights about the role of surface viscosity and its effects in applied physics. - Highlights: • The relaxation of nematic liquid crystals is calculated by taking the surface viscosity into account. • An analytical expression for the relaxation time depending on surface viscosity, anchoring strength and cell gap is obtained. • The results are numerically verified. • Surface viscosity is crucial for thin and weak anchored cells. • The effect on optical time and pretilt angle is also studied.« less
Tanaka, Shingo; Dhara, Surajit; Sadashiva, B K; Shimbo, Yoshio; Takanishi, Yoichi; Araoka, Fumito; Ishikawa, Ken; Takezoe, Hideo
2008-04-01
We report an unusual electroconvection in the nematic phase of a bent-core liquid crystal. In a voltage-frequency diagram, two frequency regions exhibiting prewavy stripe patterns were found, as reported by Wiant We found that these stripes never show extinction dark when cells were rotated under crossed polarizers. Based on the color interchange in between neighboring stripes by the rotation of the cells or an analyzer, twisted molecular orientation is suggested; i.e., the directors are alternately twisted from the top to the bottom surfaces with a pretilt angle in adjacent stripes, which is an analogue of the twisted (splayed) structure observed in surface-stabilized ferroelectric liquid crystal cells. The transmittance spectra calculated using the 4x4 matrix method from the model structure are consistent with the experimental observation.
Origin of orogenic remagnetizations in Mississippian carbonates, Sawtooth Range, Montana
NASA Astrophysics Data System (ADS)
O'Brien, V. J.; Moreland, K. M.; Elmore, R. D.; Engel, M. H.; Evans, M. A.
2007-06-01
Paleomagnetic results are presented from Mississippian Madison Group carbonates in the Sawtooth Range, northwestern Montana. Samples were collected from sites along two east-west trending transects perpendicular to the thrust faults in the Sun River Canyon and in the North and South Forks of the Teton River and from three folds. The Madison Group contains a widespread characteristic remanent magnetization (ChRM) that resides in magnetite with southerly declinations and moderately steep up inclinations. Tilt test results suggest that the ChRM is pretilting in the thrust sheets and Teton anticline but syntilting in the Clary Coulee and Swift Dam folds. The ChRMs all have the same characteristics and were probably caused by the same remagnetization event, yet the tilt test results are different. One explanation involves the difference in fold types between the Teton anticline (fault bend fold geometry) and the Clary Coulee and Swift Dam folds (fault propagation fold geometries). The deformation that produced the two geometries could have caused variations in strain/stress, which may have altered an original pretilting into a syntilting ChRM. A mean paleopole for the three pretilting tilt test results (67.2°N, 177.9°E; A95 = 13.1°) suggests remanence acquisition in the late Jurassic-early Tertiary. The ChRM is interpreted as a chemical remanent magnetization (CRM). Geochemical studies indicate that the Mississippian carbonates were altered by evolved fluids with radiogenic 87Sr/86Sr values, and petrographic analysis indicates that hydrocarbons migrated through the carbonates. The CRM is interpreted to be related to alteration by one of these fluids.
NASA Astrophysics Data System (ADS)
Lin, Yi-Hsin; Chen, Ming-Syuan; Lin, Wei-Chih; Tsou, Yu-Shih
2012-07-01
A polarization-independent liquid crystal phase modulation using polymer-network liquid crystals in a 90° twisted cell (T-PNLC) is demonstrated. T-PNLC consists of three layers. Liquid crystal (LC) directors in the two layers near glass substrates are orthogonal to each other and those two layers modulate two eigen-polarizations of an incident light. As a result, two eigen-polarizations of an incident light experience the same phase shift. In the middle layer, LC directors are perpendicular to the glass substrate and contribute no phase shift. The phase shift of T-PNLC is electrically tunable and polarization-independent. T-PNLC does not require any bias voltage for operation. The phase shift is 0.28 π rad for the voltage of 30 Vrms. By measuring and analyzing the optical phase shift of T-PNLC at the oblique incidence of transverse magnetic wave, the pretilt angle of LC directors and the effective thickness of three layers are obtained and discussed. The potential applications are spatial light modulators, laser beam steering, and micro-lens arrays.
Exercise Versus +Gz Acceleration Training
NASA Technical Reports Server (NTRS)
Greenleaf, John E.; Simonson, S. R.; Stocks, J. M.; Evans, J. M.; Knapp, C. F.; Dalton, Bonnie P. (Technical Monitor)
2002-01-01
Decreased working capacity and "orthostatic" intolerance are two major problems for astronauts during and after landing from spaceflight in a return vehicle. The purpose was to test the hypotheses that (1) supine-passive-acceleration training, supine-interval-exercise plus acceleration training, and supine exercise plus acceleration training will improve orthostatic tolerance (OT) in ambulatory men; and that (2) addition of aerobic exercise conditioning will not influence this enhanced OT from that of passive-acceleration training. Seven untrained men (24-38 yr) underwent 3 training regimens (30 min/d x 5d/wk x 3wk on the human-powered centrifuge - HPC): (a) Passive acceleration (alternating +1.0 Gz to 50% Gzmax); (b) Exercise acceleration (alternating 40% - 90% V02max leg cycle exercise plus 50% of HPCmax acceleration); and (c) Combined intermittent exercise-acceleration at 40% to 90% HPCmax. Maximal supine exercise workloads increased (P < 0.05) by 8.3% with Passive, by 12.6% with Exercise, and by 15.4% with Combined; but maximal V02 and HR were unchanged in all groups. Maximal endurance (time to cessation) was unchanged with Passive, but increased (P < 0.05) with Exercise and Combined. Resting pre-tilt HR was elevated by 12.9% (P < 0.05) only after Passive training, suggesting that exercise training attenuated this HR response. All resting pre-tilt blood pressures (SBP, DBP, MAP) were not different pre- vs. post-training. Post-training tilt-tolerance time and HR were increased (P < 0.05) only with Passive training by 37.8% and by 29.1%, respectively. Thus, addition of exercise training attenuated the increased Passive tilt tolerance. Resting (pre-tilt) and post-tilt cardiac R-R interval, stroke volume, end-diastolic volume, and cardiac output were all uniformly reduced (P < 0.05) while peripheral resistance was uniformly increased (P < 0.05) pre-and post-training for the three regimens indicating no effect of any training regimen on those cardiovascular variables. Plasma volume (% delta) was uniformly decreased by 8% to 14% (P < 0.05) at tilt-tolerance pre- vs. post-training for all regimens indicating no effect of these training regimens on the level of vascular fluid shifts.
NASA Astrophysics Data System (ADS)
Basu, Rajratan; Kinnamon, Daniel; Skaggs, Nicole; Womack, James
2016-05-01
The in-plane switching (IPS) for a nematic liquid crystal (LC) was found to be considerably faster when the LC was doped with dilute concentrations of monolayer graphene flakes. Additional studies revealed that the presence of graphene reduced the rotational viscosity of the LC, permitting the nematic director to respond quicker in IPS mode on turning the electric field on. The studies were carried out with several graphene concentrations in the LC, and the experimental results coherently suggest that there exists an optimal concentration of graphene, allowing a reduction in the IPS response time and rotational viscosity in the LC. Above this optimal graphene concentration, the rotational viscosity was found to increase, and consequently, the LC no longer switched faster in IPS mode. The presence of graphene suspension was also found to decrease the LC's pretilt angle significantly due to the π-π electron stacking between the LC molecules and graphene flakes. To understand the π-π stacking interaction, the anchoring mechanism of the LC on a CVD grown monolayer graphene film on copper substrate was studied by reflected crossed polarized microscopy. Optical microphotographs revealed that the LC alignment direction depended on monolayer graphene's hexagonal crystal structure and its orientation.
Polymer stabilized liquid crystals: Topology-mediated electro-optical behavior and applications
NASA Astrophysics Data System (ADS)
Weng, Libo
There has been a wide range of liquid crystal polymer composites that vary in polymer concentration from as little as 3 wt.% (polymer stabilized liquid crystal) to as high as 60 wt.% (polymer dispersed liquid crystals). In this dissertation, an approach of surface polymerization based on a low reactive monomer concentration about 1 wt.% is studied in various liquid crystal operation modes. The first part of dissertation describes the development of a vertical alignment (VA) mode with surface polymer stabilization, and the effects of structure-performance relationship of reactive monomers (RMs) and polymerization conditions on the electro-optical behaviors of the liquid crystal device has been explored. The polymer topography plays an important role in modifying and enhancing the electro-optical performance of stabilized liquid crystal alignment. The enabling surface-pinned polymer stabilized vertical alignment (PSVA) approach has led to the development of high-performance and fast-switching displays with controllable pretilt angle, increase in surface anchoring energy, high optical contrast and fast response time. The second part of the dissertation explores a PSVA mode with in-plane switching (IPS) and its application for high-efficiency and fast-switching phase gratings. The diffraction patterns and the electro-optical behaviors including diffraction efficiency and response time are characterized. The diffraction grating mechanism and performance have been validated by computer simulation. Finally, the advantages of surface polymerization approach such as good optical contrast and fast response time have been applied to the fringe-field switching (FFS) system. The concentration of reactive monomer on the electro-optical behavior of the FFS cells is optimized. The outstanding electro-optical results and mechanism of increase in surface anchoring strength are corroborated by the director field simulation. The density and topology of nanoscale polymer protrusions are analyzed and confirmed by morphological study. The developed high-performance polymer-stabilized fringe-field-switching (PS-FFS) could open new types of device applications.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Basu, Rajratan, E-mail: basu@usna.edu; Kinnamon, Daniel; Skaggs, Nicole
2016-05-14
The in-plane switching (IPS) for a nematic liquid crystal (LC) was found to be considerably faster when the LC was doped with dilute concentrations of monolayer graphene flakes. Additional studies revealed that the presence of graphene reduced the rotational viscosity of the LC, permitting the nematic director to respond quicker in IPS mode on turning the electric field on. The studies were carried out with several graphene concentrations in the LC, and the experimental results coherently suggest that there exists an optimal concentration of graphene, allowing a reduction in the IPS response time and rotational viscosity in the LC. Abovemore » this optimal graphene concentration, the rotational viscosity was found to increase, and consequently, the LC no longer switched faster in IPS mode. The presence of graphene suspension was also found to decrease the LC's pretilt angle significantly due to the π-π electron stacking between the LC molecules and graphene flakes. To understand the π-π stacking interaction, the anchoring mechanism of the LC on a CVD grown monolayer graphene film on copper substrate was studied by reflected crossed polarized microscopy. Optical microphotographs revealed that the LC alignment direction depended on monolayer graphene's hexagonal crystal structure and its orientation.« less
NASA Astrophysics Data System (ADS)
Reznikov, Mitya; Lopatina, Lena M.; O'Callaghan, Michael J.; Bos, Philip J.
2011-03-01
The effect of surface alignment on the achievement of analog ("V"-shaped) electric field control of director rotation in SmC* liquid crystal devices is investigated experimentally and through numerical modeling. Ferroelectric SmC* liquid crystals are intrinsically analog and thresholdless, i.e. the director can be rotated freely around the tilt cone. Whether or not a SmC* liquid crystal cell exhibits thresholdless switching depends strongly on the influence of the cell's alignment layers, on the magnitude of the liquid crystal's spontaneous polarization, and on whether smectic layers adopt a bookshelf or chevron configuration. To study the effect of the surface alignment layers, we have exploited a technique for the vertical (bookshelf) alignment of the smectic layers that does not depend on surface anisotropy. The alignment technique allows an experimental study of the influence of surfaces spanning a wide range of pretilt angles, azimuthal and zenithal anchoring energies. This technique is used to study the effect of surfaces on the threshold behavior of director rotation in SmC* materials under the influence of an electric field. The alignment technique also allowed us to use a high-PS liquid crystal material having an I-A-C phase sequence and reduced layer shrinkage thought to be well suited to thresholdless switching. We show that the alignment layer has a strong effect, and that excellent analog response can be achieved for the case of alignment layers which promote homeotropic director orientation. We further model and discuss the potential effect of a thin layer of nematic at the surface and the possibility of gliding of the easy axis during switching.
Simulated Microgravity Increases Cutaneous Blood Flow in the Head and Leg of Humans
NASA Technical Reports Server (NTRS)
Stout, M. Shannon; Watenpaugh, Donald E.; Breit, Gregory A.; Hargens, Alan R.
1995-01-01
The cutaneous microcirculation vasodilates during acute 6 degree head-down tilt (HDT, simulated microgravity) relative to upright conditions, more in the lower body than in the upper body. Cutaneous microvascular blood flow was measured with laser-Doppler flowmetry at the leg (over the distal tibia) and cheek (over the zygomatic arch) of eight healthy men before, during, and after 24 h of HDT. Results were calculated as a percentage of baseline value (100% measured during pre-tilt upright sitting). Cutaneous blood flow in the cheek increased significantly to 165 +/- 37% (mean +/- SE, p less than 0.05) at 9-12 h HDT, then returned to near baseline values by 24 h HDT (114 +/- 29%, NSD), despite increased local arterial pressure. Microvascular flow in the leg remained significantly elevated above baseline througout 24 h HDT (427 +/- 85% at 3 h HDT and 215 +/- 142% at 24 h HDT, p less than 0.05). During the 6-h upright sitting recovery period, cheek and leg blood flow levels returned to near pre-tilt baseline values. Because hydrostatic effects of HDT increase local arterial pressure at the carotid sinus, baroreflex-mediated withdrawal of sympathetic tone probably contributed to increased microvascular flows at the head and leg during HDT. In the leg baroreflex effects combined with minimal stimulation of local veno-arteriolar and myogenic autoregulatory vasoconstriction to elicit relatively larger and more sustained increases in cutaneous flow during HDT. In the cheek, delayed myogenic vasoconstriction and/or hurmonal effects apparently compensated for flow elevation by 24 h of HDT. Therefore, localized vascular adaptations to gravity probably explain differences in acclimation of lower and upper body blood flow to HDT and actual microgravity.
Advances in circular stapling technique for gastric bypass: transoral placement of the anvil.
Nguyen, Ninh T; Hinojosa, Marcelo W; Smith, Brian R; Reavis, Kevin M; Wilson, Samuel E
2008-05-01
In Roux-en-Y gastric bypass, construction of the gastrojejunostomy is commonly performed using a circular stapler. The initial description for placement of the anvil was via the transoral approach. Although the concept was ingenious, technical difficulty was encountered during passage resulting in complications such as hypopharyngeal perforation and esophageal mucosal injury. As a result, most surgeons subsequently changed their route of anvil placement to the transabdominal approach. Advances in stapler technology now allow the head of the anvil to be pre-tilted, permitting transoral introduction with greater ease and safety. This paper describes this improved method for transoral placement of the anvil during laparoscopic gastric bypass and reoperative bariatric surgery.
Howard, K.A.; Foster, D.A.
1996-01-01
We estimate here a geothermal gradient of only 17 ?? 5??C km-1 for the tilted Grayback fault block in southeastern Arizona when extension began ???25 Ma. This gradient is lower than preextension gradients estimated elsewhere in the Basin and Range, is only about 50% of typical gradients in the Basin and Range today, and needs to be accounted for in models of continental extension. The Grayback block exposes a 12-km-thick crustal section of Proterozoic and Cretaceous granitoids, which was tilted 90?? during extension between 25 and 15 Ma. Zircon fission-track ages decrease structurally downward (westward) across the block and were all within a zone of partial track annealing prior to tilting and quenching. The zircon age gradient suggests that the 220??-240??C isotherm migrated downward 5-6 km during Paleogene erosion and regional cooling. Apatite fission-track ages decrease westward from ???83 Ma in the structurally highest crystalline rocks to ???24 Ma at ???6-km paleodepth and then to ???15 Ma another 6 km farther west. Track-length analysis confirms that apatites above the break in slope in age at ???5.7-km paleodepth resided in a zone of partial annealing prior to tilting, and deeper apatites record rapid cooling upon tilting and unroofing beginning ???25 Ma. At that time the 110 ?? 10??C isotherm determined by the depth at which tracks in apatite were fully erased was at a basement paleodepth of ???5.7 km, and the 220 ?? 30??C isotherm as estimated from zircon data resided at a pretilting basement depth of ???12.15 km. From consistent values of paleogeothermal gradient for two depth intervals we estimate the pretilt gradient was 17 ?? 5??C km-1. From 25 to 15 Ma the rotating Grayback block cooled rapidly as higher, westward moving blocks unroofed it tectonically at a rate of ???1 km m.y.-1.
Simulated Microgravity Increases Cutaneous Blood Flow in the Head and Leg of Humans
NASA Technical Reports Server (NTRS)
Stout, M. Shannon; Watenpaugh, Donald E.; Breit, Gregory A.; Hargens, Alan R.
1995-01-01
The cutaneous micro-circulation vasodilates during acute 6 deg. head-down tilt (HDT, simulated microgravity) relative to upright conditions, more in the lower body than in the upper body. We expected that relative magnitudes of and differences between upper and lower body cutaneous blood flow elevation would be sustained during initial acclimation to simulated microgravity. We measured cutaneous micro-vascular blood flow with laser-Doppler flowmetry at the leg (over the distal tibia) and cheek (over the zygomatic arch) of eight healthy men before, during, and after 24 h of HDT. Results were calculated as a percentage of baseline value (100% measured during pre-tilt upright sitting). Cutaneous blood flow in the cheek increased significantly to 165 +/- 37% (mean + SE, p less than 0.05) at 9-12 h HDT, then returned to near baseline values by 24 h HDT (114 +/- 29%, NSD), despite increased local arterial pressure. Microvascular flow in the leg remained significantly elevated above baseline throughout 24 h HDT (427 +/- 85% at 3 h HDT and 215 +/- 142% at 24 h HDT, p less than 0.05). During the 6-h upright sitting recovery period, cheek and leg blood flow levels returned to near pre-tilt baseline values. Because hydrostatic effects of HDT increase local arterial pressure at the carotid sinus, baroreflex-mediated withdrawal of sympathetic tone probably contributed to increased microvascular flows at the head and leg during HDT. In the leg, baroreflex effects combined with minimal stimulation of local veno-arteriolar and myogenic autoregulatory vasoconstriction to elicit relatively larger and more sustained increases in cutaneous flow during HDT. In the cheek, delayed myogenic vasoconstriction and/or humoral effects apparently compensated for flow elevation by 24 h of HDT. Therefore, localized vascular adaptations to gravity probably explain differences in acclimation of lower and upper body blood flow to HDT and actual microgravity.
NASA Astrophysics Data System (ADS)
Scolari, Lara; Tanggaard Alkeskjold, Thomas; Riishede, Jesper; Bjarklev, Anders; Sparre Hermann, David; Anawati, Anawati; Dybendal Nielsen, Martin; Bassi, Paolo
2005-09-01
We present an electrically controlled photonic bandgap fiber device obtained by infiltrating the air holes of a photonic crystal fiber (PCF) with a dual-frequency liquid crystal (LC) with pre-tilted molecules. Compared to previously demonstrated devices of this kind, the main new feature of this one is its continuous tunability due to the fact that the used LC does not exhibit reverse tilt domain defects and threshold effects. Furthermore, the dual-frequency features of the LC enables electrical control of the spectral position of the bandgaps towards both shorter and longer wavelengths in the same device. We investigate the dynamics of this device and demonstrate a birefringence controller based on this principle.
A study of substrate-liquid crystal interaction
NASA Astrophysics Data System (ADS)
Zhang, Baoshe
This thesis concerns the study of substrate-liquid crystal interaction from two different angles. In one approach, we used the IPS (in-plane switching) technique to investigate the liquid crystal alignment by rubbed polyimide films. The IPS mode of liquid crystal cell operation is facilitated through comb electrodes capable of producing planar electric field. We have fabricated comb electrodes with a periodicity of 2 mum in order to confine the planar electric field close to the liquid crystal-substrate interface. Through optical transmittance measurements and comparison with theoretical predictions based on the Ladau-de Gennes formalism, we found the experimental data to be consistent with the physical picture of soft anchoring, in which the liquid crystal director at the substrate interface is rotated azimuthally under the planar electric field. As a result, we were able to obtain the azimuthal anchoring strength as a fitting parameter of the theory. This part of the thesis thus presents evidence(s) for director switching at the liquid crystal-substrate interface, as well as a method for measuring the azimuthal anchoring strength through optical means. In the second approach, we used nano-lithographic technique to fabricate textured two dimensional periodic patterns on silicon wafers, and examined the resulting liquid crystal alignment effect of such textured substrates. It was found that with decreasing periodicity, there exists an orientational transition from a state in which the liquid crystal alignment copies the substrate pattern at larger periodicity, to a state of uniform alignment at smaller periodicity. In our system, this transition occurs at a periodicity between 0.4 mum and 0.8 mum. Through theoretical simulations based on the model of competition between the elastic distortion energy and the interfacial anchoring potential, it was found that there is indeed a first-order abrupt transition when the periodicity is decreased. This is due to the fact that the elastic distortion energy scales as the inverse of the periodicity squared. Hence when the periodicity is decreased, the elastic distortion energy increases rapidly. At the critical periodicity the elastic distortion energy crosses the interfacial anchoring potential, below which the uniform alignment becomes the lower energy state. The uniform-aligned state was confirmed by the excellent theory-experiment agreement on spectral measurements, in conjunction with the optical microscope observations. In the uniform-aligned state, a large pretilt angle (35°) was obtained.
Hatzitaki, Vassilia; Pavlou, Marousa; Bronstein, Adolfo M
2004-02-01
Previous studies have looked at co-processing of multiple proprioceptive inputs but few have investigated the effect of separate dynamic and tonic predominantly proprioceptive disruptions applied concurrently at the same segment. The purpose of the present study was to investigate how simultaneous ankle tendon vibration, a tonic stimulus, with a dynamic toes-up (TU) or toes-down (TD) platform perturbation (1) affects postural stability and (2) influences the adaptation process. Sixteen normal subjects (ten male, six female, mean age 26 +/- 4.8 years) stood blindfolded on a moving platform with vibrators attached bilaterally over the Achilles tendons. Participants were tested in quiet stance (QS), and with five successive TU and TD tilts. All tests were conducted both with (QS+V, TU+V, TD+V) and without vibration. Centre of pressure (CoP) displacements and pitch angular trunk velocity were recorded. Results for QS+V showed a significant 1.02-cm backward CoP displacement (P<0.01) and a significant increase in trunk velocity (peak-to-peak amplitude, P<0.05; SD of trunk velocity, P<0.05). TU+V resulted in a non-significant increase of maximum backwards CoP displacement when compared to TU alone. In addition, no notable effect of vibration on other measures of CoP (pre-tilt position, SD and area of sway) and trunk velocity (peak-to-peak, SD and area of sway) indicates that TU+V does not introduce significantly greater instability compared to tilt alone. In the TD condition, vibration was found to be a stabilising influence, causing a significant shift of the mean pre-tilt position 0.85 cm backwards (P<0.01) and a substantial decrease in the area of forward CoP displacement (P<0.01). However, maximum forwards CoP displacement and trunk velocity measures were not significantly altered during TD+V. Furthermore, in neither TU nor TD was the time-course or pattern of adaptation disrupted by the additional application of vibration. In conclusion, although vibration significantly affects postural measures when applied in isolation, this finding does not hold when it is applied in combination with a more dynamic stimulus. Instead it seems that once postural stability has been disrupted the central nervous system can rapidly assess information from a weaker tonic input and utilise or suppress it appropriately, depending on its effect towards overall postural control. It can be concluded that postural responses to the concurrent application of different predominantly proprioceptive stimuli are dependent upon the type of stimulus and the ability of the central nervous system to rapidly assess and re-weigh available sensory inputs.
Influence of SiC grain boundary character on fission product transport in irradiated TRISO fuel
NASA Astrophysics Data System (ADS)
Lillo, T. M.; van Rooyen, I. J.
2016-05-01
In this study, the fission product precipitates at silicon carbide grain boundaries from an irradiated TRISO particle were identified and correlated with the associated grain boundary characteristics. Precession electron diffraction in the transmission electron microscope provided the crystallographic information needed to identify grain boundary misorientation and boundary type (i.e., low angle, random high angle or coincident site lattice (CSL)-related). The silicon carbide layer was found to be composed mainly of twin boundaries and small fractions of random high angle and low angle grain boundaries. Most fission products were found at random, high-angle grain boundaries, with small fractions at low-angle and CSL-related grain boundaries. Palladium (Pd) was found at all types of grain boundaries while Pd-uranium and Pd-silver precipitates were only associated with CSL-related and random, high-angle grain boundaries. Precipitates containing only Ag were found only at random, high-angle grain boundaries, but not at low angle or CSL-related grain boundaries.
Angle amplifier based on multiplexed volume holographic gratings
NASA Astrophysics Data System (ADS)
Cao, Liangcai; Zhao, Yifei; He, Qingsheng; Jin, Guofan
2008-03-01
Angle amplifier of laser beam scanner is a widely used device in optical systems. Volume holographic optical elements can be applied in the angle amplifier. Compared with the traditional angle amplifier, it has the advantages of high angle resolution, high diffraction efficiency, small size, and high angle magnification and flexible design. Bragg anglewavelength- compensating recording method is introduced. Because of the Bragg compensatory relation between angle and wavelength, this device could be recorded at another wavelength. The design of the angle amplifier recording at the wavelength of 514.2nm for the working wavelength of 632.8nm is described. An optical setup for recording the angle amplifier device is designed and discussed. Experimental results in the photorefractive crystal Fe:LiNbO 3 demonstrate the feasibility of the angle amplifier scheme.
Design of a self-calibration high precision micro-angle deformation optical monitoring scheme
NASA Astrophysics Data System (ADS)
Gu, Yingying; Wang, Li; Guo, Shaogang; Wu, Yun; Liu, Da
2018-03-01
In order to meet the requirement of high precision and micro-angle measurement on orbit, a self-calibrated optical non-contact real-time monitoring device is designed. Within three meters, the micro-angle variable of target relative to measuring basis can be measured in real-time. The range of angle measurement is +/-50'', the angle measurement accuracy is less than 2''. The equipment can realize high precision real-time monitoring the micro-angle deformation, which caused by high strength vibration and shock of rock launching, sun radiation and heat conduction on orbit and so on.
Flight test of the X-29A at high angle of attack: Flight dynamics and controls
NASA Technical Reports Server (NTRS)
Bauer, Jeffrey E.; Clarke, Robert; Burken, John J.
1995-01-01
The NASA Dryden Flight Research Center has flight tested two X-29A aircraft at low and high angles of attack. The high-angle-of-attack tests evaluate the feasibility of integrated X-29A technologies. More specific objectives focus on evaluating the high-angle-of-attack flying qualities, defining multiaxis controllability limits, and determining the maximum pitch-pointing capability. A pilot-selectable gain system allows examination of tradeoffs in airplane stability and maneuverability. Basic fighter maneuvers provide qualitative evaluation. Bank angle captures permit qualitative data analysis. This paper discusses the design goals and approach for high-angle-of-attack control laws and provides results from the envelope expansion and handling qualities testing at intermediate angles of attack. Comparisons of the flight test results to the predictions are made where appropriate. The pitch rate command structure of the longitudinal control system is shown to be a valid design for high-angle-of-attack control laws. Flight test results show that wing rock amplitude was overpredicted and aileron and rudder effectiveness were underpredicted. Flight tests show the X-29A airplane to be a good aircraft up to 40 deg angle of attack.
Hansen, Bruce P.; Stone, Janet Radway; Lane, John W.
1999-01-01
Surface and borehole geophysical methods were used to determine fracture orientation in crystalline bedrock at the Eastern Surplus Superfund Site in Meddybemps, Maine. Fracture-orientation information is needed to address concerns about the fate of contaminants in ground water at the site. Azimuthal square-array resistivity surveys were conducted at 3 locations at the site, borehole-acoustic televiewer and borehole-video logs were collected in 10 wells, and single-hole directional radar surveys were conducted in 9 wells. Borehole-video logs were used to supplement the results of other geophysical techniques and are not described in this report. Analysis of azimuthal square-array resistivity data indicated that high-angle fracturing generally strikes northeast-southwest at the three locations. Borehole-acoustic televiewer logs detected one prominent low-angle and two prominent high-angle fracture sets. The low-angle fractures strike generally north-northeast and dip about 20 degrees west-northwest. One high-angle fracture set strikes north-northeast and dips east-southeast; the other high-angle set strikes east-northeast and dips south-southeast. Single-hole directional radar surveys identified two prominent fracture sets: a low-angle set striking north-northeast, dipping west-northwest; and a high-angle fracture set striking north-northeast, dipping east-southeast. Two additional high-angle fracture sets are defined weakly, one striking east-west, dipping north; and a second striking east-west, dipping south. Integrated results from all of the geophysical surveys indicate the presence of three primary fracture sets. A low-angle set strikes north-northeast and dips west-northwest. Two high-angle sets strike north-northeast and east-northeast and dip east-southeast and south-southeast. Statistical correction of the fracture data for orientation bias indicates that high-angle fractures are more numerous than observed in the data but are still less numerous than the low-angle fractures. The orientation and distribution of water-yielding fractures sets were determined by correlating the fracture data from this study with previously collected borehole-flowmeter data. The water-yielding fractures are generally within the three prominent fracture sets observed for the total fracture population. The low-angle water-yielding fractures primarily strike north-northeast to west-northwest and dip west-northwest to south-southwest. Most of the high-angle water-yielding fractures strike either north-northeast or east-west and dip east-southeast or south. The spacing between water-yielding fractures varies but the probable average spacing is estimated to be 30 feet for low-angle fractures; 27 feet for the east-southeast dipping, high-angle fractures; and 43 feet for the south-southeast dipping, high-angle fractures. The median estimated apparent transmissivity of individual water-yielding fractures or fracture zones was 0.3 feet squared per day and ranged from 0.01 to 382 feet squared per day. Ninety-five percent of the water-yielding fractures or fracture zones had an estimated apparent transmissivity of 19.5 feet squared per day or less. The orientation, spacing, and hydraulic properties of water-yielding fractures identified during this study can be used to help estimate recharge, flow, and discharge of ground water contaminants. High-angle fractures provide vertical pathways for ground water to enter the bedrock, interconnections between low-angle fractures, and, subsequently, pathways for water flow within the bedrock along fracture planes. Low-angle fractures may allow horizontal ground-water flow in all directions. The orientation of fracturing and the hydraulic properties of each fracture set strongly affect changes in ground-water flow under stress (pumping) conditions.
Sowka, Joseph; Girgis, Nadine
2010-09-01
Angle closure most commonly occurs in older hyperopic patients as a result of primary relative pupil block. Less frequently, angle closure occurs in highly myopic patients with conditions other than primary relative pupil block. This report presents the diagnosis, pathophysiologic mechanism, and management of a patient with both high myopia and bilateral advanced phacomorphic angle-closure glaucoma caused by isolated spherophakia. A 40-year-old asymptomatic man with very high myopic astigmatism presented with chronic angle closure and an intraocular pressure of 42 mmHg in both eyes. Additionally there was a nonmyopic fundus and 24-mm axial length, with a clear crystalline lens protruding through the pupillary plane in each eye, confirmed by B-scan ultrasonography. Gonioscopy and A-scan and B-scan ultrasonography identified the pathogenesis of intraocular pressure elevation, angle closure, and high myopia to be lenticular in origin. Initial medical therapy and subsequent laser iridotomy relieved the pupil block angle closure and successfully lowered intraocular pressure. Angle closure can occur in highly myopic eyes. Careful gonioscopy and ultrasonography can lead to the correct diagnosis and tailored management for these eyes. Phacomorphic angle-closure glaucoma from spherophakia is associated with Weill-Marchesani syndrome as well as a few other uncommon syndromes. Isolated pseudophakia is a rarely reported cause of phacomorphic angle closure. Copyright 2010 American Optometric Association. Published by Elsevier Inc. All rights reserved.
Wang, Liming; Wei, Jingjing; Su, Zhaohui
2011-12-20
High contact angle hysteresis on polyelectrolyte multilayers (PEMs) ion-paired with hydrophobic perfluorooctanoate anions is reported. Both the bilayer number of PEMs and the ionic strength of deposition solutions have significant influence on contact angle hysteresis: higher ionic strength and greater bilayer number cause increased contact angle hysteresis values. The hysteresis values of ~100° were observed on smooth PEMs and pinning of the receding contact line on hydrophilic defects is implicated as the cause of hysteresis. Surface roughness can be used to further tune the contact angle hysteresis on the PEMs. A surface with extremely high contact angle hysteresis of 156° was fabricated when a PEM was deposited on a rough substrate coated with submicrometer scale silica spheres. It was demonstrated that this extremely high value of contact angle hysteresis resulted from the penetration of water into the rough asperities on the substrate. The same substrate hydrophobized by chemical vapor deposition of 1H,1H,2H,2H-perfluorooctyltriethoxysilane exhibits high advancing contact angle and low hysteresis. © 2011 American Chemical Society
Angle Performance on Optima XE
DOE Office of Scientific and Technical Information (OSTI.GOV)
David, Jonathan; Satoh, Shu
2011-01-07
Angle control on high energy implanters is important due to shrinking device dimensions, and sensitivity to channeling at high beam energies. On Optima XE, beam-to-wafer angles are controlled in both the horizontal and vertical directions. In the horizontal direction, the beam angle is measured through a series of narrow slits, and any angle adjustment is made by steering the beam with the corrector magnet. In the vertical direction, the beam angle is measured through a high aspect ratio mask, and any angle adjustment is made by slightly tilting the wafer platen during implant.Using a sensitive channeling condition, we were ablemore » to quantify the angle repeatability of Optima XE. By quantifying the sheet resistance sensitivity to both horizontal and vertical angle variation, the total angle variation was calculated as 0.04 deg. (1{sigma}). Implants were run over a five week period, with all of the wafers selected from a single boule, in order to control for any crystal cut variation.« less
NASA Astrophysics Data System (ADS)
Morley, Chris K.
2009-10-01
At least eight examples of large (5-35 km heave), low-angle normal faults (LANFs, 20°-30° dip) occur in the Cenozoic rift basins of Thailand and laterally pass into high-angle extensional fault systems. Three large-displacement LANFs are found in late Oligocene-Miocene onshore rift basins (Suphan Buri, Phitsanulok, and Chiang Mai basins), they have (1) developed contemporaneous with, or after the onset of, high-angle extension, (2) acted as paths for magma and associated fluids, and (3) impacted sedimentation patterns. Displacement on low-angle faults appears to be episodic, marked by onset of lacustrine conditions followed by axial progradation of deltaic systems that infilled the lakes during periods of low or no displacement. The Chiang Mai LANF is a low-angle (15°-25°), high-displacement (15-35 km heave), ESE dipping LANF immediately east of the late early Miocene Doi Inthanon and Doi Suthep metamorphic core complexes. Early Cenozoic transpressional crustal thickening followed by the northward motion of India coupled with Burma relative to east Burma and Thailand (˜40-30 Ma) caused migmatization and gneiss dome uplift in the late Oligocene of the core complex region, followed by LANF activity. LANF displacement lasted 4-6 Ma during the early Miocene and possibly transported a late Oligocene-early Miocene high-angle rift system 35 km east. Other LANFs in Thailand have lower displacements and no associated metamorphic core complexes. The three LANFs were initiated as low-angle faults, not by isostatic rotation of high-angle faults. The low-angle dips appear to follow preexisting low-angle fabrics (thrusts, shear zones, and other low-angle ductile foliations) predominantly developed during Late Paleozoic and early Paleogene episodes of thrusting and folding.
Ucar, Faruk Izzet; Buyuk, Suleyman Kutalmis; Ozer, Torun; Uysal, Tancan
2013-01-01
Objective To evaluate lower incisor position and bony support between patients with Class II average- and high-angle malocclusions and compare with the patients presenting Class I malocclusions. Methods CBCT records of 79 patients were divided into 2 groups according to sagittal jaw relationships: Class I and II. Each group was further divided into average- and high-angle subgroups. Six angular and 6 linear measurements were performed. Independent samples t-test, Kruskal-Wallis, and Dunn post-hoc tests were performed for statistical comparisons. Results Labial alveolar bone thickness was significantly higher in Class I group compared to Class II group (p = 0.003). Lingual alveolar bone angle (p = 0.004), lower incisor protrusion (p = 0.007) and proclination (p = 0.046) were greatest in Class II average-angle patients. Spongious bone was thinner (p = 0.016) and root apex was closer to the labial cortex in high-angle subgroups when compared to the Class II average-angle subgroup (p = 0.004). Conclusions Mandibular anterior bony support and lower incisor position were different between average- and high-angle Class II patients. Clinicians should be aware that the range of lower incisor movement in high-angle Class II patients is limited compared to average- angle Class II patients. PMID:23814708
Baysal, Asli; Ucar, Faruk Izzet; Buyuk, Suleyman Kutalmis; Ozer, Torun; Uysal, Tancan
2013-06-01
To evaluate lower incisor position and bony support between patients with Class II average- and high-angle malocclusions and compare with the patients presenting Class I malocclusions. CBCT records of 79 patients were divided into 2 groups according to sagittal jaw relationships: Class I and II. Each group was further divided into average- and high-angle subgroups. Six angular and 6 linear measurements were performed. Independent samples t-test, Kruskal-Wallis, and Dunn post-hoc tests were performed for statistical comparisons. Labial alveolar bone thickness was significantly higher in Class I group compared to Class II group (p = 0.003). Lingual alveolar bone angle (p = 0.004), lower incisor protrusion (p = 0.007) and proclination (p = 0.046) were greatest in Class II average-angle patients. Spongious bone was thinner (p = 0.016) and root apex was closer to the labial cortex in high-angle subgroups when compared to the Class II average-angle subgroup (p = 0.004). Mandibular anterior bony support and lower incisor position were different between average- and high-angle Class II patients. Clinicians should be aware that the range of lower incisor movement in high-angle Class II patients is limited compared to average- angle Class II patients.
Fourth High Alpha Conference, volume 1
NASA Technical Reports Server (NTRS)
1994-01-01
The goal of the Fourth High Alpha Conference was to focus on the flight validation of high angle-of-attack technologies and provide an in-depth review of the latest high angle-of-attack activities. Areas that were covered include: high angle-of-attack aerodynamics, propulsion and inlet dynamics, thrust vectoring, control laws and handling qualities, tactical utility, and forebody controls.
Angle performance on optima MDxt
DOE Office of Scientific and Technical Information (OSTI.GOV)
David, Jonathan; Kamenitsa, Dennis
2012-11-06
Angle control on medium current implanters is important due to the high angle-sensitivity of typical medium current implants, such as halo implants. On the Optima MDxt, beam-to-wafer angles are controlled in both the horizontal and vertical directions. In the horizontal direction, the beam angle is measured through six narrow slits, and any angle adjustment is made by electrostatically steering the beam, while cross-wafer beam parallelism is adjusted by changing the focus of the electrostatic parallelizing lens (P-lens). In the vertical direction, the beam angle is measured through a high aspect ratio mask, and any angle adjustment is made by slightlymore » tilting the wafer platen prior to implant. A variety of tests were run to measure the accuracy and repeatability of Optima MDxt's angle control. SIMS profiles of a high energy, channeling sensitive condition show both the cross-wafer angle uniformity, along with the small-angle resolution of the system. Angle repeatability was quantified by running a channeling sensitive implant as a regular monitor over a seven month period and measuring the sheet resistance-to-angle sensitivity. Even though crystal cut error was not controlled for in this case, when attributing all Rs variation to angle changes, the overall angle repeatability was measured as 0.16 Degree-Sign (1{sigma}). A separate angle repeatability test involved running a series of V-curves tests over a four month period using low crystal cut wafers selected from the same boule. The results of this test showed the angle repeatability to be <0.1 Degree-Sign (1{sigma}).« less
High angle-of-attack aerodynamic characteristics of crescent and elliptic wings
NASA Technical Reports Server (NTRS)
Vandam, C. P.
1989-01-01
Static longitudinal and lateral-directional forces and moments were measured for elliptic- and crescent-wing models at high angles-of-attack in the NASA Langley 14 by 22-Ft Subsonic Tunnel. The forces and moments were obtained for an angle-of-attack range including stall and post-stall conditions at a Reynolds number based on the average wing chord of about 1.8 million. Flow-visualization photographs using a mixture of oil and titanium-dioxide were also taken for several incidence angles. The force and moment data and the flow-visualization results indicated that the crescent wing model with its highly swept tips produced much better high angle-of-attack aerodynamic characteristics than the elliptic model. Leading-edge separation-induced vortex flow over the highly swept tips of the crescent wing is thought to produce this improved behavior at high angles-of-attack. The unique planform design could result in safer and more efficient low-speed airplanes.
High-angle-of-attack pneumatic lag and upwash corrections for a hemispherical flow direction sensor
NASA Technical Reports Server (NTRS)
Whitmore, Stephen A.; Heeg, Jennifer; Larson, Terry J.; Ehernberger, L. J.; Hagen, Floyd W.; Deleo, Richard V.
1987-01-01
As part of the NASA F-14 high angle of attack flight test program, a nose mounted hemispherical flow direction sensor was calibrated against a fuselage mounted movable vane flow angle sensor. Significant discrepancies were found to exist in the angle of attack measurements. A two fold approach taken to resolve these discrepancies during subsonic flight is described. First, the sensing integrity of the isolated hemispherical sensor is established by wind tunnel data extending to an angle of attack of 60 deg. Second, two probable causes for the discrepancies, pneumatic lag and upwash, are examined. Methods of identifying and compensating for lag and upwash are presented. The wind tunnel data verify that the isolated hemispherical sensor is sufficiently accurate for static conditions with angles of attack up to 60 deg and angles of sideslip up to 30 deg. Analysis of flight data for two high angle of attack maneuvers establishes that pneumatic lag and upwash are highly correlated with the discrepancies between the hemispherical and vane type sensor measurements.
NASA Astrophysics Data System (ADS)
Pinet, Nicolas; Dietrich, Jim; Duchesne, Mathieu J.; Hinds, Steve J.; Brake, Virginia
2018-07-01
The Maritimes Basin is an upper Paleozoic sedimentary basin centered in the Gulf of St. Lawrence (Canada). Early phases of basin formation included the development of partly connected sub-basins bounded by high-angle faults, in an overall strike-slip setting. Interpretation of reprocessed seismic reflection data indicates that a low-angle detachment contributed to the formation of a highly asymmetric sub-basin. This detachment was rotated toward a lower angle and succeeded by high-angle faults that sole into the detachment or cut it. This model bears similarities to other highly extended terranes and appears to be applicable to strike-slip and/or transtensional settings.
Optical metasurfaces for high angle steering at visible wavelengths
Lin, Dianmin; Melli, Mauro; Poliakov, Evgeni; ...
2017-05-23
Metasurfaces have facilitated the replacement of conventional optical elements with ultrathin and planar photonic structures. Previous designs of metasurfaces were limited to small deflection angles and small ranges of the angle of incidence. Here, we have created two types of Si-based metasurfaces to steer visible light to a large deflection angle. These structures exhibit high diffraction efficiencies over a broad range of angles of incidence. We have demonstrated metasurfaces working both in transmission and reflection modes based on conventional thin film silicon processes that are suitable for the large-scale fabrication of high-performance devices.
Influence of SiC grain boundary character on fission product transport in irradiated TRISO fuel
Lillo, T. M.; Rooyen, I. J.
2016-02-26
The relationship between grain boundary character and fission product migration is identified as an important knowledge gap in order to advance the understanding of fission product release from TRISO fuel particles. Precession electron diffraction (PED), a TEM-based technique, was used in this study to quickly and efficiently provide the crystallographic information needed to identify grain boundary misorientation, grain boundary type (low or high angle) and whether the boundary is coincident site lattice (CSL) – related, in irradiated SiC. Analysis of PED data showed the grain structure of the SiC layer in an irradiated TRISO fuel particle from the AGR-1 experimentmore » to be composed mainly of twin boundaries with a small fraction of low angle grain boundaries (<10%). In general, fission products favor precipitation on random, high angle grain boundaries but can precipitate out on low angle and CSL-related grain boundaries to a limited degree. Pd is capable of precipitating out on all types of grain boundaries but most prominently on random, high angle grain boundaries. Pd-U and Pd-Ag precipitates were found on CSL-related as well as random high angle grain boundaries but not on low angle grain boundaries. In contrast, precipitates containing only Ag were found only on random, high angle grain boundaries but not on either low angle or CSL-related grain boundaries.« less
Influence of SiC grain boundary character on fission product transport in irradiated TRISO fuel
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lillo, T. M.; Rooyen, I. J.
The relationship between grain boundary character and fission product migration is identified as an important knowledge gap in order to advance the understanding of fission product release from TRISO fuel particles. Precession electron diffraction (PED), a TEM-based technique, was used in this study to quickly and efficiently provide the crystallographic information needed to identify grain boundary misorientation, grain boundary type (low or high angle) and whether the boundary is coincident site lattice (CSL) – related, in irradiated SiC. Analysis of PED data showed the grain structure of the SiC layer in an irradiated TRISO fuel particle from the AGR-1 experimentmore » to be composed mainly of twin boundaries with a small fraction of low angle grain boundaries (<10%). In general, fission products favor precipitation on random, high angle grain boundaries but can precipitate out on low angle and CSL-related grain boundaries to a limited degree. Pd is capable of precipitating out on all types of grain boundaries but most prominently on random, high angle grain boundaries. Pd-U and Pd-Ag precipitates were found on CSL-related as well as random high angle grain boundaries but not on low angle grain boundaries. In contrast, precipitates containing only Ag were found only on random, high angle grain boundaries but not on either low angle or CSL-related grain boundaries.« less
High angle of attack flying qualities criteria for longitudinal rate command systems
NASA Technical Reports Server (NTRS)
Wilson, David J.; Citurs, Kevin D.; Davidson, John B.
1994-01-01
This study was designed to investigate flying qualities requirements of alternate pitch command systems for fighter aircraft at high angle of attack. Flying qualities design guidelines have already been developed for angle of attack command systems at 30, 45, and 60 degrees angle of attack, so this research fills a similar need for rate command systems. Flying qualities tasks that require post-stall maneuvering were tested during piloted simulations in the McDonnell Douglas Aerospace Manned Air Combat Simulation facility. A generic fighter aircraft model was used to test angle of attack rate and pitch rate command systems for longitudinal gross acquisition and tracking tasks at high angle of attack. A wide range of longitudinal dynamic variations were tested at 30, 45, and 60 degrees angle of attack. Pilot comments, Cooper-Harper ratings, and pilot induced oscillation ratings were taken from five pilots from NASA, USN, CAF, and McDonnell Douglas Aerospace. This data was used to form longitudinal design guidelines for rate command systems at high angle of attack. These criteria provide control law design guidance for fighter aircraft at high angle of attack, low speed flight conditions. Additional time history analyses were conducted using the longitudinal gross acquisition data to look at potential agility measures of merit and correlate agility usage to flying qualities boundaries. This paper presents an overview of this research.
High-Alpha Handling Qualities Flight Research on the NASA F/A-18 High Alpha Research Vehicle
NASA Technical Reports Server (NTRS)
Wichman, Keith D.; Pahle, Joseph W.; Bahm, Catherine; Davidson, John B.; Bacon, Barton J.; Murphy, Patrick C.; Ostroff, Aaron J.; Hoffler, Keith D.
1996-01-01
A flight research study of high-angle-of-attack handling qualities has been conducted at the NASA Dryden Flight Research Center using the F/A-18 High Alpha Research Vehicle (HARV). The objectives were to create a high-angle-of-attack handling qualities flight database, develop appropriate research evaluation maneuvers, and evaluate high-angle-of-attack handling qualities guidelines and criteria. Using linear and nonlinear simulations and flight research data, the predictions from each criterion were compared with the pilot ratings and comments. Proposed high-angle-of-attack nonlinear design guidelines and proposed handling qualities criteria and guidelines developed using piloted simulation were considered. Recently formulated time-domain Neal-Smith guidelines were also considered for application to high-angle-of-attack maneuvering. Conventional envelope criteria were evaluated for possible extension to the high-angle-of-attack regime. Additionally, the maneuvers were studied as potential evaluation techniques, including a limited validation of the proposed standard evaluation maneuver set. This paper gives an overview of these research objectives through examples and summarizes result highlights. The maneuver development is described briefly, the criteria evaluation is emphasized with example results given, and a brief discussion of the database form and content is presented.
Steep head-down tilt has persisting effects on the distribution of pulmonary blood flow.
Henderson, A Cortney; Levin, David L; Hopkins, Susan R; Olfert, I Mark; Buxton, Richard B; Prisk, G Kim
2006-08-01
Head-down tilt has been shown to increase lung water content in animals and alter the distribution of ventilation in humans; however, its effects on the distribution of pulmonary blood flow in humans are unknown. We hypothesized that head-down tilt would increase the heterogeneity of pulmonary blood flow in humans, an effect analogous to the changes seen in the distribution of ventilation, by increasing capillary hydrostatic pressure and fluid efflux in the lung. To test this, we evaluated changes in the distribution of pulmonary blood flow in seven normal subjects before and after 1 h of 30 degrees head-down tilt using the magnetic resonance imaging technique of arterial spin labeling. Data were acquired in triplicate before tilt and at 10-min intervals for 1 h after tilt. Pulmonary blood flow heterogeneity was quantified by the relative dispersion (standard deviation/mean) of signal intensity for all voxels within the right lung. Relative dispersion was significantly increased by 29% after tilt and remained elevated during the 1 h of measurements after tilt (0.84 +/- 0.06 pretilt, 1.09 +/- 0.09 calculated for all time points posttilt, P < 0.05). We speculate that the mechanism most likely responsible for our findings is that increased pulmonary capillary pressures and fluid efflux in the lung resulting from head-down tilt alters regional blood flow distribution.
NASA Astrophysics Data System (ADS)
Zechmeister, M. S.; O'Brien, V. J.; Elmore, R. D.; Evans, M. A.
2006-12-01
Results from paleomagnetic analysis of Lower Carboniferous carbonates in the Sawtooth Range, northwestern Montana and the Livingstone range in Southwestern Alberta are presented. Paleomagnetic cores were collected from both limbs of four fault propagation folds, one at Swift Dam in MT as well as one along Green Creek and two along Oldman River in Alberta. The Swift Dam Fold is in the Madison Group and contains a widespread characteristic remanent magnetization (ChRM) that resides in magnetite with southerly declinations and moderately steep up inclinations. A tilt test reveals a synfolding ChRM, and the paleopole suggests remanence acquisition in the Cretaceous to Early Tertiary. This result contrasts with results from another fold in MT, the Teton anticline, which is a buckle fold where a similar ChRM is pretilting. The reason for the differences in the fold test results are under investigation. The ChRM is not thermoviscous in origin based on a comparison of unblocking temperature with the low burial temperatures and is interpreted as a chemical remanent magnetization (CRM). Preliminary data from the folds in Livingstone Range suggest a similar ChRM in the organic rich lithologies of the Livingstone, Banff and Mount Head formations. Tilt test results for the fault propagation folds in Alberta will be presented as well as a discussion on the origin of orogenic remagnetizations.
Kim, Jong-Ahn; Kim, Jae Wan; Kang, Chu-Shik; Jin, Jonghan; Eom, Tae Bong
2011-11-01
We present an angle generator with high resolution and accuracy, which uses multiple ultrasonic motors and a self-calibratable encoder. A cylindrical air bearing guides a rotational motion, and the ultrasonic motors achieve high resolution over the full circle range with a simple configuration. The self-calibratable encoder can compensate the scale error of a divided circle (signal period: 20") effectively by applying the equal-division-averaged method. The angle generator configures a position feedback control loop using the readout of the encoder. By combining the ac and dc operation mode, the angle generator produced stepwise angular motion with 0.005" resolution. We also evaluated the performance of the angle generator using a precision angle encoder and an autocollimator. The expanded uncertainty (k = 2) in the angle generation was estimated less than 0.03", which included the calibrated scale error and the nonlinearity error. © 2011 American Institute of Physics
Fourth High Alpha Conference, volume 3
NASA Technical Reports Server (NTRS)
1994-01-01
Thie goal of this conference was to focus on the flight validation of high-angle-of-attack technologies and provide an in-depth review of the latest high-angle-of-attack activities. Areas covered include: (1) high-angle-of-attack aerodynamics; (2) propulsion and inlet dynamics; (3) thrust vectoring; (4) control laws and handling qualities; (5) tactical utility; and (6) forebody controls.
Synchronizing Photography For High-Speed-Engine Research
NASA Technical Reports Server (NTRS)
Chun, K. S.
1989-01-01
Light flashes when shaft reaches predetermined angle. Synchronization system facilitates visualization of flow in high-speed internal-combustion engines. Designed for cinematography and holographic interferometry, system synchronizes camera and light source with predetermined rotational angle of engine shaft. 10-bit resolution of absolute optical shaft encoder adapted, and 2 to tenth power combinations of 10-bit binary data computed to corresponding angle values. Pre-computed angle values programmed into EPROM's (erasable programmable read-only memories) to use as angle lookup table. Resolves shaft angle to within 0.35 degree at rotational speeds up to 73,240 revolutions per minute.
NASA Technical Reports Server (NTRS)
Hahne, D. E.
1985-01-01
A wind tunnel investigation of concepts to improve the high angle-of-attack stability and control characteristics of a high performance aircraft was conducted. The effect of vertical tail geometry on stability and the effectiveness of several conventional and unusual control concepts was determined. These results were obtained over a large angle-of-attack range. Vertical tail location, cant angle and leading edge sweep could influence both longitudinal and lateral-directional stability. The control concepts tested were found to be effective and to provide control into the post stall angle-of-attack region.
Fourth High Alpha Conference, volume 2
NASA Technical Reports Server (NTRS)
1994-01-01
The goal of the Fourth High Alpha Conference, held at the NASA Dryden Flight Research Center on July 12-14, 1994, was to focus on the flight validation of high angle of attack technologies and provide an in-depth review of the latest high angle of attack activities. Areas that were covered include high angle of attack aerodynamics, propulsion and inlet dynamics, thrust vectoring, control laws and handling qualities, and tactical utility.
Control-system techniques for improved departure/spin resistance for fighter aircraft
NASA Technical Reports Server (NTRS)
Nguyen, L. T.; Gilbert, W. P.; Ogburn, M. E.
1980-01-01
Some fundamental information on control system effects on controllability of highly maneuverable aircraft at high angles of attack are summarized as well as techniques for enhancing fighter aircraft departure/spin resistance using control system design. The discussion includes: (1) a brief review of pertinent high angle of attack phenomena including aerodynamics, inertia coupling, and kinematic coupling; (2) effects of conventional stability augmentation systems at high angles of attack; (3) high angle of attack control system concepts designed to enhance departure/spin resistance; and (4) the outlook for applications of these concepts to future fighters, particularly those designs which incorporate relaxed static stability.
Numerical simulation of the flow about the F-18 HARV at high angle of attack
NASA Technical Reports Server (NTRS)
Murman, Scott M.
1994-01-01
As part of NASA's High Alpha Technology Program, research has been aimed at developing and extending numerical methods to accurately predict the high Reynolds number flow about the NASA F-18 High Alpha Research Vehicle (HARV) at large angles of attack. The HARV aircraft is equipped with a bidirectional thrust vectoring unit which enables stable, controlled flight through 70 deg angle of attack. Currently, high-fidelity numerical solutions for the flow about the HARV have been obtained at alpha = 30 deg, and validated against flight-test data. It is planned to simulate the flow about the HARV through alpha = 60 deg, and obtain solutions of the same quality as those at the lower angles of attack. This report presents the status of work aimed at extending the HARV computations to the extreme angle of attack range.
Xu, Z N; Wang, S Y
2015-02-01
To improve the accuracy in the calculation of dynamic contact angle for drops on the inclined surface, a significant number of numerical drop profiles on the inclined surface with different inclination angles, drop volumes, and contact angles are generated based on the finite difference method, a least-squares ellipse-fitting algorithm is used to calculate the dynamic contact angle. The influences of the above three factors are systematically investigated. The results reveal that the dynamic contact angle errors, including the errors of the left and right contact angles, evaluated by the ellipse-fitting algorithm tend to increase with inclination angle/drop volume/contact angle. If the drop volume and the solid substrate are fixed, the errors of the left and right contact angles increase with inclination angle. After performing a tremendous amount of computation, the critical dimensionless drop volumes corresponding to the critical contact angle error are obtained. Based on the values of the critical volumes, a highly accurate dynamic contact angle algorithm is proposed and fully validated. Within nearly the whole hydrophobicity range, it can decrease the dynamic contact angle error in the inclined plane method to less than a certain value even for different types of liquids.
NASA Technical Reports Server (NTRS)
Walsh, Kevin R.; Yuhas, Andrew J.; Williams, John G.; Steenken, William G.
1997-01-01
The effects of high-angle-of-attack flight on aircraft inlet aerodynamic characteristics were investigated at NASA Dryden Flight Research Center, Edwards, California, as part of NASA's High Alpha Technology Program. The highly instrumented F/A-18A High Alpha Research Vehicle was used for this research. A newly designed inlet total-pressure rake was installed in front of the starboard F404-GE-400 engine to measure inlet recovery and distortion characteristics. One objective was to determine inlet total-pressure characteristics at steady high-angle-of-attack conditions. Other objectives include assessing whether significant differences exist in inlet distortion between rapid angle-of-attack maneuvers and corresponding steady aerodynamic conditions, assessing inlet characteristics during aircraft departures, providing data for developing and verifying computational fluid dynamic codes, and calculating engine airflow using five methods. This paper addresses the first objective by summarizing results of 79 flight maneuvers at steady aerodynamic conditions, ranging from -10 deg to 60 deg angle of attack and from -8 deg to 11 deg angle of sideslip at Mach 0.3 and 0.4. These data and the associated database have been rigorously validated to establish a foundation for understanding inlet characteristics at high angle of attack.
Apparatus and method for variable angle slant hole collimator
Lee, Seung Joon; Kross, Brian J.; McKisson, John E.
2017-07-18
A variable angle slant hole (VASH) collimator for providing collimation of high energy photons such as gamma rays during radiological imaging of humans. The VASH collimator includes a stack of multiple collimator leaves and a means of quickly aligning each leaf to provide various projection angles. Rather than rotate the detector around the subject, the VASH collimator enables the detector to remain stationary while the projection angle of the collimator is varied for tomographic acquisition. High collimator efficiency is achieved by maintaining the leaves in accurate alignment through the various projection angles. Individual leaves include unique angled cuts to maintain a precise target collimation angle. Matching wedge blocks driven by two actuators with twin-lead screws accurately position each leaf in the stack resulting in the precise target collimation angle. A computer interface with the actuators enables precise control of the projection angle of the collimator.
High-speed reference-beam-angle control technique for holographic memory drive
NASA Astrophysics Data System (ADS)
Yamada, Ken-ichiro; Ogata, Takeshi; Hosaka, Makoto; Fujita, Koji; Okuyama, Atsushi
2016-09-01
We developed a holographic memory drive for next-generation optical memory. In this study, we present the key technology for achieving a high-speed transfer rate for reproduction, that is, a high-speed control technique for the reference beam angle. In reproduction in a holographic memory drive, there is the issue that the optimum reference beam angle during reproduction varies owing to distortion of the medium. The distortion is caused by, for example, temperature variation, beam irradiation, and moisture absorption. Therefore, a reference-beam-angle control technique to position the reference beam at the optimum angle is crucial. We developed a new optical system that generates an angle-error-signal to detect the optimum reference beam angle. To achieve the high-speed control technique using the new optical system, we developed a new control technique called adaptive final-state control (AFSC) that adds a second control input to the first one derived from conventional final-state control (FSC) at the time of angle-error-signal detection. We established an actual experimental system employing AFSC to achieve moving control between each page (Page Seek) within 300 µs. In sequential multiple Page Seeks, we were able to realize positioning to the optimum angles of the reference beam that maximize the diffracted beam intensity. We expect that applying the new control technique to the holographic memory drive will enable a giga-bit/s-class transfer rate.
A study of roll attractor and wing rock of delta wings at high angles of attack
NASA Technical Reports Server (NTRS)
Niranjana, T.; Rao, D. M.; Pamadi, Bandu N.
1993-01-01
Wing rock is a high angle of attack dynamic phenomenon of limited cycle motion predominantly in roll. The wing rock is one of the limitations to combat effectiveness of the fighter aircraft. Roll Attractor is the steady state or equilibrium trim angle (phi(sub trim)) attained by the free-to-roll model, held at some angle of attack, and released form rest at a given initial roll (bank) angle (phi(sub O)). Multiple roll attractors are attained at different trim angles depending on initial roll angle. The test facility (Vigyan's low speed wind tunnel) and experimental work is presented here along with mathematical modelling of roll attractor phenomenon and analysis and comparison of predictions with experimental data.
NASA Technical Reports Server (NTRS)
Coe, P. L., Jr.; Newsom, W. A., Jr.
1974-01-01
An investigation was conducted to determine the low-speed yawing stability derivatives of a twin-jet fighter airplane model at high angles of attack. Tests were performed in a low-speed tunnel utilizing variable-curvature walls to simulate pure yawing motion. The results of the study showed that at angles of attack below the stall the yawing derivatives were essentially independent of the yawing velocity and sideslip angle. However, at angles of attack above the stall some nonlinear variations were present and the derivatives were strongly dependent upon sideslip angle. The results also showed that the rolling moment due to yawing was primarily due to the wing-fuselage combination, and that at angles of attack below the stall both the vertical and horizontal tails produced significant contributions to the damping in yaw. Additionally, the tests showed that the use of the forced-oscillation data to represent the yawing stability derivatives is questionable, at high angles of attack, due to large effects arising from the acceleration in sideslip derivatives.
Experimental Flight Characterization of Spin Stabilized Projectiles at High Angle of Attack
2017-08-07
ARL-TR-8082 ● AUG 2017 US Army Research Laboratory Experimental Flight Characterization of Spin- Stabilized Projectiles at High ...Experimental Flight Characterization of Spin- Stabilized Projectiles at High Angle of Attack by Frank Fresconi and Ilmars Celmins Weapons and Materials...June 2016–June 2017 4. TITLE AND SUBTITLE Experimental Flight Characterization of Spin-Stabilized Projectiles at High Angle of Attack 5a. CONTRACT
NASA Astrophysics Data System (ADS)
Sreejith K., P.; Mathew, Vincent
2018-05-01
We have theoretically investigated the incident angle dependent defect modes in a dual channel photonic crystal filter composed of a high and low temperature superconductor defects. It is observed that the defect mode wavelength can be significantly tuned by incident angle for both polarizations. The angle sensitive defect mode property is of particular application in designing narrow band transmission filter.
NASA Technical Reports Server (NTRS)
Gilbert, W. P.; Nguyen, L. T.; Vangunst, R. W.
1976-01-01
A piloted, fixed-base simulation was conducted to study the effectiveness of some automatic control system features designed to improve the stability and control characteristics of fighter airplanes at high angles of attack. These features include an angle-of-attack limiter, a normal-acceleration limiter, an aileron-rudder interconnect, and a stability-axis yaw damper. The study was based on a current lightweight fighter prototype. The aerodynamic data used in the simulation were measured on a 0.15-scale model at low Reynolds number and low subsonic Mach number. The simulation was conducted on the Langley differential maneuvering simulator, and the evaluation involved representative combat maneuvering. Results of the investigation show the fully augmented airplane to be quite stable and maneuverable throughout the operational angle-of-attack range. The angle-of-attack/normal-acceleration limiting feature of the pitch control system is found to be a necessity to avoid angle-of-attack excursions at high angles of attack. The aileron-rudder interconnect system is shown to be very effective in making the airplane departure resistant while the stability-axis yaw damper provided improved high-angle-of-attack roll performance with a minimum of sideslip excursions.
F-16 MMC Strafe in Mountainous Terrain
2016-04-01
19 Figure 10. Steep fast (480 KIAS ) high-angle strafe...a fast (480 KIAS in this example) approach varies from the recovery radius (4000 feet in this case) and down track range prior to recovery initiation...Steep fast (480 KIAS ) high-angle strafe Alternate Analysis The F-16 community, to some extent, has adopted high-angle strafe as the de facto strafe
NASA Technical Reports Server (NTRS)
Stoll, F.; Koenig, D. G.
1983-01-01
Data obtained through very high angles of attack from a large-scale, subsonic wind-tunnel test of a close-coupled canard-delta-wing fighter model are analyzed. The canard delays wing leading-edge vortex breakdown, even for angles of attack at which the canard is completely stalled. A vortex-lattice method was applied which gave good predictions of lift and pitching moment up to an angle of attack of about 20 deg, where vortex-breakdown effects on performance become significant. Pitch-control inputs generally retain full effectiveness up to the angle of attack of maximum lift, beyond which, effectiveness drops off rapidly. A high-angle-of-attack prediction method gives good estimates of lift and drag for the completely stalled aircraft. Roll asymmetry observed at zero sideslip is apparently caused by an asymmetry in the model support structure.
Automatic anterior chamber angle assessment for HD-OCT images.
Tian, Jing; Marziliano, Pina; Baskaran, Mani; Wong, Hong-Tym; Aung, Tin
2011-11-01
Angle-closure glaucoma is a major blinding eye disease and could be detected by measuring the anterior chamber angle in the human eyes. High-definition OCT (Cirrus HD-OCT) is an emerging noninvasive, high-speed, and high-resolution imaging modality for the anterior segment of the eye. Here, we propose a novel algorithm which automatically detects a new landmark, Schwalbe's line, and measures the anterior chamber angle in the HD-OCT images. The distortion caused by refraction is corrected by dewarping the HD-OCT images, and three biometric measurements are defined to quantitatively assess the anterior chamber angle. The proposed algorithm was tested on 40 HD-OCT images of the eye and provided accurate measurements in about 1 second.
NASA Astrophysics Data System (ADS)
Lingenfelser, Gretchen Scott
This thesis explores the problem of uniformly aligning Ferroelectric Liquid Crystals (FLCs) over large areas whilst retaining bistability. A novel high tilt alignment (HTA) is presented and its electro-optic performance is compared to the traditional surface stabilised (SS) alignment using three different devices; test cells, displays and all-fibre optic devices. Evidence is presented to show that the SS alignment has a small surface pretilt of the director which reduces the number of zig-zag defects in parallel aligned cells. This is related to the layer structure and a review of the latest proposed structures of SS devices is presented. The HTA device is shown to have many advantages over the SS device; no zig-zag defects, excellent bistability in up to 6 mum thick cells, good mechanical stability and excellent viewing characteristics when multiplexed. These properties are explored and culminate in the production of two FLC displays, one HTA and one SS aligned. The properties of these displays are compared. In order to improve the appearance and frame time of the displays, multiplexing schemes were investigated, including a novel two slot scheme that was successfully used to drive both displays. It was found that the SS display could be driven in a reverse contrast mode by taking advantage of the relaxation process. This decreased the line address time and produced a higher contrast display. A nematic LC all-fibre optic polariser was produced with excellent extinction ratio (45 dB) and low loss (0.2 dB) using evanescent field coupling. A nematic LC modulator was then demonstrated using a novel electrode arrangement. A modulation depth of 28 dB was achieved using low voltages ( 10V) but with 10 kHz but the modulation depth was poor (8.2 dB) because of the unsuitable refractive indices. The potential and uses of LC all-fibre optic devices are discussed.
NASA Astrophysics Data System (ADS)
Jiang, Shanchao; Wang, Jing; Sui, Qingmei
2018-03-01
In order to achieve rotation angle measurement, one novel type of miniaturization fiber Bragg grating (FBG) rotation angle sensor with high measurement precision and temperature self-compensation is proposed and studied in this paper. The FBG rotation angle sensor mainly contains two core sensitivity elements (FBG1 and FBG2), triangular cantilever beam, and rotation angle transfer element. In theory, the proposed sensor can achieve temperature self-compensation by complementation of the two core sensitivity elements (FBG1 and FBG2), and it has a boundless angel measurement range with 2π rad period duo to the function of the rotation angle transfer element. Based on introducing the joint working processes, the theory calculation model of the FBG rotation angel sensor is established, and the calibration experiment on one prototype is also carried out to obtain its measurement performance. After experimental data analyses, the measurement precision of the FBG rotation angle sensor prototype is 0.2 ° with excellent linearity, and the temperature sensitivities of FBG1 and FBG2 are 10 pm/° and 10.1 pm/°, correspondingly. All these experimental results confirm that the FBG rotation angle sensor can achieve large-range angle measurement with high precision and temperature self-compensation.
Optimum angle-cut of collimator for dense objects in high-energy proton radiography
NASA Astrophysics Data System (ADS)
Xu, Hai-Bo; Zheng, Na
2016-02-01
The use of minus identity lenses with an angle-cut collimator can achieve high contrast images in high-energy proton radiography. This article presents the principles of choosing the angle-cut aperture of the collimator for different energies and objects. Numerical simulation using the Monte Carlo code Geant4 has been implemented to investigate the entire radiography for the French test object. The optimum angle-cut apertures of the collimators are also obtained for different energies. Supported by NSAF (11176001) and Science and Technology Developing Foundation of China Academy of Engineering Physics (2012A0202006)
NASA Technical Reports Server (NTRS)
Sibeck, D. G.; Mcentire, R. W.; Lui, A. T. Y.; Lopez, R. E.; Krimigis, S. M.
1987-01-01
This paper presents a magnetic field drift shell-splitting model for the unusual butterfly and head-and-shoulder energetic (E greater than 25 keV) particle pitch angle distributions (PADs) which appear deep within the dayside magnetosphere during the course of storms and substorms. Drift shell splitting separates the high and low pitch angle particles in nightside injections as they move to the dayside magnetosphere, so that the higher pitch angle particles move radially away from earth. Consequently, butterfly PADs with a surplus of low pitch angle particles form on the inner edge of the injection, but head-and-shoulder PADs with a surplus of high pitch angle particles form on the outer edge. A similar process removes high pitch angle particles from the inner dayside magnetosphere during storms, leaving the remaining lower pitch angle particles to form butterfly PADs on the inner edge of the ring current. A detailed case and statistical study of Charge Composition Explorer/Medium-energy Particle Analyzer observations, as well as a review of previous work, shows most examples of unusual PADs to be consistent with the model.
Yu, Kan; Huang, De-xiu; Yin, Juan-juan; Bao, Jia-qi
2015-08-01
Three-port tunable optical filter is a key device in the all-optic intelligent switching network and dense wavelength division multiplexing system. The characteristics of the reflecting spectrum, especially the reflectivity and the isolation degree are very important to the three-port filter. Angle-tuned thin film filter is widely used as a three-port tunable filter for its high rectangular degree and good temperature stability. The characteristics of the reflecting spectrum are greatly influenced not only by the incident angle, but also by the wedge angle parameter of the non-paralleled wedge thin film filter. In the present paper, the influences of the wedge angle parameter to the reflectivity and the half bandwidth are analyzed, and the reflecting spectrum characterstics are simulationed in different wedge angle parameter and polarity. The wedge angle-tuned thin film filter with 0.8° wedge angle parameter is fabricated. The experimental results show that keeping the wedge angle the same orientation to the incident angle will worsen the reflectivity and the rectangular degree of the reflecting spectrum. However, keeping the wedge angle orientation reverse to the incident angle will enhance the reflectivity and decrease the bandwidth, which will give higher reflectivity and isolation degree to the three-port filter than that of high parallel degree angle-tuned thin film filter.
Development of a high resolution optical-fiber tilt sensor by F-P filter
NASA Astrophysics Data System (ADS)
Pan, Jianjun; Nan, Qiuming; Li, Shujie; Hao, Zhonghua
2017-04-01
A high-resolution tilt sensor is developed, which is composed of a pair of optical fiber collimators and a simple pendulum with an F-P filter. The tilt angle is measured by demodulating the shift of center wavelength of F-P filter, which is caused by incidence angle changing. The relationship between tilted angle and the center wavelength is deduced. Calibration experiment results also confirm the deduction, and show that it is easy to obtain a high resolution. Setting the initial angle to 6degree, the measurement range is ±3degree, its average sensitivity is 1104pm/degree, and its average resolution is as high as 0.0009degree.
Optimization design of the angle detecting system used in the fast steering mirror
NASA Astrophysics Data System (ADS)
Ni, Ying-xue; Wu, Jia-bin; San, Xiao-gang; Gao, Shi-jie; Ding, Shao-hang; Wang, Jing; Wang, Tao; Wang, Hui-xian
2018-01-01
In this paper, in order to design a fast steering mirror (FSM) with large deflection angle and high linearity, a deflection angle detecting system (DADS) using quadrant detector (QD) is developed. And the mathematical model describing DADS is established by analyzing the principle of position detecting and error characteristics of QD. Based on this mathematical model, the variation tendencies of deflection angle and linearity of FSM are simulated. Then, by changing the parameters of the DADS, the optimization of deflection angle and linearity of FSM is demonstrated. Finally, a QD-based FSM is designed based on this method, which achieves ±2° deflection angle and 0.72% and 0.68% linearity along x and y axis, respectively. Moreover, this method will be beneficial to the design of large deflection angle and high linearity FSM.
Tracing the Angular Dependence of the CGM
NASA Astrophysics Data System (ADS)
Nattinger, Michael; Christensen, Charlotte
2017-01-01
The circumgalactic media (CGM) is enriched with metals through a process called the baryon cycle, which may play a significant role in the regulation of star formation. While the relationship between the CGM’s baryonic makeup and impact parameter is well documented, the relationship between the baryonic distribution of the CGM and the azimuthal angle out of the plane of the galaxy remains an open question. We investigated the angular distribution of baryons in the CGM by creating mock-absorption line spectra for a high-resolution simulation of a Milky Way-like galaxy at redshift zero. By comparison with data from the Cosmic Origins Spectrograph-Halos survey, we determined that our equivalent widths of HI, MgII, CIII, SiII, and SiIII are consistent with observations. Using our data, we found that low ionization state material is more prevalent at low azimuthal angles and that high ionization state material is more prevalent at high angles within the virial radius. We attributed this increased ionization to higher temperatures at high angles. We also found that the highest metallicity levels appear at high and low azimuthal angles, with lower metallicities at middle angles. This evidence supports the recycled accretion model of CGM baryon flow.
Comparison of X-31 Flight and Ground-Based Yawing Moment Asymmetries at High Angles of Attack
NASA Technical Reports Server (NTRS)
Cobleigh, Brent R.; Croom, Mark A.
2001-01-01
Significant yawing moment asymmetries were encountered during the high-angle-of-attack envelope expansion of the two X-31 aircraft. These asymmetries caused position saturations of the thrust-vectoring vanes and trailing-edge flaps during some stability-axis rolling maneuvers at high angles of attack. The two test aircraft had different asymmetry characteristics, and ship two has asymmetries that vary as a function of Reynolds number. Several aerodynamic modifications have been made to the X-31 forebody with the goal of minimizing the asymmetry. These modifications include adding transition strips on the forebody and noseboom, using two different length strakes, and increasing nose bluntness. Ultimately, a combination of forebody strakes, nose blunting, and noseboom transition strips reduced the yawing moment asymmetry enough to fully expand the high-angle-of-attack envelope. Analysis of the X-31 flight data is reviewed and compared to wind-tunnel and water-tunnel measurements. Several lessons learned are outlined regarding high-angle-of-attack configuration design and ground testing.
NASA Astrophysics Data System (ADS)
Rockenschaub, M.; Grasemann, B.; Iglseder, C.; Rice, A. H. N.; Schneider, D.; Zamolyi, A.
2010-05-01
Roll-back of the African Plate within the Eurasian-African collision zone since the Oligocene/Miocene led to extension in the Cyclades along low-angle normal fault zones and exhumation of rocks from near the brittle-ductile transition zone. On the island of Kea (W Cyclades), which represents such a crustal scale low-angle fault zone with top-to-SSW kinematics, remote sensing analysis of brittle fault lineaments in the Pissis area (W Kea) demonstrates two dominant strike directions: ca. NE-SW and NW-SE. From the north of Pisses southwards, the angle between the two main fault directions changes gradually from a rhombohedral geometry (ca. 50°/130° angle between faults, with the acute angle facing westwards) to an orthogonal geometry. The aim of this study is the development of this fault system. We investigate, if this fault system is related to the Miocene extension or if it is related to a later overprinting event (e.g. the opening of the Corinth) Field observations revealed that the investigated lineaments are high-angle (50-90° dip) brittle/ductile conjugate, faults. Due to the lack of marker layers offsets could only rarely be estimated. Locally centimetre thick marble layers in the greenschists suggest a displacement gradient along the faults with a maximum offset of less than 60 cm. Large displacement gradients are associated with a pronounced ductile fault drag in the host rocks. In some instances, high-angle normal faults were observed to link kinematically with low-angle, top-to-SSW brittle/ductile shear bands. Both the high- and the low-angle faults have a component of ductile shear, which is overprinted by brittle deformation mechanisms. In thin-section, polyphase mode-2 cracks are filled mainly with calcite and quartz (ultra)cataclasites, sometimes followed by further opening with fluid-related iron-rich carbonate (ankeritic) precipitation. CL analysis reveals several generations of cements, indicating multiple phases of cataclastic deformation and fluid infiltration. Ar/Ar white mica data from Pisses constrain ductile deformation to ca. 20 Ma. Since the high-angle faults show a continuum from ductile to brittle deformation, the Ar/Ar cooling ages suggest that faulting must have occurred in the Miocene. Consequently the high-angle faulting was genetically related to the SSW-directed low-angle extensional event and does not represent a later overprint related to a different kinematic event.
NASA Astrophysics Data System (ADS)
Ni, Yingxue; Wu, Jiabin; San, Xiaogang; Gao, Shijie; Ding, Shaohang; Wang, Jing; Wang, Tao
2018-02-01
A deflection angle detecting system (DADS) using a quadrant detector (QD) is developed to achieve the large deflection angle and high linearity for the fast steering mirror (FSM). The mathematical model of the DADS is established by analyzing the principle of position detecting and error characteristics of the QD. Based on this mathematical model, the method of optimizing deflection angle and linearity of FSM is demonstrated, which is proved feasible by simulation and experimental results. Finally, a QD-based FSM is designed and tested. The results show that it achieves 0.72% nonlinearity, ±2.0 deg deflection angle, and 1.11-μrad resolution. Therefore, the application of this method will be beneficial to design the FSM.
Low Speed Analysis of Mission Adaptive Flaps on a High Speed Civil Transport Configuration
NASA Technical Reports Server (NTRS)
Lessard, Victor R.
1999-01-01
Thin-layer Navier-Stokes analyses were done on a high speed civil transport configuration with mission adaptive leading-edge flaps. The flow conditions simulated were Mach = 0.22 and Reynolds number of 4.27 million for angles-of-attack ranging from 0 to 18 degrees. Two turbulence closure models were used. Analyses were done exclusively with the Baldwin-Lomax turbulence model at low angle-of-attack conditions. At high angles-of-attack where considerable flow separation and vortices occurred the Spalart-Allmaras turbulence model was also considered. The effects of flow transition were studied. Predicted aerodynamic forces, moment, and pressure are compared to experimental data obtained in the 14- by 22-Foot Subsonic Tunnel at NASA Langley. The forces and moments correlated well with experimental data in terms of trends. Drag and pitching moment were consistently underpredicted. Predicted surface pressures compared well with experiment at low angles-of-attack. Above 10 angle-of-attack the pressure comparisons were not as favorable. The two turbulent models affected the pressures on the flap considerably and neither produced correct results at the high angles-of-attack.
High Pressure Angle Gears: Comparison to Typical Gear Designs
NASA Technical Reports Server (NTRS)
Handschuh, Robert F.; Zabrajsek, Andrew J.
2010-01-01
A preliminary study has been completed to determine the feasibility of using high-pressure angle gears in aeronautic and space applications. Tests were conducted in the NASA Glenn Research Center (GRC) Spur Gear Test Facility at speeds up to 10,000 rpm and 73 N*m (648 in.*lb) for 3.18, 2.12, and 1.59 module gears (8, 12, and 16 diametral pitch gears), all designed to operate in the same test facility. The 3.18 module (8-diametral pitch), 28 tooth, 20deg pressure angle gears are the GRC baseline test specimen. Also, 2.12 module (12-diametral pitch), 42 tooth, 25deg pressure angle gears were tested. Finally 1.59 module (16-diametral pitch), 56 tooth, 35deg pressure angle gears were tested. The high-pressure angle gears were the most efficient when operated in the high-speed aerospace mode (10,000 rpm, lubricated with a synthetic turbine engine oil), and produced the lowest wear rates when tested with a perfluoroether-based grease. The grease tests were conducted at 150 rpm and 71 N*m (630 in.*lb).
NASA Technical Reports Server (NTRS)
Hall, Robert M.; Erickson, Gary E.; Fox, Charles H., Jr.; Banks, Daniel W.; Fisher, David F.
1998-01-01
A subsonic study of high-angle-of-attack gritting strategies was undertaken with a 0.06-scale model of the F/A-18, which was assumed to be typical of airplanes with smooth-sided forebodies. This study was conducted in the Langley 7- by 10-Foot High-Speed Tunnel and was intended to more accurately simulate flight boundary layer characteristics on the model in the wind tunnel than would be possible by using classical, low-angle-of-attack gritting on the fuselage. Six-component force and moment data were taken with an internally mounted strain-gauge balance, while pressure data were acquired by using electronically scanned pressure transducers. Data were taken at zero sideslip over an angle-of-attack range from 0 deg to 40 deg and, at selected angles of attack, over sideslip angles from -10 deg to 10 deg. Free-stream Mach number was fixed at 0.30, which resulted in a Reynolds number, based on mean aerodynamic chord, of 1.4 x 10(exp 6). Pressure data measured over the forebody and leading-edge extensions are compared to similar pressure data taken by a related NASA flight research program by using a specially instrumented F/A-18, the High-Alpha Research Vehicle (HARV). Preliminary guidelines for high-angle-of-attack gritting strategies are given.
Fat fraction bias correction using T1 estimates and flip angle mapping.
Yang, Issac Y; Cui, Yifan; Wiens, Curtis N; Wade, Trevor P; Friesen-Waldner, Lanette J; McKenzie, Charles A
2014-01-01
To develop a new method of reducing T1 bias in proton density fat fraction (PDFF) measured with iterative decomposition of water and fat with echo asymmetry and least-squares estimation (IDEAL). PDFF maps reconstructed from high flip angle IDEAL measurements were simulated and acquired from phantoms and volunteer L4 vertebrae. T1 bias was corrected using a priori T1 values for water and fat, both with and without flip angle correction. Signal-to-noise ratio (SNR) maps were used to measure precision of the reconstructed PDFF maps. PDFF measurements acquired using small flip angles were then compared to both sets of corrected large flip angle measurements for accuracy and precision. Simulations show similar results in PDFF error between small flip angle measurements and corrected large flip angle measurements as long as T1 estimates were within one standard deviation from the true value. Compared to low flip angle measurements, phantom and in vivo measurements demonstrate better precision and accuracy in PDFF measurements if images were acquired at a high flip angle, with T1 bias corrected using T1 estimates and flip angle mapping. T1 bias correction of large flip angle acquisitions using estimated T1 values with flip angle mapping yields fat fraction measurements of similar accuracy and superior precision compared to low flip angle acquisitions. Copyright © 2013 Wiley Periodicals, Inc.
NASA Astrophysics Data System (ADS)
Senn, S.; Liewald, M.
2017-09-01
Deep drawn parts often do have complex designs and, therefore, must be trimmed or punched subsequently in a second stage. Due to the complex part geometry, most punching areas do reveal critical slant angle (angle between part surface and ram movement direction) different to perpendicular direction. Piercing within a critical range of slant angle may lead to severe damage of the cutting tool. Consequently, expensive cam units are required to transform the ram moving direction in order to perform the piercing process perpendicularly to the local part surface. For modern sheet metals, however, the described critical angle of attack has not been investigated adequately until now. Therefore, cam units are used in cases in which regular piercing with high slant angle wouldn’t be possible. Purpose of this study is to investigate influencing factors and their effect on punch damage during piercing of high strength steels with slant angles. Therefore, a modular shearing tool was designed, which allows to simply switch die parts to vary cutting clearance and cutting angle. The target size of the study is to measure the lateral deviation of the punch which is monitored by an eddy current sensor. The sensor is located in the downholder and measures the lateral punch deviation in-line during manufacturing. The deviation is mainly influenced by slant angle of workpiece surface. In relation to slang angle and sheet thickness the clearance has a small influence on the measured punch deflection.
On the Lateral Static Stability of Low-Aspect-Ratio Rectangular Wings
NASA Astrophysics Data System (ADS)
Linehan, Thomas; Mohseni, Kamran
2017-11-01
Low-aspect-ratio rectangular wings experience a reduction in lateral static stability at angles of attack distinct from that of lift stall. Stereoscopic digital particle image velocimetry is used to elucidate the flow physics behind this trend. Rectangular wings of AR = 0.75, 1, 1.5, 3 were tested at side-slip angles β = -10° and 0° with angle of attack varied in the range α =10° -40° . In side-slip, the leading-edge separation region emerges on the leeward wing where leading-edge flow reattachment is highly intermittent due to vortex shedding. The tip vortex downwash of the AR < 1.5 wings is sufficient to restrict the shedding of leading-edge vorticity, enabling sustained lift from the leading-edge separation region to high angles of attack. The windward tip vortex grows in size with increasing angle of attack, occupying an increasingly larger percentage of the windward wing. At high angles of attack pre-lift stall, the windward tip vortex lifts off the wing, resulting in separated flow underneath it. The downwash of the AR = 3 wing is insufficient to reattach the leading-edge flow at high incidence. The flow stalls on the leeward wing with stalled flow expanding upstream toward the windward wing with increasing angle of attack.
Glancing angle Talbot-Lau grating interferometers for phase contrast imaging at high x-ray energy
NASA Astrophysics Data System (ADS)
Stutman, D.; Finkenthal, M.
2012-08-01
A Talbot-Lau interferometer is demonstrated using micro-periodic gratings inclined at a glancing angle along the light propagation direction. Due to the increase in the effective thickness of the absorption gratings, the device enables differential phase contrast imaging at high x-ray energy, with improved fringe visibility (contrast). For instance, at 28° glancing angle, we obtain up to ˜35% overall interferometer contrast with a spectrum having ˜43 keV mean energy, suitable for medical applications. In addition, glancing angle interferometers could provide high contrast at energies above 100 keV, enabling industrial and security applications of phase contrast imaging.
NASA Astrophysics Data System (ADS)
Yang, Bo; Wang, Dehui; Zhou, Lin; Wu, Shuang; Xiang, Rong; Zhang, Wenhua; Gui, Huaqiao; Liu, Jianguo; Wang, Huanqing; Lu, Liang; Yu, Benli
2017-06-01
The self-mixing technique based on the traditional reflecting mirror has been demonstrated with great merit for angle sensing applications. Here we demonstrate a modified self-reflection-mixing angle measurement system by combine a right-angle prism to self-mixing angle measurement. In our system, the wavelength is crucial to the angle measurement resolution. For a microchip solid-state laser, the measurement resolution can reach 0.49 mrad, while the resolution for the He-Ne laser is 0.53 mrad. In addition, the ranges in the system with the microchip solid-state laser and He-Ne laser are up to 22 mrad and 24.9 mrad respectively. This modified angle measurement system effectively combines the advantage of self-mixing measurement system with a compact structure, providing interesting features such as of high requisition of resolution and precision.
Relationship Between Frequency and Deflection Angle in the DNA Prism
Chen, Zhen; Dorfman, Kevin D.
2013-01-01
The DNA prism is a modification of the standard pulsed-field electrophoresis protocol to provide a continuous separation, where the DNA are deflected at an angle that depends on their molecular weight. The standard switchback model for the DNA prism predicts a monotonic increase in the deflection angle as a function of the frequency for switching the field until a plateau regime is reached. However, experiments indicate that the deflection angle achieves a maximum value before decaying to a size-independent value at high frequencies. Using Brownian dynamics simulations, we show that the maximum in the deflection angle is related to the reorientation time for the DNA and the decay in deflection angle at high frequencies is due to inadequate stretching. The generic features of the dependence of the deflection angle on molecular weight, switching frequency, and electric field strength explain a number of experimental phenomena. PMID:23410375
Rat Cardiovascular Responses to Whole Body Suspension: Head-down and Non-Head-Down Tilt
NASA Technical Reports Server (NTRS)
Musacchia, X. J.; Steffen, Joseph M.; Dombrowski, Judy
1992-01-01
The rat whole body suspension technique mimics responses seen during exposure to microgravity and was evaluated as a model for cardiovascular responses with two series of experiments. In one series, changes were monitored in chronically catheterized rats during 7 days of Head-Down Tilt (HDT) or Non-Head-Down Tilt (N-HDT) and after several hours of recovery. Elevations of mean arterial (MAP), systolic, and diastolic pressures of approx. 20 % (P less than 0.05) in HDT rats began as early as day 1 and were maintained for the duration of suspension. Pulse pressures were relatively unaffected, but heart rates were elevated approx. 10 %. During postsuspension (2-7 h), most cardiovascular parameters returned to presuspension levels. N-HDT rats exhibited elevations chiefly on days 3 and 7. In the second series, blood pressure was monitored in 1- and 3-day HDT and N-HDT rats to evaluate responses to rapid head-up tilt. MAP, systolic and diastolic pressures, and HR were elevated (P less than 0.05) in HDT and N-HDT rats during head-up tilt after 1 day of suspension, while pulse pressures remained un changed. HDT rats exhibited elevated pretilt MAP and failed to respond to rapid head-up tilt with further increase of MAP on day 3, indicating some degree of deconditioning. The whole body suspended rat may be useful as a model to better understand responses of rats exposed to microgravity.
NASA Astrophysics Data System (ADS)
Hosseini, Somaye; Savaloni, Hadi; Gholipour-Shahraki, Mehran
2017-03-01
The wettability of solid surfaces is important from the aspects of both science and technology. The Mn nano-sculptured thin films were designed and fabricated by oblique angle deposition of Mn on glass substrates at room temperature. The obtained structure was characterized by field emission scanning electron microscopy and atomic force microscopy. The wettability of thin films samples was investigated by water contact angle (WCA). The 4-pointed helical star-shaped structure exhibits hydrophobicity with static WCAs of more than 133° for a 10-mg distilled water droplet. This sample also shows the rose petal effect with the additional property of high adhesion. The Mn nano-sculptured thin films also act as a sticky surface which is confirmed by hysteresis of the contact angle obtained from advancing and receding contact angles measurements. Physicochemical property of liquid phase could effectively change the contact angle, and polar solvents in contact with hydrophobic solid surfaces do not necessarily show high contact angle value.
NASA Technical Reports Server (NTRS)
Stoliker, Patrick C.; Bosworth, John T.
1996-01-01
The X-31A aircraft gross-acquisition and fine-tracking handling qualities have been evaluated using standard evaluation maneuvers developed by Wright Laboratory, Wright-Patterson Air Force Base. The emphasis of the testing is in the angle-of-attack range between 30 deg and 70 deg. Longitudinal gross-acquisition handling qualities results show borderline Level 1/Level 2 performance. Lateral gross-acquisition testing results in Level 1/Level 2 ratings below 45 deg angle of attack, degrading into Level 3 as angle of attack increases. The fine-tracking performance in both longitudinal and lateral axes also receives Level 1 ratings near 30 deg angle of attack, with the ratings tending towards Level 3 at angles of attack greater than 50 deg. These ratings do not match the expectations from the extensive close-in combat testing where the X-31A aircraft demonstrated fair to good handling qualities maneuvering for high angles of attack. This paper presents the results of the high-angle-of-attack handling qualities flight testing of the X-31A aircraft. Discussion of the preparation for the maneuvers, the pilot ratings, and selected pilot comments are included. Evaluation of the results is made in conjunction with existing Neal-Smith, bandwidth, Smith-Geddes, and military specifications.
NASA Technical Reports Server (NTRS)
Stoliker, Patrick C.; Bosworth, John T.
1997-01-01
The X-31A aircraft gross-acquisition and fine-tracking handling qualities have been evaluated using standard evaluation maneuvers developed by Wright Laboratory, Wright Patterson Air Force Base. The emphasis of the testing is in the angle-of-attack range between 30 deg. and 70 deg. Longitudinal gross-acquisition handling qualities results show borderline Level l/Level 2 performance. Lateral gross-acquisition testing results in Level l/Level 2 ratings below 45 deg. angle of attack, degrading into Level 3 as angle of attack increases. The fine tracking performance in both longitudinal and lateral axes also receives Level 1 ratings near 30 deg. angle of attack, with the ratings tending towards Level 3 at angles of attack greater than 50 deg. These ratings do not match the expectations from the extensive close-in combat testing where the X-31A aircraft demonstrated fair to good handling qualities maneuvering for high angles of attack. This paper presents the results of the high-angle-of-attack handling qualities flight testing of the X-31A aircraft. Discussion of the preparation for the maneuvers, the pilot ratings, and selected pilot comments are included. Evaluation of the results is made in conjunction with existing Neal Smith, bandwidth, Smith-Geddes, and military specifications.
Flight test experience with high-alpha control system techniques on the F-14 airplane
NASA Technical Reports Server (NTRS)
Gera, J.; Wilson, R. J.; Enevoldson, E. K.; Nguyen, L. T.
1981-01-01
Improved handling qualities of fighter aircraft at high angles of attack can be provided by various stability and control augmentation techniques. NASA and the U.S. Navy are conducting a joint flight demonstration of these techniques on an F-14 airplane. This paper reports on the flight test experience with a newly designed lateral-directional control system which suppresses such high angle of attack handling qualities problems as roll reversal, wing rock, and directional divergence while simultaneously improving departure/spin resistance. The technique of integrating a piloted simulation into the flight program was used extensively in this program. This technique had not been applied previously to high angle of attack testing and required the development of a valid model to simulate the test airplane at extremely high angles of attack.
Devices and process for high-pressure magic angle spinning nuclear magnetic resonance
Hoyt, David W; Sears, Jr., Jesse A; Turcu, Romulus V.F.; Rosso, Kevin M; Hu, Jian Zhi
2014-04-08
A high-pressure magic angle spinning (MAS) rotor is detailed that includes a high-pressure sample cell that maintains high pressures exceeding 150 bar. The sample cell design minimizes pressure losses due to penetration over an extended period of time.
Devices and process for high-pressure magic angle spinning nuclear magnetic resonance
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hoyt, David W.; Sears, Jesse A.; Turcu, Romulus V. F.
A high-pressure magic angle spinning (MAS) rotor is detailed that includes a high-pressure sample cell that maintains high pressures exceeding 150 bar. The sample cell design minimizes pressure losses due to penetration over an extended period of time.
Tun, Tin A; Baskaran, Mani; Tan, Shayne S; Perera, Shamira A; Aung, Tin; Husain, Rahat
2017-01-01
To evaluate the diagnostic performance of the anterior segment angle-to-angle scan of the Cirrus high-definition optical coherence tomography (HD-OCT) in detecting eyes with closed angles. All subjects underwent dark-room gonioscopy by an ophthalmologist. A technician performed anterior segment imaging with Cirrus (n = 202) and Visante OCT (n = 85) under dark-room conditions. All eyes were categorized by two masked graders as per number of closed quadrants. Each quadrant of anterior chamber angle was categorized as a closed angle if posterior trabecular meshwork could not be seen on gonioscopy or if there was any irido-corneal contact anterior to scleral spur in Cirrus and Visante images. An eye was graded as having a closed angle if two or more quadrants were closed. Agreement and area under the curve (AUC) were performed. There were 50 (24.8%) eyes with closed angles. The agreements of closed-angle diagnosis (by eye) between Cirrus HD-OCT and gonioscopy (k = 0.59; 95% confidence interval (CI) 0.45-0.72; AC1 = 0.76) and between Cirrus and Visante OCT (k = 0.65; 95% CI 0.48-0.82, AC1 = 0.77) were moderate. The AUC for diagnosing the eye with gonioscopic closed angle by Cirrus HD-OCT was good (AUC = 0.86; sensitivity = 83.33; specificity = 77.78). The diagnostic performance of Cirrus HD-OCT in detecting the eyes with closed angles was similar to that of Visante (AUC 0.87 vs. 0.9, respectively; P = 0.51). The anterior segment angle-to-angle scans of Cirrus HD-OCT demonstrated similar diagnostic performance as Visante in detecting gonioscopic closed angles. The agreement between Cirrus and gonioscopy for detecting eyes with closed angles was moderate.
Lee, Stephanie S; Mativetsky, Jeffrey M; Loth, Marsha A; Anthony, John E; Loo, Yueh-Lin
2012-11-27
The nanoscale boundaries formed when neighboring spherulites impinge in polycrystalline, solution-processed organic semiconductor thin films act as bottlenecks to charge transport, significantly reducing organic thin-film transistor mobility in devices comprising spherulitic thin films as the active layers. These interspherulite boundaries (ISBs) are structurally complex, with varying angles of molecular orientation mismatch along their lengths. We have successfully engineered exclusively low- and exclusively high-angle ISBs to elucidate how the angle of molecular orientation mismatch at ISBs affects their resistivities in triethylsilylethynyl anthradithiophene thin films. Conductive AFM and four-probe measurements reveal that current flow is unaffected by the presence of low-angle ISBs, whereas current flow is significantly disrupted across high-angle ISBs. In the latter case, we estimate the resistivity to be 22 MΩμm(2)/width of the ISB, only less than a quarter of the resistivity measured across low-angle grain boundaries in thermally evaporated sexithiophene thin films. This discrepancy in resistivities across ISBs in solution-processed organic semiconductor thin films and grain boundaries in thermally evaporated organic semiconductor thin films likely arises from inherent differences in the nature of film formation in the respective systems.
NASA Astrophysics Data System (ADS)
Lee, Sangmin; Hwang, Woonbong
2009-03-01
Superhydrophobic surfaces designed to improve hydrophobicity have high advancing contact angles corresponding to the Cassie state, but these surfaces also exhibit high contact angle hysteresis. We report here a simple and inexpensive method for fabricating superhydrophobic tangled nanofiber structures with ultralow contact angle hysteresis and no-aging degradation, based on a widening process. The resulting nanostructures are suitable for diverse applications including microfluidic devices for biological studies and industrial self-cleaning products for automobiles, ships and houses.
Aerodynamic characteristics of airplanes at high angles of attack
NASA Technical Reports Server (NTRS)
Chambers, J. R.; Grafton, S. B.
1977-01-01
An introduction to, and a broad overiew of, the aerodynamic characteristics of airplanes at high angles of attack are provided. Items include: (1) some important fundamental phenomena which determine the aerodynamic characteristics of airplanes at high angles of attack; (2) static and dynamic aerodynamic characteristics near the stall; (3) aerodynamics of the spin; (4) test techniques used in stall/spin studies; (5) applications of aerodynamic data to problems in flight dynamics in the stall/spin area; and (6) the outlook for future research in the area. Although stalling and spinning are flight dynamic problems of importance to all aircraft, including general aviation aircraft, commercial transports, and military airplanes, emphasis is placed on military configurations and the principle aerodynamic factors which influence the stability and control of such vehicles at high angles of attack.
NASA Technical Reports Server (NTRS)
Gittner, Nathan M.; Chokani, Ndaona
1991-01-01
An experimental study of the effects of aft blowing on the forebody vortex asymmetry over a 3.0 caliber tangent ogive body at high angles of attack was conducted. The tip of the ogive body was equipped with a single blowing nozzle whose position could be adjusted. The tests were conducted in a subsonic wind tunnel at laminar flow conditions. The effects of model roll, angle of attack, blowing coefficient, and blowing nozzle axial position were independently studied. Surface pressure measurements and flow visualization results were obtained. Aft blowing was observed to alleviate the degree of vortex asymmetry at all angles of attack. The blowing was found to be more effective at the higher angles of attack. However, proportional control of the degree of vortex asymmetry was not observed, because the initial flowfield was highly asymmetric.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tang, Shanzhi, E-mail: shanzhit@gmail.com; School of Mechanical Engineering, Xi'an Jiaotong University, Xi'an 710049; Wang, Zhao
The roll angle measurement is difficult to be achieved directly using a typical commercial interferometer due to its low sensitivity in axial direction, where the axial direction is orthogonal to the plane of the roll angular displacement. A roll angle measurement method combined diffraction gratings with a laser heterodyne interferometer is discussed in this paper. The diffraction grating placed in the plane of a roll angular displacement and the interferometer arranged in the plane's orthogonal direction, constitute the measurement pattern for the roll angle with high resolution. The roll angular displacement, considered as the linear, can be tested precisely whenmore » the corresponding angle is very small. Using the proposed method, the angle roll measurement obtains the high resolution of 0.002{sup ″}. Experiment has proved its feasibility and practicability.« less
Johnston-Peck, Aaron C; Winterstein, Jonathan P; Roberts, Alan D; DuChene, Joseph S; Qian, Kun; Sweeny, Brendan C; Wei, Wei David; Sharma, Renu; Stach, Eric A; Herzing, Andrew A
2016-03-01
Low-angle annular dark field (LAADF) scanning transmission electron microscopy (STEM) imaging is presented as a method that is sensitive to the oxidation state of cerium ions in CeO2 nanoparticles. This relationship was validated through electron energy loss spectroscopy (EELS), in situ measurements, as well as multislice image simulations. Static displacements caused by the increased ionic radius of Ce(3+) influence the electron channeling process and increase electron scattering to low angles while reducing scatter to high angles. This process manifests itself by reducing the high-angle annular dark field (HAADF) signal intensity while increasing the LAADF signal intensity in close proximity to Ce(3+) ions. This technique can supplement STEM-EELS and in so doing, relax the experimental challenges associated with acquiring oxidation state information at high spatial resolutions. Published by Elsevier B.V.
Investigations of interpolation errors of angle encoders for high precision angle metrology
NASA Astrophysics Data System (ADS)
Yandayan, Tanfer; Geckeler, Ralf D.; Just, Andreas; Krause, Michael; Asli Akgoz, S.; Aksulu, Murat; Grubert, Bernd; Watanabe, Tsukasa
2018-06-01
Interpolation errors at small angular scales are caused by the subdivision of the angular interval between adjacent grating lines into smaller intervals when radial gratings are used in angle encoders. They are often a major error source in precision angle metrology and better approaches for determining them at low levels of uncertainty are needed. Extensive investigations of interpolation errors of different angle encoders with various interpolators and interpolation schemes were carried out by adapting the shearing method to the calibration of autocollimators with angle encoders. The results of the laboratories with advanced angle metrology capabilities are presented which were acquired by the use of four different high precision angle encoders/interpolators/rotary tables. State of the art uncertainties down to 1 milliarcsec (5 nrad) were achieved for the determination of the interpolation errors using the shearing method which provides simultaneous access to the angle deviations of the autocollimator and of the angle encoder. Compared to the calibration and measurement capabilities (CMC) of the participants for autocollimators, the use of the shearing technique represents a substantial improvement in the uncertainty by a factor of up to 5 in addition to the precise determination of interpolation errors or their residuals (when compensated). A discussion of the results is carried out in conjunction with the equipment used.
NASA Astrophysics Data System (ADS)
Li, Hao; He, Xianqiang; Bai, Yan; Chen, Xiaoyan; Gong, Fang; Zhu, Qiankun; Hu, Zifeng
2016-10-01
Numerous empirical algorithms have been operationally used to retrieve the global ocean chlorophyll-a concentration (Chla) from ocean color satellite data, e.g., the OC4V4 algorithm for SeaWiFS and OC3M for MODIS. However, the algorithms have been established and validated based on the in situ data mainly measured under low to moderate solar zenith angle (<70°). Currently, with the development of the geostationary satellite ocean color remote sensing which observes from early morning to later afternoon, it is necessary to know whether the empirical Chla algorithms could be applied to high solar zenith angle. In this study, the performances of seven widely-used Chla algorithms under high solar zenith angles, i.e., OC2, OC3M, OC3V, OC4V4, CLARK, OCI, and YOC algorithms, were evaluated using the NOMAD global in situ ocean color dataset. The results showed that the performances of all the seven algorithms decreased significantly under high solar zenith angles as compared to those under low-moderate solar zenith angles. For instance, for the OC4V4 algorithm, the relative percent difference (RPD) and root-mean-square error (RMSE) were 13.78% and 1.66 μg/l for the whole dataset, and 3.95% and 1.49 μg/l for the solar zenith angles ranged from 30° to 40°, respectively. However, the RPD and RMSE increased to 30.45% and 6.10μg/l for solar zenith angle larger than 70°.
Vivid structural colors with low angle dependence from long-range ordered photonic crystal films.
Su, Xin; Xia, Hongbo; Zhang, Shufen; Tang, Bingtao; Wu, Suli
2017-03-02
Structural colored materials have attracted increasing attention due to their vivid color effects and non-photobleaching characteristics. However, the angle dependence of these structural colors severely restricts their practical applications, for example, in display and sensing devices. Here, a new strategy for obtaining low angle dependent structural colors is demonstrated by fabricating long-range ordered photonic crystal films. By using spheres with high refractive indices as building blocks, the angle dependence of the obtained colors has been strongly suppressed. Green, golden yellow and red structural colored films with low angle dependence were obtained by using 145 nm, 165 nm and 187 nm Cu 2 O spheres as building blocks, respectively. SEM images confirmed the long-range highly ordered arrays of the Cu 2 O photonic crystal films. Reflectance spectra and digital photographs clearly demonstrate the low angle dependence of these structural colors, which is in sharp comparison with the case of polystyrene (PS) and SiO 2 photonic crystal films. Furthermore, these structural colors are vivid with high color saturation, not only under black background, but also under white background and natural light without adding any light-absorbing agents. These low angle dependent structural colors endow Cu 2 O photonic crystal films with great potential in practical applications. Our findings may broaden the strategies for the design and fabrication of angle independent structural colored materials.
Techniques for deriving tissue structure from multiple projection dual-energy x-ray absorptiometry
NASA Technical Reports Server (NTRS)
Feldmesser, Howard S. (Inventor); Charles, Jr., Harry K. (Inventor); Beck, Thomas J. (Inventor); Magee, Thomas C. (Inventor)
2004-01-01
Techniques for deriving bone properties from images generated by a dual-energy x-ray absorptiometry apparatus include receiving first image data having pixels indicating bone mineral density projected at a first angle of a plurality of projection angles. Second image data and third image data are also received. The second image data indicates bone mineral density projected at a different second angle. The third image data indicates bone mineral density projected at a third angle. The third angle is different from the first angle and the second angle. Principal moments of inertia for a bone in the subject are computed based on the first image data, the second image data and the third image data. The techniques allow high-precision, high-resolution dual-energy x-ray attenuation images to be used for computing principal moments of inertia and strength moduli of individual bones, plus risk of injury and changes in risk of injury to a patient.
Wang, Yunji; Qiu, Ye; Liu, Henglang; He, Jinlong; Fan, Xiaoping
2017-01-01
Objectives: To quantitatively evaluate palatal bone thickness in adults with different facial types using cone beam computed tomography (CBCT). Methods: The CBCT volumetric data of 123 adults (mean age, 26.8 years) collected between August 2014 and August 2016 was retrospectively studied. The subjects were divided into a low-angle group (39 subjects), a normal-angle group (48 subjects) and a high-angle group (36 subjects) based on facial types assigned by cephalometric radiography. The thickness of the palatal bone was assessed at designated points. A repeated-measure analysis of variance (rm-ANOVA) test was used to test the relationship between facial types and palatal bone thickness. Results: Compared to the low-angle group, the high-angle group had significantly thinner palatal bones (p<0.05), except for the anterior-midline, anterior-medial and middle-midline areas. Conclusion: The safest zone for the placement of microimplants is the anterior part of the paramedian palate. Clinicians should pay special attention to the probability of thinner bone plates and the risk of perforation in high-angle patients. PMID:28917071
Improvement of maneuver aerodynamics by spanwise blowing
NASA Technical Reports Server (NTRS)
Erickson, G. E.; Campbell, J. F.
1977-01-01
Spanwise blowing was used to test a generalized wind-tunnel model to investigate component concepts in order to provide improved maneuver characteristics for advanced fighter aircraft. Primary emphasis was placed on performance, stability, and control at high angles of attack and subsonic speeds. Test data were obtained in the Langley high speed 7 by 10 foot tunnel at free stream Mach numbers up to 0.50 for a range of model angles of attack, jet momentum coefficients, and leading and trailing edge flap deflection angles. Spanwise blowing on a 44 deg swept trapezoidal wing resulted in leading edge vortex enhancement with subsequent large vortex induced lift increments and drag polar improvements at the higher angles of attack. Small deflections of a leading edge flap delayed these lift and drag benefits to higher angles of attack. In addition, blowing was more effective at higher Mach numbers. Spanwise blowing in conjunction with a deflected trailing edge flap resulted in lift and drag benefits that exceeded the summation of the effects of each high lift device acting alone. Asymmetric blowing was an effective lateral control device at the higher angles of attack.
An Overview of Controls and Flying Qualities Technology on the F/A-18 High Alpha Research Vehicle
NASA Technical Reports Server (NTRS)
Pahle, Joseph W.; Wichman, Keith D.; Foster, John V.; Bundick, W. Thomas
1996-01-01
The NASA F/A-18 High Alpha Research Vehicle (HARV) has been the flight test bed of a focused technology effort to significantly increase maneuvering capability at high angles of attack. Development and flight test of control law design methodologies, handling qualities metrics, performance guidelines, and flight evaluation maneuvers are described. The HARV has been modified to include two research control effectors, thrust vectoring, and actuated forebody strakes in order to provide increased control power at high angles of attack. A research flight control system has been used to provide a flexible, easily modified capability for high-angle-of-attack research controls. Different control law design techniques have been implemented and flight-tested, including eigenstructure assignment, variable gain output feedback, pseudo controls, and model-following. Extensive piloted simulation has been used to develop nonlinear performance guide-lines and handling qualities criteria for high angles of attack. This paper reviews the development and evaluation of technologies useful for high-angle-of-attack control. Design, development, and flight test of the research flight control system, control laws, flying qualities specifications, and flight test maneuvers are described. Flight test results are used to illustrate some of the lessons learned during flight test and handling qualities evaluations.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lillo, T. M.; Rooyen, I. J.; Aguiar, J. A.
Precession electron diffraction in the transmission electron microscope was used to map grain orientation and ultimately determine grain boundary misorientation angle distributions, relative fractions of grain boundary types (random high angle, low angle or coincident site lattice (CSL)-related boundaries) and the distributions of CSL-related grain boundaries in the SiC layer of irradiated TRISO-coated fuel particles. Two particles from the AGR-1 experiment exhibiting high Ag-110m retention (>80%) were compared to a particle exhibiting low Ag-110m retention (<19%). Irradiated particles with high Ag-110m retention exhibited a lower fraction of random, high angle grain boundaries compared to the low Ag-110m retention particle. Anmore » inverse relationship between the random, high angle grain boundary fraction and Ag-110m retention is found and is consistent with grain boundary percolation theory. Also, comparison of the grain boundary distributions with previously reported unirradiated grain boundary distributions, based on SEM-based EBSD for similarly fabricated particles, showed only small differences, i.e. a greater low angle grain boundary fraction in unirradiated SiC. It was, thus, concluded that SiC layers with grain boundary distributions susceptible to Ag-110m release were present prior to irradiation. Finally, irradiation parameters were found to have little effect on the association of fission product precipitates with specific grain boundary types.« less
Stable high absorption metamaterial for wide-angle incidence of terahertz wave
NASA Astrophysics Data System (ADS)
Du, Qiujiao; Zeng, Zuoxun; Xiang, Dong; Lv, Tao; Zhang, Guangyong; Yang, Hongwu
2014-04-01
We propose a metamaterial based on metallic Jerusalem cross and cross-wire structures for realizing relatively stable high absorption with respect to the wide angle incidence of both polarized terahertz (THz) waves. Numerical simulations are carried out to verify the proposed absorber. For both transverse electric and transverse magnetic polarizations, absorptions around 0.93 THz reach nearly up to unity under normal incidence and maintain above 97% over a wide incidence angle range. The THz absorber can be easily micro-fabricated due to a thickness about 40 times smaller than operating wavelength. The proposed metamaterial is a promising candidate as absorbing element in THz thermal imager, due to its wide angle, stable high absorption and very thin thickness.
NASA Technical Reports Server (NTRS)
Larson, T. J.
1984-01-01
The measurement performance of a hemispherical flow-angularity probe and a fuselage-mounted pitot-static probe was evaluated at high flow angles as part of a test program on an F-14 airplane. These evaluations were performed using a calibrated pitot-static noseboom equipped with vanes for reference flow direction measurements, and another probe incorporating vanes but mounted on a pod under the fuselage nose. Data are presented for angles of attack up to 63, angles of sideslip from -22 deg to 22 deg, and for Mach numbers from approximately 0.3 to 1.3. During maneuvering flight, the hemispherical flow-angularity probe exhibited flow angle errors that exceeded 2 deg. Pressure measurements with the pitot-static probe resulted in very inaccurate data above a Mach number of 0.87 and exhibited large sensitivities with flow angle.
An oilspill trajectory analysis model with a variable wind deflection angle
Samuels, W.B.; Huang, N.E.; Amstutz, D.E.
1982-01-01
The oilspill trajectory movement algorithm consists of a vector sum of the surface drift component due to wind and the surface current component. In the U.S. Geological Survey oilspill trajectory analysis model, the surface drift component is assumed to be 3.5% of the wind speed and is rotated 20 degrees clockwise to account for Coriolis effects in the Northern Hemisphere. Field and laboratory data suggest, however, that the deflection angle of the surface drift current can be highly variable. An empirical formula, based on field observations and theoretical arguments relating wind speed to deflection angle, was used to calculate a new deflection angle at each time step in the model. Comparisons of oilspill contact probabilities to coastal areas calculated for constant and variable deflection angles showed that the model is insensitive to this changing angle at low wind speeds. At high wind speeds, some statistically significant differences in contact probabilities did appear. ?? 1982.
Control of Angular Intervals for Angle-Multiplexed Holographic Memory
NASA Astrophysics Data System (ADS)
Kinoshita, Nobuhiro; Muroi, Tetsuhiko; Ishii, Norihiko; Kamijo, Koji; Shimidzu, Naoki
2009-03-01
In angle-multiplexed holographic memory, the full width at half maximum of the Bragg selectivity curves is dependent on the angle formed between the medium and incident laser beams. This indicates the possibility of high density and high multiplexing number by varying the angular intervals between adjacent holograms. We propose an angular interval scheduling for closely stacking holograms into medium even when the angle range is limited. We obtained bit error rates of the order of 10-4 under the following conditions: medium thickness of 1 mm, laser beam wavelength of 532 nm, and angular multiplexing number of 300.
Objectifying the Adjacent and Opposite Angles: A Cultural Historical Analysis
ERIC Educational Resources Information Center
Daher, Wajeeh; Musallam, Nadera
2018-01-01
The angle topic is central to the development of geometric knowledge. Two of the basic concepts associated with this topic are the adjacent and opposite angles. It is the goal of the present study to analyze, based on the cultural historical semiotics framework, how high-achieving seventh grade students objectify the adjacent and opposite angles'…
Federal Register 2010, 2011, 2012, 2013, 2014
2013-01-24
..., except federal holidays. FOR FURTHER INFORMATION CONTACT: Joe Jacobsen, FAA, Airplane and Flight Crew... protection features include limitations on angle-of- attack, normal load factor, bank angle, pitch angle, and... characteristics, and High angle-of-attack. Section Sec. 25.143, however, does not adequately ensure that the novel...
Aerocapture Guidance Performance for the Neptune Orbiter
NASA Technical Reports Server (NTRS)
Masciarelli, James P.; Westhelle, Carlos H.; Graves, Claude A.
2004-01-01
A performance evaluation of the Hybrid Predictor corrector Aerocapture Scheme (HYPAS) guidance algorithm for aerocapture at Neptune is presented in this paper for a Mission to Neptune and the Neptune moon Triton'. This mission has several challenges not experienced in previous aerocapture guidance assessments. These challengers are a very high Neptune arrival speed, atmospheric exit into a high energy orbit about Neptune, and a very high ballistic coefficient that results in a low altitude acceleration capability when combined with the aeroshell LD. The evaluation includes a definition of the entry corridor, a comparison to the theoretical optimum performance, and guidance responses to variations in atmospheric density, aerodynamic coefficients and flight path angle for various vehicle configurations (ballistic numbers). The benefits of utilizing angle-of-attack modulation in addition to bank angle modulation to improve flight performance is also discussed. The results show that despite large sensitivities in apoapsis targeting, the algorithm performs within the allocated AV budget for the Neptune mission bank angle only modulation. The addition of angle-of-attack modulation with as little as 5 degrees of amplitude significantly improves the scatter in final orbit apoapsis. Although the angle-of-attack modulation complicates the vehicle design, the performance enhancement reduces aerocapture risk and reduces the propellant consumption needed to reach the high energy target orbit for a conventional propulsion system.
2015-03-11
Like the Wedding Guest in the thrall of the Ancient Mariner, we are transfixed by the stunning landscape of today's image and the dramatic story it tells. The large degraded impact crater near the center is Coleridge. It has been pummeled by later impacts, crumpled by the formation of lobate scarps, deeply incised by secondary crater chains, and much of the interior and low-lying portions of the exterior have been infilled by plains volcanism. Samuel Taylor Coleridge (1772-1834) was an English poet, known for The Rime of the Ancient Mariner and Kubla Khan. This image was acquired as part of MDIS's high-incidence-angle base map. The high-incidence-angle base map complements the surface morphology base map of MESSENGER's primary mission that was acquired under generally more moderate incidence angles. High incidence angles, achieved when the Sun is near the horizon, result in long shadows that accentuate the small-scale topography of geologic features. The high-incidence-angle base map was acquired with an average resolution of 200 meters/pixel. http://photojournal.jpl.nasa.gov/catalog/PIA19238
X-31 high angle of attack control system performance
NASA Technical Reports Server (NTRS)
Huber, Peter; Seamount, Patricia
1994-01-01
The design goals for the X-31 flight control system were: (1) level 1 handling qualities during post-stall maneuvering (30 to 70 degrees angle-of-attack); (2) thrust vectoring to enhance performance across the flight envelope; and (3) adequate pitch-down authority at high angle-of-attack. Additional performance goals are discussed. A description of the flight control system is presented, highlighting flight control system features in the pitch and roll axes and X-31 thrust vectoring characteristics. The high angle-of-attack envelope clearance approach will be described, including a brief explanation of analysis techniques and tools. Also, problems encountered during envelope expansion will be discussed. This presentation emphasizes control system solutions to problems encountered in envelope expansion. An essentially 'care free' envelope was cleared for the close-in-combat demonstrator phase. High angle-of-attack flying qualities maneuvers are currently being flown and evaluated. These results are compared with pilot opinions expressed during the close-in-combat program and with results obtained from the F-18 HARV for identical maneuvers. The status and preliminary results of these tests are discussed.
NASA Astrophysics Data System (ADS)
Kim, Cheolsun; Lee, Woong-Bi; Ju, Gun Wu; Cho, Jeonghoon; Kim, Seongmin; Oh, Jinkyung; Lim, Dongsung; Lee, Yong Tak; Lee, Heung-No
2017-02-01
In recent years, there has been an increasing interest in miniature spectrometers for research and development. Especially, filter-array-based spectrometers have advantages of low cost and portability, and can be applied in various fields such as biology, chemistry and food industry. Miniaturization in optical filters causes degradation of spectral resolution due to limitations on spectral responses and the number of filters. Nowadays, many studies have been reported that the filter-array-based spectrometers have achieved resolution improvements by using digital signal processing (DSP) techniques. The performance of the DSP-based spectral recovery highly depends on the prior information of transmission functions (TFs) of the filters. The TFs vary with respect to an incident angle of light onto the filter-array. Conventionally, it is assumed that the incident angle of light on the filters is fixed and the TFs are known to the DSP. However, the incident angle is inconstant according to various environments and applications, and thus TFs also vary, which leads to performance degradation of spectral recovery. In this paper, we propose a method of incident angle estimation (IAE) for high resolution spectral recovery in the filter-array-based spectrometers. By exploiting sparse signal reconstruction of the L1- norm minimization, IAE estimates an incident angle among all possible incident angles which minimizes the error of the reconstructed signal. Based on IAE, DSP effectively provides a high resolution spectral recovery in the filter-array-based spectrometers.
Investigating Whistler Mode Wave Diffusion Coefficients at Mars
NASA Astrophysics Data System (ADS)
Shane, A. D.; Liemohn, M. W.; Xu, S.; Florie, C.
2017-12-01
Observations of electron pitch angle distributions have suggested collisions are not the only pitch angle scattering process occurring in the Martian ionosphere. This unknown scattering process is causing high energy electrons (>100 eV) to become isotropized. Whistler mode waves are one pitch angle scattering mechanism known to preferentially scatter high energy electrons in certain plasma regimes. The distribution of whistler mode wave diffusion coefficients are dependent on the background magnetic field strength and thermal electron density, as well as the frequency and wave normal angle of the wave. We have solved for the whistler mode wave diffusion coefficients using the quasi-linear diffusion equations and have integrated them into a superthermal electron transport (STET) model. Preliminary runs have produced results that qualitatively match the observed electron pitch angle distributions at Mars. We performed parametric sweeps over magnetic field, thermal electron density, wave frequency, and wave normal angle to understand the relationship between the plasma parameters and the diffusion coefficient distributions, but also to investigate what regimes whistler mode waves scatter only high energy electrons. Increasing the magnetic field strength and lowering the thermal electron density shifts the distribution of diffusion coefficients toward higher energies and lower pitch angles. We have created an algorithm to identify Mars Atmosphere Volatile and EvolutioN (MAVEN) observations of high energy isotropic pitch angle distributions in the Martian ionosphere. We are able to map these distributions at Mars, and compare the conditions under which these are observed at Mars with the results of our parametric sweeps. Lastly, we will also look at each term in the kinetic diffusion equation to determine if the energy and mixed diffusion coefficients are important enough to incorporate into STET as well.
Franzoni, Linda P; Elliott, Christopher M
2003-10-01
Experiments were performed on an elongated rectangular acoustic enclosure with different levels of absorptive material placed on side walls and an end wall. The acoustic source was a broadband high-frequency sound from a loudspeaker flush-mounted to an end wall of the enclosure. Measurements of sound-pressure levels were averaged in cross sections of the enclosure and then compared to theoretical results. Discrepancies between the experimental results and theoretical predictions that treated all incidence angles as equally probable led to the development of an angle-by-angle approach. The new approach agrees well with the experimentally obtained values. In addition, treating the absorptive material as bulk reacting rather than point reacting was found to significantly change the theoretical value for the absorption coefficient and to improve agreement with experiment. The new theory refines an earlier theory based on power conservation and locally diffuse assumptions. Furthermore, the new theory includes both the angle of incidence effects on the resistive and reactive properties of the absorptive material, and the effects of angle filtering, i.e., that reflecting waves associated with shallow angles become relatively stronger than those associated with steep angles as a function of distance from the source.
PRECISE ANGLE MONITOR BASED ON THE CONCEPT OF PENCIL-BEAM INTERFEROMETRY
DOE Office of Scientific and Technical Information (OSTI.GOV)
QIAN,S.; TAKACS,P.
2000-07-30
The precise angle monitoring is a very important metrology task for research, development and industrial applications. Autocollimator is one of the most powerful and widely applied instruments for small angle monitoring, which is based on the principle of geometric optics. In this paper the authors introduce a new precise angle monitoring system, Pencil-beam Angle Monitor (PAM), base on pencil beam interferometry. Its principle of operation is a combination of physical and geometrical optics. The angle calculation method is similar to the autocollimator. However, the autocollimator creates a cross image but the precise pencil-beam angle monitoring system produces an interference fringemore » on the focal plane. The advantages of the PAM are: high angular sensitivity, long-term stability character making angle monitoring over long time periods possible, high measurement accuracy in the order of sub-microradian, simultaneous measurement ability in two perpendicular directions or on two different objects, dynamic measurement possibility, insensitive to the vibration and air turbulence, automatic display, storage and analysis by use of the computer, small beam diameter making the alignment extremely easy and longer test distance. Some test examples are presented.« less
Neutron reflecting supermirror structure
Wood, J.L.
1992-12-01
An improved neutron reflecting supermirror structure comprising a plurality of stacked sets of bilayers of neutron reflecting materials. The improved neutron reflecting supermirror structure is adapted to provide extremely good performance at high incidence angles, i.e. up to four time the critical angle of standard neutron mirror structures. The reflection of neutrons striking the supermirror structure at a high critical angle provides enhanced neutron throughput, and hence more efficient and economical use of neutron sources. 2 figs.
Neutron reflecting supermirror structure
Wood, James L.
1992-01-01
An improved neutron reflecting supermirror structure comprising a plurality of stacked sets of bilayers of neutron reflecting materials. The improved neutron reflecting supermirror structure is adapted to provide extremely good performance at high incidence angles, i.e. up to four time the critical angle of standard neutron mirror structures. The reflection of neutrons striking the supermirror structure at a high critical angle provides enhanced neutron throughput, and hence more efficient and economical use of neutron sources.
2006-06-01
angle Imaging SpectroRadiometer MODIS Moderate Resolution Imaging Spectroradiometer NGA National Geospatial Intelligence Agency POI Principles of...and µ , the cosine of the viewing zenith angle and the effect of the variation of each of these variables on total optical depth. Extraterrestrial ...Eq. (34). Additionally, solar zenith angle also plays a role in the third term on the RHS of Eq. (34) by modifying extraterrestrial spectral solar
Angle-selective optical filter for highly sensitive reflection photoplethysmogram
Hwang, Chan-Sol; Yang, Sung-Pyo; Jang, Kyung-Won; Park, Jung-Woo; Jeong, Ki-Hun
2017-01-01
We report an angle-selective optical filter (ASOF) for highly sensitive reflection photoplethysmography (PPG) sensors. The ASOF features slanted aluminum (Al) micromirror arrays embedded in transparent polymer resin, which effectively block scattered light under human tissue. The device microfabrication was done by using geometry-guided resist reflow of polymer micropatterns, polydimethylsiloxane replica molding, and oblique angle deposition of thin Al film. The angular transmittance through the ASOF is precisely controlled by the angle of micromirrors. For the mirror angle of 30 degrees, the ASOF accepts an incident light between - 90 to + 50 degrees and the maximum transmittance at - 55 degrees. The ASOF exhibits the substantial reduction of both the in-band noise of PPG signals over a factor of two and the low-frequency noise by three times. Consequently, this filter allows distinguishing the diastolic peak that allows miscellaneous parameters with diverse vascular information. This optical filter provides a new opportunity for highly sensitive PPG monitoring or miscellaneous optical tomography. PMID:29082070
NASA Technical Reports Server (NTRS)
Rainey, A Gerald
1957-01-01
The oscillating air forces on a two-dimensional wing oscillating in pitch about the midchord have been measured at various mean angles of attack and at Mach numbers of 0.35 and 0.7. The magnitudes of normal-force and pitching-moment coefficients were much higher at high angles of attack than at low angles of attack for some conditions. Large regions of negative damping in pitch were found, and it was shown that the effect of increasing the Mach number 0.35 to 0.7 was to decrease the initial angle of attack at which negative damping occurred. Measurements of the aerodynamic damping of a 10-percent-thick and of a 3-percent-thick finite-span wing oscillating in the first bending mode indicate no regions of negative damping for this type of motion over the range of variables covered. The damping measured at high angles of attack was generally larger than that at low angles of attack. (author)
Friction pull plug welding: chamfered heat sink pull plug design
NASA Technical Reports Server (NTRS)
Coletta, Edmond R. (Inventor); Cantrell, Mark A. (Inventor)
2005-01-01
The average strength of a pull plug weld is increased and weak bonding eliminated by providing a dual included angle at the top one third of the pull plug. Plugs using the included angle of the present invention had consistent high strength, no weak bonds and were substantially defect free. The dual angle of the pull plug body increases the heat and pressure of the weld in the region of the top one third of the plug. This allows the plug to form a tight high quality solid state bond. The dual angle was found to be successful in elimination of defects on both small and large plugs.
Comparison and correlation of pelvic parameters between low-grade and high-grade spondylolisthesis.
Min, Woo-Kie; Lee, Chang-Hwa
2014-05-01
This study was retrospectively conducted on 51 patients with L5-S1 spondylolisthesis. This study was conducted to compare a total of 11 pelvic parameters, such as the level of displacement by Meyerding method, lumbar lordosis, sacral inclination, lumbosacral angle, slip angle, S2 inclination, pelvic incidence (PI), L5 inclination, L5 slope, pelvic tilt (PT), and sacral slope (SS) between low-grade and high-grade spondylolisthesis, and to investigate a correlation of the level of displacement by Meyerding method with other pelvic parameters. Pelvic parameters were measured using preoperational erect lateral spinal simple radiographs. The patients were divided into 39 patients with low-grade spondylolisthesis and 12 patients with high-grade spondylolisthesis before analysis. In all patients of both groups, 11 radiographic measurements including the level of displacement by Meyerding method, lumbar lordosis, sacral inclination, lumbosacral angle, slip angle, S2 inclination, PI, L5 inclination, L5 slope, PT, and SS were performed. T test and Pearson correlation analysis were conducted to compare and analyze each measurement. As for the comparison between the 2 groups, a statistically great significance in the level of displacement by Meyerding method, lumbosacral angle, slip angle, L5 incidence, PI, and L5 slope (P≤0.001) was shown. Meanwhile, a statistical significance in the sacral inclination and PT (P<0.05) was also shown. However, no statistical significance in the S2 incidence and SS was shown. A correlation of the level of displacement by Meyerding method with each parameter was analyzed in the both the groups. A high correlation was observed in the lumbar lordosis, lumbosacral angle, slip angle, L5 incidence, and L5 slope (Pearson correlation coefficient, P=0.01), as well as the sacral inclination, PI, and PT (Pearson correlation coefficient, P=0.05). Meanwhile, no correlation was shown in the S2 incidence and SS. A significant difference in the lumbosacral angle, slip angle, L5 incidence, PI, L5 slope, sacral inclination, and PT was shown between the patients with high-grade spondylolisthesis and patients with low-grade spondylolisthesis. Among the aforementioned measurements, the PI showed a significant difference between the 2 groups and also had a significant correlation with the dislocation level in all the patients.
Charles W. McMillin
1972-01-01
Fibril angles were greater for earlywood (avg. 33.4o) than for latewood tracheids (avg. 26.9o). For earlywood, fibril angle did not differ between growth rates when the specific gravity was low (avg. 33.3o). When the specific gravity was high, wood of fast growth had a higher fibril angle (avg. 35.1...
The radiation of sound from a propeller at angle of attack
NASA Technical Reports Server (NTRS)
Mani, Ramani
1990-01-01
The mechanism by which the noise generated at the blade passing frequency by a propeller is altered when the propeller axis is at an angle of attack to the freestream is examined. The measured noise field is distinctly non axially symmetric under such conditions with far field sound pressure levels both diminished and increased relative to the axially symmetric values produced with the propeller at zero angle of attack. Attempts have been made to explain this non axially symmetric sound field based on the unsteady (once per rev) loading experienced by the propeller blades when the propeller axis is at non zero angle of attack. A calculation based on this notion appears to greatly underestimate the measured azimuthal asymmetry of noise for high tip speed, highly loaded propellers. A new mechanism is proposed; namely, that at angle of attack, there is a non axially symmetric modulation of the radiative efficiency of the steady loading and thickness noise which is the primary cause of the non axially symmetric sound field at angle of attack for high tip speed, heavily loaded propellers with a large number of blades. A calculation of this effect to first order in the crossflow Mach number (component of freestream Mach number normal to the propeller axis) is carried out and shows much better agreement with measured noise data on the angle of attack effect.
High resolution quantitative phase imaging of live cells with constrained optimization approach
NASA Astrophysics Data System (ADS)
Pandiyan, Vimal Prabhu; Khare, Kedar; John, Renu
2016-03-01
Quantitative phase imaging (QPI) aims at studying weakly scattering and absorbing biological specimens with subwavelength accuracy without any external staining mechanisms. Use of a reference beam at an angle is one of the necessary criteria for recording of high resolution holograms in most of the interferometric methods used for quantitative phase imaging. The spatial separation of the dc and twin images is decided by the reference beam angle and Fourier-filtered reconstructed image will have a very poor resolution if hologram is recorded below a minimum reference angle condition. However, it is always inconvenient to have a large reference beam angle while performing high resolution microscopy of live cells and biological specimens with nanometric features. In this paper, we treat reconstruction of digital holographic microscopy images as a constrained optimization problem with smoothness constraint in order to recover only complex object field in hologram plane even with overlapping dc and twin image terms. We solve this optimization problem by gradient descent approach iteratively and the smoothness constraint is implemented by spatial averaging with appropriate size. This approach will give excellent high resolution image recovery compared to Fourier filtering while keeping a very small reference angle. We demonstrate this approach on digital holographic microscopy of live cells by recovering the quantitative phase of live cells from a hologram recorded with nearly zero reference angle.
A water tunnel flow visualization study of the F-15
NASA Technical Reports Server (NTRS)
Lorincz, D. J.
1978-01-01
Water tunnel studies were performed to qualitatively define the flow field of the F-15 aircraft. Two lengthened forebodies, one with a modified cross-sectional shape, were tested in addition to the basic forebody. Particular emphasis was placed on defining vortex flows generated at high angles of attack. The flow visualization tests were conducted in the Northrop diagnostic water tunnel using a 1/48-scale model of the F-15. Flow visualization pictures were obtained over an angle-of-attack range to 55 deg and sideslip angles up to 10 deg. The basic aircraft configuration was investigated in detail to determine the vortex flow field development, vortex path, and vortex breakdown characteristics as a function of angle of attack and sideslip. Additional tests showed that the wing upper surface vortex flow fields were sensitive to variations in inlet mass flow ratio and inlet cowl deflection angle. Asymmetries in the vortex systems generated by each of the three forebodies were observed in the water tunnel at zero sideslip and high angles of attack.
A static investigation of the thrust vectoring system of the F/A-18 high-alpha research vehicle
NASA Technical Reports Server (NTRS)
Mason, Mary L.; Capone, Francis J.; Asbury, Scott C.
1992-01-01
A static (wind-off) test was conducted in the static test facility of the Langley 16-foot Transonic Tunnel to evaluate the vectoring capability and isolated nozzle performance of the proposed thrust vectoring system of the F/A-18 high alpha research vehicle (HARV). The thrust vectoring system consisted of three asymmetrically spaced vanes installed externally on a single test nozzle. Two nozzle configurations were tested: A maximum afterburner-power nozzle and a military-power nozzle. Vane size and vane actuation geometry were investigated, and an extensive matrix of vane deflection angles was tested. The nozzle pressure ratios ranged from two to six. The results indicate that the three vane system can successfully generate multiaxis (pitch and yaw) thrust vectoring. However, large resultant vector angles incurred large thrust losses. Resultant vector angles were always lower than the vane deflection angles. The maximum thrust vectoring angles achieved for the military-power nozzle were larger than the angles achieved for the maximum afterburner-power nozzle.
High contact angle hysteresis of superhydrophobic surfaces: Hydrophobic defects
NASA Astrophysics Data System (ADS)
Chang, Feng-Ming; Hong, Siang-Jie; Sheng, Yu-Jane; Tsao, Heng-Kwong
2009-08-01
A typical superhydrophobic surface is essentially nonadhesive and exhibits very low water contact angle (CA) hysteresis, so-called Lotus effect. However, leaves of some plants such as scallion and garlic with an advancing angle exceeding 150° show very serious CA hysteresis. Although surface roughness and epicuticular wax can explain the very high advancing CA, our analysis indicates that the unusual hydrophobic defect, diallyl disulfide, is the key element responsible for contact line pinning on allium leaves. After smearing diallyl disulfide on an extended polytetrafluoroethylene (PTFE) film, which is originally absent of CA hysteresis, the surface remains superhydrophobic but becomes highly adhesive.
Relationship between vertical facial patterns and dental arch form in class II malocclusion.
Grippaudo, Cristina; Oliva, Bruno; Greco, Anna Lucia; Sferra, Simone; Deli, Roberto
2013-11-07
The purpose of this study is to evaluate the relationship between dental arch form and the vertical facial pattern determined by the angle between the mandibular plane and the anterior cranial base (Sella-nasion/mandibular plane angle (SN-MP)) in skeletal class II untreated patients. A sample of 73 Caucasians patients with untreated skeletal class II in permanent dentition was divided into three groups according to the values of the angle SN-MP. An evaluation of the arch form was performed by angular and linear relation values on each patient. Regression analysis was used to determine the statistical significance of the relationships between SN-MP angle and dental arch form. The differences among the three groups were analyzed for significance using a variance analysis. A decrease of the upper arch transversal diameters in high SN-MP angle patients and an increase in low angle SN-MP ones (P<0.05) were shown. Result analysis showed a change in upper arch shape, with a smaller intercanine width in patients with high SN-MP angle and a greater one in low angle patients. As SN-MP angle increased, the upper arch form tended to be narrower. No statistically significant difference in mandibular arch form among the three groups was found, except the angle value related to incisors position. The results showed the association between the upper dental arch form and the vertical facial pattern. On the contrary, the lower arch form was not related to the mandibular divergence.
NASA Astrophysics Data System (ADS)
Zada, Imran; Zhang, Wang; Sun, Peng; Imtiaz, Muhammad; Abbas, Waseem; Zhang, Di
2017-10-01
Inspired by the multifunctional properties of cicada wings, we have precisely replicated biomorphic SiO2 with antireflective structures (ARSs) using a simple, inexpensive, and highly effective sol-gel ultrasonic method. The biomorphic replica of SiO2 was directly achieved from a cicada template at high calcination. The biomorphic SiO2 not only inherited the ARS effectively but also exhibited the excellent angle dependent antireflective properties over a wide range of incident angles (10°-60°). The change in reflectance spectra (visible wavelength) of biomorphic SiO2 was observed from 0.3% to 3.3% with the increasing incident angles. The smooth surface of the SiO2 crystal without nanostructures showed a high reflection of 9.2% compared to the biomorphic SiO2 with ARS. These excellent antireflective properties of biomorphic SiO2 can be attributed to the nanoscale structures which introduce a gradient in the refractive index between air and the material surface via ARS. In the meantime, biomorphic SiO2 demonstrates high hydrophilic properties due to the existence of nanostructures on its surface. These multifunctional properties of biomorphic SiO2, angle dependent antireflective properties, and hydrophilicity with high thermal stability may have potential applications in solar cells and antifogging optical materials.
NASA Astrophysics Data System (ADS)
Wang, Yi; Han, Ge; Lu, Xingen; Zhu, Junqiang
2018-02-01
Wedge diffuser is widely used in centrifugal compressors due to its high performance and compact size. This paper is aimed to research the influence of wedge diffuser blade number and divergence angle on centrifugal compressor performance. The impact of wedge diffuser blade number on compressor stage performance is investigated, and then the wedge diffusers with different divergence angle are studied by varying diffuser wedge angle and blade number simultaneously. It is found that wedge diffuser with 27 blades could have about 0.8% higher adiabatic efficiency and 0.14 higher total pressure ratio than the wedge diffuser with 19 blades and the best compressor performance is achieved when diffuser divergence angle is 8.3°.These results could give some advices on centrifugal compressor design.
High resolution miniaturized stepper ultrasonic motor using differential composite motion.
Chu, Xiangcheng; Xing, Zengping; Li, Longtu; Gui, Zhilun
2004-03-01
Experiments show that there is a limited minimum stepped angle in ultrasonic motors (USM). The research on the minimum angle of stepper USM with 15 mm in diameter and wobbling mode is being carried out. This paper presents a novel way to decrease the minimum stepped angle of USM based on the principle of differential composite motion (DCM), i.e. clockwise and counterclockwise rotation. The prototype was fabricated and experiments proved that this method is useful and also keeps a high torque for a large stepped angle. The stator of the prototype is steel, and rotor is fiberglass, antifriction material or steel. The prototype can operate well over 150 h with a 5 kHz wide frequency band. The minimum stepped angle is 46" using a coventional method while 12" using DCM method proposed in this paper.
Luximon, Yan; Cong, Yan; Luximon, Ameersing; Zhang, Ming
2015-06-01
High-heeled shoes are associated with instability and a high risk of fall, fracture, and ankle sprain. This study investigated the effects of heel base size (HBS) on walking stability under different walking speeds and slope angles. The trajectory of the center of pressure (COP), maximal peak pressure, pressure time integral, contact area, and perceived stability were analyzed. The results revealed that a small HBS increased the COP deviations, shifting the COP more medially at the beginning of the gait cycle. The slope angle mainly affected the COP in the anteroposterior direction. An increased slope angle shifted the COP posterior and caused greater pressure and a larger contact area in the midfoot and rearfoot regions, which can provide more support. Subjective measures on perceived stability were consistent with objective measures. The results suggested that high-heeled shoes with a small HBS did not provide stable plantar support, particularly on a small slope angle. The changes in the COP and pressure pattern caused by a small HBS might increase joint torque and muscle activity and induce lower limb problems. Copyright © 2015 Elsevier B.V. All rights reserved.
Filament wound data base development, revision 1, appendix A
NASA Technical Reports Server (NTRS)
Sharp, R. Scott; Braddock, William F.
1985-01-01
Data are presented in tabular form for the High Performance Nozzle Increments, Filament Wound Case (FWC) Systems Tunnel Increments, Steel Case Systems Tunnel Increments, FWC Stiffener Rings Increments, Steel Case Stiffener Rings Increments, FWC External Tank (ET) Attach Ring Increments, Steel Case ET Attach Ring Increments, and Data Tape 8. The High Performance Nozzle are also presented in graphical form. The tabular data consist of six-component force and moment coefficients as they vary with angle of attack at a specific Mach number and roll angle. The six coefficients are normal force, pitching moment, side force, yawing moment, axial force, and rolling moment. The graphical data for the High Performance Nozzle Increments consist of a plot of a coefficient increment as a function of angle of attack at a specific Mach number and at a roll angle of 0 deg.
A numerical analysis of the British Experimental Rotor Program blade
NASA Technical Reports Server (NTRS)
Duque, Earl P. N.
1989-01-01
Two Computational Fluid Dynamic codes which solve the compressible full-potential and the Reynolds-Averaged Thin-Layer Navier-Stokes equations were used to analyze the nonrotating aerodynamic characteristics of the British Experimental Rotor Program (BERP) helicopter blade at three flow regimes: low angle of attack, high angle of attack and transonic. Excellent agreement was found between the numerical results and experiment. In the low angle of attack regime, the BERP had less induced drag than a comparable aspect ratio rectangular planform wing. At high angle of attack, the blade attained high-lift by maintaining attached flow at the outermost spanwise locations. In the transonic regime, the BERP design reduces the shock strength at the outer spanwise locations which affects wave drag and shock-induced separation. Overall, the BERP blade exhibited many favorable aerodynamic characteristics in comparison to conventional helicopter rotor blades.
Application of variable-gain output feedback for high-alpha control
NASA Technical Reports Server (NTRS)
Ostroff, Aaron J.
1990-01-01
A variable-gain, optimal, discrete, output feedback design approach that is applied to a nonlinear flight regime is described. The flight regime covers a wide angle-of-attack range that includes stall and post stall. The paper includes brief descriptions of the variable-gain formulation, the discrete-control structure and flight equations used to apply the design approach, and the high performance airplane model used in the application. Both linear and nonlinear analysis are shown for a longitudinal four-model design case with angles of attack of 5, 15, 35, and 60 deg. Linear and nonlinear simulations are compared for a single-point longitudinal design at 60 deg angle of attack. Nonlinear simulations for the four-model, multi-mode, variable-gain design include a longitudinal pitch-up and pitch-down maneuver and high angle-of-attack regulation during a lateral maneuver.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tang, Bin, E-mail: toby198489@163.com; Jiang, Li; Hu, Rui
2013-04-15
The correlation between the grain boundary misorientation and the precipitation behaviors of intergranular M{sub 23}C{sub 6} carbides in a wrought Ni–Cr–W superalloy was investigated by using the electron backscattered diffraction (EBSD) technique. It was observed that the grain boundaries with a misorientation angle less than 20°, as well as all coincidence site lattice (CSL) boundaries, are immune to precipitation of the M{sub 23}C{sub 6} carbides; in contrast, the random high-angle grain boundaries with a misorientation angle of 20°–40° provide preferential precipitation sites of the M{sub 23}C{sub 6} carbides at the random high-angle grain boundaries with a higher misorientation angle ofmore » 55°–60°/[2 2 3] turn to retard precipitation of M{sub 23}C{sub 6} carbides owing to their nature like the Σ3 grain boundaries and retard the precipitation of M{sub 23}C{sub 6} carbides. The low-angle and certain random grain boundary segments induced by twins were found to interrupt the precipitation of the M{sub 23}C{sub 6} carbides along the high-angle grain boundaries. - Highlights: ► The low angle grain boundaries and CSL boundaries are immune to precipitation. ► M23C6 precipitate preferentially at random grain boundaries within 20°–40°. ► Some certain random grain boundary segments interrupt M23C6 precipitation.« less
NASA Astrophysics Data System (ADS)
Bazhenov, Mikhail L.; Van der Voo, Rob; Menzo, Zachary; Dominguez, Ada R.; Meert, Joseph G.; Levashova, Natalia M.
2016-04-01
Paleomagnetic results on thick lava series are among the most important sources of information on the characteristics of ancient geomagnetic fields. Most paleo-secular variation data from lavas (PSVL) are of late Cenozoic age. There are far fewer results from lavas older than 5 Ma. The Central Asia Orogenic Belt that occupies several million square kilometers in Asia is probably the world's largest area of Paleozoic volcanism and is thus an attractive target for PSVL studies. We studied a ca. 1700 m thick lava pile in eastern Kazakhstan of Early Permian age. Magmatic zircons, successfully separated from an acid flow in this predominantly basaltic sequence, yielded an Early Permian age of 286.3 ± 3.5 Ma. Oriented samples were collected from 125 flows, resulting in 88 acceptable quality flow-means (n ⩾ 4 samples, radius of confidence circle α95 ⩽ 15°) of the high-temperature magnetization component. The uniformly reversed component is pre-tilting and arguably of a primary origin. The overall mean direction has a declination = 242.0° and an inclination = -56.2° (k = 71.5, α95 = 1.8°; N = 88 sites; pole at 44.1°N, 160.6°E, A95 = 2.2°). Our pole agrees well with the Early Permian reference data for Baltica, in accord with the radiometric age of the lava pile and geological views on evolution of the western part of the Central Asia Orogenic Belt. The new Early Permian result indicates a comparatively low level of secular variation especially when compared to PSVL data from intervals with frequent reversals. Still, the overall scatter of dispersion estimates that are used as proxies for SV magnitudes, elongation values and elongation orientations for PSVL data is high and cannot be fitted into any particular field model with fixed parameters. Both observed values and numerical simulations indicate that the main cause for the scatter of form parameters (elongation values and elongation orientations) is the too small size of collections. Dispersion estimates (concentration parameter and standard angular deviation) are more robust, and their scatter stems from other sources, which may include non-stochastic features of datasets like clusters, loops etc., or non-stationary behavior of secular variation magnitude over time intervals of many million years.
Valera, Màrius; Ibáñez, Natalia; Sancho, Rogelio; Llauger, Jaume; Gich, Ignasi
2018-01-01
Acetabular overcoverage promotes hip osteoarthritis causing a pincer-type femoroacetabular impingement. Acetabular coverage in the horizontal plane is usually poorly defined in imaging studies and may be misdiagnosed. The goal of this study was to analyze the role of acetabular overcoverage measured in the frontal plane and in the horizontal plane by CT scan and to determine its relationship with other anatomic features in the onset of hip arthritis in young adults. We compared prospectively CT scans from two groups of adults of 55 years or younger: the patient group (n = 30) consisted of subjects with diagnosis of early hip arthritis (Tönnis Grade I or II) and the control group (n = 31) consisted of subjects with healthy hips. Two independent observers analyzed centre edge angle (CEA), acetabular anteversion angle (AAA), anterior sector acetabular angle (AASA), posterior sector acetabular angle (PASA), horizontal acetabular sector angle (HASA), femoral anteversion angle (FAVA), alpha angle (AA), and Mckibbin Instability Index (MI). Angles measuring the acetabular coverage on the horizontal plane (AASA, PASA and, HASA) were significantly higher in the patient group (p < 0.001, p = 0.03 and p < 0.001, respectively). Pearson's correlation coefficient showed a positive correlation between CEA and HASA in patients (r = 0.628) and in controls (r = 0.660). However, a high CEA (> 35º) was strongly associated with a high HASA (> 160º) in patients (p = 0.024) but not in controls (p = 0.21), suggesting that pincer should be simultaneously present in the horizontal and frontal plane to trigger hip degeneration. No significant association was detected between a high alpha angle (> 60º) and a high CEA (> 35º suggesting that a mixed pincer-cam aetiology was not prevalent in our series. Multivariate regression analysis showed the most significant predictors of degenerative joint disease were HASA (p = 0.008), AA (p = 0.048) and ASAA (p = 0.004). Acetabular overcoverage in the horizontal plane plays an important role in the onset of early hip arthritis. Considering that this condition is usually underdiagnosed, we suggest the anterior sector acetabular angle, the posterior sector acetabular angle, and the horizontal acetabular sector angles be routinely included in decision-making algorithms in hip conservative surgery to better define hips-at-risk of developing early hip osteoarthritis.
High prevalence of narrow angles among Filipino-American patients.
Seider, Michael I; Sáles, Christopher S; Lee, Roland Y; Agadzi, Anthony K; Porco, Travis C; Weinreb, Robert N; Lin, Shan C
2011-03-01
To determine the prevalence of gonioscopically narrow anterior chamber angles in a Filipino-American clinic population. The records of 122 consecutive, new, self-declared Filipino-American patients examined in a comprehensive ophthalmology clinic in Vallejo, California were reviewed retrospectively. After exclusion, 222 eyes from 112 patients remained for analysis. Data were collected for anterior chamber angle grade as determined by gonioscopy (Shaffer system), age, sex, manifest refraction (spherical equivalent), intraocular pressure, and cup-to-disk ratio. Data from both eyes of patients were included and modeled using standard linear mixed-effects regression. As a comparison, data were also collected from a group of 30 consecutive White patients from the same clinic. After exclusion, 50 eyes from 25 White patients remained for comparison. At least 1 eye of 24% of Filipino-American patients had a narrow anterior chamber angle (Shaffer grade ≤ 2). Filipino-American angle grade significantly decreased with increasingly hyperopic refraction (P=0.007) and larger cup-to-disk ratio (P=0.038). Filipino-American women had significantly decreased angle grades compared with men (P=0.028), but angle grade did not vary by intraocular pressure or age (all, P≥ 0.059). Narrow anterior chamber angles are highly prevalent in Filipino-American patients in our clinic population.
Objectifying the adjacent and opposite angles: a cultural historical analysis
NASA Astrophysics Data System (ADS)
Daher, Wajeeh; Musallam, Nadera
2018-02-01
The angle topic is central to the development of geometric knowledge. Two of the basic concepts associated with this topic are the adjacent and opposite angles. It is the goal of the present study to analyze, based on the cultural historical semiotics framework, how high-achieving seventh grade students objectify the adjacent and opposite angles' concepts. We videoed the learning of a group of three high-achieving students who used technology, specifically GeoGebra, to explore geometric relations related to the adjacent and opposite angles' concepts. To analyze students' objectification of these concepts, we used the categories of objectification of knowledge (attention and awareness) and the categories of generalization (factual, contextual and symbolic), developed by Radford. The research results indicate that teacher's and students' verbal and visual signs, together with the software dynamic tools, mediated the students' objectification of the adjacent and opposite angles' concepts. Specifically, eye and gestures perceiving were part of the semiosis cycles in which the participating students were engaged and which related to the mathematical signs that signified the adjacent and the opposite angles. Moreover, the teacher's suggestions/requests/questions included/suggested semiotic signs/tools, including verbal signs that helped the students pay attention, be aware of and objectify the adjacent and opposite angles' concepts.
Wang, Haonan; Bangerter, Neal K; Park, Daniel J; Adluru, Ganesh; Kholmovski, Eugene G; Xu, Jian; DiBella, Edward
2015-10-01
Highly undersampled three-dimensional (3D) saturation-recovery sequences are affected by k-space trajectory since the magnetization does not reach steady state during the acquisition and the slab excitation profile yields different flip angles in different slices. This study compares centric and reverse-centric 3D cardiac perfusion imaging. An undersampled (98 phase encodes) 3D ECG-gated saturation-recovery sequence that alternates centric and reverse-centric acquisitions each time frame was used to image phantoms and in vivo subjects. Flip angle variation across the slices was measured, and contrast with each trajectory was analyzed via Bloch simulation. Significant variations in flip angle were observed across slices, leading to larger signal variation across slices for the centric acquisition. In simulation, severe transient artifacts were observed when using the centric trajectory with higher flip angles, placing practical limits on the maximum flip angle used. The reverse-centric trajectory provided less contrast, but was more robust to flip angle variations. Both of the k-space trajectories can provide reasonable image quality. The centric trajectory can have higher CNR, but is more sensitive to flip angle variation. The reverse-centric trajectory is more robust to flip angle variation. © 2014 Wiley Periodicals, Inc.
Klein, Christian; Kinz, Wieland; Zembsch, Alexander; Groll-Knapp, Elisabeth; Kundi, Michael
2014-04-21
Currently, the metatarsophalangeal angle (hallux valgus angle) is measured based on radiographic images. However, using X-ray examinations for epidemiological or screening purposes would be unethical, especially in children. For this reason it is discussed to measure the hallux valgus angle of the margo medialis pedis (medial border of the foot) documented on foot outline drawings or foot scans. As a first step on the way to prove the validity of those approaches this study assesses the hallux valgus angle measured on the margo medialis pedis based on the same x-ray pictures as the metatarsophalangeal hallux valgus. Radiographic images of the foot were obtained from patients with symptomatic hallux valgus malformation. Twelve sets of contact copies of the 63 originals were made, and were marked and measured according to three different methods, each one performed by two observers and with two repeated measurements. Thus, data sets from 756 individual assessments were entered into the multifactorial statistical analysis.Comparisons were made between the angle of the margo medialis pedis and the metatarsophalangeal angle, which was determined by two different methods. To determine the inter- and intraobserver reliability of the different methods, each assessment was conducted by two independent experts and repeated after a period of several weeks. The correlations between the hallux valgus angles determined by the three different methods were all above r=0.89 (p<0.001) and thus highly significant. The values obtained by measuring the margo medialis pedis angle, however, were on average 4.8 degrees smaller than the metatarsophalangeal angles. No significant differences were found between the observers. No systematic deviations for any observer between repeated measurements were detected. Measurements of the radiographic hallux angle of the margo medialis pedis are reliable and show high correlation with the metatarsophalangeal angle. Because the hallux valgus angles based on margo medialis pedis measurements were slightly but statistically significantly smaller, these measurements should be considered conservative estimates of the metatarsophalangeal angle. Significant differences between hallux valgus angles based on radiographic and non-radiographic material are unlikely. However this question has to be treated in a second stage in detail.
Test technology on divergence angle of laser range finder based on CCD imaging fusion
NASA Astrophysics Data System (ADS)
Shi, Sheng-bing; Chen, Zhen-xing; Lv, Yao
2016-09-01
Laser range finder has been equipped with all kinds of weapons, such as tank, ship, plane and so on, is important component of fire control system. Divergence angle is important performance and incarnation of horizontal resolving power for laser range finder, is necessary appraised test item in appraisal test. In this paper, based on high accuracy test on divergence angle of laser range finder, divergence angle test system is designed based on CCD imaging, divergence angle of laser range finder is acquired through fusion technology for different attenuation imaging, problem that CCD characteristic influences divergence angle test is solved.
NASA Technical Reports Server (NTRS)
Houser, J.; Johnson, L. J.; Oiye, M.; Runciman, W.
1972-01-01
Experimental aerodynamic investigations were made in a transonic wind tunnel on a 1/150-scale model of the Boeing H-32 space shuttle booster configuration. The purpose of the test was: (1) to verify the transonic reentry corridor at high angles of attack; (2) to determine the transonic aerodynamic characteristics; and (3) to determine the subsonic aerodynamic characteristics at low angles of attack. Test variables included configuration buildup, horizontal stabilizer settings of 0 and -20 deg, elevator deflections of 0 and -30 deg, and wing spoiler settings of 60 deg.
NASA Astrophysics Data System (ADS)
Wang, Chunyang; Du, Kui; Song, Kepeng; Ye, Xinglong; Qi, Lu; He, Suyun; Tang, Daiming; Lu, Ning; Jin, Haijun; Li, Feng; Ye, Hengqiang
2018-05-01
Low-angle grain boundaries generally exist in the form of dislocation arrays, while high-angle grain boundaries (misorientation angle >15 ° ) exist in the form of structural units in bulk metals. Here, through in situ atomic resolution aberration corrected electron microscopy observations, we report size-dependent grain-boundary structures improving both stabilities of electrical conductivity and mechanical properties in sub-10-nm-sized gold crystals. With the diameter of a nanocrystal decreasing below 10 nm, the high-angle grain boundary in the crystal exists as an array of dislocations. This size effect may be of importance to a new generation of interconnects applications.
2016-07-10
Elastic Collision Scattering Angle for Electric Propulsion Plume Simulation 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6...atom needs to be sampled; however, it is confirmed that initial target atom velocity does not play significant role in typical electric propulsion ...by ANSI Std. 239.18 Fast Computation of High Energy Elastic Collision Scattering Angle for Electric Propulsion Plume Simulation∗ Samuel J. Araki1
NASA Astrophysics Data System (ADS)
Tarulescu, R.; Tarulescu, S.; Leahu, C.
2017-10-01
The conventional downforce devices (with fixed geometry) of high speed vehicles have parameters such as area, angle of incidence and head resistance coefficients, all with constant values. The downforce is proportional with the square of movement speed and the power consumed for the neutralization of aerodynamic road resistance is proportional with the cube of speed. The authors carried out an analytical study of downforce, adjustable/monitored by optimum incidence (modification of incidence angle of rear wing for performance improvement).
Method for preparing high temperature superconductor
Balachandran, Uthamalingam; Chudzik, Michael P.
2002-01-01
A method of depositing a biaxially textured metal oxide on a substrate defining a plane in which metal oxide atoms are vaporized from a source to form a plume of metal oxide atoms. Atoms in the plume disposed at a selected angle in a predetermined range of angles to the plane of the substrate are allowed to contact the substrate while preventing atoms outside a selected angle from reaching the substrate. The preferred range of angles is 40.degree.-70.degree. and the preferred angle is 60.degree..+-.5.degree.. A moving substrate is disclosed.
Experimental and numerical study of a dual configuration for a flapping tidal current generator.
Kim, Jihoon; Quang Le, Tuyen; Hwan Ko, Jin; Ebenezer Sitorus, Patar; Hartarto Tambunan, Indra; Kang, Taesam
2015-07-30
In this study, we conduct experimental and consecutive numerical analyses of a flapping tidal current generator with a mirror-type dual configuration with front-swing and rear-swing flappers. An experimental analysis of a small-scale prototype is conducted in a towing tank, and a numerical analysis is conducted by means of two-dimensional computational fluid dynamics simulations with an in-house code. An experimental study with a controller to determine the target arm angle shows that the resultant arm angle is dependent on the input arm angle, the frequency, and the applied load, while a high pitch is obtained simply with a high input arm angle. Through a parametric analysis conducted while varying these factors, a high applied load and a high input arm angle were found to be advantageous. Moreover, the optimal reduced frequency was found to be 0.125 in terms of the power extraction. In consecutive numerical investigations with the kinematics selected from the experiments, it was found that a rear-swing flapper contributes to the total amount of power more than a front-swing flapper with a distance of two times the chord length and with a 90° phase difference between the two. The high contribution stems from the high power generated by the rear-swing flapper, which mimics the tail fin movement of a dolphin along a flow, compared to a plunge system or a front-swing system, which mimics the tail fin movement of a dolphin against a flow. It is also due to the fact that the shed vorticities of the front-swing flapper slightly affect negatively or even positively the power performance of the rear-swing system at a given distance and phase angle.
Power reduction and the radial limit of stall delay in revolving wings of different aspect ratio
Kruyt, Jan W.; van Heijst, GertJan F.; Altshuler, Douglas L.; Lentink, David
2015-01-01
Airplanes and helicopters use high aspect ratio wings to reduce the power required to fly, but must operate at low angle of attack to prevent flow separation and stall. Animals capable of slow sustained flight, such as hummingbirds, have low aspect ratio wings and flap their wings at high angle of attack without stalling. Instead, they generate an attached vortex along the leading edge of the wing that elevates lift. Previous studies have demonstrated that this vortex and high lift can be reproduced by revolving the animal wing at the same angle of attack. How do flapping and revolving animal wings delay stall and reduce power? It has been hypothesized that stall delay derives from having a short radial distance between the shoulder joint and wing tip, measured in chord lengths. This non-dimensional measure of wing length represents the relative magnitude of inertial forces versus rotational accelerations operating in the boundary layer of revolving and flapping wings. Here we show for a suite of aspect ratios, which represent both animal and aircraft wings, that the attachment of the leading edge vortex on a revolving wing is determined by wing aspect ratio, defined with respect to the centre of revolution. At high angle of attack, the vortex remains attached when the local radius is shorter than four chord lengths and separates outboard on higher aspect ratio wings. This radial stall limit explains why revolving high aspect ratio wings (of helicopters) require less power compared with low aspect ratio wings (of hummingbirds) at low angle of attack and vice versa at high angle of attack. PMID:25788539
Contact angle distribution of particles at fluid interfaces.
Snoeyink, Craig; Barman, Sourav; Christopher, Gordon F
2015-01-27
Recent measurements have implied a distribution of interfacially adsorbed particles' contact angles; however, it has been impossible to measure statistically significant numbers for these contact angles noninvasively in situ. Using a new microscopy method that allows nanometer-scale resolution of particle's 3D positions on an interface, we have measured the contact angles for thousands of latex particles at an oil/water interface. Furthermore, these measurements are dynamic, allowing the observation of the particle contact angle with high temporal resolution, resulting in hundreds of thousands of individual contact angle measurements. The contact angle has been found to fit a normal distribution with a standard deviation of 19.3°, which is much larger than previously recorded. Furthermore, the technique used allows the effect of measurement error, constrained interfacial diffusion, and particle property variation on the contact angle distribution to be individually evaluated. Because of the ability to measure the contact angle noninvasively, the results provide previously unobtainable, unique data on the dynamics and distribution of the adsorbed particles' contact angle.
A preliminary look at techniques used to obtain airdata from flight at high angles of attack
NASA Technical Reports Server (NTRS)
Moes, Timothy R.; Whitmore, Stephen A.
1990-01-01
Flight research at high angles of attack has posed new problems for airdata measurements. New sensors and techniques for measuring the standard airdata quantities of static pressure, dynamic pressure, angle of attack, and angle of sideslip were subsequently developed. The ongoing airdata research supporting NASA's F-18 high alpha research program is updated. Included are the techniques used and the preliminary results. The F-18 aircraft was flown with three research airdata systems: a standard airdata probe on the right wingtip, a self-aligning airdata probe on the left wingtip, and a flush airdata system on the nose cone. The primary research goal was to obtain steady-state calibrations for each airdata system up to an angle of attack of 50 deg. This goal was accomplished and preliminary accuracies of the three airdata systems were assessed and are presented. An effort to improve the fidelity of the airdata measurements during dynamic maneuvering is also discussed. This involved enhancement of the aerodynamic data with data obtained from linear accelerometers, rate gyros, and attitude gyros. Preliminary results of this technique are presented.
High-efficiency directional backlight design for an automotive display.
Chen, Bo-Tsuen; Pan, Jui-Wen
2018-06-01
We propose a high-efficiency directional backlight module (DBM) for automotive display applications. The DBM is composed of light sources, a light guide plate (LGP), and an optically patterned plate (OPP). The LGP has a collimator on the input surface that serves to control the angle of the light emitted to be in the horizontal direction. The OPP has an inverse prism to adjust the light emission angle in the vertical direction. The DBM has a simple structure and high optical efficiency. Compared with conventional backlight systems, the DBM has higher optical efficiency and a suitable viewing angle. This is an improvement in normalized on-axis luminous intensity of 2.6 times and a twofold improvement in optical efficiency. The viewing angles are 100° in the horizontal direction and 35° in the vertical direction. The angle of the half-luminous intensity is 72° in the horizontal direction and 20° in the vertical direction. The uniformity of the illuminance reaches 82%. The DBM is suitable for use in the center information displays of automobiles.
NASA Astrophysics Data System (ADS)
Yi, Bo; Shen, Huifang
2018-01-01
Non-iridescent structural colors and lotus effect universally existing in the nature provide a great inspiration for artificially developing angle-independent and high hydrophobic structurally colored films. To this end, a facile strategy is put forward for achieving superhydrophobic structurally colored films with wide viewing angles and high visibility based on bumpy melanin-like polydopamine-coated polystyrene particles. Here, hierarchical and amorphous structures are assembled in a self-driven manner due to particles' protrusive surfaces. The superhydrophobicity of the structurally colored films, with water contact angle up to 151°, is realized by combining the hierarchical surface roughness with a dip-coating process of polydimethylsiloxane-hexane solution, while angle-independence revealed in the films is ascribed to amorphous arrays. In addition, benefited from an essential light-absorbing property and high refractive index of polydopamine, the visibility of as-prepared colored films is fundamentally enhanced. Moreover, the mechanical robustness of the films is considerably boosted by inletting 3-aminopropyltriethoxysilane. This fabrication strategy might provide an opportunity for promoting the open-air application of structurally colored coatings.
NASA Technical Reports Server (NTRS)
Page, V. R.; Eckert, W. T.; Mort, K. W.
1977-01-01
An experimental, aerodynamic investigation was made of two 1.83 m diameter fan systems which are being considered for the repowered drive section of the 40- by 80-foot wind tunnel at NASA Ames Research Center. One system was low speed, the other was high speed. The low speed fan was tested at various stagger angles from 32.9 deg to 62.9 deg. At a fan blade stagger angle of 40.8 deg and operating at a tip speed of 1155 m/sec, the low speed fan developed 207.3 m of head. The high speed fan had a design blade stagger angle of 56.2 deg and was tested at this stagger angle only. The high speed fan operating at 191.5 m/sec developed 207.3 m of head. Radial distributions of static pressure coefficients, total pressure coefficients, and angles of swirl are presented. Radial surveys were conducted at four azimuth locations in front of the fan, and repeated downstream of the fan. Data were taken for various flow control devices and for two inlet contraction lengths.
Leem, Jung Woo; Yu, Jae Su
2012-08-27
We fabricated the distributed Bragg reflectors (DBRs) with amorphous germanium (a-Ge) films consisted of the same materials at a center wavelength (λc) of 1.33 μm by the glancing angle deposition. Their optical reflectance properties were investigated in the infrared wavelength region of 1-1.9 μm at incident light angles (θ inc) of 8-70°, together with the theoretical analysis using a rigorous coupled-wave analysis simulation. The two alternating a-Ge films at the incident vapor flux angles of 0 and 75° were formed as the high and low refractive index materials, respectively. The a-Ge DBR with only 5 periods exhibited a normalized stop bandwidth (∆λ/λ c) of ~24.1%, maintaining high reflectance (R) values of > 99%. Even at a high θ inc of 70°, the ∆λ/λ c was ~21.9%, maintaining R values of > 85%. The a-Ge DBR with good uniformity was obtained over the area of a 2 inch Si wafer. The calculated reflectance results showed a similar tendency to the measured data.
NASA Astrophysics Data System (ADS)
Bütüner, Suphi Önder; Filiz, Mehmet
2017-05-01
The aim of this research was to investigate high achievers' erroneous answers and misconceptions on the angle concept. The participants consisted of 233 grade 6 students drawn from eight classes in two well-established elementary schools of Trabzon, Turkey. All the participants were considered to be current achievers in mathematics, graded 4 or 5 out of 5, and selected via a purposive sampling method. Data were collected through six questions reflecting the learning competencies set out in the grade 6 curriculum in Turkey and the findings of previous studies that aimed to identify students' misconceptions of the angle concept. This questionnaire was then applied over a 40-minute period in each class. The findings were analysed by two researchers whose inter-rater agreement was computed as 0.97, or almost perfect. Thereafter, coding discrepancies were resolved, and consensus was established. We found that although the participants in this study were high achievers, they still held several misconceptions on the angle concept such as recognizing a straight angle or a right angle in different orientations. We also show how some of these misconceptions could have arisen due to the definitions or representations used in the textbook, and offer suggestions concerning their content in the future.
Soneson, Joshua E
2017-04-01
Wide-angle parabolic models are commonly used in geophysics and underwater acoustics but have seen little application in medical ultrasound. Here, a wide-angle model for continuous-wave high-intensity ultrasound beams is derived, which approximates the diffraction process more accurately than the commonly used Khokhlov-Zabolotskaya-Kuznetsov (KZK) equation without increasing implementation complexity or computing time. A method for preventing the high spatial frequencies often present in source boundary conditions from corrupting the solution is presented. Simulations of shallowly focused axisymmetric beams using both the wide-angle and standard parabolic models are compared to assess the accuracy with which they model diffraction effects. The wide-angle model proposed here offers improved focusing accuracy and less error throughout the computational domain than the standard parabolic model, offering a facile method for extending the utility of existing KZK codes.
Subsonic roll oscillation experiments on the Standard Dynamics Model
NASA Technical Reports Server (NTRS)
Beyers, M. E.
1983-01-01
The experimental determination of the subsonic roll derivatives of the Standard Dynamics Model, which is representative of a current fighter aircraft configuration, is described. The direct, cross and cross-coupling derivatives are presented for angles of attack up to 41 deg and sideslip angles in the range from -5 deg to 5 deg, as functions of oscillation frequency. The derivatives exhibited significant nonlinear trends at high incidences and were found to be extremely sensitive to sideslip angle at angles of attack near 36 deg. The roll damping and dynamic cross derivatives were highly frequency dependent at angles of attack above 30 deg. The highest values measured for the dynamic cross and cross-coupling derivatives were comparable in magnitude with the maximum roll damping. The effects of oscillation amplitude and Mach number were also investigated, and the direct derivatives were correlated with data from another facility.
Determination of Sun Angles for Observations of Shock Waves on a Transport Aircraft
NASA Technical Reports Server (NTRS)
Fisher, David F.; Haering, Edward A., Jr.; Noffz, Gregory K.; Aguilar, Juan I.
1998-01-01
Wing compression shock shadowgraphs were observed on two flights during banked turns of an L-1011 aircraft at a Mach number of 0.85 and an altitude of 35,000 ft (10,700 m). Photos and video recording of the shadowgraphs were taken during the flights to document the shadowgraphs. Bright sunlight on the aircraft was required. The time of day, aircraft position, speed and attitudes were recorded to determine the sun azimuth and elevation relative to the wing quarter chord-line when the shadowgraphs were visible. Sun elevation and azimuth angles were documented for which the wing compression shock shadowgraphs were visible. The shadowgraph was observed for high to low elevation angles relative to the wing, but for best results high sun angles relative to the wing are desired. The procedures and equations to determine the sun azimuth and elevation angle with respect to the quarter chord-line is included in the Appendix.
Clark, S E; Hill, J Colin; Peek, J E G; Putman, M E; Babler, B L
2015-12-11
Using high-resolution data from the Galactic Arecibo L-Band Feed Array HI (GALFA-Hi) survey, we show that linear structure in Galactic neutral hydrogen (Hi) correlates with the magnetic field orientation implied by Planck 353 GHz polarized dust emission. The structure of the neutral interstellar medium is more tightly coupled to the magnetic field than previously known. At high Galactic latitudes, where the Planck data are noise dominated, the Hi data provide an independent constraint on the Galactic magnetic field orientation, and hence the local dust polarization angle. We detect strong cross-correlations between template maps constructed from estimates of dust intensity combined with either Hi-derived angles, starlight polarization angles, or Planck 353 GHz angles. The Hi data thus provide a new tool in the search for inflationary gravitational wave B-mode polarization in the cosmic microwave background, which is currently limited by dust foreground contamination.
The Origin of High-angle Dip-slip Earthquakes at Geothermal Fields in California
NASA Astrophysics Data System (ADS)
Barbour, A. J.; Schoenball, M.; Martínez-Garzón, P.; Kwiatek, G.
2016-12-01
We examine the source mechanisms of earthquakes occurring in three California geothermal fields: The Geysers, Salton Sea, and Coso. We find source mechanisms ranging from strike slip faulting, consistent with the tectonic settings, to dip slip with unusually steep dip angles which are inconsistent with local structures. For example, we identify a fault zone in the Salton Sea Geothermal Field imaged using precisely-relocated hypocenters with a dip angle of 60° yet double-couple focal mechanisms indicate higher-angle dip-slip on ≥75° dipping planes. We observe considerable temporal variability in the distribution of source mechanisms. For example, at the Salton Sea we find that the number of high angle dip-slip events increased after 1989, when net-extraction rates were highest. There is a concurrent decline in strike-slip and strike-slip-normal faulting, the mechanisms expected from regional tectonics. These unusual focal mechanisms and their spatio-temporal patterns are enigmatic in terms of our understanding of faulting in geothermal regions. While near-vertical fault planes are expected to slip in a strike-slip sense, and dip slip is expected to occur on moderately dipping faults, we observe dip slip on near-vertical fault planes. However, for plausible stress states and accounting for geothermal production, the resolved fault planes should be stable. We systematically analyze the source mechanisms of these earthquakes using full moment tensor inversion to understand the constraints imposed by assuming a double-couple source. Applied to The Geysers field, we find a significant reduction in the number of high-angle dip-slip mechanisms using the full moment tensor. The remaining mechanisms displaying high-angle dip-slip could be consistent with faults accommodating subsidence and compaction associated with volumetric strain changes in the geothermal reservoir.
Buffet induced structural/flight-control system interaction of the X-29A aircraft
NASA Technical Reports Server (NTRS)
Voracek, David F.; Clarke, Robert
1991-01-01
High angle-of-attack flight regime research is currently being conducted for modern fighter aircraft at the NASA Ames Research Center's Dryden Flight Research Facility. This flight regime provides enhanced maneuverability to fighter pilots in combat situations. Flight research data are being acquired to compare and validate advanced computational fluid dynamic solutions and wind-tunnel models. High angle-of-attack flight creates unique aerodynamic phenomena including wing rock and buffet on the airframe. These phenomena increase the level of excitation of the structural modes, especially on the vertical and horizontal stabilizers. With high gain digital flight-control systems, this structural response may result in an aeroservoelastic interaction. A structural interaction on the X-29A aircraft was observed during high angle-of-attack flight testing. The roll and yaw rate gyros sensed the aircraft's structural modes at 11, 13, and 16 Hz. The rate gyro output signals were then amplified through the flight-control laws and sent as commands to the flaperons and rudder. The flight data indicated that as the angle of attack increased, the amplitude of the buffet on the vertical stabilizer increased, which resulted in more excitation to the structural modes. The flight-control system sensors and command signals showed this increase in modal power at the structural frequencies up to a 30 degree angle-of-attack. Beyond a 30 degree angle-of-attack, the vertical stabilizer response, the feedback sensor amplitude, and control surface command signal amplitude remained relatively constant. Data are presented that show the increased modal power in the aircraft structural accelerometers, the feedback sensors, and the command signals as a function of angle of attack. This structural interaction is traced from the aerodynamic buffet to the flight-control surfaces.
The spinal posture of computing adolescents in a real-life setting
2014-01-01
Background It is assumed that good postural alignment is associated with the less likelihood of musculoskeletal pain symptoms. Encouraging good sitting postures have not reported consequent musculoskeletal pain reduction in school-based populations, possibly due to a lack of clear understanding of good posture. Therefore this paper describes the variability of postural angles in a cohort of asymptomatic high-school students whilst working on desk-top computers in a school computer classroom and to report on the relationship between the postural angles and age, gender, height, weight and computer use. Methods The baseline data from a 12 month longitudinal study is reported. The study was conducted in South African school computer classrooms. 194 Grade 10 high-school students, from randomly selected high-schools, aged 15–17 years, enrolled in Computer Application Technology for the first time, asymptomatic during the preceding month, and from whom written informed consent were obtained, participated in the study. The 3D Posture Analysis Tool captured five postural angles (head flexion, neck flexion, cranio-cervical angle, trunk flexion and head lateral bend) while the students were working on desk-top computers. Height, weight and computer use were also measured. Individual and combinations of postural angles were analysed. Results 944 Students were screened for eligibility of which the data of 194 students are reported. Trunk flexion was the most variable angle. Increased neck flexion and the combination of increased head flexion, neck flexion and trunk flexion were significantly associated with increased weight and BMI (p = 0.0001). Conclusions High-school students sit with greater ranges of trunk flexion (leaning forward or reclining) when using the classroom computer. Increased weight is significantly associated with increased sagittal plane postural angles. PMID:24950887
Ma, J; Jiang, J H
2018-02-18
To evaluate the difference of features of alveolar bone support under lower anterior teeth between high-angle adults with skeletal class II malocclusions and high-angle adults presenting skeletal class III malocclusions by using cone-beam computed tomography (CBCT). Patients who had taken the images of CBCT were selected from the Peking University School and Hospital of Stomatology between October 2015 and August 2017. The CBCT archives from 62 high-angle adult cases without orthodontic treatment were divided into two groups based on their sagittal jaw relationships: skeletal class II and skeletal class III. vertical bone level (VBL), alveolar bone area (ABA), and the width of alveolar bone were measured respectively at the 2 mm, 4 mm, 6 mm below the cemento-enamel junction (CEJ) level and at the apical level. After that, independent samples t-tests were conducted for statistical comparisons. The ABA of the mandibular alveolar bone in the area of lower anterior teeth was significantly thinner in the patients of skeletal class III than those of skeletal class II, especially in terms of the apical ABA, total ABA on the labial and lingual sides and the ABA at 6 mm below CEJ level on the lingual side (P<0.05). The thickness of the alveolar bone of mandibular anterior teeth was significantly thinner in the subjects of skeletal class III than those of skeletal class II, especially regarding the apical level on the labial and lingual side and at the level of 4 mm, 6 mm below CEJ level on the lingual side (P<0.05). The ABA and the thickness of the alveolar bone of mandibular anterior teeth were significantly thinner in the group of skeletal class III adult patients with high-angle when compared with the sample of high-angle skeletal class II adult cases. We recommend orthodontists to be more cautious in treatment of high-angle skeletal class III patients, especially pay attention to control the torque of lower anterior teeth during forward and backward movement, in case that the apical root might be absorbed or fenestration happen in the area of lower anterior teeth.
NASA Astrophysics Data System (ADS)
Lu, L.; McKenna-Lawlor, S.; Barabash, S.; Liu, Z.; Balaz, J.; Brinkfeldt, K.; Strhansky, I.; Shen, C.; Shi, J.; Cao, J.; Pu, Z.; Fu, S.; Gunell, H.; Kudela, K.; Roelof, E. C.; Brandt, P. C.; Dandouras, I.; Zhang, T.; Carr, C.; Fazakerley, A.
2005-12-01
During the first on orbit commission, with the deflection high voltage zero, the NUADU (NeUtral Atom Detector Unit) instrument aboard TC-2, with its high temporal-spatial resolution recorded 4d solid angle images of energetic particles spiraling around the geomagnetic field lines with different configuration at high northern magnetic latitude L>10. The ambient magnetic field and particles in different energy spectrum were simultaneously measured by the magnetometer experiment (FGM), the plasma electron and current experiment (PEACE), the low energy ion detector (LEID), and the high energy electron detector (HEED). The up-flowing electron beams made the pitch angle distribution (PAD) ring like configuration, and even concentrated toward the field lines to form a dumbbell-type PAD. In integration of the variations of ambient magnetic field and particles in different energy spectrums, a temporal string magnetic bottle model was proposed which might be formed by the disturbance of the magnetic pulse. Changes in the particle pitch angle diffusion may be associated with electron acceleration along the geomagnetic field lines.
NASA Technical Reports Server (NTRS)
Ogburn, Marilyn E.; Foster, John V.; Hoffler, Keith D.
2005-01-01
This paper reviews the use of piloted simulation at Langley Research Center as part of the NASA High-Angle-of-Attack Technology Program (HATP), which was created to provide concepts and methods for the design of advanced fighter aircraft. A major research activity within this program is the development of the design processes required to take advantage of the benefits of advanced control concepts for high-angle-of-attack agility. Fundamental methodologies associated with the effective use of piloted simulation for this research are described, particularly those relating to the test techniques, validation of the test results, and design guideline/criteria development.
Aerodynamic characteristics at high angles of attack
NASA Technical Reports Server (NTRS)
Chambers, J. R.
1977-01-01
An overview is presented of the aerodynamic inputs required for analysis of flight dynamics in the high-angle-of-attack regime wherein large-disturbance, nonlinear effects predominate. An outline of the presentation is presented. The discussion includes: (1) some important fundamental phenomena which determine to a large extent the aerodynamic characteristics of airplanes at high angles of attack; (2) static and dynamic aerodynamic characteristics near the stall; (3) aerodynamics of the spin; (4) test techniques used in stall/spin studies; (5) applications of aerodynamic data to problems in flight dynamics in the stall/spin area; and (6) the outlook for future research in the area.
NASA Technical Reports Server (NTRS)
Keener, E. R.; Chapman, G. T.; Taleghani, J.; Cohen, L.
1977-01-01
An experimental investigation was conducted in the Ames 12-Foot Wind Tunnel to determine the subsonic aerodynamic characteristics of four forebodies at high angles of attack. The forebodies tested were a tangent ogive with fineness ratio of 5, a paraboloid with fineness ratio of 3.5, a 20 deg cone, and a tangent ogive with an elliptic cross section. The investigation included the effects of nose bluntness and boundary-layer trips. The tangent-ogive forebody was also tested in the presence of a short afterbody and with the afterbody attached. Static longitudinal and lateral/directional stability data were obtained. The investigation was conducted to investigate the existence of large side forces and yawing moments at high angles of attack and zero sideslip. It was found that all of the forebodies experience steady side forces that start at angles of attack of from 20 deg to 35 deg and exist to as high as 80 deg, depending on forebody shape. The side is as large as 1.6 times the normal force and is generally repeatable with increasing and decreasing angle of attack and, also, from test to test. The side force is very sensitive to the nature of the boundary layer, as indicated by large changes with boundary trips. The maximum side force caries considerably with Reynolds number and tends to decrease with increasing Mach number. The direction of the side force is sensitive to the body geometry near the nose. The angle of attack of onset of side force is not strongly influenced by Reynolds number or Mach number but varies with forebody shape. Maximum normal force often occurs at angles of attack near 60 deg. The effect of the elliptic cross section is to reduce the angle of onset by about 10 deg compared to that of an equivalent circular forebody with the same fineness ratio. The short afterbody reduces the angle of onset by about 5 deg.
NASA Technical Reports Server (NTRS)
Holleman, E. C.
1976-01-01
An unpowered, large, dynamically scaled airplane model was test flown by remote pilot to investigate the stability and controllability of the configuration at high angles of attack. The configuration proved to be departure/spin resistant; however, spins were obtained by using techniques developed on a flight support simulator. Spin modes at high and medium high angles of attack were identified, and recovery techniques were investigated. A flight support simulation of the airplane model mechanized with low speed wind tunnel data over an angle of attack range of + or - 90 deg. and an angle of sideslip range of + or - 40 deg. provided insight into the effects of altitude, stability, aerodynamic damping, and the operation of the augmented flight control system on spins. Aerodynamic derivatives determined from flight maneuvers were used to correlate model controllability with two proposed departure/spin design criteria.
NASA Technical Reports Server (NTRS)
Jordan, Frank L., Jr.; Hahne, David E.
1992-01-01
An investigation was conducted in the Langley 30- by 60-Foot Tunnel and the Langley 12-Foot Low-Speed Tunnel to identify factors contributing to a directional divergence at high angles of attack for the EA-6B airplane. The study consisted of static wind-tunnel tests, smoke and tuft flow-visualization tests, and free-flight tests of a 1/8.5-scale model of the airplane. The results of the investigation indicate that the directional divergence of the airplane is brought about by a loss of directional stability and effective dihedral at high angles of attack. Several modifications were tested that significantly alleviate the stability problem. The results of the free-flight study show that the modified configuration exhibits good dynamic stability characteristics and could be flown at angles of attack significantly higher than those of the unmodified configuration.
NASA Technical Reports Server (NTRS)
Ramsey, P. E.
1976-01-01
An aerodynamic investigation was conducted in the MSFC High Reynolds Number Wind Tunnel to determine the pressure distribution over the foresection of the current 146 inch diameter shuttle SRB. The test model consisted of a 0.0137 scale version of the SRB nose cone and a forward portion of the cylindrical body which was approximately 2.7 calibers in length. The pressure distributions are plotted as a function of longitudinal station ratioed to body diameter and circumferential location for each angle of attack and Mach number. A Reynolds number variation study was made for Mach numbers of 0.4 and 0.6 at an angle of attack of 270 deg and roll angle of 180 deg.
Tan, Xinran; Zhu, Fan; Wang, Chao; Yu, Yang; Shi, Jian; Qi, Xue; Yuan, Feng; Tan, Jiubin
2017-11-19
This study presents a two-dimensional micro-/nanoradian angle generator (2D-MNAG) that achieves high angular displacement resolution and repeatability using a piezo-driven flexure hinge for two-dimensional deflections and three capacitive sensors for output angle monitoring and feedback control. The principal error of the capacitive sensor for precision microangle measurement is analyzed and compensated for; so as to achieve a high angle output resolution of 10 nrad (0.002 arcsec) and positioning repeatability of 120 nrad (0.024 arcsec) over a large angular range of ±4363 μrad (±900 arcsec) for the 2D-MNAG. The impact of each error component, together with the synthetic error of the 2D-MNAG after principal error compensation are determined using Monte Carlo simulation for further improvement of the 2D-MNAG.
Bubble evolution in Kr-irradiated UO2 during annealing
NASA Astrophysics Data System (ADS)
He, L.; Bai, X. M.; Pakarinen, J.; Jaques, B. J.; Gan, J.; Nelson, A. T.; El-Azab, A.; Allen, T. R.
2017-12-01
Transmission electron microscopy observation of Kr bubble evolution in polycrystalline UO2 annealed at high temperature was conducted in order to understand the inert gas behavior in oxide nuclear fuel. The average diameter of intragranular bubbles increased gradually from 0.8 nm in as-irradiated sample at room temperature to 2.6 nm at 1600 °C and the bubble size distribution changed from a uniform distribution to a bimodal distribution above 1300 °C. The size of intergranular bubbles increased more rapidly than intragranular ones and bubble denuded zones near grain boundaries formed in all the annealed samples. It was found that high-angle grain boundaries held bigger bubbles than low-angle grain boundaries. Complementary atomistic modeling was conducted to interpret the effects of grain boundary character on the Kr segregation. The area density of strong segregation sites in the high-angle grain boundaries is much higher than that in the low angle grain boundaries.
Tan, Xinran; Zhu, Fan; Wang, Chao; Yu, Yang; Shi, Jian; Qi, Xue; Yuan, Feng; Tan, Jiubin
2017-01-01
This study presents a two-dimensional micro-/nanoradian angle generator (2D-MNAG) that achieves high angular displacement resolution and repeatability using a piezo-driven flexure hinge for two-dimensional deflections and three capacitive sensors for output angle monitoring and feedback control. The principal error of the capacitive sensor for precision microangle measurement is analyzed and compensated for; so as to achieve a high angle output resolution of 10 nrad (0.002 arcsec) and positioning repeatability of 120 nrad (0.024 arcsec) over a large angular range of ±4363 μrad (±900 arcsec) for the 2D-MNAG. The impact of each error component, together with the synthetic error of the 2D-MNAG after principal error compensation are determined using Monte Carlo simulation for further improvement of the 2D-MNAG. PMID:29156595
Making structured metals transparency for broadband and wide-incidence-angle electromagnetic waves
NASA Astrophysics Data System (ADS)
Fan, Renhao; Peng, Ruwen; Huang, Xianrong; Wang, Mu
2014-03-01
Very recently, we have demonstrated that one-dimensional metallic gratings can become transparent and completely antireflective for extremely broadband electromagnetic (EM) waves under oblique incidence. However, the oblique-incidence geometry, is inconvenient for the technological applications. To overcome this drawback, here we instead use oblique metal gratings with optimal tilt angles to achieve normal-incidence broadband transparence for EM waves. Further we use two-dimensional periodic metallic cuboids to achieve broadband and broad-angle high transmission and antireflection. By introducing such metallic cuboids arrays into silicon solar cells, we find that high performance of light trapping in the cells can be obtained with a significant enhancement of the ultimate quantum efficiency. The structured metals, which achieve broadband and broad-angle high transmission for EM waves, may have many other potential applications, such as transparent conducting panels, white-beam polarizers, and stealth objects.
The low salinity effect at high temperatures
Xie, Quan; Brady, Patrick V.; Pooryousefy, Ehsan; ...
2017-04-05
The mechanism(s) of low salinity water flooding (LSWF) must be better understood at high temperatures and pressures if the method is to be applied in high T/P kaolinite-bearing sandstone reservoirs. We measured contact angles between a sandstone and an oil (acid number, AN = 3.98 mg KOH/g, base number, BN = 1.3 mg KOH/g) from a reservoir in the Tarim Field in western China in the presence of various water chemistries. We examined the effect of aqueous ionic solutions (formation brine, 100X diluted formation brine, and softened water), temperature (60, 100 and 140 °C) and pressure (20, 30, 40, andmore » 50 MPa) on the contact angle. We also measured the zeta potential of the oil/water and water/rock interfaces to calculate oil/brine/rock disjoining pressures. A surface complexation model was developed to interpret contact angle measurements and compared with DLVO theory predictions. Contact angles were greatest in formation water, followed by the softened water, and low salinity water at the same pressure and temperature. Contact angles increased slightly with temperature, whereas pressure had little effect. DLVO and surface complexation modelling predicted similar wettability trends and allow reasonably accurate interpretation of core-flood results. Water chemistry has a much larger impact on LSWF than reservoir temperature and pressure. As a result, low salinity water flooding should work in high temperature and high pressure kaolinite-bearing sandstone reservoirs.« less
The low salinity effect at high temperatures
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xie, Quan; Brady, Patrick V.; Pooryousefy, Ehsan
The mechanism(s) of low salinity water flooding (LSWF) must be better understood at high temperatures and pressures if the method is to be applied in high T/P kaolinite-bearing sandstone reservoirs. We measured contact angles between a sandstone and an oil (acid number, AN = 3.98 mg KOH/g, base number, BN = 1.3 mg KOH/g) from a reservoir in the Tarim Field in western China in the presence of various water chemistries. We examined the effect of aqueous ionic solutions (formation brine, 100X diluted formation brine, and softened water), temperature (60, 100 and 140 °C) and pressure (20, 30, 40, andmore » 50 MPa) on the contact angle. We also measured the zeta potential of the oil/water and water/rock interfaces to calculate oil/brine/rock disjoining pressures. A surface complexation model was developed to interpret contact angle measurements and compared with DLVO theory predictions. Contact angles were greatest in formation water, followed by the softened water, and low salinity water at the same pressure and temperature. Contact angles increased slightly with temperature, whereas pressure had little effect. DLVO and surface complexation modelling predicted similar wettability trends and allow reasonably accurate interpretation of core-flood results. Water chemistry has a much larger impact on LSWF than reservoir temperature and pressure. As a result, low salinity water flooding should work in high temperature and high pressure kaolinite-bearing sandstone reservoirs.« less
Development of a phenotyping platform for high throughput screening of nodal root angle in sorghum.
Joshi, Dinesh C; Singh, Vijaya; Hunt, Colleen; Mace, Emma; van Oosterom, Erik; Sulman, Richard; Jordan, David; Hammer, Graeme
2017-01-01
In sorghum, the growth angle of nodal roots is a major component of root system architecture. It strongly influences the spatial distribution of roots of mature plants in the soil profile, which can impact drought adaptation. However, selection for nodal root angle in sorghum breeding programs has been restricted by the absence of a suitable high throughput phenotyping platform. The aim of this study was to develop a phenotyping platform for the rapid, non-destructive and digital measurement of nodal root angle of sorghum at the seedling stage. The phenotyping platform comprises of 500 soil filled root chambers (50 × 45 × 0.3 cm in size), made of transparent perspex sheets that were placed in metal tubs and covered with polycarbonate sheets. Around 3 weeks after sowing, once the first flush of nodal roots was visible, roots were imaged in situ using an imaging box that included two digital cameras that were remotely controlled by two android tablets. Free software ( openGelPhoto.tcl ) allowed precise measurement of nodal root angle from the digital images. The reliability and efficiency of the platform was evaluated by screening a large nested association mapping population of sorghum and a set of hybrids in six independent experimental runs that included up to 500 plants each. The platform revealed extensive genetic variation and high heritability (repeatability) for nodal root angle. High genetic correlations and consistent ranking of genotypes across experimental runs confirmed the reproducibility of the platform. This low cost, high throughput root phenotyping platform requires no sophisticated equipment, is adaptable to most glasshouse environments and is well suited to dissect the genetic control of nodal root angle of sorghum. The platform is suitable for use in sorghum breeding programs aiming to improve drought adaptation through root system architecture manipulation.
NASA Technical Reports Server (NTRS)
Applin, Zachary T.; Gentry, Garl L., Jr.; Takallu, M. A.
1995-01-01
A wind tunnel investigation was conducted on a generic, high-wing transport model in the Langley 14- by 22-Foot Subsonic Tunnel. This report contains pressure data that document effects of various model configurations and free-stream conditions on wing pressure distributions. The untwisted wing incorporated a full-span, leading-edge Krueger flap and a part-span, double-slotted trailing-edge flap system. The trailing-edge flap was tested at four different deflection angles (20 deg, 30 deg, 40 deg, and 60 deg). Four wing configurations were tested: cruise, flaps only, Krueger flap only, and high lift (Krueger flap and flaps deployed). Tests were conducted at free-stream dynamic pressures of 20 psf to 60 psf with corresponding chord Reynolds numbers of 1.22 x 10(exp 6) to 2.11 x 10(exp 6) and Mach numbers of 0.12 to 0.20. The angles of attack presented range from 0 deg to 20 deg and were determined by wing configuration. The angle of sideslip ranged from minus 20 deg to 20 deg. In general, pressure distributions were relatively insensitive to free-stream speed with exceptions primarily at high angles of attack or high flap deflections. Increasing trailing-edge Krueger flap significantly reduced peak suction pressures and steep gradients on the wing at high angles of attack. Installation of the empennage had no effect on wing pressure distributions. Unpowered engine nacelles reduced suction pressures on the wing and the flaps.
Morphologies of tungsten nanotendrils grown under helium exposure.
Wang, Kun; Doerner, R P; Baldwin, M J; Meyer, F W; Bannister, M E; Darbal, Amith; Stroud, Robert; Parish, Chad M
2017-02-14
Nanotendril "fuzz" will grow under He bombardment under tokamak-relevant conditions on tungsten plasma-facing materials in a magnetic fusion energy device. We have grown tungsten nanotendrils at low (50 eV) and high (12 keV) He bombardment energy, in the range 900-1000 °C, and characterized them using electron microscopy. Low energy tendrils are finer (~22 nm diameter) than high-energy tendrils (~176 nm diameter), and low-energy tendrils have a smoother surface than high-energy tendrils. Cavities were omnipresent and typically ~5-10 nm in size. Oxygen was present at tendril surfaces, but tendrils were all BCC tungsten metal. Electron diffraction measured tendril growth axes and grain boundary angle/axis pairs; no preferential growth axes or angle/axis pairs were observed, and low-energy fuzz grain boundaries tended to be high angle; high energy tendril grain boundaries were not observed. We speculate that the strong tendency to high-angle grain boundaries in the low-energy tendrils implies that as the tendrils twist or bend, strain must accumulate until nucleation of a grain boundary is favorable compared to further lattice rotation. The high-energy tendrils consisted of very large (>100 nm) grains compared to the tendril size, so the nature of the high energy irradiation must enable faster growth with less lattice rotation.
Flow visualization study of the HiMAT RPRV
NASA Technical Reports Server (NTRS)
Lorincz, D. J.
1980-01-01
Water tunnel studies were performed to qualitatively define the flow field of the highly maneuverable aircraft technology remotely piloted research vehicle (HiMAT RPRV). Particular emphasis was placed on defining the vortex flows generated at high angles of attack. The flow visualization tests were conducted in the Northrop water tunnel using a 1/15 scale model of the HiMAT RPRV. Flow visualization photographs were obtained for angles of attack up to 40 deg and sideslip angles up to 5 deg. The HiMAT model was investigated in detail to determine the canard and wing vortex flow field development, vortex paths, and vortex breakdown characteristics as a function of angle of attack and sideslip. The presence of the canard caused the wing vortex to form further outboard and delayed the breakdown of the wing vortex to higher angles of attack. An increase in leading edge camber of the maneuver configuration delayed both the formation and the breakdown of the wing and canard vortices. Additional tests showed that the canard vortex was sensitive to variations in inlet mass flow ratio and canard flap deflection angle.
NASA Technical Reports Server (NTRS)
Dugan, Duane W.
1959-01-01
The possibility of obtaining useful estimates of the static longitudinal stability of aircraft flying at high supersonic Mach numbers at angles of attack between 0 and +/-180 deg is explored. Existing theories, empirical formulas, and graphical procedures are employed to estimate the normal-force and pitching-moment characteristics of an example airplane configuration consisting of an ogive-cylinder body, trapezoidal wing, and cruciform trapezoidal tail. Existing wind-tunnel data for this configuration at a Mach number of 6.86 provide an evaluation of the estimates up to an angle of attack of 35 deg. Evaluation at higher angles of attack is afforded by data obtained from wind-tunnel tests made with the same configuration at angles of attack between 30 and 150 deg at five Mach numbers between 2.5 and 3.55. Over the ranges of Mach numbers and angles of attack investigated, predictions of normal force and center-of-pressure locations for the configuration considered agree well with those obtained experimentally, particularly at the higher Mach numbers.
Study on verifying the angle measurement performance of the rotary-laser system
NASA Astrophysics Data System (ADS)
Zhao, Jin; Ren, Yongjie; Lin, Jiarui; Yin, Shibin; Zhu, Jigui
2018-04-01
An angle verification method to verify the angle measurement performance of the rotary-laser system was developed. Angle measurement performance has a great impact on measuring accuracy. Although there is some previous research on the verification of angle measuring uncertainty for the rotary-laser system, there are still some limitations. High-precision reference angles are used in the study of the method, and an integrated verification platform is set up to evaluate the performance of the system. This paper also probes the error that has biggest influence on the verification system. Some errors of the verification system are avoided via the experimental method, and some are compensated through the computational formula and curve fitting. Experimental results show that the angle measurement performance meets the requirement for coordinate measurement. The verification platform can evaluate the uncertainty of angle measurement for the rotary-laser system efficiently.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ohmi, K.
In recent high luminosity colliders, the finite crossing angle scheme becomes popular to gain the multiplicity of luminosity with multi-bunch or long bunch operation. Success of KEKB showed that the finite crossing angle scheme was no problem to achieve the beam-beam parameter up to 0.05. The authors have studied the beam-beam interactions with/without crossing angle toward higher luminosity. They discuss how the crossing angle affects the beam-beam parameter and luminosity in the present KEK B factory (KEKB) using computer simulations.
AGARD Flight Test Techniques Series. Volume 7. Air-to-Air Radar Flight Testing
1988-06-01
enters the beam ), a different tilt angle should be used. The emphasis on setting the tilt angle may require a non - standard high accuracy tilt angle...is: the time from pilot designation on a non -maneuvering target to the time that the system achieves target range, range rate and angle tracking...minimal attenuation, distortion, or boresight Shift effects on the radar beam . Thus, radome design for airborne application io largely a process of
ERIC Educational Resources Information Center
Little, Mildred J.; Bunting, Camille
The self-contained packet contains background information, lesson plans, 15 transparency and student handout masters, drills and games, 2 objective examinations, and references for teaching a 15-day unit on casting and angling to junior high and senior high school students, either as part of a regular physical education program or as a club…
The vertex and large angle detectors of a spectrometer system for high energy muon physics
NASA Astrophysics Data System (ADS)
Albanese, J. P.; Allkofer, O. C.; Arneodo, M.; Aubert, J. J.; Becks, K. H.; Bee, C.; Benchouk, C.; Bernaudin, B.; Bertsch, Y.; Bianchi, F.; Bibby, J.; Bird, I.; Blum, D.; Böhm, E.; Botterill, D.; De Bouard, X.; Brasse, F. W.; Braun, H.; Broll, C.; Brown, S.; Brück, H.; Callebaut, D.; Carr, J.; Clifft, R.; Cobb, J. H.; Coignet, G.; Combley, F.; Cornelssen, M.; Costa, F.; Coughlan, J.; Court, G. R.; D'Agostini, G.; Dau, W. D.; Davies, J. K.; Davis, A.; Dengler, F.; Derado, I.; Dobinson, R. W.; Dosselli, U.; Drees, J.; Dumont, J. J.; Eckardt, V.; Edwards, A.; Edwards, M.; Falley, G.; Favier, J.; Ferrero, M. I.; Figiel, J.; Flauger, W.; Gabathuler, E.; Gamet, R.; Gayler, J.; Gebauer, H. J.; Gössling, C.; Haas, J.; Hasert, F. J.; Hayman, P.; Heusse, P.; Jaffré, M.; Janata, F.; Jancso, G.; Johnson, A. S.; Kabuss, E. M.; Kahl, T.; Kellner, G.; Koll, J.; Korbel, V.; Krüger, J.; Landgraf, U.; Lanske, D.; Lebeau, M.; Loken, J.; Maire, M.; Manz, A.; Mermet-Guyennet, M.; Minssieux, H.; Mohr, W.; Montanet, F.; Montgomery, H. E.; Moser, K.; Mount, R. P.; Moynot, M.; Müller, H.; Nagy, E.; Nassalski, J.; Noppe, J. M.; Norton, P. R.; Osborne, A. M.; Pascaud, C.; Paul, L.; Payre, P.; Peroni, C.; Perrot, G.; Pessard, H.; Pettingale, J.; Pötsch, M.; Preissner, H.; Renton, P.; Ribarics, P.; Rith, K.; Röhner, F.; Rondio, E.; Rousseau, M. D.; Schlagböhmer, A.; Schmitz, N.; Scaramelli, A.; Schneegans, M.; Schultze, K.; Scory, M.; Shiers, J.; Singer, G.; Sloan, T.; Smith, R.; Sproston, M.; Stier, H. E.; Stockhausen, W.; Studt, M.; Thénard, J. M.; Thiele, K.; Thompson, J. C.; De La Torre, A.; Wahlen, H.; Wallucks, W.; Watson, E.; Whalley, M.; Williams, D. A.; Williams, W. S. C.; Wimpenny, S.; Windmolders, R.; Winklmüller, G.; Wolf, G.; Zank, P.; European Muon Collaboration
1983-07-01
A description is given of the detector system which forms the large angle spectrometer and vertex detector of the EMC spectrometer. The apparatus is used in the NA9 experiment which studies the complete hadronic final state from the interaction of high energy muons.
Side-force alleviation on slender, pointed forebodies at high angles of attack
NASA Technical Reports Server (NTRS)
Rao, D. M.
1978-01-01
A new device was proposed for alleviating high angle-of-attack side force on slender, pointed forebodies. A symmetrical pair of separation strips in the form of helical ridges are applied to the forebody to disrupt the primary lee-side vortices and thereby avoid the instability that produces vortex asymmetry. Preliminary wind tunnel tests at Mach 0.3 and Reynolds no. 5,250,000 on a variety of forebody configurations and on a wing-body combination at angles of attack up to 56 degrees, demonstrated the effectiveness of the device.
NASA Astrophysics Data System (ADS)
Prachachet, R.; Samransuksamer, B.; Horprathum, M.; Eiamchai, P.; Limwichean, S.; Chananonnawathorn, C.; Lertvanithphol, T.; Muthitamongkol, P.; Boonruang, S.; Buranasiri, P.
2018-03-01
Omnidirectional anti-reflection coating nanostructure film have attracted enormous attention for the developments of the optical coating, lenses, light emitting diode, display and photovoltaic. However, fabricated of the omnidirectional antireflection nanostructure film on glass substrate in large area was a challenge topic. In the past two decades, the invention of glancing angle deposition technique as a growth of well-controlled two and three-dimensional morphologies has gained significant attention because of it is simple, fast, cost-effective and high mass production capability. In this present work, the omnidirectional anti-reflection nanostructure coating namely silicon dioxide (SiO2) nanorods has been investigated for optimized high transparent layer at all light incident angle. The SiO2 nanorod films of an optimally low refractive index have been fabricated by electron beam evaporation with the glancing angle deposition technique. The morphological of the prepared sampled were characterized by field-emission scanning electron microscope (FE-SEM) and high-resolution transmission electron microscope (HRTEM). The optical transmission and omnidirectional property of the SiO2 nanorod films were investigated by UV-Vis-NIR spectrophotometer. The measurement were performed at normal incident angle and a full spectral range of 200 - 2000 nm. The angle dependent transmission measure were investigated by rotating the specimen, with incidence angle defined relative to the surface normal of the prepared samples. The morphological characterization results showed that when the glancing angle deposition technique was applied, the vertically align SiO2 nanorods with partially isolated columnar structure can be constructed due to the enhanced shadowing and limited addtom diffusion effect. The average transmission of the vertically align SiO2 nanorods were higher than the glass substrate reference sample over the visible wavelength range at all incident angle due to the transition in the refractive index profile from air to the nanostructure layer that improved the anti-reflection characteristics.
NASA Astrophysics Data System (ADS)
Zhou, Zengxiang; Jin, Yi; Zhai, Chao; Xing, Xiaozheng
2008-07-01
In the LAMOST project, the unit-holes on the Focal Plane Plate are the final installation location of the optical fiber positioning system. Theirs precision will influence the observation efficiency of the LAMOST. For the unique requirements, the unit-holes on the Focal Plane Plate are composed by a series of tiny angle dimensional holes which dimensional angle are between 16' to 2.5°. According to these requirements, the measurement of the tiny angle dimensional holes for the unit-holes needs to less than 3'. And all the unit-holes point to the virtual sphere center of the Focal Plane Plate. To that end, the angle departure of the unit-holes axis is changed to the distance from the virtual sphere center of Focal Plane Plate to the unit-holes axis. That is the better way to evaluate the technical requirements of the dimensional angle errors. In the measuring process, common measuring methods do not fit for the tiny angle dimensional hole by CMM(coordinate measurement machine). An extraordinary way to solve this problem is to insert a measuring stick into a unit-hole, with a target ball on the stick. Then measure the low point of the ball center and pull out the stick for the high station of center. Finally, calculate the two points for the unit-hole axis to get the angle departure. But on the other hand, use this methods will bring extra errors for the measuring stick and the target ball. For better analysis this question, a series experiments are mentioned in this paper, which testify that the influence of the measure implement is little. With increasing the distance between the low point and the high point position in the measuring process should enhance the accuracy of dimensional angle measurement.
2014-01-01
Background Currently, the metatarsophalangeal angle (hallux valgus angle) is measured based on radiographic images. However, using X-ray examinations for epidemiological or screening purposes would be unethical, especially in children. For this reason it is discussed to measure the hallux valgus angle of the margo medialis pedis (medial border of the foot) documented on foot outline drawings or foot scans. As a first step on the way to prove the validity of those approaches this study assesses the hallux valgus angle measured on the margo medialis pedis based on the same x-ray pictures as the metatarsophalangeal hallux valgus. Methods Radiographic images of the foot were obtained from patients with symptomatic hallux valgus malformation. Twelve sets of contact copies of the 63 originals were made, and were marked and measured according to three different methods, each one performed by two observers and with two repeated measurements. Thus, data sets from 756 individual assessments were entered into the multifactorial statistical analysis. Comparisons were made between the angle of the margo medialis pedis and the metatarsophalangeal angle, which was determined by two different methods. To determine the inter- and intraobserver reliability of the different methods, each assessment was conducted by two independent experts and repeated after a period of several weeks. Results The correlations between the hallux valgus angles determined by the three different methods were all above r = 0.89 (p < 0.001) and thus highly significant. The values obtained by measuring the margo medialis pedis angle, however, were on average 4.8 degrees smaller than the metatarsophalangeal angles. No significant differences were found between the observers. No systematic deviations for any observer between repeated measurements were detected. Conclusions Measurements of the radiographic hallux angle of the margo medialis pedis are reliable and show high correlation with the metatarsophalangeal angle. Because the hallux valgus angles based on margo medialis pedis measurements were slightly but statistically significantly smaller, these measurements should be considered conservative estimates of the metatarsophalangeal angle. Significant differences between hallux valgus angles based on radiographic and non-radiographic material are unlikely. However this question has to be treated in a second stage in detail. PMID:24751201
Khan, Moin; Ranawat, Anil; Williams, Dale; Gandhi, Rajiv; Choudur, Hema; Parasu, Naveen; Simunovic, Nicole; Ayeni, Olufemi R
2015-09-01
Alpha and beta angles are commonly used radiographic measures to assess the sphericity of the proximal femur and distance between the pathologic head-neck junction and the acetabular rim, respectively. The aim of this study was to explore the relationship between these two measurements on frog-leg lateral hip radiographs. Fifty frog-leg lateral hip radiographs were evaluated by two orthopaedic surgeons and two radiologists. Each reviewer measured the alpha and beta angles on two separate occasions to determine the relationship between positive alpha and beta angles and the inter- and intra-observer reliability of these measurements. There was no significant association between positive alpha and beta angles, [kappa range -0.043 (95 % CI -0.17 to 0.086) to 0.54 (95 % CI 0.33-0.75)]. Intra-observer reliability was high [alpha angle intra-class correlation coefficient (ICC) range 0.74 (95 % CI 0.58-0.84) to 0.99 (95 % CI 0.98-0.99) and beta angle ICC range 0.86 (95 % CI 0.76-0.92) to 0.97 (95 % CI 0.95-0.98)]. There is no statistical or functional relationship between readings of positive alpha and beta angles. The radiographic measurements resulted in high intra-observer and fair-to-moderate inter-observer reliability. Results of this study suggest that the presence of a CAM lesion on lateral radiographs as suggested by a positive alpha angle does not necessitate a decrease in clearance between the femoral head and acetabular rim as measured by the beta angle and thus may not be the best measure of functional impingement. Understanding the relationship between these two aspects of femoroacetabular impingement improves a surgeon's ability to anticipate potential operative management.
NASA Astrophysics Data System (ADS)
Ryou, Hong Sun; Kim, Soyoon; Ro, Kyoungchul
2013-02-01
For patients with renal failure, renal replacement therapies are needed. Hemodialysis is a widely used renal replacement method to remove waste products. It is important to improve the patency rate of the vascular access for efficient dialysis. Since some complications such as an intimal hyperplasia are associated with the flow pattern, the hemodynamics in the vascular access must be considered to achieve a high patency rate. In addition, the blood flow from an artificial kidney affects the flow in the vascular access. Generally, the clinical techniques of hemodialysis such as the catheter angle or dialysis dose have been set up empirically. In this study, a numerical analysis is performed on the effect of the catheter angle on the flow in the graft. Blood is assumed to be a non-Newtonian fluid. According to the high average wall shear stress value, the leucocytes and platelets can be activated not only at the arterial anastomosis, but also at the bottom of the venous graft, when the catheter angle is not zero. For a catheter angle less than five degrees, there is a low shear and high oscillatory shear index region that appears at the venous graft and the venous anastomosis. Thus, a catheter angle less than five degrees should be avoided to prevent graft failure.
Bok, Tae-Hoon; Kim, Juho; Bae, Jinho; Lee, Chong Hyun; Paeng, Dong-Guk
2014-09-24
The mechanical scanning of a single element transducer has been mostly utilized for high-frequency ultrasound imaging. However, it requires space for the mechanical motion of the transducer. In this paper, a rotational scanning ultrasound biomicroscopy (UBM) system equipped with a high-frequency angled needle transducer is designed and implemented in order to minimize the space required. It was applied to ex vivo ultrasound imaging of porcine posterior ocular tissues through a minimal incision hole of 1 mm in diameter. The retina and sclera for the one eye were visualized in the relative rotating angle range of 270°~330° and at a distance range of 6~7 mm, whereas the tissues of the other eye were observed in relative angle range of 160°~220° and at a distance range of 7.5~9 mm. The layer between retina and sclera seemed to be bent because the distance between the transducer tip and the layer was varied while the transducer was rotated. Certin features of the rotation system such as the optimal scanning angle, step angle and data length need to be improved for ensure higher accuracy and precision. Moreover, the focal length should be considered for the image quality. This implementation represents the first report of a rotational scanning UBM system.
Bok, Tae-Hoon; Kim, Juho; Bae, Jinho; Lee, Chong Hyun; Paeng, Dong-Guk
2014-01-01
The mechanical scanning of a single element transducer has been mostly utilized for high-frequency ultrasound imaging. However, it requires space for the mechanical motion of the transducer. In this paper, a rotational scanning ultrasound biomicroscopy (UBM) system equipped with a high-frequency angled needle transducer is designed and implemented in order to minimize the space required. It was applied to ex vivo ultrasound imaging of porcine posterior ocular tissues through a minimal incision hole of 1 mm in diameter. The retina and sclera for the one eye were visualized in the relative rotating angle range of 270° ∼ 330° and at a distance range of 6 ∼ 7 mm, whereas the tissues of the other eye were observed in relative angle range of 160° ∼ 220° and at a distance range of 7.5 ∼ 9 mm. The layer between retina and sclera seemed to be bent because the distance between the transducer tip and the layer was varied while the transducer was rotated. Certin features of the rotation system such as the optimal scanning angle, step angle and data length need to be improved for ensure higher accuracy and precision. Moreover, the focal length should be considered for the image quality. This implementation represents the first report of a rotational scanning UBM system. PMID:25254305
Mass Median Plume Angle: A novel approach to characterize plume geometry in solution based pMDIs.
Moraga-Espinoza, Daniel; Eshaghian, Eli; Smyth, Hugh D C
2018-05-30
High-speed laser imaging (HSLI) is the preferred technique to characterize the geometry of the plume in pressurized metered dose inhalers (pMDIs). However, current methods do not allow for simulation of inhalation airflow and do not use drug mass quantification to determine plume angles. To address these limitations, a Plume Induction Port Evaluator (PIPE) was designed to characterize the plume geometry based on mass deposition patterns. The method is easily adaptable to current pMDI characterization methodologies, uses similar calculations methods, and can be used under airflow. The effect of airflow and formulation on the plume geometry were evaluated using PIPE and HSLI. Deposition patterns in PIPE were highly reproducible and log-normal distributed. Mass Median Plume Angle (MMPA) was a new characterization parameter to describe the effective angle of the droplets deposited in the induction port. Plume angles determined by mass showed a significant decrease in size as ethanol increases which correlates to the decrease on vapor pressure in the formulation. Additionally, airflow significantly decreased the angle of the plumes when cascade impactor was operated under flow. PIPE is an alternative to laser-based characterization methods to evaluate the plume angle of pMDIs based on reliable drug quantification while simulating patient inhalation. Copyright © 2018. Published by Elsevier B.V.
Forest height Mapping using the fusion of Lidar and MULTI-ANGLE spectral data
NASA Astrophysics Data System (ADS)
Pang, Y.; Li, Z.
2016-12-01
Characterizing the complexity of forest ecosystem over large area is highly complex. Light detection and Ranging (LIDAR) approaches have demonstrated a high capacity to accurately estimate forest structural parameters. A number of satellite mission concepts have been proposed to fuse LiDAR with other optical imagery allowing Multi-angle spectral observations to be captured using the Bidirectional Reflectance Distribution Function (BRDF) characteristics of forests. China is developing the concept of Chinese Terrestrial Carbon Mapping Satellite. A multi-beam waveform Lidar is the main sensor. A multi-angle imagery system is considered as the spatial mapping sensor. In this study, we explore the fusion potential of Lidar and multi-angle spectral data to estimate forest height across different scales. We flew intensive airborne Lidar and Multi-angle hyperspectral data in Genhe Forest Ecological Research Station, Northeast China. Then extended the spatial scale with some long transect flights to cover more forest structures. Forest height data derived from airborne lidar data was used as reference data and the multi-angle hyperspectral data was used as model inputs. Our results demonstrate that the multi-angle spectral data can be used to estimate forest height with the RMSE of 1.1 m with an R2 approximately 0.8.
X-29 High Alpha Test in the National Transonic Facility
NASA Technical Reports Server (NTRS)
Underwood, Pamela J.; Owens, Lewis R.; Wahls, Richard A.; Williams, Susan
2003-01-01
This paper describes the X-29A research program at the National Transonic Facility. This wind tunnel test leveraged the X-29A high alpha flight test program by enabling ground-to-flight correlation studies with an emphasis on Reynolds number effects. The background and objectives of this test program, as well as the comparison of high Reynolds number wind tunnel data to X-29A flight test data are presented. The effects of Reynolds number on the forebody pressures at high angles of attack are also presented. The purpose of this paper is to document this test and serve as a reference for future ground-to-flight correlation studies, and high angle-of-attack investigations. Good ground-to-flight correlations were observed for angles of attack up to 50 deg, and Reynolds number effects were also observed.
High-angle-of-attack aerodynamics - Lessons learned
NASA Technical Reports Server (NTRS)
Chambers, J. R.
1986-01-01
Recently, the military and civil technical communities have undertaken numerous studies of the high angle-of-attack aerodynamic characteristics of advanced airplane and missile configurations. The method of approach and the design methodology employed have necessarily been experimental and exploratory in nature, due to the complex nature of separated flows. However, despite the relatively poor definition of many of the key aerodynamic phenomena involved for high-alpha conditions, some generic guidelines for design consideration have been identified. The present paper summarizes some of the more important lessons learned in the area of high angle-of-attack aerodynamics with examples of a number of key concepts and with particular emphasis on high-alpha stability and control characteristics of high performance aircraft. Topics covered in the discussion include the impact of design evolution, forebody flows, control of separated flows, configuration effects, aerodynamic controls, wind-tunnel flight correlation, and recent NASA research activities.
NASA Technical Reports Server (NTRS)
Foster, John V.; Ross, Holly M.; Ashley, Patrick A.
1993-01-01
Designers of the next-generation fighter and attack airplanes are faced with the requirements of good high-angle-of-attack maneuverability as well as efficient high speed cruise capability with low radar cross section (RCS) characteristics. As a result, they are challenged with the task of making critical design trades to achieve the desired levels of maneuverability and performance. This task has highlighted the need for comprehensive, flight-validated lateral-directional control power design guidelines for high angles of attack. A joint NASA/U.S. Navy study has been initiated to address this need and to investigate the complex flight dynamics characteristics and controls requirements for high-angle-of-attack lateral-directional maneuvering. A multi-year research program is underway which includes ground-based piloted simulation and flight validation. This paper will give a status update of this program that will include a program overview, description of test methodology and preliminary results.
NASA Technical Reports Server (NTRS)
Foster, John V.; Ross, Holly M.; Ashley, Patrick A.
1993-01-01
Designers of the next-generation fighter and attack airplanes are faced with the requirements of good high angle-of-attack maneuverability as well as efficient high speed cruise capability with low radar cross section (RCS) characteristics. As a result, they are challenged with the task of making critical design trades to achieve the desired levels of maneuverability and performance. This task has highlighted the need for comprehensive, flight-validated lateral-directional control power design guidelines for high angles of attack. A joint NASA/U.S. Navy study has been initiated to address this need and to investigate the complex flight dynamics characteristics and controls requirements for high angle-of-attack lateral-directional maneuvering. A multi-year research program is underway which includes groundbased piloted simulation and flight validation. This paper will give a status update of this program that will include a program overview, description of test methodology and preliminary results.
2010-03-08
frequencies on wind speed and direction is viable at VV polarization at much larger incidence angles than we had thought. At this polarization it works...out to 89 degree incidence angles. By contrast at HH polarization the model underpredicts the NRCS of the sea for incidence angles above about 45...degrees. ● At high grazing angles, HH polarized cross sections maximize upwind and minimize downwind; upwind they are slightly smaller than VV
Manufacturing Technology Development of Advanced Components for High Power Solid State Lasers
2010-07-19
commercially available that can support an intra-cavity wavelength of 1030 nm. Losses were reduced by ensuring that the apex angle provided a Brewster ...in Figure 2.2), one can map the optical path distance distribution near the interface region. An oblique angle may be used to resolve the order of...U:YAG) composite of a 62° incident angle in (A), and a .5% Er:YAG// U:YAG composite of a 20° incident angle in (B) The refractive index difference
C.W. McMillin
1973-01-01
Fibril angles were greater for earlywood (avg. 33.4°) than for latewood tracheida (avg. 26.9°). For earlywood, fibril angle did not differ between growth rates when the specific gravity was low (avg. 33.3°). When the specific gravity was high, wood of fast growth had a higher fibril angle (avg. 35.1.°) than wood of slow growth (avg. 32.0°). No differences were detected...
NASA Technical Reports Server (NTRS)
Peterson, John B., Jr.
1991-01-01
Two programs were developed to calculate the pitch and roll position of the conventional sting drive and the pitch of a high angle articulated sting to position a wind tunnel model at the desired angle of attack and sideslip and position the model as near as possible to the centerline of the tunnel. These programs account for the effects of sting offset angles, sting bending angles, and wind-tunnel stream flow angles. In addition, the second program incorporates inputs form on-board accelerometers that measure model pitch and roll with respect to gravity. The programs are presented and a description of the numerical operation of the programs with a definition of the variables used in the programs is given.
Identification of Deformation Mechanisms During Bi-Axial Straining of Superplastic AA5083 Material
2004-06-01
equiaxed grain structure in FSS along with the prevalence of high - energy boundaries accommodates sliding under the proper shearing conditions. Figure...by a randomized texture and a higher concentration of high disorientation angles. Dislocation creep, which dominates at higher strain rates, is...concentration of high disorientation angles. Dislocation creep, which dominates at higher strain rates, is characterized by fiber texture formation
Determination of angle of light deflection in higher-derivative gravity theories
NASA Astrophysics Data System (ADS)
Xu, Chenmei; Yang, Yisong
2018-03-01
Gravitational light deflection is known as one of three classical tests of general relativity and the angle of deflection may be computed explicitly using approximate or exact solutions describing the gravitational force generated from a point mass. In various generalized gravity theories, however, such explicit determination is often impossible due to the difficulty in obtaining an exact expression for the deflection angle. In this work, we present some highly effective globally convergent iterative methods to determine the angle of semiclassical gravitational deflection in higher- and infinite-derivative formalisms of quantum gravity theories. We also establish the universal properties that the deflection angle always stays below the classical Einstein angle and is a strictly decreasing function of the incident photon energy, in these formalisms.
Aerodynamic characteristics of cruciform missiles at high angles of attack
NASA Technical Reports Server (NTRS)
Lesieutre, Daniel J.; Mendenhall, Michael R.; Nazario, Susana M.; Hemsch, Michael J.
1987-01-01
An aerodynamic prediction method for missile aerodynamic performance and preliminary design has been developed to utilize a newly available systematic fin data base and an improved equivalent angle of attack methodology. The method predicts total aerodynamic loads and individual fin forces and moments for body-tail (wing-body) and canard-body-tail configurations with cruciform fin arrangements. The data base and the prediction method are valid for angles of attack up to 45 deg, arbitrary roll angles, fin deflection angles between -40 deg and 40 deg, Mach numbers between 0.6 and 4.5, and fin aspect ratios between 0.25 and 4.0. The equivalent angle of attack concept is employed to include the effects of vorticity and geometric scaling.
Multi-angle Spectra Evolution of Ionospheric Turbulence Excited by RF Interactions at HAARP
NASA Astrophysics Data System (ADS)
Sheerin, J. P.; Rayyan, N.; Watkins, B. J.; Watanabe, N.; Golkowski, M.; Bristow, W. A.; Bernhardt, P. A.; Briczinski, S. J., Jr.
2014-12-01
The high power HAARP HF transmitter is employed to generate and study strong Langmuir turbulence (SLT) in the interaction region of overdense ionospheric plasma. Diagnostics included the Modular UHF Ionospheric Radar (MUIR) sited at HAARP, the SuperDARN-Kodiak HF radar, and HF receivers to record stimulated electromagnetic emissions (SEE). Dependence of diagnostic signals on HAARP HF parameters, including pulselength, duty-cycle, aspect angle, and frequency were recorded. Short pulse, low duty cycle experiments demonstrate control of artificial field-aligned irregularities (AFAI) and isolation of ponderomotive effects. For the first time, simultaneous multi-angle radar measurements of plasma line spectra are recorded demonstrating marked dependence on aspect angle with the strongest interaction region observed displaced southward of the HF zenith pointing angle. For a narrow range of HF pointing between Spitze and magnetic zenith, a reduced threshold for AFAI is observed. High time resolution studies of the temporal evolution of the plasma line reveal the appearance of an overshoot effect on ponderomotive timescales. Numerous measurements of the outshifted plasma line are observed. Experimental results are compared to previous high latitude experiments and predictions from recent modeling efforts
Angle dependent antireflection property of TiO2 inspired by cicada wings
NASA Astrophysics Data System (ADS)
Zada, Imran; Zhang, Wang; Li, Yao; Sun, Peng; Cai, Nianjin; Gu, Jiajun; Liu, Qinglei; Su, Huilan; Zhang, Di
2016-10-01
Inspired by cicada wings, biomorphic TiO2 with antireflective structures (ARSs) was precisely fabricated using a simple, inexpensive, and highly effective sol-gel process combined with subsequent calcination. It was confirmed that the fabricated biomorphic TiO2 not only effectively inherited the ARS but also exhibited high-performance angle dependent antireflective properties ranging from normal to 45°. Reflectance spectra demonstrated that the reflectivity of the biomorphic TiO2 with ARSs gradually changed from 1.4% to 7.8% with the increasing incidence angle over a large visible wavelength range. This angle dependent antireflective property is attributed to an optimized gradient refractive index between air and TiO2 via ARSs on the surface. Such surfaces with ARSs may have potential application in solar cells.
High brightness angled cavity quantum cascade lasers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Heydari, D.; Bai, Y.; Bandyopadhyay, N.
2015-03-02
A quantum cascade laser (QCL) with an output power of 203 W is demonstrated in pulsed mode at 283 K with an angled cavity. The device has a ridge width of 300 μm, a cavity length of 5.8 mm, and a tilt angle of 12°. The back facet is high reflection coated, and the front facet is anti-reflection coated. The emitting wavelength is around 4.8 μm. In distinct contrast to a straight cavity broad area QCL, the lateral far field is single lobed with a divergence angle of only 3°. An ultrahigh brightness value of 156 MW cm{sup −2 }sr{sup −1} is obtained, which marks the brightestmore » QCL to date.« less
The influence of grain boundary geometry on intergranular crack propagation in Ni[sub 3]Al
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hui Lin; Pope, D.P.
1993-02-01
The distribution of grain boundary types along intergranular cracks in Ni[sub 3]Al was measured, by [Sigma] value, and compared to the distribution in the bulk, using statistically significant sample sizes. It was found that low angle ([Sigma] 1) and symmetrical [Sigma]3 boundaries (twins) are particularly strong, and all high angle boundaries, independent of their [Sigma] values are weak. In particular, low [Sigma], high angle boundaries, as a group, are also weak. These results are in qualitative agreement with predictions based on the structural unit model and imply that the fracture strength of an intergranularly brittle polycrystalline aggregate can be increasedmore » only by increasing the fraction of low angle and symmetrical [Sigma]3 boundaries.« less
High Grazing Angle Sea-Clutter Literature Review
2013-03-01
Optimal and sub-optimal detection .................................................................... 37 7.3 Polarimetry ... polarimetry for target detection from high grazing angles. UNCLASSIFIED DSTO-GD-0736 UNCLASSIFIED 36 7.1 Parametric modelling There have not been...relationships were also found to be intrinsically related to Gaussian detection counterparts. 7.3 Polarimetry Early studies by Stacy et al. [45, 46] and
NASA Astrophysics Data System (ADS)
Lu, L.; McKenna-Lawlor, S.; Barabash, S.; Liu, Z. X.; Balaz, J.; Brinkfeldt, K.; Strharsky, I.; Shen, C.; Shi, J. K.; Cao, J. B.; Fu, S. Y.; Gunell, H.; Kudela, K.; Roelof, E. C.; Brandt, P. C.; Dandouras, I.; Zhang, T. L.; Carr, C.; Fazakerley, A.
2005-11-01
The NUADU (NeUtral Atom Detector Unit) experiment aboard TC-2 recorded, with high temporal and spatial resolution, 4π solid angle images of electrons (~50-125 keV) spiraling around geomagnetic field lines at high northern magnetic latitudes (L>10), during its in-orbit commissioning phase (September 2004). The ambient magnetic field, as well as electrons in other energy ranges, were simultaneously measured by the TC-2 magnetometer (FGM), the plasma electron and current experiment (PEACE), the low energy ion detector (LEID) and the high energy electron detector (HEED). The NUADU data showed that up-flowing electron beams could form "ring-like" and "dumbbell-type" pitch angle distributions (PADs) in the region sampled. Changes in these pitch angle distributions due to transient magnetic variations are suggested to have been associated with electron acceleration along the geomagnetic field lines. A nested magnetic bottle configuration that formed due to the propagation towards the Earth of a magnetic pulse, is proposed to have been associated with this process.
NASA Technical Reports Server (NTRS)
Rines, Glen A. (Inventor); Moulton, Peter F. (Inventor); Harrison, James (Inventor)
1993-01-01
A wavelength-tunable, injection-seeded, dispersion-compensated, dispersively-pumped solid state laser includes a lasing medium; a highly reflective mirror; an output coupler; at least one isosceles Brewster prism oriented to the minimum deviation angle between the medium and the mirror for directing light of different wavelengths along different paths; means for varying the angle of the highly reflective mirror relative to the light from at least one Brewster angle for selecting a predetermined laser operating wavelength; a dispersion compensation apparatus associated with the lasing medium; a laser injection seeding port disposed between the dispersion compensation apparatus and one of the mirror and coupler and including a reflective surface at an acute non-Brewster angle to the laser beam for introducing a seed input; a dispersion compensation apparatus associated with the laser medium including opposite chirality optical elements; the lasing medium including a pump surface disposed at an acute angle to the laser beam to define a discrete path for the pumping laser beam separate from the pumped laser beam.
Sawane, Yogesh B; Ogale, Satishchandra B; Banpurkar, Arun G
2016-09-14
We demonstrate a consistent electrowetting response on ferroelectric poly(vinylidene fluoride-co-hexafluoropropylene) (PVDF-HFP) insulator covered with a thin Teflon AF layer. This bilayer exhibits a factor of 3 enhancement in the contact angle modulation compared to that of conventional single-layered Teflon AF dielectric. On the basis of the proposed model the enhancement is attributed to the high value of effective dielectric constant (εeff ≈ 6) of the bilayer. Furthermore, the bilayer dielectric exhibits a hysteresis-free contact angle modulation over many AC voltage cycles. But the contact angle modulation for DC voltage shows a hysteresis because of the field-induced residual polarization in the ferroelectric layer. Finally, we show that a thin bilayer exhibits contact angle modulation of Δθ (U) ≈ 60° at merely 15 V amplitude of AC voltage indicating a potential dielectric for practical low voltage electrowetting applications. A proof of concept confirms electrowetting based rapid mixing of a fluorescent dye in aqueous glycerol solution for 15 V AC signal.
Cylindrically symmetric Fresnel lens for high concentration photovoltaic
NASA Astrophysics Data System (ADS)
Hung, Yu-Ting; Su, Guo-Dung
2009-08-01
High concentration photovoltaic (HCPV) utilizes point-focus cost-effective plastic Fresnel lens. And a millimeter-sized Ill-V compound multi-junction solar cell is placed underneath focusing optics which can achieve cell efficiency potential of up to 40.7 %. The advantage of HCPV makes less solar cell area and higher efficiency; however, the acceptance angle of HCPV is about +/-1°, which is very small and the mechanical tracking of the sun is necessary. In order to reduce the power consumption and the angle tracking error of tracking systems, a light collector model with larger acceptance angle is designed with ZEMAX®. In this model, the original radially symmetric Fresnel lens of HCPV is replaced by cylindrically symmetric Fresnel lens and a parabolic reflective surface. Light is collected in two dimensions separately. And a couple of lenses and a light pipe are added before the solar cell chip in order to collect more light when sun light deviates from incident angle of 00. An acceptance angle of +/-10° is achieved with GCR 400.
NASA Astrophysics Data System (ADS)
Uchiyama, H.; Watanabe, M.; Shaw, D. M.; Bahia, J. E.; Collins, G. J.
1999-10-01
Accurate measurement of plasma source impedance is important for verification of plasma circuit models, as well as for plasma process characterization and endpoint detection. Most impedance measurement techniques depend in some manner on the cosine of the phase angle to determine the impedance of the plasma load. Inductively coupled plasmas are generally highly inductive, with the phase angle between the applied rf voltage and the rf current in the range of 88 to near 90 degrees. A small measurement error in this phase angle range results in a large error in the calculated cosine of the angle, introducing large impedance measurement variations. In this work, we have compared the measured impedance of a planar inductively coupled plasma using three commercial plasma impedance monitors (ENI V/I probe, Advanced Energy RFZ60 and Advanced Energy Z-Scan). The plasma impedance is independently verified using a specially designed match network and a calibrated load, representing the plasma, to provide a measurement standard.
The effect of vegetation type, microrelief, and incidence angle on radar backscatter
NASA Technical Reports Server (NTRS)
Owe, M.; Oneill, P. E.; Jackson, T. J.; Schmugge, T. J.
1985-01-01
The NASA/JPL Synthetic Aperture Radar (SAR) was flown over a 20 x 110 km test site in the Texas High Plains regions north of Lubbock during February/March 1984. The effect of incidence angle was investigated by comparing the pixel values of the calibrated and uncalibrated images. Ten-pixel-wide transects along the entire azimuth were averaged in each of the two scenes, and plotted against the calculated incidence angle of the center of each range increment. It is evident from the graphs that both the magnitudes and patterns exhibited by the corresponding transect means of the two images are highly dissimilar. For each of the cross-poles, the uncalibrated image displayed very distinct and systematic positive trends through the entire range of incidence angles. The two like-poles, however, exhibited relatively constant returns. In the calibrated image, the cross-poles exhibited a constant return, while the like-poles demonstrated a strong negative trend across the range of look-angles, as might be expected.
NASA Astrophysics Data System (ADS)
Masuda, Akihiko; Matsumoto, Tetsuro; Iwamoto, Yosuke; Hagiwara, Masayuki; Satoh, Daiki; Sato, Tatsuhiko; Iwase, Hiroshi; Yashima, Hiroshi; Nakane, Yoshihiro; Nishiyama, Jun; Shima, Tatsushi; Tamii, Atsushi; Hatanaka, Kichiji; Harano, Hideki; Nakamura, Takashi
2017-03-01
Quasi-monoenergetic high-energy neutron fields induced by 7Li(p,n) reactions are used for the response evaluation of neutron-sensitive devices. The quasi-monoenergetic high-energy field consists of high-energy monoenergetic peak neutrons and unwanted continuum neutrons down to the low-energy region. A two-angle differential method has been developed to compensate for the effect of the continuum neutrons in the response measurements. In this study, the two-angle differential method was demonstrated for Bonner sphere detectors, which are typical examples of moderator-based neutron-sensitive detectors, to investigate the method's applicability and its dependence on detector characteristics. Experiments were performed under 96-387 MeV quasi-monoenergetic high-energy neutron fields at the Research Center for Nuclear Physics (RCNP), Osaka University. The measurement results for large high-density polyethylene (HDPE) sphere detectors agreed well with Monte Carlo calculations, which verified the adequacy of the two-angle differential method. By contrast, discrepancies were observed in the results for small HDPE sphere detectors and metal-induced sphere detectors. The former indicated that detectors that are particularly sensitive to low-energy neutrons may be affected by penetrating neutrons owing to the geometrical features of the RCNP facility. The latter discrepancy could be consistently explained by a problem in the evaluated cross-section data for the metals used in the calculation. Through those discussions, the adequacy of the two-angle differential method was experimentally verified, and practical suggestions were made pertaining to this method.
On the impact of large angle CMB polarization data on cosmological parameters
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lattanzi, Massimiliano; Mandolesi, Nazzareno; Natoli, Paolo
We study the impact of the large-angle CMB polarization datasets publicly released by the WMAP and Planck satellites on the estimation of cosmological parameters of the ΛCDM model. To complement large-angle polarization, we consider the high resolution (or 'high-ℓ') CMB datasets from either WMAP or Planck as well as CMB lensing as traced by Planck 's measured four point correlation function. In the case of WMAP, we compute the large-angle polarization likelihood starting over from low resolution frequency maps and their covariance matrices, and perform our own foreground mitigation technique, which includes as a possible alternative Planck 353 GHz datamore » to trace polarized dust. We find that the latter choice induces a downward shift in the optical depth τ, roughly of order 2σ, robust to the choice of the complementary high resolution dataset. When the Planck 353 GHz is consistently used to minimize polarized dust emission, WMAP and Planck 70 GHz large-angle polarization data are in remarkable agreement: by combining them we find τ = 0.066 {sup +0.012}{sub −0.013}, again very stable against the particular choice for high-ℓ data. We find that the amplitude of primordial fluctuations A {sub s} , notoriously degenerate with τ, is the parameter second most affected by the assumptions on polarized dust removal, but the other parameters are also affected, typically between 0.5 and 1σ. In particular, cleaning dust with Planck 's 353 GHz data imposes a 1σ downward shift in the value of the Hubble constant H {sub 0}, significantly contributing to the tension reported between CMB based and direct measurements of the present expansion rate. On the other hand, we find that the appearance of the so-called low ℓ anomaly, a well-known tension between the high- and low-resolution CMB anisotropy amplitude, is not significantly affected by the details of large-angle polarization, or by the particular high-ℓ dataset employed.« less
Laser interferometric high-precision angle monitor for JASMINE
NASA Astrophysics Data System (ADS)
Niwa, Yoshito; Arai, Koji; Sakagami, Masaaki; Gouda, Naoteru; Kobayashi, Yukiyasu; Yamada, Yoshiyuki; Yano, Taihei
2006-06-01
The JASMINE instrument uses a beam combiner to observe two different fields of view separated by 99.5 degrees simultaneously. This angle is so-called basic angle. The basic angle of JASMINE should be stabilized and fluctuations of the basic angle should be monitored with the accuracy of 10 microarcsec in root-mean-square over the satellite revolution period of 5 hours. For this purpose, a high-precision interferometric laser metrogy system is employed. One of the available techniques for measuring the fluctuations of the basic angle is a method known as the wave front sensing using a Fabry-Perot type laser interferometer. This technique is to detect fluctuations of the basic angle as displacement of optical axis in the Fabry-Perot cavity. One of the advantages of the technique is that the sensor is made to be sensitive only to the relative fluctuations of the basic angle which the JASMINE wants to know and to be insensitive to the common one; in order to make the optical axis displacement caused by relative motion enhanced the Fabry-Perot cavity is formed by two mirrors which have long radius of curvature. To verify the principle of this idea, the experiment was performed using a 0.1m-length Fabry-Perot cavity with the mirror curvature of 20m. The mirrors of the cavity were artificially actuated in either relative way or common way and the resultant outputs from the sensor were compared.
Morphologies of tungsten nanotendrils grown under helium exposure
Wang, Kun; Doerner, R. P.; Baldwin, Matthew J.; ...
2017-02-14
Nanotendril “fuzz” will grow under He bombardment under tokamak-relevant conditions on tungsten plasma-facing materials in a magnetic fusion energy device. We have grown tungsten nanotendrils at low (50 eV) and high (12 keV) He bombardment energy, in the range 900–1000 °C, and characterized them using electron microscopy. Low energy tendrils are finer (~22 nm diameter) than high-energy tendrils (~176 nm diameter), and low-energy tendrils have a smoother surface than high-energy tendrils. Cavities were omnipresent and typically ~5–10 nm in size. Oxygen was present at tendril surfaces, but tendrils were all BCC tungsten metal. Electron diffraction measured tendril growth axes andmore » grain boundary angle/axis pairs; no preferential growth axes or angle/axis pairs were observed, and low-energy fuzz grain boundaries tended to be high angle; high energy tendril grain boundaries were not observed. We speculate that the strong tendency to high-angle grain boundaries in the low-energy tendrils implies that as the tendrils twist or bend, strain must accumulate until nucleation of a grain boundary is favorable compared to further lattice rotation. Finally, the high-energy tendrils consisted of very large (>100 nm) grains compared to the tendril size, so the nature of the high energy irradiation must enable faster growth with less lattice rotation.« less
Morphologies of tungsten nanotendrils grown under helium exposure
Wang, Kun; Doerner, R. P.; Baldwin, M. J.; Meyer, F. W.; Bannister, M. E.; Darbal, Amith; Stroud, Robert; Parish, Chad M.
2017-01-01
Nanotendril “fuzz” will grow under He bombardment under tokamak-relevant conditions on tungsten plasma-facing materials in a magnetic fusion energy device. We have grown tungsten nanotendrils at low (50 eV) and high (12 keV) He bombardment energy, in the range 900–1000 °C, and characterized them using electron microscopy. Low energy tendrils are finer (~22 nm diameter) than high-energy tendrils (~176 nm diameter), and low-energy tendrils have a smoother surface than high-energy tendrils. Cavities were omnipresent and typically ~5–10 nm in size. Oxygen was present at tendril surfaces, but tendrils were all BCC tungsten metal. Electron diffraction measured tendril growth axes and grain boundary angle/axis pairs; no preferential growth axes or angle/axis pairs were observed, and low-energy fuzz grain boundaries tended to be high angle; high energy tendril grain boundaries were not observed. We speculate that the strong tendency to high-angle grain boundaries in the low-energy tendrils implies that as the tendrils twist or bend, strain must accumulate until nucleation of a grain boundary is favorable compared to further lattice rotation. The high-energy tendrils consisted of very large (>100 nm) grains compared to the tendril size, so the nature of the high energy irradiation must enable faster growth with less lattice rotation. PMID:28195125
NASA Technical Reports Server (NTRS)
1976-01-01
A detailed aerodynamic data base which can be used to substantiate the aerodynamic design data book for the current shuttle orbiter configuration was generated. Special attention was directed to definition of non-linear aerodynamic characteristics by taking data at small increments in the angle of attack, angle of sideslip, Mach number, and elevon position. Six-component aerodynamic force and moment and elevon position data were recorded over an angle-of-attack range from -2 deg to as high as 32 deg at angles of sideslip of 0 deg, 1 deg, and +2 deg. The test Mach numbers were 0.60, 0.80, 0.90, 1.2, 1.5, 2.0, 3.0, and 4.6. The effects of Reynolds number were investigated and covered a range from 5.0 to 16.0 million per foot.
Two Perspectives on Forest Fire
NASA Technical Reports Server (NTRS)
2002-01-01
Multi-angle Imaging Spectroradiometer (MISR) images of smoke plumes from wildfires in western Montana acquired on August 14, 2000. A portion of Flathead Lake is visible at the top, and the Bitterroot Range traverses the images. The left view is from MISR's vertical-viewing (nadir) camera. The right view is from the camera that looks forward at a steep angle (60 degrees). The smoke location and extent are far more visible when seen at this highly oblique angle. However, vegetation is much darker in the forward view. A brown burn scar is located nearly in the exact center of the nadir image, while in the high-angle view it is shrouded in smoke. Also visible in the center and upper right of the images, and more obvious in the clearer nadir view, are checkerboard patterns on the surface associated with land ownership boundaries and logging. Compare these images with the high resolution infrared imagery captured nearby by Landsat 7 half an hour earlier. Images by NASA/GSFC/JPL, MISR Science Team.
NASA Technical Reports Server (NTRS)
Gloss, B. B.
1974-01-01
A generalized wind-tunnel model, with canard and wing planforms typical of highly maneuverable aircraft, was tested in the Langley high-speed 7- by 10-foot tunnel at a Mach number of 0.30. The test was conducted in order to determine the effects of canard sweep and canard dihedral on canard-wing interference at high angles of attack. In general, the effect of canard sweep on lift is small up to an angle of attack of 16 deg. However, for angles of attack greater than 16 deg, an increase in the canard sweep results in an increase in lift developed by the canard when the canard is above or in the wing chord plane. This increased lift results in a lift increase for the total configuration for the canard above the wing chord plane. For the canard in the wing chord plane, the increased canard lift is partially lost by increased interference on the wing.
Mathematical modeling of the aerodynamics of high-angle-of-attack maneuvers
NASA Technical Reports Server (NTRS)
Schiff, L. B.; Tobak, M.; Malcolm, G. N.
1980-01-01
This paper is a review of the current state of aerodynamic mathematical modeling for aircraft motions at high angles of attack. The mathematical model serves to define a set of characteristic motions from whose known aerodynamic responses the aerodynamic response to an arbitrary high angle-of-attack flight maneuver can be predicted. Means are explored of obtaining stability parameter information in terms of the characteristic motions, whether by wind-tunnel experiments, computational methods, or by parameter-identification methods applied to flight-test data. A rationale is presented for selecting and verifying the aerodynamic mathematical model at the lowest necessary level of complexity. Experimental results describing the wing-rock phenomenon are shown to be accommodated within the most recent mathematical model by admitting the existence of aerodynamic hysteresis in the steady-state variation of the rolling moment with roll angle. Interpretation of the experimental results in terms of bifurcation theory reveals the general conditions under which aerodynamic hysteresis must exist.
Chen, Yang; Young, Paul M; Murphy, Seamus; Fletcher, David F; Long, Edward; Lewis, David; Church, Tanya; Traini, Daniela
2017-04-01
The aim of this study is to investigate aerosol plume geometries of pressurised metered dose inhalers (pMDIs) using a high-speed laser image system with different actuator nozzle materials and designs. Actuators made from aluminium, PET and PTFE were manufactured with four different nozzle designs: cone, flat, curved cone and curved flat. Plume angles and spans generated using the designed actuator nozzles with four solution-based pMDI formulations were imaged using Oxford Lasers EnVision system and analysed using EnVision Patternate software. Reduced plume angles for all actuator materials and nozzle designs were observed with pMDI formulations containing drug with high co-solvent concentration (ethanol) due to the reduced vapour pressure. Significantly higher plume angles were observed with the PTFE flat nozzle across all formulations, which could be a result of the nozzle geometry and material's hydrophobicity. The plume geometry of pMDI aerosols can be influenced by the vapour pressure of the formulation, nozzle geometries and actuator material physiochemical properties.
High angle-of-attack aerodynamics of a strake-canard-wing V/STOL fighter configuration
NASA Technical Reports Server (NTRS)
Durston, D. A.; Schreiner, J. A.
1983-01-01
High angle-of-attack aerodynamic data are analyzed for a strake-canard-wing V/STOL fighter configuration. The configuration represents a twin-engine supersonic V/STOL fighter aircraft which uses four longitudinal thrust-augmenting ejectors to provide vertical lift. The data were obtained in tests of a 9.39 percent scale model of the configuration in the NASA Ames 12-Foot Pressure Wind Tunnel, at a Mach number of 0.2. Trimmed aerodynamic characteristics, longitudinal control power, longitudinal and lateral/directional stability, and effects of alternate strake and canard configurations are analyzed. The configuration could not be trimmed (power-off) above 12 deg angle of attack because of the limited pitch control power and the high degree of longitudinal instability (28 percent) at this Mach number. Aerodynamic center location was found to be controllable by varying strake size and canard location without significantly affecting lift and drag. These configuration variations had relatively little effect on the lateral/directional stability up to 10 deg angle of attack.
Xu, Z N
2014-12-01
In this study, an error analysis is performed to study real water drop images and the corresponding numerically generated water drop profiles for three widely used static contact angle algorithms: the circle- and ellipse-fitting algorithms and the axisymmetric drop shape analysis-profile (ADSA-P) algorithm. The results demonstrate the accuracy of the numerically generated drop profiles based on the Laplace equation. A significant number of water drop profiles with different volumes, contact angles, and noise levels are generated, and the influences of the three factors on the accuracies of the three algorithms are systematically investigated. The results reveal that the above-mentioned three algorithms are complementary. In fact, the circle- and ellipse-fitting algorithms show low errors and are highly resistant to noise for water drops with small/medium volumes and contact angles, while for water drop with large volumes and contact angles just the ADSA-P algorithm can meet accuracy requirement. However, this algorithm introduces significant errors in the case of small volumes and contact angles because of its high sensitivity to noise. The critical water drop volumes of the circle- and ellipse-fitting algorithms corresponding to a certain contact angle error are obtained through a significant amount of computation. To improve the precision of the static contact angle measurement, a more accurate algorithm based on a combination of the three algorithms is proposed. Following a systematic investigation, the algorithm selection rule is described in detail, while maintaining the advantages of the three algorithms and overcoming their deficiencies. In general, static contact angles over the entire hydrophobicity range can be accurately evaluated using the proposed algorithm. The ease of erroneous judgment in static contact angle measurements is avoided. The proposed algorithm is validated by a static contact angle evaluation of real and numerically generated water drop images with different hydrophobicity values and volumes.
Nonlinear equations of motion for Landau resonance interactions with a whistler mode wave
NASA Technical Reports Server (NTRS)
Inan, U. S.; Tkalcevic, S.
1982-01-01
A simple set of equations is presented for the description of the cyclotron averaged motion of Landau resonant particles in a whistler mode wave propagating at an angle to the static magnetic field. A comparison is conducted of the wave magnetic field and electric field effects for the parameters of the magnetosphere, and the parameter ranges for which the wave magnetic field effects would be negligible are determined. It is shown that the effect of the wave magnetic field can be neglected for low pitch angles, high normal wave angles, and/or high normalized wave frequencies.
NASA Technical Reports Server (NTRS)
Abel, I. R. (Inventor)
1974-01-01
A wide angle, low focal ratio, high resolution, catoptric, image plane scanner is described. The scanner includes the following features: (1) a reflective improvement on the Schmidt principle, (2) a polar line scanner in which all field elements are brought to and corrected on axis, and (3) a scanner arrangement in which the aperture stop of the system is imaged at the center of curvature of a spherical primary mirror. The system scans are a large radial angle and an extremely high rate of speed with relatively small scanning mirrors. Because the system is symmetrical about the optical axis, the obscuration is independent of the scan angle.
NASA Technical Reports Server (NTRS)
Wendel, Thomas R.; Boland, Joseph R.; Hahne, David E.
1991-01-01
Flight-control laws are developed for a wind-tunnel aircraft model flying at a high angle of attack by using a synthesis technique called direct eigenstructure assignment. The method employs flight guidelines and control-power constraints to develop the control laws, and gain schedules and nonlinear feedback compensation provide a framework for considering the nonlinear nature of the attack angle. Linear and nonlinear evaluations show that the control laws are effective, a conclusion that is further confirmed by a scale model used for free-flight testing.
1994-06-27
The modified F-18 High Alpha Research Vehicle (HARV) carries out air flow studies on a flight from the Dryden Flight Research Center, Edwards, California. Using oil, researchers were able to track the air flow across the wing at different speeds and angles of attack. A thrust vectoring system had been installed on the engines' exhaust nozzles for the high angle of attack research program. The thrust vectoring system, linked to the aircraft's flight control system, moves a set of three paddles on each engine to redirect thrust for directional control and increased maneuverability at angles of attack at up to 70 degrees.
Magnus effects at high angles of attack and critical Reynolds numbers
NASA Technical Reports Server (NTRS)
Seginer, A.; Ringel, M.
1983-01-01
The Magnus force and moment experienced by a yawed, spinning cylinder were studied experimentally in low speed and subsonic flows at high angles of attack and critical Reynolds numbers. Flow-field visualization aided in describing a flow model that divides the Magnus phenomenon into a subcritical region, where reverse Magnus loads are experienced, and a supercritical region where these loads are not encountered. The roles of the spin rate, angle of attack, and crossflow Reynolds number in determining the boundaries of the subcritical region and the variations of the Magnus loads were studied.
A small-angle large-acceptance detection system for hadrons
NASA Astrophysics Data System (ADS)
Kalantar-Nayestanaki, N.; Bacelar, J. C. S.; Brandenburg, S.; Huisman, H.; Messchendorp, J. G.; Mul, F. A.; Schadmand, S.; van der Schaaf, K.; Schippers, J. M.; Volkerts, M.
2000-04-01
The performance of a segmented large-acceptance detector, capable of measuring particles at small forward angles, is presented. The Small-Angle Large-Acceptance Detector (SALAD), was built to handle very high rates of particles impinging on the detector. Particles down to a few MeV can be detected with it. The position of charged particles is measured by two Multi-Wire Proportional Chambers while scintillator blocks are used to measure the energy of the detected particle. A stack of thin scintillators placed behind the energy detectors allows for a hardware rejection (veto) of high-energy particles going through the scintillator blocks.
Ultrafast treatment plan optimization for volumetric modulated arc therapy (VMAT)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Men Chunhua; Romeijn, H. Edwin; Jia Xun
2010-11-15
Purpose: To develop a novel aperture-based algorithm for volumetric modulated arc therapy (VMAT) treatment plan optimization with high quality and high efficiency. Methods: The VMAT optimization problem is formulated as a large-scale convex programming problem solved by a column generation approach. The authors consider a cost function consisting two terms, the first enforcing a desired dose distribution and the second guaranteeing a smooth dose rate variation between successive gantry angles. A gantry rotation is discretized into 180 beam angles and for each beam angle, only one MLC aperture is allowed. The apertures are generated one by one in a sequentialmore » way. At each iteration of the column generation method, a deliverable MLC aperture is generated for one of the unoccupied beam angles by solving a subproblem with the consideration of MLC mechanic constraints. A subsequent master problem is then solved to determine the dose rate at all currently generated apertures by minimizing the cost function. When all 180 beam angles are occupied, the optimization completes, yielding a set of deliverable apertures and associated dose rates that produce a high quality plan. Results: The algorithm was preliminarily tested on five prostate and five head-and-neck clinical cases, each with one full gantry rotation without any couch/collimator rotations. High quality VMAT plans have been generated for all ten cases with extremely high efficiency. It takes only 5-8 min on CPU (MATLAB code on an Intel Xeon 2.27 GHz CPU) and 18-31 s on GPU (CUDA code on an NVIDIA Tesla C1060 GPU card) to generate such plans. Conclusions: The authors have developed an aperture-based VMAT optimization algorithm which can generate clinically deliverable high quality treatment plans at very high efficiency.« less
Ultrafast treatment plan optimization for volumetric modulated arc therapy (VMAT).
Men, Chunhua; Romeijn, H Edwin; Jia, Xun; Jiang, Steve B
2010-11-01
To develop a novel aperture-based algorithm for volumetric modulated are therapy (VMAT) treatment plan optimization with high quality and high efficiency. The VMAT optimization problem is formulated as a large-scale convex programming problem solved by a column generation approach. The authors consider a cost function consisting two terms, the first enforcing a desired dose distribution and the second guaranteeing a smooth dose rate variation between successive gantry angles. A gantry rotation is discretized into 180 beam angles and for each beam angle, only one MLC aperture is allowed. The apertures are generated one by one in a sequential way. At each iteration of the column generation method, a deliverable MLC aperture is generated for one of the unoccupied beam angles by solving a subproblem with the consideration of MLC mechanic constraints. A subsequent master problem is then solved to determine the dose rate at all currently generated apertures by minimizing the cost function. When all 180 beam angles are occupied, the optimization completes, yielding a set of deliverable apertures and associated dose rates that produce a high quality plan. The algorithm was preliminarily tested on five prostate and five head-and-neck clinical cases, each with one full gantry rotation without any couch/collimator rotations. High quality VMAT plans have been generated for all ten cases with extremely high efficiency. It takes only 5-8 min on CPU (MATLAB code on an Intel Xeon 2.27 GHz CPU) and 18-31 s on GPU (CUDA code on an NVIDIA Tesla C1060 GPU card) to generate such plans. The authors have developed an aperture-based VMAT optimization algorithm which can generate clinically deliverable high quality treatment plans at very high efficiency.
NASA Astrophysics Data System (ADS)
Rios, Pablo Fabian
Self-cleaning surfaces have received a great deal of attention, both in research and commercial applications. Transparent and non-transparent self-cleaning surfaces are highly desired. The Lotus flower is a symbol of purity in Asian cultures, even when rising from muddy waters it stays clean and untouched by dirt. The Lotus leaf "self-cleaning" surface is hydrophobic and rough, showing a two-layer morphology. While hydrophobicity produces a high contact angle, surface morphology reduces the adhesion of dirt and water to the surface, thus water drops slide easily across the leaf carrying the dirt particles with them. Nature example in the Lotus-effect and extensive scientific research on related fields have rooted wide acceptance that high hydrophobicity can be obtained only by a proper combination of surface chemistry and roughness. Most researchers relate hydrophobicity to a high contact angle. However, the contact angle is not the only parameter that defines liquid-solid interactions. An additional parameter, the sliding angle, related to the adhesion between the liquid drop and the solid surface is also important in cases where liquid sliding is involved, such as self-cleaning applications. In this work, it is postulated that wetting which is related to the contact angle, and interfacial adhesion, which is related to the sliding angle, are interdependent phenomena and have to be considered simultaneously. A variety of models that relate the sliding angle to forces developed along the contact line between a liquid drop and a solid surface have been proposed in the literature. A new model is proposed here that quantifies the drop sliding phenomenon, based also on the interfacial adhesion across the contact area of the liquid/solid interface. The effects of roughness and chemical composition on the contact and sliding angles of hydrophobic smooth and rough surfaces were studied theoretically and experimentally. The validity of the proposed model was investigated and compared with the existing models. Ultra-hydrophobic non-transparent and transparent coatings for potential self-cleaning applications were produced using hydrophobic chemistry and different configurations of roughening micro and nano-particles, however they present low adhesion and durability. Durability and stability enhancement of such coatings was attempted and improved by different methods.
Ultra high bypass Nacelle aerodynamics inlet flow-through high angle of attack distortion test
NASA Technical Reports Server (NTRS)
Larkin, Michael J.; Schweiger, Paul S.
1992-01-01
A flow-through inlet test program was conducted to evaluate inlet test methods and determine the impact of the fan on inlet separation when operating at large angles of attack. A total of 16 model configurations of approximately 1/6 scale were tested. A comparison of these flow-through results with powered data indicates the presence of the fan increased separation operation 3 degrees to 4 degrees over the flow through inlet. Rods and screens located at the fan face station, that redistribute the flow, achieved simulation of the powered-fan results for separation angle of attack. Concepts to reduce inlet distortion and increase angle of attack capability were also evaluated. Vortex generators located on the inlet surface increased inlet angle of attack capability up to 2 degrees and reduced inlet distortion in the separated region. Finally, a method of simulating the fan/inlet aerodynamic interaction using blockage sizing method has been defined. With this method, a static blockage device used with a flow-through model will approximate the same inlet onset of separation angle of attack and distortion pattern that would be obtained with an inlet model containing a powered fan.
Bae, Young-Hyeon; Ko, Mansoo; Lee, Suk Min
2016-04-29
Revised high-heeled shoes (HHSs) were designed to improve the shortcomings of standard HHSs. This study was conducted to compare revised and standard HHSs with regard to joint angles and electromyographic (EMG) activity of the lower extremities during standing. The participants were five healthy young women. Data regarding joint angles and EMG activity of the lower extremities were obtained under three conditions: barefoot, when wearing revised HHSs, and when wearing standard HHSs. Lower extremity joint angles in the three dimensional plane were confirmed using a VICON motion capture system. EMG activity of the lower extremities was measured using active bipolar surface EMG. Kruskal-Wallis one-way analysis of variance by rank applied to analyze differences during three standing conditions. Compared with the barefoot condition, the standard HHSs condition was more different than the revised HHSs condition with regard to lower extremity joint angles during standing. EMG activity of the lower extremities was different for the revised HHSs condition, but the differences among the three conditions were not significant. Wearing revised HHSs may positively impact joint angles and EMG activity of the lower extremities by improving body alignment while standing.
In-Flight Wing Pressure Distributions for the NASA F/A-18A High Alpha Research Vehicle
NASA Technical Reports Server (NTRS)
Davis, Mark C.; Saltzman, John A.
2000-01-01
Pressure distributions on the wings of the F/A-18A High Alpha Research Vehicle (HARV) were obtained using both flush-mounted pressure orifices and surface-mounted pressure tubing. During quasi-stabilized 1-g flight, data were gathered at ranges for angle of attack from 5 deg to 70 deg, for angle of sideslip from -12 deg to +12 deg, and for Mach from 0.23 to 0.64, at various engine settings, and with and without the leading edge extension fence installed. Angle of attack strongly influenced the wing pressure distribution, as demonstrated by a distinct flow separation pattern that occurred between the range from 15 deg to 30 deg. Influence by the leading edge extension fence was evident on the inboard wing pressure distribution, but little influence was seen on the outboard portion of the wing. Angle-of-sideslip influence on wing pressure distribution was strongest at low angle of attack. Influence of Mach number was observed in the regions of local supersonic flow, diminishing as angle of attack was increased. Engine throttle setting had little influence on the wing pressure distribution.
In-flight flow visualization results from the X-29A aircraft at high angles of attack
NASA Technical Reports Server (NTRS)
Delfrate, John H.; Saltzman, John A.
1992-01-01
Flow visualization techniques were used on the X-29A aircraft at high angles of attack to study the vortical flow off the forebody and the surface flow on the wing and tail. The forebody vortex system was studied because asymmetries in the vortex system were suspected of inducing uncommanded yawing moments at zero sideslip. Smoke enabled visualization of the vortex system and correlation of its orientation with flight yawing moment data. Good agreement was found between vortex system asymmetries and the occurrence of yawing moments. Surface flow on the forward-swept wing of the X-29A was studied using tufts and flow cones. As angle of attack increased, separated flow initiated at the root and spread outboard encompassing the full wing by 30 deg angle of attack. In general, the progression of the separated flow correlated well with subscale model lift data. Surface flow on the vertical tail was also studied using tufts and flow cones. As angle of attack increased, separated flow initiated at the root and spread upward. The area of separated flow on the vertical tail at angles of attack greater than 20 deg correlated well with the marked decrease in aircraft directional stability.
NASA Astrophysics Data System (ADS)
Qian, Jie; Cheng, Wei; Cao, Zhaoyuan; Chen, Xinjian; Mo, Jianhua
2017-02-01
Phase-resolved Doppler optical coherence tomography (PR-D-OCT) is a functional OCT imaging technique that can provide high-speed and high-resolution depth-resolved measurement on flow in biological materials. However, a common problem with conventional PR-D-OCT is that this technique often measures the flow motion projected onto the OCT beam path. In other words, it needs the projection angle to extract the absolute velocity from PR-D-OCT measurement. In this paper, we proposed a novel dual-beam PR-D-OCT method to measure absolute flow velocity without separate measurement on the projection angle. Two parallel light beams are created in sample arm and focused into the sample at two different incident angles. The images produced by these two beams are encoded to different depths in single B-scan. Then the Doppler signals picked up by the two beams together with the incident angle difference can be used to calculate the absolute velocity. We validated our approach in vitro on an artificial flow phantom with our home-built 1060 nm swept source OCT. Experimental results demonstrated that our method can provide an accurate measurement of absolute flow velocity with independency on the projection angle.
Symmetric Tilt Grain Boundaries of Synthetic Forsterite Bicrystals
NASA Astrophysics Data System (ADS)
Heinemann, S.; Wirth, R.; Dresen, G.
2002-12-01
{ indent1.5em skip0ex Structure and transport properties of grain boundaries in rocks are still poorly understood. For example, grain boundary diffusivity and mobility depend on orientation, and they are different for low and high angle grain boundaries. The transition from low to high angle grain boundaries in rock-forming minerals is not studied in detail, but a high angle grain boundary is commonly defined by a lattice misorientation of >10°-15°. To investigate the physical properties of olivine grain boundaries we produced a series of synthetic forsterite bicrystals with symmetric tilt grain boundaries by direct bonding [1,2]. For each bicrystal two oriented synthetic forsterite single crystals were joined at room temperature and annealed at 400°C for one week. All bicrystals were cut in two parts and one part was annealed further at 1650°C for 48h. The tilt axis of the boundary in the synthesized bicrystals is parallel to the a direction, and the tilt angles of the series range from 9° to 21°. Specimens were prepared for investigations in the transmission electron microscope (TEM) using focused ion beam (FIB) technique. High-resolution TEM investigations of symmetric tilt grain boundaries reveal dislocation arrays between undisturbed crystal regions in samples annealed at 400°C and 1650°C. This suggests that bonding of bicrystals occurred already below or at 400°C. The burgers vectors of the dislocations are parallel to c. Dislocation cores do not overlap up to a tilt angle of 21°. This indicates that for forsterite small angle grain boundaries exist up to tilt angles of 21°. The dislocation model of small angle grain boundaries can be applied and the observed dislocation spacings d are related to tilt angle θ and burgers vector length b by Franks formula [3]: d = b/(2sin(2/θ )) ~ b/θ . With tilt angles increasing from 9° to 21° the dislocation spacing decreased. Using Frank's equation and the observation that dislocations do not overlap at a misorientation of 21° allows to estimate the maximum radius of the dislocation cores, r0<1.4b.} {skip0ex \\small [1] Heinemann S et al. (2001) Phys Chem Minerals 28, 685 [2] Heinemann S et al. (2002) Beih Eur Mineral 14(1), 66 [3] Frank FC (1951) Pittsburgh Symposium on the Plastic Deformation of Solids. 150}
Kim, Dong Myung; Seo, Je Hyun; Kim, Seok Hwan; Hwang, Seung-Sik
2007-05-01
To compare the features of localized retinal nerve fiber layer (RNFL) defects between a low-teen intraocular pressure (IOP) group and a high-teen IOP group in normal-tension glaucoma (NTG) patients. Seventy-seven eyes of 77 NTG patients showing localized RNFL defects on RNFL photographs and corresponding visual filed defects at the initial visit to a glaucoma specialist were selected for this study. Patients with range of diurnal IOP within low-teen or high-teen in both eyes were included. All participants completed refraction, diurnal IOP measurement, central corneal thickness (CCT) measurement, stereoscopic disc photography, RNFL photography, and automated perimetry. On RNFL photograph, approximation of the defect to the macula (angle alpha) and width of the defects (angle beta) were measured to represent RNFL defects. The patients were divided into 2 groups according to the level of IOP. A low-teen group had highest IOP of
Robust, nonlinear, high angle-of-attack control design for a supermaneuverable vehicle
NASA Technical Reports Server (NTRS)
Adams, Richard J.
1993-01-01
High angle-of-attack flight control laws are developed for a supermaneuverable fighter aircraft. The methods of dynamic inversion and structured singular value synthesis are combined into an approach which addresses both the nonlinearity and robustness problems of flight at extreme operating conditions. The primary purpose of the dynamic inversion control elements is to linearize the vehicle response across the flight envelope. Structured singular value synthesis is used to design a dynamic controller which provides robust tracking to pilot commands. The resulting control system achieves desired flying qualities and guarantees a large margin of robustness to uncertainties for high angle-of-attack flight conditions. The results of linear simulation and structured singular value stability analysis are presented to demonstrate satisfaction of the design criteria. High fidelity nonlinear simulation results show that the combined dynamics inversion/structured singular value synthesis control law achieves a high level of performance in a realistic environment.
The role of nonlinear effects in the propagation of noise from high-power jet aircraft.
Gee, Kent L; Sparrow, Victor W; James, Michael M; Downing, J Micah; Hobbs, Christopher M; Gabrielson, Thomas B; Atchley, Anthony A
2008-06-01
To address the question of the role of nonlinear effects in the propagation of noise radiated by high-power jet aircraft, extensive measurements were made of the F-22A Raptor during static engine run-ups. Data were acquired at low-, intermediate-, and high-thrust engine settings with microphones located 23-305 m from the aircraft along several angles. Comparisons between the results of a generalized-Burgers-equation-based nonlinear propagation model and the measurements yield favorable agreement, whereas application of a linear propagation model results in spectral predictions that are much too low at high frequencies. The results and analysis show that significant nonlinear propagation effects occur for even intermediate-thrust engine conditions and at angles well away from the peak radiation angle. This suggests that these effects are likely to be common in the propagation of noise radiated by high-power aircraft.
Ostrofsky, Justin; Kozbelt, Aaron; Cohen, Dale J
2015-01-01
We tested the misperception hypothesis of drawing errors, which states that drawing accuracy is strongly influenced by the perceptual encoding of a to-be-drawn stimulus. We used a highly controlled experimental paradigm in which nonartist participants made perceptual judgements and drawings of angles under identical stimulus exposure conditions. Experiment 1 examined the isosceles/scalene triangle angle illusion; congruent patterns of bias in the perception and drawing tasks were found for 40 and 60° angles, but not for 20 or 80° angles, providing mixed support for the misperception hypothesis. Experiment 2 examined shape constancy effects with respect to reproductions of single acute or obtuse angles; congruent patterns of bias in the perception and drawing tasks were found across a range of angles from 29 to 151°, providing strong support for the misperception hypothesis. In both experiments, perceptual and drawing biases were positively correlated. These results are largely consistent with the misperception hypothesis, suggesting that inaccurate perceptual encoding of angles is an important reason that nonartists err in drawing angles from observation.
Some experiments on Yaw stability of wind turbines with various coning angles
NASA Technical Reports Server (NTRS)
Bundas, D.; Dugundji, J.
1981-01-01
A horizontal axis wind turbine was constructed to study the effect of coning angle on the yawing moments produced. Coning angles of 0 deg, +10 deg and -10 deg were studied in the upwind and downwind cases. Moment and rotational frequency of the blades at each yaw angle setting were taken. It was found that as the coning angle increased from -10 deg to +10 deg in either the upwind or downwind case the stability decreased. The downwind case was slightly more stable for all coning angles than was the upwind case. It is found that all the previous cases were stable for high rotation speeds, but at lower rotation speeds, they were all unstable and could not self start unless held in the wind.
Internal Performance of Several Divergent-Shroud Ejector Nozzles with High Divergence Angles
NASA Technical Reports Server (NTRS)
Trout, Arthur M.; Papell, S. Stephen; Povolny, John H.
1957-01-01
Nine divergent-shroud ejector configurations were investigated to determine the effect of shroud divergence angle on ejector internal performance. Unheated dry air was used for both the primary and secondary flows. The decrease in the design-point thrust coefficient with increasing flow divergence angle (angle measured from primary exit to shroud exit) followed very closely a simple relation involving the cosine of the angle. This indicates that design-point thrust performance for divergent-shroud ejectors can be predicted with reasonable accuracy within the range investigated. The decrease in design-point thrust coefficient due to increasing the flow divergence engle from 120deg to 30deg (half-singles) was approximately 6 percent. Ejector air-handling characteristics and the primary-nozzle flow coefficient were not significantly affected by change in shroud divergence angle.
NASA Technical Reports Server (NTRS)
Dawson, John R
1936-01-01
The results of tank tests of three models of flying-boat hulls of the pointed-step type with different angles of dead rise are given in charts and are compared with results from tests of more conventional hulls. Increasing the angle of dead rise from 15 to 25 degrees: had little effect on the hump resistance; increased the resistance throughout the planning range; increased the best trim angle; reduced the maximum positive trimming moment required to obtain best trim angle; and had but a slight effect on the spray characteristics. For approximately the same angles of dead rise the resistance of the pointed-step hulls were considerably lower at high speeds than those of the more conventional hulls.
Roussey, Arthur; Gajan, David; Maishal, Tarun K; Mukerjee, Anhurada; Veyre, Laurent; Lesage, Anne; Emsley, Lyndon; Copéret, Christophe; Thieuleux, Chloé
2011-03-14
Highly ordered organic-inorganic mesostructured material containing regularly distributed phenols is synthesized by combining a direct synthesis of the functional material and a protection-deprotection strategy and characterized at a molecular level through ultra-fast magic angle spinning proton NMR spectroscopy.
Angle Concept: A High School and Tertiary Longitudinal Perspective to Minimize Obstacles
ERIC Educational Resources Information Center
Barabash, Marita
2017-01-01
The concept of angle emerges in numerous forms as the learning of mathematics and its applications advances through the high school and tertiary curriculum. Many difficulties and misconceptions in the usage of this multifaceted concept might be avoided or at least minimized should the lecturers in different areas of pure and applied mathematics be…
Hologram generation by horizontal scanning of a high-speed spatial light modulator.
Takaki, Yasuhiro; Okada, Naoya
2009-06-10
In order to increase the image size and the viewing zone angle of a hologram, a high-speed spatial light modulator (SLM) is imaged as a vertically long image by an anamorphic imaging system, and this image is scanned horizontally by a galvano scanner. The reduction in horizontal pixel pitch of the SLM provides a wide viewing zone angle. The increased image height and horizontal scanning increased the image size. We demonstrated the generation of a hologram having a 15 degrees horizontal viewing zone angle and an image size of 3.4 inches with a frame rate of 60 Hz using a digital micromirror device with a frame rate of 13.333 kHz as a high-speed SLM.
Park, Sang Eun; Lee, Chun Taek
2007-10-01
This study was aimed to compare robotic-assisted implantation of a total knee arthroplasty with conventional manual implantation. We controlled, randomized, and reviewed 72 patients for total knee arthroplasty assigned to undergo either conventional manual implantation (excluding navigation-assisted implantation cases) of a Zimmer LPS prosthesis (Zimmer, Warsaw, Ind) (30 patients: group 1) or robotic-assisted implantation of such a prosthesis (32 patients: group 2). The femoral flexion angle (gamma angle) and tibial angle (delta angle) in the lateral x-ray of group 1 were 4.19 +/- 3.28 degrees and 89.7 +/- 1.7 degrees, and those of group 2 were 0.17 +/- 0.65 degrees and 85.5 +/- 0.92 degrees. The major complications were from improper small skin incision during a constraint attempt of minimally invasive surgery and during bulk fixation frame pins insertion. Robotic-assisted technology had definite advantages in terms of preoperative planning, accuracy of the intraoperative procedure, and postoperative follow-up, especially in the femoral flexion angle (gamma angle) and tibial flexion angle (delta angle) in the lateral x-ray, and in the femoral flexion angle (alpha angle) in the anteroposterior x-ray. But a disadvantage was the high complication rate in early stage.
Mahmoodpoor, Ata; Soleimanpour, Hassan; Golzari, Samad Ej; Nejabatian, Arezoo; Pourlak, Tannaz; Amani, Masoumeh; Hajmohammadi, Saeed; Hosseinzadeh, Hamzeh; Esfanjani, Robab Mehdizadeh
2017-02-01
Difficult intubation is a significant cause of mortality and morbidity related to anesthesia. We decided to evaluate the value of Modified Mallampati Score, Upper Lip Bite Test and Facial Angle in the prediction of difficult intubation. In a prospective descriptive study, data from 132 patients who were candidates for elective maxillofacial surgeries under general anesthesia were gathered. Facial Angles were measured by a maxillofacial surgeon according to cephalometry. The Modified Mallampati Score and Upper Lip Bite Test were first measured by an anesthesiologist and then another anesthesiologist was assigned to record the Cormack and Lehane score during the intubation. Grades 3 and 4 were considered as difficult intubation. Sensitivity, specificity, positive predictive value, negative predictive value and Youden index were calculated for all tests. Difficult intubation was reported in 12% of the patients. Facial Angle≤82.5° can predict difficult intubation with 87.5% sensitivity and 88.8% specificity. Among the three tests, a high Modified Mallampati Score had the highest specificity (94.5%) and a high Modified Mallampati Score and Facial Angle (FA≤82.5°) had the highest sensitivity (87.5%). The highest NPV, sensitivity and Youden index were observed when using Facial Angle with the Modified Mallampati Score or with Upper Lip Bite Test. Facial Angle has a high sensitivity, NPV and Youden index for the prediction of difficult intubation, but the best result is achieved when Facial Angle is used in combination with either the Modified Mallampati Score or Upper Lip Bit Test. Copyright © 2017 Elsevier Inc. All rights reserved.
Freeform solar concentrator with a highly asymmetric acceptance cone
NASA Astrophysics Data System (ADS)
Wheelwright, Brian; Angel, J. Roger P.; Coughenour, Blake; Hammer, Kimberly
2014-10-01
A solar concentrator with a highly asymmetric acceptance cone is investigated. Concentrating photovoltaic systems require dual-axis sun tracking to maintain nominal concentration throughout the day. In addition to collecting direct rays from the solar disk, which subtends ~0.53 degrees, concentrating optics must allow for in-field tracking errors due to mechanical misalignment of the module, wind loading, and control loop biases. The angular range over which the concentrator maintains <90% of on-axis throughput is defined as the optical acceptance angle. Concentrators with substantial rotational symmetry likewise exhibit rotationally symmetric acceptance angles. In the field, this is sometimes a poor match with azimuth-elevation trackers, which have inherently asymmetric tracking performance. Pedestal-mounted trackers with low torsional stiffness about the vertical axis have better elevation tracking than azimuthal tracking. Conversely, trackers which rotate on large-footprint circular tracks are often limited by elevation tracking performance. We show that a line-focus concentrator, composed of a parabolic trough primary reflector and freeform refractive secondary, can be tailored to have a highly asymmetric acceptance angle. The design is suitable for a tracker with excellent tracking accuracy in the elevation direction, and poor accuracy in the azimuthal direction. In the 1000X design given, when trough optical errors (2mrad rms slope deviation) are accounted for, the azimuthal acceptance angle is +/- 1.65°, while the elevation acceptance angle is only +/-0.29°. This acceptance angle does not include the angular width of the sun, which consumes nearly all of the elevation tolerance at this concentration level. By decreasing the average concentration, the elevation acceptance angle can be increased. This is well-suited for a pedestal alt-azimuth tracker with a low cost slew bearing (without anti-backlash features).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Englund, Carl-Johan; Agåker, Marcus, E-mail: marcus.agaker@physics.uu.se; Fredriksson, Pierre
2015-09-15
A concept that enables in-vacuum continuous variation of the angle between two ports in one plane has been developed and implemented. The vacuum chamber allows for measuring scattering cross sections as a function of scattering angle and is intended for resonant inelastic X-ray scattering experiments. The angle between the ports can be varied in the range of 30°-150°, while the pressure change is less than 2 × 10{sup −10} mbars.
Controlling forebody asymmetries in flight: Experience with boundary layer transition strips
NASA Technical Reports Server (NTRS)
Fisher, David F.; Cobleigh, Brent R.
1994-01-01
The NASA Dryden Flight Research Center has an ongoing program to investigate aircraft flight characteristics at high angles of attack. As part of this investigation, longitudinal boundary layer transition strips were installed on the F-18 HARV forebody, a preproduction F/A-18 radome with a nose-slice tendency, and the X-31 aircraft forebody and noseboom to reduce asymmetric yawing moments at high angles of attack. The transition strips were effective on the F-18 HARV at angles of attack above 60 deg. On the preproduction F/A-18 radome at an angle of attack near 50 deg the strips were not effective. When the transition strips were installed on the X-31 noseboom, a favorable effect was observed on the yawing moment dynamics but the magnitude of the yawing moment was not decreased.
Surface plasmon resonance sensor using vari-focal liquid lens under angular interrogation
NASA Astrophysics Data System (ADS)
Lee, Muyoung; Bang, Yousung; Lee, Jooho; Jang, Wonjae; Won, Yong Hyub
2017-02-01
In this paper, a surface plasmon resonance sensor for the detection of refractive index variation is presented. A novel waveguide type surface plasmon resonance sensing configuration with focal length variable liquid lens is introduced. The method of surface plasmon resonance sensor is based on the waveguide type with incident angle variation. The incident angle is varied by using an electrowetting liquid lens which is possible to actively change focal length as applying voltage. The optical system, which is adapted to electrowetting lens can continuously change the incident angle of light from 73 to 78 degrees with compact size. The surface plasmon waves are excited between metal and dielectric interface. The sensing surfaces are prepared by a coating of gold metal above high refractive index glass substrate. The incident light which is 532nm monochromatic light source passes through a noble metal coated substrate to detect intensity with incident angle variation. An analysis to distinguish the contribution of light with various incident angle is focused on the angular characteristics of the surface plasmon sensor under wavelength interrogation. The resonance angle is determined corresponding to sensing material refractive index with high sensitivity. The result suggests that the performance of surface plasmon resonance sensor can be improved by real time varying incident angle. From this presented study, it provides a different approach for angular interrogation surface plasmon resonance sensor and can be miniaturized for a portable device.
NASA Astrophysics Data System (ADS)
Prachachet, R.; Samransuksamer, B.; Horprathum, M.; Eiamchai, P.; Limwichean, S.; Chananonnawathorn, C.; Lertvanithphol, T.; Muthitamongkol, P.; Boonruang, S.; Buranasiri, P.
2018-02-01
Fabricated omnidirectional anti-reflection nanostructure films as a one of the promising alternative solar cell applications have attracted enormous scientific and industrial research benefits to their broadband, effective over a wide range of incident angles, lithography-free and high-throughput process. Recently, the nanostructure SiO2 film was the most inclusive study on anti-reflection with omnidirectional and broadband characteristics. In this work, the three-dimensional silicon dioxide (SiO2) nanostructured thin film with different morphologies including vertical align, slant, spiral and thin films were fabricated by electron beam evaporation with glancing angle deposition (GLAD) on the glass slide and silicon wafer substrate. The morphological of the prepared samples were characterized by field-emission scanning electron microscope (FE-SEM) and high-resolution transmission electron microscope (HRTEM). The transmission, omnidirectional and birefringence property of the nanostructure SiO2 films were investigated by UV-Vis-NIR spectrophotometer and variable angle spectroscopic ellipsometer (VASE). The spectrophotometer measurement was performed at normal incident angle and a full spectral range of 200 - 2000 nm. The angle dependent transmission measurements were investigated by rotating the specimen, with incidence angle defined relative to the surface normal of the prepared samples. This study demonstrates that the obtained SiO2 nanostructure film coated on glass slide substrate exhibits a higher transmission was 93% at normal incident angle. In addition, transmission measurement in visible wavelength and wide incident angles -80 to 80 were increased in comparison with the SiO2 thin film and glass slide substrate due to the transition in the refractive index profile from air to the nanostructure layer that improve the antireflection characteristics. The results clearly showed the enhanced omnidirectional and broadband characteristic of the three dimensional SiO2 nanostructure film coating.
Metrical assessment of cutmarks on bone: is size important?
Cerutti, E; Magli, F; Porta, D; Gibelli, D; Cattaneo, C
2014-07-01
Extrapolating type of blade from a bone lesion has always been a challenge for forensic anthropologists: literature has mainly focused on the morphological characteristics of sharp force lesions, whereas scarce indications are available concerning the metrical assessment of cut marks and their correlation with the size of blade. The present study aims at verifying whether it is possible to reconstruct the metrical characteristics of the blade from the measurements taken from the lesion. Eleven blades with different thickness, height and shape were used for this study. A metallic structure was built, in order to simulate incised wounds and reiterate hits with the same energy. Perpendicular and angled tests were performed on fragments of pig femurs, in order to produce 110 lesions (10 for each blade). Depth, height and angle were measured and compared with metrical characteristics of each blade. Results showed a wide superimposition of metrical characteristics of width and angle of lesions regardless the type and the orientation of blade: for symmetric blades a high correlation index was observed between the depth of the lesion and the angle of the blade in perpendicular tests (0.89) and between the angle of lesion and the height of the blade in angled tests (-0.76); for asymmetric blades in both the tests a high correlation was observed between the angle of the blade and angle and width of the lesion (respectively 0.90 and 0.76 for perpendicular tests, and 0.80 and 0.90 for angled ones). This study provides interesting data concerning the interpretation of cutmarks on bone and suggests caution in assessing the size of weapons from the metrical measurements of lesions. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.
Statistical contact angle analyses; "slow moving" drops on a horizontal silicon-oxide surface.
Schmitt, M; Grub, J; Heib, F
2015-06-01
Sessile drop experiments on horizontal surfaces are commonly used to characterise surface properties in science and in industry. The advancing angle and the receding angle are measurable on every solid. Specially on horizontal surfaces even the notions themselves are critically questioned by some authors. Building a standard, reproducible and valid method of measuring and defining specific (advancing/receding) contact angles is an important challenge of surface science. Recently we have developed two/three approaches, by sigmoid fitting, by independent and by dependent statistical analyses, which are practicable for the determination of specific angles/slopes if inclining the sample surface. These approaches lead to contact angle data which are independent on "user-skills" and subjectivity of the operator which is also of urgent need to evaluate dynamic measurements of contact angles. We will show in this contribution that the slightly modified procedures are also applicable to find specific angles for experiments on horizontal surfaces. As an example droplets on a flat freshly cleaned silicon-oxide surface (wafer) are dynamically measured by sessile drop technique while the volume of the liquid is increased/decreased. The triple points, the time, the contact angles during the advancing and the receding of the drop obtained by high-precision drop shape analysis are statistically analysed. As stated in the previous contribution the procedure is called "slow movement" analysis due to the small covered distance and the dominance of data points with low velocity. Even smallest variations in velocity such as the minimal advancing motion during the withdrawing of the liquid are identifiable which confirms the flatness and the chemical homogeneity of the sample surface and the high sensitivity of the presented approaches. Copyright © 2014 Elsevier Inc. All rights reserved.
Qin, Bing; Francis, Brian A.; Li, Yan; Tang, Maolong; Zhang, Xinbo; Jiang, Chunhui; Cleary, Catherine; Huang, David
2012-01-01
Purpose To use Fourier-domain optical coherence tomography (OCT) to measure the angle opening distance at Schwalbe's line (AOD-SL) and determine its value in anterior chamber angle assessment. Methods Horizontal scans of the nasal and temporal anterior chamber angles in glaucoma subjects were performed by 830 nm wavelength Fourier-domain OCT. Images were graded by two ophthalmologists who assessed the visibility of Schwalbe’s line (SL), anterior limbus (AL), scleral spur (SS), and angle recess (AR). AOD-SL was measured with computer calipers. SL was manually identified by the termination of the corneal endothelium. Gonioscopy was used to classify anterior chamber angles according to a modified Shaffer system. Spearman's rho analysis was performed to assess correlation between AOD-SL and modified Shaffer grade. A cut-off value of AOD-SL for diagnosing occludable angles (modified Shaffer grade ≤1) was determined by receiver operating characteristic (ROC) analyses. Results Thirty-five glaucoma subjects (65 eyes) were enrolled. SL, AL, AR, and SS were visible by OCT in 97.7%, 99.2%, 87.3%, and 80.8% of eyes, respectively. Nasal and temporal AOD-SLs were 322.6 ± 200.2 µm and 341.4 ± 197.4 µm, respectively. Correlation coefficients between AOD-SL and modified Shaffer grade were 0.80 (nasal) and 0.81 (temporal). The diagnostic cut-off value of AOD-SL for occludable angles was 290 µm. The areas under the ROC curve, sensitivity, specificity values were 0.90, 0.80, 0.87 (nasal) and 0.90, 0.85, 0.77 (temporal). Conclusions The measurement of AOD-SL by Fourier-domain OCT is highly correlated with gonioscopy and may be a useful noncontact method of assessing angle closure risk. PMID:22827999
Hu, Jian Zhi; Hu, Mary Y.; Townsend, Mark R.; Lercher, Johannes A.; Peden, Charles H. F.
2015-10-06
Re-usable ceramic magic angle spinning (MAS) NMR rotors constructed of high-mechanic strength ceramics are detailed that include a sample compartment that maintains high pressures up to at least about 200 atmospheres (atm) and high temperatures up to about least about 300.degree. C. during operation. The rotor designs minimize pressure losses stemming from penetration over an extended period of time. The present invention makes possible a variety of in-situ high pressure, high temperature MAS NMR experiments not previously achieved in the prior art.
FIREX mission requirements document for nonrenewable resources
NASA Technical Reports Server (NTRS)
Dixon, T.; Carsey, F.
1982-01-01
The proposed mission requirements and a proposed experimental program for satellite synthetic aperture radar (SAR) system named FIREX (Free-Flying Imaging Radar Experiment) for nonrenewable resources is described. The recommended spacecraft minimum SAR system is a C-band imager operating in four modes: (1) low look angle HH-polarized; (2) intermediate look angle, HH-polarized; (3) intermediate look angle, IIV-polarized; and (4) high look angle HH-polarized. This SAR system is complementary to other future spaceborne imagers such as the Thematic Mapper on LANDSAT-D. A near term aircraft SAR based research program is outlined which addresses specific mission design issues such as preferred incidence angles or polarizations for geologic targets of interest.
Oertel, Joachim; Gaab, Michael R; Linsler, Stefan
2016-07-01
The endonasal endoscopic approach is currently under investigation for perisellar tumour surgery. A higher resection rate is to be expected, and nasal complications should be minimized. Here, the authors report their technique of transnasal endoscopic neurosurgery with a special reference to the impact of the use of angled optics. Two-hundred-and-seventy-one endoscopic endonasal transsphenoidal procedures were performed for sellar lesions between January 2000 and August 2013. One-hundred-and-twenty-nine patients out of them could be used for analysing the use of angled endoscopes including completed follow up, MR imaging as resection control and documentation of the intraoperative use and benefit of angled optics. Exclusion criteria were: planned incomplete resection or incomplete data set. The surgical technique was carefully analysed; and these cases were followed prospectively. Standard technique was a mononostril approach with 0° endoscopes. Angled endoscopes were used for assessment of radicality during the tumour resection and at the end of the procedure. In 95 cases (72%), an angled endoscope was used. Remnant tumour was visualized with angled optics in 27 of the 95 cases (28%). In all these cases, remnant tumour tissue was subsequently further removed. Complete resection was seen on MRI FU in 91 of 95 cases (96%) in this subgroup. In the cases without application of angled optics, there was already a sufficient sight via the 0° endoscope (14/34; 42%), or a significant bleeding from the cavernous sinus made the application of an angled endoscope impossible (19/34; 55%). On follow up, MRI revealed radical tumour resection in 93% (120/129). In the subgroup without angled optics use, radicality reached 88% (30/34) in contrast to 96% in the angled optics subgroup. Recurrent tumour growth was observed in four patients (3%). The endscopic technique has been shown to be safe and successful with a high radicality and only minor complications. The application of various angled endoscopes allows a look "around the corner" resulting in a potentially higher radicality of tumour resection in endonasal transsphenoidal surgery. Copyright © 2016 Elsevier B.V. All rights reserved.
Eliminating Deadbands In Resistive Angle Sensors
NASA Technical Reports Server (NTRS)
Salomon, Phil M.; Allen, Russell O.; Marchetto, Carl A.
1992-01-01
Proposed shaft-angle-measuring circuit provides continuous indication of angle of rotation from 0 degree to 360 degrees. Sensing elements are two continuous-rotation potentiometers, and associated circuitry eliminates deadband that occurs when wiper contact of potentiometer crosses end contacts near 0 degree position of circular resistive element. Used in valve-position indicator or similar device in which long operating life and high angular precision not required.
Federal Register 2010, 2011, 2012, 2013, 2014
2010-07-07
... the stator and the rotor parts of the AoA [angle of attack] vane position resolvers. This oil residue... extent, it could lead to a late activation of the angle of attack protection, which in combination with light at high angle of attack would constitute an unsafe condition. The proposed AD would require...
Dynamic Cerebral Autoregulation is Preserved During Acute Head-down Tilt
2003-06-27
relationship of mean arterial pressure to mean cerebral blood flow velocity transfer function gain at the high and low frequencies, respectively; TCD-PHASE...HF and TCD-PHASE-LF, phase angle between mean arterial pressure and mean cerebral blood flow veloc- ity at high and low frequencies, respectively...arterial pressure and mean ce- rebral blood flow oscillations decrease from low- to high -frequency ranges. Average phase angles were 68° at low frequencies
Geomorphology of Impact Features on Tethys Using High Resolution Mosaics
2017-03-01
Space Exploration, Arizona State University, Tempe, AZ 85282 NIA 9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM...8217 coorbital moons are very likely to impact Tethys. The distribution, impact velocities, and impact angles of the debris are spatially-variable. In...particular, high-velocity debris (>5 km/s) with low impact angles are highly clustered along the equator in Tethys’ leading hemisphere. Slower impacts
Comparison of Orbiter PRCS Plume Flow Fields Using CFD and Modified Source Flow Codes
NASA Technical Reports Server (NTRS)
Rochelle, Wm. C.; Kinsey, Robin E.; Reid, Ethan A.; Stuart, Phillip C.; Lumpkin, Forrest E.
1997-01-01
The Space Shuttle Orbiter will use Reaction Control System (RCS) jets for docking with the planned International Space Station (ISS). During approach and backout maneuvers, plumes from these jets could cause high pressure, heating, and thermal loads on ISS components. The object of this paper is to present comparisons of RCS plume flow fields used to calculate these ISS environments. Because of the complexities of 3-D plumes with variable scarf-angle and multi-jet combinations, NASA/JSC developed a plume flow-field methodology for all of these Orbiter jets. The RCS Plume Model (RPM), which includes effects of scarfed nozzles and dual jets, was developed as a modified source-flow engineering tool to rapidly generate plume properties and impingement environments on ISS components. This paper presents flow-field properties from four PRCS jets: F3U low scarf-angle single jet, F3F high scarf-angle single jet, DTU zero scarf-angle dual jet, and F1F/F2F high scarf-angle dual jet. The RPM results compared well with plume flow fields using four CFD programs: General Aerodynamic Simulation Program (GASP), Cartesian (CART), Unified Solution Algorithm (USA), and Reacting and Multi-phase Program (RAMP). Good comparisons of predicted pressures are shown with STS 64 Shuttle Plume Impingement Flight Experiment (SPIFEX) data.
Multi-angle Spectra Evolution of Langmuir Turbulence Excited by RF Ionospheric Interactions at HAARP
NASA Astrophysics Data System (ADS)
Sheerin, J. P.; Rayyan, N.; Watkins, B. J.; Bristow, W. A.; Spaleta, J.; Watanabe, N.; Golkowski, M.; Bernhardt, P. A.
2013-12-01
The high power HAARP HF transmitter is employed to generate and study strong Langmuir turbulence (SLT) in the interaction region of overdense ionospheric plasma. Diagnostics included the Modular UHF Ionospheric Radar (MUIR) sited at HAARP, the SuperDARN-Kodiak HF radar, and HF receivers to record stimulated electromagnetic emissions (SEE). Dependence of diagnostic signals on HAARP HF parameters, including pulselength, duty-cycle, aspect angle, and frequency were recorded. Short pulse, low duty cycle experiments demonstrate control of artificial field-aligned irregularities (AFAI) and isolation of ponderomotive effects. Among the effects observed and studied are: SLT spectra including cascade, collapse, and co-existence spectra and an outshifted plasma line under certain ionospheric conditions. High time resolution studies of the temporal evolution of the plasma line reveal the appearance of an overshoot effect on ponderomotive timescales. Bursty turbulence is observed in the collapse and cascade lines. For the first time, simultaneous multi-angle radar measurements of plasma line spectra are recorded demonstrating marked dependence on aspect angle with the strongest interaction region observed displaced southward of the HF zenith pointing angle. Numerous measurements of the outshifted plasma line are observed. Experimental results are compared to previous high latitude experiments and predictions from recent modeling efforts.
Angular position of the cleat according to torsional parameters of the cyclist's lower limb.
Ramos-Ortega, Javier; Domínguez, Gabriel; Castillo, José Manuel; Fernández-Seguín, Lourdes; Munuera, Pedro V
2014-05-01
The aim of this work was to study the relationship of torsional and rotational parameters of the lower limb with a specific angular position of the cleat to establish whether these variables affect the adjustment of the cleat. Correlational study. Motion analysis laboratory. Thirty-seven male cyclists of high performance. The variables studied of the cyclist's lower limb were hip rotation (internal and external), tibial torsion angle, Q angle, and forefoot adductus angle. The cleat angle was measured through a photograph of the sole and with an Rx of this using the software AutoCAD 2008. The variables were photograph angle (photograph), the variable denominated cleat-tarsus minor angle, and a variable denominated cleat-second metatarsal angle (Rx). Analysis included the intraclass correlation coefficient for the reliability of the measurements, Student's t test performed on the dependent variables to compare side, and the multiple linear regression models were calculated using the software SPSS 15.0 for Windows. The Student's t test performed on the dependent variables to compare side showed no significant differences (P = 0.209 for the photograph angle, P = 0.735 for the cleat-tarsus minor angle, and P = 0.801 for the cleat-second metatarsal angle). Values of R and R2 for the photograph angle model were 0.303 and 0.092 (P = 0.08), the cleat/tarsus minor angle model were 0.683 and 0.466 (P < 0.001), and the cleat/second metatarsal angle model were 0.618 and 0.382, respectively (P < 0.001). The equation given by the model was cleat-tarsus minor angle = 75.094 - (0.521 × forefoot adductus angle) + (0.116 × outward rotation of the hips) + (0.220 × Q angle).
NASA Technical Reports Server (NTRS)
Whitcomb, Richard T.
1940-01-01
An investigation of the characteristics of a wing with an aspect ratio of 9.0 and an NACA 65-210 airfoil section has been made at Mach number up to 0.925. The wing tested has a taper ratio of 2.5:1.0, no twist, dihedral, or sweepback, and 20-percent - chord 37.5-percent-semispan plain ailerons. The results showed that serious changes in the normal-force characteristics occurred when the Mach number was increased above 0.74 at angles of attack between 4 deg. and 10 deg. and above 0.80 at 0 deg. angle of attack.Because of small outboard shifts in the lateral center of load, the bending moment at the root for conditions corresponding to a 3g pull-out at an altitude of 35,000 feet increased by approximately 5% when the Much number was increased beyond 0.83 the negative pitching moments for the high angles of attack increased, whereas those for the low angles of attack decreased with a resulting large increase in the negative slope of the pitching-moment curves. A large increase occurred in the values of the drag coefficients for the range of lift coefficients needed for level flight at an altitude of 35,000 feet when the Mach number was increased beyond a value of 0.80. The wakes at a station 2.82 root chords behind the wing quarter-chord line extended approximately a chord above the wing chord line for the angles of attack required to recover from high-speed dives at high Mach numbers.
2017-12-08
This dramatic image features Hokusai in the foreground, famous for its extensive set of rays, some of which extend for over a thousand kilometers across Mercury's surface. The extensive, bright rays indicate that Hokusai is one of the youngest large craters on Mercury. Check out previously featured images to see high-resolution details of its central peaks, rim and ejecta blanket, and impact melt on its floor. This image was acquired as part of MDIS's high-incidence-angle base map. The high-incidence-angle base map complements the surface morphology base map of MESSENGER's primary mission that was acquired under generally more moderate incidence angles. High incidence angles, achieved when the Sun is near the horizon, result in long shadows that accentuate the small-scale topography of geologic features. The high-incidence-angle base map was acquired with an average resolution of 200 meters/pixel. The MESSENGER spacecraft is the first ever to orbit the planet Mercury, and the spacecraft's seven scientific instruments and radio science investigation are unraveling the history and evolution of the Solar System's innermost planet. During the first two years of orbital operations, MESSENGER acquired over 150,000 images and extensive other data sets. MESSENGER is capable of continuing orbital operations until early 2015. Credit: NASA/Johns Hopkins University Applied Physics Laboratory/Carnegie Institution of Washington NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram
High-performance axicon lenses based on high-contrast, multilayer gratings
NASA Astrophysics Data System (ADS)
Doshay, Sage; Sell, David; Yang, Jianji; Yang, Rui; Fan, Jonathan A.
2018-01-01
Axicon lenses are versatile optical elements that can convert Gaussian beams to Bessel-like beams. In this letter, we demonstrate that axicons operating with high efficiencies and at large angles can be produced using high-contrast, multilayer gratings made from silicon. Efficient beam deflection of incident monochromatic light is enabled by higher-order optical modes in the silicon structure. Compared to diffractive devices made from low-contrast materials such as silicon dioxide, our multilayer devices have a relatively low spatial profile, reducing shadowing effects and enabling high efficiencies at large deflection angles. In addition, the feature sizes of these structures are relatively large, making the fabrication of near-infrared devices accessible with conventional optical lithography. Experimental lenses with deflection angles as large as 40° display field profiles that agree well with theory. Our concept can be used to design optical elements that produce higher-order Bessel-like beams, and the combination of high-contrast materials with multilayer architectures will more generally enable new classes of diffractive photonic structures.
Resorlu, Hatice; Zateri, Coskun; Nusran, Gurdal; Goksel, Ferdi; Aylanc, Nilufer
2017-01-01
To investigate the relation between chondromalacia patella and the sulcus angle/trochlear depth ratio as a marker of trochlear morphology. In addition, we also planned to show the relationship between meniscus damage, subcutaneous adipose tissue thickness as a marker of obesity, patellar tilt angle and chondromalacia patella. Patients with trauma, rheumatologic disease, a history of knee surgery and patellar variations such as patella alba and patella baja were excluded. Magnetic resonance images of the knees of 200 patients were evaluated. Trochlear morphology from standardized levels, patellar tilt angle, lateral/medial facet ratio, subcutaneous adipose tissue thickness from 3 locations and meniscus injury were assessed by two specialist radiologists. Retropatellar cartilage was normal in 108 patients (54%) at radiological evaluation, while chondromalacia patella was determined in 92 (46%) cases. Trochlear sulcus angle and prepatellar subcutaneous adipose tissue thickness were significantly high in patients with chondromalacia patella, while trochlear depth and lateral patellar tilt angle were low. The trochlear sulcus angle/trochlear depth ratio was also high in chondromalacia patella and was identified as an independent risk factor at regression analysis. Additionally, medial meniscal tear was observed in 35 patients (38%) in the chondromalacia patella group and in 27 patients (25%) in the normal group, the difference being statistically significant (P = 0.033). An increased trochlear sulcus angle/trochlear depth ratio is a significant predictor of chondromalacia patella. Medial meniscus injury is more prevalent in patients with chondromalacia patella in association with impairment in knee biomechanics and the degenerative process.
Angle assessment by EyeCam, goniophotography, and gonioscopy.
Baskaran, Mani; Perera, Shamira A; Nongpiur, Monisha E; Tun, Tin A; Park, Judy; Kumar, Rajesh S; Friedman, David S; Aung, Tin
2012-09-01
To compare EyeCam (Clarity Medical Systems, Pleasanton, CA) and goniophotography in detecting angle closure, using gonioscopy as the reference standard. In this hospital-based, prospective, cross-sectional study, participants underwent gonioscopy by a single observer, and EyeCam imaging and goniophotography by different operators. The anterior chamber angle in a quadrant was classified as closed if the posterior trabecular meshwork could not be seen. A masked observer categorized the eyes as per the number of closed quadrants, and an eye was classified as having angle closure if there were 2 or more quadrants of closure. Agreement between the methods was analyzed by κ statistic and comparison of area under receiver operating characteristic curves (AUC). Eighty-five participants (85 eyes) were included, the majority of whom were Chinese. Angle closure was detected in 38 eyes (45%) with gonioscopy, 40 eyes (47%) using EyeCam, and 40 eyes (47%) with goniophotography (P=0.69 in both comparisons, McNemar test). The agreement for angle closure diagnosis (by eye) between gonioscopy and the 2 imaging modalities was high (κ=0.86; 95% Confidence Interval (CI), 0.75-0.97), whereas the agreement between EyeCam and goniophotography was not as good (κ=0.72; 95% CI, 0.57-0.87); largely due to lack of agreement in the nasal and temporal quadrants (κ=0.55 to 0.67). The AUC for detecting eyes with gonioscopic angle closure was similar for goniophotography and EyeCam (AUC 0.93, sensitivity=94.7%, specificity=91.5%; P>0.95). EyeCam and goniophotography have similarly high sensitivity and specificity for the detection of gonioscopic angle closure.
NASA Technical Reports Server (NTRS)
Weick, Fred E; Noyes, Richard W
1936-01-01
This is the thirteenth report on a series of systematic tests comparing lateral control devices with particular reference to their effectiveness at high angles of attack. The present wind tunnel tests were made to determine the most feasible locations for lateral control surfaces mounted externally to a rectangular Clark y wing.
Aerodynamic surface distension system for high angle of attack forebody vortex control
NASA Technical Reports Server (NTRS)
Zell, Peter T. (Inventor)
1994-01-01
A deployable system is introduced for assisting flight control under certain flight conditions, such as at high angles of attack, whereby two inflatable membranes are located on the forebody portion of an aircraft on opposite sides thereof. The members form control surfaces for effecting lateral control forces if one is inflated and longitudinal control forces if both are inflated.
Process Performance of Optima XEx Single Wafer High Energy Implanter
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kim, J. H.; Yoon, Jongyoon; Kondratenko, S.
2011-01-07
To meet the process requirements for well formation in future CMOS memory production, high energy implanters require more robust angle, dose, and energy control while maintaining high productivity. The Optima XEx high energy implanter meets these requirements by integrating a traditional LINAC beamline with a robust single wafer handling system. To achieve beam angle control, Optima XEx can control both the horizontal and vertical beam angles to within 0.1 degrees using advanced beam angle measurement and correction. Accurate energy calibration and energy trim functions accelerate process matching by eliminating energy calibration errors. The large volume process chamber and UDC (upstreammore » dose control) using faraday cups outside of the process chamber precisely control implant dose regardless of any chamber pressure increase due to PR (photoresist) outgassing. An optimized RF LINAC accelerator improves reliability and enables singly charged phosphorus and boron energies up to 1200 keV and 1500 keV respectively with higher beam currents. A new single wafer endstation combined with increased beam performance leads to overall increased productivity. We report on the advanced performance of Optima XEx observed during tool installation and volume production at an advanced memory fab.« less
Abe, Hiroshi; Hamaya, Nozomu; Koyama, Yoshihiro; Kishimura, Hiroaki; Takekiyo, Takahiro; Yoshimura, Yukihiro; Wakabayashi, Daisuke; Funamori, Nobumasa; Matsuishi, Kiyoto
2018-04-23
The Bragg reflections of 1-decyl-3-methylimidazolium chloride ([C 10 mim][Cl]), a room-temperature ionic liquid, are observed in a lowly scattered wavevector (q) region using high-pressure (HP) small-angle X-ray scattering methods. The HP crystal of [C 10 mim][Cl] was characterized by an extremely long periodic structure. The peak position at the lowest q (1.4 nm -1 ) was different from that of the prepeak observed in the liquid state (2.3 nm -1 ). Simultaneously, Bragg reflections at high-q were detected using HP wide-angle X-ray scattering. The longest lattice constant was estimated to be 4.3 nm using structural analysis. The crystal structure of HP differed from that of the low-temperature (LT) crystal and the LT liquid crystal. With increasing pressure, Bragg reflections in the high-q component became much broader, and were accompanied by phase transition, although those in the low-q component were observed to be relatively sharp. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Kingston, Andrew M.; Myers, Glenn R.; Latham, Shane J.; Li, Heyang; Veldkamp, Jan P.; Sheppard, Adrian P.
2016-10-01
With the GPU computing becoming main-stream, iterative tomographic reconstruction (IR) is becoming a com- putationally viable alternative to traditional single-shot analytical methods such as filtered back-projection. IR liberates one from the continuous X-ray source trajectories required for analytical reconstruction. We present a family of novel X-ray source trajectories for large-angle CBCT. These discrete (sparsely sampled) trajectories optimally fill the space of possible source locations by maximising the degree of mutually independent information. They satisfy a discrete equivalent of Tuy's sufficiency condition and allow high cone-angle (high-flux) tomog- raphy. The highly isotropic nature of the trajectory has several advantages: (1) The average source distance is approximately constant throughout the reconstruction volume, thus avoiding the differential-magnification artefacts that plague high cone-angle helical computed tomography; (2) Reduced streaking artifacts due to e.g. X-ray beam-hardening; (3) Misalignment and component motion manifests as blur in the tomogram rather than double-edges, which is easier to automatically correct; (4) An approximately shift-invariant point-spread-function which enables filtering as a pre-conditioner to speed IR convergence. We describe these space-filling trajectories and demonstrate their above-mentioned properties compared with a traditional helical trajectories.
Analysis of various descent trajectories for a hypersonic-cruise, cold-wall research airplane
NASA Technical Reports Server (NTRS)
Lawing, P. L.
1975-01-01
The probable descent operating conditions for a hypersonic air-breathing research airplane were examined. Descents selected were cruise angle of attack, high dynamic pressure, high lift coefficient, turns, and descents with drag brakes. The descents were parametrically exercised and compared from the standpoint of cold-wall (367 K) aircraft heat load. The descent parameters compared were total heat load, peak heating rate, time to landing, time to end of heat pulse, and range. Trends in total heat load as a function of cruise Mach number, cruise dynamic pressure, angle-of-attack limitation, pull-up g-load, heading angle, and drag-brake size are presented.
NASA Astrophysics Data System (ADS)
Arabasi, Sameer; Al-Taani, Hussein
2017-03-01
Measurement of the Earth’s magnetic field dip angle is a widely used experiment in most introductory physics laboratories. In this paper we propose a smartphone-aided setup that takes advantage of the smartphone’s magnetometer sensor to measure the Earth’s magnetic field dip angle. This set-up will help students visualize the vector nature of the Earth’s magnetic field, especially high school and first year college students who are not quite experienced with vectors. This set-up is affordable and easy to use and could be easily produced by any high school or college physics instructor.
Neutron reflecting supermirror structure
Wood, James L.
1992-01-01
An improved neutron reflecting supermirror structure comprising a plurality of stacked sets of bilayers of neutron reflecting materials. The improved neutron reflecting supermirror structure is adapted to provide extremely good performance at high incidence angles, i.e. up to four time the critical angle of standard neutron mirror structures. The reflection of neutrons striking the supermirror structure at a high critical angle provides enhanced neutron throughput, and hence more efficient and economical use of neutron sources. One layer of each set of bilayers consist of titanium, and the second layer of each set of bilayers consist of an alloy of nickel with carbon interstitially present in the nickel alloy.
Nannini, M A; Wahl, D H; Philipp, D P; Cooke, S J
2011-10-01
Several traits related to foraging behaviour were assessed in young-of-the-year produced from largemouth bass Micropterus salmoides that had been exposed to four generations of artificial selection for vulnerability to angling. As recreational angling may target foraging ability, this study tested the hypothesis that selection for vulnerability to angling would affect behaviours associated with foraging ecology and prey capture success. Fish selected for low vulnerability to angling captured more prey and attempted more captures than high vulnerability fish. The higher capture attempts, however, ultimately resulted in a lower capture success for low vulnerability fish. Low vulnerability fish also had higher prey rejection rates, marginally shorter reactive distance and were more efficient at converting prey consumed into growth than their high vulnerability counterparts. Selection due to recreational fishing has the potential to affect many aspects of the foraging ecology of the targeted population and highlights the importance of understanding evolutionary effects and how these need to be considered when managing populations. © 2011 The Authors. Journal of Fish Biology © 2011 The Fisheries Society of the British Isles.
NASA Technical Reports Server (NTRS)
Nowak, R. J.; Albertson, C. W.; Hunt, L. R.
1984-01-01
The effects of free-stream unit Reynolds number, angle of attack, and nose shape on the aerothermal environment of a 3-ft basediameter, 12.5 deg half-angle cone were investigated in the Langley 8-foot high temperature tunnel at Mach 6.7. The average total temperature was 3300 R, the freestream unit Reynolds number ranged from 400,000 to 1,400,000 per foot, and the angle of attack ranged from 0 deg to 10 deg. Three nose configurations were tested on the cone: a 3-in-radius tip, a 1-in-radius tip on an ogive frustum, and a sharp tip on an ogive frustum. Surface-pressure and cold-wall heating-rate distributions were obtained for laminar, transitional temperature in the shock layer were obtained. The location of the start of transition moved forward both on windward and leeward sides with increasing free-stream Reynolds numbers, increasing angle of attack, and decreasing nose bluntness.
Setup and evaluation of a sensor tilting system for dimensional micro- and nanometrology
NASA Astrophysics Data System (ADS)
Schuler, Alexander; Weckenmann, Albert; Hausotte, Tino
2014-06-01
Sensors in micro- and nanometrology show their limits if the measurement objects and surfaces feature high aspect ratios, high curvature and steep surface angles. Their measurable surface angle is limited and an excess leads to measurement deviation and not detectable surface points. We demonstrate a principle to adapt the sensor's working angle during the measurement keeping the sensor in its optimal working angle. After the simulation of the principle, a hardware prototype was realized. It is based on a rotary kinematic chain with two rotary degrees of freedom, which extends the measurable surface angle to ±90° and is combined with a nanopositioning and nanomeasuring machine. By applying a calibration procedure with a quasi-tactile 3D sensor based on electrical near-field interaction the systematic position deviation of the kinematic chain is reduced. The paper shows for the first time the completed setup and integration of the prototype, the performance results of the calibration, the measurements with the prototype and the tilting principle, and finishes with the interpretation and feedback of the practical results.
Laboratory-Based BRDF Calibration of Radiometric Tarps
NASA Technical Reports Server (NTRS)
Georgiev, Georgi T.; Butler, James J.
2007-01-01
The current study provides the remote sensing community with important high accuracy laboratory-based BRDF calibration of radiometric tarps. The results illustrate the dependence of tarps' weft and warp threads orientation on BRDF. The study was done at incident angles of 0deg, 10deg, and 30deg; scatter zenith angles from 0deg to 60deg, and scatter azimuth angles of 0deg, 45deg, 90deg, 135deg, and 180deg. The wavelengths were 485nm, 550nm, 633nm and 800nm. The dependence is well defined at all measurement geometries and wavelengths. It can be as high as 8% at 0deg incident angle and 2% at 30deg incident angle. The fitted BRDF data show a very small discrepancy from the measured ones. New data on the forward and backscatter properties of radiometric tarps is reported. The backward scatter is well pronounced for the white samples. The black sample has well pronounced forward scatter. The BRDF characterization of radiometric tarps can be successfully extended to other structured surface fabric samples. The results are NIST traceable.
Examining view angle effects on leaf N estimation in wheat using field reflectance spectroscopy
NASA Astrophysics Data System (ADS)
Song, Xiao; Feng, Wei; He, Li; Xu, Duanyang; Zhang, Hai-Yan; Li, Xiao; Wang, Zhi-Jie; Coburn, Craig A.; Wang, Chen-Yang; Guo, Tian-Cai
2016-12-01
Real-time, nondestructive monitoring of crop nitrogen (N) status is a critical factor for precision N management during wheat production. Over a 3-year period, we analyzed different wheat cultivars grown under different experimental conditions in China and Canada and studied the effects of viewing angle on the relationships between various vegetation indices (VIs) and leaf nitrogen concentration (LNC) using hyperspectral data from 11 field experiments. The objective was to improve the prediction accuracy by minimizing the effects of viewing angle on LNC estimation to construct a novel vegetation index (VI) for use under different experimental conditions. We examined the stability of previously reported optimum VIs obtained from 13 traditional indices for estimating LNC at 13 viewing zenith angles (VZAs) in the solar principal plane (SPP). Backscattering direction showed better index performance than forward scattering direction. Red-edge VIs including modified normalized difference vegetation index (mND705), ratio index within the red edge region (RI-1dB) and normalized difference red edge index (NDRE) were highly correlated with LNC, as confirmed by high R2 determination coefficients. However, these common VIs tended to saturation, as the relationships strongly depended on experimental conditions. To overcome the influence of VZA on VIs, the chlorophyll- and LNC-sensitive NDRE index was divided by the floating-position water band index (FWBI) to generate the integrated narrow-band vegetation index. The highest correlation between the novel NDRE/FWBI parameter and LNC (R2 = 0.852) occurred at -10°, while the lowest correlation (R2 = 0.745) occurred at 60°. NDRE/FWBI was more highly correlated with LNC than existing commonly used VIs at an identical viewing zenith angle. Upon further analysis of angle combinations, our novel VI exhibited the best performance, with the best prediction accuracy at 0° to -20° (R2 = 0.838, RMSE = 0.360) and relatively good accuracy at 0° to -30° (R2 = 0.835, RMSE = 0.366). As it is possible to monitor plant N status over a wide range of angles using portable spectrometers, viewing angles of as much as 0° to -30° are common. Consequently, we developed a united model across angles of 0° to -30° to reduce the effects of viewing angle on LNC prediction in wheat. The proposed combined NDRE/FWBI parameter, designated the wide-angle-adaptability nitrogen index (WANI), is superior for estimating LNC in wheat on a regional scale in China and Canada.
[Changes of structures of anterior chamber angle in rabbit chronic high intraocular pressure model].
Lei, Xun-wen; Wei, Ping; Li, Xiao-lin; Yang, Kan; Lei, Jian-zhen
2009-10-01
To observe the anterior chamber angle changes occurred in compound Carbomer-induced chronic high intraocular pressure (IOP) model in rabbit eyes. It was an experimental study. Thirty two rabbits were randomly divided into eight groups. Compound Carbomer (0.3%, 0.3 ml) was injected into the left anterior chamber. A group of rabbits were randomly killed after 1, 2, 3, 4, 6, 8, 10 and 12 weeks. The anterior chamber of the rabbit eye specimens was observed. IOP increased slowly following the application of the drug, high IOP lasted for 3 months. The drug-induced changes of anterior chamber angle consisted of early inflammatory response and late fibrous changes. Inflammatory response occurred in early stage and reduced or disappeared after 3 weeks. Fibrous degeneration and adhesion obstruction occurred in the anterior chamber angle after 4 weeks. Under the electron microscope, the trabecular was expanded and deformed, with hyperplasia of collagen and elastic fibers. Endothelial cells were separated from the trabecular, and showed the morphology of lymphocytes, with the function similar to the macrophages. Phagocytized Carbomer particles were transported through the vacuoles of Schlemm's canal endothelial cells. Large vacuoles gradually reduced. Excessive Carbomer particles were accumulated in the endothelial cells and obstructed the Schlemm's canal. This induced the fibrous proliferation and the destruction of anterior chamber angle structures. The obstruction of aqueous humor outflow induced by compound Carbomer in rabbit high IOP model is caused mainly by the changes in trabecular endothelial cells.
Investigation of a bio-inspired lift-enhancing effector on a 2D airfoil.
Johnston, Joe; Gopalarathnam, Ashok
2012-09-01
A flap mounted on the upper surface of an airfoil, called a 'lift-enhancing effector', has been shown in wind tunnel tests to have a similar function to a bird's covert feathers, which rise off the wing's surface in response to separated flows. The effector, fabricated from a thin Mylar sheet, is allowed to rotate freely about its leading edge. The tests were performed in the NCSU subsonic wind tunnel at a chord Reynolds number of 4 × 10(5). The maximum lift coefficient with the effector was the same as that for the clean airfoil, but was maintained over an angle-of-attack range from 12° to almost 20°, resulting in a very gentle stall behavior. To better understand the aerodynamics and to estimate the deployment angle of the free-moving effector, fixed-angle effectors fabricated out of stiff wood were also tested. A progressive increase in the stall angle of attack with increasing effector angle was observed, with diminishing returns beyond the effector angle of 60°. Drag tests on both the free-moving and fixed effectors showed a marked improvement in drag at high angles of attack. Oil flow visualization on the airfoil with and without the fixed-angle effectors proved that the effector causes the separation point to move aft on the airfoil, as compared to the clean airfoil. This is thought to be the main mechanism by which an effector improves both lift and drag. A comparison of the fixed-effector results with those from the free-effector tests shows that the free effector's deployment angle is between 30° and 45°. When operating at and beyond the clean airfoil's stall angle, the free effector automatically deploys to progressively higher angles with increasing angles of attack. This slows down the rapid upstream movement of the separation point and avoids the severe reduction in the lift coefficient and an increase in the drag coefficient that are seen on the clean airfoil at the onset of stall. Thus, the effector postpones the stall by 4-8° and makes the stall behavior more gentle. The benefits of using the effector could include care-free operations at high angles of attack during perching and maneuvering flight, especially in gusty conditions.
Wong, Ten It; Wang, Hao; Wang, Fuke; Sin, Sau Leng; Quan, Cheng Gen; Wang, Shi Jie; Zhou, Xiaodong
2016-04-01
A highly transparent superamphiphobic plastic sheet was developed. The plastic sheet polymethyl methacrylate (PMMA) was spin-coated on a glass substrate. Synthesized silica nanoparticles were sprayed on PMMA, followed by fluorosilane drop-coating. The results of contact angle measurements show that the developed PMMA sheet has superamphiphobic properties with high advancing contact angles for water (154°), toluene (139°), and silicone oil (132.9°). The amphiphobicity of the plastic sheet can be tuned by the surface coverage of the silica nanoparticles distributed on the PMMA surface. The surface coverage of the nanoparticles on our PMMA sheet is about 20%, and it agrees with our contact angle calculations for the sheet with and without nanoparticles. Copyright © 2016 Elsevier Inc. All rights reserved.
Impact of Ion Bombardment on the Structure and Magnetic Properties of Fe78Si13B9 Amorphous Alloy
NASA Astrophysics Data System (ADS)
Wu, Yingwei; Peng, Kun
2018-06-01
Amorphous Fe78Si13B9 alloy ribbons were bombarded by ion beams with different incident angles ( θ ). The evolution of the microstructure and magnetic properties of ribbons caused by ion beam bombardment was investigated by x-ray diffraction, transmission electron microscope and vibrating sample magnetometer analysis. Low-incident-angle bombardment led to atomic migration in the short range, and high-incident-angle bombardment resulted in the crystallization of amorphous alloys. Ion bombardment induces magnetic anisotropy and affects magnetic properties. The effective magnetic anisotropy was determined by applying the law of approach to saturation, and it increased with the increase of the ion bombardment angle. The introduction of effective magnetic anisotropy will reduce the permeability and increase the relaxation frequency. Excellent high-frequency magnetic properties can be obtained by selecting suitable ion bombardment parameters.
Thermodynamics of Surface Nanobubbles.
Zargarzadeh, Leila; Elliott, Janet A W
2016-11-01
In this paper, we examine the thermodynamic stability of surface nanobubbles. The appropriate free energy is defined for the system of nanobubbles on a solid surface submerged in a supersaturated liquid solution at constant pressure and temperature, under conditions where an individual nanobubble is not in diffusive contact with a gas phase outside of the system or with other nanobubbles on the time scale of the experiment. The conditions under which plots of free energy versus the radius of curvature of the nanobubbles show a global minimum, which denotes the stable equilibrium state, are explored. Our investigation shows that supersaturation and an anomalously high contact angle (measured through the liquid) are required to have stable surface nanobubbles. In addition, the anomalously high contact angle of surface nanobubbles is discussed from the standpoint of a framework recently proposed by Koch, Amirfazli, and Elliott that relates advancing and receding contact angles to thermodynamic equilibrium contact angles, combined with the existence of a gas enrichment layer.
Estimation of dynamic stability parameters from drop model flight tests
NASA Technical Reports Server (NTRS)
Chambers, J. R.; Iliff, K. W.
1981-01-01
A recent NASA application of a remotely-piloted drop model to studies of the high angle-of-attack and spinning characteristics of a fighter configuration has provided an opportunity to evaluate and develop parameter estimation methods for the complex aerodynamic environment associated with high angles of attack. The paper discusses the overall drop model operation including descriptions of the model, instrumentation, launch and recovery operations, piloting concept, and parameter identification methods used. Static and dynamic stability derivatives were obtained for an angle-of-attack range from -20 deg to 53 deg. The results of the study indicated that the variations of the estimates with angle of attack were consistent for most of the static derivatives, and the effects of configuration modifications to the model (such as nose strakes) were apparent in the static derivative estimates. The dynamic derivatives exhibited greater uncertainty levels than the static derivatives, possibly due to nonlinear aerodynamics, model response characteristics, or additional derivatives.
A Two-Dimensional Micro Scanner Integrated with a Piezoelectric Actuator and Piezoresistors
Zhang, Chi; Zhang, Gaofei; You, Zheng
2009-01-01
A compact two-dimensional micro scanner with small volume, large deflection angles and high frequency is presented and the two-dimensional laser scanning is achieved by specular reflection. To achieve large deflection angles, the micro scanner excited by a piezoelectric actuator operates in the resonance mode. The scanning frequencies and the maximum scanning angles of the two degrees of freedom are analyzed by modeling and simulation of the structure. For the deflection angle measurement, piezoresistors are integrated in the micro scanner. The appropriate directions and crystal orientations of the piezoresistors are designed to obtain the large piezoresistive coefficients for the high sensitivities. Wheatstone bridges are used to measure the deflection angles of each direction independently and precisely. The scanner is fabricated and packaged with the piezoelectric actuator and the piezoresistors detection circuits in a size of 28 mm×20 mm×18 mm. The experiment shows that the two scanning frequencies are 216.8 Hz and 464.8 Hz, respectively. By an actuation displacement of 10 μm, the scanning range of the two-dimensional micro scanner is above 26° × 23°. The deflection angle measurement sensitivities for two directions are 59 mV/deg and 30 mV/deg, respectively. PMID:22389621
Azad, Rajvardhan; Arora, Tarun; Sihota, Ramanjit; Chandra, Parijat; Mahajan, Deepankur; Sain, Siddarth; Sharma, Yograj
2013-10-01
To evaluate the role of Retcam fluorescein gonioangiography in detecting neovascularization of the angle and correlate the same with gonioscopy in diabetic retinopathy. One hundred and fifty eyes of 150 patients (25 each of mild, moderate, severe, very severe nonproliferative diabetic retinopathy (NPDR) proliferative diabetic retinopathy (PDR); and PDR with high-risk characteristics) were recruited. They underwent complete ocular examination including applanation tonometry, gonioscopy, Retcam fluorescein gonioangiography, and fundus fluorescein angiography. Using Retcam fluorescein gonioangiography, of 150 eyes neovascularization of the angle was detected in 37 eyes (24.66%) compared with 22 eyes (14.66%) on gonioscopy (P = 0.04). Small newly formed vessels were evident only with Retcam fluorescein gonioangiography. In 10 of 50 patients (20%) with severe/very severe NPDR, angle neovascularization was appreciable on Retcam fluorescein angiography compared with 5 patients (10%) on gonioscopy. Similarly, 25 of 50 patients (50%) with PDR/PDR with high-risk characteristics had neovascularization of the angle on Retcam gonioangiography compared with 17 (34%) on gonioscopy. Retcam fluorescein gonioangiography is a novel technique for early detection of angle neovascularization in diabetic retinopathy and hence preventing progression to neovascular glaucoma. The objective nature of this test helps in precise decision making compared with gonioscopy for early intervention especially in cases of pre-PDR.
A two-dimensional micro scanner integrated with a piezoelectric actuator and piezoresistors.
Zhang, Chi; Zhang, Gaofei; You, Zheng
2009-01-01
A compact two-dimensional micro scanner with small volume, large deflection angles and high frequency is presented and the two-dimensional laser scanning is achieved by specular reflection. To achieve large deflection angles, the micro scanner excited by a piezoelectric actuator operates in the resonance mode. The scanning frequencies and the maximum scanning angles of the two degrees of freedom are analyzed by modeling and simulation of the structure. For the deflection angle measurement, piezoresistors are integrated in the micro scanner. The appropriate directions and crystal orientations of the piezoresistors are designed to obtain the large piezoresistive coefficients for the high sensitivities. Wheatstone bridges are used to measure the deflection angles of each direction independently and precisely. The scanner is fabricated and packaged with the piezoelectric actuator and the piezoresistors detection circuits in a size of 28 mm×20 mm×18 mm. The experiment shows that the two scanning frequencies are 216.8 Hz and 464.8 Hz, respectively. By an actuation displacement of 10 μm, the scanning range of the two-dimensional micro scanner is above 26° × 23°. The deflection angle measurement sensitivities for two directions are 59 mV/deg and 30 mV/deg, respectively.
Liu, Dong; Yu, Haitong; Duan, Yuanyuan; Li, Qiang; Xuan, Yimin
2016-09-01
Two challenging problems still remain for optical absorbers consisting of an ultrathin planar semiconductor film on top of an opaque metallic substrate. One is the angle-insensitive mechanism and the other is the system design needed for broadband solar energy harvesting. Here, first we theoretically demonstrates that the high refractive index, instead of the ultrathin feature as reported in previous studies, is the physical origin of the angle insensitivity for ultrathin planar optical absorbers. They exhibit omnidirectional resonance for TE polarization due to the high complex refractive index difference between the semiconductor and the air, while for TM polarization the angle insensitivity persists up to an incident angle related to the semiconductor refractive index. These findings were validated by fabricating and characterizing an 18 nm Ge/Ag absorber sample (representative of small band gap semiconductors for photovoltaic applications) and a 22 nm hematite/Ag sample (representative of large band gap semiconductors for photoelectrochemical applications). Then, we took advantage of angle insensitivity and designed a spectrum splitting configuration for broadband solar energy harvesting. The cascaded solar cell and unassisted solar water splitting systems have photovoltaic and photoelectrochemical cells that are also spectrum splitters, so an external spectrum splitting element is not needed.
Internal high-reflectivity omni-directional reflectors
NASA Astrophysics Data System (ADS)
Xi, J.-Q.; Ojha, Manas; Plawsky, J. L.; Gill, W. N.; Kim, Jong Kyu; Schubert, E. F.
2005-07-01
An internal high-reflectivity omni-directional reflector (ODR) for the visible spectrum is realized by the combination of total internal reflection using a low-refractive-index (low-n) material and reflection from a one-dimensional photonic crystal (1D PC). The low-n layer limits the range of angles in the 1D PC to values below the Brewster angle, thereby enabling high reflectivity and omni-directionality. This ODR is demonstrated using GaP as ambient, nanoporous SiO2 with a very low refractive index (n=1.10), and a four-pair TiO2/SiO2 multilayer stack. The results indicate a two orders of magnitude lower angle-integrated transverse-electric-transverse-magnetic polarization averaged mirror loss of the ODR compared with conventional distributed Bragg reflectors and metal reflectors. This indicates the high potential of the internal ODRs for optoelectronic semiconductor devices, e.g., light-emitting diodes.
NASA Astrophysics Data System (ADS)
Wu, Feng
2018-03-01
We report a highly efficient and broad-angle polarization beam filter at visible wavelengths using an anisotropic epsilon-near-zero metamaterial mimicked by a multilayer composed of alternative subwavelength magnesium fluoride and silver layers. The underlying physics can be explained by the dramatic difference between two orthogonal polarizations' iso-frequency curves of anisotropic epsilon-near-zero metamaterials. Transmittance for two orthogonal polarization waves and the polarization extinction ratio are calculated via the transfer matrix method to assess the comprehensive performance of the proposed polarization beam filter. From the simulation results, the proposed polarization beam filter is highly efficient (the polarization extinction ratio is far larger than two orders of magnitude) and has a broad operating angle range (ranging from 30° to 75°). Finally, we show that the proper tailoring of the periodic number enables us to obtain high comprehensive performance of the proposed polarization beam filter.
Free-Flight Evaluation of Forebody Blowing for Yaw Control at High Angels of Attack
NASA Technical Reports Server (NTRS)
Kiddy, Jason
1995-01-01
Forebody blowing is a concept developed to provide yaw control for aircraft flying at high angles of attack where a conventional rudder becomes ineffective. The basic concept is fairly simple. A small jet of air is forced out of the nose of the aircraft. This jet causes a repositioning of the forebody vortices in an asymmetrical fashion. The asymmetric forebody vortex flows develop a side force on the forebody which results in substantial yawing moments at high angles of attack. The purpose of this project was to demonstrate the use of forebody blowing as a control device through free-flight evaluation. This unique type of testing was performed at the NASA-Langley 30- by 60-foot tunnel. From these tests, it could then be shown that forebody blowing is an effective method of maintaining yaw control at high angles of attack.
The F-18 High Alpha Research Vehicle: A High-Angle-of-Attack Testbed Aircraft
NASA Technical Reports Server (NTRS)
Regenie, Victoria; Gatlin, Donald; Kempel, Robert; Matheny, Neil
1992-01-01
The F-18 High Alpha Research Vehicle is the first thrust-vectoring testbed aircraft used to study the aerodynamics and maneuvering available in the poststall flight regime and to provide the data for validating ground prediction techniques. The aircraft includes a flexible research flight control system and full research instrumentation. The capability to control the vehicle at angles of attack up to 70 degrees is also included. This aircraft was modified by adding a pitch and yaw thrust-vectoring system. No significant problems occurred during the envelope expansion phase of the program. This aircraft has demonstrated excellent control in the wing rock region and increased rolling performance at high angles of attack. Initial pilot reports indicate that the increased capability is desirable although some difficulty in judging the size and timing of control inputs was observed. The aircraft, preflight ground testing and envelope expansion flight tests are described.
Contact angle adjustment in equation-of-state-based pseudopotential model.
Hu, Anjie; Li, Longjian; Uddin, Rizwan; Liu, Dong
2016-05-01
The single component pseudopotential lattice Boltzmann model has been widely applied in multiphase simulation due to its simplicity and stability. In many studies, it has been claimed that this model can be stable for density ratios larger than 1000. However, the application of the model is still limited to small density ratios when the contact angle is considered. The reason is that the original contact angle adjustment method influences the stability of the model. Moreover, simulation results in the present work show that, by applying the original contact angle adjustment method, the density distribution near the wall is artificially changed, and the contact angle is dependent on the surface tension. Hence, it is very inconvenient to apply this method with a fixed contact angle, and the accuracy of the model cannot be guaranteed. To solve these problems, a contact angle adjustment method based on the geometry analysis is proposed and numerically compared with the original method. Simulation results show that, with our contact angle adjustment method, the stability of the model is highly improved when the density ratio is relatively large, and it is independent of the surface tension.
Contact angle adjustment in equation-of-state-based pseudopotential model
NASA Astrophysics Data System (ADS)
Hu, Anjie; Li, Longjian; Uddin, Rizwan; Liu, Dong
2016-05-01
The single component pseudopotential lattice Boltzmann model has been widely applied in multiphase simulation due to its simplicity and stability. In many studies, it has been claimed that this model can be stable for density ratios larger than 1000. However, the application of the model is still limited to small density ratios when the contact angle is considered. The reason is that the original contact angle adjustment method influences the stability of the model. Moreover, simulation results in the present work show that, by applying the original contact angle adjustment method, the density distribution near the wall is artificially changed, and the contact angle is dependent on the surface tension. Hence, it is very inconvenient to apply this method with a fixed contact angle, and the accuracy of the model cannot be guaranteed. To solve these problems, a contact angle adjustment method based on the geometry analysis is proposed and numerically compared with the original method. Simulation results show that, with our contact angle adjustment method, the stability of the model is highly improved when the density ratio is relatively large, and it is independent of the surface tension.
Influence of the Angle of Attack on the Aerothermodynamics of the Mars Science Laboratory
NASA Technical Reports Server (NTRS)
Dyakonov, Artem A.; Edquist, Karl T.; Schoenenberger, Mark
2006-01-01
An investigation of the effects of the incidence angle on the aerothermodynamic environments of the Mars Science Laboratory has been conducted. Flight conditions of peak heating, peak deceleration and chute deploy are selected and the effects of the angle of attack on the aerodynamics and aerothermodynamics are analyzed. The investigation found that static aerodynamics are well behaved within the considered range of incidence angles. Leeside laminar and turbulent computed heating rates decrease with incidence, despite the increase in the leeside running length. Stagnation point was found to stay on the conical flank at all angles of attack, and this is linked to the rapid flow expansion around the shoulder. Hypersonic lift to drag ratio is limited by the heating rates in the region of the windside shoulder. The effects of the high angle of incidence on the dynamic aero at low Mach remains to be determined. Influence of the angle of attack on the smooth-wall transition parameter indicates, that higher angle of attack flight may result in delayed turbulence onset, however, a coupled analysis, involving flight trajectory simulation is necessary.
Anterior Chamber Angle Shape Analysis and Classification of Glaucoma in SS-OCT Images.
Ni Ni, Soe; Tian, J; Marziliano, Pina; Wong, Hong-Tym
2014-01-01
Optical coherence tomography is a high resolution, rapid, and noninvasive diagnostic tool for angle closure glaucoma. In this paper, we present a new strategy for the classification of the angle closure glaucoma using morphological shape analysis of the iridocorneal angle. The angle structure configuration is quantified by the following six features: (1) mean of the continuous measurement of the angle opening distance; (2) area of the trapezoidal profile of the iridocorneal angle centered at Schwalbe's line; (3) mean of the iris curvature from the extracted iris image; (4) complex shape descriptor, fractal dimension, to quantify the complexity, or changes of iridocorneal angle; (5) ellipticity moment shape descriptor; and (6) triangularity moment shape descriptor. Then, the fuzzy k nearest neighbor (fkNN) classifier is utilized for classification of angle closure glaucoma. Two hundred and sixty-four swept source optical coherence tomography (SS-OCT) images from 148 patients were analyzed in this study. From the experimental results, the fkNN reveals the best classification accuracy (99.11 ± 0.76%) and AUC (0.98 ± 0.012) with the combination of fractal dimension and biometric parameters. It showed that the proposed approach has promising potential to become a computer aided diagnostic tool for angle closure glaucoma (ACG) disease.
Refraction corrections for surveying
NASA Technical Reports Server (NTRS)
Lear, W. M.
1979-01-01
Optical measurements of range and elevation angle are distorted by the earth's atmosphere. High precision refraction correction equations are presented which are ideally suited for surveying because their inputs are optically measured range and optically measured elevation angle. The outputs are true straight line range and true geometric elevation angle. The 'short distances' used in surveying allow the calculations of true range and true elevation angle to be quickly made using a programmable pocket calculator. Topics covered include the spherical form of Snell's Law; ray path equations; and integrating the equations. Short-, medium-, and long-range refraction corrections are presented in tables.
Dependence of NOAA-AVHRR recorded radiance on scan angle, atmospheric turbidity and unresolved cloud
NASA Technical Reports Server (NTRS)
Piwinski, D. J.; Schoch, L. B.; Duggin, M. J.; Whitehead, V.; Ryland, E.
1984-01-01
Experimental evidence on the scan angle and sun angle dependence of radiance recorded by the Advanced Very High Resolution Radiometer (AVHRR) devices on the NOAA-6 and NOAA-7 satellites is presented. The effects of atmospheric turbidity at various scan angles is shown, and simulations of angular anisotropy and recorded radiance are compared with the recorded digital data from the AVHRR obtained over the Great Plains area of the US. Evidence is presented on the effects of unresolved cloud on the recorded radiance and vegetative indices from uniform, vegetative targets.
NASA Technical Reports Server (NTRS)
Fillius, W.; Mcilwain, C.; Mogro-Campero, A.; Steinberg, G.
1976-01-01
Analysis of data from the Pioneer 10 flyby discloses that pitch angle scattering plays an important part in determining the distribution of energetic electrons in the inner magnetosphere of Jupiter. Angular distributions measured by a Cerenkov detector reveal that redistribution takes place in pitch angle. Additionally, the radial profile of phase space density along the equator demands simultaneous particle losses. The loss rates are too high to be accounted for by synchrotron radiation loss, but are reasonably attributed to pitch angle scattering into the planetary loss cone.
Effect of EMIC Wave Normal Angle Distribution on Relativistic Electron Scattering in Outer RB
NASA Technical Reports Server (NTRS)
Khazanov, G. V.; Gamayunov, K. V.
2007-01-01
We present the equatorial and bounce average pitch angle diffusion coefficients for scattering of relativistic electrons by the H+ mode of EMIC waves. Both the model (prescribed) and self consistent distributions over the wave normal angle are considered. The main results of our calculation can be summarized as follows: First, in comparison with field aligned waves, the intermediate and highly oblique waves reduce the pitch angle range subject to diffusion, and strongly suppress the scattering rate for low energy electrons (E less than 2 MeV). Second, for electron energies greater than 5 MeV, the |n| = 1 resonances operate only in a narrow region at large pitch-angles, and despite their greatest contribution in case of field aligned waves, cannot cause electron diffusion into the loss cone. For those energies, oblique waves at |n| greater than 1 resonances are more effective, extending the range of pitch angle diffusion down to the loss cone boundary, and increasing diffusion at small pitch angles by orders of magnitude.
Kugland, Nathan; Doeppner, Tilo; Glenzer, Siegfried; Constantin, Carmen; Niemann, Chris; Neumayer, Paul
2015-04-07
A method is provided for characterizing spectrometric properties (e.g., peak reflectivity, reflection curve width, and Bragg angle offset) of the K.alpha. emission line reflected narrowly off angle of the direct reflection of a bent crystal and in particular of a spherically bent quartz 200 crystal by analyzing the off-angle x-ray emission from a stronger emission line reflected at angles far from normal incidence. The bent quartz crystal can therefore accurately image argon K.alpha. x-rays at near-normal incidence (Bragg angle of approximately 81 degrees). The method is useful for in-situ calibration of instruments employing the crystal as a grating by first operating the crystal as a high throughput focusing monochromator on the Rowland circle at angles far from normal incidence (Bragg angle approximately 68 degrees) to make a reflection curve with the He-like x-rays such as the He-.alpha. emission line observed from a laser-excited plasma.
Phytohormones signaling and crosstalk regulating leaf angle in rice.
Luo, Xiangyu; Zheng, Jingsheng; Huang, Rongyu; Huang, Yumin; Wang, Houcong; Jiang, Liangrong; Fang, Xuanjun
2016-12-01
Leaf angle is an important agronomic trait in rice (Oryza sativa L.). It affects both the efficiency of sunlight capture and nitrogen reservoirs. The erect leaf phenotype is suited for high-density planting and thus increasing crop yields. Many genes regulate leaf angle by affecting leaf structure, such as the lamina joint, mechanical tissues, and the midrib. Signaling of brassinosteroids (BR), auxin (IAA), and gibberellins (GA) plays important roles in the regulation of lamina joint bending in rice. In addition, the biosynthesis and signaling of BR are known to have dominant effects on leaf angle development. In this review, we summarize the factors and genes associated with the development of leaf angle in rice, outline the regulatory mechanisms based on the signaling of BR, IAA, and GA, and discuss the contribution of crosstalk between BR and IAA or GA in the formation of leaf angle. Promising lines of research in the transgenic engineering of rice leaf angle to increase grain yield are proposed.
Multi-objective Optimization of Solar Irradiance and Variance at Pertinent Inclination Angles
NASA Astrophysics Data System (ADS)
Jain, Dhanesh; Lalwani, Mahendra
2018-05-01
The performance of photovoltaic panel gets highly affected bychange in atmospheric conditions and angle of inclination. This article evaluates the optimum tilt angle and orientation angle (surface azimuth angle) for solar photovoltaic array in order to get maximum solar irradiance and to reduce variance of radiation at different sets or subsets of time periods. Non-linear regression and adaptive neural fuzzy interference system (ANFIS) methods are used for predicting the solar radiation. The results of ANFIS are more accurate in comparison to non-linear regression. These results are further used for evaluating the correlation and applied for estimating the optimum combination of tilt angle and orientation angle with the help of general algebraic modelling system and multi-objective genetic algorithm. The hourly average solar irradiation is calculated at different combinations of tilt angle and orientation angle with the help of horizontal surface radiation data of Jodhpur (Rajasthan, India). The hourly average solar irradiance is calculated for three cases: zero variance, with actual variance and with double variance at different time scenarios. It is concluded that monthly collected solar radiation produces better result as compared to bimonthly, seasonally, half-yearly and yearly collected solar radiation. The profit obtained for monthly varying angle has 4.6% more with zero variance and 3.8% more with actual variance, than the annually fixed angle.
High prevalence of narrow angles among Chinese-American glaucoma and glaucoma suspect patients.
Seider, Michael I; Pekmezci, Melike; Han, Ying; Sandhu, Simi; Kwok, Shiu Y; Lee, Roland Y; Lin, Shan C
2009-01-01
To evaluate the prevalence of gonioscopically narrow angles in a Chinese-American population with glaucoma or glaucoma suspicion. Charts from all Chinese-American patients seen in a comprehensive ophthalmology clinic in the Chinatown district of San Francisco in 2002 were reviewed. One eye from each patient with glaucoma or glaucoma suspicion that met inclusion criteria was included (n=108). Data were collected for sex, age, race (self-declared), refraction (spherical equivalent), intraocular pressure, gonioscopy, and vertical cup-to-disk ratio. Sixty percent (n=65) of Chinese-American eyes with glaucoma or glaucoma suspicion had gonioscopically narrow angles (Shaffer grade < or = 2 in 3 or more quadrants). Those with narrow angles were significantly older (P=0.004) than their open angle counterparts, but the 2 groups did not differ in terms of sex, refraction, intraocular pressure, or cup-to-disk ratio (all, P > or = 0.071). In a multivariate model including age, sex, and refraction as predictors of angle grade (open or narrow), only age was a significant predictor of angle grade (P=0.004). A large proportion of Chinese-Americans in our study population with glaucoma or glaucoma suspicion had gonioscopically narrow angles. In multivariate analysis, patients with narrow angles were older than those with open angles but did not differ from them in terms of sex or refraction. Continued evaluation of angle closure glaucoma risk among Chinese-Americans is needed.
Stall induced instability of a teetered rotor
NASA Astrophysics Data System (ADS)
Glasgow, J. C.; Corrigan, R. D.
Recent tests on the 38m Mod-0 horizontal experimental wind turbine yielded quantitative information on stall induced instability of a teetered rotor. Tests were conducted on rotor blades with NACA 230 series and NACA 643-618 airfoils at low rotor speeds to produce high angles of attack at relatively low wind speeds and power levels. The behavior of the rotor shows good agreement with predicted rotor response based on blade angle of attack calculations and airfoil section properties. The untwisted blades with the 64 series airfoil sections had a slower rate of onset of rotor instability when compared with the twisted 230 series blades, but high teeter angles and teeter stop impacts were experienced with both rotors as wind speeds increased to produce high angles of attack on the outboard portion of the blade. The relative importance of blade twist and airfoil section stall characteristics on the rate of onset of rotor unstability with increasing wind speed was not established however. Blade pitch was shown to be effective in eliminating rotor instability at the expense of some loss in rotor performance near rated wind speed.
NASA Astrophysics Data System (ADS)
Xiong, W.; Li, J.; Zhu, Y.; Luo, X.
2018-07-01
The transition between regular reflection (RR) and Mach reflection (MR) of a Type V shock-shock interaction on a double-wedge geometry with non-equilibrium high-temperature gas effects is investigated theoretically and numerically. A modified shock polar method that involves thermochemical non-equilibrium processes is applied to calculate the theoretical critical angles of transition based on the detachment criterion and the von Neumann criterion. Two-dimensional inviscid numerical simulations are performed correspondingly to reveal the interactive wave patterns, the transition processes, and the critical transition angles. The theoretical and numerical results of the critical transition angles are compared, which shows evident disagreement, indicating that the transition mechanism between RR and MR of a Type V shock interaction is beyond the admissible scope of the classical theory. Numerical results show that the collisions of triple points of the Type V interaction cause the transition instead. Compared with the frozen counterpart, it is found that the high-temperature gas effects lead to a larger critical transition angle and a larger hysteresis interval.
Ground-based Photon Path Measurements from Solar Absorption Spectra of the O2 A-band
NASA Technical Reports Server (NTRS)
Yang, Z.; Wennberg, P. O.; Cageao, R. P.; Pongetti, T. J.; Toon, G. C.; Sander, S. P.
2005-01-01
High-resolution solar absorption spectra obtained from Table Mountain Facility (TMF, 34.38degN, 117.68degW, 2286 m elevation) have been analyzed in the region of the O2 A-band. The photon paths of direct sunlight in clear sky cases are retrieved from the O2 absorption lines and compared with ray-tracing calculations based on the solar zenith angle and surface pressure. At a given zenith angle, the ratios of retrieved to geometrically derived photon paths are highly precise (approx.0.2%), but they vary as the zenith angle changes. This is because current models of the spectral lineshape in this band do not properly account for the significant absorption that exists far from the centers of saturated lines. For example, use of a Voigt function with Lorentzian far wings results in an error in the retrieved photon path of as much as 5%, highly correlated with solar zenith angle. Adopting a super-Lorentz function reduces, but does not completely eliminate this problem. New lab measurements of the lineshape are required to make further progress.
2014-05-08
This image is one of the highest-resolution MDIS observations to date! Many craters of varying degradation states are visible, as well as gentle terrain undulations. Very short exposure times are needed to make these low-altitude observations while the spacecraft is moving quickly over the surface; thus the images are slightly noisier than typical MDIS images. This image was acquired as a high-resolution targeted observation. Targeted observations are images of a small area on Mercury's surface at resolutions much higher than the 200-meter/pixel morphology base map. It is not possible to cover all of Mercury's surface at this high resolution, but typically several areas of high scientific interest are imaged in this mode each week. Date acquired: March 15, 2014 Image Mission Elapsed Time (MET): 37173522 Image ID: 5936740 Instrument: Narrow Angle Camera (NAC) of the Mercury Dual Imaging System (MDIS) Center Latitude: 71.91° Center Longitude: 232.7° E Resolution: 5 meters/pixel Scale: The image is approximately 8.3 km (5.2 mi.) across. Incidence Angle: 79.4° Emission Angle: 4.0° Phase Angle: 83.4° http://photojournal.jpl.nasa.gov/catalog/PIA18370
Buffeting of NACA 0012 airfoil at high angle of attack
NASA Astrophysics Data System (ADS)
Zhou, Tong; Dowell, Earl
2014-11-01
Buffeting is a fluid instability caused by flow separation or shock wave oscillations in the flow around a bluff body. Typically there is a dominant frequency of these flow oscillations called Strouhal or buffeting frequency. In prior work several researchers at Duke University have noted the analogy between the classic Von Karman Vortex Street behind a bluff body and the flow oscillations that occur for flow around a NACA 0012 airfoil at sufficiently large angle of attack. Lock-in is found for certain combinations of airfoil oscillation (pitching motion) frequencies and amplitudes when the frequency of the airfoil motion is sufficiently close to the buffeting frequency. The goal of this paper is to explore the flow around a static and an oscillating airfoil at high angle of attack by developing a method for computing buffet response. Simulation results are compared with experimental data. Conditions for the onset of buffeting and lock-in of a NACA 0012 airfoil at high angle of attack are determined. Effects of several parameters on lift coefficient and flow response frequency are studied including Reynolds number, angle of attack and blockage ratio of the airfoil size to the wind tunnel dimensions. Also more detailed flow field characteristics are determined. For a static airfoil, a universal Strouhal number scaling has been found for angles of attack from 30° to 90°, where the flow around airfoil is fully separated. For an oscillating airfoil, conditions for lock-in are discussed. Differences between the lock-in case and the unlocked case are also studied. The second affiliation: Duke University.
Automated quasi-3D spine curvature quantification and classification
NASA Astrophysics Data System (ADS)
Khilari, Rupal; Puchin, Juris; Okada, Kazunori
2018-02-01
Scoliosis is a highly prevalent spine deformity that has traditionally been diagnosed through measurement of the Cobb angle on radiographs. More recent technology such as the commercial EOS imaging system, although more accurate, also require manual intervention for selecting the extremes of the vertebrae forming the Cobb angle. This results in a high degree of inter and intra observer error in determining the extent of spine deformity. Our primary focus is to eliminate the need for manual intervention by robustly quantifying the curvature of the spine in three dimensions, making it consistent across multiple observers. Given the vertebrae centroids, the proposed Vertebrae Sequence Angle (VSA) estimation and segmentation algorithm finds the largest angle between consecutive pairs of centroids within multiple inflection points on the curve. To exploit existing clinical diagnostic standards, the algorithm uses a quasi-3-dimensional approach considering the curvature in the coronal and sagittal projection planes of the spine. Experiments were performed with manuallyannotated ground-truth classification of publicly available, centroid-annotated CT spine datasets. This was compared with the results obtained from manual Cobb and Centroid angle estimation methods. Using the VSA, we then automatically classify the occurrence and the severity of spine curvature based on Lenke's classification for idiopathic scoliosis. We observe that the results appear promising with a scoliotic angle lying within +/- 9° of the Cobb and Centroid angle, and vertebrae positions differing by at the most one position. Our system also resulted in perfect classification of scoliotic from healthy spines with our dataset with six cases.
NASA Technical Reports Server (NTRS)
Suarez, Carlos J.; Smith, Brooke C.; Kramer, Brian R.; Ng, T. Terry; Ong, Lih-Yenn; Malcolm, Gerald N.
1993-01-01
Free-to-roll tests were conducted in water and wind tunnels in an effort to investigate the mechanisms of wing rock on a NASP-type vehicle. The configuration tested consisted of a highly-slender forebody and a 78 deg swept delta wing. In the water tunnel test, extensive flow visualization was performed and roll angle histories were obtained. In the wind tunnel test, the roll angle, forces and moments, and limited forebody and wing surface pressures were measured during the wing rock motion. A limit cycle oscillation was observed for angles of attack between 22 deg and 30 deg. In general, the experiments confirmed that the main flow phenomena responsible for the wing-body-tail wing rock are the interactions between the forebody and the wing vortices. The variation of roll acceleration (determined from the second derivative of the roll angle time history) with roll angle clearly slowed the energy balance necessary to sustain the limit cycle oscillation. Different means of suppressing wing rock by controlling the forebody vortices using small blowing jets were also explored. Steady blowing was found to be capable of suppressing wing rock, but significant vortex asymmetrices are created, causing the model to stop at a non-zero roll angle. On the other hand, alternating pulsed blowing on the left and right sides of the fore body was demonstrated to be a potentially effective means of suppressing wing rock and eliminating large asymmetric moments at high angles of attack.
ERIC Educational Resources Information Center
Lee, Chun-Yi; Chen, Ming-Jang
2014-01-01
Previous studies on the effects of virtual and physical manipulatives have failed to consider the impact of prior knowledge on the efficacy of manipulatives. This study focuses on the learning of plane geometry in junior high schools, including the sum of interior angles in polygons, the sum of exterior angles in polygons, and the properties of…
Effect of rain on Ku-band scatterometer wind measurements
NASA Technical Reports Server (NTRS)
Spencer, Michael; Shimada, Masanobu
1991-01-01
The impact of precipitation on scatterometer wind measurements is investigated. A model is developed which includes the effects of rain attenuation, rain backscatter, and storm horizontal structure. Rain attenuation is found to be the dominant error source at low radar incidence angles and high wind speeds. Volume backscatter from the rain-loaded atmosphere, however, is found to dominate for high incidence angles and low wind speeds.
ERIC Educational Resources Information Center
Zebas, Carole J.
This study focuses on changes occurring in selected mechanical components of high school girls performing the standing broad jump, and collects data pertaining to the effects of monetary reward and videotape feedback upon the following components: (a) distance jumped, (b) maximum angle of knee flexion, (c) maximum angle of hip flexion, (d) hip…
NASA Astrophysics Data System (ADS)
Breves, E. A.; Lepore, K.; Dyar, M. D.; Bender, S. C.; Tokar, R. L.; Boucher, T.
2017-11-01
Laser-induced breakdown spectroscopy has become a popular tool for rapid elemental analysis of geological materials. However, quantitative applications of LIBS are plagued by variability in collected spectra that cannot be attributed to differences in geochemical composition. Even under ideal laboratory conditions, variability in LIBS spectra creates a host of difficulties for quantitative analysis. This is only exacerbated during field work, when both the laser-sample distance and the angle of ablation/collection are constantly changing. A primary goal of this study is to use empirical evidence to provide a more accurate assessment of uncertainty in LIBS-derived element predictions. We hope to provide practical guidance regarding the angles of ablation and collection that can be tolerated without substantially increasing prediction uncertainty beyond that which already exists under ideal laboratory conditions. Spectra were collected from ten geochemically diverse samples at angles of ablation and collection ranging from 0° to ± 60°. Ablation and collection angles were changed independently and simultaneously in order to isolate spectral changes caused by differences in ablation angle from those due to differences in collection angle. Most of the variability in atomic and continuum spectra is attributed to changes in the ablation angle, rather than the collection angle. At higher angles, the irradiance of the laser beam is lower and produces smaller, possibly less dense plasmas. Simultaneous changes in the collection angle do not appear to affect the collected spectra, possibly because smaller plasmas are still within the viewing area of the collection optics, even though this area is reduced at higher collection angles. A key observation is that changes in the magnitude of atomic and total emission are < 5% and 10%, respectively, in spectra collected with the configuration that most closely resembles field measurements (VV) at angles < 20°. In addition, variability in atomic and continuum emission is strongly dependent upon sample composition. Denser, more Fe/Mg-rich rocks exhibited much less variability with changes in ablation and collection angles than Si-rich felsic rocks. Elemental compositions of our variable angle data that were predicted using a much larger but conventionally-collected calibration suite show that accuracy generally suffers when the incidence and collection angles are high. Prediction accuracy (for measurements acquired with varying collection and ablation angles) varies from ± 1.28-1.86 wt% for Al2O3, ± 1.25-1.66 wt% for CaO, ± 1.90-2.21 wt% for Fe2O3T, ± 0.76-0.94 wt% for K2O, ± 2.85-3.61 wt% MgO, ± 0.15-0.17 wt% for MnO, ± 0.68-0.78 wt% for Na2O, ± 0.33-0.42 wt% for TiO2, and ± 2.94-4.34 wt% SiO2. The ChemCam team is using lab data acquired under normal incidence and collection angles to predict the compositions of Mars targets at varying angles. Thus, the increased errors noted in this study for high incidence angle measurements are likely similar to additional, unacknowledged errors on ChemCam results for non-normal targets analyzed on Mars. Optimal quantitative analysis of LIBS spectra must include some knowledge of the angle of ablation and collection so the approximate increase in uncertainty introduced by a departure from normal angles can be accurately reported.
Modified sine bar device measures small angles with high accuracy
NASA Technical Reports Server (NTRS)
Thekaekara, M.
1968-01-01
Modified sine bar device measures small angles with enough accuracy to calibrate precision optical autocollimators. The sine bar is a massive bar of steel supported by two cylindrical rods at one end and one at the other.
On the prediction of spray angle of liquid-liquid pintle injectors
NASA Astrophysics Data System (ADS)
Cheng, Peng; Li, Qinglian; Xu, Shun; Kang, Zhongtao
2017-09-01
The pintle injector is famous for its capability of deep throttling and low cost. However, the pintle injector has been seldom investigated. To get a good prediction of the spray angle of liquid-liquid pintle injectors, theoretical analysis, numerical simulations and experiments were conducted. Under the hypothesis of incompressible and inviscid flow, a spray angle formula was deduced from the continuity and momentum equations based on a control volume analysis. The formula was then validated by numerical and experimental data. The results indicates that both geometric and injection parameters affect the total momentum ratio (TMR) and then influence the spray angle formed by liquid-liquid pintle injectors. TMR is the pivotal non-dimensional number that dominates the spray angle. Compared with gas-gas pintle injectors, spray angle formed by liquid-liquid injectors is larger, which benefits from the local high pressure zone near the pintle wall caused by the impingement of radial and axial sheets.
Automated contact angle estimation for three-dimensional X-ray microtomography data
DOE Office of Scientific and Technical Information (OSTI.GOV)
Klise, Katherine A.; Moriarty, Dylan; Yoon, Hongkyu
2015-11-10
Multiphase flow in capillary regimes is a fundamental process in a number of geoscience applications. The ability to accurately define wetting characteristics of porous media can have a large impact on numerical models. In this paper, a newly developed automated three-dimensional contact angle algorithm is described and applied to high-resolution X-ray microtomography data from multiphase bead pack experiments with varying wettability characteristics. The algorithm calculates the contact angle by finding the angle between planes fit to each solid/fluid and fluid/fluid interface in the region surrounding each solid/fluid/fluid contact point. Results show that the algorithm is able to reliably compute contactmore » angles using the experimental data. The in situ contact angles are typically larger than flat surface laboratory measurements using the same material. Furthermore, wetting characteristics in mixed-wet systems also change significantly after displacement cycles.« less
NASA Technical Reports Server (NTRS)
Burrows, Dale L; Newman, Ernest E
1954-01-01
An investigation at medium to high subsonic speeds has been conducted in the Langley low-turbulence pressure tunnel to determine the static stability and control characteristics and to measure the fin normal forces and moments for a model of a wingless fin-controlled missile. The data were obtained at Reynolds number of 2.1 x 10(6) based on the missile maximum diameter or 17.7 x 10(6) based on missile length; this Reynolds number was found to be large enough to avoid any large scale effects between the test and the expected flight Reynolds number. With the horizontal-fin deflection limited to a maximum of 6 degrees, longitudinally stable and trimmed flight could not be maintained beyond an angle of attack of 17 degrees for a Mach number of 0.88 and beyond 20 degrees for a Mach number of 0.50 for any center-of-gravity location without the use of some auxiliary stability or control device such as jet vanes. Mach number had no appreciable effect on the center-of-pressure positions and only a slight effect on neutral-point position. There was a shift in neutral-point position of about 1 caliber as the angle of attack was varied through the range for which the neutral point could be determined. Yawing the model to angles of sideslip up to 7 degrees had little effect on the longitudinal stability at angles of attack up to 15 degrees; however, above 15 degrees, the effect of sideslip was destabilizing. With the vertical fins at a plus-or-minus 6 degree roll deflection, the rolling moment caused by yawing the model at high angles of attack could be trimmed out up to angles of sideslip of 6.5 degrees and an angle of attack of 26 degrees for a Mach number of 0.50; this range of sideslip angles was reduced to 3 degrees at a Mach number of 0.88. The data indicated that, at lower angles of attack, the trim range extended to higher angles of sideslip. The total normal-force and hinge-moment coefficients for both horizontal fins were slightly nonlinear with both angle-of-attack and fin deflection. The effect of Mach number was to reduce the slopes of the hinge-moment coefficient with angle of attack and deflection angle. In general, the effort of increasing the sideslip angle was to reduce the values of the fin normal-force and hinge-moment coefficients.
Determination of the Basic Friction Angle of Rock Surfaces by Tilt Tests
NASA Astrophysics Data System (ADS)
Jang, Hyun-Sic; Zhang, Qing-Zhao; Kang, Seong-Seung; Jang, Bo-An
2018-04-01
Samples of Hwangdeung granite from Korea and Berea sandstone from USA, both containing sliding planes, were prepared by saw-cutting or polishing using either #100 or #600 grinding powders. Their basic friction angles were measured by direct shear testing, triaxial compression testing, and tilt testing. The direct shear tests and triaxial compression tests on the saw-cut, #100, and #600 surfaces indicated that the most reliable results were obtained from the #100 surface: basic friction angle of 29.4° for granite and 34.1° for sandstone. To examine the effect of surface conditions on the friction angle in tilt tests, the sliding angles were measured 50 times with two surface conditions (surfaces cleaned and not cleaned after each measurement). The initial sliding angles were high regardless of rock type and surface conditions and decreased exponentially as measurements continued. The characteristics of the sliding angles, differences between tilt tests, and dispersion between measurements in each test indicated that #100 surface produced the most reliable basic friction angle measurement. Without cleaning the surfaces, the average angles for granite (32 measurements) and sandstone (23 measurements) were similar to the basic friction angle. When 20-50 measurements without cleaning were averaged, the basic friction angle was within ± 2° for granite and ± 3° for sandstone. Sliding angles using five different tilting speeds were measured but the average was similar, indicating that tilting speed (between 0.2° and 1.6°/s) has little effect on the sliding angle. Sliding angles using four different sample sizes were measured with the best results obtained for samples larger than 8 × 8 cm.
Missile aerodynamics; Proceedings of the Conference, Monterey, CA, Oct. 31-Nov. 2, 1988
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mendenhall, M.R.; Nixon, D.; Dillenius, M.F.E.
1989-01-01
The present conference discusses the development status of predictive capabilities for missile aerodynamic characteristics, the application of experimental techniques to missile-release problems, prospective high-performance missile designs, the use of lateral jet controls for missile guidance, and the integration of stores on modern tactical aircraft. Also discussed are semiempirical aerodynamic methods for preliminary design, high angle-of-attack behavior for an advanced missile, and the dynamic derivatives of missiles and fighter-type configurations at high angles-of-attack.
NASA Technical Reports Server (NTRS)
Lackey, J.; Hadfield, C.
1992-01-01
Recent mishaps and incidents on Class IV aircraft have shown a need for establishing quantitative longitudinal high angle of attack (AOA) pitch control margin design guidelines for future aircraft. NASA Langley Research Center has conducted a series of simulation tests to define these design guidelines. Flight test results have confirmed the simulation studies in that pilot rating of high AOA nose-down recoveries were based on the short-term response interval in the forms of pitch acceleration and rate.
Study on manufacturing method of optical surface with high precision in angle and surface
NASA Astrophysics Data System (ADS)
Yu, Xin; Li, Xin; Yu, Ze; Zhao, Bin; Zhang, Xuebin; Sun, Lipeng; Tong, Yi
2016-10-01
This paper studied a manufacturing processing of optical surface with high precision in angel and surface. By theoretical analysis of the relationships between the angel precision and surface, the measurement conversion of the technical indicators, optical-cement method application, the optical-cement tooling design, the experiment has been finished successfully, the processing method has been verified, which can be also used in the manufacturing of the optical surface with similar high precision in angle and surface.
A reliable method of manufacturing metallic hierarchical superhydrophobic surfaces
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pogreb, Roman; Whyman, Gene; Barayev, Reuven
2009-06-01
A method of manufacturing hierarchical metallic surfaces demonstrating superhydrophobic properties is presented. The surfaces showed apparent contact angles as high as 153 deg. and sliding angles of 10 deg. for 50-100 {mu}l droplets. The Cassie-like model [A. B. D. Cassie and S. Baxter, Trans. Faraday Soc. 40, 546 (1944)], considering the hierarchical topography of the relief, predicts apparent contact angles in a satisfactory agreement with the measured values.
Long-Wave Infrared Semiconductor Negative Refraction Metamaterials for High-Resolution Imaging
2011-02-14
corresponding to the minimum in TM-polarized reflection. Negative refraction region starts from discontinuity of the Brewster angle (~8) and ends when... Brewster angle disappears (~11 ). Page | 5 Goal 2: loss reduction by incorporating the material gain As mentioned above, the design of...Tuning the focus of a plasmonic lens by the incident angle ,” Appl. Phys. Lett. 88, 171108 (2006). 11. I. I. Smolyaninov, D. L. Mazzoni, J. Mait, and C
An experimental study of an airfoil with a bio-inspired leading edge device at high angles of attack
NASA Astrophysics Data System (ADS)
Mandadzhiev, Boris A.; Lynch, Michael K.; Chamorro, Leonardo P.; Wissa, Aimy A.
2017-09-01
Robust and predictable aerodynamic performance of unmanned aerial vehicles at the limits of their design envelope is critical for safety and mission adaptability. Deployable aerodynamic surfaces from the wing leading or trailing edges are often used to extend the aerodynamic envelope (e.g. slats and flaps). Birds have also evolved feathers at the leading edge (LE) of their wings, known as the alula, which enables them to perform high angles of attack maneuvers. In this study, a series of wind tunnel experiments are performed to quantify the effect of various deployment parameters of an alula-like LE device on the aerodynamic performance of a cambered airfoil (S1223) at stall and post stall conditions. The alula relative angle of attack, measured from the mean chord of the airfoil, is varied to modulate tip-vortex strength, while the alula deflection angle is varied to modulate the distance between the tip vortex and the wing surface. Integrated lift force measurements were collected at various alula-inspired device configurations. The effect of the alula-inspired device on the boundary layer velocity profile and turbulence intensity were investigated through hot-wire anemometer measurements. Results show that as alula deflection angle increases, the lift coefficient also increase especially at lower alula relative angles of attack. Moreover, at post stall wing angles of attack, the wake velocity deficit is reduced in the presence of alula device, confirming the mitigation of the wing adverse pressure gradient. The results are in strong agreement with measurements taken on bird wings showing delayed flow reversal and extended range of operational angles of attack. An engineered alula-inspired device has the potential to improve mission adaptability in small unmanned air vehicles during low Reynolds number flight.
Hall, Emily A; Docherty, Carrie L
2017-07-01
To determine the concurrent validity of standard clinical outcome measures compared to laboratory outcome measure while performing the weight-bearing lunge test (WBLT). Cross-sectional study. Fifty participants performed the WBLT to determine dorsiflexion ROM using four different measurement techniques: dorsiflexion angle with digital inclinometer at 15cm distal to the tibial tuberosity (°), dorsiflexion angle with inclinometer at tibial tuberosity (°), maximum lunge distance (cm), and dorsiflexion angle using a 2D motion capture system (°). Outcome measures were recorded concurrently during each trial. To establish concurrent validity, Pearson product-moment correlation coefficients (r) were conducted, comparing each dependent variable to the 2D motion capture analysis (identified as the reference standard). A higher correlation indicates strong concurrent validity. There was a high correlation between each measurement technique and the reference standard. Specifically the correlation between the inclinometer placement at 15cm below the tibial tuberosity (44.9°±5.5°) and the motion capture angle (27.0°±6.0°) was r=0.76 (p=0.001), between the inclinometer placement at the tibial tuberosity angle (39.0°±4.6°) and the motion capture angle was r=0.71 (p=0.001), and between the distance from the wall clinical measure (10.3±3.0cm) to the motion capture angle was r=0.74 (p=0.001). This study determined that the clinical measures used during the WBLT have a high correlation with the reference standard for assessing dorsiflexion range of motion. Therefore, obtaining maximum lunge distance and inclinometer angles are both valid assessments during the weight-bearing lunge test. Copyright © 2016 Sports Medicine Australia. Published by Elsevier Ltd. All rights reserved.
Calculation of gas turbine characteristic
NASA Astrophysics Data System (ADS)
Mamaev, B. I.; Murashko, V. L.
2016-04-01
The reasons and regularities of vapor flow and turbine parameter variation depending on the total pressure drop rate π* and rotor rotation frequency n are studied, as exemplified by a two-stage compressor turbine of a power-generating gas turbine installation. The turbine characteristic is calculated in a wide range of mode parameters using the method in which analytical dependences provide high accuracy for the calculated flow output angle and different types of gas dynamic losses are determined with account of the influence of blade row geometry, blade surface roughness, angles, compressibility, Reynolds number, and flow turbulence. The method provides satisfactory agreement of results of calculation and turbine testing. In the design mode, the operation conditions for the blade rows are favorable, the flow output velocities are close to the optimal ones, the angles of incidence are small, and the flow "choking" modes (with respect to consumption) in the rows are absent. High performance and a nearly axial flow behind the turbine are obtained. Reduction of the rotor rotation frequency and variation of the pressure drop change the flow parameters, the parameters of the stages and the turbine, as well as the form of the characteristic. In particular, for decreased n, nonmonotonic variation of the second stage reactivity with increasing π* is observed. It is demonstrated that the turbine characteristic is mainly determined by the influence of the angles of incidence and the velocity at the output of the rows on the losses and the flow output angle. The account of the growing flow output angle due to the positive angle of incidence for decreased rotation frequencies results in a considerable change of the characteristic: poorer performance, redistribution of the pressure drop at the stages, and change of reactivities, growth of the turbine capacity, and change of the angle and flow velocity behind the turbine.
NASA Astrophysics Data System (ADS)
Loignon-Houle, Francis; Pepin, Catherine M.; Charlebois, Serge A.; Lecomte, Roger
2017-04-01
The 3M-ESR multilayer polymer film is a widely used reflector in scintillation detector arrays. As specified in the datasheet and confirmed experimentally by measurements in air, it is highly reflective (> 98 %) over the entire visible spectrum (400-1000 nm) for all angles of incidence. Despite these outstanding characteristics, it was previously found that light crosstalk between pixels in a bonded LYSO scintillator array with ESR reflector can be as high as ∼30-35%. This unexplained light crosstalk motivated further investigation of ESR optical performance. Analytical simulation of a multilayer structure emulating the ESR reflector showed that the film becomes highly transparent to incident light at large angles when surrounded on both sides by materials of refractive index higher than air. Monte Carlo simulations indicate that a considerable fraction (∼25-35%) of scintillation photons are incident at these leaking angles in high aspect ratio LYSO scintillation crystals. The film transparency was investigated experimentally by measuring the scintillation light transmission through the ESR film sandwiched between a scintillation crystal and a photodetector with or without layers of silicone grease. Strong light leakage, up to nearly 30%, was measured through the reflector when coated on both sides with silicone, thus elucidating the major cause of light crosstalk in bonded arrays. The reflector transparency was confirmed experimentally for angles of incidence larger than 60 ° using a custom designed setup allowing illumination of the bonded ESR film at selected grazing angles. The unsuspected ESR film transparency can be beneficial for detector arrays exploiting light sharing schemes, but it is highly detrimental for scintillator arrays designed for individual pixel readout.
Kong, Xiangbin; Foster, Paul J.; Huang, Qunxiao; Zheng, Yingfeng; Huang, Wenyong; Cai, Xiaoyu
2011-01-01
Purpose. To describe the characteristics of the iridocorneal angle using ultrasound biomicroscopy (UBM) in Chinese people classified gonioscopically as having suspected primary angle-closure (PACS) glaucoma. Methods. PACS were defined as not having visible posterior (usually pigmented) trabecular meshwork in two or more quadrants examined by static gonioscopy. The PACS and 1 of 10 those who did not meet this criterion were identified from a population-based survey. Iridotrabecular meshwork contact (ITC) was identified and further classified into low and high, according to standard UBM images. Those with high ITC were further classified according the configuration of ITC: B-type, with contiguous ITC from the base of the angle, and S-type, with ITC localized to the region of Schwalbe's line. Results. ITC was identified in 78.6% of the superior, 40.2% of the nasal, 59.8% of the inferior, and 25.6% of the temporal quadrants in the PACS (n = 117). These proportions were 43.9%, 15.8%, 29.8%, and 14.0% in the controls (n = 57), respectively. About two thirds of the eyes with ITC were classified as high. In those with high ITC, the number with B- and S-type ITC was very similar. The proportions of any high ITCs increased substantially from 15.4% in those with Shaffer angle grade 4 and 45.0% in grade 3, to 71.0% in grade 2, 70.2% in grade 1, and 86.4% in grade 0. Conclusions. More ITC is identified on UBM imaging than by gonioscopy. Careful consideration should be given to the assessment modality regarded as the reference standard in defining anatomic risk factors for glaucomatous visual loss and the need for treatment. PMID:21357394
Angle-resolved reflection spectroscopy of high-quality PMMA opal crystal
NASA Astrophysics Data System (ADS)
Nemtsev, Ivan V.; Tambasov, Igor A.; Ivanenko, Alexander A.; Zyryanov, Victor Ya.
2018-02-01
PMMA opal crystal was prepared by a simple hybrid method, which includes sedimentation, meniscus formation and evaporation. We investigated three surfaces of this crystal by angle-resolved reflective light spectroscopy and SEM study. The angle-resolved reflective measurements were carried out in the 400-1100 nm range. We have determined the high-quality ordered surface of the crystal region. Narrow particle size distribution of the surface has been revealed. The average particle diameter obtained with SEM was nearly 361 nm. The most interesting result was that reflectivity of the surface turned out up to 98% at normal light incidence. Using a fit of dependences of the maximum reflectivity wavelength from an angle based on the Bragg-Snell law, the wavelength of maximum 0° reflectivity, the particle diameter and the fill factor have been determined. For the best surface maximum reflectivity wavelength of a 0° angle was estimated to be 869 nm. The particle diameter and fill factor were calculated as 372 nm and 0.8715, respectively. The diameter obtained by fitting is in excellent agreement with the particle diameter obtained with SEM. The reflectivity maximum is assumed to increase significantly when increasing the fill factor. We believe that using our simple approach to manufacture PMMA opal crystals will significantly increase the fabrication of high-quality photonic crystal templates and thin films.
NASA Technical Reports Server (NTRS)
Richwine, David M.; Fisher, David F.
1992-01-01
Flow-field measurements on the leading-edge extension (LEX) of the F-18 High Alpha Research Vehicle (HARV) were obtained using a rotating rake with 16 hemispherical-tipped five-hole probes. Detailed pressure, velocity, and flow direction data were obtained through the LEX vortex core. Data were gathered during 1-g quasi-stabilized flight conditions at angles of attack alpha from 10 degrees to 52 degrees and at Reynolds numbers based on mean aerodynamic cord up to 16 x 10(exp 6). Normalized dynamic pressures and crossflow velocities clearly showed the primary vortex above the LEX and formation of a secondary vortex at higher angles of attack. The vortex was characterized by a ring of high dynamic pressure surrounding a region of low dynamic pressure at the vortex core center. The vortex core, subcore diameter, and vertical location of the core above the LEX increased with angle of attack. Minimum values for static pressure were obtained in the vortex subcore and decreased nearly linearly with increasing angle of attack until vortex breakdown. Rake-measured static pressures were consistent with previously documented surface pressures and showed good agreement with flow visualization flight test results. Comparison of the LEX vortex flight test data to computational solutions at alpha approximately equals 19 degrees and 30 degrees showed fair correlation.
High field (up to 140 kOe) angle dependent magneto transport of Bi2Te3 single crystals
NASA Astrophysics Data System (ADS)
Sultana, Rabia; Maheshwari, P. K.; Tiwari, Brajesh; Awana, V. P. S.
2018-01-01
We report the angle dependent high field (up to 140 kOe) magneto transport of Bi2Te3 single crystals, a well-known topological insulator. The crystals were grown from melt of constituent elements via solid state reaction route by self-flux method. Details of crystal growth along with their brief characterisation up to 5 Tesla applied field was reported by some of us recently (Sultana et al 2017 J. Magn. Magn. Mater. 428 213). The angle dependence of the magneto-resistance (MR) of Bi2Te3 follows the cos (θ) function i.e., MR is responsive, when the applied field is perpendicular (tilt angle θ = 0° and/or 180°) to the transport current. The low field (±10 kOe) MR showed the signatures of weak anti localisation character with typical ν-type cusp near origin at 5 K. Further, the MR is linear right up to highest applied field of 140 kOe. The large positive MR are observed up to high temperatures and are above 250% and 150% at 140 kOe in perpendicular fields at 50 K and 100 K respectively. Heat capacity C P(T) measurements revealed the value of Debye temperature (ѲD) to be 135 K. Angle resolved photoemission spectroscopy data clearly showed that the bulk Bi2Te3 single crystal consists of a single Dirac cone.
NASA Technical Reports Server (NTRS)
Whitmore, Stephen A.; Moes, Timothy R.; Larson, Terry J.
1990-01-01
A nonintrusive high angle-of-attack flush airdata sensing (HI-FADS) system was installed and flight-tested on the F-18 high alpha research flight vehicle. The system is a matrix of 25 pressure orifices in concentric circles on the nose of the vehicle. The orifices determine angles of attack and sideslip, Mach number, and pressure altitude. Pressure was transmitted from the orifices to an electronically scanned pressure module by lines of pneumatic tubing. The HI-FADS system was calibrated and demonstrated using dutch roll flight maneuvers covering large Mach, angle-of-attack, and sideslip ranges. Reference airdata for system calibration were generated by a minimum variance estimation technique blending measurements from two wingtip airdata booms with inertial velocities, aircraft angular rates and attitudes, precision radar tracking, and meteorological analyses. The pressure orifice calibration was based on identifying empirical adjustments to modified Newtonian flow on a hemisphere. Calibration results are presented. Flight test results used all 25 orifices or used a subset of 9 orifices. Under moderate maneuvering conditions, the HI-FADS system gave excellent results over the entire subsonic Mach number range up to 55 deg angle of attack. The internal pneumatic frequency response of the system is accurate to beyond 10 Hz. Aerodynamic lags in the aircraft flow field caused some performance degradation during heavy maneuvering.
Effect of aperture geometry on heat transfer in tilted partially open cavities
DOE Office of Scientific and Technical Information (OSTI.GOV)
Elsayed, M.M.; Chakroun, W.
1999-11-01
Heat transfer in cavities is receiving increasing attention because of the various applications in engineering; e.g., passive solar heating, energy conservation in buildings, solar concentrating receivers, and electronic equipment. Here, convection from a square, tilted partially open cavity was investigated experimentally. The experiment was carried out to study the effect of the aperture geometry on the heat transfer between the cavity and the surrounding air. Four different geometrical arrangements for the opening were investigated: (1) high wall slit, (2) low wall slit, (3) centered wall slit, and (4) uniform wall slots. Each opening arrangement was studied at opening ratios (i.e.,more » ratio of opening height to cavity height) of 0.25, 0.5, and 0.75. The average heat transfer coefficient between the cavity and the surrounding air was estimated for each geometrical arrangement for tilt angles ranging from {minus}90 deg to +90 deg with increments of 15 deg and at a constant heat flux Grashof number of 5.5 x 10{sup 8}. The results showed that for tilt angles between 90 and 75 deg, the heat transfer coefficient has a small value that is independent of the geometrical arrangement of the opening. The value of the heat transfer coefficient increases sharply with decreasing tilt angle until an angle value of zero degrees is reached. The increase in the heat transfer coefficient continues in the negative range of tilt angle but not in the same rate as in the positive range of the tilt angle. The uniform slot arrangement gave in general higher heat transfer coefficient than the other three arrangements of the opening. Large differences in the heat transfer coefficient were observed between the high and the low wall slits where the high wall slit is found to transfer more heat to the surroundings than the low wall slit. Correlations were developed to predict the average Nusselt number of the cavity in terms of the opening ratio and the cavity tilt angle for cavities with high wall slit, low wall slit, centered wall slit, and the uniform wall slots.« less
NASA Astrophysics Data System (ADS)
Wang, Suhuan; Liu, Jianguo; Lv, Ming; Zeng, Xiaoyan
2014-09-01
In this paper, a low-cost, high-efficiency and high-flexibility surface modification technology for polymer materials was achieved at high laser scanning speeds (600-1000 mm s-1) and using an all-solid state, Q-switched, high-average power, and nanosecond pulse ultraviolet (355 nm wavelength) laser. During the surface modification of a very important engineering plastic, i.e., black bisphenol A polycarbonate (BAPC) board, it was found that different laser parameters (e.g., laser fluence and pulse frequency) were able to result in different surface microstructures (e.g., many tiny protuberances or a porous microstructure with periodical V-type grooves). After the modification, although the total relative content of the oxygen-containing groups (e.g., Csbnd O and COO-) on the BAPC surface increased, however, the special microstructures played a deciding role in the surface properties (e.g., contact angle and surface energy) of the BAPC. The change trend of the water contact angle on the BAPC surface was with an obvious increase, that of the diiodomethane contact angle was with a most decrease, and that of the ethylene glycol contact angle was between the above two. It showed that the wetting properties of the three liquids on the modified BAPC surface were different. Basing on the measurements of the contact angles of the three liquids, and according to the Young equation and the Lifshitz van der Waals and Lewis acid-base theory, the BAPC surface energy after the modification was calculated. The results were that, in a broad range of laser fluences, pulse frequencies and scanning speeds, the surface energy had a significant increase (e.g., from the original of about 44 mJ m-2 to the maximum of about 70 mJ m-2), and the higher the laser pulse frequency, the more significant the increase. This would be very advantageous to fabricate the high-quality micro-devices and micro-systems on the modified surface.
NASA Astrophysics Data System (ADS)
Mochizuki, Takashi; Kitazumi, Gontaro; Katsuike, Yasumasa; Hotta, Sayo; Maruyama, Hirotaka; Chiba, Toshio
2010-03-01
It is well known that tissue perforation is performed by the shock waves generated by the collapse of micro bubbles due to HIFU irradiation. However, the angle-dependency between the HIFU irradiation beam and the tissue membrane has not been studied in detail so far. The objective of this study was to investigate the HIFU parameters which were the most effective in perforating the tissues with the heart beating, especially the angle dependency of the beam with the observation using high speed video camera. The result shows that the ultrasound beam should be at right angle to the membrane to perforate the tissue membrane effectively.
Combined pitching and yawing motion of airplanes
NASA Technical Reports Server (NTRS)
Baranoff, A V; Hopf, L
1931-01-01
This report treats the following problems: The beginning of the investigated motions is always a setting of the lateral controls, i.e., the rudder or the ailerons. Now, the first interesting question is how the motion would proceed if these settings were kept unchanged for some time; and particularly, what upward motion would set in, how soon, and for how long, since therein lie the dangers of yawing. Two different motions ensue with a high rate of turn and a steep down slope of flight path in both but a marked difference in angle of attack and consequently different character in the resultant aerodynamic forces: one, the "corkscrew" dive at normal angle, and the other, the "spin" at high angle.
Erdenebat, Munkh-Uchral; Kwon, Ki-Chul; Yoo, Kwan-Hee; Baasantseren, Ganbat; Park, Jae-Hyeung; Kim, Eun-Soo; Kim, Nam
2014-04-15
We propose a 360 degree integral-floating display with an enhanced vertical viewing angle. The system projects two-dimensional elemental image arrays via a high-speed digital micromirror device projector and reconstructs them into 3D perspectives with a lens array. Double floating lenses relate initial 3D perspectives to the center of a vertically curved convex mirror. The anamorphic optic system tailors the initial 3D perspectives horizontally and vertically disperse light rays more widely. By the proposed method, the entire 3D image provides both monocular and binocular depth cues, a full-parallax demonstration with high-angular ray density and an enhanced vertical viewing angle.
Leading edge flap system for aircraft control augmentation
NASA Technical Reports Server (NTRS)
Rao, D. M. (Inventor)
1984-01-01
Traditional roll control systems such as ailerons, elevons or spoilers are least effective at high angles of attack due to boundary layer separation over the wing. This invention uses independently deployed leading edge flaps on the upper surfaces of vortex stabilized wings to shift the center of lift outboard. A rolling moment is created that is used to control roll in flight at high angles of attack. The effectiveness of the rolling moment increases linearly with angle of attack. No adverse yaw effects are induced. In an alternate mode of operation, both leading edge flaps are deployed together at cruise speeds to create a very effective airbrake without appreciable modification in pitching moment. Little trim change is required.
NASA Astrophysics Data System (ADS)
Sun, Ce; Lu, Ning; Wang, Jinguo; Lee, Jihyung; Peng, Xin; Klie, Robert F.; Kim, Moon J.
2013-12-01
The single twin boundary with crystallographic orientation relationship (1¯1¯1¯)//(111) [01¯1]//[011¯] was created by wafer bonding. Electron diffraction patterns and high-resolution transmission electron microscopy images demonstrated the well control of the rotation angle between the bonded pair. At the twin boundary, one unit of wurtzite structure was found between two zinc-blende matrices. High-angle annular dark-field scanning transmission electron microscopy images showed Cd- and Te-terminated for the two bonded portions, respectively. The I-V curve across the twin boundary showed increasingly nonlinear behavior, indicating a potential barrier at the bonded twin boundary.
NASA Astrophysics Data System (ADS)
Huang, Xin; Chen, Huijun; Gong, Jianya
2018-01-01
Spaceborne multi-angle images with a high-resolution are capable of simultaneously providing spatial details and three-dimensional (3D) information to support detailed and accurate classification of complex urban scenes. In recent years, satellite-derived digital surface models (DSMs) have been increasingly utilized to provide height information to complement spectral properties for urban classification. However, in such a way, the multi-angle information is not effectively exploited, which is mainly due to the errors and difficulties of the multi-view image matching and the inaccuracy of the generated DSM over complex and dense urban scenes. Therefore, it is still a challenging task to effectively exploit the available angular information from high-resolution multi-angle images. In this paper, we investigate the potential for classifying urban scenes based on local angular properties characterized from high-resolution ZY-3 multi-view images. Specifically, three categories of angular difference features (ADFs) are proposed to describe the angular information at three levels (i.e., pixel, feature, and label levels): (1) ADF-pixel: the angular information is directly extrapolated by pixel comparison between the multi-angle images; (2) ADF-feature: the angular differences are described in the feature domains by comparing the differences between the multi-angle spatial features (e.g., morphological attribute profiles (APs)). (3) ADF-label: label-level angular features are proposed based on a group of urban primitives (e.g., buildings and shadows), in order to describe the specific angular information related to the types of primitive classes. In addition, we utilize spatial-contextual information to refine the multi-level ADF features using superpixel segmentation, for the purpose of alleviating the effects of salt-and-pepper noise and representing the main angular characteristics within a local area. The experiments on ZY-3 multi-angle images confirm that the proposed ADF features can effectively improve the accuracy of urban scene classification, with a significant increase in overall accuracy (3.8-11.7%) compared to using the spectral bands alone. Furthermore, the results indicated the superiority of the proposed ADFs in distinguishing between the spectrally similar and complex man-made classes, including roads and various types of buildings (e.g., high buildings, urban villages, and residential apartments).
High resolution iridocorneal angle imaging system by axicon lens assisted gonioscopy.
Perinchery, Sandeep Menon; Shinde, Anant; Fu, Chan Yiu; Jeesmond Hong, Xun Jie; Baskaran, Mani; Aung, Tin; Murukeshan, Vadakke Matham
2016-07-29
Direct visualization and assessment of the iridocorneal angle (ICA) region with high resolution is important for the clinical evaluation of glaucoma. However, the current clinical imaging systems for ICA do not provide sufficient structural details due to their poor resolution. The key challenges in achieving high quality ICA imaging are its location in the anterior region of the eye and the occurrence of total internal reflection due to refractive index difference between cornea and air. Here, we report an indirect axicon assisted gonioscopy imaging probe with white light illumination. The illustrated results with this probe shows significantly improved visualization of structures in the ICA including TM region, compared to the current available tools. It could reveal critical details of ICA and expected to aid management by providing information that is complementary to angle photography and gonioscopy.
High resolution iridocorneal angle imaging system by axicon lens assisted gonioscopy
Perinchery, Sandeep Menon; Shinde, Anant; Fu, Chan Yiu; Jeesmond Hong, Xun Jie; Baskaran, Mani; Aung, Tin; Murukeshan, Vadakke Matham
2016-01-01
Direct visualization and assessment of the iridocorneal angle (ICA) region with high resolution is important for the clinical evaluation of glaucoma. However, the current clinical imaging systems for ICA do not provide sufficient structural details due to their poor resolution. The key challenges in achieving high quality ICA imaging are its location in the anterior region of the eye and the occurrence of total internal reflection due to refractive index difference between cornea and air. Here, we report an indirect axicon assisted gonioscopy imaging probe with white light illumination. The illustrated results with this probe shows significantly improved visualization of structures in the ICA including TM region, compared to the current available tools. It could reveal critical details of ICA and expected to aid management by providing information that is complementary to angle photography and gonioscopy. PMID:27471000
High resolution iridocorneal angle imaging system by axicon lens assisted gonioscopy
NASA Astrophysics Data System (ADS)
Perinchery, Sandeep Menon; Shinde, Anant; Fu, Chan Yiu; Jeesmond Hong, Xun Jie; Baskaran, Mani; Aung, Tin; Murukeshan, Vadakke Matham
2016-07-01
Direct visualization and assessment of the iridocorneal angle (ICA) region with high resolution is important for the clinical evaluation of glaucoma. However, the current clinical imaging systems for ICA do not provide sufficient structural details due to their poor resolution. The key challenges in achieving high quality ICA imaging are its location in the anterior region of the eye and the occurrence of total internal reflection due to refractive index difference between cornea and air. Here, we report an indirect axicon assisted gonioscopy imaging probe with white light illumination. The illustrated results with this probe shows significantly improved visualization of structures in the ICA including TM region, compared to the current available tools. It could reveal critical details of ICA and expected to aid management by providing information that is complementary to angle photography and gonioscopy.
An improved patch for radiative coolers
NASA Astrophysics Data System (ADS)
Bly, Vincent T.
1993-09-01
A unique structure for constructing the emissive patch of a spaceborne radiative cooler is shown. The structure has very high emissivity for all angles up to a designed-in maximum angle and near zero emissivity for greater angles. The structure also allows the use of high emissivity, nonconducting paints while fully complying with the NASA Electrostatic Discharge Susceptibility requirements for spacecraft. To accomplish these tasks, two previous disadvantages of prior art methods are addressed; eliminating background thermal radiation sources and problems concerning the high emissivity paints used in association with the black body radiator. A reflector consisting of an array of parabolic concentrators is separated from a black body element by an electrically conductive spacer. The concentrators serve to limit the field of view while the conductive spacer eliminates the need to use a conductive paint on the emissive element.
An improved patch for radiative coolers
NASA Astrophysics Data System (ADS)
Bly, Vincent T.
1993-01-01
A unique structure for constructing the emissive patch of a spaceborne radiative cooler is shown. The structure has very high emissivity for all angles up to a designed-in maximum angle and near zero emissivity for greater angles. The structure also allows the use of high emissivity, nonconducting paints while fully complying with the NASA Electrostatic Discharge Susceptibility requirements for spacecraft. To accomplish these tasks, two previous disadvantages of prior art methods are addressed; eliminating background thermal radiation sources and problems concerning the high emissivity paints used in association with the black body radiator. A reflector consisting of an array of parabolic concentrators is separated from a black body element by an electrically conductive spacer. The concentrators serve to limit the field of view while the conductive spacer eliminates the need to use a conductive paint on the emissive element.
NASA's SR-71B and F-18 HARV aircraft left Edwards Air Force Base, Calif., on March 24, 2003
2003-03-24
Dryden Flight Research Center's SR-71B Blackbird aircraft, NASA tail number 831, is destined for the Kalamazoo Air Zoo museum in Kalamazoo, Mich., and the F-18 High Angle-of-Attack Research Vehicle (HARV) aircraft, NASA tail number 840, is going to the Virginia Air and Space Center in Hampton, Va. NASA's SR-71B was one of only two SR-71 trainer aircraft built, and served NASA in that role, as well as for some high-speed research, from 1991 to 1999. The F-18 HARV provided some of the most comprehensive data on the high-angle-of-attack flight regime, flying at angles of up to 70 degrees from the horizontal. The HARV flew 385 research flights at Dryden from 1987 through 1996.
Hyperon photoproduction in the nucleon resonance region
NASA Astrophysics Data System (ADS)
McNabb, J. W.; Schumacher, R. A.; Todor, L.; Adams, G.; Anciant, E.; Anghinolfi, M.; Asavapibhop, B.; Audit, G.; Auger, T.; Avakian, H.; Bagdasaryan, H.; Ball, J. P.; Barrow, S.; Battaglieri, M.; Beard, K.; Bektasoglu, M.; Bellis, M.; Berman, B. L.; Bianchi, N.; Biselli, A. S.; Boiarinov, S.; Bonner, B. E.; Bouchigny, S.; Bradford, R.; Branford, D.; Briscoe, W. J.; Brooks, W. K.; Burkert, V. D.; Butuceanu, C.; Calarco, J. R.; Carman, D. S.; Carnahan, B.; Cetina, C.; Ciciani, L.; Cole, P. L.; Coleman, A.; Cords, A. D.; Corvisiero, P.; Crabb, D.; Crannell, H.; Cummings, J. P.; de Sanctis, E.; Devita, R.; Degtyarenko, P. V.; Denizli, H.; Dennis, L.; Dharmawardane, K. V.; Dhuga, K. S.; Djalali, C.; Dodge, G. E.; Doughty, D.; Dragovitsch, P.; Dugger, M.; Dytman, S.; Eckhause, M.; Egiyan, H.; Egiyan, K. S.; Elouadrhiri, L.; Empl, A.; Eugenio, P.; Fatemi, R.; Feuerbach, R. J.; Ficenec, J.; Forest, T. A.; Funsten, H.; Gaff, S. J.; Gavalian, G.; Gilad, S.; Gilfoyle, G. P.; Giovanetti, K. L.; Girard, P.; Gordon, C. I.; Griffioen, K.; Guidal, M.; Guillo, M.; Guo, L.; Gyurjyan, V.; Hadjidakis, C.; Hakobyan, R.; Hardie, J.; Heddle, D.; Heimberg, P.; Hersman, F. W.; Hicks, K.; Hicks, R. S.; Holtrop, M.; Hu, J.; Hyde-Wright, C. E.; Ilieva, Y.; Ito, M. M.; Jenkins, D.; Joo, K.; Kelley, J. H.; Khandaker, M.; Kim, K. Y.; Kim, K.; Kim, W.; Klein, A.; Klein, F. J.; Klimenko, A. V.; Klusman, M.; Kossov, M.; Kramer, L. H.; Kuang, Y.; Kuhn, S. E.; Lachniet, J.; Laget, J. M.; Lawrence, D.; Li, Ji; Lukashin, K.; Manak, J. J.; Marchand, C.; McAleer, S.; McCarthy, J.; Mecking, B. A.; Mehrabyan, S.; Melone, J. J.; Mestayer, M. D.; Meyer, C. A.; Mikhailov, K.; Minehart, R.; Mirazita, M.; Miskimen, R.; Morand, L.; Morrow, S. A.; Muccifora, V.; Mueller, J.; Mutchler, G. S.; Napolitano, J.; Nasseripour, R.; Nelson, S. O.; Niccolai, S.; Niculescu, G.; Niculescu, I.; Niczyporuk, B. B.; Niyazov, R. A.; Nozar, M.; O'Brien, J. T.; O'Rielly, G. V.; Osipenko, M.; Park, K.; Pasyuk, E.; Peterson, G.; Philips, S. A.; Pivnyuk, N.; Pocanic, D.; Pogorelko, O.; Polli, E.; Pozdniakov, S.; Preedom, B. M.; Price, J. W.; Prok, Y.; Protopopescu, D.; Qin, L. M.; Quinn, B. P.; Raue, B. A.; Riccardi, G.; Ricco, G.; Ripani, M.; Ritchie, B. G.; Ronchetti, F.; Rossi, P.; Rowntree, D.; Rubin, P. D.; Sabatié, F.; Sabourov, K.; Salgado, C.; Santoro, J. P.; Sapunenko, V.; Serov, V. S.; Shafi, A.; Sharabian, Y. G.; Shaw, J.; Simionatto, S.; Skabelin, A. V.; Smith, E. S.; Smith, L. C.; Sober, D. I.; Spraker, M.; Stavinsky, A.; Stepanyan, S.; Stoler, P.; Strakovsky, I. I.; Strauch, S.; Taiuti, M.; Taylor, S.; Tedeschi, D. J.; Thoma, U.; Thompson, R.; Tur, C.; Ungaro, M.; Vineyard, M. F.; Vlassov, A. V.; Wang, K.; Weinstein, L. B.; Weisberg, A.; Weller, H.; Weygand, D. P.; Whisnant, C. S.; Wolin, E.; Wood, M. H.; Yegneswaran, A.; Yun, J.; Zhang, B.; Zhao, J.; Zhou, Z.
2004-04-01
High-statistics cross sections and recoil polarizations for the reactions γ+p→ K+ +Λ and γ+p→ K+ + Σ0 have been measured at CLAS for center-of-mass energies between 1.6 and 2.3 GeV . In the K+ Λ channel we confirm a resonance-like structure near W=1.9 GeV at backward kaon angles. Our data show more complex s - and u - channel behavior than previously seen, since structure is also present at forward angles, but not at central angles. The position and width change with angle, indicating that more than one resonance is playing a role. Large positive Λ polarization at backward angles, which is also energy dependent, is consistent with sizable s - or u -channel contributions. Presently available model calculations cannot explain these aspects of the data.
Agile wide-angle beam steering with electrowetting microprisms
NASA Astrophysics Data System (ADS)
Smith, Neil R.; Abeysinghe, Don C.; Haus, Joseph W.; Heikenfeld, Jason
2006-07-01
A novel basis for beam steering with electrowetting microprisms (EMPs) is reported. EMPs utilize electrowetting modulation of liquid contact angle in order to mimic the refractive behavior for various classical prism geometries. Continuous beam steering through an angle of 14° (±7°) has been demonstrated with a liquid index of n=1.359. Experimental results are well-matched to theoretical behavior up to the point of electrowetting contact-angle saturation. Projections show that use of higher index liquids (n~1.6) will result in steering through ~30° (±15°). Fundamental factors defining achievable deflection range, and issues for Ladar use, are reviewed. This approach is capable of good switching speed (~ms), polarization independent operation, modulation of beam field-of-view (lensing), and high steering efficiency that is independent of deflection angle.
Bito, Haruhiko; Takeuchi, Ryohei; Kumagai, Ken; Aratake, Masato; Saito, Izumi; Hayashi, Riku; Sasaki, Yohei; Aota, Yoichi; Saito, Tomoyuki
2009-04-01
Obtaining a correct postoperative limb alignment is an important factor in achieving a successful clinical outcome after an opening-wedge high tibial osteotomy (OWHTO). To better predict some of the aspects that impact upon the clinical outcomes following this procedure, including postoperative correction loss and over correction, we examined the changes in the frontal plane of the lower limb in a cohort of patients who had undergone OWHTO using radiography. Forty-two knees from 33 patients (23 cases of osteoarthritis and 10 of osteonecrosis) underwent a valgus realignment OWHTO procedure and were radiographically assessed for changes that occurred pre- and post-surgery. The mean femorotibial angle (FTA) was found to be 182.1 +/- 2.0 degrees (12 +/- 2.0 anatomical varus angulation) preoperatively and 169.6 +/- 2.4 degrees (10.4 +/- 2.4 anatomical valgus angulation) postoperatively. These measurements thus revealed significant changes in the weight bearing line ratio (WBL), femoral axis angle (FA), tibial axis angle (TA), tibia plateau angle (TP), tibia vara angle (TV) and talar tilt angle (TT) following OWHTO. In contrast, no significant change was found in the weight bearing line angle (WBLA) after these treatments. To assess the relationship between the correction angle and these indexes, 42 knees were divided into the following three groups according to the postoperative FTA; a normal correction group (168 degrees < or = FTA < or = 172 degrees ), an over-correction group (FTA < 168 degrees ), and an under-correction group (FTA > 172 degrees ). There were significant differences in the delta angle [DA; calculated as (pre FTA - post FTA) - (pre TV - post TV)] among each group of patients. Our results thus indicate a negative correlation between the DA and preoperative TA (R(2) = 0.148, p < 0.05). Hence, given that the correction errors in our patients appear to negatively correlate with the preoperative TA, postoperative malalignments are likely to be predictable prior to surgery.
SU-E-T-577: Obliquity Factor and Surface Dose in Proton Beam Therapy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Das, I; Andersen, A; Coutinho, L
2015-06-15
Purpose: The advantage of lower skin dose in proton beam may be diminished creating radiation related sequalae usually seen with photon and electron beams. This study evaluates the surface dose as a complex function of beam parameters but more importantly the effect of beam angle. Methods: Surface dose in proton beam depends on the beam energy, source to surface distance, the air gap between snout and surface, field size, material thickness in front of surface, atomic number of the medium, beam angle and type of nozzle (ie double scattering, (DS), uniform scanning (US) or pencil beam scanning (PBS). Obliquity factormore » (OF) is defined as ratio of surface dose in 0° to beam angle Θ. Measurements were made in water phantom at various beam angles using very small microdiamond that has shown favorable beam characteristics for high, medium and low proton energy. Depth dose measurements were performed in the central axis of the beam in each respective gantry angle. Results: It is observed that surface dose is energy dependent but more predominantly on the SOBP. It is found that as SSD increases, surface dose decreases. In general, SSD, and air gap has limited impact in clinical proton range. High energy has higher surface dose and so the beam angle. The OF rises with beam angle. Compared to OF of 1.0 at 0° beam angle, the value is 1.5, 1.6, 1,7 for small, medium and large range respectively for 60 degree angle. Conclusion: It is advised that just like range and SOBP, surface dose should be clearly understood and a method to reduce the surface dose should be employed. Obliquity factor is a critical parameter that should be accounted in proton beam therapy and a perpendicular beam should be used to reduce surface dose.« less
NASA Technical Reports Server (NTRS)
Erickson, G. E.; Gilbert, W. P.
1983-01-01
An experimental investigation was conducted to assess the vortex flow-field interactions on an advanced, twin-jet fighter aircraft configuration at high angles of attack. Flow-field surveys were conducted on a small-scale model in the Northrop 0.41 - by 0.60-meter water tunnel and, where appropriate, the qualitative observations were correlated with low-speed wind tunnel data trends obtained on a large-scale model of the advanced fighter in the NASA Langley Research Center 30- by 60-foot (9.1- by 18.3-meter) facility. Emphasis was placed on understanding the interactions of the forebody and LEX-wing vortical flows, defining the effects on rolling moment variation with sideslip, and identifying modifications to control or regulate the vortex interactions at high angles of attack. The water tunnel flow visualization results and wind tunnel data trend analysis revealed the potential for strong interactions between the forebody and LEX vortices at high angles of attack. In particular, the forebody flow development near the nose could be controlled by means of carefully-positioned radome strakes. The resultant strake-induced flow-field changes were amplified downstream by the more powerful LEX vortical motions with subsequent large effects on wing flow separation characteristics.
High Prevalence of Narrow Angles among Chinese-American Glaucoma and Glaucoma Suspect Patients
Seider, Michael I; Pekmezci, Melike; Han, Ying; Sandhu, Simi; Kwok, Shiu Y; Lee, Roland Y; Lin, Shan C
2009-01-01
Purpose To evaluate the prevalence of gonioscopically narrow angles in a Chinese-American population with glaucoma or glaucoma suspicion. Patients and Methods Charts from all Chinese-American patients seen in a comprehensive ophthalmology clinic in the Chinatown district of San Francisco in 2002 were reviewed. One eye from each patient with glaucoma or glaucoma suspicion that met inclusion criteria was included (n=108). Data was collected for gender, age, race (self-declared), refraction (spherical equivalent), intraocular pressure (IOP), gonioscopy and vertical cup-to-disk ratio (CDR). Results Sixty percent (n=65) of Chinese-American eyes with glaucoma or glaucoma suspicion had gonioscopically narrow angles (Shaffer grade ≤2 in three or more quadrants). Those with narrow angles were significantly older (P=0.004) than their open angle counterparts, but the two groups did not differ in terms of gender, refraction, IOP or CDR (all, P≥0.071). In a multivariate model including age, gender and refraction as predictors of angle grade (open or narrow), only age was a significant predictor of angle grade (P=0.004). Conclusions A large proportion of Chinese-Americans in our study population with glaucoma or glaucoma suspicion had gonioscopically narrow angles. In multivariate analysis, patients with narrow angles were older than those with open angles but did not differ from them in terms of gender or refraction. Continued evaluation of angle closure glaucoma risk among Chinese-Americans is needed. PMID:19826385
Simultaneous Multi-angle Observations of Strong Langmuir Turbulence at HAARP
NASA Astrophysics Data System (ADS)
Watanabe, Naomi; Golkowski, Mark; Sheerin, James P.; Watkins, Brenton J.
2015-10-01
We report results from a recent series of experiments employing the HF transmitter of the High Frequency Active Auroral Research Program (HAARP) to generate and study strong Langmuir turbulence (SLT) in the interaction region of overdense ionospheric plasma. The Modular UHF Ionospheric Radar (MUIR) located at the HAARP facility is used as the primary diagnostic. Short pulse, low duty cycle experiments are used to avoid generation of artificial field-aligned irregularities and isolate ponderomotive plasma turbulence effects. The HF pump frequency is close to the 3rd gyro-harmonic frequency and the HF pointing angle and MUIR look angle are between the HF Spitze angle and Magnetic Zenith angle. Plasma line spectra measured simultaneously in different spots of the interaction region display differences dependent on the aspect angle of the HF pump beam in the boresight direction and the pointing angle of the MUIR diagnostic radar. Outshifted Plasma Lines, cascade, collapse, coexistence, spectra are observed in agreement with existing theory and simulation results of Strong Langmuir Turbulence in ionospheric interaction experiments. It is found that SLT at HAARP is most readily observed at a HF pointing angle of 11° and UHF observation angle of 15°, which is consistent with the magnetic zenith effect as documented in previous works and optimal orientation of the refracted HF electric field vector.
Film cooling performance of a row of dual-fanned holes at various injection angles
NASA Astrophysics Data System (ADS)
Li, Guangchao; Wang, Haofeng; Zhang, Wei; Kou, Zhihai; Xu, Rangshu
2017-10-01
Film cooling performance about a row of dual-fanned holes with injection angles of 30°, 60 ° and 90° were experimentally investigated at blowing ratios of 1.0 and 2.0. Dual-fanned hole is a novel shaped hole which has both inlet expansion and outlet expansion. A transient thermochromic liquid crystal technique was used to reveal the local values of film cooling effectiveness and heat transfer coefficient. The results show that injection angles have strong influence on the two dimensional distributions of film cooling effectiveness and heat transfer coefficient. For the small injection angle of 30 degree and small blowing ratio of 1.0, there is only a narrow spanwise region covered with film. The increase of injection angle and blowing ratio both leads to the enhanced spanwise film diffusion, but reduced local cooling ability far away from the hole. Injection angles have comprehensive influence on the averaged film cooling effectiveness for various x/d locations. As injection angles are 30 and 60 degree, two bands of high heat transfer coefficients are found in mixing region of the gas and coolant. As injection angle increases to 90 degree, the mixing leads to the enhanced heat transfer region near the film hole. The averaged heat transfer coefficient increases with the increase of injection angle.
Complete 360° circumferential SSOCT gonioscopy of the iridocorneal angle
NASA Astrophysics Data System (ADS)
McNabb, Ryan P.; Kuo, Anthony N.; Izatt, Joseph A.
2014-02-01
The ocular iridocorneal angle is generally an optically inaccessible area when viewed directly through the cornea due to the high angle of incidence required and the large index of refraction difference between air and cornea (nair = 1.000 and ncornea = 1.376) resulting in total internal reflection. Gonioscopy allows for viewing of the angle by removing the aircornea interface through the use of a special contact lens on the eye. Gonioscopy is used clinically to visualize the angle directly but only en face. Optical coherence tomography (OCT) has been used to image the angle and deeper structures via an external approach. Typically, this imaging technique is performed by utilizing a conventional anterior segment OCT scanning system. However, instead of imaging the apex of the cornea, either the scanner or the subject is tilted such that the corneoscleral limbus is orthogonal to the optical axis of the scanner requiring multiple volumes to obtain complete circumferential coverage of the ocular angle. We developed a novel gonioscopic OCT (GOCT) system that images the entire ocular angle within a single volume via an "internal" approach through the use of a custom radially symmetric gonioscopic contact lens. We present, to our knowledge, the first complete 360° circumferential volumes of the iridocorneal angle from a direct, internal approach.
Large-scale wind tunnel tests of a sting-supported V/STOL fighter model at high angles of attack
NASA Technical Reports Server (NTRS)
Stoll, F.; Minter, E. A.
1981-01-01
A new sting model support has been developed for the NASA/Ames 40- by 80-Foot Wind Tunnel. This addition to the facility permits testing of relatively large models to large angles of attack or angles of yaw depending on model orientation. An initial test on the sting is described. This test used a 0.4-scale powered V/STOL model designed for testing at angles of attack to 90 deg and greater. A method for correcting wake blockage was developed and applied to the force and moment data. Samples of this data and results of surface-pressure measurements are presented.
NASA Technical Reports Server (NTRS)
Letko, William
1949-01-01
An investigation has been made in the Langley stability tunnel to determine the low-speed static stability and control characteristics of a model of the Bell MX-776. The results show the model to be longitudinally unstable in the angle-of-attack range around zero angle of attack and to become stable at moderate angles of attack. The results of the present investigation agree reasonably well with results obtained in other facilities at low speed. The present pitching-moment results at low Mach numbers also agree reasonably well with unpublished results of tests of the model at supersonic Mach numbers (up to Mach number 1.86). Unpublished results at moderate and high subsonic speeds, however, indicate considerably greater instability at low angles of attack than is indicated by low-speed results. The results of the present tests also showed that the pitching-moment coefficients for angles of attack up to 12deg remained fairly constant with sideslip angle up to 12deg. The elevators tested produced relatively large pitching moments at zero angle of attack but, as the angle of attack was increased, the elevator effectiveness decreased. The rate of decrease of elevator effectiveness with angle of attack was less for 8deg than for 20deg elevator deflection. Therefore although 8deg deflection caused an appreciable change in longitudinal trim angle and trim lift coefficient a deflection of 20deg caused only a small additional increase in trim angle and trim lift coefficient.
High-precision angle sensor based on a Köster’s prism with absolute zero-point
NASA Astrophysics Data System (ADS)
Ullmann, V.; Oertel, E.; Manske, E.
2018-06-01
In this publication, a novel approach will be presented to use a compact white-light interferometer based on a Köster’s prism for angle measurements. Experiments show that the resolution of this angle interferometer is in the range of a commercial digital autocollimator, with a focal length of f = 300 mm, but with clearly reduced signal noise and without overshoot artifacts in the signal caused by digital filters. The angle detection of the reference mirror in the Köster’s interferometer is based on analysing the rotation angle of the fringe pattern, which is projected on a CMOS-matrix. The fringe pattern is generated by two displaced spherical wave fronts coming from one fiber-coupled white-light source and getting divided into a reference and a measurement beam by the Köster’s prism. The displacement correlates with the reference angle mirror in one linear direction and with the angle aberrations of the prism in the other orthogonal direction on the CMOS sensor. We will present the experimental and optical setup, the method and algorithms for the image-to-angle processing as well as the experimental results obtained in calibration and long-term measurements.
Wind tunnel investigation of helicopter-rotor wake effects on three helicopter fuselage models
NASA Technical Reports Server (NTRS)
Wilson, J. C.; Mineck, R. E.
1975-01-01
The effects of rotor wake on helicopter fuselage aerodynamic characteristics were investigated in the Langley V/STOL tunnel. Force, moment, and pressure data were obtained on three fuselage models at various combinations of windspeed, sideslip angle, and pitch angle. The data show that the influence of rotor wake on the helicopter fuselage yawing moment imposes a significant additional thrust requirement on the tail rotor of a single-rotor helicopter at high sideslip angles.
Angle selective fiber coupler.
Barnoski, M K; Morrison, R J
1976-01-01
Angle selective input coupling through the side of a slightly tapered section of Corning highly multimode fiber has been experimentally demonstrated for the first time. This coupling technique allows the possibility of fabricating bidirectional (duplex) couplers for systems employing single strands of multimode, low loss fiber.
NASA Astrophysics Data System (ADS)
Jiang, Shanchao; Wang, Jing; Sui, Qingmei
2015-11-01
One novel distinguishable circumferential inclined direction tilt sensor is demonstrated by incorporating two strain sensitivity fiber Bragg gratings (FBGs) with two orthogonal triangular cantilever beam and using one fiber Bragg grating (FBG) as temperature compensation element. According to spatial vector and space geometry, theory calculation model of the proposed FBG tilt sensor which can be used to obtain the azimuth and tile angle of the inclined direction is established. To obtain its measuring characteristics, calibration experiment on one prototype of the proposed FBG tilt sensor is carried out. After temperature sensitivity experiment data analysis, the proposed FBG tilt sensor exhibits excellent temperature compensation characteristics. In 2-D tilt angle experiment, tilt measurement sensitivities of these two strain sensitivity FBGs are 140.85°/nm and 101.01°/nm over a wide range of 60º. Further, azimuth and tile angle of the inclined direction can be obtained by the proposed FBG tilt sensor which is verified in circumferential angle experiment. Experiment data show that relative errors of azimuth are 0.55% (positive direction) and 1.14% (negative direction), respectively, and relative errors of tilt angle are all less than 3%. Experiment results confirm that the proposed distinguishable circumferential inclined direction tilt sensor based on FBG can achieve azimuth and tile angle measurement with wide measuring range and high accuracy.
NASA Astrophysics Data System (ADS)
Chaudhary, Kuldeep; Guiltinan, Eric J.; Cardenas, M. Bayani; Maisano, Jessica A.; Ketcham, Richard A.; Bennett, Philip C.
2015-09-01
We present a new method for measuring wettability or contact angle of minerals at reservoir pressure-temperature conditions using high-resolution X-ray computed tomography (HRXCT) and radiography. In this method, a capillary or a narrow slot is constructed from a mineral or a rock sample of interest wherein two fluids are allowed to form an interface that is imaged using X-rays. After some validation measurements at room pressure-temperature conditions, we illustrate this method by measuring the contact angle of CO2-brine on quartz, muscovite, shale, borosilicate glass, polytetrafluoroethylene (PTFE or Teflon), and polyether ether ketone (PEEK) surfaces at 60-71°C and 13.8-22.8 MPa. At reservoir conditions, PTFE and PEEK surfaces were found to be CO2-wet with contact angles of 140° and 127°, respectively. Quartz and muscovite were found to be water-wet with contact angles of 26° and 58°, respectively, under similar conditions. Borosilicate glass-air-brine at room conditions showed strong water-wet characteristics with a contact angle of 9°, whereas borosilicate glass-CO2-brine at 13.8 MPa and 60°C showed a decrease in its water-wetness with contact angle of 54°. This method provides a new application for X-ray imaging and an alternative to other methods.
Flatness metrology based on small-angle deflectometric procedures with electronic tiltmeters
NASA Astrophysics Data System (ADS)
Ehret, G.; Laubach, S.; Schulz, M.
2017-06-01
The measurement of optical flats, e. g. synchrotron or XFEL mirrors, with single nanometer topography uncertainty is still challenging. At PTB, we apply for this task small-angle deflectometry in which the angle between the direction of the beam sent to the surface and the beam detected is small. Conventional deflectometric systems measure the surface angle with autocollimators whose light beam also represents the straightness reference. An advanced flatness metrology system was recently implemented at PTB that separates the straightness reference task from the angle detection task. We call it `Exact Autocollimation Deflectometric Scanning' because the specimen is slightly tilted in such a way that at every scanning position the specimen is `exactly' perpendicular to the reference light beam directed by a pentaprism to the surface under test. The tilt angle of the surface is then measured with an additional autocollimator. The advantage of the EADS method is that the two tasks (straightness reference and measurement of surface slope) are separated and each of these can be optimized independently. The idea presented in this paper is to replace this additional autocollimator by one or more electro-mechanical tiltmeters, which are typically faster and have a higher resolution than highly accurate commercially available autocollimators. We investigate the point stability and the linearity of a highly accurate electronic tiltmeter. The pros and cons of using tiltmeters in flatness metrology are discussed.
Low-speed cascade investigation of loaded leading-edge compressor blades
NASA Technical Reports Server (NTRS)
Emery, James C
1956-01-01
Six percent thick NACA 63-series compressor-blade sections having a loaded leading-edge A4K6 mean line have been investigated systematically in a two-dimensional porous-wall cascade over a range of Reynolds numbers from 160,000 to 385,000. Blades cambered to have isolated-airfoil lift coefficients of 0.6, 1.2, 1.8, and 2.4 were tested over the usable angle-of-attack range at inlet-air angles of 30 degrees, 45 degrees, and 60 degrees and solidities of 1.0 and 1.5. A comparison with data of NACA RM L51G31, shows that the angle-of-attack operating range is 2 degrees to 4 degrees less than the range for the uniformly loaded section; however, the wake losses near design angle of attack are slightly lower than those for the uniformly loaded section. Except for highly cambered blades at high inlet angles, the 63-(C s oA4K6)06 compressor-blade sections are capable of more efficient operation for moderate-speed subsonic compressors at design angle of attack than are the 65-(C s oa10)10 or the 65-(c s oA2I8b)10 compressor-blade sections. In contrast to the other sections, the loaded leading-edge sections are capable of operating efficiently at the lower Reynolds numbers.
Analysis of Slug Test Response in a Fracture of a Large Dipping Angle
NASA Astrophysics Data System (ADS)
Chen, C.
2013-12-01
A number of cross-borehole slug tests were conducted in a Cenozoic folded sandstone formation, where a fracture has a dipping angle as large as 47°. As all the slug test models available in literature assume the formation to be horizontal, a slug test model taking into account the dipping angle effect is developed herein. Due to the presence of the dipping angle, there is a uniform regional groundwater flow, and the flow field generated by the test is not raidally symmetrical with respect to the test well. When the fracture hydraulic conductivity is relatively low, a larger dipping angle causes larger wellbore flow rates, leading to a faster recovery of the non-oscillatory test response. When the fracture hydraulic conductivity is relatively high, a larger dipping angle causes smaller wellbore heads, resulting in an increase of amplitude of the oscillatory test response; yet little influence on the frequency of oscillation. In general, neglecting the dipping angle may lead to an overestimate of hydraulic conductivity and an underestimate of the storage coefficient. The dipping angle effect is more pronounced for a larger storage coefficient, being less sensitive to transmissivity. An empirical relationship is developed for the minimum dipping angle, smaller than which the dipping angle effect can be safely neglected, as a function of the dimensionless storage coefficient. This empirical relationship helps evaluate whether or not the dipping angle needs to be considered in data analysis. The slug test data in the fracture of a 47°dipping angle is analyzed using the current model, and it is found that neglecting the dip angle can result in a 30% overestimate of transmissivity and a 61% underestimate of the storage coefficient.
Kappa angles in different positions in patients with myopia during LASIK
Qi, Hui; Jiang, Jing-Jing; Jiang, Yan-Ming; Wang, Li-Qiang; Huang, Yi-Fei
2016-01-01
AIM To investigate the difference in kappa angle between sitting and supine positions during laser-assisted in situ keratomileusis (LASIK). METHODS A retrospective study was performed on 395 eyes from 215 patients with myopia that received LASIK. Low, moderate, and high myopia groups were assigned according to diopters. The horizontal and vertical components of kappa angle in sitting position were measured before the operation, and in supine position during the operation. The data from the two positions were compared and the relationship between kappa angle and diopters were analyzed. RESULTS Two hundred and twenty-three eyes (56.5%) in sitting position and 343 eyes (86.8%) in supine position had positive kappa angles. There were no significant differences in horizontal and vertical components of kappa angle in the sitting position or horizontal components of kappa angle in the supine position between the three groups (P>0.05). A significant difference in the vertical components of kappa angle in the supine position was seen in the three groups (P<0.01). Differences in both horizontal and vertical components of kappa angles were significant between the sitting and supine positions. Positive correlations in both horizontal and vertical components of kappa angles (P<0.05) were found and vertical components of kappa angle in sitting and supine positions were negatively correlated with the degree of myopia (sitting position: r=-0.109; supine position: r=-0.172; P<0.05). CONCLUSION There is a correlation in horizontal and vertical components of kappa angle in sitting and supine positions. Positive correlations in both horizontal and vertical components of kappa angle in sitting and supine positions till the end of the results. This result still needs further observation. Clinicians should take into account different postures when excimer laser surgery needs to be performed. PMID:27162734
NASA Astrophysics Data System (ADS)
ElJack, Eltayeb
2017-05-01
In the present work, large eddy simulations of the flow field around a NACA-0012 aerofoil near stall conditions are performed at a Reynolds number of 5 × 104, Mach number of 0.4, and at various angles of attack. The results show the following: at relatively low angles of attack, the bubble is present and intact; at moderate angles of attack, the laminar separation bubble bursts and generates a global low-frequency flow oscillation; and at relatively high angles of attack, the laminar separation bubble becomes an open bubble that leads the aerofoil into a full stall. Time histories of the aerodynamic coefficients showed that the low-frequency oscillation phenomenon and its associated physics are indeed captured in the simulations. The aerodynamic coefficients compared to previous and recent experimental data with acceptable accuracy. Spectral analysis identified a dominant low-frequency mode featuring the periodic separation and reattachment of the flow field. At angles of attack α ≤ 9.3°, the low-frequency mode featured bubble shedding rather than bubble bursting and reformation. The underlying mechanism behind the quasi-periodic self-sustained low-frequency flow oscillation is discussed in detail.
Effects of Mach Numbers on Side Force, Yawing Moment and Surface Pressure
NASA Astrophysics Data System (ADS)
Sohail, Muhammad Amjad; Muhammad, Zaka; Husain, Mukkarum; Younis, Muhammad Yamin
2011-09-01
In this research, CFD simulations are performed for air vehicle configuration to compute the side force effect and yawing moment coefficients variations at high angle of attack and Mach numbers. As the angle of attack is increased then lift and drag are increased for cylinder body configurations. But when roll angle is given to body then side force component is also appeared on the body which causes lateral forces on the body and yawing moment is also produced. Now due to advancement of CFD methods we are able to calculate these forces and moment even at supersonic and hypersonic speed. In this study modern CFD techniques are used to simulate the hypersonic flow to calculate the side force effects and yawing moment coefficient. Static pressure variations along the circumferential and along the length of the body are also calculated. The pressure coefficient and center of pressure may be accurately predicted and calculated. When roll angle and yaw angle is given to body then these forces becomes very high and cause the instability of the missile body with fin configurations. So it is very demanding and serious problem to accurately predict and simulate these forces for the stability of supersonic vehicles.
NASA Technical Reports Server (NTRS)
Asbury, Scott C.; Capone, Francis J.
1995-01-01
An investigation was conducted in the Langley 16-Foot Transonic Tunnel to determine the multiaxis thrust-vectoring characteristics of the F-18 High-Alpha Research Vehicle (HARV). A wingtip supported, partially metric, 0.10-scale jet-effects model of an F-18 prototype aircraft was modified with hardware to simulate the thrust-vectoring control system of the HARV. Testing was conducted at free-stream Mach numbers ranging from 0.30 to 0.70, at angles of attack from O' to 70', and at nozzle pressure ratios from 1.0 to approximately 5.0. Results indicate that the thrust-vectoring control system of the HARV can successfully generate multiaxis thrust-vectoring forces and moments. During vectoring, resultant thrust vector angles were always less than the corresponding geometric vane deflection angle and were accompanied by large thrust losses. Significant external flow effects that were dependent on Mach number and angle of attack were noted during vectoring operation. Comparisons of the aerodynamic and propulsive control capabilities of the HARV configuration indicate that substantial gains in controllability are provided by the multiaxis thrust-vectoring control system.
Johnson, Jared M; Im, Soohyun; Windl, Wolfgang; Hwang, Jinwoo
2017-01-01
We propose a new scanning transmission electron microscopy (STEM) technique that can realize the three-dimensional (3D) characterization of vacancies, lighter and heavier dopants with high precision. Using multislice STEM imaging and diffraction simulations of β-Ga 2 O 3 and SrTiO 3 , we show that selecting a small range of low scattering angles can make the contrast of the defect-containing atomic columns substantially more depth-dependent. The origin of the depth-dependence is the de-channeling of electrons due to the existence of a point defect in the atomic column, which creates extra "ripples" at low scattering angles. The highest contrast of the point defect can be achieved when the de-channeling signal is captured using the 20-40mrad detection angle range. The effect of sample thickness, crystal orientation, local strain, probe convergence angle, and experimental uncertainty to the depth-dependent contrast of the point defect will also be discussed. The proposed technique therefore opens new possibilities for highly precise 3D structural characterization of individual point defects in functional materials. Copyright © 2016 Elsevier B.V. All rights reserved.
NASA Technical Reports Server (NTRS)
Graves, Ernald B.; Carmel, Melvin M.
1968-01-01
An investigation has been conducted at Mach numbers from 2.30 to 4.63 to determine the static aerodynamic characteristics of several configurations designed for flight at hypersonic Mach numbers. Two all-wing and three wing-body configurations were tested through an angle-of-attack range from about -4 degrees to 33 degrees and an angle-of-sideslip range from about -4 degrees to 8 degrees at a Reynolds number of 3 times 10 (sup 6) per foot (9.84 times 10 (sup 6) per meter). The results of the investigation indicated that the wing-body configurations produced higher values of maximum lift-drag ratio than those produced by the all-wing models. The high wing-body configurations tend to have a self-trimming capability as opposed to that for the low wing-body configurations. Each of the configurations produced a positive dihedral effect that increased with increasing angle of attack and decreased with increasing Mach number. The high wing-body models produced decreasing values of directional stability with increase in angle of attack, whereas the low wing-body models provided increasing values of directional stability with increase in angle of attack.
Research of misalignment between dithered ring laser gyro angle rate input axis and dither axis
NASA Astrophysics Data System (ADS)
Li, Geng; Wu, Wenqi; FAN, Zhenfang; LU, Guangfeng; Hu, Shaomin; Luo, Hui; Long, Xingwu
2014-12-01
The strap-down inertial navigation system (SINS), especially the SINS composed by dithered ring laser gyroscope (DRLG) is a kind of equipment, which providing high reliability and performance for moving vehicles. However, the mechanical dither which is used to eliminate the "Lock-In" effect can cause vibration disturbance to the INS and lead to dithering coupling problem in the inertial measurement unit (IMU) gyroscope triad, so its further application is limited. Among DRLG errors between the true gyro rotation rate and the measured rotation rate, the frequently considered one is the input axis misalignment between input reference axis which is perpendicular to the mounting surface and gyro angular rate input axis. But the misalignment angle between DRLG dither axis and gyro angular rate input axis is often ignored by researchers, which is amplified by dither coupling problem and that would lead to negative effects especially in high accuracy SINS. In order to study the problem more clearly, the concept of misalignment between DRLG dither axis and gyro angle rate input axis is researched. Considering the error of misalignment is of the order of 10-3 rad. or even smaller, the best way to measure it is using DRLG itself by means of an angle exciter as an auxiliary. In this paper, the concept of dither axis misalignment is explained explicitly firstly, based on this, the frequency of angle exciter is induced as reference parameter, when DRLG is mounted on the angle exciter in a certain angle, the projections of angle exciter rotation rate and mechanical oscillation rate on the gyro input axis are both sensed by DRLG. If the dither axis has misalignment error with the gyro input axis, there will be four major frequencies detected: the frequency of angle exciter, the dither mechanical frequency, sum and difference frequencies of the former two frequencies. Then the amplitude spectrum of DRLG output signal obtained by the using LabVIEW program. if there are only angle exciter and the dither mechanical frequencies, the misalignment may be too small to be detected, otherwise, the amplitude of the sum and difference frequencies will show the misalignment angle between the gyro angle rate input axis and the dither axis. Finally, some related parameters such as frequency and amplitude of the angle exciter and sample rate are calculated and the results are analyzed. The simulation and experiment result prove the effectiveness of the proposed method..
Dornacher, Daniel; Trubrich, Angela; Guelke, Joachim; Reichel, Heiko; Kappe, Thomas
2017-08-01
Regarding TT-TG in knee realignment surgery, two aspects have to be considered: first, there might be flaws in using absolute values for TT-TG, ignoring the knee size of the individual. Second, in high-grade trochlear dysplasia with a dome-shaped trochlea, measurement of TT-TG has proven to lack precision and reliability. The purpose of this examination was to establish a knee rotation angle, independent of the size of the individual knee and unaffected by a dysplastic trochlea. A total of 114 consecutive MRI scans of knee joints were analysed by two observers, retrospectively. Of these, 59 were obtained from patients with trochlear dysplasia, and another 55 were obtained from patients presenting with a different pathology of the knee joint. Trochlear dysplasia was classified into low grade and high grade. TT-TG was measured according to the method described by Schoettle et al. In addition, a modified knee rotation angle was assessed. Interobserver reliability of the knee rotation angle and its correlation with TT-TG was calculated. The knee rotation angle showed good correlation with TT-TG in the readings of observer 1 and observer 2. Interobserver correlation of the parameter showed excellent values for the scans with normal trochlea, low-grade and high-grade trochlear dysplasia, respectively. All calculations were statistically significant (p < 0.05). The knee rotation angle might meet the requirements for precise diagnostics in knee realignment surgery. Unlike TT-TG, this parameter seems not to be affected by a dysplastic trochlea. In addition, the dimensionless parameter is independent of the knee size of the individual. II.
NASA Technical Reports Server (NTRS)
Weick, Fred E; Noyes, Richard W
1933-01-01
Results are given of a series of systemic tests comparing lateral control devices with particular reference to their effectiveness at high angles of attack. These tests were made with two sizes of ordinary ailerons and different sizes of spoilers on a Clark Y wing model having a narrow auxiliary airfoil fixed ahead and above the leading edge, the chords of the main and auxiliary airfoils being parallel. In addition, the auxiliary airfoil itself was given angular deflection. The purpose was to provide rolling moments for lateral control. The tests were made in a 7 by 10 foot wind tunnel. They included both force and rotation tests to show the effect of the devices on the lift and drag characteristics of the wing and on the lateral stability characteristics, as well as lateral control. They showed that none of the aileron arrangements tried would give rolling control of an assumed satisfactory value at all angles of attack up to the stall. However, they would give satisfactory values, but at the expense of abnormally high deflections and very heavy hinge moments. The most effective combination of ailerons and spoilers gave satisfactory values of rolling moment at angles of attack below the stall, and the values did not fall off as rapidly above the stall as with ailerons alone. With an arrangement of this type having the proper relative proportions and linkage, it should be possible to obtain reasonably satisfactory yawing moments and control forces. Deflecting one-half of the auxiliary airfoil downward for the purpose of control gave strong favorable yawing moments at all angles of attack, but gave very small rolling moments at the low angles of attack.
Experimental Measurement of Frozen and Partially Melted Water Droplet Impact Dynamics
NASA Technical Reports Server (NTRS)
Palacios, Jose; Yan, Sihong; Tan, Jason; Kreeger, Richard E.
2014-01-01
High-speed video of single frozen water droplets impacting a surface was acquired. The droplets diameter ranged from 0.4 mm to 0.9 mm and impacted at velocities ranging from 140 m/sec to 309 m/sec. The techniques used to freeze the droplets and launch the particles against the surfaces is described in this paper. High-speed video was used to quantify the ice accretion area to the surface for varying impact angles (30 deg, 45 deg, 60 deg), impacting velocities, and break-up angles. An oxygen /acetylene cross-flow flame used to ensure partial melting of the traveling frozen droplets is also discussed. A linear relationship between impact angle and ice accretion is identified for fully frozen particles. The slope of the relationship is affected by impact speed. Perpendicular impacts, i.e. 30 deg, exhibited small differences in ice accretion for varying velocities, while an increase of 60% in velocity from 161 m/sec to 259 m/sec, provided an increase on ice accretion area of 96% at an impact angle of 60 deg. The increase accretion area highlights the importance of impact angle and velocity on the ice accretion process of ice crystals. It was experimentally observed that partial melting was not required for ice accretion at the tested velocities when high impact angles were used (45 and 60 deg). Partially melted droplets doubled the ice accretion areas on the impacting surface when 0.0023 Joules were applied to the particle. The partially melted state of the droplets and a method to quantify the percentage increase in ice accretion area is also described in the paper.
Autonomous satellite navigation using starlight refraction angle measurements
NASA Astrophysics Data System (ADS)
Ning, Xiaolin; Wang, Longhua; Bai, Xinbei; Fang, Jiancheng
2013-05-01
An on-board autonomous navigation capability is required to reduce the operation costs and enhance the navigation performance of future satellites. Autonomous navigation by stellar refraction is a type of autonomous celestial navigation method that uses high-accuracy star sensors instead of Earth sensors to provide information regarding Earth's horizon. In previous studies, the refraction apparent height has typically been used for such navigation. However, the apparent height cannot be measured directly by a star sensor and can only be calculated by the refraction angle and an atmospheric refraction model. Therefore, additional errors are introduced by the uncertainty and nonlinearity of atmospheric refraction models, which result in reduced navigation accuracy and reliability. A new navigation method based on the direct measurement of the refraction angle is proposed to solve this problem. Techniques for the determination of the refraction angle are introduced, and a measurement model for the refraction angle is established. The method is tested and validated by simulations. When the starlight refraction height ranges from 20 to 50 km, a positioning accuracy of better than 100 m can be achieved for a low-Earth-orbit (LEO) satellite using the refraction angle, while the positioning accuracy of the traditional method using the apparent height is worse than 500 m under the same conditions. Furthermore, an analysis of the factors that affect navigation accuracy, including the measurement accuracy of the refraction angle, the number of visible refracted stars per orbit and the installation azimuth of star sensor, is presented. This method is highly recommended for small satellites in particular, as no additional hardware besides two star sensors is required.
Liftoff and Transition Aerodynamics of the Ares I (A106) Launch Vehicle
NASA Technical Reports Server (NTRS)
Capone, Francis J.; Paulson, John W., Jr.; Erickson, Gary E.
2011-01-01
An investigation has been conducted in the NASA Langley Research Center 14- by 22- Foot Subsonic Wind Tunnel to obtain the liftoff and transition aerodynamics of the Ares I (A106) Crew Launch Vehicle. Data were obtained in free-air at angles of attack from 10 to 90 at various roll angles and at roll angles of 0 to 360 at various angles of attack. In addition, tower effects were assessed by testing with and without a mobile launcher/tower at all wind azimuth angles and at various model heights to simulate the rise of the vehicle as it clears the tower on launch. The free-air data will be used for low speed high angle of attack flight simulation and as a bridge to the low angle of attack ascent database (0.5 < Mach < 5.0) being developed with data from the Langley Unitary Plan Wind Tunnel and Boeing Polysonic Wind Tunnel. The Ares I Database Development Team will add incremental tower effects data to the free-air data to develop the database for tower clearance.
NASA Astrophysics Data System (ADS)
Andelković, M.; Covaci, L.; Peeters, F. M.
2018-03-01
The in-plane dc conductivity of twisted bilayer graphene is calculated using an expansion of the real-space Kubo-Bastin conductivity in terms of Chebyshev polynomials. We investigate within a tight-binding approach the transport properties as a function of rotation angle, applied perpendicular electric field, and vacancy disorder. We find that for high-angle twists, the two layers are effectively decoupled, and the minimum conductivity at the Dirac point corresponds to double the value observed in monolayer graphene. This remains valid even in the presence of vacancies, hinting that chiral symmetry is still preserved. On the contrary, for low twist angles, the conductivity at the Dirac point depends on the twist angle and is not protected in the presence of disorder. Furthermore, for low angles and in the presence of an applied electric field, we find that the chiral boundary states emerging between AB and BA regions contribute to the dc conductivity, despite the appearance of localized states in the AA regions. The results agree qualitatively with recent transport experiments in low-angle twisted bilayer graphene.
Optical coherence tomography in anterior segment imaging
Kalev-Landoy, Maya; Day, Alexander C.; Cordeiro, M. Francesca; Migdal, Clive
2008-01-01
Purpose To evaluate the ability of optical coherence tomography (OCT), designed primarily to image the posterior segment, to visualize the anterior chamber angle (ACA) in patients with different angle configurations. Methods In a prospective observational study, the anterior segments of 26 eyes of 26 patients were imaged using the Zeiss Stratus OCT, model 3000. Imaging of the anterior segment was achieved by adjusting the focusing control on the Stratus OCT. A total of 16 patients had abnormal angle configurations including narrow or closed angles and plateau irides, and 10 had normal angle configurations as determined by prior full ophthalmic examination, including slit-lamp biomicroscopy and gonioscopy. Results In all cases, OCT provided high-resolution information regarding iris configuration. The ACA itself was clearly visualized in patients with narrow or closed angles, but not in patients with open angles. Conclusions Stratus OCT offers a non-contact, convenient and rapid method of assessing the configuration of the anterior chamber. Despite its limitations, it may be of help during the routine clinical assessment and treatment of patients with glaucoma, particularly when gonioscopy is not possible or difficult to interpret. PMID:17355288
Micciché, Maurizio; Arzt, Eduard; Kroner, Elmar
2014-05-28
The goal of our study is to better understand the design parameters of bioinspired dry adhesives inspired by geckos. For this, we fabricated single macroscopic pillars of 400 μm diameter with different aspect ratios and different tip shapes (i.e., flat tips, spherical tips with different radii, and mushroom tips with different diameters). Tilt-angle-dependent adhesion measurements showed that although the tip shape of the pillars strongly influences the pull-off force, the pull-off strength is similar for flat and mushroom-shaped tips. We found no tilt-angle dependency of adhesion for spherical tip structures and, except for high tilt angle and low preload experiments, no tilt-angle effect for mushroom-tip pillars. For flat-tip pillars, we found a strong influence of tilt angle on adhesion, which decreased linearly with increasing aspect ratio. The experiments show that for the tested aspect ratios between 1 and 5, a linear decrease of tilt-angle dependency is found. The results of our studies will help to design bioinspired adhesives for application on smooth and rough surfaces.
Influence of Different Diffuser Angle on Sedan's Aerodynamic Characteristics
NASA Astrophysics Data System (ADS)
Hu, Xingjun; Zhang, Rui; Ye, Jian; Yan, Xu; Zhao, Zhiming
The aerodynamic characteristics have a great influence on the fuel economics and the steering stability of a high speed vehicle. The underbody rear diffuser is one of important aerodynamic add-on devices. The parameters of the diffuser, including the diffuser angle, the number and the shape of separators, the shape of the end plate and etc, will affect the underbody flow and the wake. Here, just the influence of the diffuser angle was investigated without separator and the end plate. The method of Computational Fluid Dynamics was adopted to study the aerodynamic characteristics of a simplified sedan with a different diffuser angle respectively. The diffuser angle was set to 0°, 3°, 6°, 9.8° and 12° respectively. The diffuser angle of the original model is 9.8°. The conclusions were drawn that when the diffuser angle increases, the underbody flow and especially the wake change greatly and the pressure change correspondingly; as a result, the total aerodynamic drag coefficients of car first decrease and then increases, while the total aerodynamic lift coefficients decrease.
Lee, Soul; Li, Jing Xian
2014-01-01
Asymmetrical load carrying and wearing high-heeled shoes are very common. Biomechanics studies on the combined effects of high-heeled shoe wearing and asymmetrical load carrying are lacking. We sought to identify changes in lower-extremity joint kinematics associated with the effect of shoes and asymmetrical load carrying during walking. Fifteen healthy young women (mean ± SD: age, 24.67 ± 3.54 years; body weight, 54.96 ± 6.67 kg; and height, 162.2 ± 3.91 cm) who habitually wore high-heeled shoes participated in the study. They were asked to walk under nine combined conditions of three heights of shoe heels (0, 3, and 9 cm) and three carried loads (0%, 5%, and 10% of body weight). Temporospatial parameters and maximal joint angles in the sagittal and frontal planes of the hip, knee, and ankle on both limbs were studied. It was found that high-heeled shoe wearing and asymmetrical load carrying altered temporospatial parameters and joint kinematics. With increased heel height and load weight, cadence decreased and stride length increased. The knee flexion angle increased with an increase in heel height, and the load served only to exacerbate the changes. Changes in the hip angle were mostly caused by asymmetrical load carrying, whereas angle changes in the ankle were mostly caused by an increase in heel height. This study demonstrated that when high-heeled shoe wearing and asymmetrical load carrying are combined, changes at each joint are much greater than with high-heeled shoe wearing or load carrying alone.
Feng, S M; Wang, A G; Ding, P; Zhang, Z Y; Zhou, M M; Li, C K; Sun, Q Q
2016-07-26
To explore the surgical method of using the modified chevron osteotomy combined distal soft tissue reconstruction to treat high-grade bunionette deformity. From June 2013 to June 2015, the modified chevron osteotomy combined distal soft tissue reconstruction was used for surgical treatment of high-grade bunionette deformity in the Department of Hand and Foot Microsurgery in Xuzhou Central Hospital.Twenty-six patients with 28 feet high-grade bunionette deformity were hospitalized for treatment, with 3 male (3 feet) and 23 female (25 feet) cases, aged 22-73 (mean 47.1) years old.The average fourth-fifth intermetatarsal angle, lateral deviation of the fifth metatarsal angle and metatarsophalangeal-fifth angle were measured on the pre-and post- operative anterior to posterior weight-beating X rays of treated feet.The American Orthopaedic Foot and Ankle Society (AOFAS) Lesser Toe Metatarsophalangeal-Interphalangeal Scale was used to evaluate the post-operative outcomes. All of 26 patients were followed, with a mean 15.7 months (range 8-25 months). Primarily healing of the wound was achieved in all cases.No postoperative infection and nonunion on the osteotomy site was found during the follow-up time.The fracture healing time was 6-15 (mean 12.2) weeks.All the patients had satisfactory appearance and sensory function without callosum and metastatic metatarsalgia at the final follow-up.The post-operative fourth-fifth intermetatarsal angle, lateral deviation of the fifth metatarsal angle and metatarsophalangeal-fifth angle were significantly lesser than the pre-operative at the 6th week after operation, respectively [(5.5±1.7)°, (2.1±0.8)°, (5.7±2.6)°vs (16.4±4.2)°, (6.0±2.2)°, (10.5±7.4)°; all P<0.01]. The post-operative AOFAS score was significantly greater than the pre-operative [(87.1±6.7) vs (62.3±9.8) points, P<0.001]. The modified chevron osteotomy combined distal soft tissue reconstruction is a safe and easy treatment option for the high-grade bunionette deformity and provides patient satisfaction results.
Nolan, Winifred P; See, Jovina L; Chew, Paul T K; Friedman, David S; Smith, Scott D; Radhakrishnan, Sunita; Zheng, Ce; Foster, Paul J; Aung, Tin
2007-01-01
To evaluate noncontact anterior segment optical coherence technology (AS-OCT) as a qualitative method of imaging the anterior chamber angle and to determine its ability to detect primary angle closure when compared with gonioscopy in Asian subjects. Prospective observational case series. Two hundred three subjects were recruited from glaucoma clinics in Singapore with diagnoses of primary angle closure, primary open-angle glaucoma, ocular hypertension, or cataract. Both eyes (if eligible) of each patient were included in the study. Exclusion criteria were pseudophakia or previous glaucoma surgery. Images of the nasal, temporal, and inferior angles were obtained with AS-OCT in dark and then light conditions. Gonioscopic angle width was graded using the Spaeth classification for each quadrant in low lighting conditions. Angle closure was defined by AS-OCT as contact between the peripheral iris and angle wall anterior to the scleral spur and by gonioscopy as a Spaeth grade of 0 degree (posterior trabecular meshwork not visible). Comparison of the 2 methods in detecting angle closure was done by eye and by individual. Sensitivities and specificities of AS-OCT were calculated using gonioscopy as the reference standard. Complete data were available for 342 eyes of 200 patients. Of the patients, 70.9% had a clinical diagnosis of treated or untreated primary angle closure. Angle closure in > or =1 quadrants was detected by AS-OCT in 142 (71%) patients (228 [66.7%] eyes) and by gonioscopy in 99 (49.5%) patients (152 [44.4%] eyes). The inferior angle was closed more frequently than the nasal or temporal quadrants using both AS-OCT and gonioscopy. When performed under dark conditions, AS-OCT identified 98% of those subjects found to have angle closure on gonioscopy (95% confidence interval [CI], 92.2-99.6) and led to the characterization of 44.6% of those found to have open angles on gonioscopy to have angle closure as well. With gonioscopy as the reference standard, specificity of AS-OCT in the dark was 55.4% (95% CI, 45.2-65.2) for detecting individuals with angle closure. Anterior segment OCT is a rapid noncontact method of imaging angle structures. It is highly sensitive in detecting angle closure when compared with gonioscopy. More persons are found to have closed angles with AS-OCT than with gonioscopy.
NASA Technical Reports Server (NTRS)
Iliff, Kenneth W.; Wang, Kon-Sheng Charles
1997-01-01
The subsonic longitudinal stability and control derivatives of the F-18 High Angle of Attack Research Vehicle (HARV) are extracted from dynamic flight data using a maximum likelihood parameter identification technique. The technique uses the linearized aircraft equations of motion in their continuous/discrete form and accounts for state and measurement noise as well as thrust-vectoring effects. State noise is used to model the uncommanded forcing function caused by unsteady aerodynamics over the aircraft, particularly at high angles of attack. Thrust vectoring was implemented using electrohydraulically-actuated nozzle postexit vanes and a specialized research flight control system. During maneuvers, a control system feature provided independent aerodynamic control surface inputs and independent thrust-vectoring vane inputs, thereby eliminating correlations between the aircraft states and controls. Substantial variations in control excitation and dynamic response were exhibited for maneuvers conducted at different angles of attack. Opposing vane interactions caused most thrust-vectoring inputs to experience some exhaust plume interference and thus reduced effectiveness. The estimated stability and control derivatives are plotted, and a discussion relates them to predicted values and maneuver quality.
Receptivity and Forced Response to Acoustic Disturbances in High-Speed Boundary Layers
NASA Technical Reports Server (NTRS)
Balakumar, P.; King, Rudolph A.; Chou, Amanda; Owens, Lewis R.; Kegerise, Michael A.
2016-01-01
Supersonic boundary-layer receptivity to freestream acoustic disturbances is investigated by solving the Navier-Stokes equations for Mach 3.5 flow over a sharp flat plate and a 7-deg half-angle cone. The freestream disturbances are generated from a wavy wall placed at the nozzle wall. The freestream acoustic disturbances radiated by the wavy wall are obtained by solving the linearized Euler equations. The results for the flat plate show that instability modes are generated at all the incident angles ranging from zero to highly oblique. However, the receptivity coefficient decreases by about 20 times when the incident angle increases from zero to a highly oblique angle of 68 degrees. The results for the cone show that no instability modes are generated when the acoustic disturbances impinge the cone obliquely. The results show that the perturbations generated inside the boundary layer by the acoustic disturbances are the response of the boundary layer to the external forcing. The amplitude of the forced disturbances inside the boundary layer are about 2.5 times larger than the incoming field for zero azimuthal wavenumber and they are about 1.5 times for large azimuthal wavenumbers.
Aerodynamic parameters of High-Angle-of attack Research Vehicle (HARV) estimated from flight data
NASA Technical Reports Server (NTRS)
Klein, Vladislav; Ratvasky, Thomas R.; Cobleigh, Brent R.
1990-01-01
Aerodynamic parameters of the High-Angle-of-Attack Research Aircraft (HARV) were estimated from flight data at different values of the angle of attack between 10 degrees and 50 degrees. The main part of the data was obtained from small amplitude longitudinal and lateral maneuvers. A small number of large amplitude maneuvers was also used in the estimation. The measured data were first checked for their compatibility. It was found that the accuracy of air data was degraded by unexplained bias errors. Then, the data were analyzed by a stepwise regression method for obtaining a structure of aerodynamic model equations and least squares parameter estimates. Because of high data collinearity in several maneuvers, some of the longitudinal and all lateral maneuvers were reanalyzed by using two biased estimation techniques, the principal components regression and mixed estimation. The estimated parameters in the form of stability and control derivatives, and aerodynamic coefficients were plotted against the angle of attack and compared with the wind tunnel measurements. The influential parameters are, in general, estimated with acceptable accuracy and most of them are in agreement with wind tunnel results. The simulated responses of the aircraft showed good prediction capabilities of the resulting model.
Advantageous GOES IR results for ash mapping at high latitudes: Cleveland eruptions 2001
Gu, Yingxin; Rose, William I.; Schneider, D.J.; Bluth, G.J.S.; Watson, I.M.
2005-01-01
The February 2001 eruption of Cleveland Volcano, Alaska allowed for comparisons of volcanic ash detection using two-band thermal infrared (10-12 ??m) remote sensing from MODIS, AVHRR, and GOES 10. Results show that high latitude GOES volcanic cloud sensing the range of about 50 to 65??N is significantly enhanced. For the Cleveland volcanic clouds the MODIS and AVHRR data have zenith angles 6-65 degrees and the GOES has zenith angles that are around 70 degrees. The enhancements are explained by distortion in the satellite view of the cloud's lateral extent because the satellite zenith angles result in a "side-looking" aspect and longer path lengths through the volcanic cloud. The shape of the cloud with respect to the GOES look angle also influences the results. The MODIS and AVHRR data give consistent retrievals of the ash cloud evolution over time and are good corrections for the GOES data. Copyright 2005 by the American Geophysical Union.
Stagger angle dependence of inertial and elastic coupling in bladed disks
NASA Technical Reports Server (NTRS)
Crawley, E. F.; Mokadam, D. R.
1984-01-01
Conditions which necessitate the inclusion of disk and shaft flexibility in the analysis of blade response in rotating blade-disk-shaft systems are derived in terms of nondimensional parameters. A simple semianalytical Rayleigh-Ritz model is derived in which the disk possesses all six rigid body degrees of freedom, which are elastically constrained by the shaft. Inertial coupling by the rigid body motion of the disk on a flexible shaft and out-of-plane elastic coupling due to disk flexure are included. Frequency ratios and mass ratios, which depend on the stagger angle, are determined for three typical rotors: a first stage high-pressure core compressor, a high bypass ratio fan, and an advanced turboprop. The stagger angle controls the degree of coupling in the blade-disk system. In the blade-disk-shaft system, the stagger angle determines whether blade-disk motion couples principally to the out-of-plane or in-plane motion of the disk on the shaft. The Ritz analysis shows excellent agreement with experimental results.
Augmentation of maneuver performance by spanwise blowing
NASA Technical Reports Server (NTRS)
Erickson, G. E.; Campbell, J. F.
1977-01-01
A generalized wind tunnel model was tested to investigate new component concepts utilizing spanwise blowing to provide improved maneuver characteristics for advanced fighter aircraft. Primary emphasis was placed on high angle of attack performance, stability, and control at subsonic speeds. Spanwise blowing on a 44 deg swept trapezoidal wing resulted in leading edge vortex enhancement with subsequent large vortex-induced lift increments and drag polar improvements at the higher angles of attack. Small deflections of a leading edge flap delayed these lift and drag benefits to higher angles of attack. In addition, blowing was more effective at higher Mach numbers. Spanwise blowing in conjunction with a deflected trailing edge flap resulted in lift and drag benefits that exceeded the summation of the effects of each high lift device acting alone. Asymmetric blowing was an effective lateral control device at the higher angles of attack. Spanwise blowing on the wing reduced horizontal tail loading and improved the lateral-directional stability characteristics of a wing-horizontal tail-vertical tail configuration.
Micro-cones on a liquid interface in high electric field: Ionization effects
NASA Astrophysics Data System (ADS)
Subbotin, Andrey V.; Semenov, Alexander N.
2018-02-01
We formulate and explore electrohydrodynamic equations for conductive liquids taking dissociation/recombination processes into account and discover a novel type of liquid cones which carry both surface and net bulk charge and can be formed on a liquid interface in an electric field. The bulk charge is generated by the corona discharge due to a high electric field at the cone apex. We establish correlation between the cone angle and physical parameters of the liquid on the one hand and the electric current passing through the cone on the other hand. It is shown that the current strongly increases when the cone angle tends to a critical value which is a function of the dielectric permittivity of the liquid. The cone stability with respect to axially symmetric perturbations is analyzed. It is shown that the cones with apex angles close to the critical angle are likely to be stable. The effect of the imposed flow on the cone apex stability is also discussed.
NASA Technical Reports Server (NTRS)
Hanson, R. L.; Obrien, R. G.; Oiye, M. Y.; Vanderleest, S.
1972-01-01
Experimental aerodynamic investigations were carried out in the Boeing transonic and supersonic wind tunnels on a 0.008899-scale model of a proposed pressure-fed ballistic recoverable booster (BRB) configuration. The purpose of the test program was to determine the stability and control effectiveness of the basic configuration at high and low angles of attack, and to conduct parametric studies of various engine shroud, fin, and drag petal configurations. Six-component force data and base pressure data were obtained over a Mach number range of 0.35 to 4.0 at angles of attack of -5 to 25 and 55 to 85 at zero degrees sideslip and over a sideslip range of -10 to +10 at angles of attack ranging from -10 to 72.5. Two-component force data were also obtained with a fin balance on selected runs.
Failure detection and fault management techniques for flush airdata sensing systems
NASA Technical Reports Server (NTRS)
Whitmore, Stephen A.; Moes, Timothy R.; Leondes, Cornelius T.
1992-01-01
Methods based on chi-squared analysis are presented for detecting system and individual-port failures in the high-angle-of-attack flush airdata sensing system on the NASA F-18 High Alpha Research Vehicle. The HI-FADS hardware is introduced, and the aerodynamic model describes measured pressure in terms of dynamic pressure, angle of attack, angle of sideslip, and static pressure. Chi-squared analysis is described in the presentation of the concept for failure detection and fault management which includes nominal, iteration, and fault-management modes. A matrix of pressure orifices arranged in concentric circles on the nose of the aircraft indicate the parameters which are applied to the regression algorithms. The sensing techniques are applied to the F-18 flight data, and two examples are given of the computed angle-of-attack time histories. The failure-detection and fault-management techniques permit the matrix to be multiply redundant, and the chi-squared analysis is shown to be useful in the detection of failures.
Focal mechanisms and tidal modulation for tectonic tremors in Taiwan
NASA Astrophysics Data System (ADS)
Ide, S.; Yabe, S.; Tai, H. J.; Chen, K. H.
2015-12-01
Tectonic tremors in Taiwan have been discovered beneath the southern Central Range, but their hosting structure has been unknown. Here we constrain the focal mechanism of underground deformation related to tremors, using moment tensor inversion in the very low frequency band and tidal stress analysis. Three types of seismic data are used for two analysis steps: detection of tremors and the moment tensor inversion. Short-period seismograms from CWBSN are used for tremor detection. Broadband seismograms from BATS and the TAIGER project are used for both steps. About 1000 tremors were detected using an envelope correlation method in the high frequency band (2-8 Hz). Broadband seismograms are stacked relative to the tremor timing, and inverted for a moment tensor in the low frequency band (0.02-0.05 Hz). The best solution was obtained at 32 km depth, as a double-couple consistent with a low-angle thrust fault dipping to the east-southeast, or a high-angle thrust with a south-southwest strike. Almost all tremors occur when tidal shear stress is positive and normal stress is negative (clamping). Since the clamping stress is high for a high-angle thrust fault, the low-angle thrust fault is more likely to be the fault plane. Tremor rate increases non-linearly with increasing shear stress, suggesting a velocity strengthening friction law. The high tidal sensitivity is inconsistent with horizontal slip motion suggested by previous studies, and normal faults that dominates regional shallow earthquakes. Our results favor thrust slip on a low-angle fault dipping to the east-southeast, consistent with the subduction of the Eurasian plate. The tremor region is characterized by a deep thermal anomaly with decrease normal stress. This region has also experienced enough subduction to produce metamorphic fluids. A large amount of fluid and low vertical stress may explain the high tidal sensitivity.
Structural characterization of nano-oxide layers in PtMn based specular spin valves
NASA Astrophysics Data System (ADS)
Zhou, Min; Chen, Lifan; Diao, Zhitao; Park, Chang-Man; Huai, Yiming
2005-05-01
A systematic structure characterization of nano-oxide layers (NOLs) and specular spin valves using x-ray diffraction and high-resolution transmission electron microscopy (HRTEM) has been studied. High-angle x-ray diffraction data show almost identical fcc textures for both natural and plasma NOL spin-valves. Low-angle x-ray reflectivity spectrum shows more deteriorated Kiessig fringes at high incident angles for natural oxide sample, indicating rougher interfaces in natural oxidation than in plasma oxidation. Oxygen exposure plays an important role in NOLs process. Fabricating NOLs without any crystal structure degradation is critical to obtain high MR ratio. HRTEM reveals that oxide clusters mixing with insufficiently oxidized CoFe layers prevailed in natural NOL, and the natural oxidation was inhomogeneous. In contrast, plasma NOL has a thinner, more homogeneously oxidized CoFe layers with sharp interfaces. In plasma NOLs, the structures still maintain CoFe crystal structure. The structures and magnetic correlation of the NOL specular spin valves are discussed.
Controllable stearic acid crystal induced high hydrophobicity on cellulose film surface.
He, Meng; Xu, Min; Zhang, Lina
2013-02-01
A novel, highly hydrophobic cellulose composite film (RCS) with biodegradability was fabricated via solvent-vaporized controllable crystallization of stearic acid in the porous structure of cellulose films (RC). The interface structure and properties of the composite films were investigated with wide-angle X-ray diffraction (WAXD), scanning electron microscopy (SEM), differential scanning calorimetry (DSC), FT-IR, solid-state (13)C NMR, water uptake, tensile testing, water contact angle, and biodegradation tests. The results indicated that the RCS films exhibited high hydrophobicity (water contact angle achieved to 145°), better mechanical properties in the humid state and lower water uptake ratio than RC. Interestingly, the stearic acid crystallization was induced by the pore wall of the cellulose matrix to form a micronano binary structure, resulting in a rough surface. The rough surface with a hierarchical structure containing micronanospace on the RCS film surface could trap abundant air, leading to the high hydrophobicity. Moreover, the RCS films were flexible, biodegradable, and low-cost, showing potential applications in biodegradable water-proof packaging.
High frequency estimation of 2-dimensional cavity scattering
NASA Astrophysics Data System (ADS)
Dering, R. S.
1984-12-01
This thesis develops a simple ray tracing approximation for the high frequency scattering from a two-dimensional cavity. Whereas many other cavity scattering algorithms are very time consuming, this method is very swift. The analytical development of the ray tracing approach is performed in great detail, and it is shown how the radar cross section (RCS) depends on the cavity's length and width along with the radar wave's angle of incidence. This explains why the cavity's RCS oscillates as a function of incident angle. The RCS of a two dimensional cavity was measured experimentally, and these results were compared to computer calculations based on the high frequency ray tracing theory. The comparison was favorable in the sense that angular RCS minima and maxima were exactly predicted even though accuracy of the RCS magnitude decreased for incident angles far off-axis. Overall, once this method is extended to three dimensions, the technique shows promise as a fast first approximation of high frequency cavity scattering.
Unsteady Transonic Flow Past Airfoils in Rigid Body Motion.
1981-03-01
coordinate system. Numerical experiments show that the scheme is very stable and is able to resolve the highly non- linear transonic effects for flutter...Numerical experiments show that the scheme is very stable and is able to resolve the highly nonlinear transonic effects for flutter analysis within...of attack, the angle between the flight direction and the airfoil chord. The effect of chanqinthe angle of attack of a conventional symmetric airfoil
The balance and harmony of control power for a combat aircraft in tactical maneuvering
NASA Technical Reports Server (NTRS)
Bocvarov, Spiro; Cliff, Eugene M.; Lutze, Frederick H.
1992-01-01
An analysis is presented for a family of regular extremal attitude-maneuvers for the High Angle-of-Attack Research Vehicle that has thrust-vectoring capability. Different levels of dynamic coupling are identified in the combat aircraft attitude model, and the characteristic extremal-family motion is explained. It is shown why the extremal-family trajectories develop small sideslip-angles, a highly desirable feature from a practical viewpoint.
A propagation experiment for modelling high elevation angle land mobile satellite channels
NASA Technical Reports Server (NTRS)
Richharia, M.; Evans, B. G.; Butt, G.
1990-01-01
This paper summarizes the results of a feasibility study for conducting high elevation angle propagation experiments in the European region for land mobile satellite communication. The study addresses various aspects of a proposed experiment. These include the selection of a suitable source for transmission, possibility of gathering narrow and wide band propagation data in various frequency bands, types of useful data, data acquisition technique, possible experimental configuration, and other experimental details.
Investigations of Compression Shocks and Boundary Layers in Gases Moving at High Speed
NASA Technical Reports Server (NTRS)
Ackeret, J.; Feldmann, F.; Rott, N.
1947-01-01
The mutual influences of compression shocks and friction boundary layers were investigated by means of high speed wind tunnels.Schlieren optics provided a clear picture of the flow phenomena and were used for determining the location of the compression shocks, measurement of shock angles, and also for Mach angles. Pressure measurement and humidity measurements were also taken into consideration.Results along with a mathematical model are described.
Prediction of Flows about Forebodies at High-Angle-of-Attack Dynamic Conditions
NASA Technical Reports Server (NTRS)
Fremaux, C. M.; vanDam, C. P.; Saephan, S.; DalBello, T.
2003-01-01
A Reynolds-average Navier Stokes method developed for rotorcraft type of flow problems is applied for predicting the forces and moments of forebody models at high-angle-of-attack dynamic conditions and for providing insight into the flow characteristics at these conditions. Wind-tunnel results from rotary testing on generic forebody models conducted by NASA Langley and DERA are used for comparison. This paper focuses on the steady-state flow problem.
Crew Exploration Vehicle (CEV) Water Landing Simulation
NASA Technical Reports Server (NTRS)
Littell, Justin D.; Lawrence, Charles; Carney, Kelly S.
2007-01-01
Crew Exploration Vehicle (CEV) water splashdowns were simulated in order to find maximum acceleration loads on the astronauts and spacecraft under various landing conditions. The acceleration loads were used in a Dynamic Risk Index (DRI) program to find the potential risk for injury posed on the astronauts for a range of landing conditions. The DRI results showed that greater risks for injury occurred for two landing conditions; when the vertical velocity was large and the contact angle between the spacecraft and the water impact surface was zero, and when the spacecraft was in a toe down configuration and both the vertical and horizontal landing velocities were large. Rollover was also predicted to occur for cases where there is high horizontal velocity and low contact angles in a toe up configuration, and cases where there was a high horizontal velocity with high contact angles in a toe down configuration.
Microstructure effects on the recrystallization of low-symmetry alpha-uranium
DOE Office of Scientific and Technical Information (OSTI.GOV)
McCabe, Rodney James; Richards, Andrew Walter; Coughlin, Daniel Robert
2015-10-01
We employ electron backscatter diffraction (EBSD) to investigate microstructural evolution of uranium during recrystallization. To understand the relationship between microstructure and recrystallization, we use measures of intra-granular misorientation within grains and near grain boundaries in both deformed (non-recrystallized) uranium and recrystallizing uranium. The data show that the level of intra-granular misorientation depends on crystallographic orientation. However, contrary to expectation, this relationship does not significantly affect the recrystallization texture. Rather, the analysis suggests that recrystallization nucleation occurs along high angle grain boundaries in the deformed microstructure. Specifically, we show that the nucleation of recrystallized grains correlates well with the spatially heterogeneousmore » distribution of high angle boundaries. Due to the inhomogeneous distribution of high angle boundaries, the recrystallized microstructure after long times exhibits clustered distributions of small and large grains. Twin boundaries do not appear to act as recrystallization nucleation sites.« less
Bishop, Chris; Bartold, Simon; Thewlis, Dominic
2013-11-01
This case study reports the kinematic effect of 2 different cricket shoes on a fast bowler who reports a history of posterior ankle joint impingement. The participant bowled 6 trials in 2 pairs of cricket shoes. The 3-dimensional kinematics of the joints of the front leg was quantified during stance phase of the delivery stride. Wearing the high-cut shoe resulted in the ankle being 7.7-degree angle more plantarflexed at initial contact compared with the low-cut shoe. Again, when wearing the high-cut shoe compared with the low-cut shoe, the ankle joint was 15.5-degree angle more adducted and the knee was 4.1-degree angle less externally rotated at initial contact. This case study identifies the bowler's preferred shoe (high-cut shoe) as a potential contributing factor to the symptoms he was experiencing.
Non-periodic high-index contrast gratings reflector with large-angle beam forming ability
NASA Astrophysics Data System (ADS)
Fang, Wenjing; Huang, Yongqing; Duan, Xiaofeng; Fei, Jiarui; Ren, Xiaomin; Mao, Min
2016-05-01
A non-periodic high-index contrast gratings (HCGs) reflector on SOI wafer with large-angle beam forming ability has been proposed and fabricated. The proposed reflector was designed using rigorous coupled-wave analysis (RCWA) and finite-element-method (FEM). A deflection angle of 17.35° and high reflectivity of 92.31% are achieved under transverse magnetic (TM) polarized light in numerical simulation. Experimental results show that the reflected power peaked at 17.2° under a 1550 nm incident light, which is in good accordance with the simulation results. Moreover, the reflected power spectrum was also measured. Under different incident wavelengths around 1550 nm, reflected powers all peaked at 17.2°. The results show that the proposed non-periodic HCGs reflector has a good reflection and beam forming ability in a wavelength range as wide as 40 nm around 1550 nm.
Laser radar cross-section estimation from high-resolution image data.
Osche, G R; Seeber, K N; Lok, Y F; Young, D S
1992-05-10
A methodology for the estimation of ladar cross sections from high-resolution image data of geometrically complex targets is presented. Coherent CO(2) laser radar was used to generate high-resolution amplitude imagery of a UC-8 Buffalo test aircraft at a range of 1.3 km at nine different aspect angles. The average target ladar cross section was synthesized from these data and calculated to be sigma(T) = 15.4 dBsm, which is similar to the expected microwave radar cross sections. The aspect angle dependence of the cross section shows pronounced peaks at nose on and broadside, which are also in agreement with radar results. Strong variations in both the mean amplitude and the statistical distributions of amplitude with the aspect angle have also been observed. The relative mix of diffuse and specular returns causes significant deviations from a simple Lambertian or Swerling II target, especially at broadside where large normal surfaces are present.
High-resolution scanning precession electron diffraction: Alignment and spatial resolution.
Barnard, Jonathan S; Johnstone, Duncan N; Midgley, Paul A
2017-03-01
Methods are presented for aligning the pivot point of a precessing electron probe in the scanning transmission electron microscope (STEM) and for assessing the spatial resolution in scanning precession electron diffraction (SPED) experiments. The alignment procedure is performed entirely in diffraction mode, minimising probe wander within the bright-field (BF) convergent beam electron diffraction (CBED) disk and is used to obtain high spatial resolution SPED maps. Through analysis of the power spectra of virtual bright-field images extracted from the SPED data, the precession-induced blur was measured as a function of precession angle. At low precession angles, SPED spatial resolution was limited by electronic noise in the scan coils; whereas at high precession angles SPED spatial resolution was limited by tilt-induced two-fold astigmatism caused by the positive spherical aberration of the probe-forming lens. Copyright © 2016 Elsevier B.V. All rights reserved.
A review of some Reynolds number effects related to bodies at high angles of attack
NASA Technical Reports Server (NTRS)
Polhamus, E. C.
1984-01-01
A review of some effects of Reynolds number on selected aerodynamic characteristics of two- and three-dimensional bodies of various cross sections in relation to fuselages at high angles of attack at subsonic and transonic speeds is presented. Emphasis is placed on the Reynolds number ranges above the subcritical and angles of attack where lee side vortex flow or unsteady wake type flows predominate. Lists of references, arranged in subject categories, are presented with emphasis on those which include data over a reasonable Reynolds number range. Selected Reynolds number data representative of various aerodynamic flows around bodies are presented and analyzed and some effects of these flows on fuselage aerodynamic parameters are discussed.
NASA Astrophysics Data System (ADS)
Azzam, R. M. A.; Howlader, M. M. K.; Georgiou, T. Y.
1995-08-01
A transparent or absorbing substrate can be coated with a transparent thin film to produce a linear reflectance-versus-angle-of-incidence response over a certain range of angles. Linearization at and near normal incidence is a special case that leads to a maximally flat response for p -polarized, s -polarized, or unpolarized light. For midrange and high-range linearization with moderate and high slopes, respectively, the best results are obtained when the incident light is s polarized. Application to a Si substrate that is coated with a SiO2 film leads to novel passive and active reflection rotation sensors. Experimental results and an error analysis of this rotation sensor are presented.
Switching LPV Control for High Performance Tactical Aircraft
NASA Technical Reports Server (NTRS)
Lu, Bei; Wu, Fen; Kim, SungWan
2004-01-01
This paper examines a switching Linear Parameter-Varying (LPV) control approach to determine if it is practical to use for flight control designs within a wide angle of attack region. The approach is based on multiple parameter-dependent Lyapunov functions. The full parameter space is partitioned into overlapping subspaces and a family of LPV controllers are designed, each suitable for a specific parameter subspace. The hysteresis switching logic is used to accomplish the transition among different parameter subspaces. The proposed switching LPV control scheme is applied to an F-16 aircraft model with different actuator dynamics in low and high angle of attack regions. The nonlinear simulation results show that the aircraft performs well when switching among different angle of attack regions.
NASA Technical Reports Server (NTRS)
Keil, J.
1985-01-01
Wind tunnel tests were conducted on airfoil models in order to study the flow separation phenomena occurring for high angles of attack. Pressure distribution on wings of different geometries were measured. Results show that for three-dimensional airfoils layout and span lift play a role. Separation effects on airfoils with moderate extension are three-dimensional. The flow domains separated from the air foil must be treated three-dimensionally. The rolling-up of separated vortex layers increases with angle in intensity and induction effect and shows strong nonlinearities. Boundary layer material moves perpendicularly to the flow direction due to the pressure gradients at the airfoil; this has a stabilizing effect. The separation starts earlier with increasing pointed profiles.
NASA Technical Reports Server (NTRS)
Morelli, Eugene A.
1995-01-01
Flight test maneuvers are specified for the F-18 High Alpha Research Vehicle (HARV). The maneuvers were designed for open loop parameter identification purposes, specifically for optimal input design validation at 5 degrees angle of attack, identification of individual strake effectiveness at 40 and 50 degrees angle of attack, and study of lateral dynamics and lateral control effectiveness at 40 and 50 degrees angle of attack. Each maneuver is to be realized by applying square wave inputs to specific control effectors using the On-Board Excitation System (OBES). Maneuver descriptions and complete specifications of the time/amplitude points define each input are included, along with plots of the input time histories.
High-energy spectra of atmospheric neutrinos
NASA Astrophysics Data System (ADS)
Petrova, O. N.; Sinegovskaya, T. S.; Sinegovsky, S. I.
2012-12-01
A calculation of the atmospheric high-energy muon neutrino spectra and zenith-angle distributions is performed for two primary spectrum parameterizations (by Gaisser and Honda and by Zatsepin and Sokolskaya) with the use of QGSJET-II-03 and SIBYLL 2.1 hadronic models. A comparison of the zenith angle-averaged muon neutrino spectrum with the data of Frejus, AMANDA-II, and IceCube40 experiments makes it clear that, even at energies above 100 TeV, the prompt neutrino contribution is not apparent because of the considerable uncertainties of the experimental data in the high-energy region.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Swain, M.R.
The following report is divided into two sections. The first section describes the results of ignitability tests of high pressure hydrogen and natural gas leaks. The volume of ignitable gases formed by leaking hydrogen or natural gas were measured. Leaking high pressure hydrogen produced a cone of ignitable gases with 28{degrees} included angle. Leaking high pressure methane produced a cone of ignitable gases with 20{degrees} included angle. Ignition of hydrogen produced larger overpressures than did natural gas. The largest overpressures produced by hydrogen were the same as overpressures produced by inflating a 11 inch child`s balloon until it burst.
High Power Optical Coatings by Atomic Layer Deposition and Signatures of Laser-Induced Damage
2012-08-28
diffraction angle 0 into crystal lattice spacing d by the Bragg condition, mX = 2d sin 0. Here X is the x - ray wavelength... angle x - ray diffraction (GAXRD) measurements, which were made at a fixed shallow incidence angle of 0.5°. Detector scans were done to measure the...was finished with 200 hafnia cycles m the fmal half period rather than 400. Crystallinity was measured by x - ray diffraction (XRD) with
Investigation of the Flow Over Simple Bodies at Mach Numbers of the Order of 20
NASA Technical Reports Server (NTRS)
Henderson, Arthur, Jr.
1960-01-01
It is shown that adequate means are available for calculating inviscid direct and induced pressures on simple axisymmetric bodies at zero angle of attack. The extent to which viscous effects can alter these predictions is indicated. It is also shown that inviscid induced pressures can significantly affect the stability of blunt, two-dimensional flat wings at low angles of attack. However, at high angles of attack, the inviscid induced pressure effects are negligible.
1974-01-01
system and does not permit differential thrust during turning. Turning Geometry and Force Analysis An aircraft with a castered -steerable nose wheel ...instantaneous radius of turn S= caster angle of nose wheel The definition of the turning angle and the development of side loads and longitudinal drag...pneumatic trail distance will vary with the turning angle, 0. It is alao possible that for a castered wheel , that the caster axis is displaced from the
Jet slurry erosion performance of composite clad and its characterization
NASA Astrophysics Data System (ADS)
B, Lohit R.; Horakeri, Gururaj S.; Bhovi, Prabakhar M.
2016-09-01
In the present work, development of composite cladding consists of Cr23C6 (chromium carbide) as reinforcement particles 20 wt. % in Ni-based matrix 80 wt. % on austenitic stainless steel through exposure of microwave radiation has been carried out. The jet slurry erosion test was performed on microwave composite clad. The functional performance of composite clad has been evaluated for different parametric conditions like varying impingement velocity and impact angle. The increasing weight loss trend was observed with time for the first 30 min. after that the individual trend decreased; at high impingement velocity and maximum impact angle. SEM micrographs of eroded clad samples at various impact angle and impingement velocity were discussed. The maximum weight loss occurred at 90° angle and velocity of 60 m/s, and minimum at 30° angle and velocity of 20 m/s.
NASA Astrophysics Data System (ADS)
Dumler Md, Francis
2010-04-01
Bioelectrical impedance analysis is an established technique for body composition analysis. The phase angle parameter, an index of body cell mass, tissue hydration, and membrane integrity, makes it suitable for assessing nutritional status and survivability. We evaluated the significance of a low phase angle value on nutritional status and mortality in 285 chronic dialysis patients during a longitudinal prospective observational study. Patients in the lower phase angle tertile had decreased body weight, body mass index, fat free mass, body cell mass, and lower serum albumin concentrations than those in the higher tertile (P<001). In addition, mortality rates were significantly lower (P=0.05) in the highest tertile patients. In conclusion, the phase angle is a useful method for identifying dialysis patients at high risk for malnutrition and increased mortality.
Correcting sample drift using Fourier harmonics.
Bárcena-González, G; Guerrero-Lebrero, M P; Guerrero, E; Reyes, D F; Braza, V; Yañez, A; Nuñez-Moraleda, B; González, D; Galindo, P L
2018-07-01
During image acquisition of crystalline materials by high-resolution scanning transmission electron microscopy, the sample drift could lead to distortions and shears that hinder their quantitative analysis and characterization. In order to measure and correct this effect, several authors have proposed different methodologies making use of series of images. In this work, we introduce a methodology to determine the drift angle via Fourier analysis by using a single image based on the measurements between the angles of the second Fourier harmonics in different quadrants. Two different approaches, that are independent of the angle of acquisition of the image, are evaluated. In addition, our results demonstrate that the determination of the drift angle is more accurate by using the measurements of non-consecutive quadrants when the angle of acquisition is an odd multiple of 45°. Copyright © 2018 Elsevier Ltd. All rights reserved.
Quantitative angle-insensitive flow measurement using relative standard deviation OCT.
Zhu, Jiang; Zhang, Buyun; Qi, Li; Wang, Ling; Yang, Qiang; Zhu, Zhuqing; Huo, Tiancheng; Chen, Zhongping
2017-10-30
Incorporating different data processing methods, optical coherence tomography (OCT) has the ability for high-resolution angiography and quantitative flow velocity measurements. However, OCT angiography cannot provide quantitative information of flow velocities, and the velocity measurement based on Doppler OCT requires the determination of Doppler angles, which is a challenge in a complex vascular network. In this study, we report on a relative standard deviation OCT (RSD-OCT) method which provides both vascular network mapping and quantitative information for flow velocities within a wide range of Doppler angles. The RSD values are angle-insensitive within a wide range of angles, and a nearly linear relationship was found between the RSD values and the flow velocities. The RSD-OCT measurement in a rat cortex shows that it can quantify the blood flow velocities as well as map the vascular network in vivo .
Quantitative angle-insensitive flow measurement using relative standard deviation OCT
NASA Astrophysics Data System (ADS)
Zhu, Jiang; Zhang, Buyun; Qi, Li; Wang, Ling; Yang, Qiang; Zhu, Zhuqing; Huo, Tiancheng; Chen, Zhongping
2017-10-01
Incorporating different data processing methods, optical coherence tomography (OCT) has the ability for high-resolution angiography and quantitative flow velocity measurements. However, OCT angiography cannot provide quantitative information of flow velocities, and the velocity measurement based on Doppler OCT requires the determination of Doppler angles, which is a challenge in a complex vascular network. In this study, we report on a relative standard deviation OCT (RSD-OCT) method which provides both vascular network mapping and quantitative information for flow velocities within a wide range of Doppler angles. The RSD values are angle-insensitive within a wide range of angles, and a nearly linear relationship was found between the RSD values and the flow velocities. The RSD-OCT measurement in a rat cortex shows that it can quantify the blood flow velocities as well as map the vascular network in vivo.
Prediction of Unsteady Blade Surface Pressures on an Advanced Propeller at an Angle of Attack
NASA Technical Reports Server (NTRS)
Nallasamy, M.; Groeneweg, J. F.
1989-01-01
The numerical solution of the unsteady, three-dimensional, Euler equations is considered in order to obtain the blade surface pressures of an advanced propeller at an angle of attack. The specific configuration considered is the SR7L propeller at cruise conditions with a 4.6 deg inflow angle corresponding to the plus 2 deg nacelle tilt of the Propeller Test Assessment (PTA) flight test condition. The results indicate nearly sinusoidal response of the blade loading, with angle of attack. For the first time, detailed variations of the chordwise loading as a function of azimuthal angle are presented. It is observed that the blade is lightly loaded for part of the revolution and shocks appear from hub to about 80 percent radial station for the highly loaded portion of the revolution.
Prediction of unsteady blade surface pressures on an advanced propeller at an angle of attack
NASA Technical Reports Server (NTRS)
Nallasamy, M.; Groeneweg, J. F.
1989-01-01
The paper considers the numerical solution of the unsteady, three-dimensional, Euler equations to obtain the blade surface pressures of an advanced propeller at an angle of attack. The specific configuration considered is the SR7L propeller at cruise conditions with a 4.6 deg inflow angle corresponding to the +2 deg nacelle tilt of the Propeller Test Assessment (PTA) flight test condition. The results indicate nearly sinusoidal response of the blade loading, with angle of attack. For the first time, detailed variations of the chordwise loading as a function of azimuthal angle are presented. It is observed that the blade is lightly loaded for part of the revolution and shocks appear from hub to about 80 percent radial station for the highly loaded portion of the revolution.
Li, Feihu; Tang, Bingtao; Wu, Suli; Zhang, Shufen
2017-01-01
The synthesis and assembly of monodispersed colloidal spheres are currently the subject of extensive investigation to fabricate artificial structural color materials. However, artificial structural colors from general colloidal crystals still suffer from the low color visibility and strong viewing angle dependence which seriously hinder their practical application in paints, colorimetric sensors, and color displays. Herein, monodispersed polysulfide (PSF) spheres with intrinsic high refractive index (as high as 1.858) and light-absorbing characteristics are designed, synthesized through a facile polycondensation and crosslinking process between sodium disulfide and 1,2,3-trichloropropane. Owing to their high monodispersity, sufficient surface charge, and good dispersion stability, the PSF spheres can be assembled into large-scale and high-quality 3D photonic crystals. More importantly, high structural color visibility and broad viewing angle are easily achieved because the unique features of PSF can remarkably enhance the relative reflectivity and eliminate the disturbance of scattering and background light. The results of this study provide a simple and efficient strategy to create structural colors with high color visibility, which is very important for their practical application. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Effects of the inclination angle on the performance of flat plate solar collector
NASA Astrophysics Data System (ADS)
Ambarita, H.; Siregar, R. E. T.; Ronowikarto, A. D.; Setyawan, E. Y.
2018-03-01
Double glasses cover is typically used in a flat plate solar collector to decrease heat losses to ambient. The working principal of the cover is to allow the solar irradiation hit the plate absorber and blocks it using natural convection mechanism in the enclosure between the glasses. The performance of the enclosure to block the heat loss to the surrounding affected by the inclination angle of the collector. The objective of this study is to explore the effect of the inclination angle to the performance of the solar collector. Numerical simulation using commercial code Computational Fluid Dynamic (CFD) has been carried out to explore the fluid flow and heat transfer characteristics in the enclosure. In the result, streamline, vector velocity, and contour temperature are plotted. It was shown that the inclination angle strongly affects the performance of the collector. The average heat transfer coefficient decreases with increasing inclination angle. This fact suggests that too high inclination angle is not recommended for solar collector.
NASA Technical Reports Server (NTRS)
Henderson, W. P.
1974-01-01
An investigation has been conducted to determine the effects of canard, canard location, vertical tails, and vertical-tail location on the aerodynamic characteristics of a model having a 59 deg sweptback wing. The investigation was conducted at a Mach number of 0.30, at angles of attack up to 22 deg and at sideslip angles of 0 deg and plus or minus 5 deg. The results of the study indicate that adding the canard to the model had only a slight effect on the lift at the lower angles of attack. At the higher angles of attack there is a significant effect of canard height on lift, canard in the high location (above the wing chord plane) resulting in the highest lifts. The lift drag characteristics are predicted well for the configuration with the mid or high canard locations by combining a potential flow solution on the canard with a potential plus vortex solution on the wing. Variations in the height significantly affect the pitching-moment characteristics of the configuration; the configuration with the low or mid canard location exhibits an increase in stability at the higher lift coefficients, whereas the configuration with the high canard exhibits pitch-up. Adding the vertical tails in the outboard location caused a significant loss in lift at the higher angles of attack; this lift loss was eliminated by moving the vertical tails inboard.
NASA Astrophysics Data System (ADS)
Loye, A.; Jaboyedoff, M.; Pedrazzini, A.
2009-10-01
The availability of high resolution Digital Elevation Models (DEM) at a regional scale enables the analysis of topography with high levels of detail. Hence, a DEM-based geomorphometric approach becomes more accurate for detecting potential rockfall sources. Potential rockfall source areas are identified according to the slope angle distribution deduced from high resolution DEM crossed with other information extracted from geological and topographic maps in GIS format. The slope angle distribution can be decomposed in several Gaussian distributions that can be considered as characteristic of morphological units: rock cliffs, steep slopes, footslopes and plains. A terrain is considered as potential rockfall sources when their slope angles lie over an angle threshold, which is defined where the Gaussian distribution of the morphological unit "Rock cliffs" become dominant over the one of "Steep slopes". In addition to this analysis, the cliff outcrops indicated by the topographic maps were added. They contain however "flat areas", so that only the slope angles values above the mode of the Gaussian distribution of the morphological unit "Steep slopes" were considered. An application of this method is presented over the entire Canton of Vaud (3200 km2), Switzerland. The results were compared with rockfall sources observed on the field and orthophotos analysis in order to validate the method. Finally, the influence of the cell size of the DEM is inspected by applying the methodology over six different DEM resolutions.
Mindukshev, Igor; Gambaryan, Stepan; Kehrer, Linda; Schuetz, Claudia; Kobsar, Anna; Rukoyatkina, Natalia; Nikolaev, Viacheslav O; Krivchenko, Alexander; Watson, Steve P; Walter, Ulrich; Geiger, Joerg
2012-07-01
Determinations of platelet receptor functions are indispensable diagnostic indicators of cardiovascular and hemostatic diseases including hereditary and acquired receptor defects and receptor responses to drugs. However, presently available techniques for assessing platelet function have some disadvantages, such as low sensitivity and the requirement of large sample sizes and unphysiologically high agonist concentrations. Our goal was to develop and initially characterize a new technique designed to quantitatively analyze platelet receptor activation and platelet function on the basis of measuring changes in low angle light scattering. We developed a novel technique based on low angle light scattering registering changes in light scattering at a range of different angles in platelet suspensions during activation. The method proved to be highly sensitive for simultaneous real time detection of changes in size and shape of platelets during activation. Unlike commonly-used methods, the light scattering method could detect platelet shape change and aggregation in response to nanomolar concentrations of extracellular nucleotides. Furthermore, our results demonstrate that the advantages of the light scattering method make it a choice method for platelet receptor monitoring and for investigation of both murine and human platelets in disease models. Our data demonstrate the suitability and superiority of this new low angle light scattering method for comprehensive analyses of platelet receptors and functions. This highly sensitive, quantitative, and online detection of essential physiological, pathophysiological and pharmacological-response properties of human and mouse platelets is a significant improvement over conventional techniques.
Motion and shape of partially non-wetting drops on inclined surfaces
NASA Astrophysics Data System (ADS)
Puthenveettil, Baburaj A.; Senthilkumar K, Vijaya; Hopfinger, E. J.; IIT Madras-LEGI Collaboration
2011-11-01
We study high Reynolds number (Re) motion of partially non- wetting liquid drops on inclined surfaces using (i) water on Fluoro-Alkyl Silane (FAS) coated glass and (ii) mercury on glass. The high hysteresis (35°) water drop experiments have been conducted for a range of inclination angles 26° < α <62° which give a range of Capillary numbers 0 . 0003 < Ca < 0 . 0075 and 137 < Re < 3142 . For low hysteresis (6°) mercury on glass experiments, 5 .5° < α < 14 .3° so that 0 . 0002 < Ca < 0 . 0023 and 3037 < Re < 20069 . It is shown that when Re >>103 for water and Re >> 19 for mercury, the observed velocities are accounted for by a boundary layer flow model. The dimensionless velocity in the inertial regime, Ca√{ Re } scales as the modified Bond number (Bom), while Ca Bom at low Re . We show that even at high Re , the dynamic contact angles (θd) depend only on Ca , similar to that in low Re drops. Only the model by Shikhmurzaev is consistent with the variation of dynamic contact angles in both mercury and water drops. We show that the corner transition at the rear of the mercury drop occurs at a finite, receding contact angle, which is predicted by a wedge flow model that we propose. For water drops, there is a direct transition to a rivulet from the oval shape at a critical ratio of receding to static contact angles.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bakhtinov, A. P., E-mail: chimsp@ukrpost.ua; Vodopyanov, V. N.; Netyaga, V. V.
2012-03-15
Features of the formation of Au/Ni/ Left-Pointing-Angle-Bracket C Right-Pointing-Angle-Bracket /n-Ga{sub 2}O{sub 3} hybrid nanostructures on a Van der Waals surface (0001) of 'layered semiconductor-ferroelectric' composite nanostructures (p-GaSe Left-Pointing-Angle-Bracket KNO{sub 3} Right-Pointing-Angle-Bracket ) are studied using atomic-force microscopy. The room-temperature current-voltage characteristics and the dependence of the impedance spectrum of hybrid structures on a bias voltage are studied. The current-voltage characteristic includes a resonance peak and a portion with negative differential resistance. The current attains a maximum at a certain bias voltage, when electric polarization switching in nanoscale three-dimensional inclusions in the layered GaSe matrix occurs. In the high-frequency region (fmore » > 10{sup 6} Hz), inductive-type impedance (a large negative capacitance of structures, {approx}10{sup 6} F/mm{sup 2}) is detected. This effect is due to spinpolarized electron transport in a series of interconnected semiconductor composite nanostructures with multiple p-GaSe Left-Pointing-Angle-Bracket KNO{sub 3} Right-Pointing-Angle-Bracket quantum wells and a forward-biased 'ferromagnetic metal-semiconductor' polarizer (Au/Ni/ Left-Pointing-Angle-Bracket C Right-Pointing-Angle-Bracket /n{sup +}-Ga{sub 2}O{sub 3}/n-Ga{sub 2}O{sub 3}). A shift of the maximum (current hysteresis) is detected in the current-voltage characteristics for various directions of the variations in bias voltage.« less
Micro air vehicle motion tracking and aerodynamic modeling
NASA Astrophysics Data System (ADS)
Uhlig, Daniel V.
Aerodynamic performance of small-scale fixed-wing flight is not well understood, and flight data are needed to gain a better understanding of the aerodynamics of micro air vehicles (MAVs) flying at Reynolds numbers between 10,000 and 30,000. Experimental studies have shown the aerodynamic effects of low Reynolds number flow on wings and airfoils, but the amount of work that has been conducted is not extensive and mostly limited to tests in wind and water tunnels. In addition to wind and water tunnel testing, flight characteristics of aircraft can be gathered through flight testing. The small size and low weight of MAVs prevent the use of conventional on-board instrumentation systems, but motion tracking systems that use off-board triangulation can capture flight trajectories (position and attitude) of MAVs with minimal onboard instrumentation. Because captured motion trajectories include minute noise that depends on the aircraft size, the trajectory results were verified in this work using repeatability tests. From the captured glide trajectories, the aerodynamic characteristics of five unpowered aircraft were determined. Test results for the five MAVs showed the forces and moments acting on the aircraft throughout the test flights. In addition, the airspeed, angle of attack, and sideslip angle were also determined from the trajectories. Results for low angles of attack (less than approximately 20 deg) showed the lift, drag, and moment coefficients during nominal gliding flight. For the lift curve, the results showed a linear curve until stall that was generally less than finite wing predictions. The drag curve was well described by a polar. The moment coefficients during the gliding flights were used to determine longitudinal and lateral stability derivatives. The neutral point, weather-vane stability and the dihedral effect showed some variation with different trim speeds (different angles of attack). In the gliding flights, the aerodynamic characteristics exhibited quasi-steady effects caused by small variations in the angle of attack. The quasi-steady effects, or small unsteady effects, caused variations in the aerodynamic characteristics (particularly incrementing the lift curve), and the magnitude of the influence depended on the angle-of-attack rate. In addition to nominal gliding flight, MAVs in general are capable of flying over a wide flight envelope including agile maneuvers such as perching, hovering, deep stall and maneuvering in confined spaces. From the captured motion trajectories, the aerodynamic characteristics during the numerous unsteady flights were gathered without the complexity required for unsteady wind tunnel tests. Experimental results for the MAVs show large flight envelopes that included high angles of attack (on the order of 90 deg) and high angular rates, and the aerodynamic coefficients had dynamic stall hysteresis loops and large values. From the large number of unsteady high angle-of-attack flights, an aerodynamic modeling method was developed and refined for unsteady MAV flight at high angles of attack. The method was based on a separation parameter that depended on the time history of the angle of attack and angle-of-attack rate. The separation parameter accounted for the time lag inherit in the longitudinal characteristics during dynamic maneuvers. The method was applied to three MAVs and showed general agreement with unsteady experimental results and with nominal gliding flight results. The flight tests with the MAVs indicate that modern motion tracking systems are capable of capturing the flight trajectories, and the captured trajectories can be used to determine the aerodynamic characteristics. From the captured trajectories, low Reynolds number MAV flight is explored in both nominal gliding flight and unsteady high angle-of-attack flight. Building on the experimental results, a modeling method for the longitudinal characteristics is developed that is applicable to the full flight envelope.
NASA Astrophysics Data System (ADS)
Zechmeister, M. S.; Elmore, R. D.; Ferre, E. C.; Pannalal, S. J.; Hamilton, E. M.
2007-12-01
Paleomagnetic and rock magnetic analysis was conducted on a complex fault propagation fold train in Kananaskis Country, Alberta to compliment an ongoing study of orogenic remagnetiztions in the thin-skinned, fold and thrust belt (NW Montana and SW Alberta). The complex structure is composed of an asymmetrical anticline to the west and chevron syncline to the east, with both folds plunging ~15° to the south. The fold train contains a magnetization with two stable ancient components. The characteristic remanent magnetization (ChRM) with northerly declinations and steep down inclinations is removed between ~350°C and the maximum unblocking temperature of 540°C. Tilt tests on the preliminary data reveal that the ChRM is early syntilting in the anticline and syntilting in the syncline. These results from this fold train are similar to a previous study in the Sawtooths (NW MT) which reported that fault propagation folds have a syntilting ChRM whereas fault bend folds contain a pretilting ChRM. An intermediate temperature reversed component is unblocked by 340°C and is late syntilting to post-tilting. Preliminary high-field rock magnetic data from folds in Montana and Alberta show that saturation is reached before 0.3T and the majority of the samples have wasp-waisted hysteresis loops. On a log plot of Mrs/Ms versus Hcr/Hc, the data has a power law distribution that is similar to trends reported by other authors. Interestingly though, samples from a fault bend fold have higher Mrs/Ms ratios than those measured in fault propagation folds, suggesting that strain induced by the various folding styles may influence the rock magnetic properties. Additional studies are underway to test these preliminary results and determine if the differences in the hysteresis ratios are significant. Petrographic analysis shows magnetite replacing pyrite in some samples suggesting an authigenic origin for the ChRM. The intensity of the ChRM as well as the strongest rock magnetic signal is most common in dark gray carbonates that are hydrocarbon reservoirs in the subsurface, suggesting the possibility that the origin of the ChRM may be related to hydrocarbon migration.
Angle Control on the Optima HE/XE Ion Implanter
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bell, Edward; Satoh, Shu
2008-11-03
The Optima HE/XE is the latest generation of high energy ion implanter from Axcelis, combining proven RF linear accelerator technology with new single wafer processing. The architecture of the implanter is designed to provide a parallel beam at the wafer plane over the full range of implant energies and beam currents. One of the advantages of this system is the ability to control both the horizontal and vertical implant angles for each implant. Included in the design is the ability to perform in situ measurements of the horizontal and vertical angles of the beam in real time. The method ofmore » the horizontal and vertical angle measurements is described in this paper.« less
Angle imaging: Advances and challenges
Quek, Desmond T L; Nongpiur, Monisha E; Perera, Shamira A; Aung, Tin
2011-01-01
Primary angle closure glaucoma (PACG) is a major form of glaucoma in large populous countries in East and South Asia. The high visual morbidity from PACG is related to the destructive nature of the asymptomatic form of the disease. Early detection of anatomically narrow angles is important and the subsequent prevention of visual loss from PACG depends on an accurate assessment of the anterior chamber angle (ACA). This review paper discusses the advantages and limitations of newer ACA imaging technologies, namely ultrasound biomicroscopy, Scheimpflug photography, anterior segment optical coherence tomography and EyeCam, highlighting the current clinical evidence comparing these devices with each other and with clinical dynamic indentation gonioscopy, the current reference standard. PMID:21150037
Oscillating Cascade Aerodynamics at Large Mean Incidence Angles
NASA Technical Reports Server (NTRS)
Buffum, Daniel H.
1997-01-01
In a cooperative program with Pratt & Whitney, researchers obtained fundamental separated flow unsteady aerodynamic data in the NASA Lewis Research Center's Oscillating Cascade. These data fill a void that has hindered the understanding and prediction of subsonic and transonic stall flutter. For small-amplitude torsional oscillations, unsteady pressure distributions were measured on airfoils with cross sections representative of an advanced, low-aspect-ratio fan blade. Data were obtained for two mean incidence angles with a subsonic inflow. At high mean incidence angles (alpha = 10 deg), the mean flow separated at the leading edge and reattached at about 40 percent of the chord. For comparison purposes, data were also obtained for a low incidence angle (a = 0 deg) attached flow.
Formation events of shoreline sand waves on a gravel beach
NASA Astrophysics Data System (ADS)
Arriaga, Jaime; Falqués, Albert; Ribas, Francesca; Crews, Eddie
2018-06-01
Kilometric-scale shoreline sand waves (KSSW) have been observed in the north-east flank of the Dungeness Cuspate Foreland (southeastern coast of the UK). They consist of two bumps separated by embayments with a 350-450-m spacing. We have analysed 36 shoreline surveys of 2-km length using the Discrete Fourier Transformation (DFT), from 2005 to 2016, and seven topographic surveys encompassing the intertidal zone, from 2010 to 2016. The data set shows two clear formation events. In order to test the role of high-angle waves on the KSSW formation, the 10-year wave series is propagated from the wave buoy located at 43 m depth up to a location in front of the undulations at 4 m depth using the SWAN wave model. The dominating SW waves arrive with a very high incidence angle (˜ 80°) while the NE waves arrive almost shore normal. The ratio R, which measures the degree of dominance of high-angle waves with respect to low-angle waves, correlates well with the shoreline DFT magnitude values of the observed wavelength undulations. In particular, the highest R values coincide with the formation events. Finally, a linear stability model based on the one-line approximation is applied to the Dungeness profile and the 10-year propagated wave series. It predicts accurately the formation moments, with positive growth rates in the correct order of magnitude for wavelengths similar to the observed ones. All these results confirm that the shoreline undulations in Dungeness are self-organized and that the underlying formation mechanism is the high-angle wave instability. The two detected formation events provide a unique opportunity to validate the existing morphodynamic models that include such instability.
Formation events of shoreline sand waves on a gravel beach
NASA Astrophysics Data System (ADS)
Arriaga, Jaime; Falqués, Albert; Ribas, Francesca; Crews, Eddie
2018-05-01
Kilometric-scale shoreline sand waves (KSSW) have been observed in the north-east flank of the Dungeness Cuspate Foreland (southeastern coast of the UK). They consist of two bumps separated by embayments with a 350-450-m spacing. We have analysed 36 shoreline surveys of 2-km length using the Discrete Fourier Transformation (DFT), from 2005 to 2016, and seven topographic surveys encompassing the intertidal zone, from 2010 to 2016. The data set shows two clear formation events. In order to test the role of high-angle waves on the KSSW formation, the 10-year wave series is propagated from the wave buoy located at 43 m depth up to a location in front of the undulations at 4 m depth using the SWAN wave model. The dominating SW waves arrive with a very high incidence angle (˜ 80°) while the NE waves arrive almost shore normal. The ratio R, which measures the degree of dominance of high-angle waves with respect to low-angle waves, correlates well with the shoreline DFT magnitude values of the observed wavelength undulations. In particular, the highest R values coincide with the formation events. Finally, a linear stability model based on the one-line approximation is applied to the Dungeness profile and the 10-year propagated wave series. It predicts accurately the formation moments, with positive growth rates in the correct order of magnitude for wavelengths similar to the observed ones. All these results confirm that the shoreline undulations in Dungeness are self-organized and that the underlying formation mechanism is the high-angle wave instability. The two detected formation events provide a unique opportunity to validate the existing morphodynamic models that include such instability.
Design and Operating Characteristics of High-Speed, Small-Bore, Angular-Contact Ball Bearings
NASA Technical Reports Server (NTRS)
Pinel, Stanley I.; Signer, Hans R.; Zaretsky, Erwin V.
1998-01-01
The computer program SHABERTH was used to analyze 35-mm-bore, angular-contact ball bearings designed and manufactured for high-speed turbomachinery applications. Parametric tests of the bearings were conducted on a high-speed, high-temperature bearing tester and were compared with the computer predictions. Four bearing and cage designs were studied. The bearings were lubricated either by jet lubrication or through the split inner ring with and without outer-ring cooling. The predicted bearing life decreased with increasing speed because of increased operating contact stresses caused by changes in contact angle and centrifugal load. For thrust loads only, the difference in calculated life for the 24 deg. and 30 deg. contact-angle bearings was insignificant. However, for combined loading, the 24 deg. contact-angle bearing gave longer life. For split-inner-ring bearings, optimal operating conditions were obtained with a 24 deg. contact angle and an inner-ring, land-guided cage, using outer-ring cooling in conjunction with low lubricant flow rates. Lower temperature and power losses were obtained with a single-outer-ring, land-guided cage for the 24 deg. contact-angle bearing having a relieved inner ring and partially relieved outer ring. Inner-ring temperatures were independent of lubrication mode and cage design. In comparison with measured values, reasonably good engineering correlation was obtained using the computer program SHABERTH for predicted bearing power loss and for inner- and outer-ring temperatures. The Parker formula for XCAV (used in SHABERTH, a measure of oil volume in the bearing cavity) may need to be refined to reflect bearing lubrication mode, cage design, and location of cage-controlling land.
Dual energy approach for cone beam artifacts correction
NASA Astrophysics Data System (ADS)
Han, Chulhee; Choi, Shinkook; Lee, Changwoo; Baek, Jongduk
2017-03-01
Cone beam computed tomography systems generate 3D volumetric images, which provide further morphological information compared to radiography and tomosynthesis systems. However, reconstructed images by FDK algorithm contain cone beam artifacts when a cone angle is large. To reduce the cone beam artifacts, two-pass algorithm has been proposed. The two-pass algorithm considers the cone beam artifacts are mainly caused by high density materials, and proposes an effective method to estimate error images (i.e., cone beam artifacts images) by the high density materials. While this approach is simple and effective with a small cone angle (i.e., 5 - 7 degree), the correction performance is degraded as the cone angle increases. In this work, we propose a new method to reduce the cone beam artifacts using a dual energy technique. The basic idea of the proposed method is to estimate the error images generated by the high density materials more reliably. To do this, projection data of the high density materials are extracted from dual energy CT projection data using a material decomposition technique, and then reconstructed by iterative reconstruction using total-variation regularization. The reconstructed high density materials are used to estimate the error images from the original FDK images. The performance of the proposed method is compared with the two-pass algorithm using root mean square errors. The results show that the proposed method reduces the cone beam artifacts more effectively, especially with a large cone angle.
Zhang, Ning; Yu, Hong; Yu, Hao; Cai, Yueyue; Huang, Linzhou; Xu, Cao; Xiong, Guosheng; Meng, Xiangbing; Wang, Jiyao; Chen, Haofeng; Liu, Guifu; Jing, Yanhui; Yuan, Yundong; Liang, Yan; Li, Shujia; Smith, Steven M; Li, Jiayang; Wang, Yonghong
2018-06-18
Tiller angle in cereals is a key shoot architecture trait that strongly influences grain yield. Studies in rice (Oryza sativa L.) have implicated shoot gravitropism in the regulation of tiller angle. However, the functional link between shoot gravitropism and tiller angle is unknown. Here, we conducted a large-scale transcriptome analysis of rice shoots in response to gravistimulation and identified two new nodes of a shoot gravitropism regulatory gene network that also controls rice tiller angle. We demonstrate that HEAT STRESS TRANSCRIPTION FACTOR 2D (HSFA2D) is an upstream positive regulator of the LAZY1-mediated asymmetric auxin distribution pathway. We also show that two functionally redundant transcription factor genes, WUSCHEL RELATED HOMEOBOX6 (WOX6) and WOX11, are expressed asymmetrically in response to auxin to connect gravitropism responses with the control of rice tiller angle. These findings define upstream and downstream genetic components that link shoot gravitropism, asymmetric auxin distribution, and rice tiller angle. The results highlight the power of the high-temporal-resolution RNA-seq dataset, and its use to explore further genetic components controlling tiller angle. Collectively these approaches will identify genes to improve grain yields by facilitating the optimization of plant architecture. © 2018 American Society of Plant Biologists. All rights reserved.
Sohn, Martin Y; Barnes, Bryan M; Silver, Richard M
2018-03-01
Accurate optics-based dimensional measurements of features sized well-below the diffraction limit require a thorough understanding of the illumination within the optical column and of the three-dimensional scattered fields that contain the information required for quantitative metrology. Scatterfield microscopy can pair simulations with angle-resolved tool characterization to improve agreement between the experiment and calculated libraries, yielding sub-nanometer parametric uncertainties. Optimized angle-resolved illumination requires bi-telecentric optics in which a telecentric sample plane defined by a Köhler illumination configuration and a telecentric conjugate back focal plane (CBFP) of the objective lens; scanning an aperture or an aperture source at the CBFP allows control of the illumination beam angle at the sample plane with minimal distortion. A bi-telecentric illumination optics have been designed enabling angle-resolved illumination for both aperture and source scanning modes while yielding low distortion and chief ray parallelism. The optimized design features a maximum chief ray angle at the CBFP of 0.002° and maximum wavefront deviations of less than 0.06 λ for angle-resolved illumination beams at the sample plane, holding promise for high quality angle-resolved illumination for improved measurements of deep-subwavelength structures using deep-ultraviolet light.
Touch-screen tablet user configurations and case-supported tilt affect head and neck flexion angles.
Young, Justin G; Trudeau, Matthieu; Odell, Dan; Marinelli, Kim; Dennerlein, Jack T
2012-01-01
The aim of this study was to determine how head and neck postures vary when using two media tablet (slate) computers in four common user configurations. Fifteen experienced media tablet users completed a set of simulated tasks with two media tablets in four typical user configurations. The four configurations were: on the lap and held with the user's hands, on the lap and in a case, on a table and in a case, and on a table and in a case set at a high angle for watching movies. An infra-red LED marker based motion analysis system measured head/neck postures. Head and neck flexion significantly varied across the four configurations and across the two tablets tested. Head and neck flexion angles during tablet use were greater, in general, than angles previously reported for desktop and notebook computing. Postural differences between tablets were driven by case designs, which provided significantly different tilt angles, while postural differences between configurations were driven by gaze and viewing angles. Head and neck posture during tablet computing can be improved by placing the tablet higher to avoid low gaze angles (i.e. on a table rather than on the lap) and through the use of a case that provides optimal viewing angles.
NMR high-resolution magic angle spinning rotor design for quantification of metabolic concentrations
NASA Astrophysics Data System (ADS)
Holly, R.; Damyanovich, A.; Peemoeller, H.
2006-05-01
A new high-resolution magic angle spinning nuclear magnetic resonance technique is presented to obtain absolute metabolite concentrations of solutions. The magnetic resonance spectrum of the sample under investigation and an internal reference are acquired simultaneously, ensuring both spectra are obtained under the same experimental conditions. The robustness of the technique is demonstrated using a solution of creatine, and it is shown that the technique can obtain solution concentrations to within 7% or better.
NASA Technical Reports Server (NTRS)
Axelson, J. A.
1977-01-01
The AEROX program estimates lift, induced-drag and pitching moments to high angles (typ. 60 deg) for wings and for wingbody combinations with or without an aft horizontal tail. Minimum drag coefficients are not estimated, but may be input for inclusion in the total aerodynamic parameters which are output in listed and plotted formats. The theory, users' guide, test cases, and program listing are presented.
NASA Technical Reports Server (NTRS)
Hemsch, Michael J.
1990-01-01
The accuracy of high-alpha slender-body theory (HASBT) for bodies with elliptical cross-sections is presently demonstrated by means of a comparison with exact solutions for incompressible potential flow over a wide range of ellipsoid geometries and angles of attack and sideslip. The addition of the appropriate trigonometric coefficients to the classical slender-body theory decomposition yields the formally correct HASBT, and results in accuracies previously considered unattainable.
Brink, Yolandi; Crous, Lynette Christine; Louw, Quinette Abigail; Grimmer-Somers, Karen; Schreve, Kristiaan
2009-12-01
Prolonged sitting and psychosocial factors have been associated with musculoskeletal symptoms among adolescents. However, the impact of prolonged static sitting on musculoskeletal pain among South African high school students is uncertain. A prospective observational study was performed to determine whether sitting postural alignment and psychosocial factors contribute to the development of upper quadrant musculoskeletal pain (UQMP) in grade ten high school students working on desktop computers. The sitting postural alignment, depression, anxiety and computer use of 104 asymptomatic students were measured at baseline. At three and six months post baseline, the prevalence of UQMP was determined. Twenty-seven students developed UQMP due to seated or computer-related activities. An extreme cervical angle (<34.75 degrees or >43.95 degrees; OR 2.8; 95% CI: 1.1-7.3) and a combination of extreme cervical and thoracic angles (<63.1 degrees or >71.1 degrees; OR 2.2; 95% CI: 1.1-5.6) were significant postural risk factors for the development of UQMP. Boys with any extreme angle were more likely to suffer pain compared with boys with all middle range angles (OR 4.9; 95% CI: 1.0-24.5). No similar effect was found for girls. There was no strong relationship between depression, anxiety, computer exposure and UQMP among South African high school students.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chaudhary, Kuldeep; Guiltinan, Eric J.; Cardenas, M. Bayani
2015-08-30
We present a new method for measuring wettability or contact angle of minerals at reservoir pressure-temperature conditions using high-resolution X-ray computed tomography (HRXCT) and radiography. In this method, a capillary or a narrow slot is constructed from a mineral or a rock sample of interest wherein two fluids are allowed to form an interface that is imaged using X-rays. After some validation measurements at room pressure-temperature conditions, we illustrate this method by measuring the contact angle of CO 2-brine on quartz, muscovite, shale, borosilicate glass, polytetrafluoroethylene (PTFE or Teflon), and polyether ether ketone (PEEK) surfaces at 60–71°C and 13.8–22.8 MPa.more » At reservoir conditions, PTFE and PEEK surfaces were found to be CO 2-wet with contact angles of 140° and 127°, respectively. Quartz and muscovite were found to be water-wet with contact angles of 26° and 58°, respectively, under similar conditions. Borosilicate glass-air-brine at room conditions showed strong water-wet characteristics with a contact angle of 9°, whereas borosilicate glass-CO 2-brine at 13.8 MPa and 60°C showed a decrease in its water-wetness with contact angle of 54°. This method provides a new application for X-ray imaging and an alternative to other methods.« less
Angle-selective all-dielectric Huygens’ metasurfaces
NASA Astrophysics Data System (ADS)
Arslan, D.; Chong, K. E.; Miroshnichenko, A. E.; Choi, D.-Y.; Neshev, D. N.; Pertsch, T.; Kivshar, Y. S.; Staude, I.
2017-11-01
We experimentally and numerically study the angularly resolved transmission properties of dielectric metasurfaces consisting of silicon nanodisks which support electric and magnetic dipolar Mie-type resonances in the near-infrared spectral range. First, we concentrate on Huygens’ metasurfaces which are characterised by a spectral overlap of the fundamental electric and magnetic dipole resonances of the silicon nanodisks at normal incidence. Huygens’ metasurfaces exhibit a high transmitted intensity over the spectral width of the resonances due to impedance matching, while the transmitted phase shows a variation of 2π as the wavelength is swept across the width of the resonances. We observe that the transmittance of the Huygens’ metasurfaces depends on the incidence angle and is sensitive to polarisation for non-normal incidence. As the incidence angle is increased starting from normal incidence, the two dipole resonances are shifted out of the spectral overlap and the resonant features appear as pronounced transmittance minima. Next, we consider a metasurface with an increased nanodisk radius as compared to the Huygens’ metasurface, which supports spectrally separate electric and magnetic dipole resonances at normal incidence. We show that for TM polarisation, we can shift the resonances of this metasurface into spectral overlap and regain the high resonant transmittance characteristic of Huygens’ metasurfaces at a particular incidence angle. Furthermore, both metasurfaces are demonstrated to reject all TM polarised light incident under angles other than the design overlap angle at their respective operation frequency. Our experimental observations are in good qualitative agreement with numerical calculations.
Northern Sea Route and Icebreaking Technology
1994-06-01
waterlines at the extreme forward end, extended beam, a low stem angle with an ice-clearing forefoot , and a high flare angle below the water- line. The ice...world. Reports of protests and labor strikes , stemming from poor wages sectors of the economy. The Gross and living conditions, are common. With
77 FR 10693 - Airworthiness Directives; Airbus Airplanes
Federal Register 2010, 2011, 2012, 2013, 2014
2012-02-23
... the position resolvers of the angle of attack (AOA) vane, which was a result of incorrect removal of... non-activation of the AOA protection systems which, during flight at a high angle of attack, could... information identified in this proposed AD, contact Airbus, Airworthiness Office--EAS, 1 Rond Point Maurice...
Multiple Emission Angle Surface-Atmosphere Separations of MGS Thermal Emission Spectrometer Data
NASA Technical Reports Server (NTRS)
Bandfield, J. L.; Smith, M. D.
2001-01-01
Multiple emission angle observations taken by MGS-TES have been used to derive atmospheric opacities and surface temperatures and emissivities with increased accuracy and wavelength coverage. Martian high albedo region surface spectra have now been isolated. Additional information is contained in the original extended abstract.
Brulle, R.V.
1981-09-03
A cyclogiro windmill has a rotor provided with blades shaped in the configuration of symmetrical airfoils and actuators to pivot the blades about axes parallel to the axis of rotation for the rotor. The actuator for each blade constantly changes the rock angle for the blade, that is its angle with respect to a reference on the rotor, and this modulation is such that the blade in making a revolution around the axis of rotation for the rotor undergoes an interval of static operation wherein its angle of attack is for the most part constant and less than the static stall angle, a short interval where the blade flips to position in which its opposite surface is presented toward the free wind, a short interval of dynamic operation wherein the angle of attack exceeds the static stal angle, another interval of static operation at an angle of attack of essentially the same magnitude as before, another interval of blade flip, and another interval of dynamic operation. During the intervals of dynamic operation, the blades experience a significant increase in lift force without a corresponding increase in drag, so that a high lift-to-drag ratio develops. The blades during dynamic operation further develop strong vortices which are directed outwardly at the sides of the windmill stream tube, and this increases the width of the stream tube, causing a greater mass of air to flow through the rotor. The short intervals of operation under dynamic conditions enable the blades to extract more energy from the free wind than would be possible if the blade operated solely under static conditions, and this in turn renders the windmill more useful in moderate velocity winds as well as high velocity winds.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brulle, R.V.
1981-09-03
A cyclogiro windmill has a rotor provided with blades shaped in the configuration of symmetrical airfoils and actuators to pivot the blades about axes parallel to the axis of rotation for the rotor. The actuator for each blade constantly changes the rock angle for the blade, that is its angle with respect to a reference on the rotor, and this modulation is such that the blade in making a revolution around the axis of rotation for the rotor undergoes an interval of static operation wherein its angle of attack is for the most part constant and less than the staticmore » stall angle, a short interval where the blade flips to position in which its opposite surface is presented toward the free wind, a short interval of dynamic operation wherein the angle of attack exceeds the static stal angle, another interval of static operation at an angle of attack of essentially the same magnitude as before, another interval of blade flip, and another interval of dynamic operation. During the intervals of dynamic operation, the blades experience a significant increase in lift force without a corresponding increase in drag, so that a high lift-to-drag ratio develops. The blades during dynamic operation further develop strong vortices which are directed outwardly at the sides of the windmill stream tube, and this increases the width of the stream tube, causing a greater mass of air to flow through the rotor. The short intervals of operation under dynamic conditions enable the blades to extract more energy from the free wind than would be possible if the blade operated solely under static conditions, and this in turn renders the windmill more useful in moderate velocity winds as well as high velocity winds.« less
Electromagnetic backscattering from freak waves in (1 + 1)-dimensional deep-water
NASA Astrophysics Data System (ADS)
Xie, Tao; Shen, Tao; William, Perrie; Chen, Wei; Kuang, Hai-Lan
2010-05-01
To study the electromagnetic (EM) backscatter characteristics of freak waves at moderate incidence angles, we establish an EM backscattering model for freak waves in (1 + 1)-dimensional deep water. The nonlinear interaction between freak waves and Bragg short waves is considered to be the basic hydrodynamic spectra modulation mechanism in the model. Numerical results suggest that the EM backscattering intensities of freak waves are less than those from the background sea surface at moderate incidence angles. The normalised radar cross sections (NRCSs) from freak waves are highly polarisation dependent, even at low incidence angles, which is different from the situation for normal sea waves; moreover, the NRCS of freak waves is more polarisation dependent than the background sea surface. NRCS discrepancies between freak waves and the background sea surface with using horizontal transmitting horizomtal (HH) polarisation are larger than those using vertical transmitting vertical (VV) polarisation, at moderate incident angles. NRCS discrepancies between freak waves and background sea surface decreases with the increase of incidence angle, in both HH and VV polarisation radars. As an application, in the synthetic-aperture radar (SAR) imaging of freak waves, we suggest that freak waves should have extremely low backscatter NRCSs for the freak wave facet with the strongest slope. Compared with the background sea surface, the freak waves should be darker in HH polarisation echo images than in VV echo images, in SAR images. Freak waves can be more easily detected from the background sea surface in HH polarisation images than in VV polarisation images. The possibility of detection of freak waves at low incidence angles is much higher than at high incidence angles.
NASA Astrophysics Data System (ADS)
Nurbuwat, Adzin Kondo; Eryandi, Kholid Yusuf; Estriyanto, Yuyun; Widiastuti, Indah; Pambudi, Nugroho Agung
2018-02-01
The objective of this study is to measure the time performance of a self-cancelling turn signal mechanism based on the In this study the performance of self-cancelling turn signal based on ATMega328P microcontroller is measured at low speed and high speed treatment on motorcycles commonly used in Indonesia. Time performance measurements were made by comparing the self-cancelling turn signal based on ATMega328P microcontroller with standard motor turn time. Measurements of time at low speed treatment were performed at a speed range of 15 km / h, 20 km / h, 25 km / h on the U-turn test trajectory. The angle of the turning angle of the potentiometer is determined at 3°. The limit of steering wheel turning angle at the potentiometer is set at 3°. For high-speed treatment is 30 km / h, 40 km / h, 50km / h, and 60 km / h, on the L-turn test track with a tilt angle (roll angle) read by the L3G4200D gyroscope sensor. Each speed test is repeated 3 replications. Standard time is a reference for self-cancelling turn signal performance. The standard time obtained is 15.68 s, 11.96 s, 9.34 s at low speed and 4.63 s, 4.06 s, 3.61 s, 3.13 s at high speed. The time test of self-cancelling turn signal shows 16.10 s, 12.42 s, 10.24 s at the low speed and 5.18, 4.51, 3.73, 3.21 at the high speed. At a speed of 15 km / h occurs the instability of motion turns motorcycle so that testing is more difficult. Small time deviations indicate the tool works well. The largest time deviation value is 0.9 seconds at low speed and 0.55 seconds at high speed. The conclusion at low velocity of the highest deviation value occurred at the speed of 25 km / h test due to the movement of slope with inclination has started to happen which resulted in slow reading of steering movement. At higher speeds the time slows down due to rapid sensor readings on the tilt when turning fast at ever higher speeds. The timing performance of self-cancelling turn signal decreases as the motorcycle turning characteristics move from the turn using the steering angle to using a tilt angle based on speed, or vice versa.
König, Nico; Paulus, Michael; Julius, Karin; Schulze, Julian; Voetz, Matthias; Tolan, Metin
2017-12-01
In the present work two subclasses of the human antibody Immunoglobulin G (IgG) have been investigated by Small-Angle X-ray Scattering under high hydrostatic pressures up to 5kbar. It is shown that IgG adopts a symmetric T-shape in solution which differs significantly from available crystal structures. Moreover, high-pressure experiments verify the high stability of the IgG molecule. It is not unfolded by hydrostatic pressures of up to 5kbar but a slight increase of the radius of gyration was observed at elevated pressures. Copyright © 2017 Elsevier B.V. All rights reserved.
NASA Technical Reports Server (NTRS)
1976-01-01
An experimental and analytical aerodynamic program to develop predesign guides for irregular planform wings is reported. The benefits are linearization of subsonic lift curve slope to high angles of attack and avoidance of subsonic pitch instabilities at high lift by proper tailoring of the planform fillet wing combination while providing the desired hypersonic trim angle and stability. The two prime areas of concern are to optimize shuttle orbiter landing and entry characteristics. Basic longitudinal aerodynamic characteristics at high supersonic speeds are developed.
Ma, Hongcai; Wu, Lin
2015-07-10
We present the design of a horizontally staggered lightguide solar concentrator with lateral displacement tracking for high concentration applications. This solar concentrator consists of an array of telecentric primary concentrators, a horizontally staggered lightguide layer, and a vertically tapered lightguide layer. The primary concentrator is realized by two plano-aspheric lenses with lateral movement and maintains a high F-number over an angle range of ±23.5°. The results of the simulations show that the solar concentrator achieves a high concentration ratio of 500× with ±0.5° of acceptance angle by a single-axis tracker and dual lateral translation stages.
Research flight-control system development for the F-18 high alpha research vehicle
NASA Technical Reports Server (NTRS)
Pahle, Joseph W.; Powers, Bruce; Regenie, Victoria; Chacon, Vince; Degroote, Steve; Murnyak, Steven
1991-01-01
The F-18 high alpha research vehicle was recently modified by adding a thrust vectoring control system. A key element in the modification was the development of a research flight control system integrated with the basic F-18 flight control system. Discussed here are design requirements, system development, and research utility of the resulting configuration as an embedded system for flight research in the high angle of attack regime. Particular emphasis is given to control system modifications and control law features required for high angle of attack flight. Simulation results are used to illustrate some of the thrust vectoring control system capabilities and predicted maneuvering improvements.
A Facile All-Solution-Processed Surface with High Water Contact Angle and High Water Adhesive Force.
Chen, Mei; Hu, Wei; Liang, Xiao; Zou, Cheng; Li, Fasheng; Zhang, Lanying; Chen, Feiwu; Yang, Huai
2017-07-12
A series of sticky superhydrophobicity surfaces with high water contact angle and high water adhesive force is facilely prepared via an all-solution-processed method based on polymerization-induced phase separation between liquid crystals (LCs) and epoxy resin, which produces layers of epoxy microspheres (EMSs) with nanofolds on the surface of a substrate. The morphologies and size distributions of EMSs are confirmed by scanning electron microscopy. Results reveal that the obtained EMS coated-surface exhibits high apparent contact angle of 152.0° and high water adhesive force up to 117.6 μN. By varying the composition of the sample or preparing conditions, the sizes of the produced EMSs can be artificially regulated and, thus, control the wetting properties and water adhesive behaviors. Also, the sticky superhydrophobic surface exhibits excellent chemical stability, as well as long-term durability. Water droplet transportation experiments further prove that the as-made surface can be effectively used as a mechanical hand for water transportation applications. Based on this, it is believed that the simple method proposed in this paper will pave a new way for producing a sticky superhydrophobic surface and obtain a wide range of use.
NASA Astrophysics Data System (ADS)
Irsal, I. L.; Jupri, A.; Prabawanto, S.
2017-09-01
Line and angles is important topics to learn to develop the geometry skills and also mathematics skills such as understanding and problem solving skills. But, the fact was given by Indonesian researcher show that Indonesian students’ understanding and problem solving skills still low in this topics. This fact be a background to investigate students’ understanding and problem solving skills in line and angles topics. To investigate these skills, this study used descriptive-qualitative approach. Individual written test (essay) and interview was used in this study. 72 students grade 8th from one of Junior High School in Lembang, worked the written test and 18 of them were interviewed. Based on result, almost of student were have a good instrumental understanding in line and angles topic in same area, but almost all student have a low instrumental understanding in line and angles topic in different area. Almost all student have a low relational understanding. Also, almost all student have a low problem solving skills especially in make and use strategy to solve the problem and looking back their answer. Based on result there is need a meaningfulness learning strategy, which can make students build their understanding and develop their problem solving skill independently.
NASA Astrophysics Data System (ADS)
Dharmapurikar, Satej S.; Chithiravel, Sundaresan; Mane, Manoj V.; Deshmukh, Gunvant; Krishnamoorthy, Kothandam
2018-03-01
Diketopyrrolopyrrole (DPP) and i-Indigo (i-Ind) are two monomers that are widely explored as active materials in organic field effect transistor and solar cells. These two molecules showed impressive charge carrier mobility due to better packing that are facilitated by quadrupoles. We hypothesized that the copolymers of these monomers would also exhibit high charge carrier mobility. However, we envisioned that the dihedral angle at the connecting point between the monomers will play a crucial role in packing as well as charge transport. To understand the impact of dihedral angle on charge transport, we synthesized three copolymers, wherein the DPP was sandwiched between benzenes, thiophenes and furans. The copolymer of i-Indigo and furan comprising DPP showed a band gap of 1.4 eV with a very high dihedral angle of 179°. The polymer was found to pack better and the coherence length was found to be 112 Å. The hole carrier mobility of these polymer was found to be highest among the synthesized polymer i.e. 0.01 cm2/vs. The copolymer comprising benzene did not transport hole and electrons. The dihedral angle at the connecting point between i and Indigo and benzene DPP was 143 Å, which the packing and consequently charge transport properties.
Effect of the bifurcation angle on the flow within a synthetic model of lower human airways
NASA Astrophysics Data System (ADS)
Espinosa Moreno, Andres Santiago; Duque Daza, Carlos Alberto
2016-11-01
The effect of the bifurcation angle on the flow pattern developed during respiratory inhalation and exhalation processes was explored numerically using a synthetic model of lower human airways featuring three generations of a dichotomous morphology as described by a Weibel model. Laminar flow simulations were performed for six bifurcation angles and four Reynolds numbers relevant to human respiratory flow. Numerical results of the inhalation process showed a peak displacement trend of the velocity profile towards the inner walls of the model. This displacement exhibited correlation with Dean-type secondary flow patterns, as well as with the onset and location of vortices. High wall shear stress regions on the inner walls were observed for a range of bifurcation angles. Noteworthy, specific bifurcation angles produced higher values of pressure drop, compared to the average behavior, as well as changes in the volumetric flow through the branches. Results of the simulations for exhalation process showed a different picture, mainly the appearance of symmetrical velocity profiles and the change of location of the regions of high wall shear stress. The use of this modelling methodology for biomedical applications is discussed considering the validity of the obtained results. Department of Mechanical and Mechatronics Engineering, Universidad Nacional de Colombia.
Effects of electrode bevel angle on argon arc properties and weld shape
NASA Astrophysics Data System (ADS)
Dong, W. C.; Lu, S. P.; Li, D. Z.; Y Li, Y.
2012-07-01
A numerical modeling of coupled welding arc with weld pool is established using FLUENT software for moving shielded GTA welding to systematically investigate the effects of electrode bevel angle on the argon arc properties as well as the weld shape on SUS304 stainless steel. The calculated results show that the argon arc is constricted and the peak values of heat flux and shear stress on the weld pool decrease with increasing electrode bevel angle, while the radial distribution of heat flux and shear stress varying slightly. The weld shape is controlled by the pool flow patterns driving by the surface tension, gas shear stress, electromagnetic force and buoyancy. The Marangoni convection induced by surface tension plays an important role on weld shapes. All the weld shapes are wide and shallow with low weld metal oxygen content, while the narrow and deep weld shapes form under high weld metal oxygen content, which is related with the oxygen concentration in the shielding gas. The weld depth/width (D/W) ratio increases with increasing electrode bevel angle for high weld metal oxygen content and is not sensitive to the electrode bevel angle under low weld metal oxygen content. The calculated results for the weld shape, weld size and weld D/W ratio agree well with the experimental ones.
Uncertainty of Videogrammetric Techniques used for Aerodynamic Testing
NASA Technical Reports Server (NTRS)
Burner, A. W.; Liu, Tianshu; DeLoach, Richard
2002-01-01
The uncertainty of videogrammetric techniques used for the measurement of static aeroelastic wind tunnel model deformation and wind tunnel model pitch angle is discussed. Sensitivity analyses and geometrical considerations of uncertainty are augmented by analyses of experimental data in which videogrammetric angle measurements were taken simultaneously with precision servo accelerometers corrected for dynamics. An analysis of variance (ANOVA) to examine error dependence on angle of attack, sensor used (inertial or optical). and on tunnel state variables such as Mach number is presented. Experimental comparisons with a high-accuracy indexing table are presented. Small roll angles are found to introduce a zero-shift in the measured angles. It is shown experimentally that. provided the proper constraints necessary for a solution are met, a single- camera solution can he comparable to a 2-camera intersection result. The relative immunity of optical techniques to dynamics is illustrated.
A Measuring System for Well Logging Attitude and a Method of Sensor Calibration
Ren, Yong; Wang, Yangdong; Wang, Mijian; Wu, Sheng; Wei, Biao
2014-01-01
This paper proposes an approach for measuring the azimuth angle and tilt angle of underground drilling tools with a MEMS three-axis accelerometer and a three-axis fluxgate sensor. A mathematical model of well logging attitude angle is deduced based on combining space coordinate transformations and algebraic equations. In addition, a system implementation plan of the inclinometer is given in this paper, which features low cost, small volume and integration. Aiming at the sensor and assembly errors, this paper analyses the sources of errors, and establishes two mathematical models of errors and calculates related parameters to achieve sensor calibration. The results show that this scheme can obtain a stable and high precision azimuth angle and tilt angle of drilling tools, with the deviation of the former less than ±1.4° and the deviation of the latter less than ±0.1°. PMID:24859028
Dye and pigment-free structural colors and angle-insensitive spectrum filters
Guo, Lingjie Jay; Hollowell, Andrew E.; Wu, Yi-Kuei
2017-01-17
Optical spectrum filtering devices displaying minimal angle dependence or angle insensitivity are provided. The filter comprises a localized plasmonic nanoresonator assembly having a metal material layer defining at least one nanogroove and a dielectric material disposed adjacent to the metal material layer. The dielectric material is disposed within the nanogroove(s). The localized plasmonic nanoresonator assembly is configured to funnel and absorb a portion of an electromagnetic spectrum in the at least one nanogroove via localized plasmonic resonance to generate a filtered output having a predetermined range of wavelengths that displays angle insensitivity. Thus, flexible, high efficiency angle independent color filters having very small diffraction limits are provided that are particularly suitable for use as pixels for various display devices or for use in anti-counterfeiting and cryptography applications. The structures can also be used for colored print applications and the elements can be rendered as pigment-like particles.
A Vision-Based Dynamic Rotational Angle Measurement System for Large Civil Structures
Lee, Jong-Jae; Ho, Hoai-Nam; Lee, Jong-Han
2012-01-01
In this paper, we propose a vision-based rotational angle measurement system for large-scale civil structures. Despite the fact that during the last decade several rotation angle measurement systems were introduced, they however often required complex and expensive equipment. Therefore, alternative effective solutions with high resolution are in great demand. The proposed system consists of commercial PCs, commercial camcorders, low-cost frame grabbers, and a wireless LAN router. The calculation of rotation angle is obtained by using image processing techniques with pre-measured calibration parameters. Several laboratory tests were conducted to verify the performance of the proposed system. Compared with the commercial rotation angle measurement, the results of the system showed very good agreement with an error of less than 1.0% in all test cases. Furthermore, several tests were conducted on the five-story modal testing tower with a hybrid mass damper to experimentally verify the feasibility of the proposed system. PMID:22969348
A vision-based dynamic rotational angle measurement system for large civil structures.
Lee, Jong-Jae; Ho, Hoai-Nam; Lee, Jong-Han
2012-01-01
In this paper, we propose a vision-based rotational angle measurement system for large-scale civil structures. Despite the fact that during the last decade several rotation angle measurement systems were introduced, they however often required complex and expensive equipment. Therefore, alternative effective solutions with high resolution are in great demand. The proposed system consists of commercial PCs, commercial camcorders, low-cost frame grabbers, and a wireless LAN router. The calculation of rotation angle is obtained by using image processing techniques with pre-measured calibration parameters. Several laboratory tests were conducted to verify the performance of the proposed system. Compared with the commercial rotation angle measurement, the results of the system showed very good agreement with an error of less than 1.0% in all test cases. Furthermore, several tests were conducted on the five-story modal testing tower with a hybrid mass damper to experimentally verify the feasibility of the proposed system.
NASA Astrophysics Data System (ADS)
Lewis, B. J.; Cimbala, J. M.; Wouden, A. M.
2014-03-01
At their best efficiency point (BEP), hydroturbines operate at very high efficiency. However, with the ever-increasing penetration of alternative electricity generation, it has become common to operate hydroturbines at off-design conditions in order to maintain stability in the electric power grid. This paper demonstrates a method for improving hydroturbine performance during off-design operation by injecting water through slots at the trailing edges of the wicket gates. The injected water causes a change in bulk flow direction at the inlet of the runner. This change in flow angle from the wicket gate trailing-edge jets provides the capability of independently varying the flow rate and swirl angle through the runner, which in current designs are both determined by the wicket gate opening angle. When properly tuned, altering the flow angle results in a significant improvement in turbine efficiency during off-design operation.
A measuring system for well logging attitude and a method of sensor calibration.
Ren, Yong; Wang, Yangdong; Wang, Mijian; Wu, Sheng; Wei, Biao
2014-05-23
This paper proposes an approach for measuring the azimuth angle and tilt angle of underground drilling tools with a MEMS three-axis accelerometer and a three-axis fluxgate sensor. A mathematical model of well logging attitude angle is deduced based on combining space coordinate transformations and algebraic equations. In addition, a system implementation plan of the inclinometer is given in this paper, which features low cost, small volume and integration. Aiming at the sensor and assembly errors, this paper analyses the sources of errors, and establishes two mathematical models of errors and calculates related parameters to achieve sensor calibration. The results show that this scheme can obtain a stable and high precision azimuth angle and tilt angle of drilling tools, with the deviation of the former less than ±1.4° and the deviation of the latter less than ±0.1°.
NASA Technical Reports Server (NTRS)
Weaver, W. L.; Bowen, J. T.
1972-01-01
The RAM C-3 flight experiment was launched to study the problem of radiofrequency blackout at an entry velocity of 24,300 ft/sec. The flight is described, and data for the entry trajectory and environment, which include the effects of actual temperature measured the day of launch, are presented. An analysis of entry spacecraft motions was performed. This analysis included the determination of wind angles from measured accelerations and estimates of wind angles at high altitudes from gyro-measured rotation rates. The maximum wind angles were found to be less than 5 deg to the point of pitch-roll resonance where the total wind angle increased to 8.5 deg and the roll rate started decreasing. A plausible cause for the decrease in roll rate was shown to be a combination of trim angle and an offset center of gravity.