Creeden, Daniel; Johnson, Benjamin R; Rines, Glen A; Setzler, Scott D
2014-11-17
We have demonstrated ultra-high efficiency amplification in Tm-doped fiber with both core- and cladding-pumped configurations using a resonant tandem-pumping approach. These Tm-doped fiber amplifiers are pumped in-band with a 1908 nm Tm-doped fiber laser and operate at 1993 nm with >90% slope efficiency. In a core-pumped configuration, we have achieved 92.1% slope efficiency and 88.4% optical efficiency at 41 W output power. In a cladding-pumped configuration, we have achieved 123.1 W of output power with 90.4% optical efficiency and a 91.6% slope efficiency. We believe these are the highest optical efficiencies achieved in a Tm-doped fiber amplifier operating in the 2-micron spectral region.
Single frequency 1560nm Er:Yb fiber amplifier with 207W output power and 50.5% slope efficiency
NASA Astrophysics Data System (ADS)
Creeden, Daniel; Pretorius, Herman; Limongelli, Julia; Setzler, Scott D.
2016-03-01
High power fiber lasers/amplifiers in the 1550nm spectral region have not scaled as rapidly as Yb-, Tm-, or Ho-doped fibers. This is primarily due to the low gain of the erbium ion. To overcome the low pump absorption, Yb is typically added as a sensitizer. Although this helps the pump absorption, it also creates a problem with parasitic lasing of the Yb ions under strong pumping conditions, which generally limits output power. Other pump schemes have shown high efficiency through resonant pumping of erbium only without the need for Yb as a sensitizer [1-2]. Although this can enable higher power scaling due to a decrease in the thermal loading, resonant pumping methods require long fiber lengths due to pump bleaching, which may limit the power scaling which can be achieved for single frequency output. By using an Er:Yb fiber and pumping in the minima of the Yb pump absorption at 940nm, we have been able to simultaneously generate high power, single frequency output at 1560nm while suppressing the 1-micron ASE and enabling higher efficiency compared to pumping at the absorption peak at 976nm. We have demonstrated single frequency amplification (540Hz linewidth) to 207W average output power with 49.3% optical efficiency (50.5% slope efficiency) in an LMA Er:Yb fiber. We believe this is the highest reported efficiency from a high power 9XXnm pumped Er:Yb-doped fiber amplifier. This is significantly more efficient that the best-reported efficiency for high power Er:Yb doped fibers, which, to-date, has been limited to ~41% slope efficiency [3].
High-efficiency, 154 W CW, diode-pumped Raman fiber laser with brightness enhancement.
Glick, Yaakov; Fromzel, Viktor; Zhang, Jun; Ter-Gabrielyan, Nikolay; Dubinskii, Mark
2017-01-20
We demonstrate a high-power, high-efficiency Raman fiber laser pumped directly by laser diode modules at 978 nm. 154 W of CW power were obtained at a wavelength of 1023 nm with an optical to optical efficiency of 65%. A commercial graded-index (GRIN) core fiber acts as the Raman fiber in a power oscillator configuration, which includes spectral selection to prevent generation of the second Stokes. In addition, brightness enhancement of the pump beam by a factor of 8.4 is attained due to the Raman gain distribution profile in the GRIN fiber. To the best of our knowledge this is the highest power and highest efficiency Raman fiber laser demonstrated in any configuration allowing brightness enhancement (i.e., in either cladding-pumped configuration or with GRIN fibers, excluding step-index core pumped), regardless of pumping scheme (i.e., either diode pumped or fiber laser pumped).
Highly Efficient Nd:yag Lasers for Free-space Optical Communications
NASA Technical Reports Server (NTRS)
Sipes, D. L., Jr.
1985-01-01
A highly efficient Nd:YAG laser end-pumped by semiconductor lasers as a possible free-space optical communications source is discussed. Because this concept affords high pumping densities, a long absorption length, and excellent mode-matching characteristics, it is estimated that electrical-to-optical efficiencies greater than 5% could be achieved. Several engineering aspects such as resonator size and configuration, pump collecting optics, and thermal effects are also discussed. Finally, possible methods for combining laser-diode pumps to achieve higher output powers are illustrated.
Beach, Raymond J.
1997-01-01
Wing pumping a Tm.sup.3+ doped, end pumped solid state laser generates 2 .mu.m laser radiation at high average powers with high efficiency. Using laser diode arrays to end-pump the laser rod or slab in the wing of the Tm.sup.3+ absorption band near 785 nm results in 2-for-1 quantum efficiency in Tm.sup.3+ because high Tm.sup.3+ concentrations can be used. Wing pumping allows the thermal power generated in the rod or slab to be distributed over a large enough volume to make thermal management practical in the laser gain medium even at high average power operation. The approach is applicable to CW, Q-switched, and rep-pulsed free-laser operation.
Beach, R.J.
1997-11-18
Wing pumping a Tm{sup 3+} doped, end pumped solid state laser generates 2 {micro}m laser radiation at high average powers with high efficiency. Using laser diode arrays to end-pump the laser rod or slab in the wing of the Tm{sup 3+} absorption band near 785 nm results in 2-for-1 quantum efficiency in Tm{sup 3+} because high Tm{sup 3+} concentrations can be used. Wing pumping allows the thermal power generated in the rod or slab to be distributed over a large enough volume to make thermal management practical in the laser gain medium even at high average power operation. The approach is applicable to CW, Q-switched, and rep-pulsed free-laser operation. 7 figs.
Investigation on high transmission efficiency 7 × 1 pump combiner
NASA Astrophysics Data System (ADS)
Cao, Yang; Shi, Wei; Sheng, Quan; Fu, Shijie; Zhang, Haiwei; Bai, Xiaolei; Qi, Liang; Yao, Jianquan
2016-12-01
The 7×1 end-pumped combiner employing 105/125 μm multimode fibers as pump fibers is investigated. The theoretical analysis reveals that sufficient taper length and low refractive index of the capillary should be adopted to fabricate high transmission efficiency combiners. Based on the simulation results, we fabricate a 7×1 end-pumped pump combiner with an average transmission efficiency of 98.9% and a total return loss of 1.1‰. The measured internal operating temperature of this combiner indicates it can endure pump power of the order of kilowatts.
Optimising the efficiency of pulsed diode pumped Yb:YAG laser amplifiers for ns pulse generation.
Ertel, K; Banerjee, S; Mason, P D; Phillips, P J; Siebold, M; Hernandez-Gomez, C; Collier, J C
2011-12-19
We present a numerical model of a pulsed, diode-pumped Yb:YAG laser amplifier for the generation of high energy ns-pulses. This model is used to explore how optical-to-optical efficiency depends on factors such as pump duration, pump spectrum, pump intensity, doping concentration, and operating temperature. We put special emphasis on finding ways to achieve high efficiency within the practical limitations imposed by real-world laser systems, such as limited pump brightness and limited damage fluence. We show that a particularly advantageous way of improving efficiency within those constraints is operation at cryogenic temperature. Based on the numerical findings we present a concept for a scalable amplifier based on an end-pumped, cryogenic, gas-cooled multi-slab architecture.
Qiang, Zexuan; Geng, Jihong; Luo, Tao; Zhang, Jun; Jiang, Shibin
2014-02-01
A highly efficient ytterbium-free erbium-doped silicate glass fiber has been developed for high-power fiber laser applications at an eye-safe wavelength near 1.55 μm. Our preliminary experiments show that high laser efficiency can be obtained from a relatively short length of the gain fiber when resonantly pumped at 1535 nm in both core- and cladding-pumping configurations. With a core-pumping configuration as high as 75%, optical-to-optical efficiency and 4 W output power were obtained at 1560 nm from a 1 m long gain fiber. When using a cladding-pumping configuration, approximately 13 W output power with 67.7% slope efficiency was demonstrated from a piece of 2 m long fiber. The lengths of silicate-based gain fiber are much shorter than their silica-based counterparts used in other experiments, which is significantly important for high-power narrow-band and/or pulsed laser applications.
High-energy high-efficiency Nd:YLF laser end-pump by 808 nm diode
NASA Astrophysics Data System (ADS)
Ma, Qinglei; Mo, Haiding; Zhao, Jay
2018-04-01
A model is developed to calculate the optimal pump position for end-pump configuration. The 808 nm wing pump is employed to spread the absorption inside the crystal. By the optimal laser cavity design, a high-energy high-efficiency Nd:YLF laser operating at 1053 nm is presented. In cw operation, a 13.6 W power is obtained with a slope efficiency of 51% with respect to 30 W incident pump power. The beam quality is near diffraction limited with M2 ∼ 1.02. In Q-switch operation, a pulse energy of 5 mJ is achieved with a peak power of 125 kW at 1 kHz repetition rate.
Face pumping of thin, solid-state slab lasers with laser diodes.
Faulstich, A; Baker, H J; Hall, D R
1996-04-15
A new technique for face pumping of slab lasers uses transfer of light from 10 quasi-cw laser diode bars through a slotted mirror into a rectangular, highly ref lective pump chamber, giving efficient multipass pumping of a thin Nd:glass slab laser. A slope efficiency of 28% and a maximum pulse energy of 65 mJ have been obtained, and gain and loss measurements with thickness t = 0.45-1.04 mm have confirmed the 1/t scaling of gain in thin slabs and the high efficiency of pump light transfer.
High efficiency laser-pumped emerald lasers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lai, S.T.
1987-09-25
Highly efficient laser operation has been achieved in emerald. In a quasi-cw laser-pumped emerald laser, 64% output slope efficiency has been measured at 768 nm, corresponding to a laser quantum yield of 76%. An output power of 1.6 W was reached at 3.6 W of pump power at 647.1 nm from a krypton laser, and was pump power limited. The emerald laser has a tuning range of 720 to 842 nm. The round trip loss excluding the excited state absorption (ESA) is 0.4%/cm. These results indicate the high laser efficiency and the high optical quality of the emerald attainable inmore » the present laser.« less
A solar-pumped Nd:YAG laser in the high collection efficiency regime
NASA Astrophysics Data System (ADS)
Lando, Mordechai; Kagan, Jacob; Linyekin, Boris; Dobrusin, Vadim
2003-07-01
Solar-pumped lasers can be used for space and terrestrial applications. We report on solar side-pumped Nd:YAG laser experiments, which included comprehensive beam quality measurements and demonstrated record collection efficiency and day long operation. A 6.75 m 2 segmented primary mirror was mounted on a commercial two-axis positioner and focused the solar radiation towards a stationary non-imaging-optics secondary concentrator, which illuminated a Nd:YAG laser rod. Solar side-pumped laser experiments were conducted in both the low and the high pumping density regimes. The low density system was composed of a 89 × 98-mm 2 aperture two-dimensional compound parabolic concentrator (CPC) and a 10-mm diameter 130-mm long Nd:YAG laser rod. The laser emitted up to 46 W and operated continuously for 5 h. The high density system was composed of a three-dimensional CPC with 98 mm entrance diameter and 24 mm exit diameter, followed by a two-dimensional CPC with a rectangular 24 × 33 mm 2 aperture. It pumped a 6-mm diameter 72 mm long Nd:YAG laser rod, which emitted up to 45 W. The results constitute a record collection efficiency of 6.7 W/m 2 of primary mirror. We compare the current results to previous solar side-pumped laser experiments, including experiments at higher pumping density but with low collection efficiency. Finally, we present a scaled up design for a 400 W laser pumped by a solar collection area of 60 m 2, incorporating simultaneously high collection efficiency and high pumping density.
Highly efficient continuous-wave Nd:YAG ceramic lasers at 946 nm
NASA Astrophysics Data System (ADS)
Zhu, H. Y.; Xu, C. W.; Zhang, J.; Tang, D. Y.; Luo, D. W.; Duan, Y. M.
2013-07-01
Highly efficient CW operation of diode-end-pumped Nd:YAG ceramic lasers at 946 nm is experimentally demonstrated. When a 5 mm long in-house fabricated Nd:YAG ceramic was used as the gain medium, a maximum output power of 10.5 W was obtained under an incident pump power of 35 W, corresponding to an optical conversion efficiency of 30%, while, when a 3 mm long ceramic sample was used, a maximum output power of 8.7 W was generated with a slope efficiency of 65% with respect to the absorbed pump power. Both the optical conversion efficiency and slope efficiency are the highest results reported so far for the diode-pumped 946 nm lasers.
High Energy, Single-Mode, All-Solid-State and Tunable UV Laser Transmitter
NASA Technical Reports Server (NTRS)
Prasad, Narasimha S.; Singh, Upendra N.; Hovis, FLoyd
2007-01-01
A high energy, single mode, all solid-state Nd:YAG laser primarily for pumping an UV converter is developed. Greater than 1 J/pulse at 50 HZ PRF and pulse widths around 22 ns have been demonstrated. Higher energy, greater efficiency may be possible. Refinements are known and practical to implement. Technology Demonstration of a highly efficient, high-pulse-energy, single mode UV wavelength generation using flash lamp pumped laser has been achieved. Greater than 90% pump depletion is observed. 190 mJ extra-cavity SFG; IR to UV efficiency > 21% (> 27% for 1 mJ seed). 160 mJ intra-cavity SFG; IR to UV efficiency up to 24% Fluence < 1 J/sq cm for most beams. The pump beam quality of the Nd:YAG pump laser is being refined to match or exceed the above UV converter results. Currently the Nd:YAG pump laser development is a technology demonstration. System can be engineered for compact packaging.
Resonantly pumped high efficiency Ho:YAG laser.
Shen, Ying-Jie; Yao, Bao-Quan; Duan, Xiao-Ming; Dai, Tong-Yu; Ju, You-Lun; Wang, Yue-Zhu
2012-11-20
High-efficient CW and Q-switched Ho:YAG lasers resonantly dual-end-pumped by two diode-pumped Tm:YLF lasers at 1908 nm were investigated. A maximum slope efficiency of 74.8% in CW operation as well as a maximum output power of 58.7 W at 83.2 W incident pump power was achieved, which corresponded to an optical-to-optical conversion efficiency of 70.6%. The maximum pulse energy of 2.94 mJ was achieved, with a 31 ns FWHM pulse width and a peak power of approximately 94.7 kW.
Efficiency and threshold pump intensity of CW solar-pumped solid-state lasers
NASA Technical Reports Server (NTRS)
Hwang, In H.; Lee, Ja H.
1991-01-01
The authors consider the relation between the threshold pumping intensity, the material properties, the resonator parameters, and the ultimate slope efficiencies of various solid-state laser materials for solar pumping. They clarify the relation between the threshold pump intensity and the material parameters and the relation between the ultimate slope efficiency and the laser resonator parameters such that a design criterion for the solar-pumped solid-state laser can be established. Among the laser materials evaluated, alexandrite has the highest slope efficiency of about 12.6 percent; however, it does not seem to be practical for a solar-pumped laser application because of its high threshold pump intensity. Cr:Nd:GSGG is the most promising for solar-pumped lasing. Its threshold pump intensity is about 100 air-mass-zero (AM0) solar constants and its slope efficiency is about 12 percent when thermal deformation is completely prevented.
The research on the design and performance of 7×1 pump combiners
NASA Astrophysics Data System (ADS)
Cao, Yang; Sheng, Quan; Fu, Shijie; Zhang, Haiwei; Bai, Xiaolei; Shi, Wei; Yao, Jianquan
2018-02-01
The 7×1 end-pumped pump combiners employing 105/125 μm multimode fibers as pump fibers are investigated. Based on the results of our theoretical analysis, sufficient taper length (TL) and low refractive index (RI) of the capillary have been adopted to fabricate high transmission efficiency combiners. A 7×1 end-pumped pump combiner with an average transmission efficiency of 98.9% and a total return loss of 1.1‰ is fabricated in experiments, which could find its application in high-power fiber laser systems.
Efficient solar-pumped Nd:YAG laser by a double-stage light-guide/V-groove cavity
NASA Astrophysics Data System (ADS)
Almeida, Joana; Liang, Dawei
2011-05-01
Since the first reported Nd:YAG solar laser, researchers have been exploiting parabolic mirrors and heliostats for enhancing laser output performance. We are now investigating the production of an efficient solar-pumped laser for the reduction of magnesium from magnesium oxide, which could be an alternative solution to fossil fuel. Therefore both high conversion efficiency and excellent beam quality are imperative. By using a single fused silica light guide of rectangular cross section, highly concentrated solar radiation at the focal spot of a stationary parabolic mirror is efficiently transferred to a water-flooded V-groove pump cavity. It allows for the double-pass absorption of pump light along a 4mm diameter, 30mm length, 1.1at% Nd:YAG rod. Optimum pumping parameters and solar laser output power are found through ZEMAXTM non-sequential ray-tracing and LASCADTM laser cavity analysis. 11.0 W of multimode laser output power with excellent beam profile is numerically calculated, corresponding to 6.1W/m2 collection efficiency. To validate the proposed pumping scheme, an experimental setup of the double-stage light-guide/V-groove cavity was built. 78% of highly concentrated solar radiation was efficiently transmitted by the fused silica light guide. The proposed pumping scheme can be an effective solution for enhancing solar laser performances when compared to other side-pump configurations.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Heebner, John E.; Sridharan, Arun K.; Dawson, Jay Walter
Cladding-pumped Raman fiber lasers and amplifiers provide high-efficiency conversion efficiency at high brightness enhancement. Differential loss is applied to both single-pass configurations appropriate for pulsed amplification and laser oscillator configurations applied to high average power cw source generation.
264 W output power at 1585 nm in Er-Yb codoped fiber laser using in-band pumping.
Jebali, M A; Maran, J-N; LaRochelle, S
2014-07-01
We demonstrate a high-power cladding-pumped Er-Yb codoped fiber laser with 74% efficiency. A pump-limited output power of 264 W is obtained using in-band pumping at 1535 nm. We compare the efficiency of 1480 and 1535 nm pumping through numerical simulations and experimental measurements.
NASA Astrophysics Data System (ADS)
Tang, X. X.; Fan, Z. W.; Qiu, J. S.; Lian, F. Q.; Zhang, X. L.
2012-06-01
In this paper, we describe a Nd:YLF laser based on high-speed RTP electro-optical cavity dumping technique. Two home-made 150 W fiber pump modules are used from both sides to pump Nd:YLF crystal. Coupling systems are the key elements in end-pumped solid-state lasers, the aberrations of which greatly affect the efficiency of the lasers. In order to get high efficient and good quality laser output, the optical software ZEMAX is used to design a four-piece coupling system. When the pumped energy is 32 mJ at the repetition rate of 1 Hz, the output energy is 6.5 mJ with 2.5 ns pulse width. When the pumped energy is 13.1 W at the repetition rate of 200 Hz, the output energy is 2.2 W with small M 2 factor where M {/x 2} is 1.04, and M {/y 2} is 1.05, and the light-light conversion efficiency is up to 16.8%.
Volume Bragg grating narrowed high-power and highly efficient cladding-pumped Raman fiber laser.
Liu, Jun; Yao, Weichao; Zhao, Chujun; Shen, Deyuan; Fan, Dianyuan
2014-12-10
High-power and highly efficient operation of a single-mode cladding-pumped Raman fiber laser with narrow lasing bandwidth is demonstrated. The spectral narrowing was realized by an external cavity containing a volume Bragg grating with a center wavelength of 1658 nm. A maximum output power of 10.4 W at 1658.3 nm with a spectral linewidth (FWHM) of ∼0.1 nm was obtained for the launched pump power of 18.4 W, corresponding to a slope efficiency of 109% with respect to the launched pump power. Lasing characteristics of free-running operation are also evaluated and discussed.
High-efficiency cavity-dumped micro-chip Yb:YAG laser
NASA Astrophysics Data System (ADS)
Nishio, M.; Maruko, A.; Inoue, M.; Takama, M.; Matsubara, S.; Okunishi, H.; Kato, K.; Kyomoto, K.; Yoshida, T.; Shimabayashi, K.; Morioka, M.; Inayoshi, S.; Yamagata, S.; Kawato, S.
2014-09-01
High-efficiency cavity-dumped ytterbium-doped yttrium aluminum garnet (Yb:YAG) laser was developed. Although the high quantum efficiency of ytterbium-doped laser materials is appropriate for high-efficiency laser oscillation, the efficiency is decreased by their quasi-three/four laser natures. High gain operation by high intensity pumping is suitable for high efficiency oscillation on the quasi-three/four lasers without extremely low temperature cooling. In our group, highest efficiency oscillations for continuous wave, nanosecond to picosecond pulse lasers were achieved at room temperature by the high gain operation in which pump intensities were beyond 100 kW/cm2.
Study on the amplifier experiment of end-pumped long pulse slab laser
NASA Astrophysics Data System (ADS)
Jin, Quanwei; Chen, Xiaoming; Jiang, JianFeng; Pang, Yu; Tong, Lixin; Li, Mi; Hu, Hao; Lv, Wenqiang; Gao, Qingsong; Tang, Chun
2018-03-01
The amplifier experiment research of end-pumped long pulse slab laser is developed, the results of out-put energy, optical-optical efficiency and pulse waveform are obtained at different experiment conditions, such as peak pumped power, amplifier power and pumped pulse width. The seed laser is CW fundamental transverse-mode operation fiber laser, the laser medium is composited Nd:YAG slab. Under end-pumped and the 2 passes, the laser obtain 7.65J out-put energy and 43.1% optical-optical efficiency with 45kW peak-pumped power and 386μs pump pulse width. The experimental results provide the basic for the optimization design to high frequency, high energy and high beam-quality slab lasers.
High efficiency, linearly polarized, directly diode-pumped Er:YAG laser at 1617 nm.
Yu, Zhenzhen; Wang, Mingjian; Hou, Xia; Chen, Weibiao
2014-12-01
An efficient, directly diode-pumped Er:YAG laser at 1617 nm was demonstrated. A folding mirror with high reflectivity for the s-polarized light at the laser wavelength was used to achieve a linearly polarized laser. A maximum continuous-wave output power of 7.73 W was yielded under incident pump power of 50.57 W, and the optical conversion efficiency with respect to incident pump power was ∼15.28%, which was the highest optical conversion efficiency with directly diode-pumped Er:YAG lasers up to now; in Q-switched operation, the maximum pulse energy of 7.82 mJ was generated with pulse duration of about 80 ns at a pulse repetition frequency of 500 Hz.
Highly efficient and high-power diode-pumped femtosecond Yb:LYSO laser
NASA Astrophysics Data System (ADS)
Tian, Wenlong; Wang, Zhaohua; Zhu, Jiangfeng; Zheng, Lihe; Xu, Jun; Wei, Zhiyi
2017-04-01
A diode-pumped high-power femtosecond Yb:LYSO laser with high efficiency is demonstrated. With a semiconductor saturable absorber mirror for passive mode-locking and a Gires-Tournois interferometer mirror for intracavity dispersion compensation, stable mode-locking pulses of 297 fs duration at 1042 nm were obtained. The maximum average power of 3.07 W was realized under 5.17 W absorbed pump power, corresponding to as high as 59.4% opt-opt efficiency. The single pulse energy and peak power are about 35.5 nJ and 119.5 kW, respectively.
NASA Astrophysics Data System (ADS)
Zou, Shuzhen; Chen, Han; Yu, Haijuan; Sun, Jing; Zhao, Pengfei; Lin, Xuechun
2017-12-01
We demonstrate a new method for fabricating a (6 + 1) × 1 pump-signal combiner based on the reduction of signal fiber diameter by corrosion. This method avoids the mismatch loss of the splice between the signal fiber and the output fiber caused by the signal fiber taper processing. The optimum radius of the corroded signal fiber was calculated according to the analysis of the influence of the cladding thickness on the laser propagating in the fiber core. Besides, we also developed a two-step splicing method to complete the high-precision alignment between the signal fiber core and the output fiber core. A high-efficiency (6 + 1) × 1 pump-signal combiner was produced with an average pump power transmission efficiency of 98.0% and a signal power transmission efficiency of 97.7%, which is well suitable for application to high-power fiber laser system.
Generation of Ince-Gaussian beams in highly efficient, nanosecond Cr, Nd:YAG microchip lasers
NASA Astrophysics Data System (ADS)
Dong, J.; Ma, J.; Ren, Y. Y.; Xu, G. Z.; Kaminskii, A. A.
2013-08-01
Direct generation of higher-order Ince-Gaussian (IG) beams from laser-diode end-pumped Cr, Nd:YAG self-Q-switched microchip lasers was achieved with high efficiency and high repetition rate. An average output power of over 2 W was obtained at an absorbed pump power of 8.2 W a corresponding optical-to-optical efficiency of 25% was achieved. Various IG modes with nanosecond pulse width and peak power of over 2 kW were obtained in laser-diode pumped Cr, Nd:YAG microchip lasers under different pump power levels by applying a tilted, large area pump beam. The effect of the inversion population distribution induced by the tilted pump beam and nonlinear absorption of Cr4+-ions for different pump power levels on the oscillation of higher-order IG modes in Cr, Nd:YAG microchip lasers is addressed. The higher-order IG mode oscillation has a great influence on the laser performance of Cr, Nd:YAG microchip lasers.
Efficient Single-Frequency Thulium Doped Fiber Laser Near 2-micrometers
NASA Technical Reports Server (NTRS)
Geng, Jihong; Wu, Jianfeng; Jiang, Shibin; Yu, Jirong
2007-01-01
We demonstrate highly efficient diode-pumped single-frequency fiber laser with 35% slope efficiency and 50mW output power operating near 2 micrometers, which generated from a 2-cm long piece of highly Tm(3+)-doped germanate glass fiber pumped at 800nm.
Highly efficient end-side-pumped Nd:YAG solar laser by a heliostat-parabolic mirror system.
Almeida, J; Liang, D; Vistas, C R; Guillot, E
2015-03-10
We report a large improvement in the collection and slope efficiency of an Nd:YAG solar laser pumped by a heliostat-parabolic mirror system. A conical fused silica lens was used to further concentrate the solar radiation from the focal zone of a 2 m diameter primary concentrator to a Nd:YAG single-crystal rod within a conical pump cavity, which enabled multipass pumping to the active medium. A 56 W cw laser power was measured, corresponding to 21.1 W/m2 record-high solar laser collection efficiency with the heliostat-parabolic mirror system. 4.9% slope efficiency was calculated, corresponding to 175% enhancement over our previous result.
Side-pumping combiner for high-power fiber laser based on tandem pumping
NASA Astrophysics Data System (ADS)
Gu, Yanran; Lei, Chengmin; Liu, Jun; Li, Ruixian; Liu, Le; Xiao, Hu; Chen, Zilun
2017-11-01
We investigate a (2+1)×1 side-pumping combiner numerically and experimentally for high-power fiber laser based on tandem pumping for the first time. The influence of taper ratio and launch mode on the 1018-nm pump coupling efficiency and the leakage power into the coating of the signal fiber (LPC) is analyzed numerically. A side-pumping combiner is developed successfully by tapered-fused splicing technique based on the numerical analysis, consisting of two pump fibers (220/242 μm, NA=0.22) and a signal fiber (40/400 μm, NA=0.06/0.46). The total 1018-nm pump efficiency of the combiner is 98.1%, and the signal light insertion loss is <3%. The results show that, compared with laser diodes pumping, the combiner appears to have a better LPC performance and power handling capability when using 1018-nm fiber as the pump light. Meanwhile, an all-fiber MOPA laser based on tandem pumping with 1080-nm output of 2533 W and the slope efficiency of 82.8% is achieved based on the home-made combiner.
Development of a nonazeotropic heat pump for crew hygiene water heating
NASA Technical Reports Server (NTRS)
Walker, David H.; Deming, Glenn I.
1991-01-01
A heat pump system is currently under development to produce hot water for crew hygiene on future manned space missions. The heat pump uses waste heat sources and a nonazeotropic working fluid in a highly efficient cycle. The potential benefits include a reduction in peak power draw from 2 to 5 kW for electric cartridge heaters to just more than 100 W for the heat pump. As part of the heat pump development project, a unique high efficiency compressor was developed to maintain lubrication in a zero-gravity environment.
Diffusion pump modification promotes self-cleansing and high efficiency
NASA Technical Reports Server (NTRS)
Buggele, A. E.
1975-01-01
Modifications eliminate contaminant substances from pump fluid during operation, which are principal causes of torpidity on evaporative surface. Diffusion pump is also acting as still. Resulting 100 percent vigorous working surface provides much greater molecular throughput and greatly improved efficiency.
High Efficiency End-Pumped Ho:Tm:YLF Disk Amplifier
NASA Technical Reports Server (NTRS)
Yu, Jirong; Singh, Upendra N.; Petros, Mulugeta; Axenson, Theresa J.; Barnes, Norman P.
1999-01-01
Space based coherent lidar for global wind measurement requires an all solid state laser system with high energy, high efficiency and narrow linewidth that operates in the eye safe region. A Q-switched, diode pumped Ho:Tm:YLF 2 micrometer laser with output energy of as much as 125 mJ at 6 Hz with an optical-to-optical efficiency of 3% has been reported. Single frequency operation of the laser was achieved by injection seeding. The design of this laser is being incorporated into NASA's SPARCLE (SPAce Readiness Coherent Lidar Experiment) wind lidar mission. Laser output energy ranging from 500 mJ to 2 J is required for an operational space coherent lidar. We previously developed a high energy Ho:Tm:YLF master oscillator and side pumped power amplifier system and demonstrated a 600-mJ single frequency pulse at a repetition rate of 10 Hz. Although the output energy is high, the optical-to-optical efficiency is only about 2%. Designing a high energy, highly efficient, conductively cooled 2-micrometer laser remains a challenge. In this paper, the preliminary result of an end-pumped amplifier that has a potential to provide a factor 3 of improvement in the system efficiency is reported.
Pulsating electrolyte flow in a full vanadium redox battery
NASA Astrophysics Data System (ADS)
Ling, C. Y.; Cao, H.; Chng, M. L.; Han, M.; Birgersson, E.
2015-10-01
Proper management of electrolyte flow in a vanadium redox battery (VRB) is crucial to achieve high overall system efficiency. On one hand, constant flow reduces concentration polarization and by extension, energy efficiency; on the other hand, it results in higher auxiliary pumping costs, which can consume around 10% of the discharge power. This work seeks to reduce the pumping cost by adopting a novel pulsing electrolyte flow strategy while retaining high energy efficiency. The results indicate that adopting a short flow period, followed by a long flow termination period, results in high energy efficiencies of 80.5% with a pumping cost reduction of over 50%.
NASA Astrophysics Data System (ADS)
Liu, Xiao-Di; Xu, Lu; Liang, Xiao-Yan
2017-01-01
We theoretically analyzed output beam quality of broad bandwidth non-collinear optical parametric chirped pulse amplification (NOPCPA) in LiB3O5 (LBO) centered at 800 nm. With a three-dimensional numerical model, the influence of the pump intensity, pump and signal spatial modulations, and the walk-off effect on the OPCPA output beam quality are presented, together with conversion efficiency and the gain spectrum. The pump modulation is a dominant factor that affects the output beam quality. Comparatively, the influence of signal modulation is insignificant. For a low-energy system with small beam sizes, walk-off effect has to be considered. Pump modulation and walk-off effect lead to asymmetric output beam profile with increased modulation. A special pump modulation type is found to optimize output beam quality and efficiency. For a high-energy system with large beam sizes, the walk-off effect can be neglected, certain back conversion is beneficial to reduce the output modulation. A trade-off must be made between the output beam quality and the conversion efficiency, especially when the pump modulation is large since. A relatively high conversion efficiency and a low output modulation are both achievable by controlling the pump modulation and intensity.
Efficient upconversion-pumped continuous wave Er3+:LiLuF4 lasers
NASA Astrophysics Data System (ADS)
Moglia, Francesca; Müller, Sebastian; Reichert, Fabian; Metz, Philip W.; Calmano, Thomas; Kränkel, Christian; Heumann, Ernst; Huber, Günter
2015-04-01
We report on detailed spectroscopic investigations and efficient visible upconversion laser operation of Er3+:LiLuF4. This material allows for efficient resonant excited-state-absorption (ESA) pumping at 974 nm. Under spectroscopic conditions without external feedback, ESA at the laser wavelength of 552 nm prevails stimulated emission. Under lasing conditions in a resonant cavity, the high intracavity photon density bleaches the ESA at 552 nm, allowing for efficient cw laser operation. We obtained the highest output power of any room-temperature crystalline upconversion laser. The laser achieves a cw output power of 774 mW at a slope efficiency of 19% with respect to the incident pump power delivered by an optically-pumped semiconductor laser. The absorption efficiency of the pump radiation is estimated to be below 50%. To exploit the high confinement in waveguides for this laser, we employed femtosecond-laser pulses to inscribe a cladding of parallel tracks of modified material into Er3+:LiLuF4 crystals. The core material allows for low-loss waveguiding at pump and laser wavelengths. Under Ti:sapphire pumping at 974 nm, the first crystalline upconversion waveguide laser has been realized. We obtained waveguide-laser operation with up to 10 mW of output power at 553 nm.
Nano-electro-mechanical pump: Giant pumping of water in carbon nanotubes
Farimani, Amir Barati; Heiranian, Mohammad; Aluru, Narayana R.
2016-01-01
A fully controllable nano-electro-mechanical device that can pump fluids at nanoscale is proposed. Using molecular dynamics simulations, we show that an applied electric field to an ion@C60 inside a water-filled carbon nanotube can pump water with excellent efficiency. The key physical mechanism governing the fluid pumping is the conversion of electrical energy into hydrodynamic flow with efficiencies as high as 64%. Our results show that water can be compressed up to 7% higher than its bulk value by applying electric fields. High flux of water (up to 13,000 molecules/ns) is obtained by the electro-mechanical, piston-cylinder-like moving mechanism of the ion@C60 in the CNT. This large flux results from the piston-like mechanism, compressibility of water (increase in density of water due to molecular ordering), orienting dipole along the electric field and efficient electrical to mechanical energy conversion. Our findings can pave the way towards efficient energy conversion, pumping of fluids at nanoscale, and drug delivery. PMID:27193507
Nano-electro-mechanical pump: Giant pumping of water in carbon nanotubes
NASA Astrophysics Data System (ADS)
Farimani, Amir Barati; Heiranian, Mohammad; Aluru, Narayana R.
2016-05-01
A fully controllable nano-electro-mechanical device that can pump fluids at nanoscale is proposed. Using molecular dynamics simulations, we show that an applied electric field to an ion@C60 inside a water-filled carbon nanotube can pump water with excellent efficiency. The key physical mechanism governing the fluid pumping is the conversion of electrical energy into hydrodynamic flow with efficiencies as high as 64%. Our results show that water can be compressed up to 7% higher than its bulk value by applying electric fields. High flux of water (up to 13,000 molecules/ns) is obtained by the electro-mechanical, piston-cylinder-like moving mechanism of the ion@C60 in the CNT. This large flux results from the piston-like mechanism, compressibility of water (increase in density of water due to molecular ordering), orienting dipole along the electric field and efficient electrical to mechanical energy conversion. Our findings can pave the way towards efficient energy conversion, pumping of fluids at nanoscale, and drug delivery.
Nano-electro-mechanical pump: Giant pumping of water in carbon nanotubes.
Farimani, Amir Barati; Heiranian, Mohammad; Aluru, Narayana R
2016-05-19
A fully controllable nano-electro-mechanical device that can pump fluids at nanoscale is proposed. Using molecular dynamics simulations, we show that an applied electric field to an ion@C60 inside a water-filled carbon nanotube can pump water with excellent efficiency. The key physical mechanism governing the fluid pumping is the conversion of electrical energy into hydrodynamic flow with efficiencies as high as 64%. Our results show that water can be compressed up to 7% higher than its bulk value by applying electric fields. High flux of water (up to 13,000 molecules/ns) is obtained by the electro-mechanical, piston-cylinder-like moving mechanism of the ion@C60 in the CNT. This large flux results from the piston-like mechanism, compressibility of water (increase in density of water due to molecular ordering), orienting dipole along the electric field and efficient electrical to mechanical energy conversion. Our findings can pave the way towards efficient energy conversion, pumping of fluids at nanoscale, and drug delivery.
Solar powered blackbody-pumped lasers
NASA Astrophysics Data System (ADS)
Christiansen, Walter H.; Sirota, J. M.
1991-02-01
A concept for a solar-powered laser is presented which utilizes an intermediate blackbody cavity to provide a uniform optical pumping environment for the lasant, typically CO or CO2 or possibly a solid state laser medium. High power cw blackbody- pumped lasers with efficiencies on the order of 20 percent or more are feasible. The physical basis of this idea is reviewed. Small scale experiments using a high temperature oven as the optical pump have been carried out with gas laser mixtures. Detailed calculations showing a potential efficiency of 35 percent for blackbody pumped Nd:YAG system are discussed.
Laser dye DCM: CW, synchronously pumped, cavity pumped and single-frequency performance
NASA Astrophysics Data System (ADS)
Marason, E. G.
1981-04-01
Laser dye DCM exhibits a tuning range of 605 to 725 nm with a lasing efficiency as high as 34% when pumped by the 488 nm line of the argon ion laser, placing it among the most efficient and broadly tunable dyes known. Performance of the dye is characterized for four laser systems: 1) continuous wave, 2) synchronously pumped (SP), 3) cavity dumped synchrompously pumped (SPCD) and 4) single-frequency ring dye laser. Pulse peak powers were as high as 520 W and 2.8 kW for SP and SPCD systems respectively.
NASA Astrophysics Data System (ADS)
Lang, Ye; Chen, Yanzhong; Liao, Lifen; Guo, Guangyan; He, Jianguo; Fan, Zhongwei
2018-03-01
In high power diode lasers, the input cooling water temperature would affect both output power and output spectrum. In double face pumped slab laser, the spectrum of two laser diode arrays (LDAs) must be optimized for efficiency reason. The spectrum mismatch of two LDAs would result in energy storing decline. In this work, thermal induced efficiency decline due to spectral overlap between high power LDAs and laser medium was investigated. A numerical model was developed to describe the energy storing variation with changing LDAs cooling water temperature and configuration (series/parallel connected). A confirmatory experiment was conducted using a double face pumped slab module. The experiment results show good agreements with simulations.
NASA Astrophysics Data System (ADS)
Dalidet, Romain; Peterka, Pavel; Doya, Valérie; Aubrecht, Jan; Koška, Pavel
2018-02-01
Ever extending applications of fiber lasers require energy efficient, high-power, small footprint and reliable fiber lasers and laser wavelength versatility. To meet these demands, next generation of active fibers for high-power fiber lasers is coming out that will eventually offer tailored spectroscopic properties, high robustness and reduced cooling requirements and improved efficiency through tailored pump absorption. We report on numerical modelling of the efficiency of the pump absorption in double clad active fibers with hexagonal shape of the inner cladding cross section and rare-earth-doped core. We analyze both the effect of different radii of the spool on which the fiber is coiled and different fiber twisting rates. Two different launching conditions were investigated: the Gaussian input pump beam and a speckle pattern that mimics the output of the pump laser diode pigtail. We have found that by asymmetric position of the rare-earth-doped core we can significantly improve the pump absorption.
Development of a pump-turbine runner based on multiobjective optimization
NASA Astrophysics Data System (ADS)
Xuhe, W.; Baoshan, Z.; Lei, T.; Jie, Z.; Shuliang, C.
2014-03-01
As a key component of reversible pump-turbine unit, pump-turbine runner rotates at pump or turbine direction according to the demand of power grid, so higher efficiencies under both operating modes have great importance for energy saving. In the present paper, a multiobjective optimization design strategy, which includes 3D inverse design method, CFD calculations, response surface method (RSM) and multiobjective genetic algorithm (MOGA), is introduced to develop a model pump-turbine runner for middle-high head pumped storage plant. Parameters that controlling blade shape, such as blade loading and blade lean angle at high pressure side are chosen as input parameters, while runner efficiencies under both pump and turbine modes are selected as objective functions. In order to validate the availability of the optimization design system, one runner configuration from Pareto front is manufactured for experimental research. Test results show that the highest unit efficiency is 91.0% under turbine mode and 90.8% under pump mode for the designed runner, of which prototype efficiencies are 93.88% and 93.27% respectively. Viscous CFD calculations for full passage model are also conducted, which aim at finding out the hydraulic improvement from internal flow analyses.
High-efficient Nd:YAG microchip laser for optical surface scanning
NASA Astrophysics Data System (ADS)
Šulc, Jan; Jelínková, Helena; Nejezchleb, Karel; Škoda, Václav
2017-12-01
A CW operating, compact, high-power, high-efficient diode pumped 1064nm laser, based on Nd:YAG active medium, was developed for optical surface scanning and mapping applications. To enhance the output beam quality, laser stability, and compactness, a microchip configuration was used. In this arrangement the resonator mirrors were deposited directly on to the laser crystal faces. The Nd-doping concentration was 1 at.% Nd/Y. The Nd:YAG crystal was 5mm long. The laser resonator without pumping radiation recuperation was investigated {the output coupler was transparent for pumping radiation. For the generated laser radiation the output coupler reflectivity was 95%@1064 nm. The diameter of the samples was 5 mm. For the laser pumping two arrangements were investigated. Firstly, a fibre coupled laser diode operating at wavelength 808nm was used in CW mode. The 400 ¹m fiber was delivering up to 14W of pump power amplitude to the microchip laser. The maximum CW output power of 7.2W @ 1064nm in close to TEM00 beam was obtained for incident pumping power 13.7W @ 808 nm. The differential efficiency in respect to the incident pump power reached 56 %. Secondly, a single-emitter, 1W laser diode operating at 808nm was used for Nd:YAG microchip pumping. The laser pumping was directly coupled into the microchip laser using free-space lens optics. Slope efficiency up to 70% was obtained in stable, high-quality, 1064nm laser beam with CW power up to 350mW. The system was successfully used for scanning of super-Gaussian laser mirrors reflectivity profile.
Large-area high-power VCSEL pump arrays optimized for high-energy lasers
NASA Astrophysics Data System (ADS)
Wang, Chad; Geske, Jonathan; Garrett, Henry; Cardellino, Terri; Talantov, Fedor; Berdin, Glen; Millenheft, David; Renner, Daniel; Klemer, Daniel
2012-06-01
Practical, large-area, high-power diode pumps for one micron (Nd, Yb) as well as eye-safer wavelengths (Er, Tm, Ho) are critical to the success of any high energy diode pumped solid state laser. Diode efficiency, brightness, availability and cost will determine how realizable a fielded high energy diode pumped solid state laser will be. 2-D Vertical-Cavity Surface-Emitting Laser (VCSEL) arrays are uniquely positioned to meet these requirements because of their unique properties, such as low divergence circular output beams, reduced wavelength drift with temperature, scalability to large 2-D arrays through low-cost and high-volume semiconductor photolithographic processes, high reliability, no catastrophic optical damage failure, and radiation and vacuum operation tolerance. Data will be presented on the status of FLIR-EOC's VCSEL pump arrays. Analysis of the key aspects of electrical, thermal and mechanical design that are critical to the design of a VCSEL pump array to achieve high power efficient array performance will be presented.
NASA Astrophysics Data System (ADS)
Liu, Yakun; Tao, Rumao; Su, Rongtao; Wang, Xiaolin; Ma, Pengfei; Zhang, Hanwei; Zhou, Pu; Si, Lei
2018-04-01
This paper presents an investigation of the effect of pump wavelength drift on the threshold of mode instability (MI) in high-power ytterbium-doped fiber lasers. By using a semi-analytical model, we study the effects of pump wavelength drift with a central pump wavelength around 976 nm and 915 nm, respectively. The influences of the pump absorption coefficient and total pump absorption are considered simultaneously. The results indicate that the effect of pump wavelength drift around 976 nm is stronger than that around 915 nm. For more efficient suppression of MI by shifting the pump wavelength, efficient absorption of pump power is required. The MI thresholds for fibers with different total pump absorptions and cladding diameters are compared. When the total pump absorption is increased, the gain saturation is enhanced, which results in the MI being mitigated more effectively and being more sensitive to pump wavelength drift. The MI threshold in gain fibers with larger inner cladding diameter is higher but more dependent upon pump wavelength. The results of this work can help in optimizing the pump wavelength and fiber parameters and suppressing MI in high-power fiber lasers.
Xu, Yi-Ting; Xu, Jia-Lin; Guo, Ya-Ding; Yang, Feng-Tu; Chen, Yan-Zhong; Xu, Jian; Xie, Shi-Yong; Bo, Yong; Peng, Qin-Jun; Cui, Dafu; Xu, Zu-Yan
2010-08-20
We present a compact high-efficiency and high-average-power diode-side-pumped Nd:YAG rod laser oscillator operated with a linearly polarized fundamental mode. The oscillator resonator is based on an L-shaped convex-convex cavity with an improved module and a dual-rod configuration for birefringence compensation. Under a pump power of 344 W, a linearly polarized average output power of 101.4 W at 1064 nm is obtained, which corresponds to an optical-to-optical conversion efficiency of 29.4%. The laser is operated at a repetition rate of 400 Hz with a beam quality factor of M(2)=1.14. To the best of our knowledge, this is the highest optical-to-optical efficiency for a side-pumped TEM(00) Nd:YAG rod laser oscillator with a 100-W-level output ever reported.
NASA Astrophysics Data System (ADS)
Wu, Yongxiao; Wang, Zhongyang; Chen, Sanbin; Shirakwa, Akira; Ueda, Ken-ichi; Li, Jianlang
2018-05-01
We proposed an efficient and vortex Nd:YAG laser for selective lasing of low- and high-order vortex modes, in which multiple-ring pump light was originated from cascaded conical refraction of multiple biaxial crystals. In our proof of concept demonstration, we used two-crystal cascade conical refraction to generate two-ring pump light; the mutual intensity ratio and relative separation of the inner ring and outer ring were controlled by rotating the second biaxial crystal and by moving the imaging lens, respectively. As a result, we obtained selective excitation of Laguerre–Gaussian (LG01 and LG03) vortex modes in the end-pump Nd:YAG laser. For LG01-mode output, the laser power reached 439 mW with 52.5% slope efficiency; for LG03-mode output, the laser power reached 160 mW with 41.3% slope efficiency. Our results revealed that the multiple-ring pumping technique based on cascaded conical refraction would pave the way for realization of the efficient and switchable excitation of low- and high-order LG modes in an end-pumped solid-state laser.
A study of water pump efficiency for household water demand at Lubuklinggau
NASA Astrophysics Data System (ADS)
Emiliawati, Anna
2017-11-01
Water pump is a device to transport liquid from one place to another. This device is used in most of household in Indonesia. Small-scale water pump which is effective to lift more discharge is generally used. The ones that are most preferred are centrifugal types which having low absorbability. Pump performance is limited by pressure level in real electrical power whereas pump efficiency is influenced by head and discharge. The research aims to find out the efficiency of five distinct brands of home water pumps which are broadly distributed in market. Efficiency analysis take by laboratorium and financial analysis using NPV and BCR are done in order to obtained dicharge and pressure from each pump. At the end of the research, one out of 5 home water pump brands will be selected as the optimal working home water pump with low operational expense based on the utilizing age. The result of the research shows that the maximum efficiency value among various brands of water pump is diverse. Each value is arranged as follow from water pump A to E orderly: 12,9%, 13,5%, 12,8%, 14,8%, and 3,4%. From the calculation, water demand of South Lubuklinggau at stage 1 is 1117,7 l/s and stage 2 is 3495,2 l/s.. Moreover, the researcher conducts of investment, operation and maintenance cost with 25 years pump utilizing age towards 2 conditions (1) of maximum efficiency, i.e. pump A Rp16.563.971; pump B Rp12.163.798; pump C Rp11.809.513,2; pump D Rp11.473.928,3; pump E Rp12.648.708,3; (2) of max discharge, i.e. pump A Rp111.993.822,8; pump B Rp26.128.845,1; pump C Rp51.697.208,8; pump D Rp51.098.687,4; pump E Rp22.915.952,7;Financial analysis with interest rate 13% show a positive NPV(+) for all pump except pump A in max efficiency and a negative NPV (-) for all except pump B in max discharge. BCR value for max efficiency are pump A 0,8; pump B 1,6; pump C 1,7; pump D 1,7 and pump E 1,3. And for max discharge are pump A 0,2; pump B 1,1; pump C 0,7; pump D 0,7 and pump E 0,9. Result from that analysis obtained pump B are feasible with low cost and high benefit.
High power operation of cladding pumped holmium-doped silica fibre lasers.
Hemming, Alexander; Bennetts, Shayne; Simakov, Nikita; Davidson, Alan; Haub, John; Carter, Adrian
2013-02-25
We report the highest power operation of a resonantly cladding-pumped, holmium-doped silica fibre laser. The cladding pumped all-glass fibre utilises a fluorine doped glass layer to provide low loss cladding guidance of the 1.95 µm pump radiation. The operation of both single mode and large-mode area fibre lasers was demonstrated, with up to 140 W of output power achieved. A slope efficiency of 59% versus launched pump power was demonstrated. The free running emission was measured to be 2.12-2.15 µm demonstrating the potential of this architecture to address the long wavelength operation of silica based fibre lasers with high efficiency.
Brightness-enhanced high-efficiency single emitters for fiber laser pumping
NASA Astrophysics Data System (ADS)
Yanson, Dan; Rappaport, Noam; Shamay, Moshe; Cohen, Shalom; Berk, Yuri; Klumel, Genadi; Don, Yaroslav; Peleg, Ophir; Levy, Moshe
2013-02-01
Reliable single emitters delivering <10W in the 9xx nm spectral range, are common energy sources for fiber laser pumps. The brightness (radiance) of a single emitter, which connotes the angular concentration of the emitted energy, is just as important a parameter as the output power alone for fiber coupling applications. We report on the development of high-brightness single emitters that demonstrate <12W output with 60% wall-plug efficiency and a lateral emission angle that is compatible with coupling into 0.15 NA delivery fiber. Using a purpose developed active laser model, simulation of far-field patterns in the lateral (slow) axis can be performed for different epitaxial wafer structures. By optimizing both the wafer and chip designs, we have both increased the device efficiency and improved the slow-axis divergence in high-current operation. Device reliability data are presented. The next-generation emitters will be integrated in SCD's NEON fiber pump modules to upgrade the pump output towards higher ex-fiber powers with high efficiency.
2-Micron Laser Transmitter for Coherent CO2 DIAL Measurement
NASA Technical Reports Server (NTRS)
Singh, Upendra N.; Bai, Yingxin; Yu, Jirong
2009-01-01
Carbon dioxide (CO2) has been recognized as one of the most important greenhouse gases. It is essential for the study of global warming to accurately measure the CO2 concentration in the atmosphere and continuously record its variation. A high repetition rate, highly efficient, Q-switched 2-micron laser system as the transmitter of a coherent differential absorption lidar for CO2 measurement has been developed in NASA Langley Research Center. This laser system is capable of making a vertical profiling of CO2 from ground and column measurement of CO2 from air and space-borne platform. The transmitter is a master-slave laser system. The master laser operates in a single frequency, either on-line or off-line of a selected CO2 absorption line. The slave laser is a Q-switched ring-cavity Ho:YLF laser which is pumped by a Tm:fiber laser. The repetition rate can be adjusted from a few hundred Hz to 10 kHz. The injection seeding success rate is from 99.4% to 99.95%. For 1 kHz operation, the output pulse energy is 5.5mJ with the pulse length of 50 ns. The optical-to-optical efficiency is 39% when the pump power is 14.5W. A Ho:YLF laser operating in the range of 2.05 micrometers can be tuned over several characteristic lines of CO2 absorption. Experimentally, a diode pumped Ho:Tm:YLF laser has been successfully used as the transmitter of coherent differential absorption lidar for the measurement of CO2 with a repetition rate of 5 Hz and pulse energy of 75 mJ. For coherent detection, high repetition rate is required for speckle averaging to obtain highly precise measurements. However, a diode pumped Ho:Tm:YLF laser can not operate in high repetition rate due to the large heat loading and up-conversion. A Tm:fiber laser pumped Ho:YLF laser with low heat loading can operate in high repetition rate. A theoretical model has been established to simulate the performance of Tm:fiber laser pumped Ho:YLF lasers. For continuous wave (CW) operation, high pump intensity with small beam size is suitable for high efficiency. For Q-switched operation, the optimal energy extraction relies on the pump intensity, pump volume, and pump duration which is inversely proportion to the repetition rate. CW and Q-switched Ho:YLF lasers with different linear cavity configurations have been designed and demonstrated for a 30 W Tm:fiber pump laser. The CW Ho laser slope efficiency and optical-to-optical efficiencies reach 65% and 55%, respectively. The pulsed laser efficiency depends on the repetition rate. For 1 kHz operation, the optical-to-optical efficiency is 39% when the pump power is 14.5W. Currently, the injection seeding success rate is between 99.4% and 99.95%. After a ten thousand pulses, the standard deviation of the laser frequency jitter is about 3 MHz. It meets the requirements of highly precise CO2 concentration measurement. In conclusion, an injection seeded, high repetition rate, Q-switched Ho:YLF laser has been developed for a coherent CO2 differential absorption lidar. This master-slave laser system has high optical-to-optical efficiency and seeding success rate. It can potentially meet the requirements of the coherent detection of CO2 concentration by a differential absorption lidar technique.
Bach, D; Schmich, F; Masselter, T; Speck, T
2015-09-03
The active transport of fluids by pumps plays an essential role in engineering and biology. Due to increasing energy costs and environmental issues, topics like noise reduction, increase of efficiency and enhanced robustness are of high importance in the development of pumps in engineering. The study compares pumps in biology and engineering and assesses biomimetic potentials for improving man-made pumping systems. To this aim, examples of common challenges, applications and current biomimetic research for state-of-the art pumps are presented. The biomimetic research is helped by the similar configuration of many positive displacement pumping systems in biology and engineering. In contrast, the configuration and underlying pumping principles for fluid dynamic pumps (FDPs) differ to a greater extent in biology and engineering. However, progress has been made for positive displacement as well as for FDPs by developing biomimetic devices with artificial muscles and cilia that improve energetic efficiency and fail-safe operation or reduce noise. The circulatory system of vertebrates holds a high biomimetic potential for the damping of pressure pulsations, a common challenge in engineering. Damping of blood pressure pulsation results from a nonlinear viscoelastic behavior of the artery walls which represent a complex composite material. The transfer of the underlying functional principle could lead to an improvement of existing technical solutions and be used to develop novel biomimetic damping solutions. To enhance efficiency or thrust of man-made fluid transportation systems, research on jet propulsion in biology has shown that a pulsed jet can be tuned to either maximize thrust or efficiency. The underlying principle has already been transferred into biomimetic applications in open channel water systems. Overall there is a high potential to learn from nature in order to improve pumping systems for challenges like the reduction of pressure pulsations, increase of jet propulsion efficiency or the reduction of wear.
High power (2+1) ×1 taper-fused all-fiber side-pumped combiner
NASA Astrophysics Data System (ADS)
Wu, Juan; Ma, Yi; Yan, Hong
2018-03-01
A novel design and fabrication method of a (2+1) ×1 taper-fused all-fiber side-pumped combiner is reported. The pump coupling efficiency of this pump combiner was studied theoretically and experimentally. The measurement results indicated that the coupling efficiency of the pump light is 96.5%, the signal-to-pump isolation reaches 31dB, and the signal loss of the combiner is 0.19dB. A backward-pumped fiber laser system was established by using this (2+1) ×1 side-pumped combiner directly, achieving a signal laser output of 1007W with M2=1.33.
Theoretical model and simulations for a cw exciplex pumped alkali laser.
Huang, Wei; Tan, Rongqing; Li, Zhiyong; Lu, Xiaochuan
2015-12-14
The Exciplex Pumped Alkali Laser (XPAL) system, which is similar to DPAL (Diode Pumped Alkali vapor Laser), has been demonstrated in mixtures of Cs vapor, Ar, with and without ethane. Unlike DPAL, it uses the broadband absorption blue satellite of the alkali D2 line, created by naturally occuring collision pairs. For example, Cs-Ar collision pairs have an absorption width which is as wide as the one of commercial semiconductor diode lasers. A continuous wave XPAL four-level theoretical model is presented in this paper. More factors are considered, such as the spectral dependence of pumped laser absorption for broadband pumping and the longitudinal population variation. Some intra-cavity details, such as longitudinal distributions of pumped laser and alkali laser, can also be solved well. The predictions of optical-to-optical efficiency as a function of temperature and pumped laser intensity are presented. The model predicts that there is an optimum value of temperature or pumped laser intensity. The analysis of the influence of cell length on optical-to-optical efficiency shows that a better performance can be achieved when using longer cell. The prediction of influence of Ar concentration and reflectivity of output coupler shows that higher optical-to-optical efficiency could be achieved if lower reflectivity of output coupler and higher Ar concentration are used. The optical-to-optical efficiency as high as 84% achieved by optimizing configuration with the pumped intensity of 5 × 10⁷ W/cm² presented shows that broadband pumped four-level XPAL system has a potential of high optical-to-optical efficiency.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yurkin, A A
2016-03-31
We report the results of experimental studies of a copper vapour laser with a semiconductor pump generator capable of forming virtually optimal pump pulses with a current rise steepness of about 40 A ns{sup -1} in a KULON LT-1.5CU active element. To maintain the operating temperature of the active element's channel, an additional heating pulsed oscillator is used. High efficiency of the pump generator is demonstrated. (lasers)
Efficient 10 kW diode-pumped Nd:YAG rod laser
NASA Astrophysics Data System (ADS)
Akiyama, Yasuhiro; Takada, Hiroyuki; Sasaki, Mitsuo; Yuasa, Hiroshi; Nishida, Naoto
2003-03-01
As a tool for high speed and high precision material processing such as cutting and welding, we developed a rod-type all-solid-state laser with an average power of more than 10 kW, an electrical-optical efficiency of more than 20%, and a laser head volume of less than 0.05 m3. We developed a highly efficient diode pumped module, and successfully obtained electrical-optical efficiencies of 22% in CW operation and 26% in QCW operation at multi-kW output powers. We also succeeded to reduce the laser head volume, and obtained the output power of 12 kW with an efficiency of 23%, and laser head volume of 0.045 m3. We transferred the technology to SHIBAURA mechatronics corp., who started to provide the LD pumped Nd:YAG laser system with output power up to 4.5 kW. We are now continuing development for further high power laser equipment.
High temperature semiconductor diode laser pumps for high energy laser applications
NASA Astrophysics Data System (ADS)
Campbell, Jenna; Semenic, Tadej; Guinn, Keith; Leisher, Paul O.; Bhunia, Avijit; Mashanovitch, Milan; Renner, Daniel
2018-02-01
Existing thermal management technologies for diode laser pumps place a significant load on the size, weight and power consumption of High Power Solid State and Fiber Laser systems, thus making current laser systems very large, heavy, and inefficient in many important practical applications. To mitigate this thermal management burden, it is desirable for diode pumps to operate efficiently at high heat sink temperatures. In this work, we have developed a scalable cooling architecture, based on jet-impingement technology with industrial coolant, for efficient cooling of diode laser bars. We have demonstrated 60% electrical-to-optical efficiency from a 9xx nm two-bar laser stack operating with propylene-glycolwater coolant, at 50 °C coolant temperature. To our knowledge, this is the highest efficiency achieved from a diode stack using 50 °C industrial fluid coolant. The output power is greater than 100 W per bar. Stacks with additional laser bars are currently in development, as this cooler architecture is scalable to a 1 kW system. This work will enable compact and robust fiber-coupled diode pump modules for high energy laser applications.
Thermophotonics for ultra-high efficiency visible LEDs
NASA Astrophysics Data System (ADS)
Ram, Rajeev J.
2017-02-01
The wall-plug efficiency of modern light-emitting diodes (LEDs) has far surpassed all other forms of lighting and is expected to improve further as the lifetime cost of a luminaire is today dominated by the cost of energy. The drive towards higher efficiency inevitably opens the question about the limits of future enhancement. Here, we investigate thermoelectric pumping as a means for improving efficiency in wide-bandgap GaN based LEDs. A forward biased diode can work as a heat pump, which pumps lattice heat into the electrons injected into the active region via the Peltier effect. We experimentally demonstrate a thermally enhanced 450 nm GaN LED, in which nearly fourfold light output power is achieved at 615 K (compared to 295 K room temperature operation), with virtually no reduction in the wall-plug efficiency at bias V < ℏω/q. This result suggests the possibility of removing bulky heat sinks in high power LED products. A review of recent high-efficiency GaN LEDs suggests that Peltier thermal pumping plays a more important role in a wide range of modern LED structures that previously thought - opening a path to even higher efficiencies and lower lifetime costs for future lighting.
Detailed Balance Limit of Efficiency of Broadband-Pumped Lasers.
Nechayev, Sergey; Rotschild, Carmel
2017-09-13
Broadband light sources are a wide class of pumping schemes for lasers including LEDs, sunlight and flash lamps. Recently, efficient coupling of broadband light to high-quality micro-cavities has been demonstrated for on-chip applications and low-threshold solar-pumped lasers via cascade energy transfer. However, the conversion of incoherent to coherent light comes with an inherent price of reduced efficiency, which has yet to be assessed. In this paper, we derive the detailed balance limit of efficiency of broadband-pumped lasers and discuss how it is affected by the need to maintain a threshold population inversion and thermodynamically dictated minimal Stokes' shift. We show that lasers' slope efficiency is analogous to the nominal efficiency of solar cells, limited by thermalisation losses and additional unavoidable Stokes' shift. The lasers' power efficiency is analogous to the detailed balance limit of efficiency of solar cells, affected by the cavity mirrors and impedance matching factor, respectively. As an example we analyze the specific case of solar-pumped sensitized Nd 3+ :YAG-like lasers and define the conditions to reach their thermodynamic limit of efficiency. Our work establishes an upper theoretical limit for the efficiency of broadband-pumped lasers. Our general, yet flexible model also provides a way to incorporate other optical and thermodynamic losses and, hence, to estimate the efficiency of non-ideal broadband-pumped lasers.
Diode pumped solid-state laser oscillators for spectroscopic applications
NASA Technical Reports Server (NTRS)
Byer, R. L.; Basu, S.; Fan, T. Y.; Kozlovsky, W. J.; Nabors, C. D.; Nilsson, A.; Huber, G.
1987-01-01
The rapid improvement in diode laser pump sources has led to the recent progress in diode laser pumped solid state lasers. To date, electrical efficiencies of greater than 10 percent were demonstrated. As diode laser costs decrease with increased production volume, diode laser and diode laser array pumped solid state lasers will replace the traditional flashlamp pumped Nd:YAG laser sources. The use of laser diode array pumping of slab geometry lasers will allow efficient, high peak and average power solid state laser sources to be developed. Perhaps the greatest impact of diode laser pumped solid state lasers will be in spectroscopic applications of miniature, monolithic devices. Single-stripe diode-pumped operation of a continuous-wave 946 nm Nd:YAG laser with less than 10 m/w threshold was demonstrated. A slope efficiency of 16 percent near threshold was shown with a projected slope efficiency well above a threshold of 34 percent based on results under Rhodamine 6G dye-laser pumping. Nonlinear crystals for second-harmonic generation of this source were evaluated. The KNbO3 and periodically poled LiNbO3 appear to be the most promising.
Low threshold and high efficiency solar-pumped laser with Fresnel lens and a grooved Nd:YAG rod
NASA Astrophysics Data System (ADS)
Guan, Zhe; Zhao, Changming; Yang, Suhui; Wang, Yu; Ke, Jieyao; Gao, Fengbin; Zhang, Haiyang
2016-11-01
Sunlight is considered as a new efficient source for direct optical-pumped solid state lasers. High-efficiency solar pumped lasers with low threshold power would be more promising than semiconductor lasers with large solar panel in space laser communication. Here we report a significant advance in solar-pumped laser threshold by pumping Nd:YAG rod with a grooved sidewall. Two-solar pumped laser setups are devised. In both cases, a Fresnel lens is used as the primary sunlight concentrator. Gold-plated conical cavity with a liquid light-guide lens is used as the secondary concentrator to further increase the solar energy concentration. In the first setup, solar pumping a 6mm diameter Nd:YAG rod, maximum laser power of 31.0W/m2 cw at 1064nm is produced, which is higher than the reported record, and the slope efficiency is 4.98% with the threshold power on the surface of Fresnel lens is 200 W. In the second setup, a 5 mm diameter laser rod output power is 29.8W/m2 with a slope efficiency of 4.3%. The threshold power of 102W is obtained, which is 49% lower than the former. Meanwhile, the theoretical calculating of the threshold power and slope efficiency of the solar-pumped laser has been established based on the rate-equation of a four-level system. The results of the finite element analysis by simulation software are verified in experiment. The optimization of the conical cavity by TraceProsoftware and the optimization of the laser resonator by LASCADare useful for the design of a miniaturization solar- pumped laser.
Kilohertz Pulse Repetition Frequency Slab Ti:sapphire Lasers with High Average Power (10 W)
NASA Astrophysics Data System (ADS)
Wadsworth, William J.; Coutts, David W.; Webb, Colin E.
1999-11-01
High-average-power broadband 780-nm slab Ti:sapphire lasers, pumped by a kilohertz pulse repetition frequency copper vapor laser (CVL), were demonstrated. These lasers are designed for damage-free power scaling when pumped by CVL s configured for maximum output power (of order 100 W) but with poor beam quality ( M 2 300 ). A simple Brewster-angled slab laser side pumped by a CVL produced 10-W average power (1.25-mJ pulses at 8 kHz) with 4.2-ns FWHM pulse duration at an absolute efficiency of 15% (68-W pump power). Thermal lensing in the Brewster slab laser resulted in multitransverse mode output, and pump absorption was limited to 72% by the maximum doping level for commercially available Ti:sapphire (0.25%). A slab laser with a multiply folded zigzag path was therefore designed and implemented that produced high-beam-quality (TEM 00 -mode) output when operated with cryogenic cooling and provided a longer absorption path for the pump. Excessive scattering of the Ti:sapphire beam at the crystal surfaces limited the efficiency of operation for the zigzag laser, but fluorescence diagnostic techniques, gain measurement, and modeling suggest that efficient power extraction ( 15 W TEM 00 , 23% efficiency) from this laser would be possible for crystals with an optical quality surface polish.
1W frequency-doubled VCSEL-pumped blue laser with high pulse energy
NASA Astrophysics Data System (ADS)
Van Leeuwen, Robert; Chen, Tong; Watkins, Laurence; Xu, Guoyang; Seurin, Jean-Francois; Wang, Qing; Zhou, Delai; Ghosh, Chuni
2015-02-01
We report on a Q-switched VCSEL side-pumped 946 nm Nd:YAG laser that produces high average power blue light with high pulse energy after frequency doubling in BBO. The gain medium was water cooled and symmetrically pumped by three 1 kW 808 nm VCSEL pump modules. More than 1 W blue output was achieved at 210 Hz with 4.9 mJ pulse energy and at 340 Hz with 3.2 mJ pulse energy, with 42% and 36% second harmonic conversion efficiency respectively. Higher pulse energy was obtained at lower repetition frequencies, up to 9.3 mJ at 70 Hz with 52% conversion efficiency.
Resonantly cladding-pumped Yb-free Er-doped LMA fiber laser with record high power and efficiency.
Zhang, Jun; Fromzel, Viktor; Dubinskii, Mark
2011-03-14
We report the results of our power scaling experiments with resonantly cladding-pumped Er-doped eye-safe large mode area (LMA) fiber laser. While using commercial off-the-shelf LMA fiber we achieved over 88 W of continuous-wave (CW) single transverse mode power at ~1590 nm while pumping at 1532.5 nm. Maximum observed optical-to-optical efficiency was 69%. This result presents, to the best of our knowledge, the highest power reported from resonantly-pumped Yb-free Er-doped LMA fiber laser, as well as the highest efficiency ever reported for any cladding-pumped Er-doped laser, either Yb-co-doped or Yb-free.
Mid-infrared 1 W hollow-core fiber gas laser source.
Xu, Mengrong; Yu, Fei; Knight, Jonathan
2017-10-15
We report the characteristics of a 1 W hollow-core fiber gas laser emitting CW in the mid-IR. Our system is based on an acetylene-filled hollow-core optical fiber guiding with low losses at both the pump and laser wavelengths and operating in the single-pass amplified spontaneous emission regime. Through systematic characterization of the pump absorption and output power dependence on gas pressure, fiber length, and pump intensity, we determine that the reduction of pump absorption at high pump flux and the degradation of gain performance at high gas pressure necessitate the use of increased gain fiber length for efficient lasing at higher powers. Low fiber attenuation is therefore key to efficient high-power laser operation. We demonstrate 1.1 W output power at a 3.1 μm wavelength by using a high-power erbium-doped fiber amplifier pump in a single-pass configuration, approximately 400 times higher CW output power than in the ring cavity previously reported.
Investigation of diode-pumped 2.8- mu m laser performance in Er:BaY2F8
NASA Astrophysics Data System (ADS)
Pollnau, M.; Lüthy, W.; Weber, H. P.; Jensen, T.; Huber, G.; Cassanho, A.; Jenssen, H. P.; McFarlane, R. A.
1996-01-01
Laser operation at 2.8 mu m in BaY2F 8 with erbium concentrations of 7.5% and 20% is investigated under laser-diode pumping at 967 nm. Output powers as high as 250 mW and slope efficiencies as high as 24% are obtained. Results are comparable with those of Er3+ : LiYF4 under the same pump conditions. Slope efficiencies above 30% are predicted for optimized erbium concentrations.
Compact and efficient CW 473nm blue laser with LBO intracavity frequency doubling
NASA Astrophysics Data System (ADS)
Qi, Yan; Wang, Yu; Wang, Yanwei; Zhang, Jing; Yan, Boxia
2016-10-01
With diode end pumped Nd:YAG directly and LBO intracavity frequency doubling, a compact, high efficient continuous wave blue laser at 473nm is realized. When the incident pump power reach 6.2W, 630mW maximum output power of blue laser at 473nm is achieved with 15mm long LBO, the optical-to-optical conversion efficiency is as high as 10.2%.
Solid-state laser pumping with a planar compound parabolic concentrator.
Panteli, D V; Pani, B M; Beli, L Z
1997-10-20
A novel solid-state laser-pumping scheme is proposed that combines a reflective lamp chamber and a compound parabolic concentrator (CPC) as a light guide. The CPC is made of a transparent material of high refractive index, and light is guided by the total internal reflection, with drastically reduced reflection losses. Material is chosen so that the absorption losses are minimized in the pumping wavelength range. The lamp chamber is designed with the principles of nonimaging optics, which ensures that the radiation is efficiently transferred from the lamp to the input aperture of the CPC. The pumping efficiency was first estimated theoretically, which gave us enough justification for the more accurate calculations with ray tracing. Single as well as multiple pumping cavities are discussed. New pumping geometry results in significantly increased pumping efficiency compared with conventional geometries. Also the lamp and the laser rod are separated, leading to reduced thermal load. We found that the proposed pumping method is also applicable to diode-pumped lasers.
NASA Astrophysics Data System (ADS)
Lam, Phoebe J.; Doney, Scott C.; Bishop, James K. B.
2011-09-01
We have compiled a global data set of 62 open ocean profiles of particulate organic carbon (POC), CaCO3, and opal concentrations collected by large volume in situ filtration in the upper 1000 m over the last 30 years. We define concentration-based metrics for the strength (POC concentration at depth) and efficiency (attenuation of POC with depth in the mesopelagic) of the biological pump. We show that the strength and efficiency of the biological pump are dynamic and are characterized by a regime of constant and high transfer efficiency at low to moderate surface POC and a bloom regime where the height of the bloom is characterized by a weak deep biological pump and low transfer efficiency. The variability in POC attenuation length scale manifests in a clear decoupling between the strength of the shallow biological pump (e.g., POC at the export depth) and the strength of the deep biological pump (POC at 500 m). We suggest that the paradigm of diatom-driven export production is driven by a too restrictive perspective on upper mesopelagic dynamics. Indeed, our full mesopelagic analysis suggests that large, blooming diatoms have low transfer efficiency and thus may not export substantially to depth; rather, our analysis suggests that ecosystems characterized by smaller cells and moderately high %CaCO3 have a high mesopelagic transfer efficiency and can have higher POC concentrations in the deep mesopelagic even with relatively low surface or near-surface POC. This has negative implications for the carbon sequestration prospects of deliberate iron fertilization.
Fiber Raman laser and amplifier pumped by Nd3+:YVO4 solid state laser
NASA Astrophysics Data System (ADS)
Liu, Deming; Zhang, Minming; Liu, Shuang; Nie, Mingju; Wang, Ying
2005-04-01
Pumping source is the key technology of fiber Raman amplifiers (FRA) which are important for ultra long haul and high bit rate dense wavelength division multiplexing (DWDM) systems. In this paper the research work of the project, "Fiber Raman Laser and Amplifier pumped by Nd3+:YVO4 Solid State Laser", supported by the National High-tech Program (863-program) of China is introduced, in which a novel 14xx nm pump module with fine characteristics of high efficiency, simplicity, compactness and low cost is researched and developed. A compact 1342 nm Nd3+:YVO4 diode pumped solid state laser (DPSSL) module is developed with the total laser power of 655mW and the slope efficiency of 42.6% pumped by a 2W 808nm laser diode (LD). A special C-lens fiber collimator is designed to couple the 1342nm laser beam into a piece of single mode fiber (SMF) and the coupling efficiency of 80% is reached. The specific 14xx nm output laser is generated from a single stage Raman resonator which includes a pair of fiber Bragg gratings and a piece of Germanic-silicate or Phospho-silicate fiber pumped by such DPSSL module. The slope efficiency for conversion from 1342 to 14xx nm radiation is 75% and the laser power is more than 300mW each. Finally, Raman gain experiments are carried out with 100km SMF. 100 nm bandwidth with 10dB on-off Raman gain and 1.1dB gain flatness is achieved by pumped at 1425, 1438, 1455 and 1490nm.
NASA Astrophysics Data System (ADS)
Dong, Jun; He, Yu; Zhou, Xiao; Bai, Shengchuang
2016-03-01
Lasers operating in the Ince-Gaussian (IG) mode have potential applications for optical manipulation of microparticles and formation of optical vortices, as well as for optical trapping and optical tweezers. Versatile, self-Q-switched, high-peak-power, high-repetition-rate Cr, Nd:YAG microchip lasers operating in the IG mode are implemented under tilted, tightly focused laser-diode pumping. An average output power of over 2 W is obtained at an absorbed pump power of 6.4 W. The highest optical-to-optical efficiency of 33.2% is achieved at an absorbed pump power of 3.9 W. Laser pulses with a pulse energy of 7.5 μJ, pulse width of 3.5 ns and peak power of over 2 kW are obtained. A repetition rate up to 335 kHz is reached at an absorbed pump power of 5.8 W. Highly efficient, versatile, IG-mode lasers with a high repetition rate and a high peak power ensure a better flexibility in particle manipulation and optical trapping.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jun Dong; Yu He; Xiao Zhou
2016-03-31
Lasers operating in the Ince-Gaussian (IG) mode have potential applications for optical manipulation of microparticles and formation of optical vortices, as well as for optical trapping and optical tweezers. Versatile, self-Q-switched, high-peak-power, high-repetition-rate Cr, Nd:YAG microchip lasers operating in the IG mode are implemented under tilted, tightly focused laser-diode pumping. An average output power of over 2 W is obtained at an absorbed pump power of 6.4 W. The highest optical-to-optical efficiency of 33.2% is achieved at an absorbed pump power of 3.9 W. Laser pulses with a pulse energy of 7.5 μJ, pulse width of 3.5 ns and peakmore » power of over 2 kW are obtained. A repetition rate up to 335 kHz is reached at an absorbed pump power of 5.8 W. Highly efficient, versatile, IG-mode lasers with a high repetition rate and a high peak power ensure a better flexibility in particle manipulation and optical trapping. (control of laser radiation parameters)« less
Analysis of a new PM motor design for a rotary dynamic blood Pump.
Xu, L; Wang, F; Fu, M; Medvedev, A; Smith, W A; Golding, L A
1997-01-01
The permanent magnet (PM) motor for a rotary dynamic blood pump requires high power density to coordinate the motor size with the limited pump space and high efficiency to reduce the size and weight of the associated batteries. The motor also serves as a passive axial magnetic thrust bearing, a reacting hydraulic force, and provides a stabilizing force for the radial journal bearing. This article presents analysis of a new PM motor for the blood pump application. High power density is achieved by using the Halbach magnetic array, and high efficiency is accomplished by optimizing the rotor magnet assembly and the stator slots/windings. While both radial and axial forces are greatly enhanced, pulsating components of the torque and force are also significantly reduced.
Highly scalable, resonantly cladding-pumped, Er-doped fiber laser with record efficiency.
Dubinskii, M; Zhang, J; Ter-Mikirtychev, V
2009-05-15
We report the performance of a resonantly cladding-pumped, Yb-free, Er-doped fiber laser. We believe this is the first reported resonantly cladding-pumped fiber-Bragg-grating-based, Er-doped, large-mode-area (LMA) fiber laser. The laser, pumped by fiber-coupled InGaAsP/InP laser diode modules at 1,532.5 nm, delivers approximately 48 W of cw output at 1,590 nm. It is believed to be the highest power ever reported from a Yb-free Er-doped LMA fiber. This fully integrated laser also has the optical-to-optical efficiency of approximately 57%, to the best of our knowledge, the highest efficiency reported for cladding-pumped unidirectionally emitting Er-doped laser.
Jackson, Stuart D
2009-08-01
A high-power diode-cladding-pumped Ho(3+), Pr(3+)-doped fluoride glass fiber laser is demonstrated. The laser produced a maximum output power of 2.5 W at a slope efficiency of 32% using diode lasers emitting at 1,150 nm. The long-emission wavelength of 2.94 microm measured at maximum pump power, which is particularly suited to medical applications, indicates that tailoring of the proportion of Pr(3+) ions can provide specific emission wavelengths while providing sufficient de-excitation of the lower laser level.
Subsurface Thermal Energy Storage for Improved Heating and Air Conditioning Efficiency
2016-11-21
This project involved a field demonstration of subsurface thermal energy storage for improving the geothermal heat pump air conditioning efficiency... geothermal heat pump systems, undesirable heating of the ground may occur. This demonstration was performed at the MCAS, Beaufort, SC, where several...buildings with geothermal heat pump systems were exhibiting excessively high ground loop temperatures. These buildings were retrofitted with dry fluid
NASA Astrophysics Data System (ADS)
Fischer, M.; Sperlich, A.; Kraus, H.; Ohshima, T.; Astakhov, G. V.; Dyakonov, V.
2018-05-01
We investigate the pump efficiency of silicon-vacancy-related spins in silicon carbide. For a crystal inserted into a microwave cavity with a resonance frequency of 9.4 GHz, the spin population inversion factor of 75 with the saturation optical pump power of about 350 mW is achieved at room temperature. At cryogenic temperature, the pump efficiency drastically increases, owing to an exceptionally long spin-lattice relaxation time exceeding one minute. Based on the experimental results, we find realistic conditions under which a silicon carbide maser can operate in continuous-wave mode and serve as a quantum microwave amplifier.
Feasibility of solar-pumped dye lasers
NASA Technical Reports Server (NTRS)
Lee, Ja H.; Kim, Kyung C.; Kim, Kyong H.
1987-01-01
Dye laser gains were measured at various pump-beam irradiances on a dye cell in order to evaluate the feasibility of solar pumping. Rhodamine 6G dye was considered as a candidate for the solar-pumped laser because of its high utilization of the solar spectrum and high quantum efficiency. Measurements show that a solar concentration of 20,000 is required to reach the threshold of the dye.
High efficiency pump for space helium transfer
NASA Technical Reports Server (NTRS)
Hasenbein, Robert; Izenson, Michael G.; Swift, Walter L.; Sixsmith, Herbert
1991-01-01
A centrifugal pump was developed for the efficient and reliable transfer of liquid helium in space. The pump can be used to refill cryostats on orbiting satellites which use liquid helium for refrigeration at extremely low temperatures. The pump meets the head and flow requirements of on-orbit helium transfer: a flow rate of 800 L/hr at a head of 128 J/kg. The overall pump efficiency at the design point is 0.45. The design head and flow requirements are met with zero net positive suction head, which is the condition in an orbiting helium supply Dewar. The mass transfer efficiency calculated for a space transfer operation is 0.99. Steel ball bearings are used with gas fiber-reinforced teflon retainers to provide solid lubrication. These bearings have demonstrated the longest life in liquid helium endurance tests under simulated pumping conditions. Technology developed in the project also has application for liquid helium circulation in terrestrial facilities and for transfer of cryogenic rocket propellants in space.
Highly efficient solar-pumped Nd:YAG laser.
Liang, Dawei; Almeida, Joana
2011-12-19
The recent progress in solar-pumped laser with Fresnel lens and Cr:Nd:YAG ceramic medium has revitalized solar laser researches, revealing a promising future for renewable reduction of magnesium from magnesium oxide. Here we show a big advance in solar laser collection efficiency by utilizing an economical Fresnel lens and a most widely used Nd:YAG single-crystal rod. The incoming solar radiation from the sun is focused by a 0.9 m diameter Fresnel lens. A dielectric totally internally reflecting secondary concentrator is employed to couple the concentrated solar radiation from the focal zone to a 4 mm diameter Nd:YAG rod within a conical pumping cavity. 12.3 W cw laser power is produced, corresponding to 19.3 W/m(2) collection efficiency, which is 2.9 times larger than the previous results with Nd:YAG single-crystal medium. Record-high slope efficiency of 3.9% is also registered. Laser beam quality is considerably improved by pumping a 3 mm diameter Nd:YAG rod.
Upconversion fiber-optic confocal microscopy under near-infrared pumping.
Kim, Do-Hyun; Kang, Jin U; Ilev, Ilko K
2008-03-01
We present a simple upconversion fiber-optic confocal microscope design using a near-infrared laser for pumping of a rare-earth-doped glass powder. The nonlinear optical frequency conversion process is highly efficient with more than 2% upconversion fluorescence efficiency at a near-infrared pumping wavelength of 1.55 microm. The upconversion confocal design allows the use of conventional Si detectors and 1.55 microm near-infrared pump light. The lateral and axial resolutions of the system were equal to or better than 1.10 and 13.11 microm, respectively.
NASA Astrophysics Data System (ADS)
Stock, Karl; Hausladen, Florian; Stegmayer, Thomas; Wurm, Holger
2018-02-01
Er:YAG lasers (3μm) allow efficient bone ablation caused by the strong absorption in water. Unfortunately, there are only a few and comparable expensive fiber materials for this wavelength available which are suitable for high laser power. The bone ablation efficiency of the Tm:YAG laser is minor (2μm) but inexpensive silica fibers can be used. The aim of this study was to investigate the bone ablation, using novel diode pumped high power Er:YAG (laser power 40W) and Tm:YAG laser system (60W) and adaptive fiber delivery systems. Expected advantage of these lasers is the longer lifetime of the fibers because of the high repetition rate and low pulse energy compared to the flash lamp pumped laser systems. The bare fiber output ends of a sapphire fiber (Er:YAG laser) and of a silica fiber (Tm:YAG laser) were attached under water and a water filled container including the fixed sample (bovine bone slices) was moved by a computer controlled translation stage. In a second set-up we provided a focusing unit and appropriate water spray unit. The generated cut kerfs were analyzed by light microcopy and laser scanning microscopy. The results show that with the diode pumped Er:YAG laser and sapphire fiber a particular high efficient bone ablation (> 0.16mm2/J) is possible both with bare fiber under water and focusing unit with water spray. The higher power of the Tm:YAG laser also results in high ablation rates but causes enlarged thermal damages. In conclusion, this study demonstrates that efficient bone ablation is possible with both diode pumped laser systems. In terms of efficiency the Er:YAG laser is outstanding. The Tm:YAG laser also allows fast bone ablation, provided that the thermal impact is limited by effective cooling and high movement velocity of the laser spot, for example by using an automatic scanner.
Resonantly diode laser pumped 1.6-μm Er:YAG laser
NASA Astrophysics Data System (ADS)
Garbuzov, Dmitri; Kudryashov, Igor; Dubinskii, Mark
2005-06-01
We report what is believed to be the first demonstration of direct resonant diode pumping of a 1.6-mm Er3+-doped bulk solid-state laser (DPSSL). The most of the results is obtained with pumping Er:YAG by the single mode diode laser packaged in fibered modules. The fibered modules, emitting at 1470 nm and 1530 nm wavelength with and without fiber grating (FBG) stabilization, have been used in pumping experiments. The very first results on high power DPSSL operation achieved with diode array pumping also will be presented. The highest absorbed photon conversion efficiency of 26% has been obtained for Er:YAG DPSSL using the 1470-nm single-mode module. Analysis of the DPSSL input-output characteristics suggests that the obtained slope efficiency can be increased at least up to 40% through the reduction of intracavity losses and pumping efficiency improvement. Diode pumped SSL (DPSSL) operates at a wavelength of 1617 nm and 1645 nm.
Passively mode-locked high power Nd:GdVO4 laser with direct in-band pumping at 912 nm
NASA Astrophysics Data System (ADS)
Nadimi, Mohammad; Waritanant, Tanant; Major, Arkady
2018-01-01
We report on the first semiconductor saturable absorber mirror mode-locked Nd:GdVO4 laser directly diode-pumped at 912 nm. The laser generated 10.14 W of averaged output power at 1063 nm with the pulse width of 16 ps at the repetition rate of 85.2 MHz. The optical-to-optical efficiency and slope efficiency in the mode-locked regime were calculated to be 49.6% and 67.4% with respect to the absorbed pump power, respectively. Due to the low quantum defect pumping the output power was limited only by the available pump power.
Hackel, Richard P.
1992-01-01
A laser amplifier chain has a plurality of laser amplifiers arranged in a chain to sequentially amplify a low-power signal beam to produce a significantly higher-power output beam. Overall efficiency of such a chain is improved if high-gain, low efficiency amplifiers are placed on the upstream side of the chain where only a very small fraction of the total pumped power is received by the chain and low-gain, high-efficiency amplifiers are placed on the downstream side where a majority of pumping energy is received by the chain.
Efficient 2.96 micron dysprosium-doped ZBLAN fibre laser pumped at 1.3 micron
NASA Astrophysics Data System (ADS)
Tsang, Yuen H.; El-Taher, Atalla E.; King, Terence A.; Chang, Kuang-Po; Jackson, Stuart D.
2006-04-01
Wavelengths around 1.15 μm, 1.3 μm and 1.7 μm can be used to pump Dy-doped ZBLAN fibre in order to generate ~3 μm with high efficiency. Previously the generation of 2.9 μm from the Dy-ZBLAN fibre was demonstrated by pumping with 1.1 μm Yb-silica fibre laser sources. The laser slope efficiency and lasing threshold demonstrated was about ~5% and ~1.78 W. In this investigation, the longer wavelength absorption band ( 6H 9/2 , 6F 11/2) centred at 1.3 μm of Dy 3+-doped ZBLAN is utilised and the lasing transition around ~3 μm takes places from 6H 13/2 --> 6H 15/2. With this pumping scheme the Stokes' efficiency is expected to be up to ~45%. A quasi-continuous wave Dy 3+-ZBLAN fibre laser pumped by a ~1.3 μm Nd:YAG laser and operating at 2.96 μm with a bandwidth (FWHM) of ~14 nm has been demonstrated. For a 60cm fibre length, a threshold of 0.5W and a slope efficiency of ~20% with respect to the absorbed pump power was observed. The overall pump absorption in the fibre was around 84%. The cavity reflectivities at 2.9 μm were 99% and 50%. The demonstrated slope efficiency was 45% of the Stokes' limit. The slope efficiency was around four times higher and the threshold around 3.6 times lower than the previous performance demonstrated by using the 1.1 μm Yb fibre laser pumping scheme. The higher performance achieved compared to the 1.1 μm pump scheme is due to the higher Stokes' limit, lower pump ESA losses and higher cavity reflectivity. About 590 cm -1 Raman Stokes shift has also detected by using 514.5 nm and 488 nm Ar ion laser as excitation pump sources.
Recent Progress Made in the Development of High-Energy UV Transmitter
NASA Technical Reports Server (NTRS)
Prasad, Narasimha S.; Singh, Upendra N.; Armstrong, Darrell J.
2007-01-01
In this paper, the status of an all-solid-state UV converter development for ozone sensing applications is discussed. A high energy Nd:YAG laser for pumping the UV converter arrangement was recently reported. The pump is an all-solid-state, single longitudinal mode, and conductively cooled Nd:YAG laser operating at 1064 nm wavelength. Currently, this pump laser provides an output pulse energy of greater than 1J/pulse at 50 Hz PRF and a pulsewidth of 22 ns with an electrical-to-optical system efficiency of greater than 7% and a M(sup 2) value of approx. 2. The spatial profile of the output beam is a rectangular super Gaussian. This Nd:YAG pump laser has been developed to pump the nonlinear optics based UV converter arrangement to generate 320 nm and 308 nm wavelengths by means of 532 nm wavelength. Previously, this UV converter arrangement has demonstrated IR-to-UV conversion efficiency of 24% using a flash lamp pumped laser providing a round, flat top spatial profile. Recently, the UV converter was assembled and tested at NASA LaRC for pumping with the diode pumped Nd:YAG laser. With current spatial profile, the UV converter was made operational. Current efforts to maximize the nonlinear conversion efficiency by refining its spatial profile to match RISTRA OPO requirements are progressing.
Electrically pumped edge-emitting photonic bandgap semiconductor laser
Lin, Shawn-Yu; Zubrzycki, Walter J.
2004-01-06
A highly efficient, electrically pumped edge-emitting semiconductor laser based on a one- or two-dimensional photonic bandgap (PBG) structure is described. The laser optical cavity is formed using a pair of PBG mirrors operating in the photonic band gap regime. Transverse confinement is achieved by surrounding an active semiconductor layer of high refractive index with lower-index cladding layers. The cladding layers can be electrically insulating in the passive PBG mirror and waveguide regions with a small conducting aperture for efficient channeling of the injection pump current into the active region. The active layer can comprise a quantum well structure. The quantum well structure can be relaxed in the passive regions to provide efficient extraction of laser light from the active region.
Robust modeling and performance analysis of high-power diode side-pumped solid-state laser systems.
Kashef, Tamer; Ghoniemy, Samy; Mokhtar, Ayman
2015-12-20
In this paper, we present an enhanced high-power extrinsic diode side-pumped solid-state laser (DPSSL) model to accurately predict the dynamic operations and pump distribution under different practical conditions. We introduce a new implementation technique for the proposed model that provides a compelling incentive for the performance assessment and enhancement of high-power diode side-pumped Nd:YAG lasers using cooperative agents and by relying on the MATLAB, GLAD, and Zemax ray tracing software packages. A large-signal laser model that includes thermal effects and a modified laser gain formulation and incorporates the geometrical pump distribution for three radially arranged arrays of laser diodes is presented. The design of a customized prototype diode side-pumped high-power laser head fabricated for the purpose of testing is discussed. A detailed comparative experimental and simulation study of the dynamic operation and the beam characteristics that are used to verify the accuracy of the proposed model for analyzing the performance of high-power DPSSLs under different conditions are discussed. The simulated and measured results of power, pump distribution, beam shape, and slope efficiency are shown under different conditions and for a specific case, where the targeted output power is 140 W, while the input pumping power is 400 W. The 95% output coupler reflectivity showed good agreement with the slope efficiency, which is approximately 35%; this assures the robustness of the proposed model to accurately predict the design parameters of practical, high-power DPSSLs.
XeCl laser pumped iodine laser using t-C4F9I
NASA Technical Reports Server (NTRS)
Hwang, In Heon; Han, Kwang S.
1989-01-01
An iodine photodissociation laser using t-C4F9I as the active material was pumped by an XeCl laser. An iodine laser output energy of 3 mJ with pulse duration of 25 ns was obtained when the pumping pulse energy was 80 mJ, the iodide pressure was 70 torr, and the reflectance of the output mirror was 85 percent. The high pumping efficiency and low threshold pump power achieved in this experiment are attributable to the high absorption cross section at the pump laser wavelength (308 nm) of the iodide used.
NASA Astrophysics Data System (ADS)
Philip, Jaison; Suryan, Abhilash; Sanand, T. V.; Unnikrishnan Nair, P.; Sivakumar, S.
2017-02-01
Fluid flow in a screw pump which rotates at very high angular velocity is numerically analyzed. In the present study, fluid flow in screw pumps under high Reynolds number, of the order of 105, is considered. Screw pump has two major elements, a plain shroud which is a stationary element and a rotating hub with helical grooves contained within the shroud. In this paper, three variants of hubs with different number of thread starts numbering six, eight and twelve in combination with a plain shroud is studied. Each of the three possible combinations are analyzed on the basis of pressure rise developed, efficiency and shaft power. It was seen that pressure rise, efficiency and shaft power increases as the number of threads increases in the range of mass flow rates studied.
In-band-pumped Ho:KLu(WO4)2 microchip laser with 84% slope efficiency.
Loiko, Pavel; Serres, Josep Maria; Mateos, Xavier; Yumashev, Konstantin; Kuleshov, Nikolai; Petrov, Valentin; Griebner, Uwe; Aguiló, Magdalena; Díaz, Francesc
2015-02-01
We report on a continuous-wave Ho:KLu(WO4)2 (KLuW) microchip laser with a record slope efficiency of 84%, the highest value among the holmium inband-pumped lasers, delivering 201 mW output power at 2105 nm. The Ho laser operating at room temperature on the (5)I8→(5)I7 transition is in-band-pumped by a diode-pumped Tm:KLuW microchip laser at 1946 nm. Ho:KLuW laser operation at 2061 and 2079 nm is also demonstrated with a maximum slope efficiency of 79%. The microchip laser generates an almost diffraction-limited output beam with a Gaussian profile and a M2<1.1. The laser performance of the Ng-cut Ho:KLuW crystal is very similar for pump light polarizations ‖Nm and Np. The positive thermal lens plays a key role in the laser mode stabilization and proper mode-matching. The latter, together with the low quantum defect under in-band-pumping (∼0.08), is responsible for the extraordinary high slope efficiency.
High-power and highly efficient diode-cladding-pumped Ho3+-doped silica fiber lasers.
Jackson, Stuart D; Bugge, Frank; Erbert, Götz
2007-11-15
We demonstrate high-power operation from a singly Ho3+-doped silica fiber laser that is cladding pumped directly with diode lasers operating at 1150 nm. Internal slope efficiencies approaching the Stokes limit were produced, and the maximum output power was 2.2W. This result was achieved using a low Ho3+-ion concentration and La3+-ion codoping, which together limit the transfer of energy between excited Ho3+ ions.
Cascaded-cladding-pumped cascaded Raman fiber amplifier.
Jiang, Huawei; Zhang, Lei; Feng, Yan
2015-06-01
The conversion efficiency of double-clad Raman fiber laser is limited by the cladding-to-core area ratio. To get high conversion efficiency, the inner-cladding-to-core area ratio has to be less than about 8, which limits the brightness enhancement. To overcome the problem, a cascaded-cladding-pumped cascaded Raman fiber laser with multiple-clad fiber as the Raman gain medium is proposed. A theoretical model of Raman fiber amplifier with multiple-clad fiber is developed, and numerical simulation proves that the proposed scheme can improve the conversion efficiency and brightness enhancement of cladding pumped Raman fiber laser.
High-efficiency microchip laser with self-injection seeding.
Wang, Sha; Wang, Yan-biao; Yang, Xian-heng; Feng, Guo-ying; Zhou, Shou-huan
2015-12-10
In this paper, we use a small bandwidth 808 nm cw Ti:sapphire laser as a pump source to pump a picosecond microchip laser. Different focal length pump focus lenses have been tested to improve laser efficiency. A maximum slope efficiency of around 20% is obtained by a 30 mm focal length lens. The pump threshold is only 13 mW. In order to reduce the timing jitter, we explored the self-injection seeding method by adding a seeding cavity to the microchip laser. A reduction factor in the timing jitter of up to a factor of 23 relative to the unseeded laser is obtained. From the experiments, we also found that higher seeding pulse energy will help to reduce the jitter more.
One joule output from a diode-array-pumped Nd:YAG laser with side-pumped rod geometry
NASA Technical Reports Server (NTRS)
Kasinski, Jeffrey J.; Hughes, Will; Dibiase, Don; Bournes, Patrick; Burnham, Ralph
1992-01-01
Output of 1.25 J per pulse (1.064 micron) with an absolute optical efficiency of 28 percent and corresponding electrical efficiency of 10 percent was demonstrated in a diode-array-pumped Nd:YAG laser using a side-pumped rod geometry in a master-oscillator/power-amplifier configuration. In Q-switched operation, an output of 0.75 J in a 17-ns pulse was obtained. The fundamental laser output was frequency doubled in KTP with 60 percent conversion efficiency to obtain 0.45 J in a 16-ns pulse at 532 nm. The output beam had high spatial quality with pointing stability better than 40 microrad and a shot-to-shot pulse energy fluctuation of less than +/-3 percent.
Orbital Transfer Vehicle Engine Technology High Velocity Ratio Diffusing Crossover
NASA Technical Reports Server (NTRS)
Lariviere, Brian W.
1992-01-01
High speed, high efficiency head rise multistage pumps require continuous passage diffusing crossovers to effectively convey the pumped fluid from the exit of one impeller to the inlet of the next impeller. On Rocketdyne's Orbital Transfer Vehicle (OTV), the MK49-F, a three stage high pressure liquid hydrogen turbopump, utilizes a 6.23 velocity ratio diffusing crossover. This velocity ratio approaches the diffusion limits for stable and efficient flow over the operating conditions required by the OTV system. The design of the high velocity ratio diffusing crossover was based on advanced analytical techniques anchored by previous tests of stationary two-dimensional diffusers with steady flow. To secure the design and the analytical techniques, tests were required with the unsteady whirling characteristics produced by an impeller. A tester was designed and fabricated using a 2.85 times scale model of the MK49-F turbopumps first stage, including the inducer, impeller, and the diffusing crossover. Water and air tests were completed to evaluate the large scale turbulence, non-uniform velocity, and non-steady velocity on the pump and crossover head and efficiency. Suction performance tests from 80 percent to 124 percent of design flow were completed in water to assess these pump characteristics. Pump and diffuser performance from the water and air tests were compared with the actual MK49-F test data in liquid hydrogen.
1-kilowatt CW all-fiber laser oscillator pumped with wavelength-beam-combined diode stacks.
Xiao, Y; Brunet, F; Kanskar, M; Faucher, M; Wetter, A; Holehouse, N
2012-01-30
We have demonstrated a monolithic cladding-pumped ytterbium-doped single all-fiber laser oscillator generating 1 kW of CW signal power at 1080 nm with 71% slope efficiency and near diffraction-limited beam quality. Fiber components were highly integrated on "spliceless" passive fibers to promote laser efficiency and alleviate non-linear effects. The laser was pumped through a 7:1 pump combiner with seven 200-W 91x nm fiber-pigtailed wavelength-beam-combined diode-stack modules. The signal power of such a single all-fiber laser oscillator showed no evidence of roll-over, and the highest output was limited only by available pump power.
Schemes for efficient QW pumping of AlGaInP disk lasers
NASA Astrophysics Data System (ADS)
Brauch, Uwe; Mateo, Cherry May N.; Kahle, Hermann; Bek, Roman; Jetter, Michael; Abdou Ahmed, Marwan; Michler, Peter; Graf, Thomas
2017-02-01
Keys to high-power operation of disk lasers are a thin active layer, a small Stokes shift and an efficient cooling, best realized with a limited number of QWs which are pumped close to the laser wavelength and which are in close contact with one or two diamond heat sinks. To get sufficient pump absorption many passes of the pump radiation are needed. This can be realized either by taking advantage of intrinsic resonances (designed for the pump radiation) or by an external multi-pass optics (known from Yb disk lasers) or a combination of both. The various options will be discussed and some results for AlGaInP disk lasers will be presented.
Nuclear pumped lasers: Advantages of O2 (1 delta)
NASA Technical Reports Server (NTRS)
Taylor, J. J.
1979-01-01
Nuclear pumped laser technology was evaluated as a possible future weapons contender. It was determined that in order to become a primary weapon the following engineering problems must be solved: shielding, heat dissipation, high efficiency fixed focus pumping, good beam quality, and thermal blooming.
Chen, He; Zhou, Xuanfeng; Chen, Sheng-Ping; Jiang, Zong-Fu; Hou, Jing
2015-12-28
We demonstrate Watt-level flat visible supercontinuum (SC) generation in photonic crystal fibers, which is directly pumped by broadband noise-like pulses from an Yb-doped all-fiber oscillator. The novel SC generator is featured with elegant all-fiber-integrated architecture, high spectral flatness and high efficiency. Wide optical spectrum spanning from 500 nm to 2300 nm with 1.02 W optical power is obtained under the pump of 1.4 W noise-like pulse. The flatness of the spectrum in the range of 700 nm~1600 nm is less than 5 dB (including the pump residue). The exceptional simplicity, economical efficiency and the comparable performances make the noise-like pulse oscillator a competitive candidate to the widely used cascade amplified coherent pulse as the pump source of broadband SC. To the best of our knowledge, this is the first demonstration of SC generation which is directly pumped by an all-fiber noise-like pulse oscillator.
Vertical cavity surface-emitting semiconductor lasers with injection laser pumping
NASA Astrophysics Data System (ADS)
McDaniel, D. L., Jr.; McInerney, J. G.; Raja, M. Y. A.; Schaus, C. F.; Brueck, S. R. J.
1990-05-01
Continuous-wave GaAs/GaAlAs edge-emitting diode lasers were used to pump GaAs/AlGaAs and InGaAs/AlGaAs vertical cavity surface-emitting lasers (VCSELs) with resonant periodic gain (RPG) at room temperature. Pump threshold as low as 11 mW, output powers as high as 27 mW at 850 nm, and external differential quantum efficiencies of about 70 percent were observed in GaAs/AlGaAs surface -emitters; spectral brightness 22 times that of the pump laser was also observed. Output powers as high as 85 mW at 950 nm and differential quantum efficiencies of up to 58 percent were recorded for the InGaAs surface-emitting laser. This is the highest quasi-CW output power ever reported for any RPG VCSEL, and the first time such a device has been pumped using an injection laser diode.
Comfortable, high-efficiency heat pump with desiccant-coated, water-sorbing heat exchangers.
Tu, Y D; Wang, R Z; Ge, T S; Zheng, X
2017-01-12
Comfortable, efficient, and affordable heating, ventilation, and air conditioning systems in buildings are highly desirable due to the demands of energy efficiency and environmental friendliness. Traditional vapor-compression air conditioners exhibit a lower coefficient of performance (COP) (typically 2.8-3.8) owing to the cooling-based dehumidification methods that handle both sensible and latent loads together. Temperature- and humidity-independent control or desiccant systems have been proposed to overcome these challenges; however, the COP of current desiccant systems is quite small and additional heat sources are usually needed. Here, we report on a desiccant-enhanced, direct expansion heat pump based on a water-sorbing heat exchanger with a desiccant coating that exhibits an ultrahigh COP value of more than 7 without sacrificing any comfort or compactness. The pump's efficiency is doubled compared to that of pumps currently used in conventional room air conditioners, which is a revolutionary HVAC breakthrough. Our proposed water-sorbing heat exchanger can independently handle sensible and latent loads at the same time. The desiccants adsorb moisture almost isothermally and can be regenerated by condensation heat. This new approach opens up the possibility of achieving ultrahigh efficiency for a broad range of temperature- and humidity-control applications.
Radiance limits of ceramic phosphors under high excitation fluxes
NASA Astrophysics Data System (ADS)
Lenef, Alan; Kelso, John; Zheng, Yi; Tchoul, Maxim
2013-09-01
Ceramic phosphors, excited by high radiance pump sources, offer considerable potential for high radiance conversion. Interestingly, thermodynamic arguments suggest that the radiance of the luminescent spot can even exceed that of the incoming light source. In practice, however, thermal quenching and (non-thermal) optical saturation limit the maximum attainable radiance of the luminescent source. We present experimental data for Ce:YAG and Ce:GdYAG ceramics in which these limits have been investigated. High excitation fluxes are achieved using laser pumping. Optical pumping intensities exceeding 100W/mm2 have been shown to produce only modest efficiency depreciation at low overall pump powers because of the short Ce3+ lifetime, although additional limitations exist. When pump powers are higher, heat-transfer bottlenecks within the ceramic and heat-sink interfaces limit maximum pump intensities. We find that surface temperatures of these laser-pumped ceramics can reach well over 150°C, causing thermal-quenching losses. We also find that in some cases, the loss of quantum efficiency with increasing temperature can cause a thermal run-away effect, resulting in a rapid loss in converted light, possibly over-heating the sample or surrounding structures. While one can still obtain radiances on the order of many W/mm2/sr, temperature quenching effects ultimately limit converted light radiance. Finally, we use the diffusion-approximation radiation transport models and rate equation models to simulate some of these nonlinear optical pumping and heating effects in high-scattering ceramics.
High-Reliability Pump Module for Non-Planar Ring Oscillator Laser
NASA Technical Reports Server (NTRS)
Liu, Duncan T.; Qiu, Yueming; Wilson, Daniel W.; Dubovitsky, Serge; Forouhar, Siamak
2007-01-01
We propose and have demonstrated a prototype high-reliability pump module for pumping a Non-Planar Ring Oscillator (NPRO) laser suitable for space missions. The pump module consists of multiple fiber-coupled single-mode laser diodes and a fiber array micro-lens array based fiber combiner. The reported Single-Mode laser diode combiner laser pump module (LPM) provides a higher normalized brightness at the combined beam than multimode laser diode based LPMs. A higher brightness from the pump source is essential for efficient NPRO laser pumping and leads to higher reliability because higher efficiency requires a lower operating power for the laser diodes, which in turn increases the reliability and lifetime of the laser diodes. Single-mode laser diodes with Fiber Bragg Grating (FBG) stabilized wavelength permit the pump module to be operated without a thermal electric cooler (TEC) and this further improves the overall reliability of the pump module. The single-mode laser diode LPM is scalable in terms of the number of pump diodes and is capable of combining hundreds of fiber-coupled laser diodes. In the proof-of-concept demonstration, an e-beam written diffractive micro lens array, a custom fiber array, commercial 808nm single mode laser diodes, and a custom NPRO laser head are used. The reliability of the proposed LPM is discussed.
Hackel, R.P.
1992-10-20
A laser amplifier chain has a plurality of laser amplifiers arranged in a chain to sequentially amplify a low-power signal beam to produce a significantly higher-power output beam. Overall efficiency of such a chain is improved if high-gain, low efficiency amplifiers are placed on the upstream side of the chain where only a very small fraction of the total pumped power is received by the chain and low-gain, high-efficiency amplifiers are placed on the downstream side where a majority of pumping energy is received by the chain. 6 figs.
Heat pump study: Tricks of the trade that can pump up efficiency
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jenkins, V.
Two years ago, many homeowners in an area near Auburn, California were unhappy with their heat pumps. The local utility, Pacific Gas Electric (PG E), received unusually large numbers of complaints from them of high electricity bills and poor system operation. PG E wanted to know whether correctable mechanical problems were to blame. It hired John Proctor, then of Building Resources Management Corp., to design and implement a study to address the heat pump customers' complaints. The Pacific Gas Electric Heat Pump Efficiency and Super Weatherization Pilot Project was the result. The first objective of the Pilot Project was tomore » identify the major problems and their prevalence in the existing residential heat pump installations. The second was to design a correction strategy that would cost PG E $400 or less per site. Participating homeowners would also share some of the costs. Project goals were improved homeowner comfort and satisfaction, increased energy efficiency of mechanical systems, and 10-20% space heating energy savings. By improving system operations, the project wished to increase customer acceptance of heat pumps in general.« less
Efficient Dual Head Nd:YAG 100mJ Oscillator for Remote Sensing
NASA Technical Reports Server (NTRS)
Coyle, Donald B.; Stysley, Paul R.; Kay, Richard b.; Poulios, Demetrios
2007-01-01
A diode pumped, Nd:YAG laser producing 100 mJ Q-switched pulses and employing a dual-pump head scheme in an unstable resonator configuration is described. Each head contains a side pumped zig-zag slab and four 6-bar QCW 808 nm diodes arrays which are de-rated 23%. Denoting 'z' as the lasing axis, the pump directions were along the x-axis in one head and the y-axis in the other, producing a circularized thermal lens, more typical in laser rod-based cavities. The dual head design's effective thermal lens is now corrected with a proper HR mirror curvature selection. This laser has demonstrated over 100 mJ output with high optical efficiency (24%), good TEM(sub 00) beam quality, and high pointing stability.
Yb:YAG ceramic-based laser driver for Inertial Fusion Energy (IFE)
NASA Astrophysics Data System (ADS)
Vetrovec, John; Copeland, Drew A.; Litt, Amardeep S.
2016-03-01
We report on a new class of laser amplifiers for inertial confinement fusion (ICF) drivers based on a Yb:YAG ceramic disk in an edge-pumped configuration and cooled by a high-velocity gas flow. The Yb lasant offers very high efficiency and low waste heat. The ceramic host material has a thermal conductivity nearly 15-times higher than the traditionally used glass and it is producible in sizes suitable for a typical 10- to 20-kJ driver beam line. The combination of high lasant efficiency, low waste heat, edge-pumping, and excellent thermal conductivity of the host, enable operation at 10 to 20 Hz at over 20% wall plug efficiency while being comparably smaller and less costly than recently considered face-pumped alternative drivers using Nd:glass, Yb:S-FAP, and cryogenic Yb:YAG. Scalability of the laser driver over a broad range of sizes is presented.
Compact and highly efficient laser pump cavity
Chang, Jim J.; Bass, Isaac L.; Zapata, Luis E.
1999-01-01
A new, compact, side-pumped laser pump cavity design which uses non-conventional optics for injection of laser-diode light into a laser pump chamber includes a plurality of elongated light concentration channels. In one embodiment, the light concentration channels are compound parabolic concentrators (CPC) which have very small exit apertures so that light will not escape from the pumping chamber and will be multiply reflected through the laser rod. This new design effectively traps the pump radiation inside the pump chamber that encloses the laser rod. It enables more uniform laser pumping and highly effective recycle of pump radiation, leading to significantly improved laser performance. This new design also effectively widens the acceptable radiation wavelength of the diodes, resulting in a more reliable laser performance with lower cost.
Ding, Bin; Gao, Lili; Liang, Lusheng; Chu, Qianqian; Song, Xiaoxuan; Li, Yan; Yang, Guanjun; Fan, Bin; Wang, Mingkui; Li, Chengxin; Li, Changjiu
2016-08-10
Control of the perovskite film formation process to produce high-quality organic-inorganic metal halide perovskite thin films with uniform morphology, high surface coverage, and minimum pinholes is of great importance to highly efficient solar cells. Herein, we report on large-area light-absorbing perovskite films fabrication with a new facile and scalable gas pump method. By decreasing the total pressure in the evaporation environment, the gas pump method can significantly enhance the solvent evaporation rate by 8 times faster and thereby produce an extremely dense, uniform, and full-coverage perovskite thin film. The resulting planar perovskite solar cells can achieve an impressive power conversion efficiency up to 19.00% with an average efficiency of 17.38 ± 0.70% for 32 devices with an area of 5 × 2 mm, 13.91% for devices with a large area up to 1.13 cm(2). The perovskite films can be easily fabricated in air conditions with a relative humidity of 45-55%, which definitely has a promising prospect in industrial application of large-area perovskite solar panels.
Compact and efficient blue laser sheet for measurement
NASA Astrophysics Data System (ADS)
Qi, Yan; Wang, Yu; Wu, Bin; Wang, Yanwei; Yan, Boxia
2017-10-01
Compact and efficient blue laser sheet has important applications in the field of measurement, with laser diode end pumped Nd:YAG directly and LBO intracavity frequency doubling, a compact and efficient CW 473nm blue laser sheet composed of dual path liner blue laser is realized. At an incident pump power of 12.4W, up to 1.4W output power of the compound blue laser is achieved, the optical-to-optical conversion efficiency is as high as 11.3%.
NASA Astrophysics Data System (ADS)
Klockgether, J.; Kiessling, K. P.
1983-09-01
Solar pump systems for the irrigation of fields and for water supply in regions with much sunshine are discussed. For surface water and sources with a hoisting depth of 12 m, a system with immersion pumps is used. For deep sources with larger hoisting depths, an underwater motor pump was developed. Both types of pump system meet the requirements of simple installation and manipulation, safe operation, maintenance free, and high efficiency reducing the number of solar cells needed.
NASA Astrophysics Data System (ADS)
Koška, Pavel; Peterka, Pavel; Doya, Valérie; Aubrecht, Jan; Kasik, Ivan; Podrazký, Ondřej
2017-05-01
High-power operation of fiber lasers was enabled by the invention of cladding-pumping in a double-clad fiber structure. Because of existence of so called skew rays in the inner clad of the fiber, pump absorption saturates along the fiber and pumping becomes inefficient. First studies of pump absorption efficiency enhancement were focused on fibers with broken circular symmetry of inner cladding eliminating skew rays [1,2]. Later, techniques of unconventional fiber coiling were proposed [3]. However, theoretical studies were limited to the assumption of a straight fiber. Even recently, the rigorous model accounting for fiber bending and twisting was described [4-6]. It was found that bending of the fiber influences modal spectra of the pump radiation and twisting provides quite efficient mode-scrambling. These effects in a synergic manner significantly enhances pump absorption rate in double clad fibers and improves laser system efficiency. In our contribution we review results of numerical modelling of pump absorption in various types of double-clad fibers, e.g., with cross section shape of hexagon, stadium, and circle; two-fiber bundle (so-called GTWave fiber structure) a panda fibers are also analyzed. We investigate pump field modal spectra evolution in hexagonally shaped fiber in straight, bended, and simultaneously bended and twisted fiber which brings new quality to understanding of the mode-scrambling and pump absorption enhancement. Finally, we evaluate the impact of enhanced pump absorption on signal gain in the fiber. These results can have practical impact in construction of fiber lasers: with pump absorption efficiency optimized by our new model (the other models did not take into account fiber twist), the double-clad fiber of shorter length can be used in the fiber lasers and amplifiers. In such a way the harmful influence of background losses and nonlinear effects can be minimized. [1] Doya, V., Legrand, O., Mortessagne, F., "Optimized absorption in a chaotic double-clad fiber amplifier," Opt. Lett., vol. 26, no. 12, pp. 872-874, (2001). [2] Kouznetsov, D., Moloney, J. V., "Efficiency of pump absorption in double-clad fiber amplifiers. II. Broken circular symmetry," J. Opt. Soc. Am. B, vol. 19, no. 6, pp. 1259-1263, June 2002. [3] Li, Y., Jackson, S. D., Fleming, S., "High absorption and low splice loss properties of hexagonal double-clad fiber," IEEE Photonics Technol. Lett., vol 16, no. 11, pp. 2502-2504, Nov. 2004. [4] Ko\\vska, P. and Peterka, P., "Numerical analysis of pump propagation and absorption in specially tailored double-clad rare-earth doped fiber," Optical and Quantum Electronics, vol. 47, no. 9, pp. 3181-3191 (2015). [5] Ko\\vska, P., Peterka, P., and Doya, V., "Numerical modeling of pump absorption in coiled and twisted double-clad fibers," IEEE J. Sel. Top. Quantum Electron., vol. 22, no. 2 (2016). [6] Ko\\vska, P., Peterka, P., Aubrecht, J., Podrazký, O., Todorov, F., Becker, M., Baravets, Y., Honzátko, P., and Kašík, I., "Enhanced pump absorption efficiency in coiled and twisted double-clad thulium-doped fibers," Opt. Express, vol. 24, no. 1, pp. 102-107 (2016).
Electrokinetic high pressure hydraulic system
Paul, Phillip H.; Rakestraw, David J.; Arnold, Don W.; Hencken, Kenneth R.; Schoeniger, Joseph S.; Neyer, David W.
2001-01-01
An electrokinetic high pressure hydraulic pump for manipulating fluids in capillary-based systems. The pump uses electro-osmotic flow to provide a high pressure hydraulic system, having no moving mechanical parts, for pumping and/or compressing fluids, for providing valve means and means for opening and closing valves, for controlling fluid flow rate, and manipulating fluid flow generally and in capillary-based systems (Microsystems), in particular. The compact nature of the inventive high pressure hydraulic pump provides the ability to construct a micro-scale or capillary-based HPLC system that fulfills the desire for small sample quantity, low solvent consumption, improved efficiency, the ability to run samples in parallel, and field portability. Control of pressure and solvent flow rate is achieved by controlling the voltage applied to an electrokinetic pump.
Electrokinetic high pressure hydraulic system
Paul, Phillip H.; Rakestraw, David J.; Arnold, Don W.; Hencken, Kenneth R.; Schoeniger, Joseph S.; Neyer, David W.
2003-06-03
An electrokinetic high pressure hydraulic pump for manipulating fluids in capillary-based system. The pump uses electro-osmotic flow to provide a high pressure hydraulic system, having no moving mechanical parts, for pumping and/or compressing fluids, for providing valve means and means for opening and closing valves, for controlling fluid flow rate, and manipulating fluid flow generally and in capillary-based systems (microsystems), in particular. The compact nature of the inventive high pressure hydraulic pump provides the ability to construct a micro-scale or capillary-based HPLC system that fulfills the desire for small sample quantity, low solvent consumption, improved efficiency, the ability to run samples in parallel, and field portability. Control of pressure and solvent flow rate is achieved by controlling the voltage applied to an electrokinetic pump.
KrF laser pumping by electron beam discharge
NASA Astrophysics Data System (ADS)
Bonnet, J.; Fournier, G.; Pigache, D.
1981-09-01
The pumping of excimer lasers used in nuclear fusion and isotope separation is considered. Homogeneous ionization with an electron beam permitted discharge pumping of a KrF laser with a discharge-energy/beam-energy ratio 5. This high value is obtained to the detriment of an energy density and an efficiency which are about half the best values obtained under other conditions. This result does not modify a recent conclusion indicating that an electron beam controlled discharge has no significant advantage over a pure electron beam as regards pumping high energy KrF lasers at high repetition rate.
High energy efficient solid state laser sources
NASA Technical Reports Server (NTRS)
Byer, Robert L.
1987-01-01
Diode-laser-pumped solid-state laser oscillators and nonlinear processes were investigated. A new generation on nonplanar oscillator was fabricated, and it is anticipated that passive linewidths will be pushed to the kilohertz regime. A number of diode-pumped laser transitions were demonstrated in the rod configuration. Second-harmonic conversion efficiencies as high as 15% are routinely obtained in a servo-locked external resonant doubling crystal at 15 mW cw input power levels at 1064 nm.
Clad-pumped Er-nanoparticle-doped fiber laser (Conference Presentation)
NASA Astrophysics Data System (ADS)
Baker, Colin C.; Friebele, E. Joseph; Rhonehouse, Daniel L.; Marcheschi, Barbara A.; Peele, John R.; Kim, Woohong; Sanghera, Jasbinder S.; Zhang, Jun; Chen, Youming; Pattnaik, Radha K.; Dubinskii, Mark
2017-03-01
Erbium-doped fiber lasers are attractive for directed energy weapons applications because they operate in a wavelength region that is both eye-safer and a window of high atmospheric transmission. For these applications a clad-pumped design is desirable, but the Er absorption must be high because of the areal dilution of the doped core vs. the pump cladding. High Er concentrations typically lead to Er ion clustering, resulting in quenching and upconversion. Nanoparticle (NP) doping of the core overcomes these problems by physically surrounding the Er ions with a cage of Al and O in the NP, which keeps them separated to minimize excited state energy transfer. A significant issue is obtaining high Er concentrations without the NP agglomeration that degrades the optical properties of the fiber core. We have developed the process for synthesizing stable Er-NP suspension which have been used to fabricate EDFs with Er concentrations >90 dB/m at 1532 nm. Matched clad fibers have been evaluated in a core-pumped MOPA with pump and signal wavelengths of 1475 and 1560 nm, respectively, and efficiencies of 72% with respect to absorbed pump have been obtained. We have fabricated both NP- and solution-doped double clad fibers, which have been measured in a clad-pumped laser testbed using a 1532 nm pump. The 1595 nm laser efficiency of the NP-doped fiber was 47.7%, which is high enough for what is believed to be the first laser experiment with the cladding pumped, NP-doped fiber. Further improvements are likely with a shaped cladding and new low-index polymer coatings with lower absorption in the 1500 - 1600 nm range.
Ultrashort-pulse-train pump and dump excitation of a diatomic molecule
NASA Astrophysics Data System (ADS)
de Araujo, Luís E. E.
2010-09-01
An excitation scheme is proposed for transferring population between ground-vibrational levels of a molecule. The transfer is accomplished by pumping and dumping population with a pair of coherent ultrashort-pulse trains via a stationary state. By mismatching the teeth of the frequency combs associated with the pulse trains to the vibrational levels, high selectivity in the excitation, along with high transfer efficiency, is predicted. The pump-dump scheme does not suffer from spontaneous emission losses, it is insensitive to the pump-dump-train delay, and it requires only basic pulse shaping.
Ultrashort-pulse-train pump and dump excitation of a diatomic molecule
DOE Office of Scientific and Technical Information (OSTI.GOV)
Araujo, Luis E. E. de
An excitation scheme is proposed for transferring population between ground-vibrational levels of a molecule. The transfer is accomplished by pumping and dumping population with a pair of coherent ultrashort-pulse trains via a stationary state. By mismatching the teeth of the frequency combs associated with the pulse trains to the vibrational levels, high selectivity in the excitation, along with high transfer efficiency, is predicted. The pump-dump scheme does not suffer from spontaneous emission losses, it is insensitive to the pump-dump-train delay, and it requires only basic pulse shaping.
Development of trivalent ytterbium doped fluorapatites for diode-pumped laser applications
NASA Astrophysics Data System (ADS)
Bayramian, Andrew James
2000-11-01
A major motivator of this work is the Mercury Project, a one kilowatt diode-pumped solid-state laser system under development at Lawrence Livermore National Laboratory (LLNL), which incorporates ytterbium doped strontium fluorapatite, Sr5(PO4)3F (S-FAP), as the amplifier gain medium. The primary focus of this thesis is a full understanding of the properties of this material, which is necessary for proper design and modeling of the system. Ytterbium-doped fluorapatites were investigated at LLNL prior to this work and found to be ideal candidate materials for high-power amplifier systems providing high absorption and emission cross sections, long radiative lifetimes, and high efficiency. A family of barium substituted S-FAP crystals was grown in an effort to modify the pump and emission bandwidths for application to broadband diode pumping and short pulse generation. Crystals of Yb 3+:Srs5-xBax(PO4) 3F where x < 1 showed homogeneous lines offering 8.4 nm (1.8X enhancement) of absorption bandwidth and 6.9 nm (1.4X enhancement) of emission bandwidth. The gain saturation fluence of Yb:S-FAP was measured to be 3.2 J/cm 2 with homogeneous extraction using a pump-probe experiment where the probe laser was a high intensity Q-switched master oscillator power amplifier system. The crystal quality of Czochralski grown Yb:S-FAP boules, which is effected by defects such as cracking, cloudiness, bubble core, slip dislocations, and anomalous absorption, was investigated interferometrically and quantified by means of Power Spectral Density (PSD) plots. Stimulated Raman Scattering (SRS) losses were evaluated by first measuring the SRS gain coefficient to be 1.3 cm/GW, then modeling the losses in the Mercury amplifier system. Countermeasures including the addition of bandwidth to the extraction beam and wedging of amplifier surfaces are shown to reduce the SRS losses allowing efficient laser gain extraction at higher intensities. Finally, an efficient Q-switched Yb:S-FAP oscillator was developed which operates three-level at 985 nm with a 21% slope efficiency. Frequency conversion of the 985 nm light to the 2nd harmonic at 492.5 nm was achieved with a 31% conversion efficiency. A diode pumped, doubled Yb:S-FAP laser at 492.5 nm would make possible a compact, efficient, high-power blue laser source.
High-power narrow-linewidth quasi-CW diode-pumped TEM00 1064 nm Nd:YAG ring laser.
Liu, Yuan; Wang, Bao-shan; Xie, Shi-yong; Bo, Yong; Wang, Peng-yuan; Zuo, Jun-wei; Xu, Yi-ting; Xu, Jia-lin; Peng, Qin-jun; Cui, Da-fu; Xu, Zu-yan
2012-04-01
We demonstrated a high average power, narrow-linewidth, quasi-CW diode-pumped Nd:YAG 1064 nm laser with near-diffraction-limited beam quality. A symmetrical three-mirror ring cavity with unidirectional operation elements and an etalon was employed to realize the narrow-linewidth laser output. Two highly efficient laser modules and a 90° quartz rotator for birefringence compensation were used for the high output power. The maximum average output power of 62.5 W with the beam quality factor M(2) of 1.15 was achieved under a pump power of 216 W at a repetition rate of 500 Hz, corresponding to the optical-to-optical conversion efficiency of 28.9%. The linewidth of the laser at the maximum output power was measured to be less than 0.2 GHz.
Solar-pumped lasers for space power transmission
NASA Technical Reports Server (NTRS)
Taussig, R.; Bruzzone, C.; Nelson, L.; Quimby, D.; Christiansen, W.
1979-01-01
Multi-Megawatt CW solar-pumped lasers appear to be technologically feasible for space power transmission in the 1990s time frame. A new concept for a solar-pumped laser is presented which utilizes an intermediate black body cavity to provide a uniform optical pumping environment for the lasant, either CO or CO2. Reradiation losses are minimized with resulting high efficiency operation. A 1 MW output laser may weigh as little as 8000 kg including solar collector, black body cavity, laser cavity and ducts, pumps, power systems and waste heat radiator. The efficiency of such a system will be on the order of 10 to 20%. Details of the new concept, laser design, comparison to competing solar-powered lasers and applications to a laser solar power satellite (SPS) concept are presented.
Optimum conditions for producing Cs2 molecular condensates by stimulated Raman adiabatic passage
NASA Astrophysics Data System (ADS)
Feng, Zhifang; Li, Weidong; Wang, Lirong; Xiao, Liantuan; Jia, Suotang
2009-10-01
The optimum conditions for producing Cs2 molecular condensates from Cs atomic condensates with high transfer efficiency by stimulated Raman adiabatic passage are presented. Under the extended “two-photon” resonance condition, including the two-photon process, the mean-field correction, and the tunneling coupling between two upper excited molecular levels, a high and stable conversion efficiency is realized. The high conversion efficiency could be achieved by following two methods under experimentally less demanding conditions (relatively small effective Rabi frequency for pump laser pulse). One is adjusting the detuning difference between two laser pulses for same effective Rabi frequencies with up to 87.2% transfer efficiency. Another one is adjusting the effective Rabi frequency, the detuning of dump laser for given effective Rabi frequency, and the detuning of pump laser with up to 80.7% transfer efficiency.
Cryogenic cooling for high power laser amplifiers
NASA Astrophysics Data System (ADS)
Perin, J. P.; Millet, F.; Divoky, M.; Rus, B.
2013-11-01
Using DPSSL (Diode Pumped Solid State Lasers) as pumping technology, PW-class lasers with enhanced repetition rates are developed. Each of the Yb YAG amplifiers will be diode-pumped at a wavelength of 940 nm. This is a prerequisite for achieving high repetition rates (light amplification duration 1 millisecond and repetition rate 10 Hz). The efficiency of DPSSL is inversely proportional to the temperature, for this reason the slab amplifier have to be cooled at a temperature in the range of 100 K-170 K with a heat flux of 1 MW*m-2. This paper describes the thermo-mechanical analysis for the design of the amplification laser head, presents a preliminary proposal for the required cryogenic cooling system and finally outlines the gain of cryogenic operation for the efficiency of high pulsed laser.
A Modular Control Platform for a Diode Pumped Alkali Laser
NASA Astrophysics Data System (ADS)
Shapiro, J.; Teare, S.
Many of the difficulties of creating compact, high power laser systems can be overcome if the heat dissipating properties of chemical lasers can be combined with the efficiency of diode lasers. Recently, the novel idea of using solid state diode lasers to pump gaseous gain media, such as is done in diode pumped alkali lasers (DPALs), has been proposed and early experiments have shown promising results. However, a number of technical issues need to be overcome to realize high output power from these lasers. In order to achieve higher power, the efficiency of coupling between pump laser energy and the chemical cell must be increased, and eventually multiple high power diode pumps must be combined and synchronized so that their energy can pump the chemical cell. Additionally, an inter-cavity adaptive optics system may be a requirement to be able to propagate these lasers with high efficiency. DPAL systems are complex and require a significant amount of data fusion and active feedback to control and optimize their performance. There are a wide range of components including pump lasers, gain cells and monitoring points needed to study and refine the overall laser system. In support of this dynamic development environment, we have developed a hardware framework using commercial off the shelf (COTS) components which supports the rapid assembly of functional system blocks into a cohesive integrated system. Critical to this system are a simple communication protocol, industry standard communication pipes (USB, Bluetooth, etc), and flexible high level scripting. Simplifying the integration process has the benefit of allowing flexible "on the fly" modifications to adapt the system as needed and enhance available functionality. The modular nature of the architecture allows scalability and adaptability as more pieces are added to the system. Key components of this system are demonstrated for selected portions of a DPAL system using a USB backbone.
2015-01-01
Here, we construct an open-channel on-chip electroosmotic pump capable of generating pressures up to ∼170 bar and flow rates up to ∼500 nL/min, adequate for high performance liquid chromatographic (HPLC) separations. A great feature of this pump is that a number of its basic pump units can be connected in series to enhance its pumping power; the output pressure is directly proportional to the number of pump units connected. This additive nature is excellent and useful, and no other pumps can work in this fashion. We demonstrate the feasibility of using this pump to perform nanoflow HPLC separations; tryptic digests of bovine serum albumin (BSA), transferrin factor (TF), and human immunoglobulins (IgG) are utilized as exemplary samples. We also compare the performance of our electroosmotic (EO)-driven HPLC with Agilent 1200 HPLC; comparable efficiencies, resolutions, and peak capacities are obtained. Since the pump is based on electroosmosis, it has no moving parts. The common material and process also allow this pump to be integrated with other microfabricated functional components. Development of this high-pressure on-chip pump will have a profound impact on the advancement of lab-on-a-chip devices. PMID:24495233
Zhang, H N; Chen, X H; Wang, Q P; Zhang, X Y; Chang, J; Gao, L; Shen, H B; Cong, Z H; Liu, Z J; Tao, X T; Li, P
2014-05-01
A diode-pumped actively Q-switched Raman laser employing BaWO4 as the Raman active medium and a ceramic Nd:YAG laser operating at 1444 nm as the pump source is demonstrated. The first-Stokes-Raman generation at 1666 nm is achieved. With a pump power of 20.3 W and pulse repetition frequency rate of 5 kHz, a maximum output power of 1.21 W is obtained, which is the highest output power for a 1.6 μm Raman laser. The corresponding optical-to-optical conversion efficiency is 6%; the pulse energy and peak power are 242 μJ and 8.96 kW, respectively.
NASA Astrophysics Data System (ADS)
Lee, Seungmin; Rhee, Bum Ku
2015-02-01
The pump laser was a cw-diode-pumped, acousto-optically Q-switched Nd:YAG laser. The laser had a pulse width of ~85 ns when operating at 10 kHz repetition rates. For infrared output of 2300 nm, we used 35-mm-long PPMgSLT which has a grating period of 32.7 μm for the first-order quasi-phase matching, resulting in the signal wavelength of 1980 nm at the crystal temperature of 76.5oC. Our optical parametric oscillator (OPO) was of a simple linear extra-cavity structure, formed by two flat dichroic mirrors with a separation of ~45 mm. The input coupling mirror had a high transmission of 98% for the pump, high reflectance of 98% at the signal and idler wavelengths, whereas the output coupler had a high reflectance of 98% at the pump wavelength. Hence, the OPO can be considered as singly resonant with double-pass pumping. In order to find an optimum reflectance for the efficient generation of infrared radiation of 2300 nm, we used the three different output mirrors whose reflectivity are ranging from 90% to 38% at the signal wavelength. We measured the signal and idler power as a function of the pumping power of Nd:YAG laser for three different output couplers. A maximum extraction efficiency with an optimum reflectance of output mirror was 27% for the idler, corresponding to 5.6 W of average output power. The fluctuations in the idler root-mean-square output power were measured to be below 1.5%. Our result is comparable with the recent one based on PPLN even with a simple cavity.
Highly efficient 400 W near-fundamental-mode green thin-disk laser.
Piehler, Stefan; Dietrich, Tom; Rumpel, Martin; Graf, Thomas; Ahmed, Marwan Abdou
2016-01-01
We report on the efficient generation of continuous-wave, high-brightness green laser radiation. Green lasers are particularly interesting for reliable and reproducible deep-penetration welding of copper or for pumping Ti:Sa oscillators. By intracavity second-harmonic generation in a thin-disk laser resonator designed for fundamental-mode operation, an output power of up to 403 W is demonstrated at a wavelength of 515 nm with almost diffraction-limited beam quality. The unprecedented optical efficiency of 40.7% of green output power with respect to the pump power of the thin-disk laser is enabled by the intracavity use of a highly efficient grating waveguide mirror, which combines the functions of wavelength stabilization and spectral narrowing, as well as polarization selection in a single element.
Kang, Bong Joo; Baek, In Hyung; Lee, Seung-Heon; Kim, Won Tae; Lee, Seung-Jun; Jeong, Young Uk; Kwon, O-Pil; Rotermund, Fabian
2016-05-16
We report on efficient generation of ultra-broadband terahertz (THz) waves via optical rectification in a novel nonlinear organic crystal with acentric core structure, i.e. 2-(4-hydroxystyryl)-1-methylquinolinium 4-methylbenzenesulfonate (OHQ-T), which possesses an ideal molecular structure leading to a maximized nonlinear optical response for near-infrared-pumped THz wave generation. By systematic studies on wavelength-dependent phase-matching conditions in OHQ-T crystals of different thicknesses we are able to generate coherent THz waves with a high peak-to-peak electric field amplitude of up to 650 kV/cm and an upper cut-off frequency beyond 10 THz. High optical-to-THz conversion efficiency of 0.31% is achieved by efficient index matching with a selective pumping at 1300 nm.
An ultra-high gain and efficient amplifier based on Raman amplification in plasma
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vieux, G.; Cipiccia, S.; Grant, D. W.
Raman amplification arising from the excitation of a density echelon in plasma could lead to amplifiers that significantly exceed current power limits of conventional laser media. Here we show that 1–100 J pump pulses can amplify picojoule seed pulses to nearly joule level. The extremely high gain also leads to significant amplification of backscattered radiation from “noise”, arising from stochastic plasma fluctuations that competes with externally injected seed pulses, which are amplified to similar levels at the highest pump energies. The pump energy is scattered into the seed at an oblique angle with 14 J sr -1, and net gainsmore » of more than eight orders of magnitude. The maximum gain coefficient, of 180 cm -1, exceeds high-power solid-state amplifying media by orders of magnitude. The observation of a minimum of 640 J sr -1 directly backscattered from noise, corresponding to ≈10% of the pump energy in the observation solid angle, implies potential overall efficiencies greater than 10%.« less
An ultra-high gain and efficient amplifier based on Raman amplification in plasma
Vieux, G.; Cipiccia, S.; Grant, D. W.; ...
2017-05-25
Raman amplification arising from the excitation of a density echelon in plasma could lead to amplifiers that significantly exceed current power limits of conventional laser media. Here we show that 1–100 J pump pulses can amplify picojoule seed pulses to nearly joule level. The extremely high gain also leads to significant amplification of backscattered radiation from “noise”, arising from stochastic plasma fluctuations that competes with externally injected seed pulses, which are amplified to similar levels at the highest pump energies. The pump energy is scattered into the seed at an oblique angle with 14 J sr -1, and net gainsmore » of more than eight orders of magnitude. The maximum gain coefficient, of 180 cm -1, exceeds high-power solid-state amplifying media by orders of magnitude. The observation of a minimum of 640 J sr -1 directly backscattered from noise, corresponding to ≈10% of the pump energy in the observation solid angle, implies potential overall efficiencies greater than 10%.« less
Pumping liquid metal at high temperatures up to 1,673 kelvin
NASA Astrophysics Data System (ADS)
Amy, C.; Budenstein, D.; Bagepalli, M.; England, D.; Deangelis, F.; Wilk, G.; Jarrett, C.; Kelsall, C.; Hirschey, J.; Wen, H.; Chavan, A.; Gilleland, B.; Yuan, C.; Chueh, W. C.; Sandhage, K. H.; Kawajiri, Y.; Henry, A.
2017-10-01
Heat is fundamental to power generation and many industrial processes, and is most useful at high temperatures because it can be converted more efficiently to other types of energy. However, efficient transportation, storage and conversion of heat at extreme temperatures (more than about 1,300 kelvin) is impractical for many applications. Liquid metals can be very effective media for transferring heat at high temperatures, but liquid-metal pumping has been limited by the corrosion of metal infrastructures. Here we demonstrate a ceramic, mechanical pump that can be used to continuously circulate liquid tin at temperatures of around 1,473-1,673 kelvin. Our approach to liquid-metal pumping is enabled by the use of ceramics for the mechanical and sealing components, but owing to the brittle nature of ceramics their use requires careful engineering. Our set-up enables effective heat transfer using a liquid at previously unattainable temperatures, and could be used for thermal storage and transport, electric power production, and chemical or materials processing.
NASA Astrophysics Data System (ADS)
Hasegawa, Kazuo; Ichikawa, Tadashi; Takeda, Yasuhiko; Ikesue, Akio; Ito, Hiroshi; Motohiro, Tomoyoshi
2018-04-01
We have proposed a new configuration of solar-pumped lasers employing transparent ceramic rods. The laser rod has a composite structure consisting of a Nd/Cr:YAG gain domain surrounded by Gd:YAG with the same refractive index as that of Nd/Cr:YAG. The lasing mode is well controlled by the output coupler, and the parasitic oscillation is suppressed, owing to the refractive index matching. A high laser slope efficiency and a low laser oscillation threshold were achieved owing to the suppressed absorption outside the lasing mode, which was previously a serious issue for the end-pumping configuration using a high-NA focusing optics. The laser oscillation threshold of 136 mW and the slope efficiency of 25.3% were derived. Thus, we have resolved the issue of useless absorption associated with the high-NA end-pumping, and achieved significant improvements compared with the conventional structure of uniform Nd/Cr:YAG.
NASA Technical Reports Server (NTRS)
Monson, D. J.
1978-01-01
Based on expected advances in technology, the maximum system efficiency and minimum specific mass have been calculated for closed-cycle CO and CO2 electric-discharge lasers (EDL's) and a direct solar-pumped laser in space. The efficiency calculations take into account losses from excitation gas heating, ducting frictional and turning losses, and the compressor efficiency. The mass calculations include the power source, radiator, compressor, fluids, ducting, laser channel, optics, and heat exchanger for all of the systems; and in addition the power conditioner for the EDL's and a focusing mirror for the solar-pumped laser. The results show the major component masses in each system, show which is the lightest system, and provide the necessary criteria for solar-pumped lasers to be lighter than the EDL's. Finally, the masses are compared with results from other studies for a closed-cycle CO2 gasdynamic laser (GDL) and the proposed microwave satellite solar power station (SSPS).
Influence of the helium-pressure on diode-pumped alkali-vapor laser
NASA Astrophysics Data System (ADS)
Gao, Fei; Chen, Fei; Xie, Ji-jiang; Zhang, Lai-ming; Li, Dian-jun; Yang, Gui-long; Guo, Jing
2013-05-01
Diode-pumped alkali-vapor laser (DPAL) is a kind of laser attracted much attention for its merits, such as high quantum efficiency, excellent beam quality, favorable thermal management, and potential scalability to high power and so on. Based on the rate-equation theory of end-pumped DPAL, the performances of DPAL using Cs-vapor collisionally broadened by helium are simulated and studied. With the increase of helium pressure, the numerical results show that: 1) the absorption line-width increases and the stimulated absorption cross-section decreases contrarily; 2) the threshold pumping power decreases to minimum and then rolls over to increase linearly; 3) the absorption efficiency rises to maximum initially due to enough large stimulated absorption cross-section in the far wings of collisionally broadened D2 transition (absorption transition), and then begins to reduce; 4) an optimal value of helium pressure exists to obtain the highest output power, leading to an optimal optical-optical efficiency. Furthermore, to generate the self-oscillation of laser, a critical value of helium pressure occurs when small-signal gain equals to the threshold gain.
S-band optical amplification by an internally generated pump in thulium ytterbium codoped fiber.
Chang, Jun; Wang, Qing-Pu; Zhang, Xingyu; Liu, Zhejin; Liu, Zhaojun; Peng, Gang-Ding
2005-05-30
We propose a novel scheme in which Yb3+ codoping and a laser cavity are introduced in Tm3+ doped fiber to achieve efficient S-band optical amplification with a 980 nm pump source. This scheme makes it possible for conventional 980 nm pump sources for Er3+ doped fiber amplifiers to be used for S-band Tm3+ doped fiber amplifiers (TDFAs). By introducing a laser cavity into an amplifier, an internally generated pump from Yb3+ at a desirable wavelength for pumping Tm3+ could be produced. We establish and analyze, for the first time to our knowledge, a new theoretical model that takes into consideration both the internal lasing operation inside the optical amplification process and the energy transfer between the Tm3+ and the Yb3+ ions in TDFAs. Various situations such as Tm3+ doping concentration and cavity reflectivity have been investigated. The results show that high optical gain and high pump efficiency can be achieved by use of 980 nm sources. With a laser cavity of 1050 nm in Tm3+ and Yb3+ codoped fiber, for example, it is possible to achieve high optical gain of greater than 20 dB, a noise figure of approximately 5 dB in the wavelength range from 1450 to 1480 nm with a 0.3 W power at 980 nm pump source.
High pumping-power fiber combiner for double-cladding fiber lasers and amplifiers
NASA Astrophysics Data System (ADS)
Zheng, Jinkun; Zhao, Wei; Zhao, Baoyin; Li, Zhe; Chang, Chang; Li, Gang; Gao, Qi; Ju, Pei; Gao, Wei; She, Shengfei; Wu, Peng; Hou, Chaoqi; Li, Weinan
2018-03-01
A high pumping-power fiber combiner for backward pumping configurations is fabricated and demonstrated by manufacturing process refinement. The pump power handling capability of every pump fiber can extend to 600 W, corresponding to the average pump coupling efficiency of 94.83%. Totally, 2.67-kW output power with the beam quality factor M2 of 1.41 was obtained, using this combiner in the fiber amplifier experimental setup. In addition, the temperature of the splicing region was less than 50.0°C in the designed combiner under the action of circulating cooling water. The experimental results prove that the designed combiner is a promising integrated all-fiber device for multikilowatt continuous-wave fiber laser with excellent beam quality.
High efficiency pump combiner fabricated by CO2 laser splicing system
NASA Astrophysics Data System (ADS)
Zhu, Gongwen
2018-02-01
High power combiners are of great interest for high power fiber lasers and fiber amplifiers. With the advent of CO2 laser splicing system, power combiners are made possible with low manufacturing cost, low loss, high reliability and high performance. Traditionally fiber optical components are fabricated with flame torch, electrode arc discharge or filament heater. However, these methods can easily leave contamination on the fiber, resulting inconsistent performance or even catching fire in high power operations. The electrodes or filaments also degrade rapidly during the combiner manufacturing process. The rapid degradation will lead to extensive maintenance, making it unpractical or uneconomic for volume production. By contrast, CO2 laser is the cleanest heating source which provides reliable and repeatable process for fabricating fiber optic components including high power combiners. In this paper we present an all fiber end pumped 7x1 pump combiner fabricated by CO2 laser splicing system. The input pump fibers are 105/125 (core/clad diameters in μm) fibers with a core NA of 0.22. The output fiber is a 300/320 fiber with a core NA of 0.22. The average efficiency is 99.4% with all 7 ports more than 99%. The process is contamination-free and highly repeatable. To our best knowledge, this is the first report in the literature on power combiners fabricated by CO2 laser splicing system. It also has the highest reported efficiency of its kind.
MHz rate and efficient synchronous heralding of single photons at telecom wavelengths.
Pomarico, Enrico; Sanguinetti, Bruno; Guerreiro, Thiago; Thew, Rob; Zbinden, Hugo
2012-10-08
We report on the realization of a synchronous source of heralded single photons at telecom wavelengths with MHz heralding rates and high heralding efficiency. This source is based on the generation of photon pairs at 810 and 1550 nm via Spontaneous Parametric Down Conversion (SPDC) in a 1 cm periodically poled lithium niobate (PPLN) crystal pumped by a 532 nm pulsed laser. As high rates are fundamental for multi-photon experiments, we show that single telecom photons can be announced at 4.4 MHz rate with 45% heralding efficiency. When we focus only on the optimization of the coupling of the heralded photon, the heralding efficiency can be increased up to 80%. Furthermore, we experimentally observe that group velocity mismatch inside long crystals pumped in a pulsed mode affects the spectrum of the emitted photons and their fibre coupling efficiency. The length of the crystal in this source has been chosen as a trade off between high brightness and high coupling efficiency.
Analyses of mode filling factor of a laser end-pumped by a LD with high-order transverse modes
NASA Astrophysics Data System (ADS)
Han, Juhong; Wang, You; An, Guofei; Rong, Kepeng; Yu, Hang; Wang, Shunyan; Zhang, Wei; Cai, He; Xue, Liangping; Wang, Hongyuan; Zhou, Jie
2017-05-01
Although the concept of the mode filling factor (also named as "mode-matching efficiency") has been well discussed decades before, the concept of so-called overlap coefficient is often confused by the laser technicians because there are several different formulae for various engineering purposes. Furthermore, the LD-pumped configurations have become the mainstream of solid-state lasers since their compact size, high optical-to-optical efficiency, low heat generation, etc. As the beam quality of LDs are usually very unsatisfactory, it is necessary to investigate how the mode filling factor of a laser system is affected by a high-powered LD pump source. In this paper, theoretical analyses of an end-pumped laser are carried out based on the normalized overlap coefficient formalism. The study provides a convenient tool to describe the intrinsically complex issue of mode interaction corresponding to a laser and an end-pumped source. The mode filling factor has been studied for many cases in which the pump mode and the laser mode have been considered together in the calculation based on analyses of the rate equations. The results should be applied for analyses of any other types of lasers with the similar optical geometry.
Novel Design of Type I High Power Mid-IR Diode Lasers for Spectral Region 3 - 4.2 Microns
2014-09-25
multifold improvement of the device characteristics. Cascade pumping was achieved utilizing efficient interband tunneling through "leaky" window in band...Initially cascade pumping scheme was applied to laser heterostructures utilizing gain sections based on either intersubband [1] or type-II interband ...active regions, metamorphic virtual substrate and cascade pumping scheme. Cascade pumping of type-I quantum well gain section opened the whole new
Modeling of SBS Phase Conjugation in Multimode Step Index Fibers
2008-03-01
cavity or in an external amplifier. Since pumping is never a perfectly efficient process, some heat will be introduced, and for very high pump powers...modes it supports, and the incident pump power. While theoretical investigations of SBS PCMs have been conducted by a num- ber of authors, the model...predictions about the phase conjugate fidelity that could be expected from a given pump intensity input coupled into a specific fiber. A numerical
120 watt continuous wave solar-pumped laser with a liquid light-guide lens and an Nd:YAG rod.
Dinh, T H; Ohkubo, T; Yabe, T; Kuboyama, H
2012-07-01
We propose a simple and efficient pumping approach for a high-power solar-pumped laser by using a liquid light-guide lens (LLGL) and a hybrid pumping cavity. A 2×2 m Fresnel lens is used as a primary concentrator to collect natural sunlight; 120 W cw laser power and a 4.3% total slope efficiency are achieved with a 6-mm diameter Nd:YAG rod within a 14-mm diameter LLGL. The corresponded collection efficiency is 30.0 W/m(2), which is 1.5 times larger than the previous record. This result is unexpectedly better than that of Cr:Nd:YAG ceramics. It is because the scattering coefficient of Cr:Nd:YAG ceramics is 0.004cm(1), which is 2 times larger than that of the Nd:YAG crystal, although both have similar saturation gains.
NASA Astrophysics Data System (ADS)
Pei, Ji; Wang, Wenjie; Yuan, Shouqi; Zhang, Jinfeng
2016-09-01
In order to widen the high-efficiency operating range of a low-specific-speed centrifugal pump, an optimization process for considering efficiencies under 1.0 Q d and 1.4 Q d is proposed. Three parameters, namely, the blade outlet width b 2, blade outlet angle β 2, and blade wrap angle φ, are selected as design variables. Impellers are generated using the optimal Latin hypercube sampling method. The pump efficiencies are calculated using the software CFX 14.5 at two operating points selected as objectives. Surrogate models are also constructed to analyze the relationship between the objectives and the design variables. Finally, the particle swarm optimization algorithm is applied to calculate the surrogate model to determine the best combination of the impeller parameters. The results show that the performance curve predicted by numerical simulation has a good agreement with the experimental results. Compared with the efficiencies of the original impeller, the hydraulic efficiencies of the optimized impeller are increased by 4.18% and 0.62% under 1.0 Q d and 1.4Qd, respectively. The comparison of inner flow between the original pump and optimized one illustrates the improvement of performance. The optimization process can provide a useful reference on performance improvement of other pumps, even on reduction of pressure fluctuations.
Schaller, R D; Klimov, V I
2004-05-07
We demonstrate for the first time that impact ionization (II) (the inverse of Auger recombination) occurs with very high efficiency in semiconductor nanocrystals (NCs). Interband optical excitation of PbSe NCs at low pump intensities, for which less than one exciton is initially generated per NC on average, results in the formation of two or more excitons (carrier multiplication) when pump photon energies are more than 3 times the NC band gap energy. The generation of multiexcitons from a single photon absorption event is observed to take place on an ultrafast (picosecond) time scale and occurs with up to 100% efficiency depending upon the excess energy of the absorbed photon. Efficient II in NCs can be used to considerably increase the power conversion efficiency of NC-based solar cells.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Page, R.H.; Schaffers, K.I.; Waide, P.A.
We discuss the upconversion luminescence efficiencies of phosphors that generate red, green, and blue light. The phosphors studied are single crystals and powders co-doped with Er{sup 3+} and Yb{sup 3+}, and with Tm{sup 3+} and Yb{sup 3+}. The Yb ions are pumped near 980 nm; transfers of two or three quanta to the co-doped rare earth ion generate visible luminescence. The main contribution embodied in this work is the quantitative measurement of this upconversion efficiency, based on the use of a calibrated integrating sphere, determination of the fraction of pump light absorbed, and careful control of the pump laser beammore » profile. The green phosphors are the most efficient, yielding efficiency values as high as 4 %, with the red and blue materials giving 1 - 2 %. Saturation was observed in all cases, suggesting that populations of upconversion steps of the ions are maximized at higher power. Quasi-CW modeling of the intensity- dependent upconversion efficiency was attempted; input data included level lifetimes, transition cross sections, and cross-relaxation rate coefficients. The saturation of the Yb,Er:fluoride media is explained as the pumping of Er{sup 3+} ions into a bottleneck (long-lived state)- the {sup 4}I{sub 13/2} metastable level, making them unavailable for further excitation transfer. 32 refs., 5 figs., 3 tabs.« less
Electromagnetic induction pump for pumping liquid metals and other conductive liquids
Smither, R.K.
1993-05-11
An electromagnetic induction pump is described in which an electrically conductive liquid is made to flow by means of a force created by interaction of a permanent magnetic field and a DC current. The pump achieves high efficiency through combination of: powerful permanent magnet materials which provide a high strength field that is uniform and constant; steel tubing formed into a coil which is constructed to carry conducting liquids with minimal electrical resistance and heat; and application of a voltage to induce a DC current which continuously produces a force in the direction of the desired flow.
Electromagnetic induction pump for pumping liquid metals and other conductive liquids
Smither, Robert K.
1993-01-01
An electromagnetic induction pump in which an electrically conductive liquid is made to flow by means of a force created by interaction of a permanent magnetic field and a DC current. The pump achieves high efficiency through combination of: powerful permanent magnet materials which provide a high strength field that is uniform and constant; steel tubing formed into a coil which is constructed to carry conducting liquids with minimal electrical resistance and heat; and application of a voltage to induce a DC current which continuously produces a force in the direction of the desired flow.
Batzer, T.H.; Call, W.R.
1984-12-04
The present invention is designed to achieve continuous high efficiency cryopumping of a vacuum vessel by improving upon and combining in a novel way the cryopumping in a novel way the cryopumping methods. The invention consists of a continuous operation cryopump, with movable louvres, with a high efficiency pumping apparatus. The pumping apparatus includes three cryogenic tubes. They are constructed of a substance of high thermal conductivity, such as aluminum and their exterior surfaces are cryogenic condensing surfaces. Through their interior liquid or gaseous helium from two reservoirs can be made to flow, alternately promoting extreme cooling or allowing some warming.
Cr/sup 3 +/-doped colquiriite solid state laser material
Payne, S.A.; Chase, L.L.; Newkirk, H.W.; Krupke, W.F.
1988-03-31
Chromium doped colquiriite, LiCaAlF/sub 6/:Cr/sup 3 +/, is useful as a tunable laser crystal that has a high intrinsic slope efficiency, comparable to or exceeding that of alexandrite, the current leading performer of vibronic sideband Cr/sup 3 +/ lasers. The laser output is tunable from at least 720 nm to 840 nm with a measured slope efficiency of about 60% in a Kr laser pumped laser configuration. The intrinsic slope efficiency (in the limit of large output coupling) may approach the quantum defect limited value of 83%. The high slope efficiency implies that excited state absorption (ESA) is negligible. The potential for efficiency and the tuning range of this material satisfy the requirements for a pump laser for a high density storage medium incorporating Nd/sup 3 +/ or Tm/sup 3 +/ for use in a multimegajoule single shot fusion research facility. 4 figs.
Cr.sup.3+ -doped colquiriite solid state laser material
Payne, Stephen A.; Chase, Lloyd L.; Newkirk, Herbert W.; Krupke, William F.
1989-01-01
Chromium doped colquiriite, LiCaAlF.sub.6 :Cr.sup.3+, is useful as a tunable laser crystal that has a high intrinsic slope efficiency, comparable to or exceeding that of alexandrite, the current leading performer of vibronic sideband Cr.sup.3+ lasers. The laser output is tunable from at least 720 nm to 840 nm with a measured slop efficiency of about 60% in a Kr laser pumped laser configuration. The intrinsic slope efficiency (in the limit of large output coupling) may approach the quantum defect limited value of 83%. The high slope efficiency implies that excited state absorption (ESA) is negligible. The potential for efficiency and the tuning range of this material satisfy the requirements for a pump laser for a high density storage medium incorporating Nd.sup.3+ or Tm.sup.3+ for use in a multimegajoule single shot fusion research facility.
An Efficient End-Pumped Ho:Tm:YLF Disk Amplifier
NASA Technical Reports Server (NTRS)
Yu, Ji-Rong; Petros, Mulugeta; Singh, Upendra N.; Barnes, Norman P.
2000-01-01
An efficient diode-pumped, room temperature Ho:Tm:YLF disk amplifier was realized by end-pump configuration. Compared to side pump configuration, about a factor three improvement in system efficiency has been demonstrated.
Ren, Qinlong
2018-02-10
Efficient pumping of blood flow in a microfluidic device is essential for rapid detection of bacterial bloodstream infections (BSI) using alternating current (AC) electrokinetics. Compared with AC electro-osmosis (ACEO) phenomenon, the advantage of AC electrothermal (ACET) mechanism is its capability of pumping biofluids with high electrical conductivities at a relatively high AC voltage frequency. In the current work, the microfluidic pumping of non-Newtonian blood flow using ACET forces is investigated in detail by modeling its multi-physics process with hybrid boundary element method (BEM) and immersed boundary-lattice Boltzmann method (IB-LBM). The Carreau-Yasuda model is used to simulate the realistic rheological behavior of blood flow. The ACET pumping efficiency of blood flow is studied in terms of different AC voltage magnitudes and frequencies, thermal boundary conditions of electrodes, electrode configurations, channel height, and the channel length per electrode pair. Besides, the effect of rheological behavior on the blood flow velocity is theoretically analyzed by comparing with the Newtonian fluid flow using scaling law analysis under the same physical conditions. The results indicate that the rheological behavior of blood flow and its frequency-dependent dielectric property make the pumping phenomenon of blood flow different from that of the common Newtonian aqueous solutions. It is also demonstrated that using a thermally insulated electrode could enhance the pumping efficiency dramatically. Besides, the results conclude that increasing the AC voltage magnitude is a more economical pumping approach than adding the number of electrodes with the same energy consumption when the Joule heating effect is acceptable. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Jin, Xiaoxi; Du, Xueyuan; Wang, Xiong; Zhou, Pu; Zhang, Hanwei; Wang, Xiaolin; Liu, Zejin
2016-01-01
We demonstrated a high-power ultralong-wavelength Tm-doped silica fiber laser operating at 2153 nm with the output power exceeding 18 W and the slope efficiency of 25.5%. A random distributed feedback fiber laser with the center wavelength of 1173 nm was employed as pump source of Tm-doped fiber laser for the first time. No amplified spontaneous emissions or parasitic oscillations were observed when the maximum output power reached, which indicates that employing 1173 nm random distributed feedback fiber laser as pump laser is a feasible and promising scheme to achieve high-power emission of long-wavelength Tm-doped fiber laser. The output power of this Tm-doped fiber laser could be further improved by optimizing the length of active fiber, reflectivity of FBGs, increasing optical efficiency of pump laser and using better temperature management. We also compared the operation of 2153 nm Tm-doped fiber lasers pumped with 793 nm laser diodes, and the maximum output powers were limited to ~2 W by strong amplified spontaneous emission and parasitic oscillation in the range of 1900–2000 nm. PMID:27416893
Jin, Xiaoxi; Du, Xueyuan; Wang, Xiong; Zhou, Pu; Zhang, Hanwei; Wang, Xiaolin; Liu, Zejin
2016-07-15
We demonstrated a high-power ultralong-wavelength Tm-doped silica fiber laser operating at 2153 nm with the output power exceeding 18 W and the slope efficiency of 25.5%. A random distributed feedback fiber laser with the center wavelength of 1173 nm was employed as pump source of Tm-doped fiber laser for the first time. No amplified spontaneous emissions or parasitic oscillations were observed when the maximum output power reached, which indicates that employing 1173 nm random distributed feedback fiber laser as pump laser is a feasible and promising scheme to achieve high-power emission of long-wavelength Tm-doped fiber laser. The output power of this Tm-doped fiber laser could be further improved by optimizing the length of active fiber, reflectivity of FBGs, increasing optical efficiency of pump laser and using better temperature management. We also compared the operation of 2153 nm Tm-doped fiber lasers pumped with 793 nm laser diodes, and the maximum output powers were limited to ~2 W by strong amplified spontaneous emission and parasitic oscillation in the range of 1900-2000 nm.
Low-thrust chemical propulsion system pump technology
NASA Technical Reports Server (NTRS)
Sabiers, R. L.; Siebenhaar, A.
1981-01-01
Candidate pump and driver systems for low thrust cargo orbit transfer vehicle engines which deliver large space structures to geosynchronous equatorial orbit and beyond are evaluated. The pumps operate to 68 atmospheres (1000 psi) discharge pressure and flowrates suited to cryogenic engines using either LOX/methane or LOX/hydrogen propellants in thrust ranges from 445 to 8900 N (100 to 2000 lb F). Analysis of the various pumps and drivers indicate that the low specific speed requirement will make high fluid efficiencies difficult to achieve. As such, multiple stages are required. In addition, all pumps require inducer stages. The most attractive main pumps are the multistage centrifugal pumps.
NASA Astrophysics Data System (ADS)
Watari, T.; Matsukado, K.; Sekine, T.; Takeuchi, Y.; Hatano, Y.; Yoshimura, R.; Satoh, N.; Nishihara, K.; Takagi, M.; Kawashima, T.
2016-03-01
We propose novel neutron source using high-intensity laser based on the cluster fusion scheme. We developed DPSSL-pumped high-repetition-rate 20-TW laser system and solid nanoparticle target for neutron generation demonstration. In our neutron generation experiment, high-energy deuterons were generated from coulomb explosion of CD solid- nanoparticles and neutrons were generated by DD fusion reaction. Efficient and stable neutron generation was obtained by irradiating an intense femtosecond laser pulse of >2×1018 W/cm2. A yield of ∼105 neutrons per shot was stably observed during 0.1-1 Hz continuous operation.
LD side-pumped Nd:YAG Q-switched laser without water cooling
NASA Astrophysics Data System (ADS)
Ling, Ming; Jin, Guang-yong; Tan, Xue-chun; Wu, Zhi-chao; Liang, Zhu
2009-07-01
A novel LD side-pumped Nd:YAG Q-switched solid-state laser, which made use of the special pumping strcture with conductive cooling instead of water cooling, was investigated.After selecting an appropriate length and diameter of Nd:YAG laser crystal rod and using three groups of laser diode centimeter bar which was composed by 12 laser diodes and uniformly arranged according to the angle of 120°,side-pumping structure of laser was accomplished.Adopting plano-concave resonator ,mending double end face of laser crystal and designing heat-stability resonator made the resonator steadily oscillate.Laser crystal rod which was tight fastened by copper net was conductively cooled and radiation block was furnished on the external of copper net for increasing the radiation capacity.High reflection gold film was plated on the cooling wall in the opposite way of pumping light, so that the laser crystal was uniformly pumped and the laser with low order mode output.Making the use of pillar lens focus and ray trace computing, reasonable parameters were caculated to couple pumping light to laser with high-efficiency.It was the electrooptic Q-switched which was made to be micro-integration eliminating voltage by KD*P crystal that improved the ratio between acting and unacting.Inner heat radiated from laser in good time with TE cooler and the laser ran at constant temperature with water cooling when the big external heat sink emanated a steady heat to periphery. Experiments revealed that the syetem pumping efficiency riseed by 18% and the laser threshold energy was 192 mJ under the condition of this novel pumping structure. The low mode output of 10-12ns pulse width and the maximum output energy of 98 mJ was achieved with an incident pump energy of 720 mJ in 1064nm.The optical-to-optical conversion efficiency was up to 13. 6 %,and the power instability in 24 h was better than +/-1. 7 %.
CW 3μm lasing via two-photon pumping in cesium vapor with a 1W source
NASA Astrophysics Data System (ADS)
Haluska, Nathan D.; Rice, Christopher A.; Perram, Glen P.
2018-02-01
We report the first CW lasing from two-photon pumping via a virtual state. Pulsed and the CW lasing of the 3096 nm 72 P1/2 to 72 S1/2 line are observed from degenerate two-photon pumping of the cesium 72 S1/2 to 62 D3/2 transition. High intensity pulses excite over 17 lasing wavelengths. Under lower intensity CW excitation, 3 μm lasing is still observed with efficiencies of 0.7%. CW experiments utilized a Cs heat pipe at 150 °C to 270 °C, and a highly-focused, single pass, Ti-Sapphire pump with no aid of a cavity. Unlike normal DPALS, this architecture does not require buffer gas, and heat is released optically so a flowing system is not required. Both suggest a very simple device with excellent beam quality is possible. This proof of concept can be greatly enhanced with more optimal conditions such as non-degenerate pumping to further increase the two-photon pump cross section and the addition of a cavity to improve mode volume overlap. These improvements may lead to an increase in efficiencies to a theoretical maximum of 14%. Results suggest two-photon pumping with diodes is feasible.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jarrell, Mark
Cedarville School District retrofitted the heating and cooling systems in three campus areas (High School, Middle School, and Upper Elementary School) with geothermal heat pumps and ground source water loops, as a demonstration project for the effective implementation of geothermal heat pump systems and other energy efficiency and air quality improvements.
NASA Technical Reports Server (NTRS)
Gahan, J. W.; Powell, A. H.; Pileggi, P. T.; Thompson, S. P.
1972-01-01
A three-phase helical induction electromagnetic (EM) pump has been designed and built. This pump was designed for use as the boiler-feed pump of a potassium Rankine-cycle space electric power system. The pump is constructed of high temperature materials including a T-111 duct, Hiperco 27 magnetic material, nickel clad silver conductor wire, and a completely inorganic insulation system. The pump is designed to deliver 3.25 lb/sec potassium at 1000 F with a developed head of 240 psi while being cooled by 800 F NaK. At these conditions, the overall pump efficiency is expected to be 18%.
High-power diode-side-pumped rod Tm:YAG laser at 2.07 μm.
Wang, Caili; Niu, Yanxiong; Du, Shifeng; Zhang, Chao; Wang, Zhichao; Li, Fangqin; Xu, Jialin; Bo, Yong; Peng, Qinjun; Cui, Dafu; Zhang, Jingyuan; Xu, Zuyan
2013-11-01
We report a high-power diode-laser (LD) side-pumped rod Tm:YAG laser of around 2 μm. The laser was water-cooled at 8°C and yielded a maximum output power of 267 W at 2.07 μm, which is the highest output power for an all solid-state cw 2.07 μm rod Tm:YAG laser reported as far as we know. The corresponding optical-optical conversion efficiency was 20.7%, and the slope efficiency was about 29.8%, respectively.
Ellinger, K; Breschinski, W
1986-03-01
Highly efficient medicaments like catecholamines, vasodilators and antiarrhythmics require exact and safe application. So far, however, we have not been able to meet this requirement in our medical emergency service, as the appropriate dispensing equipment has not been available. Nevertheless, today potent medication must be administered during preclinical emergency care. A case report is given that shows the advantages of the use of an electronically controlled injection pump (IVAC 700) for dispensing highly efficient medicaments in emergency medicine.
Phosphate-core silica-clad Er/Yb-doped optical fiber and cladding pumped laser.
Egorova, O N; Semjonov, S L; Velmiskin, V V; Yatsenko, Yu P; Sverchkov, S E; Galagan, B I; Denker, B I; Dianov, E M
2014-04-07
We present a composite optical fiber with a Er/Yb co-doped phosphate-glass core in a silica glass cladding as well as cladding pumped laser. The fabrication process, optical properties, and lasing parameters are described. The slope efficiency under 980 nm cladding pumping reached 39% with respect to the absorbed pump power and 28% with respect to the coupled pump power. Due to high doping level of the phosphate core optimal length was several times shorter than that of silica core fibers.
Direct solar-pumped iodine laser amplifier
NASA Technical Reports Server (NTRS)
Han, Kwang S.; Hwang, In Heon; Kim, Khong Hon; Stock, Larry V.
1988-01-01
A XeCl laser pumped iodine laser oscillator was developed which will be incorporated into the Master Oscillator Power Amplifier (MOPA) system. The developed XeCl laser produces output energy of about 60 mJ per pulse. The pulse duration was about 10 nsec. The kinetic model for the solar-pumped laser was refined and the algorithm for the calculation of a set of rate equations was improved to increase the accuracy and the efficiency of the calculation. The improved algorithm was applied to explain the existing experimental data taken from a flashlamp pumped iodine laser for three kinds of lasants, i-C3F7I, n-C4F9I, and t-C4F9I. Various solid laser materials were evaluated for solar-pumping. The materials studied were Nd:YAG, Nd:YLF, and Cr:Nd:GSGG crystals. The slope efficiency of 0.17 percent was measured for the Nd:YLF near the threshold pump intensity which was 211 solar constants (29W/sq cm). The threshold pump intensity of the Nd:YAG was measured to be 236 solar constants (32W/sq cm) and the near-threshold slope efficiency was 0.12 percent. True CW laser operation of Cr:Nd:GSGG was possible only at pump intensities less than or equal to 1,500 solar constants (203 W/sq cm). This fact was attributed to the high thermal focusing effect of the Cr:Nd:GSGG rod.
NASA Astrophysics Data System (ADS)
Ješe, U.; Skotak, A.; Mikulašek, J.
2017-04-01
Reversible pump-turbines used in Pumped Storage Power Plants are among the most cost-efficient solutions for storing and recovering large amount of energy in short time. Presented paper is focused on the pump-turbine pumping mode part-load instabilities, among them the rotating stall and the cavitating vortex in the distributor region. Rotating stall can be described as a periodic occurrence and decay of the recirculation zones in the distributor with its own rotational characteristics frequency. Unstable behaviour can result in high radial forces, high pressure fluctuations and local velocity fluctuations that can in some cases lead into the occurrence of the cavitating vortex in the distributor region, even though the distributor is located in the high pressure region. Computationally demanding calculations have been performed using commercial CFD code. Analysed results have been compared to the experimental data obtained in the ČKD Blansko Engineering hydraulic laboratory.
A Teaspoon Pump for Pumping Blood with High Hydraulic Efficiency and Low Hemolysis Potential.
Dame, Don
1996-05-01
Virtually all blood pumps contain some kind of rubbing, sliding, closely moving machinery surfaces that are exposed to the blood being pumped. These valves, internal bearings, magnetic bearing position sensors, and shaft seals cause most of the problems with blood pumps. The original teaspoon pump design prevented the rubbing, sliding machinery surfaces from contacting the blood. However, the hydraulic efficiency was low because the blood was able to "slip around" the rotating impeller so that the blood itself never rotated fast enough to develop adequate pressure. An improved teaspoon blood pump has been designed and tested and has shown acceptable hydraulic performance and low hemolysis potential. The new pump uses a nonrotating "swinging" hose as the pump impeller. The fluid enters the pump through the center of the swinging hose; therefore, there can be no fluid slip between the revolving blood and the revolving impeller. The new pump uses an impeller that is comparable to a flexible garden hose. If the free end of the hose were swung around in a circle like half of a jump rope, the fluid inside the hose would rotate and develop pressure even though the hose impeller itself did not "rotate"; therefore, no rotating shaft seal or internal bearings are required. © 1996 International Society for Artificial Organs.
A teaspoon pump for pumping blood with high hydraulic efficiency and low hemolysis potential.
Dame, D
1996-06-01
Virtually all blood pumps contain some kind of rubbing, sliding, closely moving machinery surfaces that are exposed to the blood being pumped. These valves, internal bearings, magnetic bearing position sensors, and shaft seals cause most of the problems with blood pumps. The original teaspoon pump design prevented the rubbing, sliding machinery surfaces from contacting the blood. However, the hydraulic efficiency was low because the blood was able to "slip around" the rotating impeller so that the blood itself never rotated fast enough to develop adequate pressure. An improved teaspoon blood pump has been designed and tested and has shown acceptable hydraulic performance and low hemolysis potential. The new pump uses a nonrotating "swinging" hose as the pump impeller. The fluid enters the pump through the center of the swinging hose; therefore, there can be no fluid slip between the revolving blood and the revolving impeller. The new pump uses an impeller that is comparable to a flexible garden hose. If the free end of the hose were swung around in a circle like half of a jump rope, the fluid inside the hose would rotate and develop pressure even though the hose impeller itself did not "rotate"; therefore, no rotating shaft seal or internal bearings are required.
Geothermal down well pumping system
NASA Technical Reports Server (NTRS)
Matthews, H. B.; Mcbee, W. D.
1974-01-01
A key technical problem in the exploitation of hot water geothermal energy resources is down-well pumping to inhibit mineral precipitation, improve thermal efficiency, and enhance flow. A novel approach to this problem involves the use of a small fraction of the thermal energy of the well water to boil and super-heat a clean feedwater flow in a down-hole exchanger adjacent to the pump. This steam powers a high-speed turbine-driven pump. The exhaust steam is brought to the surface through an exhaust pipe, condensed, and recirculated. A small fraction of the high-pressure clean feedwater is diverted to lubricate the turbine pump bearings and prevent leakage of brine into the turbine-pump unit. A project demonstrating the feasibility of this approach by means of both laboratory and down-well tests is discussed.
Compact 200 kHz HHG source driven by a few-cycle OPCPA
NASA Astrophysics Data System (ADS)
Harth, Anne; Guo, Chen; Cheng, Yu-Chen; Losquin, Arthur; Miranda, Miguel; Mikaelsson, Sara; Heyl, Christoph M.; Prochnow, Oliver; Ahrens, Jan; Morgner, Uwe; L'Huillier, Anne; Arnold, Cord L.
2018-01-01
We present efficient high-order harmonic generation (HHG) based on a high-repetition rate, few-cycle, near infrared (NIR), carrier-envelope phase stable, optical parametric chirped pulse amplifier (OPCPA), emitting 6 fs pulses with 9 μJ pulse energy. In krypton, we reach conversion efficiencies from the NIR to the extreme ultraviolet (XUV) radiation pulse energy on the order of ˜10-6 with less than 3 μJ driving pulse energy. This is achieved by optimizing the OPCPA for a spatially and temporally clean pulse and by a specially designed high-pressure gas target. In the future, the high efficiency of the HHG source will be beneficial for high-repetition rate two-colour (NIR-XUV) pump-probe experiments, where the available pulse energy from the laser has to be distributed economically between pump and probe pulses.
High laser efficiency and photostability of pyrromethene dyes mediated by nonpolar solvent.
Gupta, Monika; Kamble, Priyadarshini; Rath, M C; Naik, D B; Ray, Alok K
2015-08-10
Many pyrromethene (PM) dyes have been shown to outperform established rhodamine dyes in terms of laser efficiency in the green-yellow spectral region, but their rapid photochemical degradation in commonly used ethanol or methanol solvents continues to limit its use in high average power liquid dye lasers. A comparative study on narrowband laser efficiency and photostability of commercially available PM567 and PM597 dyes, using nonpolar n-heptane and 1,4-dioxane and polar ethanol solvents, was carried out by a constructed pulsed dye laser, pumped by the second harmonic (532 nm) radiation of a Q-switched Nd:YAG laser. Interestingly, both nonpolar solvents showed a significantly higher laser photostability (∼100 times) as well as peak efficiency (∼5%) of these PM dyes in comparison to ethanol. The different photostability of the PM dyes was rationalized by determining their triplet-state spectra and capability to generate reactive singlet oxygen (O21) by energy transfer to dissolved oxygen in these solvents using pulse radiolysis. Heptane is identified as a promising solvent for these PM dyes for use in high average power dye lasers, pumped by copper vapor lasers or diode-pumped solid-state green lasers.
A novel high temperature superconducting magnetic flux pump for MRI magnets
NASA Astrophysics Data System (ADS)
Bai, Zhiming; Yan, Guo; Wu, Chunli; Ding, Shufang; Chen, Chuan
2010-10-01
This paper presents a kind of minitype magnetic flux pump made of high temperature superconductor. This kind of novel high temperature superconducting (HTS) flux pump has not any mechanical revolving parts or thermal switches. The excitation current of copper coils in magnetic pole system is controlled by a singlechip. The structure design and operational principle have been described. The operating performance of the new model magnetic flux pump has been preliminarily tested. The experiments show that the maximum pumping current is approximately 200 A for Bi2223 flux pump and 80 A for MgB 2 flux pump operating at 20 K. By comparison, it is discovered that the operating temperature range is wider, the ripple is smaller and the pumping frequency is higher in Bi2223 flux pump than those in MgB 2 flux pump. These results indicate that the newly developed Bi2223 magnetic flux pump may efficiently compensate the magnetic field decay in HTS magnet and make the magnet operate in persistent current mode, this point is significant to the magnetic resonance imaging (MRI) magnets. This new flux pump is under construction presently. It is expected that the Bi2223 flux pump would be applied to the superconducting MRI magnets by further optimizing structure and improving working process.
Investigation of an ejector heat pump by analytical methods
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hsu, C.T.
1984-07-01
Using existing theories of ejector design, the optimum geometry of a high-efficiency ejector - including mixing section cross-sectional area, mass flow entrainment rate, ejector efficiency, and overall COP - for a heat pump cycle was determined. A parametric study was performed to evaluate the COP values for different operating conditions. A sensitivity study determined th effects of nozzle efficiency and diffuser efficiency on the overall ejector heat pump COP. The off-design study estimated the COP for an ejector heat pump operating at off-design conditions. Refrigerants 11, 113, and 114 are three of the halocarbons which best satisfy the criteria formore » an ejector heat pump system. The estimated COPs were 0.3 for the cooling mode and 1.3 for the heating mode at standard operating conditions: a boiler temperature of 93.3/sup 0/C (200/sup 0/F), a condenser temperature of 43.3/sup 0/C (110/sup 0/F), and an evaporator temperature of 10/sup 0/C (50/sup 0/F). Based on the same operating conditions, an optimum ejector geometry was estimated for each of the refrigerants R-11 and R-113. Since the COP values for heating obtained in this analysis are greater than unity, the performance of an ejector heat pump operating in the heating mode should be competitive with that of oil- or gas-fired furnaces or electrical resistance heaters.« less
Maximizing fluid delivered by bubble-free electroosmotic pump with optimum pulse voltage waveform.
Tawfik, Mena E; Diez, Francisco J
2017-03-01
In generating high electroosmotic (EO) flows for use in microfluidic pumps, a limiting factor is faradaic reactions that are more pronounced at high electric fields. These reactions lead to bubble generation at the electrodes and pump efficiency reduction. The onset of gas generation for high current density EO pumping depends on many parameters including applied voltage, working fluid, and pulse duration. The onset of gas generation can be delayed and optimized for maximum volume pumped in the minimum time possible. This has been achieved through the use of a novel numerical model that predicts the onset of gas generation during EO pumping using an optimized pulse voltage waveform. This method allows applying current densities higher than previously reported. Optimal pulse voltage waveforms are calculated based on the previous theories for different current densities and electrolyte molarity. The electroosmotic pump performance is investigated by experimentally measuring the fluid volume displaced and flow rate. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Lü, Yanfei; Zhang, Xihe; Cheng, Weibo; Xia, Jing
2010-07-20
We generated efficient blue laser output at 454 nm by intracavity frequency doubling of a continuous-wave (cw) diode-pumped Nd:YLiF(4) (Nd:YLF) laser at 908 nm based on the (4)F(3/2)-(4)I(9/2) transition. With 32.8 W of incident pump power at 880 nm and the frequency-doubling crystal LiB(3)O(5), a level as high as 4.33 W of cw output power at 454 nm is achieved, corresponding to an optical conversion efficiency of 13.2% with respect to the incident pump power. To the best of our knowledge, this is the first blue laser at 454 nm generated by intracavity frequency doubling of a diode-pumped Nd:YLF.
Application of the electroosmotic effect for thrust generation
NASA Astrophysics Data System (ADS)
Hansen, Thomas Edward
The present work focuses on demonstrating the capabilities of electroosmotic pumps, (EOP) to generate thrust. An underwater glider was successfully propelled by electroosmosis for the first time published - at 0.85 inches per second. Asymmetric AC voltage pulsing proved to produce higher flow rates then equivalent DC pumps for the same average voltage. Ultra-short pulsing proved 100 nanosecond rise times in EOP are possible, which surpassed published predictions by three orders of magnitude. Theories behind efficiency losses of high power EOP were investigated. Direct measurement of effective voltage at the face of a membrane is the most accurate way to determine voltage drop across the electrolyte of an EOP. Forced convection lowered efficiency of the EOP for low voltages by preventing capacitance charging, but proved to prolong pump life during high power application.
High-power linearly polarized diode-side-pumped a-cut Nd:GdVO4 rod laser
NASA Astrophysics Data System (ADS)
Li, Xiaowen; Qian, Jianqiang; Zhang, Baitao
2017-03-01
An efficiently high-power diode-side-pumped Nd:GdVO4 rod laser system was successfully demonstrated, operating in continuous wave (CW) and acousto-optically (AO) Q-switched regime. With a 65 mm-long a-cut Nd:GdVO4 crystal, a maximum linearly polarized CW output power of 60 W at 1063.2 nm was obtained under an absorbed pump power of 180 W, corresponding to a slope efficiency of 50.6%. The output laser beam was linearly polarized with a degree of polarization of 98%. In AO Q-switched operation, the highest output power, minimum pulse width, and highest peak power were achieved to be 42 W, 36 ns, and 58 kW at the pulse repetition frequency of 20 kHz.
Mechanical pumps for superfluid helium transfer in space
NASA Technical Reports Server (NTRS)
Izenson, M. G.; Swift, W. L.
1988-01-01
Two alternate mechanical pump concepts have been identified for the transfer of superfluid helium in space. Both pumps provide flow at sufficient head and have operating characteristics suitable for the Space Infrared Telescope Facility (SIRTF) refill mission. One pump operates at a relatively low speed and utilizes mechanical roller bearings, while the other operates at a higher rotational speed using either electromagnetic or tilting pad gas-dynamic bearings. The use of gas bearings requires transfer of normal helium so that the gas pressure within the pump casing is high enough to operate the bearings. The operating characteristics of both pumps are predicted, the dimensions are estimated and major technology issues are identified. The major issues for each pump design are cavitation performance and bearing development. Roller bearings require quantified reliability for operation in space while electromagnetic bearings require basic development as well as a complex control system. The low speed pump has significantly poorer hydraulic efficiency than the high speed pump.
Huang, Haizhou; Huang, Jianhong; Liu, Huagang; Li, Jinhui; Lin, Zixiong; Ge, Yan; Dai, Shutao; Deng, Jing; Lin, Wenxiong
2018-03-05
We demonstrate an enhancement mechanism and thermal model for intra-cavity pumped lasers, where resonance enhancement in intra-cavity pumped Ho laser was achieved by manipulating the wavelength-drift nature of the Tm laser for the first time. Optical conversion efficiency of 37.5% from an absorbed 785 nm diode laser to a Ho laser was obtained with a maximum output power of 7.51 W at 2122 nm, which is comparable to the conversion efficiency in 1.9 μm LD pumped Ho lasers. Meanwhile, more severe thermal effects in the Ho-doped gain medium than the Tm-doped one at high power operation were verified based on the built thermal model. This work benefits the design or evaluation of intra-cavity pumped lasers, and the resonance enhancement originated from the difference in reabsorption loss between stark levels at the lasing manifolds of quasi-three-level rare-earth ions has great interest to improve the existing intra-cavity pumped lasers or explore novel lasers.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Glassmeyer, Cathy; Hooten, Gwen; Hertel, Bill
The Fernald Preserve, a former uranium processing facility that produced high-purity uranium metal products during the Cold War, is located in southwest Ohio. The facility became a US Department of Energy Office of Legacy Management (LM) site in November 2006, following completion of the Comprehensive Environmental Response, Compensation, and Liability Act environmental remediation and site restoration (with the exception of groundwater). When the site was turned over to LM, approximately 76.5 ha of the Great Miami Aquifer remained contaminated with uranium above the final remediation level of 30 μg/L. Here, uranium contamination is being removed from groundwater in the Greatmore » Miami Aquifer through a pump-and-treat operation, which is predicted to continue until 2033. Twenty extraction wells pump about 30 million liters per day. Operation of the system is impacted by iron in the groundwater that promotes iron fouling of the well pumps, motors, and screens. The design of the well field evolved over 21 years and reflected a conservative system that could respond to a wide range of pumping conditions. For instance, some of the extraction wells were sized with pumps and motors that would allow the well to pump up to 1890 L/min (500 gpm) if warranted. The added flexibility, though, came at the cost of operational efficiency. We describe the efforts that have been taken by LM since the Fernald site was transferred to LM to mitigate the operational impacts from the iron fouling aquifer conditions and improve the efficiency of the well-field operation. Variable-frequency drives were installed at six wells to replace flow control valves. Several wells with oversized pumps and motors were changed from 24-hour per day operation to 8-hour per day operation to allow the pumps to operate closer to their design flow rates. Pumps and motors were “right-sized” at many wells to improve pumping efficiency. The process used to rehabilitate (or clean) well screens was improved, and a process was developed to clean pumps without having to pull them from the well. To reduce pressure drops, improvements were also made to the configuration of the discharge piping. A new control system was installed for each well to allow local control and local tracking of energy used. The amount of energy used daily compared to number of gallons pumped provides a method to assess pump performance and determine when action is necessary to restore well pump efficiency. Additionally, the metrics being employed to help quantify well-field efficiency improvements are described, and the benefits achieved by proactively managing the pump-and-treat operation are presented.« less
Micromachined evaporators for AMTEC cells
DOE Office of Scientific and Technical Information (OSTI.GOV)
Izenson, M.G.; Crowley, C.J.
1996-12-31
To achieve high cell efficiency and reliability, the capillary pumping system for Alkali Metal Thermal to Electric Conversion (AMTEC) must have three key characteristics: (1) very small pores to achieve a high capillary pumping head, (2) high permeability for the flow of liquid sodium to minimize internal losses, and (3) be made from a material that is exceptionally stable at high temperatures in a sodium environment. The authors have developed micromachining techniques to manufacture high performance evaporators for AMTEC cells. The evaporators have been fabricated from stainless steel, molybdenum, and a niobium alloy (Nb-1Zr). The regular, micromachined structure leads tomore » very high capillary pumping head with high permeability for liquid flow. Data from tests performed with common fluids at room temperature characterize the capillary pumping head and permeability of these structures. Three micromachined evaporators have been built into AMTEC cells and operated at temperatures up to 1,100 K. Results from these tests confirm the excellent pumping capabilities of the micromachined evaporators.« less
Balke, Elizabeth C; Healy, William M; Ullah, Tania
2016-12-01
An evaluation of a variety of efficient water heating strategies for an all-electric single family home located in a mixed-humid climate is conducted using numerical modeling. The strategies considered include various combinations of solar thermal, heat pump, and electric resistance water heaters. The numerical model used in the study is first validated against a year of field data obtained on a dual-tank system with a solar thermal preheat tank feeding a heat pump water heater that serves as a backup. Modeling results show that this configuration is the most efficient of the systems studied over the course of a year, with a system coefficient of performance (COP sys ) of 2.87. The heat pump water heater alone results in a COP sys of 1.9, while the baseline resistance water heater has a COP sys of 0.95. Impacts on space conditioning are also investigated by considering the extra energy consumption required of the air source heat pump to remove or add heat from the conditioned space by the water heating system. A modified COP sys that incorporates the heat pump energy consumption shows a significant drop in efficiency for the dual tank configuration since the heat pump water heater draws the most heat from the space in the heating season while the high temperatures in the solar storage tank during the cooling season result in an added heat load to the space. Despite this degradation in the COP sys , the combination of the solar thermal preheat tank and the heat pump water heater is the most efficient option even when considering the impacts on space conditioning.
Balke, Elizabeth C.; Healy, William M.; Ullah, Tania
2016-01-01
An evaluation of a variety of efficient water heating strategies for an all-electric single family home located in a mixed-humid climate is conducted using numerical modeling. The strategies considered include various combinations of solar thermal, heat pump, and electric resistance water heaters. The numerical model used in the study is first validated against a year of field data obtained on a dual-tank system with a solar thermal preheat tank feeding a heat pump water heater that serves as a backup. Modeling results show that this configuration is the most efficient of the systems studied over the course of a year, with a system coefficient of performance (COPsys) of 2.87. The heat pump water heater alone results in a COPsys of 1.9, while the baseline resistance water heater has a COPsys of 0.95. Impacts on space conditioning are also investigated by considering the extra energy consumption required of the air source heat pump to remove or add heat from the conditioned space by the water heating system. A modified COPsys that incorporates the heat pump energy consumption shows a significant drop in efficiency for the dual tank configuration since the heat pump water heater draws the most heat from the space in the heating season while the high temperatures in the solar storage tank during the cooling season result in an added heat load to the space. Despite this degradation in the COPsys, the combination of the solar thermal preheat tank and the heat pump water heater is the most efficient option even when considering the impacts on space conditioning. PMID:27990058
Temperature effects on tunable cw Alexandrite lasers under diode end-pumping.
Kerridge-Johns, William R; Damzen, Michael J
2018-03-19
Diode pumped Alexandrite is a promising route to high power, efficient and inexpensive lasers with a broad (701 nm to 858 nm) gain bandwidth; however, there are challenges with its complex laser dynamics. We present an analytical model applied to experimental red diode end-pumped Alexandrite lasers, which enabled a record 54 % slope efficiency with an output power of 1.2 W. A record lowest lasing wavelength (714 nm) and record tuning range (104 nm) was obtained by optimising the crystal temperature between 8 °C and 105 °C in the vibronic mode. The properties of Alexandrite and the analytical model were examined to understand and give general rules in optimising Alexandrite lasers, along with their fundamental efficiency limits. It was found that the lowest threshold laser wavelength was not necessarily the most efficient, and that higher and lower temperatures were optimal for longer and shorter laser wavelengths, respectively. The pump excited to ground state absorption ratio was measured to decrease from 0.8 to 0.7 by changing the crystal temperature from 10 °C to 90 °C.
Development of solar concentrators for high-power solar-pumped lasers.
Dinh, T H; Ohkubo, T; Yabe, T
2014-04-20
We have developed unique solar concentrators for solar-pumped solid-state lasers to improve both efficiency and laser output power. Natural sunlight is collected by a primary concentrator which is a 2 m×2 m Fresnel lens, and confined by a cone-shaped hybrid concentrator. Such solar power is coupled to a laser rod by a cylinder with coolant surrounding it that is called a liquid light-guide lens (LLGL). Performance of the cylindrical LLGL has been characterized analytically and experimentally. Since a 14 mm diameter LLGL generates efficient and uniform pumping along a Nd:YAG rod that is 6 mm in diameter and 100 mm in length, 120 W cw laser output is achieved with beam quality factor M2 of 137 and overall slope efficiency of 4.3%. The collection efficiency is 30.0 W/m2, which is 1.5 times larger than the previous record. The overall conversion efficiency is more than 3.2%, which can be comparable to a commercial lamp-pumped solid-state laser. The concept of the light-guide lens can be applied for concentrator photovoltaics or other solar energy optics.
NASA Astrophysics Data System (ADS)
Pochylý, F.; Haluza, M.; Fialová, S.; Dobšáková, L.; Volkov, A. V.; Parygin, A. G.; Naumov, A. V.; Vikhlyantsev, A. A.; Druzhinin, A. A.
2017-11-01
The results of independent research implemented by the teams of authors representing the Brno University of technology (Czech Republic) and Moscow Power Engineering Institute National Research University (Russia) are presented and compared. The possibilities for improving the energy efficiency of slow-speed centrifugal pumps (with a specific speed coefficient n s < 80) widely used in power engineering—in thermal power stations, in heat electric-power stations, in nuclear power plants, and in boiler rooms—were investigated. These are supply pumps, condensate pumps, precharge pumps, etc. The pumps with such values of n s are widely used in some technological cycles of oil-and-gas and chemical industries too. The research was focused on achieving the shape of the pump efficiency characteristics providing a significant extension of its effective working zone and increasing its integrated efficiency. The results were obtained based on new approaches to the formation of a blading system of an impeller of a slow-speed centrifugal pump different from the traditional blading system. The analytical dependences illustrating the influence of individual geometry of a blading system on the efficiency were presented. The possibilities of purposeful changing of its structure were demonstrated. It was experimentally confirmed that use of the innovative blading system makes it possible to increase the pump efficiency by 1-4% (in the experiments for the pumps with n s = 33 and 55) and to extend its efficient working zone approximately by 15-20% (in the experiment for the pumps with n s = 33 and 66). The latter is especially important for the supply pumps of NPP power units. The experimental results for all investigated pumps are presented in comparison with the characteristics of the efficiency provided by the blading systems designed by traditional methods.
Comfortable, high-efficiency heat pump with desiccant-coated, water-sorbing heat exchangers
NASA Astrophysics Data System (ADS)
Tu, Y. D.; Wang, R. Z.; Ge, T. S.; Zheng, X.
2017-01-01
Comfortable, efficient, and affordable heating, ventilation, and air conditioning systems in buildings are highly desirable due to the demands of energy efficiency and environmental friendliness. Traditional vapor-compression air conditioners exhibit a lower coefficient of performance (COP) (typically 2.8-3.8) owing to the cooling-based dehumidification methods that handle both sensible and latent loads together. Temperature- and humidity-independent control or desiccant systems have been proposed to overcome these challenges; however, the COP of current desiccant systems is quite small and additional heat sources are usually needed. Here, we report on a desiccant-enhanced, direct expansion heat pump based on a water-sorbing heat exchanger with a desiccant coating that exhibits an ultrahigh COP value of more than 7 without sacrificing any comfort or compactness. The pump’s efficiency is doubled compared to that of pumps currently used in conventional room air conditioners, which is a revolutionary HVAC breakthrough. Our proposed water-sorbing heat exchanger can independently handle sensible and latent loads at the same time. The desiccants adsorb moisture almost isothermally and can be regenerated by condensation heat. This new approach opens up the possibility of achieving ultrahigh efficiency for a broad range of temperature- and humidity-control applications.
High-Power Nd:GdVO4 Innoslab Continuous-Wave Laser under Direct 880 nm Pumping
NASA Astrophysics Data System (ADS)
Deng, Bo; Zhang, Heng-Li; Xu, Liu; Mao, Ye-Fei; He, Jing-Liang; Xin, Jian-Guo
2014-11-01
A high-power cw end-pumped laser device is demonstrated with a slab crystal of Nd:GdVO4 operating at 1063 nm. Diode laser stacks at 880 nm are used to pump Nd:GdVO4 into emitting level 4F3/2. The 149 W output power is presented when the absorbed pump power is 390 W and the optical-to-optical conversion efficiency is 38.2%. When the output power is 120 W, the M2 factors are 2.3 in both directions. Additionally, mode overlap inside the resonator is analyzed to explain the beam quality deterioration.
Koshel, R J; Walmsley, I A
1993-03-20
We investigate the absorption distribution in a cylindrical gain medium that is pumped by a source of distributed laser diodes by means of a pump cavity developed from the edge-ray principle of nonimaging optics. The performance of this pumping arrangement is studied by using a nonsequential, numerical, three-dimensional ray-tracing scheme. A figure of merit is defined for the pump cavities that takes into account the coupling efficiency and uniformity of the absorption distribution. It is found that the nonimaging pump cavity maintains a high coupling efficiency with extended two-dimensional diode arrays and obtains a fairly uniform absorption distribution. The nonimaging cavity is compared with two other designs: a close-coupled side-pumped cavity and an imaging design in the form of a elliptical cavity. The nonimaging cavity has a better figure of merit per diode than these two designs. It also permits the use of an extended, sparse, two-dimensional diode array, which reduces thermal loading of the source and eliminates all cavity optics other than the main reflector.
Solar-pumped 80 W laser irradiated by a Fresnel lens.
Ohkubo, Tomomasa; Yabe, Takashi; Yoshida, Kunio; Uchida, Shigeaki; Funatsu, Takayuki; Bagheri, Behgol; Oishi, Takehiro; Daito, Kazuya; Ishioka, Manabu; Nakayama, Yuichirou; Yasunaga, Norihito; Kido, Kouichirou; Sato, Yuji; Baasandash, Choijil; Kato, Kiyoshi; Yanagitani, Takagimi; Okamoto, Yoshiaki
2009-01-15
A solar-pumped 100 W class laser that features high efficiency and low cost owing to the use of a Fresnel lens and a chromium codoped neodymium YAG ceramic laser medium was developed. A laser output of about 80 W was achieved with combination of a 4 m(2) Fresnel lens and a pumping cavity as a secondary power concentrator. This output corresponds to 4.3% of conversion efficiency from solar power into laser, and the maximum output from a unit area of Fresnel lens was 20 W/m(2), which is 2.8 times larger than previous results with mirror-type concentrator.
FALCON nuclear-reactor-pumped laser program and wireless power transmission
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lipinski, R.J.; Pickard, P.S.
1992-12-31
FALCON is a high-power, reactor-pumped laser concept. The major strengths of a reactor-pumped laser are (1) simple, modular construction, (2) long-duration, closed-cycle capability, (3) self-contained power, (4) compact size, and (5) a variety of wavelengths (from visible to infrared). Reactor-pumped lasing has been demonstrated experimentally in various mixtures of xenon, argon, neon, and helium at wavelengths of 585, 703, 725, 1271, 1733, 1792, 2032, 2630, 2650, and 3370 nm with intrinsic efficiency as high as 2.5%. Powers up to 300 W for 2 ms have been demonstrated. Projected beam quality for FALCON is good enough that frequency doubling at reasonablemore » efficiencies could be expected to yield wavelengths at 353, 363, 636, 867, 896, 1016, 1315, 1325, and 1685 nm. Appropriate missions for FALCON are described and include power beaming to satellites, the moon, and unmanned surveillance planes; lunar mapping; space debris removal; and laser propulsion.« less
FALCON nuclear-reactor-pumped laser program and wireless power transmission
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lipinski, R.J.; Pickard, P.S.
1992-01-01
FALCON is a high-power, reactor-pumped laser concept. The major strengths of a reactor-pumped laser are (1) simple, modular construction, (2) long-duration, closed-cycle capability, (3) self-contained power, (4) compact size, and (5) a variety of wavelengths (from visible to infrared). Reactor-pumped lasing has been demonstrated experimentally in various mixtures of xenon, argon, neon, and helium at wavelengths of 585, 703, 725, 1271, 1733, 1792, 2032, 2630, 2650, and 3370 nm with intrinsic efficiency as high as 2.5%. Powers up to 300 W for 2 ms have been demonstrated. Projected beam quality for FALCON is good enough that frequency doubling at reasonablemore » efficiencies could be expected to yield wavelengths at 353, 363, 636, 867, 896, 1016, 1315, 1325, and 1685 nm. Appropriate missions for FALCON are described and include power beaming to satellites, the moon, and unmanned surveillance planes; lunar mapping; space debris removal; and laser propulsion.« less
885-nm Pumped Ceramic Nd:YAG Master Oscillator Power Amplifier Laser System
NASA Technical Reports Server (NTRS)
Yu, Anthony
2012-01-01
The performance of a traditional diode pumped solid-state laser that is typically pumped with 808-nm laser diode array (LDA) and crystalline Nd:YAG was improved by using 885-nm LDAs and ceramic Nd:YAG. The advantage is lower quantum defect, which will improve the thermal loading on laser gain medium, resulting in a higher-performance laser. The use of ceramic Nd:YAG allows a higher Nd dopant level that will make up the lower absorption at the 885-nm wavelength on Nd:YAG. When compared to traditional 808-nm pump, 885-nm diodes will have 30% less thermal load (or wasted heat) and will thus see a similar percentage improvement in the overall laser efficiency. In order to provide a more efficient laser system for future flight missions that require the use of low-repetition- rate (
NASA Astrophysics Data System (ADS)
Cadatal-Raduban, Marilou; Pham, Minh Hong; Pham, Duong Van; Bui, Duong Thi Thuy; Yamanoi, Kohei; Takeda, Kohei; Empizo, Melvin John F.; Mui, Luong Viet; Shimizu, Toshihiko; Nguyen, Hung Dai; Sarukura, Nobuhiko; Fukuda, Tsuguo
2018-06-01
A two-side-pumping scheme that is based on total internal reflection in a diamond-cut Ce3+:LiCaAlF6 crystal suitable for the development of an ultraviolet laser and femtosecond amplifier system is proposed. Experimental fluorescence images and lasing results that demonstrate total internal reflection of the excitation beam using this diamond-cut crystal are presented. Calculations for the optimized crystal geometry that facilitate high extraction efficiency and homogeneity of the absorbed excitation beam are also discussed. About 50% increase in extraction efficiency compared to previously reported chirped-pulse femtosecond ultraviolet amplifier operating at 50-GW peak power is expected using this total internal reflection-based two-side-pumping configuration and a diamond-cut Ce3+:LiCaAlF6 crystal with a geometry of {φ _1} = 103°, {φ _2} = {φ _4} = 82°, {φ _3} = 93°, a length of 1.23 cm, a height of 2 cm, and an absorption coefficient of 1.5 cm-1. Our results can be used as a guide during the crystal growth process by providing the appropriate crystal geometry and size for a particular absorption coefficient to achieve high extraction efficiency. With the appropriate crystal combined with multiple-beam pumping afforded by the side-pumping scheme, the development of an all-solid-state ultraviolet laser operating at terawatt level would be within reach.
Efficient Q-switched Tm:YAG ceramic slab laser.
Zhang, Shuaiyi; Wang, Mingjian; Xu, Lin; Wang, Yan; Tang, Yulong; Cheng, Xiaojin; Chen, Weibiao; Xu, Jianqiu; Jiang, Benxue; Pan, Yubai
2011-01-17
Characteristics of Tm:YAG ceramic for high efficient 2-μm lasers are analyzed. Efficient diode end-pumped continuous-wave and Q-switched Tm:YAG ceramic lasers are demonstrated. At the absorbed pump power of 53.2W, the maximum continuous wave (cw) output power of 17.2 W around 2016 nm was obtained with the output transmission of 5%. The optical conversion efficiency is 32.3%, corresponding to a slope efficiency of 36.5%. For Q-switched operation, the shortest width of 69 ns was achieved with the pulse repetition frequency of 500 Hz and single pulse energy of 20.4 mJ, which indicates excellent energy storage capability of the Tm:YAG ceramic.
Uncooled pump combiners for fiber laser and amplifier systems
NASA Astrophysics Data System (ADS)
Bansal, L.; Sienkowski, R.; Neale, C.; Mann, J.; Headley, C.
2018-02-01
In this work we demonstrate a high transmission pump combiner that can operate uncooled at a maximum power of 400W for a continuous duration of 100hrs. The 7x1 pump combiner has seven 105/125 μm diameter 0.22 NA input pump fibers and a 247 μm diameter and 0.22 NA glass clad output fiber. The combiner has a high, 99%, pump transmission efficiency. These devices withstand without failure, a series of environmental stress tests, namely Thermal Cycling (-40 to 85ºC) and Damp Humidity (85ºC/85RH). These tests are conducted to uncover any latent defects in the device structure. The combiner's also survive an elevated temperature of 75ºC at a power of 365W for duration of 5hrs, without any noticeable change in pump transmission.
Burst mode pumping: A new mechanism of drinking in mosquitoes
Kikuchi, Kenji; Stremler, Mark A.; Chatterjee, Souvick; ...
2018-03-20
Mosquitoes transport liquid foods into the body using two muscular pumps in the head. In normal drinking, these pumps reciprocate in a stereotyped pattern of oscillation, with a high frequency but small stroke volume. Do mosquitoes modulate their neuromotor programs for pumping to produce different drinking modes? More broadly, what are the mechanical consequences of a two-pump system in insects? To address these questions, we used synchrotron x-ray imaging and fluid mechanical modeling to investigate drinking performance in mosquitoes. X-ray imaging of the pumps during drinking revealed two modes of pumping: continuous reciprocation with multiple small strokes, and a newlymore » discovered ‘burst mode’ involving a single, large-volume stroke. Results from modeling demonstrate that burst mode pumping creates a very large pressure drop and high volume flow rate, but requires a massive increase in power, suggesting that continuous pumping is more economical for drinking. Modeling also demonstrates that, from one mode of pumping to the other, the mechanical role of the individual pumps changes. Furthermore, these results suggest that the advantage of a two-pump system in insects lies in its flexibility, enabling the animal to pump efficiently or powerfully as demanded by environmental considerations.« less
Burst mode pumping: A new mechanism of drinking in mosquitoes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kikuchi, Kenji; Stremler, Mark A.; Chatterjee, Souvick
Mosquitoes transport liquid foods into the body using two muscular pumps in the head. In normal drinking, these pumps reciprocate in a stereotyped pattern of oscillation, with a high frequency but small stroke volume. Do mosquitoes modulate their neuromotor programs for pumping to produce different drinking modes? More broadly, what are the mechanical consequences of a two-pump system in insects? To address these questions, we used synchrotron x-ray imaging and fluid mechanical modeling to investigate drinking performance in mosquitoes. X-ray imaging of the pumps during drinking revealed two modes of pumping: continuous reciprocation with multiple small strokes, and a newlymore » discovered ‘burst mode’ involving a single, large-volume stroke. Results from modeling demonstrate that burst mode pumping creates a very large pressure drop and high volume flow rate, but requires a massive increase in power, suggesting that continuous pumping is more economical for drinking. Modeling also demonstrates that, from one mode of pumping to the other, the mechanical role of the individual pumps changes. Furthermore, these results suggest that the advantage of a two-pump system in insects lies in its flexibility, enabling the animal to pump efficiently or powerfully as demanded by environmental considerations.« less
All-Solid-State UV Transmitter Development for Ozone Sensing Applications
NASA Technical Reports Server (NTRS)
Prasad, Narasimha S.; Singh, Upendra N.; Armstrong, Darrell Jr.
2009-01-01
In this paper, recent progress made in the development of an all-solid-state UV transmitter suitable for ozone sensing applications from space based platforms is discussed. A nonlinear optics based UV setup based on Rotated Image Singly Resonant Twisted Rectangle (RISTRA) optical parametric oscillator (OPO) module was effectively coupled to a diode pumped, single longitudinal mode, conductively cooled, short-pulsed, high-energy Nd:YAG laser operating at 1064 nm with 50 Hz PRF. An estimated 10 mJ/pulse with 10% conversion efficiency at 320 nm has been demonstrated limited only by the pump pulse spatial profile. The current arrangement has the potential for obtaining greater than 200 mJ/pulse. Previously, using a flash-lamp pumped Nd:YAG laser with round, top-hat profile, up to 24% IR-UV conversion efficiency was achieved with the same UV module. Efforts are underway to increase the IR-UV conversion efficiency of the all solid-state setup by modifying the pump laser spatial profile along with incorporating improved OPO crystals.
Femtosecond Cr:LiSAF and Cr:LiCAF lasers pumped by tapered diode lasers.
Demirbas, Umit; Schmalz, Michael; Sumpf, Bernd; Erbert, Götz; Petrich, Gale S; Kolodziejski, Leslie A; Fujimoto, James G; Kärtner, Franz X; Leitenstorfer, Alfred
2011-10-10
We report compact, low-cost and efficient Cr:Colquiriite lasers that are pumped by high brightness tapered laser diodes. The tapered laser diodes provided 1 to 1.2 W of output power around 675 nm, at an electrical-to-optical conversion efficiency of about 30%. Using a single tapered diode laser as the pump source, we have demonstrated output powers of 500 mW and 410 mW together with slope efficiencies of 47% and 41% from continuous wave (cw) Cr:LiSAF and Cr:LiCAF lasers, respectively. In cw mode-locked operation, sub-100-fs pulse trains with average power between 200 mW and 250 mW were obtained at repetition rates around 100 MHz. Upon pumping the Cr:Colquiriite lasers with two tapered laser diodes (one from each side of the crystal), we have observed scaling of cw powers to 850 mW in Cr:LiSAF and to 650 mW in Cr:LiCAF. From the double side pumped Cr:LiCAF laser, we have also obtained ~220 fs long pulses with 5.4 nJ of pulse energy at 77 MHz repetition rate. These are the highest energy levels reported from Cr:Colquiriite so far at these repetition rates. Our findings indicate that tapered diodes in the red spectral region are likely to become the standard pump source for Cr:Colquiriite lasers in the near future. Moreover, the simplified pumping scheme might facilitate efficient commercialization of Cr:Colquiriite systems, bearing the potential to significantly boost applications of cw and femtosecond lasers in this spectral region (750-1000 nm).
Numerical analysis of rotating stall instabilities of a pump- turbine in pump mode
NASA Astrophysics Data System (ADS)
Xia, L. S.; Cheng, Y. G.; Zhang, X. X.; Yang, J. D.
2014-03-01
Rotating stall may occur at part load flow of a pump-turbine in pump mode. Unstable flow structures developing under stall condition can lead to a sudden drop of efficiency, high dynamic load and even cavitation. CFD simulations on a pump-turbine model in pump mode were carried out to reveal the onset and developed mechanisms of these unstable flow phenomena at part load. The simulation results of energy-discharge and efficiency characteristics are in good agreement with those obtained by experiments. The more deviate from design conditions with decreasing flow rate, the more flow separations within the vanes. Under specific conditions, four stationary separation zones begin to progress on the circumference, rotating at a fraction of the impeller rotation rate. Rotating stalls lead to the flow in the vane diffuser channels alternating between outward jet flow and blockage. Strong jets impact the spiral casing wall causing high pressure pulsations. Severe separations of the stall cells disturb the flow inducing periodical large amplitude pressure fluctuations, of which the intensity at different span wise of the guide vanes is different. The enforced rotating nonuniform pressure distributions on the circumference lead to dynamic uniform forces on the impeller and guide vanes. The results show that the CFD simulations are capable to gain the complicated flow structure information for analysing the unstable characteristics of the pump mode at part load.
A low-threshold, high-efficiency microfluidic waveguide laser.
Vezenov, Dmitri V; Mayers, Brian T; Conroy, Richard S; Whitesides, George M; Snee, Preston T; Chan, Yinthai; Nocera, Daniel G; Bawendi, Moungi G
2005-06-29
This communication describes a long (1 cm), laser-pumped, liquid core-liquid cladding (L2) waveguide laser. This device provides a simple, high intensity, tunable light source for microfludic applications. Using a core solution of 2 mM rhodamine 640 perchlorate, optically pumped by a frequency-doubled Nd:YAG laser, we found that the threshold for lasing was as low as 22 muJ (16-ns pulse length) and had a slope efficiency up to 20%. The output wavelength was tunable over a 20-nm range by changing the ratio of solvent components (dimethyl sulfoxide and methanol) in the liquid core.
Highly stable, efficient Tm-doped fiber laser—a potential scalpel for low invasive surgery
NASA Astrophysics Data System (ADS)
Michalska, M.; Brojek, W.; Rybak, Z.; Sznelewski, P.; Mamajek, M.; Swiderski, J.
2016-11-01
We report an all-fiber, diode-pumped, continuous-wave Tm3+-doped fiber laser emitting 37.4 W of output power with a slope efficiency as high as 57% with respect to absorbed pump power at 790 nm. The laser operated at ~1.94 µm and the output beam quality factor M 2 was measured to be ~1.2. The output beam was very stable with power fluctuations <1% measured over 1 h. The laser system is to be implemented as a scalpel for low-invasive soft-tissue surgery.
Efficient, high power, Q-switched Nd:YLF slab laser end-pumped by diode stack
NASA Astrophysics Data System (ADS)
Zhang, Hengli; Li, Daijun; Shi, Peng; Diart, Rober; Shell, Alexander; Haas, Claus R.; Du, Keming
2005-06-01
A high power diode stack end-pumped electro-optically Q-switched Nd:YLF slab laser with a stable and off-axis negative-branch confocal unstable hybrid resonator was demonstrated. By using a cylindrical lens in the stable direction the thermal lens effect was compensated. Pulse energy of 25 mJ was obtained with a pulse width of 22.4 ns at repetition rates of 500 Hz and a conversion efficiency of 22%. The stability was better than 0.8% and the beam propagation M2 factor was about 1.2.
Development of High Efficiency Carbon Dioxide Commercial Heat Pump Water Heater
DOE Office of Scientific and Technical Information (OSTI.GOV)
Michael PETERSEN; Chad D. BOWERS; Stefan ELBEL
Although heat pump water heaters are today widely accepted in both Japan and Europe, where energy costs are high and government incentives for their use exist, acceptance of such products in the US has been limited. While this trend is slowly changing with the introduction of heat pump water heaters into the residential market, but acceptance remains low in the commercial sector. The objective of the presented work is the development of a high efficiency R744 heat pump water heater for commercial applications with effective utilization of the cooling capability for air conditioning and/or refrigeration. The ultimate goal is tomore » achieve total system COP of up to 8. This unit will be targeted at commercial use where some cooling load is typically needed year round, such as restaurants, hotels, nursing homes, and hospitals. This paper presents the performance results from the development of four R744 commercial heat pump water heater packages of approximately 35 kW and comparison to a commercially available baseline R134a unit of the same capacity and footprint. In addition, the influences of an internal heat exchanger and an enhanced evaporator on the system performance are described and recommendations are made for further improvements of the R744 system.« less
NASA Astrophysics Data System (ADS)
An, Haiyan; Jiang, Ching-Long J.; Xiong, Yihan; Zhang, Qiang; Inyang, Aloysius; Felder, Jason; Lewin, Alexander; Roff, Robert; Heinemann, Stefan; Schmidt, Berthold; Treusch, Georg
2015-03-01
We have continuously optimized high fill factor bar and packaging design to increase power and efficiency for thin disc laser system pump application. On the other hand, low fill factor bars packaged on the same direct copper bonded (DCB) cooling platform are used to build multi-kilowatt direct diode laser systems. We have also optimized the single emitter designs for fiber laser pump applications. In this paper, we will give an overview of our recent advances in high power high brightness laser bars and single emitters for pumping and direct diode application. We will present 300W bar development results for our next generation thin disk laser pump source. We will also show recent improvements on slow axis beam quality of low fill factor bar and its application on performance improvement of 4-5 kW TruDiode laser system with BPP of 30 mm*mrad from a 600 μm fiber. Performance and reliability results of single emitter for multiemitter fiber laser pump source will be presented as well.
High power tube solid-state laser with zigzag propagation of pump and laser beam
NASA Astrophysics Data System (ADS)
Savich, Michael
2015-02-01
A novel resonator and pumping design with zigzag propagation of pumping and laser beams permits to design an improved tube Solid State Laser (SSL), solving the problem of short absorption path to produce a high power laser beam (100 - 1000kW). The novel design provides an amplifier module and laser oscillator. The tube-shaped SSL includes a gain element fiber-optically coupled to a pumping source. The fiber optic coupling facilitates light entry at compound Brewster's angle of incidence into the laser gain element and uses internal reflection to follow a "zigzag" path in a generally spiral direction along the length of the tube. Optics are arranged for zigzag propagation of the laser beam, while the cryogenic cooling system is traditional. The novel method of lasing uses advantages of cylindrical geometry to reach the high volume of gain medium with compactness and structural rigidity, attain high pump density and uniformity, and reach a low threshold without excessive increase of the temperature of the crystal. The design minimizes thermal lensing and stress effects, and provides high gain amplification, high power extraction from lasing medium, high pumping and lasing efficiency and a high beam quality.
Design and physical features of inductive coaxial copper vapor lasers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Batenin, V. M.; Kazaryan, M. A.; Karpukhin, V. T.
A physical model of a copper vapor laser pumped by a pulse-periodic inductive (electrodeless) discharge is considered. The feasibility of efficient laser pumping by an inductive discharge and reaching high output parameters comparable to those of conventional copper vapor lasers pumped by a longitudinal electrode discharge is demonstrated. The design and physical features of an inductive copper vapor laser with an annular working volume are discussed.
Scalable diode array pumped Nd rod laser
NASA Technical Reports Server (NTRS)
Zenzie, H. H.; Knights, M. G.; Mosto, J. R.; Chicklis, E. P.; Perkins, P. E.
1991-01-01
Experiments were carried out on a five-array pump head which utilizes gold-coated reflective cones to couple the pump energy to Nd:YAG and Nd:YLF rod lasers, demonstrating high efficiency and uniform energy deposition. Because the cones function as optical diodes to light outside their acceptance angle (typically 10-15 deg), much of the diode energy not absorbed on the first pass can be returned to the rod.
Effect of laser speckle on light from laser diode-pumped phosphor-converted light sources.
Aquino, Felipe; Jadwisienczak, Wojciech M; Rahman, Faiz
2017-01-10
Laser diode (LD) pumped white light sources are being developed as an alternative to light-emitting diode-pumped sources for high efficiency and/or high brightness applications. While several performance metrics of laser-pumped phosphor-converted light sources have been investigated, the effect of laser speckle has not been sufficiently explored. This paper describes our experimental studies on how laser speckle affects the behavior of light from laser-excited phosphor lamps. A single LD pumping a phosphor plate was the geometry explored in this work. Overall, our findings are that the down-converted light did not exhibit any speckle, whereas speckle was present in the residual pump light but much reduced from that in direct laser light. Furthermore, a thicker coating of small-grained phosphors served to effectively reduce speckle through static pump light diffusion in the phosphor coating. Our investigations showed that speckle is not of concern in illumination from LD-pumped phosphor-converted light sources.
Single-mode, All-Solid-State Nd:YAG Laser Pumped UV Converter
NASA Technical Reports Server (NTRS)
Prasad, Narasimha S.; Armstrong, Darrell, J.; Edwards, William C.; Singh, Upendra N.
2008-01-01
In this paper, the status of a high-energy, all solid-state Nd:YAG laser pumped nonlinear optics based UV converter development is discussed. The high-energy UV transmitter technology is being developed for ozone sensing applications from space based platforms using differential lidar technique. The goal is to generate greater than 200 mJ/pulse with 10-50 Hz PRF at wavelengths of 308 nm and 320 nm. A diode-pumped, all-solid-state and single longitudinal mode Nd:YAG laser designed to provide conductively cooled operation at 1064 nm has been built and tested. Currently, this pump laser provides an output pulse energy of >1 J/pulse at 50 Hz PRF and a pulsewidth of 22 ns with an electrical-to-optical system efficiency of greater than 7% and a M(sup 2) value of <2. The single frequency UV converter arrangement basically consists of an IR Optical Parametric Oscillator (OPO) and a Sum Frequency Generator (SFG) setups that are pumped by 532 nm wavelength obtained via Second Harmonic Generation (SHG). In this paper, the operation of an inter cavity SFG with CW laser seeding scheme generating 320 nm wavelength is presented. Efforts are underway to improve conversion efficiency of this mJ class UV converter by modifying the spatial beam profile of the pump laser.
Wireless Sensor for Measuring Pump Efficiency: Small Business Voucher Project with KCF Technologies
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fugate, David L.; Liu, Xiaobing; Gehl, Anthony C.
This document is to fulfill the final report requirements for the Small Business Voucher (SBV) CRADA project with ORNL and KCF Technologies (CRADA/NFE-16-06133). Pumping systems account for nearly 20% of the world’s electrical energy demand and range from 25-50% of the energy usage in many industrial and building power plants. The energy cost is the largest element in the total cost of owning a pump (~40%). In response to a recent DOE mandate for improved pump efficiency pump manufacturers are preparing for the changes that the impending regulations will bring, including design improvements. This mandate also establishes a need formore » new low cost pump efficiency measurement systems. The standard industry definition of pump efficiency is the mechanical water horsepower delivered divided by the electrical horsepower input to the motor. KCF Technologies has developed a new sensor measurement technique to estimate fluid pump efficiency using a thermodynamic approach. KCF Technologies applied for a SBV grant with ORNL as the research partner. KCF needed a research partner with the proper facilities to demonstrate the efficacy of its wireless sensor unit for measuring pump efficiency. The ORNL Building Technologies Research and Integration Center (BTRIC) test resources were used to test and demonstrate the successful measurement of pump efficiency with the KCF sensor technology. KCF is now working on next steps to commercialize this sensing technology.« less
LOX/LH2 vane pump for auxiliary propulsion systems
NASA Technical Reports Server (NTRS)
Hemminger, J. A.; Ulbricht, T. E.
1985-01-01
Positive displacement pumps offer potential efficiency advantages over centrifugal pumps for future low thrust space missions. Low flow rate applications, such as space station auxiliary propulsion or dedicated low thrust orbiter transfer vehicles, are typical of missions where low flow and high head rise challenge centrifugal pumps. The positive displacement vane pump for pumping of LOX and LH2 is investigated. This effort has included: (1) a testing program in which pump performance was investigated for differing pump clearances and for differing pump materials while pumping LN2, LOX, and LH2; and (2) an analysis effort, in which a comprehensive pump performance analysis computer code was developed and exercised. An overview of the theoretical framework of the performance analysis computer code is presented, along with a summary of analysis results. Experimental results are presented for pump operating in liquid nitrogen. Included are data on the effects on pump performance of pump clearance, speed, and pressure rise. Pump suction performance is also presented.
All-fiber broadband supercontinuum generation in a single-mode high nonlinear silica fiber
NASA Astrophysics Data System (ADS)
Gao, Weiqing; Liao, Meisong; Yang, Lingzhen; Yan, Xin; Suzuki, Takenobu; Ohishi, Yasutake
2012-06-01
We demonstrate an all-fiber broadband supercontinuum (SC) source with high efficiency in a single-mode high nonlinear silica fiber. The SC is pumped by the 1557 nm sub-picosecond pulse, which is generated by a homemade passively mode-locked fiber laser, amplified by an EDFA and compressed to 600 fs. The high nonlinear fiber used in experiments has the zero-dispersion wavelength of 1584 nm with low dispersion slope. The pump pulse is in the normal dispersion region and the SC generation is initiated by the SPM effect. When the long-wave band of the spectrum is extended to the anomalous dispersion region, the soliton effects and intra-pulse Raman effects extend the spectrum further. Meanwhile, the dispersive waves shorter than 1100 nm begin to emerge because the phase matching condition is satisfied and the intensity increases with increasing the pump intensity. The broad SC spectrum with the spectral range from 840 to 2390 nm is obtained at the pump peak power of 46.71 kW, and the 10 dB bandwidth from 1120 nm to 2245 nm of the SC covers one octave assuming the peak near 1550 nm is filtered. The temporal trace of the SC has the repetition rate of 16.7 MHz, and some satellite pulses are generated during the nonlinear process. The SC source system is constructed by all-fiber components, which can be fusion spliced together directly with low loss less than 0.1 dB and improves the energy transfer efficiency from the pump source to the SC greatly. The maximum SC average power of 332 mW is obtained for the total spectral range, and the slop efficiency to the pump source is about 70.3%, which will be lower when the peaks near 1550 nm are filtered, but is higher than those in PCFs. The spectral density for the 10 dB bandwidth is in the range from -17.3 to -7.3 dBm/nm.
Cladding pumped Yb-doped HOM power amplifier with high gain
NASA Astrophysics Data System (ADS)
Abedin, Kazi S.; Ahmad, Raja; DeSantolo, Anthony M.; Nicholson, Jeffrey W.; Westbrook, Paul S.; Headley, Clifford; DiGiovanni, David J.
2018-02-01
Higher-order mode (HOM) fibers have been engineered to allow propagation of linearly polarized symmetric modes LP0,N in a robust way. Compared with the fundamental mode LP(0,1), HOMs exhibits an effective area that can be larger by over two order magnitude, and thus propagating light in these modes could greatly suppress the effect of nonlinear effects. HOM fibers could also be doped with rare earth ions in order to amplify light propagating in these modes, which offers the enormous potential for generating high-intensity pulses. Excitation of HOM gain fiber using cladding pumping with multimode pump source is attractive for ytterbium based amplifiers, because of the availability of low-cost multimode pump diodes in the 975nm wavelength range. One problem associated with cladding pumping which leads to excitation of the large doped core (over 100 μm diameter) is that it could result in a large amount of amplifiedspontaneous- emission (ASE) noise, particularly when the input signal is weak. Optimization of amplifier design is critical in order to suppress ASE and achieve high gain and pump-to-signal conversion efficiency. We conducted numerical modeling of a cladding pumped HOM-amplifier, which revealed that this problem could be mitigated by using a relatively long gain-fiber that allowed reabsorption of the forward propagating ASE resulting in a further amplification of the signal. We demonstrate efficient amplification of a LP0,10 mode with an effective area 3140μm2 in an Yb-doped HOM amplifier cladding pumped at 975nm. We have successfully obtained a 20.2dB gain for 0.95 W 1064 nm input seed signal to more than 105W.
Pump RIN-induced impairments in unrepeatered transmission systems using distributed Raman amplifier.
Cheng, Jingchi; Tang, Ming; Lau, Alan Pak Tao; Lu, Chao; Wang, Liang; Dong, Zhenhua; Bilal, Syed Muhammad; Fu, Songnian; Shum, Perry Ping; Liu, Deming
2015-05-04
High spectral efficiency modulation format based unrepeatered transmission systems using distributed Raman amplifier (DRA) have attracted much attention recently. To enhance the reach and optimize system performance, careful design of DRA is required based on the analysis of various types of impairments and their balance. In this paper, we study various pump RIN induced distortions on high spectral efficiency modulation formats. The vector theory of both 1st and higher-order stimulated Raman scattering (SRS) effect using Jones-matrix formalism is presented. The pump RIN will induce three types of distortion on high spectral efficiency signals: intensity noise stemming from SRS, phase noise stemming from cross phase modulation (XPM), and polarization crosstalk stemming from cross polarization modulation (XPolM). An analytical model for the statistical property of relative phase noise (RPN) in higher order DRA without dealing with complex vector theory is derived. The impact of pump RIN induced impairments are analyzed in polarization-multiplexed (PM)-QPSK and PM-16QAM-based unrepeatered systems simulations using 1st, 2nd and 3rd-order forward pumped Raman amplifier. It is shown that at realistic RIN levels, negligible impairments will be induced to PM-QPSK signals in 1st and 2nd order DRA, while non-negligible impairments will occur in 3rd order case. PM-16QAM signals suffer more penalties compared to PM-QPSK with the same on-off gain where both 2nd and 3rd order DRA will cause non-negligible performance degradations. We also investigate the performance of digital signal processing (DSP) algorithms to mitigate such impairments.
Pump efficiency in solar-energy systems
NASA Technical Reports Server (NTRS)
1978-01-01
Study investigates characteristics of typical off-the-shelf pumping systems that might be used in solar systems. Report includes discussion of difficulties in predicting pump efficiency from manufacturers' data. Sample calculations are given. Peak efficiencies, flow-rate control, and noise levels are investigated. Review or theory of pumps types and operating characteristics is presented.
Efficient diode-pumped Tm:KYW 1.9-μm microchip laser with 1 W cw output power.
Gaponenko, Maxim; Kuleshov, Nikolay; Südmeyer, Thomas
2014-05-19
We report on a diode-pumped Tm:KYW microchip laser generating 1 W continuous-wave output power. The laser operates at a wavelength of 1.94 μm in the fundamental TEM(00) mode with 71% slope efficiency relative to the absorbed pump radiation and 59% slope efficiency relative to the incident pump radiation. The optical-to-optical laser efficiency is 43%.
INTEGRATION OF HEAT PUMPS IN PERVAPORATION SYSTEMS FOR IMPROVED ENERGY EFFICIENCY
The removal of organic compounds from water by pervaporation is highly energy efficient when the separation factor offered by the pervaporation process is high. In cases where the separation factor is relatively small, consequential amounts of water permeate the membrane per uni...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Jiang; Shi, Junkai; Xu, Baozhong
2014-01-20
A chirp-tunable femtosecond 10 W, 42 MHz photonic-crystal-fiber oscillator-amplifier system that is capable of delivering sub-60 fs light pulses at 1040 nm is used to demonstrate high-efficiency terahertz radiation generation via optical rectification in GaP crystals only a few millimeters in length. The optimization of the chirp of the fiber-laser pulses is shown to radically enhance the terahertz output, indicating one possible way to more efficiently use these extended nonlinear crystals in compact fiber-pumped terahertz radiation sources.
High power pumped MID-IR wavelength devices using nonlinear frequency mixing (NFM)
NASA Technical Reports Server (NTRS)
Sanders, Steven (Inventor); Lang, Robert J. (Inventor); Waarts, Robert G. (Inventor)
2001-01-01
Laser diode pumped mid-IR wavelength sources include at least one high power, near-IR wavelength, injection and/or sources wherein one or both of such sources may be tunable providing a pump wave output beam to a quasi-phase matched (QPM) nonlinear frequency mixing (NFM) device. The NFM device may be a difference frequency mixing (DFM) device or an optical parametric oscillation (OPO) device. Wavelength tuning of at least one of the sources advantageously provides the ability for optimizing pump or injection wavelengths to match the QPM properties of the NFM device enabling a broad range of mid-IR wavelength selectivity. Also, pump powers are gain enhanced by the addition of a rare earth amplifier or oscillator, or a Raman/Brillouin amplifier or oscillator between the high power source and the NFM device. Further, polarization conversion using Raman or Brillouin wavelength shifting is provided to optimize frequency conversion efficiency in the NFM device.
High power pumped mid-IR wavelength systems using nonlinear frequency mixing (NFM) devices
NASA Technical Reports Server (NTRS)
Sanders, Steven (Inventor); Lang, Robert J. (Inventor); Waarts, Robert G. (Inventor)
1999-01-01
Laser diode pumped mid-IR wavelength systems include at least one high power, near-IR wavelength, injection and/or sources wherein one or both of such sources may be tunable providing a pump wave output beam to a quasi-phase matched (QPM) nonlinear frequency mixing (NFM) device. The NFM device may be a difference frequency mixing (DFM) device or an optical parametric oscillation (OPO) device. Wavelength tuning of at least one of the sources advantageously provides the ability for optimizing pump or injection wavelengths to match the QPM properties of the NFM device enabling a broad range of mid-IR wavelength selectivity. Also, pump powers are gain enhanced by the addition of a rare earth amplifier or oscillator, or a Raman/Brillouin amplifier or oscillator between the high power source and the NFM device. Further, polarization conversion using Raman or Brillouin wavelength shifting is provided to optimize frequency conversion efficiency in the NFM device.
Geothermal Heat Pumps Score High Marks in Schools.
ERIC Educational Resources Information Center
National Renewable Energy Lab (DOE).
Geothermal heat pumps (GHPs) are showing their value in providing lower operating and maintenance costs, energy efficiency, and superior classroom comfort. This document describes what GHPs are and the benefits a school can garner after installing a GHP system. Three case studies are provided that illustrate these benefits. Finally, the Department…
Fluoride-fiber-based side-pump coupler for high-power fiber lasers at 2.8 μm.
Schäfer, C A; Uehara, H; Konishi, D; Hattori, S; Matsukuma, H; Murakami, M; Shimizu, S; Tokita, S
2018-05-15
A side-pump coupler made of fluoride fibers was fabricated and tested. The tested device had a coupling efficiency of 83% and was driven with an incident pump power of up to 83.5 W, demonstrating high-power operation. Stable laser output of 15 W at a wavelength of around 2.8 μm was achieved over 1 h when using an erbium-doped double-clad fiber as the active medium. To the best of our knowledge, this is the first time a fluoride-glass-fiber-based side-pump coupler has been developed. A test with two devices demonstrated further power scalability.
High-energy, high-average-power laser with Nd:YLF rods corrected by magnetorheological finishing.
Bagnoud, Vincent; Guardalben, Mark J; Puth, Jason; Zuegel, Jonathan D; Mooney, Ted; Dumas, Paul
2005-01-10
A high-energy, high-average-power laser system, optimized to efficiently pump a high-performance optical parametric chirped-pulse amplifier at 527 nm, has been demonstrated. The crystal large-aperture ring amplifier employs two flash-lamp-pumped, 25.4-mm-diameter Nd:YLF rods. The transmitted wave front of these rods is corrected by magnetorheological finishing to achieve nearly diffraction-limited output performance with frequency-doubled pulse energies up to 1.8 J at 5 Hz.
Insulated Concrete Homes Increase Durability and Energy Efficiency
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
2001-05-01
New houses designed by Mercedes Homes in Melbourne, Florida, save their homeowners money by using energy efficient features such as a high performance heat pump and solar control glazing to reduce cooling costs.
Designing a Broadband Pump for High-Quality Micro-Lasers via Modified Net Radiation Method.
Nechayev, Sergey; Reusswig, Philip D; Baldo, Marc A; Rotschild, Carmel
2016-12-07
High-quality micro-lasers are key ingredients in non-linear optics, communication, sensing and low-threshold solar-pumped lasers. However, such micro-lasers exhibit negligible absorption of free-space broadband pump light. Recently, this limitation was lifted by cascade energy transfer, in which the absorption and quality factor are modulated with wavelength, enabling non-resonant pumping of high-quality micro-lasers and solar-pumped laser to operate at record low solar concentration. Here, we present a generic theoretical framework for modeling the absorption, emission and energy transfer of incoherent radiation between cascade sensitizer and laser gain media. Our model is based on linear equations of the modified net radiation method and is therefore robust, fast converging and has low complexity. We apply this formalism to compute the optimal parameters of low-threshold solar-pumped lasers. It is revealed that the interplay between the absorption and self-absorption of such lasers defines the optimal pump absorption below the maximal value, which is in contrast to conventional lasers for which full pump absorption is desired. Numerical results are compared to experimental data on a sensitized Nd 3+ :YAG cavity, and quantitative agreement with theoretical models is found. Our work modularizes the gain and sensitizing components and paves the way for the optimal design of broadband-pumped high-quality micro-lasers and efficient solar-pumped lasers.
Designing a Broadband Pump for High-Quality Micro-Lasers via Modified Net Radiation Method
Nechayev, Sergey; Reusswig, Philip D.; Baldo, Marc A.; Rotschild, Carmel
2016-01-01
High-quality micro-lasers are key ingredients in non-linear optics, communication, sensing and low-threshold solar-pumped lasers. However, such micro-lasers exhibit negligible absorption of free-space broadband pump light. Recently, this limitation was lifted by cascade energy transfer, in which the absorption and quality factor are modulated with wavelength, enabling non-resonant pumping of high-quality micro-lasers and solar-pumped laser to operate at record low solar concentration. Here, we present a generic theoretical framework for modeling the absorption, emission and energy transfer of incoherent radiation between cascade sensitizer and laser gain media. Our model is based on linear equations of the modified net radiation method and is therefore robust, fast converging and has low complexity. We apply this formalism to compute the optimal parameters of low-threshold solar-pumped lasers. It is revealed that the interplay between the absorption and self-absorption of such lasers defines the optimal pump absorption below the maximal value, which is in contrast to conventional lasers for which full pump absorption is desired. Numerical results are compared to experimental data on a sensitized Nd3+:YAG cavity, and quantitative agreement with theoretical models is found. Our work modularizes the gain and sensitizing components and paves the way for the optimal design of broadband-pumped high-quality micro-lasers and efficient solar-pumped lasers. PMID:27924844
The impact on atmospheric CO2 of iron fertilization induced changes in the ocean's biological pump
NASA Astrophysics Data System (ADS)
Jin, X.; Gruber, N.; Frenzel, H.; Doney, S. C.; McWilliams, J. C.
2007-10-01
Using numerical simulations, we quantify the impact of changes in the ocean's biological pump on the air-sea balance of CO2 by fertilizing a small surface patch in the high-nutrient, low-chlorophyll region of the eastern tropical Pacific with iron. Decade-long fertilization experiments are conducted in a basin-scale, eddy-permitting coupled physical biogeochemical ecological model. In contrast to previous studies, we find that most of the dissolved inorganic carbon (DIC) removed from the euphotic zone by the enhanced biological export is replaced by uptake of CO2 from the atmosphere. Atmospheric uptake efficiencies, the ratio of the perturbation in air-sea CO2 flux to the perturbation in export flux across 100 m, are 0.75 to 0.93 in our patch size-scale experiments. The atmospheric uptake efficiency is insensitive to the duration of the experiment. The primary factor controlling the atmospheric uptake efficiency is the vertical distribution of the enhanced biological production. Iron fertilization at the surface tends to induce production anomalies primarily near the surface, leading to high efficiencies. In contrast, mechanisms that induce deep production anomalies (e.g. altered light availability) tend to have a low uptake efficiency, since most of the removed DIC is replaced by lateral and vertical transport and mixing. Despite high atmospheric uptake efficiencies, patch-scale iron fertilization of the ocean's biological pump tends to remove little CO2 from the atmosphere over the decadal timescale considered here.
The impact on atmospheric CO2 of iron fertilization induced changes in the ocean's biological pump
NASA Astrophysics Data System (ADS)
Jin, X.; Gruber, N.; Frenzel, H.; Doney, S. C.; McWilliams, J. C.
2008-03-01
Using numerical simulations, we quantify the impact of changes in the ocean's biological pump on the air-sea balance of CO2 by fertilizing a small surface patch in the high-nutrient, low-chlorophyll region of the eastern tropical Pacific with iron. Decade-long fertilization experiments are conducted in a basin-scale, eddy-permitting coupled physical/biogeochemical/ecological model. In contrast to previous studies, we find that most of the dissolved inorganic carbon (DIC) removed from the euphotic zone by the enhanced biological export is replaced by uptake of CO2 from the atmosphere. Atmospheric uptake efficiencies, the ratio of the perturbation in air-sea CO2 flux to the perturbation in export flux across 100 m, integrated over 10 years, are 0.75 to 0.93 in our patch size-scale experiments. The atmospheric uptake efficiency is insensitive to the duration of the experiment. The primary factor controlling the atmospheric uptake efficiency is the vertical distribution of the enhanced biological production and export. Iron fertilization at the surface tends to induce production anomalies primarily near the surface, leading to high efficiencies. In contrast, mechanisms that induce deep production anomalies (e.g. altered light availability) tend to have a low uptake efficiency, since most of the removed DIC is replaced by lateral and vertical transport and mixing. Despite high atmospheric uptake efficiencies, patch-scale iron fertilization of the ocean's biological pump tends to remove little CO2 from the atmosphere over the decadal timescale considered here.
A high power diode-side-pumped Nd:YAG/BaWO4 Raman laser at 1103 nm
NASA Astrophysics Data System (ADS)
Li, Lei; Zhang, Xingyu; Liu, Zhaojun; Wang, Qingpu; Cong, Zhenhua; Zhang, Yuangeng; Wang, Weitao; Wu, Zhenguo; Zhang, Huaijin
2013-04-01
Pulsed operation at 1103 nm of a diode-side-pumped Nd:YAG laser with intracavity Raman shifting in BaWO4 is reported. The first Stokes wavelength at 1103 nm was generated by a Raman shift of 332 cm-1 from the fundamental wave (1064 nm). A maximum power at 1103 nm of 9.4 W was obtained for a diode pump power of 115 W at a pulse repetition rate of 15 kHz. The pump-to-Stokes conversion efficiency was up to 8.2%. When the output power at 1103 nm was over 7 W, a second Stokes line at 1145 nm was also observed in the experiment. Our research indicates that efficient Raman conversion can be realized by a Raman frequency shift at 332 cm-1 in BaWO4 Raman lasers.
2 kW pump-light-stripper-free distributed side-coupled cladding-pumped fiber oscillator
NASA Astrophysics Data System (ADS)
Ying, Hanyuan; Yu, Yu; Cao, Jianqiu; Huang, Zhihe; Pan, Zhiyong; Wang, Zefeng; Chen, Jinbao
2017-06-01
A 2 kW pump-light-stripper-free all-fiber distributed-pumping oscillator fabricated with the distributed side-coupled cladding-pumped Yb-doped fiber is demonstrated for the first time, to the best of our knowledge. An output power of 1969 W with a slope efficiency of 72.2% is obtained. By utilizing the final-section counter-pumping scheme, pure output spectra free from residual pump light are obtained without using any pump light stripper, which demonstrates that the pump light stripper is not indispensable for this configuration. Besides, no stimulated Raman scattering component is observed in the output spectra. The laser has the M 2 factor ranging from 2.0 to 2.6. We believe that the pertinent results are helpful and valuable for designing high-power fiber laser systems.
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
2016-02-24
The Woods is a sustainable community built by Habitat for Humanity in 2013. This community comprises 30 homes that are high-performance and energy-efficient. With support from Tacoma Public Utilities and the Bonneville Power Administration, the BA-PIRC team is researching the energy performance of these homes and the ductless heat pumps they employ.
Development and application of soil coupled heat pump
NASA Astrophysics Data System (ADS)
Liu, Lu
2017-05-01
Soil coupled heat pump technology is a new clean heating mode, is the world's most energy efficient heating one of the ways. And because of the use of renewable geothermal resources with high heating performance so more and more people's attention. Although the use of soil-coupled heat pumps has been in use for more than 50 years (the first application in the United States), the market penetration of this technology is still in its infancy. This paper will focus on the development, characteristics and application of the coupled heat pump.
NASA Astrophysics Data System (ADS)
Arun, S.; Choudhury, Vishal; Balaswamy, V.; Supradeepa, V. R.
2018-02-01
We have demonstrated a 34 W continuous wave supercontinuum using the standard telecom fiber (SMF 28e). The supercontinuum spans over a bandwidth of 1000 nm (>1 octave) from 880nm to 1900 nm with a substantial power spectral density of >1mW/nm from 880-1350 nm and 50-100mW/nm in 1350-1900 nm. The distributed feedback Raman laser architecture was used for pumping the supercontinuum which ensured high efficiency Raman conversions and helped in achieving a very high efficiency of 44% for supercontinuum generation. Using this architecture, Yb laser operating at any wavelength can be used for generating the supercontinuum and this was demonstrated by using two different Yb lasers operating at 1117nm and 1085 nm to pump the supercontinuum.
Efficient, diode-laser-pumped, diode-laser-seeded, high-peak-power Nd:YLF regenerative amplifier.
Selker, M D; Afzal, R S; Dallas, J L; Yu, A W
1994-04-15
Optical amplification of 11 orders of magnitude in a microlens-collimated, diode-laser-pumped regenerative amplifier has been demonstrated. The amplifier was seeded with 20-ps pulses from an FM mode-locked oscillator and with 0.9-ns pulses from a modulated diode laser. Seed pulses from both sources were amplified to energies exceeding 2.5 mJ. With the thermoelectric coolers and the Pockels cell electronics neglected, the diode-seeded system exhibited an electrical-to-optical efficiency of 2.2%.
High-power single-pass pumped diamond Raman oscillator
NASA Astrophysics Data System (ADS)
Heinzig, Matthias; Walbaum, Till; Williams, Robert J.; Kitzler, Ondrej; Mildren, Richard P.; Schreiber, Thomas; Eberhardt, Ramona; Tünnermann, Andreas
2018-02-01
We present our recent advances on power scaling of a high-power single-pass pumped CVD-diamond Raman oscillator at 1.2 μm. The single pass scheme reduced feedback to the high gain fiber amplifier, which pumps the oscillator. The Yb-doped multi-stage fiber amplifier itself enables up to 1 kW output power at a narrow linewidth of 0.16 nm. We operate this laser in quasi-cw mode at 10% duty cycle and on-time (pulse) duration of 10 ms. With a maximum conversion efficiency of 39%, a maximum steady-state output power of 380 W and diffraction limited beam quality was achieved.
Research on solar pumped liquid lasers
NASA Technical Reports Server (NTRS)
Cox, J. D.; Kurzweg, U. H.; Weinstein, N. H.; Schneider, R. T.
1985-01-01
A solar pumped liquid laser that can be scaled up to high power (10 mW CW) for space applications was developed. Liquid lasers have the advantage over gases in that they provide much higher lasant densities and thus high-power densities. Liquids also have advantages over solids in that they have much higher damage thresholds and are much cheaper to produce for large scale applications. Among the liquid laser media that are potential candidates for solar pumping, the POC13: Nd sup 3+:ZrC14 liquid was chosen for its high intrinsic efficiency and its relatively good stability against decomposition due to protic contamination. The development of a manufacturing procedure and performance testing of the laser, liquid and the development of an inexpensive large solar concentrator to pump the laser are examined.
Vapor compression heat pump system field tests at the TECH complex
NASA Astrophysics Data System (ADS)
Baxter, V. D.
1985-07-01
The Tennessee Energy Conservation In Housing (TECH) complex has been utilized since 1977 as a field test site for several novel and conventional heat pump systems for space conditioning and water heating. Systems tested include the Annual Cycle Energy System (ACES), solar assisted heat pumps (SAHP) both parallel and series, two conventional air-to-air heat pumps, an air-to-air heat pump with desuperheater water heater, and horizontal coil and multiple shallow vertical coil ground-coupled heat pumps (GCHP). A direct comparison of the measured annual performance of the test systems was not possible. However, a cursory examination revealed that the ACES had the best performance. However, its high cost makes it unlikely that it will achieve widespread use. Costs for the SAHP systems are similar to those of the ACES but their performance is not as good. Integration of water heating and space conditioning functions with a desuperheater yielded significant efficiency improvement at modest cost. The GCHP systems performed much better for heating than for cooling and may well be the most efficient alternative for residences in cold climates.
Vapor compression heat pump system field tests at the tech complex
NASA Astrophysics Data System (ADS)
Baxter, Van D.
1985-11-01
The Tennessee Energy Conservation In Housing (TECH) complex has been utilized since 1977 as a field test site for several novel and conventional heat pump systems for space conditioning and water heating. Systems tested include the Annual Cycle Energy System (ACES), solar assisted heat pumps (SAHP) both parallel and series, two conventional air-to-air heat pumps, an air-to-air heat pump with desuperheater water heater, and horizontal coil and multiple shallow vertical coil ground-coupled heat pumps (GCHP). A direct comparison of the measured annual performance of the test systems was not possible. However, a cursory examination revealed that the ACES had the best performance, however, its high cost makes it unlikely that it will achieve wide-spread use. Costs for the SAHP systems are similar to those of the ACES but their performance is not as good. Integration of water heating and space conditioning functions with a desuperheater yielded significant efficiency improvement at modest cost. The GCHP systems performed much better for heating than for cooling and may well be the most efficient alternative for residences in cold climates.
NASA Astrophysics Data System (ADS)
Scholle, K.; Schäfer, M.; Lamrini, S.; Wysmolek, M.; Steinke, M.; Neumann, J.; Fuhrberg, P.
2018-02-01
In this paper we present a high power, polarized 2 μm Thulium-doped fiber laser with high beam quality. Such laser systems are ideally suited for the processing of plastic materials which are highly transparent in the visible and 1 μm wavelength range and for the pumping of laser sources for the mid-IR wavelength region. For most applications polarized lasers are beneficial, as they can be easily protected from back reflections and combined with other laser sources or power scaled by polarization combining. The Tm-doped fiber laser is pumped in an all-fiber configuration by using a fiber coupled pump diode emitting around 790 nm. This pumping scheme allows the exploitation of the crossrelaxation process to populate the upper laser level. A compact and robust laser configuration was achieved by using an all-fiber configuration with single mode fibers and fiber Bragg gratings (FBG). Different FBG pairs with wavelength around 2 μm were tested. To achieve stable polarized output power the fibers with the FBG were 90° twisted at the splices. Stable linearly polarized output power up to 38 W with an extinction ratio of up to 50:1 was observed. With respect to the diode output power an optical-to-optical efficiency of 51 % was reached with a correspondent slope efficiency of 52 %. The emission linewidth at maximum power was measured to be < 0.3 nm which is well suitable for Ho-laser pumping. First tests of the precise processing of highly transparent plastic materials demonstrate the potentials of these laser systems.
Comfortable, high-efficiency heat pump with desiccant-coated, water-sorbing heat exchangers
Tu, Y. D.; Wang, R. Z.; Ge, T. S.; Zheng, X.
2017-01-01
Comfortable, efficient, and affordable heating, ventilation, and air conditioning systems in buildings are highly desirable due to the demands of energy efficiency and environmental friendliness. Traditional vapor-compression air conditioners exhibit a lower coefficient of performance (COP) (typically 2.8–3.8) owing to the cooling-based dehumidification methods that handle both sensible and latent loads together. Temperature- and humidity-independent control or desiccant systems have been proposed to overcome these challenges; however, the COP of current desiccant systems is quite small and additional heat sources are usually needed. Here, we report on a desiccant-enhanced, direct expansion heat pump based on a water-sorbing heat exchanger with a desiccant coating that exhibits an ultrahigh COP value of more than 7 without sacrificing any comfort or compactness. The pump’s efficiency is doubled compared to that of pumps currently used in conventional room air conditioners, which is a revolutionary HVAC breakthrough. Our proposed water-sorbing heat exchanger can independently handle sensible and latent loads at the same time. The desiccants adsorb moisture almost isothermally and can be regenerated by condensation heat. This new approach opens up the possibility of achieving ultrahigh efficiency for a broad range of temperature- and humidity-control applications. PMID:28079171
NASA Astrophysics Data System (ADS)
Vengelis, Julius; Tumas, Adomas; Pipinytė, Ieva; Kuliešaitė, Miglė; Tamulienė, Viktorija; Jarutis, Vygandas; Grigonis, Rimantas; Sirutkaitis, Valdas
2018-03-01
We present experimental data and numerical simulation results obtained during investigation of synchronously pumped optical parametric oscillator (SPOPO) pumped by femtosecond Yb:KGW laser (central wavelength at 1033 nm). The nonlinear medium for parametric generation was periodically poled potassium titanyl phosphate crystal (PPKTP). Maximum parametric light conversion efficiency from pump power to signal power was more than 37.5% at λs=1530 nm wavelength, whereas the achieved signal wave continuous tuning range was from 1470 nm to 1970 nm with signal pulse durations ranging from 91 fs to roughly 280 fs. We demonstrated wavelength tuning by changing cavity length and PPKTP crystal grating period and also discussed net cavity group delay dispersion (GDD) influence on SPOPO output radiation characteristics. The achieved high pump to signal conversion efficiency and easy wavelength tuning make this device a very promising alternative to Ti:sapphire based SPOPOs as a source of continuously tunable femtosecond laser radiation in the near and mid-IR range.
Field trial of rural solar photovoltaic system
NASA Astrophysics Data System (ADS)
Basu, P.; Mukhopadhyay, K.; Banerjee, T.; Das, S.; Saha, H.
Experience, costs, and performance of photovoltaic (PV) systems set up in a remote Indian village to power an adult literacy center and an irrigation pump are described. The center was furnished with a 14-module, 200 W array to power a television and three fluorescent lamps. The pumping installation has 20 modules for a 300 W output directly coupled to a 300-W dc pump motor. Data were gathered on the open circuit voltage, short circuit current, specific gravity of the battery fluid, degradation of the cells, nominal operating temperature of the cells, load currents, Amp-hours, water flow rate (pump), and the static head and draw down rate (pump). Monitoring of the array performances in the dusty environment showed that once/week cleaning is necessary. Al-substrates cracked at the center installation and sealant evaporation caused condensation which degraded the light transmissivity and thereby the short-circuit current of the modules. The combination of low-efficiency (5 pct) cells and cheap labor demonstrated economic operation without high-efficiency cells.
NASA Astrophysics Data System (ADS)
Zhang, Li; Zhang, Yu; Zhou, Liansheng; E, Zhijun; Wang, Kun; Wang, Ziyue; Li, Guohao; Qu, Bin
2018-02-01
The waste heat energy efficiency for absorption heat pump recycling thermal power plant circulating water has been analyzed. After the operation of heat pump, the influences on power generation and heat generation of unit were taken into account. In the light of the characteristics of heat pump in different operation stages, the energy efficiency of heat pump was evaluated comprehensively on both sides of benefits belonging to electricity and benefits belonging to heat, which adopted the method of contrast test. Thus, the reference of energy efficiency for same type projects was provided.
RF rectifiers for EM power harvesting in a Deep Brain Stimulating device.
Hosain, Md Kamal; Kouzani, Abbas Z; Tye, Susannah; Kaynak, Akif; Berk, Michael
2015-03-01
A passive deep brain stimulation (DBS) device can be equipped with a rectenna, consisting of an antenna and a rectifier, to harvest energy from electromagnetic fields for its operation. This paper presents optimization of radio frequency rectifier circuits for wireless energy harvesting in a passive head-mountable DBS device. The aim is to achieve a compact size, high conversion efficiency, and high output voltage rectifier. Four different rectifiers based on the Delon doubler, Greinacher voltage tripler, Delon voltage quadrupler, and 2-stage charge pumped architectures are designed, simulated, fabricated, and evaluated. The design and simulation are conducted using Agilent Genesys at operating frequency of 915 MHz. A dielectric substrate of FR-4 with thickness of 1.6 mm, and surface mount devices (SMD) components are used to fabricate the designed rectifiers. The performance of the fabricated rectifiers is evaluated using a 915 MHz radio frequency (RF) energy source. The maximum measured conversion efficiency of the Delon doubler, Greinacher tripler, Delon quadrupler, and 2-stage charge pumped rectifiers are 78, 75, 73, and 76 % at -5 dBm input power and for load resistances of 5-15 kΩ. The conversion efficiency of the rectifiers decreases significantly with the increase in the input power level. The Delon doubler rectifier provides the highest efficiency at both -5 and 5 dBm input power levels, whereas the Delon quadrupler rectifier gives the lowest efficiency for the same inputs. By considering both efficiency and DC output voltage, the charge pump rectifier outperforms the other three rectifiers. Accordingly, the optimised 2-stage charge pumped rectifier is used together with an antenna to harvest energy in our DBS device.
NASA Astrophysics Data System (ADS)
Stock, Karl; Diebolder, Rolf; Hausladen, Florian; Hibst, Raimund
2014-03-01
It is well known that flashlamp pumped Er:YAG lasers allow efficient bone ablation due to strong absorption at 3μm by water. Preliminary experiments revealed also a newly developed diode pumped Er:YAG laser system (Pantec Engineering AG) to be an efficient tool for use for bone surgery. The aim of the present in vitro study is the investigation of a new power increased version of the laser system with higher pulse energy and optimization of the treatment set-up to get high cutting quality, efficiency, and ablation depth. Optical simulations were performed to achieve various focus diameters and homogeneous beam profile. An appropriate experimental set-up with two different focusing units, a computer controlled linear stage with sample holder, and a shutter unit was realized. By this we are able to move the sample (slices of pig bone) with a defined velocity during the irradiation. Cutting was performed under appropriate water spray by moving the sample back and forth. After each path the ablation depth was measured and the focal plane was tracked to the actual bottom of the groove. Finally, the cuts were analyzed by light microcopy regarding the ablation quality and geometry, and thermal effects. In summary, the results show that with carefully adapted irradiation parameters narrow and deep cuts (ablation depth > 6mm, aspect ratio approx. 20) are possible without carbonization. In conclusion, these in vitro investigations demonstrate that high efficient bone cutting is possible with the diode pumped Er:YAG laser system using appropriate treatment set-up and parameters.
Numerical Simulation of Tubular Pumping Systems with Different Regulation Methods
NASA Astrophysics Data System (ADS)
Zhu, Honggeng; Zhang, Rentian; Deng, Dongsheng; Feng, Xusong; Yao, Linbi
2010-06-01
Since the flow in tubular pumping systems is basically along axial direction and passes symmetrically through the impeller, most satisfying the basic hypotheses in the design of impeller and having higher pumping system efficiency in comparison with vertical pumping system, they are being widely applied to low-head pumping engineering. In a pumping station, the fluctuation of water levels in the sump and discharge pool is most common and at most time the pumping system runs under off-design conditions. Hence, the operation of pump has to be flexibly regulated to meet the needs of flow rates, and the selection of regulation method is as important as that of pump to reduce operation cost and achieve economic operation. In this paper, the three dimensional time-averaged Navier-Stokes equations are closed by RNG κ-ɛ turbulent model, and two tubular pumping systems with different regulation methods, equipped with the same pump model but with different designed system structures, are numerically simulated respectively to predict the pumping system performances and analyze the influence of regulation device and help designers make final decision in the selection of design schemes. The computed results indicate that the pumping system with blade-adjusting device needs longer suction box, and the increased hydraulic loss will lower the pumping system efficiency in the order of 1.5%. The pumping system with permanent magnet motor, by means of variable speed regulation, obtains higher system efficiency partly for shorter suction box and partly for different structure design. Nowadays, the varied speed regulation is realized by varied frequency device, the energy consumption of which is about 3˜4% of output power of the motor. Hence, when the efficiency of variable frequency device is considered, the total pumping system efficiency will probably be lower.
Precise control of molecular dynamics with a femtosecond frequency comb.
Pe'er, Avi; Shapiro, Evgeny A; Stowe, Matthew C; Shapiro, Moshe; Ye, Jun
2007-03-16
We present a general and highly efficient scheme for performing narrow-band Raman transitions between molecular vibrational levels using a coherent train of weak pump-dump pairs of shaped ultrashort pulses. The use of weak pulses permits an analytic description within the framework of coherent control in the perturbative regime, while coherent accumulation of many pulse pairs enables near unity transfer efficiency with a high spectral selectivity, thus forming a powerful combination of pump-dump control schemes and the precision of the frequency comb. Simulations verify the feasibility and robustness of this concept, with the aim to form deeply bound, ultracold molecules.
Heat-pump cool storage in a clathrate of freon
NASA Astrophysics Data System (ADS)
Tomlinson, J. J.
Presented are the analytical description and assessment of a unique heat pump/storage system in which the conventional evaporator of the vapor compression cycle is replaced by a highly efficient direct contract crystallizer. The thermal storage technique requires the formation of a refrigerant gas hydrate (a clathrate) and exploits an enthalpy of reaction comparable to the heat of fusion of ice. Additional system operational benefits include cool storage at the favorable temperatures of 4 to 7 C (40 to 45 F), and highly efficient heat transfer ates afforded by he direct contact mechanism. In addition, the experimental approach underway at ORNL to study such a system is discussed.
High-order Stokes generation in a KTP Raman laser pumped by a passively Q-switched ND:YLF laser
NASA Astrophysics Data System (ADS)
Wang, Maorong; Zhong, Kai; Mei, Jialin; Guo, Shibei; Xu, Degang; Yao, Jianquan
2015-12-01
High-order Stokes wave was observed in an x-cut KTP crystal based on stimulated Raman scattering (SRS) pumped by a passively Q-switched Nd:YLF laser with a Cr4+:YAG saturable absorber. Output spectra including the fundamental wave at 1047 nm and six Stokes wavelengths at 1077 nm, 1110 nm, 1130 nm, 1143 nm, 1164 nm, 1180 nm based on two Raman frequency shift at 267.4 cm-1 and 693.0 cm-1 were obtained simultaneously. We also detected green light generation with output power of 12 mW from self frequency mixing in the KTP crystal. The maximum total output power reached 452 mW at the repetition frequency of 8.1 kHz, corresponding to the optical-to-optical conversion efficiency of 4.61% and pump-to-Raman conversion efficiency of 3.6%.
Compact 151 W green laser with U-type resonator for prostate surgery
NASA Astrophysics Data System (ADS)
Bazyar, Hossein; Aghaie, Mohammad; Daemi, Mohammad Hossein; Bagherzadeh, Seyed Morteza
2013-04-01
We analyzed, designed and fabricated a U-type resonator for intra-cavity frequency doubling of a diode-side-pumped Q-switched Nd:YAG rod laser with high power and high stability for surgery of prostatic tissue. The resonator stability conditions were analyzed graphically in the various configurations for a U-type resonator. We obtained green light at 532 nm using a single KTP crystal, with average output power of 151 W at 10 kHz repetition rate, and with 113 ns pulse duration at 810 W input pump power. We achieved 1064-532 nm conversion efficiency of 75.8%, and pump-to-green optical-optical efficiency of 18.6%. The green power fluctuation was ±1.0% and pointing stability was better than 4 μrad. The green laser output was coupled to a side-firing medical fiber to transfer the laser beam to the prostatic tissue.
NASA Astrophysics Data System (ADS)
Zhu, Pengfei; Zhang, Chaomin; Zhu, Kun; Ping, Yunxia; Song, Pei; Sun, Xiaohui; Wang, Fuxin; Yao, Yi
2018-03-01
We demonstrate an efficient and compact ultraviolet laser at 303 nm generated by intracavity frequency doubling of a continuous wave (CW) laser diode-pumped Pr3+:YLiF4 laser at 607 nm. A cesium lithium borate (CLBO) crystal, cut for critical type I phase matching at room temperature, is used for second-harmonic generation (SHG) of the fundamental laser. By using an InGaN laser diode array emitting at 444.3 nm with a maximum incident power of 10 W, as high as 68 mW of CW output power at 303 nm is achieved. The output power stability in 4 h is better than 2.85%. To the best of our knowledge, this is high efficient UV laser generated by frequency doubling of an InGaN laser diode array pumped Pr3+:YLiF4 laser.
125-mJ diode-pumped injection-seeded Ho:Tm:YLF laser.
Yu, J; Singh, U N; Barnes, N P; Petros, M
1998-05-15
We describe a diode-pumped, room-temperature Ho:Tm:YLF power oscillator with an optical-to-optical efficiency of 0.03. A Q -switched output energy of as much as 125 mJ at 6 Hz with a pulse width of 170 ns was obtained. Single-frequency, nearly transform-limited operation of the laser was achieved by injection seeding. Laser performance as a function of laser rod temperature and pump intensity was also investigated. The high power and high beam quality of this laser make it well suited for use as a coherent wind lidar transmitter on a space platform.
NASA Astrophysics Data System (ADS)
Fries, Christian; Weitz, Marco; Theobald, Christian; v. Löwis of Menar, Patric; Bartschke, Jürgen; L'huillier, Johannes A.
2015-02-01
With the advent of high power and narrow bandwidth 969 nm pump diodes, direct pumping into the upper laser level of Yb:YAG and hence quasi-2-level lasers became possible. Pumping directly into the emitting level leads to higher quantum efficiency and reduction of non-radiative decay. Consequently, thermal load, thermal lensing and risk of fracture are reduced significantly. Moreover pump saturation and thermal population of uninvolved energy-levels in ground and excited states are benefical for a homogenous distribution of the pump beam as well as the reduction of reabsorption loss compared to 3-level systems, which allows for high-power DPSS lasers. Beside continuous-wave (cw) operation, nanosecond pulses with a repetition rate between 1 and 5 kHz are an attractive alternative to flashlamp-pumped systems (10-100 Hz) in various measurement applications that require higher data acquisition rates because of new faster detectors. Based on measurements of the absorption and a detailed numerical model for pump beam distribution, including beam propagation and saturation factors, power-scaling of a ceramic rod Yb:YAG oscillator was possible. Finally a cw output power of 50 W with 33 % pump efficiency at 1030 nm has been demonstrated (M2 < 1.2). Nanosecond pulses have been produced by cavity-dumping of this system. The cavity-dumped setup allowed for 3-10 ns pulses with a pulse energy of 12.5 mJ at 1 kHz (M2 < 1.1). In order to achieve these results a systematic experimental and numerical investigation on gain dynamics and the identification of different stable operating regimes has been carried out.
Better vacuum by removal of diffusion-pump-oil contaminants
NASA Technical Reports Server (NTRS)
Buggele, A. E.
1975-01-01
The complex problem of why large space simulation chambers do not realize true ultimate vacuum was investigated. Some contaminating factors affecting diffusion pump performance were identified, and some advances in vacuum distillation-fractionation technology were achieved which resulted in a two-decade-or-more lower ultimate pressure. Data are presented to show the overall or individual contaminating effects of commonly used phthalate ester plasticizers of 390 to 530 molecular weight on diffusion pump performance. Methods for removing contaminants from diffusion pump silicone oil during operation and for reclaiming contaminated oil by high-vacuum molecular distillation are described. Conceptual self-cleansing designs and operating procedures are proposed for modifying large diffusion pumps into high-efficiency distillation devices. The potential exists for application of these technological advancements to other disciplines, such as medicine, biomedical materials, metallurgy, refining, and chemical (diffusion-enrichment) processing.
Rovere, Andrea; Jeong, Young-Gyun; Piccoli, Riccardo; Lee, Seung-Heon; Lee, Seung-Chul; Kwon, O-Pil; Jazbinsek, Mojca; Morandotti, Roberto; Razzari, Luca
2018-02-05
We present the generation of high-peak-electric-field terahertz pulses via collinear optical rectification in a 2-(4-hydroxy-3-methoxystyryl)-1-methilquinolinium-2,4,6-trimethylbenzenesulfonate (HMQ-TMS) organic crystal. The crystal is pumped by an amplified ytterbium laser system, emitting 170-fs-long pulses centered at 1030 nm. A terahertz peak electric field greater than 200 kV/cm is obtained for 420 µJ of optical pump energy, with an energy conversion efficiency of 0.26% - about two orders of magnitude higher than in common inorganic crystals collinearly pumped by amplified femtosecond lasers. An open-aperture Z-scan measurement performed on an n-doped InGaAs thin film using such terahertz source shows a nonlinear increase in the terahertz transmission of about 2.2 times. Our findings demonstrate the potential of this terahertz generation scheme, based on ytterbium laser technology, as a simple and efficient alternative to the existing intense table-top terahertz sources. In particular, we show that it can be readily used to explore nonlinear effects at terahertz frequencies.
Tang, Shi-Yang; Khoshmanesh, Khashayar; Sivan, Vijay; Petersen, Phred; O’Mullane, Anthony P.; Abbott, Derek; Mitchell, Arnan; Kalantar-zadeh, Kourosh
2014-01-01
Small-scale pumps will be the heartbeat of many future micro/nanoscale platforms. However, the integration of small-scale pumps is presently hampered by limited flow rate with respect to the input power, and their rather complicated fabrication processes. These issues arise as many conventional pumping effects require intricate moving elements. Here, we demonstrate a system that we call the liquid metal enabled pump, for driving a range of liquids without mechanical moving parts, upon the application of modest electric field. This pump incorporates a droplet of liquid metal, which induces liquid flow at high flow rates, yet with exceptionally low power consumption by electrowetting/deelectrowetting at the metal surface. We present theory explaining this pumping mechanism and show that the operation is fundamentally different from other existing pumps. The presented liquid metal enabled pump is both efficient and simple, and thus has the potential to fundamentally advance the field of microfluidics. PMID:24550485
Pump/Control System Minimum Operating Cost Testing
NASA Technical Reports Server (NTRS)
1977-01-01
A preliminary evaluation of pump performance was initiated to determine the efficiencies of an arbitrary group of small pumps. Trends in factors affecting energy usage in typical prime movers which might be used in liquid transport solar systems were assessed. Comparisons of centrifugal pump efficiencies were made from one manufacturer to another. Tests were also made on two positive-displacement pumps and comparisons with centrifugal pumps were observed.
NASA Astrophysics Data System (ADS)
Arteev, M. S.; Vaulin, V. A.; Slinko, V. N.; Chumerin, P. Yu; Yushkov, Yu G.
1992-06-01
An analysis is made of the possibility of using a commercial microsecond microwave oscillator, supplemented by a device for time compression of microwave pulses, in pumping of industrial lasers with a high efficiency of conversion of the pump source energy into laser radiation. The results are reported of preliminary experiments on the commissioning of an excimer XeCl laser.
Theoretical modeling of diode-laser-pumped 3-μm Er3+ crystal lasers
NASA Astrophysics Data System (ADS)
Tikerpae, Mark; Jackson, Stuart D.; King, Terence A.
1997-05-01
We present results from a theoretical model that has been developed to simulate the 3-micrometer laser transition in Er3+ doped Y3Al5O12 (YAG), Y2Sc2Ga3O12 (YSGG), LiYF4 (YLF) and BaY2F8 (BaYF) host crystals. The rate equations for the lowest seven energy levels of Er3+ were solved numerically and laser action was simulated under cw, gain-switched (pulse pumped) and Q-switched operation with optical pumping at wavelengths of 975 nm and 795 nm. The relative performance of each laser crystal was compared under identical pumping and cavity conditions to establish the optimum crystal host, doping concentration and pump wavelength for each mode of operation. Some unexpected saturation effects were investigated that could limit the maximum practical pump fluence used for high energy Q-switched systems. We investigate possible additional multi-ion energy transfer processes that may cause the decrease in efficiency that is observed experimentally at high Er3+ ion concentrations. In addition, lower laser level deactivation by co-doping with Pr3+ in BaYF was simulated and compared with singly doped Er:BaYF for a range of Er3+ and Pr3+ concentrations. It was found that co-doping was not as effective as the cooperative upconversion process present in singly doped Er3+ crystals for efficient laser operation.
Turbopump options for nuclear thermal rockets
NASA Astrophysics Data System (ADS)
Bissell, W. R.; Gunn, S. V.
1992-07-01
Several turbopump options for delivering liquid nitrogen to nuclear thermal rocket (NTR) engines were evaluated and compared. Axial and centrifugal flow pumps were optimized, with and without boost pumps, utilizing current design criteria within the latest turbopump technology limits. Two possible NTR design points were used, a modest pump pressure rise of 1,743 psia and a relatively higher pump pressure rise of 4,480 psia. Both engines utilized the expander cycle to maximize engine performance for the long duration mission. Pump suction performance was evaluated. Turbopumps with conventional cavitating inducers were compared with zero NPSH (saturated liquid in the tanks) pumps over a range of tank saturation pressures, with and without boost pumps. Results indicate that zero NSPH pumps at high tank vapor pressures, 60 psia, are very similar to those with the finite NPSHs. At low vapor pressures efficiencies fall and turbine pressure ratios increase leading to decreased engine chamber pressures and or increased pump pressure discharges and attendant high-pressure component weights. It may be concluded that zero tank NSPH capabilities can be obtained with little penalty to the engine systems but boost pumps are needed if tank vapor pressure drops below 30 psia. Axial pumps have slight advantages in weight and chamber pressure capability while centrifugal pumps have a greater operating range.
Heat pump/refrigerator using liquid working fluid
Wheatley, John C.; Paulson, Douglas N.; Allen, Paul C.; Knight, William R.; Warkentin, Paul A.
1982-01-01
A heat transfer device is described that can be operated as a heat pump or refrigerator, which utilizes a working fluid that is continuously in a liquid state and which has a high temperature-coefficient of expansion near room temperature, to provide a compact and high efficiency heat transfer device for relatively small temperature differences as are encountered in heating or cooling rooms or the like. The heat transfer device includes a pair of heat exchangers that may be coupled respectively to the outdoor and indoor environments, a regenerator connecting the two heat exchangers, a displacer that can move the liquid working fluid through the heat exchangers via the regenerator, and a means for alternately increasing and decreasing the pressure of the working fluid. The liquid working fluid enables efficient heat transfer in a compact unit, and leads to an explosion-proof smooth and quiet machine characteristic of hydraulics. The device enables efficient heat transfer as the indoor-outdoor temperature difference approaches zero, and enables simple conversion from heat pumping to refrigeration as by merely reversing the direction of a motor that powers the device.
An alternative arrangement of metered dosing fluid using centrifugal pump
NASA Astrophysics Data System (ADS)
Islam, Md. Arafat; Ehsan, Md.
2017-06-01
Positive displacement dosing pumps are extensively used in various types of process industries. They are widely used for metering small flow rates of a dosing fluid into a main flow. High head and low controllable flow rates make these pumps suitable for industrial flow metering applications. However their pulsating flow is not very suitable for proper mixing of fluids and they are relatively more expensive to buy and maintain. Considering such problems, alternative techniques to control the fluid flow from a low cost centrifugal pump is practiced. These include - throttling, variable speed drive, impeller geometry control and bypass control. Variable speed drive and impeller geometry control are comparatively costly and the flow control by throttling is not an energy efficient process. In this study an arrangement of metered dosing flow was developed using a typical low cost centrifugal pump using bypass flow technique. Using bypass flow control technique a wide range of metered dosing flows under a range of heads were attained using fixed pump geometry and drive speed. The bulk flow returning from the system into the main tank ensures better mixing which may eliminate the need of separate agitators. Comparative performance study was made between the bypass flow control arrangement of centrifugal pump and a diaphragm type dosing pump. Similar heads and flow rates were attainable using the bypass control system compared to the diaphragm dosing pump, but using relatively more energy. Geometrical optimization of the centrifugal pump impeller was further carried out to make the bypass flow arrangement more energy efficient. Although both the systems run at low overall efficiencies but the capital cost could be reduced by about 87% compared to the dosing pump. The savings in capital investment and lower maintenance cost very significantly exceeds the relatively higher energy cost of the bypass system. This technique can be used as a cost effective solution for industries in Bangladesh and have been implemented in two salt iodization plants at Narayangang.
High power eye-safe Er3+:YVO4 laser diode-pumped at 976 nm and emitting at 1603 nm
NASA Astrophysics Data System (ADS)
Newburgh, G. A.; Dubinskii, M.
2016-02-01
We report on the performance of an eye-safe laser based on a Er:YVO4 single crystal, diode-pumped at 976 nm (4I15/2-->4I11/2 transition) and operating at 1603 nm (4I13/2-->4I15/2 transition) with good beam quality. A 10 mm long Er3+:YVO4 slab, cut with its c-axis perpendicular to the laser cavity axis, was pumped in σ-polarization and lased in π-polarization. The laser operated in a quasi-continuous wave (Q-CW) regime with nearly 9 W output power, and with a slope efficiency of about 39% with respect to absorbed power. This is believed to be the highest efficiency and highest power achieved from an Er3+:YVO4 laser pumped in the 970-980 nm absorption band.
Software defined photon counting system for time resolved x-ray experiments.
Acremann, Y; Chembrolu, V; Strachan, J P; Tyliszczak, T; Stöhr, J
2007-01-01
The time structure of synchrotron radiation allows time resolved experiments with sub-100 ps temporal resolution using a pump-probe approach. However, the relaxation time of the samples may require a lower repetition rate of the pump pulse compared to the full repetition rate of the x-ray pulses from the synchrotron. The use of only the x-ray pulse immediately following the pump pulse is not efficient and often requires special operation modes where only a few buckets of the storage ring are filled. We designed a novel software defined photon counting system that allows to implement a variety of pump-probe schemes at the full repetition rate. The high number of photon counters allows to detect the response of the sample at multiple time delays simultaneously, thus improving the efficiency of the experiment. The system has been successfully applied to time resolved scanning transmission x-ray microscopy. However, this technique is applicable more generally.
Highly efficient generation of broadband cascaded four-wave mixing products.
Cerqueira S, Arismar; Boggio, J M Chavez; Rieznik, A A; Hernandez-Figueroa, H E; Fragnito, H L; Knight, J C
2008-02-18
We propose a novel way to efficiently generate broadband cascaded Four-Wave Mixing (FWM) products. It consists of launching two strong pump waves near the zero-dispersion wavelength of a very short (of order a few meters) optical fiber. Simulations based on Split Step Fourier Method (SSFM) and experimental data demonstrate the efficiency of our new approach. Multiple FWM products have been investigated by using conventional fibers and ultra-flattened dispersion photonic crystal fibers (UFD-PCFs). Measured results present bandwidths of 300 nm with up to 118 FWM products. We have also demonstrated a flat bandwidth of 110 nm covering the C and L bands, with a small variation of only 1.2 dB between the powers of FWM products, has been achieved using highly nonlinear fibers (HNLFs). The use of UFD-PCFs has been shown interesting for improving the multiple FWM efficiency and reducing the separation between the pump wavelengths.
Solar-pumped gas laser development
NASA Technical Reports Server (NTRS)
Wilson, J. W.
1980-01-01
A survey of gas properties through detailed kinetic models led to the identification of critical gas parameters for use in choosing appropriate gas combinations for solar pumped lasers. Broadband photoabsorption in the visible or near UV range is required to excite large volumes of gas and to insure good solar absorption efficiency. The photoexcitation density is independent of the absorption bandwidth. The state excited must be a metastable state which is not quenched by the parent gas. The emission bandwidth must be less than 10 A to insure lasing threshold over reasonable gain lengths. The system should show a high degree of chemical reversibility and an insensitivity to increasing temperature. Other properties such as good quantum efficiency and kinetic efficiency are also implied. Although photoexcitation of electronic vibrational transitions is considered as a possible system if the emission bands sufficiently narrow, it appears that photodissociation into atomic metastables is more likely to result in a successful solar pumped laser system.
European Regional Climate Zone Modeling of a Commercial Absorption Heat Pump Hot Water Heater
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sharma, Vishaldeep; Shen, Bo; Keinath, Chris
2017-01-01
High efficiency gas-burning hot water heating takes advantage of a condensing heat exchanger to deliver improved combustion efficiency over a standard non-condensing configuration. The water heating is always lower than the gas heating value. In contrast, Gas Absorption Heat Pump (GAHP) hot water heating combines the efficiency of gas burning with the performance increase from a heat pump to offer significant gas energy savings. An ammonia-water system also has the advantage of zero Ozone Depletion Potential and low Global Warming Potential. In comparison with air source electric heat pumps, the absorption system can maintain higher coefficients of performance in coldermore » climates. In this work, a GAHP commercial water heating system was compared to a condensing gas storage system for a range of locations and climate zones across Europe. The thermodynamic performance map of a single effect ammonia-water absorption system was used in a building energy modeling software that could also incorporate the changing ambient air temperature and water mains temperature for a specific location, as well as a full-service restaurant water draw pattern.« less
Method for optical pumping of thin laser media at high average power
Zapata, Luis E [Livermore, CA; Beach, Raymond J [Livermore, CA; Honea, Eric C [Sunol, CA; Payne, Stephen A [Castro Valley, CA
2004-07-13
A thin, planar laser material is bonded to a light guide of an index-matched material forming a composite disk. Diode array or other pump light is introduced into the composite disk through the edges of the disk. Pump light trapped within the composite disk depletes as it multi-passes the laser medium before reaching an opposing edge of the disk. The resulting compound optical structure efficiently delivers concentrated pump light and to a laser medium of minimum thickness. The external face of the laser medium is used for cooling. A high performance cooler attached to the external face of the laser medium rejects heat. Laser beam extraction is parallel to the heat flux to minimize optical distortions.
Superconducting Technology Assessment
2005-08-01
designing a single compressor pulse tube between the high pump frequency which produces good efficiency at the higher...noise models must be extended to sub-micron JJs. Transmission line models must be extended to the high frequency regime. VHDL models and methods ...temperatures and the low frequencies needed at low temperatures. Hybrid Sterling- pulse tube coolers allow the higher efficiency of a Sterling high
Fully-resonant, tunable, monolithic frequency conversion as a coherent UVA source.
Zielińska, Joanna A; Zukauskas, Andrius; Canalias, Carlota; Noyan, Mehmet A; Mitchell, Morgan W
2017-01-23
We demonstrate a monolithic frequency converter incorporating up to four tuning degrees of freedom, three temperature and one strain, allowing resonance of pump and generated wavelengths simultaneous with optimal phase-matching. With a Rb-doped periodically-poled potassium titanyl phosphate (KTP) implementation, we demonstrate efficient continuous-wave second harmonic generation from 795 to 397, with low-power efficiency of 72% and high-power slope efficiency of 4.5%. The measured performance shows good agreement with theoretical modeling of the device. We measure optical bistability effects, and show how they can be used to improve the stability of the output against pump frequency and amplitude variations.
Watt-level short-length holmium-doped ZBLAN fiber lasers at 1.2 μm.
Zhu, Xiushan; Zong, Jie; Wiersma, Kort; Norwood, R A; Prasad, Narasimha S; Obland, Michael D; Chavez-Pirson, Arturo; Peyghambarian, N
2014-03-15
In-band core-pumped Ho3+-doped ZBLAN fiber lasers at the 1.2 μm region were investigated with different gain fiber lengths. A 2.4 W 1190 nm all-fiber laser with a slope efficiency of 42% was achieved by using a 10 cm long gain fiber pumped at a maximum available 1150 nm pump power of 5.9 W. A 1178 nm all-fiber laser was demonstrated with an output power of 350 mW and a slope efficiency of 6.5%. High Ho3+ doping in ZBLAN is shown to be effective in producing single-frequency fiber lasers and short-length fiber amplifiers immune from stimulated Brillouin scattering.
Research on solar pumped liquid lasers. Final Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cox, J.D.; Kurzweg, U.H.; Weinstein, N.H.
1985-04-01
A solar pumped liquid laser that can be scaled up to high power (10 mW CW) for space applications was developed. Liquid lasers have the advantage over gases in that they provide much higher lasant densities and thus high-power densities. Liquids also have advantages over solids in that they have much higher damage thresholds and are much cheaper to produce for large scale applications. Among the liquid laser media that are potential candidates for solar pumping, the POC13: Nd sup 3+:ZrCl4 liquid was chosen for its high intrinsic efficiency and its relatively good stability against decomposition due to protic contamination.more » The development of a manufacturing procedure and performance testing of the laser liquid and the development of an inexpensive large solar concentrator to pump the laser are examined.« less
Optical pumping of the electronic and nuclear spin of single charge-tunable quantum dots.
Bracker, A S; Stinaff, E A; Gammon, D; Ware, M E; Tischler, J G; Shabaev, A; Efros, Al L; Park, D; Gershoni, D; Korenev, V L; Merkulov, I A
2005-02-04
We present a comprehensive examination of optical pumping of spins in individual GaAs quantum dots as we change the net charge from positive to neutral to negative with a charge-tunable heterostructure. Negative photoluminescence polarization memory is enhanced by optical pumping of ground state electron spins, which we prove with the first measurements of the Hanle effect on an individual quantum dot. We use the Overhauser effect in a high longitudinal magnetic field to demonstrate efficient optical pumping of nuclear spins for all three charge states of the quantum dot.
Optical Pumping of the Electronic and Nuclear Spin of Single Charge-Tunable Quantum Dots
NASA Astrophysics Data System (ADS)
Bracker, A. S.; Stinaff, E. A.; Gammon, D.; Ware, M. E.; Tischler, J. G.; Shabaev, A.; Efros, Al. L.; Park, D.; Gershoni, D.; Korenev, V. L.; Merkulov, I. A.
2005-02-01
We present a comprehensive examination of optical pumping of spins in individual GaAs quantum dots as we change the net charge from positive to neutral to negative with a charge-tunable heterostructure. Negative photoluminescence polarization memory is enhanced by optical pumping of ground state electron spins, which we prove with the first measurements of the Hanle effect on an individual quantum dot. We use the Overhauser effect in a high longitudinal magnetic field to demonstrate efficient optical pumping of nuclear spins for all three charge states of the quantum dot.
Yin, Shupeng; Yan, Ping; Gong, Mali
2008-10-27
An end-pumped ytterbium-doped all-fiber laser with 300 W output in continuous regime was reported, which was based on master oscillator multi-stage power amplifiers configuration. Monolithic fiber laser system consisted of an oscillator stage and two amplifier stages. Total optical-optical efficiency of monolithic fiber laser was approximately 65%, corresponding to 462 W of pump power coupled into laser system. We proposed a new method to connect power amplifier stage, which was crucial for the application of end-pumped combiner in high power MOPAs all-fiber laser.
Berry, Christopher; Hashemi, Mohammad Reza; Unlu, Mehmet; Jarrahi, Mona
2013-07-08
In this video article we present a detailed demonstration of a highly efficient method for generating terahertz waves. Our technique is based on photoconduction, which has been one of the most commonly used techniques for terahertz generation (1-8). Terahertz generation in a photoconductive emitter is achieved by pumping an ultrafast photoconductor with a pulsed or heterodyned laser illumination. The induced photocurrent, which follows the envelope of the pump laser, is routed to a terahertz radiating antenna connected to the photoconductor contact electrodes to generate terahertz radiation. Although the quantum efficiency of a photoconductive emitter can theoretically reach 100%, the relatively long transport path lengths of photo-generated carriers to the contact electrodes of conventional photoconductors have severely limited their quantum efficiency. Additionally, the carrier screening effect and thermal breakdown strictly limit the maximum output power of conventional photoconductive terahertz sources. To address the quantum efficiency limitations of conventional photoconductive terahertz emitters, we have developed a new photoconductive emitter concept which incorporates a plasmonic contact electrode configuration to offer high quantum-efficiency and ultrafast operation simultaneously. By using nano-scale plasmonic contact electrodes, we significantly reduce the average photo-generated carrier transport path to photoconductor contact electrodes compared to conventional photoconductors (9). Our method also allows increasing photoconductor active area without a considerable increase in the capacitive loading to the antenna, boosting the maximum terahertz radiation power by preventing the carrier screening effect and thermal breakdown at high optical pump powers. By incorporating plasmonic contact electrodes, we demonstrate enhancing the optical-to-terahertz power conversion efficiency of a conventional photoconductive terahertz emitter by a factor of 50 (10).
Fibre-coupled red diode-pumped Alexandrite TEM00 laser with single and double-pass end-pumping
NASA Astrophysics Data System (ADS)
Arbabzadah, E. A.; Damzen, M. J.
2016-06-01
We report the investigation of an Alexandrite laser end-pumped by a fibre-coupled red diode laser module. Power, efficiency, spatial, spectral, and wavelength tuning performance are studied as a function of pump and laser cavity parameters. It is the first demonstration, to our knowledge, of greater than 1 W power and also highest laser slope efficiency (44.2%) in a diode-pumped Alexandrite laser with diffraction-limited TEM00 mode operation. Spatial quality was excellent with beam propagation parameter M 2 ~ 1.05. Wavelength tuning from 737-796 nm was demonstrated using an intracavity birefringent tuning filter. Using a novel double pass end-pumping scheme to get efficient absorption of both polarisation states of the scrambled fibre-delivered diode pump, a total output coupled power of 1.66 W is produced in TEM00 mode with 40% slope efficiency.
Performance study of highly efficient 520 W average power long pulse ceramic Nd:YAG rod laser
NASA Astrophysics Data System (ADS)
Choubey, Ambar; Vishwakarma, S. C.; Ali, Sabir; Jain, R. K.; Upadhyaya, B. N.; Oak, S. M.
2013-10-01
We report the performance study of a 2% atomic doped ceramic Nd:YAG rod for long pulse laser operation in the millisecond regime with pulse duration in the range of 0.5-20 ms. A maximum average output power of 520 W with 180 J maximum pulse energy has been achieved with a slope efficiency of 5.4% using a dual rod configuration, which is the highest for typical lamp pumped ceramic Nd:YAG lasers. The laser output characteristics of the ceramic Nd:YAG rod were revealed to be nearly equivalent or superior to those of high-quality single crystal Nd:YAG rod. The laser pump chamber and resonator were designed and optimized to achieve a high efficiency and good beam quality with a beam parameter product of 16 mm mrad (M2˜47). The laser output beam was efficiently coupled through a 400 μm core diameter optical fiber with 90% overall transmission efficiency. This ceramic Nd:YAG laser will be useful for various material processing applications in industry.
Pump polarization insensitive and efficient laser-diode pumped Yb:KYW ultrafast oscillator.
Wang, Sha; Wang, Yan-Biao; Feng, Guo-Ying; Zhou, Shou-Huan
2016-02-01
We theoretically and experimentally report and evaluate a novel split laser-diode (LD) double-end pumped Yb:KYW ultrafast oscillator aimed at improving the performance of an ultrafast laser. Compared to a conventional unpolarized single-LD end-pumped ultrafast laser system, we improve the laser performance such as absorption efficiency, slope efficiency, cw mode-locking threshold, and output power by this new structure LD-pumped Yb:KYW ultrafast laser. Experiments were carried out with a 1 W output fiber-coupled LD. Experimental results show that the absorption increases from 38.7% to 48.4%, laser slope efficiency increases from 18.3% to 24.2%, cw mode-locking threshold decreases 12.7% from 630 to 550 mW in cw mode-locking threshold, and maximum output-power increases 28.5% from 158.4 to 221.5 mW when we switch the pump scheme from an unpolarized single-end pumping structure to a split LD double-end pumping structure.
NASA Astrophysics Data System (ADS)
Wang, Hong; Duan, Huanlin; Chen, Aidong
2018-02-01
In this paper, the mine-water source heat pump system is proposed in residential buildings of a mining community. The coefficient of performance (COP) and the efficiency of exergy are analyzed. The results show that the COP and exergy efficiency of the mine-water source heat pump are improved, the exergy efficiency of mine-water source heat pump is more than 10% higher than that of the air source heat pump.The electric power conservation measure of “peak load shifting” is also emphasized in this article. It shows that itis a very considerable cost in the electric saving by adopting the trough period electricity to produce hot water. Due to the proper temperature of mine water, the mine-watersource heat pump unit is more efficient and stable in performance, which further shows the advantage of mine-water source heat pump in energy saving and environmental protection. It provides reference to the design of similar heat pump system as well.
Multi-Fresnel lenses pumping approach for improving high-power Nd:YAG solar laser beam quality.
Liang, Dawei; Almeida, Joana
2013-07-20
To significantly improve the present-day high-power solar laser beam quality, a three-stage multi-Fresnel lenses approach is proposed for side-pumping either a Nd:YAG single-crystal or a core-doped Sm(3+)Nd:YAG ceramic rod. Optimum pumping and laser beam parameters are found through ZEMAX and LASCAD numerical analysis. The proposed scheme offers a uniform absorption profile along the rod. 167 W laser power can be achieved, corresponding to 29.3 W/m(2) collection efficiency. High brightness figure of merit of 8.34 W is expected for the core-doped rod within a convex-concave resonator, which is 1300 times higher than that of the most-recent high-power solar laser.
Zhang, Ruiliang; Qu, Yanchen; Zhao, Weijiang; Chen, Zhenlei
2017-03-20
A high energy, widely tunable Si-prism-array coupled terahertz-wave parametric oscillator (TPO) has been demonstrated by using a deformed pump. The deformed pump is cut from a beam spot of 2 mm in diameter by a 1-mm-wide slit. In comparison with a small pump spot (1-mm diameter), the THz-wave coupling area for the deformed pump is increased without limitation to the low-frequency end of the tuning range. Besides, the crystal location is specially designed to eliminate the alteration of the output position of the pump during angle tuning, so the initially adjusted nearest pumped region to the THz-wave exit surface is maintained throughout the tuning range. The tuning range is 0.58-2.5 THz for the deformed pump, while its low frequency end is limited at approximately 1.2 THz for the undeformed pump with 2 mm diameter. The highest THz-wave output of 2 μJ, which is 2.25 times as large as that from the pump of 1 mm in diameter, is obtained at 1.15 THz under 38 mJ (300 MW/cm2) pumping. The energy conversion efficiency is 5.3×10-5.
Patel, Kamlesh D.
2007-11-20
A method for altering the surface properties of a particle bed. In application, the method pertains particularly to an electrokinetic pump configuration where nanoparticles are bonded to the surface of the stationary phase to alter the surface properties of the stationary phase including the surface area and/or the zeta potential and thus improve the efficiency and operating range of these pumps. By functionalizing the nanoparticles to change the zeta potential the electrokinetic pump is rendered capable of operating with working fluids having pH values that can range from 2-10 generally and acidic working fluids in particular. For applications in which the pump is intended to handle highly acidic solutions latex nanoparticles that are quaternary amine functionalized can be used.
High-repetition-rate, narrow-band dye lasers with water as a solvent for dyes
NASA Astrophysics Data System (ADS)
Ray, Alok K.; Sinha, Sucharita; Kundu, Soumitra; Kumar, Sasi; Nair, Sivagiriyal Karunakaran Sreenivasan; Pal, Tamal; Dasgupta, Kamalesh
2002-03-01
The performance of a copper vapor laser-pumped narrow-band dye laser in oscillator-amplifier configuration with water-based binary mixture solvents is described. Although oscillator efficiency in water-surfactant (sodium lauryl sulfate) solvent was comparable with that that employed pure ethanolic solvent, amplifier efficiency was found to be lower. Experiments that were carried out with vertically polarized pump beams and either horizontally or vertically polarized signal beams show that, in case of both the pump and signal having orthogonal polarization (horizontal) and same polarization (vertical), the extraction efficiency for both ethanolic and water-micelle media increased substantially from 15.7% to 18.5% and from 10% to 12.5%, respectively. However, the relative difference remained nearly the same, indicating that a slower orientational diffusion of excited dye molecules in a micellar medium is not responsible for a decrease in amplifier efficiency. Amplifier efficiency comparable with that containing ethanolic dye solutions could be obtained with a binary solvent that comprises a mixture of water and about 30% n-propanol. The performances of two efficient dyes, Rhodamine-6G and Kiton Red S, using water-based solvents were studied.
High repetition-rate Q-switched and intracavity doubled diode-pumped Nd:YAG laser
NASA Technical Reports Server (NTRS)
Hemmati, Hamid; Lesh, James R.
1992-01-01
A Nd:YAG laser was end pumped with 2.2 W of continuous-wave (CW) diode laser output. Efficient operation of the laser at high repetition rates was emphasized. This laser provides 890 mW of TEM00 CW output at 1064 nm, and 340 mW of 532 nm average power at a Q-switched repetition rate of 25 kHz. Experimental data are compared with analysis.
Diode-pumped high power 2.7 μm Er:Y2O3 ceramic laser at room temperature
NASA Astrophysics Data System (ADS)
Wang, Li; Huang, Haitao; Shen, Deyuan; Zhang, Jian; Chen, Hao; Tang, Dingyuan
2017-09-01
Investigation of room temperature laser performance of the polycrystalline Er:Y2O3 ceramic at 2.7 μm with respect to dopant concentrations was conducted. With 7 at.% Er3+ concentration Er:Y2O3 ceramic as laser gain medium, over 2.05 W of CW output power at 2.7 μm was generated with a slope efficiency of 11.1% with respect to the absorbed LD pump power. The prospects for improvement in lasing efficiency and output power are considered.
Choubey, Ambar; Vishwakarma, S C; Misra, Pushkar; Jain, R K; Agrawal, D K; Arya, R; Upadhyaya, B N; Oak, S M
2013-07-01
We have developed an efficient and high average power flash lamp pumped long pulse Nd:YAG laser capable of generating 1 kW of average output power with maximum 540 J of single pulse energy and 20 kW of peak power. The laser pulse duration can be varied from 1 to 40 ms and repetition rate from 1 to 100 Hz. A compact and robust laser pump chamber and resonator was designed to achieve this high average and peak power. It was found that this laser system provides highest single pulse energy as compared to other long pulsed Nd:YAG laser systems of similar rating. A slope efficiency of 5.4% has been achieved, which is on higher side for typical lamp pumped solid-state lasers. This system will be highly useful in laser welding of materials such as aluminium and titanium. We have achieved 4 mm deep penetration welding of these metals under optimized conditions of output power, pulse energy, and pulse duration. The laser resonator was optimized to provide stable operation from single shot to 100 Hz of repetition rate. The beam quality factor was measured to be M(2) ~ 91 and pulse-to-pulse stability of ±3% for the multimode operation. The laser beam was efficiently coupled through an optical fiber of 600 μm core diameter and 0.22 numerical aperture with power transmission of 90%.
Mechanical drive for blood pump
Bifano, N.J.; Pouchot, W.D.
1975-07-29
This patent relates to a highly efficient blood pump to be used as a replacement for a ventricle of the human heart to restore people disabled by heart disease. The mechanical drive of the present invention is designed to operate in conjunction with a thermoelectric converter power source. The mechanical drive system essentially converts the output of a rotary power into pulsatile motion so that the power demand from the thermoelectric converter remains essentially constant while the blood pump output is pulsed. (auth)
Improvement of centrifugal pump performance through addition of splitter blades on impeller pump
NASA Astrophysics Data System (ADS)
Kurniawan, Krisna Eka; Santoso, Budi; Tjahjana, Dominicus Danardono Dwi Prija
2018-02-01
The workable way to improve pump performance is to redesign or modify the impellers of centrifugal pump. The purpose of impeller pump modification is to improve pump efficiency, reduce cross flow, reduce secondary incidence flows, and decrease backflow areas at impeller outlets. Number blades and splitter blades in the impeller are three. The outlet blade angle is 20°, and the rotating speed of impeller is 2400 rpm. The added splitter blades variations are 0.25, 0.375, and 0.5 of the original blade length. The splitter blade placements are on the outer side of the impeller. The addition of splitter blades on the outer side of the impeller with 0.5L increases the pump head until 22% and the pump has 38.66% hydraulic efficiency. The best efficiency point of water flow rate pump (Qbep) was 3.02 × 10-3 m3/s.
NASA Astrophysics Data System (ADS)
Pujades, Estanislao; Bodeux, Sarah; Orban, Philippe; Dassargues, Alain
2016-04-01
Pumped Storage Hydropower (PSH) plants can be used to manage the production of electrical energy according to the demand. These plants allow storing and generating electricity during low and high demand energy periods, respectively. Nevertheless, PSH plants require a determined topography because two reservoirs located at different heights are needed. At sites where PSH plants cannot be constructed due to topography requirements (flat regions), Underground Pumped Storage Hydropower (UPSH) plants can be used to adjust the electricity production. These plants consist in two reservoirs, the upper one is located at the surface (or at shallow depth) while the lower one is underground (or deeper). Abandoned open pit mines can be used as lower reservoirs but these are rarely isolated. As a consequence, UPSH plants will interact with surrounding aquifers exchanging groundwater. Groundwater seepage will modify hydraulic head inside the underground reservoir affecting global efficiency of the UPSH plant. The influence on the plant efficiency caused by the interaction between UPSH plants and aquifers will depend on the aquifer parameters, underground reservoir properties and pumping and injection characteristics. The alteration of the efficiency produced by the groundwater exchanges, which has not been previously considered, is now studied numerically. A set of numerical simulations are performed to establish in terms of efficiency the effects of groundwater exchanges and the optimum conditions to locate an UPSH plant.
Study of a heat rejection system using capillary pumping
NASA Technical Reports Server (NTRS)
Neal, L. G.; Wanous, D. J.; Clausen, O. W.
1971-01-01
Results of an analytical study investigating the application of capillary pumping to the heat rejection loop of an advanced Rankine cycle power conversion system are presented. The feasibility of the concept of capillary pumping as an alternate to electromagnetic pumping is analytically demonstrated. Capillary pumping is shown to provide a potential for weight and electrical power saving and reliability through the use of redundant systems. A screen wick pump design with arterial feed lines was analytically developed. Advantages of this design are high thermodynamic and hydrodynamic efficiency, which provide a lightweight easily packaged system. Operational problems were identified which must be solved for successful application of capillary pumping. The most important are the development of start up and shutdown procedures, and development of a means of keeping noncondensibles from the system and of earth-bound testing procedures.
Direct solar-pumped iodine laser amplifier
NASA Technical Reports Server (NTRS)
Han, Kwang S.; Kim, K. H.; Stock, L. V.
1986-01-01
In order to evaluate the feasibility of the solar pumped dye laser, the parametric study of a dye laser amplifier pumped by a solar simulator and flashlamp was carried out, and the amplifier gains were measured at various pump beam irradiances on the dye cell. Rhodamine 6G was considered as a candidate for the solar pumped laser because of its good utilization of the solar spectrum and high quantum efficiency. The measurement shows that a solar concentration of 20,000 is required to reach the threshold of the dye. The work to construct a kinetic model algorithm which predicts the output parameter of laser was progressed. The kinetic model was improved such that there is good agreement between the theoretical model and experimental data for the systems defined previously as flashlamp pumped laser oscillator, and the long path length solar pumped laser.
Design of a Mechanical NaK Pump for Fission Space Power
NASA Technical Reports Server (NTRS)
Mireles, Omar R.; Bradley, David E.; Godfroy, Thomas
2011-01-01
Alkali liquid metal cooled fission reactor concepts are under development for spaceflight power requirements. One such concept utilizes a sodium-potassium eutectic (NaK) as the primary loop working fluid, which has specific pumping requirements. Traditionally, electromagnetic linear induction pumps have been used to provide the required flow and pressure head conditions for NaK systems but they can be limited in performance, efficiency, and number of available vendors. The objective of the project was to develop a mechanical NaK centrifugal pump that takes advantages of technology advances not available in previous liquid metal mechanical pump designs. This paper details the design, build, and performance test of a mechanical NaK pump developed at NASA Marshall Space Flight Center. The pump was designed to meet reactor cooling requirements using commercially available components modified for high temperature NaK service.
2.097μ Cth:YAG flashlamp pumped high energy high efficiency laser operation (patent pending)
NASA Astrophysics Data System (ADS)
Bar-Joseph, Dan
2018-02-01
Flashlamp pumped Cth:YAG lasers are mainly used in medical applications (urology). The main laser transition is at 2.13μ and is called a quasi-three level having an emission cross-section of 7x10-21 cm2 and a ground state absorption of approximately 5%/cm. Because of the relatively low absorption, combined with a modest emission cross-section, the laser requires high reflectivity output coupling, and therefore high intra-cavity energy density which limits the output to approximately 4J/pulse for reliable operation. This paper will describe a method of efficiently generating high output energy at low intra-cavity energy density by using an alternative 2.097μ transition having an emission cross-section of 5x10-21 cm2 and a ground level absorption of approximately 14%/cm.
Gustavsson, B; Leyser, T B; Kosch, M; Rietveld, M T; Steen, A; Brändström, B U E; Aso, T
2006-11-10
Optical emissions and incoherent scatter radar data obtained during high-frequency electromagnetic pumping of the ionospheric plasma from the ground give data on electron energization in an energy range from 2 to 100 eV. Optical emissions at 4278 A from N2+ that require electrons with energies above the 18 eV ionization energy give the first images ever of pump-induced ionization of the thermosphere. The intensity at 4278 A is asymmetric around the ionospheric electron gyroharmonic, being stronger above the gyroresonance. This contrasts with emissions at 6300 A from O(1D) and of electron temperature enhancements, which have minima at the gyroharmonic but have no apparent asymmetry. This direct evidence of pump-induced ionization contradicts previous indirect evidence, which indicated that ionization is most efficiently produced when the pump frequency was below the gyroharmonic.
Pump Propels Liquid And Gas Separately
NASA Technical Reports Server (NTRS)
Harvey, Andrew; Demler, Roger
1993-01-01
Design for pump that handles mixtures of liquid and gas efficiently. Containing only one rotor, pump is combination of centrifuge, pitot pump, and blower. Applications include turbomachinery in powerplants and superchargers in automobile engines. Efficiencies lower than those achieved in separate components. Nevertheless, design is practical and results in low consumption of power.
Rigrod laser-pumped-laser resonator model: II. Application to thin and optically-dilute laser media
NASA Astrophysics Data System (ADS)
Brown, D. C.
2014-08-01
In part I of this paper, and to set the foundation for this part II, we derived the resonator equations describing the normalized intensities, output power, gain, and extraction efficiency for a standard resonator incorporating two dielectric mirrors and a gain element. We then generalized the results to include an absorbing region representing a second laser crystal characterized by a small-signal transmission T0. Explicit expressions were found for the output power extracted into absorption by the second laser crystal and the extraction efficiency, and the limits to each were discussed. It was shown that efficient absorption by a thin or dilute second laser crystal can be realized in resonators in which the mirror reflectivities were high and in which the single-pass absorption was low, due to the finite photon lifetime and multi-passing of the absorbing laser element. In this paper, we apply the model derived in part I to thin or dilute laser materials, concentrating on a Yb, Er:glass intracavity pumped by a 946 nm Nd:YAG laser, a Yb, Er:glass laser-pumped intracavity by a 977 nm diode laser, and an Er:YAG laser-pumped intracavity to a 1530 nm diode laser. It is shown that efficient absorption can be obtained in all cases examined.
NASA Astrophysics Data System (ADS)
Rentian, Zhang; Honggeng, Zhu; Arnold, Jaap; Linbi, Yao
2010-06-01
Compared with vertical-installed pumps, the propeller (bulb tubular) pump systems can achieve higher hydraulic efficiencies, which are particularly suitable for low-head pumping stations. More than four propeller pumping stations are being, or will be built in the first stage of the S-to-N Water Diversion Project in China, diverting water from Yangtze River to the northern part of China to alleviate water-shortage problems and develop the economy. New structures of propeller pump have been developed for specified pumping stations in Jiangsu and Shandong Provinces respectively and Variable Frequency Drives (VFDs) are used in those pumping stations to regulate operating conditions. Based on the Navier-Stokes equations and the standard k-e turbulent model, numerical simulations of the flow field and performance prediction in the propeller pump system were conducted on the platform of commercial software CFX by using the SIMPLEC algorithm. Through optimal design of bulb dimensions and diffuser channel shape, the hydraulic system efficiency has improved evidently. Furthermore, the structures of propeller pumps have been optimized to for the introduction of conventional as well as permanent magnet motors. In order to improve the hydraulic efficiency of pumping systems, both the pump discharge and the motor diameter were optimized respectively. If a conventional motor is used, the diameter of the pump casing has to be increased to accommodate the motor installed inside. If using a permanent magnet motor, the diameter of motor casing can be decreased effectively without decreasing its output power, thus the cross-sectional area is enlarged and the velocity of flowing water decreased favorably to reduce hydraulic loss of discharge channel and thereby raising the pumping system efficiency. Witness model tests were conducted after numerical optimization on specific propeller pump systems, indicating that the model system hydraulic efficiencies can be improved by 0.5%˜3.7% in different specified operational conditions.
High Energy Directly Pumped Ho:YLF Laser
NASA Technical Reports Server (NTRS)
Petros, Mulugeta; Yu, Ji-Rong; Singh, Upendra N.; Barnes, Norman P.
2000-01-01
The most commonly used crystal architecture to produce 2 micrometer laser is co-doping Ho and Tm into a single host crystal. In this method, the stored energy transfer from the Tm (3)F4 to the Ho (5)I7 manifold is not fast enough to warrant high efficiency for short pulse applications. By separating the Ho and the Tm ions and doping the Tm in YALO3 and the Ho in YLF, we were able to directly pump the Ho (5)I7 manifold with 1.94 micrometers. The Ho:YLF laser has produced 33 mJ at 2.062 micrometers with a quantum efficiency of 0.88. The performance of each laser will be presented.
A novel "gain chip" concept for high-power lasers (Conference Presentation)
NASA Astrophysics Data System (ADS)
Li, Min; Li, Mingzhong; Wang, Zhenguo; Yan, Xiongwei; Jiang, Xinying; Zheng, Jiangang; Cui, Xudong; Zhang, Xiaomin
2017-05-01
High-power lasers, including high-peak power lasers (HPPL) and high-average power lasers (HAPL), attract much interest for enormous variety of applications in inertial fusion energy (IFE), materials processing, defense, spectroscopy, and high-field physics research. To meet the requirements of high efficiency and quality, a "gain chip" concept is proposed to properly design the pumping, cooling and lasing fields. The gain chip mainly consists of the laser diode arrays, lens duct, rectangle wave guide and slab-shaped gain media. For the pumping field, the pump light will be compressed and homogenized by the lens duct to high irradiance with total internal reflection, and further coupled into the gain media through its two edge faces. For the cooling field, the coolant travels along the flow channel created by the adjacent slabs in the other two edge-face direction, and cool the lateral faces of the gain media. For the lasing field, the laser beam travels through the lateral faces and experiences minimum thermal wavefront distortions. Thereby, these three fields are in orthogonality offering more spatial freedom to handle them during the construction of the lasers. Transverse gradient doping profiles for HPPL and HAPL have been employed to achieve uniform gain distributions (UGD) within the gain media, respectively. This UGD will improve the management for both amplified spontaneous emission (ASE) and thermal behavior. Since each "gain chip" has its own pump source, power scaling can be easily achieved by placing identical "gain chips" along the laser beam axis without disturbing the gain and thermal distributions. To detail our concept, a 1-kJ pulsed amplifier is designed and optical-to-optical efficiency up to 40% has been obtained. We believe that with proper coolant (gas or liquid) and gain media (Yb:YAG, Nd:glass or Nd:YAG) our "gain chip" concept might provide a general configuration for high-power lasers with high efficiency and quality.
160mJ and 9ns electro-optics Q-switched conductively cooled 1047nm Nd:YLF laser
NASA Astrophysics Data System (ADS)
Yang, Qi; Ma, Jian; Lu, Tingting; Ma, Xiuhua; Zhu, Xiaolei
2015-02-01
A compact diode side-pumped conductively cooled 1047 nm Nd:YLF slab laser with high energy and short pulse width is developed. Through ray tracing method, we design a home-made pump module to homogenize the pump intensity. Based on the Possion equation, a thermal conduct model of side-pump laser is established. The temperature distribution in laser crystal is obtained, and the thermal lens is caculated. With the absorbed pump energy of 818 mJ, the maximum output energy of 228 mJ is achieved in free-running mode. At a repetition rate of 50 Hz, 160 mJ, 9 ns 1047 nm infrared light is obtained under the maximum absorbed pump energy, and the slope efficiency is 27.8%.
The mechanism performance of improved oil pump with micro-structured vanes
NASA Astrophysics Data System (ADS)
Li, Ping; Xie, Jin; Qi, Dongtao; Li, Houbu
2017-09-01
The wear of oil pump vanes easily leads to the noise and vibration, even results the decrease of volume efficiency and total efficiency. In order to reduce the friction and improve the lubrication between the vane and the pump inner wall, the micro-machining of micro-structure on the oil pump vanes is proposed. First, the micro-V-grooves with the depth ranging from 500μm to 50μm were micro-grinding on the top of the vanes by a diamond grinding wheel. Secondly, the experiments were conducted to test the actual flow rate, the output power and the overall efficiency of the oil pump with and without the micro-groove vanes. Then, the computational fluid dynamics (CFD) method was adopted to simulate the pump internal flow field. Finally, the micro-flow field between the internal wall of the oil pump and the top of micro-grooved vanes was analyzed. The results shows that the pump overall efficiency increased as the decrease of micro-groove depth from 500 μm to 50μm and not be affected by the rotate speed and working frequency of the pump rotator. Especially the micro-groove with depth of 50μm, the actual flow rate, the output power and the overall efficiency reached to the maximum. From CFD simulation, the velocity of the micro-flow between the surfaces of the vane and inner wall was larger than the pump linear velocity when the microstructure depth is larger than 50μm, leading to an internal leakage. When the micro-groove depth is between10-50μm, the velocity of the micro-flow was less than the pump linear velocity and no internal leakage was found, but the oil film thickness is too small to be beneficial to lubrication according to the fluid dynamic characteristics. Thus, for the oil pump equipping with micro-grooved vane with the depth of 50 μm, the internal leakage not only is avoided but the lubrication efficiency is improved and the oil pump efficiency is also enhanced.
High power, high signal-to-noise ratio single-frequency 1μm Brillouin all-fiber laser
NASA Astrophysics Data System (ADS)
Wang, Jing; Hou, Yubin; Zhang, Qian; Jin, Dongchen; Sun, Ruoyu; Shi, Hongxing; Liu, Jiang; Wang, Pu
2016-03-01
We demonstrate a high-power, high signal-to-noise ratio single-frequency 1 μm Brillouin all-fiber laser with high slope efficiency. The Brillouin laser system consists of a high-power single-frequency fiber laser and a single-pass Brillouin ring cavity. The high-power single-frequency fiber laser is one-stage master-oscillator power amplifier with the maximum output power of 10.33 W, the signal-to-noise ratio of 50 dB and the slope efficiency of 46%. The Brillouin fiber laser is pumped by the amplified laser with a linewidth of 33 kHz and an output power of 2.61 W limited by the damage threshold of the optical isolator. By optimizing the length of the Brillouin ring cavity to 10 m, stable singlefrequency Brillouin fiber laser is obtained with 3 kHz linewidth owing to the linewidth narrowing effect. At the launched pump power of 2.15 W, the Brillouin fiber laser generates maximum output power of 1.4 W with a slope efficiency of 79% and the optical signal-to-noise ratio of 77 dB.
Measure Guideline: Heat Pump Water Heaters in New and Existing Homes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shapiro, C.; Puttagunta, S.; Owens, D.
2012-02-01
This Building America Measure Guideline is intended for builders, contractors, homeowners, and policy-makers. This document is intended to explore the issues surrounding heat pump water heaters (HPWHs) to ensure that homeowners and contractors have the tools needed to appropriately and efficiently install HPWHs. Heat pump water heaters (HPWHs) promise to significantly reduce energy consumption for domestic hot water (DHW) over standard electric resistance water heaters (ERWHs). While ERWHs perform with energy factors (EFs) around 0.9, new HPWHs boast EFs upwards of 2.0. High energy factors in HPWHs are achieved by combining a vapor compression system, which extracts heat from themore » surrounding air at high efficiencies, with electric resistance element(s), which are better suited to meet large hot water demands. Swapping ERWHs with HPWHs could result in roughly 50% reduction in water heating energy consumption for 35.6% of all U.S. households. This Building America Measure Guideline is intended for builders, contractors, homeowners, and policy-makers. While HPWHs promise to significantly reduce energy use for DHW, proper installation, selection, and maintenance of HPWHs is required to ensure high operating efficiency and reliability. This document is intended to explore the issues surrounding HPWHs to ensure that homeowners and contractors have the tools needed to appropriately and efficiently install HPWHs. Section 1 of this guideline provides a brief description of HPWHs and their operation. Section 2 highlights the cost and energy savings of HPWHs as well as the variables that affect HPWH performance, reliability, and efficiency. Section 3 gives guidelines for proper installation and maintenance of HPWHs, selection criteria for locating HPWHs, and highlights of important differences between ERWH and HPWH installations. Throughout this document, CARB has included results from the evaluation of 14 heat pump water heaters (including three recently released HPWH products) installed in existing homes in the northeast region of the United States.« less
Effect of the collector tube profile on Pitot pump performances
NASA Astrophysics Data System (ADS)
Komaki, K.; Kanemoto, T.; Sagara, K.; Umekage, T.
2013-12-01
The pitot pump is composed of the rotating casing with the impeller channel and the pitot tube type collector as the discharge line. The radial impeller feeds water to the rotating casing. The water rotating together with the casing is caught by the stationary pitot tube type collector, and then discharges to the outside. This type pump, as the extra high head pump, is provided mainly for boiler feed systems, and has been designed by trial and error. To optimize the pump profiles, it is desirable to investigate not only performances but also internal flow conditions. This paper discusses experimentally and numerically the relation between the pump performances and the flow conditions in the rotating casing. The moderately larger dimensions of the collector make the pump head and the discharge high with the higher hydraulic efficiency. The flow in the casing is almost the forced vortex type whose velocity is in proportion to the radius but the core velocity is affected with the drag force of the stationary collector. Based upon the above results, the profile of the pitot tube type collector was optimized with the numerical simulation.
High power diode lasers for solid-state laser pumps
NASA Technical Reports Server (NTRS)
Linden, Kurt J.; Mcdonnell, Patrick N.
1994-01-01
The development and commercial application of high power diode laser arrays for use as solid-state laser pumps is described. Such solid-state laser pumps are significantly more efficient and reliable than conventional flash-lamps. This paper describes the design and fabrication of diode lasers emitting in the 780 - 900 nm spectral region, and discusses their performance and reliability. Typical measured performance parameters include electrical-to-optical power conversion efficiencies of 50 percent, narrow-band spectral emission of 2 to 3 nm FWHM, pulsed output power levels of 50 watts/bar with reliability values of over 2 billion shots to date (tests to be terminated after 10 billion shots), and reliable operation to pulse lengths of 1 ms. Pulse lengths up to 5 ms have been demonstrated at derated power levels, and CW performance at various power levels has been evaluated in a 'bar-in-groove' laser package. These high-power 1-cm stacked-bar arrays are now being manufactured for OEM use. Individual diode laser bars, ready for package-mounting by OEM customers, are being sold as commodity items. Commercial and medical applications of these laser arrays include solid-state laser pumping for metal-working, cutting, industrial measurement and control, ranging, wind-shear/atmospheric turbulence detection, X-ray generation, materials surface cleaning, microsurgery, ophthalmology, dermatology, and dental procedures.
Fujiwara, Mikio; Wakabayashi, Ryota; Sasaki, Masahide; Takeoka, Masahiro
2017-02-20
We report a wavelength division multiplexed time-bin entangled photon pair source in telecom wavelength using a 10 μm radius Si ring resonator. This compact resonator has two add ports and two drop ports. By pumping one add port by a continuous laser, we demonstrate an efficient generation of two-wavelength division multiplexed time-bin entangled photon pairs in the telecom C-band, which come out of one drop port, and are then split into the signal and idler photons via a wavelength filter. The resonator structure enhances four-wave mixing for pair generation. Moreover, we demonstrate the double-port pumping where two counter propagating pump lights are injected to generate entanglement from the two drop ports simultaneously. We successfully observe the highly entangled outputs from both two drop ports. Surprisingly, the count rate at each drop port is even increased by twice that of the single-port pumping. Possible mechanisms of this observation are discussed. Our technique allows for the efficient use of the Si ring resonator and widens its functionality for variety of applications.
Lee, Eun Gyung; Lee, Taekhee; Kim, Seung Won; Lee, Larry; Flemmer, Michael M.; Harper, Martin
2015-01-01
This second, and concluding, part of this study evaluated changes in sampling efficiency of respirable size-selective samplers due to air pulsations generated by the selected personal sampling pumps characterized in Part I (Lee E, Lee L, Möhlmann C et al. Evaluation of pump pulsation in respirable size-selective sampling: Part I. Pulsation measurements. Ann Occup Hyg 2013). Nine particle sizes of monodisperse ammonium fluorescein (from 1 to 9 μm mass median aerodynamic diameter) were generated individually by a vibrating orifice aerosol generator from dilute solutions of fluorescein in aqueous ammonia and then injected into an environmental chamber. To collect these particles, 10-mm nylon cyclones, also known as Dorr-Oliver (DO) cyclones, were used with five medium volumetric flow rate pumps. Those were the Apex IS, HFS513, GilAir5, Elite5, and Basic5 pumps, which were found in Part I to generate pulsations of 5% (the lowest), 25%, 30%, 56%, and 70% (the highest), respectively. GK2.69 cyclones were used with the Legacy [pump pulsation (PP) = 15%] and Elite12 (PP = 41%) pumps for collection at high flows. The DO cyclone was also used to evaluate changes in sampling efficiency due to pulse shape. The HFS513 pump, which generates a more complex pulse shape, was compared to a single sine wave fluctuation generated by a piston. The luminescent intensity of the fluorescein extracted from each sample was measured with a luminescence spectrometer. Sampling efficiencies were obtained by dividing the intensity of the fluorescein extracted from the filter placed in a cyclone with the intensity obtained from the filter used with a sharp-edged reference sampler. Then, sampling efficiency curves were generated using a sigmoid function with three parameters and each sampling efficiency curve was compared to that of the reference cyclone by constructing bias maps. In general, no change in sampling efficiency (bias under ±10%) was observed until pulsations exceeded 25% for the DO cyclone. However, for three models of pumps producing 30%, 56%, and 70% pulsations, substantial changes were confirmed. The GK2.69 cyclone showed a similar pattern to that of the DO cyclone, i.e. no change in sampling efficiency for the Legacy producing 15% pulsation and a substantial change for the Elite12 producing 41% pulsation. Pulse shape did not cause any change in sampling efficiency when compared to the single sine wave. The findings suggest that 25% pulsation at the inlet of the cyclone as measured by this test can be acceptable for the respirable particle collection. If this test is used in place of that currently in European standards (EN 1232–1997 and EN 12919-1999) or is used in any International Organization for Standardization standard, then a 25% pulsation criterion could be adopted. This work suggests that a 10% criterion as currently specified in the European standards for testing may be overly restrictive and not able to be met by many pumps on the market. Further work is recommended to determine which criterion would be applicable to this test if it is to be retained in its current form. PMID:24064963
Lee, Eun Gyung; Lee, Taekhee; Kim, Seung Won; Lee, Larry; Flemmer, Michael M; Harper, Martin
2014-01-01
This second, and concluding, part of this study evaluated changes in sampling efficiency of respirable size-selective samplers due to air pulsations generated by the selected personal sampling pumps characterized in Part I (Lee E, Lee L, Möhlmann C et al. Evaluation of pump pulsation in respirable size-selective sampling: Part I. Pulsation measurements. Ann Occup Hyg 2013). Nine particle sizes of monodisperse ammonium fluorescein (from 1 to 9 μm mass median aerodynamic diameter) were generated individually by a vibrating orifice aerosol generator from dilute solutions of fluorescein in aqueous ammonia and then injected into an environmental chamber. To collect these particles, 10-mm nylon cyclones, also known as Dorr-Oliver (DO) cyclones, were used with five medium volumetric flow rate pumps. Those were the Apex IS, HFS513, GilAir5, Elite5, and Basic5 pumps, which were found in Part I to generate pulsations of 5% (the lowest), 25%, 30%, 56%, and 70% (the highest), respectively. GK2.69 cyclones were used with the Legacy [pump pulsation (PP) = 15%] and Elite12 (PP = 41%) pumps for collection at high flows. The DO cyclone was also used to evaluate changes in sampling efficiency due to pulse shape. The HFS513 pump, which generates a more complex pulse shape, was compared to a single sine wave fluctuation generated by a piston. The luminescent intensity of the fluorescein extracted from each sample was measured with a luminescence spectrometer. Sampling efficiencies were obtained by dividing the intensity of the fluorescein extracted from the filter placed in a cyclone with the intensity obtained from the filter used with a sharp-edged reference sampler. Then, sampling efficiency curves were generated using a sigmoid function with three parameters and each sampling efficiency curve was compared to that of the reference cyclone by constructing bias maps. In general, no change in sampling efficiency (bias under ±10%) was observed until pulsations exceeded 25% for the DO cyclone. However, for three models of pumps producing 30%, 56%, and 70% pulsations, substantial changes were confirmed. The GK2.69 cyclone showed a similar pattern to that of the DO cyclone, i.e. no change in sampling efficiency for the Legacy producing 15% pulsation and a substantial change for the Elite12 producing 41% pulsation. Pulse shape did not cause any change in sampling efficiency when compared to the single sine wave. The findings suggest that 25% pulsation at the inlet of the cyclone as measured by this test can be acceptable for the respirable particle collection. If this test is used in place of that currently in European standards (EN 1232-1997 and EN 12919-1999) or is used in any International Organization for Standardization standard, then a 25% pulsation criterion could be adopted. This work suggests that a 10% criterion as currently specified in the European standards for testing may be overly restrictive and not able to be met by many pumps on the market. Further work is recommended to determine which criterion would be applicable to this test if it is to be retained in its current form.
... or in combination with other medications to treat high blood pressure in adults and children 6 years of age ... smoothly and the heart to pump more efficiently.High blood pressure is a common condition and when not treated, ...
... or in combination with other medications to treat high blood pressure. Candesartan is also used alone or in combination ... smoothly and the heart to pump more efficiently.High blood pressure is a common condition, and when not treated ...
... or in combination with other medications to treat high blood pressure. Telmisartan is also used to decrease the chance ... smoothly and the heart to pump more efficiently.High blood pressure is a common condition and when not treated, ...
... or in combination with other medications to treat high blood pressure. Eprosartan is in a class of medications called ... smoothly and the heart to pump more efficiently.High blood pressure is a common condition, and when not treated ...
Research on solar pumped liquid lasers
NASA Technical Reports Server (NTRS)
Schneider, R. T.; Kurzweg, U. H.; Cox, J. D.; Weinstein, N. H.
1983-01-01
A solar pumped liquid laser that can be scaled up to high power (10Mw CW) for space applications was developed. Liquid lasers have the inherent advantage over gases in that they provide much higher lasant densities and thus high power densities. Liquids also have inherent advantages over solids in that they have much higher damage thresholds and are much cheaper to produce for large scale applications. Among the liquid laser media that are potential candidates for solar pumping, the POC13:Nd(3+):ZrC14 liquid was chosen for its high intrinsic efficiency as well as its relatively good stability against decomposition due to protic contamination. The development and testing of the laser liquid and the development of a large solar concentrator to pump the laser was emphasized. The procedure to manufacture the laser liquid must include diagnostic tests of the solvent purity (from protic contamination) at various stages in the production process.
Microgravity heat pump for space station thermal management.
Domitrovic, R E; Chen, F C; Mei, V C; Spezia, A L
2003-01-01
A highly efficient recuperative vapor compression heat pump was developed and tested for its ability to operate independent of orientation with respect to gravity while maximizing temperature lift. The objective of such a heat pump is to increase the temperature of, and thus reduce the size of, the radiative heat rejection panels on spacecrafts such as the International Space Station. Heat pump operation under microgravity was approximated by gravitational-independent experiments. Test evaluations include functionality, efficiency, and temperature lift. Commercially available components were used to minimize costs of new hardware development. Testing was completed on two heat pump design iterations--LBU-I and LBU--II, for a variety of operating conditions under the variation of several system parameters, including: orientation, evaporator water inlet temperature (EWIT), condenser water inlet temperature (CWIT), and compressor speed. The LBU-I system employed an ac motor, belt-driven scroll compressor, and tube-in-tube heat exchangers. The LBU-II system used a direct-drive AC motor compressor assembly and plate heat exchangers. The LBU-II system in general outperformed the LBU-I system on all accounts. Results are presented for all systems, showing particular attention to those states that perform with a COP of 4.5 +/- 10% and can maintain a temperature lift of 55 degrees F (30.6 degrees C) +/- 10%. A calculation of potential radiator area reduction shows that points with maximum temperature lift give the greatest potential for reduction, and that area reduction is a function of heat pump efficiency and a stronger function of temperature lift.
NASA Astrophysics Data System (ADS)
De Vido, M.; Ertel, K.; Mason, P. D.; Banerjee, S.; Phillips, P. J.; Smith, J. M.; Butcher, T. J.; Chekhlov, O.; Divoky, M.; Pilar, J.; Hooker, C.; Shaikh, W.; Lucianetti, A.; Hernandez-Gomez, C.; Mocek, T.; Edwards, C.; Collier, J. L.
2017-02-01
In this paper, we review the development, at the STFC's Central Laser Facility (CLF), of high energy, high repetition rate diode-pumped solid-state laser (DPSSL) systems based on cryogenically-cooled multi-slab ceramic Yb:YAG. Up to date, two systems have been completed, namely the DiPOLE prototype and the DiPOLE100 system. The DiPOLE prototype has demonstrated amplification of nanosecond pulses in excess of 10 J at 10 Hz repetition rate with an opticalto- optical efficiency of 22%. The larger scale DiPOLE100 system, designed to deliver 100J temporally-shaped nanosecond pulses at 10 Hz repetition rate, has been developed at the CLF for the HiLASE project in the Czech Republic. Recent experiments conducted on the DiPOLE100 system demonstrated the energy scalability of the DiPOLE concept to the 100 J pulse energy level. Furthermore, second harmonic generation experiments carried out on the DiPOLE prototype confirmed the suitability of DiPOLE-based systems for pumping high repetition rate PW-class laser systems based on Ti:sapphire or optical parametric chirped pulse amplification (OPCPA) technology.
Superconducting bearings for a LHe transfer pump
NASA Astrophysics Data System (ADS)
Kloeppel, S.; Muehsig, C.; Funke, T.; Haberstroh, C.; Hesse, U.; Lindackers, D.; Zielke, S.; Sass, P.; Schoendube, R.
2017-12-01
Superconducting bearings are used in a number of applications for high speed, low loss suspension. Most of these applications suspend a warm shaft and thus require continuous cooling, which leads to additional power consumption. Therefore, it seems advantageous to use these bearings in systems that are inherently cold. One respective application is a submerged pump for the transfer of liquid helium into mobile dewars. Centrifugal pumps require tight sealing clearances, especially for low viscosity fluids and small sizes. This paper covers the design and qualification of superconducting YBCO bearings for a laboratory sized liquid helium transfer pump. Emphasis is given to the axial positioning, which strongly influences the achievable volumetric efficiency.
Multifrequency Raman amplifiers
NASA Astrophysics Data System (ADS)
Barth, Ido; Fisch, Nathaniel J.
2018-03-01
In its usual implementation, the Raman amplifier features only one pump carrier frequency. However, pulses with well-separated frequencies can also be Raman amplified while compressed in time. Amplification with frequency-separated pumps is shown to hold even in the highly nonlinear, pump-depletion regime, as derived through a fluid model, and demonstrated via particle-in-cell simulations. The resulting efficiency is similar to single-frequency amplifiers, but, due to the beat-wave waveform of both the pump lasers and the amplified seed pulses, these amplifiers feature higher seed intensities with a shorter spike duration. Advantageously, these amplifiers also suffer less noise backscattering, because the total fluence is split between the different spectral components.
Ter-Gabrielyan, N; Fromzel, V; Mu, X; Meissner, H; Dubinskii, M
2013-07-15
We demonstrated the continuous-wave operation of a resonantly pumped Er:YAG single-mode channel waveguide laser with diffraction-limited output and nearly quantum defect limited efficiency. Using a longitudinally core-pumped, nearly square (61.2 μm×61.6 μm) Er3+:YAG waveguide embedded in an undoped YAG cladding, an output power of 9.1 W with a slope efficiency of 92.8% (versus absorbed pump power) has been obtained. To the best of our knowledge, this optical-to-optical efficiency is the highest ever demonstrated for a channel waveguide laser.
High repetition frequency PPMgOLN mid-infrared optical parametric oscillator
NASA Astrophysics Data System (ADS)
Liu, J.; Liu, Q.; Yan, X.; Chen, H.; Gong, M.
2010-09-01
A mid-infrared optical parametric oscillator (OPO) with the idler wavelengths of 3591 nm, 3384 nm, and 3164 nm at the repetition of 76.8 kHz is reported, and a high repetition frequency acousto-optic Q-switched Nd:YVO4 laser is used as the pump source. The OPO is designed as an external non-colinear single-resonator optical parametric oscillator. When the power of the pump light is 25.1 W, the idler with the wavelength of 3164 nm and the power of 4.3 W is generated. The corresponding signal light is 1603 nm with the power of 3.1 W. The efficiency from 1064 nm to 3160 nm can reach as high as 17.1%, and the efficiency of the OPO is 29.5%.
Spectroscopic and laser characterization of emerald. Final report, April 1983-April 1986
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lai, S.T.; Chai, B.H.
1986-08-01
The spectroscopic characteristics and laser properties of emerald were investigated. The laser measurements showed that the emerald-laser tuning range was 720-842 nm and exhibited a high gain and high efficiency in the 760-790 nm range. Under a crystal growth development program, the laser loss was reduced from 11%/cm to 0.4%/cm. The limiting factor in the laser efficiency is the excited-state absorption (ESA). The ESA was measured by two methods: a laser-pumped single-pass gain method, which is generally applicable to all tunable laser materials, and a laser-pumped laser method. A 76% laser quantum yield was obtained in high-optical-quality emerald. The maximummore » yield is estimated to be 83%, based on the ESA measurements.« less
NASA Astrophysics Data System (ADS)
Wetter, Niklaus U.; Bereczki, Allan; Paes, João. Pedro Fonseca
2018-02-01
Nd:YLiF4 is the gain material of choice whenever outstanding beam quality or a birefringent gain material is necessary such as in certain applications for terahertz radiation or dual-frequency mode-locking. However, for high power CW applications the material is hampered by a low thermal fracture threshold. This problem can be mitigated by special 2D pump set-ups or by keeping the quantum defect to a minimum. Direct pumping into the upper laser level of Nd:YLiF4 is usually performed at 880 nm. For quasi-three level laser emission at 908 nm, direct pumping at this wavelength provides a high quantum defect of 0.97, which allows for very high CW pump powers. Although the direct pumping transition to the upper laser state at 872 nm has a slightly smaller quantum defect of 0.96, its pump absorption cross section along the c-axis is 50% higher than at 880 nm, leading to a higher absorption efficiency. In this work we explore, for the first time to our knowledge, 908 nm lasing under 872 nm diode pumping and compare the results with 880 nm pumping for quasicw and cw operation. By inserting a KGW crystal in the cavity, Raman lines at 990 nm and 972 nm were obtained for the first time from a directly pumped 908 nm Nd:YLF fundamental laser for both quasi-cw and cw conditions.
Norris, G; McConnell, G
2010-03-01
A novel bi-directional pump geometry that nonlinearly increases the nonlinear optical conversion efficiency of a synchronously pumped optical parametric oscillator (OPO) is reported. This bi-directional pumping method synchronizes the circulating signal pulse with two counter-propagating pump pulses within a linear OPO resonator. Through this pump scheme, an increase in nonlinear optical conversion efficiency of 22% was achieved at the signal wavelength, corresponding to a 95% overall increase in average power. Given an almost unchanged measured pulse duration of 260 fs under optimal performance conditions, this related to a signal wavelength peak power output of 18.8 kW, compared with 10 kW using the traditional single-pass geometry. In this study, a total effective peak intensity pump-field of 7.11 GW/cm(2) (corresponding to 3.55 GW/cm(2) from each pump beam) was applied to a 3 mm long periodically poled lithium niobate crystal, which had a damage threshold intensity of 4 GW/cm(2), without impairing crystal integrity. We therefore prove the application of this novel pump geometry provides opportunities for power-scaling of synchronously pumped OPO systems together with enhanced nonlinear conversion efficiency through relaxed damage threshold intensity conditions.
DOE Zero Energy Ready Home Case Study: Amaris Homes, Afton Model
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pacific Northwest National Laboratory
Amaris Homes built this 3,734-ft2 home in Afton, Minnesota, to the performance criteria of the DOE Zero Energy Ready Home (ZERH) program. A high-efficiency gas boiler provides hot water for the zoned radiant floor system as well as for faucets and showers. A high-efficiency heat pump provides zoned cooling.
DiPOLE: a 10 J, 10 Hz cryogenic gas cooled multi-slab nanosecond Yb:YAG laser.
Banerjee, Saumyabrata; Ertel, Klaus; Mason, Paul D; Phillips, P Jonathan; De Vido, Mariastefania; Smith, Jodie M; Butcher, Thomas J; Hernandez-Gomez, Cristina; Greenhalgh, R Justin S; Collier, John L
2015-07-27
The Diode Pumped Optical Laser for Experiments (DiPOLE) project at the Central Laser Facility aims to develop a scalable, efficient high pulse energy diode pumped laser amplifier system based on cryogenic gas cooled, multi-slab ceramic Yb:YAG technology. We present recent results obtained from a scaled down prototype laser system designed for operation at 10 Hz pulse repetition rate. At 140 K, the system generated 10.8 J of energy in a 10 ns pulse at 1029.5 nm when pumped by 48 J of diode energy at 940 nm, corresponding to an optical to optical conversion efficiency of 22.5%. To our knowledge, this represents the highest pulse energy obtained from a cryo cooled Yb laser to date and the highest efficiency achieved by a multi-Joule diode pumped solid state laser system. Additionally, we demonstrated shot-to-shot energy stability of 0.85% rms for the system operated at 7 J, 10 Hz during several runs lasting up to 6 hours, with more than 50 hours in total. We also demonstrated pulse shaping capability and report on beam, wavefront and focal spot quality.
Dual-stroke heat pump field performance
NASA Astrophysics Data System (ADS)
Veyo, S. E.
1984-11-01
Two nearly identical proprototype systems, each employing a unique dual-stroke compressor, were built and tested. One was installed in an occupied residence in Jeannette, Pa. It has provided the heating and cooling required from that time to the present. The system has functioned without failure of any prototypical advanced components, although early field experience did suffer from deficiencies in the software for the breadboard micro processor control system. Analysis of field performance data indicates a heating performance factor (HSPF) of 8.13 Stu/Wa, and a cooling energy efficiency (SEER) of 8.35 Scu/Wh. Data indicate that the beat pump is oversized for the test house since the observed lower balance point is 3 F whereas 17 F La optimum. Oversizing coupled with the use of resistance heat ot maintain delivered air temperature warmer than 90 F results in the consumption of more resistance heat than expected, more unit cycling, and therefore lower than expected energy efficiency. Our analysis indicates that with optimal mixing the dual stroke heat pump will yield as HSFF 30% better than a single capacity heat pump representative of high efficiency units in the market place today for the observed weather profile.
Optically (solar) pumped oxygen-iodine lasers
NASA Astrophysics Data System (ADS)
Danilov, O. B.; Zhevlakov, A. P.; Yur'ev, M. S.
2014-07-01
We present the results of theoretical and experimental studies demonstrating the possibility of developing an oxygen-iodine laser (OIL) with direct optical pumping of molecular oxygen involving inter-molecular interaction with charge transfer from donor molecule (buffer gas) to acceptor molecule (oxygen). This interaction lifts degeneracy of the lower energy states of molecular oxygen and increases its absorption cross section in the visible spectral region and the UV Herzberg band, where high quantum yield of singlet oxygen is achieved (QY ˜ 1 and QY ˜ 2, respectively) at the same time. A pulse-periodic optical pump sources with pulse energy of ˜50 kJ, pulse duration of ˜25 μs, and repetition rate of ˜10 Hz, which are synchronized with the mechanism of singlet oxygen generation, are developed. This allows implementation of a pulse-periodic oxygen-iodine laser with an efficiency of ˜25%, optical efficiency of ˜40%, and parameter L/ T ˜ 1/1.5, where T is the thermal energy released in the laser active medium upon generation of energy L. It is demonstrated that, under direct solar pumping of molecular oxygen, the efficiency parameter of the OIL can reach L/ T ˜ 1/0.8 in a wide range of scaling factors.
Code of Federal Regulations, 2013 CFR
2013-01-01
... efficiency of commercial air conditioners and heat pumps. 431.96 Section 431.96 Energy DEPARTMENT OF ENERGY... Air Conditioners and Heat Pumps Test Procedures § 431.96 Uniform test method for the measurement of energy efficiency of commercial air conditioners and heat pumps. (a) Scope. This section contains test...
Code of Federal Regulations, 2014 CFR
2014-01-01
... efficiency of commercial air conditioners and heat pumps. 431.96 Section 431.96 Energy DEPARTMENT OF ENERGY... Air Conditioners and Heat Pumps Test Procedures § 431.96 Uniform test method for the measurement of energy efficiency of commercial air conditioners and heat pumps. (a) Scope. This section contains test...
NASA Astrophysics Data System (ADS)
Tabirian, Anna Murazian
This dissertation describes a series of experiments and theoretical studies, which led to the development of two new solid state laser systems: efficient, room temperature mid-infrared solid state laser at 3.9 μm in Ho 3+ doped BaY2F8 and visible Pr:LiYF4 laser at 640 mn for holography. The 3.9 μm laser wavelength matches the peak of mid-IR atmospheric transmission window, which makes it very important for multiple applications such as remote sensing, imaging, IR countermeasures, eye-safe lidars and environmental agent detection. We present the results of spectroscopic evaluations and numerical modeling of energy transfer processes between rare earth ions of Ho3+ doped in two host laser materials: BaY2F8 and LiYF 4. The 3.9 μm laser is based on transition with upper laser lifetime considerably shorter than lower level lifetime, which in general leads to self-terminating laser action in the cw mode or at high repetition rates. Therefore, three different pumping and lasing schemes, that could allow overcoming these limitations have been suggested and studied. First, cascade laser action at 1.4 μm and 3.9 μm was achieved with low thresholds and near-theoretical quantum efficiency in Ho3+ doped BaY2F8 pumped at 532 nm by a Q- switched frequency doubled Nd:YAG laser. Next, the feasibility of achieving 3.9 μm laser with cw resonant cascade pumping at 750 mn by a Ti:Sapphire laser was studied. New energy transfer process, such as upconversion from terminal level of the 3.9 μm laser was observed in high concentration Ho3+ doped BaY2F 8. Finally, we proposed to use high-energy flashlamp pumped tunable Cr:LiSAF laser operating in long pulse regime for the direct pumping of the upper level of the 3.9 μm laser. Pulsed laser oscillation at 3.9 μm is demonstrated in Ho3+ doped BaY2F8 with low threshold of 3 mJ and a slope efficiency of 14.5% with maximal energy of 30 mJ. The second part of the thesis describes the design and the development of the visible Pr:LiYF4 laser for holography at 640 nm resonantly pumped by the frequency-doubled flashlamp pumped tunable Cr:LiSAF laser at 444 nm.
Laser demonstration and performance characterization of optically pumped Alkali Laser systems
NASA Astrophysics Data System (ADS)
Sulham, Clifford V.
Diode Pumped Alkali Lasers (DPALs) offer a promising approach for high power lasers in military applications that will not suffer from the long logistical trails of chemical lasers or the thermal management issues of diode pumped solid state lasers. This research focuses on characterizing a DPAL-type system to gain a better understanding of using this type of laser as a directed energy weapon. A rubidium laser operating at 795 nm is optically pumped by a pulsed titanium sapphire laser to investigate the dynamics of DPALs at pump intensities between 1.3 and 45 kW/cm2. Linear scaling as high as 32 times threshold is observed, with no evidence of second order kinetics. Comparison of laser characteristics with a quasi-two level analytic model suggests performance near the ideal steady-state limit, disregarding the mode mis-match. Additionally, the peak power scales linearly as high as 1 kW, suggesting aperture scaling to a few cm2 is sufficient to achieve tactical level laser powers. The temporal dynamics of the 100 ns pump and rubidium laser pulses are presented, and the continually evolving laser efficiency provides insight into the bottlenecking of the rubidium atoms in the 2P3/2 state. Lastly, multiple excited states of rubidium and cesium were accessed through two photon absorption in the red, yielding a blue and an IR photon through amplified stimulated emission. Threshold is modest at 0.3 mJ/pulse, and slope efficiencies increase dramatically with alkali concentrations and peak at 0.4%, with considerable opportunity for improvement. This versatile system might find applications for IR countermeasures or underwater communications.
Seasonal copepod lipid pump promotes carbon sequestration in the deep North Atlantic
Jónasdóttir, Sigrún Huld; Visser, André W.; Richardson, Katherine; Heath, Michael R.
2015-01-01
Estimates of carbon flux to the deep oceans are essential for our understanding of global carbon budgets. Sinking of detrital material (“biological pump”) is usually thought to be the main biological component of this flux. Here, we identify an additional biological mechanism, the seasonal “lipid pump,” which is highly efficient at sequestering carbon into the deep ocean. It involves the vertical transport and metabolism of carbon rich lipids by overwintering zooplankton. We show that one species, the copepod Calanus finmarchicus overwintering in the North Atlantic, sequesters an amount of carbon equivalent to the sinking flux of detrital material. The efficiency of the lipid pump derives from a near-complete decoupling between nutrient and carbon cycling—a “lipid shunt,” and its direct transport of carbon through the mesopelagic zone to below the permanent thermocline with very little attenuation. Inclusion of the lipid pump almost doubles the previous estimates of deep-ocean carbon sequestration by biological processes in the North Atlantic. PMID:26338976
Laser diode and pumped Cr:Yag passively Q-switched yellow-green laser at 543 nm
NASA Astrophysics Data System (ADS)
Yao, Y.; Ling, Zhao; Li, B.; Qu, D. P.; Zhou, K.; Zhang, Y. B.; Zhao, Y.; Zheng, Q.
2013-03-01
Efficient and compact yellow green pulsed laser output at 543 nm is generated by frequency doubling of a passively Q-switched end diode-pumped Nd:YVO4 laser at 1086 nm under the condition of sup-pressing the higher gain transition near 1064 nm. With 15 W of diode pump power and the frequency doubling crystal LBO, as high as 1.58 W output power at 543 nm is achieved. The optical to optical conversion efficiency from the corresponding Q-switched fundamental output to the yellow green output is 49%. The peak power of the Q-switched yellow green pulse laser is up to 30 kW with 5 ns pulse duration. The output power stability over 8 hours is better than 2.56% at the maximum output power. To the best of our knowledge, this is the highest watt-level laser at 543 nm generated by frequency doubling of a passively Q-switched end diode pumped Nd:YVO4 laser at 1086 nm.
Improving Reliability of High Power Quasi-CW Laser Diode Arrays for Pumping Solid State Lasers
NASA Technical Reports Server (NTRS)
Amzajerdian, Farzin; Meadows, Byron L.; Baker, Nathaniel R.; Barnes, Bruce W.; Baggott, Renee S.; Lockard, George E.; Singh, Upendra N.; Kavaya, Michael J.
2005-01-01
Most Lidar applications rely on moderate to high power solid state lasers to generate the required transmitted pulses. However, the reliability of solid state lasers, which can operate autonomously over long periods, is constrained by their laser diode pump arrays. Thermal cycling of the active regions is considered the primary reason for rapid degradation of the quasi-CW high power laser diode arrays, and the excessive temperature rise is the leading suspect in premature failure. The thermal issues of laser diode arrays are even more drastic for 2-micron solid state lasers which require considerably longer pump pulses compared to the more commonly used pump arrays for 1-micron lasers. This paper describes several advanced packaging techniques being employed for more efficient heat removal from the active regions of the laser diode bars. Experimental results for several high power laser diode array devices will be reported and their performance when operated at long pulsewidths of about 1msec will be described.
Technical advantages of disk laser technology in short and ultrashort pulse processes
NASA Astrophysics Data System (ADS)
Graham, P.; Stollhof, J.; Weiler, S.; Massa, S.; Faisst, B.; Denney, P.; Gounaris, E.
2011-03-01
This paper demonstrates that disk-laser technology introduces advantages that increase efficiency and allows for high productivity in micro-processing in both the nanosecond (ns) and picosecond (ps) regimes. Some technical advantages of disk technology include not requiring good pump beam quality or special wavelengths for pumping of the disk, high optical efficiencies, no thermal lensing effects and a possible scaling of output power without an increase of pump beam quality. With cavity-dumping, the pulse duration of the disk laser can be specified between 30 and hundreds of nanoseconds, but is independent of frequency, thus maintaining process stability. TRUMPF uses this technology in the 750 watts average power laser TruMicro 7050. High intensity, along with fluency, is important for high ablation rates in thinfilm removal. Thus, these ns lasers show high removal rates, above 60 cm2/s, in thin-film solar cell production. In addition, recent results in paint-stripping of aerospace material prove the green credentials and high processing rates inherent with this technology as it can potentially replace toxic chemical processes. The ps disk technology meanwhile is used in, for example, scribing of solar cells, wafer dicing and drilling injector nozzles, as the pulse duration is short enough to minimize heat input in the laser-matter interaction. In the TruMicro Series 5000, the multi-pass regenerative amplifier stage combines high optical-optical efficiencies together with excellent output beam quality for pulse durations of only 6 ps and high pulse energies of up to 0.25 mJ.
A regenerative elastocaloric heat pump
NASA Astrophysics Data System (ADS)
Tušek, Jaka; Engelbrecht, Kurt; Eriksen, Dan; Dall'Olio, Stefano; Tušek, Janez; Pryds, Nini
2016-10-01
A large fraction of global energy use is for refrigeration and air-conditioning, which could be decarbonized if efficient renewable energy technologies could be found. Vapour-compression technology remains the most widely used system to move heat up the temperature scale after more than 100 years; however, caloric-based technologies (those using the magnetocaloric, electrocaloric, barocaloric or elastocaloric effect) have recently shown a significant potential as alternatives to replace this technology due to high efficiency and the use of green solid-state refrigerants. Here, we report a regenerative elastocaloric heat pump that exhibits a temperature span of 15.3 K on the water side with a corresponding specific heating power up to 800 W kg-1 and maximum COP (coefficient-of-performance) values of up to 7. The efficiency and specific heating power of this device exceeds those of other devices based on caloric effects. These results open up the possibility of using the elastocaloric effect in various cooling and heat-pumping applications.
NASA Astrophysics Data System (ADS)
Tian, Ying; Xu, Rongrong; Hu, Lili; Zhang, Junjie
2012-04-01
The fluorescence properties of 2.7 μm emission as well as near infrared emissions in Er3+/Nd3+ doped fluorophosphate glasses are investigated under 800 and 980 nm excitation. The fluorescence dynamics and energy transfer processes between Er and Nd ions in different pumping schemes are reported. Three Judd-Ofelt intensity parameters, energy transfer microparameters, and efficiency have been determined using the Judd-Ofelt and Förster-Dexter theories. The calculated energy transfer efficiency of the Er3+:4I13/2 level to the Nd3+:4I15/2 level is as high as 83.91%. The results indicate that Nd3+ may be an efficient sensitizer for Er3+ to obtain mid-infrared emission and the more suitable pumping scheme of 2.7 μm laser applications for Er3+/Nd3+ doped fluorophosphate glass is 980 nm excitation.
Grossman, Gershon; Perez-Blanco, Horacio
1984-01-01
An improvement in an absorption heat pump cycle is obtained by adding adiabatic absorption and desorption steps to the absorber and desorber of the system. The adiabatic processes make it possible to obtain the highest temperature in the absorber before any heat is removed from it and the lowest temperature in the desorber before heat is added to it, allowing for efficient utilization of the thermodynamic availability of the heat supply stream. The improved system can operate with a larger difference between high and low working fluid concentrations, less circulation losses, and more efficient heat exchange than a conventional system.
Highly efficient continuous-wave laser operation of LD-pumped Nd,Gd:CaF2 and Nd,Y:CaF2 crystals
NASA Astrophysics Data System (ADS)
Pang, Siyuan; Ma, Fengkai; Yu, Hao; Qian, Xiaobo; Jiang, Dapeng; Wu, Yongjing; Zhang, Feng; Liu, Jie; Xu, Jiayue; Su, Liangbi
2018-05-01
Spectroscopic properties of Nd:CaF2 crystals are investigated. The photoluminescence intensity in the near infrared region is drastically enhanced by co-doping Gd3+ ions and Y3+ in Nd:CaF2 crystals. Preliminary laser experiments are carried out with 0.3%Nd,5%Gd:CaF2 and 0.3%Nd,5%Y:CaF2 crystals under laser diode pumping; true continuous wave laser operation is achieved with slope efficiencies of 42% and 39%, respectively, and the maximum output power reaches 1.188 W.
Grossman, G.; Perez-Blanco, H.
1983-06-16
An improvement in an absorption heat pump cycle is obtained by adding adiabatic absorption and desorption steps to the absorber and desorber of the system. The adiabatic processes make it possible to obtain the highest temperature in the absorber before any heat is removed from it and the lowest temperature in the desorber before heat is added to it, allowing for efficient utilization of the thermodynamic availability of the heat supply stream. The improved system can operate with a larger difference between high and low working fluid concentrations, less circulation losses, and more efficient heat exchange than a conventional system.
75 W 40% efficiency single-mode all-fiber erbium-doped laser cladding pumped at 976 nm.
Kotov, L V; Likhachev, M E; Bubnov, M M; Medvedkov, O I; Yashkov, M V; Guryanov, A N; Lhermite, J; Février, S; Cormier, E
2013-07-01
Optimization of Yb-free Er-doped fiber for lasers and amplifiers cladding pumped at 976 nm was performed in this Letter. The single-mode fiber design includes an increased core diameter of 34 μm and properly chosen erbium and co-dopant concentrations. We demonstrate an all-fiber high power laser and power amplifier based on this fiber with the record slope efficiency of 40%. To the best of our knowledge, the achieved output power of 75 W is the highest power reported for such lasers.
Femtosecond Laser--Pumped Source of Entangled Photons for Quantum Cryptography Applications
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pan, D.; Donaldson, W.; Sobolewski, R.
2007-07-31
We present an experimental setup for generation of entangled-photon pairs via spontaneous parametric down-conversion, based on the femtosecond-pulsed laser. Our entangled-photon source utilizes a 76-MHz-repetition-rate, 100-fs-pulse-width, mode-locked, ultrafast femtosecond laser, which can produce, on average, more photon pairs than a cw laser of an equal pump power. The resulting entangled pairs are counted by a pair of high-quantum-efficiency, single-photon, silicon avalanche photodiodes. Our apparatus is intended as an efficient source/receiver system for the quantum communications and quantum cryptography applications.
UV diode-pumped solid state laser for medical applications
NASA Astrophysics Data System (ADS)
Apollonov, Victor V.; Konstantinov, K. V.; Sirotkin, A. A.
1999-07-01
A compact, solid-state, high-efficiency, and safe UV laser medical system with optical fiber output was created for treatment of destructive forms of pulmonary tuberculosis. A frequency-quadruped quasi-CW Nd:YVO4 laser system pumped by laser-diode array is investigated with various resonator configurations. A longitudinal end-pumping scheme was used in a compact acousto-optical Q-switched laser for producing stable pulses of UV radiation at the repetition frequency 10-20 kHz and the duration 7-10 ns with the fiber-guide output power exceeding 10 mW.
NASA Astrophysics Data System (ADS)
Boitel, G.; Fedala, D.; Myon, N.
2016-11-01
Relevant industrial standards or customer's specifications could strictly forbid any device adjusting the axial rotor/stator position, so that tip clearance between semi-open impeller and casing might become a result of the pump machining tolerances and assembling process, leading to big tip clearance variations compared to its nominal value. Consequently, large disparities of global performances (head, power, efficiency) and axial loads are observed with high risk of both specifications noncompliance and bearing damages. This work aims at quantifying these variations by taking into account tip clearance value and pump specific speed. Computational Fluid Dynamics is used to investigate this phenomenon by means of steady simulations led on a semi-open centrifugal pump numerical model including secondary flows, based on a k-omega SST turbulence model. Four different specific speed pump sizes are simulated (from 8 to 50, SI units), with three tip clearances for each size on a wide flow range (from 40% to 120% of the best efficiency point). The numerical results clearly show that head, power and efficiency increase as the tip clearance decreases for the whole flow range. This effect is more significant when the specific speed is low. Meanwhile, the resulting axial thrust on the impeller is very sensitive to the tip clearance and can even lead to direction inversion.
Stimulated Raman scattering in AsSe2-As2S5 microstructured optical fiber
NASA Astrophysics Data System (ADS)
Gao, Weiqing; Ni, Chenquan; Xu, Qiang; Li, Xue; Chen, Xiangcai; Chen, Li; Wen, Zhenqiang; Cheng, Tonglei; Xue, Xiaojie; Suzuki, Takenobu; Ohishi, Yasutake
2017-02-01
We demonstrate the effects of stimulated Raman scattering (SRS) in the all-solid-core chalcogenide microstructured optical fibers (MOFs) with AsSe2 core and As2S5 cladding, which are fabricated by the rod-in-tube drawing technique. The core diameters of the MOFs are 6.3 (Fiber I), 3.0 (Fiber II), 2.6 (Fiber III) and 2.2 (Fiber IV) μm, respectively. The chromatic dispersion of the fundamental mode in Fibers I-IV is simulated by the full-vectorial mode solver technique. The first-order Stokes wave is investigated in the fibers with different core diameters pumped by the picosecond pulses at 1958 nm. In Fiber I, no obvious Raman peak is observed with the pump power increasing, because the effective nonlinearity is not high. In Fiber II, a Raman Stokes peak at 2065 nm begins to emerge at the pump power of 110 mW. The conversion efficiency is as weak as -36.6 dB at 150 mW pumping. In Fiber III, the first-order Raman peak at 2060 nm begins to emerge at 40 mW pumping. The conversion efficiency is -15.0 dB, which is 21.6 dB higher than that in Fiber II. In Fiber IV, the Stokes peak at 2070 nm begins to appear at 56 mW pumping. The maximum conversion efficiency of the first-order Stokes wave is obtained in the MOF with the core diameter of 2.6 μm. The evolution of the first-order Stokes wave with pump power and fiber length is investigated. This is the first demonstration of Raman effects in the AsSe2-As2S5 MOF, to the best of our knowledge.
Advanced thermal management of high-power quantum cascade laser arrays for infrared countermeasures
NASA Astrophysics Data System (ADS)
Barletta, Philip; Diehl, Laurent; North, Mark T.; Yang, Bao; Baldasaro, Nick; Temple, Dorota
2017-10-01
Next-generation infrared countermeasure (IRCM) systems call for compact and lightweight high-power laser sources. Specifically, optical output power of tens of Watts in the mid-wave infrared (MWIR) is desired. Monolithically fabricated arrays of quantum cascade lasers (QCLs) have the potential to meet these requirements. Single MWIR QCL emitters operating in continuous wave at room temperature have demonstrated multi-Watt power levels with wall-plug efficiency of up to 20%. However, tens of Watts of output power from an array of QCLs translates into the necessity of removing hundreds of Watts per cm2, a formidable thermal management challenge. A potential thermal solution for such high-power QCL arrays is active cooling based on high-performance thin-film thermoelectric coolers (TFTECs), in conjunction with pumped porous-media heat exchangers. The use of active cooling via TFTECs makes it possible to not only pump the heat away, but also to lower the QCL junction temperature, thus improving the wall-plug efficiency of the array. TFTECs have shown the ability to pump >250W/cm2 at ΔT=0K, which is 25 times greater than that typically seen in commercially available bulk thermoelectric devices.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 10 Energy 3 2011-01-01 2011-01-01 false Uniform test method for the measurement of energy efficiency of commercial heat pump water heaters. [Reserved] 431.107 Section 431.107 Energy DEPARTMENT OF....107 Uniform test method for the measurement of energy efficiency of commercial heat pump water heaters...
Code of Federal Regulations, 2013 CFR
2013-01-01
... 10 Energy 3 2013-01-01 2013-01-01 false Uniform test method for the measurement of energy efficiency of commercial heat pump water heaters. [Reserved] 431.107 Section 431.107 Energy DEPARTMENT OF....107 Uniform test method for the measurement of energy efficiency of commercial heat pump water heaters...
Code of Federal Regulations, 2014 CFR
2014-01-01
... 10 Energy 3 2014-01-01 2014-01-01 false Uniform test method for the measurement of energy efficiency of commercial heat pump water heaters. [Reserved] 431.107 Section 431.107 Energy DEPARTMENT OF....107 Uniform test method for the measurement of energy efficiency of commercial heat pump water heaters...
Frequency stabilization of diode-laser-pumped solid state lasers
NASA Technical Reports Server (NTRS)
Byer, Robert L.
1988-01-01
The goal of the NASA Sunlite program is to fly two diode-laser-pumped solid-state lasers on the space shuttle and while doing so to perform a measurement of their frequency stability and temporal coherence. These measurements will be made by combining the outputs of the two lasers on an optical radiation detector and spectrally analyzing the beat note. Diode-laser-pumped solid-state lasers have several characteristics that will make them useful in space borne experiments. First, this laser has high electrical efficiency. Second, it is of a technology that enables scaling to higher powers in the future. Third, the laser can be made extremely reliable, which is crucial for many space based applications. Fourth, they are frequency and amplitude stable and have high temporal coherence. Diode-laser-pumped solid-state lasers are inherently efficient. Recent results have shown 59 percent slope efficiency for a diode-laser-pumped solid-state laser. As for reliability, the laser proposed should be capable of continuous operation. This is possible because the diode lasers can be remote from the solid state gain medium by coupling through optical fibers. Diode lasers are constructed with optical detectors for monitoring their output power built into their mounting case. A computer can actively monitor the output of each diode laser. If it sees any variation in the output power that might indicate a problem, the computer can turn off that diode laser and turn on a backup diode laser. As for stability requirements, it is now generally believed that any laser can be stabilized if the laser has a frequency actuator capable of tuning the laser frequency as far as it is likely to drift in a measurement time.
100W high-brightness multi-emitter laser pump
NASA Astrophysics Data System (ADS)
Duesterberg, Richard; Xu, Lei; Skidmore, Jay A.; Guo, James; Cheng, Jane; Du, Jihua; Johnson, Brad; Vecht, David L.; Guerin, Nicolas; Huang, Benlih; Yin, Dongliang; Cheng, Peter; Raju, Reddy; Lee, Kong Weng; Cai, Jason; Rossin, Victor; Zucker, Erik P.
2011-03-01
We report results of a spatially-multiplexed broad area laser diode platform designed for efficient pumping of fiber lasers or direct-diode systems. Optical output power in excess of 100W from a 105μm core, 0.15NA fiber is demonstrated with high coupling efficiency. The compact form factor and low thermal resistance enable tight packing densities needed for kW-class fiber laser systems. Broad area laser diodes have been optimized to reduce near- and far-field performance and prevent blooming without sacrificing other electro-optic parameters. With proper lens optimization this produces ~5% increase in coupling / wall plug efficiency for our design. In addition to performance characteristics, an update on long term reliability testing of 9XX nm broad area laser diode is provided that continues to show no wear out under high acceleration. Under nominal operating conditions of 12W ex-facet power at 25C, the diode mean time to failure (MTTF) is forecast to be ~ 480 kh.
The Control of Welding Deformation of the Three-Section Arm of Placing Boom of HB48B Pump Truck
NASA Astrophysics Data System (ADS)
Wang, Zhi-ling
2018-02-01
The concrete pump truck is the construction equipment of conveying concrete with self contained base plate and distributing boom. It integrates the pump transport mechanism of the concrete pump, and the hydraulic roll-folding type distributing boom used to distribute materials, and the supporting mechanism into the automobile chassis, and it is the concrete conveying equipment with high efficient and the functions of driving, pumping, and distributing materials. The placing boom of the concrete pump truck is the main force member in the pump parts with bearing great pressure, and its stress condition is complex. Taking the HB48B placing boom as an example, this paper analyzes and studies the deformation produced by placing boom of pump truck, and then obtains some main factors affecting the welding deformation. Through the riveter “joint” size, we controlled the process parameters, post-welding processing, and other aspects. These measures had some practical significance to prevent, control, and reduce the deformation of welding.
High peak-power kilohertz laser system employing single-stage multi-pass amplification
Shan, Bing; Wang, Chun; Chang, Zenghu
2006-05-23
The present invention describes a technique for achieving high peak power output in a laser employing single-stage, multi-pass amplification. High gain is achieved by employing a very small "seed" beam diameter in gain medium, and maintaining the small beam diameter for multiple high-gain pre-amplification passes through a pumped gain medium, then leading the beam out of the amplifier cavity, changing the beam diameter and sending it back to the amplifier cavity for additional, high-power amplification passes through the gain medium. In these power amplification passes, the beam diameter in gain medium is increased and carefully matched to the pump laser's beam diameter for high efficiency extraction of energy from the pumped gain medium. A method of "grooming" the beam by means of a far-field spatial filter in the process of changing the beam size within the single-stage amplifier is also described.
Doping Optimization for High Efficiency in Semiconductor Diode Lasers and Amplifiers
2016-03-01
resistance 20 mΩ Ith Threshold current 350 mA Using this partial Taylor expansion in (32), the solution for the doping magnitude is C ≈ √ (2/L) I qAV0...2014. [3] M. Kanskar, T. Earles , T. Goodnough, E. Stiers, D. Botez, and L. J. Mawst, “High power conversion efficiency Al-free diode lasers for pumping
Diode-side-pumped 131 W, 1319 nm single-wavelength cw Nd:YAG laser.
Haiyong, Zhu; Ge, Zhang; Chenghui, Huang; Yong, Wei; Lingxiong, Huang; Jing, Chen; Weidong, Chen; Zhenqiang, Chen
2007-01-20
A diode-side-pumped high-power 1319 nm single-wavelength Nd:YAG continuous wave (cw) laser is described. Through reasonable coating design of the cavity mirrors, the 1064 nm strongest line as well as the 1338 nm one have been successfully suppressed. The laser output powers corresponding to four groups of different output couplers operating at 1319 nm single wavelength have been compared. The output coupler with the transmission T=5.3% has the highest output power, and a 131 W cw output power was achieved at the pumping power of 555 W. The optical-optical conversion efficiency is 23.6%, and the slope efficiency is 46%. The output power is higher than the total output power of the dual-wavelength laser operating at 1319 nm and 1338 nm in the experiment.
Short-pulsed gain-switched Cr2+:ZnSe laser
NASA Astrophysics Data System (ADS)
Gorajek, L.; Jabczynski, J. K.; Kaskow, M.
2014-04-01
We report the first demonstration of gain-switched, ultra-low-threshold Cr2+:ZnSe laser generating pulses as short as 1.75 ns. A diode pumped Tm3+:YLF laser delivering up to 5 mJ energy in 11 ns pulses was utilized as a pump source. The laser operated at 20 Hz repetition rate with 0.1 duty factor allowing us to reduce thermal effects in an active crystal. In a short resonator (length, 70 mm) we obtained more than 0.5 mJ of output energy and 300 kW of corresponding peak power. The Cr2+:ZnSe laser was characterized by very low losses manifesting themselves by an extremely low generation threshold of less than 7 μJ and very high slope efficiency (reaching the quantum efficiency) determined with respect to absorbed pump power.
High-slope-efficiency 2.06 μm Ho: YLF laser in-band pumped by a fiber-coupled broadband diode.
Ji, Encai; Liu, Qiang; Nie, Mingming; Cao, Xuezhe; Fu, Xing; Gong, Mali
2016-03-15
We first demonstrate the laser performance of a compact 2.06 μm Ho: YLF laser resonantly pumped by a broadband fiber-coupled diode. In continuous-wave (CW) operation, maximum output power of 1.63 W, corresponding to a slope efficiency of 89.2%, was obtained with a near diffraction-limited beam quality. In actively Q-switched operation, maximum pulse energy of 1.1 mJ was achieved at the repetition frequency of 100 Hz. The minimum pulse duration was 43 ns. The performance in both the CW and Q-switched regimes indicates that the current fiber-coupled diode in-band pumped Ho: YLF laser has great potential in certain conditions that require several watts of output power or several millijoules of short pulse energy.
NASA Astrophysics Data System (ADS)
Li, B.; Zhao, L.; Zhang, Y. B.; Zheng, Q.; Zhao, Y.; Yao, Y.
2013-03-01
Efficient and compact green-yellow laser output at 543 nm is generated by intracavity frequency doubling of a CW diode-pumped Nd:LuVO4 laser at 1086 nm under the condition of suppressing the higher gain transition near 1064 nm. With 16 W of diode pump power and the frequency-doubling crystal LBO, as high as 2.17 W of CW output power at 543 nm is achieved, corresponding to an optical-to-optical conversion efficiency of 13.6% and the output power stability over 8 hours is better than 2.86%. To the best of our knowledge, this is the highest watt-level laser at 543 nm generated by intracavity frequency doubling of a diode pumped Nd:LuVO4 laser at 1086 nm.
Heating of the solar chromosphere by ionization pumping
NASA Technical Reports Server (NTRS)
Lindsey, C. A.
1981-01-01
A new theory is proposed to explain the heating of the solar chromosphere, and possibly the corona, by the dissipation of hydrodynamic compression waves. The basis of the dissipative mechanism, here referred to as ionization pumping, is hysteresis caused by irreversible relaxation of the chromospheric medium to ionization equilibrium following pressure perturbations. In the middle chromosphere, where hydrogen is partially ionized, it is shown that ionization pumping will cause strong dissipation of waves whose periods are 200s or less. This could cause heating of the chromosphere sufficient to compensate for the radiative losses. The mechanism retains a high efficiency for waves of arbitrarily small amplitude and, thus, can be more efficient than shock dissipation for small perturbations in pressure. The formation of shocks therefore is not required for the dissipation of waves whose periods are several minutes or less.
High beam quality of a Q-switched 2-µm Tm,Ho:LuVO4 laser
NASA Astrophysics Data System (ADS)
Wang, Wei; Yang, Xining; Shen, Yingjie; Li, Linjun; Zhou, Long; Yang, Yuqiang; Bai, Yunfeng; Xie, Wenqiang; Ye, Guangchao; Yu, Xiaoyang
2018-05-01
A diode-end-pumped 2.05-µm Q-switched Tm,Ho:LuVO4 laser is reported in this paper. The cryogenic Tm3+ (5.0 at.%),Ho3+ (0.5 at.%):LuVO4 crystal was pumped by an 800-nm laser diode. At a pulse repetition frequency of 10 kHz, the maximum average output power of 3.77 W was achieved at 77 K when an incident pump power of 14.7 W was used. The slope efficiency and optical-optical conversion efficiency were 28.3 and 25.6%, respectively. The maximum per pulse energy was 2.54 mJ for a pulse duration of 69.9 ns. The beam quality factor Mx 2 was approximately 1.17 and My 2 was approximately 1.01 for the Tm,Ho:LuVO4 laser.
Insulated Concrete Homes Increase Durability and Energy Efficiency
DOE Office of Scientific and Technical Information (OSTI.GOV)
Building America; Hendron, B.; Poole, L.
2001-06-05
New houses designed by Mercedes Homes in Melbourne, Florida, with technical support from the U.S. Department of Energy's Building America Program, save their homeowners money by using energy efficient features such as a high performance heat pump and solar control glazing to reduce cooling costs.
Development and Validation of a Gas-Fired Residential Heat Pump Water Heater - Final Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Michael Garrabrant; Roger Stout; Paul Glanville
2013-01-21
For gas-fired residential water heating, the U.S. and Canada is predominantly supplied by minimum efficiency storage water heaters with Energy Factors (EF) in the range of 0.59 to 0.62. Higher efficiency and higher cost ($700 - $2,000) options serve about 15% of the market, but still have EFs below 1.0, ranging from 0.65 to 0.95. To develop a new class of water heating products that exceeds the traditional limit of thermal efficiency, the project team designed and demonstrated a packaged water heater driven by a gas-fired ammonia-water absorption heat pump. This gas-fired heat pump water heater can achieve EFs ofmore » 1.3 or higher, at a consumer cost of $2,000 or less. Led by Stone Mountain Technologies Inc. (SMTI), with support from A.O. Smith, the Gas Technology Institute (GTI), and Georgia Tech, the cross-functional team completed research and development tasks including cycle modeling, breadboard evaluation of two cycles and two heat exchanger classes, heat pump/storage tank integration, compact solution pump development, combustion system specification, and evaluation of packaged prototype GHPWHs. The heat pump system extracts low grade heat from the ambient air and produces high grade heat suitable for heating water in a storage tank for domestic use. Product features that include conventional installation practices, standard footprint and reasonable economic payback, position the technology to gain significant market penetration, resulting in a large reduction of energy use and greenhouse gas emissions from domestic hot water production.« less
NASA Astrophysics Data System (ADS)
Platz, R.; Frevert, C.; Eppich, B.; Rieprich, J.; Ginolas, A.; Kreutzmann, S.; Knigge, S.; Erbert, G.; Crump, P.
2018-03-01
Diode lasers pump sources for future high-energy-class laser systems based on Yb-doped solid state amplifiers must deliver high optical intensities, high conversion efficiency (ηE = > 50%) at high repetition rates (f = 100 Hz) and long pulse widths (τ = 0.5…2 ms). Over the last decade, a series of pump modules has been developed at the Ferdinand-BraunInstitut to address these needs. The latest modules use novel wide-aperture single emitter diode lasers in passively side cooled stacks, operate at τ = 1 ms, f = 100…200 Hz and deliver 5…6 kW optical output power from a fiber with 1.9 mm core diameter and NA of 0.22, for spatial brightness BΩ > 1 MW/cm2 sr. The performance to date and latest developments in these high brightness modules are summarized here with recent work focusing on extending operation to other pumping conditions, as needed for alternative solid state laser designs. Specifically, the electro-optic, spectral and beam propagation characteristics of the module and its components are studied as a function of τ for a fixed duty cycle DC = 10% for τ = 1...100 ms, and first data is shown for continuous wave operation. Clear potential is seen to fulfill more demanding specifications without design changes. For example, high power long-pulse operation is demonstrated, with a power of > 5 kW at τ = 100 ms. Higher brightness operation is also confirmed at DC = 10% and τ = 1 ms, with > 5 kW delivered in a beam with BΩ > 4 MW/cm2 sr.
NASA Astrophysics Data System (ADS)
Thapa, Rajesh; Rhonehouse, Dan; Nguyen, Dan; Wiersma, Kort; Smith, Chris; Zong, Jie; Chavez-Pirson, Arturo
2013-10-01
Mid-infrared sources are a key enabling technology for various applications such as remote chemical sensing, defense communications and countermeasures, and bio-photonic diagnostics and therapeutics. Conventional mid-IR sources include optical parametric amplifiers, quantum cascade lasers, synchrotron and free electron lasers. An all-fiber approach to generate a high power, single mode beam with extremely wide (1μm-5μm) and simultaneous wavelength coverage has significant advantages in terms of reliability (no moving parts or alignment), room temperature operation, size, weight, and power efficiency. Here, we report single mode, high power extended wavelength coverage (1μm to 5μm) supercontinuum generation using a tellurite-based dispersion managed nonlinear fiber and an all-fiber based short pulse (20 ps), single mode pump source. We have developed this mid IR supercontinuum source based on highly purified solid-core tellurite glass fibers that are waveguide engineered for dispersion-zero matching with Tm-doped pulsed fiber laser pumps. The conversion efficiency from 1922nm pump to mid IR (2μm-5μm) supercontinuum is greater than 30%, and approaching 60% for the full spectrum. We have achieved > 1.2W covering from 1μm to 5μm with 2W of pump. In particular, the wavelength region above 4μm has been difficult to cover with supercontinuum sources based on ZBLAN or chalcogenide fibers. In contrast to that, our nonlinear tellurite fibers have a wider transparency window free of unwanted absorption, and are highly suited for extending the long wavelength emission above 4μm. We achieve spectral power density at 4.1μm already exceeding 0.2mW/nm and with potential for higher by scaling of pump power.
Multifrequency Raman amplifiers
Barth, Ido; Fisch, Nathaniel J.
2018-03-08
In its usual implementation, the Raman amplifier features only one pump carrier frequency. However, pulses with well-separated frequencies can also be Raman amplified while compressed in time. Amplification with frequency-separated pumps is shown to hold even in the highly nonlinear, pump-depletion regime, as derived through a fluid model, and demonstrated via particle-in-cell (PIC) simulations. The resulting efficiency is similar to single-frequency amplifiers, but, due to the beat-wave waveform of both the pump lasers and the amplified seed pulses, these amplifiers feature higher seed intensities with a shorter spike duration. Advantageously, these amplifiers also suffer less noise backscattering, because the totalmore » fluence is split between the different spectral components.« less
Multifrequency Raman amplifiers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Barth, Ido; Fisch, Nathaniel J.
In its usual implementation, the Raman amplifier features only one pump carrier frequency. However, pulses with well-separated frequencies can also be Raman amplified while compressed in time. Amplification with frequency-separated pumps is shown to hold even in the highly nonlinear, pump-depletion regime, as derived through a fluid model, and demonstrated via particle-in-cell (PIC) simulations. The resulting efficiency is similar to single-frequency amplifiers, but, due to the beat-wave waveform of both the pump lasers and the amplified seed pulses, these amplifiers feature higher seed intensities with a shorter spike duration. Advantageously, these amplifiers also suffer less noise backscattering, because the totalmore » fluence is split between the different spectral components.« less
NASA Astrophysics Data System (ADS)
Mattolat, C.; Rothe, S.; Schwellnus, F.; Gottwald, T.; Raeder, S.; Wendt, K.
2009-03-01
On-line production facilities for radioactive isotopes nowadays heavily rely on resonance ionization laser ion sources due to their demonstrated unsurpassed efficiency and elemental selectivity. Powerful high repetition rate tunable pulsed dye or Ti:sapphire lasers can be used for this purpose. To counteract limitations of short pulse pump lasers, as needed for dye laser pumping, i.e. copper vapor lasers, which include high maintenance and nevertheless often only imperfect reliability, an all-solid-state Nd:YAG pumped Ti:sapphire laser system has been constructed. This could complement or even replace dye laser systems, eliminating their disadvantages but on the other hand introduce shortcomings on the side of the available wavelength range. Pros and cons of these developments will be discussed.
High-power Femtosecond Optical Parametric Amplification at 1 kHz in BiB(3)O(6) pumped at 800 nm.
Petrov, Valentin; Noack, Frank; Tzankov, Pancho; Ghotbi, Masood; Ebrahim-Zadeh, Majid; Nikolov, Ivailo; Buchvarov, Ivan
2007-01-22
Substantial power scaling of a travelling-wave femtosecond optical parametric amplifier, pumped near 800 nm by a 1 kHz Ti:sapphire laser amplifier, is demonstrated using monoclinic BiB(3)O(6) in a two stage scheme with continuum seeding. Total energy output (signal plus idler) exceeding 1 mJ is achieved, corresponding to an intrinsic conversion efficiency of approximately 32% for the second stage. The tunability extends from 1.1 to 2.9 microm. The high parametric gain and broad amplification bandwidth of this crystal allowed the maintenance of the pump pulse duration, leading to pulse lengths less than 140 fs, both for the signal and idler pulses, even at such high output levels.
Comparative study of DPAL and XPAL systems and selection principal of parameters
NASA Astrophysics Data System (ADS)
Huang, Wei; Tan, Rongqing; Li, Zhiyong; Han, Gaoce; Li, Hui
2016-10-01
A theoretical model based on common pump structure is proposed to analyze the laser output characteristics of DPAL (Diode pumped alkali vapor laser) and XPAL (Exciplex pumped alkali laser) in this paper. The model predicts that an optical-to-optical efficiency approaching 80% can be achieved for continuous-wave four- and five-XPAL systems with broadband pumping which is several times of pumped linewidth for DPAL. Operation parameters including pumped intensity, temperature, cell' s length, mixed gas concentration, pumped linewidth and output mirror reflectivity are analyzed for DPAL and XPAL systems basing on the kinetic model. The result shows a better performance in Cs-Ar XPAL laser with requirements of relatively high Ar concentration, high pumped intensity and high temperature. Comparatively, for Cs-DPAL laser, lower temperature and lower pumped intensity should be acquired. In addition, the predictions of selection principal of temperature and cell's length are also presented. The conception of the equivalent "alkali areal density" is proposed in this paper. It is defined as the product of the alkali density and cell's length. The result shows that the output characteristics of DPAL (or XPAL) system with the same alkali areal density but different temperatures turn out to be equal. It is the areal density that reflects the potential of DPAL or XPAL systems directly. A more detailed analysis of similar influences of cavity parameters with the same areal density is also presented. The detailed results of continuous-wave DPAL and XPAL performances as a function of pumped laser linewidth and mixed gas pressure are presented along with an analysis of influences of output coupler.
Steward, David R; Bruss, Paul J; Yang, Xiaoying; Staggenborg, Scott A; Welch, Stephen M; Apley, Michael D
2013-09-10
Groundwater provides a reliable tap to sustain agricultural production, yet persistent aquifer depletion threatens future sustainability. The High Plains Aquifer supplies 30% of the nation's irrigated groundwater, and the Kansas portion supports the congressional district with the highest market value for agriculture in the nation. We project groundwater declines to assess when the study area might run out of water, and comprehensively forecast the impacts of reduced pumping on corn and cattle production. So far, 30% of the groundwater has been pumped and another 39% will be depleted over the next 50 y given existing trends. Recharge supplies 15% of current pumping and would take an average of 500-1,300 y to completely refill a depleted aquifer. Significant declines in the region's pumping rates will occur over the next 15-20 y given current trends, yet irrigated agricultural production might increase through 2040 because of projected increases in water use efficiencies in corn production. Water use reductions of 20% today would cut agricultural production to the levels of 15-20 y ago, the time of peak agricultural production would extend to the 2070s, and production beyond 2070 would significantly exceed that projected without reduced pumping. Scenarios evaluate incremental reductions of current pumping by 20-80%, the latter rate approaching natural recharge. Findings substantiate that saving more water today would result in increased net production due to projected future increases in crop water use efficiencies. Society has an opportunity now to make changes with tremendous implications for future sustainability and livability.
Steward, David R.; Bruss, Paul J.; Yang, Xiaoying; Staggenborg, Scott A.; Welch, Stephen M.; Apley, Michael D.
2013-01-01
Groundwater provides a reliable tap to sustain agricultural production, yet persistent aquifer depletion threatens future sustainability. The High Plains Aquifer supplies 30% of the nation’s irrigated groundwater, and the Kansas portion supports the congressional district with the highest market value for agriculture in the nation. We project groundwater declines to assess when the study area might run out of water, and comprehensively forecast the impacts of reduced pumping on corn and cattle production. So far, 30% of the groundwater has been pumped and another 39% will be depleted over the next 50 y given existing trends. Recharge supplies 15% of current pumping and would take an average of 500–1,300 y to completely refill a depleted aquifer. Significant declines in the region’s pumping rates will occur over the next 15–20 y given current trends, yet irrigated agricultural production might increase through 2040 because of projected increases in water use efficiencies in corn production. Water use reductions of 20% today would cut agricultural production to the levels of 15–20 y ago, the time of peak agricultural production would extend to the 2070s, and production beyond 2070 would significantly exceed that projected without reduced pumping. Scenarios evaluate incremental reductions of current pumping by 20–80%, the latter rate approaching natural recharge. Findings substantiate that saving more water today would result in increased net production due to projected future increases in crop water use efficiencies. Society has an opportunity now to make changes with tremendous implications for future sustainability and livability. PMID:23980153
NASA Astrophysics Data System (ADS)
Stock, Karl; Wurm, Holger; Hausladen, Florian
2016-02-01
Flashlamp pumped Er:YAG lasers are successfully used clinically for both precise soft and hard tissue ablation. Since several years a novel diode pumped Er:YAG laser system (Pantec Engineering AG) is available, with mean laser power up to 40 W and pulse repetition rate up to 1 kHz. The aim of the study was to investigate the suitability of the laser system specifically for stapedotomy. Firstly an experimental setup was realized with a beam focusing unit and a computer controlled translation stage to move the samples (slices of porcine bone) with a defined velocity while irradiation with various laser parameters. A microphone was positioned in a defined distance to the ablation point and the resulting acoustic signal of the ablation process was recorded. For comparison, measurements were also performed with a flash lamp pumped Er:YAG laser system. After irradiation the resulting ablation quality and efficacy were determined using light microscopy. Using a high speed camera and "Töpler-Schlierentechnik" the cavitation bubble in water after perforation of a bone slice was investigated. The results show efficient bone ablation using the diode pumped Er:YAG laser system. Also a decrease of the sound level and of the cavitation bubble volume was observed with decreasing pulse duration. Higher repetition rates lead to a slightly increase of thermal side effects but have no influence on the ablation efficiency. In conclusion, these first experiments demonstrate the high potential of the diode pumped Er:YAG laser system for use in middle ear surgery.
Diode lasers optimized in brightness for fiber laser pumping
NASA Astrophysics Data System (ADS)
Kelemen, M.; Gilly, J.; Friedmann, P.; Hilzensauer, S.; Ogrodowski, L.; Kissel, H.; Biesenbach, J.
2018-02-01
In diode laser applications for fiber laser pumping and fiber-coupled direct diode laser systems high brightness becomes essential in the last years. Fiber coupled modules benefit from continuous improvements of high-power diode lasers on chip level regarding output power, efficiency and beam characteristics resulting in record highbrightness values and increased pump power. To gain high brightness not only output power must be increased, but also near field widths and far field angles have to be below a certain value for higher power levels because brightness is proportional to output power divided by beam quality. While fast axis far fields typically show a current independent behaviour, for broadarea lasers far-fields in the slow axis suffer from a strong current and temperature dependence, limiting the brightness and therefore their use in fibre coupled modules. These limitations can be overcome by carefully optimizing chip temperature, thermal lensing and lateral mode structure by epitaxial and lateral resonator designs and processing. We present our latest results for InGaAs/AlGaAs broad-area single emitters with resonator lengths of 4mm emitting at 976nm and illustrate the improvements in beam quality over the last years. By optimizing the diode laser design a record value of the brightness for broad-area lasers with 4mm resonator length of 126 MW/cm2sr has been demonstrated with a maximum wall-plug efficiency of more than 70%. From these design also pump modules based on 9 mini-bars consisting of 5 emitters each have been realized with 360W pump power.
Coherent Doppler lidar for automated space vehicle, rendezvous, station-keeping and capture
NASA Technical Reports Server (NTRS)
Dunkin, James A.
1991-01-01
Recent advances in eye-safe, short wavelength solid-state lasers offer real potential for the development of compact, reliable, light-weight, efficient coherent lidar. Laser diode pumping of these devices has been demonstrated, thereby eliminating the need for flash lamp pumping, which has been a major drawback to the use of these lasers in space based applications. Also these lasers now have the frequency stability required to make them useful in coherent lidar, which offers all of the advantages of non-coherent lidar, but with the additional advantage that direct determination of target velocity is possible by measurement of the Doppler shift. By combining the Doppler velocity measurement capability with the inherent high angular resolution and range accuracy of lidar it is possible to construct Doppler images of targets for target motion assessment. A coherent lidar based on a Tm,Ho:YAG 2-micrometer wavelength laser was constructed and successfully field tested on atmospheric targets in 1990. This lidar incorporated an all solid state (laser diode pumped) master oscillator, in conjunction with a flash lamp pumped slave oscillator. Solid-state laser technology is rapidly advancing, and with the advent of high efficiency, high power, semiconductor laser diodes as pump sources, all-solid-state, coherent lidars are a real possibility in the near future. MSFC currently has a feasibility demonstration effort under way which will involve component testing, and preliminary design of an all-solid-state, coherent lidar for automatic rendezvous, and capture. This two year effort, funded by the Director's Discretionary Fund is due for completion in 1992.
Comparative study of high power Tm:YLF and Tm:LLF slab lasers in continuous wave regime.
Berrou, Antoine; Collett, Oliver J P; Morris, Daniel; Esser, M J Daniel
2018-04-16
We report on Tm:YLF and Tm:LLF slab lasers (1.5 x 11 x 20 mm 3 ) end pumped from one end with a high-brightness 792 nm laser diode stack. These two lasers are compared under identical pump conditions in continuous-wave regime. A stronger negative thermal lens in Tm:LLF than in Tm:YLF is highlighted, making it more difficult to operate the Tm:LLF laser under stable lasing conditions. In a configuration where the high reflectivity cavity mirror has a radius of curvature of r = 150 mm, the Tm:YLF (Tm:LLF) laser produces a maximum output power of 150 W (143 W) for 428 W of incident pump power (respectively). For a second cavity configuration where the high reflectivity cavity mirror has a radius of curvature of r = 500 mm, the Tm:YLF laser produces a maximum output power of 164 W for 412 W of incident pump power and a 57% slope efficiency with respect to the absorbed pump power. The emitted wavelength of these two lasers are measured as a function of the output coupler reflectivity and it shows that Tm:LLF laser emits at a longer wavelength than Tm:YLF.
A global design of high power Nd 3+-Yb 3+ co-doped fiber lasers
NASA Astrophysics Data System (ADS)
Fan, Zhang; Chuncan, Wang; Tigang, Ning
2008-09-01
A global optimization method - niche hybrid genetic algorithm (NHGA) based on fitness sharing and elite replacement is applied to optimize Nd3+-Yb3+ co-doped fiber lasers (NYDFLs) for obtaining maximum signal output power. With a objective function and different pumping powers, five critical parameters (the fiber length, L; the proportion of pump power for pumping Nd3+, η; Nd3+ and Yb3+ concentrations, NNd and NYb and output mirror reflectivity, Rout) of the given NYDFLs are optimized by solving the rate and power propagation equations. Results show that dividing equally the input pump power among 808 nm (Nd3+) and 940 nm (Yb3+) is not an optimal choice and the pump power of Nd3+ ions should be kept around 10-13.78% of the total pump power. Three optimal schemes are obtained by NHGA and the highest slope efficiency of the laser is able to reach 80.1%.
Hydro pumped storage, international experience: An overview of ASCE task committee report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Makarechian, A.H.; Rummel, G.
1995-12-31
This paper presents an overview of a report that is being prepared by ASCE Task Committee on Pumped Storage, International Experience. The reader is referred to the committee report that will be available in 1996. Many pumped storage projects in Europe, but particularly in Japan are becoming an indispensable resource in management of loads and resources on the electrical system. They serve to enhance reliability of the system and to provide for efficient utilization of thermal resources. Pumped storage is increasingly being used as a system management tool. To serve such purposes and to function in this key role, pumpedmore » storage projects are designed for very fast loading and unloading, for very fast mode reversals from pumping to generating and visa versa, for synchronous generation, and more importantly for load ramping during the pumping mode. This is achieved by use of variable-speed pump turbine units. The use of variable-speed units has proven so successful in Japan that many older projects are retrofitted with this new feature. Other interesting equipment applications are discussed including utilization of multi-stage unregulated pump turbines for very high heads (up to 1,250 m), and continued extension of the experience for high head reversible Francis unit, currently in excess of 750 m.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
Oberlin College’s Adam Joseph Lewis Center for Environmental Studies is a high-performance building featuring an expansive photovoltaic system and a closed-loop groundwater heat pump system. Designers incorporated energy-efficient components and materials
Heat Pump Drying of Fruits and Vegetables: Principles and Potentials for Sub-Saharan Africa
Fayose, Folasayo; Huan, Zhongjie
2016-01-01
Heat pump technology has been used for heating, ventilation, and air-conditioning in domestic and industrial sectors in most developed countries of the world including South Africa. However, heat pump drying (HPD) of fruits and vegetables has been largely unexploited in South Africa and by extension to the sub-Saharan African region. Although studies on heat pump drying started in South Africa several years ago, not much progress has been recorded to date. Many potential users view heat pump drying technology as fragile, slow, and high capital intensive when compared with conventional dryer. This paper tried to divulge the principles and potentials of heat pump drying technology and the conditions for its optimum use. Also, various methods of quantifying performances during heat pump drying as well as the quality of the dried products are highlighted. Necessary factors for maximizing the capacity and efficiency of a heat pump dryer were identified. Finally, the erroneous view that heat pump drying is not feasible economically in sub-Saharan Africa was clarified. PMID:26904668
Efficient Tm:Fiber Pumped Solid-State Ho:YLF 2-micrometer Laser for Remote Sensing Applications
NASA Technical Reports Server (NTRS)
Singh, Upendra N.; Bai, Yingxin; Yu, Jirong; Petros, Mulugeta
2012-01-01
An efficient 19 W, TEM(sub 00) mode, Ho:YLF laser pumped by continuous wave Tm:fiber laser has been demonstrated at the room temperature. The slope efficiency and optical-to-optical efficiency are 65% and 55%, respectively.
Highly-efficient, frequency-tripled Nd:YAG laser for spaceborne LIDARs
NASA Astrophysics Data System (ADS)
Treichel, R.; Hoffmann, H.-D.; Luttmann, J.; Morasch, V.; Nicklaus, K.; Wührer, C.
2017-11-01
For a spaceborne lidar a highly reliable, long living and efficient laser source is absolutely essential. Within the frame of the development of a laser source for the backscatter lidar ATLID, which will be flown on EarthCare mission, we setup and tested a predevelopment model of an injection-seeded, diode pumped, frequency tripled, pulsed high power Nd:YAG MOPA laser operating nominally at 100 Hz pulse repetition frequency. We also tested the burst operation mode. The excellent measured performance parameter will be introduced. The oscillator rod is longitudinally pumped from both sides. The oscillator has been operated with three cavity control methods: "Cavity Dither", "Pound-Drever-Hall" and "Adaptive Ramp & Fire". Especially the latter method is very suitable to operate the laser in harsh vibrating environment such in airplanes. The amplifier bases on the InnoSlab design concept. The constant keeping of a moderate fluence in the InnoSlab crystal permits excellent possibilities to scale the pulse energy to several 100 mJ. An innovative pump unit and optics makes the laser performance insensitive to inhomogeneous diode degradation and allows switching of additional redundant diodes. Further key features have been implemented in a FM design concept. The operational lifetime is extended by the implementation of internal redundancies for the most critical parts. The reliability is increased due to the higher margin onto the laser induced damage threshold by a pressurized housing. Additionally air-to-vacuum effects becomes obsolete. A high efficient heat removal concept has been implemented.
Kinetic analysis of rare gas metastable production and optically pumped Xe lasers
NASA Astrophysics Data System (ADS)
Demyanov, A. V.; Kochetov, I. V.; Mikheyev, P. A.; Azyazov, V. N.; Heaven, M. C.
2018-01-01
Optically pumped all-rare-gas lasers use metastable rare gas atoms as the lasing species in mixtures with He or Ar buffer gas. The metastables are generated in a glow discharge, and we report model calculations for the optimal production of Ne*, Ar*, Kr* and Xe*. Discharge efficiency was estimated by solving the Boltzmann equation. Laser efficiency, gain and output power of the CW optically pumped Xe laser were assessed as functions of heavier rare gas content, pressure, optical pump intensity and the optical path length. It was found that, for efficient operation the heavier rare gas content has to be of the order of one percent or less, and the total pressure—in the range 0.3-1.5 atm. Output power and specific discharge power increase approximately linearly with pump intensity over the output range from 300-500 W cm-2. Ternary mixtures Xe:Ar:He were found to be the most promising. Total laser efficiency was found to be nearly the same for pumping the 2p8 or 2p9 state, reaching 61%-70% for a pump intensity of ~720 W cm-2 when the Xe fraction was in the range 0.001 ÷ 0.01 and Ar fraction—0.1 ÷ 0.5. However, when the 2p8 state was pumped, the maximum total efficiency occurred at larger pressures than for pumping of the 2p9 state. The discharge power density required to sustain a sufficient Xe* number density was in the range of tens of watts per cubic centimeter for 50% Ar in the mixture.
High-power dual-wavelength Ho-doped fiber laser at >2 μm tandem pumped by a 1.15 μm fiber laser
Jin, Xiaoxi; Lou, Zhaokai; Chen, Yizhu; Zhou, Pu; Zhang, Hanwei; Xiao, Hu; Liu, Zejin
2017-01-01
We demonstrated a high-power continuous-wave (CW) dual-wavelength Ho-doped fiber laser (HDFL) at 2049 nm and 2153 nm with a simple coupled-cavity configuration. A ~100 W laser diode-pumped fiber laser at 1150 nm served as the pump source. The maximum output power reached ~22.3 W and the slope efficiency was 23%. By altering the incident pump power, the power ratio of two signal wavelengths could be tuned in a large range due to gain competition. As far as we know, this is the first CW dual-wavelength HDFL with the power exceeding ten-watt-level, and the first dual-wavelength HDFL with the central wavelengths exceeding 2.0 μm and 2.15 μm respectively. PMID:28181571
Highly stable self-pulsed operation of an Er:Lu2O3 ceramic laser at 2.7 µm
NASA Astrophysics Data System (ADS)
Wang, Li; Huang, Haitao; Shen, Deyuan; Zhang, Jian; Chen, Hao; Tang, Dingyuan
2017-04-01
We report on the highly stable self-pulsed operation of a 2.74 µm Er:Lu2O3 ceramic laser pumped by a wavelength locked narrow bandwidth 976 nm laser diode. The operating pulse repetition rate is continuously tunable from 126 kHz to 270 kHz depending on the pump power level. For 12.3 W of absorbed diode pump power, the Er:Lu2O3 ceramic laser generates 820 mW of average output power at a 270 kHz repetition rate and with a pulse duration of 183 ns. The corresponding pulse-to-pulse amplitude fluctuation is estimated to be less than 0.7%. In the continues-wave (CW) mode of operation, the laser yields over 1.3 W of output power with a slope efficiency of 11.9% with respect to the 976 nm pump power.
High-power dual-wavelength Ho-doped fiber laser at >2 μm tandem pumped by a 1.15 μm fiber laser
NASA Astrophysics Data System (ADS)
Jin, Xiaoxi; Lou, Zhaokai; Chen, Yizhu; Zhou, Pu; Zhang, Hanwei; Xiao, Hu; Liu, Zejin
2017-02-01
We demonstrated a high-power continuous-wave (CW) dual-wavelength Ho-doped fiber laser (HDFL) at 2049 nm and 2153 nm with a simple coupled-cavity configuration. A ~100 W laser diode-pumped fiber laser at 1150 nm served as the pump source. The maximum output power reached ~22.3 W and the slope efficiency was 23%. By altering the incident pump power, the power ratio of two signal wavelengths could be tuned in a large range due to gain competition. As far as we know, this is the first CW dual-wavelength HDFL with the power exceeding ten-watt-level, and the first dual-wavelength HDFL with the central wavelengths exceeding 2.0 μm and 2.15 μm respectively.
Peuser, Peter; Platz, Willi; Fix, Andreas; Ehret, Gerhard; Meister, Alexander; Haag, Matthias; Zolichowski, Paul
2009-07-01
We report on a compact, tunable ultraviolet laser system that consists of an optical parametric oscillator (OPO) and a longitudinally diode-pumped Nd:YAG master oscillator-power amplifier (MOPA). The pump energy for the whole laser system is supplied via a single delivery fiber. Nanosecond pulses are produced by an oscillator that is passively Q-switched by a Cr(4+):YAG crystal. The OPO is pumped by the second harmonic of the Nd:YAG MOPA. Continuously tunable radiation is generated by an intracavity sum-frequency mixing process within the OPO in the range of 245-260 nm with high beam quality. Maximum pulse energies of 1.2 mJ were achieved, which correspond to an optical efficiency of 3.75%, relating to the pulse energy of the MOPA at 1064 nm.
NASA Technical Reports Server (NTRS)
Sanders, Steven (Inventor); Lang, Robert J. (Inventor)
2001-01-01
Laser diode pumped mid-IR wavelength sources include at least one high power, near-IR wavelength, injection and/or sources wherein one or both of such sources may be tunable providing a pump wave output beam to a quasi-phase matched (QPM) nonlinear frequency mixing (NFM) device. The NFM device may be a difference frequency mixing (DFM) device or an optical parametric oscillation (OPO) device. Wavelength tuning of at least one of the sources advantageously provides the ability for optimizing pump or injection wavelengths to match the QPM properties of the NFM device enabling a broad range of mid-IR wavelength selectivity. Also, pump powers are gain enhanced by the addition of a rare earth amplifier or oscillator, or a Raman/Brillouin amplifier or oscillator between the high power source and the NFM device. Further, polarization conversion using Raman or Brillouin wavelength shifting is provided to optimize frequency conversion efficiency in the NFM device.
Solid-state Yb : YAG amplifier pumped by a single-mode laser at 920 nm
NASA Astrophysics Data System (ADS)
Obronov, I. V.; Demkin, A. S.; Myasnikov, D. V.
2018-03-01
An optical amplifier scheme for ultrashort 1030-nm pulses is proposed based on an Yb : YAG crystal with axial pumping by a transverse single-mode laser at a wavelength of 920 nm. A small-signal gain up to 40 dB per pass with a high output beam quality is demonstrated. The maximum average power is 14 W with a slope efficiency exceeding 50%.
Method and apparatus for secondary laser pumping by electron beam excitation
George, E. Victor; Krupke, William F.; Murray, John R.; Powell, Howard T.; Swingle, James C.; Turner, Jr., Charles E.; Rhodes, Charles K.
1978-01-01
An electron beam of energy typically 100 keV excites a fluorescer gas which emits ultraviolet radiation. This radiation excites and drives an adjacent laser gas by optical pumping or photolytic dissociation to produce high efficiency pulses. The invention described herein was made in the course of, or under, United States Energy Research and Development Administration Contract No. W-7405-Eng-48 with the University of California.
Investigation of possibilities for solar powered high energy lasers in space
NASA Technical Reports Server (NTRS)
Rather, J. D. G.; Gerry, E. T.; Zeiders, G. W.
1977-01-01
The feasibility of solar powered high energy lasers in space has been studied. Preliminary analysis indicates that both direct and indirect pumping methods lead to high energy lasers having interesting efficiencies and capabilities. Many topics for further research have been identified.
Porous glass electroosmotic pumps: design and experiments.
Yao, Shuhuai; Hertzog, David E; Zeng, Shulin; Mikkelsen, James C; Santiago, Juan G
2003-12-01
An analytical model for electroosmotic flow rate, total pump current, and thermodynamic efficiency reported in a previous paper has been applied as a design guideline to fabricate porous-structure EO pumps. We have fabricated sintered-glass EO pumps that provide maximum flow rates and pressure capacities of 33 ml/min and 1.3 atm, respectively, at applied potential 100 V. These pumps are designed to be integrated with two-phase microchannel heat exchangers with load capacities of order 100 W and greater. Experiments were conducted with pumps of various geometries and using a relevant, practical range of working electrolyte ionic concentration. Characterization of the pumping performance are discussed in the terms of porosity, tortuosity, pore size, and the dependence of zeta potential on bulk ion density of the working solution. The effects of pressure and flow rate on pump current and thermodynamic efficiency are analyzed and compared to the model prediction. In particular, we explore the important tradeoff between increasing flow rate capacity and obtaining adequate thermodynamic efficiency. This research aims to demonstrate the performance of EOF pump systems and to investigate optimal and practical pump designs. We also present a gas recombination device that makes possible the implementation of this pumping technology into a closed-flow loop where electrolytic gases are converted into water and reclaimed by the system.
Resonantly diode-pumped continuous-wave and Q-switched Er:YAG laser at 1645 nm.
Chang, N W H; Simakov, N; Hosken, D J; Munch, J; Ottaway, D J; Veitch, P J
2010-06-21
We describe an efficient Er:YAG laser that is resonantly pumped using continuous-wave (CW) laser diodes at 1470 nm. For CW lasing, it emits 6.1 W at 1645 nm with a slope efficiency of 36%, the highest efficiency reported for an Er:YAG laser that is pumped in this manner. In Q-switched operation, the laser produces diffraction-limited pulses with an average power of 2.5 W at 2 kHz PRF. To our knowledge this is the first Q-switched Er:YAG laser resonantly pumped by CW laser diodes.
Field Performance of Inverter-Driven Heat Pumps in Cold Climates
DOE Office of Scientific and Technical Information (OSTI.GOV)
Williamson, James; Aldrich, Robb
2015-08-01
CARB observed a wide range of operating efficiencies and outputs from site to site. Maximum capacities were found to be generally in line with manufacturer's claims as outdoor temperatures fell to -10°F. The reasons for the wide range in heating performance likely include: low indoor air flow rates, poor placement of outdoor units, relatively high return air temperatures, thermostat set back, integration with existing heating systems, and occupants limiting indoor fan speed. Even with lower efficiencies than published in other studies, most of the heat pumps here still provide heat at lower cost than oil, propane, or certainly electric resistancemore » systems.« less
Efficient single-mode operation of a cladding-pumped ytterbium-doped helical-core fiber laser.
Wang, P; Cooper, L J; Sahu, J K; Clarkson, W A
2006-01-15
A novel approach to achieving robust single-spatial-mode operation of cladding-pumped fiber lasers with multimode cores is reported. The approach is based on the use of a fiber geometry in which the core has a helical trajectory within the inner cladding to suppress laser oscillation on higher-order modes. In a preliminary proof-of-principle study, efficient single-mode operation of a cladding-pumped ytterbium-doped helical-core fiber laser with a 30 microm diameter core and a numerical aperture of 0.087 has been demonstrated. The laser yielded 60.4 W of output at 1043 nm in a beam with M2 < 1.4 for 92.6 W launched pump power from a diode stack at 976 nm. The slope efficiency at pump powers well above threshold was approximately 84%, which compares favorably with the slope efficiencies achievable with conventional straight-core Yb-doped double-clad fiber lasers.
High power diode pumped solid state (DPSS) laser systems active media robust modeling and analysis
NASA Astrophysics Data System (ADS)
Kashef, Tamer M.; Mokhtar, Ayman M.; Ghoniemy, Samy A.
2018-02-01
Diode side-pumped solid-state lasers have the potential to yield high quality laser beams with high efficiency and reliability. This paper summarizes the results of simulation of the most predominant active media that are used in high power diode pumped solid-state (DPSS) laser systems. Nd:YAG, Nd:glass, and Nd:YLF rods laser systems were simulated using the special finite element analysis software program LASCAD. A performance trade off analysis for Nd:YAG, Nd:glass, and Nd:YLF rods was performed in order to predict the system optimized parameters and to investigate thermally induced thermal fracture that may occur due to heat load and mechanical stress. The simulation results showed that at the optimized values Nd:YAG rod achieved the highest output power of 175W with 43% efficiency and heat load of 1.873W/mm3. A negligible changes in laser output power, heat load, stress, and temperature distributions were observed when the Nd:YAG rod length was increased from 72 to 80mm. Simulation of Nd:glass at different rod diameters at the same pumping conditions showed better results for mechanical stress and thermal load than that of Nd:YAG and Nd:YLF which makes it very suitable for high power laser applications especially for large rod diameters. For large rod diameters Nd:YLF is mechanically weaker and softer crystal compared to Nd:YAG and Nd:glass due to its poor thermomechanical properties which limits its usage to only low to medium power systems.
How to harvest efficient laser from solar light
NASA Astrophysics Data System (ADS)
Zhao, Changming; Guan, Zhe; Zhang, Haiyang
2018-02-01
Solar Pumped Solid State Lasers (SPSSL) is a kind of solid state lasers that can transform solar light into laser directly, with the advantages of least energy transform procedure, higher energy transform efficiency, simpler structure, higher reliability, and longer lifetime, which is suitable for use in unmanned space system, for solar light is the only form of energy source in space. In order to increase the output power and improve the efficiency of SPSSL, we conducted intensive studies on the suitable laser material selection for solar pump, high efficiency/large aperture focusing optical system, the optimization of concave cavity as the second focusing system, laser material bonding and surface processing. Using bonded and grooved Nd:YAG rod as laser material, large aperture Fresnel lens as the first stage focusing element, concave cavity as the second stage focusing element, we finally got 32.1W/m2 collection efficiency, which is the highest collection efficiency in the world up to now.
Ti:sapphire-pumped diamond Raman laser with sub-100-fs pulse duration.
Murtagh, Michelle; Lin, Jipeng; Mildren, Richard P; Spence, David J
2014-05-15
We report a synchronously pumped femtosecond diamond Raman laser operating at 895 nm with a 33% slope efficiency. Pumped using a mode-locked Ti:sapphire laser at 800 nm with a duration of 170 fs, the bandwidth of the Stokes output is broadened and chirped to enable subsequent pulse compression to 95 fs using a prism pair. Modeling results indicate that self-phase modulation drives the broadening of the Stokes spectrum in this highly transient laser. Our results demonstrate the potential for Raman conversion to extend the wavelength coverage and pulse shorten Ti:sapphire lasers.
Investigation of pump-to-seed beam matching on output features of Rb and Cs vapor laser amplifiers
NASA Astrophysics Data System (ADS)
Shen, Binglin; Huang, Jinghua; Xu, Xingqi; Xia, Chunsheng; Pan, Bailiang
2018-05-01
Taking into account the beam radii of pump light and seed laser along the entire length of the cell and their intensities in the cross section, a physical model with ordinary differential equation methods for alkali vapor amplifiers is established. Applied to the reported optically pumped Rb and diode-pumped Cs vapor amplifiers, the model shows good agreement between the calculated and measured dependence of amplified power on the seed power. A larger width of the spontaneous emission region as compared to the widths of pump absorption and laser emission regions, which will result in very high energy losses, is observed in the cell. Influence of pump and seed beam waists on output performance is calculated, showing that the pump and seed beam should match each other not only in shape but also in size, thus an optimal combination of beam radii is very important for efficient operation of alkali vapor amplifiers.
Huang, Xiaoxu; Lan, Jinglong; Lin, Zhi; Wang, Yi; Xu, Bin; Xu, Huiying; Cai, Zhiping; Xu, Xiaodong; Zhang, Jian; Xu, Jun
2016-04-10
We report a diode-pumped continuous-wave simultaneous dual-wavelength Nd:LSO laser at 1059 and 1067 nm. By employing a specially coated output coupler with relatively high transmissions at high-gain emission lines of 1075 and 1079 nm, the two low-gain emission lines, 1059 and 1067 nm, can be achieved, for the first time to our knowledge, with maximum output power of 1.27 W and slope efficiency of about 29.2%. The output power is only limited by the available pump power. Output beam quality is also measured to be about 1.19 and 1.21 of the beam propagation factors in the x and y directions, respectively.
NASA Astrophysics Data System (ADS)
Zhang, F. F.; Zuo, J. W.; Wang, Z. M.; Yang, J.; Cheng, H. L.; Zong, N.; Yang, F.; Peng, Q. J.; Xu, Z. Y.
2013-04-01
We developed a high power mode-locked Nd:GdVO4 oscillator with low timing jitter directly pumped by an 879 nm diode. Under the absorbed pump power of 13.8 W, a maximum output power of 5.68 W at 1063 nm was obtained with a repetition rate of ˜250 MHz, corresponding to a slope efficiency of 78.7%. The measured pulse width and root mean square timing jitter at the output power of 5.35 W were 7.4 ps and 286 fs, respectively. To the best of our knowledge, this is the highest output power for a picosecond Nd:GdVO4 oscillator with low timing jitter.
Evaluation of auxiliary power subsystems for gas engine heat pumps, phase 2
NASA Astrophysics Data System (ADS)
Rasmussen, R. W.; Wahlstedt, D. A.; Planer, N.; Fink, J.; Persson, E.
1988-12-01
The need to determine the practical, technical and economic viability for a stand-alone Gas Engine Heat Pump (GEHP) system capable of generating its own needed electricity is addressed. Thirty-eight reasonable design configurations were conceived based upon small-sized power conversion equipment that is either commercially available or close to emerging on the market. Nine of these configurations were analyzed due to their potential for low first cost, high conversion efficiency, availability or simplicity. It was found that electric consumption can be reduced by over 60 percent through the implementation of high efficiency, brushless, permanent magnet motors as fan and pump drivers. Of the nine selected configurations employing variable-speed fans, two were found to have simple incremental payback periods of 4.2 to 16 years, depending on the U.S. city chosen for analysis. Although the auxiliary power subsystem option is only marginally attractive from an economic standpoint, the increased gas load provided to the local gas utility may be sufficient to encourage further development. The ability of the system to operate completely disconnected from the electric power source may be a feature of high merit.
Asama, Junichi; Shinshi, Tadahiko; Hoshi, Hideo; Takatani, Setsuo; Shimokohbe, Akira
2006-03-01
A magnetically levitated (maglev) centrifugal blood pump (CBP), intended for use as a ventricular assist device, needs to be highly durable and reliable for long-term use without any mechanical failure. Furthermore, maglev CBPs should be small enough to be implanted into patients of various size and weight. We have developed a compact maglev CBP employing a two-degree-of-freedom controlled magnetic bearing, with a magnetically suspended impeller directly driven by an internal brushless direct current (DC) motor. The magnetic bearing actively controls the radial motion of the impeller and passively supports axial and angular motions using a permanent magnet embedded in the impeller. The overall dimensions of the maglev CBP are 65 mm in diameter and 40 mm in height. The total power consumption and pump efficiency for pumping 6 L/min against a head pressure of 105 mm Hg were 6.5 W and 21%, respectively. To evaluate the characteristics of the maglev CBP when subjected to a disturbance, excitation of the base, simulating the movement of the patient in various directions, and the sudden interception of the outlet tube connected with the pump in a mock circulatory loop, simulating an unexpected kink and emergent clamp during a heart surgery, were tested by monitoring the five-degree-of-freedom motion of the impeller. Furthermore, the hemolytic characteristics of the maglev CBP were compared with those of the Medtronic Biomedicus BPX-80, which demonstrated the superiority of the maglev CBP.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brown, R.C.
An integrated system of heat pumps is used to reject heat into or extract heat from circulating water from a shallow well adjacent to the river to demonstrate the efficiency and fuel cost savings of water-to-air heat pumps, without the expense of drilling a deep well. Water is returned unpolluted to the Guadalupe River and is circulated through a five-building complex at River Gardens Intermediate Care Facility for the Mentally Retarded in New Braunfels, Texas. The water is used as a heat source or sink for 122 heat pumps providing space heating and cooling, and for refrigeration and freezer units.more » The system was not installed as designed, which resulted in water pumping loads being higher than the original design. Electrical consumption for pumping water represented 36 to 37% of system electrical consumption. Without the water pumping load, the water-to-air system was an average of 25% more efficient in heating than a comparable air-to-air unit with resistance heating. With water pumping load included, the installed system averaged 17% less efficient in cooling and 19% more efficient in heating than the comparable unit.« less
Giant narrowband twin-beam generation along the pump-energy propagation direction
NASA Astrophysics Data System (ADS)
Pérez, Angela M.; Spasibko, Kirill Yu; Sharapova, Polina R.; Tikhonova, Olga V.; Leuchs, Gerd; Chekhova, Maria V.
2015-07-01
Walk-off effects, originating from the difference between the group and phase velocities, limit the efficiency of nonlinear optical interactions. While transverse walk-off can be eliminated by proper medium engineering, longitudinal walk-off is harder to avoid. In particular, ultrafast twin-beam generation via pulsed parametric down-conversion and four-wave mixing is only possible in short crystals or fibres. Here we show that in high-gain parametric down-conversion, one can overcome the destructive role of both effects and even turn them into useful tools for shaping the emission. In our experiment, one of the twin beams is emitted along the pump Poynting vector or its group velocity matches that of the pump. The result is markedly enhanced generation of both twin beams, with the simultaneous narrowing of angular and frequency spectrum. The effect will enable efficient generation of ultrafast twin photons and beams in cavities, waveguides and whispering-gallery mode resonators.
Latest developments in resonantly diode-pumped Er:YAG lasers
NASA Astrophysics Data System (ADS)
Kudryashov, Igor; Garbuzov, Dmitri; Dubinskii, Mark
2007-04-01
Significant performance improvement of the Er(0.5%):YAG diode pumped solid state laser (DPSSL) has been achieved by pump diode spectral narrowing via implementation of an external volumetric Bragg grating (VBG). Without spectral narrowing, with a pump path length of 15 mm, only 37% of 1532 nm pump was absorbed. After the VBG spectral narrowing, the absorption of the pumping radiation increased to 62 - 70%. As a result, the incident power threshold was reduced by a factor of 2.5, and the efficiency increased by a factor of 1.7, resulting in a slope efficiency of ~23 - 30%. A maximum of 51 W of CW power was obtained versus 31 W without the pump spectrum narrowing. More than 180 mJ QCW pulse output energy was obtained in a stable-unstable resonator configuration with a beam quality of M2 = 1.3 in the stable direction and M2 = 1.1 in the unstable direction. The measured slope efficiency was 0.138 J/J with a threshold energy of 0.91 J.
AlGaAs diode pumped tunable chromium lasers
Krupke, William F.; Payne, Stephen A.
1992-01-01
An all-solid-state laser system is disclosed wherein the laser is pumped in the longwave wing of the pump absorption band. By utilizing a laser material that will accept unusually high dopant concentrations without deleterious effects on the crystal lattice one is able to compensate for the decreased cross section in the wing of the absorption band, and the number of pump sources which can be used with such a material increases correspondingly. In a particular embodiment a chromium doped colquiriite-structure crystal such as Cr:LiSrAlF.sub.6 is the laser material. The invention avoids the problems associated with using AlGaInP diodes by doping the Cr:LiSrAlF.sub.6 heavily to enable efficient pumping in the longwave wing of the absorption band with more practical AlGaAs diodes.
Development of a nonazeotropic heat pump for crew hygiene water heating
NASA Technical Reports Server (NTRS)
Walker, David H.; Deming, Glenn I.
1991-01-01
A Phase 2 SBIR Program funded by the NASA Marshall Space Flight Center to develop a Nonazeotropic Heat Pump is described. The heat pump system which was designed, fabricated, and tested in the Foster-Miller laboratory, is capable of providing crew hygiene water heating for future manned missions. The heat pump utilizes a nonazeotropic refrigerant mixture which, in this application, provides a significant Coefficient of Performance improvement over a single-constituent working fluid. In order to take full advantage of the refrigerant mixture, compact tube-in-tube heat exchangers were designed. A high efficiency scroll compressor with a proprietary lubrication system was developed to meet the requirements of operation in zero-gravity. The prototype heat pump system consumes less than 200W of power compared to the alternative of electric cartridge heaters which would require 2 to 5 kW.
Highly efficient dual-wavelength mid-infrared CW Laser in diode end-pumped Er:SrF2 single crystals
Ma, Weiwei; Qian, Xiaobo; Wang, Jingya; Liu, Jingjing; Fan, Xiuwei; Liu, Jie; Su, Liangbi; Xu, Jun
2016-01-01
The spectral properties and laser performance of Er:SrF2 single crystals were investigated and compared with Er:CaF2. Er:SrF2 crystals have larger absorption cross-sections at the pumping wavelength, larger mid-infrared stimulated emission cross-sections and much longer fluorescence lifetimes of the upper laser level (Er3+:4I11/2 level) than those of Er:CaF2 crystals. Dual-wavelength continuous-wave (CW) lasers around 2.8 μm were demonstrated in both 4at.% and 10at.% Er:SrF2 single crystals under 972 nm laser diode (LD) end pumping. The laser wavelengths are 2789.3 nm and 2791.8 nm in the former, and 2786.4 nm and 2790.7 nm in the latter, respectively. The best laser performance has been demonstrated in lightly doped 4at.% Er:SrF2 with a low threshold of 0.100 W, a high slope efficiency of 22.0%, an maximum output power of 0.483 W. PMID:27811994
Highly efficient dual-wavelength mid-infrared CW Laser in diode end-pumped Er:SrF2 single crystals.
Ma, Weiwei; Qian, Xiaobo; Wang, Jingya; Liu, Jingjing; Fan, Xiuwei; Liu, Jie; Su, Liangbi; Xu, Jun
2016-11-04
The spectral properties and laser performance of Er:SrF 2 single crystals were investigated and compared with Er:CaF 2 . Er:SrF 2 crystals have larger absorption cross-sections at the pumping wavelength, larger mid-infrared stimulated emission cross-sections and much longer fluorescence lifetimes of the upper laser level (Er 3+ : 4 I 11/2 level) than those of Er:CaF 2 crystals. Dual-wavelength continuous-wave (CW) lasers around 2.8 μm were demonstrated in both 4at.% and 10at.% Er:SrF 2 single crystals under 972 nm laser diode (LD) end pumping. The laser wavelengths are 2789.3 nm and 2791.8 nm in the former, and 2786.4 nm and 2790.7 nm in the latter, respectively. The best laser performance has been demonstrated in lightly doped 4at.% Er:SrF 2 with a low threshold of 0.100 W, a high slope efficiency of 22.0%, an maximum output power of 0.483 W.
Highly efficient dual-wavelength mid-infrared CW Laser in diode end-pumped Er:SrF2 single crystals
NASA Astrophysics Data System (ADS)
Ma, Weiwei; Qian, Xiaobo; Wang, Jingya; Liu, Jingjing; Fan, Xiuwei; Liu, Jie; Su, Liangbi; Xu, Jun
2016-11-01
The spectral properties and laser performance of Er:SrF2 single crystals were investigated and compared with Er:CaF2. Er:SrF2 crystals have larger absorption cross-sections at the pumping wavelength, larger mid-infrared stimulated emission cross-sections and much longer fluorescence lifetimes of the upper laser level (Er3+:4I11/2 level) than those of Er:CaF2 crystals. Dual-wavelength continuous-wave (CW) lasers around 2.8 μm were demonstrated in both 4at.% and 10at.% Er:SrF2 single crystals under 972 nm laser diode (LD) end pumping. The laser wavelengths are 2789.3 nm and 2791.8 nm in the former, and 2786.4 nm and 2790.7 nm in the latter, respectively. The best laser performance has been demonstrated in lightly doped 4at.% Er:SrF2 with a low threshold of 0.100 W, a high slope efficiency of 22.0%, an maximum output power of 0.483 W.
NASA Astrophysics Data System (ADS)
Yang, Zhengjun; Wang, Fujun; Zhou, Peijian
2012-09-01
The current research of large eddy simulation (LES) of turbulent flow in pumps mainly concentrates in applying conventional subgrid-scale (SGS) model to simulate turbulent flow, which aims at obtaining the flow field in pump. The selection of SGS model is usually not considered seriously, so the accuracy and efficiency of the simulation cannot be ensured. Three SGS models including Smagorinsky-Lilly model, dynamic Smagorinsky model and dynamic mixed model are comparably studied by using the commercial CFD code Fluent combined with its user define function. The simulations are performed for the turbulent flow in a centrifugal pump impeller. The simulation results indicate that the mean flows predicted by the three SGS models agree well with the experimental data obtained from the test that detailed measurements of the flow inside the rotating passages of a six-bladed shrouded centrifugal pump impeller performed using particle image velocimetry (PIV) and laser Doppler velocimetry (LDV). The comparable results show that dynamic mixed model gives the most accurate results for mean flow in the centrifugal pump impeller. The SGS stress of dynamic mixed model is decompose into the scale similar part and the eddy viscous part. The scale similar part of SGS stress plays a significant role in high curvature regions, such as the leading edge and training edge of pump blade. It is also found that the dynamic mixed model is more adaptive to compute turbulence in the pump impeller. The research results presented is useful to improve the computational accuracy and efficiency of LES for centrifugal pumps, and provide important reference for carrying out simulation in similar fluid machineries.
Experimental analysis of the flow pattern of a pump turbine model in pump mode
NASA Astrophysics Data System (ADS)
Guggenberger, Mark; Senn, Florian; Jaberg, Helmut; Gehrer, Arno; Sallaberger, Manfred; Widmer, Christian
2016-11-01
Reversible pump turbines are the only means to store primary energy in an highly efficient way. Within a short time their operation can be switched between the different operational regimes thus enhancing the stabilization of the electric grid. These qualities in combination with the operation even at off-design conditions offer a high flexibility to the energy market. However, pump turbines pass through operational regimes where their behaviour becomes unstable. One of these effects occurs when the flowrate is decreased continuously down to a minimum. This point is the physical limitation of the pump operation and is very difficult to predict properly by numerical design without a model test. The purpose of the present study is to identify the fluid mechanical phenomena leading to the occurrence of instabilities of pump turbines in pump mode. A reduced scale model of a ANDRITZ pump turbine was installed on a 4-quadrant test rig for the experimental investigation of unstable conditions in pump mode. The performed measurements are based on the IEC60193-standard. Characteristic measurements at a single guide vane opening were carried out to get a detailed insight into the instabilities in pump mode. The interaction between runner and guide vane was analysed by Particle Image Velocimetry. Furthermore, high-speed visualizations of the suction side part load flow and the suction recirculation were performed. Like never before the flow pattern in the draft tube cone became visible with the help of a high-speed camera by intentionally caused cavitation effects which allow a qualitative view on the flow pattern in the draft tube cone. Suction recirculation is observed in form of single vortices separating from each runner blade and stretching into the draft tube against the main flow direction. To find an explanation for the flow phenomena responsible for the appearance of the unstable head curve also characteristic velocity distributions on the pressure side were combined with high-speed visualizations on the suction side of the pump turbine model. The results enhance the comprehension of the physical background leading to the instability and improve the numerical predictability of the instability in pump mode.
Design of a high-power, high-brightness Nd:YAG solar laser.
Liang, Dawei; Almeida, Joana; Garcia, Dário
2014-03-20
A simple high-power, high-brightness Nd:YAG solar laser pumping approach is presented in this paper. The incoming solar radiation is both collected and concentrated by four Fresnel lenses and redirected toward a Nd:YAG laser head by four plane-folding mirrors. A fused-silica secondary concentrator is used to compress the highly concentrated solar radiation to a laser rod. Optimum pumping conditions and laser resonator parameters are found through ZEMAX and LASCAD numerical analysis. Solar laser power of 96 W is numerically calculated, corresponding to the collection efficiency of 24 W/m². A record-high solar laser beam brightness figure of merit of 9.6 W is numerically achieved.
Fedorova, Ksenia A; Sokolovskii, Grigorii S; Khomylev, Maksim; Livshits, Daniil A; Rafailov, Edik U
2014-12-01
A compact high-power yellow-green continuous wave (CW) laser source based on second-harmonic generation (SHG) in a 5% MgO doped periodically poled congruent lithium niobate (PPLN) waveguide crystal pumped by a quantum-dot fiber Bragg grating (QD-FBG) laser diode is demonstrated. A frequency-doubled power of 90.11 mW at the wavelength of 560.68 nm with a conversion efficiency of 52.4% is reported. To the best of our knowledge, this represents the highest output power and conversion efficiency achieved to date in this spectral region from a diode-pumped PPLN waveguide crystal, which could prove extremely valuable for the deployment of such a source in a wide range of biomedical applications.
Gu, Chenglin; Hu, Minglie; Zhang, Limeng; Fan, Jintao; Song, Youjian; Wang, Chingyue; Reid, Derryck T
2013-06-01
We report on the highly efficient generation of widely tunable femtosecond pulses based on intracavity second harmonic generation (SHG) and sum frequency generation (SFG) in a MgO-doped periodically poled LiNbO(3) optical parametric oscillator (OPO), which is pumped by a Yb-doped large-mode-area photonics crystal fiber femtosecond laser. Red and near infrared from intracavity SHG and SFG and infrared signals were directly obtained from the OPO. A 2 mm β-BaB(2)O(4) is applied for Type I (oo → e) intracavity SHG and SFG, and then femtosecond laser pulses over 610 nm ~ 668 nm from SFG and 716 nm ~ 970 nm from SHG are obtained with high efficiency. In addition, the oscillator simultaneously generates signal and idler femtosecond pulses over 1450 nm ~ 2200 nm and 2250 nm ~ 4000 nm, respectively.
NASA Astrophysics Data System (ADS)
Wang, Zhaolu; Liu, Hongjun; Sun, Qibing; Huang, Nan; Li, Shaopeng; Han, Jing
2016-07-01
We experimentally demonstrate ultra-low pump power wavelength conversion based on four-wave mixing in a silicon racetrack-shaped microring resonator. When the pump and signal are located at the resonance wavelengths, wavelength conversion with a pump power of only 1 mW can be realized in this microring resonator because of the resonant enhancement of the device. However, saturation of the conversion efficiency occurs because of the shift of the resonance peak, which is caused by the change of the effective refractive index induced by a combination of thermal and free carrier dispersion effects, and it is demonstrated that the thermal effect is the leading-order factor for the change of the refractive index. The maximum conversion efficiency of -21 dB is obtained when the pump power is less than 12 mW. This ultra-low-power on-chip wavelength convertor based on a silicon microring resonator can find important potential applications in highly integrated optical circuits for all-optical signal processing.
Cryogenic ultra-high power infrared diode laser bars
NASA Astrophysics Data System (ADS)
Crump, Paul; Frevert, C.; Hösler, H.; Bugge, F.; Knigge, S.; Pittroff, W.; Erbert, G.; Tränkle, G.
2014-02-01
GaAs-based high power diode lasers are the most efficient source of optical energy, and are in wide use in industrial applications, either directly or as pump sources for other laser media. Increased output power per laser is required to enable new applications (increased optical power density) and to reduce cost (more output per component leads to lower cost in $/W). For example, laser bars in the 9xx nm wavelength range with the very highest power and efficiency are needed as pump sources for many high-energy-class solid-state laser systems. We here present latest performance progress using a novel design approach that leverages operation at temperatures below 0°C for increases in bar power and efficiency. We show experimentally that operation at -55°C increases conversion efficiency and suppresses thermal rollover, enabling peak quasi-continuous wave bar powers of Pout > 1.6 kW to be achieved (1.2 ms, 10 Hz), limited by the available current. The conversion efficiency at 1.6 kW is 53%. Following on from this demonstration work, the key open challenge is to develop designs that deliver higher efficiencies, targeting > 80% at 1.6 kW. We present an analysis of the limiting factors and show that low electrical resistance is crucial, meaning that long resonators and high fill factor are needed. We review also progress in epitaxial design developments that leverage low temperatures to enable both low resistance and high optical performance. Latest results will be presented, summarizing the impact on bar performance and options for further improvements to efficiency will also be reviewed.
Müller, André; Jensen, Ole Bjarlin; Unterhuber, Angelika; Le, Tuan; Stingl, Andreas; Hasler, Karl-Heinz; Sumpf, Bernd; Erbert, Götz; Andersen, Peter E; Petersen, Paul Michael
2011-06-20
For the first time a single-pass frequency doubled DBR-tapered diode laser suitable for pumping Ti:sapphire lasers generating ultrashort pulses is demonstrated. The maximum output powers achieved when pumping the Ti:sapphire laser are 110 mW (CW) and 82 mW (mode-locked) respectively at 1.2 W of pump power. This corresponds to a reduction in optical conversion efficiencies to 75% of the values achieved with a commercial diode pumped solid-state laser. However, the superior electro-optical efficiency of the diode laser improves the overall efficiency of the Ti:sapphire laser by a factor > 2. The optical spectrum emitted by the Ti:sapphire laser when pumped with our diode laser shows a spectral width of 112 nm (FWHM). Based on autocorrelation measurements, pulse widths of less than 20 fs can therefore be expected.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chicklis, E.P.; Folweiler, R.C.; Pollak, T.M.
This is a combined study of resonant pumped solid state lasers as fusion drivers, and the development of crystalline optical materials suitable for propagation of the high peak powers associated with laser fusion research. During this period of study the concept of rare gas halide lasers was first demonstrated by the lasing of Tm:YLF at 453 nm pumped by the 353 nm energy of XeF. Excited stata densities of 5 x 10/sup 18/ cm/sup -3/ have been attained and spectroscopic measurements show that up to 60% of the pump energy can be converted into useful stored energy. Alternative lasers andmore » pumping schemes are also discussed. In all cases the potential RGH/SS systems are evaluated in respect to internal efficiency and heat loading.« less
Development and numerical analysis of low specific speed mixed-flow pump
NASA Astrophysics Data System (ADS)
Li, H. F.; Huo, Y. W.; Pan, Z. B.; Zhou, W. C.; He, M. H.
2012-11-01
With the development of the city, the market of the mixed flow pump with large flux and high head is prospect. The KSB Shanghai Pump Co., LTD decided to develop low speed specific speed mixed flow pump to meet the market requirements. Based on the centrifugal pump and axial flow pump model, aiming at the characteristics of large flux and high head, a new type of guide vane mixed flow pump was designed. The computational fluid dynamics method was adopted to analyze the internal flow of the new type model and predict its performances. The time-averaged Navier-Stokes equations were closed by SST k-ω turbulent model to adapt internal flow of guide vane with larger curvatures. The multi-reference frame(MRF) method was used to deal with the coupling of rotating impeller and static guide vane, and the SIMPLEC method was adopted to achieve the coupling solution of velocity and pressure. The computational results shows that there is great flow impact on the head of vanes at different working conditions, and there is great flow separation at the tailing of the guide vanes at different working conditions, and all will affect the performance of pump. Based on the computational results, optimizations were carried out to decrease the impact on the head of vanes and flow separation at the tailing of the guide vanes. The optimized model was simulated and its performance was predicted. The computational results show that the impact on the head of vanes and the separation at the tailing of the guide vanes disappeared. The high efficiency of the optimized pump is wide, and it fit the original design destination. The newly designed mixed flow pump is now in modeling and its experimental performance will be getting soon.
NASA Astrophysics Data System (ADS)
Weike, Pang; Wenju, Lin; Qilin, Pan; Wenye, Lin; Qunte, Dai; Luwei, Yang; Zhentao, Zhang
2014-01-01
In this paper, a set of heat pump (called as Mechanical Vapor Recompression, MVR) propelled by a centrifugal fan is tested and it shows some special characteristic when it works together with a falling film evaporator. Firstly, an analysis of the fan's suction and discharge parameters at stable state, such as its pressure and temperature, indicates that a phenomenon of wet compression is probably to appear during vapor compression. As a result, superheat after saturated vapor is compressed is eliminated, which reduces discharge temperature of the system. It is because drops boil away and absorb the super heat into their latent heat during vapor compression. Meanwhile, drops in the suction vapor add to the compressed vapor, which increase the given heat of the MVR heat pump. Next, assistant electric heat could adjust and keep steady of the operating pressure and temperature of an MVR heat pump. With the evaporation temperature up to be high, heat balance is broken and supplement heat needs to increase. Thirdly, the performance of an MVR heat pump is affect by the balance of falling film and evaporation that has an effect on heat transfer. Then, two parameters standing for the performance are measured as it runs in practical condition. The two important parameters are consumptive electricity power and productive water capacity. According to theoretical work in ideal condition by calculation and fan's input power by measure as running, adiabatic efficiency (ηad) of a centrifugal fan is calculated when it is applied in a heat pump of MVR. Following, based on ηad, practical SMER and COP of an MVR heat pump are discovered to be correlative with it. Finally, in dependence on productive water in theory and in practice, displacement efficiency (ηv) of centrifugal fans is obtained when compressing vapor, and so provide some references of matching a fan for an MVR heat pump. On the other hand, it is helpful to research and develop MVR heat pumps, and also to check electricity power consumption while operating practically in light of electric motor efficiency (ηe) and ηad.
Blackbody absorption efficiencies for six lamp pumped Nd laser materials
NASA Technical Reports Server (NTRS)
Cross, Patricia L.; Barnes, Norman P.; Skolaut, Milton W., Jr.; Storm, Mark E.
1990-01-01
Utilizing high resolution spectra, the absorption efficiencies for six Nd laser materials were calculated as functions of the effective blackbody temperature of the lamp and laser crystal size. The six materials were Nd:YAG, Nd:YLF, Nd:Q-98 Glass, Nd:YVO4, Nd:BEL, and Nd:Cr:GSGG. Under the guidelines of this study, Nd:Cr:GSGG's absorption efficiency is twice the absorption efficiency of any of the other laser materials.
Preliminary study of a gas burner-driven and ground-coupled heat pump system
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hsu, P.F.
1995-12-31
To address the concerns for higher energy efficiency and the immediate phase out of the chlorofluorocarbons (CFCs), a new gas burner-driven, ground-coupled heat pump (GBGCHP) system is proposed for study. The new system is energy efficient and pose no environmental problem. There are three unique features in the proposed system: (1) a patented gas burner-driven compressor with a floating diaphragm piston-cylinder for energy efficiency and accommodating variable load, (2) the ground coupled water-to-air heat exchangers for high coefficient of performance (COPs), and (3) the new refrigerants based on fluoroiodocarbons (FICS) with very little ozone depletion and global warming potential. Amore » preliminary analysis of a prototype heat pump with 3 ton (10.55 kW) heating capacity is presented. The thermodynamics analysis of the system shows that the steady state COP rating higher than 7 is possible with the system operating in heating mode. Additional research work for the GBGCHP system, especially the FICs` thermodynamic properties in the superheated region, is also described.« less
Enhanced performance of Cr,Yb:YAG microchip laser by bonding Yb:YAG crystal.
Cheng, Ying; Dong, Jun; Ren, Yingying
2012-10-22
Highly efficient, laser-diode pumped Yb:YAG/Cr,Yb:YAG self-Q-switched microchip lasers by bonding Yb:YAG crystal have been demonstrated for the first time to our best knowledge. The effect of transmission of output coupler (T(oc)) on the enhanced performance of Yb:YAG/Cr,Yb:YAG microchip lasers has been investigated and found that the best laser performance was achieved with T(oc) = 50%. Slope efficiency of over 38% was achieved. Average output power of 0.8 W was obtained at absorbed pump power of 2.5 W; corresponding optical-to-optical efficiency of 32% was obtained. Laser pulses with pulse width of 1.68 ns, pulse energy of 12.4 μJ, and peak power of 7.4 kW were obtained. The lasers oscillated in multi-longitudinal modes. The wide separation of longitudinal modes was attributed to the mode selection by combined etalon effect of Cr,Yb:YAG, Yb:YAG thin plates and output coupler. Stable periodical pulse trains at different pump power levels have been observed owing to the longitudinal modes coupling and competition.
Numerical Investigation of the Influence of Blade Radial Gap Flow on Axial Blood Pump Performance.
Liu, Guang-Mao; Jin, Dong-Hai; Zhou, Jian-Ye; Zhang, Yan; Chen, Hai-Bo; Sun, Han-Song; Hu, Sheng-Shou; Gui, Xing-Min
2018-01-05
The gaps between the blades and the shroud (or hub) of an axial blood pump affect the hydraulics, efficiency, and hemolytic performance. These gaps are critical parameters when a blood pump is manufactured. To evaluate the influence of blade gaps on axial blood pump performance, the flow characteristics inside an axial blood pump with different radial blade gaps were numerically simulated and analyzed with special attention paid to the hydraulic characteristics, gap flow, hydraulic efficiency, and hemolysis index (HI). In vitro hydraulic testing and particle image velocimetry testing were conducted to verify the numerical results. The simulation results showed that the efficiency and pressure rise decreased when the gap increased. The efficiency of the axial blood pump at design point decreased from 37.1% to 27.1% and the pressure rise decreased from 127.4 to 71.2 mm Hg when the gap increased from 0.1 to 0.3 mm. Return and vortex flows were present in the outlet guide vane channels when the gap was larger than 0.2 mm. The HI of the blood pump with a 0.1 mm gap was 1.5-fold greater than that with a 0.3 mm gap. The results illustrated poor hydraulic characteristics when the gap was larger than 0.15 mm and rapidly deteriorated hemolysis when the gap was larger than 0.1 mm. The numerical and experimental results demonstrated that the pressure rise, pump efficiency, and scalar shear stress decreased when the gap increased. The HI did not strictly decrease with gap increases. The preliminary results encourage the improvement of axial blood pump designs.
Is There Segregation of Rare Earth Ions in Garnet Optical Ceramics?
NASA Astrophysics Data System (ADS)
Boulon, Georges; Epicier, T.; Zhao, W.; Guzik, M.; Pan, Y.; Jiang, B.
Research on advanced optical materials for a large variety of applications is always increasing. As an example, we can note high progress in solid-state laser sources like laser-diode (LD) - pumped solid-state lasers (DPSSL) including developments of new materials and high-power laser diode led to high-power and tuneable solid-state lasers. A wide variety of materials has been studied to develop more efficient and high power microchip lasers [1]. In end-pumping schemes, in particular, materials with a short absorption length for the LD pump beam are strongly anticipated for highly efficient operations because of the excellent match between the mode and pump beam profiles. High Nd3+ concentrations were so considered such as NdP5O14, LiNdP4O12 (LNP), and NdAl3(BO3)O4. However, crystal growths of these compositions are not so easy. Cubic crystals are much more researched. When looking at the literature for actual applications, we see immediately the importance of cubic garnet crystals for which dodecahedral (Y3+), octahedral (Al3+) and tetrahedral (Al3+) sites are considered as a reservoir for many activators like: Ce3+, Nd3+, Er3+, Tm3+, Ho3+, Yb3+ rare earth ions in dodecahedral symmetry sites and transition metal ions like Cr3+ in the octahedral symmetry sites or Cr4+ in the tetrahedral symmetry sites. Among garnet crystals, Y3Al5O12 (YAG) host is the most used, commercially produced by the Czochralski method. However, in the case of the most used Nd3+: YAG laser crystal, the Nd3+ concentration that affects the performance in laser applications, is strongly limited to 0.2-1.4 Nd3+ at. % as a result of the segregation distribution coefficient [1].
Volume Bragg grating improves characteristic of resonantly diode-pumped Er:YAG, 1.65-μm DPSSL
NASA Astrophysics Data System (ADS)
Kudryashov, Igor; Garbuzov, Dmitri; Dubinskii, Mark
2007-02-01
Significant performance improvement of the Er(0.5%):YAG diode pumped solid state laser (DPSSL) has been achieved by pump diode spectral narrowing via implementation of external volumetric Bragg grating (VBG). Without spectral narrowing, with a pump path length of 15 mm, only 37% of 1532 nm pump was absorbed. After the VBG spectral narrowing, the absorption of the pumping radiation increased to 62%. As a result, the incident power threshold was reduced by a factor of 2.5; the efficiency increased by a factor of 1.7, resulting in a slope efficiency of ~23%. A maximum of 51 W of CW power was obtained versus 31 W without the pump spectrum narrowing.
Silfvast, W T; Ii, O R
1989-01-01
A conically shaped pumping geometry can produce an efficient burst of laser radiation, without the need for an optical cavity, by restricting amplified spontaneous emission losses to a small region near the apex of the cone. Requirements on the active medium and on the size and intensity of the pumping source to make such a burst laser are derived. We calculate that a 15-mJ pulse of energy at 37.2 nm at an efficiency of 0.15% can be extracted from sodium vapor photoionized with radiation from a 1.06-microm-laser-produced plasma using this pumping geometry.
Optimal hydraulic design of new-type shaft tubular pumping system
NASA Astrophysics Data System (ADS)
Zhu, H. G.; Zhang, R. T.; Zhou, J. R.
2012-11-01
Based on the characteristics of large flow rate, low-head, short annual operation time and high reliability of city flood-control pumping stations, a new-type shaft tubular pumping system featuring shaft suction box, siphon-type discharge passage with vacuum breaker as cutoff device was put forward, which possesses such advantages as simpler structure, reliable cutoff and higher energy performance. According to the design parameters of a city flood control pumping station, a numerical computation model was set up including shaft-type suction box, siphon-type discharge passage, pump impeller and guide vanes. By using commercial CFD software Fluent, RNG κ-epsilon turbulence model was adopted to close the three-dimensional time-averaged incompressible N-S equations. After completing optimal hydraulic design of shaft-type suction box, and keeping the parameters of total length, maximum width and outlet section unchanged, siphon-type discharge passages of three hump locations and three hump heights were designed and numerical analysis on the 9 hydraulic design schemes of pumping system were proceeded. The computational results show that the changing of hump locations and hump heights directly affects the internal flow patterns of discharge passages and hydraulic performances of the system, and when hump is located 3.66D from the inlet section and hump height is about 0.65D (D is the diameter of pump impeller), the new-type shaft tubular pumping system achieves better energy performances. A pumping system model test of the optimal designed scheme was carried out. The result shows that the highest pumping system efficiency reaches 75.96%, and when at design head of 1.15m the flow rate and system efficiency were 0.304m3/s and 63.10%, respectively. Thus, the validity of optimal design method was verified by the model test, and a solid foundation was laid for the application and extension of the new-type shaft tubular pumping system.
Highly-efficient multi-watt Yb:CaLnAlO4 microchip lasers
NASA Astrophysics Data System (ADS)
Loiko, Pavel; Serres, Josep Maria; Mateos, Xavier; Xu, Xiaodong; Xu, Jun; Yumashev, Konstantin; Griebner, Uwe; Petrov, Valentin; Aguiló, Magdalena; Díaz, Francesc; Major, Arkady
2017-02-01
Tetragonal rare-earth calcium aluminates, CaLnAlO4 where Ln = Gd or Y (CALGO and CALYO, respectively), are attractive laser crystal hosts due to their locally disordered structure and high thermal conductivity. In the present work, we report on highly-efficient power-scalable microchip lasers based on 8 at.% Yb:CALGO and 3 at.% Yb:CALYO crystals grown by the Czochralski method. Pumped by an InGaAs laser diode at 978 nm, the 6 mm-long Yb:CALGO microchip laser generated 7.79 W at 1057-1065 nm with a slope efficiency of η = 84% (with respect to the absorbed pump power) and an optical-to-optical efficiency of ηopt = 49%. The 3 mm-long Yb:CALYO microchip laser generated 5.06 W at 1048-1056 nm corresponding to η = 91% and ηopt = 32%. Both lasers produced linearly polarized output (σ- polarization) with an almost circular beam profile and beam quality factors M2 x,y <1.1. The output performance of the developed lasers was modeled yielding a loss coefficient as low as 0.004-0.007 cm-1. The results indicate that the Yb3+- doped calcium aluminates are very promising candidates for high-peak-power passively Q-switched microchip lasers.
Do Arthroscopic Fluid Pumps Display True Surgical Site Pressure During Hip Arthroscopy?
Ross, Jeremy A; Marland, Jennifer D; Payne, Brayden; Whiting, Daniel R; West, Hugh S
2018-01-01
To report on the accuracy of 5 commercially available arthroscopic fluid pumps to measure fluid pressure at the surgical site during hip arthroscopy. Patients undergoing hip arthroscopy for femoroacetabular impingement were block randomized to the use of 1 of 5 arthroscopic fluid pumps. A spinal needle inserted into the operative field was used to measure surgical site pressure. Displayed pump pressures and surgical site pressures were recorded at 30-second intervals for the duration of the case. Mean differences between displayed pump pressures and surgical site pressures were obtained for each pump group. Of the 5 pumps studied, 3 (Crossflow, 24K, and Continuous Wave III) reflected the operative field fluid pressure within 11 mm Hg of the pressure readout. In contrast, 2 of the 5 pumps (Double Pump RF and FMS/DUO+) showed a difference of greater than 59 mm Hg between the operative field fluid pressure and the pressure readout. Joint-calibrated pumps more closely reflect true surgical site pressure than gravity-equivalent pumps. With a basic understanding of pump design, either type of pump can be used safely and efficiently. The risk of unfamiliarity with these differences is, on one end, the possibility of pump underperformance and, on the other, potentially dangerously high operating pressures. Level II, prospective block-randomized study. Copyright © 2017. Published by Elsevier Inc.
Hiermeier, Florian; Männer, Jörg
2017-11-19
Valveless pumping phenomena (peristalsis, Liebau-effect) can generate unidirectional fluid flow in periodically compressed tubular conduits. Early embryonic hearts are tubular conduits acting as valveless pumps. It is unclear whether such hearts work as peristaltic or Liebau-effect pumps. During the initial phase of its pumping activity, the originally straight embryonic heart is subjected to deforming forces that produce bending, twisting, kinking, and coiling. This deformation process is called cardiac looping. Its function is traditionally seen as generating a configuration needed for establishment of correct alignments of pulmonary and systemic flow pathways in the mature heart of lung-breathing vertebrates. This idea conflicts with the fact that cardiac looping occurs in all vertebrates, including gill-breathing fishes. We speculate that looping morphogenesis may improve the efficiency of valveless pumping. To test the physical plausibility of this hypothesis, we analyzed the pumping performance of a Liebau-effect pump in straight and looped (kinked) configurations. Compared to the straight configuration, the looped configuration significantly improved the pumping performance of our pump. This shows that looping can improve the efficiency of valveless pumping driven by the Liebau-effect. Further studies are needed to clarify whether this finding may have implications for understanding of the form-function relationship of embryonic hearts.
Hiermeier, Florian; Männer, Jörg
2017-01-01
Valveless pumping phenomena (peristalsis, Liebau-effect) can generate unidirectional fluid flow in periodically compressed tubular conduits. Early embryonic hearts are tubular conduits acting as valveless pumps. It is unclear whether such hearts work as peristaltic or Liebau-effect pumps. During the initial phase of its pumping activity, the originally straight embryonic heart is subjected to deforming forces that produce bending, twisting, kinking, and coiling. This deformation process is called cardiac looping. Its function is traditionally seen as generating a configuration needed for establishment of correct alignments of pulmonary and systemic flow pathways in the mature heart of lung-breathing vertebrates. This idea conflicts with the fact that cardiac looping occurs in all vertebrates, including gill-breathing fishes. We speculate that looping morphogenesis may improve the efficiency of valveless pumping. To test the physical plausibility of this hypothesis, we analyzed the pumping performance of a Liebau-effect pump in straight and looped (kinked) configurations. Compared to the straight configuration, the looped configuration significantly improved the pumping performance of our pump. This shows that looping can improve the efficiency of valveless pumping driven by the Liebau-effect. Further studies are needed to clarify whether this finding may have implications for understanding of the form-function relationship of embryonic hearts. PMID:29367548
Efficient 2-μm Tm:YAP Q-switched and CW lasers
NASA Astrophysics Data System (ADS)
Hays, A. D.; Cole, Brian; King, Vernon; Goldberg, Lew
2018-02-01
Highly efficient, diode pumped Tm:YAP lasers generating emission in the 1.85-1.94 μm range are demonstrated and characterized. Laser optical efficiencies of 51% and 45%, and electrical efficiencies of 31% and 25% are achieved under CW and Q-switched operation, respectively. Laser performance was characterized for maximum average powers up to 20W with various cavity configurations, all using an intra-cavity lens to compensate for thermal lensing in the Tm:YAP crystal. Q-switched lasers incorportating a Cr:ZnS saturable absorber (SA), resonant mechanical mirror scanner, or acousto-optic modulator were characterized. To enable higher average output powers, measurements of the thermal lens were conducted for the Tm:YAP crystal as a function of pump power and were compared to values predicted by a finiteelement- analysis (FEA) thermal-optical model of the Tm:YAP crystal. A resonator model is developed to incorporate this calculated thermal lens and its effect on laser performance. This paper will address approaches for improving the performance of Tm:YAP lasers, and means for achieving increased average output powers while maintaining high optical efficiency for both SA and mechanical Q-switching.
West Village Student Housing Phase I: Apartment Monitoring and Evaluation
DOE Office of Scientific and Technical Information (OSTI.GOV)
German, A.; Bell, C.; Dakin, B.
Building America team Alliance for Residential Building Innovation (ARBI) worked with the University of California, Davis (UC Davis) and the developer partner West Village Community Partnership (WVCP) to evaluate performance on 192 student apartments completed in September, 2011 as part of Phase I of the multi-purpose West Village project. West Village, the largest planned zero net energy community in the United States. The campus neighborhood is designed to enable faculty, staff and students to affordably live near campus, take advantage of environmentally friendly transportation options, and participate fully in campus life. The aggressive energy efficiency measures that are incorporated inmore » the design contribute to source energy reductions of 37% over the B10 Benchmark. The energy efficiency measures that are incorporated into these apartments include increased wall & attic insulation, high performance windows, high efficiency heat pumps for heating and cooling, central heat pump water heaters (HPWHs), 100% high efficacy lighting, and ENERGY STAR major appliances. Results discuss how measured energy use compares to modeling estimates over a 10 month monitoring period and includes a cost effective evaluation.« less
NASA Astrophysics Data System (ADS)
Bartoli, G. L.; Studer, A. S.; Martinez Garcia, A.; Haug, G. H.
2011-12-01
The Bering Sea is one of the major sink of atmospheric CO2 today, due to the efficiency of its biological pump, despite a limitation by iron. Here we present records of iron fertilization by aeolian dust deposition (n-alkane concentration) and phytoplankton nutrient consumption (diatom-bound δ15N record) over the last 3.5 Myrs in the southwestern Bering Sea at Site U1341 drilled during IODP Expedition 323. During the Pliocene Epoch, when sea surface temperatures were 3-4°C warmer than today and sea-ice cover was reduced, the biological pump efficiency during glacial and interglacial stages was minimal, similar to Quaternary interglacials. Low iron deposition and weaker surface water stratification resulting in higher nutrient inputs contributed to reduce the biological pump efficiency until 1.5 Ma. After the intensification of glacial conditions in the Bering Sea and the increase in sea-ice cover and iron inputs, the biological pump efficiency progressively increased, reaching values similar to Quaternary glacials after the mid-Pleistocene transition.
Stirling heat pump external heat systems - An appliance perspective
NASA Astrophysics Data System (ADS)
Vasilakis, Andrew D.; Thomas, John F.
A major issue facing the Stirling Engine Heat Pump is system cost, and, in particular, the cost of the External Heat System (EHS). The need for high temperature at the heater head (600 C to 700 C) results in low combustion system efficiencies unless efficient heat recovery is employed. The balance between energy efficiency and use of costly high temperature materials is critical to design and cost optimization. Blower power consumption and NO(x) emissions are also important. A new approach to the design and cost optimization of the EHS was taken by viewing the system from a natural gas-fired appliance perspective. To develop a design acceptable to gas industry requirements, American National Standards Institute (ANSI) code considerations were incorporated into the design process and material selections. A parametric engineering design and cost model was developed to perform the analysis, including the impact of design on NO(x) emissions. Analysis results and recommended EHS design and material choices are given.
Stirling heat pump external heat systems: An appliance perspective
NASA Astrophysics Data System (ADS)
Vasilakis, A. D.; Thomas, J. F.
1992-08-01
A major issue facing the Stirling Engine Heat Pump is system cost, and, in particular, the cost of the External Heat System (EHS). The need for high temperature at the heater head (600 C to 700 C) results in low combustion system efficiencies unless efficient heat recovery is employed. The balance between energy efficiency and use of costly high temperature materials is critical to design and cost optimization. Blower power consumption and NO(x) emissions are also important. A new approach to the design and cost optimization of the EHS system was taken by viewing the system from a natural gas-fired appliance perspective. To develop a design acceptable to gas industry requirements, American National Standards Institute (ANSI) code considerations were incorporated into the design process and material selections. A parametric engineering design and cost model was developed to perform the analysis, including the impact of design on NO(x) emissions. Analysis results and recommended EHS design and material choices are given.
Pavel, Nicolaie; Salamu, Gabriela; Jipa, Florin; Zamfirescu, Marian
2014-09-22
Depressed cladding waveguides have been realized in Nd:YVO(4) employing direct writing technique with a femtosecond-laser beam. It was shown that the output performances of such laser devices are improved by the reduction of the quantum defect between the pump wavelength and the laser wavelength. Thus, under the classical pump at 808 nm (i.e. into the (4)F(5/2) level), a 100-μm diameter circular waveguide inscribed in a 0.7-at.% Nd:YVO(4) outputted 1.06-μm laser pulses with 3.0-mJ energy, at 0.30 optical efficiency and slope efficiency of 0.32. The pump at 880 nm (i.e.directly into the (4)F(3/2) emitting level) increased the pulse energy at 3.8 mJ and improved both optical efficiency and slope efficiency at 0.36 and 0.39, respectively. The same waveguide yielded continuous-wave 1.5-W output power at 1.06 μm under the pump at 880 nm. Laser emission at 1.34 μm was also improved using the pump into the (4)F(3/2) emitting level of Nd:YVO(4).
Esplandiu, Maria J; Farniya, Ali Afshar; Bachtold, Adrian
2015-11-24
We report a simple yet highly efficient chemical motor that can be controlled with visible light. The motor made from a noble metal and doped silicon acts as a pump, which is driven through a light-activated catalytic reaction process. We show that the actuation is based on electro-osmosis with the electric field generated by chemical reactions at the metal and silicon surfaces, whereas the contribution of diffusio-osmosis to the actuation is negligible. Surprisingly, the pump can be operated using water as fuel. This is possible because of the large ζ-potential of silicon, which makes the electro-osmotic fluid motion sizable even though the electric field generated by the reaction is weak. The electro-hydrodynamic process is greatly amplified with the addition of reactive species, such as hydrogen peroxide, which generates higher electric fields. Another remarkable finding is the tunability of silicon-based pumps. That is, it is possible to control the speed of the fluid with light. We take advantage of this property to manipulate the spatial distribution of colloidal microparticles in the liquid and to pattern colloidal microparticle structures at specific locations on a wafer surface. Silicon-based pumps hold great promise for controlled mass transport in fluids.
CW YVO4:Er Laser with Resonant Pumping
NASA Astrophysics Data System (ADS)
Gorbachenya, K. N.; Kisel, V. E.; Yasukevich, A. S.; Matrosov, V. N.; Tolstik, N. A.; Kuleshov, N. V.
2015-05-01
The lasing characteristics of a YVO4:Er laser with resonant pumping in the 1.5-1.6 μm range are studied. Lasing is obtained at λ = 1603 nm with a differential efficiency of up to 61%. YVO4:Er crystals are found to offer promise for use in efficient resonantly (in-band) pumped lasers.
Recovery Act: Tennessee Energy Efficient Schools Initiative Ground Source Heat Pump Program
DOE Office of Scientific and Technical Information (OSTI.GOV)
Townsend, Terry; Slusher, Scott
The Tennessee Energy Efficient Schools Initiative (EESI) Hybrid-Water Source Heat Pump (HY-GSHP) Program sought to provide installation costs and operation costs for different Hybrid water source heat pump systems’ configurations so that other State of Tennessee School Districts will have a resource for comparison purposes if considering a geothermal system.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
Oberlin Colleges Adam Joseph Lewis Center for Environmental Studies is a high-performance building featuring an expansive photovoltaic system and a closed-loop groundwater heat pump system. Designers incorporated energy-efficient components and materials that are local, non-toxic, and durable.
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
Oberlin College's Adam Joseph Lewis Center for Environmental Studies is a high-performance building featuring an expansive photovoltaic system and a closed-loop groundwater heat pump system. Designers incorporated energy-efficient components and materials that are local, non-toxic, and durable.
Practical internal combustion engine laser spark plug development
NASA Astrophysics Data System (ADS)
Myers, Michael J.; Myers, John D.; Guo, Baoping; Yang, Chengxin; Hardy, Christopher R.
2007-09-01
Fundamental studies on laser ignition have been performed by the US Department of Energy under ARES (Advanced Reciprocating Engines Systems) and by the California Energy Commission under ARICE (Advanced Reciprocating Internal Combustion Engine). These and other works have reported considerable increases in fuel efficiencies along with substantial reductions in green-house gas emissions when employing laser spark ignition. Practical commercial applications of this technology require low cost high peak power lasers. The lasers must be small, rugged and able to provide stable laser beam output operation under adverse mechanical and environmental conditions. New DPSS (Diode Pumped Solid State) lasers appear to meet these requirements. In this work we provide an evaluation of HESP (High Efficiency Side Pumped) DPSS laser design and performance with regard to its application as a practical laser spark plug for use in internal combustion engines.
Multipass OPCPA system at 100 kHz pumped by a CPA-free solid-state amplifier.
Ahrens, J; Prochnow, O; Binhammer, T; Lang, T; Schulz, B; Frede, M; Morgner, U
2016-04-18
We present a compact few-cycle 100 kHz OPCPA system pumped by a CPA-free picosecond Nd:YVO4 solid-state amplifier with all-optical synchronization to an ultra-broadband Ti:sapphire oscillator. This pump approach shows an exceptional conversion rate into the second harmonic of almost 78%. Efficient parametric amplification was realized by a two stage double-pass scheme with following chirped mirror compressor. The amount of superfluorescence was measured by an optical cross-correlation. Pulses with a duration of 8.7 fs at energies of 18 µJ are demonstrated. Due to the peak power of 1.26 GW, this simple OPCPA approach forms an ideal high repetition rate driving source for high-order harmonic generation.
NASA Astrophysics Data System (ADS)
Dharmadhikari, Aditya K.; Bhowmik, Achintya K.; Ahyi, Ayayi C.; Thakur, Mrinal
2001-11-01
Highly efficient spectrally narrowed emission (SNE) was observed in the solution of strylpyridinium cyanine dye (SPCD) pumped by fundamental and second harmonic of a picosecond Nd:YAG laser in two separate arrangements. A highly directional emission was observed in both the pumping arrangements without incorporating any mirrors. The pulse duration of the SNE was measured by background free SHG intensity autocorrelation technique. The measured duration of the pulses was 40 ps. These pulses, having a spectral linewidth of 10 nm (full width at half maximum), were used as a probe to measure the transient changes in the transmission in SPCD solution using a pump-probe setup. The transient optical transmission indicated a gain at the overlap and no gain was observed beyond a delay of 40 ps.
Jedrzejczyk, Daniel; Güther, Reiner; Paschke, Katrin; Jeong, Woo-Jin; Lee, Han-Young; Erbert, Götz
2011-02-01
We report on efficient single-pass, high-power second-harmonic generation in a periodically poled MgO-doped LiNbO3 planar waveguide using a distributed Bragg reflector tapered diode laser as a pump source. A coupling efficiency into the planar waveguide of 73% was realized, and 1.07 W of visible laser light at 532 nm was generated. Corresponding optical and electro-optical conversion efficiencies of 26% and 8.4%, respectively, were achieved. Good agreement between the experimental data and the theoretical predictions was observed.
Novel pump head design for high energy 1064 nm oscillator amplifier system for lidar applications
NASA Astrophysics Data System (ADS)
Willis, Christina C. C.; Witt, Greg; Martin, Nigel; Albert, Michael; Culpepper, Charles; Burnham, Ralph
2017-02-01
Many scientific endeavors are benefitted by the development of increasingly high energy laser sources for lidar applications. Space-based applications for lidar require compact, efficient and high energy sources, and we have designed a novel gain head that is compatible with these requirements. The gain medium for the novel design consists of a composite Nd:YAG/Sm:YAG slab, wherein the Sm:YAG portion absorbs any parasitic 1064 nm oscillations that might occur in the main pump axis. A pump cavity is built around the slab, consisting of angled gold-coated reflectors which allow for five pump passes from each of the four pumping locations around the slab. Pumping is performed with off-axis diode bars, allowing for highly compact conductively cooled design. Optical and thermal modeling of this design was done to verify and predict its performance. In order to ultimately achieve 50 W average power at a repetition rate of 500 Hz, three heads of this design will be used in a MOPA configuration with two stages of amplification. To demonstrate the pump head we built it into a 1064 nm laser cavity and performed initial amplification experiments. Modeling and design of the system is presented along with the initial oscillator and amplifier results. The greatest pulse energy produced from the seeded q-switched linear oscillator was an output of 25 mJ at 500 Hz. With an input of 25 mJ and two planned stages of amplification, we expect to readily reach 100 mJ or more per pulse.
Balanced pressure gerotor fuel pump
Raney, Michael Raymond; Maier, Eugen
2004-08-03
A gerotor pump for pressurizing gasoline fuel is capable of developing pressures up to 2.0 MPa with good mechanical and volumetric efficiency and satisfying the durability requirements for an automotive fuel pump. The pump has been designed with optimized clearances and by including features that promote the formation of lubricating films of pressurized fuel. Features of the improved pump include the use of a shadow port in the side plate opposite the outlet port to promote balancing of high fuel pressures on the opposite sides of the rotors. Inner and outer rotors have predetermined side clearances with the clearances of the outer rotor being greater than those of the inner rotor in order to promote fuel pressure balance on the sides of the outer rotor. Support of the inner rotor and a drive shaft on a single bushing with bearing sleeves maintains concentricity. Additional features are disclosed.
NASA Astrophysics Data System (ADS)
Cao, Jianqiu; Liu, Wenbo; Ying, Hanyuan; Chen, Jinbao; Lu, Qisheng
2018-03-01
The characteristics of a single-mode continuous-wave thermally guiding very-large-mode-area fiber amplifier are investigated numerically using the rate-equation model while taking thermal transfer into account. It is revealed that the seed power should play an important role in the fiber amplifier and should be large enough to ensure high output efficiency. The effects of three pumping schemes (i.e. the co-, counter- and bi-directional pumping schemes) and the initial refraction index difference are also studied. It is revealed that the optimum fiber length changes with the pumping scheme, and the initial refraction index difference should be lower than 10-4 in order to ensure the linear increment of the output signal power with the pump power. Furthermore, a brief comparison between the thermally induced waveguides in the fiber amplifiers for three pumping schemes is also made.
Geothermal Heat Pump Basics | NREL
a free source of hot water. Geothermal heat pumps use much less energy than conventional heating resources: Geothermal Heat Pumps U.S. Department of Energy's Office of Energy Efficiency and Renewable Heat Pump Basics Geothermal Heat Pump Basics Geothermal heat pumps take advantage of the nearly
Solar-pumped electronic-to-vibrational energy transfer lasers
NASA Technical Reports Server (NTRS)
Harries, W. L.; Wilson, J. W.
1981-01-01
The possibility of using solar-pumped lasers as solar energy converters is examined. The absorbing media considered are halogens or halogen compounds, which are dissociated to yield excited atoms, which then hand over energy to a molecular lasing medium. Estimates of the temperature effects for a Br2-CO2-He system with He as the cooling gas are given. High temperatures can cause the lower energy levels of the CO2 laser transition to be filled. The inverted populations are calculated and lasing should be possible. However, the efficiency is less than 0.001. Examination of other halogen-molecular lasant combinations (where the rate coefficients are known) indicate efficiencies in all cases of less than 0.005.
Micro-Welding of Copper Plate by Frequency Doubled Diode Pumped Pulsed Nd:YAG Laser
NASA Astrophysics Data System (ADS)
Nakashiba, Shin-Ichi; Okamoto, Yasuhiro; Sakagawa, Tomokazu; Takai, Sunao; Okada, Akira
A pulsed laser of 532 nm wavelength with ms range pulse duration was newly developed by second harmonic generation of diode pumped pulsed Nd:YAG laser. High electro-optical conversion efficiency more than 13% could be achieved, and 1.5 kW peak power green laser pulse was put in optical fiber of 100 μm in diameter. In micro- welding of 1.0 mm thickness copper plate, a keyhole welding was successfully performed by 1.0 kW peak power at spot diameter less than 200 μm. The frequency doubled pulsed laser improved the processing efficiency of copper welding, and narrow and deep weld bead was stably obtained.
Watt-level ~2 μm laser output in Tm3+-doped tungsten tellurite glass double-cladding fiber.
Li, Kefeng; Zhang, Guang; Hu, Lili
2010-12-15
We report, for the first time to the best of our knowledge, a watt level cw fiber laser at ~2 μm from a piece of 40-cm-long newly developed highly thulium-doped (3.76 × 10(20) ions/cm(3)) tungsten tellurite glass double cladding fiber pumped by a commercial 800 nm laser diode. The maximum output power of the fiber laser reaches 1.12 W. The slope efficiency and the optical-optical efficiency with respect to the absorbed pump are 20% and 16%, respectively. The lasing threshold is 1.46 W, and the lasing wavelength is centered at 1937 nm.
Combination free electron and gaseous laser
Brau, Charles A.; Rockwood, Stephen D.; Stein, William E.
1980-01-01
A multiple laser having one or more gaseous laser stages and one or more free electron stages. Each of the free electron laser stages is sequentially pumped by a microwave linear accelerator. Subsequently, the electron beam is directed through a gaseous laser, in the preferred embodiment, and in an alternative embodiment, through a microwave accelerator to lower the energy level of the electron beam to pump one or more gaseous lasers. The combination laser provides high pulse repetition frequencies, on the order of 1 kHz or greater, high power capability, high efficiency, and tunability in the synchronous production of multiple beams of coherent optical radiation.
High power far-infrared optical parametric oscillator with high beam quality
NASA Astrophysics Data System (ADS)
Qian, Chuan-Peng; Shen, Ying-Jie; Dai, Tong-Yu; Duan, Xiao-Ming; Yao, Bao-Quan
2016-11-01
A high power ZnGeP2 (ZGP) optical parametric oscillator (OPO) with good beam quality pumped by a Q-switched Ho:YAG laser was demonstrated. The maximum output power of the ZGP OPO with a four-mirror ring cavity was about 5.04 W around 8.1 μm with 83.9 W Ho incident pump power, corresponding to a slope efficiency of 9.2 %. The ZGP OPO produced 36.0 ns far-IR pulse laser in the 8.0-8.3 μm spectral regions. The beam quality was measured to be M2 1.6 at the highest output power.
NASA Astrophysics Data System (ADS)
Hamazaki, Junichi; Furusawa, Kentaro; Sekine, Norihiko; Kasamatsu, Akifumi; Hosako, Iwao
2016-11-01
The effects of the chirp of the pump pulse in broadband terahertz (THz) pulse generation by optical rectification (OR) in GaP were systematically investigated. It was found that the pre-compensation for the dispersion of GaP is important for obtaining smooth and single-peaked THz spectra as well as high power-conversion efficiency. It was also found that an excessive amount of chirp leads to distortions in THz spectra, which can be quantitatively analyzed by using a simple model. Our results highlight the importance of accurate control over the chirp of the pump pulse for generating broadband THz pulses by OR.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gluesenkamp, Kyle R.; Abdelaziz, Omar; Patel, Viral K.
2017-05-01
The two objectives of this project were to 1.demonstrate an affordable path to an ENERGY STAR qualified electric heat pump water heater (HPWH) based on low-global warming potential (GWP) CO 2 refrigerant, and 2.demonstrate an affordable path to a gas-fired absorption-based heat pump water heater with a gas energy factor (EF) greater than 1.0. The first objective has been met, and the project has identified a promising low-cost option capable of meeting the second objective. This report documents the process followed and results obtained in addressing these objectives.
An Optically Pumped Far-Infrared Folded Mirror-Less Cavity
NASA Astrophysics Data System (ADS)
Liu, Chuang; Wang, Dashuai; Zhang, Peng; Qu, Yanchen
2017-12-01
A compact and efficient mirror-less cavity is presented for an optically pumped 192-μm far-infrared laser. With a gold-coated mirror and 30°-inclined anti-reflection coated Ge plate serving as highly reflective mirrors, a folded mirror-less CH3F cavity is achieved. Maximum energy of 0.72 mJ is obtained with the pump energy of 600 mJ, which gives an energy increment of 75% in comparison with the previous 1.85-m mirror-less system. The beam divergence angle of the FIR radiation from this folded mirror-less cavity is measured to be 14.2 mrad.
New and future heat pump technologies
NASA Astrophysics Data System (ADS)
Creswick, F. A.
It is not possible to say for sure what future heat pumps will look like, but there are some interesting possibilities. In the next five years, we are likely to see US heat pumps with two kinds of innovations: capacity modulation and charge control. Capacity modulation will be accomplished by variable-speed compressor motors. The objective of charge control is to keep the refrigerant charge in the system where it belongs for best performance; there are probably many ways to accomplish this. Charge control will improve efficiency and durability; capacity modulation will further improve efficiency and comfort. The Stirling cycle heat pump has several interesting advantages, but it is farther out in time. At present, we don't know how to make it as efficient as the conventional vapor-compression heat pump. Electric utility people should be aware that major advances are being made in gas-fired heat pumps which could provide strong competition in the future. However, even a gas-fired heat pump has a substantial auxiliary electric power requirement. The resources needed to develop advanced heat pumps are substantial and foreign competition will be intense. It will be important for utilities, manufacturers, and the federal government to work in close cooperation.
Cui, Xing-Yang; Shen, Qi; Yan, Mei-Chen; Zeng, Chao; Yuan, Tao; Zhang, Wen-Zhuo; Yao, Xing-Can; Peng, Cheng-Zhi; Jiang, Xiao; Chen, Yu-Ao; Pan, Jian-Wei
2018-04-15
Second-harmonic generation (SHG) is useful for obtaining single-frequency continuous-wave laser sources at various wavelengths for applications ranging from biology to fundamental physics. Using an external power-enhancement cavity is an effective approach to improve the frequency conversion efficiency. However, thermal effects limit the efficiency, particularly, in high-power operation. Therefore, reducing thermal effects is important when designing a cavity. This Letter reports the use of an external ring cavity for SHG, yielding a 5.2 W, 671 nm laser light with a conversion efficiency of 93.8±0.8% which, to the best of our knowledge, is a new record of conversion efficiency for an external ring cavity. It is achieved using a 10 mm length periodically poled potassium titanyl phosphate crystal and a 65 μm radius beam waist in the cavity so as to minimize thermal dephasing and thermal lensing. Furthermore, a method is developed to determine a conversion efficiency more accurately based on measuring the pump depletion using a photodiode detector and a maximum pump depletion up to 97% is recorded. In this method, the uncertainty is much less than that achieved in a common method by direct measuring with a power meter.
Experimental Characterization of Piezoelectric Radial Field Diaphragms for Fluidic Control
NASA Technical Reports Server (NTRS)
Bryant, R. G.; Kavli, S. E.; Thomas, R. A., Jr.; Darji, K. J.; Mossi, K. M.
2004-01-01
NASA has recently developed a new piezoelectric actuator, the Radial Field Diaphragm or RFD. This actuator uses a radially-directed electric field to generate concentric out-of-plane (Z-axis) motion that allows this packaged device to be used as a pump or valve diaphragm. In order to efficiently use this new active device, experimental determination of pressure, flow rate, mechanical work, power consumption and overall efficiency needs to be determined by actually building a pump. However, without an optimized pump design, it is difficult to assess the quality of the data, as these results are inherent to the actual pump. Hence, separate experiments must be conducted in order to generate independent results to help guide the design criteria and pump quality. This paper focuses on the experiments used to generate the RFD's operational parameters and then compares these results to the experimentally determined results of several types of ball pumps. Also discussed are how errors are inherently introduced into the experiments, the pump design, experimental hardware and their effects on the overall system efficiency.
Performance of an Annular Linear Induction Pump with Applications to Space Nuclear Power Systems
NASA Technical Reports Server (NTRS)
Polzin, Kurt A.; Schoenfeld, Michael; Pearson, J. Boise; Webster, Kenneth; Godfroy, Thomas; Adkins, Harold E., Jr.; Werner, James E.
2010-01-01
Results of performance testing of an annular linear induction pump are presented. The pump electromagnetically pumps liquid metal through a circuit specially designed to allow for quantification of the performance. Testing was conducted over a range of conditions, including frequencies of 33, 36, 39, and 60 Hz, liquid metal temperatures from 125 to 525 C, and input voltages from 5 to 120 V. Pump performance spanned a range of flow rates from roughly 0.16 to 5.7 L/s (2.5 to 90 gpm), and pressure head less than 1 to 90 kPa (less than 0.145 to 13 psi). The maximum efficiency measured during testing was slightly greater than 6%. The efficiency was fairly insensitive to input frequency from 33 to 39 Hz, and was markedly lower at 60 Hz. In addition, the efficiency decreased as the NaK temperature was raised. The performance of the pump operating on a variable frequency drive providing 60 Hz power compared favorably with the same pump operating on 60 Hz power drawn directly from the electrical grid.
High-pulse energy Q-switched Tm3+:YAG laser for nonlinear frequency conversion to the mid-IR
NASA Astrophysics Data System (ADS)
Stöppler, Georg; Kieleck, Christelle; Eichhorn, Marc
2010-10-01
For some medical fields in laser surgery and as a pump source for nonlinear materials to generate mid-IR radiation, e.g. for countermeasure applications, it is very useful to have a solid-state laser with high pulse energy at 2 μm. The rare earth ion Thulium offers a cross relaxation and can thus be directly diode pumped with common laser diodes around 800 nm for an efficient pumping. However, it was not considered for high pulse energy operation due to the high saturation fluence of around 62 J/cm2 at 2 μm. A limiting factor has always been the damage threshold of the optical elements inside the cavity. One of the reasons is the strong thermal lens of YAG, which affects a change of the beam radius inside the resonator and additionally degrades the beam quality with increasing pump power. Using a new pump geometry of the Tm3+:YAG laser system, it is now possible to reach pulse energies > 13 mJ at a diffraction limited beam quality of M2 < 1.1. The Q-switched Tm3+:YAG laser system uses an AOM operating at 100 Hz and will be described in detail. Due to the high pulse energy and very good beam quality, this laser is very interesting for nonlinear parametric frequency conversion.
Organic flash cycles for efficient power production
Ho, Tony; Mao, Samuel S.; Greif, Ralph
2016-03-15
This disclosure provides systems, methods, and apparatus related to an Organic Flash Cycle (OFC). In one aspect, a modified OFC system includes a pump, a heat exchanger, a flash evaporator, a high pressure turbine, a throttling valve, a mixer, a low pressure turbine, and a condenser. The heat exchanger is coupled to an outlet of the pump. The flash evaporator is coupled to an outlet of the heat exchanger. The high pressure turbine is coupled to a vapor outlet of the flash evaporator. The throttling valve is coupled to a liquid outlet of the flash evaporator. The mixer is coupled to an outlet of the throttling valve and to an outlet of the high pressure turbine. The low pressure turbine is coupled to an outlet of the mixer. The condenser is coupled to an outlet of the low pressure turbine and to an inlet of the pump.
2011-10-01
International Conference on Robotics and Automation, Pasadena CA, USA, May 19-23, 2008, p 3672-3677. APPENDICES A Socket Breakdown for Scanning...the LimbLogic is the more efficient of the two pumps. These tests also showed that the performance for both pumps was self -consistent over the...Donelan, J. M. Biomechanical Energy Harvesting: Apparatus and Method. IEEE International Conference on Robotics and Automation, May 19-23, 2008. Lyon
Laser generation in polycrystalline Cr{sup 2+}:ZnSe with undoped faces
DOE Office of Scientific and Technical Information (OSTI.GOV)
Savin, D V; Gavrishchuk, E M; Ikonnikov, V B
2015-01-31
An original method has been suggested for producing polycrystalline Cr{sup 2+}:ZnSe samples with undoped faces. Generation characteristics of a Cr{sup 2+}:ZnSe laser are studied under pulse-periodic pumping by a Tm{sup 3+}:YLF-laser. The efficiency of converting the pump radiation into laser generation at a wavelength of 2350 nm is 20%. Cr{sup 2+}:ZnSe samples exhibit high resistance to surface breakdown. (lasers)
Huang, Zhihe; Cao, Jianqiu; Guo, Shaofeng; Chen, Jinbao; Xu, Xiaojun
2014-04-01
We compare both analytically and numerically the distributed side-coupled cladding-pumped (DSCCP) fiber lasers and double cladding fiber (DCF) lasers. We show that, through optimization of the coupling and absorbing coefficients, the optical-to-optical efficiency of DSCCP fiber lasers can be made as high as that of DCF lasers. At the same time, DSCCP fiber lasers are better than the DCF lasers in terms of thermal management.
Laser-Powered Thrusters for High Efficiency Variable Specific Impulse Missions (Preprint)
2007-04-10
technology. However, a laser-ablation propulsion engine using a set of diode-pumped glass fiber amplifiers with a total of 350-W optical power can...in a single device using low-mass diode-pumped glass fiber laser amplifiers to operate in either long- or short-pulse regimes at will. Adequate fiber...pulsewidth glass fiber oscillator-amplifiers, rather than the diodes used in the µ LPT, to achieve Table 2. Demonstrated technology basis Ablation Fuel Gold
Distribution of AAV-TK following intracranial convection-enhanced delivery into rats.
Cunningham, J; Oiwa, Y; Nagy, D; Podsakoff, G; Colosi, P; Bankiewicz, K S
2000-01-01
Adeno-associated virus (AAV)-based vectors are being tested in animal models as viable treatments for glioma and neurodegenerative disease and could potentially be employed to target a variety of central nervous system disorders. The relationship between dose of injected vector and its resulting distribution in brain tissue has not been previously reported nor has the most efficient method of delivery been determined. Here we report that convection-enhanced delivery (CED) of 2.5 x 10(8), 2.5 x 10(9), or 2.5 x 10(10) particles of AAV-thymidine kinase (AAV-TK) into rat brain revealed a clear dose response. In the high-dose group, a volume of 300 mm3 of brain tissue was partially transduced. Results showed that infusion pump and subcutaneous osmotic pumps were both capable of delivering vector via CED and that total particle number was the most important determining factor in obtaining efficient expression. Results further showed differences in histopathology between the delivery groups. While administration of vector using infusion pump had relatively benign effects, the use of osmotic pumps resulted in notable toxicity to the surrounding brain tissue. To determine tissue distribution of vector following intracranial delivery, PCR analysis was performed on tissues from rats that received high doses of AAV-TK. Three weeks following CED, vector could be detected in both hemispheres of the brain, spinal cord, spleen, and kidney.
Vincenti, M A; de Ceglia, D; Roppo, V; Scalora, M
2011-01-31
We have conducted a theoretical study of harmonic generation from a silver grating having slits filled with GaAs. By working in the enhanced transmission regime, and by exploiting phase-locking between the pump and its harmonics, we guarantee strong field localization and enhanced harmonic generation under conditions of high absorption at visible and UV wavelengths. Silver is treated using the hydrodynamic model, which includes Coulomb and Lorentz forces, convection, electron gas pressure, plus bulk χ(3) contributions. For GaAs we use nonlinear Lorentz oscillators, with characteristic χ(2) and χ(3) and nonlinear sources that arise from symmetry breaking and Lorentz forces. We find that: (i) electron pressure in the metal contributes to linear and nonlinear processes by shifting/reshaping the band structure; (ii) TE- and TM-polarized harmonics can be generated efficiently; (iii) the χ(2) tensor of GaAs couples TE- and TM-polarized harmonics that create phase-locked pump photons having polarization orthogonal compared to incident pump photons; (iv) Fabry-Perot resonances yield more efficient harmonic generation compared to plasmonic transmission peaks, where most of the light propagates along external metal surfaces with little penetration inside its volume. We predict conversion efficiencies that range from 10(-6) for second harmonic generation to 10(-3) for the third harmonic signal, when pump power is 2 GW/cm2.
Development of high repetition rate nitric oxide planar laser induced fluorescence imaging
NASA Astrophysics Data System (ADS)
Jiang, Naibo
This thesis has documented the development of a MHz repitition rate pulse burst laser system. Second harmonic and third harmonic efficiencies are improved by adding a Phase Conjugate Mirror to the system. Some high energy fundamental, second harmonic, and third harmonic burst sequences consisting of 1--12 pulses separated in time by between 4 and 12 microseconds are now routinely obtained. The reported burst envelopes are quite uniform. We have also demonstrated the ability to generate ultra-high frequency sequences of broadly wavelength tunable, high intensity laser pulses using a home built injection seeded Optical Parametric Oscillator (OPO), pumped by the second and third harmonic output of the pulse burst laser. Typical OPO output burst sequences consist of 6--10 pulses, separated in time by between 6 and 10 microseconds. With third harmonic pumping of the OPO system, we studied four conditions, two-crystal Singly Resonant OPO (SRO) cavity, three-crystal OPO cavity, single pass two-crystal Doubly Resonant OPO (DRO) cavity and double pass two-crystal OPO cavity. The double pass two-crystal OPO cavity gives the best operation in burst mode. For single pass OPO, the average total OPO conversion efficiency is approximately 25%. For double pass OPO, the average total OPO conversion efficiency is approximately 35%. As a preliminary work, we studied 532nm pumping of a single crystal OPO cavity. With single pulse pumping, the conversion efficiency can reach 30%. For both 355nm and 532nm pumping OPO, we have demonstrated injection seeding. The OPO output light linewidth is significantly narrowed. Some preliminary etalon traces are also reported. By mixing the OPO signal output at 622nm with residual third harmonic at 355nm, we obtained 226nm burst sequences with average pulse energy of ˜0.2 mJ. Injection seeding of the OPO increases the energy achieved by a factor of ˜2. 226nm burst sequences with reasonably uniform burst envelopes are reported. Using the system we have obtained, for the first time by any known optical method, Planar Laser Induced Fluorescence (PLIF) image sequences at ultrahigh (≥100kHz) frame rates, in particular NO PLIF image sequences, have been obtained in a Mach 2 jet. We also studied the possibility of utilizing a 250 kHz pulsed Nd:YVO 4 laser as the master oscillator. 10-pulse-10-mus spacing burst sequences with reasonably uniform burst envelope have been obtained. The total energy of the burst sequence is ˜2.5J.
Low-Cost Gas Heat Pump for Building Space Heating
DOE Office of Scientific and Technical Information (OSTI.GOV)
Garrabrant, Michael; Keinath, Christopher
2016-10-11
Gas-fired residential space heating in the U.S is predominantly supplied by furnaces and boilers. These technologies have been approaching their thermodynamic limit over the past 30 years and improvements for high efficiency units have approached a point of diminishing return. Electric heat pumps are growing in popularity but their heating performance at low ambient temperatures is poor. The development of a low-cost gas absorption heat pump would offer a significant improvement to current furnaces and boilers, and in heating dominated climate zones when compared to electric heat pumps. Gas absorption heat pumps (GAHP) exceed the traditional limit of thermal efficiencymore » encountered by typical furnaces and boilers, and maintain high levels of performance at low ambient temperatures. The project team designed and demonstrated two low-cost packaged prototype GAHP space heating systems during the course of this investigation. Led by Stone Mountain Technologies Inc. (SMTI), with support from A.O. Smith, and the Gas Technology Institute (GTI), the cross-functional team completed research and development tasks including cycle modeling, 8× scaling of a compact solution pump, combustion system development, breadboard evaluation, fabrication of two packaged prototype units, third party testing of the first prototype, and the evaluation of cost and energy savings compared to high and minimum efficiency gas options. Over the course of the project and with the fabrication of two Alpha prototypes it was shown that this technology met or exceeded most of the stated project targets. At ambient temperatures of 47, 35, 17 and -13°F the prototypes achieved gas based coefficients of performance of 1.50, 1.44, 1.37, and 1.17, respectively. Both units operated with parasitic loads well below the 750 watt target with the second Alpha prototype operating 75-100 watts below the first Alpha prototype. Modulation of the units at 4:1 was achieved with the project goal of 2:1 modulation, which will allow for improved load matching. In addition, the energy savings analysis showed that a house in Albany, NY, Chicago, IL and Minneapolis, MN would save roughly 32, 28.5 and 36.5 MBtu annually when compared to a 100% efficient boiler, respectively. The gas absorption heat pump achieves this performance by using high grade heat from the combustion of natural gas in combination with low grade heat extracted from the ambient to produce medium grade heat suitable for space and water heating. Expected product features include conventional outdoor installation practices, 4:1 modulation, and reasonable economic payback. These factors position the technology to gain significant market penetration, resulting in a large reduction of energy use and greenhouse gas emissions for residential space heating.« less
Reviews of a Diode-Pumped Alkali Laser (DPAL): a potential high powered light source
NASA Astrophysics Data System (ADS)
Cai, He; Wang, You; Han, Juhong; An, Guofei; Zhang, Wei; Xue, Liangping; Wang, Hongyuan; Zhou, Jie; Gao, Ming; Jiang, Zhigang
2015-03-01
Diode pumped alkali vapor lasers (DPALs) were first developed by in W. F. Krupke at the beginning of the 21th century. In the recent years, DPALs have been rapidly developed because of their high Stokes efficiency, good beam quality, compact size and near-infrared emission wavelengths. The Stokes efficiency of a DPAL can achieve a miraculous level as high as 95.3% for cesium (Cs), 98.1% for rubidium (Rb), and 99.6% for potassium (K), respectively. The thermal effect of a DPAL is theoretically smaller than that of a normal diode-pumped solid-state laser (DPSSL). Additionally, generated heat of a DPAL can be removed by circulating the gases inside a sealed system. Therefore, the thermal management would be relatively simple for realization of a high-powered DPAL. In the meantime, DPALs combine the advantages of both DPSSLs and normal gas lasers but evade the disadvantages of them. Generally, the collisionally broadened cross sections of both the D1 and the D2 lines for a DPAL are much larger than those for the most conventional solid-state, fiber and gas lasers. Thus, DPALs provide an outstanding potentiality for realization of high-powered laser systems. It has been shown that a DPAL is now becoming one of the most promising candidates for simultaneously achieving good beam quality and high output power. With a lot of marvelous merits, a DPAL becomes one of the most hopeful high-powered laser sources of next generation.
Magnetic Heat Pump Containing Flow Diverters
NASA Technical Reports Server (NTRS)
Howard, Frank S.
1995-01-01
Proposed magnetic heat pump contains flow diverters for suppression of undesired flows. If left unchecked, undesired flows mix substantial amounts of partially heated and partially cooled portions of working fluid, effectively causing leakage of heat from heated side to cooled side. By reducing leakage of heat, flow diverters increase energy efficiency of magnetic heat pump, potentially offering efficiency greater than compressor-driven refrigerator.
NASA Astrophysics Data System (ADS)
Ikoma, S.; Nguyen, H. K.; Kashiwagi, M.; Uchiyama, K.; Shima, K.; Tanaka, D.
2017-02-01
A 3 kW single stage all-fiber Yb-doped single-mode fiber laser with bi-directional pumping configuration has been demonstrated. Our newly developed high-power LD modules are employed for a high available pump power of 4.9 kW. The length of the delivery fiber is 20 m which is long enough to be used in most of laser processing machines. An output power of 3 kW was achieved at a pump power of 4.23 kW. The slope efficiency was 70%. SRS was able to be suppressed at the same output power by increasing ratio of backward pump power. The SRS level was improved by 5dB when 57% backward pump ratio was adopted compared with the case of 50%. SRS was 35dB below the laser power at the output power of 3 kW even with a 20-m delivery fiber. The M-squared factor was 1.3. Single-mode beam quality was obtained. To evaluate practical utility of the 3 kW single-mode fiber laser, a Bead-on-Plate (BoP) test onto a pure copper plate was executed. The BoP test onto a copper plate was made without stopping or damaging the laser system. That indicates our high power single-mode fiber lasers can be used practically in processing of materials with high reflectivity and high thermal conductivity.
Riedel, R; Stephanides, A; Prandolini, M J; Gronloh, B; Jungbluth, B; Mans, T; Tavella, F
2014-03-15
Optical parametric chirped-pulse amplifiers with high average power are possible with novel high-power Yb:YAG amplifiers with kW-level output powers. We demonstrate a compact wavelength-tunable sub-30-fs amplifier with 11.4 W average power with 20.7% pump-to-signal conversion efficiency. For parametric amplification, a beta-barium borate crystal is pumped by a 140 W, 1 ps Yb:YAG InnoSlab amplifier at 3.25 MHz repetition rate. The broadband seed is generated via supercontinuum generation in a YAG crystal.
Development of high-power dye laser chain
NASA Astrophysics Data System (ADS)
Konagai, Chikara; Kimura, Hironobu; Fukasawa, Teruichiro; Seki, Eiji; Abe, Motohisa; Mori, Hideo
2000-01-01
Copper vapor laser (CVL) pumped dye laser (DL) system, both in a master oscillator power amplifier (MOPA) configuration, has been developed for Atomic Vapor Isotope Separation program in Japan. Dye laser output power of about 500 W has been proved in long-term operations over 200 hours. High power fiber optic delivery system is utilized in order to efficiently transport kilowatt level CVL beams to the DL MOPA. Single model CVL pumped DL oscillator has been developed and worked for 200 hours within +/- 0.1 pm wavelength stability. Phase modulator for spreading spectrum to the linewidth of hyperfine structure has been developed and demonstrated.
152 W average power Tm-doped fiber CPA system.
Stutzki, Fabian; Gaida, Christian; Gebhardt, Martin; Jansen, Florian; Wienke, Andreas; Zeitner, Uwe; Fuchs, Frank; Jauregui, Cesar; Wandt, Dieter; Kracht, Dietmar; Limpert, Jens; Tünnermann, Andreas
2014-08-15
A high-power thulium (Tm)-doped fiber chirped-pulse amplification system emitting a record compressed average output power of 152 W and 4 MW peak power is demonstrated. This result is enabled by utilizing Tm-doped photonic crystal fibers with mode-field diameters of 35 μm, which mitigate detrimental nonlinearities, exhibit slope efficiencies of more than 50%, and allow for reaching a pump-power-limited average output power of 241 W. The high-compression efficiency has been achieved by using multilayer dielectric gratings with diffraction efficiencies higher than 98%.
Research on High-Intensity Picosecond Pump Laser in Short Pulse Optical Parametric Amplification
NASA Astrophysics Data System (ADS)
Pan, Xue; Peng, Yu-Jie; Wang, Jiang-Feng; Lu, Xing-Hua; Ouyang, Xiao-Ping; Chen, Jia-Lin; Jiang, You-En; Fan, Wei; Li, Xue-Chun
2013-01-01
A 527 nm pump laser generating 1.7 mJ energy with peak power of more than 0.12 GW is demonstrated. The theoretical simulation result shows that it has 106 gain in the picosecond-pump optical parametric chirped pulse amplification when the pump laser peak power is 0.1 GW and the intensity is more than 5 GW/cm2, and that it can limit the parametric fluorescence in the picosecond time scale of pump duration. The pump laser system adopts a master-oscillator power amplifier, which integrates a more than 30 pJ fiber-based oscillator with a 150 μJ regenerative amplifier and a relay-imaged four-pass diode-pump Nd glass amplifier to generate a 1 Hz top hat spatial beam and about 14 ps temporal Guassian pulse with <2% pulse-to-pulse energy stability. The output energy of the power amplifier is limited to 4 mJ for B-integral concern, and the frequency doubling efficiency can reach 65% with input intensity 10 GW/cm2.
Flashlamp radiation recycling for enhanced pumping efficiency and reduced thermal load
Jancaitis, Kenneth S.; Powell, Howard T.
1989-01-01
A method for recycling laser flashlamp radiation in selected wavelength ranges to decrease thermal loading of the solid state laser matrix while substantially maintaining the pumping efficiency of the flashlamp.
926 nm laser operation in Nd:GdNbO4 crystal based on 4F3/2 → 4I9/2 transition
NASA Astrophysics Data System (ADS)
Yan, Renpeng; Li, Xudong; Yao, Wenming; Shen, Yingjie; Zhou, Zhongxiang; Peng, Fang; Zhang, Qingli; Dou, Renqing; Gao, Jing
2018-05-01
926 nm laser operation in a Nd:GdNbO4 crystal based on quasi-three-level 4F3/2 → 4I9/2 transition is reported, for the first time to our best knowledge. An average output power of 393 mW at 926 nm under 879 nm LD pumping is obtained with a slope efficiency of 33.3% and an optical-to-optical efficiency of 26.0%. The slope efficiency with respect to absorbed pump power is estimated to be 47.7%. Comparison between output characters of 926 nm laser under direct and indirect pumping is conducted. The average output power at 926 nm under 808 nm LD pumping reaches 305 mW with an optical-to-optical efficiency of 16.1%.
High efficiency vapor-fed AMTEC system for direct conversion. Final report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Anderson, W.G.; Bland, J.J.
1997-05-23
The Alkali Metal Thermal to Electric Converter (AMTEC) is a high temperature, high efficiency system for converting thermal to electrical energy, with no moving parts. It is based on the unique properties of {beta}{double_prime}-alumina solid electrolyte (BASE), which is an excellent conductor of sodium ions, but an extremely poor conductor of electrons. When the inside of the BASE is maintained at a higher temperature and pressure, a concentration gradient is created across the BASE. Electrons and sodium atoms cannot pass through the BASE. However, the sodium atoms are ionized, and the sodium ions move through the BASE to the lowermore » potential (temperature) region. The electrons travel externally to the AMTEC cell, providing power. There are a number of potential advantages to a wick-pumped, vapor-fed AMTEC system when compared with other designs. A wick-pumped system uses capillary forces to passively return liquid to the evaporator, and to distribute the liquid in the evaporator. Since the fluid return is self-regulating, multiple BASE tubes can use a single remote condenser, potentially improving efficiency in advanced AMTEC designs. Since the system is vapor-fed, sodium vapor is supplied at a uniform temperature and flux to the BASE tube, even with non-uniform heat fluxes and temperatures at the evaporator. The primary objective of the Phase 2 program was to develop wick-pumped AMTEC cells. During the program, procedures to fabricate wicks with smaller pore sizes were developed, to allow operation of an AMTEC cell at 800 C. A revised design was made for a High-Temperature, Wick-Fed AMTEC cell. In addition to the smaller wick pore size, several other changes were made to increase the cell efficiency: (1) internal artery return of condensate; (2) high temperature electrical feedthrough; and (3) separate heat pipe for providing heat to the BASE.« less
On the Potential of Hydrogen-Powered Hydraulic Pumps for Soft Robotics.
Desbiens, Alexandre B; Bigué, Jean-Philippe Lucking; Véronneau, Catherine; Masson, Patrice; Iagnemma, Karl; Plante, Jean-Sébastien
2017-12-01
To perform untethered operations, soft robots require mesoscale power units (10-1000 W) with high energy densities. In this perspective, air-breathing combustion offers an interesting alternative to battery-powered systems, provided sufficient overall energy conversion efficiency can be reached. Implementing efficient air-breathing combustion in mesoscale soft robots is notoriously difficult, however, as it requires optimization of very small combustion actuators and simultaneous minimization of fluidic (e.g., hydraulic) losses, which are both inversely impacted by actuations speeds. To overcome such challenges, this article proposes and evaluates the potential of hydrogen-powered, hydraulic free-piston pump architecture. Experimental data, taken from two combustion-driven prototypes, reveal (1) the fundamental role of using hydrogen as the source of fuel to reduce heat losses, (2) the significant impact of compression ratio, equivalence ratio, and surface-to-volume ratio on energy conversion efficiency, and (3) the importance of load matching between combustion and fluidic transmission. In this work, a small-bore combustion actuator demonstrated a 20% efficiency and a net mean output power of 26 W, while a big-bore combustion actuator reached a substantially higher efficiency of 35% and a net mean output power of 197 W. Using the small-bore combustion actuator, the hydrogen-powered, hydraulic free-piston pump provided a 4.6% overall efficiency for a 2.34 W net mean output power, thus underlying the potential of the approach for mesoscale soft robotic applications.
Federal Register 2010, 2011, 2012, 2013, 2014
2013-02-01
... Efficiency Program for Commercial and Industrial Equipment: Public Meeting and Availability of the Framework Document for Commercial and Industrial Pumps AGENCY: Office of Energy Efficiency and Renewable Energy... industrial pumps. To inform interested parties and to facilitate this process, DOE has prepared a Framework...
Liquid oxygen turbopump technology
NASA Technical Reports Server (NTRS)
Nielson, C. E.
1981-01-01
A small, high-pressure, LOX turbopump was designed, fabricated and tested. The pump is a single-stage centrifugal type with power to the pump supplied by a single-stage partial-admission axial-impulse turbine. Design conditions included an operating speed of 7330 rad/s (70,000 rpm), pump discharge pressure of 2977 N/sqcm (4318 psia), and a pump flowrate of 16.4 Kg/s (36.21 lb/s). The turbopump contains a self-compensating axial thrust balance piston to eliminate axial thrust loads on the bearings during steady-state operation. Testing of the turbopump was achieved usng a gaseous hydrogen high-pressure flow to drive the turbine, which generally is propelled by LOX/LH2 combustion products, at 1041K (1874 R) inlet temperature and at a design pressure ratio of 1.424. Test data obtained with the turbopump are presented which include head-flow-efficiency performance, suction performance, balance piston performance and LOX seal performance. Mechanical performance of the turbopump is also discussed.
Livestock water pumping with wind and solar power
USDA-ARS?s Scientific Manuscript database
Recent developments in pumping technologies have allowed for efficient use of renewable energies like wind and solar to power new pumps for remote water pumping. A helical type, positive displacement pump was developed a few years ago and recently modified to accept input from a variable power sourc...
Wei, Zhengrong; Nakamura, Takumi; Takeuchi, Satoshi; Tahara, Tahei
2011-06-01
Understanding ultrafast reactions, which proceed on a time scale of nuclear motions, requires a quantitative characterization of the structural dynamics. To track such structural changes with time, we studied a nuclear wavepacket motion in photoisomerization of a prototype cyanine dye, 1,1'-diethyl-4,4'-cyanine, by ultrafast pump-dump-probe measurements in solution. The temporal evolution of wavepacket motion was examined by monitoring the efficiency of stimulated emission dumping, which was obtained from the recovery of a ground-state bleaching signal. The dump efficiency versus pump-dump delay exhibited a finite rise time, and it became longer (97 fs → 330 fs → 390 fs) as the dump pulse was tuned to longer wavelengths (690 nm → 950 nm → 1200 nm). This result demonstrates a continuous migration of the leading edge of the wavepacket on the excited-state potential from the Franck-Condon region toward the potential minimum. A slowly decaying feature of the dump efficiency indicated a considerable broadening of the wavepacket over a wide range of the potential, which results in the spread of a population distribution on the flat S(1) potential energy surface. The rapid migration as well as broadening of the wavepacket manifests a continuous nature of the structural dynamics and provides an intuitive visualization of this ultrafast reaction. We also discussed experimental strategies to evaluate reliable dump efficiencies separately from other ultrafast processes and showed a high capability and possibility of the pump-dump-probe method for spectroscopic investigation of unexplored potential regions such as conical intersections. © 2011 American Chemical Society
Yin, Yanchun; Chew, Andrew; Ren, Xiaoming; Li, Jie; Wang, Yang; Wu, Yi; Chang, Zenghu
2017-01-01
We present an approach for both efficient generation and amplification of 4–12 μm pulses by tailoring the phase matching of the nonlinear crystal Zinc Germanium Phosphide (ZGP) in a narrowband-pumped optical parametric chirped pulse amplifier (OPCPA) and a broadband-pumped dual-chirped optical parametric amplifier (DC-OPA), respectively. Preliminary experimental results are obtained for generating 1.8–4.2 μm super broadband spectra, which can be used to seed both the signal of the OPCPA and the pump of the DC-OPA. The theoretical pump-to-idler conversion efficiency reaches 27% in the DC-OPA pumped by a chirped broadband Cr2+:ZnSe/ZnS laser, enabling the generation of Terawatt-level 4–12 μm pulses with an available large-aperture ZGP. Furthermore, the 4–12 μm idler pulses can be compressed to sub-cycle pulses by compensating the tailored positive chirp of the idler pulses using the bulk compressor NaCl, and by indirectly controlling the higher-order idler phase through tuning the signal (2.4–4.0 μm) phase with a commercially available acousto-optic programmable dispersive filter (AOPDF). A similar approach is also described for generating high-energy 4–12 μm sub-cycle pulses via OPCPA pumped by a 2 μm Ho:YLF laser. PMID:28367966
NASA Astrophysics Data System (ADS)
Bozeman, Richard J.; Akkerman, James W.; Aber, Greg S.; Vandamm, George A.; Bacak, James W.; Svejkovsky, Paul A.; Benkowski, Robert J.
1993-11-01
A rotary blood pump is presented. The pump includes a pump housing for receiving a flow straightener, a rotor mounted on rotor bearings and having an inducer portion and an impeller portion, and a diffuser. The entrance angle, outlet angle, axial, and radial clearances of the blades associated with the flow straightener, inducer portion, impeller portion, and diffuser are optimized to minimize hemolysis while maintaining pump efficiency. The rotor bearing includes a bearing chamber that is filled with crosslinked blood or other bio-compatible material. A back emf integrated circuit regulates rotor operation and a microcomputer may be used to control one or more back emf integrated circuits. A plurality of magnets are disposed in each of a plurality of impeller blades with a small air gap. A stator may be axially adjusted on the pump housing to absorb bearing load and maximize pump efficiency.