Sample records for high priority science

  1. 76 FR 69246 - Application for New Awards; High School Equivalency Program

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-11-08

    ... could include, for example, participation in training on intensive science teaching techniques presented...)). The third priority is an invitational priority for applications that promote science, technology... preference over other applications. These priorities are: Invitational Priority 1--Science, Technology...

  2. 75 FR 73054 - Office of Elementary and Secondary Education; Overview Information; High School Equivalency...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-11-29

    ...' participation in training on intensive science teaching techniques presented by a professionally credentialed...)). The third priority is an invitational priority for applications that promote science, technology... priorities are: Invitational Priority 1--Science, Technology, Engineering and Mathematics (STEM) Education...

  3. Key Problems in Science and Technology in Thailand.

    ERIC Educational Resources Information Center

    Yuthavong, Yongyuth; And Others

    1985-01-01

    Cites the need for promoting science/technology management and policy formation in Thailand, viewing contributions of science/technology to the socioeconomic development of the country as high priorities. Criteria for selecting priority areas and key problems are noted; they include relevance to development, availability of human resources, and…

  4. Jovian system science issues and implications for a Mariner Jupiter Orbiter mission

    NASA Technical Reports Server (NTRS)

    Beckman, J. C.; Miner, E. D.

    1975-01-01

    Science goals for missions to Jupiter in the early 1980's are reviewed and a case is made for the science community to play the key role in assigning relative priorities for these goals. A reference set of measurement requirements and their priorities is established and those high priority goals that are most demanding on spacecraft and mission design are used to develop a reference mission concept. An orbiter mission is required to satisfy a majority of the measurements, and a spacecraft data handling capability as least equivalent to the Mariner Jupiter/Saturn spacecraft is the major system design driver. This reference Mission Concept is called Mariner Jupiter Orbiter. The remaining measurement requirements are reviewed in light of the potential science return of this mission, and certain options are developed to augment this science return. Two attractive options fulfill high priority objectives not achieved by the reference Mariner Jupiter Orbiter mission alone: an atmospheric entry probe, released prior to orbit insertion; and a daughter satellite dedicated to particle and fields measurements, ejected into an independent orbit about Jupiter.

  5. Priority Planetary Science Missions Identified

    NASA Astrophysics Data System (ADS)

    Showstack, Randy

    2011-03-01

    The U.S. National Research Council's (NRC) planetary science decadal survey report, released on 7 March, lays out a grand vision for priority planetary science missions for 2013-2022 within a tightly constrained fiscal environment. The cost-conscious report, issued by NRC's Committee on the Planetary Science Decadal Survey, identifies high-priority flagship missions, recommends a number of potential midsized missions, and indicates support for some smaller missions. The report states that the highest-priority flagship mission for the decade is the Mars Astrobiology Explorer-Cacher (MAX-C)—the first of three components of a NASA/European Space Agency Mars sample return campaign—provided that the mission scope can be reduced so that MAX-C costs no more than $2.5 billion. The currently estimated mission cost of $3.5 billion “would take up a disproportionate near-term share of the overall budget for NASA's Planetary Science Division,” the report notes.

  6. The Priority of the Question: Focus Questions for Sustained Reasoning in Science

    ERIC Educational Resources Information Center

    Lustick, David

    2010-01-01

    Science education standards place a high priority on promoting the skills and dispositions associated with inquiry at all levels of learning. Yet, the questions teachers employ to foster sustained reasoning are most likely borrowed from a textbook, lab manual, or worksheet. Such generic questions generated for a mass audience, lack authenticity…

  7. 76 FR 14379 - Advanced Placement Incentive Program; Office of Elementary and Secondary Education; Overview...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-03-16

    ... competitive preference priority. Absolute Priority 1: Promoting Science, Technology, Engineering, and... applications that meet these priorities. These priorities are: Absolute Priority 1: Promoting Science... participation in the core academic areas of English, mathematics, and science; (4) Involving business and...

  8. Top 40 Priorities for Science to Inform US Conservation and Management Policy

    EPA Science Inventory

    We present a list of America's "Top 40" high-priority questions that, if answered, would help inform some of the most important current and future decisions about resource management in the United States

  9. 78 FR 50405 - High Energy Physics Advisory Panel

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-08-19

    ... DEPARTMENT OF ENERGY High Energy Physics Advisory Panel AGENCY: Office of Science, Department of..., General Services Administration, notice is hereby given that the High Energy Physics Advisory Panel will... Sciences Directorate (NSF), on long-range planning and priorities in the national high-energy physics...

  10. Recommended Priorities for NASA's Gamma Ray Astronomy Program 1999-2013

    NASA Technical Reports Server (NTRS)

    Carol, Ladd

    1999-01-01

    The Gamma-Ray Astronomy Program Working Group (GRAPWG) recommends priorities for the NASA Gamma-Ray Astronomy Program. The highest priority science topic is nuclear astrophysics and sites of gamma ray line emission. Other high priority topics are gamma ray bursts, hard x-ray emission from accreting black holes and neutron stars, the Advanced Compton Telescope (ACT), the High-resolution Spectroscopic Imager (HSI), and the Energetic X-ray Imaging Survey Telescope (EXIST). The recommendations include special consideration for technology development, TeV astronomy, the ultra-long duration balloon (ULDB) program, the International Space Station, optical telescope support, and data analysis and theory.

  11. Advanced In-Space Propulsion: "Exploring the Solar System"

    NASA Technical Reports Server (NTRS)

    Johnson, Les

    2003-01-01

    This viewgraph presentation reviews a number of advanced propulsion technologies for interplanetary spacecraft. The objective of the In Space Propulsion Technology Projects Office is to develop in-space propulsion technologies that can enable and/or benefit near and mid-term NASA science missions by significantly reducing cost, mass, and/or travel times. The technologies profiled are divided into several categories: High Priority (aerocapture, next generation ion propulsion, solar sails); Medium Priority (advanced chemical propulsion, solar electric propulsion, Hall thrusters); Low Priority (solar thermal propulsion); and High Payoff/High Risk (1 g/sq m solar sails, momentum exchange tethers, and plasma sails).

  12. Accommodating life sciences on the Space Station

    NASA Technical Reports Server (NTRS)

    Arno, Roger D.

    1987-01-01

    The NASA Ames Research Center Biological Research Project (BRP) is responsible for identifying and accommodating high priority life science activities, utilizing nonhuman specimens, on the Space Station and is charged to bridge the gap between the science community and the Space Station Program. This paper discusses the approaches taken by the BRP in accomodating these research objectives to constraints imposed by the Space Station System, while maintaining a user-friendly environment. Consideration is given to the particular research disciplines which are given priority, the science objectives in each of these disciplines, the functions and activities required by these objectives, the research equipment, and the equipment suits. Life sciences programs planned by the Space Station participating partners (USA, Europe, Japan, and Canada) are compared.

  13. NSF Perspective on Engaging the NRC and the Community in Developing Priorities

    NASA Astrophysics Data System (ADS)

    Wakimoto, R. M.

    2015-12-01

    NSF pursued a new strategy to assess the balance between funding for core research and infrastructure in a time of limited budgets in the Division of Ocean Sciences (OCE). The latter constraint uniquely distinguished this report from previous community attempts to define future research priorities. The process that ultimately led to "Sea Change: 2015-2025: Decadal Survey of Ocean Sciences" report was closely monitored by Congress, OMB/OSTP, the National Science Board, NSF Senior Management, and the community. The Sea Change recommendations were specific and difficult but highly strategic. They also recommended immediate implementation. NSF and GEO were pleased with the outcome of a process that was initially viewed with some trepidation. Additional thoughts on the report and the process will be presented as well as future plans to engage the NAS and community in defining research priorities.

  14. National nursing science priorities: Creating a shared vision.

    PubMed

    Eckardt, Patricia; Culley, Joan M; Corwin, Elizabeth; Richmond, Therese; Dougherty, Cynthia; Pickler, Rita H; Krause-Parello, Cheryl A; Roye, Carol F; Rainbow, Jessica G; DeVon, Holli A

    Nursing science is essential to advance population health through contributions at all phases of scientific inquiry. Multiple scientific initiatives important to nursing science overlap in aims and population focus. This article focused on providing the American Academy of Nursing and nurse scientists in the Unites States with a blueprint of nursing science priorities to inform a shared vision for future collaborations, areas of scientific inquiry, and resource allocation. The Science Committee convened four times and using Delphi methods identified priorities with empirical evidence and expert opinion for prioritization, state of the science, expert interest, and potential target stakeholders. Nursing science priorities for 2017 were categorized into four themes including: (a) precision science, (b) big data and data analytics, (c) determinants of health, and (d) global health. Nurse scientists can generate new knowledge in priority areas that advances the health of the world's populations. Copyright © 2017 Elsevier Inc. All rights reserved.

  15. The Priority of the Question: Focus Questions for Sustained Reasoning in Science

    NASA Astrophysics Data System (ADS)

    Lustick, David

    2010-08-01

    Science education standards place a high priority on promoting the skills and dispositions associated with inquiry at all levels of learning. Yet, the questions teachers employ to foster sustained reasoning are most likely borrowed from a textbook, lab manual, or worksheet. Such generic questions generated for a mass audience, lack authenticity and contextual cues that allow learners to immediately appreciate a question’s relevance. Teacher queries intended to motivate, guide, and foster learning through inquiry are known as focus questions. This theoretical article draws upon science education research to present a typology and conceptual framework intended to support science teacher educators as they identify, develop, and evaluate focus questions with their students.

  16. Precision agricultural systems: a model of integrative science and technology

    USDA-ARS?s Scientific Manuscript database

    In the world of science research, long gone are the days when investigations are done in isolation. More often than not, science funding starts with one or more well-defined challenges or problems, judged by society as high-priority and needing immediate attention. As such, problems are not defined...

  17. Priorities in Ocean Science Study

    ERIC Educational Resources Information Center

    Awkerman, Gary L.; And Others

    1974-01-01

    Reports on a national survey conducted to determine priorities in ocean science study as identified by oceanographers. The priority determinations gave equal weight to relevance and academic importance of ocean problems. (Author/GS)

  18. Enhancing Return from Lunar Surface Missions via the Deep Space Gateway

    NASA Astrophysics Data System (ADS)

    Chavers, D. G.; Whitley, R. J.; Percy, T. K.; Needham, D. H.; Polsgrove, T. T.

    2018-02-01

    The Deep Space Gateway (DSG) will facilitate access to and communication with lunar surface assets. With a science airlock, docking port, and refueling capability in an accessible orbit, the DSG will enable high priority science across the lunar surface.

  19. Science Indicators and Science Priorities.

    ERIC Educational Resources Information Center

    Brooks, Harvey

    1982-01-01

    Discusses science/society interface and difficulties involved in developing realistic science indicators. Topics include: intrinsic vs. extrinsic indicators; four problems society faces as a result of technological activities (toxic chemicals, radioactive wastes, auto safety, cancer); research and development (R&D) priorities; international…

  20. KSC-02pd1894

    NASA Image and Video Library

    2002-12-09

    KENNEDY SPACE CENTER, FLA. -- Space Shuttle Columbia sits on Launch Pad 39A, atop the Mobile Launcher Platform. The STS-107 research mission comprises experiments ranging from material sciences to life sciences, plus the Fast Reaction Experiments Enabling Science, Technology, Applications and Research (FREESTAR) that incorporates eight high priority secondary attached shuttle experiments. Mission STS-107 is scheduled to launch Jan. 16, 2003.

  1. Graphene/Mo2C heterostructure directly grown by chemical vapor deposition

    NASA Astrophysics Data System (ADS)

    Deng, Rongxuan; Zhang, Haoran; Zhang, Yanhui; Chen, Zhiying; Sui, Yanping; Ge, Xiaoming; Liang, Yijian; Hu, Shike; Yu, Guanghui; Jiang, Da

    2017-06-01

    Not Available Project supported by the National Natural Science Foundation of China (Grant Nos. 1402342, 11574338, and 11274333), the Hundred Talents Program of Chinese Academy of Sciences, the International Collaboration and Innovation Program on High Mobility Materials Engineering, Chinese Academy of Sciences (Grant No. KGZD-EW-303), and the "Strategic Priority Research Program (B)" of the Chinese Academy of Sciences (Grant No. XDB04040300).

  2. Exposure-Based Screening and Priority-Setting (WC10)

    EPA Science Inventory

    The U.S. National Academy of Sciences report “Using 21st Century Science to Improve Risk-Related Evaluations” recognized that high-throughput screening (HTS) and exposure prediction tools are necessary to prioritize thousands of chemicals with the potential to pose human health r...

  3. Payload advisory panel recommendations

    NASA Technical Reports Server (NTRS)

    Moore, Berrien, III

    1991-01-01

    The Payload Advisory Panel proposes a restructured Earth Observing System (EOS) mission to address high-priority science and environmental policy issues in Earth System Science. These issues have been identified through studies conducted by the Intergovernmental Panel on Climate Change (IPCC), the United States Environmental Protection Agency (EPA), and the Committee on Earth and Environmental Sciences (CEES). The restructured EOS defers efforts to improve the understanding of the middle and upper stratosphere and solid earth geophysics. The strategy of the mission combines high priority new measurements with continuation of critical data sets begun by missions which precede EOS. Collaborative arrangements with international partners are an essential part of the program and additional arrangements are posed. The need for continuity in Earth observations and the urgency of environmental questions require launch of some EOS elements as soon as possible. They further require maintenance of the EOS objective of obtaining consistent 15-year measurement records.

  4. Payload advisory panel recommendations

    NASA Astrophysics Data System (ADS)

    Moore, Berrien, III

    1991-11-01

    The Payload Advisory Panel proposes a restructured Earth Observing System (EOS) mission to address high-priority science and environmental policy issues in Earth System Science. These issues have been identified through studies conducted by the Intergovernmental Panel on Climate Change (IPCC), the United States Environmental Protection Agency (EPA), and the Committee on Earth and Environmental Sciences (CEES). The restructured EOS defers efforts to improve the understanding of the middle and upper stratosphere and solid earth geophysics. The strategy of the mission combines high priority new measurements with continuation of critical data sets begun by missions which precede EOS. Collaborative arrangements with international partners are an essential part of the program and additional arrangements are posed. The need for continuity in Earth observations and the urgency of environmental questions require launch of some EOS elements as soon as possible. They further require maintenance of the EOS objective of obtaining consistent 15-year measurement records.

  5. Stakeholder-led science: engaging resource managers to identify science needs for long-term management of floodplain conservation lands

    USGS Publications Warehouse

    Bouska, Kristin L.; Lindner, Garth; Paukert, Craig P.; Jacobson, Robert B.

    2016-01-01

    Floodplains pose challenges to managers of conservation lands because of constantly changing interactions with their rivers. Although scientific knowledge and understanding of the dynamics and drivers of river-floodplain systems can provide guidance to floodplain managers, the scientific process often occurs in isolation from management. Further, communication barriers between scientists and managers can be obstacles to appropriate application of scientific knowledge. With the coproduction of science in mind, our objectives were the following: (1) to document management priorities of floodplain conservation lands, and (2) identify science needs required to better manage the identified management priorities under nonstationary conditions, i.e., climate change, through stakeholder queries and interactions. We conducted an online survey with 80 resource managers of floodplain conservation lands along the Upper and Middle Mississippi River and Lower Missouri River, USA, to evaluate management priority, management intensity, and available scientific information for management objectives and conservation targets. Management objectives with the least information available relative to priority included controlling invasive species, maintaining respectful relationships with neighbors, and managing native, nongame species. Conservation targets with the least information available to manage relative to management priority included pollinators, marsh birds, reptiles, and shore birds. A follow-up workshop and survey focused on clarifying science needs to achieve management objectives under nonstationary conditions. Managers agreed that metrics of inundation, including depth and extent of inundation, and frequency, duration, and timing of inundation would be the most useful metrics for management of floodplain conservation lands with multiple objectives. This assessment provides guidance for developing relevant and accessible science products to inform management of highly dynamic floodplain environments. Although the problems facing managers of these lands are complex, products focused on a small suite of inundation metrics were determined to be the most useful to guide the decision making process.

  6. A Look Inside the Juno Mission to Jupiter

    NASA Technical Reports Server (NTRS)

    Grammier, Richard S.

    2008-01-01

    Juno, the second mission within the New Frontiers Program, is a Jupiter polar orbiter mission designed to return high-priority science data that spans across multiple divisions within NASA's Science Mission Directorate. Juno's science objectives, coupled with the natural constraints of a cost-capped, PI-led mission and the harsh environment of Jupiter, have led to a very unique mission and spacecraft design.

  7. Results from the Science Instrument Definition Team for the Gondola for High Altitude Planetary Science Project

    NASA Astrophysics Data System (ADS)

    Chanover, Nancy J.; Aslam, Shahid; DiSanti, Michael A.; Hibbitts, Charles A.; Honniball, Casey I.; Paganini, Lucas; Parker, Alex; Skrutskie, Michael F.; Young, Eliot F.

    2016-10-01

    The Gondola for High Altitude Planetary Science (GHAPS) is an observing asset under development by NASA's Planetary Science Division that will be hosted on stratospheric balloon missions intended for use by the broad planetary science community. GHAPS is being designed in a modular fashion to interface to a suite of instruments as called for by science needs. It will operate at an altitude of 30+ km and will include an optical telescope assembly with a 1-meter aperture and a pointing stability of approximately 1 arcsecond with a flight duration of ~100 days. The spectral grasp of the system is envisaged to include wavelengths spanning the near-ultraviolet to near/mid-infrared (~0.3-5 µm) and possibly to longer wavelengths.The GHAPS Science Instrument Definition Team (SIDT) was convened in May 2016 to define the scope of science investigations, derive the science requirements and instrument concepts for GHAPS, prioritize the instruments according to science priorities that address Planetary Science Decadal Survey questions, and generate a report that is broadly disseminated to the planetary science community. The SIDT examined a wide range of solar system targets and science questions, focusing on unique measurements that could be made from a balloon-borne platform to address high-priority planetary science questions for a fraction of the cost of space missions. The resulting instrument concepts reflect unique capabilities offered by a balloon-borne platform (e.g., observations at spectral regions inaccessible from the ground due to telluric absorption, diffraction-limited imaging, and long duration uninterrupted observations of a target). We discuss example science cases that can be addressed with GHAPS and describe a notional instrument suite that can be used by guest observers to pursue decadal-level science questions.

  8. Applied Information Systems Research Program (AISRP). Workshop 2: Meeting Proceedings

    NASA Technical Reports Server (NTRS)

    1992-01-01

    The Earth and space science participants were able to see where the current research can be applied in their disciplines and computer science participants could see potential areas for future application of computer and information systems research. The Earth and Space Science research proposals for the High Performance Computing and Communications (HPCC) program were under evaluation. Therefore, this effort was not discussed at the AISRP Workshop. OSSA's other high priority area in computer science is scientific visualization, with the entire second day of the workshop devoted to it.

  9. The National Climate Change and Wildlife Science Center and Department of the Interior Climate Science Centers annual report for 2014

    USGS Publications Warehouse

    Varela Minder, Elda; Padgett, Holly A.

    2015-10-27

    The National Climate Change and Wildlife Science Center (NCCWSC) and the Department of the Interior (DOI) Climate Science Centers (CSCs) had another exciting year in 2014. The NCCWSC moved toward focusing their science funding on several high priority areas and, along with the CSCs, gained new agency partners; contributed to various workshops, meetings, publications, student activities, and Tribal/indigenous activities; increased outreach; and more. 

  10. 75 FR 73050 - Office of Elementary and Secondary Education Overview Information; College Assistance Migrant...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-11-29

    ... priority is an invitational priority for applications that promote science, technology, engineering, and... Priority 1--Science, Technology, Engineering and Mathematics (STEM) Education: Projects that are designed... prepared for postsecondary or graduate study and careers in STEM, with a specific focus on an increase in...

  11. KSC-02pd1880

    NASA Image and Video Library

    2002-12-09

    KENNEDY SPACE CENTER, FLA. - Space Shuttle Columbia is poised to begin rollout from the Vehicle Assembly Building to Launch Pad 39A. The STS-107 research mission comprises experiments ranging from material sciences to life sciences (many rats), plus the Fast Reaction Experiments Enabling Science, Technology, Applications and Research (FREESTAR) that incorporates eight high priority secondary attached shuttle experiments. Mission STS-107 is scheduled to launch Jan. 16, 2003.

  12. Scientific Investigation of the Jovian System: the Jupiter System Observer Mission Concept

    NASA Astrophysics Data System (ADS)

    Spilker, Thomas R.; Senske, D. A.; Prockter, L.; Kwok, J. H.; Tan-Wang, G. H.; SDT, JSO

    2007-10-01

    NASA's Science Mission Directorate (SMD), in efforts to start an outer solar system flagship mission in the near future, commissioned studies of mission concepts for four high-priority outer solar system destinations: Europa, the Jovian system, Titan, and Enceladus. Our team has identified and evaluated science and mission architectures to investigate major elements of the Jovian system: Jupiter, the Galilean moons, rings, and magnetosphere, and their interactions. SMD dubbed the mission concept the "Jupiter System Observer (JSO)." At abstract submission this JPL-led study is nearly complete, with final report submission in August 2007. SMD intends to select a subset of these four concepts for additional detailed study, leading to a potential flagship mission new start. A rich set of science objectives that JSO can address quite well have been identified. The highly capable science payload (including 50-cm optic), an extensive tour with multiple close flybys of Io, Europa, Ganymede and Callisto, and a significant time in orbit at Ganymede, addresses a large set of Solar System Exploration Decadal Survey (2003) and NASA Solar System Exploration Roadmap (2006) high-priority objectives. With the engineering team, the Science Definition Team evaluated a suite of mission architectures and the science they enable to arrive at two architectures that provide the best science for their estimated mission costs. This paper discusses the science objectives and operational capabilities and considerations for these mission concepts. This work was performed at JPL, APL, and other institutions under contract to NASA.

  13. Collaborating on global priorities: science education for everyone—any time and everywhere

    NASA Astrophysics Data System (ADS)

    Tobin, Kenneth

    2016-03-01

    Building on the key ideas from Dana Zeidler's paper I expand the conversation from the standpoint that the challenges facing humanity and the capacity of Earth to support life suggest that changes in human lifestyles are a priority. Accordingly, there is an urgent need to educate all humans about some of the science-related grand challenges, such as global warming and wellness. The key is to enact programs that have relevance to all citizens, irrespective of: age, location, language proficiency, economic resources, religion, gender, sexual preference, and level of prior education. Since significant changes are needed in human lifestyles the current emphasis on preK-12 science education needs to be expanded to cover all humans and the places in which education occurs should be everywhere. I explore the use of a multilogical framework to conceptualize science and thereby transform science education in ways that better relate to priorities of wellness and harmony in the ecosystems that sustain life on Earth. I illustrate the potential of multilogicality in a context of complementary medicine, using three frameworks: Jin Shin Jyutsu, an ancient system of medicine; a diet to reduce inflammation; and iridology. Use of a multilogical framework to conceptualize science provides opportunities for science education to focus on education for literate citizenry (birth-death) and responsible action, connect to the massive challenges of the present, and select content that has high relevance to sustainability, wellness, and well-being at local, national, and global levels.

  14. An Ecologist Is Born: An Integrated Experiential Learning Activity

    ERIC Educational Resources Information Center

    Behrendt, Marc; Behrendt, Barbara

    2012-01-01

    Language arts and mathematics are high priority content areas in early grades. Science is often a secondary concern, even though students appear to have minimal knowledge or interest in their local ecology. This article describes a year-long project integrating science and technology with language arts. Students researched and wrote about local…

  15. Sunny Side Up

    ERIC Educational Resources Information Center

    Murphy, Jim

    1976-01-01

    Energy conservation high on the client's priority list led to a solar collector roof for the new science building at the Madeira School, located in the Virginia suburbs of Washington, D.C. (Author/MLF)

  16. Noninvasive treatment efficacy monitoring and dose control for high-intensity focused ultrasound therapy using relative electrical impedance variation

    NASA Astrophysics Data System (ADS)

    Su, Huidan; Guo, Gepu; Ma, Qingyu; Tu, Juan; Zhang, Dong

    2017-05-01

    Not Available Project supported by the National Natural Science Foundation of China (Grant Nos. 11604156 and 11474166), the Science and Technology Cooperation Projects of China and Romania (Grant No. 42-23), the Natural Science Foundation of Jiangsu Province, China (Grant No. BK20161013), the Postdoctoral Science Foundation of China (Grant No. 2016M591874), and the Priority Academic Program Development of Jiangsu Higher Education Institutions, China.

  17. Developing plans and priorities for climate science in service to society

    NASA Astrophysics Data System (ADS)

    Asrar, Ghassem; Busalacchi, Antonio; Hurrell, James

    2012-03-01

    World Climate Research Programme (WCRP) Open Science Conference; Denver, Colorado, 24-28 October 2011 The WCRP Open Science Conference (OSC), which had the theme "Climate Research in Service to Society," was held to consult with the international community of experts on future plans and priorities for the WCRP. More than 1900 participants, including 541 young scholars from 86 nations and 300 scientists from developing nations, made the conference a success. Several major scientific priorities emerged from OSC.

  18. The Jupiter System Observer Mission Concept: Scientific Investigation of the Jovian System

    NASA Astrophysics Data System (ADS)

    Spilker, T. R.; Senske, D. A.; Prockter, L.; Kwok, J. H.; Tan-Wang, G. H.; Sdt, J.

    2007-12-01

    NASA's Science Mission Directorate (SMD), in efforts to start an outer solar system flagship mission in the near future, commissioned studies of mission concepts for four high-priority outer solar system destinations: Europa, the Jovian system, Titan, and Enceladus. Our team has identified and evaluated science and mission architectures to investigate major elements of the Jovian system: Jupiter, the Galilean moons, rings, and magnetosphere, and their interactions. SMD dubbed the mission concept the "Jupiter System Observer (JSO)." This JPL-led study's final report is now complete and was submitted in August 2007. SMD intends to select a subset of these four concepts for additional detailed study, leading to a potential flagship mission new start. The study's NASA-appointed, multi-institutional Science Definition Team (SDT) identified a rich set of science objectives that JSO can address quite well. The highly capable science payload (including ~50-cm optics), an extensive tour with multiple close flybys of Io, Europa, Ganymede and Callisto, and a significant time in orbit at Ganymede, addresses a large set of Solar System Exploration Decadal Survey (2003) and NASA Solar System Exploration Roadmap (2006) high-priority objectives. With the engineering team, the SDT evaluated a suite of mission architectures and the science they enable to arrive at two architectures that provide the best science for their estimated mission costs. This paper discusses the science objectives and operational capabilities and considerations for these mission concepts, and some options available for emphasizing specific science objectives. This work was performed at JPL, APL, and other institutions under contract to NASA.

  19. KSC-02pd1890

    NASA Image and Video Library

    2002-12-09

    KENNEDY SPACE CENTER, FLA. -- Space Shuttle Columbia, atop the Mobile Launcher Platform, approaches the top of Launch Pad 39A where it will undergo preparations for launch. The STS-107 research mission comprises experiments ranging from material sciences to life sciences, plus the Fast Reaction Experiments Enabling Science, Technology, Applications and Research (FREESTAR) that incorporates eight high priority secondary attached shuttle experiments. Mission STS-107 is scheduled to launch Jan. 16, 2003.

  20. Optical/IR from ground

    NASA Technical Reports Server (NTRS)

    Strom, Stephen; Sargent, Wallace L. W.; Wolff, Sidney; Ahearn, Michael F.; Angel, J. Roger; Beckwith, Steven V. W.; Carney, Bruce W.; Conti, Peter S.; Edwards, Suzan; Grasdalen, Gary

    1991-01-01

    Optical/infrared (O/IR) astronomy in the 1990's is reviewed. The following subject areas are included: research environment; science opportunities; technical development of the 1980's and opportunities for the 1990's; and ground-based O/IR astronomy outside the U.S. Recommendations are presented for: (1) large scale programs (Priority 1: a coordinated program for large O/IR telescopes); (2) medium scale programs (Priority 1: a coordinated program for high angular resolution; Priority 2: a new generation of 4-m class telescopes); (3) small scale programs (Priority 1: near-IR and optical all-sky surveys; Priority 2: a National Astrometric Facility); and (4) infrastructure issues (develop, purchase, and distribute optical CCDs and infrared arrays; a program to support large optics technology; a new generation of large filled aperture telescopes; a program to archive and disseminate astronomical databases; and a program for training new instrumentalists)

  1. Research priorities for conservation and natural resource management in Oceania's small-island developing states.

    PubMed

    Weeks, R; Adams, V M

    2018-02-01

    For conservation science to effectively inform management, research must focus on creating the scientific knowledge required to solve conservation problems. We identified research questions that, if answered, would increase the effectiveness of conservation and natural resource management practice and policy in Oceania's small-island developing states. We asked conservation professionals from academia, governmental, and nongovernmental organizations across the region to propose such questions and then identify which were of high priority in an online survey. We compared the high-priority questions with research questions identified globally and for other regions. Of 270 questions proposed by respondents, 38 were considered high priority, including: What are the highest priority areas for conservation in the face of increasing resource demand and climate change? How should marine protected areas be networked to account for connectivity and climate change? What are the most effective fisheries management policies that contribute to sustainable coral reef fisheries? High-priority questions related to the particular challenges of undertaking conservation on small-island developing states and the need for a research agenda that is responsive to the sociocultural context of Oceania. Research priorities for Oceania relative to elsewhere were broadly similar but differed in specific issues relevant to particular conservation contexts. These differences emphasize the importance of involving local practitioners in the identification of research priorities. Priorities were reasonably well aligned among sectoral groups. Only a few questions were widely considered answered, which may indicate a smaller-than-expected knowledge-action gap. We believe these questions can be used to strengthen research collaborations between scientists and practitioners working to further conservation and natural resource management in this region. © 2017 The Authors. Conservation Biology published by Wiley Periodicals, Inc. on behalf of Society for Conservation Biology.

  2. Engineering Specifications derived from Science Requirements

    NASA Technical Reports Server (NTRS)

    Stahl, H. Philip; Arnold, William; Bevan, Ryan M.; Smith, W. Scott; Kirk, Charles S.; Postman, Marc

    2013-01-01

    Advanced Mirror Technology Development (AMTD) is a multi-year effort to systematically mature to TRL-6 the critical technologies needed to produce 4-m or larger flight-qualified UVOIR mirrors by 2018 so that a viable mission can be considered by the 2020 Decadal Review. This technology must enable missions capable of both general astrophysics & ultra-high contrast observations of exoplanets. To accomplish our objective, we use a science-driven systems engineering approach. We mature technologies required to enable the highest priority science AND result in a high-performance low-cost low-risk system.

  3. Improvement Research Priorities: USA Survey and Expert Consensus

    PubMed Central

    Stevens, Kathleen R.; Ovretveit, John

    2013-01-01

    The purpose of this study was to identify stakeholder views about national priorities for improvement science and build agreement for action in a national improvement and implementation research network in the USA. This was accomplished using three stages of identification and consensus. (1) Topics were identified through a multipronged environmental scan of the literature and initiatives. (2) Based on this scan, a survey was developed, and stakeholders (n = 2,777) were invited to rate the resulting 33-topic, 9-category list, via an online survey. Data from 560 respondents (20% response) were analyzed. (3) An expert panel used survey results to further refine the research priorities through a Rand Delphi process. Priorities identified were within four categories: care coordination and transitions, high-performing clinical systems and microsystems improvement approaches, implementation of evidence-based improvements and best practices, and culture of quality and safety. The priorities identified were adopted by the improvement science research network as the research agenda to guide strategy. The process and conclusions may be of value to quality improvement research funding agencies, governments, and research units seeking to concentrate their resources on improvement topics where research is capable of yielding timely and actionable answers as well as contributing to the knowledge base for improvement. PMID:24024029

  4. Behavioral and social sciences at the National Institutes of Health: Methods, measures, and data infrastructures as a scientific priority.

    PubMed

    Riley, William T

    2017-01-01

    The National Institutes of Health Office of Behavioral and Social Sciences Research (OBSSR) recently released its strategic plan for 2017-2021. This plan focuses on three equally important strategic priorities: 1) improve the synergy of basic and applied behavioral and social sciences research, 2) enhance and promote the research infrastructure, methods, and measures needed to support a more cumulative and integrated approach to behavioral and social sciences research, and 3) facilitate the adoption of behavioral and social sciences research findings in health research and in practice. This commentary focuses on scientific priority two and future directions in measurement science, technology, data infrastructure, behavioral ontologies, and big data methods and analytics that have the potential to transform the behavioral and social sciences into more cumulative, data rich sciences that more efficiently build on prior research. (PsycINFO Database Record (c) 2017 APA, all rights reserved).

  5. Does Funding for Arctic Research Align with Research Priorities and Policy Needs? Trends in the USA, Canada and Europe

    NASA Astrophysics Data System (ADS)

    Murray, M. S.; Ibarguchi, G.; Rajdev, V.

    2015-12-01

    Over the past twenty years, increasing awareness and understanding of changes in the Arctic system, the stated desires of Arctic Peoples to be engaged in the research process, and a growing international interest in the region's resources have informed various stakeholders to undertake many Arctic science planning activities. Some examples of science planning include priority-setting for research, knowledge translation, stakeholder engagement, improved coordination, and international collaboration. The International Study of Arctic Change recently initiated an analysis of the extent to which alignment exists among stated science priorities, recognized societal needs, and funding patterns of the major North American and European agencies. In this paper, we present a decade of data on international funding patterns and data on two decades of science planning. We discuss whether funding patterns reflect the priority research questions and identified needs for information that are articulated in a myriad of Arctic research planning documents. The alignment in many areas remains poor, bringing into question the purpose of large-scale science planning if it does not lead to funding of those priorities identified by Arctic stakeholder communities (scientists, Arctic Peoples, planners, policy makers, the private sector, and others).

  6. M3 Status and Science Discussion

    NASA Technical Reports Server (NTRS)

    Pieters, Carle

    2007-01-01

    Members of the M3 Science Team will attend the Chandrayaan-I Science Team Meeting in Bangalore, India to present a brief summary of instrument status and the near-term milestones (e.g., final I&T, pre-ship review). The principal purpose of the meeting is to interact with other members of the Chandrayaan-I Science Team to prepare for successful science return. The objectives are: 1) Characterize the diversity and extent of different types of basaltic volcanism; 2) Constrain evolution over time; and 3) Examine high priority regional sites.

  7. KSC-02pd1885

    NASA Image and Video Library

    2002-12-09

    KENNEDY SPACE CENTER, FLA. -- Space Shuttle Columbia rolls towards Launch Pad 39A, sitting atop the Mobile Launcher Platform, which in turn is carried by the crawler-transporter underneath. The STS-107 research mission comprises experiments ranging from material sciences to life sciences (many rats), plus the Fast Reaction Experiments Enabling Science, Technology, Applications and Research (FREESTAR) that incorporates eight high priority secondary attached shuttle experiments. Mission STS-107 is scheduled to launch Jan. 16, 2003.

  8. JPRS Report, Science & Technology, Europe & Latin America

    DTIC Science & Technology

    1988-04-06

    courses and in polytechnics a growing number of undergraduate research theses [ tesi di laurea] are increasingly coming to resemble authentic feasibility...Information Science Eleven Priorities Research Priority Actions — Microbiological engineering —Enzyme engineering —Biotechnological engineering —Food...Foodstuffs Medicine Human and social sciences Technology, computer-integrated manufacturing Electronics, data processing Microbiological

  9. A study of the role expectations of the science supervisor and the fostering of collaboration within the high school science department

    NASA Astrophysics Data System (ADS)

    Hughes, Janet

    2001-07-01

    The purpose of this study was to determine the extent of agreement among science supervisors and public high school science teachers regarding Actual and Desired role responsibilities for science supervisors in six categories, Curriculum, Methodology, Involvement in the Science Field, Staff Development, Procedural Duties, and Assessment and a seventh category measuring the supervisor's degree of Fostering Collaboration within the department. The Science Supervisor Questionnaire was developed specifically for this study and consisted of items that comprised the most current research on the roles of the science supervisor. The instrument was based on the responsibilities of department heads as delineated through a consolidation of the current research. Although the supervisors and the science teachers agreed among themselves to some extent on the seven subscales, the six role expectations of supervisors (Curriculum, Methodology, Involvement in the Science Field, Staff Development, Procedural Duties, and Assessment) and the Fostering of Collaboration, the amount and degree of consensus varied. There was more consensus in the desired roles of science supervisors suggesting that the groups understand and agree upon the expectations of the position. Those top priorities of science supervisor role expectations for both groups were Methodology, Curriculum, Procedural Duties and Staff Development. There was a difference in perceptions between the two groups of the actual role of the supervisor, indicating that what is actually happening in the science supervisor role conflicts with what is expected. Fostering Collaboration ranked lowest for both groups in both perceived actual and desired science supervisor performance. Fostering Collaboration was not seen as a priority by the supervisors and teachers in the teaching and learning environment. Teachers report that supervisors did not play a key role in fostering collaboration in this study.

  10. Setting research priorities across science, technology, and health sectors: the Tanzania experience.

    PubMed

    de Haan, Sylvia; Kingamkono, Rose; Tindamanyire, Neema; Mshinda, Hassan; Makandi, Harun; Tibazarwa, Flora; Kubata, Bruno; Montorzi, Gabriela

    2015-03-12

    Identifying research priorities is key to innovation and economic growth, since it informs decision makers on effectively targeting issues that have the greatest potential public benefit. As such, the process of setting research priorities is of pivotal importance for favouring the science, technology, and innovation (STI)-driven development of low- and middle-income countries. We report herein on a major cross-sectoral nationwide research priority setting effort recently carried out in Tanzania by the Tanzania Commission for Science and Technology (COSTECH) in partnership with the Council on Health Research for Development (COHRED) and the NEPAD Agency. The first of its type in the country, the process brought together stakeholders from 42 sub-sectors in science, technology, and health. The cross-sectoral research priority setting process consisted of a 'training-of-trainers' workshop, a demonstration workshop, and seven priority setting workshops delivered to representatives from public and private research and development institutions, universities, non-governmental organizations, and other agencies affiliated to COSTECH. The workshops resulted in ranked listings of research priorities for each sub-sector, totalling approximately 800 priorities. This large number was significantly reduced by an expert panel in order to build a manageable instrument aligned to national development plans that could be used to guide research investments. The Tanzania experience is an instructive example of the challenges and issues to be faced in when attempting to identify research priority areas and setting an STI research agenda in low- and middle-income countries. As countries increase their investment in research, it is essential to increase investment in research management and governance as well, a key and much needed capacity for countries to make proper use of research investments.

  11. 47 CFR 211.5 - Priorities.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 47 Telecommunication 5 2014-10-01 2014-10-01 false Priorities. 211.5 Section 211.5 Telecommunication OFFICE OF SCIENCE AND TECHNOLOGY POLICY AND NATIONAL SECURITY COUNCIL EMERGENCY RESTORATION PRIORITY PROCEDURES FOR TELECOMMUNICATIONS SERVICES § 211.5 Priorities. There are hereby established four...

  12. 47 CFR 211.5 - Priorities.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 47 Telecommunication 5 2010-10-01 2010-10-01 false Priorities. 211.5 Section 211.5 Telecommunication OFFICE OF SCIENCE AND TECHNOLOGY POLICY AND NATIONAL SECURITY COUNCIL EMERGENCY RESTORATION PRIORITY PROCEDURES FOR TELECOMMUNICATIONS SERVICES § 211.5 Priorities. There are hereby established four...

  13. 47 CFR 211.5 - Priorities.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 47 Telecommunication 5 2013-10-01 2013-10-01 false Priorities. 211.5 Section 211.5 Telecommunication OFFICE OF SCIENCE AND TECHNOLOGY POLICY AND NATIONAL SECURITY COUNCIL EMERGENCY RESTORATION PRIORITY PROCEDURES FOR TELECOMMUNICATIONS SERVICES § 211.5 Priorities. There are hereby established four...

  14. 47 CFR 211.5 - Priorities.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 47 Telecommunication 5 2012-10-01 2012-10-01 false Priorities. 211.5 Section 211.5 Telecommunication OFFICE OF SCIENCE AND TECHNOLOGY POLICY AND NATIONAL SECURITY COUNCIL EMERGENCY RESTORATION PRIORITY PROCEDURES FOR TELECOMMUNICATIONS SERVICES § 211.5 Priorities. There are hereby established four...

  15. 47 CFR 211.5 - Priorities.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 47 Telecommunication 5 2011-10-01 2011-10-01 false Priorities. 211.5 Section 211.5 Telecommunication OFFICE OF SCIENCE AND TECHNOLOGY POLICY AND NATIONAL SECURITY COUNCIL EMERGENCY RESTORATION PRIORITY PROCEDURES FOR TELECOMMUNICATIONS SERVICES § 211.5 Priorities. There are hereby established four...

  16. Advancing Evidence-Based Assessment in School Mental Health: Key Priorities for an Applied Research Agenda.

    PubMed

    Arora, Prerna G; Connors, Elizabeth H; George, Melissa W; Lyon, Aaron R; Wolk, Courtney B; Weist, Mark D

    2016-12-01

    Evidence-based assessment (EBA) is a critically important aspect of delivering high-quality, school-based mental health care for youth. However, research in this area is limited and additional applied research on how best to support the implementation of EBA in school mental health (SMH) is needed. Accordingly, this manuscript seeks to facilitate the advancement of research on EBA in SMH by reviewing relevant literature on EBA implementation in schools and providing recommendations for key research priorities. Given the limited number of published studies available, findings from child and adolescent mental health and implementation science research are also included to inform a robust and comprehensive research agenda on this topic. Based on this literature review, five priorities for research on EBA in SMH are outlined: (1) effective identification of assessment targets, (2) appropriate selection of assessment measures, (3) investigation of organizational readiness for EBA, (4) study of implementation support for EBA, and (5) promotion of EBA data integration and use. Each priority area includes recommended directions for future research. A comprehensive and robust research agenda is warranted to build the science and practice of implementing EBA in SMH. Specific directions for this agenda are offered.

  17. Recent progress and future directions for reduction, refinement, and replacement of animal use in veterinary vaccine potency and safety testing: a report from the 2010 NICEATM-ICCVAM International Vaccine Workshop.

    PubMed

    Stokes, W S; Kulpa-Eddy, J; Brown, K; Srinivas, G; McFarland, R

    2012-01-01

    Veterinary vaccines contribute to improved animal and human health and welfare by preventing infectious diseases. However, testing necessary to ensure vaccine effectiveness and safety can involve large numbers of animals and significant pain and distress. NICEATM and ICCVAM recently convened an international workshop to review the state of the science of human and veterinary vaccine potency and safety testing, and to identify priority activities to advance new and improved methods that can further reduce, refine and replace animal use. Rabies, Clostridium sp., and Leptospira sp. vaccines were identified as the highest priorities, while tests requiring live viruses and bacteria hazardous to laboratory workers, livestock, pets, and wildlife were also considered high priorities. Priority research, development and validation activities to address critical knowledge and data gaps were identified, including opportunities to apply new science and technology. Enhanced international harmonization and cooperation and closer collaborations between human and veterinary researchers were recommended to expedite progress. Implementation of the workshop recommendations is expected to advance new methods for vaccine testing that will benefit animal welfare and ensure continued and improved protection of human and animal health.

  18. MEPAG Recommendations for a 2018 Mars Sample Return Caching Lander - Sample Types, Number, and Sizes

    NASA Technical Reports Server (NTRS)

    Allen, Carlton C.

    2011-01-01

    The return to Earth of geological and atmospheric samples from the surface of Mars is among the highest priority objectives of planetary science. The MEPAG Mars Sample Return (MSR) End-to-End International Science Analysis Group (MEPAG E2E-iSAG) was chartered to propose scientific objectives and priorities for returned sample science, and to map out the implications of these priorities, including for the proposed joint ESA-NASA 2018 mission that would be tasked with the crucial job of collecting and caching the samples. The E2E-iSAG identified four overarching scientific aims that relate to understanding: (A) the potential for life and its pre-biotic context, (B) the geologic processes that have affected the martian surface, (C) planetary evolution of Mars and its atmosphere, (D) potential for future human exploration. The types of samples deemed most likely to achieve the science objectives are, in priority order: (1A). Subaqueous or hydrothermal sediments (1B). Hydrothermally altered rocks or low temperature fluid-altered rocks (equal priority) (2). Unaltered igneous rocks (3). Regolith, including airfall dust (4). Present-day atmosphere and samples of sedimentary-igneous rocks containing ancient trapped atmosphere Collection of geologically well-characterized sample suites would add considerable value to interpretations of all collected rocks. To achieve this, the total number of rock samples should be about 30-40. In order to evaluate the size of individual samples required to meet the science objectives, the E2E-iSAG reviewed the analytical methods that would likely be applied to the returned samples by preliminary examination teams, for planetary protection (i.e., life detection, biohazard assessment) and, after distribution, by individual investigators. It was concluded that sample size should be sufficient to perform all high-priority analyses in triplicate. In keeping with long-established curatorial practice of extraterrestrial material, at least 40% by mass of each sample should be preserved to support future scientific investigations. Samples of 15-16 grams are considered optimal. The total mass of returned rocks, soils, blanks and standards should be approximately 500 grams. Atmospheric gas samples should be the equivalent of 50 cubic cm at 20 times Mars ambient atmospheric pressure.

  19. Behavioral science priorities in residency education: The perspective of practicing family physicians.

    PubMed

    Brandt-Kreutz, Richard L; Ferguson, Kyle E; Sawyer, Devin

    2015-12-01

    The family medicine residency behavioral science curriculum is more effective if prioritized to match what is needed in practice after graduation. Two prior studies (Kendall, Marvel, & Cruickshank, 2003; Marvel & Major, 1999) identified physician priorities for behavioral science education. The present study extends this research to include topics from more recent curriculum guidelines and examines the extent to which size of community and perceived competence correlate with prioritization of Washington state family physicians. Practicing family physicians in Washington state (N = 2,270) were invited to complete the survey. Respondents provided demographic and practice information. Respondents then rated, on a scale from 1 to 4, 35 behavioral science topics on 2 different scales including (a) priority to be given in residency education and (b) perceived level of competence. A total of 486 responded and 430 completed both priority and competence scales for a response rate of 19%. The top half of 35 topics of the present study included the top 13 topics found in the 2 prior studies. Priority and competence scales were moderately correlated (r = .48, n = 430, p = .001). There was a small significant correlation with size of community and priority ratings (r = .13, n = 435, p = .006). Family physicians in Washington state prioritize behavioral science topics in residency education similar to Colorado and Mississippi. The results of this study support recent ACGME guidelines, in that training should focus on common psychiatric illnesses, including depression and anxiety, and interpersonal processes. (PsycINFO Database Record (c) 2015 APA, all rights reserved).

  20. Europa Explorer: A Mission to Explore Europa and Investigate Its Habitability

    NASA Astrophysics Data System (ADS)

    Pappalardo, Robert T.; Clark, K.; Greeley, R.; Abelson, R.; Bills, B.; Blankenship, D.; Jorgenson, E.; Kahn, P.; Khurana, K.; Kirby, K.; Klaasen, K.; Lock, R.; Man, G.; McCord, T.; Moore, W.; Paranicas, C.; Prockter, L.; Rasmussen, R.; Sogin, M.

    2007-10-01

    Europa is the astrobiological archetype for icy satellite habitability, with a warm, salty, water ocean with plausible chemical energy sources. It is also a geophysical wonderland of interrelated ice shell processes that are intimately related to the ocean and tides, and of complex interactions among its interior, surface, atmosphere, and particles and fields environments. The Europa Explorer is a mature orbiter mission concept to explore Europa and investigate its habitability, fulfilling objectives laid out by the National Research Council's Planetary Science Decadal Survey. The mission examines Europa's ocean, ice shell, chemistry, geology, external environment (fields, particles, and atmosphere), and neighborhood (the Jupiter system). Science questions for Europa are well-honed, yet we anticipate being surprised by discoveries. Europa Explorer would nominally launch in June 2015, on a Venus-Earth-Earth Gravity Assist trajectory with a 6 year flight time to the Jupiter system. It would orbit Jupiter for 2 years using gravity assists of the icy Galilean satellites to lower its energy, providing the opportunity for significant Jupiter system science. It would then enter Europa orbit at an altitude of 100-200 km, where it would perform science investigations for 1 year. A campaign-based operations scenario has been developed which permits return of 5.4 Tbits of science data beginning in July 2021, and emphasizing the highest priority Europa science objectives early in the orbital phase of the mission. The baseline mission concept includes 11 instruments that address high-priority investigations while providing the flexibility to respond to discoveries. The radiation design approach has been independently reviewed and validated, and a statistical lifetime prediction method has been developed. Past technology investments have reduced mission risk, making the Europa Explorer mission ready to move forward in order to address the high-priority astrobiological and geophysical objectives outlined by the Decadal Survey.

  1. Basic science research and education: a priority for training and capacity building in developing countries.

    PubMed

    Deckelbaum, Richard J; Ntambi, James M; Wolgemuth, Debra J

    2011-09-01

    This article provides evidence that basic science research and education should be key priorities for global health training, capacity building, and practice. Currently, there are tremendous gaps between strong science education and research in developed countries (the North) as compared to developing countries (the South). In addition, science research and education appear as low priorities in many developing countries. The need to stress basic science research beyond the typical investment of infectious disease basic service and research laboratories in developing areas is significant in terms of the benefits, not only to education, but also for economic strengthening and development of human resources. There are some indications that appreciation of basic science research education and training is increasing, but this still needs to be applied more rigorously and strengthened systematically in developing countries. Copyright © 2011 Elsevier Inc. All rights reserved.

  2. STS-107 Columbia rollout to Launch Pad 39A

    NASA Technical Reports Server (NTRS)

    2002-01-01

    KENNEDY SPACE CENTER, FLA. -- Space Shuttle Columbia, framed by trees near the Banana River, rolls towards Launch Pad 39A, sitting atop the Mobile Launcher Platform, which in turn is carried by the crawler-transporter underneath. The STS-107 research mission comprises experiments ranging from material sciences to life sciences (many rats), plus the Fast Reaction Experiments Enabling Science, Technology, Applications and Research (FREESTAR) that incorporates eight high priority secondary attached shuttle experiments. Mission STS-107 is scheduled to launch Jan. 16, 2003.

  3. The APIC research agenda: results from a national survey.

    PubMed

    Wright, Marc-Oliver; Carter, Eileen; Pogorzelska, Monika; Murphy, Cathryn; Hanchett, Marilyn; Stone, Patricia W

    2012-05-01

    Research is an integral component of the Association for Professionals in Infection Control and Epidemiology (APIC) Strategic Plan 2020. As the role of the infection preventionist (IP) has evolved toward consumers and implementers of research, it becomes increasingly necessary to assess which topics require further evidence and how best APIC can assist IPs. In 2010, APIC determined that the research priorities first described in 2000 needed to be re-evaluated. A 33-question Web-based survey was developed and distributed via e-mail to APIC members in March 2011. The survey contained sections inquiring about respondents' demographics, familiarity with implementation science, and infection prevention research priorities. Priorities identified by a Delphi study 10 years ago were re-ranked, and open-ended items were used to identify new research priorities and understand how APIC could best serve its members in relation to research. Seven hundred one members responded. Behavioral management science, surveillance standards, and infection prevention resource optimization were the highest ranked priorities and relatively unchanged from 2000. Proposed additional research topics focused on achieving standardization in infection prevention practices and program resource allocation. The majority of respondents described APIC's role in the field of research as a disseminator of low-cost, highly accessible education to its members. This report should be used as a roadmap for APIC leadership as it provides suggestions on how APIC may best direct the association's research program. The major research priorities described and ranked in 2000 continue to challenge IPs. APIC can best serve its members by disseminating research findings in a cost-effective and easily accessed manner. Recurrent assessments of research priorities can help guide researchers and policy makers and help determine which topics will best support successful infection prevention processes and outcomes. Published by Mosby, Inc.

  4. Physical Sciences Research Priorities and Plans in OBPR

    NASA Technical Reports Server (NTRS)

    Trinh, Eugene

    2002-01-01

    This paper presents viewgraphs of physical sciences research priorities and plans at the Office of Biological and Physical Sciences Research (OBPR). The topics include: 1) Sixth Microgravity Fluid Physics and Transport Phenomena Conference; 2) Beneficial Characteristics of the Space Environment; 3) Windows of Opportunity for Research Derived from Microgravity; 4) Physical Sciences Research Program; 5) Fundamental Research: Space-based Results and Ground-based Applications; 6) Nonlinear Oscillations; and 7) Fundamental Research: Applications to Mission-Oriented Research.

  5. Task value profiles across subjects and aspirations to physical and IT-related sciences in the United States and Finland.

    PubMed

    Chow, Angela; Eccles, Jacquelynne S; Salmela-Aro, Katariina

    2012-11-01

    Two independent studies were conducted to extend previous research by examining the associations between task value priority patterns across school subjects and aspirations toward the physical and information technology- (IT-) related sciences. Study 1 measured task values of a sample of 10th graders in the United States (N = 249) across (a) physics and chemistry, (b) math, and (c) English. Study 2 measured task values of a sample of students in the second year of high school in Finland (N = 351) across (a) math and science, (b) Finnish, and (c) the arts and physical education. In both studies, students were classified into groups according to how they ranked math and science in relation to the other subjects. Regression analyses indicated that task value group membership significantly predicted subsequent aspirations toward physical and IT-related sciences measured 1-2 years later. The task value groups who placed the highest priority on math and science were significantly more likely to aspire to physical and IT-related sciences than were the other groups. These findings provide support for the theoretical assumption regarding the predictive role of intraindividual hierarchical patterns of task values for subsequent preferences and choices suggested by the Eccles [Parsons] (1983) expectancy-value model.

  6. Top 40 priorities for science to inform conservation and management policy in the United States

    USGS Publications Warehouse

    Fleishman, Erica; Blockstein, David E.; Hall, John A.; Mascia, Michael B.; Rudd, Murray A.; Scott, J. Michael; Sutherland, William J.; Bartuska, Ann M.; Brown, A. Gordon; Christen, Catherine A.; Clement, Joel P.; DellaSala, Dominick; Duke, Clifford D.; Fiske, Shirley J.; Gosnell, Hannah; Haney, J. Christopher; Hutchins, Michael; Klein, Mary L.; Marqusee, Jeffrey; Noon, Barry R.; Nordgren, John R.; Orbuch, Paul M.; Powell, Jimmie; Quarles, Steven P.; Saterson, Kathryn A.; Stein, Bruce A.; Webster, Michael S.; Vedder, Amy

    2011-01-01

    To maximize the utility of research to decisionmaking, especially given limited financial resources, scientists must set priorities for their efforts. We present a list of the top 40 high-priority, multidisciplinary research questions directed toward informing some of the most important current and future decisions about management of species, communities, and ecological processes in the United States. The questions were generated by an open, inclusive process that included personal interviews with decisionmakers, broad solicitation of research needs from scientists and policymakers, and an intensive workshop that included scientifically oriented individuals responsible for managing and developing policy related to natural resources. The process differed from previous efforts to set priorities for conservation research in its focus on the engagement of decisionmakers in addition to researchers. The research priorities emphasized the importance of addressing societal context and exploration of trade-offs among alternative policies and actions, as well as more traditional questions related to ecological processes and functions.

  7. Educator Perspectives on Earth System Science Literacy: Challenges and Priorities

    ERIC Educational Resources Information Center

    LaDue, Nicole; Clark, Scott K.

    2012-01-01

    The challenges and priorities of defining and achieving Earth System Science (ESS) literacy are examined through surveys of geoscience educators attending a professional geological meeting. Two surveys with Likert-style and free-response questions were distributed to geoscientists and K-12 teachers to elicit what instructors think are important…

  8. Marine Science Affairs--Selecting Priority Programs.

    ERIC Educational Resources Information Center

    National Council on Marine Resources and Engineering Development, Washington, DC.

    This report summarizes accomplishments in 1969, describing Federal programs and policies, and new programs implemented to meet those policies. The report describes the priorities that have been selected in the Federal Marine Science program during 1969. The first chapter reviews the steps taken by the Federal Government during 1969 to advance and…

  9. Decision Making for the Environment: Social and Behavioral Science Research Priorities

    ERIC Educational Resources Information Center

    Brewer, Garry D., Ed.; Stern, Paul C., Ed.

    2005-01-01

    With the growing number, complexity, and importance of environmental problems come demands to include a full range of intellectual disciplines and scholarly traditions to help define and eventually manage such problems more effectively. "Decision Making for the Environment: Social and Behavioral Science Research Priorities" is the result…

  10. NASA's Office of Space Science and Applications: Process, priorities, and goals

    NASA Technical Reports Server (NTRS)

    1992-01-01

    Summarized here are the activities of a one-day workshop convened to assess the effectiveness and priority setting mechanisms used by NASA's Office of Space Science and Applications in carrying out its diverse scientific programs. Among the topics discussed were strategic planning, decision making, and goal setting.

  11. Neutral Mass Spectrometry for Venus Atmosphere and Surface

    NASA Technical Reports Server (NTRS)

    Mahaffy, Paul

    2004-01-01

    The nature of the divergent evolution of the terrestrial planets Venus, Earth, and Mars is a fundamental problem in planetary science that is most relevant to understanding the characteristics of small planets we are likely to discover in extrasolar systems and the number of such systems that may support habitable environments. For this reason, the National Research Council's Decadal Survey gives Venus exploration high priority. That report was the basis of the NASA selection of Venus as one of four prime mission targets for the recently initiated New Frontiers Program. If the Decadal Survey priorities are to be realized, in situ Venus exploration must remain a high priority. Remote sensing orbital and in situ atmospheric measurements from entry probe or balloon platforms might be realized under the low cost Discovery missions while both atmospheric and landed surface measurements are envisioned with the intermediate class missions of the New Frontiers Program.

  12. Health Extension and Clinical and Translational Science: An Innovative Strategy for Community Engagement.

    PubMed

    Kaufman, Arthur; Rhyne, Robert L; Anastasoff, Juliana; Ronquillo, Francisco; Nixon, Marnie; Mishra, Shiraz; Poola, Charlene; Page-Reeves, Janet; Nkouaga, Carolina; Cordova, Carla; Larson, Richard S

    Health Extension Regional Officers (HEROs) through the University of New Mexico Health Sciences Center (UNMHSC) help to facilitate university-community engagement throughout New Mexico. HEROs, based in communities across the state, link priority community health needs with university resources in education, service, and research. Researchers' studies are usually aligned with federal funding priorities rather than with health priorities expressed by communities. To help overcome this misalignment, the UNM Clinical and Translational Science Center (CTSC) provides partial funding for HEROs to bridge the divide between research priorities of UNMHSC and health priorities of the state's communities. A bidirectional partnership between HEROs and CTSC researchers was established, which led to: 1) increased community engaged studies through the CTSC, 2) the HERO model itself as a subject of research, 3) a HERO-driven increase in local capacity in scholarship and grant writing, and 4) development of training modules for investigators and community stakeholders on community-engaged research. As a result, 5 grants were submitted, 4 of which were funded, totaling $7,409,002.00, and 3 research articles were published. Health extension can serve as a university-funded, community-based bridge between community health needs and Clinical and Translational Science Award (CTSA) research capacity, opening avenues for translational research. © Copyright 2017 by the American Board of Family Medicine.

  13. Iowa High School Industrial Arts Curriculum Project. Report on Year One of Phase II.

    ERIC Educational Resources Information Center

    Des Moines Public Schools, IA.

    Phase II of the Iowa High School Industrial Arts project sought to revise industrial arts content to include the infusion of new technologies, structured mathematics and science content, and a less project-oriented approach to teaching. The project identified a philosophical basis and a content structure; set priorities for development and…

  14. Acting Like Rain

    ERIC Educational Resources Information Center

    Baldwin, Kathryn; Wilson, Allison

    2017-01-01

    Having high-quality early childhood education programs that prepare children for success in school and later years continues to be an ever increasing national priority. While the "Next Generation Science Standards" ("NGSS") do not provide standards for preschool, there are ample opportunities to use the Standards as a guide to…

  15. Toward an Informatics Research Agenda

    PubMed Central

    Kaplan, Bonnie; Brennan, Patricia Flatley; Dowling, Alan F.; Friedman, Charles P.; Peel, Victor

    2001-01-01

    As we have advanced in medical informatics and created many impressive innovations, we also have learned that technologic developments are not sufficient to bring the value of computer and information technologies to health care systems. This paper proposes a model for improving how we develop and deploy information technology. The authors focus on trends in people, organizational, and social issues (POI/OSI), which are becoming more complex as both health care institutions and information technologies are changing rapidly. They outline key issues and suggest high-priority research areas. One dimension of the model concerns different organizational levels at which informatics applications are used. The other dimension draws on social science disciplines for their approaches to studying implications of POI/OSI in informatics. By drawing on a wide variety of research approaches and asking questions based in social science disciplines, the authors propose a research agenda for high-priority issues, so that the challenges they see ahead for informatics may be met better. PMID:11320068

  16. Determination of in-service needs of Turkish high school science teachers in Istanbul

    NASA Astrophysics Data System (ADS)

    Ogan, Feral

    The purposes of this study were to identify the in-service needs of high school science teachers in Istanbul, Turkey according to the subgroups such as school type and gender and determine the priority obstacles preventing these science teachers from attendance at in-service programs. Moreover, this study aimed to find the other greatest needs of high school science teachers that are not mentioned in the survey instrument. The data for this research was gathered by conducting a survey in Istanbul, Turkey in Fall 2001 and Spring 2002 Semesters. Turkish translation of the modified version of a science teacher's needs inventory, Science Teacher Inventory of Need (STIN), entitled STIN-2 was used as the survey instrument. The subjects consisted of 75 high school science teachers who were selected from 369 high schools by using stratified random sampling in grades nine through eleven. By personally administering the survey, 422 science teachers from 75 high schools completed the survey and a 97% response rate was achieved. The results obtained in this study show that Turkish high school science teachers in Istanbul have a number of shared needs. One other indication is that they also have a number of needs, which are specific to subgroups of those science teachers.

  17. Factors associated with the academic success of first year health science students.

    PubMed

    Mills, Christina; Heyworth, Jane; Rosenwax, Lorna; Carr, Sandra; Rosenberg, Michael

    2009-05-01

    The academic success of students is a priority for all universities. This study identifies factors associated with first year academic success (performance and retention) that can be used to improve the quality of the student learning experience. A retrospective cohort study was conducted with a census of all 381 full time students enrolled in the Bachelor of Health Science at The University of Western Australia since the inception of the course in the year 2000. Factors found to be associated with successful academic performance were high matriculation score, female sex, non-Indigenous status, attendance at a government secondary school, upfront payment of university fees and completion of secondary school English Literature. The most influential factor on first year academic performance was a high matriculation score. Retention into second year was found to be influenced by participation in the university mentor scheme, non-Indigenous status and first year university marks. The factor of most influence on student retention was first year university marks. Valuable information about the performance and retention of first year Bachelor of Health Science students is provided in this study which is relevant to the operational priorities of any university.

  18. Suppression bias at the Journal of Occupational and Environmental Medicine.

    PubMed

    Egilman, David S

    2005-01-01

    When the Journal of Occupational and Environmental Medicine rejected an article on corporate suppression of science on the grounds that the topic "was not a high priority" for journal readers, the author bought advertising space in JOEM to present his findings. The JOEM editor regretted he had not seen the ad to prevent its publication, and subsequently allowed the corporate-sponsored authors of a criticized study to respond to the advertisement. The editor then refused to allow the ad's author to respond in turn, suppressing scientific information with the apparent intent of protecting the interests and profits of the corporate sponsor. A reputable journal has a responsibility to eschew corporate interests and work to uncover science hidden by interests that do not prioritize the pursuit of truth. JOEM needs to re-examine its priorities.

  19. FUSION ENERGY SCIENCES WORKSHOP ON PLASMA MATERIALS INTERACTIONS: Report on Science Challenges and Research Opportunities in Plasma Materials Interactions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Maingi, Rajesh; Zinkle, Steven J.; Foster, Mark S.

    2015-05-01

    The realization of controlled thermonuclear fusion as an energy source would transform society, providing a nearly limitless energy source with renewable fuel. Under the auspices of the U.S. Department of Energy, the Fusion Energy Sciences (FES) program management recently launched a series of technical workshops to “seek community engagement and input for future program planning activities” in the targeted areas of (1) Integrated Simulation for Magnetic Fusion Energy Sciences, (2) Control of Transients, (3) Plasma Science Frontiers, and (4) Plasma-Materials Interactions aka Plasma-Materials Interface (PMI). Over the past decade, a number of strategic planning activities1-6 have highlighted PMI and plasmamore » facing components as a major knowledge gap, which should be a priority for fusion research towards ITER and future demonstration fusion energy systems. There is a strong international consensus that new PMI solutions are required in order for fusion to advance beyond ITER. The goal of the 2015 PMI community workshop was to review recent innovations and improvements in understanding the challenging PMI issues, identify high-priority scientific challenges in PMI, and to discuss potential options to address those challenges. The community response to the PMI research assessment was enthusiastic, with over 80 participants involved in the open workshop held at Princeton Plasma Physics Laboratory on May 4-7, 2015. The workshop provided a useful forum for the scientific community to review progress in scientific understanding achieved during the past decade, and to openly discuss high-priority unresolved research questions. One of the key outcomes of the workshop was a focused set of community-initiated Priority Research Directions (PRDs) for PMI. Five PRDs were identified, labeled A-E, which represent community consensus on the most urgent near-term PMI scientific issues. For each PRD, an assessment was made of the scientific challenges, as well as a set of actions to address those challenges. No prioritization was attempted amongst these five PRDs. We note that ITER, an international collaborative project to substantially extend fusion science and technology, is implicitly a driver and beneficiary of the research described in these PRDs; specific ITER issues are discussed in the background and PRD chapters. For succinctness, we describe these PRDs directly below; a brief introduction to magnetic fusion and the workshop process/timeline is given in Chapter I, and panelists are listed in the Appendix.« less

  20. Gauging Information and Computer Skills for Curriculum Planning

    ERIC Educational Resources Information Center

    Krueger, Janice M.; Ha, YooJin

    2012-01-01

    Background: All types of librarians are expected to possess information and computer skills to actively assist patrons in accessing information and in recognizing reputable sources. Mastery of information and computer skills is a high priority for library and information science programs since graduate students have varied multidisciplinary…

  1. A Pedagogy of Civic Engagement for the Undergraduate Political Science Classroom

    ERIC Educational Resources Information Center

    DeLaet, Debra L.

    2016-01-01

    This article provides an overview of a classroom project, titled the Priorities Project, which is designed to promote responsible and informed civic engagement on the part of students in upper level political science courses at Drake University. It provides an overview of the Priorities Project, a brief summary highlighting the process and results…

  2. Europa Explorer: A Mission to Explore Europa and Investigate Its Habitability

    NASA Astrophysics Data System (ADS)

    Clark, K. B.; Pappalardo, R. T.; Greeley, R.

    2007-12-01

    Europa is the astrobiological archetype for icy satellite habitability, with a warm, salty, water ocean with plausible chemical energy sources. It is also a geophysical wonderland of interrelated ice shell processes that are intimately related to the ocean and tides, and of complex interactions among its interior, surface, atmosphere, and particles and fields environments. In 2007, NASA commissioned a study of a flagship-class mission to Europa, with the aim of launching as early as 2015. The difficulty of this type of mission, primarily due to the propulsive requirements and Jupiter's trapped radiation, led to many previous studies which investigated various approaches to meeting the science objectives. The Europa Explorer is a mature orbiter concept to explore Europa and investigate its habitability, fulfilling objectives laid out by the National Research Council's Planetary Science Decadal Survey. The mission examines Europa's ocean, ice shell, chemistry, geology, external environment, and neighborhood. With a nominal launch in June 2015, the flight system arrives at Jupiter in 6 years using a Venus- Earth-Earth Gravity Assist trajectory. It would orbit Jupiter for 2 years using gravity assists of the icy Galilean satellites to lower its energy, providing the opportunity for significant Jupiter system science. It would then enter Europa orbit at an altitude of 100-200 km, where it would perform science investigations for 1 year. A campaign- based operations scenario has been developed which permits return of 5.4 Tbits of science data beginning in July 2021, and emphasizing the highest priority Europa science objectives early in the orbital phase of the mission. The baseline mission concept includes 11 instruments that address high-priority investigations while providing the flexibility to respond to discoveries. A less ambitious mission has also been evaluated which has 8 instruments and returns about a third of the data with 6 months of orbital operations at Europa. The radiation design approach has been independently reviewed and validated, and a statistical lifetime prediction method has been developed. Past technology investments have reduced mission risk, making the Europa Explorer mission ready to move forward in order to address the high-priority astrobiological and geophysical objectives outlined by the Decadal Survey.

  3. Agile data management for curation of genomes to watershed datasets

    NASA Astrophysics Data System (ADS)

    Varadharajan, C.; Agarwal, D.; Faybishenko, B.; Versteeg, R.

    2015-12-01

    A software platform is being developed for data management and assimilation [DMA] as part of the U.S. Department of Energy's Genomes to Watershed Sustainable Systems Science Focus Area 2.0. The DMA components and capabilities are driven by the project science priorities and the development is based on agile development techniques. The goal of the DMA software platform is to enable users to integrate and synthesize diverse and disparate field, laboratory, and simulation datasets, including geological, geochemical, geophysical, microbiological, hydrological, and meteorological data across a range of spatial and temporal scales. The DMA objectives are (a) developing an integrated interface to the datasets, (b) storing field monitoring data, laboratory analytical results of water and sediments samples collected into a database, (c) providing automated QA/QC analysis of data and (d) working with data providers to modify high-priority field and laboratory data collection and reporting procedures as needed. The first three objectives are driven by user needs, while the last objective is driven by data management needs. The project needs and priorities are reassessed regularly with the users. After each user session we identify development priorities to match the identified user priorities. For instance, data QA/QC and collection activities have focused on the data and products needed for on-going scientific analyses (e.g. water level and geochemistry). We have also developed, tested and released a broker and portal that integrates diverse datasets from two different databases used for curation of project data. The development of the user interface was based on a user-centered design process involving several user interviews and constant interaction with data providers. The initial version focuses on the most requested feature - i.e. finding the data needed for analyses through an intuitive interface. Once the data is found, the user can immediately plot and download data through the portal. The resulting product has an interface that is more intuitive and presents the highest priority datasets that are needed by the users. Our agile approach has enabled us to build a system that is keeping pace with the science needs while utilizing limited resources.

  4. Objectives, priorities, reliable knowledge, and science-based management of Missouri River interior least terns and piping plovers

    USGS Publications Warehouse

    Sherfy, Mark; Anteau, Michael J.; Shaffer, Terry; Sovada, Marsha; Stucker, Jennifer

    2011-01-01

    Supporting recovery of federally listed interior least tern (Sternula antillarum athalassos; tern) and piping plover (Charadrius melodus; plover) populations is a desirable goal in management of the Missouri River ecosystem. Many tools are implemented in support of this goal, including habitat management, annual monitoring, directed research, and threat mitigation. Similarly, many types of data can be used to make management decisions, evaluate system responses, and prioritize research and monitoring. The ecological importance of Missouri River recovery and the conservation status of terns and plovers place a premium on efficient and effective resource use. Efficiency is improved when a single data source informs multiple high-priority decisions, whereas effectiveness is improved when decisions are informed by reliable knowledge. Seldom will a single study design be optimal for addressing all data needs, making prioritization of needs essential. Data collection motivated by well-articulated objectives and priorities has many advantages over studies in which questions and priorities are determined retrospectively. Research and monitoring for terns and plovers have generated a wealth of data that can be interpreted in a variety of ways. The validity and strength of conclusions from analyses of these data is dependent on compatibility between the study design and the question being asked. We consider issues related to collection and interpretation of biological data, and discuss their utility for enhancing the role of science in management of Missouri River terns and plovers. A team of USGS scientists at Northern Prairie Wildlife Research Center has been conducting tern and plover research on the Missouri River since 2005. The team has had many discussions about the importance of setting objectives, identifying priorities, and obtaining reliable information to answer pertinent questions about tern and plover management on this river system. The objectives of this presentation are to summarize those conversations and to share insights about concepts that could contribute to rigorous science support for management of this river system.

  5. Divergence and convergence of commercial and scientific priorities in drug development: The case of Zelmid, the first SSRI antidepressant.

    PubMed

    Mulinari, Shai

    2015-08-01

    Based on a realist conceptualization of interests, this paper explores how commercial and scientific priorities appear to have converged and diverged during the development of the antidepressant Zelmid. The drug represents the first of the selective serotonin reuptake inhibitors (SSRIs) to reach the market. Zelmid was synthesized in 1971 and launched by the Swedish firm Astra in 1982, but subsequently withdrawn the next year because of adverse neurological effects. This paper draws on in-depth interviews with scientists representing both industry and academia who had high-level involvement in various phases of the project (experimental, pre-clinical and clinical), as well as on textual sources such as scientific articles and memoirs. Zelmid was a product of mechanism-based or "rational" drug discovery from the early 1960s and the associated intermingling of science and commerce. It is argued that both scientists and the pharmaceutical company shared an interest in embracing mechanism-based drug discovery because it simultaneously promised medico-scientific advances and profits. However, the intermingling of science and commerce also strained the relationship between scientific and commercial priorities further along the trajectory of the drug; for example, concerning issues such as dosage strategy and drug use in primary care, where corporate management allegedly took decisions contrary to the recommendations of both academic and company scientists. On such occasions the asymmetry in power became apparent in scientists' narratives: commercial considerations trumped those of science since, ultimately, decisions rest with management, not with scientists. In addition, temporality appears to be associated with the divergence of commercial and scientific priorities. While rare during experimental and pre-clinical phases, divergence was concentrated downstream to the clinical testing and post-marketing phases. It is hypothesized that a similar pattern of convergence and divergence of commercial and scientific priorities may exist in the trajectory of other drugs. Copyright © 2015 The Author. Published by Elsevier Ltd.. All rights reserved.

  6. 47 CFR 211.6 - Submission and processing of restoration priority requests.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 47 Telecommunication 5 2010-10-01 2010-10-01 false Submission and processing of restoration priority requests. 211.6 Section 211.6 Telecommunication OFFICE OF SCIENCE AND TECHNOLOGY POLICY AND NATIONAL SECURITY COUNCIL EMERGENCY RESTORATION PRIORITY PROCEDURES FOR TELECOMMUNICATIONS SERVICES § 211.6...

  7. 47 CFR 211.6 - Submission and processing of restoration priority requests.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 47 Telecommunication 5 2014-10-01 2014-10-01 false Submission and processing of restoration priority requests. 211.6 Section 211.6 Telecommunication OFFICE OF SCIENCE AND TECHNOLOGY POLICY AND NATIONAL SECURITY COUNCIL EMERGENCY RESTORATION PRIORITY PROCEDURES FOR TELECOMMUNICATIONS SERVICES § 211.6...

  8. 47 CFR 211.6 - Submission and processing of restoration priority requests.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 47 Telecommunication 5 2011-10-01 2011-10-01 false Submission and processing of restoration priority requests. 211.6 Section 211.6 Telecommunication OFFICE OF SCIENCE AND TECHNOLOGY POLICY AND NATIONAL SECURITY COUNCIL EMERGENCY RESTORATION PRIORITY PROCEDURES FOR TELECOMMUNICATIONS SERVICES § 211.6...

  9. 47 CFR 211.6 - Submission and processing of restoration priority requests.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 47 Telecommunication 5 2013-10-01 2013-10-01 false Submission and processing of restoration priority requests. 211.6 Section 211.6 Telecommunication OFFICE OF SCIENCE AND TECHNOLOGY POLICY AND NATIONAL SECURITY COUNCIL EMERGENCY RESTORATION PRIORITY PROCEDURES FOR TELECOMMUNICATIONS SERVICES § 211.6...

  10. 47 CFR 211.6 - Submission and processing of restoration priority requests.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 47 Telecommunication 5 2012-10-01 2012-10-01 false Submission and processing of restoration priority requests. 211.6 Section 211.6 Telecommunication OFFICE OF SCIENCE AND TECHNOLOGY POLICY AND NATIONAL SECURITY COUNCIL EMERGENCY RESTORATION PRIORITY PROCEDURES FOR TELECOMMUNICATIONS SERVICES § 211.6...

  11. 76 FR 17396 - Proposed Priorities: Disability and Rehabilitation Research Projects and Centers Program

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-03-29

    ...-science conference on its designated priority research area in the fourth year of the project period, and... Rehabilitation Research Projects and Centers Program AGENCY: Office of Special Education and Rehabilitative... and Rehabilitative Services proposes two priorities for the Disability and Rehabilitation Research...

  12. Conflicts in Developing an Elementary STEM Magnet School

    ERIC Educational Resources Information Center

    Sikma, Lynn; Osborne, Margery

    2014-01-01

    Elementary schools in the United States have been the terrain of a highly politicized push for improved reading and mathematics attainment, as well as calls for increased importance to be given to science, technology, engineering, and mathematics (STEM). With priorities placed on basic skills, however, instructional time in subjects such as…

  13. Collaborating on Global Priorities: Science Education for Everyone--Any Time and Everywhere

    ERIC Educational Resources Information Center

    Tobin, Kenneth

    2016-01-01

    Building on the key ideas from Dana Zeidler's paper I expand the conversation from the standpoint that the challenges facing humanity and the capacity of Earth to support life suggest that changes in human lifestyles are a priority. Accordingly, there is an urgent need to educate all humans about some of the science-related grand challenges, such…

  14. Enterprise Architecture Tradespace Analysis

    DTIC Science & Technology

    2014-02-21

    EXECUTIVE SUMMARY The Department of Defense (DoD)’s Science & Technology (S&T) priority for Engineered Resilient Systems (ERS) calls for...Science & Technology (S&T) priority for Engineered Resilient Systems (ERS) calls for adaptable designs with diverse systems models that can easily be...Department of Defense [Holland, 2012]. Some explicit goals are: • Establish baseline resiliency of current capabilities • More complete and robust

  15. Work preferences, life values, and personal views of top math/science graduate students and the profoundly gifted: Developmental changes and gender differences during emerging adulthood and parenthood.

    PubMed

    Ferriman, Kimberley; Lubinski, David; Benbow, Camilla P

    2009-09-01

    Work preferences, life values, and personal views of top math/science graduate students (275 men, 255 women) were assessed at ages 25 and 35 years. In Study 1, analyses of work preferences revealed developmental changes and gender differences in priorities: Some gender differences increased over time and increased more among parents than among childless participants, seemingly because the mothers' priorities changed. In Study 2, gender differences in the graduate students' life values and personal views at age 35 were compared with those of profoundly gifted participants (top 1 in 10,000, identified by age 13 and tracked for 20 years: 265 men, 84 women). Again, gender differences were larger among parents. Across both cohorts, men appeared to assume a more agentic, career-focused perspective than women did, placing more importance on creating high-impact products, receiving compensation, taking risks, and gaining recognition as the best in their fields. Women appeared to favor a more communal, holistic perspective, emphasizing community, family, friendships, and less time devoted to career. Gender differences in life priorities, which intensify during parenthood, anticipated differential male-female representation in high-level and time-intensive careers, even among talented men and women with similar profiles of abilities, vocational interests, and educational experiences. (c) 2009 APA, all rights reserved).

  16. Summary of Martian Dust Filtering Challenges and Current Filter Development

    NASA Technical Reports Server (NTRS)

    O'Hara, William J., IV

    2017-01-01

    Traditional air particulate filtering in manned spaceflight (Apollo, Shuttle, ISS, etc.) has used cleanable or replaceable catch filters such as screens and High-Efficiency Particulate Arrestance (HEPA) filters. However, the human mission to Mars architecture will require a new approach. It is Martian dust that is the particulate of concern but the need also applies to particulates generated by crew. The Mars Exploration Program Analysis Group (MEPAG) high-lighted this concern in its Mars Science, Goals, Objectives, Investigations and Priorities document [7], by saying specifically that one high priority investigation will be to "Test ISRU atmospheric processing systems to measure resilience with respect to dust and other environmental challenge performance parameters that are critical to the design of a full-scale system." By stating this as high priority the MEPAG is acknowledging that developing and adequately verifying this capability is critical to success of a human mission to Mars. This architecture will require filtering capabilities that are highly reliable, will not restrict the flow path with clogging, and require little to no maintenance. This paper will summarize why this is the case, the general requirements for developing the technology, and the status of the progress made in this area.

  17. Advanced Mirror Technology Development (AMTD) for Very Large Space Telescopes

    NASA Technical Reports Server (NTRS)

    Stahl, H. Philip

    2014-01-01

    Advanced Mirror Technology Development (AMTD) is a multi-year effort to systematically mature to TRL-6 the critical technologies needed to produce 4-m or larger flight-qualified UVOIR mirrors by 2018 so that a viable mission can be considered by the 2020 Decadal Review. This technology must enable missions capable of both general astrophysics & ultra-high contrast observations of exoplanets. To accomplish our objective, We use a science-driven systems engineering approach. We mature technologies required to enable the highest priority science AND result in a high-performance low-cost low-risk system.

  18. Advances in Geologic Disposal System Modeling and Shale Reference Cases

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mariner, Paul E.; Stein, Emily R.; Frederick, Jennifer M.

    The Spent Fuel and Waste Science and Technology (SFWST) Campaign of the U.S. Department of Energy (DOE) Office of Nuclear Energy (NE), Office of Fuel Cycle Technology (OFCT) is conducting research and development (R&D) on geologic disposal of spent nuclear fuel (SNF) and high level nuclear waste (HLW). Two high priorities for SFWST disposal R&D are design concept development and disposal system modeling (DOE 2011, Table 6). These priorities are directly addressed in the SFWST Generic Disposal Systems Analysis (GDSA) work package, which is charged with developing a disposal system modeling and analysis capability for evaluating disposal system performance formore » nuclear waste in geologic media (e.g., salt, granite, shale, and deep borehole disposal).« less

  19. Planning for Mars Sample Return: Results from the MEPAG Mars Sample Return End-to-End International Science Analysis Group (E2E-iSAG)

    NASA Astrophysics Data System (ADS)

    McLennan, S. M.; Sephton, M.; Mepag E2E-Isag

    2011-12-01

    The National Research Council 2011 Planetary Decadal Survey (2013-2022) placed beginning a Mars sample return campaign (MSR) as the top priority for large Flagship missions in the coming decade. Recent developments in NASA-ESA collaborations and Decadal Survey recommendations indicate MSR likely will be an international effort. A joint ESA-NASA 2018 rover (combining the previously proposed ExoMars and MAX-C missions), designed, in part, to collect and cache samples, would thus represent the first of a 3-mission MSR campaign. The End-to-End International Science Analysis Group (E2E-iSAG) was chartered by MEPAG in August 2010 to develop and prioritize MSR science objectives and investigate implications of these objectives for defining the highest priority sample types, landing site selection criteria (and identification of reference landing sites to support engineering planning), requirements for in situ characterization on Mars to support sample selection, and priorities/strategies for returned sample analyses to determine sample sizes and numbers that would meet the objectives. MEPAG approved the E2E-iSAG report in June 2011. Science objectives, summarized in priority order, are: (1) critically assess any evidence for past life or its chemical precursors, and place constraints on past habitability and potential for preservation of signs of life, (2) quantitatively constrain age, context and processes of accretion, early differentiation and magmatic and magnetic history, (3) reconstruct history of surface and near-surface processes involving water, (4) constrain magnitude, nature, timing, and origin of past climate change, (5) assess potential environmental hazards to future human exploration, (6) assess history and significance of surface modifying processes, (7) constrain origin and evolution of the Martian atmosphere, (8) evaluate potential critical resources for future human explorers. All returned samples also would be fully evaluated for extant life as a fundamental science question and to meet planetary protection needs. Sample types most likely to achieve these objectives are, in priority order: (1A) subaqueous or hydrothermal sediments, (1B) hydrothermally altered rocks or low-T fluid-altered rocks, (2) unaltered igneous rocks, (3) regolith, including air fall dust, (4) present atmosphere and sedimentary-igneous rocks containing ancient trapped atmosphere. Among the 34 separate findings made by E2E-iSAG are (a) ~30-40 rock samples should be collected, each ~15-16g and mostly in suites, along with ≥1 regolith sample, appropriate blanks and standards, all totaling ~500g, (b) an ability to swap-out ≥25% of the samples as the mission proceeds, (c) a high priority for subsurface sample(s) obtained by the ExoMars 2m drill, (d) ≥40% of each sample be preserved for future research, (e) obtain 1-2 atmosphere samples, (f) incorporate appropriate sealing until Earth return, (g) fully characterize geological context of sampling sites with remote sensing and contact instruments, (h) landing sites exist that could achieve top science objectives.

  20. Teaching science content in nursing programs in Australia: a cross-sectional survey of academics.

    PubMed

    Birks, Melanie; Ralph, Nicholas; Cant, Robyn; Hillman, Elspeth; Chun Tie, Ylona

    2015-01-01

    Professional nursing practice is informed by biological, social and behavioural sciences. In undergraduate pre-registration nursing programs, biological sciences typically include anatomy, physiology, microbiology, chemistry, physics and pharmacology. The current gap in the literature results in a lack of information about the content and depth of biological sciences being taught in nursing curricula. The aim of this study was to establish what priority is given to the teaching of science topics in these programs in order to inform an understanding of the relative importance placed on this subject area in contemporary nursing education. This study employed a cross-sectional survey method. This paper reports on the first phase of a larger project examining science content in nursing programs. An existing questionnaire was modified and delivered online for completion by academics who teach science to nurses in these programs. This paper reports on the relative priority given by respondents to the teaching of 177 topics contained in the questionnaire. Of the relatively small population of academics who teach science to nursing students, thirty (n = 30) completed the survey. Findings indicate strong support for the teaching of science in these programs, with particular priority given to the basic concepts of bioscience and gross system anatomy. Of concern, most science subject areas outside of these domains were ranked as being of moderate or low priority. While the small sample size limited the conclusions able to be drawn from this study, the findings supported previous studies that indicated inadequacies in the teaching of science content in nursing curricula. Nevertheless, these findings have raised questions about the current philosophy that underpins nursing education in Australia and whether existing practices are clearly focused on preparing students for the demands of contemporary nursing practice. Academics responsible for the design and implementation of nursing curricula are encouraged to review the content of current programs in light of the findings of this research.

  1. 78 FR 48863 - Fusion Energy Sciences Advisory Committee

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-08-12

    ... DEPARTMENT OF ENERGY Fusion Energy Sciences Advisory Committee AGENCY: Office of Science... Services Administration, notice is hereby given that the Fusion Energy Sciences Advisory Committee will be... of Science (DOE), on long-range plans, priorities, and strategies for advancing plasma science...

  2. China: Science on a Swinging Pendulum

    ERIC Educational Resources Information Center

    Chemical and Engineering News, 1972

    1972-01-01

    The nature of, and attitudes toward, science and technology in China are explored. The priorities and accomplishments in science and medicine are reviewed with a brief projection of the possible future of Chinese science. (TS)

  3. 34 CFR 263.21 - What priority is given to certain projects and applicants?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 34 Education 1 2014-07-01 2014-07-01 false What priority is given to certain projects and... PROGRAMS Demonstration Grants for Indian Children Program § 263.21 What priority is given to certain... subject matters, including math and science, to enable Indian students to successfully transition to...

  4. AMTD: update of engineering specifications derived from science requirements for future UVOIR space telescopes

    NASA Astrophysics Data System (ADS)

    Stahl, H. Philip; Postman, Marc; Mosier, Gary; Smith, W. Scott; Blaurock, Carl; Ha, Kong; Stark, Christopher C.

    2014-08-01

    The Advance Mirror Technology Development (AMTD) project is in Phase 2 of a multiyear effort, initiated in FY12, to mature by at least a half TRL step six critical technologies required to enable 4 meter or larger UVOIR space telescope primary mirror assemblies for both general astrophysics and ultra-high contrast observations of exoplanets. AMTD uses a science-driven systems engineering approach. We mature technologies required to enable the highest priority science AND provide a high-performance low-cost low-risk system. To give the science community options, we are pursuing multiple technology paths. A key task is deriving engineering specifications for advanced normal-incidence monolithic and segmented mirror systems needed to enable both general astrophysics and ultra-high contrast observations of exoplanets missions as a function of potential launch vehicles and their mass and volume constraints. A key finding of this effort is that the science requires an 8 meter or larger aperture telescope.

  5. AMTD: Update of Engineering Specifications Derived from Science Requirements for Future UVOIR Space Telescopes

    NASA Technical Reports Server (NTRS)

    Stahl, H. Philip; Postman, Marc; Mosier, Gary; Smith, W. Scott; Blaurock, Carl; Ha, Kong; Stark, Christopher C.

    2014-01-01

    The Advance Mirror Technology Development (AMTD) project is in Phase 2 of a multiyear effort, initiated in FY12, to mature by at least a half TRL step six critical technologies required to enable 4 meter or larger UVOIR space telescope primary mirror assemblies for both general astrophysics and ultra-high contrast observations of exoplanets. AMTD uses a science-driven systems engineering approach. We mature technologies required to enable the highest priority science AND provide a high-performance low-cost low-risk system. To give the science community options, we are pursuing multiple technology paths. A key task is deriving engineering specifications for advanced normal-incidence monolithic and segmented mirror systems needed to enable both general astrophysics and ultra-high contrast observations of exoplanets missions as a function of potential launch vehicles and their mass and volume constraints. A key finding of this effort is that the science requires an 8 meter or larger aperture telescope

  6. Life Sciences Laboratories for the Shuttle/Spacelab

    NASA Technical Reports Server (NTRS)

    Schulte, L. O.; Kelly, H. B.; Secord, T. C.

    1976-01-01

    Space Shuttle and Spacelab missions will provide scientists with their first opportunity to participate directly in research in space for all scientific disciplines, particularly the Life Sciences. Preparations are already underway to ensure the success of these missions. The paper summarizes the results of the 1975 NASA-funded Life Sciences Laboratories definition study which defined several long-range life sciences research options and the laboratory designs necessary to accomplish high-priority life sciences research. The implications and impacts of Spacelab design and development on the life sciences missions are discussed. An approach is presented based upon the development of a general-purposs laboratory capability and an inventory of common operational research equipment for conducting life sciences research. Several life sciences laboratories and their capabilities are described to demonstrate the systems potentially available to the experimenter for conducting biological and medical research.

  7. A Priority for ESD Research: Influencing Adult Citizens

    ERIC Educational Resources Information Center

    Monroe, Martha C.

    2007-01-01

    Research in the disciplines of education, science education, and environmental education has a rich history. While research in Education for Sustainable Development (ESD) may be related to these traditions, there is a need for ESD to carve a new niche that promotes high quality and effective ESD programmes. With an eye towards practice and applied…

  8. School Science Inspired by Improving Weather Forecasts

    ERIC Educational Resources Information Center

    Reid, Heather; Renfrew, Ian A.; Vaughan, Geraint

    2014-01-01

    High winds and heavy rain are regular features of the British weather, and forecasting these events accurately is a major priority for the Met Office and other forecast providers. This is the challenge facing DIAMET, a project involving university groups from Manchester, Leeds, Reading, and East Anglia, together with the Met Office. DIAMET is part…

  9. American Foundation for Pharmaceutical Education Survey of Scientific Manpower Needs in the Pharmaceutical Industry.

    ERIC Educational Resources Information Center

    Fisher, Albert B., Jr.

    1979-01-01

    Those disciplines in the pharmaceutical sciences where critical manpower shortages now exist or will occur are identified by 34 pharmaceutical manufacturers in response to a request by the American Foundation for Pharmaceutical Education, which awarded fellowships in four critical areas. High priority needs are appended. (JMD)

  10. Planning and Implementing a Comprehensive Student-Centered Research Program for First-Year STEM Undergraduates

    ERIC Educational Resources Information Center

    Schneider, Kimberly R.; Bickel, Amelia; Morrison-Shetlar, Alison

    2015-01-01

    Retaining college-level science, technology, engineering, and mathematics (STEM) students remains a priority in higher education. A variety of methods have been shown to increase retention, including mentorship, tutoring, course enhancements, community building, and engagement in high-impact practices such as undergraduate research. In 2011, an…

  11. Ocean research plan reviewed

    NASA Astrophysics Data System (ADS)

    Zielinski, Sarah

    A draft plan setting out priorities for U.S. ocean research generally was lauded for its clear and well-articulated view in a recent report from a committee of the U.S. National Research Council (NRC) of the US. National Academies. However, the committee advised that the plan would benefit from a bold vision for the future of ocean science research, additional details, and a reorganization to include cross-cutting research.The draft "Charting the Course for Ocean Science in the United States: Research Priorities for the Next Decade" was made available for public comment in September 2006 by the U.S. National Science and Technology Council's Joint Subcommittee on Ocean Science and Technology.

  12. Report of the Fusion Energy Sciences Advisory Committee Panel on Priorities and Balance

    NASA Astrophysics Data System (ADS)

    Baker, Charles; Davidson, Ronald; Dean, Stephen; Freidberg, Jeffrey; Sheffield, John

    1999-06-01

    This report presents the results and recommendations of the deliberations of the DOE Fusion Energy Sciences Advisory Committee (FESAC) Panel on Priorities and Balance, which met in Knoxville, TN, 18-21 August 1999. The Panel identified the achievement of a more integrated national program in magnetic fusion energy (MFE) and inertial fusion energy (IFE) as a major programmatic and policy goal for the years ahead.

  13. A U.S. Carbon Cycle Science Plan

    NASA Astrophysics Data System (ADS)

    Michalak, Anna M.; Jackson, Rob; Marland, Gregg; Sabine, Christopher

    2009-03-01

    First Meeting of the Carbon Cycle Science Working Group; Washington, D. C., 17-18 November 2008; The report “A U.S. carbon cycle science plan” (J. L. Sarmiento and S. C. Wofsy, U.S. Global Change Res. Program, Washington, D. C., 1999) outlined research priorities and promoted coordinated carbon cycle research across federal agencies for nearly a decade. Building on this framework and subsequent reports (available at http://www.carboncyclescience.gov/docs.php), the Carbon Cycle Science Working Group (CCSWG) was formed in 2008 to develop an updated strategy for the next decade. The recommendations of the CCSWG will go to agency managers who have collective responsibility for setting national carbon cycle science priorities and for sponsoring much of the carbon cycle research in the United States.

  14. 78 FR 69658 - DOE/NSF Nuclear Science Advisory Committee

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-11-20

    ... Science Foundation's Nuclear Physics Office's The 2013 ONP Comparative Research Review Presentation of the... Foundation on scientific priorities within the field of basic nuclear science research. Tentative Agenda...

  15. Summary of the Sixth Persh Workshop: Corrosion Policy Guiding Science and Technology

    DTIC Science & Technology

    2016-01-01

    mitigating corrosion. Corrosion affects military readiness, so corrosion prevention and control (CPC) have a high priority for the DOD since CPC is a...resulting in high -cost repairs. Corrosion mitigation is thus a key cost-effective approach for system maintainability and reduced life cycle costs. The... treatments . • Develop corrosion databases and corrosion models for predictive evaluation. Testing methods for realistic prediction of performance

  16. Science Education: A Case for Astronomy

    ERIC Educational Resources Information Center

    Wentzel, Donat G.

    1971-01-01

    Describes astronomy course used as a medium to provide an understanding of how science progresses and how it relates to society. Illustrations are given of how scientific judgment, importance of basic science, humanistic aspects of science, and the priorities among science are presented. (DS)

  17. Center for Research Strategy Priority Initiatives

    Cancer.gov

    CRS leads priority initiatives to support cancer research to advance scientific knowledge and help people live longer, healthier lives. Learn more about the Resources for Cancer Researchers portal, Team Science, and Idea Generation with NCI staff.

  18. KSC-02pd0736

    NASA Image and Video Library

    2002-05-16

    KENNEDY SPACE CENTER, FLA. - Suspended from the overhead crane, the SHI Research Double Module (SHI/RDM) travels across the Space Station Processing Facility to the payload canister waiting at right. The module will be placed in the canister for transport to the Orbiter Processing Facility where it will be installed in Columbia's payload bay for mission STS-107. SHI/RDM is the primary payload of the research mission, with experiments ranging from material sciences to life sciences (many rats). Also part of the payload is the Fast Reaction Experiments Enabling Science, Technology, Applications and Research (FREESTAR) that incorporates eight high priority secondary attached shuttle experiments. STS-107 is scheduled to launch July 19, 2002

  19. Technology platforms: opportunities and development perspectives

    NASA Astrophysics Data System (ADS)

    Belyakov, G. P.; Avramchikova, N. T.; Belyakova, G. Y.; Chuvashova, M. N.

    2016-11-01

    The term “technology platform” is used to define thematic scopes in terms of which technological priorities are formed concerning state, business, science and education cooperation that are aimed to solve the problem of state technological independence. The authors have examined the implementation of this tool so that to concentrate essential resources in priority-driven vectors of science and technological advancement of a guiding cluster of innovative technologies in the field of space applications.

  20. 78 FR 12044 - DOE/NSF Nuclear Science Advisory Committee

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-02-21

    ... DEPARTMENT OF ENERGY DOE/NSF Nuclear Science Advisory Committee AGENCY: Office of Science... Nuclear Science Advisory Committee (NSAC). The Federal Advisory Committee Act (Pub. L. 92-463, 86 Stat... Energy and the National Science Foundation on scientific priorities within the field of basic nuclear...

  1. Europa Explorer - An Exceptional Mission Using Existing Technology

    NASA Technical Reports Server (NTRS)

    Clark, Karla B.

    2007-01-01

    A mission to Europa has been identified as a high priority by the science community for several years. The difficulty of an orbital mission, primarily due to the propulsive requirements and Jupiter's trapped radiation, led to many studies which investigated various approaches to meeting the science goals. The Europa Orbiter Mission studied in the late 1990's only met the most fundamental science objectives. The science objectives have evolved with the discoveries from the Galileo mission. JPL studied one concept, Europa Explorer, for a Europa orbiting mission which could meet a much expanded set of science objectives. A study science group was formed to verify that the science objectives and goals were being adequately met by the resulting mission design concept. The Europa Explorer design emerged primarily from two key self-imposed constraints: 1) meet the full set of identified nonlander science objectives and 2) use only existing technology.

  2. Space technology to meet future needs

    NASA Technical Reports Server (NTRS)

    1987-01-01

    Key technologies were identified where contemporary investments might have large payoffs in technological options for the future. The future needs were considered for space transportation, space science, national security, and manned missions. Eight areas were selected as being vital for the national future in space. Findings regarding representative mission and the recommendations concerning high priority technologies are summarized.

  3. Report of the DOD-University Forum Working Group on Engineering and Science Education.

    DTIC Science & Technology

    1983-07-01

    high priority to strengthening our national base of scientific and technical personnel. That included im- mediate emphasis on training people in the...4 - DOD Requirements for Civilian Engineering and Scientific Personnel .. 5 - DOD Requirements for Military Engineering and Scientific ...15 - The Problem is Quality ................ o................. ...... 15 - The Quality of Engineering and Scientific Personnel in

  4. Be/X-ray Binary Science for Future X-ray Timing Missions

    NASA Technical Reports Server (NTRS)

    Wilson-Hodge, Colleen A.

    2011-01-01

    For future missions, the Be/X-ray binary community needs to clearly define our science priorities for the future to advocate for their inclusion in future missions. In this talk, I will describe current designs for two potential future missions and Be X-ray binary science enabled by these designs. The Large Observatory For X-ray Timing (LOFT) is an X-ray timing mission selected in February 2011 for the assessment phase from the 2010 ESA M3 call for proposals. The Advanced X-ray Timing ARray (AXTAR) is a NASA explorer concept X-ray timing mission. This talk is intended to initiate discussions of our science priorities for the future.

  5. Implications of the 21st Century Cures Act for the Behavioral and Social Sciences at the National Institutes of Health.

    PubMed

    Riley, William T; Blizinsky, Katherine D

    2017-06-01

    The 21st Century Cures Act provides funding for key initiatives relevant to the behavioral and social sciences and includes administrative provisions that facilitate health research and increase the privacy protections of research participants. At about the same time as the passage of the Act, the National Institutes of Health Office of Behavioral and Social Sciences Research released its Strategic Plan 2017-2021, which addresses three scientific priorities: (a) improve the synergy of basic and applied behavioral and social sciences research; (b) enhance and promote the research infrastructure, methods, and measures needed to support a more cumulative and integrated approach to behavioral and social sciences; and (c) facilitate the adoption of behavioral and social sciences research findings in health research and in practice. This commentary describes the implications of the Cures Act on these scientific priorities and on the behavioral and social sciences more broadly.

  6. Can psychology walk the walk of open science?

    PubMed

    Hesse, Bradford W

    2018-01-01

    An "open science movement" is gaining traction across many disciplines within the research enterprise but is also precipitating consternation among those who worry that too much disruption may be hampering professional productivity. Despite this disruption, proponents of open data collaboration have argued that some of the biggest problems of the 21st century need to be solved with the help of many people and that data sharing will be the necessary engine to make that happen. In the United States, a national strategic plan for data sharing encouraged the federally funded scientific agencies to (a) publish open data for community use in discoverable, machine-readable, and useful ways; (b) work with public and civil society organizations to set priorities for data to be shared; (c) support innovation and feedback on open data solutions; and (d) continue efforts to release and enhance high-priority data sets funded by taxpayer dollars. One of the more visible open data projects in the psychological sciences is the presidentially announced "Brain Research Through Advancing Innovative Neurotechnologies" (BRAIN) initiative. Lessons learned from initiatives such as these are instructive both from the perspective of open science within psychology and from the perspective of understanding the psychology of open science. Recommendations for creating better pathways to "walk the walk" in open science include (a) nurturing innovation and agile learning, (b) thinking outside the paradigm, (c) creating simplicity from complexity, and (d) participating in continuous learning evidence platforms. (PsycINFO Database Record (c) 2018 APA, all rights reserved).

  7. Priority of discovery in the life sciences

    PubMed Central

    Vale, Ronald D; Hyman, Anthony A

    2016-01-01

    The job of a scientist is to make a discovery and then communicate this new knowledge to others. For a scientist to be successful, he or she needs to be able to claim credit or priority for discoveries throughout their career. However, despite being fundamental to the reward system of science, the principles for establishing the "priority of discovery" are rarely discussed. Here we break down priority into two steps: disclosure, in which the discovery is released to the world-wide community; and validation, in which other scientists assess the accuracy, quality and importance of the work. Currently, in biology, disclosure and an initial validation are combined in a journal publication. Here, we discuss the advantages of separating these steps into disclosure via a preprint, and validation via a combination of peer review at a journal and additional evaluation by the wider scientific community. PMID:27310529

  8. Investments in tuberculosis research - what are the gaps?

    PubMed

    Khan, Mishal S; Fletcher, Helen; Coker, Richard

    2016-08-25

    Through decades of research, numerous studies have generated robust evidence about effective interventions for tuberculosis control. Yet, the global annual decline in incidence of approximately 1 % is evidence that current approaches and investment strategies are not sufficient. In this article, we assess recent tuberculosis research funding and discuss two critical gaps in funding and in scientific evidence from topics that have been left off the research priority agenda.We first examine research and development funding goals in the 2011-2015 Global Plan to Stop Tuberculosis and analyze disbursements to different research areas by funders worldwide in 2014. We then summarize, through a compilation of published literature and consultation with 35 researchers across multiple disciplines in the London School of Hygiene and Tropical Medicine TB Centre, priorities identified by the tuberculosis research community. Finally, we compare researchers' priority areas to the global funding agendas and activities.Our analysis shows that, among the five key research areas defined in the 2011-2015 Global Plan - namely drugs, basic science, vaccines, diagnostics and operational research - drug discovery and basic science on Mycobacterium tuberculosis accounted for 60 % of the $2 billion annual funding target. None of the research areas received the recommended level of funding. Operational research, which had the lowest target, received 66 % of its target funding, whereas new diagnostics received only 19 %. Although many of the priority research questions identified by researchers fell within the Global Plan categories, our analysis highlights important areas that are not explicitly mentioned in the current plan. These priority research areas included improved understanding of tuberculosis transmission dynamics, the role of social protection and social determinants, and health systems and policy research.While research priorities are increasingly important in light of the limited funding for tuberculosis, there is a risk that we neglect important research areas and encourage the formation of research silos. To ensure that funding priorities, researchers' agendas and national tuberculosis control policies are better coordinated, there should be more, and wider, dialogue between stakeholders in high tuberculosis burden countries, researchers, international policymakers and funders.

  9. 78 FR 716 - DOE/NSF Nuclear Science Advisory Committee

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-01-04

    ... DEPARTMENT OF ENERGY DOE/NSF Nuclear Science Advisory Committee AGENCY: Office of Science, DOE. ACTION: Notice of open meeting. SUMMARY: This notice announces a meeting of the DOE/NSF Nuclear Science... Energy and the National Science Foundation on scientific priorities within the field of basic nuclear...

  10. Shrinking membership in the American Society of Animal Science: does the discipline of poultry science give us some clues?

    PubMed

    Cheeke, P R

    1999-08-01

    Concerns have been expressed by the American Society of Animal Science (ASAS) leadership about the declining membership in ASAS. I present the viewpoint that the history of the Poultry Science Association (PSA) membership and the elimination of poultry science departments from many land grant universities could be an indication of what the future holds for animal science. I suggest that the industrialization of poultry production has led to a decline in the demand for traditionally trained poultry scientists. Industrialization of swine production is proceeding rapidly, with other animal-based industries showing the same trend. If maintaining a large ASAS membership is indeed a priority, new opportunities must be developed. Equine and companion animal programs offer such possibilities, tapping into a high level of student interest.

  11. Physics Opportunity with an Electron-Ion Collider

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rossi, Patrizia

    2016-12-01

    Understanding the emergence of nucleons and nuclei and their interactions from the properties and dynamics of quarks and gluons in Quantum Chromodynamics (QCD) is a fundamental and compelling goal of nuclear science. A high-energy, high-luminosity polarized electron-ion collider (EIC) will be needed to explore and advance many aspects of QCD studies in the gluon dominated regions in nucleon and nuclei. The federal Nuclear Science Advisory Committee unanimously approved a high-energy electro-ion collider to explore a new frontier in physics research. In fact, the committee calls the collider the country's next "highest priority" in new facility construction, and is one ofmore » four main recommendations contained in its 2015 Long Range Plan for Nuclear Science. Two proposals for the EIC are being considered in the U.S.: one each at Jefferson Laboratory (JLab) and at Brookhaven National Laboratory (BNL). An overview of the physics opportunities an EIC presents to the nuclear science community in future decades is presented.« less

  12. Engineering Specification for Large-aperture UVO Space Telescopes Derived from Science Requirements

    NASA Technical Reports Server (NTRS)

    Stahl, H. Philip; Postman, Marc; Smith, W. Scott

    2013-01-01

    The Advance Mirror Technology Development (AMTD) project is a three year effort initiated in FY12 to mature by at least a half TRL step six critical technologies required to enable 4 to 8 meter UVOIR space telescope primary mirror assemblies for both general astrophysics and ultra-high contrast observations of exoplanets. AMTD uses a science-driven systems engineering approach. We mature technologies required to enable the highest priority science AND result in a high-performance low-cost low-risk system. To provide the science community with options, we are pursuing multiple technology paths. We have assembled an outstanding team from academia, industry, and government with extensive expertise in astrophysics and exoplanet characterization, and in the design/manufacture of monolithic and segmented space telescopes. A key accomplishment is deriving engineering specifications for advanced normal-incidence monolithic and segmented mirror systems needed to enable both general astrophysics and ultra-high contrast observations of exoplanets missions as a function of potential launch vehicles and their mass and volume constraints.

  13. The Marc Dax (1770-1837)/Paul Broca (1824-1880) Controversy over Priority in Science: Left Hemisphere Specificity for Seat of Articulate Language and for Lesions that Cause Aphemia

    ERIC Educational Resources Information Center

    Buckingham, Hugh W.

    2006-01-01

    One of the most fascinating and frustrating issues in the priority of discovery in science is over just who, for the first time, went on record in the public forum, either orally at a conference or through a published communication, proclaiming that the faculty of articulate human speech was located in the left, not the right, cortical hemisphere.…

  14. 75 FR 6651 - DOE/NSF Nuclear Science Advisory Committee

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-02-10

    ... DEPARTMENT OF ENERGY DOE/NSF Nuclear Science Advisory Committee AGENCY: Department of Energy.../NSF Nuclear Science Advisory Committee (NSAC). Federal Advisory Committee Act (Pub. L. 92- 463, 86... on scientific priorities within the field of basic nuclear science research. Tentative Agenda: Agenda...

  15. Safe Science: Be Protected!

    ERIC Educational Resources Information Center

    Roy, Ken

    2006-01-01

    More science laboratories are being built because of larger enrollments in academics and schools. There is an increase in hands-on/process science effected by the renewed interest in and priority of science education. New science curricula like Biotechnology and Advanced college type program courses are being introduced with the use of exotic…

  16. Neptune and Triton: A Study in Future Exploration

    NASA Astrophysics Data System (ADS)

    Day, M. D.; Malaska, M. J.; Hosseini, S.; Mcgranaghan, R.; Fernandes, P. A.; Fougere, N.; Clegg, R. N.; Scully, J.; Alibay, F.; Ries, P.; Craig, P. L.; Hutchins, M. L.; Leonard, J.; Uckert, K.; Patthoff, A.; Girazian, Z.

    2013-12-01

    Neptune provides a unique natural laboratory for studying the dynamics of ice giants. Last visited by Voyager 2 in 1989, Neptune and its moon Triton hold important clues to the evolution of the solar system. The Voyager 2 flyby revealed Neptune to be a dynamic world with large storms, unparalleled wind speeds, and an unusual magnetic field. Triton, Neptune's largest satellite, is believed to be a captured Kuiper Belt Object with a thin atmosphere and possible sub-surface ocean. Further study of the farthest planet in our solar system could offer new insights into the dynamics of ice-giant exoplanets, and help us understand their complex atmospheres. The diverse science questions associated with Neptune and Triton motivate the complex and exciting mission proposed in this study. The proposed mission follows the guidelines of the 2013-2022 Planetary Science Decadal Survey, and optimizes the number of high priority science goals achieved, while still maintaining low mission costs. High priority science goals include understanding the structure, composition, and dynamics of Neptune's atmosphere and magnetosphere, as well as analyzing the surface of Triton. With a budget of $1.5 billion, the mission hosts an atmospheric probe and suite of instruments equipped with technologies significantly more advanced than those carried by Voyager 2. Additionally, the mission offers improved spatial coverage and higher resolution measurements than any previously achieved at Neptune. The proposed spacecraft would complete an orbital tour of Neptune and execute several close flybys of Triton. Further study of Neptune and Triton will provide exciting insights into what lies on the edge of our solar system and beyond. This study was prepared in conjunction with Jet Propulsion Laboratory's 2013 Planetary Science Summer School.

  17. IRIDE: Interdisciplinary research infrastructure based on dual electron linacs and lasers

    NASA Astrophysics Data System (ADS)

    Ferrario, M.; Alesini, D.; Alessandroni, M.; Anania, M. P.; Andreas, S.; Angelone, M.; Arcovito, A.; Arnesano, F.; Artioli, M.; Avaldi, L.; Babusci, D.; Bacci, A.; Balerna, A.; Bartalucci, S.; Bedogni, R.; Bellaveglia, M.; Bencivenga, F.; Benfatto, M.; Biedron, S.; Bocci, V.; Bolognesi, M.; Bolognesi, P.; Boni, R.; Bonifacio, R.; Boscherini, F.; Boscolo, M.; Bossi, F.; Broggi, F.; Buonomo, B.; Calo, V.; Catone, D.; Capogni, M.; Capone, M.; Cassou, K.; Castellano, M.; Castoldi, A.; Catani, L.; Cavoto, G.; Cherubini, N.; Chirico, G.; Cestelli-Guidi, M.; Chiadroni, E.; Chiarella, V.; Cianchi, A.; Cianci, M.; Cimino, R.; Ciocci, F.; Clozza, A.; Collini, M.; Colo, G.; Compagno, A.; Contini, G.; Coreno, M.; Cucini, R.; Curceanu, C.; Curciarello, F.; Dabagov, S.; Dainese, E.; Davoli, I.; Dattoli, G.; De Caro, L.; De Felice, P.; De Leo, V.; Dell Agnello, S.; Della Longa, S.; Delle Monache, G.; De Spirito, M.; Di Cicco, A.; Di Donato, C.; Di Gioacchino, D.; Di Giovenale, D.; Di Palma, E.; Di Pirro, G.; Dodaro, A.; Doria, A.; Dosselli, U.; Drago, A.; Dupraz, K.; Escribano, R.; Esposito, A.; Faccini, R.; Ferrari, A.; Filabozzi, A.; Filippetto, D.; Fiori, F.; Frasciello, O.; Fulgentini, L.; Gallerano, G. P.; Gallo, A.; Gambaccini, M.; Gatti, C.; Gatti, G.; Gauzzi, P.; Ghigo, A.; Ghiringhelli, G.; Giannessi, L.; Giardina, G.; Giannini, C.; Giorgianni, F.; Giovenale, E.; Giulietti, D.; Gizzi, L.; Guaraldo, C.; Guazzoni, C.; Gunnella, R.; Hatada, K.; Iannone, M.; Ivashyn, S.; Jegerlehner, F.; Keeffe, P. O.; Kluge, W.; Kupsc, A.; Labate, L.; Levi Sandri, P.; Lombardi, V.; Londrillo, P.; Loreti, S.; Lorusso, A.; Losacco, M.; Lukin, A.; Lupi, S.; Macchi, A.; Magazù, S.; Mandaglio, G.; Marcelli, A.; Margutti, G.; Mariani, C.; Mariani, P.; Marzo, G.; Masciovecchio, C.; Masjuan, P.; Mattioli, M.; Mazzitelli, G.; Merenkov, N. P.; Michelato, P.; Migliardo, F.; Migliorati, M.; Milardi, C.; Milotti, E.; Milton, S.; Minicozzi, V.; Mobilio, S.; Morante, S.; Moricciani, D.; Mostacci, A.; Muccifora, V.; Murtas, F.; Musumeci, P.; Nguyen, F.; Orecchini, A.; Organtini, G.; Ottaviani, P. L.; Pace, C.; Pace, E.; Paci, M.; Pagani, C.; Pagnutti, S.; Palmieri, V.; Palumbo, L.; Panaccione, G. C.; Papadopoulos, C. F.; Papi, M.; Passera, M.; Pasquini, L.; Pedio, M.; Perrone, A.; Petralia, A.; Petrarca, M.; Petrillo, C.; Petrillo, V.; Pierini, P.; Pietropaolo, A.; Pillon, M.; Polosa, A. D.; Pompili, R.; Portoles, J.; Prosperi, T.; Quaresima, C.; Quintieri, L.; Rau, J. V.; Reconditi, M.; Ricci, A.; Ricci, R.; Ricciardi, G.; Ricco, G.; Ripani, M.; Ripiccini, E.; Romeo, S.; Ronsivalle, C.; Rosato, N.; Rosenzweig, J. B.; Rossi, A. A.; Rossi, A. R.; Rossi, F.; Rossi, G.; Russo, D.; Sabatucci, A.; Sabia, E.; Sacchetti, F.; Salducco, S.; Sannibale, F.; Sarri, G.; Scopigno, T.; Sekutowicz, J.; Serafini, L.; Sertore, D.; Shekhovtsova, O.; Spassovsky, I.; Spadaro, T.; Spataro, B.; Spinozzi, F.; Stecchi, A.; Stellato, F.; Surrenti, V.; Tenore, A.; Torre, A.; Trentadue, L.; Turchini, S.; Vaccarezza, C.; Vacchi, A.; Valente, P.; Venanzoni, G.; Vescovi, S.; Villa, F.; Zanotti, G.; Zema, N.; Zobov, M.; Zomer, F.

    2014-03-01

    This paper describes the scientific aims and potentials as well as the preliminary technical design of IRIDE, an innovative tool for multi-disciplinary investigations in a wide field of scientific, technological and industrial applications. IRIDE will be a high intensity "particles factory", based on a combination of high duty cycle radio-frequency superconducting electron linacs and of high energy lasers. Conceived to provide unique research possibilities for particle physics, for condensed matter physics, chemistry and material science, for structural biology and industrial applications, IRIDE will open completely new research possibilities and advance our knowledge in many branches of science and technology. IRIDE is also supposed to be realized in subsequent stages of development depending on the assigned priorities.

  18. Setting priorities for space research: An experiment in methodology

    NASA Technical Reports Server (NTRS)

    1995-01-01

    In 1989, the Space Studies Board created the Task Group on Priorities in Space Research to determine whether scientists should take a role in recommending priorities for long-term space research initiatives and, if so, to analyze the priority-setting problem in this context and develop a method by which such priorities could be established. After answering the first question in the affirmative in a previous report, the task group set out to accomplish the second task. The basic assumption in developing a priority-setting process is that a reasoned and structured approach for ordering competing initiatives will yield better results than other ways of proceeding. The task group proceeded from the principle that the central criterion for evaluating a research initiative must be its scientific merit -- the value of the initiative to the proposing discipline and to science generally. The group developed a two-stage methodology for priority setting and constructed a procedure and format to support the methodology. The first of two instruments developed was a standard format for structuring proposals for space research initiatives. The second instrument was a formal, semiquantitative appraisal procedure for evaluating competing proposals. This report makes available complete templates for the methodology, including the advocacy statement and evaluation forms, as well as an 11-step schema for a priority-setting process. From the beginning of its work, the task group was mindful that the issue of priority setting increasingly pervades all of federally supported science and that its work would have implications extending beyond space research. Thus, although the present report makes no recommendations for action by NASA or other government agencies, it provides the results of the task group's work for the use of others who may study priority-setting procedures or take up the challenge of implementing them in the future.

  19. What do young people with rheumatic disease believe to be important to research about their condition? A UK-wide study.

    PubMed

    Parsons, Suzanne; Thomson, Wendy; Cresswell, Katharine; Starling, Bella; McDonagh, Janet E

    2017-07-03

    The involvement of people of all ages including young people in research is now widely advocated but prioritisation of research topics is still driven largely by professional agendas. Evidence from adult literature has reported a mismatch between a researcher and patient generated list of research topics. There have been no studies to date exploring the priorities of young people with long term conditions other than in SLE. The study aimed to explore the research priorities of young people across the UK with respect to rheumatic conditions. Focus groups were undertaken with young people aged 11-24 years with rheumatic conditions recruited across the UK via members of the Barbara Ansell National Network for Adolescent Rheumatology BANNAR and relevant national charities. Data was analysed using a Framework approach. Participants discussed their beliefs about what should be researched in: Basic Science; Clinical Medicine; Health Services, Psychosocial, and Public Health. They were then invited to prioritize these areas in terms of how much funding they should receive. Thirteen focus groups were held involving 63 participants (18 males: 45 females, mean age 16 years, range 10 to 24) in all four nations of the UK. Young people's research priorities were influenced by whether they felt research would achieve benefits for all or just some patients and long or short term goals. Another influence was whether participants felt that research areas were already well funded. Across all groups, Basic Science was a key priority and participants felt that psychosocial research should be prioritized more. Health Services Research was a lower priority, as the majority of participants were happy with their care. Clinical medicine was not a high priority as young people were happy with their medication or uncomfortable with trying new ones. Finally, for nearly all groups, Public Health was a low priority. Differences were also observed between the two age groups and across the geographically diverse focus groups. Understanding young people's research priorities is important to develop research that is in tune with their needs. The results highlight the importance of considering the whole age range of adolescence and young adulthood as well as geographical diversity. The findings from this work will inform the future research of the Barbara Ansell National Network for Adolescent Rheumatology BANNAR in the UK.

  20. INTEGRATED SCIENCE FOR ECOSYSTEM CHALLENGES - ISEC

    EPA Science Inventory

    In support of the National Science and Technology Council's cross-Agency priority of Integrated Science for Ecological Challenges (ISEC) EPA is conducting research to improve capabilities in the area of regional vulnerability assessment and ecological forecasting. EPA's research...

  1. 77 FR 51791 - DOE/NSF Nuclear Science Advisory Committee

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-08-27

    ... DEPARTMENT OF ENERGY DOE/NSF Nuclear Science Advisory Committee AGENCY: Department of Energy.../NSF Nuclear Science Advisory Committee (NSAC). The Federal Advisory Committee Act (Pub. L. 92-463, 86... on scientific priorities within the field of basic nuclear science research. Tentative Agenda: Agenda...

  2. Constructing Videocases to Help Novices Learn to Facilitate Discussions in Science and English: How Does Subject Matter Matter?

    ERIC Educational Resources Information Center

    Rosaen, Cheryl L.; Lundeberg, Mary; Terpstra, Marjorie; Cooper, Marjorie; Niu, Rui; Fu, Jing

    2010-01-01

    Learning to conduct interactive classroom discussions is a high priority for becoming an effective teacher, and most teachers view conducting productive classroom discussions as a complex undertaking. Because the dynamics of facilitating classroom discussions are multifaceted and hard to analyze in real time, there is a growing interest in how…

  3. KSC-02pd0978

    NASA Image and Video Library

    2002-06-14

    KENNEDY SPACE CENTER, FLA. - -- Columbia's payload bay doors are ready to be closed for mission STS-107. Installed inside are the Hitchhiker Bridge, a carrier for the Fast Reaction Experiments Enabling Science, Technology, Applications and Research (FREESTAR) that incorporates eight high priority secondary attached shuttle experiments, plus the SHI Research Double Module (SHI/RDM), also known as SPACEHAB. STS-107 is scheduled for launch July 19, 2001

  4. Tracking and data systems support for the Helios project. Volume 3: DSN support of Project Helios May 1976 - June 1977

    NASA Technical Reports Server (NTRS)

    Goodwin, P. S.; Jensen, W. N.; Flanagan, F. M.

    1979-01-01

    Spacecraft extended mission coverage does not generally carry a high priority, but Helios was fortunate in that a combination of separated viewperiods and unique utilization of the STDN Goldstone antenna have provided a considerable amount of additional science data return, particularly at key times such a perihelion and/or solar occultation.

  5. From Global Reconnaissance to Sample Return: A Proposal for a Post-2009 Strategy to Follow the Water on Mars

    NASA Technical Reports Server (NTRS)

    Clifford, S. M.; George, J. A.; Stoker, C. R.; Briggs, G.

    2003-01-01

    Since the mid-1990's, the stated strategy of the Mars Exploration Program has been to Follow the Water. Although this strategy has been widely publicized, its degree of influence -- and the logic behind its current implementation (as reflected in mission planning, platform and instrument selection, and allocation of spacecraft resources) remains unclear. In response to this concern, we propose an integrated strategy for the post-2009 exploration of Mars that identifies the scientific objectives, rationale, sequence of missions, and specific investigations, that we believe provides the maximum possible science return by pursuing the most direct, cost-effective, and technically capable approach to following the water. This strategy is based on the orbital identification, high-resolution surface investigation, and ultimate sampling of the highest priority targets: near-surface liquid water and massive ground ice (potentially associated with the discharge of the outlflow channels or the relic of a former ocean). The analysis of such samples, in conjunction with the data acquired by the necessary precursor investigations (to identify the locations and characterize the environments of the optimum sampling sites), is expected to address a majority of the goals and high priority science objectives identified by MEPAG.

  6. In Brief: Moon-to-Mars initiative draws heat; Report on science appointments

    NASA Astrophysics Data System (ADS)

    Showstack, Randy

    2004-11-01

    Moon-to-Mars Initiative draws heat Shifting NASA's priorities toward its Moon-to-Mars initiative, which U.S. President George W. Bush announced on 14 January, ``will mean neglecting the most promising space science efforts,'' according to a 22 November report issued by the American Physical Society Special Committee on NASA Funding for Astrophysics. The report notes that important science opportunities could be lost or seriously delayed due to this shift in priorities. The new initiative presents the challenge of how to implement it ``without destroying the agency's balanced scientific program that was carefully crafted with strong scientific community involvement,'' the report states.

  7. Greatest barrier is retaining young scientists

    NASA Astrophysics Data System (ADS)

    Chandler, Mark; Hopper, John

    The National Science Foundation's top priorities as listed by director Neal Lane in Eos (November 9) are to strengthen NSF and its support of scientific research and education, to better articulate to the public why it is so important that support of science and engineering be strengthened, and to continue to lower barriers that discourage young people from choosing careers in science.While we firmly support the first two priorities, we are concerned about the underlying assumptions and implications of the third. Barriers discouraging women and minorities from considering careers in math and science do exist within our educational system, and there is now abundant statistical evidence showing these groups are under-represented in most fields of science. However, as stated in the Eos article, solving these problems and leveling the playing field is not the primary goal of the NSF policy.

  8. Optical Manufacturing and Testing Requirements Identified by the NASA Science Instruments, Observatories and Sensor Systems Technology Assessment

    NASA Technical Reports Server (NTRS)

    Stahl, H. Philip; Barney, Rich; Bauman, Jill; Feinberg, Lee; Mcleese, Dan; Singh, Upendra

    2011-01-01

    In August 2010, the NASA Office of Chief Technologist (OCT) commissioned an assessment of 15 different technology areas of importance to the future of NASA. Technology assessment #8 (TA8) was Science Instruments, Observatories and Sensor Systems (SIOSS). SIOSS assess the needs for optical technology ranging from detectors to lasers, x-ray mirrors to microwave antenna, in-situ spectrographs for on-surface planetary sample characterization to large space telescopes. The needs assessment looked across the entirety of NASA and not just the Science Mission Directorate. This paper reviews the optical manufacturing and testing technologies identified by SIOSS which require development in order to enable future NASA high priority missions.

  9. Survey of Laboratories and Implementation of the Federal Defense Laboratory Diversification Program. Annex B. Department of the Navy Domestic Technology Transfer

    DTIC Science & Technology

    1993-10-01

    received on a periodic basis that is the equivalent of a royalty. By that CRADA, a hybridoma producing an antibody useful in analytic...played an active role are: ( a ) The Annual High Tech Conference for Small Business sponsored by the New Jersey Commission on Science and Technology. 39...legally required. The new administration has made DTT a high priority, resulting in an increase in DTT

  10. 75 FR 39001 - Notice Inviting Comments on Priorities To Be Proposed to the National Board for Education...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-07-07

    ... Proposed to the National Board for Education Sciences of the Institute of Education Sciences AGENCY... be proposed to the National Board for Education Sciences of the Institute of Education Sciences... the work of the Institute. The National Board for Education Sciences (Board) must approve the...

  11. Transforming "Osmosis": Labs to Address Standards for Inquiry

    ERIC Educational Resources Information Center

    Concannon, James P.; Brown, Patrick L.

    2008-01-01

    A priority for all biology teachers must be for students to leave the classroom with a broad knowledge and understanding of science. Students need to be critical of science, analyze science, and relate new science knowledge to their daily lives. Unfortunately, many students are not reaching this goal. One strategy for making science laboratories…

  12. University Students' Value Priorities and Emotional Empathy.

    ERIC Educational Resources Information Center

    Myyry, Liisa; Helkama, Klaus

    2001-01-01

    Presents a comparison of the Schwartz typology of values and the Spranger-Allport-Vernon typology. Investigates the differences among students in business, social science, and technology in emotional empathy and the relationships of value priorities and emotional empathy in different fields. Includes references. (CMK)

  13. Enabling Autonomous Rover Science through Dynamic Planning and Scheduling

    NASA Technical Reports Server (NTRS)

    Estlin, Tara A.; Gaines, Daniel; Chouinard, Caroline; Fisher, Forest; Castano, Rebecca; Judd, Michele; Nesnas, Issa

    2005-01-01

    This paper describes how dynamic planning and scheduling techniques can be used onboard a rover to autonomously adjust rover activities in support of science goals. These goals could be identified by scientists on the ground or could be identified by onboard data-analysis software. Several different types of dynamic decisions are described, including the handling of opportunistic science goals identified during rover traverses, preserving high priority science targets when resources, such as power, are unexpectedly over-subscribed, and dynamically adding additional, ground-specified science targets when rover actions are executed more quickly than expected. After describing our specific system approach, we discuss some of the particular challenges we have examined to support autonomous rover decision-making. These include interaction with rover navigation and path-planning software and handling large amounts of uncertainty in state and resource estimations.

  14. From the preserves of the educated elite to virtually everywhere: A content analysis of Danish science news in 1999 and 2012.

    PubMed

    Vestergård, Gunver Lystbæk; Nielsen, Kristian H

    2017-02-01

    In an attempt to qualify changes to science news reporting due to the impact of the Internet, we studied all science news articles published in Danish national newspapers in a November week in 1999 and 2012, respectively. We find the same amount of science coverage, about 4% of the total news production, in both years, although the tabloids produce more science news in 2012. Online science news also received high priority. Journalists in 2012 more often than in 1999 make reference to scientific journals and cite a wider range of journals. Science news in 2012 is more international and politically oriented than in 1999. Based on these findings, we suggest that science news, due partly to the emergence of online resources, is becoming more diverse and available to a wider audience. Science news is no longer for the elite but has spread to virtually everywhere in the national news system.

  15. The economics of academic health sciences libraries: cost recovery in the era of big science.

    PubMed Central

    Williams, T L; Lemkau, H L; Burrows, S

    1988-01-01

    With launching of Sputnik by the Soviet Union in the late 1950s, science and technology became a high priority in the United States. During the two decades since, health sciences libraries have experienced changes in almost all aspects of their operations. Additionally, recent developments in medical care and in medical education have had major influences on the mission of health science libraries. In the unending struggle to keep up with new technologies and services, libraries have had to support increasing demands while they receive a decreasing share of the health care dollar. This paper explores the economic challenges faced by academic health sciences libraries and suggests measures for augmenting traditional sources of funding. The development of marketing efforts, institutional memberships, and fee-based services by the Louis Calder Memorial Library, University of Miami School of Medicine, is presented as a case study. PMID:3224223

  16. The economics of academic health sciences libraries: cost recovery in the era of big science.

    PubMed

    Williams, T L; Lemkau, H L; Burrows, S

    1988-10-01

    With launching of Sputnik by the Soviet Union in the late 1950s, science and technology became a high priority in the United States. During the two decades since, health sciences libraries have experienced changes in almost all aspects of their operations. Additionally, recent developments in medical care and in medical education have had major influences on the mission of health science libraries. In the unending struggle to keep up with new technologies and services, libraries have had to support increasing demands while they receive a decreasing share of the health care dollar. This paper explores the economic challenges faced by academic health sciences libraries and suggests measures for augmenting traditional sources of funding. The development of marketing efforts, institutional memberships, and fee-based services by the Louis Calder Memorial Library, University of Miami School of Medicine, is presented as a case study.

  17. NASA funding opportunities for optical fabrication and testing technology development

    NASA Astrophysics Data System (ADS)

    Stahl, H. Philip

    2013-09-01

    NASA requires technologies to fabricate and test optical components to accomplish its highest priority science missions. The NRC ASTRO2010 Decadal Survey states that an advanced large-aperture UVOIR telescope is required to enable the next generation of compelling astrophysics and exo-planet science; and, that present technology is not mature enough to affordably build and launch any potential UVOIR mission concept. The NRC 2012 NASA Space Technology Roadmaps and Priorities Report states that the highest priority technology in which NASA should invest to `Expand our understanding of Earth and the universe' is next generation X-ray and UVOIR telescopes. Each of the Astrophysics division Program Office Annual Technology Reports (PATR) identifies specific technology needs. NASA has a variety of programs to fund enabling technology development: SBIR (Small Business Innovative Research); the ROSES APRA and SAT programs (Research Opportunities in Space and Earth Science; Astrophysics Research and Analysis program; Strategic Astrophysics Technology program); and several Office of the Chief Technologist (OCT) programs.

  18. NASA Funding Opportunities for Optical Fabrication and Testing Technology Development

    NASA Technical Reports Server (NTRS)

    Stahl, H. Philip

    2013-01-01

    NASA requires technologies to fabricate and test optical components to accomplish its highest priority science missions. The NRC ASTRO2010 Decadal Survey states that an advanced large-aperture UVOIR telescope is required to enable the next generation of compelling astrophysics and exo-planet science; and, that present technology is not mature enough to affordably build and launch any potential UVOIR mission concept. The NRC 2012 NASA Space Technology Roadmaps and Priorities Report states that the highest priority technology in which NASA should invest to 'Expand our understanding of Earth and the universe' is next generation X-ray and UVOIR telescopes. Each of the Astrophysics division Program Office Annual Technology Reports (PATR) identifies specific technology needs. NASA has a variety of programs to fund enabling technology development: SBIR (Small Business Innovative Research); the ROSES APRA and SAT programs (Research Opportunities in Space and Earth Science; Astrophysics Research and Analysis program; Strategic Astrophysics Technology program); and several Office of the Chief Technologist (OCT) programs

  19. NASA Funding Opportunities for Optical Fabrication and Testing Technology Development

    NASA Technical Reports Server (NTRS)

    Stahl, H. Philip

    2013-01-01

    Technologies to fabricate and test optical components are required for NASA to accomplish its highest priority science missions. For example, the NRC ASTRO2010 Decadal Survey states that an advanced large-aperture UVOIR telescope is required to enable the next generation of compelling astrophysics and exo-planet science; and that present technology is not mature enough to affordably build and launch any potential UVOIR mission concept. The NRC 2012 NASA Space Technology Roadmaps and Priorities report states that the highest priority technology in which NASA should invest to 'Expand our understanding of Earth and the universe' is a new generation of astronomical telescopes. And, each of the Astrophysics division Program Office Annual Technology Reports (PATR), identifies specific technology needs. NASA has a variety of programs to fund enabling technology development: SBIR (Small Business Innovative Research); the ROSES APRA and SAT programs (Research Opportunities in Space and Earth Science; Astrophysics Research and Analysis program; Strategic Astrophysics Technology program); and several Office of the Chief Technologist (OCT) technology development programs.

  20. Priorities for implementing nutritional science into practice to optimize military performance.

    PubMed

    Elfenbaum, Pamela; Crawford, Cindy; Enslein, Viviane; Berry, Kevin

    2017-06-01

    The Metabolically Optimized Brain study explores nutritional science believed to be ready to place into practice to help improve US service member mission-readiness and performance. To this end, an implementation expert panel considered how the US Department of Defense Subsistence Food Service Program, which is operated by each branch of the military in dining facilities within the continental United States, could apply the best nutritional science in a cost-effective manner. The work of this panel was facilitated through a series of thematic conversations guided by evidence generated through systematic reviews, which were performed to identify systems and process gaps and propose possible solutions. The expert panel used a Delphi method of multiple voting, and ultimately proposed 11 systems changes, of which 6 were ranked as highest priority. The proposed highest priority changes were then discussed by the participants with additional stakeholders. The process described here highlights how experts from different sectors operating in a complex system of subsystems can come together to cross talk, identify gaps, and propose mutually beneficial system and process changes to improve the alignment of nutritional science and institutional food-service practice. © The Author(s) 2017. Published by Oxford University Press on behalf of the International Life Sciences Institute. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  1. Space Science in the Twenty-First Century: Imperatives for the Decades 1995 to 2015. Overview

    NASA Technical Reports Server (NTRS)

    1988-01-01

    The opportunities for space science in the period from 1995 to 2015 are discussed. A perspective on progress in the six disciplines (the planet Earth; planetary and lunar exploration; solar system space physics; astronomy and astrophysics; fundamental physics and chemistry; and life sciences) of space science are reviewed. The prospectives for major achievements by 1995 from missions already underway or awaiting new starts are included. A set of long range goals for these disciplines are presented for the first two decades of the twenty-first century. Broad themes for future scientific pursuits are presented and some examples of high-priority missions for the turn of the century are highlighted. A few recommendations are cited for each discipline to suggest how these themes might be developed.

  2. Priority regions for research on dryland cereals and legumes

    PubMed Central

    Hyman, Glenn; Barona, Elizabeth; Biradar, Chandrashekhar; Guevara, Edward; Dixon, John; Beebe, Steve; Castano, Silvia Elena; Alabi, Tunrayo; Gumma, Murali Krishna; Sivasankar, Shoba; Rivera, Ovidio; Espinosa, Herlin; Cardona, Jorge

    2016-01-01

    Dryland cereals and legumes  are important crops in farming systems across the world.  Yet they are frequently neglected among the priorities for international agricultural research and development, often due to lack of information on their magnitude and extent. Given what we know about the global distribution of dryland cereals and legumes, what regions should be high priority for research and development to improve livelihoods and food security? This research evaluated the geographic dimensions of these crops and the farming systems where they are found worldwide. The study employed geographic information science and data to assess the key farming systems and regions for these crops. Dryland cereal and legume crops should be given high priority in 18 farming systems worldwide, where their cultivated area comprises more than 160 million ha. These regions include the dryer areas of South Asia, West and East Africa, the Middle East and North Africa, Central America and other parts of Asia. These regions are prone to drought and heat stress, have limiting soil constraints, make up half of the global population and account for 60 percent of the global poor and malnourished. The dryland cereal and legume crops and farming systems merit more research and development attention to improve productivity and address development problems. This project developed an open access dataset and information resource that provides the basis for future analysis of the geographic dimensions of dryland cereals and legumes. PMID:27303632

  3. Atmospheric sciences program at NASA Kennedy Space Center

    NASA Technical Reports Server (NTRS)

    Nicholson, James R.; Jafferis, William

    1988-01-01

    A very keen awareness of the impact of lightning threat on ground operations exists at NASA Kennedy Space Center (KSC) because of the high frequency of thunderstorm occurrences in Florida. The majority of thunder events occur in the summertime, initiated by solar heating of the land. Merritt Island, where KSC is located, produces its own thunderstorms under light flow conditions; because some are small, their importance might be unappreciated at first glance. The impress of these facts, and others of pertinence, on the KSC atmospheric sciences development program will be discussed, priorities enumerated, and a review of development projects presented.

  4. Bioremediation Education Science and Technology (BEST) Program Annual Report 1999

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hazen, Terry C.

    2000-07-01

    The Bioremediation, Education, Science and Technology (BEST) partnership provides a sustainable and contemporary approach to developing new bioremedial technologies for US Department of Defense (DoD) priority contaminants while increasing the representation of underrepresented minorities and women in an exciting new biotechnical field. This comprehensive and innovative bioremediation education program provides under-represented groups with a cross-disciplinary bioremediation cirruculum and financial support, coupled with relevant training experiences at advanced research laboratories and field sites. These programs are designed to provide a stream of highly trained minority and women professionals to meet national environmental needs.

  5. Investigating the Origin and Evolution of Venus with In Situ Mass Spectrometry

    NASA Technical Reports Server (NTRS)

    Trainer, M. G.; Mahaffy, P. R.; Brinckerhoff, W. B.; Johnson, N. M.; Glaze, L. S.

    2015-01-01

    Measurement of noble gas abundances on Venus remain a high priority for planetary science. These studies are only possible through in situ measurement, and can be accomplished by a modern neutral mass spectrometer (NMS) such as that developed at NASA Goddard, based on flight-proven technology. Here we show how the measurement of noble gases can be secured using demonstrated enrichment techniques.

  6. Roadmap for Agriculture Biomass Feedstock Supply in the United States

    DTIC Science & Technology

    2003-11-01

    the high-priority areas for biomass supply forecasts and analysis . Top research needs in sustainability and plant sciences areas are listed in the...petroleum. Lignocellulosic biomass is the nonstarch, fibrous part of plant material that is inherently moist and lightweight. The sugar platform...include: •“Biotechnology, genetics and plant physiology for improved feedstocks, • Optimize agronomic practices, including land use availability and soil

  7. China’s International Behavior. Activism, Opportunism, and Diversification

    DTIC Science & Technology

    2009-01-01

    military, science and technology, culture, education, and tourism . In the words of reports from the high- level 2006 Central Conference on Foreign...services took effect in July 2007 and covers construction, environmental protection, tourism , transportation, and education. Talks on investment and...legitimacy and gover - nance practices are not a priority for China in its bilateral relations.163 Such issues become relevant to Chinese leaders and

  8. Offering a Geoscience Professional Development Program to Promote Science Education and Provide Hands-on Experiences for K-12 Science Educators

    ERIC Educational Resources Information Center

    Fakayode, Sayo O.; Pollard, David A.; Snipes, Vincent T.; Atkinson, Alvin

    2014-01-01

    Development of an effective strategy for promoting science education and professional development of K-12 science educators is a national priority to strengthen the quality of science, technology, engineering, and mathematics (STEM) education. This article reports the outcomes of a Geoscience Professional Development Program (GPDP) workshop…

  9. Priorities for clinical research in intracerebral hemorrhage: report from a National Institute of Neurological Disorders and Stroke workshop.

    PubMed

    2005-03-01

    Spontaneous intracerebral hemorrhage (ICH) is one of the most lethal stroke types. In December 2003, a National Institute of Neurological Disorders and Stroke (NINDS) workshop was convened to develop a consensus for ICH research priorities. The focus was clinical research aimed at acute ICH in patients. Workshop participants were divided into 6 groups: (1) current state of ICH research; (2) basic science; and (3) imaging, (4) medical, (5) surgical, and (6) clinical methodology. Each group formulated research priorities before the workshop. At the workshop, these were discussed and refined. Recent progress in management of hemorrhage growth, intraventricular hemorrhage, and limitations in the benefit of open craniotomy were noted. The workshop identified the importance of developing animal models to reflect human ICH, as well as the phenomena of rebleeding. More human ICH pathology is needed. Real-time, high-field magnets and 3-dimensional imaging, as well as high-resolution tissue probes, are ICH imaging priorities. Trials of acute blood pressure-lowering in ICH and coagulopathy reversal are medical priorities. The exact role of edema in human ICH pathology and its treatment requires intensive study. Trials of minimally invasive surgical techniques including mechanical and chemical surgical adjuncts are critically important. The methodologic challenges include establishing research networks and a multi-specialty approach. Waiver of consent issues and standardizing care in trials are important issues. Encouragement of young investigators from varied backgrounds to enter the ICH research field is critical. Increasing ICH research is crucial. A collaborative approach is likely to yield therapies for this devastating form of brain injury.

  10. Thrombosis in Cancer: Research Priorities Identified by a National Cancer Institute/National Heart, Lung, and Blood Institute Strategic Working Group.

    PubMed

    Key, Nigel S; Khorana, Alok A; Mackman, Nigel; McCarty, Owen J T; White, Gilbert C; Francis, Charles W; McCrae, Keith R; Palumbo, Joseph S; Raskob, Gary E; Chan, Andrew T; Sood, Anil K

    2016-07-01

    The risk for venous thromboembolism (VTE) is increased in cancer and particularly with chemotherapy, and it portends poorer survival among patients with cancer. However, many fundamental questions about cancer-associated VTE, or Trousseau syndrome, remain unanswered. This report summarizes the proceedings of a working group assembled by the NCI and NHLBI in August 2014 to explore the state of the science in cancer-associated VTE, identify clinically important research gaps, and develop consensus on priorities for future research. Representing a convergence of research priorities between the two NIH Institutes, the workshop addressed epidemiologic, basic science, clinical, and translational issues in cancer-associated VTE. Cancer Res; 76(13); 3671-5. ©2016 AACR. ©2016 American Association for Cancer Research.

  11. Priority Setting for Improvement of Cervical Cancer Prevention in Iran.

    PubMed

    Majidi, Azam; Ghiasvand, Reza; Hadji, Maryam; Nahvijou, Azin; Mousavi, Azam-Sadat; Pakgohar, Minoo; Khodakarami, Nahid; Abedini, Mehrandokht; Amouzegar Hashemi, Farnaz; Rahnamaye Farzami, Marjan; Shahsiah, Reza; Sajedinejhad, Sima; Mohagheghi, Mohammad Ali; Nadali, Fatemeh; Rashidian, Arash; Weiderpass, Elisabete; Mogensen, Ole; Zendehdel, Kazem

    2015-11-22

    Cervical cancer is the fourth most common cancer among women worldwide. Organized cervical screening and vaccination against human papilloma virus (HPV) have been successful interventions for prevention of invasive cervical cancer (ICC). Because of cultural and religious considerations, ICC has low incidence in Iran and many other Muslim countries. There is no organized cervical screening in these countries. Therefore, ICC is usually diagnosed in advanced stages with poor prognosis in these countries. We performed a priority setting exercise and suggested priorities for prevention of ICC in this setting. We invited experts and researchers to a workshop and asked them to list important suggestions for ICC prevention in Iran. After merging similar items and removing the duplicates, we asked the experts to rank the list of suggested items. We used a strategy grid and Go-zone analysis to determine final list of priorities for ICC prevention in Iran. From 26 final items suggested as priorities for prevention of ICC, the most important priorities were developing national guidelines for cervical screening and quality control protocol for patient follow-up and management of precancerous lesions. In addition, we emphasized considering insurance coverage for cervical screening, public awareness, and research priorities, and establishment of a cervical screening registry. A comprehensive approach and implementation of organized cervical screening program is necessary for prevention of ICC in Iran and other low incidence Muslim countries. Because of high cost for vaccination and low incidence of cervical cancer, we do not recommend HPV vaccination for the time being in Iran. © 2016 by Kerman University of Medical Sciences.

  12. Research priorities in medical education: A national study.

    PubMed

    Tootoonchi, Mina; Yamani, Nikoo; Changiz, Tahereh; Yousefy, Alireza

    2012-01-01

    One preliminary step to strengthen medical education research would be determining the research priorities. The aim of this study was to determine the research priorities of medical education in Iran in 2007-2008. This descriptive study was carried out in two phases. Phase one was performed in 3 stages and used Delphi technique among academic staffs of Isfahan University of Medical Sciences. The three stages included a brainstorming workshop for 140 faculty members and educational experts resulting in a list of research priorities, then, in the second and third stages 99 and 76 questionnaires were distributed among faculty members. In the second phase, the final questionnaires were mailed to educational research center managers of universities type I, II and III, and were distributed among 311 academic members and educational experts to rate the items on a numerical scale ranging from 1 to 10. The most important research priorities included faculty members' development methods, faculty members' motives, satisfaction and welfare, criteria and procedures of faculty members' promotion, teaching methods and learning techniques, job descriptions and professional skills of graduates, quality management in education, second language, clinical education, science production in medicine, faculty evaluation and information technology. This study shows the medial education research priorities in national level and in different types of medical universities in Iran. It is recommended that faculty members and research administrators consider the needs and requirements of education and plan the researches in education according to these priorities.

  13. Research priorities in medical education: A national study

    PubMed Central

    Tootoonchi, Mina; Yamani, Nikoo; Changiz, Tahereh; Yousefy, Alireza

    2012-01-01

    BACKGROUND: One preliminary step to strengthen medical education research would be determining the research priorities. The aim of this study was to determine the research priorities of medical education in Iran in 2007-2008. METHODS: This descriptive study was carried out in two phases. Phase one was performed in 3 stages and used Delphi technique among academic staffs of Isfahan University of Medical Sciences. The three stages included a brainstorming workshop for 140 faculty members and educational experts resulting in a list of research priorities, then, in the second and third stages 99 and 76 questionnaires were distributed among faculty members. In the second phase, the final questionnaires were mailed to educational research center managers of universities type I, II and III, and were distributed among 311 academic members and educational experts to rate the items on a numerical scale ranging from 1 to 10. RESULTS: The most important research priorities included faculty members’ development methods, faculty members’ motives, satisfaction and welfare, criteria and procedures of faculty members’ promotion, teaching methods and learning techniques, job descriptions and professional skills of graduates, quality management in education, second language, clinical education, science production in medicine, faculty evaluation and information technology. CONCLUSIONS: This study shows the medial education research priorities in national level and in different types of medical universities in Iran. It is recommended that faculty members and research administrators consider the needs and requirements of education and plan the researches in education according to these priorities. PMID:23248661

  14. 47 CFR 211.3 - Scope and coverage.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 47 Telecommunication 5 2013-10-01 2013-10-01 false Scope and coverage. 211.3 Section 211.3 Telecommunication OFFICE OF SCIENCE AND TECHNOLOGY POLICY AND NATIONAL SECURITY COUNCIL EMERGENCY RESTORATION PRIORITY PROCEDURES FOR TELECOMMUNICATIONS SERVICES § 211.3 Scope and coverage. (a) The priority system and...

  15. 47 CFR 211.3 - Scope and coverage.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 47 Telecommunication 5 2014-10-01 2014-10-01 false Scope and coverage. 211.3 Section 211.3 Telecommunication OFFICE OF SCIENCE AND TECHNOLOGY POLICY AND NATIONAL SECURITY COUNCIL EMERGENCY RESTORATION PRIORITY PROCEDURES FOR TELECOMMUNICATIONS SERVICES § 211.3 Scope and coverage. (a) The priority system and...

  16. 47 CFR 211.3 - Scope and coverage.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 47 Telecommunication 5 2010-10-01 2010-10-01 false Scope and coverage. 211.3 Section 211.3 Telecommunication OFFICE OF SCIENCE AND TECHNOLOGY POLICY AND NATIONAL SECURITY COUNCIL EMERGENCY RESTORATION PRIORITY PROCEDURES FOR TELECOMMUNICATIONS SERVICES § 211.3 Scope and coverage. (a) The priority system and...

  17. 47 CFR 211.3 - Scope and coverage.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 47 Telecommunication 5 2012-10-01 2012-10-01 false Scope and coverage. 211.3 Section 211.3 Telecommunication OFFICE OF SCIENCE AND TECHNOLOGY POLICY AND NATIONAL SECURITY COUNCIL EMERGENCY RESTORATION PRIORITY PROCEDURES FOR TELECOMMUNICATIONS SERVICES § 211.3 Scope and coverage. (a) The priority system and...

  18. 47 CFR 211.3 - Scope and coverage.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 47 Telecommunication 5 2011-10-01 2011-10-01 false Scope and coverage. 211.3 Section 211.3 Telecommunication OFFICE OF SCIENCE AND TECHNOLOGY POLICY AND NATIONAL SECURITY COUNCIL EMERGENCY RESTORATION PRIORITY PROCEDURES FOR TELECOMMUNICATIONS SERVICES § 211.3 Scope and coverage. (a) The priority system and...

  19. SEED: A Suite of Instructional Laboratories for Computer Security Education

    ERIC Educational Resources Information Center

    Du, Wenliang; Wang, Ronghua

    2008-01-01

    The security and assurance of our computing infrastructure has become a national priority. To address this priority, higher education has gradually incorporated the principles of computer and information security into the mainstream undergraduate and graduate computer science curricula. To achieve effective education, learning security principles…

  20. Spin depolarization dynamics of WSe2 bilayer

    NASA Astrophysics Data System (ADS)

    Niu, Binghui; Ye, Jialiang; Li, Ting; Li, Ying; Zhang, Xinhui

    2018-05-01

    Not Available Project supported by the National Natural Science Foundation of China (Grant No. 11474276) and the Strategic Priority Research Program of the Chinese Academy of Sciences (Grant No. XDPB0603).

  1. Public awareness, concerns, and priorities about anthropogenic impacts on marine environments.

    PubMed

    Gelcich, Stefan; Buckley, Paul; Pinnegar, John K; Chilvers, Jason; Lorenzoni, Irene; Terry, Geraldine; Guerrero, Matias; Castilla, Juan Carlos; Valdebenito, Abel; Duarte, Carlos M

    2014-10-21

    Numerous international bodies have advocated the development of strategies to achieve the sustainability of marine environments. Typically, such strategies are based on information from expert groups about causes of degradation and policy options to address them, but these strategies rarely take into account assessed information about public awareness, concerns, and priorities. Here we report the results of a pan-European survey of public perceptions about marine environmental impacts as a way to inform the formation of science and policy priorities. On the basis of 10,106 responses to an online survey from people in 10 European nations, spanning a diversity of socioeconomic and geographical areas, we examine the public's informedness and concern regarding marine impacts, trust in different information sources, and priorities for policy and funding. Results show that the level of concern regarding marine impacts is closely associated with the level of informedness and that pollution and overfishing are two areas prioritized by the public for policy development. The level of trust varies greatly among different information sources and is highest for academics and scholarly publications but lower for government or industry scientists. Results suggest that the public perceives the immediacy of marine anthropogenic impacts and is highly concerned about ocean pollution, overfishing, and ocean acidification. Eliciting public awareness, concerns, and priorities can enable scientists and funders to understand how the public relates to marine environments, frame impacts, and align managerial and policy priorities with public demand.

  2. Public awareness, concerns, and priorities about anthropogenic impacts on marine environments

    PubMed Central

    Gelcich, Stefan; Buckley, Paul; Pinnegar, John K.; Chilvers, Jason; Lorenzoni, Irene; Terry, Geraldine; Guerrero, Matias; Castilla, Juan Carlos; Valdebenito, Abel; Duarte, Carlos M.

    2014-01-01

    Numerous international bodies have advocated the development of strategies to achieve the sustainability of marine environments. Typically, such strategies are based on information from expert groups about causes of degradation and policy options to address them, but these strategies rarely take into account assessed information about public awareness, concerns, and priorities. Here we report the results of a pan-European survey of public perceptions about marine environmental impacts as a way to inform the formation of science and policy priorities. On the basis of 10,106 responses to an online survey from people in 10 European nations, spanning a diversity of socioeconomic and geographical areas, we examine the public’s informedness and concern regarding marine impacts, trust in different information sources, and priorities for policy and funding. Results show that the level of concern regarding marine impacts is closely associated with the level of informedness and that pollution and overfishing are two areas prioritized by the public for policy development. The level of trust varies greatly among different information sources and is highest for academics and scholarly publications but lower for government or industry scientists. Results suggest that the public perceives the immediacy of marine anthropogenic impacts and is highly concerned about ocean pollution, overfishing, and ocean acidification. Eliciting public awareness, concerns, and priorities can enable scientists and funders to understand how the public relates to marine environments, frame impacts, and align managerial and policy priorities with public demand. PMID:25288740

  3. Bridging the gap between science and policy: an international survey of scientists and policy makers in China and Canada.

    PubMed

    Choi, Bernard C K; Li, Liping; Lu, Yaogui; Zhang, Li R; Zhu, Yao; Pak, Anita W P; Chen, Yue; Little, Julian

    2016-02-06

    Bridging the gap between science and policy is an important task in evidence-informed policy making. The objective of this study is to prioritize ways to bridge the gap. The study was based on an online survey of high-ranking scientists and policy makers who have a senior position in universities and governments in the health sector in China and Canada. The sampling frame comprised of universities with schools of public health and medicine and various levels of government in health and public health. Participants included university presidents and professors, and government deputy ministers, directors general and directors working in the health field. Fourteen strategies were presented to the participants for ranking as current ways and ideal ways in the future to bridge the gap between science and policy. Over a 3-month survey period, there were 121 participants in China and 86 in Canada with response rates of 30.0 and 15.9 %, respectively. The top strategies selected by respondents included focus on policy (conducting research that focuses on policy questions), science-policy forums, and policy briefs, both as current ways and ideal ways to bridge the gap between science and policy. Conferences were considered a priority strategy as a current way, but not an ideal way in the future. Canadian participants were more in favor of using information technology (web-based portals and email updates) than their Chinese counterparts. Among Canadian participants, two strategies that were ranked low as current ways (collaboration in study design and collaboration in analysis) became a priority as ideal ways. This could signal a change in thinking in shifting the focus from the "back end" or "downstream" (knowledge dissemination) of the knowledge transfer process to the "front end" or "upstream" (knowledge generation). Our international study has confirmed a number of previously reported priority strategies to bridge the gap between science and policy. More importantly, our study has contributed to the future work on evidence-based policy making by comparing the responses from China and Canada and the current and ideal way for the future. Our study shows that the concept and strategies of bridging the gap between science and policy are not static but varying in space and evolving over time.

  4. Mainstreaming Gender Analysis Into Science

    NASA Astrophysics Data System (ADS)

    Schiebinger, Londa

    This essay considers the question, Has feminism changed science? After three decades of active research, what new insights, questions, and priorities have feminists - men or women - brought to the sciences? The author provides examples of change from three areas: women's health research, primatology, and archaeology. The essay concludes with a discussion of mainstreaming gender analysis into science.

  5. National Priority Setting of Clinical Practice Guidelines Development for Chronic Disease Management.

    PubMed

    Jo, Heui-Sug; Kim, Dong Ik; Oh, Moo-Kyung

    2015-12-01

    By November 2013, a total of 125 clinical practice guidelines (CPGs) have been developed in Korea. However, despite the high burden of diseases and the clinical importance of CPGs, most chronic diseases do not have available CPGs. Merely 83 CPGs are related to chronic diseases, and only 40 guidelines had been developed in the last 5 yr. Considering the rate of the production of new evidence in medicine and the worsening burden from chronic diseases, the need for developing CPGs for more chronic diseases is becoming increasingly pressing. Since 2011, the Korean Academy of Medical Sciences and the Korea Centers for Disease Control and Prevention have been jointly developing CPGs for chronic diseases. However, priorities have to be set and resources need to be allocated within the constraint of a limited funding. This study identifies the chronic diseases that should be prioritized for the development of CPGs in Korea. Through an objective assessment by using the analytic hierarchy process and a subjective assessment with a survey of expert opinion, high priorities were placed on ischemic heart disease, cerebrovascular diseases, Alzheimer's disease and other dementias, osteoarthritis, neck pain, chronic kidney disease, and cirrhosis of the liver.

  6. Needs assessment of science teachers in secondary schools in Kumasi, Ghana: A basis for in-service education training programs at the Science Resource Centers

    NASA Astrophysics Data System (ADS)

    Gyamfi, Alexander

    The purpose of this study was twofold. First, it identified the priority needs common to all science teachers in secondary schools in Kumasi, Ghana. Second, it investigated the relationship existing between the identified priority needs and the teacher demographic variables (type of school, teacher qualification, teaching experience, subject discipline, and sex of teacher) to be used as a basis for implementing in-service education training programs at the Science Resource Centers in Kumasi Ghana. An adapted version of the Moore Assessment Profile (MAP) survey instrument and a set of open-ended questions were used to collect data from the science teachers. The researcher handed out one hundred and fifty questionnaire packets, and all one hundred and fifty (100%) were collected within a period of six weeks. The data were analyzed using descriptive statistics, content analysis, and inferential statistics. The descriptive statistics reported the frequency of responses, and it was used to calculate the Need Index (N) of the identified needs of teachers. Sixteen top-priority needs were identified, and the needs were arranged in a hierarchical order according to the magnitude of the Need Index (0.000 ≤ N ≤ 1.000). Content analysis was used to analyze the responses to the open-ended questions. One-way analysis of variance (ANOVA) was used to test the null hypotheses of the study on each of the sixteen identified top-priority needs and the teacher demographic variables. The findings of this study were as follows: (1) The science teachers identified needs related to "more effective use of instructional materials" as a crucial area for in-service training. (2) Host and Satellite schools exhibited significant difference on procuring supplementary science books for students. Subject discipline of teachers exhibited significant differences on utilizing the library and its facilities by students, obtaining information on where to get help on effective science teaching, procuring supplementary science books for students, and developing greater understanding of child psychology. Teaching experience exhibited significant difference on developing a greater understanding of learning psychology. (3) The majority of the science teachers (55%) have not participated in any form of an in-service training program. (4) The majority of the science teachers (about 65%) are satisfied with their job as science teachers. (5) The majority of the science teachers (60%) are not satisfied with the use of Science Resource Center for teaching. A major implication of the study is that science teachers using the Science Resource Centers for teaching should be paid teaching allowances. It is also recommended that the Ghana Education Service (GES) should create a center for distribution and repairs of laboratory equipment of the Science Resource Centers. Five studies are suggested for future research.

  7. 78 FR 56870 - DOE/NSF Nuclear Science Advisory Committee

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-09-16

    ... Office's The 2013 ONP Comparative Research Review Presentation of the Charge on Neutrino-less Double Beta... priorities within the field of basic nuclear science research. Tentative Agenda: Agenda will include...

  8. Perspectives on academic health sciences libraries in the 1980s: indicators from a Delphi study.

    PubMed Central

    Matheson, N W

    1982-01-01

    A Delphi study was undertaken to identify the changes in library roles and functions that the directors of academic health sciences libraries believe will occur over the next decade. The methodology is described and the results are summarized. Two scenarios resulted: one, highly desirable; the other, highly probable. They overlap by 64%. Library directors expect moderate evolutionary changes in the next ten years. Users are perceived to be the force maintaining the status quo, while technology is the force advancing change. The adoption of technology is seen as desirable and within the libraries' span of control. Education and service roles of librarians will expand. Library and institutional priorities are seen as obstacles to change. PMID:7037086

  9. NASA--has its biological groundwork for a trip to Mars improved?

    PubMed

    Haddy, Francis J

    2007-03-01

    In a 1991 editorial in The FASEB Journal, Robert W. Krauss commented on a recent report of the Presidential Advisory Committee on the Future of the U.S. Space Program (Augustine report). He concluded that, although a manned mission to Mars with life sciences as the priority was endorsed by the Committee, it failed to deal realistically with one huge gap; biological sciences have never been given high priority. According to Krauss, this left a void that will cripple, perhaps fatally, any early effort to ensure long-term survival on any mission of extended duration. The gap included insufficient flight time for fundamental biological space research and insufficient funds. Krauss expressed his opinions 15 years ago. Have we better knowledge of space biology now? This question becomes more acute now that President George W. Bush recently proposed a manned return to the moon by 2015 or 2020, with the moon to become our staging post for manned missions to Mars. Will we be ready so soon? A review of the progress in the last 15 years suggests that we will not. Because of the Columbia disaster, flight opportunities for biological sciences in shuttle spacelabs and in Space Station laboratories compete with time for engineering problems and construction. Thus, research on gravity, radiation, and isolation loses out to problems deemed to be of higher priority. Radiation in deep space and graded gravity in space with on board centrifuges are areas that must be studied before we undertake prolonged space voyages. Very recent budgetary changes within National Aeronautics and Space Administration threaten to greatly reduce the fundamental space biology funds. Are we ready for a trip to Mars? Like Krauss 15 years ago, I think not for some time.

  10. SPADER - Science Planning Analysis and Data Estimation Resource for the NASA Parker Solar Probe Mission

    NASA Astrophysics Data System (ADS)

    Rodgers, D. J.; Fox, N. J.; Kusterer, M. B.; Turner, F. S.; Woleslagle, A. B.

    2017-12-01

    Scheduled to launch in July 2018, the Parker Solar Probe (PSP) will orbit the Sun for seven years, making a total of twenty-four extended encounters inside a solar radial distance of 0.25 AU. During most orbits, there are extended periods of time where PSP-Sun-Earth geometry dramatically reduces PSP-Earth communications via the Deep Space Network (DSN); there is the possibility that multiple orbits will have little to no high-rate downlink available. Science and housekeeping data taken during an encounter may reside on the spacecraft solid state recorder (SSR) for multiple orbits, potentially running the risk of overflowing the SSR in the absence of mitigation. The Science Planning Analysis and Data Estimation Resource (SPADER) has been developed to provide the science and operations teams the ability to plan operations accounting for multiple orbits in order to mitigate the effects caused by the lack of high-rate downlink. Capabilities and visualizations of SPADER are presented; further complications associated with file downlink priority and high-speed data transfers between instrument SSRs and the spacecraft SSR are discussed, as well as the long-term consequences of variations in DSN downlink parameters on the science data downlink.

  11. Measuring Determinants of Post-Compulsory Participation in Science: A Comparative Study Using National Data

    ERIC Educational Resources Information Center

    Homer, Matt; Ryder, Jim; Banner, Indira

    2014-01-01

    Increasing post-compulsory participation in science and science-related subjects is seen as a key education policy priority in England and more widely. This paper uses descriptive analysis of national data to investigate the effects of science attainment at 16, gender, socio-economic status, and school science pathway on progression into post-16…

  12. Pathways to excellence: A Federal strategy for science, mathematics, engineering, and technology education

    NASA Astrophysics Data System (ADS)

    This Strategic Plan was developed by the Federal Coordinating Council for Science, Engineering, and Technology (FCCSET) through its Committee on Education and Human Resources (CEHR), with representatives from 16 Federal agencies. Based on two years of coordinated interagency effort, the Plan confirms the Federal Government's commitment to ensuring the health and well-being of science, mathematics, engineering, and technology education at all levels and in all sectors (i.e., elementary and secondary, undergraduate, graduate, public understanding of science, and technology education). The Plan represents the Federal Government's efforts to develop a five-year planning framework and associated milestones that focus Federal planning and the resources of the participating agencies toward achieving the requisite or expected level of mathematics and science competence by all students. The priority framework outlines the strategic objectives, implementation priorities, and components for the Strategic Plan and serves as a road map for the Plan. The Plan endorses a broad range of ongoing activities, including continued Federal support for graduate education as the backbone of our country's research and development enterprise. The Plan also identifies three tiers of program activities with goals that address issues in science, mathematics, engineering, and technology education meriting special attention. Within each tier, individual agency programs play important and often unique roles that strengthen the aggregate portfolio. The three tiers are presented in descending order of priority: (1) reforming the formal education system; (2) expanding participation and access; and (3) enabling activities.

  13. Pathways to excellence: A Federal strategy for science, mathematics, engineering, and technology education

    NASA Technical Reports Server (NTRS)

    1993-01-01

    This Strategic Plan was developed by the Federal Coordinating Council for Science, Engineering, and Technology (FCCSET) through its Committee on Education and Human Resources (CEHR), with representatives from 16 Federal agencies. Based on two years of coordinated interagency effort, the Plan confirms the Federal Government's commitment to ensuring the health and well-being of science, mathematics, engineering, and technology education at all levels and in all sectors (i.e., elementary and secondary, undergraduate, graduate, public understanding of science, and technology education). The Plan represents the Federal Government's efforts to develop a five-year planning framework and associated milestones that focus Federal planning and the resources of the participating agencies toward achieving the requisite or expected level of mathematics and science competence by all students. The priority framework outlines the strategic objectives, implementation priorities, and components for the Strategic Plan and serves as a road map for the Plan. The Plan endorses a broad range of ongoing activities, including continued Federal support for graduate education as the backbone of our country's research and development enterprise. The Plan also identifies three tiers of program activities with goals that address issues in science, mathematics, engineering, and technology education meriting special attention. Within each tier, individual agency programs play important and often unique roles that strengthen the aggregate portfolio. The three tiers are presented in descending order of priority: (1) reforming the formal education system; (2) expanding participation and access; and (3) enabling activities.

  14. Science Planning for the Solar Probe Plus NASA Mission

    NASA Astrophysics Data System (ADS)

    Kusterer, M. B.; Fox, N. J.; Turner, F. S.; Vandegriff, J. D.

    2015-12-01

    With a planned launch in 2018, there are a number of challenges for the Science Planning Team (SPT) of the Solar Probe Plus mission. The geometry of the celestial bodies and the spacecraft during some of the Solar Probe Plus mission orbits cause limited uplink and downlink opportunities. The payload teams must manage the volume of data that they write to the spacecraft solid-state recorders (SSR) for their individual instruments for downlink to the ground. The aim is to write the instrument data to the spacecraft SSR for downlink before a set of data downlink opportunities large enough to get the data to the ground and before the start of another data collection cycle. The SPT also intend to coordinate observations with other spacecraft and ground based systems. To add further complexity, two of the spacecraft payloads have the capability to write a large volumes of data to their internal payload SSR while sending a smaller "survey" portion of the data to the spacecraft SSR for downlink. The instrument scientists would then view the survey data on the ground, determine the most interesting data from their payload SSR, send commands to transfer that data from their payload SSR to the spacecraft SSR for downlink. The timing required for downlink and analysis of the survey data, identifying uplink opportunities for commanding data transfers, and downlink opportunities big enough for the selected data within the data collection period is critical. To solve these challenges, the Solar Probe Plus Science Working Group has designed a orbit-type optimized data file priority downlink scheme to downlink high priority survey data quickly. This file priority scheme would maximize the reaction time that the payload teams have to perform the survey and selected data method on orbits where the downlink and uplink availability will support using this method. An interactive display and analysis science planning tool is being designed for the SPT to use as an aid to planning. The tool will integrate the data file priority downlink scheme, payload data volume allocations, spacecraft ephemeris, attitude, downlink and uplink schedules, spacecraft and payload activities, and other spacecraft ephemeris. A prototype of the tool is in development using notional inputs obtained from the spacecraft engineering teams.

  15. Research priorities in the field of HIV and AIDS in Iran

    PubMed Central

    Haghdoost, AliAkbar; Sadeghi, Masoomeh; Nasirian, Maryam; Mirzazadeh, Ali; Navadeh, Soodabeh

    2012-01-01

    Background: HIV is a multidimensional problem. Therefore, prioritization of research topics in this field is a serious challenge. We decided to prioritize the major areas of research on HIV/AIDS in Iran. Materials ans Methods: In a brain-storming session with the main national and provincial stakeholders and experts from different relevant fields, the direct and indirect dimensions of HIV/AIDS and its related research issues were explored. Afterward, using the Delphi method, we sent questionnaires to 20 experts (13 respondents) from different sectors. In this electronic based questioner, we requested experts to evaluate main topics and their subtopics. The ranges of scores were between 0 and 100. Results: The score of priorities of main themes were preventive activities (43.2), large scale planning (25.4), the estimation of the HIV/AIDS burden (20.9), and basic scientific research (10.5). The most important priority in each main theme was education particularly in high risk groups (52.5), developing the national strategy to address the epidemic (31.8), estimation of the incidence and prevalence among high-risk groups (59.5) and developing new preventive methods (66.7), respectively. Conclusions: The most important priorities of researches on HIV/AIDS were preventive activities and developing national strategy. As high risk groups are the most involved people in the epidemic, and they are also the most hard-to-reach sub-populations, a national well designated comprehensive strategy is essential. However, we believe with a very specific and directed scheme, special attention to research in basic sciences is necessary, at least in limited number of institutes. PMID:23626616

  16. Health effects associated with exposure to ambient air pollution.

    PubMed

    Samet, Jonathan; Krewski, Daniel

    2007-02-01

    The World Health Organization has identified ambient air pollution as a high public health priority, based on estimates of air pollution related death and disability-adjusted life years derived in its Global Burden of Disease initiative. The NERAM Colloquium Series on Health and Air Quality was initiated to strengthen the linkage between scientists, policymakers, and other stakeholders by reviewing the current state of science, identifying policy-relevant gaps and uncertainties in the scientific evidence, and proposing a path forward for research and policy to improve air quality and public health. The objective of this paper is to review the current state of science addressing the impacts of air pollution on human health. The paper is one of four background papers prepared for the 2003 NERAM/AirNet Conference on Strategies for Clean Air and Health, the third meeting in the international Colloquium Series. The review is based on the framework and findings of the U.S. National Research Committee (NRC) on Research Priorities for Airborne Particulate Matter and addresses key questions underlying air quality risk management policy decisions.

  17. Cost-effective priorities for global mammal conservation.

    PubMed

    Carwardine, Josie; Wilson, Kerrie A; Ceballos, Gerardo; Ehrlich, Paul R; Naidoo, Robin; Iwamura, Takuya; Hajkowicz, Stefan A; Possingham, Hugh P

    2008-08-12

    Global biodiversity priority setting underpins the strategic allocation of conservation funds. In identifying the first comprehensive set of global priority areas for mammals, Ceballos et al. [Ceballos G, Ehrlich PR, Soberón J, Salazar I, Fay JP (2005) Science 309:603-607] found much potential for conflict between conservation and agricultural human activity. This is not surprising because, like other global priority-setting approaches, they set priorities without socioeconomic objectives. Here we present a priority-setting framework that seeks to minimize the conflicts and opportunity costs of meeting conservation goals. We use it to derive a new set of priority areas for investment in mammal conservation based on (i) agricultural opportunity cost and biodiversity importance, (ii) current levels of international funding, and (iii) degree of threat. Our approach achieves the same biodiversity outcomes as Ceballos et al.'s while reducing the opportunity costs and conflicts with agricultural human activity by up to 50%. We uncover shortfalls in the allocation of conservation funds in many threatened priority areas, highlighting a global conservation challenge.

  18. Microgravity

    NASA Image and Video Library

    1998-09-30

    The Electrostatic Levitator (ESL) Facility established at Marshall Space Flight Center (MSFC) supports NASA's Microgravity Materials Science Research Program. NASA materials science investigations include ground-based, flight definition and flight projects. Flight definition projects, with demanding science concept review schedules, receive highest priority for scheduling experiment time in the Electrostatic Levitator (ESL) Facility.

  19. 78 FR 2422 - Agency Information Collection Activities: Comment Request

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-01-11

    ... of currently approved information Collection, 1028-0096, Department of the Interior Climate Science... priority science needs and to develop science information tools that can help resource managers develop... DEPARTMENT OF THE INTERIOR U.S. Geological Survey [GX13EN05ESB0500] Agency Information Collection...

  20. Resilience and high performance: What the wildland fire community can learn from the U.S. Military

    Treesearch

    James Saveland

    2011-01-01

    Recent advances in the science of psychology are rapidly mending the Cartesian mind-body rift. The U.S. Military has recognized the importance of mental fitness to compliment physical fitness. Health-of- the-Force was a strategic priority of the Chairman of the Joint Chiefs of Staff in 2009-2010. Wellness enhancement and training is one of the four focus areas of a...

  1. From Bench to Bedside: A Communal Utility Value Intervention to Enhance Students' Biomedical Science Motivation

    ERIC Educational Resources Information Center

    Brown, Elizabeth R.; Smith, Jessi L.; Thoman, Dustin B.; Allen, Jill M.; Muragishi, Gregg

    2015-01-01

    Motivating students to pursue science careers is a top priority among many science educators. We add to the growing literature by examining the impact of a utility value intervention to enhance student's perceptions that biomedical science affords important utility work values. Using an expectancy-value perspective, we identified and tested 2…

  2. Partners in Science: A Suggested Framework for Inclusive Research

    NASA Astrophysics Data System (ADS)

    Pandya, R. E.

    2012-12-01

    Public participation in scientific research, also known as citizen science, is effective on many levels: it produces sound, publishable science and data, helps participants gain scientific knowledge and learn about the methods and practices of modern science, and can help communities advance their own priorities. Unfortunately, the demographics of citizen science programs do not reflect the demographics of the US; in general people of color and less affluent members of society are under-represented. To understand the reasons for this disparity, it is useful to look to the broader research about participation in science in a variety of informal and formal settings. From this research, the causes for unequal participation in science can be grouped into three broad categories: accessibility challenges, cultural differences, and a gap between scientific goals and community priorities. Many of these challenges are addressed in working with communities to develop an integrated program of scientific research, education, and community action that addresses community priorities and invites community participation at every stage of the process from defining the question to applying the results. In the spectrum of ways to engage the public in scientific research, this approach of "co-creation" is the most intensive. This talk will explore several examples of co-creation of science, including collaborations with tribal communities around climate change adaptation, work in the Louisiana Delta concerning land loss, and the link between weather and disease in Africa. We will articulate some of the challenges of working this intensively with communities, and suggest a general framework for guiding this kind of work with communities. This model of intensive collaboration at every stage is a promising one for adding to the diversity of citizen science efforts. It also provides a powerful strategy for science more generally, and may help us diversify our field, ensure the use and usability of our science, and help strengthen public support for and acceptance of scientific results.

  3. Developing a Collaborative Agenda for Humanities and Social Scientific Research on Laboratory Animal Science and Welfare.

    PubMed

    Davies, Gail F; Greenhough, Beth J; Hobson-West, Pru; Kirk, Robert G W; Applebee, Ken; Bellingan, Laura C; Berdoy, Manuel; Buller, Henry; Cassaday, Helen J; Davies, Keith; Diefenbacher, Daniela; Druglitrø, Tone; Escobar, Maria Paula; Friese, Carrie; Herrmann, Kathrin; Hinterberger, Amy; Jarrett, Wendy J; Jayne, Kimberley; Johnson, Adam M; Johnson, Elizabeth R; Konold, Timm; Leach, Matthew C; Leonelli, Sabina; Lewis, David I; Lilley, Elliot J; Longridge, Emma R; McLeod, Carmen M; Miele, Mara; Nelson, Nicole C; Ormandy, Elisabeth H; Pallett, Helen; Poort, Lonneke; Pound, Pandora; Ramsden, Edmund; Roe, Emma; Scalway, Helen; Schrader, Astrid; Scotton, Chris J; Scudamore, Cheryl L; Smith, Jane A; Whitfield, Lucy; Wolfensohn, Sarah

    2016-01-01

    Improving laboratory animal science and welfare requires both new scientific research and insights from research in the humanities and social sciences. Whilst scientific research provides evidence to replace, reduce and refine procedures involving laboratory animals (the '3Rs'), work in the humanities and social sciences can help understand the social, economic and cultural processes that enhance or impede humane ways of knowing and working with laboratory animals. However, communication across these disciplinary perspectives is currently limited, and they design research programmes, generate results, engage users, and seek to influence policy in different ways. To facilitate dialogue and future research at this interface, we convened an interdisciplinary group of 45 life scientists, social scientists, humanities scholars, non-governmental organisations and policy-makers to generate a collaborative research agenda. This drew on methods employed by other agenda-setting exercises in science policy, using a collaborative and deliberative approach for the identification of research priorities. Participants were recruited from across the community, invited to submit research questions and vote on their priorities. They then met at an interactive workshop in the UK, discussed all 136 questions submitted, and collectively defined the 30 most important issues for the group. The output is a collaborative future agenda for research in the humanities and social sciences on laboratory animal science and welfare. The questions indicate a demand for new research in the humanities and social sciences to inform emerging discussions and priorities on the governance and practice of laboratory animal research, including on issues around: international harmonisation, openness and public engagement, 'cultures of care', harm-benefit analysis and the future of the 3Rs. The process outlined below underlines the value of interdisciplinary exchange for improving communication across different research cultures and identifies ways of enhancing the effectiveness of future research at the interface between the humanities, social sciences, science and science policy.

  4. Developing a Collaborative Agenda for Humanities and Social Scientific Research on Laboratory Animal Science and Welfare

    PubMed Central

    Davies, Gail F.; Greenhough, Beth J; Hobson-West, Pru; Kirk, Robert G. W.; Applebee, Ken; Bellingan, Laura C.; Berdoy, Manuel; Buller, Henry; Cassaday, Helen J.; Davies, Keith; Diefenbacher, Daniela; Druglitrø, Tone; Escobar, Maria Paula; Friese, Carrie; Herrmann, Kathrin; Hinterberger, Amy; Jarrett, Wendy J.; Jayne, Kimberley; Johnson, Adam M.; Johnson, Elizabeth R.; Konold, Timm; Leach, Matthew C.; Leonelli, Sabina; Lewis, David I.; Lilley, Elliot J.; Longridge, Emma R.; McLeod, Carmen M.; Miele, Mara; Nelson, Nicole C.; Ormandy, Elisabeth H.; Pallett, Helen; Poort, Lonneke; Pound, Pandora; Ramsden, Edmund; Roe, Emma; Scalway, Helen; Schrader, Astrid; Scotton, Chris J.; Scudamore, Cheryl L.; Smith, Jane A.; Whitfield, Lucy; Wolfensohn, Sarah

    2016-01-01

    Improving laboratory animal science and welfare requires both new scientific research and insights from research in the humanities and social sciences. Whilst scientific research provides evidence to replace, reduce and refine procedures involving laboratory animals (the ‘3Rs’), work in the humanities and social sciences can help understand the social, economic and cultural processes that enhance or impede humane ways of knowing and working with laboratory animals. However, communication across these disciplinary perspectives is currently limited, and they design research programmes, generate results, engage users, and seek to influence policy in different ways. To facilitate dialogue and future research at this interface, we convened an interdisciplinary group of 45 life scientists, social scientists, humanities scholars, non-governmental organisations and policy-makers to generate a collaborative research agenda. This drew on methods employed by other agenda-setting exercises in science policy, using a collaborative and deliberative approach for the identification of research priorities. Participants were recruited from across the community, invited to submit research questions and vote on their priorities. They then met at an interactive workshop in the UK, discussed all 136 questions submitted, and collectively defined the 30 most important issues for the group. The output is a collaborative future agenda for research in the humanities and social sciences on laboratory animal science and welfare. The questions indicate a demand for new research in the humanities and social sciences to inform emerging discussions and priorities on the governance and practice of laboratory animal research, including on issues around: international harmonisation, openness and public engagement, ‘cultures of care’, harm-benefit analysis and the future of the 3Rs. The process outlined below underlines the value of interdisciplinary exchange for improving communication across different research cultures and identifies ways of enhancing the effectiveness of future research at the interface between the humanities, social sciences, science and science policy. PMID:27428071

  5. Department of the Interior Climate Science Centers

    USGS Publications Warehouse

    Jones, Sonya A.

    2011-01-01

    What is a Climate Science Center? On September 14, 2009, the Secretary of the Interior signed a Secretarial Order (No. 3289) entitled, "Addressing the Impacts of Climate Change on America's Water, Land, and Other Natural and Cultural Resources." The Order effectively established the U.S. Department of the Interior (DOI) Climate Science Centers (CSCs), which will integrate DOI science and management expertise with similar contributions from our partners to provide information to support adaptation and mitigation efforts on both public and private lands, across the United States and internationally.The Southeast CSC, hosted by NC State University (NCSU), will collaborate with a number of other universities, State and Federal agencies, and nongovernmental organizations (NGOs) with interest and expertise in climate science. The primary partner for the Southeast CSC will be the Landscape Conservation Cooperatives (LCCs) in the Southeast, including the Appalachian, Gulf Coastal Plains and Ozarks, Gulf Coast Prairie, Peninsular Florida, and the South Atlantic. CSC collaborations are focused on common science priorities, addressing priority partner needs, minimizing redundancies in science, sharing scientific findings, and expanding understanding of climate change impacts in the Southeast.

  6. Vision and Voyages: Lessons Learned from the Planetary Decadal Survey

    NASA Astrophysics Data System (ADS)

    Squyres, S. W.

    2015-12-01

    The most recent planetary decadal survey, entitled Vision and Voyages for Planetary Science in the Decade 2013-2022, provided a detailed set of priorities for solar system exploration. Those priorities drew on broad input from the U.S. and international planetary science community. Using white papers, town hall meetings, and open meetings of the decadal committees, community views were solicited and a consensus began to emerge. The final report summarized that consensus. Like many past decadal reports, the centerpiece of Vision and Voyages was a set of priorities for future space flight projects. Two things distinguished this report from some previous decadals. First, conservative and independent cost estimates were obtained for all of the projects that were considered. These independent cost estimates, rather than estimates generated by project advocates, were used to judge each project's expected science return per dollar. Second, rather than simply accepting NASA's ten-year projection of expected funding for planetary exploration, decision rules were provided to guide program adjustments if actual funding did not follow projections. To date, NASA has closely followed decadal recommendations. In particular, the two highest priority "flagship" missions, a Mars rover to collect samples for return to Earth and a mission to investigate a possible ocean on Europa, are both underway. The talk will describe the planetary decadal process in detail, and provide a more comprehensive assessment of NASA's response to it.

  7. STEM: Science Technology Engineering Mathematics

    ERIC Educational Resources Information Center

    Carnevale, Anthony P.; Smith, Nicole; Melton, Michelle

    2011-01-01

    The generative economic power and social influence of Science, Technology, Engineering, and Mathematics (STEM) has made the production of a capable science and engineering workforce a priority among business and policy leaders. They are rightly concerned that without a robust STEM workforce, the nation will become less competitive in the global…

  8. Promoting the Priorities of Practitioner Research Engagement

    ERIC Educational Resources Information Center

    Hall, Hazel

    2010-01-01

    One of the aims of the Library and Information Science Research Coalition is to promote library and information science practitioner research. Successfully meeting this aim should result in greater use of the existing knowledge base and the creation of new knowledge on Library and Information Science (LIS) practice. LIS practitioner engagement in…

  9. A Global Approach to STEM Education: ASTA Science Teachers Exchange--Japan 2015

    ERIC Educational Resources Information Center

    Teaching Science, 2015

    2015-01-01

    The new Australian Curriculum includes among its three cross-curriculum priorities a focus on Asia and Australia's engagement with Asia. The Australian Science Teachers Association (ASTA)'s Science Teachers Exchange--JAPAN program provides teachers with direct, personal insight into one of Australia's key Asian neighbours.

  10. Writing Narratives about a Socioscientific Issue: Engaging Students and Learning Science

    ERIC Educational Resources Information Center

    Tomas, Louisa

    2012-01-01

    International assessments of student science achievement, and growing evidence of students' waning interest in school science, have ensured that the development of scientific literacy continues to remain an important educational priority (Tytler, 2007). Consequently, researchers and classroom teachers alike have called for innovative approaches to…

  11. A National Effort to Integrate Math and Science with CTE

    ERIC Educational Resources Information Center

    Hyslop, Alisha

    2008-01-01

    National activities focus on priority areas and are often designed to develop, improve and identify the most successful methods and techniques for providing career and technical education (CTE) programs under Perkins. One of these priority areas under the 2006 Perkins Act is the integration of academic and technical education. Since the early…

  12. NASA Hosts Live Science Chat about Europa Findings

    NASA Image and Video Library

    2018-05-14

    NASA hosted a Science Chat May 14 to discuss the latest analysis of Jupiter’s moon Europa and its status as one of the most promising places in the solar system to search for life. The event aired live on NASA Television, Facebook Live, Twitch TV, Ustream, YouTube, Twitter/Periscope and the agency's website. Europa has long been a high priority for exploration because beneath its icy crust lies a salty, liquid water ocean. NASA’s Europa Clipper, targeted to launch in 2022, will be equipped with the instruments necessary to determine whether Europa possesses the ingredients necessary to support life as we know it.

  13. Meta-principles for developing smart, sustainable, and healthy cities.

    PubMed

    Ramaswami, Anu; Russell, Armistead G; Culligan, Patricia J; Sharma, Karnamadakala Rahul; Kumar, Emani

    2016-05-20

    Policy directives in several nations are focusing on the development of smart cities, linking innovations in the data sciences with the goal of advancing human well-being and sustainability on a highly urbanized planet. To achieve this goal, smart initiatives must move beyond city-level data to a higher-order understanding of cities as transboundary, multisectoral, multiscalar, social-ecological-infrastructural systems with diverse actors, priorities, and solutions. We identify five key dimensions of cities and present eight principles to focus attention on the systems-level decisions that society faces to transition toward a smart, sustainable, and healthy urban future. Copyright © 2016, American Association for the Advancement of Science.

  14. Quantifying the Sources and Sinks of Greenhouse Gases: What Does It Take to Satisfy Scientific and Decision-Making Needs?

    NASA Astrophysics Data System (ADS)

    Davis, K. J.; Keller, K.; Ogle, S. M.; Smith, S.

    2014-12-01

    Changes in the sources and sinks of greenhouse gases (GHGs) are key drivers of anthropogenic climate change. It is hence not surprising that current and emerging U.S. governmental science priorities and programs focused on climate change (e.g. a U.S. Carbon Cycle Science Plan; the U.S. Carbon Cycle Science Program, the U.S. Global Change Research Program, Executive Order 13653 'Preparing the U.S. for the Impacts of Climate Change') all call for an improved understanding of these sources and sinks.. Measurements of the total atmospheric burden of these gases are well established, but measurements of their sources and sinks are difficult to make over spatial and temporal scales that are relevant for scientific and decisionmaking needs. Quantifying the uncertainty in these measurements is particularly challenging. This talk reviews the intersection of the state of knowledge of GHG sources and sinks, focusing in particular on CO2 and CH4, and science and decision-making needs for this information. Different science and decision-making needs require differing levels of uncertainty. A number of high-priority needs (early detection of changes in the Earth system, projections of future climate, support of markets or regulations) often require a high degree of accuracy and/or precision. We will critically evaluate current U.S. planning to documents to infer current perceived needs for GHG source/sink quantification, attempting to translate these needs into quantitative uncertainty metrics. We will compare these perceived needs with the current state of the art of GHG source/sink quantification, including the apparent pattern of systematic differences between so-called "top down" and "bottom-up" flux estimates. This comparison will enable us to identify where needs can be readily satisfied, and where gaps in technology exist. Finally, we will examine what steps could be taken to close existing gaps.

  15. Planning for rover opportunistic science

    NASA Technical Reports Server (NTRS)

    Gaines, Daniel M.; Estlin, Tara; Forest, Fisher; Chouinard, Caroline; Castano, Rebecca; Anderson, Robert C.

    2004-01-01

    The Mars Exploration Rover Spirit recently set a record for the furthest distance traveled in a single sol on Mars. Future planetary exploration missions are expected to use even longer drives to position rovers in areas of high scientific interest. This increase provides the potential for a large rise in the number of new science collection opportunities as the rover traverses the Martian surface. In this paper, we describe the OASIS system, which provides autonomous capabilities for dynamically identifying and pursuing these science opportunities during longrange traverses. OASIS uses machine learning and planning and scheduling techniques to address this goal. Machine learning techniques are applied to analyze data as it is collected and quickly determine new science gods and priorities on these goals. Planning and scheduling techniques are used to alter the behavior of the rover so that new science measurements can be performed while still obeying resource and other mission constraints. We will introduce OASIS and describe how planning and scheduling algorithms support opportunistic science.

  16. Priority arbitration mechanism

    DOEpatents

    Garmire, Derrick L [Kingston, NY; Herring, Jay R [Poughkeepsie, NY; Stunkel, Craig B [Bethel, CT

    2007-03-06

    A method is provided for selecting a data source for transmission on one of several logical (virtual) lanes embodied in a single physical connection. Lanes are assigned to either a high priority class or to a low priority class. One of six conditions is employed to determine when re-arbitration of lane priorities is desired. When this occurs a next source for transmission is selected based on a the specification of the maximum number of high priority packets that can be sent after a lower priority transmission has been interrupted. Alternatively, a next source for transmission is selected based on a the specification of the maximum number of high priority packets that can be sent while a lower priority packet is waiting. If initialized correctly, the arbiter keeps all of the packets of a high priority packet contiguous, while allowing lower priority packets to be interrupted by the higher priority packets, but not to the point of starvation of the lower priority packets.

  17. Plan for Living on a Restless Planet Sets NASA's Solid Earth Agenda

    NASA Astrophysics Data System (ADS)

    Solomon, Sean C.; Baker, Victor R.; Bloxham, Jeremy; Booth, Jeffrey; Donnellan, Andrea; Elachi, Charles; Evans, Diane; Rignot, Eric; Burbank, Douglas; Chao, Benjamin F.; Chave, Alan; Gillespie, Alan; Herring, Thomas; Jeanloz, Raymond; LaBrecque, John; Minster, Bernard; Pittman, Walter C., III; Simons, Mark; Turcotte, Donald L.; Zoback, Mary Lou C.

    What are the most important challenges facing solid Earth science today and over the next two decades? And what is the best approach for NASA, in partnership with other agencies, to address those challenges? A new report, Living on a Restless Planet, provides a blueprint for answering these questions. The top priority for a new spacecraft mission in the area of solid Earth science over the next 5 years, according to this report, is a satellite dedicated to Interferometric Synthetic Aperture Radar (InSAR). At the request of NASA, the Solid Earth Science Working Group (SESWG) developed a strategy for the highest priority objectives in solid Earth science for the space agency over the next 25 years. The strategy addresses six challenges that are of fundamental scientific importance, have strong implications for society, and are amenable to substantial progress through a concerted series of scientific observations from space.

  18. Reaching for the Horizon: The 2015 NSAC Long Range Plan

    NASA Astrophysics Data System (ADS)

    Geesaman, Donald

    2015-10-01

    In April 2014, the Nuclear Science Advisory Committee was charged to conduct a new study of the opportunities and priorities for United States nuclear physics research and to recommend a long range plan for the coordinated advancement of the Nation's nuclear science program over the next decade. The entire community actively contributed to developing this plan. Ideas and goals, new and old, were examined and community priorities were established. The Long Range Plan Working Group gathered at Kitty Hawk, NC to converge on the recommendations. In this talk I will discuss the vision for the future that has emerged from this process. The new plan, ``Reaching for the Horizon,'' offers the promise of great leaps forward in our understanding of nuclear science and new opportunities for nuclear science to serve society. This work was supported by the U. S. Department of Energy, Office of Science, Office of Nuclear Physics, under Contract No. DE-AC02-06CH11357.

  19. Interdisciplinary Priorities for Dissemination, Implementation, and Improvement Science: Frameworks, Mechanics, and Measures.

    PubMed

    Brunner, Julian W; Sankaré, Ibrahima C; Kahn, Katherine L

    2015-12-01

    Much of dissemination, implementation, and improvement (DII) science is conducted by social scientists, healthcare practitioners, and biomedical researchers. While each of these groups has its own venues for sharing methods and findings, forums that bring together the diverse DII science workforce provide important opportunities for cross-disciplinary collaboration and learning. In particular, such forums are uniquely positioned to foster the sharing of three important components of research. First: they allow the sharing of conceptual frameworks for DII science that focus on the use and spread of innovations. Second: they provide an opportunity to share strategies for initiating and governing DII research, including approaches for eliciting and incorporating the research priorities of patients, study participants, and healthcare practitioners, and decision-makers. Third: they allow the sharing of outcome measures well-suited to the goals of DII science, thereby helping to validate these outcomes in diverse contexts, improving the comparability of findings across settings, and elevating the study of the implementation process itself. © 2015 Wiley Periodicals, Inc.

  20. Interdisciplinary Priorities for Dissemination, Implementation, and Improvement Science: Frameworks, Mechanics, and Measures

    PubMed Central

    Brunner, Julian W.; Sankaré, Ibrahima C.

    2015-01-01

    Abstract Much of dissemination, implementation, and improvement (DII) science is conducted by social scientists, healthcare practitioners, and biomedical researchers. While each of these groups has its own venues for sharing methods and findings, forums that bring together the diverse DII science workforce provide important opportunities for cross‐disciplinary collaboration and learning. In particular, such forums are uniquely positioned to foster the sharing of three important components of research. First: they allow the sharing of conceptual frameworks for DII science that focus on the use and spread of innovations. Second: they provide an opportunity to share strategies for initiating and governing DII research, including approaches for eliciting and incorporating the research priorities of patients, study participants, and healthcare practitioners, and decision‐makers. Third: they allow the sharing of outcome measures well‐suited to the goals of DII science, thereby helping to validate these outcomes in diverse contexts, improving the comparability of findings across settings, and elevating the study of the implementation process itself. PMID:26349456

  1. The Science Goals of the Constellation-X Mission

    NASA Technical Reports Server (NTRS)

    White, Nicholas E.; Tananbaum, Harvey; Weaver, Kimberly; Petre, Robert; Bookbinder, Jay

    2004-01-01

    The Constellation-X mission will address the questions: "What happens to matter close to a black hole?" and "What is Dark Energy?" These questions are central to the NASA Beyond Einstein Program, where Constellation-X plays a central role. The mission will address these questions by using high throughput X-ray spectroscopy to observe the effects of strong gravity close to the event horizon of black holes, and to observe the formation and evolution of clusters of galaxies in order to precisely determine Cosmological parameters. To achieve these primary science goals requires a factor of 25-100 increase in sensitivity for high resolution spectroscopy. The mission will also perform routine high- resolution X-ray spectroscopy of faint and extended X-ray source populations. This will provide diagnostic information such as density, elemental abundances, velocity, and ionization state for a wide range of astrophysical problems. This has enormous potential for the discovery of new unexpected phenomena. The Constellation-X mission is a high priority in the National Academy of Sciences McKee-Taylor Astronomy and Astrophysics Survey of new Astrophysics Facilities for the first decade of the 21st century.

  2. Can Experiential Education Strategies Improve Elementary Science Teachers' Perceptions of and Practices in Science Teaching?

    ERIC Educational Resources Information Center

    Sindel, Kasey D.

    2010-01-01

    This study was prompted by the growing amount of research that is in support of science reform and from this researcher's personal experience and concern that science instructions is no longer a top priority in elementary schools nor are young scientists given the opportunities to act as scientists in a real world setting. This study uses…

  3. Middle School Science and Mathematics Teachers' Conceptions of the Nature of Science: A One-Year Study on the Effects of Explicit and Reflective Online Instruction

    ERIC Educational Resources Information Center

    Wong, Sissy S.; Firestone, Jonah B.; Ronduen, Lionnel G.; Bang, EunJin

    2016-01-01

    Science, Technology, Engineering, and Mathematics (STEM) education has become one of the main priorities in the United States. Science education communities and researchers advocate for integration of STEM disciplines throughout the teaching curriculum. This requires teacher knowledge in STEM disciplines, as well as competence in scientific…

  4. Practitioners' views of science needs for the Great Lakes coastal ecosystem

    USGS Publications Warehouse

    Pebbles, Victoria; Lillard, Elizabath C.; Seelbach, Paul W.; Fogarty, Lisa Reynolds

    2015-01-01

    In 2014, the U.S. Geological Survey Great Lake Science Center (USGS-GLSC) and the USGS-Michigan Water Science Center partnered with the Great Lakes Commission (GLC) to conduct a series of four workshops with coastal practitioners and managers across the Great Lakes basin to highlight the need for, and get input on, a Great Lakes regional coastal science strategy. To this end, this report is intended to help guide USGS coastal and nearshore science priorities, but may also help guide other science agencies. The USGS-GLSC partnership on this effort was part of a broader five-year Memorandum of Understanding between the USGS-GLSC and the GLC to enhance communications between coastal science and management communities within the Great Lakes region. This report presents a summary and analysis of participant feedback from the four workshops held in 2014. Participant feedback included participant worksheets as well as interactive drawing sessions, individual notes and group flip chart notes from each workshop. The results are presented as a series of findings that can be used to guide USGS coastal/nearshore science priorities in support of management needs at local, state and regional scales.

  5. Summary of the NASA Science Instrument, Observatory and Sensor System (SIOSS) Technology Assessment

    NASA Technical Reports Server (NTRS)

    Stahl, H. Philip; Barney, Rich; Bauman, Jill; Feinberg, Lee; McCleese, Dan; Singh, Upendra

    2011-01-01

    Technology advancement is required to enable NASA's high priority missions of the future. To prepare for those missions requires a roadmap of how to get from the current state of the art to where technology needs to be in 5, 10, 15 and 20 years. SIOSS identifies where substantial enhancements in mission capabilities are needed and provides strategic guidance for the agency's budget formulation and prioritization process.

  6. Materials experiment carrier concepts definition study. Volume 2: Technical report, part 2

    NASA Technical Reports Server (NTRS)

    1981-01-01

    A materials experiment carrier (MEC) that provides effective accommodation of the given baseline materials processing in space (MPS) payloads and demonstration of the MPS platform concept for high priority materials processing science, multidiscipline MPS investigations, host carrier for commercial MPS payloads, and system economy of orbital operations is defined. The study flow of task work is shown. Study tasks featured analysis and trades to identify the MEC system concept options.

  7. Mars Sample Return: Mars Ascent Vehicle Mission and Technology Requirements

    NASA Technical Reports Server (NTRS)

    Bowles, Jeffrey V.; Huynh, Loc C.; Hawke, Veronica M.; Jiang, Xun J.

    2013-01-01

    A Mars Sample Return mission is the highest priority science mission for the next decade recommended by the recent Decadal Survey of Planetary Science, the key community input process that guides NASAs science missions. A feasibility study was conducted of a potentially simple and low cost approach to Mars Sample Return mission enabled by the use of developing commercial capabilities. Previous studies of MSR have shown that landing an all up sample return mission with a high mass capacity lander is a cost effective approach. The approach proposed is the use of an emerging commercially available capsule to land the launch vehicle system that would return samples to Earth. This paper describes the mission and technology requirements impact on the launch vehicle system design, referred to as the Mars Ascent Vehicle (MAV).

  8. Strategic science for eating disorders research and policy impact.

    PubMed

    Roberto, Christina A; Brownell, Kelly D

    2017-03-01

    Scientific research often fails to have relevance and impact because scientists do not engage policy makers and influencers in the process of identifying information needs and generating high priority questions. To address this scholarship-policy gap, we have developed a model of Strategic Science. This research approach involves working with policy makers and influencers to craft research questions that will answer important and timely policy-related questions. The goal is to create tighter links between research and policy and ensure findings are communicated efficiently to change agents best positioned to apply the research to policy debates. In this article, we lay out a model for Strategic Science and describe how this approach may help advance policy research and action for eating disorders. © 2017 Wiley Periodicals, Inc.

  9. Mars Sample Return: Mars Ascent Vehicle Mission and Technology Requirements

    NASA Technical Reports Server (NTRS)

    Bowles, Jeffrey V.; Huynh, Loc C.; Hawke, Veronica M.

    2013-01-01

    A Mars Sample Return mission is the highest priority science mission for the next decade recommended by the recent Decadal Survey of Planetary Science, the key community input process that guides NASA's science missions. A feasibility study was conducted of a potentially simple and low cost approach to Mars Sample Return mission enabled by the use of new commercial capabilities. Previous studies of MSR have shown that landing an all up sample return mission with a high mass capacity lander is a cost effective approach. The approach proposed is the use of a SpaceX Dragon capsule to land the launch vehicle system that would return samples to Earth. This paper describes the mission and technology requirements impact on the launch vehicle system design, referred to as the Mars Ascent Vehicle (MAV).

  10. Science Classroom Discussion as Scientific Argumentation: A Study of Conceptually Rich (and Poor) Student Talk

    ERIC Educational Resources Information Center

    Shemwell, Jonathan T.; Furtak, Erin Marie

    2010-01-01

    One way to frame science classroom discussion is to engage students in scientific argumentation, an important discourse format within science aimed at coordinating empirical evidence and scientific theory. Framing discussion as scientific argumentation gives clear priority to contributions that are sustained by evidence. We question whether this…

  11. Interagency Working Group on Ocean Social Science: Incorporating ecosystem services approaches into ocean and coastal decision-making and governance

    EPA Science Inventory

    The application of social science has been recognized as a priority for effective ocean and coastal management, driving much discussion and fostering emerging efforts in several areas. The Interagency Working Group on Ocean Social Science (IWG-OSS) is tasked with assisting the Su...

  12. Science Education in Our Time: The Need for an Interdisciplinary Approach.

    ERIC Educational Resources Information Center

    de Korte, Aart

    Perspectives on the need for retailoring science education so that college graduates will be better prepared to make decisions about scientific, technological priorities and personal career options are presented in this paper. The values and problems associated with an interdisciplinary approach to science education are discussed and a new…

  13. Growth of a Science Center: The Center for Science and Mathematics Education (CESAME) at Stony Brook University

    ERIC Educational Resources Information Center

    Gafney, Leo; Bynum, R. David; Sheppard, Keith

    2015-01-01

    This report describes the origin and development of CESAME (The Center for Science and Mathematics Education) at Stony Brook University. The analysis identifies key ingredients in areas of personnel, funding, organizational structures, educational priorities, collaboration, and institutionalization. After a discussion of relevant issues in…

  14. Conversion: Kennedy Plan to Change Research Priorities Approved

    ERIC Educational Resources Information Center

    Shapley, Deborah

    1972-01-01

    Describes the main import of Senate Bill 32 which includes measures to assist the retraining and employment of scientists and engineers and broadens the purposes of the National Science Foundation by creating the Civil Science Systems Administration. (AL)

  15. Research and/or Learning and Teaching: A Study of Australian Professors' Priorities, Beliefs and Behaviours

    ERIC Educational Resources Information Center

    Cretchley, P. C.; Edwards, S. L.; O'Shea, P.; Sheard, J.; Hurst, J.; Brookes, W.

    2014-01-01

    This paper presents findings from an empirical study of key aspects of the teaching and research priorities, beliefs and behaviours of 72 professorial and associate professorial academics in Science, Information Technology and Engineering across four faculties in three Australian universities. The academics ranked 16 research activities and 16…

  16. Translational Educational Research

    PubMed Central

    Issenberg, S. Barry; Cohen, Elaine R.; Barsuk, Jeffrey H.; Wayne, Diane B.

    2012-01-01

    Medical education research contributes to translational science (TS) when its outcomes not only impact educational settings, but also downstream results, including better patient-care practices and improved patient outcomes. Simulation-based medical education (SBME) has demonstrated its role in achieving such distal results. Effective TS also encompasses implementation science, the science of health-care delivery. Educational, clinical, quality, and safety goals can only be achieved by thematic, sustained, and cumulative research programs, not isolated studies. Components of an SBME TS research program include motivated learners, curriculum grounded in evidence-based learning theory, educational resources, evaluation of downstream results, a productive research team, rigorous research methods, research resources, and health-care system acceptance and implementation. National research priorities are served from translational educational research. National funding priorities should endorse the contribution and value of translational education research. PMID:23138127

  17. International Opportunities and Programs at NSF

    NASA Astrophysics Data System (ADS)

    Wodarczyk, F.

    2006-05-01

    The National Science Foundation's Office of International Science and Engineering (OISE) promotes the development of an integrated, Foundation-wide international strategy for international science and engineering activities both inside and outside NSF and manages international programs that are innovative, catalytic, and responsive to a broad range of NSF interests. Specifically, OISE supports programs to expand and enhance leading-edge international research and education opportunities for U.S. scientists and engineers, especially at the early career stage. It works to build and strengthen effective institutional partnerships throughout the global science and engineering research and education community, and it supports international collaborations in NSF's priority research areas. This talk will highlight opportunities for international collaboration for individuals at all levels of their careers, from student to established researcher, with examples of supported programs. Some recent activities focus on bringing together researchers in scientific disciplines and experts in cyberinfrastructure to promote and enable international data collection, manipulation, storage, and sharing via high-speed networks.

  18. NOAA tools to support CSC and LCC regional climate science priorities in the western Gulf of Mexico

    NASA Astrophysics Data System (ADS)

    Brown, D. P.; Marcy, D.; Robbins, K.; Shafer, M.; Stiller, H.

    2012-12-01

    The National Oceanic and Atmospheric Administration (NOAA) is an active regional partner with the Department of Interior (DOI) in supplying and supporting the delivery of climate science and services. A primary mechanism for NOAA-DOI coordination at the regional scale is the Landscape Conservation Cooperative (LCC) network, which is supported in part by DOI Climate Science Centers (CSC). Together, the CSCs and LCCs provide a framework to identify landscape-scale science and services priorities for conservation and management. As a key partner of the CSCs and an active member of many LCCs, NOAA is working to ensure its own regional product and service delivery efforts will help address these conservation and management challenges. Two examples of NOAA's regional efforts are highlighted here, with a focus on the coastal and interior geographies of the western Gulf of Mexico where NOAA partners with the South Central CSC and participates as a member of the Gulf Coast Prairie LCC. Along the Texas coastline, a sea level rise and coastal flooding impacts viewer, produced by NOAA's Coastal Services Center and available via its Digital Coast interface, allows constituents to visualize estimates of sea level rise, measures of uncertainty, flood frequencies, and environmental (e.g., marsh migration) and socioeconomic (e.g., tidal flooding of built environments) impacts. In the interior of Texas and Louisiana, NOAA's Southern Regional Climate Center is leading a consortium of partners in the development of a unified source of regional water reservoir information, including current conditions, a historical database, and web-based visualization tools to illustrate spatio-temporal variations in water availability to a broad array of hydrological, agricultural, and other customers. These two examples of NOAA products can, in their existing forms, support regional conservation and management priorities for CSCs and LCCs by informing vulnerability assessments and adaptation planning. Enhancements to these and other efforts can be achieved through a robust collaboration between NOAA and DOI that links regional science priorities to regional service delivery.

  19. A framework supporting the development of a Grid portal for analysis based on ROI.

    PubMed

    Ichikawa, K; Date, S; Kaishima, T; Shimojo, S

    2005-01-01

    In our research on brain function analysis, users require two different simultaneous types of processing: interactive processing to a specific part of data and high-performance batch processing to an entire dataset. The difference between these two types of processing is in whether or not the analysis is for data in the region of interest (ROI). In this study, we propose a Grid portal that has a mechanism to freely assign computing resources to the users on a Grid environment according to the users' two different types of processing requirements. We constructed a Grid portal which integrates interactive processing and batch processing by the following two mechanisms. First, a job steering mechanism controls job execution based on user-tagged priority among organizations with heterogeneous computing resources. Interactive jobs are processed in preference to batch jobs by this mechanism. Second, a priority-based result delivery mechanism that administrates a rank of data significance. The portal ensures a turn-around time of interactive processing by the priority-based job controlling mechanism, and provides the users with quality of services (QoS) for interactive processing. The users can access the analysis results of interactive jobs in preference to the analysis results of batch jobs. The Grid portal has also achieved high-performance computation of MEG analysis with batch processing on the Grid environment. The priority-based job controlling mechanism has been realized to freely assign computing resources to the users' requirements. Furthermore the achievement of high-performance computation contributes greatly to the overall progress of brain science. The portal has thus made it possible for the users to flexibly include the large computational power in what they want to analyze.

  20. Arctic in Rapid Transition: Priorities for the future of marine and coastal research in the Arctic

    NASA Astrophysics Data System (ADS)

    Werner, Kirstin; Fritz, Michael; Morata, Nathalie; Keil, Kathrin; Pavlov, Alexey; Peeken, Ilka; Nikolopoulos, Anna; Findlay, Helen S.; Kędra, Monika; Majaneva, Sanna; Renner, Angelika; Hendricks, Stefan; Jacquot, Mathilde; Nicolaus, Marcel; O'Regan, Matt; Sampei, Makoto; Wegner, Carolyn

    2016-09-01

    Understanding and responding to the rapidly occurring environmental changes in the Arctic over the past few decades require new approaches in science. This includes improved collaborations within the scientific community but also enhanced dialogue between scientists and societal stakeholders, especially with Arctic communities. As a contribution to the Third International Conference on Arctic Research Planning (ICARPIII), the Arctic in Rapid Transition (ART) network held an international workshop in France, in October 2014, in order to discuss high-priority requirements for future Arctic marine and coastal research from an early-career scientists (ECS) perspective. The discussion encompassed a variety of research fields, including topics of oceanographic conditions, sea-ice monitoring, marine biodiversity, land-ocean interactions, and geological reconstructions, as well as law and governance issues. Participants of the workshop strongly agreed on the need to enhance interdisciplinarity in order to collect comprehensive knowledge about the modern and past Arctic Ocean's geo-ecological dynamics. Such knowledge enables improved predictions of Arctic developments and provides the basis for elaborate decision-making on future actions under plausible environmental and climate scenarios in the high northern latitudes. Priority research sheets resulting from the workshop's discussions were distributed during the ICARPIII meetings in April 2015 in Japan, and are publicly available online.

  1. International Cooperation in Science. Science Policy Study--Hearings Volume 7. Hearings before the Task Force on Science Policy of the Committee on Science and Technology, House of Representatives, Ninety-Ninth Congress, First Session (June 18, 19, 20, 27, 1985). No. 50.

    ERIC Educational Resources Information Center

    Congress of the U.S., Washington, DC. House Committee on Science and Technology.

    These hearings on international cooperation in science focused on three issues: (1) international cooperation in big science; (2) the impact of international cooperation on research priorities; and (3) coordination in management of international cooperative research. Witnesses presenting testimony and/or prepared statements were: Victor Weisskopf;…

  2. The Relationship between Family Experiences and Motivation to Learn Science for Different Groups of Grade 9 Students in South Africa

    ERIC Educational Resources Information Center

    Schulze, Salomé; Lemmer, Eleanor

    2016-01-01

    Worldwide science education is a national priority due to the role played by science performance in economic growth and the supply and quality of the human capital pool in scientific fields. One factor that may impact on the motivation to learn science is family experiences. This study therefore explored the relationship between family experiences…

  3. [Formation and implementation of youth science policy in occupational medicine in Russia].

    PubMed

    Shigan, E E; Lysukhin, V N

    2016-01-01

    The authors present manterials on youth movement in medical science, on this trend development priorities in governmental policy, on main historical moments of its formation, on events for young scientists and specialists, their role in advances and implementation of research work. These topics are exemplified on youth participation in medical science, hygiene and science on workers' health preservation--occupational medicine.

  4. Forest science in the South - 2002

    Treesearch

    Southern Research Station USDA Forest Service

    2003-01-01

    Forest Science in the South includes the Southern Station's accomplishments, emerging research priorities, and products - journal articles, books, Station publications, presentations, and Web postings. This report details budget allocations, highlights collaborative research, includes a directory of research units and experimental forests, and summarizes...

  5. Forest science in the South - 2004

    Treesearch

    Southern Research Station USDA Forest Service

    2005-01-01

    Forest Science in the South includes the Southern Station's accomplishments, emerging research priorities, and products - journal articles, books, Station publications, presentations, and Web postings. This report details budget allocations, highlights collaborative research, includes a directory of research units and experimental forests, and summarizes...

  6. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Littlefield, Adriane C.; Munir, Ammar M.; Alnajjar, Abdalla Abdelaziz

    This report describes the findings of the effort initiated by the Arab Science and Technology Foundation and the Cooperative Monitoring Center at Sandia National Laboratories to identify, contact, and engage members of the Iraqi science and technology (S&T) community. The initiative is divided into three phases. The first phase, the survey of the Iraqi scientific community, shed light on the most significant current needs in the fields of science and technology in Iraq. Findings from the first phase will lay the groundwork for the second phase that includes the organization of a workshop to bring international support for the initiative,more » and simultaneously decides on an implementation mechanism. Phase three involves the execution of outcomes of the report as established in the workshop. During Phase 1 the survey team conducted a series of trips to Iraq during which they had contact with nearly 200 scientists from all sections of the country, representing all major Iraqi S&T specialties. As a result of these contacts, the survey team obtained over 450 project ideas from Iraqi researchers. These projects were revised and analyzed to identify priorities and crucial needs. After refinement, the result is approximately 170 project ideas that have been categorized according to their suitability for (1) developing joint research projects with international partners, (2) engaging Iraqi scientists in solving local problems, and (3) developing new business opportunities. They have also been ranked as to high, medium, or low priority.« less

  7. Two wide-angle imaging neutral-atom spectrometers (TWINS)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McComas, D.J.; Blake, B.; Burch, J.

    1998-11-01

    Two Wide-angle Imaging Neutral-atom Spectrometers (TWINS) is a revolutionary new mission designed to stereoscopically image the magnetosphere in charge exchange neutral atoms for the first time. The authors propose to fly two identical TWINS instruments as a mission of opportunity on two widely-spaced high-altitude, high-inclination US Government spacecraft. Because the spacecraft are funded independently, TWINS can provide a vast quantity of high priority science observations (as identified in an ongoing new missions concept study and the Sun-Earth Connections Roadmap) at a small fraction of the cost of a dedicated mission. Because stereo observations of the near-Earth space environs will providemore » a particularly graphic means for visualizing the magnetosphere in action, and because of the dedication and commitment of the investigator team to the principles of carrying space science to the broader audience, TWINS will also be an outstanding tool for public education and outreach.« less

  8. New evaporator station for the center for accelerator target science

    NASA Astrophysics Data System (ADS)

    Greene, John P.; Labib, Mina

    2018-05-01

    As part of an equipment grant provided by DOE-NP for the Center for Accelerator Target Science (CATS) initiative, the procurement of a new, electron beam, high-vacuum deposition system was identified as a priority to insure reliable and continued availability of high-purity targets. The apparatus is designed to contain TWO electron beam guns; a standard 4-pocket 270° geometry source as well as an electron bombardment source. The acquisition of this new system allows for the replacement of TWO outdated and aging vacuum evaporators. Also included is an additional thermal boat source, enhancing our capability within this deposition unit. Recommended specifications for this system included an automated, high-vacuum pumping station, a deposition chamber with a rotating and heated substrate holder for uniform coating capabilities and incorporating computer-controlled state-of-the-art thin film technologies. Design specifications, enhanced capabilities and the necessary mechanical modifications for our target work are discussed.

  9. Science in Emergency Response at CDC: Structure and Functions.

    PubMed

    Iskander, John; Rose, Dale A; Ghiya, Neelam D

    2017-09-01

    Recent high-profile activations of the US Centers for Disease Control and Prevention (CDC) Emergency Operations Center (EOC) include responses to the West African Ebola and Zika virus epidemics. Within the EOC, emergency responses are organized according to the Incident Management System, which provides a standardized structure and chain of command, regardless of whether the EOC activation occurs in response to an outbreak, natural disaster, or other type of public health emergency. By embedding key scientific roles, such as the associate director for science, and functions within a Scientific Response Section, the current CDC emergency response structure ensures that both urgent and important science issues receive needed attention. Key functions during emergency responses include internal coordination of scientific work, data management, information dissemination, and scientific publication. We describe a case example involving the ongoing Zika virus response that demonstrates how the scientific response structure can be used to rapidly produce high-quality science needed to answer urgent public health questions and guide policy. Within the context of emergency response, longer-term priorities at CDC include both streamlining administrative requirements and funding mechanisms for scientific research.

  10. Innovation in creating a strategic plan for research within an academic community.

    PubMed

    Best, Kaitlin M; Jarrín, Olga; Buttenheim, Alison M; Bowles, Kathryn H; Curley, Martha A Q

    2015-01-01

    Strategic planning for research priorities in schools of nursing requires consensus building and engagement of key stakeholders. However, traditional approaches to strategic planning using work groups and committees sometimes result in low rates of faculty participation and fail to engage other important stakeholders. The purpose of this article is to describe the unique low-cost, high-yield processes that contributed to the rapid development of our school's strategic research plan over the course of 1 month. Using the name recognition of the National Collegiate Athletic Association's annual basketball tournament, we were able to encourage high levels of participation by faculty, doctoral students, and postdoctoral fellows in not only developing a consensus around eight broad lines of inquiry but also offering tangible recommendations for accomplishing those goals within the next 5 years. Other schools of nursing seeking to evaluate their research enterprise and align their science with national priorities could easily replicate this approach. Copyright © 2015 Elsevier Inc. All rights reserved.

  11. Fluids and Materials Science Studies Utilizing the Microgravity-vibration Isolation Mount (MIM)

    NASA Technical Reports Server (NTRS)

    Herring, Rodney; Tryggvason, Bjarni; Duval, Walter

    1998-01-01

    Canada's Microgravity Sciences Program (MSP) is the smallest program of the ISS partners and so can participate in only a few, highly focused projects in order to make a scientific and technological impact. One focused project involves determining the effect of accelerations (g-jitter) on scientific measurements in a microgravity environment utilizing the Microgravity-vibration Isolation Mount (MIM). Many experiments share the common characteristic of having a fluid stage in their process. The quality of the experimental measurements have been expected to be affected by g-jitters which has lead the ISS program to include specifications to limit the level of acceleration allowed on a subset of experimental racks. From finite element analysis (FEM), the ISS structure will not be able to meet the acceleration specifications. Therefore, isolation systems are necessary. Fluid science results and materials science results show significant sensitivity to g-jitter. The work done to date should be viewed only as a first look at the issue of g-jitter sensitivity. The work should continue with high priority such that the international science community and the ISS program can address the requirement and settle on an agreed to overall approach as soon as possible.

  12. FY 1992 Budget committed to R&D

    NASA Astrophysics Data System (ADS)

    Bush, Susan

    President's Bush's Fiscal Year 1992 budget for research and development is clear proof of his commitment to R&D as a long-term investment for the next American century, according to D. Allan Bromley, Assistant to the President for Science and Technology and Director, Office of Science and Technology Policy. The FY 92 budget proposes to allocate $75.6 billion for research and development, an increase of $8.4billion, or 13% over the amount appropriated for FY 91. Calling it a “good budget,” Bromley revealed the specifics of research and development in the President's budget on February 4.Bromley believes that as a nation we are underinvesting in research and development,but sees the 1992 budget increases as concrete steps to address this problem. The newly organized and revitalized Federal Coordinating Council for Science, Engineering, and Technology (FCCSET)—an interagency forum of Cabinet secretaries, deputy secretaries, and the heads of independent agencies that reviews, coordinates, and helps implement federal science and technology policy-named three high-priority cross—cutting areas of R&D and organized special interagency programs in these areas. The areas are high-performance computing and communications, global change, and mathematics and science education.

  13. Can the Faculty Development Door Swing Both Ways? Science and Clinical Teaching in the 1990s.

    ERIC Educational Resources Information Center

    Tedesco, Lisa A.

    1988-01-01

    The relationship between clinical teaching and research in the basic sciences is discussed. The same energy expended to enhance clinical research will also efficiently build new curricula; ease the strains associated with assigning a priority to teaching or research; and serve to further science, teaching, and technology transfer. (MLW)

  14. Boundary normal pressure-based electrical conductivity reconstruction for magneto-acoustic tomography with magnetic induction

    NASA Astrophysics Data System (ADS)

    Guo, Ge-Pu; Ding, He-Ping; Dai, Si-Jie; Ma, Qing-Yu

    2017-08-01

    Not Available Project supported by the National Natural Science Foundation of China (Grant Nos. 11474166 and 11604156), the Natural Science Foundation of Jiangsu Province, China (Grant No. BK20161013), the Postdoctoral Science Foundation of China (Grant No. 2016M591874), and the Priority Academic Program Development of Jiangsu Provincial Higher Education Institutions, China.

  15. STEM Enrichment Programs and Graduate School Matriculation: The Role of Science Identity Salience

    ERIC Educational Resources Information Center

    Merolla, David M.; Serpe, Richard T.

    2013-01-01

    Improving the state of science education in the United States has become a national priority. One response to this problem has been the implementation of STEM enrichment programs designed to increase the number of students that enter graduate programs in science. Current research indicates enrichment programs have positive effects for student…

  16. Teaching with Insects: An Applied Life Science Course for Supporting Prospective Elementary Teachers' Scientific Inquiry

    ERIC Educational Resources Information Center

    Haefner, Leigh A.; Friedrichsen, Patricia Meis; Zembal-Saul, Carla

    2006-01-01

    The National Science Education Standards (National Research Council [NRC], 1996) call for a greater emphasis on scientific inquiry in K-12 science classes. The Inquiry Standards recommend that students be engaged with scientific questions in which they collect and interpret data, give priority to evidence to construct explanations, test those…

  17. Fabrication and characterization of ultra-low noise narrow and wide band Josephson parametric amplifiers

    NASA Astrophysics Data System (ADS)

    Huang, Keqiang; Guo, Qiujiang; Song, Chao; Zheng, Yarui; Deng, Hui; Wu, Yulin; Jin, Yirong; Zhu, Xiaobo; Zheng, Dongning

    2017-08-01

    Not Available Project supported by the National Natural Science Foundation of China (Grant Nos. 91321208, 11374344, 11404386, 11574380, and 11674376), the Ministry of Science and Technology of China (Grant Nos. 2014CB921401 and 2016YFA0300601), and the Strategic Priority Research Program of the Chinese Academy of Sciences (Grant No. XDB07010300).

  18. Nonlinear spectral cleaning effect in cross-polarized wave generation

    NASA Astrophysics Data System (ADS)

    Yu, Linpeng; Xu, Yi; Wu, Fenxiang; Yang, Xiaojun; Zhang, Zongxin; Wu, Yuanfeng; Leng, Yuxin; Xu, Zhizhan

    2018-05-01

    Not Available Project supported by the National Natural Science Foundation of China (Grant Nos. 11127901, 61521093, and 61505234), the International S&T Cooperation of Program of China (Grant No. 2016YFE0119300), the Strategic Priority Research Program of the Chinese Academy of Sciences (Grant No. XDB160301), and the Youth Innovation Promotion Association, Chinese Academy of Sciences.

  19. Early Science Learning among Low-Income Latino Preschool Children: The Role of Parent and Teacher Values, Beliefs, and Practices

    ERIC Educational Resources Information Center

    Choi, Bailey

    2016-01-01

    Science Technology Engineering and Math (STEM) education has become a top priority, particularly for low-income Latino students, who are vastly underrepresented in STEM fields, largely due to various inequities in the PK-20 pipeline (Villareal, Cabrera, & Friedrich, 2012). Implementing effective science instruction in preschool has been…

  20. Ways of Using Science Clubs to Bridge into Secondary Schools

    ERIC Educational Resources Information Center

    Chapman, Steven

    2003-01-01

    Traditionally science clubs have been seen as a lunchtime or after-school activity, run by volunteer teachers giving up their spare time. Increasingly, however, they are being used creatively as a way of delivering important curriculum enhancement activities or even as a vehicle for the science part of whole-school priorities such as working with…

  1. A Case Study Exploring Science Competence and Science Confidence of Middle School Girls from Marginalized Backgrounds

    ERIC Educational Resources Information Center

    Garcia, Yeni Violeta

    2013-01-01

    The inclusion of learners from underrepresented background in biology field research experiences has not been widely explored in the literature. Increased access and equity to experiences for groups historically underrepresented in science, technology, engineering, and mathematics (STEM) has been identified as a priority for many, yet little is…

  2. Benchmarking and gap analysis of faculty mentorship priorities and how well they are met.

    PubMed

    Bruner, Deborah Watkins; Dunbar, Sandra; Higgins, Melinda; Martyn, Kristy

    2016-01-01

    There is little consensus among faculty mentoring programs as to best practices. While there are recommendations in the literature to base faculty development programs on gap analyses of faculty ratings of actual and preferred performance in teaching, scholarship and service, no gap analysis was found in the literature. Thus, the purpose of this study was to develop a survey tool to benchmark school of nursing (SON) faculty mentorship priorities and conduct a gap analysis of how well they were being addressed. Senior faculty who lead mentorship as part of their roles in the SON (associate and assistant deans and director of mentorship) developed a survey through (a) asking faculty members for priorities at in-person mentorship seminars, (b) a review of current nursing literature, and (c) input from the SON mentorship advisory board. The final survey included 37 items focused on general job duties, structure of the mentoring program, time management, as well as skills needed for research, teaching, practice, writing and team science. Responses (rated from 0-not important to 5-very high priority) were requested in 4 areas: the first area focused on how high a priority the respondent rated a given item and areas 2 to 4 focused on how well the need was met by one of three resources: their SON primary assigned mentor, other SON resources, or other university resources. There were 63 eligible SON faculty to whom the survey was e-mailed with a 60% (n = 38) response rate. Most of the respondents were clinical track (42.1%) followed by tenure track (39.5%) and research track (15.8%). Half were assistant professors. The percentage of respondents giving a rating of 4 to 5 were calculated and then ranked. Almost all the faculty responding, regardless of track or rank, desired formal mentorship. Among all faculty, the top five priorities were guidance on producing timely publications (70.4%), mentorship on work-life balance (68%), mentorship on putting together a promotion package (61.5%), guidance on test writing (60%), and utilizing technology in the classroom (60%). Priorities varied by faculty track. In terms of the gap between mentorship priorities and how well they were being met, the highest gaps overall were for test writing, using technology in the classroom, curriculum development, lecturing, and developing and managing a research team. As with priorities, the gaps between priorities and how well they were being met varied by track. The priorities and gap analysis were used to guide career development program activities and to develop a plan for future mentor-mentee training and activities. The survey tool demonstrated face validity, variability, and preliminary utility as one method for assessing and guiding improvements in faculty mentorship. Published by Elsevier Inc.

  3. Challenges of T3 and T4 Translational Research

    ERIC Educational Resources Information Center

    Vukotich, Charles J., Jr.

    2016-01-01

    Translational research is a new and important way of thinking about research. It is a major priority of the National Institutes of Health (NIH) in the United States. NIH has created the Clinical and Translational Science Awards to promote this priority. NIH has defined T1 and T2 phases of translational research in the medical field, in order to…

  4. The Cosmos on a Shoestring. Small Spacecraft for Space and Earth Science

    DTIC Science & Technology

    1998-01-01

    uniform microwave profile. The MAP (553 kg) mission will complete a survey of the cosmos with a sensitiv - ity two orders of magnitude greater than...economic, ecological, social , and technical risks to which the project is exposed. It requires an understand- ing of the elements that drive risk...give high priority to reducing risks below historical values. The effect of a mis- sion loss on public and media interest in space must also be

  5. Forest science in the South - 2001

    Treesearch

    Southern Research Station USDA Forest Service

    2002-01-01

    This publication synthesizes the Southern Research Station's major accomplishments and research products during the period from October 2000 through September 2001, FY 01. Forest Science in the South presents emerging research priorities and highlights research work units and experimental forests, including collaborative research and budget...

  6. Science and Technology for Development: The Role of the United States.

    ERIC Educational Resources Information Center

    Hesburgh, Theodore M.; Henriot, Peter J.

    1979-01-01

    Examines the role of science and technology in relation to socioeconomic goals by reviewing historical innovations in the United States and global environmental, employment, and social challenges. Recommends that the United States reorder technological priorities to meet human needs. (CK)

  7. 7 CFR 3430.304 - Project Types and priorities.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... sciences and other related educational matters. Projects may include faculty development, student... and activities that deliver science-based knowledge and informal educational programs to people... interwoven throughout the life of the project and act to complement and reinforce one another. The proposed...

  8. 7 CFR 3430.304 - Project Types and priorities.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... sciences and other related educational matters. Projects may include faculty development, student... and activities that deliver science-based knowledge and informal educational programs to people... interwoven throughout the life of the project and act to complement and reinforce one another. The proposed...

  9. 7 CFR 3430.304 - Project Types and priorities.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... sciences and other related educational matters. Projects may include faculty development, student... and activities that deliver science-based knowledge and informal educational programs to people... interwoven throughout the life of the project and act to complement and reinforce one another. The proposed...

  10. 7 CFR 3430.304 - Project Types and priorities.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... sciences and other related educational matters. Projects may include faculty development, student... and activities that deliver science-based knowledge and informal educational programs to people... interwoven throughout the life of the project and act to complement and reinforce one another. The proposed...

  11. Translational educational research: a necessity for effective health-care improvement.

    PubMed

    McGaghie, William C; Issenberg, S Barry; Cohen, Elaine R; Barsuk, Jeffrey H; Wayne, Diane B

    2012-11-01

    Medical education research contributes to translational science (TS) when its outcomes not only impact educational settings, but also downstream results, including better patient-care practices and improved patient outcomes. Simulation-based medical education (SBME) has demonstrated its role in achieving such distal results. Effective TS also encompasses implementation science, the science of health-care delivery. Educational, clinical, quality, and safety goals can only be achieved by thematic, sustained, and cumulative research programs, not isolated studies. Components of an SBME TS research program include motivated learners, curriculum grounded in evidence-based learning theory, educational resources, evaluation of downstream results, a productive research team, rigorous research methods, research resources, and health-care system acceptance and implementation. National research priorities are served from translational educational research. National funding priorities should endorse the contribution and value of translational education research.

  12. Great Lakes restoration success through science: U.S. Geological Survey accomplishments 2010 through 2013

    USGS Publications Warehouse

    ,

    2014-01-01

    Tracking progress and working with partners. As of August 2013, the GLRI had funded more than 1,500 projects and programs of the highest priority to meet immediate cleanup, restoration, and protection needs. These projects use scientific analyses as the basis for identifying the restoration needs and priorities for the GLRI. Results from the science, monitoring, and other on-the-ground actions by the U.S. Geological Survey (USGS) provide the scientific information needed to help guide the Great Lakes restoration efforts. This document highlights a selection of USGS projects for each of the five focus areas through 2013, demonstrating the importance of science for restoration success. Additional information for these and other USGS projects that are important for Great Lakes restoration is available at http://cida.usgs.gov/glri/glri-catalog/.

  13. A systematic review of nursing research priorities on health system and services in the Americas.

    PubMed

    Garcia, Alessandra Bassalobre; Cassiani, Silvia Helena De Bortoli; Reveiz, Ludovic

    2015-03-01

    To systematically review literature on priorities in nursing research on health systems and services in the Region of the Americas as a step toward developing a nursing research agenda that will advance the Regional Strategy for Universal Access to Health and Universal Health Coverage. This was a systematic review of the literature available from the following databases: Web of Science, PubMed, LILACS, and Google. Documents considered were published in 2008-2014; in English, Spanish, or Portuguese; and addressed the topic in the Region of the Americas. The documents selected had their priority-setting process evaluated according to the "nine common themes for good practice in health research priorities." A content analysis collected all study questions and topics, and sorted them by category and subcategory. Of 185 full-text articles/documents that were assessed for eligibility, 23 were selected: 12 were from peer-reviewed journals; 6 from nursing publications; 4 from Ministries of Health; and 1 from an international organization. Journal publications had stronger methodological rigor; the majority did not present a clear implementation or evaluation plan. After compiling the 444 documents' study questions and topics, the content analysis resulted in a document with 5 categories and 16 subcategories regarding nursing research priorities on health systems and services. Research priority-setting is a highly important process for health services improvement and resources optimization, but implementation and evaluation plans are rarely included. The resulting document will serve as basis for the development of a new nursing research agenda focused on health systems and services, and shaped to advance universal health coverage and universal access to health.

  14. Scientific Society Partnerships & Effective Strategies for Advancing Policy Objectives

    NASA Astrophysics Data System (ADS)

    Hammer, P. W.; Greenamoyer, J.

    2012-12-01

    From the perspective of Congress, science is just another interest group that seeks a generous slice of an increasingly shrinking federal budget pie. Traditionally, the science community has not been effective at lobbying for the legislative advances and federal appropriations that enable the R&D enterprise. However, over the last couple decades, science societies have become more strategic in their outreach to Congress and the President. Indeed, many societies have lobbyists on staff, many of whom have a background in science. Yet, while science societies are beginning to be more effective as a political interest group, their members have been much slower to come around to this perspective as an important component of their professional lives. In this talk, we will illustrate how the American Institute of Physics partners with AGU and other science societies to identify joint policy priorities and then reach out to Congress and the President to advance these priorities. The biggest issue is funding for R&D, but science education is increasingly important as is other issues such as publishing policy. We will draw from a number examples, such as the NSF budget, funding for Pu-238, K-12 physical science education policy, and Open Access to illustrate how partnerships work and how scientists can be engaged as powerful political actors in the process.

  15. Prioritized LT Codes

    NASA Technical Reports Server (NTRS)

    Woo, Simon S.; Cheng, Michael K.

    2011-01-01

    The original Luby Transform (LT) coding scheme is extended to account for data transmissions where some information symbols in a message block are more important than others. Prioritized LT codes provide unequal error protection (UEP) of data on an erasure channel by modifying the original LT encoder. The prioritized algorithm improves high-priority data protection without penalizing low-priority data recovery. Moreover, low-latency decoding is also obtained for high-priority data due to fast encoding. Prioritized LT codes only require a slight change in the original encoding algorithm, and no changes at all at the decoder. Hence, with a small complexity increase in the LT encoder, an improved UEP and low-decoding latency performance for high-priority data can be achieved. LT encoding partitions a data stream into fixed-sized message blocks each with a constant number of information symbols. To generate a code symbol from the information symbols in a message, the Robust-Soliton probability distribution is first applied in order to determine the number of information symbols to be used to compute the code symbol. Then, the specific information symbols are chosen uniform randomly from the message block. Finally, the selected information symbols are XORed to form the code symbol. The Prioritized LT code construction includes an additional restriction that code symbols formed by a relatively small number of XORed information symbols select some of these information symbols from the pool of high-priority data. Once high-priority data are fully covered, encoding continues with the conventional LT approach where code symbols are generated by selecting information symbols from the entire message block including all different priorities. Therefore, if code symbols derived from high-priority data experience an unusual high number of erasures, Prioritized LT codes can still reliably recover both high- and low-priority data. This hybrid approach decides not only "how to encode" but also "what to encode" to achieve UEP. Another advantage of the priority encoding process is that the majority of high-priority data can be decoded sooner since only a small number of code symbols are required to reconstruct high-priority data. This approach increases the likelihood that high-priority data is decoded first over low-priority data. The Prioritized LT code scheme achieves an improvement in high-priority data decoding performance as well as overall information recovery without penalizing the decoding of low-priority data, assuming high-priority data is no more than half of a message block. The cost is in the additional complexity required in the encoder. If extra computation resource is available at the transmitter, image, voice, and video transmission quality in terrestrial and space communications can benefit from accurate use of redundancy in protecting data with varying priorities.

  16. Advanced Technology Large-Aperture Space Telescope: Science Drivers and Technology Developments

    NASA Technical Reports Server (NTRS)

    Postman, Marc; Brown, Tom; Sembach, Kenneth; Glavallsco, Mauro; Traub, Wesley; Stapelfeldt, Karl; Calzetti, Daniela; Oegerle, William; Rich, R. Michael; Stahl, H. Philip; hide

    2012-01-01

    The Advanced Technology Large-Aperture Space Telescope (ATLAST) is a concept for an 8- to 16-m ultraviolet optical near Infrared space observatory for launch in the 2025 to 2030 era. ATLAST will allow astronomers to answer fundamental questions at the forefront of modern astrophysics, including: Is there life elsewhere in the Galaxy? We present a range of science drivers and the resulting performance requirements for ATLAST (8- to 16-marcsec angular resolution, diffraction limited imaging at 0.5 micron wavelength, minimum collecting area of 45 sq m, high sensitivity to light wavelengths from 0.1 to 2.4 micron, high stability in wavefront sensing and control). We also discuss the priorities for technology development needed to enable the construction of ATLAST for a cost that is comparable to that of current generation observatory-class space missions.

  17. STS-107 Payload Specialist Ilan Ramon at SPACEHAB during training

    NASA Technical Reports Server (NTRS)

    2002-01-01

    KENNEDY SPACE CENTER, FLA. - STS-107 Payload Specialist Ilan Ramon, from Israel, trains on equipment at SPACEHAB, Cape Canaveral, Fla. STS-107 is a research mission. The primary payload is the first flight of the SHI Research Double Module (SHI/RDM). The experiments range from material sciences to life sciences (many rats). Also part of the payload is the Fast Reaction Experiments Enabling Science, Technology, Applications and Research (FREESTAR) that incorporates eight high priority secondary attached shuttle experiments: Mediterranean Israeli Dust Experiment (MEIDEX), Shuttle Ozone Limb Sounding Experiment (SOLSE-2), Student Tracked Atmospheric Research Satellite for Heuristic International Networking Experiment (STARSHINE), Critical Viscosity of Xenon-2 (CVX-2), Solar Constant Experiment-3 (SOLOCON-3), Prototype Synchrotron Radiation Detector (PSRD), Low Power Transceiver (LPT), and Collisions Into Dust Experiment -2 (COLLIDE-2). STS-107 is scheduled to launch in July 2002

  18. STS-107 Mission Specialist Kalpana Chawla at SPACEHAB during training

    NASA Technical Reports Server (NTRS)

    2002-01-01

    KENNEDY SPACE CENTER, FLA. - STS-107 Mission Specialist Kalpana Chawla looks over equipment at SPACEHAB, Cape Canaveral, Fla., during crew training. STS-107 is a research mission. The primary payload is the first flight of the SHI Research Double Module (SHI/RDM). The experiments range from material sciences to life sciences (many rats). Also part of the payload is the Fast Reaction Experiments Enabling Science, Technology, Applications and Research (FREESTAR) that incorporates eight high priority secondary attached shuttle experiments: Mediterranean Israeli Dust Experiment (MEIDEX), Shuttle Ozone Limb Sounding Experiment (SOLSE-2), Student Tracked Atmospheric Research Satellite for Heuristic International Networking Experiment (STARSHINE), Critical Viscosity of Xenon-2 (CVX-2), Solar Constant Experiment-3 (SOLOCON-3), Prototype Synchrotron Radiation Detector (PSRD), Low Power Transceiver (LPT), and Collisions Into Dust Experiment -2 (COLLIDE-2). STS-107 is scheduled to launch in July 2002

  19. Regenerative medicine and responsible research and innovation: proposals for a responsible acceleration to the clinic.

    PubMed

    Webster, Andrew

    2017-10-01

    This paper asks how regenerative medicine can be examined through the 'responsible research and innovation' (RRI) approach which has been developed over the past decade. It describes the drivers to the development of RRI, and then argues for the need to understand innovation itself through drawing on social science analysis rooted in science and technology studies. The paper then identifies a number of highly specific challenges faced by the regenerative medicine field and the implications these have for value creation. It offers a number of examples of how a combined RRI/science and technology studies perspective can identify priority areas for policy and concludes by arguing for a 'responsible acceleration', more likely to foster readiness at a time when much of the policy domain is pushing for ever-rapid access to cell therapies.

  20. KSC01pd1881

    NASA Image and Video Library

    2001-12-19

    KENNEDY SPACE CENTER, FLA. -- STS-107 Commander Rick Husband and Mission Specialist Laurel Clark learn to work with mission-related equipment at SPACEHAB, Cape Canaveral, Fla. STS-107 is a research mission. The primary payload is the first flight of the SHI Research Double Module (SHI/RDM). The experiments range from material sciences to life sciences (many rats). Also part of the payload is the Fast Reaction Experiments Enabling Science, Technology, Applications and Research (FREESTAR) that incorporates eight high priority secondary attached shuttle experiments: Mediterranean Israeli Dust Experiment (MEIDEX), Shuttle Ozone Limb Sounding Experiment (SOLSE-2), Student Tracked Atmospheric Research Satellite for Heuristic International Networking Experiment (STARSHINE), Critical Viscosity of Xenon-2 (CVX-2), Solar Constant Experiment-3 (SOLOCON-3), Prototype Synchrotron Radiation Detector (PSRD), Low Power Transceiver (LPT), and Collisions Into Dust Experiment -2 (COLLIDE-2). STS-107 is scheduled to launch in July 2002

  1. KSC-02pd0052

    NASA Image and Video Library

    2002-01-10

    KENNEDY SPACE CENTER, FLA. - STS-107 Payload Specialist Ilan Ramon, from Israel, trains on equipment at SPACEHAB, Cape Canaveral, Fla. STS-107 is a research mission. The primary payload is the first flight of the SHI Research Double Module (SHI/RDM). The experiments range from material sciences to life sciences (many rats). Also part of the payload is the Fast Reaction Experiments Enabling Science, Technology, Applications and Research (FREESTAR) that incorporates eight high priority secondary attached shuttle experiments: Mediterranean Israeli Dust Experiment (MEIDEX), Shuttle Ozone Limb Sounding Experiment (SOLSE-2), Student Tracked Atmospheric Research Satellite for Heuristic International Networking Experiment (STARSHINE), Critical Viscosity of Xenon-2 (CVX-2), Solar Constant Experiment-3 (SOLOCON-3), Prototype Synchrotron Radiation Detector (PSRD), Low Power Transceiver (LPT), and Collisions Into Dust Experiment -2 (COLLIDE-2). STS-107 is scheduled to launch in July 2002

  2. KSC01pd1885

    NASA Image and Video Library

    2001-12-19

    KENNEDY SPACE CENTER, FLA. -- At SPACEHAB, Cape Canaveral, Fla., Commander Rick Husband works with an experiment that will be part of the mission. STS-107 is a research mission. The primary payload is the first flight of the SHI Research Double Module (SHI/RDM). The experiments range from material sciences to life sciences (many rats). Also part of the payload is the Fast Reaction Experiments Enabling Science, Technology, Applications and Research (FREESTAR) that incorporates eight high priority secondary attached shuttle experiments: Mediterranean Israeli Dust Experiment (MEIDEX), Shuttle Ozone Limb Sounding Experiment (SOLSE-2), Student Tracked Atmospheric Research Satellite for Heuristic International Networking Experiment (STARSHINE), Critical Viscosity of Xenon-2 (CVX-2), Solar Constant Experiment-3 (SOLOCON-3), Prototype Synchrotron Radiation Detector (PSRD), Low Power Transceiver (LPT), and Collisions Into Dust Experiment -2 (COLLIDE-2). STS-107 is scheduled to launch in July 2002

  3. KSC-02pd0053

    NASA Image and Video Library

    2002-01-10

    KENNEDY SPACE CENTER, FLA. -- STS-107 Mission Specialist Kalpana Chawla scans paperwork for equipment at SPACEHAB, Cape Canaveral, Fla., during crew training. STS-107 is a research mission. The primary payload is the first flight of the SHI Research Double Module (SHI/RDM). The experiments range from material sciences to life sciences (many rats). Also part of the payload is the Fast Reaction Experiments Enabling Science, Technology, Applications and Research (FREESTAR) that incorporates eight high priority secondary attached shuttle experiments: Mediterranean Israeli Dust Experiment (MEIDEX), Shuttle Ozone Limb Sounding Experiment (SOLSE-2), Student Tracked Atmospheric Research Satellite for Heuristic International Networking Experiment (STARSHINE), Critical Viscosity of Xenon-2 (CVX-2), Solar Constant Experiment-3 (SOLOCON-3), Prototype Synchrotron Radiation Detector (PSRD), Low Power Transceiver (LPT), and Collisions Into Dust Experiment -2 (COLLIDE-2). STS-107 is scheduled to launch in July 2002

  4. The Blueprint for Change: A National Strategy to Enhance Access to Earth and Space Science Education Resources

    NASA Astrophysics Data System (ADS)

    Geary, E. E.; Barstow, D.

    2001-12-01

    Enhancing access to high quality science education resources for teachers, students, and the general public is a high priority for the earth and space science education communities. However, to significantly increase access to these resources and promote their effective use will require a coordinated effort between content developers, publishers, professional developers, policy makers, and users in both formal and informal education settings. Federal agencies, academic institutions, professional societies, informal science centers, the Digital Library for Earth System Education, and other National SMETE Digital Library Projects are anticipated to play key roles in this effort. As a first step to developing a coordinated, national strategy for developing and delivering high quality earth and space science education resources to students, teachers, and the general public, 65 science educators, scientists, teachers, administrators, policy makers, and business leaders met this June in Snowmass, Colorado to create "Earth and Space Science Education 2010: A Blueprint for Change". The Blueprint is a strategy document that will be used to guide Earth and space science education reform efforts in grades K-12 during the next decade. The Blueprint contains specific goals, recommendations, and strategies for coordinating action in the areas of: Teacher Preparation and Professional Development, Curriculum and Materials, Equity and Diversity, Assessment and Evaluation, Public Policy and Systemic Reform, Public and Informal Education, Partnerships and Collaborations, and Technology. If you develop, disseminate, or use exemplary earth and space science education resources, we invite you to review the Blueprint for Change, share it with your colleagues and local science educators, and join as we work to revolutionize earth and space science education in grades K-12.

  5. Life science education in Australia and America: Linking new knowledge with new opportunities

    NASA Astrophysics Data System (ADS)

    Linich, Michael

    If we are to reap the benefit of fundamental scientific research in the future, we must adjust our education priorities to partner the sciences more closely. There are at least four critical areas that industry; government and higher educational institutions have to adjust to maintain public interest in the sciences. Science education aims to train people to apply the principles of science to their everyday life and as such generate products or perform functions that can benefit humankind. Translating research findings to industry requires many scientific skills and an understanding of the history and application of science, through astrobiology, in high schools and undergraduate university programs can help to achieve this. The critical areas we need to address in education to achieve this are: * The skills, discoveries and concepts in astrobiology that is necessary for understanding. * To identify and eliminate barriers to partnering disciplines in science education. * To produce educational resources we can use in this process. * To facilitate science education in a community that is largely scientifically illiterate and suspicious of many aspects of science. Australian science education is somewhat backward in performance when compared to the USA and Europe. This is reflected in the dominance shown by the United States of America in biotechnology. Australia needs to translate developments in education from overseas into modern context. The pathway to achieve this goal is to develop closer partnerships between teaching the disciplines in high schools and the teaching and research in tertiary institutions.

  6. Martian Multimedia: The Agony and Ecstasy of Communicating Real-Time, Authentic Science During the Phoenix Mars Mission

    NASA Astrophysics Data System (ADS)

    Bitter, C.; Buxner, S. R.

    2009-03-01

    The Phoenix Mars Mission faced robust communication challenges requiring real-time solutions. Managing the message from Mars and ensuring the highest quality of science data and news releases were our top priorities during mission surface operations.

  7. Precise calibration of zero-crossing temperature and drift of an ultralow expansion cavity with a clock transition spectrum

    NASA Astrophysics Data System (ADS)

    Liu, Hui; Jiang, Kun-Liang; Wang, Jin-Qi; Xiong, Zhuan-Xian; He, Ling-Xiang; Lü, Bao-Long

    2018-05-01

    Not Available Project supported by the National Natural Science Foundation of China (Grant Nos. 61227805, 11574352, 91536104, and 91636215) and the Strategic Priority Research Program of the Chinese Academy of Sciences (Grant No. XDB21030100).

  8. Social and behavioral science priorities for genomic translation.

    PubMed

    Koehly, Laura M; Persky, Susan; Spotts, Erica; Acca, Gillian

    2018-01-29

    This commentary highlights the essential role of the social and behavioral sciences for genomic translation, and discusses some priority research areas in this regard. The first area encompasses genetics of behavioral, social, and neurocognitive factors, and how integration of these relationships might impact the development of treatments and interventions. The second area includes the contributions that social and behavioral sciences make toward the informed translation of genomic developments. Further, there is a need for behavioral and social sciences to inform biomedical research for effective implementation. The third area speaks to the need for increased outreach and education efforts to improve the public's genomic literacy such that individuals and communities can make informed health-related and societal (e.g., in legal or consumer settings) decisions. Finally, there is a need to prioritize representation of diverse communities in genomics research and equity of access to genomic technologies. Examples from National Institutes of Health-based intramural and extramural research programs and initiatives are used to discuss these points. © Society of Behavioral Medicine 2018.

  9. Strategic Priorities for Increasing Physical Activity Among Adults Age 50 and Older: The National Blueprint Consensus Conference Summary Report

    PubMed Central

    Sheppard, Lisa; Senior, Jane; Park, Chae Hee; Mockenhaupt, Robin; Bazzarre, Terry; Chodzko-Zajko, Wojtek

    2003-01-01

    On May 1, 2001, a coalition of national organizations released a major planning document designed to develop a national strategy for the promotion of physically active lifestyles among the mid-life and older adult population. The National Blueprint: Increasing Physical Activity Among Adults Age 50 and Older was developed with input from 46 organizations with expertise in health, medicine, social and behavioral sciences, epidemiology, gerontology/geriatrics, clinical science, public policy, marketing, medical systems, community organization, and environmental issues. The Blueprint notes that, despite a wealth of evidence about the benefits of physical activity for mid-life and older persons, there has been little success in convincing age 50+ Americans to adopt physically active lifestyles. The Blueprint identifies barriers in the areas of research, home and community programs, medical systems, public policy and advocacy, and marketing and communications. In addition to identifying barriers, the Blueprint proposes a number of concrete strategies that could be employed in order to overcome the barriers to physical activity in society at large. This report summarizes the outcome of the National Blueprint Consensus Conference that was held in October 2002. In this conference, representatives of more than 50 national organizations convened in Washington, D.C. with the goal of identifying high priority and high feasibility strategies which would advance the National Blueprint and which could be initiated within the next 12 to 24 months. Participants in the consensus conference were assigned to one of five breakout groups: home and community, marketing, medical systems, public policy, and research. Each breakout group was charged with identifying the three highest priority strategies within their area for effectively increasing physical activity levels in the mid-life and older adult population. In addition to the 15 strategies identified by the breakout groups, three "cross-cutting" strategies were added which were considered to be broad-based in scope and which applied to more than one of the breakout themes. A national organization was identified to take the lead in planning and implementing each strategy. A summary of the 18 strategies and lead organizations is presented. The National Blueprint Consensus Conference has identified an ambitious agenda of strategies and tactics that will need to be implemented in order to overcome societal barriers to physical activity among the mid-life and older adult population. More than 50 national organizations have expressed a commitment to work towards the implementation of the Blueprint agenda. Eighteen priority strategies have been identified in the areas of home and community, marketing, medical systems, public policy, and research. The organizations charged with the task of implementing the high priority strategies will use professional networks and established delivery channels and communication systems to translate this plan into action. PMID:24688279

  10. Strategic priorities for increasing physical activity among adults age 50 and older: the national blueprint consensus conference summary report.

    PubMed

    Sheppard, Lisa; Senior, Jane; Park, Chae Hee; Mockenhaupt, Robin; Bazzarre, Terry; Chodzko-Zajko, Wojtek

    2003-12-01

    On May 1, 2001, a coalition of national organizations released a major planning document designed to develop a national strategy for the promotion of physically active lifestyles among the mid-life and older adult population. The National Blueprint: Increasing Physical Activity Among Adults Age 50 and Older was developed with input from 46 organizations with expertise in health, medicine, social and behavioral sciences, epidemiology, gerontology/geriatrics, clinical science, public policy, marketing, medical systems, community organization, and environmental issues. The Blueprint notes that, despite a wealth of evidence about the benefits of physical activity for mid-life and older persons, there has been little success in convincing age 50+ Americans to adopt physically active lifestyles. The Blueprint identifies barriers in the areas of research, home and community programs, medical systems, public policy and advocacy, and marketing and communications. In addition to identifying barriers, the Blueprint proposes a number of concrete strategies that could be employed in order to overcome the barriers to physical activity in society at large. This report summarizes the outcome of the National Blueprint Consensus Conference that was held in October 2002. In this conference, representatives of more than 50 national organizations convened in Washington, D.C. with the goal of identifying high priority and high feasibility strategies which would advance the National Blueprint and which could be initiated within the next 12 to 24 months. Participants in the consensus conference were assigned to one of five breakout groups: home and community, marketing, medical systems, public policy, and research. Each breakout group was charged with identifying the three highest priority strategies within their area for effectively increasing physical activity levels in the mid-life and older adult population. In addition to the 15 strategies identified by the breakout groups, three "cross-cutting" strategies were added which were considered to be broad-based in scope and which applied to more than one of the breakout themes. A national organization was identified to take the lead in planning and implementing each strategy. A summary of the 18 strategies and lead organizations is presented. The National Blueprint Consensus Conference has identified an ambitious agenda of strategies and tactics that will need to be implemented in order to overcome societal barriers to physical activity among the mid-life and older adult population. More than 50 national organizations have expressed a commitment to work towards the implementation of the Blueprint agenda. Eighteen priority strategies have been identified in the areas of home and community, marketing, medical systems, public policy, and research. The organizations charged with the task of implementing the high priority strategies will use professional networks and established delivery channels and communication systems to translate this plan into action.

  11. Effect of Hyper-Resistivity on Nonlinear Tearing Modes

    NASA Astrophysics Data System (ADS)

    Yang, Wen; Li, Ding; Xu, Xue-qiao

    2018-06-01

    Not Available Supported by the National Natural Science Foundation of China under Grant No 11675257, the Strategic Priority Research Program of Chinese Academy of Sciences under Grant No XDB16010300, the Key Research Program of Frontier Science of Chinese Academy of Sciences under Grant No QYZDJ-SSW-SYS016, and the External Cooperation Program of Chinese Academy of Sciences under Grant No 112111KYSB20160039. This material is based upon the work supported by the US Department of Energy, Office of Science, Office of Fusion Energy Sciences, LLNL-JRNL-748586.

  12. Simulation of a torrential rainstorm in Xinjiang and gravity wave analysis

    NASA Astrophysics Data System (ADS)

    Yang, Rui; Liu, Yi; Ran, Ling-Kun; Zhang, Yu-Li

    2018-05-01

    Not Available Project supported by China Special Fund for Meteorological Research in the Public Interest (Grant No. GYHY201406002), the National Natural Science Foundation of China (Grant Nos. 41575065 and 41405049), the National Natural Science Foundation International Cooperation Project, China (Grant No. 41661144024), and Strategic Priority Research Program of Chinese Academy of Sciences (Grant No. XDA17010100).

  13. A Priority for California's Future: Science for Students. Summary Report. Strengthening Science Education in California

    ERIC Educational Resources Information Center

    Center for the Future of Teaching and Learning, 2010

    2010-01-01

    This paper presents findings of a study that examined Californians' views on science education. The findings are based on telephone interviews with 1,004 adults conducted April 7-22, 2010. Cell phone and Spanish language interviews were included to provide more complete coverage of California's population. In order to enhance understanding of the…

  14. Students' Out-of-School Experiences, Job Priorities, and Perceptions toward Themselves as a Scientist: A Cross-Cultural Study

    ERIC Educational Resources Information Center

    Korkmaz, Hunkar; Thomas, Julie Anna; Tatar, Nilgun; Altunay, Serpil

    2017-01-01

    The purpose of this study was to examine middle school students' out-of-school experiences related to science, priorities related to their future job, perception toward themselves as a scientist. One intact school was assigned randomly from each country. The study involved 479 students (363 Turkish students; 116 American students), aged between 11…

  15. State of the Science Meeting: Burn Care: Goals for Treatment and Research

    DTIC Science & Technology

    2006-11-01

    nutrition/metabolism, wound management, and care of children and the elderly), rehabilitative care (the hand, psychological health, scar, community ...reconstruction j. Psychologic health k. Community reintegration l. Restoration of function 4. Identification of burn research needs from perspective of...of the burn community to define the research priorities for burns. These priorities have been clearly delineated and will be published in the

  16. Robust and Opportunistic Autonomous Science for a Potential Titan Aerobot

    NASA Technical Reports Server (NTRS)

    Gaines, Daniel M.; Estlin, Tara; Schaffer, Steve; Castano, Rebecca; Elfes, Alberto

    2010-01-01

    We are developing onboard planning and execution technologies to provide robust and opportunistic mission operations for a potential Titan aerobot. Aerobot have the potential for collecting a vast amount of high priority science data. However, to be effective, an aerobot must address several challenges including communication constraints, extended periods without contact with Earth, uncertain and changing environmental conditions, maneuverability constraints and potentially short-lived science opportunities. We are developing the AerOASIS system to develop and test technology to support autonomous science operations for a potential Titan Aerobot. The planning and execution component of AerOASIS is able to generate mission operations plans that achieve science and engineering objectives while respecting mission and resource constraints as well as adapting the plan to respond to new science opportunities. Our technology leverages prior work on the OASIS system for autonomous rover exploration. In this paper we describe how the OASIS planning component was adapted to address the unique challenges of a Titan Aerobot and we describe a field demonstration of the system with the JPL prototype aerobot.

  17. Responsible research and innovation: A manifesto for empirical ethics?

    PubMed Central

    Williams, Clare

    2015-01-01

    In 2013 the Nuffield Council on Bioethics launched their report Novel Neurotechnologies: Intervening in the Brain. The report, which adopts the European Commission’s notion of Responsible Research and Innovation, puts forward a set of priorities to guide ethical research into, and the development of, new therapeutic neurotechnologies. In this paper, we critically engage with these priorities. We argue that the Nuffield Council’s priorities, and the Responsible Research and Innovation initiative as a whole, are laudable and should guide research and innovation in all areas of healthcare. However, we argue that operationalising Responsible Research and Innovation requires an in-depth understanding of the research and clinical contexts. Providing such an understanding is an important task for empirical ethics. Drawing on examples from sociology, science and technology studies, and related disciplines, we propose four avenues of social science research which can provide such an understanding. We suggest that these avenues can provide a manifesto for empirical ethics. PMID:26089743

  18. Burn Wound Healing and Tissue Engineering.

    PubMed

    Singer, Adam J; Boyce, Steven T

    In 2016 the American Burn Association held a State of the Science conference to help identify burn research priorities for the next decade. The current paper summarizes the work of the sub-committee on Burn Wound Healing and Tissue Engineering. We first present the priorities in wound healing research over the next 10 years. We then summarize the current state of the science related to burn wound healing and tissue engineering including determination of burn depth, limiting burn injury progression, eschar removal, management of microbial contamination and wound infection, measuring wound closure, accelerating wound healing and durable wound closure, and skin substitutes and tissue engineering. Finally, a summary of the round table discussion is presented.

  19. [Contribution of humanities and social sciences to the training of healthcare professionals in Africa: an experience in the context of the mother and child Priority Solidarity Fund].

    PubMed

    Cauli, Marie

    2013-01-01

    The mother-and-child Priority Solidarity Fund is a programme supported by Coopération Française in the fields of health, higher education and new technologies. It aims to achieve the Millennium Development Goals of reducing maternal and infantile mortality. This programme, focused on the training of trainers, is developing two innovative plans: digital resources and the integration of the humanities and social sciences. This second aspect is decisive: by aligning content, skills, and needs, it can place greater emphasis on preventive care and give a real meaning to the work of trainers.

  20. EPA Science to Achieve Results (STAR) Centers for Water Research on National Priorities Related to a Systems View of Nutrient Management

    EPA Science Inventory

    This poster describes the missions and objectives of four newly-awarded Science to Achieve Results (STAR) Centers. There is also a description of how the projects fit together to meet solicitation research questions.

  1. APPLICATION OF THE REGIONAL VULNERABILITY ASSESSMENT (REVA) INTEGRATION TOOL AND UNDERLYING METHODS FOR MULTI-SCALE DECISION MAKING

    EPA Science Inventory

    In support of the National Science and Technology Council's cross-Agency priority of Integrated Science for Ecological Challenges (ISEC) EPA is conducting research to improve capabilities in the area of regional vulnerability assessment and ecological forecasting. EPA's research...

  2. Diversifying the STEM Pipeline: The Model Replication Institutions Program

    ERIC Educational Resources Information Center

    Cullinane, Jenna

    2009-01-01

    In 2006, the National Science Foundation (NSF) began funding the Model Replication Institutions (MRI) program, which sought to improve the quality, availability, and diversity of science, technology, engineering, and mathematics (STEM) education. Faced with pressing national priorities in the STEM fields and chronic gaps in postsecondary…

  3. NEETin with ICT

    ERIC Educational Resources Information Center

    Barbas, Maria; Branco, Paulo; Loureiro, Ana; Matos, Pedro

    2017-01-01

    Science and Technology Advisory Council (STAC) outlines that 49% of EU citizens identified "job creation" and 33% identified "education and skills" as the top priorities for science and technology innovation over the next fifteen years. Both documents justify the needs in Europe for the ICT field especially for the NEET (not in…

  4. Multiple off-axis acoustic vortices generated by dual coaxial vortex beams

    NASA Astrophysics Data System (ADS)

    Li, Wen; Dai, Si-Jie; Ma, Qing-Yu; Guo, Ge-Pu; Ding, He-Ping

    2018-02-01

    Not Available Project supported by the National Natural Science Foundation of China (Grant Nos. 11474166 and 11604156), the Science and Technology Cooperation Projects of People’s Republic of China-Romania (Grant No. 42-23), the Natural Science Foundation of Jiangsu Province, China (Grant No. BK20161013), the Postdoctoral Science Foundation of China (Grant No. 2016M591874), and the Priority Academic Program Development of Jiangsu Higher Education Institutions, China.

  5. KSC-02pd1763

    NASA Image and Video Library

    2002-11-20

    KENNEDY SPACE CENTER, FLA. -- Space Shuttle Columbia is being moved to the Vehicle Assembly Building where processing will continue for the flight of mission STS-107. Launch is now targeted for no earlier than Jan. 16, 2003. The STS-107 mission will be dedicated to microgravity research. The payloads include the Hitchhiker Bridge, a carrier for the Fast Reaction Experiments Enabling Science, Technology, Applications and Research (FREESTAR) incorporating eight high priority secondary attached Shuttle experiments, and the SHI Research Double Module (SHI/RDM), also known as SPACEHAB.

  6. KSC-02pd1198

    NASA Image and Video Library

    2002-08-19

    KENNEDY SPACE CENTER, FLA. -- Only the nose and tail of Columbia are visible as it sits inside an protective tent used to keep out moisture. The orbiter is next scheduled to fly on mission STS-107 no earlier than Nov. 29. STS-107 is a research mission. The payload includes the Hitchhiker Bridge, a carrier for the Fast Reaction Experiments Enabling Science, Technology, Applications and Research (FREESTAR) that incorporates eight high priority secondary attached shuttle experiments, plus the SHI Research Double Module (SHI/RDM), also known as SPACEHAB.

  7. Manufacturing the Future: Federal Priorities for Manufacturing Research and Development. Report of the Interagency Working Group on Manufacturing R&D, Committee on Technology, National Science and Technology Council

    DTIC Science & Technology

    2008-03-01

    and virtual elimination of vehicular emissions of pollutants and greenhouse gases. Low- cost, high-volume manufacturing processes and development...intended to help achieve energy security and virtually eliminate vehicular emissions of pollutants and greenhouse gases. This goal is being pursued...the coolant system, for example, and the humidification system must be integrated with the air blower. Construction of the power plant is usually

  8. Priority Areas and Potential Solutions for Successful Integration and Sustainment of Health Systems Science in Undergraduate Medical Education.

    PubMed

    Gonzalo, Jed D; Baxley, Elizabeth; Borkan, Jeffrey; Dekhtyar, Michael; Hawkins, Richard; Lawson, Luan; Starr, Stephanie R; Skochelak, Susan

    2017-01-01

    Educators, policy makers, and health systems leaders are calling for significant reform of undergraduate medical education (UME) and graduate medical education (GME) programs to meet the evolving needs of the health care system. Nationally, several schools have initiated innovative curricula in both classroom and workplace learning experiences to promote education in health systems science (HSS), which includes topics such as value-based care, health system improvement, and population and public health. However, the successful implementation of HSS curricula across schools is challenged by issues of curriculum design, assessment, culture, and accreditation, among others. In this report of a working conference using thematic analysis of workshop recommendations and experiences from 11 U.S. medical schools, the authors describe seven priority areas for the successful integration and sustainment of HSS in educational programs, and associated challenges and potential solutions. In 2015, following regular HSS workgroup phone calls and an Accelerating Change in Medical Education consortium-wide meeting, the authors identified the priority areas: partner with licensing, certifying, and accrediting bodies; develop comprehensive, standardized, and integrated curricula; develop, standardize, and align assessments; improve the UME to GME transition; enhance teachers' knowledge and skills, and incentives for teachers; demonstrate value added to the health system; and address the hidden curriculum. These priority areas and their potential solutions can be used by individual schools and HSS education collaboratives to further outline and delineate the steps needed to create, deliver, study, and sustain effective HSS curricula with an eye toward integration with the basic and clinical sciences curricula.

  9. The President’s Office of Science and Technology Policy: Issues for Congress

    DTIC Science & Technology

    2008-12-24

    council that will shape my thinking on the scientific aspects of my policy priorities.” This report will provide an overview of the history of science and...Connecticut: Greenwood Press, 1997). 8 Jeffrey K. Stine, A History of Science Policy in the United States, 1940-1985, Report for the House Committee on...1989); Jeffrey K. Stine, A History of Science Policy in the United States, 1940-1985, Report for the House Committee on Science and Technology Task

  10. Experimental Determination of the Landé g-Factors for 5s 2 1 S and 5s5p 3 P States of the 87Sr Atom

    NASA Astrophysics Data System (ADS)

    Lu, Ben-quan; Wang, Yebing; Guo, Yang; Xu, Qinfang; Yin, Mojuan; Li, Jiguang; Chang, Hong

    2018-04-01

    Not Available Supported by the National Natural Science Foundation of China under Grant Nos 61127901, 11404025 and 91536106, the Strategic Priority Research Program of the Chinese Academy of Sciences under Grant No XDB21030700, the Key Research Project of Frontier Science of Chinese Academy of Sciences under Grant No QYZDB-SSW-JSC004, and the China Postdoctoral Science Foundation under Grant No 2014M560061.

  11. A New U.S. Carbon Cycle Science Plan

    NASA Astrophysics Data System (ADS)

    Michalak, A. M.; Jackson, R.; Marland, G.; Sabine, C.

    2009-05-01

    The report "A U.S. carbon cycle science plan" (J. L. Sarmiento and S. C. Wofsy, U.S. Global Change Res. Program, Washington, D. C., 1999) outlined research priorities and promoted coordinated carbon cycle research across federal agencies in the United States for nearly a decade. Building on this framework and subsequent reports (http://www.carboncyclescience.gov/docs.php), a working group comprised of 27 scientists was formed in 2008 under the United States Carbon Cycle Science Program to review the 1999 Science Plan, and to develop an updated strategy for carbon cycle research for the period from 2010 to 2020. This comprehensive review is being conducted with wide input from the research and stakeholder communities. The recommendations of the Carbon Cycle Science Working Group (CCSWG) will go to U.S. agency managers who have collective responsibility for setting national carbon cycle science priorities and for sponsoring much of the carbon cycle research in the United States. This presentation will provide an update on the ongoing planning process, will outline the steps that the CCSWG is undertaking in building consensus towards an updated U.S. Carbon Cycle Science Plan, and will seek input on the best ways in which to coordinate efforts with ongoing and upcoming research in Canada and Mexico, as well as with ongoing work globally.

  12. Cardiovascular Nursing Science Priorities: A Statement from the American Heart Association Council on Cardiovascular and Stroke Nursing.

    PubMed

    Piano, Mariann R; Artinian, Nancy T; DeVon, Holli A; Pressler, Susan T; Hickey, Kathleen T; Chyun, Deborah A

    2018-04-26

    The American Heart Association's (AHA) Council on Cardiovascular and Stroke Nursing (CVSN) plays a critical role in advancing the mission of the AHA in the discovery of new scientific knowledge. The aim was to identify priority research topics that would promote and improve cardiovascular (CV) health, provide direction for the education of future nurse scientists, and serve as a resource and catalyst for federal and organizational funding priorities. A Qualtrics survey, which included 3 questions about priorities for CVSN nurse researchers, was sent to the CVSN Leadership Committee and all CVSN Fellows of the AHA (n = 208). Responses to the questions were reviewed for word repetitions, patterns, and concepts and were then organized into thematic areas. The thematic areas were reviewed within small groups at the November (2016) in-person CVSN leadership meeting. Seventy-three surveys were completed. Five thematic areas were identified and included (1) developing and testing interventions, (2) assessment and monitoring, (3) precision CV nursing care, (4) translational and implementation science, and (5) big data. Topic areas noted were stroke, research methods, prevention of stroke and CV disease, self-management, and care and health disparities. Five thematic areas and 24 topic areas were identified as priorities for CV nursing research. These findings can provide a guide for CV nurse scientists and for federal and foundational funders to use in developing funding initiatives. We believe additional research and discovery in these thematic areas will help reduce the rising global burden of CV disease.

  13. Systematic Review of Real-time Remote Health Monitoring System in Triage and Priority-Based Sensor Technology: Taxonomy, Open Challenges, Motivation and Recommendations.

    PubMed

    Albahri, O S; Albahri, A S; Mohammed, K I; Zaidan, A A; Zaidan, B B; Hashim, M; Salman, Omar H

    2018-03-22

    The new and ground-breaking real-time remote monitoring in triage and priority-based sensor technology used in telemedicine have significantly bounded and dispersed communication components. To examine these technologies and provide researchers with a clear vision of this area, we must first be aware of the utilised approaches and existing limitations in this line of research. To this end, an extensive search was conducted to find articles dealing with (a) telemedicine, (b) triage, (c) priority and (d) sensor; (e) comprehensively review related applications and establish the coherent taxonomy of these articles. ScienceDirect, IEEE Xplore and Web of Science databases were checked for articles on triage and priority-based sensor technology in telemedicine. The retrieved articles were filtered according to the type of telemedicine technology explored. A total of 150 articles were selected and classified into two categories. The first category includes reviews and surveys of triage and priority-based sensor technology in telemedicine. The second category includes articles on the three-tiered architecture of telemedicine. Tier 1 represents the users. Sensors acquire the vital signs of the users and send them to Tier 2, which is the personal gateway that uses local area network protocols or wireless body area network. Medical data are sent from Tier 2 to Tier 3, which is the healthcare provider in medical institutes. Then, the motivation for using triage and priority-based sensor technology in telemedicine, the issues related to the obstruction of its application and the development and utilisation of telemedicine are examined on the basis of the findings presented in the literature.

  14. Reaching for the Horizon: Enabling 21st Century Antarctic Science

    NASA Astrophysics Data System (ADS)

    Rogan-Finnemore, M.; Kennicutt, M. C., II; Kim, Y.

    2015-12-01

    The Council of Managers of National Antarctic Programs' (COMNAP) Antarctic Roadmap Challenges(ARC) project translated the 80 highest priority Antarctic and Southern Ocean scientific questionsidentified by the community via the SCAR Antarctic Science Horizon Scan into the highest prioritytechnological, access, infrastructure and logistics needs to enable the necessary research to answer thequestions. A workshop assembled expert and experienced Antarctic scientists and National AntarcticProgram operators from around the globe to discern the highest priority technological needs includingthe current status of development and availability, where the technologies will be utilized in the Antarctic area, at what temporal scales and frequencies the technologies will be employed,and how broadly applicable the technologies are for answering the highest priority scientific questions.Secondly the logistics, access, and infrastructure requirements were defined that are necessary todeliver the science in terms of feasibility including cost and benefit as determined by expected scientific return on investment. Finally, based on consideration of the science objectives and the mix oftechnologies implications for configuring National Antarctic Program logistics capabilities andinfrastructure architecture over the next 20 years were determined. In particular those elements thatwere either of a complexity, requiring long term investments to achieve and/or having an associated cost that realistically can only (or best) be achieved by international coordination, planning and partnerships were identified. Major trends (changes) in logistics, access, and infrastructure requirements were identified that allow for long-term strategic alignment of international capabilities, resources and capacity. The outcomes of this project will be reported.

  15. The Evolving Landscape of Healthcare-Associated Infections: Recent Advances in Prevention and a Road Map for Research

    PubMed Central

    Safdar, Nasia; Anderson, Deverick J.; Braun, Barbara I.; Carling, Philip; Cohen, Stuart; Donskey, Curtis; Drees, Marci; Harris, Anthony; Henderson, David K.; Huang, Susan S.; Juthani-Mehta, Manisha; Lautenbach, Ebbing; Linkin, Darren R.; Meddings, Jennifer; Miller, Loren G.; Milstone, Aaron; Morgan, Daniel; Sengupta, Sharmila; Varman, Meera; Yokoe, Deborah; Zerr, Danielle M.

    2014-01-01

    This white paper identifies knowledge gaps and new challenges in healthcare epidemiology research, assesses the progress made toward addressing research priorities, provides the Society for Healthcare Epidemiology of America (SHEA) Research Committee’s recommendations for high-priority research topics, and proposes a road map for making progress toward these goals. It updates the 2010 SHEA Research Committee document, “Charting the Course for the Future of Science in Healthcare Epidemiology: Results of a Survey of the Membership of SHEA,” which called for a national approach to healthcare-associated infections (HAIs) and a prioritized research agenda. This paper highlights recent studies that have advanced our understanding of HAIs, the establishment of the SHEA Research Network as a collaborative infrastructure to address research questions, prevention initiatives at state and national levels, changes in reporting and payment requirements, and new patterns in antimicrobial resistance. PMID:24709716

  16. Path to a UV/Optical/IR Flagship: Review of ATLAST and Its Predecessors

    NASA Technical Reports Server (NTRS)

    Thronson, Harley; Bolcar, Matthew R.; Clampin, Mark; Crooke, Julie; Feinberg, Lee; Oegerle, William; Rioux, Norman; Stahl, H. Philip; Stapelfeldt, Karl

    2016-01-01

    Our recently completed study for the Advanced Technology Large-Aperture Space Telescope (ATLAST) was the culmination of three years of initially internally funded work that built upon earlier engineering designs, science objectives, and technology priorities. Beginning in the mid-1980s, multiple teams of astronomers, technologists, and engineers developed concepts for a large-aperture UV/optical/IR space observatory intended to follow the Hubble Space Telescope (HST). Here, we summarize since the first significant conferences on major post-HST ultraviolet, optical, and infrared (UVOIR) observatories the history of designs, scientific goals, key technology recommendations, and community workshops. Although the sophistication of science goals and the engineering designs both advanced over the past three decades, we note the remarkable constancy of major characteristics of large post-HST UVOIR concepts. As it has been a priority goal for NASA and science communities for a half-century, and has driven much of the technology priorities for major space observatories, we include the long history of concepts for searching for Earth-like worlds. We conclude with a capsule summary of our ATLAST reference designs developed by four partnering institutions over the past three years, which was initiated in 2013 to prepare for the 2020 National Academies' Decadal Survey.

  17. Bellagio Report on Healthy Agriculture, Healthy Nutrition, Healthy People.

    PubMed

    Simopoulos, Artemis P; Bourne, Peter G; Faergeman, Ole

    2013-03-01

    The Bellagio Report on Healthy Agriculture, Healthy Nutrition, Healthy People is the result of the meeting held at the Rockefeller Foundation Bellagio Center in Lake Como, Italy 30 October-1 November, 2012. The meeting was science-based but policy-oriented. The role and amount of healthy and unhealthy fats, with attention to the relative content of omega-3 and omega-6 fatty acids, sugar, and particularly fructose in foods that may underlie the epidemics of non-communicable diseases (NCDs) worldwide were extensively discussed. The report concludes that sugar consumption, especially in the form of high energy fructose in soft drinks, poses a major and insidious health threat, especially in children, and most diets, although with regional differences, are deficient in omega-3 fatty acids and too high in omega-6 fatty acids. Gene-nutrient interactions in growth and development and in disease prevention are fundamental to health, therefore regional Centers on Genetics, Nutrition and Fitness for Health should be established worldwide. Heads of state and government must elevate, as a matter of urgency, nutrition as a national priority, that access to a healthy diet should be considered a human right and that the lead responsibility for nutrition should be placed in Ministries of Health rather than agriculture so that the health requirements drive agricultural priorities, not vice versa. Nutritional security should be given the same priority as food security.

  18. Bellagio report on healthy agriculture, healthy nutrition, healthy people.

    PubMed

    Simopoulos, Artemis P; Bourne, Peter G; Faergeman, Ole

    2013-02-05

    The Bellagio Report on Healthy Agriculture, Healthy Nutrition, Healthy People is the result of the meeting held at the Rockefeller Foundation Bellagio Center in Lake Como, Italy, 29 October-2 November 2012. The meeting was science-based but policy-oriented. The role and amount of healthy and unhealthy fats, with attention to the relative content of omega-3 and omega-6 fatty acids, sugar, and particularly fructose in foods that may underlie the epidemics of non-communicable diseases (NCD's) worldwide were extensively discussed. The report concludes that sugar consumption, especially in the form of high energy fructose in soft drinks, poses a major and insidious health threat, especially in children, and most diets, although with regional differences, are deficient in omega-3 fatty acids and too high in omega-6 fatty acids. Gene-nutrient interactions in growth and development and in disease prevention are fundamental to health, therefore regional Centers on Genetics, Nutrition and Fitness for Health should be established worldwide. Heads of state and government must elevate, as a matter of urgency, Nutrition as a national priority, that access to a healthy diet should be considered a human right and that the lead responsibility for Nutrition should be placed in Ministries of Health rather than agriculture so that the health requirements drive agricultural priorities, not vice versa. Nutritional security should be given the same priority as food security.

  19. Restricted-Range Fishes and the Conservation of Brazilian Freshwaters

    PubMed Central

    Nogueira, Cristiano; Buckup, Paulo A.; Menezes, Naercio A.; Oyakawa, Osvaldo T.; Kasecker, Thais P.; Ramos Neto, Mario B.; da Silva, José Maria C.

    2010-01-01

    Background Freshwaters are the most threatened ecosystems on earth. Although recent assessments provide data on global priority regions for freshwater conservation, local scale priorities remain unknown. Refining the scale of global biodiversity assessments (both at terrestrial and freshwater realms) and translating these into conservation priorities on the ground remains a major challenge to biodiversity science, and depends directly on species occurrence data of high taxonomic and geographic resolution. Brazil harbors the richest freshwater ichthyofauna in the world, but knowledge on endemic areas and conservation in Brazilian rivers is still scarce. Methodology/Principal Findings Using data on environmental threats and revised species distribution data we detect and delineate 540 small watershed areas harboring 819 restricted-range fishes in Brazil. Many of these areas are already highly threatened, as 159 (29%) watersheds have lost more than 70% of their original vegetation cover, and only 141 (26%) show significant overlap with formally protected areas or indigenous lands. We detected 220 (40%) critical watersheds overlapping hydroelectric dams or showing both poor formal protection and widespread habitat loss; these sites harbor 344 endemic fish species that may face extinction if no conservation action is in place in the near future. Conclusions/Significance We provide the first analysis of site-scale conservation priorities in the richest freshwater ecosystems of the globe. Our results corroborate the hypothesis that freshwater biodiversity has been neglected in former conservation assessments. The study provides a simple and straightforward method for detecting freshwater priority areas based on endemism and threat, and represents a starting point for integrating freshwater and terrestrial conservation in representative and biogeographically consistent site-scale conservation strategies, that may be scaled-up following naturally linked drainage systems. Proper management (e. g. forestry code enforcement, landscape planning) and conservation (e. g. formal protection) of the 540 watersheds detected herein will be decisive in avoiding species extinction in the richest aquatic ecosystems on the planet. PMID:20613986

  20. Restricted-range fishes and the conservation of Brazilian freshwaters.

    PubMed

    Nogueira, Cristiano; Buckup, Paulo A; Menezes, Naercio A; Oyakawa, Osvaldo T; Kasecker, Thais P; Ramos Neto, Mario B; da Silva, José Maria C

    2010-06-30

    Freshwaters are the most threatened ecosystems on earth. Although recent assessments provide data on global priority regions for freshwater conservation, local scale priorities remain unknown. Refining the scale of global biodiversity assessments (both at terrestrial and freshwater realms) and translating these into conservation priorities on the ground remains a major challenge to biodiversity science, and depends directly on species occurrence data of high taxonomic and geographic resolution. Brazil harbors the richest freshwater ichthyofauna in the world, but knowledge on endemic areas and conservation in Brazilian rivers is still scarce. Using data on environmental threats and revised species distribution data we detect and delineate 540 small watershed areas harboring 819 restricted-range fishes in Brazil. Many of these areas are already highly threatened, as 159 (29%) watersheds have lost more than 70% of their original vegetation cover, and only 141 (26%) show significant overlap with formally protected areas or indigenous lands. We detected 220 (40%) critical watersheds overlapping hydroelectric dams or showing both poor formal protection and widespread habitat loss; these sites harbor 344 endemic fish species that may face extinction if no conservation action is in place in the near future. We provide the first analysis of site-scale conservation priorities in the richest freshwater ecosystems of the globe. Our results corroborate the hypothesis that freshwater biodiversity has been neglected in former conservation assessments. The study provides a simple and straightforward method for detecting freshwater priority areas based on endemism and threat, and represents a starting point for integrating freshwater and terrestrial conservation in representative and biogeographically consistent site-scale conservation strategies, that may be scaled-up following naturally linked drainage systems. Proper management (e. g. forestry code enforcement, landscape planning) and conservation (e. g. formal protection) of the 540 watersheds detected herein will be decisive in avoiding species extinction in the richest aquatic ecosystems on the planet.

  1. Strategies for Broadening Participation in Advanced Technological Education Programs: Practice and Perceptions

    ERIC Educational Resources Information Center

    Smith, Corey; Wingate, Lori

    2016-01-01

    Expanding and diversifying the STEM (science, technology, engineering, and mathematics) workforce is a national priority. The National Science Foundation is investing efforts at post secondary education institutions to engage individuals who have been historically underrepresented in STEM. This paper investigated the use of strategies to broaden…

  2. Performance study of aluminum shielded room for ultra-low-field magnetic resonance imaging based on SQUID: Simulations and experiments

    NASA Astrophysics Data System (ADS)

    Li, Bo; Dong, Hui; Huang, Xiao-Lei; Qiu, Yang; Tao, Quan; Zhu, Jian-Ming

    2018-02-01

    Not Available Project supported in part by the Strategic Priority Research Program (B) of the Chinese Academy of Sciences (Grant No. XDB04020200) and in part by the National Natural Science Foundation of China (Grant No. 11204339).

  3. Earth-Like Exoplanets: The Science of NASA's Navigator Program

    NASA Technical Reports Server (NTRS)

    Lawson, Peter R. (Editor); Traub, Wesley A. (Editor)

    2006-01-01

    This book outlines the exoplanet science content of NASA's Navigator Program, and it identifies the exoplanet research priorities. The goal of Navigator Program missions is to detect and characterize Earth-like planets in the habitable zone of nearby stars and to search for signs of life on those planets.

  4. Report of the Terrestrial Bodies Science Working Group. Volume 3: Venus

    NASA Technical Reports Server (NTRS)

    Kaula, W. M.; Malin, M. C.; Masursky, H.; Pettengill, G.; Prinn, R.; Young, R. E.

    1977-01-01

    The science objectives of Pioneer Venus and future investigations of the planet are discussed. Concepts and payloads for proposed missions and the supporting research and technology required to obtain the desired measurements from space and Earth-based observations are examined, as well as mission priorities and schedules.

  5. Superconductivity in Undoped CaFe2As2 Single Crystals

    NASA Astrophysics Data System (ADS)

    Dong-Yun, Chen; Jia, Yu; Bin-Bin, Ruan; Qi, Guo; Lei, Zhang; Qing-Ge, Mu; Xiao-Chuan, Wang; Bo-Jin, Pan; Gen-Fu, Chen; Zhi-An, Ren

    2016-06-01

    Not Available Supported by the National Natural Science Foundation of China under Grant No 11474339, the National Basic Research Program of China under Grant Nos 2010CB923000 and 2011CBA00100, and the Strategic Priority Research Program of the Chinese Academy of Sciences under Grant No XDB07020100.

  6. Physics First: Impact on SAT Math Scores

    ERIC Educational Resources Information Center

    Bouma, Craig E.

    2013-01-01

    Improving science, technology, engineering, and mathematics (STEM) education has become a national priority and the call to modernize secondary science has been heard. A Physics First (PF) program with the curriculum sequence of physics, chemistry, and biology (PCB) driven by inquiry- and project-based learning offers a viable alternative to the…

  7. 47 CFR 201.1 - Authority.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... Telecommunication OFFICE OF SCIENCE AND TECHNOLOGY POLICY AND NATIONAL SECURITY COUNCIL EXECUTIVE POLICY § 201.1....). (4) The Disaster Relief Act of 1974 (42 U.S.C. 5121 et seq.). (5) The National Science and Technology Policy, Organization, and Priorities Act of 1976 (90 State. 463, 42 U.S.C. 6611). (6) Executive Order...

  8. 47 CFR 201.1 - Authority.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... Telecommunication OFFICE OF SCIENCE AND TECHNOLOGY POLICY AND NATIONAL SECURITY COUNCIL EXECUTIVE POLICY § 201.1....). (4) The Disaster Relief Act of 1974 (42 U.S.C. 5121 et seq.). (5) The National Science and Technology Policy, Organization, and Priorities Act of 1976 (90 State. 463, 42 U.S.C. 6611). (6) Executive Order...

  9. 47 CFR 201.1 - Authority.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... Telecommunication OFFICE OF SCIENCE AND TECHNOLOGY POLICY AND NATIONAL SECURITY COUNCIL EXECUTIVE POLICY § 201.1....). (4) The Disaster Relief Act of 1974 (42 U.S.C. 5121 et seq.). (5) The National Science and Technology Policy, Organization, and Priorities Act of 1976 (90 State. 463, 42 U.S.C. 6611). (6) Executive Order...

  10. 47 CFR 201.1 - Authority.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... Telecommunication OFFICE OF SCIENCE AND TECHNOLOGY POLICY AND NATIONAL SECURITY COUNCIL EXECUTIVE POLICY § 201.1....). (4) The Disaster Relief Act of 1974 (42 U.S.C. 5121 et seq.). (5) The National Science and Technology Policy, Organization, and Priorities Act of 1976 (90 State. 463, 42 U.S.C. 6611). (6) Executive Order...

  11. 47 CFR 201.1 - Authority.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... Telecommunication OFFICE OF SCIENCE AND TECHNOLOGY POLICY AND NATIONAL SECURITY COUNCIL EXECUTIVE POLICY § 201.1....). (4) The Disaster Relief Act of 1974 (42 U.S.C. 5121 et seq.). (5) The National Science and Technology Policy, Organization, and Priorities Act of 1976 (90 State. 463, 42 U.S.C. 6611). (6) Executive Order...

  12. Attitudinal Impact of Hybridized Writing about a Socioscientific Issue

    ERIC Educational Resources Information Center

    Tomas, Louisa; Ritchie, Stephen M.; Tones, Megan

    2011-01-01

    The development of scientifically literate citizens remains an important priority of science education; however, growing evidence of students' disenchantment with school science continues to challenge the realization of this aim. This triangulation mixed methods study investigated the learning experiences of 152 9th grade students as they…

  13. A Science Fair Partnership: An Active Learning Experience for Teacher Candidates

    ERIC Educational Resources Information Center

    McCarthy, Deborah Louise

    2015-01-01

    STEM (science, technology, engineering, and mathematics) education is a national instructional priority. As part of Southeastern Louisiana University's STEM Outreach Initiative, funded by a Shell Oil Company Foundation grant to raise interest in STEM-related activities, teacher candidates were given the opportunity to leave their classroom to…

  14. Educational affairs plan: A five-year strategy

    NASA Technical Reports Server (NTRS)

    1987-01-01

    A five-year plan is presented to guide the use of NASA resources in administering a focused and consistent set of aeronautics and space science education programs. Major initiatives outlined in this plan fall into two categories: programmatic priorities and institutional priorities. Programmatic priorities for this plan include elementary education, teacher education, underrepresented minority participation, educational technology and the Aerospace Education Services Project (AESP). Institutional priorities highlighted in this plan include university programs, educational publications and their distribution, educational partnerships with public and private organizations, educational research and evaluation, and activities of the educational affairs administration. The plan's aim is to directly and indirectly help to ensure an adequate pool of talented scientists, engineers and technical personnel to keep NASA at the forefront of advancements for the 21st century.

  15. Using Web 2.0 Technology to Enhance the Science Curriculum in Your School

    ERIC Educational Resources Information Center

    Hainsworth, Mark

    2017-01-01

    The author shares his vision of what 21st century science education might look like in the future and discusses how to develop an e-learning capability to shape the science curriculum in your school. Good teaching and learning should always be a teacher's first priority but there is little doubt in the author's mind that the implementation of an…

  16. So Long Primary School Science, and Thanks for All the Fun

    ERIC Educational Resources Information Center

    Stringer, John

    2010-01-01

    The author looks at the future of primary science, and is not encouraged. It's pretty much all over for science in primary schools. One only has to look at the poor showing on the stands at January's ASE Annual Conference to see that it is no longer a publishing priority. Eroded by falling status, undermined by national strategies, and finally put…

  17. Translational Science at the National Institute of Mental Health: Can Social Work Take Its Rightful Place?

    ERIC Educational Resources Information Center

    Brekke, John S.; Ell, Kathleen; Palinkas, Lawrence A.

    2007-01-01

    Several recent national reports have noted that there is a 20-year gap between knowledge generated from our best clinical research and the utilization of that knowledge in our health and mental health care sectors. One solution to this dilemma has been the emergence of translational science. Translational science has become a top priority of the…

  18. Integrating Social Science into the Long-Term Ecological Research (LTER) Network: Social Dimensions of Ecological Change and Ecological Dimensions of Social Change

    Treesearch

    Charles L. Redman; J. Morgan Grove; Lauren H. Kuby; Lauren H. Kuby

    2004-01-01

    The integration of the social sciences into long-term ecological research is an urgent priority. To address this need, a group of social, earth, and life scientists associated with the National Science Foundation's (NSF) Long-Term Ecological Research (LTER) Network have articulated a conceptual framework for understanding the human dimensions of ecological change...

  19. Development and Flight-testing of Astronomical Instrumentation for Future NASA Astrophysics Missions

    NASA Astrophysics Data System (ADS)

    France, Kevin

    We propose a four year suborbital research program to continue the University of Colorado's efforts in the development and flight testing of instrument designs and critical path technologies for ultraviolet spectroscopy in support of future NASA Explorer, Probe-, and Flagship-class missions. This proposal builds on our existing program of high-resolution spectroscopy for the 100 - 160 nm bandpass with the development of a new high-efficiency imaging spectrograph operating in the same band. The ultimate goal of the University of Colorado ultraviolet rocket program is to develop the technical capabilities to enable a future, highly multiplexed ultraviolet spectrograph (with both high-resolution and imaging spectroscopy modes), e.g., an analog to the successful HST-STIS instrument, with an order-of-magnitude higher efficiency. We do this in the framework of a university led program where undergraduate, graduate, and postdoctoral training is paramount and cutting edge science investigations support our baseline technology development program. In the proposed effort, we will optimize our high-resolution (R > 100,000) echelle spectrograph payload (CHESS) with the first science flight of a new, large-format CCD array provided by our collaborators at JPL and Arizona State University. We will launch CHESS to study our local interstellar environment with spectral resolving power and bandpass that cannot be achieved with any suite of current or planned space missions. In parallel with the proposed science flights of CHESS, we will design, calibrate, and launch a new high-throughput imaging spectrograph (SISTINE); the first sub-arcsecond imaging, medium spectral resolution (R = 10,000), spectrograph ever flown with spectral coverage over the entire 100 - 160 nm bandpass. SISTINE incorporates several novel optical technologies that were highlighted as major hardware drivers for NASA's next large ultraviolet/optical/near-IR observatory by the 2014 Cosmic Origins Technology Report, including advanced mirror coatings with high broadband reflectivity (including > 20% efficiency gains below 115 nm), the first demonstration and flight test of these coatings on a shaped 0.5-meter telescope, and large-format, high-QE photon counting detectors. SISTINE will be launched to study the energetic radiation environment in the habitable zones around nearby low-mass exoplanet host stars, systems that are the top priority in NASA's search for the signatures of biological activity in the coming decade. SISTINE addresses the highest science priority in the 2010 Astronomy and Astrophysics Decadal Survey and is a crucial step towards meeting NASA's technology needs for future space observatories.

  20. Discussion of Priorities

    NASA Technical Reports Server (NTRS)

    2003-01-01

    The Microgravity Science Division identifies four priority ratings for microgravity research and technology issues: 1) Critical; 2) Severely Limiting; 3) Enhancements; 4) Communication. Reduced gravity instabilities are critical, while severely limiting issues include phase separation, phase change, and flow through components. Enhancements are listed for passive phase separation and phase change. This viewgraph presentation also classifies microgravity issues as spaceflight, ground-based, or other for the time periods 2003-2008, 2009-2015, and beyond.

  1. GREAT (Groundwater Resources & Educational Activities for Teaching). An Iowa Project for Earth/Life/General Science, 7th-9th Grades.

    ERIC Educational Resources Information Center

    George, Gail, Ed.

    These resource materials are a part of a larger plan for groundwater education, as detailed in the Iowa Groundwater Education Strategy. The six units are arranged in priority order. The first unit covers the basics of groundwater and hydrogeology in Iowa. The other five units cover Iowa's groundwater issues in priority order, as outlined in the…

  2. NASA's Planetary Science Summer School: Training Future Mission Leaders in a Concurrent Engineering Environment

    NASA Astrophysics Data System (ADS)

    Mitchell, K. L.; Lowes, L. L.; Budney, C. J.; Sohus, A.

    2014-12-01

    NASA's Planetary Science Summer School (PSSS) is an intensive program for postdocs and advanced graduate students in science and engineering fields with a keen interest in planetary exploration. The goal is to train the next generation of planetary science mission leaders in a hands-on environment involving a wide range of engineers and scientists. It was established in 1989, and has undergone several incarnations. Initially a series of seminars, it became a more formal mission design experience in 1999. Admission is competitive, with participants given financial support. The competitively selected trainees develop an early mission concept study in teams of 15-17, responsive to a typical NASA Science Mission Directorate Announcement of Opportunity. They select the mission concept from options presented by the course sponsors, based on high-priority missions as defined by the Decadal Survey, prepare a presentation for a proposal authorization review, present it to a senior review board and receive critical feedback. Each participant assumes multiple roles, on science, instrument and project teams. They develop an understanding of top-level science requirements and instrument priorities in advance through a series of reading assignments and webinars help trainees. Then, during the five day session at Jet Propulsion Laboratory, they work closely with concurrent engineers including JPL's Advanced Projects Design Team ("Team X"), a cross-functional multidisciplinary team of engineers that utilizes concurrent engineering methodologies to complete rapid design, analysis and evaluation of mission concept designs. All are mentored and assisted directly by Team X members and course tutors in their assigned project roles. There is a strong emphasis on making difficult trades, simulating a real mission design process as accurately as possible. The process is intense and at times dramatic, with fast-paced design sessions and late evening study sessions. A survey of PSSS alumni administered in 2013 provides information on the program's impact on trainees' career choices and leadership roles as they pursue their employment in planetary science and related fields. Results will be presented during the session, along with highlights of topics and missions covered since the program's inception.

  3. The opportunities and ethics of big data: practical priorities for a national Council of Data Ethics.

    PubMed

    Varley-Winter, Olivia; Shah, Hetan

    2016-12-28

    In order to generate the gains that can come from analysing and linking big datasets, data holders need to consider the ethical frameworks, principles and applications that help to maintain public trust. In the USA, the National Science Foundation helped to set up a Council for Big Data, Ethics and Society, of which there is no equivalent in the UK. In November 2015, the Royal Statistical Society convened a workshop of 28 participants from government, academia and the private sector, and discussed the practical priorities that might be assisted by a new Council of Data Ethics in the UK. This article draws together the views from that meeting. Priorities for policy-makers and others include seeking a public mandate and informing the terms of the social contract for use of data; building professional competence and due diligence on data protection; appointment of champions who are competent to address public concerns; and transparency, across all dimensions. For government data, further priorities include improvements to data access, and development of data infrastructure. In conclusion, we support the establishment of a national Data Ethics Council, alongside wider and deeper engagement of the public to address data ethics dilemmas.This article is part of the themed issue 'The ethical impact of data science'. © 2016 The Author(s).

  4. Class D Management Implementation Approach of the First Orbital Mission of the Earth Venture Series

    NASA Technical Reports Server (NTRS)

    Wells, James E.; Scherrer, John; Law, Richard; Bonniksen, Chris

    2013-01-01

    A key element of the National Research Council's Earth Science and Applications Decadal Survey called for the creation of the Venture Class line of low-cost research and application missions within NASA (National Aeronautics and Space Administration). One key component of the architecture chosen by NASA within the Earth Venture line is a series of self-contained stand-alone spaceflight science missions called "EV-Mission". The first mission chosen for this competitively selected, cost and schedule capped, Principal Investigator-led opportunity is the CYclone Global Navigation Satellite System (CYGNSS). As specified in the defining Announcement of Opportunity, the Principal Investigator is held responsible for successfully achieving the science objectives of the selected mission and the management approach that he/she chooses to obtain those results has a significant amount of freedom as long as it meets the intent of key NASA guidance like NPR 7120.5 and 7123. CYGNSS is classified under NPR 7120.5E guidance as a Category 3 (low priority, low cost) mission and carries a Class D risk classification (low priority, high risk) per NPR 8705.4. As defined in the NPR guidance, Class D risk classification allows for a relatively broad range of implementation strategies. The management approach that will be utilized on CYGNSS is a streamlined implementation that starts with a higher risk tolerance posture at NASA and that philosophy flows all the way down to the individual part level.

  5. Amateur Radio Flash Mob: Citizen Radio Science Response to a Solar Eclipse

    NASA Astrophysics Data System (ADS)

    Hirsch, M.; Frissell, N. A.

    2017-12-01

    Over a decade's worth of scientifically useful data from radio amateurs worldwide is publicly available, with momentum building in science exploitation of this data. For the 2017 solar eclipse, a "flash mob" of radio amateurs were organized in the form of a contest. Licensed radio amateurs transmitted on specific frequency bands, with awards given for a new generation of raw data collection allowing sophisticated post-processing of raw ADC data, to extract quantities such as Doppler shift due to ionospheric lifting for example. We discuss transitioning science priorities to gamified scoring procedures incentivizing the public to submit the highest quality and quantity of archival raw radio science data. The choices of frequency bands to encourage in the face of regulatory limitations is discussed. An update on initial field experiments using wideband experimental modulation specially licensed yet receivable by radio amateurs for high spatiotemporal resolution imaging of the ionosphere is given. The cost of this equipment is less than $500 per node, comparing favorably to legacy oblique ionospheric sounding networks.

  6. Building a Global Ocean Science Education Network

    NASA Astrophysics Data System (ADS)

    Scowcroft, G. A.; Tuddenham, P. T.; Pizziconi, R.

    2016-02-01

    It is imperative for ocean science education to be closely linked to ocean science research. This is especially important for research that addresses global concerns that cross national boundaries, including climate related issues. The results of research on these critical topics must find its way to the public, educators, and students of all ages around the globe. To facilitate this, opportunities are needed for ocean scientists and educators to convene and identify priorities and strategies for ocean science education. On June 26 and 27, 2015 the first Global Ocean Science Education (GOSE) Workshop was convened in the United States at the University of Rhode Island Graduate School of Oceanography. The workshop, sponsored by the Consortium for Ocean Science Exploration and Engagement (COSEE) and the College of Exploration, had over 75 participants representing 15 nations. The workshop addressed critical global ocean science topics, current ocean science research and education priorities, advanced communication technologies, and leveraging international ocean research technologies. In addition, panels discussed elementary, secondary, undergraduate, graduate, and public education across the ocean basins with emphasis on opportunities for international collaboration. Special presentation topics included advancements in tropical cyclone forecasting, collaborations among Pacific Islands, ocean science for coastal resiliency, and trans-Atlantic collaboration. This presentation will focus on workshop outcomes as well as activities for growing a global ocean science education network. A summary of the workshop report will also be provided. The dates and location for the 2016 GOES Workshop will be announced. See http://www.coexploration.net/gose/index.html

  7. Structural characterization of Al0.55Ga0.45N epitaxial layer determined by high resolution x-ray diffraction and transmission electron microscopy

    NASA Astrophysics Data System (ADS)

    Xu, Qing-Jun; Liu, Bin; Zhang, Shi-Ying; Tao, Tao; Xie, Zi-Li; Xiu, Xiang-Qian; Chen, Dun-Jun; Chen, Peng; Han, Ping; Zhang, Rong; Zheng, You-Dou

    2017-04-01

    Not Available Project supported by the National Key Research and Development Project of China (Grant No. 2016YFB0400100), the Hi-tech Research Project of China (Grant Nos. 2014AA032605 and 2015AA033305), the National Natural Science Foundation of China (Grant Nos. 61274003, 61422401, 51461135002, and 61334009), the Natural Science Foundation of Jiangsu Province, China (Grant Nos. BY2013077, BK20141320, and BE2015111), the Project of Green Young and Golden Phenix of Yangzhou City, the Postdoctoral Sustentation Fund of Jiangsu Province, China (Grant No. 1501143B), the Project of Shandong Provinceial Higher Educational Science and Technology Program, China (Grant No. J13LN08), the Solid State Lighting and Energy-saving Electronics Collaborative Innovation Center, Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD), and Research Funds from NJU-Yangzhou Institute of Opto-electronics.

  8. STS-107 Mission Specialist Kalpana Chawla at SPACEHAB during training

    NASA Technical Reports Server (NTRS)

    2002-01-01

    KENNEDY SPACE CENTER, FLA. -- STS-107 Mission Specialist Kalpana Chawla scans paperwork for equipment at SPACEHAB, Cape Canaveral, Fla., during crew training. STS-107 is a research mission. The primary payload is the first flight of the SHI Research Double Module (SHI/RDM). The experiments range from material sciences to life sciences (many rats). Also part of the payload is the Fast Reaction Experiments Enabling Science, Technology, Applications and Research (FREESTAR) that incorporates eight high priority secondary attached shuttle experiments: Mediterranean Israeli Dust Experiment (MEIDEX), Shuttle Ozone Limb Sounding Experiment (SOLSE-2), Student Tracked Atmospheric Research Satellite for Heuristic International Networking Experiment (STARSHINE), Critical Viscosity of Xenon-2 (CVX-2), Solar Constant Experiment-3 (SOLOCON-3), Prototype Synchrotron Radiation Detector (PSRD), Low Power Transceiver (LPT), and Collisions Into Dust Experiment -2 (COLLIDE-2). STS-107 is scheduled to launch in July 2002

  9. KSC01pd1882

    NASA Image and Video Library

    2001-12-19

    KENNEDY SPACE CENTER, FLA. - STS-107 Payload Specialist Ilan Ramon, from Israel, pauses during an experiment at SPACEHAB, Cape Canaveral, Fla., to talk with Mission Specialist Laurel Clark. STS-107 is a research mission. The primary payload is the first flight of the SHI Research Double Module (SHI/RDM). The experiments range from material sciences to life sciences (many rats). Also part of the payload is the Fast Reaction Experiments Enabling Science, Technology, Applications and Research (FREESTAR) that incorporates eight high priority secondary attached shuttle experiments: Mediterranean Israeli Dust Experiment (MEIDEX), Shuttle Ozone Limb Sounding Experiment (SOLSE-2), Student Tracked Atmospheric Research Satellite for Heuristic International Networking Experiment (STARSHINE), Critical Viscosity of Xenon-2 (CVX-2), Solar Constant Experiment-3 (SOLOCON-3), Prototype Synchrotron Radiation Detector (PSRD), Low Power Transceiver (LPT), and Collisions Into Dust Experiment -2 (COLLIDE-2). STS-107 is scheduled to launch in July 2002.

  10. KSC01pd1884

    NASA Image and Video Library

    2001-12-19

    KENNEDY SPACE CENTER, FLA. - At SPACEHAB, Cape Canaveral, Fla., members of the STS-107 crew familiarize themselves with experiments and equipment for the mission. Pointing at a piece of equipment (center) is Mission Specialist Laurel Clark . At right is Mission Specialist Kalpana Chawla. STS-107 is a research mission. The primary payload is the first flight of the SHI Research Double Module (SHI/RDM). The experiments range from material sciences to life sciences (many rats). Also part of the payload is the Fast Reaction Experiments Enabling Science, Technology, Applications and Research (FREESTAR) that incorporates eight high priority secondary attached shuttle experiments: Mediterranean Israeli Dust Experiment (MEIDEX), Shuttle Ozone Limb Sounding Experiment (SOLSE-2), Student Tracked Atmospheric Research Satellite for Heuristic International Networking Experiment (STARSHINE), Critical Viscosity of Xenon-2 (CVX-2), Solar Constant Experiment-3 (SOLOCON-3), Prototype Synchrotron Radiation Detector (PSRD), Low Power Transceiver (LPT), and Collisions Into Dust Experiment -2 (COLLIDE-2). STS-107 is scheduled to launch in July 2002

  11. KSC01pd1883

    NASA Image and Video Library

    2001-12-19

    KENNEDY SPACE CENTER, FLA. - - STS-107 Payload Specialist Ilan Ramon, from Israel, works on an experiment at SPACEHAB, Cape Canaveral, Fla. With him is Mission Specialist Laurel Clark. STS-107 is a research mission. The primary payload is the first flight of the SHI Research Double Module (SHI/RDM). The experiments range from material sciences to life sciences (many rats). Also part of the payload is the Fast Reaction Experiments Enabling Science, Technology, Applications and Research (FREESTAR) that incorporates eight high priority secondary attached shuttle experiments: Mediterranean Israeli Dust Experiment (MEIDEX), Shuttle Ozone Limb Sounding Experiment (SOLSE-2), Student Tracked Atmospheric Research Satellite for Heuristic International Networking Experiment (STARSHINE), Critical Viscosity of Xenon-2 (CVX-2), Solar Constant Experiment-3 (SOLOCON-3), Prototype Synchrotron Radiation Detector (PSRD), Low Power Transceiver (LPT), and Collisions Into Dust Experiment -2 (COLLIDE-2). STS-107 is scheduled to launch in July 2002

  12. The Advanced Technology Large Aperture Space Telescope (ATLAST): Science Drivers and Technology Developments

    NASA Technical Reports Server (NTRS)

    Postman, Marc; Brown, Tom; Sembach, Kenneth; Giavalisco, Mauro; Traub, Wesley; Stapelfeldt, Karl; Calzetti, Daniela; Oegerle, William; Rich, R. Michael; Stahl, H. Phillip; hide

    2011-01-01

    The Advanced Technology Large-Aperture Space Telescope (ATLAST) is a concept for an 8-meter to 16-meter UVOIR space observatory for launch in the 2025-2030 era. ATLAST will allow astronomers to answer fundamental questions at the forefront of modern astrophysics, including "Is there life elsewhere in the Galaxy?" We present a range of science drivers and the resulting performance requirements for ATLAST (8 to 16 milliarcsecond angular resolution, diffraction limited imaging at 0.5 m wavelength, minimum collecting area of 45 square meters, high sensitivity to light wavelengths from 0.1 m to 2.4 m, high stability in wavefront sensing and control). We also discuss the priorities for technology development needed to enable the construction of ATLAST for a cost that is comparable to current generation observatory-class space missions. Keywords: Advanced Technology Large-Aperture Space Telescope (ATLAST); ultraviolet/optical space telescopes; astrophysics; astrobiology; technology development.

  13. The Advanced Technology Large Aperture Space Telescope (ATLAST): Science Drivers, Technology Developments, and Synergies with Other Future Facilities

    NASA Technical Reports Server (NTRS)

    Postman, Marc; Brown, Tom; Sembach, Kenneth; Giavalisco, Mauro; Traub, Wesley; Stapelfeldt, Karl; Calzetti, Daniela; Oegerle, William; Rich, R. Michael; Stahl, H. Philip; hide

    2011-01-01

    The Advanced Technology Large-Aperture Space Telescope (ATLAST) is a concept for an 8-meter to 16-meter UVOIR space observatory for launch in the 2025-2030 era. ATLAST will allow astronomers to answer fundamental questions at the forefront of modern astrophysics, including "Is there life elsewhere in the Galaxy?" We present a range of science drivers that define the main performance requirements for ATLAST (8 to 16 milliarcsec angular resolution, diffraction limited imaging at 0.5 m wavelength, minimum collecting area of 45 square meters, high sensitivity to light wavelengths from 0.1 m to 2.4 m, high stability in wavefront sensing and control). We will also discuss the synergy between ATLAST and other anticipated future facilities (e.g., TMT, EELT, ALMA) and the priorities for technology development that will enable the construction for a cost that is comparable to current generation observatory-class space missions.

  14. Seeds and Sparks: Cultivating Children's Interest in Physics through Public Outreach

    NASA Astrophysics Data System (ADS)

    Clark, Jessica

    2006-11-01

    The National Academies' ``Rising above the Gathering Storm'' report names the improvement of K-12 science and mathematics education as its highest priority recommendation. This recommendation includes enlarging the pipeline of students preparing to study STEM subjects at university by increasing the number of students who take (and pass) advanced high school level science courses. To this end, the American Physical Society's Public Outreach department offers PhysicsQuest, a free program designed to engage middle school science students in a learning adventure. The core idea of the program is to provide a fun and exciting way for students to encounter physics, thereby eliminating some of the fear often associated with the subject and making them more likely to take high school physics courses. In the end, the students do learn some physics, but, more importantly, they have a fun experience with physics. This talk further describes the PhysicsQuest program, including feedback and results from the 2005 project, and also gives an overview of other K-12 programs offered by APS Public Outreach. The report can be read online at http://www.nap.edu/catalog/11463.html#toc. STEM = Science, Technology, Engineering, Mathematics

  15. Overview of the Joint NASA ISRO Imaging Spectroscopy Science Campaign in India

    NASA Astrophysics Data System (ADS)

    Green, R. O.; Bhattacharya, B. K.; Eastwood, M. L.; Saxena, M.; Thompson, D. R.; Sadasivarao, B.

    2016-12-01

    In the period from December 2015 to March 2016 the Airborne Visible-Infrared Imaging Spectrometer Next Generation (AVIRIS-NG) was deployed to India for a joint NASA ISRO science campaign. This campaign was conceived to provide first of their kind high fidelity imaging spectroscopy measurements of a diverse set of Asian environments for science and applications research. During this campaign measurements were acquired for 57 high priority sites that have objectives spanning: snow/ice of the Himalaya; coastal habitats and water quality; mangrove forests; soils; dry and humid forests; hydrocarbon alteration; mineralogy; agriculture; urban materials; atmospheric properties; and calibration/validation. Measurements from the campaign have been processed to at-instrument spectral radiance and atmospherically corrected surface reflectance. New AVIRIS-NG algorithms for retrieval of vegetation canopy water and for estimation of the fractions of photosynthetic, non-photosynthetic vegetation have been tested and evaluated on these measurements. An inflight calibration validation experiment was performed on the 11thof December 2015 in Hyderabad to assess the spectral and radiometric calibration of AVIRIS-NG in the flight environment. We present an overview of the campaign, calibration and validation results, and initial science analysis of a subset of these unique and diverse data sets.

  16. Proceedings of the Klamath Basin Science Conference, Medford, Oregon, February 1-5, 2010

    USGS Publications Warehouse

    Thorsteinson, Lyman; VanderKooi, Scott; Duffy, Walter

    2011-01-01

    This report presents the proceedings of the Klamath Basin Science Conference (February 2010). A primary purpose of the meeting was to inform and update Klamath Basin stakeholders about areas of scientific progress and accomplishment during the last 5 years. Secondary conference objectives focused on the identification of outstanding information needs and science priorities as they relate to whole watershed management, restoration ecology, and possible reintroduction of Pacific salmon associated with the Klamath Basin Restoration Agreement (KBRA). Information presented in plenary, technical, breakout, and poster sessions has been assembled into chapters that reflect the organization, major themes, and content of the conference. Chapter 1 reviews the major environmental issues and resource management and other stakeholder needs of the basin. Importantly, this assessment of information needs included the possibility of large-scale restoration projects in the future and lessons learned from a case study in South Florida. Other chapters (2-6) summarize information about key components of the Klamath Basin, support conceptual modeling of the aquatic ecosystem (Chapter 7), and synthesize our impressions of the most pressing science priorities for management and restoration. A wealth of information was presented at the conference and this has been captured in chapters addressing environmental setting and human development of the basin, hydrology, watershed processes, fishery resources, and potential effects from climate change. The final chapter (8) culminates in a discussion of many specific research priorities that relate to and bookend the broader management needs and restoration goals identified in Chapter 1. In many instances, the conferees emphasized long-term and process-oriented approaches to watershed science in the basin as planning moves forward.

  17. Budgeting for Exploration: the History and Political Economy of Planetary Science

    NASA Astrophysics Data System (ADS)

    Callahan, Jason

    2013-10-01

    The availability of financial resources continues to be one of the greatest limiting factors to NASA’s planetary science agenda. Historians and members of the space science community have offered many explanations for the scientific, political, and economic actions that combine to form NASA’s planetary science efforts, and this essay will use budgetary and historical analysis to examine how each of these factors have impacted the funding of U.S. exploration of the solar system. This approach will present new insights into how the shifting fortunes of the nation’s economy or the changing priorities of political leadership have affected government investment in science broadly, and space science specifically. This paper required the construction of a historical NASA budget data set displaying layered fiscal information that could be compared equivalently over time. This data set was constructed with information collected from documents located in NASA’s archives, the Library of Congress, and at the Office of Management and Budget at the White House. The essay will examine the effects of the national gross domestic product, Federal debt levels, the budgets of other Federal agencies engaged in science and engineering research, and party affiliation of leadership in Congress and the White House on the NASA budget. It will also compare historic funding levels of NASA’s astrophysics, heliophysics, and Earth science efforts to planetary science funding. By examining the history of NASA’s planetary science efforts through the lens of the budget, this essay will provide a clearer view of how effectively the planetary science community has been able to align its goals with national science priorities.

  18. Scientists' and science writers' experiences reporting genetic discoveries: toward an ethic of trust in science journalism.

    PubMed

    Geller, Gail; Bernhardt, Barbara A; Gardner, Mary; Rodgers, Joann; Holtzman, Neil A

    2005-03-01

    To describe the relationship between scientists and science writers and their experiences with media reporting of genetic discoveries. This study included individual interviews with 15 scientists who specialize in genetics and 22 science writers who have covered their stories and a qualitative analysis of the data. Scientists and science writers place an equally high priority on accuracy of media reports. They agree on what makes genetics stories newsworthy and the particular challenges in reporting genetic discoveries (i.e., poor public understanding of genetics, the association of genetics with eugenics, and the lack of immediately apparent applications of genetic discoveries to human health). The relationship between scientists and bona fide science writers is largely positive. Scientists tend to trust, respect, and be receptive to science writers. Both scientists and science writers acknowledge that trust is an essential component of a good interview. Science writers report a fair degree of autonomy with respect to the relationship they have with their editors. To the degree that trust facilitates the access that science writers have to scientists, as well as higher quality interviews between scientists and science writers, trust might also contribute to higher quality media reporting. Therefore, scientists and science writers have an ethical obligation to foster trusting relationships with each other. Future research should systematically explore ways to cultivate such relationships and assess their impact on the quality of science journalism.

  19. Advancing Ocean Science Through Coordination, Community Building, and Outreach

    NASA Astrophysics Data System (ADS)

    Benway, H. M.

    2016-02-01

    The US Ocean Carbon and Biogeochemistry (OCB) Program (www.us-ocb.org) is a dynamic network of scientists working across disciplines to understand the ocean's role in the global carbon cycle and how marine ecosystems and biogeochemical cycles are responding to environmental change. The OCB Project Office, which is based at the Woods Hole Oceanographic Institution (WHOI), serves as a central information hub for this network, bringing different scientific disciplines together and cultivating partnerships with complementary US and international programs to address high-priority research questions. The OCB Project Office plays multiple important support roles, such as hosting and co-sponsoring workshops, short courses, working groups, and synthesis activities on emerging research issues; engaging with relevant national and international science planning initiatives; and developing education and outreach activities and products with the goal of promoting ocean carbon science to broader audiences. Current scientific focus areas of OCB include ocean observations (shipboard, autonomous, satellite, etc.); changing ocean chemistry (acidification, expanding low-oxygen conditions, etc.); ocean carbon uptake and storage; estuarine and coastal carbon cycling; biological pump and associated biological and biogeochemical processes and carbon fluxes; and marine ecosystem response to environmental and evolutionary changes, including physiological and molecular-level responses of individual organisms, as well as shifts in community structure and function. OCB is a bottom-up organization that responds to the continually evolving priorities and needs of its network and engages marine scientists at all career stages. The scientific leadership of OCB includes a scientific steering committee and subcommittees on ocean time-series, ocean acidification, and ocean fertilization. This presentation will highlight recent OCB activities and products of interest to the ocean science community.

  20. OCEANUS: A high science return Uranus orbiter with a low-cost instrument suite

    NASA Astrophysics Data System (ADS)

    Elder, C. M.; Bramson, A. M.; Blum, L. W.; Chilton, H. T.; Chopra, A.; Chu, C.; Das, A.; Davis, A. B.; Delgado, A.; Fulton, J.; Jozwiak, L. M.; Khayat, A.; Landis, M. E.; Molaro, J. L.; Slipski, M.; Valencia, S.; Watkins, J.; Young, C. L.; Budney, C. J.; Mitchell, K. L.

    2018-07-01

    Ice-giant-sized planets are the most common type of observed exoplanet, yet the two ice giants in our own solar system (Uranus and Neptune) are the least explored class of planet, having only been observed through ground-based observations and a single flyby each by Voyager 2 approximately 30 years ago. These single flybys were unable to characterize the spatial and temporal variability in ice giant magnetospheres, some of the most odd and intriguing magnetospheres in the solar system. They also offered only limited constraints on the internal structure of ice giants; understanding the internal structure of a planet is important for understanding its formation and evolution. The most recent planetary science Decadal Survey by the U.S. National Academy of Sciences, "Vision and Voyages for Planetary Science in the Decade 2013-2022," identified the ice giant Uranus as the third highest priority for a Flagship mission in the decade 2013-2022. However, in the event that NASA or another space agency is unable to fly a Flagship-class mission to an ice giant in the next decade, this paper presents a mission concept for a focused, lower cost Uranus orbiter called OCEANUS (Origins and Composition of the Exoplanet Analog Uranus System). OCEANUS would increase our understanding of the interior structure of Uranus, its magnetosphere, and how its magnetic field is generated. These goals could be achieved with just a magnetometer and the spacecraft's radio system. This study shows that several of the objectives outlined by the Decadal Survey, including one of the two identified as highest priority, are within reach for a New-Frontiers-class mission.

  1. Setting Healthcare Priorities at the Macro and Meso Levels: A Framework for Evaluation.

    PubMed

    Barasa, Edwine W; Molyneux, Sassy; English, Mike; Cleary, Susan

    2015-09-16

    Priority setting in healthcare is a key determinant of health system performance. However, there is no widely accepted priority setting evaluation framework. We reviewed literature with the aim of developing and proposing a framework for the evaluation of macro and meso level healthcare priority setting practices. We systematically searched Econlit, PubMed, CINAHL, and EBSCOhost databases and supplemented this with searches in Google Scholar, relevant websites and reference lists of relevant papers. A total of 31 papers on evaluation of priority setting were identified. These were supplemented by broader theoretical literature related to evaluation of priority setting. A conceptual review of selected papers was undertaken. Based on a synthesis of the selected literature, we propose an evaluative framework that requires that priority setting practices at the macro and meso levels of the health system meet the following conditions: (1) Priority setting decisions should incorporate both efficiency and equity considerations as well as the following outcomes; (a) Stakeholder satisfaction, (b) Stakeholder understanding, (c) Shifted priorities (reallocation of resources), and (d) Implementation of decisions. (2) Priority setting processes should also meet the procedural conditions of (a) Stakeholder engagement, (b) Stakeholder empowerment, (c) Transparency, (d) Use of evidence, (e) Revisions, (f) Enforcement, and (g) Being grounded on community values. Available frameworks for the evaluation of priority setting are mostly grounded on procedural requirements, while few have included outcome requirements. There is, however, increasing recognition of the need to incorporate both consequential and procedural considerations in priority setting practices. In this review, we adapt an integrative approach to develop and propose a framework for the evaluation of priority setting practices at the macro and meso levels that draws from these complementary schools of thought. © 2015 by Kerman University of Medical Sciences.

  2. From Bench to Bedside: A communal utility value intervention to enhance students' biomedical science motivation.

    PubMed

    Brown, Elizabeth R; Smith, Jessi L; Thoman, Dustin B; Allen, Jill M; Muragishi, Gregg

    2015-11-01

    Motivating students to pursue science careers is a top priority among many science educators. We add to the growing literature by examining the impact of a utility value intervention to enhance student's perceptions that biomedical science affords important utility work values. Using an expectancy-value perspective we identify and test two types of utility value: communal (other-oriented) and agentic (self-oriented). The culture of science is replete with examples emphasizing high levels of agentic value, but communal values are often (stereotyped as) absent from science. However, people in general want an occupation that has communal utility. We predicted and found that an intervention emphasizing the communal utility value of biomedical research increased students' motivation for biomedical science (Studies 1-3). We refined whether different types of communal utility value (working with, helping, and forming relationships with others) might be more or less important, demonstrating that helping others was an especially important predictor of student motivation (Study 2). Adding agentic utility value to biomedical research did not further increase student motivation (Study 3). Furthermore, the communal value intervention indirectly impacted students' motivation because students believed that biomedical research was communal and thus subsequently more important (Studies 1-3). This is key, because enhancing student communal value beliefs about biomedical research (Studies 1-3) and science (Study 4) was associated both with momentary increases in motivation in experimental settings (Studies 1-3) and increased motivation over time among students highly identified with biomedicine (Study 4). We discuss recommendations for science educators, practitioners, and faculty mentors who want to broaden participation in science.

  3. Accumulating Data to Optimally Predict Obesity Treatment (ADOPT) Core Measures: Psychosocial Domain.

    PubMed

    Sutin, Angelina R; Boutelle, Kerri; Czajkowski, Susan M; Epel, Elissa S; Green, Paige A; Hunter, Christine M; Rice, Elise L; Williams, David M; Young-Hyman, Deborah; Rothman, Alexander J

    2018-04-01

    Within the Accumulating Data to Optimally Predict obesity Treatment (ADOPT) Core Measures Project, the psychosocial domain addresses how psychosocial processes underlie the influence of obesity treatment strategies on weight loss and weight maintenance. The subgroup for the psychosocial domain identified an initial list of high-priority constructs and measures that ranged from relatively stable characteristics about the person (cognitive function, personality) to dynamic characteristics that may change over time (motivation, affect). This paper describes (a) how the psychosocial domain fits into the broader model of weight loss and weight maintenance as conceptualized by ADOPT; (b) the guiding principles used to select constructs and measures for recommendation; (c) the high-priority constructs recommended for inclusion; (d) domain-specific issues for advancing the science; and (e) recommendations for future research. The inclusion of similar measures across trials will help to better identify how psychosocial factors mediate and moderate the weight loss and weight maintenance process, facilitate research into dynamic interactions with factors in the other ADOPT domains, and ultimately improve the design and delivery of effective interventions. © 2018 The Obesity Society.

  4. An overview of the effectiveness and efficiency of HIV prevention programs.

    PubMed Central

    Holtgrave, D R; Qualls, N L; Curran, J W; Valdiserri, R O; Guinan, M E; Parra, W C

    1995-01-01

    Because of the enormity of the HIV-AIDS epidemic and the urgency for preventing transmission, HIV prevention programs are a high priority for careful and timely evaluations. Information on program effectiveness and efficiency is needed for decision-making about future HIV prevention priorities. General characteristics of successful HIV prevention programs, programs empirically evaluated and found to change (or not change) high-risk behaviors or in need of further empirical study, and economic evaluations of certain programs are described and summarized with attention limited to programs that have a behavioral basis. HIV prevention programs have an impact on averting or reducing risk behaviors, particularly when they are delivered with sufficient resources, intensity, and cultural competency and are based on a firm foundation of behavioral and social science theory and past research. Economic evaluations have found that some of these behaviorally based programs yield net economic benefits to society, and others are likely cost-effective (even if not cost-saving) relative to other health programs. Still, specific improvements should be made in certain HIV prevention programs. PMID:7630989

  5. The use of citation indicators to identify and support high-quality research in Poland.

    PubMed

    Pilc, Andrzej

    2008-01-01

    In large, mostly English-speaking countries, where the "critical mass" of scientists working in different subfields of science is achieved, the peer review system may be sufficient to assess the quality of scientific research. However, in smaller countries, outside the Anglo-American circle, it is important to introduce different systems to identify research of high quality. In Poland, a parametric system for assessing the quality of research has been introduced. It was largely based on the impact factor of scientific journals. While the use of this indicator to assess research quality is highly questionable, the implementation of the system in the Polish reality is even worse. Therefore it is important to change and improve the system currently used by the Ministry of Science and Higher Education to both evaluate and, more importantly, finance science in Poland. Here, a system based on three factors, i.e. the impact factor, the institutional h-index, and the institutional number of citations, is proposed. The scientific quality of institutions in Division VI: Medical Sciences of the Polish Academy of Sciences were evaluated and the results were compared with the existing system. Moreover, a method to identify high-quality researchers and institutions at the national level based on the quantity of highly cited papers is shown. Additionally, an attempt to identify the highest quality Polish research on an international level is proposed. This is based on the number of individual citations, the individual h-index, the number of publications, and the priority of the discovery.

  6. Parents' and children's beliefs about science and science careers

    NASA Astrophysics Data System (ADS)

    Telfer, Jo Ann

    Science has become an essential part of our cultural, social and technological lives. Around the world economic policies are giving high priority to the production of new knowledge generated by scientists. Unfortunately, gender equality in science-related careers has not been achieved. Women who possess high intellectual and personal abilities are succeeding in many occupational areas previously closed to all but the most impervious women, but females are still largely underrepresented in physical science and mathematics related careers. The purpose of the current study was to examine the reasons for this underrepresentation of women in science-related careers. Participants included a subset of mothers (n = 174), fathers (n = 132) and children (n = 186) from a larger study at the University of Calgary entitled Gender Differences in Student Participation and Achievement in the Sciences: Choice or Chance ? Telephone interview and survey questionnaire data were examined for gender and achievement level differences, focusing on high achieving girls who are most likely to succeed in science-related careers. Relationships between parents' and children's responses were also examined using the theoretical construct of Eccles' Model of Achievement Related Choices. Gathered data were studied using factor analysis, multivariate analysis of variance, analysis of variance as well as categorical analysis of qualitative results. Girls and boys achieved similar grades on all academic measures except the Alberta Science Achievement Test, where boys scored significantly higher than girls. Mothers, fathers, and children indicated positive attitudes towards science, no gender stereotyping about science and science careers, and gender neutral beliefs about science achievement. Gender differences were found in expressed possibility of future career choice. Science/Professional Careers were viewed as male occupations by mothers and children, but as gender neutral occupations by fathers. There were no significant differences between high-achieving girls and other gender/achievement groups. Results supported Eccles' Model of Achievement Related Choices (1994) where parents, as socializers, influenced the attitudes, stereotypes, beliefs and future career goals of their children. This study suggested that, while many gender inequities have lessened or disappeared, mothers' stereotypic view of science-related careers may contribute to women's continued underrepresentation in this important occupational area.

  7. GSD Update: Year in Review: Spotlight on 2017 Research by the Grassland, Shrubland and Desert Ecosystems Science Program

    Treesearch

    Deborah M. Finch

    2018-01-01

    In this issue of the GSD Update, we feature selected studies of the RMRS Grassland, Shrubland and Desert Ecosystems Science Program (GSD) that focus on the theme of fire. Significant results of recent research and science delivery by GSD scientists are highlighted. We feature program research that lines up with the strategic priorities and goals of the USDA Forest...

  8. GSD Update: Year in Review: Spotlight on 2016 Research by the Grassland, Shrubland and Desert Ecosystems Science Program

    Treesearch

    Deborah M. Finch

    2017-01-01

    In this issue of the GSD Update, we take a look back at selected studies of the Grassland, Shrubland and Desert Ecosystems Science Program (GSD) that depict its strengths and focus areas. Significant results of recent research and science delivery by GSD scientists are highlighted. We feature program research that lines up with the strategic priorities of the USDA...

  9. Science Questions and Broad Outline of Technology Needs of the Decade 2013-2022

    NASA Technical Reports Server (NTRS)

    SlIllon-Miller, A. A.

    2012-01-01

    We present an overview of the top priority science questions outlined in the Planetary Exploration Decadal Survey, "Vision and Voyages for Planetary Science in the Decade 2013-2022." The recommended mission portfolio, along with expected infrastructure challenges, should drive investments over the decade. The instrument and technology needs for the next decade will be presented, with a summary of progress since the Decadal.

  10. GSD Update: Year in Review: Spotlight on 2013 research by the Grassland, Shrubland and Desert Ecosystems Science Program

    Treesearch

    Deborah M. Finch

    2014-01-01

    In this issue of the GSD Update, we take a look back at selected studies of the Grassland, Shrubland and Desert Ecosystems Science Program (GSD) that depict its strengths and focus areas. Significant results of recent research and science delivery by GSD scientists are highlighted. We feature program research that lines up with the strategic research priorities of the...

  11. GSD Update: Year in Review: Spotlight on 2014 Research by the Grassland, Shrubland and Desert Ecosystems Science Program

    Treesearch

    Deborah Finch; David Hawksworth

    2015-01-01

    In this issue of the GSD Update, we take a look back at selected studies of the Grassland, Shrubland and Desert Ecosystems Science Program (GSD) that depict its strengths and focus areas. Significant results of recent research and science delivery by GSD scientists are highlighted. We feature program research that lines up with the strategic research priorities of the...

  12. GSD Update: Year in Review: Spotlight on 2012 Research by the Grassland, Shrubland and Desert Ecosystems Science Program

    Treesearch

    Deborah M. Finch

    2013-01-01

    In this issue of the GSD Update, we take a look back at selected studies of the Grassland, Shrubland and Desert Ecosystem Science Program (GSD) that depict its strengths and focus areas. Significant results of recent research and science applications by GSD scientists are highlighted. We identify where program research lines up with the strategic priorities of the USDA...

  13. Behavioral and Social Sciences at the National Institutes of Health: adoption of research findings in health research and practice as a scientific priority.

    PubMed

    Riley, William T

    2017-06-01

    The National Institutes of Health's Office of Behavioral and Social Sciences Research (OBSSR) recently released its Strategic Plan for 2017 to 2021. This plan highlights three scientific priorities: (1) improve the synergy of basic and applied behavioral and social sciences research, (2) enhance and promote the research infrastructure, methods, and measures needed to support a more cumulative and integrated approach to behavioral and social sciences research, and (3) facilitate the adoption of behavioral and social sciences research findings in health research and in practice. This commentary focuses on the challenges and opportunities to facilitate the adoption of research findings in health research and in practice. In addition to the ongoing NIH support for dissemination and implementation (D&I) research, we must address transformative challenges and opportunities such as better disseminating and implementing D&I research, merging research and practice, adopting more rigorous and diverse methods and measures for both D&I and clinical trials research, evaluating technological-based delivery of interventions, and transitioning from minimally adaptable intervention packages to planned adaptations rooted in behavior change principles. Beyond translation into practice and policy, the OBSSR Strategic Plan also highlights the need for translation of behavioral and social science findings into the broader biomedical research enterprise.

  14. An implementation plan for priorities in solar-system space physics

    NASA Technical Reports Server (NTRS)

    Krimigis, Stamatios M.; Athay, R. Grant; Baker, Daniel; Fisk, Lennard A.; Fredricks, Robert W.; Harvey, John W.; Jokipii, Jack R.; Kivelson, Margaret; Mendillo, Michael; Nagy, Andrew F.

    1985-01-01

    The scientific objectives and implementation plans and priorities of the Space Science Board in areas of solar physics, heliospheric physics, magnetospheric physics, upper atmosphere physics, solar-terrestrial coupling, and comparative planetary studies are discussed and recommended programs are summarized. Accomplishments of Skylab, Solar Maximum Mission, Nimbus-7, and 11 other programs are highlighted. Detailed mission plans in areas of solar and heliospheric physics, plasma physics, and upper atmospheric physics are also described.

  15. U.S. Geological Survey Water science strategy--observing, understanding, predicting, and delivering water science to the nation

    USGS Publications Warehouse

    Evenson, Eric J.; Orndorff, Randall C.; Blome, Charles D.; Böhlke, John Karl; Hershberger, Paul K.; Langenheim, V.E.; McCabe, Gregory J.; Morlock, Scott E.; Reeves, Howard W.; Verdin, James P.; Weyers, Holly S.; Wood, Tamara M.

    2013-01-01

    This report expands the Water Science Strategy that began with the USGS Science Strategy, “Facing Tomorrow’s Challenges—U.S. Geological Survey Science in the Decade 2007–2017” (U.S. Geological Survey, 2007). This report looks at the relevant issues facing society and develops a strategy built around observing, understanding, predicting, and delivering water science for the next 5 to 10 years by building new capabilities, tools, and delivery systems to meet the Nation’s water-resource needs. This report begins by presenting the vision of water science for the USGS and the societal issues that are influenced by, and in turn influence, the water resources of our Nation. The essence of the Water Science Strategy is built on the concept of “water availability,” defined as spatial and temporal distribution of water quantity and quality, as related to human and ecosystem needs, as affected by human and natural influences. The report also describes the core capabilities of the USGS in water science—the strengths, partnerships, and science integrity that the USGS has built over its 134-year history. Nine priority actions are presented in the report, which combine and elevate the numerous specific strategic actions listed throughout the report. Priority actions were developed as a means of providing the audience of this report with a list for focused attention, even if resources and time limit the ability of managers to address all of the strategic actions in the report.

  16. Science for the 21st Century

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    2004-07-01

    The Federal government plays a key role in supporting the country's science infrastructure, a national treasure, and scientific research, an investment in our future. Scientific discoveries transform the way we think about our universe and ourselves, from the vastness of space to molecular-level biology. In innovations such as drugs derived through biotechnology and new communications technologies we see constant evidence of the power of science to improve lives and address national challenges. We had not yet learned to fly at the dawn of the 20th century, and could not have imagined the amazing 20th century inventions that we now takemore » for granted. As we move into the 21st century, we eagerly anticipate new insights, discoveries, and technologies that will inspire and enrich us for many decades to come. This report presents the critical responsibilities of our Federal science enterprise and the actions taken by the Federal research agencies, through the National Science and Technology Council, to align our programs with scientific opportunity and with national needs. The many examples show how our science enterprise has responded to the President's priorities for homeland and national security, economic growth, health research, and the environment. In addition, we show how the science agencies work together to set priorities; coordinate related research programs; leverage investments to promote discovery, translate science into national benefits, and sustain the national research enterprise; and promote excellence in math and science education and work force development.« less

  17. Propagation and Interaction of Edge Dislocation (Kink) in the Square Lattice

    NASA Astrophysics Data System (ADS)

    Jia, Li-Ping; Jasmina, T´; Duan, Wen-Shan

    2015-04-01

    Not Available Supported by the National Magnetic Confinement Fusion Science Program of China under Grant No 2014GB104002, the Strategic Priority Research Program of Chinese Academy of Sciences under Grant No XDA03030100, the National Natural Science Foundation of China under Grant Nos 11275156 and 11304324, the Open Project Program of State Key Laboratory of Theoretical Physics of Institute of Theoretical Physics of Chinese Academy of Sciences under Grant No Y4KF201CJ1, and the Serbian Ministry of Education and Science under Grant No III-45010.

  18. Patterns in Nature: Challenging Secondary Students to Learn about Physical Laws

    ERIC Educational Resources Information Center

    Taber, Keith S.

    2011-01-01

    Teaching about the nature of science is seen as a priority within science education, and has also been highlighted as a suitable context for challenging the most able ("gifted") learners at secondary school level. This article discusses a practical session designed to introduce the idea of physical (natural) laws. The session asks…

  19. Pentagon Spending on Research Sees Largest Increase in a Decade.

    ERIC Educational Resources Information Center

    Brainard, Jeffrey

    1999-01-01

    Examines trends in Pentagon support of campus-based military research and reports that lawmakers gave the Defense Department a science budget 11 percent higher in 2000 than in 1999. Notes critics' concerns about Pentagon priorities versus the nation's science needs and lobbying by university and industry groups in the Coalition for National…

  20. Human Research Program Science Management: Overview of Research and Development Activities

    NASA Technical Reports Server (NTRS)

    Charles, John B.

    2007-01-01

    An overview of research and development activities of NASA's Human Research Science Management Program is presented. The topics include: 1) Human Research Program Goals; 2) Elements and Projects within HRP; 3) Development and Maintenance of Priorities; 4) Acquisition and Evaluation of Research and Technology Proposals; and 5) Annual Reviews

  1. Preparing Leaders for Math and Science: Three Alternatives to Traditional Preparation

    ERIC Educational Resources Information Center

    Lochmiller, Chad R.; Huggins, Kristin S.; Acker-Hocevar, Michele A.

    2012-01-01

    Improving student achievement in math and science has become a priority in the United States. As instructional leaders, principals can influence instruction in these vital subjects by working with classroom teachers to improve their instruction. Surprisingly, the research about the principal's role in supporting instruction in these subjects is…

  2. The Natural Sciences in the University: Change and Variation over the 20th Century

    ERIC Educational Resources Information Center

    Gabler, Jay; Frank, David John

    2005-01-01

    The changing academic priorities of universities are often discussed but little investigated by social scientists: What accounts for the striking expansions and contractions in disciplinary fields over time? Focusing specifically on the natural sciences, this article articulates a global-institutional argument that holds that deep shifts in…

  3. Defining a discovery: priority and methodological controversy in early nineteenth-century anatomy

    PubMed Central

    Berkowitz, Carin

    2014-01-01

    In the early nineteenth century, Charles Bell and François Magendie engaged in a decades-long priority dispute over the discovery of the roots of motor and sensory nerves. The constantly recalibrated arguments of its participants illuminate changes in the life sciences during that period. When Bell first wrote about the nerves in 1811, surgeon-anatomists ran small schools out of their homes, natural theology was in vogue, exchanges between British and French medical practitioners were limited by the Napoleonic Wars, and British practitioners typically rejected experimental physiology and vivisection. By the end of Magendie's career, medical science was produced in the laboratory, taught through artfully produced performances of the sort at which Magendie excelled, and disseminated through journals. It is not entirely clear which historical character, Bell or Magendie, ‘won’ the dispute, nor that they even had clear and consistent positions in it, but what is clear is that one style of science had won out over the other, and over the course of the dispute, pedagogy lost pride of place in medical science. PMID:27494015

  4. Quantitative evaluation of space charge effects of laser-cooled three-dimensional ion system on a secular motion period scale

    NASA Astrophysics Data System (ADS)

    Du, Li-Jun; Song, Hong-Fang; Chen, Shao-Long; Huang, Yao; Tong, Xin; Guan, Hua; Gao, Ke-Lin

    2018-04-01

    Not Available Project supported by the National Key Research and Development Program of China (Grant No. 2017YFA0304401), the National Natural Science Foundation of China (Grant Nos. 11622434, 11474318, 91336211, and 11634013), the Strategic Priority Research Program of the Chinese Academy of Sciences (Grant No. XDB21030100), Hubei Province Science Fund for Distinguished Young Scholars (Grant No. 2017CFA040), and the Youth Innovation Promotion Association of the Chinese Academy of Sciences (Grant No. 2015274).

  5. The Unlikely Origins of NASA’s “Search for Origins” Program

    NASA Astrophysics Data System (ADS)

    Perez, Mario R.; Thronson, Harley A.

    2017-01-01

    NASA’s Origins Program for many years was by far one of the most important scientific initiatives in NASA’s history, linking together priority research campaigns in planetary science, astrophysics, and the biological sciences. It served also as an overarching description to the agency stakeholders of a new generation of major space missions and technology investments. Moreover, the Program, although no longer formally in existence, significantly influences multiple major science priorities for NASA even today. Remarkably, inception of NASA’s Origins Program — The Search for Our Cosmic Roots — two decades ago was initiated by the country’s political leadership, not by the scientific community, the National Academy of Sciences, or by an advisory panel of experts. Instead, it was an initiative by the White House in response to the stunning announcement of ‘evidence’ for life found on a Martian meteorite not long after the discovery of the first extrasolar planet orbiting a sun-like star. A White House memo dated in September 1996, written by John H. Gibbons, Assistant to the President for Science and Technology to Dan Goldin, NASA Administrator at that time, called for a “Space Summit” that would include experts on three broad topics: the universe, planets, and life.The summit was jointly organized by NASA and the National Research Council, and was chaired by Vice-President Al Gore in late October 1996. Three dozen biologists, planetary scientists, astronomers, and cosmologists participated. The outcome was the Origins Program, which has been a prominent part of NASA’s science program ever since, theme which is captured by the simple and profound questions: How Did We Get Here? and Are We Alone?This particular initiative and its genesis demonstrates that science discoveries, followed by political activism and then executive orders can impact and shape for decades the paths to major science priorities, practices, and implementation. In this presentation, we summarize the inception of the Search for Origins initiative, especially its beginnings outside the scientific community, and its early justification and activities.

  6. Future health applications of genomics: priorities for communication, behavioral, and social sciences research.

    PubMed

    McBride, Colleen M; Bowen, Deborah; Brody, Lawrence C; Condit, Celeste M; Croyle, Robert T; Gwinn, Marta; Khoury, Muin J; Koehly, Laura M; Korf, Bruce R; Marteau, Theresa M; McLeroy, Kenneth; Patrick, Kevin; Valente, Thomas W

    2010-05-01

    Despite the quickening momentum of genomic discovery, the communication, behavioral, and social sciences research needed for translating this discovery into public health applications has lagged behind. The National Human Genome Research Institute held a 2-day workshop in October 2008 convening an interdisciplinary group of scientists to recommend forward-looking priorities for translational research. This research agenda would be designed to redress the top three risk factors (tobacco use, poor diet, and physical inactivity) that contribute to the four major chronic diseases (heart disease, type 2 diabetes, lung disease, and many cancers) and account for half of all deaths worldwide. Three priority research areas were identified: (1) improving the public's genetic literacy in order to enhance consumer skills; (2) gauging whether genomic information improves risk communication and adoption of healthier behaviors more than current approaches; and (3) exploring whether genomic discovery in concert with emerging technologies can elucidate new behavioral intervention targets. Important crosscutting themes also were identified, including the need to: (1) anticipate directions of genomic discovery; (2) take an agnostic scientific perspective in framing research questions asking whether genomic discovery adds value to other health promotion efforts; and (3) consider multiple levels of influence and systems that contribute to important public health problems. The priorities and themes offer a framework for a variety of stakeholders, including those who develop priorities for research funding, interdisciplinary teams engaged in genomics research, and policymakers grappling with how to use the products born of genomics research to address public health challenges. 2010. Published by Elsevier Inc.

  7. Scientific Contributions to GEO Global Earth Observation Priorities

    NASA Astrophysics Data System (ADS)

    Friedl, L.; Ledrew, E.

    2009-12-01

    Numerous counties and non-governmental organizations have produced documents, held workshops, and published reports in the past decade that identify Earth observation needs to meet their particular objectives. The Group on Earth Observations (GEO) has conducted a review of these documents, workshops, and reports to identify the priority observations common to many societal benefit areas. GEO has made a concerted effort to include materials from a broad range of user types, including scientific researchers, resource managers, and policy makers. GEO has also sought an international breadth in the materials reviewed, including observation priorities from developing countries. The activity will help GEO optimize the observations in GEOSS that are most likely to provide societal benefits, and GEO members will use the results of this meta-analysis to support investment decisions. The Earth observations in GEOSS serve scientific research and applications endeavors. As a primary user of ground-based, airborne, in situ, and space-based observations of the Earth, the scientific community has a significant voice and vested interest in the observations offered through GEOSS. Furthermore, the science and technology community will have opportunities to identify critical scientific/technological advances needed to produce any observations that are needed yet not currently available. In this paper, we will discuss this GEO effort to identify Earth observations priorities. We will present initial findings for some societal benefit areas and the overall meta-analysis. We will also discuss possible roles for the science and technology community to contribute to those priorities, such as scientific advances needed to achieve the observations or to realize societal benefits from the observations.

  8. U.S. Department of the Interior South Central Climate Science Center

    USGS Publications Warehouse

    Shipp, Allison A.

    2012-01-01

    On September 14, 2009, the Secretary of the Interior signed a Secretarial Order (No. 3289) entitled, "Addressing the Impacts of Climate Change on America's Water, Land, and Other Natural and Cultural Resources." The Order effectively established the U.S. Department of the Interior (DOI) Climate Science Centers (CSCs) for the purpose of integrating DOI science and management expertise with similar contributions from our partners to provide information to support strategic adaptation and mitigation efforts on public and private lands across the United States and internationally. The South Central Climate Science Center (SC CSC) is supported by a consortium of partners that include The University of Oklahoma, Texas Tech University, Louisiana State University, The Chickasaw Nation, The Choctaw Nation of Oklahoma, Oklahoma State University, and the National Oceanic and Atmospheric Administration's Geophysical Fluid Dynamics Laboratory. Additionally, the SC CSC will collaborate with a number of other universities, State and federal agencies, and nongovernmental organizations (NGOs) with interests and expertise in climate science. The primary partners of the SC CSC are the Landscape Conservation Cooperatives (LCCs), which include the Desert, Eastern Tallgrass Prairie and Big Rivers, Great Plains, Gulf Coast Prairie, Gulf Coastal Plains and Ozarks, and Southern Rockies. CSC collaborations are focused on common science priorities that address priority partner needs, eliminate redundancies in science, share scientific information and findings, and expand understanding of climate change impacts in the south-central United States and Mexico.

  9. SciBox, an end-to-end automated science planning and commanding system

    NASA Astrophysics Data System (ADS)

    Choo, Teck H.; Murchie, Scott L.; Bedini, Peter D.; Steele, R. Josh; Skura, Joseph P.; Nguyen, Lillian; Nair, Hari; Lucks, Michael; Berman, Alice F.; McGovern, James A.; Turner, F. Scott

    2014-01-01

    SciBox is a new technology for planning and commanding science operations for Earth-orbital and planetary space missions. It has been incrementally developed since 2001 and demonstrated on several spaceflight projects. The technology has matured to the point that it is now being used to plan and command all orbital science operations for the MErcury Surface, Space ENvironment, GEochemistry, and Ranging (MESSENGER) mission to Mercury. SciBox encompasses the derivation of observing sequences from science objectives, the scheduling of those sequences, the generation of spacecraft and instrument commands, and the validation of those commands prior to uploading to the spacecraft. Although the process is automated, science and observing requirements are incorporated at each step by a series of rules and parameters to optimize observing opportunities, which are tested and validated through simulation and review. Except for limited special operations and tests, there is no manual scheduling of observations or construction of command sequences. SciBox reduces the lead time for operations planning by shortening the time-consuming coordination process, reduces cost by automating the labor-intensive processes of human-in-the-loop adjudication of observing priorities, reduces operations risk by systematically checking constraints, and maximizes science return by fully evaluating the trade space of observing opportunities to meet MESSENGER science priorities within spacecraft recorder, downlink, scheduling, and orbital-geometry constraints.

  10. Space astronomy and astrophysics program by NASA

    NASA Astrophysics Data System (ADS)

    Hertz, Paul L.

    2014-07-01

    The National Aeronautics and Space Administration recently released the NASA Strategic Plan 20141, and the NASA Science Mission Directorate released the NASA 2014 Science Plan3. These strategic documents establish NASA's astrophysics strategic objectives to be (i) to discover how the universe works, (ii) to explore how it began and evolved, and (iii) to search for life on planets around other stars. The multidisciplinary nature of astrophysics makes it imperative to strive for a balanced science and technology portfolio, both in terms of science goals addressed and in missions to address these goals. NASA uses the prioritized recommendations and decision rules of the National Research Council's 2010 decadal survey in astronomy and astrophysics2 to set the priorities for its investments. The NASA Astrophysics Division has laid out its strategy for advancing the priorities of the decadal survey in its Astrophysics 2012 Implementation Plan4. With substantial input from the astrophysics community, the NASA Advisory Council's Astrophysics Subcommittee has developed an astrophysics visionary roadmap, Enduring Quests, Daring Visions5, to examine possible longer-term futures. The successful development of the James Webb Space Telescope leading to a 2018 launch is an Agency priority. One important goal of the Astrophysics Division is to begin a strategic mission, subject to the availability of funds, which follows from the 2010 decadal survey and is launched after the James Webb Space Telescope. NASA is studying a Wide Field Infrared Survey Telescope as its next large astrophysics mission. NASA is also planning to partner with other space agencies on their missions as well as increase the cadence of smaller Principal Investigator led, competitively selected Astrophysics Explorers missions.

  11. Ecosystem Services Modeling as a Tool for Defining Priority Areas for Conservation.

    PubMed

    Duarte, Gabriela Teixeira; Ribeiro, Milton Cezar; Paglia, Adriano Pereira

    2016-01-01

    Conservationists often have difficulty obtaining financial and social support for protected areas that do not demonstrate their benefits for society. Therefore, ecosystem services have gained importance in conservation science in the last decade, as these services provide further justification for appropriate management and conservation of natural systems. We used InVEST software and a set of GIS procedures to quantify, spatialize and evaluated the overlap between ecosystem services-carbon stock and sediment retention-and a biodiversity proxy-habitat quality. In addition, we proposed a method that serves as an initial approach of a priority areas selection process. The method considers the synergism between ecosystem services and biodiversity conservation. Our study region is the Iron Quadrangle, an important Brazilian mining province and a conservation priority area located in the interface of two biodiversity hotspots, the Cerrado and Atlantic Forest biomes. The resultant priority area for the maintenance of the highest values of ecosystem services and habitat quality was about 13% of the study area. Among those priority areas, 30% are already within established strictly protected areas, and 12% are in sustainable use protected areas. Following the transparent and highly replicable method we proposed in this study, conservation planners can better determine which areas fulfill multiple goals and can locate the trade-offs in the landscape. We also gave a step towards the improvement of the habitat quality model with a topography parameter. In areas of very rugged topography, we have to consider geomorfometric barriers for anthropogenic impacts and for species movement and we must think beyond the linear distances. Moreover, we used a model that considers the tree mortality caused by edge effects in the estimation of carbon stock. We found low spatial congruence among the modeled services, mostly because of the pattern of sediment retention distribution.

  12. Ecosystem Services Modeling as a Tool for Defining Priority Areas for Conservation

    PubMed Central

    Duarte, Gabriela Teixeira; Ribeiro, Milton Cezar; Paglia, Adriano Pereira

    2016-01-01

    Conservationists often have difficulty obtaining financial and social support for protected areas that do not demonstrate their benefits for society. Therefore, ecosystem services have gained importance in conservation science in the last decade, as these services provide further justification for appropriate management and conservation of natural systems. We used InVEST software and a set of GIS procedures to quantify, spatialize and evaluated the overlap between ecosystem services—carbon stock and sediment retention—and a biodiversity proxy–habitat quality. In addition, we proposed a method that serves as an initial approach of a priority areas selection process. The method considers the synergism between ecosystem services and biodiversity conservation. Our study region is the Iron Quadrangle, an important Brazilian mining province and a conservation priority area located in the interface of two biodiversity hotspots, the Cerrado and Atlantic Forest biomes. The resultant priority area for the maintenance of the highest values of ecosystem services and habitat quality was about 13% of the study area. Among those priority areas, 30% are already within established strictly protected areas, and 12% are in sustainable use protected areas. Following the transparent and highly replicable method we proposed in this study, conservation planners can better determine which areas fulfill multiple goals and can locate the trade-offs in the landscape. We also gave a step towards the improvement of the habitat quality model with a topography parameter. In areas of very rugged topography, we have to consider geomorfometric barriers for anthropogenic impacts and for species movement and we must think beyond the linear distances. Moreover, we used a model that considers the tree mortality caused by edge effects in the estimation of carbon stock. We found low spatial congruence among the modeled services, mostly because of the pattern of sediment retention distribution. PMID:27145031

  13. Science Curriculum in the Market Liberal Society of the Twenty-first Century: `Re-visioning' the Idea of Science for All

    NASA Astrophysics Data System (ADS)

    Smith, Dorothy V.; Gunstone, Richard F.

    2009-01-01

    The period since the 1960s has seen dramatic change in the nature and practice of science, science education and secondary school education itself. This paper examines changes in the Science for All movement, setting these changes in the context of the societal shift towards market liberalism and the advancement of a new style of individualism. We argue that the climate of today requires a re-focusing of the priorities of secondary school science education, with a new emphasis on what Science for All implies for the education of those who will go on to be our scientific elite.

  14. Geological science needs studied

    NASA Astrophysics Data System (ADS)

    The Geological Sciences Board of the National Academy of Science is conducting a study of the trends, needs, and priorities of the geological sciences for the 1980s. Many organizations and individuals already have been contacted regarding this task; however, in order to ensure that the forthcoming report is based broadly on ideas from the scientific community, the Geological Sciences Board solicits the thoughts of AGU members about the substance of the study. Please send your questions and comments by early this fall to William Dickinson, chairman of the Geological Sciences Board, National Academy of Sciences, Room 69, 2101 Constitution Ave., N.W., Washington, D.C. 20418. A draft report is expected in January 1983.

  15. Aeronautics and Space Report of the President: Fiscal Year 2009 Activities

    NASA Technical Reports Server (NTRS)

    2009-01-01

    In fiscal year 2009 (FY 09), the Exploration Systems Mission Directorate's (ESMD) Advanced Capabilities Division (ACD) provided critical research and technology products that reduced operational and technical risks for the flight systems being developed by the Constellation Program.1 These products addressed high-priority technology requirements for lunar exploration; risk mitigation related to astronaut health and performance; basic research in life and physical sciences using the International Space Station (ISS), free-flying spacecraft, and ground-based laboratories; and lunar robotic missions to gather data relevant to future human lunar missions.

  16. Modeling Primary Atomization of Liquid Fuels using a Multiphase DNS/LES Approach

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Arienti, Marco; Oefelein, Joe; Doisneau, Francois

    2016-08-01

    As part of a Laboratory Directed Research and Development project, we are developing a modeling-and-simulation capability to study fuel direct injection in automotive engines. Predicting mixing and combustion at realistic conditions remains a challenging objective of energy science. And it is a research priority in Sandia’s mission-critical area of energy security, being also relevant to many flows in defense and climate. High-performance computing applied to this non-linear multi-scale problem is key to engine calculations with increased scientific reliability.

  17. Scientific background of contemporary approach in the priority areas of medical science in the field of radiation medicine and radiobiology.

    PubMed

    Chumak, A A; Medvedovska, N V; Ovsannikova, L M

    2013-01-01

    OBJECTIVE. To analyze the results of scientific research on the problems of radiation medicine and radiobiology for the further outlining of the priority fields of research in this area. MATERIALS. Perspective plans and annual summary of research (R & D) NAMS of Ukraine, interim and final reports on implementation of research, reports on the activities of institutions, thematic scientific publications. METHODS. Semantic and content analysis, bibliometry, historical and logical analysis. RESULTS. The definition of major oncological risks of radiation effects, study of radiation risks of morbidity and mortality from cardiovascular and cerebrovascular diseases, cognitive effects and cataract in liquidators of the Chornobyl nuclear power plant accident, study of transgenic effects of the brain irradiation, other organs and systems in various stages of ontogenesis in exposed in utero, in offspring of exposed parents; study of the effects of occupational exposure were recognized as perspective and requiring further research in radiation medicine. CONCLUSION. Issues of NNCRM scientific activity are consistent with priority areas of research in Ukraine defined by the Law "On priority directions of science and technology", namely, aimed at substantiating of the development and preservation of human potential, aimed at the creation of modern technologies on prevention and treatment of most common diseases. Chumak A. A., Medvedovska N. V., Ovsjannikova L. M. 2013.

  18. In Brief: Climate Adaptation Summit report released

    NASA Astrophysics Data System (ADS)

    Showstack, Randy

    2010-10-01

    “We understand from the science that we have no choice between mitigation and adaptation. We have to do both,” John Holdren, President Barack Obama's science and technology advisor, said at a 29 September meeting where he was presented with a new report about national and regional preparations for adapting to changing climate. The report is based on the National Climate Adaptation Summit, which was convened by the University Corporation for Atmospheric Research in May 2010. Stating that the United States must adapt to a changing climate now and prepare for increasing impacts on urban infrastructure, food, water, human health, and ecosystems in the coming decades, the report identifies a set of priorities for near-term action. Among the priorities are developing an overarching national strategy, with research, planning, and management components to guide federal climate change adaptation programs. Other priorities include improving coordination of federal plans and programs and creating a federal climate information portal and a clearinghouse of best practices and tool kits for adaptation. The report also identifies other priorities, including the need for support for assessments in the U.S. Global Change Research Program agency budgets, for increasing funding for research on vulnerability and impacts, and for initiating a regional series of ongoing climate adaptation forums. For more information, see http://www.joss.ucar.edu/events/2010/ncas/index.html.

  19. Exploring the NRO Opportunity for a Hubble-Sized Wide-Field Near-IR Space Telescope - New WFIRST

    NASA Technical Reports Server (NTRS)

    Dressler, Alan; Spergel, David; Mountain, Matt; Postman, Mark; Elliott, Erin; Bendek, Eduardo; Bennett, David; Dalcanton, Julianne; Gaudi, Scott; Gehrels, Neil; hide

    2013-01-01

    We discuss scientific, technical, and programmatic issues related to the use of an NRO 2.4m telescope for the WFIRST initiative of the 2010 Decadal Survey. We show that this implementation of WFIRST, which we call "NEW WFIRST," would achieve the goals of the NWNH Decadal Survey for the WFIRST core programs of Dark Energy and Microlensing Planet Finding, with the crucial benefit of deeper and/or wider near-IR surveys for GO science and a potentially Hubble-like Guest Observer program. NEW WFIRST could also include a coronagraphic imager for direct detection of dust disks and planets around neighboring stars, a high-priority science and technology precursor for future ambitious programs to image Earth-like planets around neighboring stars.

  20. NASA and USGS invest in invasive species modeling to evaluate habitat for Africanized Honey Bees

    USGS Publications Warehouse

    2009-01-01

    Invasive non-native species, such as plants, animals, and pathogens, have long been an interest to the U.S. Geological Survey (USGS) and NASA. Invasive species cause harm to our economy (around $120 B/year), the environment (e.g., replacing native biodiversity, forest pathogens negatively affecting carbon storage), and human health (e.g., plague, West Nile virus). Five years ago, the USGS and NASA formed a partnership to improve ecological forecasting capabilities for the early detection and containment of the highest priority invasive species. Scientists from NASA Goddard Space Flight Center (GSFC) and the Fort Collins Science Center developed a longterm strategy to integrate remote sensing capabilities, high-performance computing capabilities and new spatial modeling techniques to advance the science of ecological invasions [Schnase et al., 2002].

  1. The National Research Council report on the Colleges of Agriculture at the Land Grant Universities: some issues of interest to poultry science.

    PubMed

    Ballenger, N

    1998-02-01

    The recently released National Research Council report, Colleges of Agriculture at the Land Grant Universities: Public Service and Public Policy (NRC 1996), may be of particular interest to poultry scientists. The dramatic changes in U.S. agriculture, which were among the factors that spawned the NRC's interest in a study of the land grant colleges, are probably nowhere more evident than in the poultry industry. Furthermore, there is considerable discussion in the report about the value of multi-state and multi-disciplinary efforts in teaching, research, and extension. The need to attract nontraditional students to poultry science curricula and to produce graduates well-suited for modern, vertically integrated agricultural enterprises, such as poultry, are a high priority.

  2. It Takes a Village. Collaborative Outer Planet Missions

    NASA Technical Reports Server (NTRS)

    Rymer, A. M.; Turtle, E. P.; Hofstadter, M. D.; Simon, A. A.; Hospodarsky, G. B.

    2017-01-01

    A mission to one or both of our local Ice Giants (Uranus and Neptune) emerged as a high priority in the most recent Planetary Science Decadal Survey and was also specifically mentioned supportively in the Heliophysics Decadal Survey. In 2016, NASA convened a science definition team to study ice giant mission concepts in more detail. Uranus and Neptune represent the last remaining planetary type in our Solar System to have a dedicated orbiting mission. The case for a Uranus mission has been made eloquently in the Decadal Surveys. Here we summarize some of the major drivers that lead to enthusiastic support for an Ice Giant mission in general, and use the example of a Uranus Mission concept to illustrate opportunities such a mission might provide for cross-division collaboration and cost-sharing.

  3. The Effectiveness of a Popular Science Promotion Program on Nanotechnology for Elementary School Students in I-Lan City

    ERIC Educational Resources Information Center

    Lin, Show-Yu; Wu, Ming-Ta; Cho, Ya-I; Chen, Hui-Huang

    2015-01-01

    Background: Nanotechnology education has become an urgent priority to nurture skilled human resources for the rapidly developing nanotechnology-related industries. The promotion of popular science education focusing on nanotechnology is an ideal approach to bridge the gaps in formal curricula, and to stimulate curiosity about and interest in…

  4. The Ranking of Global Environmental Issues and Problems by Polish Secondary Students and Teachers.

    ERIC Educational Resources Information Center

    Robinson, Michael; Trojok, Tomasz; Norwisz, Jan

    1997-01-01

    Identifies and discusses Polish student and teacher priorities of Bybee's 12 environmental problems in two cities in Katowice Province. Provides pertinent background on the Polish educational system. Presents reasons why the current science teaching model must be changed if the science curriculum is to provide more understanding of Bybee's 12…

  5. Elementary Teacher Self-Efficacy in Engineering and Student Achievement in Math and Science

    ERIC Educational Resources Information Center

    Gorena, Jacquelyn L.

    2015-01-01

    STEM education is a national priority, and more schools are implementing STEM K-12. Elementary teachers are prepared to teach science, mathematics, and technology, but teachers may not feel as prepared to teach engineering. Engineering is a new genre for elementary schools, and it is not typically a content area included in teacher preparation…

  6. Science priorities for reducing the threat of invasive species

    Treesearch

    E. A. Chornesky; A. M. Bartuska; G. H. Aplet; J. Cummings-Carlson; F. W. Davis; J. Eskow; D. R. Gordon; K. W. Gottschalk; R. A. Haack; A. J. Hansen; R. N. Mack; F. J. Rahel; M. A. Shannon; L. A. Wainger; T. B. Wigley

    2005-01-01

    Invasive species pose a major, yet poorly addressed, threat to sustainable forestry. Here we set forth an interdisciplinary science strategy of research, development, and applications to reduce this threat. To spur action by public and private entities that too often are slow, reluctant, or unable to act, we recommend (a) better integrating invasive species into...

  7. Beyond the atmosphere: Early years of space science

    NASA Technical Reports Server (NTRS)

    Newell, H. E.

    1980-01-01

    From the rocket measurements of the upper atmosphere and Sun that began in 1946, space science gradually emerged as a new field of scientific activity. The course of the United State space program is viewed in an historical context. Major emphasis is on NASA and its programs. The funding, staffing, organization, and priorities of the space program were reviewed.

  8. Scientific Value and Educational Goals: Balancing Priorities and Increasing Adult Engagement in a Citizen Science Project

    ERIC Educational Resources Information Center

    Sickler, Jessica; Cherry, Tammy Messick; Allee, Leslie; Smyth, Rebecca Rice; Losey, John

    2014-01-01

    The Lost Ladybug Project is a citizen science project that engages individuals and groups in research and learning about ladybug population dynamics. With a dual purpose of advancing scientists' research about ladybug populations and achieving learning outcomes with participants, the project's summative evaluation led to critical reflection on the…

  9. Policy Learning to Internationalize European Science: Possibilities and Limitations of Open Coordination

    ERIC Educational Resources Information Center

    Tamtik, Merli; Sá, Creso M.

    2014-01-01

    Mutual learning exercises have become increasingly employed in Europe over the last decade. This study examines the policy learning process in the area of internationalization of science and technology, which has been targeted as a priority for Europe. Through a case study of the open method of coordination expert group in this area, the analysis…

  10. Application of microdosimetry on biological physics for ionizing radiation

    NASA Astrophysics Data System (ADS)

    Chen, Dandan; Sun, Liang

    2018-02-01

    Not Available Project supported by the National Natural Science Foundation of China (Grant Nos. 11304212 and 11575124), the Natural Science Foundation of Jiangsu Province, China (Grant Nos. BK20130279), the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD), and the International Thermonuclear Experimental Reactor (ITER) Special Program of China (Grant No. 2014GB112006).

  11. 31P Nuclear Magnetic Resonance of Charge-Density-Wave Transition in a Single Crystal of RuP

    NASA Astrophysics Data System (ADS)

    Fan, Guo-Zhi; Chen, Rong-Yan; Wang, Nan-Lin; Luo, Jian-Lin

    2015-07-01

    Not Available Supported by the National Natural Science Foundation of China under Grant No 11025422, the National Basic Research Program of China under Grant Nos 2011CB921700 and 2015CB921300, and the Strategic Priority Research Program of the Chinese Academy of Sciences under Grant No XDB07020200.

  12. Annual Science and Technology Report to the Congress: 1982.

    ERIC Educational Resources Information Center

    Office of Science and Technology Policy, Washington, DC.

    This report provides a comprehensive statement of the Reagan administration's science and technology (S/T) policy and priorities. The report is organized into three chapters. Chapter I discusses S/T and United States society and the United States S/T policy. Highlights of the 1982 accomplishments in implementing the policy and of the fiscal year…

  13. Mapping Physical Sciences Teachers' Concerns Regarding the New Curriculum in South Africa

    ERIC Educational Resources Information Center

    Gudyanga, Remeredzayi; Jita, Loyiso C.

    2018-01-01

    This article reports on a study investigating physical sciences teachers' stages of concern (SoC) profiles during the implementation of the curriculum and assessment policy statement (CAPS) in South Africa. Throughout reform implementation, it is conceivable that teachers go through different SoC, ranging from giving low priority to the reform…

  14. America's Pressing Challenge - Building a Stronger Foundation. A Companion to Science and Engineering Indicators - 2006. NSB-06-02

    ERIC Educational Resources Information Center

    National Science Foundation, 2006

    2006-01-01

    This document identifies priorities for ensuring a world-class education in science, technology, engineering, and mathematics (STEM) fields for all Americans. America's competitive edge in this "flat world," its strength and versatility, all depend on an educational system capable of producing young people and productive citizens who are well…

  15. SMART Money: Do Financial Incentives Encourage College Students to Study Science?

    ERIC Educational Resources Information Center

    Evans, Brent

    2017-01-01

    Increasing the number of science, technology, engineering, and mathematics (STEM) degrees is a major federal education priority. I investigate whether providing a $4,000 financial incentive to low-income students in their junior and senior years of college induces them to major in a STEM field. Using administrative data from Ohio public colleges,…

  16. Assessing the Exposome with External Measures: Commentary on the State of the Science and Research Recommendations.

    PubMed

    Turner, Michelle C; Nieuwenhuijsen, Mark; Anderson, Kim; Balshaw, David; Cui, Yuxia; Dunton, Genevieve; Hoppin, Jane A; Koutrakis, Petros; Jerrett, Michael

    2017-03-20

    The exposome comprises all environmental exposures that a person experiences from conception throughout the life course. Here we review the state of the science for assessing external exposures within the exposome. This article reviews (a) categories of exposures that can be assessed externally, (b) the current state of the science in external exposure assessment, (c) current tools available for external exposure assessment, and (d) priority research needs. We describe major scientific and technological advances that inform external assessment of the exposome, including geographic information systems; remote sensing; global positioning system and geolocation technologies; portable and personal sensing, including smartphone-based sensors and assessments; and self-reported questionnaire assessments, which increasingly rely on Internet-based platforms. We also discuss priority research needs related to methodological and technological improvement, data analysis and interpretation, data sharing, and other practical considerations, including improved assessment of exposure variability as well as exposure in multiple, critical life stages.

  17. 76 FR 6395 - Request for Comments on the Strategy for American Innovation

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-02-04

    ... national priority areas, including clean energy, biotechnology, nanotechnology, educational and health... important is catalyzing greater interest and training in science, technology, engineering and mathematics...

  18. 76 FR 51369 - Meeting of the National Biodefense Science Board

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-08-18

    ... future chemical, biological, nuclear, and radiological agents, whether naturally occurring, accidental... of the NBSB's Anthrax Vaccine Working Group. Subsequent agenda topics will be added as priorities...

  19. Freight Priorities Act

    THOMAS, 113th Congress

    Sen. Booker, Cory A. [D-NJ

    2014-05-21

    Senate - 05/21/2014 Read twice and referred to the Committee on Commerce, Science, and Transportation. (All Actions) Tracker: This bill has the status IntroducedHere are the steps for Status of Legislation:

  20. [Bellagio Report on Healthy Agriculture, Healthy Nutrition, Healthy People].

    PubMed

    Simopoulos, Artemis P; Bourne, Peter G; Faergeman, Ole

    2013-11-01

    The Bellagio Report on Healthy Agriculture, Healthy Nutrition, Healthy People is the result of the meeting held at the Rockefeller Foundation Bellagio Center in Lake Como, Italy, 29 October-2 November 2012. The meeting was science-based but policy-oriented. The role and amount of healthy and unhealthy fats, with attention to the relative content of omega-3 and omega-6 fatty acids, sugar, and particularly fructose in foods that may underlie the epidemics of non-communicable diseases (NCD's) worldwide were extensively discussed. The report concludes that sugar consumption, especially in the form of high energy fructose in soft drinks, poses a major and insidious health threat, especially in children, and most diets, although with regional differences, are deficient in omega-3 fatty acids and too high in omega-6 fatty acids. Gene-nutrient interactions in growth and development and in disease prevention are fundamental to health, therefore regional Centers on Genetics, Nutrition and Fitness for Health should be established worldwide. Heads of state and government must elevate, as a matter of urgency, Nutrition as a national priority, that access to a healthy diet should be considered a human right and that the lead responsibility for Nutrition should be placed in Ministries of Health rather than agriculture so that the health requirements drive agricultural priorities, not vice versa. Nutritional security should be given the same priority as food security. Copyright AULA MEDICA EDICIONES 2013. Published by AULA MEDICA. All rights reserved.

  1. THE APPLICATION OF MULTIVIEW METHODS FOR HIGH-PRECISION ASTROMETRIC SPACE VLBI AT LOW FREQUENCIES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dodson, R.; Rioja, M.; Imai, H.

    2013-06-15

    High-precision astrometric space very long baseline interferometry (S-VLBI) at the low end of the conventional frequency range, i.e., 20 cm, is a requirement for a number of high-priority science goals. These are headlined by obtaining trigonometric parallax distances to pulsars in pulsar-black hole pairs and OH masers anywhere in the Milky Way and the Magellanic Clouds. We propose a solution for the most difficult technical problems in S-VLBI by the MultiView approach where multiple sources, separated by several degrees on the sky, are observed simultaneously. We simulated a number of challenging S-VLBI configurations, with orbit errors up to 8 mmore » in size and with ionospheric atmospheres consistent with poor conditions. In these simulations we performed MultiView analysis to achieve the required science goals. This approach removes the need for beam switching requiring a Control Moment Gyro, and the space and ground infrastructure required for high-quality orbit reconstruction of a space-based radio telescope. This will dramatically reduce the complexity of S-VLBI missions which implement the phase-referencing technique.« less

  2. FRAMEWORK FOR DEVELOPING AMBIENT WATER ...

    EPA Pesticide Factsheets

    Currently, Ambient Water Quality Criteria (AWQC) for aquatic life protection are derived according to the Guidelines for Derivation of Ambient Water Quality Criteria for the Protection of Aquatic Life and Their Uses, published in 1985. To ensure that AWQC are derived from the best available science, Office of Water assessed the need to update the Guidelines and identified issues that should be addressed in the revisions. In December 2002, EPA's Science Advisory Board concurred with EPA's assessment of the need to update the Guidelines as well as with the issues EPA identified to address. Updating the Guidelines is a Priority Strategic Action included in OST's Strategy for Water Quality Standards and Criteria (Next Priority Strategic Action #1). To revise existing methodology for deriving ambient water quality criteria for the protection of aquatic life.

  3. Vital Directions for Health and Health Care: Priorities From a National Academy of Medicine Initiative.

    PubMed

    Dzau, Victor J; McClellan, Mark B; McGinnis, J Michael; Burke, Sheila P; Coye, Molly J; Diaz, Angela; Daschle, Thomas A; Frist, William H; Gaines, Martha; Hamburg, Margaret A; Henney, Jane E; Kumanyika, Shiriki; Leavitt, Michael O; Parker, Ruth M; Sandy, Lewis G; Schaeffer, Leonard D; Steele, Glenn D; Thompson, Pamela; Zerhouni, Elias

    2017-04-11

    Recent discussion has focused on questions related to the repeal and replacement of portions of the Affordable Care Act (ACA). However, issues central to the future of health and health care in the United States transcend the ACA provisions receiving the greatest attention. Initiatives directed to certain strategic and infrastructure priorities are vital to achieve better health at lower cost. To review the most salient health challenges and opportunities facing the United States, to identify practical and achievable priorities essential to health progress, and to present policy initiatives critical to the nation's health and fiscal integrity. Qualitative synthesis of 19 National Academy of Medicine-commissioned white papers, with supplemental review and analysis of publicly available data and published research findings. The US health system faces major challenges. Health care costs remain high at $3.2 trillion spent annually, of which an estimated 30% is related to waste, inefficiencies, and excessive prices; health disparities are persistent and worsening; and the health and financial burdens of chronic illness and disability are straining families and communities. Concurrently, promising opportunities and knowledge to achieve change exist. Across the 19 discussion papers examined, 8 crosscutting policy directions were identified as vital to the nation's health and fiscal future, including 4 action priorities and 4 essential infrastructure needs. The action priorities-pay for value, empower people, activate communities, and connect care-recurred across the articles as direct and strategic opportunities to advance a more efficient, equitable, and patient- and community-focused health system. The essential infrastructure needs-measure what matters most, modernize skills, accelerate real-world evidence, and advance science-were the most commonly cited foundational elements to ensure progress. The action priorities and essential infrastructure needs represent major opportunities to improve health outcomes and increase efficiency and value in the health system. As the new US administration and Congress chart the future of health and health care for the United States, and as health leaders across the country contemplate future directions for their programs and initiatives, their leadership and strategic investment in these priorities will be essential for achieving significant progress.

  4. Spaceflight-relevant stem education and outreach: Social goals and priorities

    NASA Astrophysics Data System (ADS)

    Caldwell, Barrett S.

    2015-07-01

    This paper is based on a presentation and conference proceedings paper given at the 65th International Astronautical Congress. The paper addresses concerns in education and public outreach (EPO) in science, technology, engineering and mathematics (STEM). The author serves as a Director of a US statewide NASA-funded Space Grant Consortium, with responsibilities to coordinate funding for undergraduate scholarships, graduate fellowships, and program awards. Space Grant is a national NASA network of STEM EPO programs including over 1000 higher education, outreach center, science museum, local government, and corporate partners. As a Space Grant Director, the author interacts with a variety of levels of STEM literacy and sophistication among members of the public. A number of interactions highlight the need for STEM EPO leaders to speak directly to a variety of social goals and priorities. Spaceflight is largely seen as an appealing and potentially desirable STEM application. However, members of the public are often unclear and ill-informed regarding relative expense, relative benefit, and relative breadth of domains of expertise that are relevant to the spaceflight enterprise. In response (and resulting in further disconnects between STEM specialists and the public), focused STEM professionals frequently over-emphasize their own technical specialty and its priority in general because of its importance to that professional. These potential divides in the attempt to share and connect STEM related goals and priorities are discussed as an elaboration of invitations to discuss spacefaring in "futures forum" contexts. Spaceflight can be seen as addressing a combination of "actualization" and "aspirational" goals at social and societal levels. Maslow's hierarchy of needs distinguishes between "basic needs" and "actualization" as a higher-order need. Another aspect of spaceflight is aspirational-it speaks to hopes and desires for levels of flexibility and capability at the societal level. One analogy is the marketing of premium brand luxury items, at lower cost and larger volumes, to larger segments of the population. STEM EPO activities should not be directed solely at the "rocket science" applications of technology and engineering capabilities. Additional effort is needed to connect spaceflight experiences and examples to broader STEM needs, social priorities, and local contexts.

  5. From Bench to Bedside: A communal utility value intervention to enhance students’ biomedical science motivation

    PubMed Central

    Brown, Elizabeth R.; Smith, Jessi L.; Thoman, Dustin B.; Allen, Jill M.; Muragishi, Gregg

    2015-01-01

    Motivating students to pursue science careers is a top priority among many science educators. We add to the growing literature by examining the impact of a utility value intervention to enhance student’s perceptions that biomedical science affords important utility work values. Using an expectancy-value perspective we identify and test two types of utility value: communal (other-oriented) and agentic (self-oriented). The culture of science is replete with examples emphasizing high levels of agentic value, but communal values are often (stereotyped as) absent from science. However, people in general want an occupation that has communal utility. We predicted and found that an intervention emphasizing the communal utility value of biomedical research increased students’ motivation for biomedical science (Studies 1–3). We refined whether different types of communal utility value (working with, helping, and forming relationships with others) might be more or less important, demonstrating that helping others was an especially important predictor of student motivation (Study 2). Adding agentic utility value to biomedical research did not further increase student motivation (Study 3). Furthermore, the communal value intervention indirectly impacted students’ motivation because students believed that biomedical research was communal and thus subsequently more important (Studies 1–3). This is key, because enhancing student communal value beliefs about biomedical research (Studies 1–3) and science (Study 4) was associated both with momentary increases in motivation in experimental settings (Studies 1–3) and increased motivation over time among students highly identified with biomedicine (Study 4). We discuss recommendations for science educators, practitioners, and faculty mentors who want to broaden participation in science. PMID:26617417

  6. Tribal Science Priorities - TEK

    EPA Pesticide Factsheets

    Traditional Ecological Knowledge (TEK) is the accumulated knowledge American Indians and Native Alaskans have about their environment. It's important for scientific research, but is threatened by environmental change. EPA should support its development.

  7. Using the World Wide WEB to promote science education in nuclear energy and RWM

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Robinson, M.

    1996-12-31

    A priority of government and business in the United States and other first tier industrial countries continues to be the improvement of science, mathematics and technology (SMT) instruction in pre university level education. The U.S. federal government has made SMT instruction an educational priority and set goals for improving it in the belief that science, math and technology education are tied to our economic well being and standard of living. The new national standards in mathematics education, science education and the proposed standards in technology education are all aimed at improving knowledge and skills in the essential areas that themore » federal government considers important for protecting our technological advantage in the world economy. This paper will discuss a pilot project for establishing graphical Web capability in a limited number of rural Nevada schools (six) with support from the US Department of Energy (DOE) and the state of Nevada. The general goals of the pilot project are as follows: (1) to give rural teachers and students access to up to date science information on the Web; (2) to determine whether Web access can improve science teaching and student attitudes toward science in rural Nevada schools; and (3) to identify science content on the Web that supports the National Science Standards and Benchmarks. A specific objective that this paper will address is stated as the following question: What potential do nuclear energy information office web sites offer for changing student attitudes about nuclear energy and creating greater nuclear literacy.« less

  8. Northwest Climate Science Center: Integrating Regional Research, Conservation and Natural Resource Management

    NASA Astrophysics Data System (ADS)

    Mote, P.; Bisbal, G.

    2012-12-01

    The Northwest Climate Science Center (NW CSC) was established in 2010, among the first three of eight regional Climate Science Centers created by the Department of the Interior (DOI). The NW CSC is supported by an academic consortium (Oregon State University, University of Idaho, and the University of Washington), which has the capacity to generate and coordinate decision-relevant science related to climate, thus serving stakeholders across the Pacific Northwest region. The NW CSC has overlapping boundaries with three Landscape Conservation Cooperatives (LCCs): the Great Northern, the Great Basin, and the North Pacific. Collaboration between the NW CSC and these three LCCs addresses the highest priority regional climate science needs of Northwest natural and cultural resource managers. Early in 2012, the NW CSC released its first Strategic Plan for the period 2012-2015. The plan offers a practical blueprint for operation and describes five core services that the NW CSC provides to the Northwest community. These core services emphasize (a) bringing together the regional resource management and science communities to calibrate priorities and ensure efficient integration of climate science resources and tools when addressing practical issues of regional significance; (b) developing and implementing a stakeholder-driven science agenda which highlights the NW CSC's regional leadership in generating scenarios of the future environment of the NW; (c) supporting and training graduate students at the three consortium universities, including through an annual 'Climate science boot camp'; (d) providing a platform for effective climate-change-related communication among scientists, resource managers, and the general public; and (e) national leadership in data management and climate scenario development.

  9. OPENING REMARKS: SciDAC: Scientific Discovery through Advanced Computing

    NASA Astrophysics Data System (ADS)

    Strayer, Michael

    2005-01-01

    Good morning. Welcome to SciDAC 2005 and San Francisco. SciDAC is all about computational science and scientific discovery. In a large sense, computational science characterizes SciDAC and its intent is change. It transforms both our approach and our understanding of science. It opens new doors and crosses traditional boundaries while seeking discovery. In terms of twentieth century methodologies, computational science may be said to be transformational. There are a number of examples to this point. First are the sciences that encompass climate modeling. The application of computational science has in essence created the field of climate modeling. This community is now international in scope and has provided precision results that are challenging our understanding of our environment. A second example is that of lattice quantum chromodynamics. Lattice QCD, while adding precision and insight to our fundamental understanding of strong interaction dynamics, has transformed our approach to particle and nuclear science. The individual investigator approach has evolved to teams of scientists from different disciplines working side-by-side towards a common goal. SciDAC is also undergoing a transformation. This meeting is a prime example. Last year it was a small programmatic meeting tracking progress in SciDAC. This year, we have a major computational science meeting with a variety of disciplines and enabling technologies represented. SciDAC 2005 should position itself as a new corner stone for Computational Science and its impact on science. As we look to the immediate future, FY2006 will bring a new cycle to SciDAC. Most of the program elements of SciDAC will be re-competed in FY2006. The re-competition will involve new instruments for computational science, new approaches for collaboration, as well as new disciplines. There will be new opportunities for virtual experiments in carbon sequestration, fusion, and nuclear power and nuclear waste, as well as collaborations with industry and virtual prototyping. New instruments of collaboration will include institutes and centers while summer schools, workshops and outreach will invite new talent and expertise. Computational science adds new dimensions to science and its practice. Disciplines of fusion, accelerator science, and combustion are poised to blur the boundaries between pure and applied science. As we open the door into FY2006 we shall see a landscape of new scientific challenges: in biology, chemistry, materials, and astrophysics to name a few. The enabling technologies of SciDAC have been transformational as drivers of change. Planning for major new software systems assumes a base line employing Common Component Architectures and this has become a household word for new software projects. While grid algorithms and mesh refinement software have transformed applications software, data management and visualization have transformed our understanding of science from data. The Gordon Bell prize now seems to be dominated by computational science and solvers developed by TOPS ISIC. The priorities of the Office of Science in the Department of Energy are clear. The 20 year facilities plan is driven by new science. High performance computing is placed amongst the two highest priorities. Moore's law says that by the end of the next cycle of SciDAC we shall have peta-flop computers. The challenges of petascale computing are enormous. These and the associated computational science are the highest priorities for computing within the Office of Science. Our effort in Leadership Class computing is just a first step towards this goal. Clearly, computational science at this scale will face enormous challenges and possibilities. Performance evaluation and prediction will be critical to unraveling the needed software technologies. We must not lose sight of our overarching goal—that of scientific discovery. Science does not stand still and the landscape of science discovery and computing holds immense promise. In this environment, I believe it is necessary to institute a system of science based performance metrics to help quantify our progress towards science goals and scientific computing. As a final comment I would like to reaffirm that the shifting landscapes of science will force changes to our computational sciences, and leave you with the quote from Richard Hamming, 'The purpose of computing is insight, not numbers'.

  10. Best Practices and Processes for Choosing Research Priorities

    NASA Astrophysics Data System (ADS)

    Briscoe, M. G.

    2015-12-01

    Individuals, teams, departments, organizations, funding agencies, committees, and others all need to select desirable research priorities from many possible alternatives. One cannot do everything, one cannot afford everything, so what to select? Essays and reports since Weinberg (1963) have suggested criteria for choosing science topics. Popper et al (2000) reviewed and summarized all that had gone before in the subject of setting priorities; their main conclusions were that the underlying principles were the promotion of excellence and relevance. Sea Change (2015) from the NRC/OSB focused on four criteria. From most important to least important, they were transformative science, societal impacts, readiness, and partnership potential; these four criteria embodied the essence of the suggestions from Weinberg on, framed with the pragmatism of ORPISS (2007). Getting to the final set of priorities from many candidates involves a sequence of formal or informal processes, only the last of which is the application of the selected, weighted criteria. As developed by professional prioritization experts, the best-practice steps and processes are: Collection of input candidates from the community. Clustering and parsing/rephrasing of the input to eliminate redundancy and repetition and develop statements at a useful level of specificity. (NOTE:there is no counting of input to see how many times a particular topic was mentioned. The goal is diversity in the input, not a popularity contest.) Development of the selection criteria, and weighting the chosen criteria. Application of the selection criteria to the clustered/adjusted candidates. Finally, two more best practices: Do continuing sanity checks, to avoid losing sight of the goals of the effort. Resist the temptation to just sit around a table and talk about it to arrive at the priorities, which depends too much on who the specific members of the prioritization team are, and provides no transparency or explanation of why those specific priorities were selected.

  11. Adding "Missed" Science to Cassini's Ops Plan

    NASA Technical Reports Server (NTRS)

    Roy, Mou; Burton, Marcia E.; Edgington, Scott; Pitesky, Jo E.; Steadman, Kimberly B.; Ray, Trina L.; Evans, Mike

    2014-01-01

    The phenomenal success of the Cassini Mission at Saturn is largely due to flagship instruments, in a target rich environment, for a long period of time, executing almost error free complex mission operations. A smooth transition from cruise operations through the prime science mission and extended science (Equinox) mission culminating in the currently executing Solstice mission has folded in necessary procedural alterations due to improved understanding of the spacecraft, instruments, uplink and planning systems as well as additional science objectives. These have come with the maturation of the mission along with management of workforce reductions. One important set of operational changes has been initiated due to scientific findings highlighting "missed" science opportunities. This is the case for the Titan Meteorology Campaigns and Saturn Storm Watch Campaigns. These observations involve long term monitoring of the atmospheres of Titan and Saturn while the spacecraft and science teams are focused on other high priority targets of opportunity (like Enceladus). Our objective in this paper is to emphasize how a non-invasive strategy to get additional remarkable science was conceived and implemented in a mission with an already well defined operational plan. To illustrate this we will detail Titan Meteorology Campaign and Saturn Storm Watch Campaign integration and implementation strategies as well as the scientific goals and achievements of both.

  12. Strategic funding priorities in the pharmaceutical sciences allied to Quality by Design (QbD) and Process Analytical Technology (PAT).

    PubMed

    Aksu, Buket; De Beer, Thomas; Folestad, Staffan; Ketolainen, Jarkko; Lindén, Hans; Lopes, Joao Almeida; de Matas, Marcel; Oostra, Wim; Rantanen, Jukka; Weimer, Marco

    2012-09-29

    Substantial changes in Pharmaceutical R&D strategy are required to address existing issues of low productivity, imminent patent expirations and pressures on pricing. Moves towards personalized healthcare and increasing diversity in the nature of portfolios including the rise of biopharmaceuticals however have the potential to provide considerable challenges to the establishment of cost effective and robust supply chains. To guarantee product quality and surety of supply for essential medicines it is necessary that manufacturing science keeps pace with advances in pharmaceutical R&D. In this position paper, the EUFEPS QbD and PAT Sciences network make recommendations that European industry, academia and health agencies focus attention on delivering step changes in science and technology in a number of key themes. These subject areas, all underpinned by the sciences allied to QbD and PAT, include product design and development for personalized healthcare, continuous-processing in pharmaceutical product manufacture, quantitative quality risk assessment for pharmaceutical development including life cycle management and the downstream processing of biopharmaceutical products. Plans are being established to gain commitment for inclusion of these themes into future funding priorities for the Innovative Medicines Initiative (IMI). Copyright © 2012 Elsevier B.V. All rights reserved.

  13. New Worlds / New Horizons Science with an X-ray Astrophysics Probe

    NASA Technical Reports Server (NTRS)

    Smith, Randall K.; Bookbinder, Jay A.; Hornschemeier, Ann E.; Bandler, Simon; Brandt, W. N.; Hughes, John P.; McCammon, Dan; Matsumoto, Hironori; Mushotzky, Richard; Osten, Rachel A.; hide

    2014-01-01

    In 2013 NASA commenced a design study for an X-ray Astrophysics Probe to address the X-ray science goals and program prioritizations of the Decadal Survey New World New Horizons (NWNH) with a cost cap of approximately $1B. Both the NWNH report and 2011 NASA X-ray mission concept study found that high-resolution X-ray spectroscopy performed with an X-ray microcalorimeter would enable the most highly rated NWNH X-ray science. Here we highlight some potential science topics, namely: 1) a direct, strong-field test of General Relativity via the study of accretion onto black holes through relativistic broadened Fe lines and their reverberation in response to changing hard X-ray continuum, 2) understanding the evolution of galaxies and clusters by mapping temperatures, abundances and dynamics in hot gas, 3) revealing the physics of accretion onto stellar-mass black holes from companion stars and the equation of state of neutron stars through timing studies and time-resolved spectroscopy of X-ray binaries and 4) feedback from AGN and star formation shown in galaxy-scale winds and jets. In addition to these high-priority goals, an X-ray astrophysics probe would be a general-purpose observatory that will result in invaluable data for other NWNH topics such as stellar astrophysics, protostars and their impact on protoplanetary systems, X-ray spectroscopy of transient phenomena such as high-z gamma-ray bursts and tidal capture of stars by massive black holes, and searches for dark matter decay.

  14. Extraordinary Acoustic Transmission in a Helmholtz Resonance Cavity-Constructed Acoustic Grating

    NASA Astrophysics Data System (ADS)

    Si-Yuan, Yu; Xu, Ni; Ye-Long, Xu; Cheng, He; Priyanka, Nayar; Ming-Hui, Lu; Yan-Feng, Chen

    2016-04-01

    Not Available Supported by the National Basic Research Program of China under Grant Nos 2012CB921503, 2013CB632904 and 2013CB632702, the National Natural Science Foundation of China under Grant No 1134006, the Natural Science Foundation of Jiangsu Province under Grant No BK20140019, the Project Funded by the Priority Academic Program Development of Jiangsu Higher Education, and the China Postdoctoral Science Foundation under Grant Nos 2012M511249 and 2013T60521.

  15. In Situ Water Vapor Measurements Using Coupled UV Fragment Fluorescence/Absorption Spectroscopy in Support of CRYSTAL-FACE

    NASA Technical Reports Server (NTRS)

    Anderson, James G.

    2004-01-01

    Understanding the coupling of dynamics, chemistry, and radiation within the context of the NASA Earth Science Enterprise (ESE) and the national Climate Change Science Program (CCSP) requires, as a first-order priority, high spatial resolution, high-accuracy observations of water in its various phases. Given the powerful diagnostic importance of the condensed phases of water for dynamics and the impact of phase changes in water on the radiation field, the accurate, in situ observation of water vapor is of central importance to CRYSTAL FACE (CF). This is clear both from the defined scientific objectives of the NRA and from developments in the coupled fields of stratosphere/troposphere exchange, cirrus cloud formation/removal and mechanisms for the distribution of water vapor in the middle/upper troposphere. Accordingly, we were funded under NASA Grant NAG5-11548 to perform the following tasks for the CF mission: 1. Prepare the water vapor instrument for integration into the WB57F and test flights scheduled for Spring 2002. 2. Calibrate and prepare the water vapor instrument for the Summer 2002 CF science flights based in Jacksonville, Florida. 3. Provide both science and engineering support for the above-mentioned efforts. 4. Analyze and interpret the CF data in collaboration with other mission scientists. 5. Attend the science workshop in Spring 2003. 6. Publish the data and analysis in peer-reviewed journals.

  16. Conversations with Rep. Ken Calvert. Interview by Frank Sietzen Jr.

    PubMed

    Calvert, Ken

    2005-07-01

    Rep. Calvert, chair of the House aeronautics and space subcommittee of the Science Committee, answers questions related to priorities for space in the current congressional session: the Vision for Space Exploration, development of the Crew Exploration Vehicle (CEV) and other heavy-lift launch vehicles, entrepreneurial alliances in the space transportation industry, the U.S. aerospace industry, space tourism, entrepreneurs and NASA, U.S. aeronautics research, a service mission to the Hubble Space Telescope, and priority military space programs.

  17. 76 FR 17629 - Applications for New Awards; Transition to Teaching Grant Program

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-03-30

    ... teachers in high-need schools operated by high-need local educational agencies (LEAs), including charter schools that operate as high-need LEAs. Priorities: This notice contains two competitive preference... Preference Priorities: Competitive Preference Priority 1 is from section 2313(c) of the Elementary and...

  18. Going Beyond Academic Integrity Might Broaden our Understanding of Plagiarism in Science Education: A Perspective from a Study in Brazil.

    PubMed

    Santos, Christiane C; Santos, Patrícia S Dos; Sant'ana, Maurício C; Masuda, Hatisaburo; Barboza, Monica B; Vasconcelos, Sonia M R

    2017-05-01

    Fostering innovation and creativity is a priority in the science and education policy agenda of most countries, which have advocated that innovative minds and processes will boost scientific and economic growth. While our knowledge society has embraced this view, fostering creativity is among the major challenges faced by educators and policymakers. For example, plagiarism, which may be considered a form of imitation and repetition, is a global concern at schools and universities. However, most discussions focus on academic integrity, which, we believe, leaves some gaps in the approach to the problem. As part of an ongoing project on plagiarism, science and education policy, we show results from a survey sent to 143 high-school science teachers at one of the most highly regarded federal schools in Brazil. Among respondents (n=42), about 50% admit that students plagiarize in assignments. Additionally, many of these educators suggest that the way biology, chemistry and physics are taught at school stimulates more repetition than creativity. Our findings are consistent with the need for a broader perspective on plagiarism and with initiatives to stimulate creativity and critical thinking among students. Although we offer a perspective from Brazil, it may illuminate current discussions on plagiarism, particularly in emerging countries.

  19. Civilizing the Conversation? Using Surveys to Inform Water Management and Science in the Sacramento-San Joaquin Delta

    NASA Astrophysics Data System (ADS)

    Hanak, E.; Phillips Chappelle, C.

    2013-12-01

    Improving ecosystem outcomes in California's Sacramento-San Joaquin Delta is a complex, high-stakes water resource management challenge. The Delta is a major hub for water supply conveyance and a valued ecological resource. Yet long-term declines in native fish populations have resulted in severe legal constraints on water exports and fueled growing public debates about the roles and responsibilities of flow modification and other sources of ecosystem stress. Meanwhile, scientific uncertainty, and the inability of the scientific community to effectively communicate what *is* known, has frustrated policymakers and encouraged 'combat science' - the commissioning and use of competing scientific opinions in the courtroom. This paper summarizes results from a study designed to inform the policy process through the use of confidential surveys of scientific researchers (those publishing in peer-reviewed journals, n=122) and engaged stakeholders and policymakers (n=240). The surveys, conducted in mid-2012, sought respondents' views on the sources of ecosystem stress and priority ecosystem management actions. The scientist survey is an example of the growing use of expert elicitation to address gaps in the scientific literature, particularly where there is uncertainty about priorities for decisionmaking (e.g., Cvitanovic et al. 2013, J. of Env. Mgmt; McDaniels et al. 2012, Risk Analysis). The stakeholder survey is a useful complement, enabling the identification of areas of consensus and divergence among stakeholder groups and between these groups and scientific experts. The results suggest such surveys are a promising tool for addressing complex water management problems. We found surprisingly high agreement among scientists on the relative roles of stressors and the most promising management actions; they emphasized restoring more natural processes through habitat and flow actions within the watershed, consistent with 'reconciliation ecology' approaches (Rosenzweig 2003, Oxford Univ. Press). In contrast, scientific consensus was far lower on the potential of relatively low-cost infrastructure and technology tools (e.g. gates, hatcheries) - underscoring the importance of building knowledge on such efforts. Surprisingly, and positively, stakeholders from groups with widely diverging public positions broadly agreed with scientists that multiple stressors are responsible for the Delta's plight. And most agreed with scientists on management priorities. However, individual groups were more likely to prioritize actions unrelated to their own uses of Delta resources and to shy away from actions that would be costly for them. The results point to the need for building shared understanding on Delta science for a more constructive policy process. To this end, the study proposed changes in the organization of Delta science drawing on 'common pool' models that have been effective for water quality research in both northern and southern California.

  20. Emerging Science and Research Opportunities for Metals and Metallic Nanostructures: A Report on the NSF MMN Workshop

    NASA Astrophysics Data System (ADS)

    Pollock, Tresa; Handwerker, Carol

    In the next decade, fundamental research in metals and metallic nanostructures (MMN) has the potential to continue to transform science into innovative materials, devices, and systems. This talk summarizes the findings of a workshop to identify emerging and potentially transformative research areas in MMN. The metals and metallic nanostructures (MMNs) workshop aimed to identify significant research trends, scientific fundamentals, and recent breakthroughs that can enable new or enhanced MMN performance, either alone or in a more complex materials system, for a wide range of applications. Additionally, the role that MMN research can play in high-priority research and development (R&D) areas such as the U.S. Materials Genome Initiative, the National Nanotechnology Initiative, the Advanced Manufacturing Initiative, and other similar initiatives that exist internationally was assessed. The workshop also addressed critical issues related to materials research instrumentation and the cyberinfrastructure for materials science research and education, as well as science, technology, engineering, and mathematics (STEM) workforce development, with emphasis on the United States but with an appreciation that similar challenges and opportunities for the materials community exist internationally.

  1. Collaborative activities for improving the quality of science teaching and learning and learning to teach science

    NASA Astrophysics Data System (ADS)

    Tobin, Kenneth

    2012-03-01

    I have been involved in research on collaborative activities for improving the quality of teaching and learning high school science. Initially the collaborative activities we researched involved the uses of coteaching and cogenerative dialogue in urban middle and high schools in Philadelphia and New York (currently I have active research sites in New York and Brisbane, Australia). The research not only transformed practices but also produced theories that informed the development of additional collaborative activities and served as interventions for research and creation of heuristics for professional development programs and teacher certification courses. The presentation describes a collage of collaborative approaches to teaching and learning science, including coteaching, cogenerative dialogue, radical listening, critical reflection, and mindful action. For each activity in the collage I provide theoretical frameworks and empirical support, ongoing research, and priorities for the road ahead. I also address methodologies used in the research, illustrating how teachers and students collaborated as researchers in multilevel investigations of teaching and learning and learning to teach that included ethnography, video analysis, and sophisticated analyses of the voice, facial expression of emotion, eye gaze, and movement of the body during classroom interactions. I trace the evolution of studies of face-to-face interactions in science classes to the current focus on emotions and physiological aspects of teaching and learning (e.g., pulse rate, pulse strength, breathing patterns) that relate to science participation and achievement.

  2. Musculoskeletal discipline science plan

    NASA Technical Reports Server (NTRS)

    1991-01-01

    Life sciences research in the musculoskeletal discipline must identify possible consequences of weightlessness on this system, understand the mechanisms of these effects, and develop effective and operationally practical countermeasures to protect crewmembers. The musculoskeletal system is highly plastic in that is possesses the inherent capability to adapt its structural and functional properties in accordance with the type and degree of stimuli imposed on it. Prolonged space travel is essentially a period of significant unloading of the musculoskeletal system. This results in adaptive responses in the structure and function of this system, placing it on the low end of a continuum from one of complete disuse to one of maximal use. There is a high probability that the musculoskeletal system is functionally impaired with increasing duration of weightlessness. The purpose of this Discipline Science Plan is to provide a conceptual strategy for NASA's Life Sciences division research and development activities in the area of musculoskeletal function. This document summarizes the current status of the program, outlines available knowledge, establishes goals and objectives, identifies science priorities, and defines research opportunities, which encompass critical questions in the subdiscipline areas (e.g., muscle, bone, and other musculoskeletal connective tissues). These science activities include ground-based and flight; basic, applied, and operational; and animal and human research and development. This document contains a general plan that will be used by both NASA Headquarters Program Offices and the field centers to review and plan basic, applied, and operational intramural and extramural research and development activities in this area.

  3. A Comprehensive Review of Computer Science and Data Processing Education in Community Colleges and Area Vocational-Technical Centers.

    ERIC Educational Resources Information Center

    Florida State Community Coll. Coordinating Board, Tallahassee.

    In 1987-88, the Florida State Board of Community Colleges and the Division of Vocational, Adult, and Community Education jointly conducted a review of instructional programs in computer science and data processing in order to determine needs for state policy changes and funding priorities. The process involved a review of printed resources on…

  4. Magneto optical properties of self-assembled InAs quantum dots for quantum information processing

    NASA Astrophysics Data System (ADS)

    Tang, Jing; Xu, Xiu-Lai

    2018-02-01

    Not Available Project supported by the National Basic Research Program of China (Grant No. 2014CB921003), the National Natural Science Foundation of China (Grant Nos. 11721404, 51761145104, and 61675228), the Strategic Priority Research Program of the Chinese Academy of Sciences (Grant Nos. XDB07030200 and XDPB0803), and the CAS Interdisciplinary Innovation Team.

  5. The 1985 National Aeronautics and Space Administration's Summer High School Apprenticeship Research Program (SHARP)

    NASA Technical Reports Server (NTRS)

    1985-01-01

    In 1985, a total of 126 talented high school students gained first hand knowledge about science and engineering careers by working directly with a NASA scientist or engineer during the summer. This marked the sixth year of operation for NASA's Summer High School Apprenticeship Research Program (SHARP). The major priority of maintaining the high standards and success of prior years was satisfied. The following eight sites participated in the Program: Ames Research Center, Ames' Dryden Flight Research Facility, Goddard Space Flight Center, Goddard's Wallop Flight Facility, Kennedy Space Center, Langley Research Center, Lewis Research Center, and Marshall Space Flight Center. Tresp Associates served as the SHARP contractor and worked closely with NASA staff at headquarters and the sites just mentioned to plan, implement, and evaluate the program.

  6. Linking science, public values, and decision-making: Case study development for public deliberations about climate change resilience

    NASA Astrophysics Data System (ADS)

    Weller, N.; Bennett, I.; Bernstein, M.; Farooque, M.; Lloyd, J.; Lowenthal, C.; Sittenfeld, D.

    2016-12-01

    Actionable science seeks to align scientific inquiry with decision-making priorities to overcome rifts between scientific knowledge and the needs of decision makers. Combining actionable science with explorations of public values and priorities creates useful support for decision makers facing uncertainty, tradeoffs, and limited resources. As part of a broader project to create public forums about climate change resilience, we convened workshops with decision makers, resilience experts, and community stakeholders to discuss climate change resilience. Our goals were 1) to create case studies of resilience strategies for use in public deliberations at science museums across 8 U.S. cities; and 2) to build relationships with decision makers and stakeholders interested in these public deliberations. Prior to workshops, we created summaries of resilience strategies using academic literature, government assessments, municipal resilience plans, and conversations with workshop participants. Workshops began with example deliberation activities followed by semi-structured discussions of resilience strategies centered on 4 questions: 1) What are the key decisions to be made regarding each strategy? 2) What stakeholders and perspectives are relevant to each strategy? 3) What available data are relevant to each strategy? 4) What visualizations or other resources are useful for communicating things about each strategy? Workshops yielded actionable dialogue regarding issues of justice, feasibility, and the socio-ecological-technical systems impacted by climate change hazards and resilience strategies. For example, discussions of drought revealed systemic and individual-level challenges and opportunities; discussions of sea level rise included ways to account for the cultural significance of many coastal communities. The workshops provide a model for identifying decision-making priorities and tradeoffs and building partnerships among stakeholders, scientists, and decision makers.

  7. 3 CFR - Expanding National Service Through Partnerships to Advance Government Priorities

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... the American spirit of service to improve lives and communities, expand economic and educational...; (o) the National Science Foundation; (p) the Office of Personnel Management; (q) the Environmental...

  8. Toward a comprehensive strategy for effective practitioner-scientist partnerships and larger-scale community health and well-being.

    PubMed

    Spoth, Richard L; Greenberg, Mark T

    2005-06-01

    This article articulates joint priorities for the fields of prevention science and community psychology. These priorities are intended to address issues raised by the frequent observation of natural tensions between community practitioners and scientists. The first priority is to expand the knowledge base on practitioner-scientist partnerships, particularly on factors associated with positive outcomes within communities. To further articulate this priority, the paper first discusses the rapid growth in community-based partnerships and the emergent research on them. Next described is an illustrative research project on a partnership model that links state university extension and public school delivery systems. The article then turns to the second, related priority of future capacity-building for diffusion of effective partnership-based interventions to achieve larger-scale health and well-being across communities. It outlines two salient tasks: clarification of a conceptual framework and the formulation of a comprehensive capacity-building strategy for diffusion. The comprehensive strategy would require careful attention to the expansion of networks of effective partnerships, partnership-based research agendas, and requisite policy-making.

  9. The EEOC charge priority policy and claimants with psychiatric disabilities.

    PubMed

    Ullman, M D; Johnsen, M C; Moss, K; Burris, S

    2001-05-01

    In June 1995 the U.S. Equal Employment Opportunity Commission (EEOC) instituted a new charge priority policy. Under the new policy, charges are classified as one of three priority levels during or immediately after intake. Only charges assigned a high priority receive a full investigation. This paper examines the effect of the charge priority policy on individuals with psychiatric disabilities who filed Americans With Disabilities Act (ADA) charges with the EEOC. Using data extracted from the EEOC's charge data system, the authors analyzed all 66,298 ADA claims prioritized and closed between June 1995 and March 1998. The z test for difference in proportions and the generalized estimating equations procedure were used. The primary outcome measure was the priority assignment received by ADA claimants. Charges that received a high priority assignment were more likely to result in benefits for claimants. Charges filed by claimants with psychiatric disabilities were significantly less likely to be assigned a high priority than charges filed by other claimants. Claimants with psychiatric disabilities were also significantly less likely to benefit from their claims. The strong relationship between being assigned high priority and receiving benefits as a result of filing a charge demonstrates the importance of accurate priority categorization. The finding that people with psychiatric disabilities are less likely than others to benefit from their claims is cause for concern, particularly given the fact that the accuracy of the charge prioritization system has not been validated.

  10. Cleveland Clinic television series enhances branding in active market.

    PubMed

    Rees, T

    2001-01-01

    "Medical Miracles" premiered April 26. It is an information-packed series of programs showcasing The Cleveland Clinic's advanced medical practices. The Cleveland Clinic teamed with local NBC-affiliate, WKYC to develop half-hour shows on topics including neuro-sciences, orthopedics, eye, heart, pediatrics and cancer. As of this writing, three of the half-hour shows already have aired. They will resume in September, October and November, following a summer break. The collaboration is a healthy prospect all the way around. For Cleveland Clinic, it provides highly credible visibility in a competitive marketplace. And, according to WKYC president and general manager, Brooke Spectorsky, " Medical news and information is a high priority among our viewers."

  11. Low Crosstalk Three-Color Infrared Detector by Controlling the Minority Carriers Type of InAs/GaSb Superlattices for Middle-Long and Very-Long Wavelength

    NASA Astrophysics Data System (ADS)

    Dong-Wei, Jiang; Wei, Xiang; Feng-Yun, Guo; Hong-Yue, Hao; Xi, Han; Xiao-Chao, Li; Guo-Wei, Wang; Ying-Qiang, Xu; Qing-Jiang, Yu; Zhi-Chuan, Niu

    2016-04-01

    Not Available Supported by the National Basic Research Program of China under Grant Nos 2014CB643903, 2013CB932904, 2012CB932701 and 2011CB922201, the National Special Funds for the Development of Major Research Equipment and Instruments of China under Grant No 2012YQ140005, the Strategic Priority Research Program (B) of the Chinese Academy of Sciences under Grant No XDB01010200, the China Postdoctoral Science Foundation-funded Project under Grant No 2014M561029, the Program for New Century Excellent Talents in University under Grant No NCET-10-0066, the National High-Technology Research and Development Program of China under Grant No 2013AA031502, the Science and Technology Innovation Project of Harbin City under Grant No 2011RFLXG006, the National Natural Science Foundation of China under Grant Nos 61274013, U1037602, 61306013, 51202046, and 61290303, the China Postdoctoral Science Foundation under Grant Nos 2012M510144 and 2013T60366, and the Fundamental Research Funds for the Central Universities under Grant Nos HIT.NSRIF.2013006 and HIT.BRETIII.201403.

  12. The National Map 2.0 Tactical Plan: "Toward the (Integrated) National Map"

    USGS Publications Warehouse

    Zulick, Carl A.

    2008-01-01

    The National Map's 2-year goal, as described in this plan, is to provide a range of geospatial products and services that meet the basic goals of the original vision for The National Map while furthering the National Spatial Data Infrastructure that underpins U.S. Geological Survey (USGS) science. To accomplish this goal, the National Geospatial Program (NGP) will acquire, store, maintain, and distribute base map data. The management team for the NGP sets priorities for The National Map in three areas: Data and Products, Services, and Management. Priorities for fiscal years 2008 and 2009 (October 1, 2007 through September 30, 2009), involving the current data inventory, data acquisition, and the integration of data, are (1) incorporating current data from Federal, State, and local organizations into The National Map to the degree possible, given data availability and program resources; (2) collaborating with other USGS programs to incorporate data that support the USGS Science Strategy; (3) supporting the Department of the Interior (DOI) high-priority geospatial information needs; (4) emergency response; (5) homeland security, natural hazards; and (6) graphics products delivery. The management team identified known constraints, enablers, and drivers for the acquisition and integration of data. The NGP management team also identified customer-focused products and services of The National Map. Ongoing planning and management activities direct the development and delivery of these products and services. Management of work flow processes to support The National Map priorities are identified and established through a business-driven prioritization process. This tactical plan is primarily for use as a document to guide The National Map program for the next two fiscal years. The document is available to the public because of widespread interest in The National Map. The USGS collaborates with a broad range of customers and partners who are essential to the success of The National Map, including the science community, State and Federal agencies involved in homeland security, planners and emergency responders at the local level, and private companies. Partner contributions and data remain a primary input and foundation of The National Map. Partnership strategies for each of The National Map's component data themes are outlined in this plan. Because of the importance of The National Map customers, a reassessment of customer needs will be completed during 2008. Results of the assessment will be incorporated into future decisions and priorities. A performance milestone matrix has been developed that contains the full list of milestones, major deliverables, and major tasks. The matrix forms the basis for reporting on accomplishments and issues. However, a number of risks, dependencies, and issues have been identified that could affect meeting milestones in the matrix, such as: the USGS is not the Circular A-16 lead for boundaries, transportation, and structures; availability of sufficient and sustainable funding; availability of Federal workforce and contractors with necessary skills, and numerous competing customer and stakeholder requirements.

  13. Identifying research priorities for patient safety in mental health: an international expert Delphi study

    PubMed Central

    Murray, Kevin; Thibaut, Bethan; Ramtale, Sonny Christian; Adam, Sheila; Darzi, Ara; Archer, Stephanie

    2018-01-01

    Objective Physical healthcare has dominated the patient safety field; research in mental healthcare is not as extensive but findings from physical healthcare cannot be applied to mental healthcare because it delivers specialised care that faces unique challenges. Therefore, a clearer focus and recognition of patient safety in mental health as a distinct research area is still needed. The study aim is to identify future research priorities in the field of patient safety in mental health. Design Semistructured interviews were conducted with the experts to ascertain their views on research priorities in patient safety in mental health. A three-round online Delphi study was used to ascertain consensus on 117 research priority statements. Setting and participants Academic and service user experts from the USA, UK, Switzerland, Netherlands, Ireland, Denmark, Finland, Germany, Sweden, Australia, New Zealand and Singapore were included. Main outcome measures Agreement in research priorities on a five-point scale. Results Seventy-nine statements achieved consensus (>70%). Three out of the top six research priorities were patient driven; experts agreed that understanding the patient perspective on safety planning, on self-harm and on medication was important. Conclusions This is the first international Delphi study to identify research priorities in safety in the mental field as determined by expert academic and service user perspectives. A reasonable consensus was obtained from international perspectives on future research priorities in patient safety in mental health; however, the patient perspective on their mental healthcare is a priority. The research agenda for patient safety in mental health identified here should be informed by patient safety science more broadly and used to further establish this area as a priority in its own right. The safety of mental health patients must have parity with that of physical health patients to achieve this. PMID:29502096

  14. Research priorities in medical education at Shiraz University of Medical Sciences:categories and subcategories in the Iranian context

    PubMed Central

    NABEIEI, PARISA; AMINI, MITRA; GHANAVATI, SHIRIN; MARHAMATI, SAADAT

    2016-01-01

    Introduction Research in education is a globally significant issue without a long history. Due to the importance of the issue in Health System Development programs, this study intended to determine research priorities in medical education, considering their details and functions. By determining barriers existing in research in education progress, it is tried to make research priorities more functional by recommending acceptable strategies. Methods This is a qualitative-descriptive study in two descriptive phases. The goal of these phases was to determine research priorities subcategories in medical education by Nominal Group Technique (NGT) and two rounds of Delphi method. Through the first phase, subcategories of research priorities were determined, using Nominal Group Technique under medical education experts’ supervision. Through two rounds of Delphi, a questionnaire was constructed based on the subcategories. Eventually, research priorities were determined based on their highest score (scores more than 7 out of 10). Results In the first phase (NGT), 35 priorities in 5 major fields of medical education were presented. In the second phase, priorities were scored, using Delphi method. Medical Ethics and professionalism gained the highest scores (7.63±1.26) and educational evaluation the lowest (7.28±1.52). In this stage, 7 items were omitted but 2 of them were added again after experts’ revision in the third round of Delphi. Conclusion According to the results of the present study and based on previous studies, it really seems that the fields of “Learning and Teaching Approaches” and “Medical Ethics and Professionalism” were more important. Because of financial and resource limitations in our country and the importance of research priorities, it is recommended to frequently study “research priorities determination program” at universities. PMID:26793723

  15. Physics First: Impact on SAT Math Scores

    NASA Astrophysics Data System (ADS)

    Bouma, Craig E.

    Improving science, technology, engineering, and mathematics (STEM) education has become a national priority and the call to modernize secondary science has been heard. A Physics First (PF) program with the curriculum sequence of physics, chemistry, and biology (PCB) driven by inquiry- and project-based learning offers a viable alternative to the traditional curricular sequence (BCP) and methods of teaching, but requires more empirical evidence. This study determined impact of a PF program (PF-PCB) on math achievement (SAT math scores) after the first two cohorts of students completed the PF-PCB program at Matteo Ricci High School (MRHS) and provided more quantitative data to inform the PF debate and advance secondary science education. Statistical analysis (ANCOVA) determined the influence of covariates and revealed that PF-PCB program had a significant (p < .05) impact on SAT math scores in the second cohort at MRHS. Statistically adjusted, the SAT math means for PF students were 21.4 points higher than their non-PF counterparts when controlling for prior math achievement (HSTP math), socioeconomic status (SES), and ethnicity/race.

  16. CRITERIA FOR PRIORITIZATION OF ECOSYSTEM RESTORATION

    EPA Science Inventory

    Prioritization of ecosystem restoration measures is important for state and federal agencies, watershed coalitions, science advisory boards and other groups responsible for decision-making regarding restoration activities. Although widely utilized, the term "restoration prioriti...

  17. Developing a preservation policy and procedure statement for a health sciences library.

    PubMed Central

    Paulson, B A

    1989-01-01

    The preconditions for creating a preservation policy document in a health sciences library are an existing preservation policy for the institution of which it is a part and administrative support for preservation. The assumption underlying preservation activity, from the formulation of general guidelines to the detail of operating procedure, is that collection development and preservation are complementary functions. Documentation of operational procedures in some detail should be a part of the statement. Since preservation activity cuts across functional library structures, all management staff should be involved in the planning process and be made aware of their responsibilities. The creation of a preservation policy statement will highlight unaddressed issues, procedural inadequacies, and differences in staff perceptions of priorities, but a written statement provides a framework for setting priorities and making decisions. PMID:2758183

  18. NDE in aerospace-requirements for science, sensors and sense.

    PubMed

    Heyman, J S

    1989-01-01

    The complexity of modern NDE (nondestructive evaluation) arises from four main factors: quantitative measurement, science, physical models for computational analysis, realistic interfacing with engineering decisions, and direct access to management priorities. Recent advances in the four factors of NDE are addressed. Physical models of acoustic propagation are presented that have led to the development of measurement technologies advancing the ability to assure that materials and structures will perform a design. In addition, a brief discussion is given of current research for future mission needs such as smart structures that sense their own health. Such advances permit projects to integrate design for inspection into their plans, bringing NDE into engineering and management priorities. The measurement focus is on ultrasonics with generous case examples. Problem solutions highlighted include critical stress in fasteners, residual stress in steel, NDE laminography, and solid rocket motor NDE.

  19. NDE in aerospace - Requirements for science, sensors and sense

    NASA Technical Reports Server (NTRS)

    Heyman, Joseph S.

    1989-01-01

    The complexity of modern nondestructive evaluation (NDE) arises from four main factors: quantitative measurement science, physical models for computational analysis, realistic interfacing with engineering decisions, and direct access to management priorities. Recent advances in the four factors of NDE are addressed. Physical models of acoustic propagation are presented that have led to the development of measurement technologies advancing the ability to assure that materials and structures will perform as designed. In addition, a brief discussion is given of current research for future mission needs such as smart structures that sense their own health. Such advances permit projects to integrate design for inspection into their plans, bringing NDE into engineering and management priorities. The measurement focus is on ultrasonics with generous case examples. Problem solutions highlighted include critical stress in fasteners, residual stress in steel, NDE laminography, and solid rocket motor NDE.

  20. Hybrid crystals of cuprates and iron-based superconductors

    NASA Astrophysics Data System (ADS)

    Xia, Dai; Cong-Cong, Le; Xian-Xin, Wu; Jiang-Ping, Hu

    2016-07-01

    We propose two possible new compounds, Ba2CuO2Fe2As2 and K2CuO2Fe2Se2, which hybridize the building blocks of two high temperature superconductors, cuprates and iron-based superconductors. These compounds consist of square CuO2 layers and antifluorite-type Fe2 X 2 (X = As, Se) layers separated by Ba/K. The calculations of binding energies and phonon spectra indicate that they are dynamically stable, which ensures that they may be experimentally synthesized. The Fermi surfaces and electronic structures of the two compounds inherit the characteristics of both cuprates and iron-based superconductors. These compounds can be superconductors with intriguing physical properties to help to determine the pairing mechanisms of high T c superconductivity. Project supported by the National Basic Research Program of China (Grant No. 2015CB921300), the National Natural Science Foundation of China (Grant Nos. 1190020 and 11334012), and the Strategic Priority Research Program of Chinese Academy of Sciences (Grant No. XDB07000000).

  1. The Geology of Mars as Seen by MRO's HiRISE

    NASA Astrophysics Data System (ADS)

    McEwen, A. S.

    2007-12-01

    By September 2007 the High Resolution Imaging Science Experiment (HiRISE) had acquired more than 3,000 images of Mars at resolutions as high as 25 cm/pixel in the 3 PM mapping orbit of Mars Reconnaissance Orbiter, covering about 0.2 percent of the surface. These images are helping to address a broad range of science issues, as presented in dozens of abstracts to this conference. In this talk I will focus on several topics. (1) The color data is proving quite valuable to reduce the ambiguities of B&W images; to correlate deposits and better define the stratigraphy; and to extend mineral identifications to the scale of outcrops. (2) The nature of the Martian highlands is being revealed, with the identification of megabreccia, hydrous minerals (by OMEGA and CRISM spectrometers), and the detailed nature of the layered or massive stratigraphy where exposed in cross- section. (3) There is new evidence for the roles of water in the most recent large (at least 1 km diameter) impact craters, which may have implications for the altered mineralogy of the ancient crust. (4) New observations and measurements are leading to improved understanding of slope processes such as gullies, creep, and mass wasting. We are producing meter-scale digital elevation models to test high-priority science questions.

  2. Determination of Research Priorities and Documentation of Information Sources for Army Civilian Personnel Management

    DTIC Science & Technology

    1988-12-01

    Behavioral and Social Sciences Approved for the public release; distrbution is unlimited All, U.S. ARMY RESEARCH INSTITUTE FOR THE BEHAVIORAL AND SOCIAL ...Institute for the Behavioral and Social Sciences. NOTE The views, opinions, and findings in this report are those of the author(s) and should not to be...U.S. Army Research Institute for the Organization I HumRRO Behavioral and Social Sciences 6c. ADDRESS (City, State, and ZIP Code) 7b. ADDRESS (City

  3. Influence of anisotropy on the electrical conductivity and diffusion coefficient of dry K-feldspar: Implications of the mechanism of conduction

    NASA Astrophysics Data System (ADS)

    Dai, Li-Dong; Hu, Hai-Ying; Li, He-Ping; Sun, Wen-Qing; Jiang, Jian-Jun

    2018-02-01

    Not Available Project supported by the Strategic Priority Research Program (B) of the Chinese Academy of Sciences (CAS) (Grant No. XDB 18010401), the Key Research Program of Frontier Sciences of CAS (Grant No. QYZDB-SSW-DQC009), the “135” Program of the Institute of Geochemistry of CAS, the Hundred-Talent Program of CAS, and the National Natural Science Foundation of China (Grant Nos. 41474078, 41774099, and 41772042).

  4. Report of the Community Review of EIC Accelerator R&D for the Office of Nuclear Physics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None, None

    The Nuclear Science Advisory Committee (NSAC) of the Department of Energy (DOE) Office of Nuclear Physics (NP) recommended in the 2015 Long Range Plan (LRP) for Nuclear Science that the proposed Electron Ion Collider (EIC) be the highest priority for new construction. This report noted that, at that time, two independent designs for such a facility had evolved in the United States, each of which proposed using infrastructure already available in the U.S. nuclear science community.

  5. Evaluating healthcare priority setting at the meso level: A thematic review of empirical literature

    PubMed Central

    Waithaka, Dennis; Tsofa, Benjamin; Barasa, Edwine

    2018-01-01

    Background: Decentralization of health systems has made sub-national/regional healthcare systems the backbone of healthcare delivery. These regions are tasked with the difficult responsibility of determining healthcare priorities and resource allocation amidst scarce resources. We aimed to review empirical literature that evaluated priority setting practice at the meso (sub-national) level of health systems. Methods: We systematically searched PubMed, ScienceDirect and Google scholar databases and supplemented these with manual searching for relevant studies, based on the reference list of selected papers. We only included empirical studies that described and evaluated, or those that only evaluated priority setting practice at the meso-level. A total of 16 papers were identified from LMICs and HICs. We analyzed data from the selected papers by thematic review. Results: Few studies used systematic priority setting processes, and all but one were from HICs. Both formal and informal criteria are used in priority-setting, however, informal criteria appear to be more perverse in LMICs compared to HICs. The priority setting process at the meso-level is a top-down approach with minimal involvement of the community. Accountability for reasonableness was the most common evaluative framework as it was used in 12 of the 16 studies. Efficiency, reallocation of resources and options for service delivery redesign were the most common outcome measures used to evaluate priority setting. Limitations: Our study was limited by the fact that there are very few empirical studies that have evaluated priority setting at the meso-level and there is likelihood that we did not capture all the studies. Conclusions: Improving priority setting practices at the meso level is crucial to strengthening health systems. This can be achieved through incorporating and adapting systematic priority setting processes and frameworks to the context where used, and making considerations of both process and outcome measures during priority setting and resource allocation. PMID:29511741

  6. Requirements, Resource Planning and Management for Decrewing/Recrewing Scenarios of the International Space Station

    NASA Technical Reports Server (NTRS)

    Bach, David A.; Hasbrook, Peter V.; BBrand, Susan N.

    2012-01-01

    Following the failure of 44P on launch in August 2011, and the subsequent grounding of all Russian Soyuz rocket based launches, the ISS ground teams engaged in an effort to determine how long the ISS could remain crewed, what would be required to safely configure the ISS for decrewing, and what would be required to recrew the ISS upon resumption of Soyuz rocket launches if decrewing became necessary. This White Paper was written to capture the processes and lessons learned from real-time time events and to provide a reference and training document for ISS Program teams in the event decrewing of the ISS is needed. Through coordination meetings and assessments, teams identified six decrewing priorities for ground and crew operations. These priorities were integrated along with preflight priorities through the Increment replanning process. Additionally, the teams reviewed, updated, and implemented changes to the governing documentation for the configuration of the ISS for a contingency decrewing event. Steps were taken to identify critical items for disposal prior to decrewing, as well as identifying the required items to be strategically staged or flown with the astronauts and cosmonauts who would eventually recrew the ISS. After the successful launches and dockings of both 45P and 28S, the decrewing team transitioned to finalizing and publishing the documentation for standardizing the decrewing flight rules. With the continued launching of crews and cargo to the ISS, utilization and science is again a high priority, with the Increment pairs 29 and 30, and 31 and 32 reaching the milestone of at least 35 hours per week average utilization.

  7. High-priority and low-priority drug-drug interactions in different international electronic health record systems: A comparative study.

    PubMed

    Cornu, Pieter; Phansalkar, Shobha; Seger, Diane L; Cho, Insook; Pontefract, Sarah; Robertson, Alexandra; Bates, David W; Slight, Sarah P

    2018-03-01

    To investigate whether alert warnings for high-priority and low-priority drug-drug interactions (DDIs) were present in five international electronic health record (EHR) systems, to compare and contrast the severity level assigned to them, and to establish the proportion of alerts that were overridden. We conducted a comparative, retrospective, multinational study using a convenience sample of 5 EHRs from the U.S., U.K., Republic of Korea and Belgium. Of the 15 previously defined, high-priority, class-based DDIs, alert warnings were found to exist for 11 in both the Korean and UK systems, 9 in the Belgian system, and all 15 in the two US systems. The specific combinations that were included in these class-based DDIs varied considerably in number, type and level of severity amongst systems. Alerts were only active for 8.4% (52/619) and 52.4% (111/212) of the specific drug-drug combinations contained in the Belgian and UK systems, respectively. Hard stops (not possible to override) existed in the US and UK systems only. The override rates for high-priority alerts requiring provider action ranged from 56.7% to 83.3%. Of the 33 previously defined low-priority DDIs, active alerts existed only in the US systems, for three class-based DDIs. The majority were non-interruptive. Alert warnings existed for most of the high-priority DDIs in the different EHRs but overriding them was easy in most of the systems. In addition to validating the high- and low-priority DDIs, this study reported a lack of standardization in DDI levels across different international knowledge bases. Copyright © 2017. Published by Elsevier B.V.

  8. Astrosociological Implications of Astrobiology (Revisited)

    NASA Astrophysics Data System (ADS)

    Pass, Jim

    2010-01-01

    Supporters of astrobiology continue to organize the field around formalized associations and organizations under the guise of the so-called ``hard'' sciences (e.g., biology and the related physical/natural sciences). The so-called ``soft'' sciences-including sociology and the other social sciences, the behavioral sciences, and the humanities-remain largely separated from this dynamically growing field. However, as argued in this paper, space exploration involving the search for extraterrestrial life should be viewed as consisting of two interrelated parts (i.e., two sides of the same coin): astrobiology and astrosociology. Together, these two fields broadly combine the two major branches of science as they relate to the relationship between human life and alien life, as appropriate. Moreover, with a formalized system of collaboration, these two complimentary fields would also focus on the implications of their research to human beings as well as their cultures and social structures. By placing the astrosociological implications of astrobiology at a high enough priority, scientists interested in the search for alien life can augment their focus to include the social, cultural, and behavioral implications that were always associated with their work (yet previously overlooked or understated, and too often misunderstood). Recognition of the astrosociological implications expands our perception about alien life by creating a new emphasis on their ramifications to human life on Earth.

  9. The AGING Initiative experience: a call for sustained support for team science networks.

    PubMed

    Garg, Tullika; Anzuoni, Kathryn; Landyn, Valentina; Hajduk, Alexandra; Waring, Stephen; Hanson, Leah R; Whitson, Heather E

    2018-05-18

    Team science, defined as collaborative research efforts that leverage the expertise of diverse disciplines, is recognised as a critical means to address complex healthcare challenges, but the practical implementation of team science can be difficult. Our objective is to describe the barriers, solutions and lessons learned from our team science experience as applied to the complex and growing challenge of multiple chronic conditions (MCC). MCC is the presence of two or more chronic conditions that have a collective adverse effect on health status, function or quality of life, and that require complex healthcare management, decision-making or coordination. Due to the increasing impact on the United States society, MCC research has been identified as a high priority research area by multiple federal agencies. In response to this need, two national research entities, the Healthcare Systems Research Network (HCSRN) and the Claude D. Pepper Older Americans Independence Centers (OAIC), formed the Advancing Geriatrics Infrastructure and Network Growth (AGING) Initiative to build nationwide capacity for MCC team science. This article describes the structure, lessons learned and initial outcomes of the AGING Initiative. We call for funding mechanisms to sustain infrastructures that have demonstrated success in fostering team science and innovation in translating findings to policy change necessary to solve complex problems in healthcare.

  10. The priority group index: a proposed new method incorporating high risk and population burden to identify target populations for public health interventions.

    PubMed

    Zhang, Bo; Cohen, Joanna E; OʼConnor, Shawn

    2014-01-01

    Selection of priority groups is important for health interventions. However, no quantitative method has been developed. To develop a quantitative method to support the process of selecting priority groups for public health interventions based on both high risk and population health burden. Secondary data analysis of the 2010 Canadian Community Health Survey. Canadian population. Survey respondents. We identified priority groups for 3 diseases: heart disease, stroke, and chronic lower respiratory diseases. Three measures--prevalence, population counts, and adjusted odds ratios (OR)--were calculated for subpopulations (sociodemographic characteristics and other risk factors). A Priority Group Index (PGI) was calculated by summing the rank scores of these 3 measures. Of the 30 priority groups identified by the PGI (10 for each of the 3 disease outcomes), 7 were identified on the basis of high prevalence only, 5 based on population count only, 3 based on high OR only, and the remainder based on combinations of these. The identified priority groups were all in line with the literature as risk factors for the 3 diseases, such as elderly people for heart disease and stroke and those with low income for chronic lower respiratory diseases. The PGI was thus able to balance both high risk and population burden approaches in selecting priority groups, and thus it would address health inequities as well as disease burden in the overall population. The PGI is a quantitative method to select priority groups for public health interventions; it has the potential to enhance the effective use of limited public resources.

  11. Leveraging technology and staffing in developing a new liaison program.

    PubMed

    Williams, Jeff; McCrillis, Aileen; McGowan, Richard; Nicholson, Joey; Surkis, Alisa; Thompson, Holly; Vieira, Dorice

    2014-01-01

    With nearly all library resources and services delivered digitally, librarians working for the New York University Health Sciences Library struggled with maintaining awareness of changing user needs, understanding barriers faced in using library resources and services, and determining knowledge management challenges across the organization. A liaison program was created to provide opportunities for librarians to meaningfully engage with users. The program was directed toward a subset of high-priority user groups to provide focused engagement with these users. Responsibility for providing routine reference service was reduced for liaison librarians to provide maximum time to engage with their assigned user communities.

  12. Effective stakeholder participation in setting research priorities using a Global Evidence Mapping approach.

    PubMed

    Clavisi, Ornella; Bragge, Peter; Tavender, Emma; Turner, Tari; Gruen, Russell L

    2013-05-01

    We present a multistep process for identifying priority research areas in rehabilitation and long-term care of traumatic brain-injured (TBI) patients. In particular, we aimed to (1) identify which stakeholders should be involved; (2) identify what methods are appropriate; (3) examine different criteria for the generation of research priority areas; and (4) test the feasibility of linkage and exchange among researchers, decision makers, and other potential users of the research. Potential research questions were identified and developed using an initial scoping meeting and preliminary literature search, followed by a facilitated mapping workshop and an online survey. Identified research questions were then prioritized against specific criteria (clinical importance, novelty, and controversy). Existing evidence was then mapped to the high-priority questions using usual processes for search, screening, and selection. A broad range of stakeholders were then brought together at a forum to identify priority research themes for future research investment. Using clinical and research leaders, smaller targeted planning workshops prioritized specific research projects for each of the identified themes. Twenty-six specific questions about TBI rehabilitation were generated, 14 of which were high priority. No one method identified all high-priority questions. Methods that relied solely on the views of clinicians and researchers identified fewer high-priority questions compared with methods that used broader stakeholder engagement. Evidence maps of these high-priority questions yielded a number of evidence gaps. Priority questions and evidence maps were then used to inform a research forum, which identified 12 priority themes for future research. Our research demonstrates the value of a multistep and multimethod process involving many different types of stakeholders for prioritizing research to improve the rehabilitation outcomes of people who have suffered TBI. Enhancing stakeholder representation can be augmented using a combination of methods and a process of linkage and exchange. This process can inform decisions about prioritization of research areas. Copyright © 2013 Elsevier Inc. All rights reserved.

  13. 7 CFR 4279.155 - Loan priorities.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... natural disaster or experiencing fundamental structural changes in its economic base (5 points). (iv... the maximum allowable for a loan of its size (5 points). (5) High impact business investment priorities. The priority score for high impact business investment will be the total score for the following...

  14. Summary of Funded Race to the Top Applications: Science, Technology, Engineering, and Mathematics Activities in Eleven States and the District of Columbia

    ERIC Educational Resources Information Center

    Mattson, Beverly

    2011-01-01

    One of the competitive priorities of the U.S. Department of Education's Race to the Top applications addressed science, technology, engineering, and mathematics (STEM). States that applied were required to submit plans that addressed rigorous courses of study, cooperative partnerships to prepare and assist teachers in STEM content, and prepare…

  15. A Novel Lecture Series and Associated Outreach Program in the Environmental and Natural Sciences

    ERIC Educational Resources Information Center

    Banner, Jay L.; Guda, Nelson; James, Eric W.; Stern, Libby A.; Zavala, Brian; Gordon, Jessica D.

    2008-01-01

    To address the low priority given to university-level outreach, the authors created an outreach program that makes it easy for scientists to connect with the public, while at the same time providing effective transfer of scientific research results to the public and the K-12 community. The result is a program called the Hot Science--Cool Talks…

  16. A Priority for California's Future: Science for Students. Analysis of Public Opinion Research. Strengthening Science Education in California

    ERIC Educational Resources Information Center

    Center for the Future of Teaching and Learning, 2010

    2010-01-01

    California's public schools have struggled since the passage of Proposition 13 in 1978, and today face enormous challenges to try to regain lost quality and standing as a national education leader. In light of the current economic crisis, competition for limited resources is fierce and the pressure is on to eliminate all but the basic "Three…

  17. Computer Science in K-12 School Curricula of the 2lst Century: Why, What and When?

    ERIC Educational Resources Information Center

    Webb, Mary; Davis, Niki; Bell, Tim; Katz, Yaacov J.; Reynolds, Nicholas; Chambers, Dianne P.; Syslo, Maciej M.

    2017-01-01

    In this paper we have examined the position and roles of Computer Science in curricula in the light of recent calls for curriculum change and we have proposed principles and issues to consider in curriculum design as well as identifying priority areas for further research. The paper is based on discussions within and beyond the International…

  18. Northwest Regional Climate Assessment

    NASA Technical Reports Server (NTRS)

    Lipschultz, Fred

    2011-01-01

    Objectives are to establish a continuing, inclusive National process that: 1) synthesizes relevant science and information 2) increases understanding of what is known & not known 3) identifies information needs related to preparing for climate variability and change, and reducing climate impacts and vulnerability 4) evaluates progress of adaptation & mitigation activities 5) informs science priorities 6) builds assessment capacity in regions and sectors 7) builds understanding & skilled use of findings

  19. Preterm birth--prediction, prevention, and consequences: an unmet challenge to perinatal medicine, science, and society: the declaration of Dubrovnik.

    PubMed

    Kurjak, Asim

    2010-11-01

    Preterm birth is the defining challenge to modern perinatal medicine. It is now clear that preterm birth is not caused by one pathologic process but many, some not identified. Prevention of preterm birth is possible if perinatal medicine, science, and society give the necessary priority to this most urgent problem of maternal, fetal, and neonatal patients.

  20. Task Value Profiles across Subjects and Aspirations to Physical and IT-Related Sciences in the United States and Finland

    ERIC Educational Resources Information Center

    Chow, Angela; Eccles, Jacquelynne S.; Salmela-Aro, Katariina

    2012-01-01

    Two independent studies were conducted to extend previous research by examining the associations between task value priority patterns across school subjects and aspirations toward the physical and information technology- (IT-) related sciences. Study 1 measured task values of a sample of 10th graders in the United States (N = 249) across (a)…

  1. A facile and efficient dry transfer technique for two-dimensional Van derWaals heterostructure

    NASA Astrophysics Data System (ADS)

    Xie, Li; Du, Luojun; Lu, Xiaobo; Yang, Rong; Shi, Dongxia; Zhang, Guangyu

    2017-08-01

    Not Available Project supported by the National Basic Research Program of China (Grant Nos. 2013CB934500 and 2013CBA01602), the National Natural Science Foundation of China (Grant Nos. 61325021, 11574361, and 51572289), the Key Research Program of Frontier Sciences, CAS, (Grant No. QYZDB-SSW-SLH004), and the Strategic Priority Research Program (B), CAS (Grant No. XDB07010100).

  2. First-Year Students' Priorities and Choices in STEM Studies--IRIS Findings from Germany and Austria

    ERIC Educational Resources Information Center

    Elster, D.

    2014-01-01

    IRIS (Interests and Recruitment in Science; http://iris.fp-7.org/about-iris/) is a European 7th framework project focusing on the challenge that only few young people in general, and women in particular, choose an education and career in science and technology. Project IRIS aims to contribute to the improvement of recruitment, retention and gender…

  3. NASA's In Space Propulsion Technology Program Accomplishments and Lessons Learned

    NASA Technical Reports Server (NTRS)

    Johnson, Les C.; Harris, David

    2008-01-01

    NASA's In-Space Propulsion Technology (ISPT) Program was managed for 5 years at the NASA MSFC and significant strides were made in the advancement of key transportation technologies that will enable or enhance future robotic science and deep space exploration missions. At the program's inception, a set of technology investment priorities were established using an NASA-wide, mission-driven prioritization process and, for the most part, these priorities changed little - thus allowing a consistent framework in which to fund and manage technology development. Technologies in the portfolio included aerocapture, advanced chemical propulsion, solar electric propulsion, solar sail propulsion, electrodynamic and momentum transfer tethers, and various very advanced propulsion technologies with significantly lower technology readiness. The program invested in technologies that have the potential to revolutionize the robotic exploration of deep space. For robotic exploration and science missions, increased efficiencies of future propulsion systems are critical to reduce overall life-cycle costs and, in some cases, enable missions previously considered impossible. Continued reliance on conventional chemical propulsion alone will not enable the robust exploration of deep space - the maximum theoretical efficiencies have almost been reached and they are insufficient to meet needs for many ambitious science missions currently being considered. By developing the capability to support mid-term robotic mission needs, the program was to lay the technological foundation for travel to nearby interstellar space. The ambitious goals of the program at its inception included supporting the development of technologies that could support all of NASA's missions, both human and robotic. As time went on and budgets were never as high as planned, the scope of the program was reduced almost every year, forcing the elimination of not only the broader goals of the initial program, but also of funding for over half of the technologies in the original portfolio. In addition, the frequency at which the application requirements for the program changed exceeded the development time required to mature technologies: forcing sometimes radical rescoping of research efforts already halfway (or more) to completion. At the end of its fifth year, both the scope and funding of the program were at a minimum despite the program successfully meeting all of it's initial high priority objectives. This paper will describe the program, its requirements, technology portfolio, and technology maturation processes. Also discussed will be the major technology milestones achieved and the lessons learned from managing a $100M+ technology program.

  4. 34 CFR 263.21 - What priority is given to certain projects and applicants?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... successful entry into school at the kindergarten school level. (2) Early childhood and kindergarten programs... subject matters, including math and science, to enable Indian students to successfully transition to...

  5. Top priorities of Canadian and American policymakers for conservation science

    EPA Science Inventory

    We summarize the content of America's "top 40" conservation research questions and how they can inform policy and management needs that emerged from informal interviews with senior policymakers and other decision makers

  6. Experimental Observation of the Ground-State Geometric Phase of Three-Spin XY Model

    NASA Astrophysics Data System (ADS)

    Hui, Zhou; Zhao-Kai, Li; Heng-Yan, Wang; Hong-Wei, Chen; Xin-Hua, Peng; Jiang-Feng, Du

    2016-06-01

    Not Available Supported by the National Key Basic Research Program under Grant Nos 2013CB921800 and 2014CB848700, the National Science Fund for Distinguished Young Scholars under Grant No 11425523, the National Natural Science Foundation of China under Grant Nos 11375167, 11227901, 91021005 and 11575173, the Strategic Priority Research Program (B) of the Chinese Academy of Sciences under Grant No XDB01030400, the Research Fund for the Doctoral Program of Higher Education of China under Grant No 20113402110044, the China Postdoctoral Science Foundation, and the Fundamental Research Funds for the Central Universities.

  7. Implementation and research priorities for FCTC Articles 13 and 16: tobacco advertising, promotion, and sponsorship and sales to and by minors.

    PubMed

    Nagler, Rebekah H; Viswanath, Kasisomayajula

    2013-04-01

    Article 13 of the Framework Convention on Tobacco Control (FCTC) calls for a comprehensive ban on tobacco advertising, promotion, and sponsorship (TAPS), and Article 16 calls for prohibition of tobacco sales to and by minors. Although these mandates are based on sound science, many countries have found provision implementation to be rife with challenges. This paper reviews the history of tobacco marketing and minor access restrictions in high-, middle-, and low-income countries, identifying past challenges and successes. We consider current challenges to FCTC implementation, how these barriers can be addressed, and what research is necessary to support such efforts. Specifically, we identify implementation and research priorities for FCTC Articles 13 and 16. Although a solid evidence base underpins the FCTC's call for TAPS bans and minor access restrictions, we know substantially less about how best to implement these restrictions. Drawing on the regulatory experiences of high-, middle-, and low-income countries, we discern several implementation and research priorities, which are organized into 4 categories: policy enactment and enforcement, human capital expertise, the effects of FCTC marketing and youth access policies, and knowledge exchange and transfer among signatories. Future research should provide detailed case studies on implementation successes and failures, as well as insights into how knowledge of successful restrictions can be translated into tobacco control policy and practice and shared among different stakeholders. Tobacco marketing surveillance, sales-to-minors compliance checks, enforcement and evaluation of restriction policies, and capacity building and knowledge transfer are likely to prove central to effective implementation.

  8. The Legacy of NASA Astrophysics E/PO: Conducting Professional Development, Developing Key Themes & Resources, and Broadening E/PO Audiences

    NASA Astrophysics Data System (ADS)

    Lawton, Brandon L.; Smith, Denise A.; Meinke, Bonnie K.; Bartolone, Lindsay; Manning, Jim; Schultz, Gregory R.; NASA Astrophysics E/PO Community

    2016-01-01

    For the past six years, NASA's Science Mission Directorate (SMD) has coordinated the work of its mission- and program-embedded education and public outreach (E/PO) efforts through four forums representing its four science divisions. The Astrophysics Forum, as the others, has built on SMD's long-standing principle of partnering scientists and educators and embedding E/PO in its missions to encourage and coordinate collaborative efforts to make the most efficient and effective use of NASA resources, personnel, data and discoveries in leveraged ways, in support of the nation's science education. Three priorities established early in the Forum's period of activity were to collaboratively enhance professional development for formal and informal educators, develop key themes & resources centered on astrophysics topics, and broaden the reach of astrophysics E/PO to traditionally underserved audiences in STEM subjects. This presentation will highlight some of the achievements of the Astrophysics E/PO community and Forum in these priority areas. This work constitutes an ongoing legacy--a firm foundation on which the new structure of NASA SMD education efforts will go forward.

  9. A Call to Develop Course-Based Undergraduate Research Experiences (CUREs) for Nonmajors Courses

    PubMed Central

    Ballen, Cissy J.; Blum, Jessamina E.; Brownell, Sara; Hebert, Sadie; Hewlett, James; Klein, Joanna R.; McDonald, Erik A.; Monti, Denise L.; Nold, Stephen C.; Slemmons, Krista E.; Soneral, Paula A. G.; Cotner, Sehoya

    2017-01-01

    Course-based undergraduate research experiences (CUREs) for non–science majors (nonmajors) are potentially distinct from CUREs for developing scientists in their goals, learning objectives, and assessment strategies. While national calls to improve science, technology, engineering, and mathematics education have led to an increase in research revealing the positive effects of CUREs for science majors, less work has specifically examined whether nonmajors are impacted in the same way. To address this gap in our understanding, a working group focused on nonmajors CUREs was convened to discuss the following questions: 1) What are our laboratory-learning goals for nonmajors? 2) What are our research priorities to determine best practices for nonmajors CUREs? 3) How can we collaborate to define and disseminate best practices for nonmajors in CUREs? We defined three broad student outcomes of prime importance to the nonmajors CURE: improvement of scientific literacy skills, proscience attitudes, and evidence-based decision making. We evaluated the state of knowledge of best practices for nonmajors, and identified research priorities for the future. The report that follows is a summary of the conclusions and future directions from our discussion. PMID:28450449

  10. Implementation science: a reappraisal of our journal mission and scope.

    PubMed

    Foy, Robbie; Sales, Anne; Wensing, Michel; Aarons, Gregory A; Flottorp, Signe; Kent, Bridie; Michie, Susan; O'Connor, Denise; Rogers, Anne; Sevdalis, Nick; Straus, Sharon; Wilson, Paul

    2015-04-17

    The implementation of research findings into healthcare practice has become increasingly recognised as a major priority for researchers, service providers, research funders and policymakers over the past decade. Nine years after its establishment, Implementation Science, an international online open access journal, currently publishes over 150 articles each year. This is fewer than 30% of those submitted for publication. The majority of manuscript rejections occur at the point of initial editorial screening, frequently because we judge them to fall outside of journal scope. There are a number of common reasons as to why manuscripts are rejected on grounds of scope. Furthermore, as the field of implementation research has evolved and our journal submissions have risen, we have, out of necessity, had to become more selective in what we publish. We have also expanded our scope, particularly around patient-mediated and population health interventions, and will monitor the impact of such changes. We hope this editorial on our evolving priorities and common reasons for rejection without peer review will help authors to better judge the relevance of their papers to Implementation Science.

  11. Master Environmental Plan for Fort Devens, Massachusetts

    DTIC Science & Technology

    1992-04-01

    sites located in proximity to each other were grouped together. The rationale for the order of priority assigned to the study areas in this section is...following priority categories: 1. High priority for action. All group 1 study areas have known contamination. Group IA includes sites that have ongoing...remedial investigations. Group 1B includes sites that have ongoing site inspections. 2. Moderate to high priority for action. Study areas in groups 3

  12. Policy and science in children's health and environment: recommendations from the PINCHE project.

    PubMed

    van den Hazel, Peter; Zuurbier, Moniek; Bistrup, Marie Louise; Busby, Chris; Fucic, Aleksandra; Koppe, Janna G; Lundqvist, Christofer; Ronchetti, Roberto; ten Tusscher, Gavin

    2006-10-01

    Policy recommendations result from the discussions and analysis of the present situation in environment and health. Such analysis was performed in PINCHE. This led to recommendations based on the scientific literature. In the field of children's environmental health the policy process will follow more or less fixed rules, but this process is still at an early level of development. The link between science and policy still faces many challenges. Scientific assessment of environmental risk must recognize and tackle the problems of data sets, variability of human and environmental systems, the range, spatial and temporal diffusion of potential health effects and many biases and confounding factors. The PINCHE network recommends a general improvement of the supporting scientific fields in environment and health. Assessments from epidemiology or toxicology should play a key role in influencing science-policy decisions in programmes that are intended to inform the public policy process. Scientific committees at a local level could play a role. The relation between health and environment needs to be better incorporated in training and education. There is a need for harmonization of data production and use. The priorities in PINCHE focus on the most important issues. A classification of low, medium or high priority for action was used to describe a range of different environmental stressors. PINCHE provided recommendations to reduce exposure for children. Exposure reduction is not always linked to improved health in the short term, but it will reduce the body burden of accumulating chemicals in children. A strategic choice is reduction of exposure of children to compounds by changing production techniques or by increasing the distance of child specific settings to sources. The contribution of all players in the production, distribution and use of scientific knowledge in the field of children's environmental health is necessary.

  13. Two-Phase Flow Research on the ISS for Thermal Control Applications

    NASA Technical Reports Server (NTRS)

    Motil, Brian J.

    2013-01-01

    With the era of full utilization of the ISS now upon us, this presentation will discuss some of the highest-priority areas for two-phase flow systems with thermal control applications. These priorities are guided by recommendations of a 2011 NRC Decadal Survey report, Recapturing a Future for Space Exploration, Life and Physical Sciences for a New Era as well as an internal NASA exercise in response to the NRC report conducted in early 2012. Many of these proposals are already in various stages of development, while others are still conceptual.

  14. Rings Research in the Next Decade

    NASA Astrophysics Data System (ADS)

    Tiscareno, Matthew S.; Albers, N.; Brahic, A.; Brooks, S. M.; Burns, J. A.; Chavez, C.; Colwell, J. E.; Cuzzi, J. N.; de Pater, I.; Dones, L.; Durisen, R. H.; Filacchione, G.; Giuliatti Winter, S. M.; Gordon, M. K.; Graps, A.; Hamilton, D. P.; Hedman, M. M.; Horanyi, M.; Kempf, S.; Krueger, H.; Lewis, M. C.; Lissauer, J. J.; Murray, C. D.; Nicholson, P. D.; Olkin, C. B.; Pappalardo, R. T.; Salo, H.; Schmidt, J.; Showalter, M. R.; Spahn, F.; Spilker, L. J.; Srama, R.; Sremcevic, M.; Stewart, G. R.; Yanamandra-Fisher, P.

    2009-12-01

    The study of planetary ring systems is a key component of planetary science for several reasons: 1) The evolution and current states of planets and their satellites are affected in many ways by rings, while 2) conversely, properties of planets and moons and other solar system populations are revealed by their effects on rings; 3) highly structured and apparently delicate ring systems may be bellwethers, constraining various theories of the origin and evolution of their entire planetary system; and finally, 4) planetary rings provide an easily observable analogue to other astrophysical disk systems, enabling real "ground truth” results applicable to disks much more remote in space and/or time, including proto-planetary disks, circum-stellar disks, and even galaxies. Significant advances have been made in rings science in the past decade. The highest-priority rings research recommendations of the last Planetary Science Decadal Survey were to operate and extend the Cassini orbiter mission at Saturn; this has been done with tremendous success, accounting for much of the progress made on key science questions, as we will describe. Important progress in understanding the rings of Saturn and other planets has also come from Earth-based observational and theoretical work, again as prioritized by the last Decadal Survey. However, much important work remains to be done. At Saturn, the Cassini Solstice Mission must be brought to a successful completion. Priority should also be placed on sending spacecraft to Neptune and/or Uranus, now unvisited for more than 20 years. At Jupiter and Pluto, opportunities afforded by visiting spacecraft capable of studying rings should be exploited. On Earth, the need for continued research and analysis remains strong, including in-depth analysis of rings data already obtained, numerical and theoretical modeling work, laboratory analysis of materials and processes analogous to those found in the outer solar system, and continued Earth-based observations.

  15. Critical Infrastructure for Ocean Research and Societal Needs in 2030

    NASA Astrophysics Data System (ADS)

    Glickson, D.; Barron, E. J.; Fine, R. A.; Bellingham, J. G.; Boss, E.; Boyle, E. A.; Edwards, M.; Johnson, K. S.; Kelley, D. S.; Kite-Powell, H.; Ramberg, S. E.; Rudnick, D. L.; Schofield, O.; Tamburri, M.; Wiebe, P. H.; Wright, D. J.; Committee on an Ocean Infrastructure StrategyU. S. Ocean Research in 2030

    2011-12-01

    At the request of the Subcommittee on Ocean Science and Technology, an expert committee was convened by the National Research Council to identify major research questions anticipated to be at the forefront of ocean science in 2030, define categories of infrastructure that should be included in planning, provide advice on criteria and processes that could be used to set priorities, and recommend ways to maximize the value of investments in ocean infrastructure. The committee identified 32 future ocean research questions in four themes: enabling stewardship of the environment, protecting life and property, promoting economic vitality, and increasing fundamental scientific understanding. Many of the questions reflect challenging, multidisciplinary science questions that are clearly relevant now and are likely to take decades to solve. U.S. ocean research will require a growing suite of ocean infrastructure for a range of activities, such as high quality, sustained time series observations and autonomous monitoring at a broad range of spatial and temporal scales. A coordinated national plan for making future strategic investments will be needed and should be based upon known priorities and reviewed every 5-10 years. After assessing trends in ocean infrastructure and technology development, the committee recommended implementing a comprehensive, long-term research fleet plan in order to retain access to the sea; continuing U.S. capability to access fully and partially ice-covered seas; supporting innovation, particularly the development of biogeochemical sensors; enhancing computing and modeling capacity and capability; establishing broadly accessible data management facilities; and increasing interdisciplinary education and promoting a technically-skilled workforce. They also recommended that development, maintenance, or replacement of ocean research infrastructure assets should be prioritized in terms of societal benefit. Particular consideration should be given to usefulness for addressing important science questions; affordability, efficiency, and longevity; and ability to contribute to other missions or applications. Estimating the economic costs and benefits of each potential infrastructure investment using these criteria would allow funding of investments that produce the largest expected net benefit over time.

  16. Adapting Technological Interventions to Meet the Needs of Priority Populations.

    PubMed

    Linke, Sarah E; Larsen, Britta A; Marquez, Becky; Mendoza-Vasconez, Andrea; Marcus, Bess H

    2016-01-01

    Cardiovascular diseases (CVD) comprise the leading cause of mortality worldwide, accounting for 3 in 10 deaths. Individuals with certain risk factors, including tobacco use, obesity, low levels of physical activity, type 2 diabetes mellitus, racial/ethnic minority status and low socioeconomic status, experience higher rates of CVD and are, therefore, considered priority populations. Technological devices such as computers and smartphones are now routinely utilized in research studies aiming to prevent CVD and its risk factors, and they are also rampant in the public and private health sectors. Traditional health behavior interventions targeting these risk factors have been adapted for technology-based approaches. This review provides an overview of technology-based interventions conducted in these priority populations as well as the challenges and gaps to be addressed in future research. Researchers currently possess tremendous opportunities to engage in technology-based implementation and dissemination science to help spread evidence-based programs focusing on CVD risk factors in these and other priority populations. Copyright © 2016 Elsevier Inc. All rights reserved.

  17. National Institutes of Health Research Plan on Rehabilitation.

    PubMed

    2017-04-01

    One in five Americans experiences disability that affects their daily function because of impairments in mobility, cognitive function, sensory impairment, or communication impairment. The need for rehabilitation strategies to optimize function and reduce disability is a clear priority for research to address this public health challenge. The National Institutes of Health (NIH) recently published a Research Plan on Rehabilitation that provides a set of priorities to guide the field over the next 5 years. The plan was developed with input from multiple Institutes and Centers within the NIH, the National Advisory Board for Medical Rehabilitation Research, and the public. This article provides an overview of the need for this research plan, an outline of its development, and a listing of six priority areas for research. The NIH is committed to working with all stakeholder communities engaged in rehabilitation research to track progress made on these priorities and to work to advance the science of medical rehabilitation. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  18. Global priorities for conservation across multiple dimensions of mammalian diversity

    PubMed Central

    Graham, Catherine H.; Costa, Gabriel C.; Hedges, S. Blair; Penone, Caterina; Radeloff, Volker C.; Rondinini, Carlo; Davidson, Ana D.

    2017-01-01

    Conservation priorities that are based on species distribution, endemism, and vulnerability may underrepresent biologically unique species as well as their functional roles and evolutionary histories. To ensure that priorities are biologically comprehensive, multiple dimensions of diversity must be considered. Further, understanding how the different dimensions relate to one another spatially is important for conservation prioritization, but the relationship remains poorly understood. Here, we use spatial conservation planning to (i) identify and compare priority regions for global mammal conservation across three key dimensions of biodiversity—taxonomic, phylogenetic, and traits—and (ii) determine the overlap of these regions with the locations of threatened species and existing protected areas. We show that priority areas for mammal conservation exhibit low overlap across the three dimensions, highlighting the need for an integrative approach for biodiversity conservation. Additionally, currently protected areas poorly represent the three dimensions of mammalian biodiversity. We identify areas of high conservation priority among and across the dimensions that should receive special attention for expanding the global protected area network. These high-priority areas, combined with areas of high priority for other taxonomic groups and with social, economic, and political considerations, provide a biological foundation for future conservation planning efforts. PMID:28674013

  19. Global priorities for conservation across multiple dimensions of mammalian diversity.

    PubMed

    Brum, Fernanda T; Graham, Catherine H; Costa, Gabriel C; Hedges, S Blair; Penone, Caterina; Radeloff, Volker C; Rondinini, Carlo; Loyola, Rafael; Davidson, Ana D

    2017-07-18

    Conservation priorities that are based on species distribution, endemism, and vulnerability may underrepresent biologically unique species as well as their functional roles and evolutionary histories. To ensure that priorities are biologically comprehensive, multiple dimensions of diversity must be considered. Further, understanding how the different dimensions relate to one another spatially is important for conservation prioritization, but the relationship remains poorly understood. Here, we use spatial conservation planning to ( i ) identify and compare priority regions for global mammal conservation across three key dimensions of biodiversity-taxonomic, phylogenetic, and traits-and ( ii ) determine the overlap of these regions with the locations of threatened species and existing protected areas. We show that priority areas for mammal conservation exhibit low overlap across the three dimensions, highlighting the need for an integrative approach for biodiversity conservation. Additionally, currently protected areas poorly represent the three dimensions of mammalian biodiversity. We identify areas of high conservation priority among and across the dimensions that should receive special attention for expanding the global protected area network. These high-priority areas, combined with areas of high priority for other taxonomic groups and with social, economic, and political considerations, provide a biological foundation for future conservation planning efforts.

  20. Exploring Attractiveness of the Basic Sciences for Female Physicians.

    PubMed

    Yamazaki, Yuka; Fukushima, Shinji; Kozono, Yuki; Uka, Takanori; Marui, Eiji

    2018-01-01

    In Japan, traditional gender roles of women, especially the role of motherhood, may cause early career resignations in female physicians and a shortage of female researchers. Besides this gender issue, a general physician shortage is affecting basic science fields. Our previous study suggested that female physicians could be good candidates for the basic sciences because such work offers good work-life balance. However, the attractiveness for female physicians of working in the basic sciences, including work-life balance, is not known. In a 2012 nationwide cross-sectional questionnaire survey, female physicians holding tenured positions in the basic sciences at Japan's medical schools were asked an open-ended question about positive aspects of basic sciences that clinical medicine lacks, and we analyzed 58 respondents' comments. Qualitative analysis using the Kawakita Jiro method revealed four positive aspects: research attractiveness, priority on research productivity, a healthy work-life balance, and exemption from clinical duties. The most consistent positive aspect was research attractiveness, which was heightened by medical knowledge and clinical experience. The other aspects were double-edged swords; for example, while the priority on research productivity resulted in less gender segregation, it sometimes created tough competition, and while exemption from clinical duties contributed to a healthy work-life balance, it sometimes lowered motivation as a physician and provided unstable income. Overall, if female physicians lack an intrinsic interest in research and seek good work-life balance, they may drop out of research fields. Respecting and cultivating students' research interest is critical to alleviating the physician shortage in the basic sciences.

Top