Sample records for high quality compost

  1. Multivariate Analysis of the Determinants of the End-Product Quality of Manure-Based Composts and Vermicomposts Using Bayesian Network Modelling.

    PubMed

    Faverial, Julie; Cornet, Denis; Paul, Jacky; Sierra, Jorge

    2016-01-01

    Previous studies indicated that the quality of tropical composts is poorer than that of composts produced in temperate regions. The aim of this study was to test the type of manure, the use of co-composting with green waste, and the stabilization method for their ability to improve compost quality in the tropics. We produced 68 composts and vermicomposts that were analysed for their C, lignin and NPK contents throughout the composting process. Bayesian networks were used to assess the mechanisms controlling compost quality. The concentration effect, for C and lignin, and the initial blend quality, for NPK content, were the main factors affecting compost quality. Cattle manure composts presented the highest C and lignin contents, and poultry litter composts exhibited the highest NPK content. Co-composting improved quality by enhancing the concentration effect, which reduced the impact of C and nutrient losses. Vermicomposting did not improve compost quality; co-composting without earthworms thus appears to be a suitable stabilization method under the conditions of this study because it produced high quality composts and is easier to implement.

  2. Multivariate Analysis of the Determinants of the End-Product Quality of Manure-Based Composts and Vermicomposts Using Bayesian Network Modelling

    PubMed Central

    Faverial, Julie; Cornet, Denis; Paul, Jacky

    2016-01-01

    Previous studies indicated that the quality of tropical composts is poorer than that of composts produced in temperate regions. The aim of this study was to test the type of manure, the use of co-composting with green waste, and the stabilization method for their ability to improve compost quality in the tropics. We produced 68 composts and vermicomposts that were analysed for their C, lignin and NPK contents throughout the composting process. Bayesian networks were used to assess the mechanisms controlling compost quality. The concentration effect, for C and lignin, and the initial blend quality, for NPK content, were the main factors affecting compost quality. Cattle manure composts presented the highest C and lignin contents, and poultry litter composts exhibited the highest NPK content. Co-composting improved quality by enhancing the concentration effect, which reduced the impact of C and nutrient losses. Vermicomposting did not improve compost quality; co-composting without earthworms thus appears to be a suitable stabilization method under the conditions of this study because it produced high quality composts and is easier to implement. PMID:27314950

  3. The efficiency of home composting programmes and compost quality.

    PubMed

    Vázquez, M A; Soto, M

    2017-06-01

    The efficiency of home composting programmes and the quality of the produced compost was evaluated in eight rural areas carrying out home composting programmes (up to 880 composting bins) for all household biowaste including meat and fish leftovers. Efficiency was analysed in terms of reduction of organic waste collected by the municipal services. An efficiency of 77% on average was obtained, corresponding to a composting rate of 126kg/person·year of biowaste (or 380kg/composter·year). Compost quality was determined for a total of 90 composting bins. The operation of composting bins by users was successful, as indicated by a low C/N ratio (10-15), low inappropriate materials (or physical contaminant materials, mean of 0.27±0.44% dry matter), low heavy metal content (94% of samples met required standards for agricultural use) and high nutrient content (2.1% N, 0.6% P, 2.5% K, 0.7% Mg and 3.7% Ca on average, dry matter). The high moisture (above 70% in 48% of the samples) did not compromise the compost quality. Results of this study show that home composting of household organic waste including meat and fish leftovers is a feasible practice. Home composting helps individuals and families to reduce the amount of household waste at the same time gaining a fertiliser material (compost) of excellent quality for gardens or vegetable plots. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Assessment of compost quality and usage for agricultural use: a case study of Hebron, Palestine.

    PubMed

    Al-Sari, Majed I; Sarhan, Mohammed A A; Al-Khatib, Issam A

    2018-03-15

    Complying with the technical specifications of compost production is of high importance not only for environmental protection but also for increasing the productivity and promotion of compost use by farmers in agriculture. This study focuses on the compost quality of the Palestinian market and farmers' attitudes toward agricultural use of compost. The quality is assessed through selection of 20 compost samples of different suppliers and producers and lab testing for quality parameters, while the farmers' attitudes to compost use for agriculture are evaluated through survey questionnaire of 321 farmers in the Hebron area. The results showed that the compost in the Palestinian markets is of medium quality due to partial or non-compliance with the quality standards and guidelines. The Palestinian farmers showed a positive attitude since 91.2% of them have the desire to use compost in agriculture. The results also showed that knowledge of difference between compost and chemical fertilizers, perception of compost benefits, and previously experiencing problems in compost use are significant factors affecting the farmers' attitude toward the use of compost as an organic fertilizer.

  5. Combining woody biomass for combustion with green waste composting: Effect of removal of woody biomass on compost quality.

    PubMed

    Vandecasteele, Bart; Boogaerts, Christophe; Vandaele, Elke

    2016-12-01

    The question was tackled on how the green waste compost industry can optimally apply the available biomass resources for producing both bioenergy by combustion of the woody fraction, and high quality soil improvers as renewable sources of carbon and nutrients. Compost trials with removal of woody biomass before or after composting were run at 9 compost facilities during 3 seasons to include seasonal variability of feedstock. The project focused on the changes in feedstock and the effect on the end product characteristics (both compost and recovered woody biomass) of this woody biomass removal. The season of collection during the year clearly affected the biochemical and chemical characteristics of feedstock, woody biomass and compost. On one hand the effect of removal of the woody fraction before composting did not significantly affect compost quality when compared to the scenario where the woody biomass was sieved from the compost at the end of the composting process. On the other hand, quality of the woody biomass was not strongly affected by extraction before or after composting. The holocellulose:lignin ratio was used in this study as an indicator for (a) the decomposition potential of the feedstock mixture and (b) to assess the stability of the composts at the end of the process. Higher microbial activity in green waste composts (indicated by higher oxygen consumption) and thus a lower compost stability resulted in higher N immobilization in the compost. Removal of woody biomass from the green waste before composting did not negatively affect the compost quality when more intensive composting was applied. The effect of removal of the woody fraction on the characteristics of the green waste feedstock and the extracted woody biomass is depending on the season of collection. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. Rotary drum composting of vegetable waste and tree leaves.

    PubMed

    Kalamdhad, Ajay S; Singh, Yatish K; Ali, Muntjeer; Khwairakpam, Meena; Kazmi, A A

    2009-12-01

    High rate composting studies on institutional waste, i.e. vegetable wastes, tree leaves, etc., were conducted on a demonstration-scale (3.5 m(3)) rotary drum composter by evaluating changes in some physico-chemical and biological parameters. During composting, higher temperature (60-70 degrees C) at inlet zone and (50-60 degrees C) at middle zone were achieved which resulted in high degradation in the drum. As a result, all parameters including TOC, C/N ratio, CO(2) evolution and coliforms were decreased significantly within few days of composting. Within a week period, quality compost with total nitrogen (2.6%) and final total phosphorus (6 g/kg) was achieved; but relatively higher final values of fecal coliforms and CO(2) evolution, suggested further maturation. Thus, two conventional composting methods namely windrow (M1) and vermicomposting (M2) tried for maturation of primary stabilized compost. By examining these methods, it was suggested that M2 was found suitable in delivering fine grained, better quality matured compost within 20 days of maturation period.

  7. Composting of animal manures and chemical criteria for compost maturity assessment. A review.

    PubMed

    Bernal, M P; Alburquerque, J A; Moral, R

    2009-11-01

    New livestock production systems, based on intensification in large farms, produce huge amount of manures and slurries without enough agricultural land for their direct application as fertilisers. Composting is increasingly considered a good way for recycling the surplus of manure as a stabilised and sanitised end-product for agriculture, and much research work has been carried out in the last decade. However, high quality compost should be produced to overcome the cost of composting. In order to provide and review the information found in the literature about manure composting, the first part of this paper explains the basic concepts of the composting process and how manure characteristics can influence its performance. Then, a summary of those factors such as nitrogen losses (which directly reduce the nutrient content), organic matter humification and compost maturity which affect the quality of composts produced by manure composting is presented. Special attention has been paid to the relevance of using an adequate bulking agent for reducing N-losses and the necessity of standardising the maturity indices due to their great importance amongst compost quality criteria.

  8. Merging two waste streams, wood ash and biowaste, results in improved composting process and end products.

    PubMed

    Fernández-Delgado Juárez, M; Gómez-Brandón, M; Insam, H

    2015-04-01

    A trial was carried out to evaluate the influence of wood ash admixture on biowaste composting. The aim was to find the optimal dosage of ash addition to enhance the composting process without endangering the final compost characteristics and use. Six treatments including an unamended control (K0) and composts with additions of 3% (K3), 6% (K6), 9% (K9), 12% (K12) and 15% (K15) of wood ash (w/w) were studied. The composting process was monitored in situ for 49days, by measuring temperature, CO2, O2, and CH4 in the piles and pH, electric conductivity (EC), and inorganic N in the laboratory. At the end of the process, the products were tested for Reifegrad (maturity), toxicity and quality. The addition of up to 15% of wood ash to biowaste did not negatively affect the composting process, and the initial differences found between both the low and high ash-treated composts were attenuated with the ongoing process development. Nevertheless, and mainly due to Cd level, composts with higher ash amendment did not comply with the highest quality standards established by the Austrian Compost Ordinance. The failure of obtaining class A+ quality after ash amendment emphasizes the need for a rigid quality selection of (bottom) ashes and thus reducing environmental risks related to high pollutant loads originating from the ashes. Copyright © 2014 Elsevier B.V. All rights reserved.

  9. Composting of the solid fraction of digestate derived from pig slurry: Biological processes and compost properties.

    PubMed

    Tambone, Fulvia; Terruzzi, Laura; Scaglia, Barbara; Adani, Fabrizio

    2015-01-01

    The aim of this paper was to assess the characteristics of the solid fractions (SF) obtained by mechanical separation of digestate, their compostability and compost quality. To do so, the SF of digestates obtained from anaerobic digestion of pig slurry, energy crops and agro-industrial residues were sampled in five plants located in Northern Italy. Results obtained indicated that anaerobic digestion by itself promoted the high biological stability of biomasses with a Potential Dynamic Respiration Index (PDRI) close to 1000 mgO2 kg V S(-1)h(-1). Subsequent composting of digestates, with an added bulking agent, did not give remarkably different results, and led only to a slight modification of the characteristics of the initial non-composted mixtures; the composts obtained fully respected the legal limits for high quality compost. Chemical studies of organic matter composition of the biomasses by using CP MAS (13)C NMR, indicated that the compost was composed of a high relative content of O-alkyl-C (71.47% of total C) (cellulose and hemicelluloses) and a low alkyl-C (12.42%) (i.e. volatile fatty acids, steroid-like molecules, aliphatic biopolymers and proteins). Copyright © 2014 Elsevier Ltd. All rights reserved.

  10. Home composting versus industrial composting: influence of composting system on compost quality with focus on compost stability.

    PubMed

    Barrena, Raquel; Font, Xavier; Gabarrell, Xavier; Sánchez, Antoni

    2014-07-01

    Stability is one of the most important properties of compost obtained from the organic fraction of municipal solid wastes. This property is essential for the application of compost to land to avoid further field degradation and emissions of odors, among others. In this study, a massive characterization of compost samples from both home producers and industrial facilities is presented. Results are analyzed in terms of chemical and respiration characterizations, the latter representing the stability of the compost. Results are also analyzed in terms of statistical validation. The main conclusion from this work is that home composting, when properly conducted, can achieve excellent levels of stability, whereas industrial compost produced in the studied facilities can also present a high stability, although an important dispersion is found in these composts. The study also highlights the importance of respiration techniques to have a reliable characterization of compost quality, while the chemical characterization does not provide enough information to have a complete picture of a compost sample. Copyright © 2014 Elsevier Ltd. All rights reserved.

  11. Biowaste home composting: experimental process monitoring and quality control.

    PubMed

    Tatàno, Fabio; Pagliaro, Giacomo; Di Giovanni, Paolo; Floriani, Enrico; Mangani, Filippo

    2015-04-01

    Because home composting is a prevention option in managing biowaste at local levels, the objective of the present study was to contribute to the knowledge of the process evolution and compost quality that can be expected and obtained, respectively, in this decentralized option. In this study, organized as the research portion of a provincial project on home composting in the territory of Pesaro-Urbino (Central Italy), four experimental composters were first initiated and temporally monitored. Second, two small sub-sets of selected provincial composters (directly operated by households involved in the project) underwent quality control on their compost products at two different temporal steps. The monitored experimental composters showed overall decreasing profiles versus composting time for moisture, organic carbon, and C/N, as well as overall increasing profiles for electrical conductivity and total nitrogen, which represented qualitative indications of progress in the process. Comparative evaluations of the monitored experimental composters also suggested some interactions in home composting, i.e., high C/N ratios limiting organic matter decomposition rates and final humification levels; high moisture contents restricting the internal temperature regime; nearly horizontal phosphorus and potassium evolutions contributing to limit the rates of increase in electrical conductivity; and prolonged biowaste additions contributing to limit the rate of decrease in moisture. The measures of parametric data variability in the two sub-sets of controlled provincial composters showed decreased variability in moisture, organic carbon, and C/N from the seventh to fifteenth month of home composting, as well as increased variability in electrical conductivity, total nitrogen, and humification rate, which could be considered compatible with the respective nature of decreasing and increasing parameters during composting. The modeled parametric kinetics in the monitored experimental composters, along with the evaluation of the parametric central tendencies in the sub-sets of controlled provincial composters, all indicate that 12-15 months is a suitable duration for the appropriate development of home composting in final and simultaneous compliance with typical reference limits. Copyright © 2014 Elsevier Ltd. All rights reserved.

  12. Composting of the solid fraction of digestate derived from pig slurry: Biological processes and compost properties

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tambone, Fulvia, E-mail: fulvia.tambone@unimi.it; Terruzzi, Laura; Scaglia, Barbara

    Highlights: • Anaerobic digestion leads to the production of a biologically stable digestate. • Solid–liquid separation produces a solid fraction having high fertilizer value. • Composting process shows low biological activity due to high biological stability of digestate. • Solid digestate fraction can be composted in a short time or used directly as organic fertilizer. - Abstract: The aim of this paper was to assess the characteristics of the solid fractions (SF) obtained by mechanical separation of digestate, their compostability and compost quality. To do so, the SF of digestates obtained from anaerobic digestion of pig slurry, energy crops andmore » agro-industrial residues were sampled in five plants located in Northern Italy. Results obtained indicated that anaerobic digestion by itself promoted the high biological stability of biomasses with a Potential Dynamic Respiration Index (PDRI) close to 1000 mgO{sub 2} kg V S{sup −1} h{sup −1}. Subsequent composting of digestates, with an added bulking agent, did not give remarkably different results, and led only to a slight modification of the characteristics of the initial non-composted mixtures; the composts obtained fully respected the legal limits for high quality compost. Chemical studies of organic matter composition of the biomasses by using CP MAS {sup 13}C NMR, indicated that the compost was composed of a high relative content of O-alkyl-C (71.47% of total C) (cellulose and hemicelluloses) and a low alkyl-C (12.42%) (i.e. volatile fatty acids, steroid-like molecules, aliphatic biopolymers and proteins)« less

  13. Performance of five Montreal West Island home composters.

    PubMed

    Adhikari, Bijaya K; Trémier, Anne; Barrington, Suzelle

    2012-01-01

    Even if home composting can eliminate municipal organic waste collection, handling and treatment costs, its compost quality requires investigation outside the laboratory. A study was thus conducted to evaluate the influence of the following management practices on the compost quality produced by five backyards home composters in Montreal West Island from June to October 2010: the type and backyard location of the home composter (HC), and the rate and type of organic waste (OW) fed into the home composter. The parameters monitored were compost temperature and final characteristics including trace elements and pathogens. For all HC compost, maximum but not necessarily thermophilic temperatures were highly probable within one week of adding more than 10 kg of OW composed of equal volumes of food waste (FW) and yard trimmings (YT). Top and bottom HC perforations enhanced convective aeration but concentrated OW decomposition within the bottom layer. Fed an equal volume of FW and YT, the final HC compost had a dry and organic matter content exceeding 30%, and 50%, respectively, and a total nitrogen, phosphorous and potassium level of 2, 1 and 3% on a dry matter basis, representing a good quality soil amendment. Clean OW feeding resulted in compost respecting Canadian and European regulations for Escherichia coli and Salmonella, irrespective of the temperature regime. For trace elements, regulatory limits may be exceeded when the home composter is fed ashes and soil. Homeowners must also be careful when applying pesticides to their lawns and gardens and then feeding the residues to the home composter.

  14. Opportunities and barriers to on-farm composting and compost application: A case study from northwestern Europe.

    PubMed

    Viaene, J; Van Lancker, J; Vandecasteele, B; Willekens, K; Bijttebier, J; Ruysschaert, G; De Neve, S; Reubens, B

    2016-02-01

    Maintaining and increasing soil quality and fertility in a sustainable way is an important challenge for modern agriculture. The burgeoning bioeconomy is likely to put further pressure on soil resources unless they are managed carefully. Compost has the potential to be an effective soil improver because of its multiple beneficial effects on soil quality. Additionally, it fits within the bioeconomy vision because it can valorize biomass from prior biomass processing or valorize biomass unsuitable for other processes. However, compost is rarely used in intensive agriculture, especially in regions with high manure surpluses. The aim of this research is to identify the barriers to on-farm composting and the application of compost in agriculture, using a mixed method approach for the case of Flanders. The significance of the 28 identified barriers is analyzed and they are categorized as market and financial, policy and institutional, scientific and technological and informational and behavioral barriers. More specifically, the shortage of woody biomass, strict regulation, considerable financial and time investment, and lack of experience and knowledge are hindering on-farm composting. The complex regulation, manure surplus, variable availability and transport of compost, and variable compost quality and composition are barriers to apply compost. In conclusion, five recommendations are suggested that could alleviate certain hindering factors and thus increase attractiveness of compost use in agriculture. Copyright © 2015 Elsevier Ltd. All rights reserved.

  15. Characterization of dairy cattle manure/wallboard paper compost mixture.

    PubMed

    Saludes, Ronaldo B; Iwabuchi, Kazunori; Miyatake, Fumihito; Abe, Yoshiyuki; Honda, Yoshifumi

    2008-10-01

    The aim of this research was to evaluate the use of manufacturing wallboard paper scraps as an alternative bulking agent for dairy cattle manure composting. The characteristics of the composting process were studied based on the changes in physico-chemical parameters and final compost quality. Composting of dairy cattle manure with wallboard paper was performed in a 481-L cylindrical reactor with vacuum-type aeration. Rapid degradation of organic matter was observed during the thermophilic stage of composting due to high microbial activity. High temperature and alkaline pH conditions promoted intense ammonia emission during the early stage of composting. The number of mesophilic and thermophilic microorganisms were found to be affected by changes in temperature at different composting stages. The total nitrogen (N), phosphorus (P), potassium (K), and sodium (Na) concentrations of the mixture did not change significantly after 28days of composting. However, the presence of gypsum in the paper scraps increased the calcium content of the final compost. The wallboard paper had no phyto-inhibitory effects as shown by high germination index of final compost (GI=99%).

  16. High rate composting of herbal pharmaceutical industry solid waste.

    PubMed

    Ali, M; Duba, K S; Kalamdhad, A S; Bhatia, A; Khursheed, A; Kazmi, A A; Ahmed, N

    2012-01-01

    High rate composting studies of hard to degrade herbal wastes were conducted in a 3.5 m(3) capacity rotary drum composter. Studies were spread out in four trials: In trial 1 and 2, one and two turns per day rotation was observed, respectively, by mixing of herbal industry waste with cattle (buffalo) manure at a ratio of 3:1 on wet weight basis. In trial 3 inocula was added in raw waste to enhance the degradation and in trial 4 composting of a mixture of vegetable market waste and herbal waste was conducted at one turn per day. Results demonstrated that the operation of the rotary drum at one turn a day (trial 1) could provide the most conducive composting conditions and co-composting (trial 4) gave better quality compost in terms of temperature, moisture, nitrogen, and Solvita maturity index. In addition a FT-IR study also revealed that trial 1 and trial 4 gave quality compost in terms of stability and maturity due to the presence of more intense peaks in the aromatic region and less intense peaks were found in the aliphatic region compared with trial 2 and trial 3.

  17. Effect of pieces size of Empty Fruit Bunches (EFB) on composting of EFB mixed with activated liquid organic fertilizer

    NASA Astrophysics Data System (ADS)

    Trisakti, B.; Mhardela, P.; Husaini, T.; Irvan; Daimon, H.

    2018-02-01

    This research was to determine the effect of pieces sizes of oil palm empty fruit bunch (EFB) on the composting of EFB mixed with activated liquid organic fertilizer (ALOF) in a basket composter in order to obtain high quality compost. The composting process was started by cutting the EFB into pieces with varies sizes, inserting the EFB pieces into basket composter (33 cm W × 28 cm L × 40 cm H), and adding ALOF until moisture content (MC) in the range of 55-65%. During composting, the compost pile was turned every 3 days and the MC was maintained at 55-65% range by adding the ALOF. The sizes of the EFB pieces were varied into <1, 1-3, 4-7, 8-11, and 12-15 cm. The parameters analysed during the composting were temperature, pH, MC, compost weight, water holding capacity (WHC), CN ratio, and the quality of the final compost. Composting was carried out for 40 days and the best result obtained at EFB pieces size was 1-3 cm with compost characteristic were pH 9.0; MC 52.59%; WHC 76%; CN ratio 12.15; N 1.96%; P 0.58%; and K 0. 95%.

  18. Management of MSW in Spain and recovery of packaging steel scrap.

    PubMed

    Tayibi, Hanan; Peña, Carmen; López, Félix A; López-Delgado, Aurora

    2007-01-01

    Packaging steel is more advantageously recovered and recycled than other packaging material due to its magnetic properties. The steel used for packaging is of high quality, and post-consumer waste therefore produces high-grade ferrous scrap. Recycling is thus an important issue for reducing raw material consumption, including iron ore, coal and energy. Household refuse management consists of collection/disposal, transport, and processing and treatment - incineration and composting being the most widely used methods in Spain. Total Spanish MSW production exceeds 21 million tons per year, of which 28.1% and 6.2% are treated in compost and incineration plants, respectively. This paper presents a comprehensive study of incineration and compost plants in Spain, including a review of the different processes and technologies employed and the characteristics and quality of the recovered ferrous scrap. Of the total amount of packaging steel scrap recovered from MSW, 38% comes from compost plants and 14% from incineration plants. Ferrous scrap from incineration plants presents a high degree of chemical alteration as a consequence of the thermal process to which the MSW is subjected, particularly the conditions in which the slag is cooled, and accordingly its quality diminishes. Fragmentation and magnetic separation processes produce an enhancement of the scrap quality. Ferrous scrap from compost plants has a high tin content, which negatively affects its recycling. Cleaning and detinning processes are required prior to recycling.

  19. Potential Re-utilization of Composted Mangrove Litters for Pond Environment Quality Improvement

    NASA Astrophysics Data System (ADS)

    Dwi Hastuti, Endah; Budi Hastuti, Rini; Hariyati, Riche

    2018-05-01

    Production of mangrove litter from pruning and thinning activities is potential source of organic materials which could be re-utilized to improve pond environment quality and fertility. This research aimed to analyze the nutrient composition compost produced from mangrove litter and to describe the effect of compost application on pond quality. This research was conducted through two phases, including composting trial and application of compost on pond trial. Composting process was conducted for 45-60 days on mangrove litter achieved from pruning activities in the silvofishery pond using composting container, while application of compost in pond was conducted by pouring 2 kg of compost in 25 m2 pond. Production of compost included solid compost and liquid compost. Nutrient concentration of solid compost was ranged from 0.47-0.52% for N; 0.36-0.44% for P; and 5.45-6.39% for organic C, while liquid compost provided 0.62-0.69%; 0.24-0.32%; and 3.98-4.45% respectively for N, P and organic C. While C/N ratio was ranged from 11.60-12.78 and 5.77-7.18 respectively for solid and liquid compost. Solid compost quality resulted that N, P and C/N ration had fulfilled the standart criteria defined by Indonesia National Standart for compost. Observed impact of compost application on pond water quality were the improvement of water clarity and increasing abundance of klekap (lab-lab). This showed that mangrove litters could be converted into a more productive materials to enhance pond environment quality and productivity, decrease management cost and increase benefit. Scheduled fertilization with compost is suggested to be conducted to provide best benefit on silvofishery management.

  20. Improvement of antioxidant and defense properties of Tomato (var. Pusa Rohini) by application of bioaugmented compost

    PubMed Central

    Verma, Shikha; Sharma, Anamika; Kumar, Raj; Kaur, Charanjit; Arora, Anju; Shah, Raghubir; Nain, Lata

    2014-01-01

    Nutrient management practices play a significant role in improving the nutritional quality of tomato. The present study deals with the evaluation of compost prepared using Effective Microorganisms (EM), on antioxidant and defense enzyme activities of Tomato (Lycopersicon esculentum). A field experiment with five treatments (control, chemical fertilizer and EM compost alone and in combination) was conducted in randomized block design. An increment of 31.83% in tomato yield was recorded with the combined use of EM compost and half recommended dose of chemical fertilizers (N50P30K25 + EM compost at the rate of 5 t ha−1). Similarly, fruit quality was improved in terms of lycopene content (35.52%), antioxidant activity (24–63%) and defense enzymes activity (11–54%), in tomatoes in this treatment as compared to the application of recommended dose of fertilizers. Soil microbiological parameters also exhibited an increase of 7–31% in the enzyme activities in this treatment. Significant correlation among fruit quality parameters with soil microbiological activities reveals the positive impact of EM compost which may be adopted as an eco-friendly strategy for production of high quality edible products. PMID:25972746

  1. [Co-composting of high moisture vegetable waste, flower waste and chicken litter in pilot scale].

    PubMed

    Zhang, Xiangfeng; Wang, Hongtao; Nie, Yongfeng; Qiu, Xiangyang

    2003-03-01

    Co-composting of different mixture made of vegetable waste, flower waste and chicken litter were studied. The first stage of composting was aerobic static bed based temperature feedback and control via aeration rate regulation. The second stage was window composting. At first stage, the pile was insulated and temperatures of at least 55 degrees C were maintained for a minimum of 3 days. The highest temperature was up to 73.3 degrees C. This is enough to kill pathogens. Moisture of pile decreased from 75% to 56% and organic matter was degraded from 65% to 50% during composting. The value of pH was stable at 8. Analysis of maturity and nutrition of compost showed that end-products of composting ware bio-stable and had abundant nutrition. This shows that co-composting of vegetable waste, flower waste and chicken litter can get high quality compost by optimizing composting process during 45 days. Composting can decrease nonpoint resource of organic solid waste by recycling nutrition to soil and improve fertility of soil.

  2. Optimization of waste combinations during in-vessel composting of agricultural waste.

    PubMed

    Varma, V Sudharsan; Kalamdhad, Ajay S; Kumar, Bimlesh

    2017-01-01

    In-vessel composting of agricultural waste is a well-described approach for stabilization of compost within a short time period. Although composting studies have shown the different combinations of waste materials for producing good quality compost, studies of the particular ratio of the waste materials in the mix are still limited. In the present study, composting was conducted with a combination of vegetable waste, cow dung, sawdust and dry leaves using a 550 L rotary drum composter. Application of a radial basis functional neural network was used to simulate the composting process. The model utilizes physico-chemical parameters with different waste materials as input variables and three output variables: volatile solids, soluble biochemical oxygen demand and carbon dioxide evolution. For the selected model, the coefficient of determination reached the high value of 0.997. The complicated interaction of agricultural waste components during composting makes it a nonlinear problem so it is difficult to find the optimal waste combinations for producing quality compost. Optimization of a trained radial basis functional model has yielded the optimal proportion as 62 kg, 17 kg and 9 kg for vegetable waste, cow dung and sawdust, respectively. The results showed that the predictive radial basis functional model described for drum composting of agricultural waste was well suited for organic matter degradation and can be successfully applied.

  3. Evaluation of composition and performance of composts derived from guacamole production residues.

    PubMed

    González-Fernández, J Jorge; Galea, Zesay; Alvarez, José M; Hormaza, J Iñaki; López, Rafael

    2015-01-01

    The utilization of organic wastes to improve soils or for growth media components in local farms and nurseries can reduce the environmental pollution linked to waste disposal while increasing the sustainability of crop production. This approach could be applied to waste products generated from the production of guacamole (an emerging activity in the avocado production areas in mainland Spain), where appropriate treatment of this oily and doughy waste product has not been previously reported. The aim of this work is to study the feasibility of co-composting guacamole production residues (GR) with garden pruning waste (PW) as bulking agent, and the possible use of the compost produced depending on its quality. A windrow composting trial using three GR:PW ratios, 2:1, 1:2, and 1:7 was carried out. Temperature, moisture, organic matter, and C/N ratio were used to follow the evolution of the composting process during 7 months. After an additional 3-month curing period, composts were sieved to less than 10 mm and a set of European quality criteria was used to assess compost quality and intended use. In general, the 3 composting mixtures followed the classical process evolution, with minor differences among them. The 1:2 GR:PW ratio appeared most adequate for combining better process evolution and maximum GR ratio. Except for their high pH that limits their use as growing media component in some particular cases, the obtained composts fulfilled the more stringent European standards for commercial composts. Self-heating tests confirmed the high stability of the composts produced. The germination of cress by the direct contact method was satisfactory for composts GR:PW 1:2 and 1:7, showing no signs of toxicity. Avocado seedlings planted in substrates containing 67% of the GR:PW composts exhibited greater plant growth than those in the control treatment, and with no signs of phytotoxicity. The results open an interesting opportunity for the sustainable treatment of avocado fruit by-products derived from guacamole and avocado oil processing. Copyright © 2014 Elsevier Ltd. All rights reserved.

  4. Additives aided composting of green waste: effects on organic matter degradation, compost maturity, and quality of the finished compost.

    PubMed

    Gabhane, Jagdish; William, S P M Prince; Bidyadhar, Rajnikant; Bhilawe, Priya; Anand, Duraisamy; Vaidya, Atul N; Wate, Satish R

    2012-06-01

    The effect of various additives such as fly ash, phosphogypsum, jaggery, lime, and polyethylene glycol on green waste composting was investigated through assessing their influence on microbial growth, enzymatic activities, organic matter degradation, bulk density, quality of finished compost including gradation test, heavy metal analysis, etc. A perusal of results showed that addition of jaggery and polyethylene glycol were helpful to facilitate composting process as they significantly influenced the growth of microbes and cellulase activity. The quality of finished compost prepared from jaggery and polyethylene glycol added treatments were superior to other composts, wherein reduction in C/N ratio was more than 8% in jaggery treatment. All other parameters of compost quality including gradation test also favored jaggery and polyethylene glycol as the best additives for green waste composting. Copyright © 2012 Elsevier Ltd. All rights reserved.

  5. [Co-composting of high-moisture vegetable waste and flower waste in a batch operation].

    PubMed

    Zhang, Xiangfeng; Wang, Hongtao; Nie, Yongfeng

    2003-09-01

    Co-composting of different mixture made of vegetable waste and flower waste were studied. The first stage of composting was aerobic static bed based temperature feedback in a batch operation and control via aeration rate regulation. The second stage was window composting. The total composting period was 45 days. About the station of half of celery and half of carnation, the pile was insulated and temperatures of at least 55 degrees C were maintained for about 11 days. The highest temperature was up to 65 degrees C. This is enough to kill pathogens. Moisture of pile decreased from 64.2% to 46.3% and organic matter was degraded from 74.7% to 55.6% during composting. The value of pH was had stable at 7. Analysis of maturity and nutrition of compost show that end-products of composting were bio-stable and had abundant nutrition. This shows that co-composting of vegetable waste and flower waste can get high quality compost by optimizing composting process during 45 days. Composting can decrease non-point resource of organic solid waste by recycling nutrition to soil and improve fertility of soil.

  6. Comparing composts formed by different technological processing

    NASA Astrophysics Data System (ADS)

    Lyckova, B.; Mudrunka, J.; Kucerova, R.; Glogarova, V.

    2017-10-01

    The presented article compares quality of composts which were formed by different technological processes. The subject to comparison was a compost which was created in a closed fermenter where ideal conditions for decomposition and organic substances conversion were ensured, with compost which was produced in an open box of community composting. The created composts were analysed to determine whether it is more important for the final compost to comply with the composting conditions or better sorting of raw materials needed for compost production. The results of the carried out experiments showed that quality of the resulting compost cannot be determined unequivocally.

  7. Reducing nitrogen loss and phytotoxicity during beer vinasse composting with biochar addition.

    PubMed

    Wang, Xueqin; Zhao, Yue; Wang, Huan; Zhao, Xinyu; Cui, Hongyang; Wei, Zimin

    2017-03-01

    The aim of this study was to investigate the feasibility of composting of beer vinasse generated from brewing industry, the effect of biochar amendment on beer vinasse composting was also evaluated based on the changes of different physicochemical parameters, phytotoxicity and final compost quality. Four different treatments were performed of beer vinasse with biochar addition at 0, 5%, 10%, 15% (w/w dry basis). The final product obtained from beer vinasse composting was phytotoxicity-free (GI: 120.8%), mature (C/N: 19.88, NH 4 + -N: 295.0mg/kg, DOC: 9.76g/kg) and nutrient-rich (especially for P: 1.92%) compost except high N loss (60.76%), which had the potential to be as soil amendment or fertilizer. Biochar addition contributed to decomposition of DOC indicating higher microbial activity and attain phytotoxicity-free standard rapidly. N loss significantly reduced by 27% with biochar at 15% addition. And 15% biochar addition ensured all parameters, which was involved in composts quality, to attain the mature standard. Therefore, it was suggested that biochar addition at 15% was optimal. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. Benefits of sustainable waste management in the vegetable greenhouse industry.

    PubMed

    Cheuk, William; Lo, Kwang Victor; Branion, Richard M R; Fraser, Bud

    2003-11-01

    This study investigated the benefits of an on-site sustainable solid waste treatment and utilization system for the greenhouse industry. The composts made from greenhouse wastes were tested and found to contain high nutrient values and good physical properties, and could be used as high quality growing media. The finished composts were tested in a greenhouse against the conventional growth media (sawdust) and resulted in a 10% yield increase by using the compost. An economic analysis was conducted to show the economic benefits of on-site composting for a greenhouse operation. Based on a four-hectare tomato or pepper greenhouse, and amortizing the capital equipment over five years, the net annual cost of composting represents a savings of dollars 8,000 annually.

  9. Microbiological parameters and maturity degree during composting of Posidonia oceanica residues mixed with vegetable wastes in semi-arid pedo-climatic condition.

    PubMed

    Saidi, Neyla; Kouki, Soulwene; M'hiri, Fadhel; Jedidi, Naceur; Mahrouk, Meriam; Hassen, Abdennaceur; Ouzari, Hadda

    2009-01-01

    The aim of this study was to characterize the biological stability and maturity degree of compost during a controlled pile-composting trial of mixed vegetable residues (VR) collected from markets of Tunis City with residues of Posidonia oceanica (PoR), collected from Tunis beaches. The accumulation in beaches (as well as their removal) constitutes a serious environmental problem in all Mediterranean countries particularly in Tunisia. Aerobic-thermophilic composting is the most reasonable way to profit highly-valuable content of organic matter in these wastes for agricultural purposes. The physical, chemical, and biological parameters were monitored during composting over 150 d. The most appropriate parameters were selected to establish the maturity degree. The main result of this research was the deduction of the following maturity criterion: (a) C/N ratio < 15; (b) NH4+-N < 400 mg/kg; (c) CO2-C < 2000 mg CO2-C/kg; (d) dehydrogenase activity < 1 mg TPF/g dry matter; (e) germination index (GI) > 80%. These five parameters, considered jointly are indicative of a high maturity degree and thus of a high-quality organic amendment which employed in a rational way, may improve soil fertility and soil quality. The mature compost was relatively rich in N (13.0 g/kg), P (4.74 g/kg) and MgO (15.80 g/kg). Thus composting definitively constitutes the most optimal option to exploit these wastes.

  10. A systematic review on the composting of green waste: Feedstock quality and optimization strategies.

    PubMed

    Reyes-Torres, M; Oviedo-Ocaña, E R; Dominguez, I; Komilis, D; Sánchez, A

    2018-04-27

    Green waste (GW) is an important fraction of municipal solid waste (MSW). The composting of lignocellulosic GW is challenging due to its low decomposition rate. Recently, an increasing number of studies that include strategies to optimize GW composting appeared in the literature. This literature review focuses on the physicochemical quality of GW and on the effect of strategies used to improve the process and product quality. A systematic search was carried out, using keywords, and 447 papers published between 2002 and 2018 were identified. After a screening process, 41 papers addressing feedstock quality and 32 papers on optimization strategies were selected to be reviewed and analyzed in detail. The GW composition is highly variable due to the diversity of the source materials, the type of vegetation, and climatic conditions. This variability limits a strict categorization of the GW physicochemical characteristics. However, this research established that the predominant features of GW are a C/N ratio higher than 25, a deficit in important nutrients, namely nitrogen (0.5-1.5% db), phosphorous (0.1-0.2% db) and potassium (0.4-0.8% db) and a high content of recalcitrant organic compounds (e.g. lignin). The promising strategies to improve composting of GW were: i) GW particle size reduction (e.g. shredding and separation of GW fractions); ii) addition of energy amendments (e.g. non-refined sugar, phosphate rock, food waste, volatile ashes), bulking materials (e.g. biocarbon, wood chips), or microbial inoculum (e.g. fungal consortia); and iii) variations in operating parameters (aeration, temperature, and two-phase composting). These alternatives have successfully led to the reduction of process length and have managed to transform recalcitrant substances to a high-quality end-product. Copyright © 2018 Elsevier Ltd. All rights reserved.

  11. Resource recovery of food waste through continuous thermophilic in-vessel composting.

    PubMed

    Waqas, Mohammad; Almeelbi, Talal; Nizami, Abdul-Sattar

    2018-02-01

    In the Kingdom of Saudi Arabia (KSA) and Gulf region, a very small amount of municipal solid waste (MSW) is treated for compost production. The produced compost through traditional methods of compost piles and trenches does not coincide with the international standards of compost quality. Therefore, in this study, a continuous thermophilic composting (CTC) method is introduced as a novel and efficient technique for treating food waste into a quality compost in a short period of time. The quality of the compost was examined by degradation rates of organic matter (OM), changes in total carbon (TC), ash contents, pH, dynamics in ammonium nitrogen (NH 4 -N) and nitrate nitrogen (NO 3 -N), and nitrification index (NI). The results showed that thermophilic treatment at 60 °C increased the pH of the substrate and promoted degradation and mineralization process. After 30 days of composting, the degree of OM degradation was increased by 43.26 and 19.66%, NH 4 -N by 65.22 and 25.23%, and NO 3 -N by 44.76 and 40.05% as compared to runs treated at 25 and 40 °C, respectively. The stability of the compost was attained after 30 to 45 days with quality better than the compost that was stabilized after 60 days of the experiment under mesophilic treatment (25 °C). The final compost also showed stability at room temperature, confirming the rapid degradation and maturation of food waste after thermophilic treatment. Moreover, the quality of produced compost is in line with the compost quality standard of United States (US), California, Germany, and Austria. Hence, CTC can be implemented as a novel method for rapid decomposition of food waste into a stable organic fertilizer in the given hot climatic conditions of KSA and other Gulf countries with a total net saving of around US $70.72 million per year.

  12. Assessing the effect of biodegradable and degradable plastics on the composting of green wastes and compost quality.

    PubMed

    Unmar, G; Mohee, R

    2008-10-01

    An assessment of the effect of the composting potential of Mater-Bi biodegradable plastic with green wastes, noted by GBIO, and degradable plastic (PDQ-H additive) with green wastes, noted by GDEG, was carried out in a lagged two-compartment compost reactor. The composting time was determined until constant mass of the composting substrates was reached. The green wastes composting process was used as control (G). After one week of composting, the biodegradable plastics disappeared completely, while 2% of the original degradable plastic still remained after about 8 weeks of composting. A net reduction in volatile solids contents of 61.8%, 56.5% and 53.2% were obtained for G, GBIO and GDEG, respectively. Compost quality was assessed in terms of nitrogen, potassium and phosphorus contents, which were found to be highest for GBIO compost. From the phytotoxicity test, it has been observed that a diluted extract of GBIO compost has produced the longest length of radicle. From the respiration test, no significant difference in the amount of carbon dioxide released by the composting of GDEG and G was observed. This study showed that the quality of the compost is not affected by the presence of the biodegradable and degradable plastics in the raw materials.

  13. Effect of adding palm oil mill decanter cake slurry with regular turning operation on the composting process and quality of compost from oil palm empty fruit bunches.

    PubMed

    Yahya, Azmi; Sye, Chong Puay; Ishola, Tajudeen Abiodun; Suryanto, Hadi

    2010-11-01

    Formation of compost from oil palm empty fruit bunches (EFB) and decanter cake slurry by adding palm oil mill effluent (POME) with regular turning operation was investigated. The experiment was conducted in a commercial composting plant under the normal production process. The addition of decanter cake slurry has hastened the composting process of the EFB. The C/N ratio after 51 days for the mature compost with the decanter cake slurry was 18.65 while that of the matured compost without the decanter cake slurry remained high at 28.96. The compost formed from the addition of decanter cake to EFB and POME had 46.4% nitrogen, 17.9% phosphorus, 17.7% potassium and 23.1% calcium more than that without decanter cake. The use of compost produced from EFB, POME and decanter cake slurry could solve more environmental problems and enhance economic benefits in the oil palm industry.

  14. A method for measuring low-weight carboxylic acids from biosolid compost.

    PubMed

    Himanen, Marina; Latva-Kala, Kyösti; Itävaara, Merja; Hänninen, Kari

    2006-01-01

    Concentration of low-weight carboxylic acids (LWCA) is one of the important parameters that should be taken into consideration when compost is applied as soil improver for plant cultivation, because high amounts of LWCA can be toxic to plants. The present work describes a method for analysis of LWCA in compost as a useful tool for monitoring compost quality and safety. The method was tested on compost samples of two different ages: 3 (immature) and 6 (mature) months old. Acids from compost samples were extracted at high pH, filtered, and freeze-dried. The dried sodium salts were derivatized with a sulfuric acid-methanol mixture and concentrations of 11 low-weight fatty acids (C1-C10) were analyzed using headspace gas chromatography. The material was analyzed with two analytical techniques: the external calibration method (tested on 11 LWCA) and the standard addition method (tested only on formic, acetic, propionic, butyric, and iso-butyric acids). The two techniques were compared for efficiency of acids quantification. The method allowed good separation and quantification of a wide range of individual acids with high sensitivity at low concentrations. Detection limit for propionic, butyric, caproic, caprylic, and capric acids was 1 mg kg(-1) compost; for formic, acetic, valeric, enanthoic and pelargonic acids it was 5 mg kg(-1) compost; and for iso-butyric acid it was 10 mg kg(-1) compost. Recovery rates of LWCA were higher in 3-mo-old compost (57-99%) than in 6-mo-old compost (29-45%). In comparison with the external calibration technique the standard addition technique proved to be three to four times more precise for older compost and two times for younger compost. Disadvantages of the standard addition technique are that it is more time demanding and laborious.

  15. Influence of input material and operational performance on the physical and chemical properties of MSW compost.

    PubMed

    Montejo, C; Costa, C; Márquez, M C

    2015-10-01

    Certain controversy exists about the use of compost from MSW (municipal solid waste) and, specifically, from the organic fraction of MSW that has not been separated at the source. In this case, the final composition of MSW compost is related to the performance of the separation process in MBT (Mechanical and Biological Treatment) plants as well as the composition of raw materials and the particular features of composting systems. In an effort to investigate the quality of MSW compost, 30 samples of this product obtained from 10 different MBT plants were studied. The main physical and chemical properties were analyzed and were compared with the requirements of current legislation. The composting systems used to produce these compost samples were studied and the input materials were characterized. The results reveal that the heavy metal content in MSW compost was below the legal restrictions in all samples but one; however, in most of them the percentage of Pb was high. The fertilizing potential of MSW compost has been demonstrated by its high nutrient concentrations, particularly N, K, P, Ca and Mg. Nevertheless, here the percentage of inert impurities with a size larger than 2 mm, such as plastic or glass, was seen to be excessively high exceeding in some cases the legal limit. The source of such pollution lies in the composting inputs, OFMSW (organic fraction of MSW), which showed high percentages of improper materials such as plastic (9%) or glass (11%). Accordingly, the performance of the sorting stage for the collection of the raw material must be improved, as must the refining process, since this does not remove the necessary amounts of these impurities from the final compost. Copyright © 2015 Elsevier Ltd. All rights reserved.

  16. Biochemical characterization of consortium compost of toxic weeds Parthenium hysterophorus and Eichhornia crassipe.

    PubMed

    Khaket, Tejinder Pal; Singh, Mangal; Dhanda, Suman; Singh, Talwinder; Singh, Jasbir

    2012-11-01

    Parthenium hysterophorus and Eichhornia crassipes are two uncontrolled weeds with high concentration of N, P, K, Zn and Fe that makes them suitable for composting. Three types of compost viz. Parthenium and Eichhornia each alone as well as combined were prepared. Biochemical and enzymatic analysis of the compost in addition to seed germination was performed. Phenols, organic carbon, C/N and C/P ratios were found to decrease significantly while N, P, K, polyphenol oxidase increased significantly in combined compost. Furthermore, seed germination test of Vigna radiata and Triticum seeds, revealed a significant increase in root, shoot length and germination index in 60days old combined compost. It can be concluded that combined composting of Parthenium with Eichhornia not only reduces the allelopathic effect but also increases its nutrient quality and thus could be promising for organic farming and bioremediation. Copyright © 2012 Elsevier Ltd. All rights reserved.

  17. Effect of spent mushroom substrate as a bulking agent on gaseous emissions and compost quality during pig manure composting.

    PubMed

    Li, Shuyan; Li, Danyang; Li, Jijin; Li, Yangyang; Li, Guoxue; Zang, Bing; Li, Yun

    2018-05-01

    The aim of this study was to investigate the gaseous emissions (CH 4 , N 2 O, and NH 3 ) and compost quality during the pig manure composting by adding spent mushroom substrate (SMS) as a bulking agent. The control treatment was also studied using corn stalk (CS) as a bulking agent. The experiment was conducted in a pilot scale composting reactor under aerobic condition with the initial C/N ratio of 20. Results showed that bulking agents significantly affected gaseous emissions and compost quality. Using SMS as a bulking agent improved composting efficiency by shortening the time for maturity. SMS increased germination index and humic acid of the final compost (by 13.44 and 41.94%, respectively) compared with CS. Furthermore, composting with SMS as a bulking agent could reduce nitrogen loss, NH 3 , and N 2 O emissions (by 13.57, 35.56, and 46.48%, respectively) compared with the control. SMS slightly increased CH 4 emission about 1.1 times of the CS. However, a 33.95% decrease in the global warming potential of CH 4 and N 2 O was obtained by adding SMS treatment. These results indicate that SMS is a favorable bulking agent for reducing gaseous emissions and increasing compost quality.

  18. Physical analyses of compost from composting plants in Brazil.

    PubMed

    Barreira, L P; Philippi Junior, A; Rodrigues, M S; Tenório, J A S

    2008-01-01

    Nowadays the composting process has shown itself to be an alternative in the treatment of municipal solid wastes by composting plants. However, although more than 50% of the waste generated by the Brazilian population is composed of matter susceptible to organic composting, this process is, still today, insufficiently developed in Brazil, due to low compost quality and lack of investments in the sector. The objective of this work was to use physical analyses to evaluate the quality of the compost produced at 14 operative composting plants in the Sao Paulo State in Brazil. For this purpose, size distribution and total inert content tests were done. The results were analyzed by grouping the plants according to their productive processes: plants with a rotating drum, plants with shredders or mills, and plants without treatment after the sorting conveyor belt. Compost quality was analyzed considering the limits imposed by the Brazilian Legislation and the European standards for inert contents. The size distribution tests showed the influence of the machinery after the sorting conveyer on the granule sizes as well as the inert content, which contributes to the presence of materials that reduce the quality of the final product.

  19. Recent developments in biochar utilization as an additive in organic solid waste composting: A review.

    PubMed

    Xiao, Ran; Awasthi, Mukesh Kumar; Li, Ronghua; Park, Jonghwan; Pensky, Scott M; Wang, Quan; Wang, Jim J; Zhang, Zengqiang

    2017-12-01

    In recent years, considerable studies have been devoted to investigating the effect of biochar application on organic solid waste composting. This review provides an up-to-date overview of biochar amendment on composting processes and compost quality. Biochar production, characteristics, and its application coupled with the basic concepts of composting are briefly introduced before detailing the effects of biochar addition on composting. According to recent studies, biochar has exhibited great potential for enhancing composting. It is evident that biochar addition in composting can: (1) improve compost mixture physicochemical properties, (2) enhance microbial activities and promote organic matter decomposition, (3) reduce ammonia (NH 3 ) and greenhouse gas (GHG) emissions, and (4) upgrade compost quality by increasing the total/available nutrient content, enhancing maturity, and decreasing phytotoxicity. Despite that, further research is needed to explore the mechanism of biochar addition on composting and to evaluate the agricultural and environmental performances of co-composted biochar compost. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Biopesticide effect of green compost against fusarium wilt on melon plants.

    PubMed

    Ros, M; Hernandez, M T; Garcia, C; Bernal, A; Pascual, J A

    2005-01-01

    The biopesticide effect of four green composts against fusarium wilt in melon plants and the effect of soil quality in soils amended with composts were assayed. The composts consisted of pruning wastes, with or without addition of coffee wastes (3/1 and 4/1, dry wt/dry wt) or urea (1000/1, dry wt/dry wt). In vitro experiments suggested the biopesticide effect of the composts against Fusarium oxysporum, while only the compost of pine bark and urea (1000/1dry wt/dry wt) had an abiotic effect. Melon plant growth with composts and F. oxysporum was one to four times greater than in the non-amended soil, although there was no significant decrease in the level of the F. oxysporum in the soil. The addition of composts to the soil also improved its biological quality, as assessed by microbiological and biochemical parameters: ATP and hydrolases involved in the P (phosphatase), C (beta-glucosidase) and N (urease) cycles. Green composts had greater beneficial characteristics, improved plant growth and controlled fusarium wilt in melon plants. These composts improve the soil quality of semi-arid agricultural soils. Biotic and abiotic factors from composts have been tested as responsible of their biopesticide activity against fusarium wilt.

  1. Effect of turning frequency on co-composting pig manure and fungus residue.

    PubMed

    Jiang-Ming, Zhou

    2017-03-01

    Composting of agricultural wastes not only can reduce environmental pollution caused by improper disposal, but also can recycle agricultural wastes and transform them into highly valuable products, such as fertilizers or soil conditioners, for agricultural applications. However, the composting process and final product are easily affected by the limited oxygen supply that results from insufficient aeration, especially in the center of a large-scale windrow. Hence, a pilot-scale experiment was conducted to investigate the effects of the turning frequency on the composting efficiency and compost quality of used pig manure and fungus residue. Physical and chemical characteristics were measured over the course of 63 days of composting. The data indicate that higher temperatures and more rapid moisture removal generally result from a turning treatment of once every 2-4 days than in fewer, or no, turning treatments. The total nitrogen, total phosphorus, and total potassium contents increased in all windrows as the organic matter content decreased, but both the increases and decrease were greater in windrows that were turned more frequently. The reduction of the organic matter mass by 53.7-66.0% for a turning of once every 2-8 days is significantly higher than that for the static windrow (39.1%). Although there is an increase in nitrogen mass loss with an increased turning frequency, lower nitrogen mass losses (12.7-25.7%) in all treatments were noted compared with previous studies. A final compost product with less moisture, less weight, higher nutrient content (N, P, and K), and greater stability was obtained in windrows with turning frequencies of once every 2-4 days, which is recommended when composting pig manure and fungus residue. Composting of agricultural wastes not only can reduce environmental pollution caused by improper disposal, but recycling of agricultural wastes transforms them into highly valuable products, such as fertilizers or soil conditioners, for agricultural applications. However, the composting process and final product are easily affected by the limited oxygen supply that results from insufficient aeration, especially in the center of a large-scale windrow. Hence, a pilot-scale experiment was conducted to investigate the effects of the turning frequency on the composting efficiency and compost quality of used pig manure and fungus residue, so as to capture an operational technique suitable for the effective co-composting pig manure and edible fungi residue for a large-scale composting plant.

  2. Assessment of compost maturity by using an electronic nose.

    PubMed

    López, Rafael; Giráldez, Inmaculada; Palma, Alberto; Jesús Díaz, M

    2016-02-01

    The composting process produces and emits hundreds of different gases. Volatile organic compounds (VOCs) can provide information about progress of composting process. This paper is focused on the qualitative and quantitative relationships between compost age, as sign of compost maturity, electronic-nose (e-nose) patterns and composition of compost and composting gas at an industrial scale plant. Gas and compost samples were taken at different depths from composting windrows of different ages. Temperature, classical chemical parameters, O2, CO, combustible gases, VOCs and e-nose profiles were determined and related using principal component analysis (PCA). Factor analysis carried out to a data set including compost physical-chemical properties, pile pore gas composition and composting time led to few factors, each one grouping together standard composting parameters in an easy to understand way. PCA obtained from e-nose profiles allowed the classifying of piles, their aerobic-anaerobic condition, and a rough estimation of the composting time. That would allow for immediate and in-situ assessment of compost quality and maturity by using an on-line e-nose. The e-nose patterns required only 3-4 sensor signals to account for a great percentage (97-98%) of data variance. The achieved patterns both from compost (chemical analysis) and gas (e-nose analysis) samples are robust despite the high variability in feedstock characteristics (3 different materials), composting conditions and long composting time. GC-MS chromatograms supported the patterns. Copyright © 2015 Elsevier Ltd. All rights reserved.

  3. Changes in physical, chemical, and microbiological properties during the two-stage co-composting of green waste with spent mushroom compost and biochar.

    PubMed

    Zhang, Lu; Sun, Xiangyang

    2014-11-01

    This research determined whether the two-stage co-composting can be used to convert green waste (GW) into a useful compost. The GW was co-composted with spent mushroom compost (SMC) (at 0%, 35%, and 55%) and biochar (BC) (at 0%, 20%, and 30%). The combined addition of SMC and BC greatly increased the nutrient contents of the compost product and also improved the compost quality in terms of composting temperature, particle-size distribution, free air space, cation exchange capacity, nitrogen transformation, organic matter degradation, humification, element contents, abundance of aerobic heterotrophs, dehydrogenase activity, and toxicity to germinating seeds. The addition of 35% SMC and 20% BC to GW (dry weight % of initial GW) and the two-stage co-composting technology resulted in the production of the highest quality compost product in only 24 days rather than the 90-270 days required with traditional composting. Copyright © 2014 Elsevier Ltd. All rights reserved.

  4. Closing the natural cycles - using biowaste compost in organic farming in Vienna

    NASA Astrophysics Data System (ADS)

    Erhart, Eva; Rogalski, Wojciech; Maurer, Ludwig; Hartl, Wilfried

    2014-05-01

    One of the basic principles of organic farming - that organic management should fit the cycles and ecological balances in nature - is put into practice in Vienna on a large scale. In Vienna, compost produced from separately collected biowaste and greenwaste is used on more than 1000 ha of organic farmland. These municipally owned farms are managed organically, but are stockless, like the vast majority of farms in the region. The apparent need for a substitute for animal manure triggered the development of an innovative biowaste management. Together with the Municipal Department 48 responsible for waste management, which was keen for the reduction of residual waste, the Municipal Department 49 - Forestry Office and Urban Agriculture and Bio Forschung Austria developed Vienna's biowaste management model. Organic household wastes and greenwastes are source-separated by the urban population and collected in a closely monitored system to ensure high compost quality. A composting plant was constructed which today produces a total of 43000 t compost per year in a monitored open windrow process. The quality of the compost produced conforms to the EU regulation 834/2007. A large part of the compost is used as organic fertilizer on the organic farmland in Vienna, and the remainder is used in arable farming and in viticulture in the region around Vienna and for substrate production. Vienna`s biowaste management-model is operating successfully since the 1980s and has gained international recognition in form of the Best Practice-Award of the United Nations Development Programme. In order to assess the effects of biowaste compost fertilization on crop yield and on the environment, a field experiment was set up near Vienna in 1992, which is now one of the longest standing compost experiments in Europe. The results showed, that the yields increased for 7 - 10 % with compost fertilization compared to the unfertilized control and the nitrogen recovery by crops was between 4 and 6 % of the total nitrogen applied in the compost treatments. Phosphorus and potassium supply with compost fertilization was approximately as high as with mineral fertilization. The humus content of the soil increased in the compost treatments, indicating that organic carbon applied via compost was stored in the soil. Regarding total heavy metal contents and available heavy metal fractions in soil and heavy metal contents in crops, fertilization with biowaste compost at rates allowed by organic farming rules gave no cause for concern. Nitrogen leaching to the groundwater as determined using ceramic suction cups was not increased with compost fertilization as compared to mineral fertilization.

  5. Differences in the mobility of Cd, Cu, Pb and Zn during composting of two types of household bio-waste collected in four seasons.

    PubMed

    Hanc, Ales; Szakova, Jirina; Ochecova, Pavla

    2014-09-01

    The objective of this study was to evaluate the mobility of Cd, Cu, Pb and Zn during 3 different compost aeration rates of household bio-waste, originating in urban settlement (U-bio-waste) and family house buildings (F-bio-waste). The first two weeks, when the thermophilic composting phase became, the highest decline of exchangeable content was recorded. After 12 weeks of composting, lower exchangeable content was found in the case of U-bio-waste composts than F-bio-waste composts, despite higher loss of fresh mass. The order of fractions in both final composts was as follows: residual>oxidizable>reducible>exchangeable. The exchangeable portion of total content in final composts decreased in this order: Zn (17%), Cd (11%), Pb (4%) and Cu (3%). Regarding the low exchangeable content of heavy metals and high-quality organic matter, these types of composts could be used not only as fertilizer, but for remediation of metals contaminated land. Copyright © 2014 Elsevier Ltd. All rights reserved.

  6. Effect of light Sphagnum peat on odour formation in the early stages of biowaste composting.

    PubMed

    Kurola, Jukka M; Arnold, Mona; Kontro, Merja H; Talves, Matti; Romantschuk, Martin

    2010-05-01

    In the present study, we investigated the effects of two bulking materials, Sphagnum peat and pine wood chips, on the early stages of biowaste composting in two pilot-scale processes. Emphasis was placed on studying the formation conditions of malodorous compost gases in the initial phases of the processes. The results showed that gas emission leaving an open windrow and a closed drum composting system contained elevated concentrations of fermentative microbial metabolites when acid Sphagnum peat (pH 3.2) was used as a bulking material. Moreover, the gas emission of the peat amended drum composter contained a high concentration of odour (up to 450,000oum(-3) of air). The highest odour values in the outlet gas of peat amended composts coincided with the elevated concentrations of volatile organic compounds such as acetoin and buthanedion. We conclude that the acidifying qualities of composting substrates or bulking material may intensify odour emission from biowaste composts and prolong the early stages of the composting process. Copyright (c) 2010 Elsevier Ltd. All rights reserved.

  7. Effects of drying pretreatment and particle size adjustment on the composting process of discarded flue-cured tobacco leaves.

    PubMed

    Zhao, Gui-Hong; Yu, Yan-Ling; Zhou, Xiang-Tong; Lu, Bin-Yu; Li, Zi-Mu; Feng, Yu-Jie

    2017-05-01

    The main characteristic of discarded flue-cured tobacco leaves is their high nicotine content. Aerobic composting is an effective method to decrease the nicotine level in tobacco leaves and stabilize tobacco wastes. However, high levels of nicotine in discarded flue-cured tobacco leaves complicate tobacco waste composting. This work proposes a drying pretreatment process to reduce the nicotine content in discarded flue-cured tobacco leaves and thus enhance its carbon-to-nitrogen ratio to a suitable level for composting. The effect of another pretreatment method, particle size adjustment, on composting efficiency was also tested in this work. The results indicated that the air-dried (nicotine content: 1.35%) and relatively long discarded flue-cured tobacco leaves (25 mm) had a higher composting efficiency than damp (nicotine content: 1.57%) and short discarded flue-cured tobacco leaves (15 mm). When dry/25 mm discarded flue-cured tobacco leaves mixed with tobacco stems in an 8:2 ratio was composted at a temperature above 55 °C for 9 days, the nicotine content dropped from 1.29% to 0.28%. Since the discarded flue-cured tobacco leaves was successfully composted to a fertile and harmless material, the germination index values increased to 85.2%. The drying pretreatment and particle size adjustment offered ideal physical and chemical conditions to support microbial growth and bioactivity during the composting process, resulting in efficient conversion of discarded flue-cured tobacco leaves into a high quality and mature compost.

  8. Soil bioassays as tools for sludge compost quality assessment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Domene, Xavier, E-mail: x.domene@creaf.uab.es; Sola, Laura; Ramirez, Wilson

    2011-03-15

    Composting is a waste management technology that is becoming more widespread as a response to the increasing production of sewage sludge and the pressure for its reuse in soil. In this study, different bioassays (plant germination, earthworm survival, biomass and reproduction, and collembolan survival and reproduction) were assessed for their usefulness in the compost quality assessment. Compost samples, from two different composting plants, were taken along the composting process, which were characterized and submitted to bioassays (plant germination and collembolan and earthworm performance). Results from our study indicate that the noxious effects of some of the compost samples observed inmore » bioassays are related to the low organic matter stability of composts and the enhanced release of decomposition endproducts, with the exception of earthworms, which are favored. Plant germination and collembolan reproduction inhibition was generally associated with uncomposted sludge, while earthworm total biomass and reproduction were enhanced by these materials. On the other hand, earthworm and collembolan survival were unaffected by the degree of composting of the wastes. However, this pattern was clear in one of the composting procedures assessed, but less in the other, where the release of decomposition endproducts was lower due to its higher stability, indicating the sensitivity and usefulness of bioassays for the quality assessment of composts.« less

  9. Indicator methods to evaluate the hygienic performance of industrial scale operating Biowaste Composting Plants.

    PubMed

    Martens, Jürgen

    2005-01-01

    The hygienic performance of biowaste composting plants to ensure the quality of compost is of high importance. Existing compost quality assurance systems reflect this importance through intensive testing of hygienic parameters. In many countries, compost quality assurance systems are under construction and it is necessary to check and to optimize the methods to state the hygienic performance of composting plants. A set of indicator methods to evaluate the hygienic performance of normal operating biowaste composting plants was developed. The indicator methods were developed by investigating temperature measurements from indirect process tests from 23 composting plants belonging to 11 design types of the Hygiene Design Type Testing System of the German Compost Quality Association (BGK e.V.). The presented indicator methods are the grade of hygienization, the basic curve shape, and the hygienic risk area. The temperature courses of single plants are not distributed normally, but they were grouped by cluster analysis in normal distributed subgroups. That was a precondition to develop the mentioned indicator methods. For each plant the grade of hygienization was calculated through transformation into the standard normal distribution. It shows the part in percent of the entire data set which meet the legal temperature requirements. The hygienization grade differs widely within the design types and falls below 50% for about one fourth of the plants. The subgroups are divided visually into basic curve shapes which stand for different process courses. For each plant the composition of the entire data set out of the various basic curve shapes can be used as an indicator for the basic process conditions. Some basic curve shapes indicate abnormal process courses which can be emended through process optimization. A hygienic risk area concept using the 90% range of variation of the normal temperature courses was introduced. Comparing the design type range of variation with the legal temperature defaults showed hygienic risk areas over the temperature courses which could be minimized through process optimization. The hygienic risk area of four design types shows a suboptimal hygienic performance.

  10. Effects of earthworm casts and zeolite on the two-stage composting of green waste.

    PubMed

    Zhang, Lu; Sun, Xiangyang

    2015-05-01

    Because it helps protect the environment and encourages economic development, composting has become a viable method for organic waste disposal. The objective of this study was to investigate the effects of earthworm casts (EWCs) (at 0.0%, 0.30%, and 0.60%) and zeolite (clinoptilolite, CL) (at 0%, 15%, and 25%) on the two-stage composting of green waste. The combination of EWCs and CL improved the conditions of the composting process and the quality of the compost products in terms of the thermophilic phase, humification, nitrification, microbial numbers and enzyme activities, the degradation of cellulose and hemicellulose, and physico-chemical characteristics and nutrient contents of final composts. The compost matured in only 21days with the optimized two-stage composting method rather than in the 90-270days required for traditional composting. The optimal two-stage composting and the best quality compost were obtained with 0.30% EWCs and 25% CL. Copyright © 2015 Elsevier Ltd. All rights reserved.

  11. Co-composting of biowaste and wood ash, influence on a microbially driven-process.

    PubMed

    Fernández-Delgado Juárez, Marina; Prähauser, Barbara; Walter, Andreas; Insam, Heribert; Franke-Whittle, Ingrid H

    2015-12-01

    A trial at semi-industrial scale was conducted to evaluate the effect of wood ash amendment on communal biowaste in a composting process and on the final composts produced. For this purpose, three treatments including an unamended control (C0) and composts with additions of 6% (C6), and 12% (C12) of wood ash (w/w) were studied, and physico-chemical parameters as well as microbial activity and community composition were investigated. At the end of the process, composts were tested for toxicity and quality, and microbial physiological activity. The influence of ash addition on compost temperature, pH, microbial activity and composition was stronger during the early composting stages and diminished with time, whereby composts became more similar. Using the COMPOCHIP microarray, a reduction in the pathogenic genera Listeria and Clostridium was observed, which together with the temperature increases of the composting process helped in the hygienisation of composts. Lactobacillus species were also affected, such that reduced hybridisation signals were observed with increased ash addition, due to the increased pH values in amended composts. Organic matter mineralisation was also increased through ash addition, and no negative effects on the composting process were observed. The nutrient content of the final products was increased through the addition of ash, and no toxic effects were observed. Nonetheless, greater concentrations of heavy metals were found in composts amended with more ash, which resulted in a downgrading of the compost quality according to the Austrian Compost Ordinance. Thus, regulation of both input materials and end-product quality is essential in optimising composting processes. Copyright © 2015 Elsevier Ltd. All rights reserved.

  12. Biochar-enhanced composts reduce the potential leaching of nutrients and heavy metals and suppress plant-parasitic nematodes in excessively fertilized cucumber soils.

    PubMed

    Cao, Yune; Gao, Yanming; Qi, Yanbin; Li, Jianshe

    2018-03-01

    Excessive fertilization is a common agricultural practice that has largely reduced soil nutrient retention capacity and led to nutrient leaching in China. To reduce nutrient leaching, in this study, we evaluated the application of biochar, compost, and biochar-compost on soil properties, leaching water quality, and cucumber plant growth in soils with different nutrient levels. In general, the concentrations of nutrients and heavy metals in leaching water were higher under high-nutrient conditions than under low-nutrient conditions. Both biochar and compost efficiently enhanced soil cation exchange capacity (CEC), water holding capacity (WHC), and microbial biomass carbon (MBC), nitrogen (MBN), and phosphorus (MBP), reduced the potential leaching of nutrients and heavy metals, and improved plant growth. The efficiency of biochar and compost in soil CEC, WHC, MBC, MBN, and MBP and plant growth was enhanced when applied jointly. In addition, biochar and biochar-enhanced compost efficiently suppressed plant-parasitic nematode infestation in a soil with high levels of both N and P. Our results suggest that biochar-enhanced compost can reduce the potential environmental risks in excessively fertilized vegetable soils.

  13. Two-phase olive mill waste composting: enhancement of the composting rate and compost quality by grape stalks addition.

    PubMed

    Cayuela, Maria Luz; Sánchez-Monedero, Miguel A; Roig, Asunción

    2010-06-01

    Two-phase olive mill waste (TPOMW) is a semisolid sludge generated by the olive oil industry. Its recycling as a soil amendment, either unprocessed or composted, is being promoted as a beneficial agricultural practice in the Mediterranean area. One of the major difficulties when composting TPOMW is the compaction of the material due to its dough-like texture, which leads to an inadequate aeration. For this reason, the addition of bulking agents is particularly important to attain a proper composting process. In this study we followed the evolution of two composting mixtures (A and B) prepared by mixing equal amounts of TPOMW and sheep litter (SL) (in a dry weight basis). In pile B grape stalks (GS) were added (10% dry weight) as bulking agent to study their effect on the development of the composting process and the final compost quality. The incorporation of grape stalks to the composting mixture changed the organic matter (OM) degradation dynamics and notably reduced the total amount of lixiviates. The evolution of several maturation indices (C/N, germination index, water soluble carbon, humification indices, C/N in the leachates) showed a faster and improved composting process when GS were added. Moreover, chemical (NH4+, NO3(-), cation exchange capacity, macro and micronutrients, heavy metals) and physical properties (bulk and real densities, air content, total water holding capacity, porosity) of the final composts were analysed and confirmed the superior quality of the compost where GS were added.

  14. Effects of brown sugar and calcium superphosphate on the secondary fermentation of green waste.

    PubMed

    Zhang, Lu; Sun, Xiangyang; Tian, Yun; Gong, Xiaoqiang

    2013-03-01

    The generation of green waste is increasing rapidly with population growth in China, and green waste is commonly treated by composting. The objective of this work was to study the physical and chemical characteristics of composted green waste as affected by a two-stage composting process and by the addition of brown sugar (at 0.0%, 0.5%, and 1%) and calcium superphosphate (Ca(H2PO4)2·H2O) (at 0%, 3%, and 6%) during the second stage. With or without these additives, all the composts displayed two peaks in fermentation temperature and matured in only 30days. Compared to traditional industrial composting, the composting method described here increased the duration of high-temperature fermentation period, reduced the maturity time, and reduced costs. Addition of 0.5% brown sugar plus 6% calcium superphosphate produced the highest quality compost with respect to C/N ratio, pH, organic matter content, electrical conductivity, particle-size distribution, and other characteristics. Copyright © 2012 Elsevier Ltd. All rights reserved.

  15. Heat inactivation of Salmonella spp. in fresh poultry compost by simulating early phase of composting process.

    PubMed

    Singh, R; Kim, J; Jiang, X

    2012-05-01

    The purpose of this study was to determine the effect of moisture on thermal inactivation of Salmonella spp. in poultry litter under optimal composting conditions. Thermal inactivation of Salmonella was studied in fresh poultry compost by simulating early phase of composting process. A mixture of three Salmonella serotypes grown in Tryptic soy broth with rifampin (TSB-R) was inoculated in fresh compost with 40 or 50% moisture at a final concentration of c. 7 log CFU g(-1). The inoculated compost was kept in an environmental chamber which was programmed to rise from room temperature to target composting temperatures in 2 days. In poultry compost with optimal moisture content (50%), Salmonella spp. survived for 96, 72 and 24 h at 50, 55 and 60°C, respectively, as compared with 264, 144 and 72 h at 50, 55 and 60°C, respectively, in compost with suboptimal moisture (40%). Pathogen decline was faster during the come-up time owing to higher ammonia volatilization. Our results demonstrated that Salmonella spp. survived longer in fresh poultry compost with suboptimal moisture of 40% than in compost with optimal moisture of 50% during thermophilic composting. High nitrogen content of the poultry compost is an additional factor contributing to Salmonella inactivation through ammonia volatilization during thermal exposure. This research validated the effectiveness of the current composting guidelines on Salmonella inactivation in fresh poultry compost. Both initial moisture level and ammonia volatilization are important factors affecting microbiological safety and quality of compost product. © 2012 The Authors. Journal of Applied Microbiology © 2012 The Society for Applied Microbiology.

  16. Influence of bulking agents on physical, chemical, and microbiological properties during the two-stage composting of green waste.

    PubMed

    Zhang, Lu; Sun, Xiangyang

    2016-02-01

    A recyclable organic bulking agent (BA) that can be screened and was developed to optimize green waste (GW) composting. This study investigated the use of wood chips (WC) (at 0%, 15%, and 25%) and/or composted green waste (CGW) (at 0%, 25%, and 35%) as the BAs in the two-stage composting of GW. The combined addition of WC and CGW improved the conditions of composting process and the quality of compost product in terms of composting temperature, porosity, water retention, particle-size distribution, pH, electrical conductivity (EC), cation exchange capacity (CEC), nitrogen losses, humification indices, microbial numbers, enzyme activities, macro- and micro-nutrient contents, and toxicity to germinating seeds. The compost matured in only 22days with the optimized two-stage composting method rather than in the 90-270days typically required for traditional composting. The optimal two-stage composting process and the best quality of compost product were obtained with the combined addition of 15% WC and 35% CGW. Copyright © 2015 Elsevier Ltd. All rights reserved.

  17. Effects of rhamnolipid and initial compost particle size on the two-stage composting of green waste.

    PubMed

    Zhang, Lu; Sun, Xiangyang

    2014-07-01

    Composting is a potential alternative to green waste incineration or deposition in landfills. The effects of the biosurfactant rhamnolipid (RL) (at 0.0%, 0.15%, and 0.30%) and initial compost particle size (IPS) (10, 15, and 25 mm) on a new, two-stage method for composting green waste was investigated. A combination of RL addition and IPS adjustment improved the quality of the finished compost in terms of its physical characteristics, pH, C/N ratio, nutrient content, cellulose and hemicellulose contents, water-soluble carbon (WSC) content, xylanase and CMCase activities, numbers of culturable microorganisms (bacteria, actinomycetes, and fungi), and toxicity to germinating seeds. The production of a stable and mature compost required only 24 days with the optimized two-stage composting method described here rather than the 90-270 days required with traditional composting. The best quality compost was obtained with 0.15% RL and an IPS of 15 mm. Copyright © 2014 Elsevier Ltd. All rights reserved.

  18. Cover crop frequency and compost effects on a legume-rye cover crop during 8 years of organic vegetables

    USDA-ARS?s Scientific Manuscript database

    Organic matter inputs from compost or cover crops (CC) are important to maintain or improve soil quality, but their impact in high-value vegetable production systems are not well understood. Therefore, we evaluated the effects of CC frequency (every winter versus every 4th winter) and yard-waste co...

  19. Study of commercial effective microorganism on composting and dynamics of plant essential metal micronutrients.

    PubMed

    Daur, Ihsanullah

    2016-09-01

    The present study addresses the problem of organic farmers' that needs local organic resources with their enhanced quality to effectively fertilize their agriculture crops. In accordance with the objective of the experiment that is about enhancing quality of compost, a blend of organic resources, comprising cow manure (CM), poultry manure (PM) and kitchen waste (KW) (2:1:1 ratio by volume) was composted with effective microorganisms (EM.1) (CompostEM.1) and without (Compostplain). During composting, temperature, pH, carbon, nitrogen, C/N ratio, total and diethylene triamine pentaacetic acid (DTPA)-extractable essential metal micronutrient (Fe3+, Cu2+, Zn2+, and Mn2+) contents of both the composts were recorded following the standard procedures. Low temperature range (24−24), low pH (6.7−7.2) and higher N-content (1.15−1.40) were recorded for CompostEM.1 as compared to Compostplain. Carbon degradation was also faster in CompostEM.1 than in Compostplain. Consequently, C/N ratio stabilization took 6 weeks in CompostEM.1 as compared to 18 weeks in Compostplain, leading to rapid completion of composting. Total concentration of micronutrients increased while their DTPA-extractable content decreased during the composting. Total micronutrient concentration was augmented more in Compostplain samples than in CompostEM.1. However, decrease in DTPA-extractable content was similar in both the composts. Increase in micronutrient content was attributed to decrease in organic matter weight, whereas decrease in metal micronutrients was attributed to the formation of organic matter-metal complexes during decomposition. Findings of the study indicated that effective micro-organisms enhanced composting process, however, further studies are required to evaluate its quality, especially effect on plant and soil.

  20. Analysis of volatile organic compounds in compost samples: A potential tool to determine appropriate composting time.

    PubMed

    Zhu, Fengxiang; Pan, Zaifa; Hong, Chunlai; Wang, Weiping; Chen, Xiaoyang; Xue, Zhiyong; Yao, Yanlai

    2016-12-01

    Changes in volatile organic compound contents in compost samples during pig manure composting were studied using a headspace, solid-phase micro-extraction method (HS-SPME) followed by gas chromatography with mass spectrometric detection (GC/MS). Parameters affecting the SPME procedure were optimized as follows: the coating was carbon molecular sieve/polydimethylsiloxane (CAR/PDMS) fiber, the temperature was 60°C and the time was 30min. Under these conditions, 87 compounds were identified from 17 composting samples. Most of the volatile components could only be detected before day 22. However, benzenes, alkanes and alkenes increased and eventually stabilized after day 22. Phenol and acid substances, which are important factors for compost quality, were almost undetectable on day 39 in natural compost (NC) samples and on day 13 in maggot-treated compost (MC) samples. Our results indicate that the approach can be effectively used to determine the composting times by analysis of volatile substances in compost samples. An appropriate composting time not only ensures the quality of compost and reduces the loss of composting material but also reduces the generation of hazardous substances. The appropriate composting times for MC and NC were approximately 22days and 40days, respectively, during the summer in Zhejiang. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. Composting of rice straw with effective microorganisms (EM) and its influence on compost quality.

    PubMed

    Jusoh, Mohd Lokman Che; Manaf, Latifah Abd; Latiff, Puziah Abdul

    2013-02-07

    This study aims to assess the effect of EM application on the composting process of rice straw with goat manure and green waste and to evaluate the quality of both compost treatments. There are two treatment piles in this study, in which one pile was applied with EM and another pile without EM. Each treatment was replicated three times with 90 days of composting duration. The parameters for the temperature, pH, TOC and C/N ratio, show that decomposition of organic matter occurs during the 90-day period. The t-test conducted shows that there is a significant difference between compost with EM and compost without EM. The application of EM in compost increases the macro and micronutrient content. The following parameters support this conclusion: compost applied with EM has more N, P and K content (P < 0.05) compared to compost without EM. Although the Fe in compost with EM is much higher (P < 0.05) than in the compost without EM, for Zn and Cu, there is no significant difference between treatments. This study suggests that the application of EM is suitable to increase the mineralization in the composting process. The final resultant compost indicated that it was in the range of the matured level and can be used without any restriction.

  2. Evaluation of compost/mulch as highway embankment erosion control in Louisiana at the plot-scale

    NASA Astrophysics Data System (ADS)

    Bakr, Noura; Weindorf, David C.; Zhu, Yuanda; Arceneaux, Allen E.; Selim, H. M.

    2012-10-01

    SummaryTotal suspended solids (TSS) and associated turbidity in runoff water are considered the most problematic nonpoint source pollutant of Louisiana surface waters. With high precipitation in Louisiana, attention should be given to controlling highway right-of-way erosion. The use of compost/mulch for erosion control enhances soil conservation and substantially reduces erosion. The main objective of this study was to assess the effect of compost/mulch placement on runoff water quality on roadsides. Our hypothesis was that the use of compost/mulch would significantly reduce TSS and turbidity in runoff from highway right-of-ways in Louisiana. Two locations constituting four sites and eight individual plots were chosen; one in an active highway construction area and another in an established area plagued by continual rill and sheet erosion. Thicknesses of compost/mulch (5 and 10 cm), slope inclination (10-34%), and tillage practices (till vs. no-till) were evaluated. Runoff, triggered by storm water events, was collected using ISCO auto-samplers from June 2010 to August 2011 and the samples were analyzed for TSS, turbidity, biochemical oxygen demand, electrical conductivity, and pH. The results of factor analysis showed that the compost/mulch thickness was the most influential variable affecting water quality. Two samples t-test results indicated that TSS and turbidity were significantly different across all comparative variables; construction activities, compost/mulch applications, and tillage practices. The results confirmed the effectiveness of compost/mulch cover as a successful best management practice. Specifically decreases in TSS of 70% and 74% were achieved for the 5 cm and 10 cm compost/mulch application when compared to no compost/mulch, respectively. Light tillage application increased TSS as much as 67%. Therefore, light tillage is not recommended since it decreased the effectiveness of compost/mulch in reducing runoff and sediment losses.

  3. A critical review of the bioavailability and impacts of heavy metals in municipal solid waste composts compared to sewage sludge.

    PubMed

    Smith, Stephen R

    2009-01-01

    The content, behaviour and significance of heavy metals in composted waste materials is important from two potentially conflicting aspects of environmental legislation in terms of: (a) defining end-of-waste criteria and increasing recycling of composted residuals on land and (b) protecting soil quality by preventing contamination. This review examines the effects of heavy metals in compost and amended soil as a basis for achieving a practical and sustainable balance between these different policy objectives, with particular emphasis on agricultural application. All types of municipal solid waste (MSW) compost contain more heavy metals than the background concentrations present in soil and will increase their contents in amended soil. Total concentrations of heavy metals in source-segregated and greenwaste compost are typically below UK PAS100 limits and mechanical segregated material can also comply with the metal limits in UK PAS100, although this is likely to be more challenging. Zinc and Pb are numerically the elements present in the largest amounts in MSW-compost. Lead is the most limiting element to use of mechanically-segregated compost in domestic gardens, but concentrations are typically below risk-based thresholds that protect human health. Composted residuals derived from MSW and greenwaste have a high affinity for binding heavy metals. There is general consensus in the scientific literature that aerobic composting processes increase the complexation of heavy metals in organic waste residuals, and that metals are strongly bound to the compost matrix and organic matter, limiting their solubility and potential bioavailability in soil. Lead is the most strongly bound element and Ni the weakest, with Zn, Cu and Cd showing intermediate sorption characteristics. The strong metal sorption properties of compost produced from MSW or sewage sludge have important benefits for the remediation of metal contaminated industrial and urban soils. Compost and sewage sludge additions to agricultural and other soils, with background concentrations of heavy metals, raise the soil content and the availability of heavy metals for transfer into crop plants. The availability in soil depends on the nature of the chemical association between a metal with the organic residual and soil matrix, the pH value of the soil, the concentration of the element in the compost and the soil, and the ability of the plant to regulate the uptake of a particular element. There is no evidence of increased metal release into available forms as organic matter degrades in soil once compost applications have ceased. However, there is good experimental evidence demonstrating the reduced bioavailability and crop uptake of metals from composted biosolids compared to other types of sewage sludge. It may therefore be inferred that composting processes overall are likely to contribute to lowering the availability of metals in amended soil compared to other waste biostabilisation techniques. The total metal concentration in compost is important in controlling crop uptake of labile elements, like Zn and Cu, which increases with increasing total content of these elements in compost. Therefore, low metal materials, which include source-segregated and greenwaste composts, are likely to have inherently lower metal availabilities overall, at equivalent metal loading rates to soil, compared to composted residuals with larger metal contents. This is explained because the compost matrix modulates metal availability and materials low in metals have stronger sorption capacity compared to high metal composts. Zinc is the element in sewage sludge-treated agricultural soil identified as the main concern in relation to potential impacts on soil microbial activity and is also the most significant metal in compost with regard to soil fertility and microbial processes. However, with the exception of one study, there is no other tangible evidence demonstrating negative impacts of heavy metals applied to soil in compost on soil microbial processes and only positive effects of compost application on the microbial status and fertility of soil are reported. The negative impacts on soil microorganisms apparent in one long-term field experiment could be explained by the exceptionally high concentrations of Cd and other elements in the applied compost, and of Cd in the compost-amended soil, which are unrepresentative of current practice and compost quality. The metal contents of source-segregated MSW or greenwaste compost are smaller compared to mechanically-sorted MSW-compost and sewage sludge, and low metal materials also have the smallest potential metal availabilities. Composting processes also inherently reduce metal availability compared to other organic waste stabilisation methods. Therefore, risks to the environment, human health, crop quality and yield, and soil fertility, from heavy metals in source-segregated MSW or greenwaste-compost are minimal. Furthermore, composts produced from mechanically-segregated MSW generally contain fewer metals than sewage sludge used as an agricultural soil improver under controlled conditions. Consequently, the metal content of mechanically-segregated MSW-compost does not represent a barrier to end-use of the product. The application of appropriate preprocessing and refinement technologies is recommended to minimise the contamination of mechanically-segregated MSW-compost as far as practicable. In conclusion, the scientific evidence indicates that conservative, but pragmatic limits on heavy metals in compost may be set to encourage recycling of composted residuals and contaminant reduction measures, which at the same time, also protect the soil and environment from potentially negative impacts caused by long-term accumulation of heavy metals in soil.

  4. Feasibility study of recycling cephalosporin C fermentation dregs using co-composting process with activated sludge as co-substrate.

    PubMed

    Chen, Zhiqiang; Wang, Yao; Wen, Qinxue; Zhang, Shihua; Yang, Lian

    2016-09-01

    Composting is a potential alternative for cephalosporin C fermentation dregs (CCFDs) compared with incineration process or landfill because of its advantage of recovering nutrients. In this research, CCFDs and activated sludge (AS) were co-composted to analyze the feasibility of recycling the nutrients in CCFDs. A pilot-scale aerobic composting system with an auto-control system was used in this research, and the maturity and security of the compost product were evaluated. The temperature of the composting mixtures was maintained above 55°C for more than 3 days during the composting, indicating that co-composting of CCFDs and AS could reach the compost maturity standard, and the seeds germination index (GI) increased from 17.61% to 68.93% by the end of the composting process (28 days). However, the degradation rate of cephalosporin C (CPC) was only 6.58% during the composting process. Monitoring the quality of antibiotic resistance genes (ARGs) in the composts showed that the log copy of blaTEM in the composts increased from 2.15 in the initial phase to 6.37 after 28 days. Long-term investigation of CPC degradation and ARGs variation was conducted for the composts; CPC could still be detected after the maturity phases. A removal efficiency of 49.10% could be achieved in 110 days, while the log copy of ARGs increased to 7.93. Although a higher GI value (>80.00%) was observed, the risk of recycling the CCFDs compost product into land is still high.

  5. Inactivation of bacterial pathogenic load in compost against vermicompost of organic solid waste aiming to achieve sanitation goals: A review.

    PubMed

    Soobhany, Nuhaa; Mohee, Romeela; Garg, Vinod Kumar

    2017-06-01

    Waste management strategies for organic residues, such as composting and vermicomposting, have been implemented in some developed and developing countries to solve the problem of organic solid waste (OSW). Yet, these biological treatment technologies do not always result in good quality compost or vermicompost with regards to sanitation capacity owing to the presence of bacterial pathogenic substances in objectionable concentrations. The presence of pathogens in soil conditioners poses a potential health hazard and their occurrence is of particular significance in composts and/or vermicomposts produced from organic materials. Past and present researches demonstrated a high-degree of agreement that various pathogens survive after the composting of certain OSW but whether similar changes in bacterial pathogenic loads arise during vermitechnology has not been thoroughly elucidated. This review garners information regarding the status of various pathogenic bacteria which survived or diffused after the composting process compared to the status of these pathogens after the vermicomposting of OSW with the aim of achieving sanitation goals. This work is also indispensable for the specification of compost quality guidelines concerning pathogen loads which would be specific to treatment technology. It was hypothesized that vermicomposting process for OSW can be efficacious in sustaining the existence of pathogenic organisms most specifically; human pathogens under safety levels. In summary, earthworms can be regarded as a way of obliterating pathogenic bacteria from OSW in a manner equivalent to earthworm gut transit mechanism which classifies vermicomposting as a promising sanitation technique in comparison to composting processes. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Study on the quality and stability of compost through a Demo Compost Plant.

    PubMed

    Hasan, K M M; Sarkar, G; Alamgir, M; Bari, Q H; Haedrich, G

    2012-11-01

    This study is concerned with the performance of a Demo Compost Plant for the development of acceptable composting technology in Bangladesh. The Demo Compost Plant was setup at the adjacent area of an existing compost plant located at Khulna city in Bangladesh. Four different composting technologies were considered, where Municipal Solid Waste (MSW) were used as a raw material for composting, collected from the adjacent areas of the plant. Initially the whole composting system was conducted through two experimental setups. In the 1st setup three different types of aerators (horizontal and vertical passively aerator and forced aerator) were selected. For a necessary observation four piles, using only MSW as the input materials in the first three compost pile, the fourth one was the existing Samadhan's compost pile. Based on the analysis of the experimental findings, the horizontal passively aerated composting technique is suitable for Bangladesh as it had better performance for reducing composting period than that of the others. It was being observed from the quality parameters of compost in the both 1st and 2nd setup that as the waste directly come from kitchen, degradation rate of waste shows a positive result for reducing this waste and there is no possibility of toxic contamination, when it would be used as a soil conditioner. Though there is no significant improvement in the quality of the final product in the 2nd setup as comparing with the 1st setup but it fulfills one of the main objectives of this study is to reduce the whole composting period as well as immediate management of the increasing amount of waste and reducing load on landfill. Selfheating tests reveal that degree of stability of compost with respect to maturation period was remained in the acceptable level, which was further accelerated due to the use of organic additives. Copyright © 2012 Elsevier Ltd. All rights reserved.

  7. Effects of bean dregs and crab shell powder additives on the composting of green waste.

    PubMed

    Zhang, Lu; Sun, Xiangyang

    2018-07-01

    Composting is an effective and economic technology for the recycling of organic waste. In this study, bean dregs (BD) (at 0, 35, and 45%) and crab shell powder (CSP) (at 0, 15, and 25%) were evaluated as additives during the two-stage composting of green waste (GW). The GW used in this experiment mainly consisted of branch cuttings collected during the maintenance of the urban green landscape. Combined additions of BD and CSP improved composting conditions and compost quality in terms of composting temperature, specific surface area, average pore diameter, pH and EC values, carbon dioxide release, ammonia and nitrous oxide emissions, E 4 /E 6 ratio, elemental composition and atomic ratios, organic matter degradation, microbial numbers, enzyme activities, compost phytotoxicity, and environmental and economic benefits. The combined addition of 35% BD and 25% CSP to the two-stage composting of GW resulted in the highest quality compost product in only 22 days. Copyright © 2018 Elsevier Ltd. All rights reserved.

  8. Assessing the Effect of Composting Cassava Peel Based Substrates on the Yield, Nutritional Quality, and Physical Characteristics of Pleurotus ostreatus (Jacq. ex Fr.) Kummer

    PubMed Central

    Kortei, N. K.; Dzogbefia, V. P.; Obodai, M.

    2014-01-01

    Cassava peel based substrate formulations as an alternative substrate were used to grow mushrooms. The effect of two compost heights, three composting periods on the mycelia growth, physical characteristics, yield, and nutritional qualities of Pleurotus ostreatus (Jacq. ex Fr.) Kummer was studied. Mean mycelia growth of 16.2 cm after a period of seven (7) weeks was the best for 1.5 m compost height. Cap diameter and stipe length differed significantly (P < 0.05) with the compost heights (0.8 m and 1.5 m). The yield on compost height of 1.5 m, composted for 5 days, differed significantly (P < 0.05) from that of 0.8 m and gave increasing yields as follows: cassava peels and manure, cassava peels only, cassava peels and corn cobs (1 : 1 ratio), and cassava peels and corn cobs (1 : 1 ratio) with chicken manure. Composting periods (3 and 7 days) gave varying yields depending on the compost height. Based on the findings an interaction of 1.5 m compost height and 5 days composting period on cassava peels and corncobs (1 : 1 ratio) with chicken manure produced the best results. The nutritional quality of the mushrooms also differed significantly (P < 0.05), indicating that cassava peels could be used as a possible substrate in cultivation of mushroom. PMID:25580299

  9. Study and assessment of segregated biowaste composting: The case study of Attica municipalities.

    PubMed

    Malamis, D; Bourka, A; Stamatopoulou, Ε; Moustakas, K; Skiadi, O; Loizidou, M

    2017-12-01

    This work aims to assess the operation of the first large scale segregated biowaste composting scheme in Greece to divert Household Food Waste (HFW) from landfill and produce a material which can be recovered and used as compost. The source separation and collection of HFW was deployed in selected areas in Attica Region serving about 3700 households. Sorted HFW is collected & transported to the Mechanical and Biological Treatment (MBT) plant in Attica Region that has been designed to produce Compost Like Output (CLO) from mixed MSW. The MBT facility has been adjusted in order to receive and treat aerobically HFW mixed with shredded green waste in a dedicated composting tunnel. The composting process was monitored against temperature, moisture and oxygen content indicating that the biological conditions are sufficiently developed. The product quality was examined and assessed against the quality specifications of EU End of Waste Criteria for biowaste subjected to composting aiming to specify whether the HFW that has undergone recovery ceases to be waste and can be classified as compost. More specifically, the heavy metals concentrations (Cr, Cu, Ni, Cd, Pb, Zn and Hg) are within the set limits and much lower compared to the CLO material that currently is being produced at the MBT plant. In regard to the hygienic requirements of the product it has been found that the process conditions result in a pathogen free material (i.e. E. Coli and Salmonella) which does not favor the growth of viable weeds and plant propagules, while it acquires sufficient organic matter content for soil fertilization. Noticeable physical impurities (mainly fractions of glass) have been detected exceeding the quality control threshold limit of 0.5% w/w (plastics, metals and glass). The latter is related to the missorted materials and to the limited pre-treatment configurations prior to composting. The above findings indicate that effective source separation of biowaste is prerequisite for good quality production and marketing of compost and special consideration should be made to minimize glass impurities prior composting (i.e. awareness raising and pretreatment stage). Therefore, it is feasible to gradually replace the production of questionable quality CLO in MBTs with biowaste compost which is in line with the required quality control standards especially when heavy metals concentrations is concerned. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. Valorization of a pharmaceutical organic sludge through different composting treatments.

    PubMed

    Cucina, Mirko; Tacconi, Chiara; Sordi, Simone; Pezzolla, Daniela; Gigliotti, Giovanni; Zadra, Claudia

    2018-04-01

    Nowadays, the agricultural reuse of pharmaceutical sludge is still limited due to environmental and agronomic issues (e.g. low stabilization of the organic matter, phytotoxicity). The aim of the present study was to evaluate the characteristics of a pharmaceutical sludge derived from the daptomycin production and to study the possibility of improving its quality through composting. The pharmaceutical sludge showed high content of macronutrients (e.g. total Kjeldahl N content was 38 g kg -1 ), but it was also characterized by high salinity (7.9 dS m -1 ), phytotoxicity (germination index was 36.7%) and a low organic matter stabilization. Two different mixtures were prepared (mixture A: 70% sludge + 30% wood chips w/w, mixture B: 45% sludge + 45% wood chips + 10% cereal straw w/w) and treated through static composting using two different aeration systems: active and passive aeration. The mixtures resulted in the production of two different compost, and the evolution of process management parameters was different. The low total solids and organic matter content of mixture A led to the failure of the process. The addition of cereal straw in mixture B resulted in increased porosity and C/N ratio and, consequently, in an optimal development of the composting process (e.g. the final organic matter loss was 54.1% and 63.1% for the passively and actively aerated treatment, respectively). Both passively and actively aerated composting of mixture B improved the quality of the pharmaceutical sludge, by increasing its organic matter stabilization and removing phytotoxicity. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Composting of rice straw with effective microorganisms (EM) and its influence on compost quality

    PubMed Central

    2013-01-01

    This study aims to assess the effect of EM application on the composting process of rice straw with goat manure and green waste and to evaluate the quality of both compost treatments. There are two treatment piles in this study, in which one pile was applied with EM and another pile without EM. Each treatment was replicated three times with 90 days of composting duration. The parameters for the temperature, pH, TOC and C/N ratio, show that decomposition of organic matter occurs during the 90-day period. The t-test conducted shows that there is a significant difference between compost with EM and compost without EM. The application of EM in compost increases the macro and micronutrient content. The following parameters support this conclusion: compost applied with EM has more N, P and K content (P < 0.05) compared to compost without EM. Although the Fe in compost with EM is much higher (P < 0.05) than in the compost without EM, for Zn and Cu, there is no significant difference between treatments. This study suggests that the application of EM is suitable to increase the mineralization in the composting process. The final resultant compost indicated that it was in the range of the matured level and can be used without any restriction. PMID:23390930

  12. Effects of earthworm casts and zeolite on the two-stage composting of green waste

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Lu, E-mail: zhanglu1211@gmail.com; Sun, Xiangyang, E-mail: xysunbjfu@gmail.com

    2015-05-15

    Highlights: • Earthworm casts (EWCs) and clinoptilolite (CL) were used in green waste composting. • Addition of EWCs + CL improved physico-chemical and microbiological properties. • Addition of EWCs + CL extended the duration of thermophilic periods during composting. • Addition of EWCs + CL enhanced humification, cellulose degradation, and nutrients. • Combined addition of 0.30% EWCs + 25% CL reduced composting time to 21 days. - Abstract: Because it helps protect the environment and encourages economic development, composting has become a viable method for organic waste disposal. The objective of this study was to investigate the effects of earthwormmore » casts (EWCs) (at 0.0%, 0.30%, and 0.60%) and zeolite (clinoptilolite, CL) (at 0%, 15%, and 25%) on the two-stage composting of green waste. The combination of EWCs and CL improved the conditions of the composting process and the quality of the compost products in terms of the thermophilic phase, humification, nitrification, microbial numbers and enzyme activities, the degradation of cellulose and hemicellulose, and physico-chemical characteristics and nutrient contents of final composts. The compost matured in only 21 days with the optimized two-stage composting method rather than in the 90–270 days required for traditional composting. The optimal two-stage composting and the best quality compost were obtained with 0.30% EWCs and 25% CL.« less

  13. Biochar amendment before or after composting affects compost quality and N losses, but not P plant uptake.

    PubMed

    Vandecasteele, Bart; Sinicco, Tania; D'Hose, Tommy; Vanden Nest, Thijs; Mondini, Claudio

    2016-03-01

    We investigated the use of biochar (10% on a dry weight basis) to improve the composting process and/or the compost quality by adding it to either the feedstock mixture or the mature compost. The addition of biochar to the feedstocks was essayed in a full scale trial using a mixture of green waste and the organic fraction of municipal solid waste. Addition of biochar to mature compost was performed in a medium scale experiment. The use of biochar, even in small amounts, changed the composting process and the properties of the end products. However these effects depended on the time of application. We observed a faster decomposition in the bio-oxidative phase and lower greenhouse gas emissions when biochar was added at the beginning of the composting process, and a reduction in readily available P when biochar was applied during compost storage. Biochar as a means to increase the C content of the compost was only effective during compost storage. The P fertilizer replacement value of the compost with and without biochar was tested in a plant trial with annual ryegrass. While there was a clear effect on readily available P concentrations in the compost, adding biochar to the feedstock or the compost did not affect the P fertilizer replacement value. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. Ammonia emission mitigation in food waste composting: A review.

    PubMed

    Wang, Shuguang; Zeng, Yang

    2018-01-01

    Composting is a reliable technology to treat food waste (FW) and produce high quality compost. The ammonia (NH 3 ) emission accounts for the largest nitrogen loss and leads to various environmental impacts. This review introduced the recent progresses on NH 3 mitigation in FW composting. The basic characteristics of FW from various sources were given. Seven NH 3 emission strategies proven effective in the literature were presented. The links between these strategies and the mechanisms of NH 3 production were addressed. Application of hydrothermally treated C rich substrates, biochar or struvite salts had a broad prospect in FW composting if these strategies were proven cost-effective enough. Regulation of nitrogen assimilation and nitrification using biological additive had the potential to achieve NH 3 mitigation but the existing evidence was not enough. In the end, the future prospects highlighted four research topics that needed further investigation to improve NH 3 mitigation and nitrogen conservation in FW composting. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Effect of initial moisture content on the in-vessel composting under air pressure of organic fraction of municipal solid waste in Morocco.

    PubMed

    Makan, Abdelhadi; Assobhei, Omar; Mountadar, Mohammed

    2013-01-03

    This study aimed to evaluate the effect of initial moisture content on the in-vessel composting under air pressure of organic fraction of municipal solid waste in Morocco in terms of internal temperature, produced gases quantity, organic matter conversion rate, and the quality of the final composts.For this purpose, in-vessel bioreactor was designed and used to evaluate both appropriate initial air pressure and appropriate initial moisture content for the composting process. Moreover, 5 experiments were carried out within initial moisture content of 55%, 65%, 70%, 75% and 85%. The initial air pressure and the initial moisture content of the mixture showed a significant effect on the aerobic composting. The experimental results demonstrated that for composting organic waste, relatively high moisture contents are better at achieving higher temperatures and retaining them for longer times.This study suggested that an initial moisture content of around 75%, under 0.6 bar, can be considered as being suitable for efficient composting of organic fraction of municipal solid waste. These last conditions, allowed maximum value of temperature and final composting product with good physicochemical properties as well as higher organic matter degradation and higher gas production. Moreover, final compost obtained showed good maturity levels and can be used for agricultural applications.

  16. Impacts of delayed addition of N-rich and acidic substrates on nitrogen loss and compost quality during pig manure composting.

    PubMed

    Jiang, Jishao; Kang, Kang; Chen, Dan; Liu, Ningning

    2018-02-01

    Delayed addition of Nitrogen (N)-rich and acidic substrates was investigated to evaluate its effects on N loss and compost quality during the composting process. Three different delayed adding methods of N-rich (pig manure) and acidic substrates (phosphate fertilizer and rotten apples) were tested during the pig manure and wheat straw is composting. The results showed that delayed addition of pig manure and acidic materials led two temperature peaks, and the durations of two separate thermophilic phase were closely related to the amount of pig manure. Delayed addition reduced total N loss by up to 14% when using superphosphate as acidic substrates, and by up to 12% when using rotten apples as acidic substrates, which is mainly due to the decreased NH 3 emissions. At the end of composting, delayed the addition of pig manure caused a significant increase in the HS (humus substance) content, and the highest HS content was observed when 70% of the pig manure was applied at day 0 and the remaining 30% was applied on day 27. In the final compost, the GI in all treatments almost reached the maturity requirement by exceeding 80%. The results suggest that delayed addition of animal manure and acidic substrates could prevent the N loss during composting and improve the compost quality. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Co-composting of eggshell waste in self-heating reactors: monitoring and end product quality.

    PubMed

    Soares, Micaela A R; Quina, Margarida M J; Quinta-Ferreira, Rosa M

    2013-11-01

    Industrial eggshell waste (ES) is classified as an animal by-product not intended to human consumption. For reducing pathogen spreading risk due to soil incorporation of ES, sanitation by composting is a pre-treatment option. This work aims to evaluate eggshell waste recycling in self-heating composting reactors and investigate ES effect on process evolution and end product quality. Potato peel, grass clippings and rice husks were the starting organic materials considered. The incorporation of 30% (w/w) ES in a composting mixture did not affect mixture biodegradability, nor its capacity to reach sanitizing temperatures. After 25 days of composting, ES addition caused a nitrogen loss of about 10 g N kg(-1) of initial volatile solids, thus reducing nitrogen nutritional potential of the finished compost. This study showed that a composting mixture with a significant proportion of ES (30% w/w) may be converted into calcium-rich marketable compost to neutralize soil acidity and/or calcium deficiencies. Copyright © 2013 Elsevier Ltd. All rights reserved.

  18. Evaluation of biochar amended biosolids co-composting to improve the nutrient transformation and its correlation as a function for the production of nutrient-rich compost.

    PubMed

    Awasthi, Mukesh Kumar; Wang, Quan; Chen, Hongyu; Wang, Meijing; Ren, Xiuna; Zhao, Junchao; Li, Jiao; Guo, Di; Li, Dong-Sheng; Awasthi, Sanjeev Kumar; Sun, Xining; Zhang, Zengqiang

    2017-08-01

    The influence of biochar amended dewatered fresh sewage sludge (DFSS)-wheat straw co-composting on nutrients transformation and end products quality was investigated. This is the first study to examine the biochar applied compost quality with different kgha -1 TKN on Brassica rapa L. growth. Seven mixtures were composted over 8-weeks period in 130-L reactor using the same DFSS with different concentration of biochar (2%, 4%, 6%, 8%, 12% and 18% on dry weight basis) and without additive added treatment served as control. The results indicated that compost with 8-12% biochar became more humified within 35days of composting, and the compost maturity parameters also showed that this could be much more feasible approach to increased water-soluble nutrients including NO 3 , DOC, DON, PO 4 3- , K + and Na + , but bioavailability of Cu, Zn, Ni and Pb content reduced as compared to control. Finally, results showed that 8-12% biochar was recommended for DFSS composting and 150kgha -1 TKN of compost dosages for organic farming. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Effect of different rates of spent coffee grounds (SCG) on composting process, gaseous emissions and quality of end-product.

    PubMed

    Santos, Cátia; Fonseca, João; Aires, Alfredo; Coutinho, João; Trindade, Henrique

    2017-01-01

    The use of spent coffee grounds (SCG) in composting for organic farming is a viable way of valorising these agro-industrial residues. In the present study, four treatments with different amounts of spent coffee grounds (SCG) were established, namely, C 0 (Control), C 10 , C 20 and C 40 , containing 0, 10, 20 and 40% of SCG (DM), respectively; and their effects on the composting process and the end-product quality characteristics were evaluated. The mixtures were completed with Acacia dealbata L. shoots and wheat straw. At different time intervals during composting, carbon dioxide (CO 2 ), methane (CH 4 ) and nitrous oxide (N 2 O) emissions were measured and selected physicochemical characteristics of the composts were evaluated. During the composting process, all treatments showed a substantial decrease in total phenolics and total tannins, and an important increase in gallic acid. Emissions of greenhouse gases were very low and no significant difference between the treatments was registered. The results indicated that SCG may be successfully composted in all proportions. However C 40 , was the treatment which combined better conditions of composting, lower GHG emissions and better quality of end product. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. Accelerated coffee pulp composting.

    PubMed

    Sánchez, G; Olguín, E J; Mercado, G

    1999-02-01

    The effect of two abundant, easily available and very low-cost agro-industrial organic residues, i.e., filter cake from the sugar industry and poultry litter, on the composting stabilization time of coffee pulp and on the quality of the produced compost, was evaluated. Piles of one cubic meter were built and monitored within the facilities of a coffee processing plant in the Coatepec region of the State of Veracruz, Mexico. Manual aeration was carried out once a week. A longer thermophilic period (28 days) and a much lower C/N ratio (in the range of 6.9-9.1) were observed in the piles containing the amendments, as compared to the control pile containing only coffee pulp (14 days and a C/N ratio of 14.4, respectively). The maximum assimilation rate of the reducing sugars was 1.6 g kg-1 d-1 (from 7.5 to 5.3%) during the first two weeks when accelerators were present in the proportion of 20% filter cake plus 20% poultry litter, while they accumulated at a rate of 1.2 g kg-1 d-1 (from 7.4 to 9.13%) during the same period in the control pile. The best combination of amendments was 30% filter cake with 20% poultry litter, resulting in a final nitrogen content as high as 4.81%. The second best combination was 20% filter cake with 10% poultry litter, resulting in a compost which also contained a high level of total nitrogen (4.54%). It was concluded that the use of these two residues enhanced the composting process of coffee pulp, promoting a shorter stabilization period and yielding a higher quality of compost.

  1. Biomass ash reutilisation as an additive in the composting process of organic fraction of municipal solid waste.

    PubMed

    Asquer, Carla; Cappai, Giovanna; De Gioannis, Giorgia; Muntoni, Aldo; Piredda, Martina; Spiga, Daniela

    2017-11-01

    In this work the effects of selected types of biomass ash on the composting process and final product quality were studied by conducting a 96-day long experiment where the source separated organic fraction of municipal waste, mixed with wood prunings that served as bulking agent, was added with 0%, 2%, 4% and 8% wt/wt of biomass ash. The evolution over time of the main process parameters was observed, and the final composts were characterised. On the basis of the results, both the composting process and the quality of the final product were improved by ash addition. Enhanced volatile solids reduction and biological stability (up to 32% and 52%, respectively, as compared to the unamended product) were attained when ash was added, since ash favored the aerobic degradation by acting asa physical conditioner. In the final products, higher humification of organic matter (expressed in terms of the humification index, that was 2.25 times higher in the most-enriched compost than in the unamended one) and total Ca, K, Mg and P content were observed when ash was used. The latter aspect may influence the composts marketability positively, particularly with regards to potassium and phosphorus. The heavy metals content, that is regarded as the main environmental disadvantage when using ash asa composting additive, did not negatively affect the final composts quality. However, some other controversial effects of ash, related to the moisture and temperature values attained during the process, pH (8.8-9.2 as compared to 8.2 of the unamended compost) and electrical conductivity levels (up to 53% higher as compared to the unamended compost) in the final composts, were also observed. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Bioleached sludge composting drastically reducing ammonia volatilization as well as decreasing bulking agent dosage and improving compost quality: A case study.

    PubMed

    Hu, Weitong; Zheng, Guanyu; Fang, Di; Cui, Chunhong; Liang, Jianru; Zhou, Lixiang

    2015-10-01

    Sludge bioleaching technology with Acidithiobacillus species has been commercially adopted for improving advanced dewatering of sludge in China since 2010. However, up to now, little information on bioleached dewatered sludge (BS) composting is available. Here, we report the changes of physicochemical and biological properties in BS composting and evaluate compost product quality compared to conventional dewatered sludge (CS) composting in an engineering scale composting facility. The results showed that the amount of bulking agents required in BS composting was only about 10% of CS composting to obtain optimum moisture content, reducing about 700 kg bulking agents per ton fresh sludge. pH of BS composting mixture was slightly lower consistently by about 0.2-0.3 pH units than that in CS mixture in the first 30 days. Organic matter biodegradation in BS system mainly occurred in the first 9 days of composting. In spite of higher content of NH4(+)-N was found in BS mixture in related to CS mixture; unexpectedly the cumulative ammonia volatilization in the former was only 51% of the latter, indicating that BS composting drastically reduced nitrogen loss. Compared to CS composting system, the relative lower pH, the higher intensity of microbial assimilation, and the presence of water soluble Fe in BS system might jointly reduce ammonia volatilization. Consequently, BS compost product exhibited higher fertilizer values (N+P2O5+K2O=8.38%) as well as lower heavy metal levels due to the solubilization of sludge-borne heavy metals during bioleaching process. Therefore, composting of BS possesses more advantages over the CS composting process. Copyright © 2015 Elsevier Ltd. All rights reserved.

  3. Experimental evaluation of compost leachates.

    DOT National Transportation Integrated Search

    2015-09-01

    Compost is often used in raingardens, roadsides, and bioretention systems, not only because of : its beneficial properties on soil quality, but also because compost improves water infiltration and : retains stormwater contaminants. However, when comp...

  4. Magnetic susceptibility as an indicator of heavy metal contamination in compost.

    PubMed

    Paradelo, Remigio; Moldes, Ana Belén; Barral, María Teresa

    2009-02-01

    One of the main restrictions to the agronomic use of compost is the excess of heavy metals, which are often present due to inadequate separation of biodegradable fractions from non-degradable or inert materials. Magnetic susceptibility (MS) measurements are a simple technique that has been reported as a useful tool for assessing anthropogenic pollution, especially heavy metal pollution on soil and sediment samples. The close relationship of MS with heavy metal contamination has been proved by combined analyses of chemical and magnetic data. In this study, the MS and total heavy metal concentrations of eight composts from different origins were determined; all composts were passed under a magnet to remove the magnetic material, and total heavy metals were determined again. In our work, high correlations were found between magnetic susceptibility and total Cd, Zn, Pb, Cr and Ni, thus confirming the applicability of MS measurement as a proxy for heavy metal contamination in compost quality assessments. The application of a magnet over the composts reduced the MS as well as the heavy metal content, the reduction of Fe and MS being the most significantly correlated. Thus, the inclusion of an additional magnetic separation step in the post-process compost finishing could be envisaged.

  5. Influence of aeration on CH4, N2O and NH3 emissions during aerobic composting of a chicken manure and high C/N waste mixture.

    PubMed

    Shen, Yujun; Ren, Limei; Li, Guoxue; Chen, Tongbin; Guo, Rui

    2011-01-01

    Co-composting of chicken manure, straw and dry grasses was investigated in a forced aeration system to estimate the effect of aeration rates on NH(3), CH(4) and N(2)O emissions and compost quality. Continuous measurements of gas emissions were carried out and detailed gas emission patterns were obtained using an intermittent-aeration of 30 min on/30 min off at rates of 0.01 (A1), 0.1 (A2) and 0.2 (A3) m(3)min(-1)m(-3). Concentrations of CH(4) and N(2)O at the low aeration rate (A1) were significantly greater than those at the other two rates, but there was no significant difference between the A2 and A3 treatments. CH(4) and N(2)O emissions for this mixture could be controlled when the composting process was aerobic and ammonia emissions were reduced at a lower aeration rate. Comparison of CH(4), N(2)O, NH(3) emissions and compost quality showed that the aeration rate of the A2 treatment was superior to the other two aeration rates. Copyright © 2010 Elsevier Ltd. All rights reserved.

  6. Comparative management of offshore posidonia residues: composting vs. energy recovery.

    PubMed

    Cocozza, Claudio; Parente, Angelo; Zaccone, Claudio; Mininni, Carlo; Santamaria, Pietro; Miano, Teodoro

    2011-01-01

    Residues of the marine plant posidonia (Posidonia oceanica, PO) beached in tourist zones represent a great environmental, economical, social and hygienic problem in the Mediterranean Basin, in general, and in the Apulia Region in particular, because of the great disturb to the bathers and population, and the high costs that the administrations have to bear for their removal and disposal. In the present paper, Authors determined the heating values of leaves and fibres of PO, the main offshore residues found on beaches, and, meantime, composted those residues with mowing and olive pruning wood. The final composts were characterized for pH, electrical conductivity, elemental composition, dynamic respiration index, phytotoxicity, fluorescence and infrared spectroscopic fingerprints. The aim of the paper was to investigate the composting and energy recovery of PO leaves and fibres in order to suggest alternative solutions to the landfill when offshore residues have to be removed from recreational beaches. The fibrous portion of PO residues showed heating values close to those of other biofuels, thus suggesting a possible utilization as source of energy. At the same time, compost obtained from both PO wastes showed high quality features on condition that the electrical conductivity and Na content are lowered by a correct management of wetting during the composting. Copyright © 2010 Elsevier Ltd. All rights reserved.

  7. Effect of initial moisture content on the in-vessel composting under air pressure of organic fraction of municipal solid waste in Morocco

    PubMed Central

    2013-01-01

    This study aimed to evaluate the effect of initial moisture content on the in-vessel composting under air pressure of organic fraction of municipal solid waste in Morocco in terms of internal temperature, produced gases quantity, organic matter conversion rate, and the quality of the final composts. For this purpose, in-vessel bioreactor was designed and used to evaluate both appropriate initial air pressure and appropriate initial moisture content for the composting process. Moreover, 5 experiments were carried out within initial moisture content of 55%, 65%, 70%, 75% and 85%. The initial air pressure and the initial moisture content of the mixture showed a significant effect on the aerobic composting. The experimental results demonstrated that for composting organic waste, relatively high moisture contents are better at achieving higher temperatures and retaining them for longer times. This study suggested that an initial moisture content of around 75%, under 0.6 bar, can be considered as being suitable for efficient composting of organic fraction of municipal solid waste. These last conditions, allowed maximum value of temperature and final composting product with good physicochemical properties as well as higher organic matter degradation and higher gas production. Moreover, final compost obtained showed good maturity levels and can be used for agricultural applications. PMID:23369502

  8. Towards low carbon society in Iskandar Malaysia: Implementation and feasibility of community organic waste composting.

    PubMed

    Bong, Cassendra Phun-Chien; Goh, Rebecca Kar Yee; Lim, Jeng-Shiun; Ho, Wai Shin; Lee, Chew-Tin; Hashim, Haslenda; Abu Mansor, Nur Naha; Ho, Chin Siong; Ramli, Abdul Rahim; Takeshi, Fujiwara

    2017-12-01

    Rapid population growth and urbanisation have generated large amount of municipal solid waste (MSW) in many cities. Up to 40-60% of Malaysia's MSW is reported to be food waste where such waste is highly putrescible and can cause bad odour and public health issue if its disposal is delayed. In this study, the implementation of community composting in a village within Iskandar Malaysia is presented as a case study to showcase effective MSW management and mitigation of GHG emission. The selected village, Felda Taib Andak (FTA), is located within a palm oil plantation and a crude palm oil processing mill. This project showcases a community-composting prototype to compost food and oil palm wastes into high quality compost. The objective of this article is to highlight the economic and environment impacts of a community-based composting project to the key stakeholders in the community, including residents, oil palm plantation owners and palm oil mill operators by comparing three different scenarios, through a life cycle approach, in terms of the greenhouse gas emission and cost benefit analysis. First scenario is the baseline case, where all the domestic waste is sent to landfill site. In the second scenario, a small-scale centralised composting project was implemented. In the third scenario, the data obtained from Scenario 2 was used to do a projection on the GHG emission and costing analysis for a pilot-scale centralised composting plant. The study showed a reduction potential of 71.64% on GHG emission through the diversion of food waste from landfill, compost utilisation and significant revenue from the compost sale in Scenario 3. This thus provided better insight into the feasibility and desirability in implementing a pilot-scale centralised composting plant for a sub-urban community in Malaysia to achieve a low carbon and self-sustainable society, in terms of environment and economic aspects. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. Is biochar-manure co-compost a better solution for soil health improvement and N2O emissions mitigation?

    EPA Science Inventory

    Land application of compost has been a promising remediation strategy for soil health and environmental quality, but substantial emissions of greenhouse gases, especially N2O, need to be controlled during making and using compost. Biochar as a bulking agent for composting has bee...

  10. A systematic approach to evaluate parameter consistency in the inlet stream of source separated biowaste composting facilities: A case study in Colombia.

    PubMed

    Oviedo-Ocaña, E R; Torres-Lozada, P; Marmolejo-Rebellon, L F; Torres-López, W A; Dominguez, I; Komilis, D; Sánchez, A

    2017-04-01

    Biowaste is commonly the largest fraction of municipal solid waste (MSW) in developing countries. Although composting is an effective method to treat source separated biowaste (SSB), there are certain limitations in terms of operation, partly due to insufficient control to the variability of SSB quality, which affects process kinetics and product quality. This study assesses the variability of the SSB physicochemical quality in a composting facility located in a small town of Colombia, in which SSB collection was performed twice a week. Likewise, the influence of the SSB physicochemical variability on the variability of compost parameters was assessed. Parametric and non-parametric tests (i.e. Student's t-test and the Mann-Whitney test) showed no significant differences in the quality parameters of SSB among collection days, and therefore, it was unnecessary to establish specific operation and maintenance regulations for each collection day. Significant variability was found in eight of the twelve quality parameters analyzed in the inlet stream, with corresponding coefficients of variation (CV) higher than 23%. The CVs for the eight parameters analyzed in the final compost (i.e. pH, moisture, total organic carbon, total nitrogen, C/N ratio, total phosphorus, total potassium and ash) ranged from 9.6% to 49.4%, with significant variations in five of those parameters (CV>20%). The above indicate that variability in the inlet stream can affect the variability of the end-product. Results suggest the need to consider variability of the inlet stream in the performance of composting facilities to achieve a compost of consistent quality. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Quality assessment of compost prepared with municipal solid waste

    NASA Astrophysics Data System (ADS)

    Jodar, J. R.; Ramos, N.; Carreira, J. A.; Pacheco, R.; Fernández-Hernández, A.

    2017-11-01

    One way that helps maintain the sustainability of agro-ecosystems land is the application of compost from municipal solid waste as fertilizer, because it can recover the nutrients contained in them, minimizing the negative impact on the environment. Composting as a method for preparing organic fertilizers and amendments is economically and ecologically sound and may well represent an acceptable solution for disposing of municipal solid waste. In the present work, the quality of compost is studied made from municipal solid waste; the content of mineral nutrients: potassium, calcium, magnesium, sodium, zinc, manganese, cupper, iron, nickel, chromium and lead has been investigated. The objective was to evaluate the changes in mineral nutrient concentration during the composting process. The compost was prepared in a pilot-plant using the turning-pile system. Temperature was used as a monitoring parameter to follow the composting progress, which underwent the typical trend of municipal solid waste composting mixtures. The results showed a similar evolution on the content of mineral nutrients of the mixture of municipal solid waste. This evolution originated in a mature compost (end sample) with an adequate content of mineral elements and physical-chemical characteristics for its use in agriculture. So, the use of compost of municipal solid waste represents an important tool for fertilization requirements for its use in agriculture.

  12. Application of thermotolerant microorganisms for biofertilizer preparation.

    PubMed

    Chen, Kuo-Shu; Lin, Yann-Shying; Yang, Shang-Shyng

    2007-12-01

    Intensive agriculture is practised in Taiwan, and compost application is very popular as a means of improving the soil physical properties and supplying plant nutrition. We tested the potential of inoculation with thermotolerant microorganisms to shorten the maturity and improve the quality of biofertilizer prepared by composting. Thermotolerant microorganisms were isolated from compost and reinoculated for the preparation of biofertilizer. The physical, chemical and biological properties of the biofertilizer were determined during composting. The effects of biofertilizer application on the growth and yield of rape were also studied. Among 3823 colonies of thermotolerant microorganisms, Streptomyces thermonitrificans NTU-88, Streptococcus sp. NTU-130 and Aspergillus fumigatus NTU-132 exhibited high growth rates and cellulolytic and proteolytic activities. When a mixture of rice straw and swine manure were inoculated with these isolates and composted for 61 days, substrate temperature increased initially and then decreased gradually during composting. Substrate pH increased from 7.3 to 8.5. Microbial inoculation enhanced the rate of maturity, and increased the content of ash and total and immobilized nitrogen, improved the germination rate of alfalfa seed, and decreased the content of total organic carbon and the carbon/nitrogen ratio. Biofertilizer application increased the growth and yield of rape. Inoculation of thermotolerant and thermophilic microorganisms to agricultural waste for biofertilizer preparation enhances the rate of maturity and improves the quality of the resulting biofertilizer. Inoculation of appropriate microorganisms in biofertilizer preparation might be usefully applied to agricultural situations.

  13. Relationships between stability, maturity, water-extractable organic matter of municipal sewage sludge composts and soil functionality.

    PubMed

    Sciubba, Luigi; Cavani, Luciano; Grigatti, Marco; Ciavatta, Claudio; Marzadori, Claudio

    2015-09-01

    Compost capability of restoring or enhancing soil quality depends on several parameters, such as soil characteristics, compost carbon, nitrogen and other nutrient content, heavy metal occurrence, stability and maturity. This study investigated the possibility of relating compost stability and maturity to water-extractable organic matter (WEOM) properties and amendment effect on soil quality. Three composts from municipal sewage sludge and rice husk (AN, from anaerobic wastewater treatment plants; AE, from aerobic ones; MIX, from both anaerobic and aerobic ones) have been analysed and compared to a traditional green waste compost (GM, from green manure, solid waste and urban sewage sludge). To this aim, WEOMs were characterized through chemical analysis; furthermore, compost stability was evaluated through oxygen uptake rate calculation and maturity was estimated through germination index determination, whereas compost impact on soil fertility was studied, in a lab-scale experiment, through indicators as inorganic nitrogen release, soil microbial biomass carbon, basal respiration rate and fluorescein di-acetate hydrolysis. The obtained results indicated that WEOM characterization could be useful to investigate compost stability (which is related to protein and phenol concentrations) and maturity (related to nitrate/ammonium ratio and degree of aromaticity) and then compost impact on soil functionality. Indeed, compost stability resulted inversely related to soil microbial biomass, basal respiration rate and fluorescein di-acetate hydrolysis when the products were applied to the soil.

  14. Effect of organic waste compost on the crop productivity and soil quality

    NASA Astrophysics Data System (ADS)

    Astover, Alar; Toomsoo, Avo; Teesalu, Triin; Rossner, Helis; Kriipsalu, Mait

    2017-04-01

    Sustainable use of fertilizers is important for maintaining balanced nutrient cycling in agro-ecosystem, soil quality and crop productivity. Considering the high costs and energy demand of mineral fertilizers, it is increasingly important to use more alternative nutrient sources such composts. Nutrient release from organic fertilizers is slower compared to mineral fertilizers and thus their effects need to be evaluated over longer time periods. There is lack of knowledge on the residual effects of organic fertilizers, especially in Nordic climatic conditions. Residual effect of organic fertilizers is in most cases studied with animal manures, but even rare are studies with non-manure based composts. The aim of current study was to evaluate first year direct effect and residual effect of waste compost on the crop productivity and selected soil parameters. Crop rotation field experiment to reveal direct effect of compost to the spring barley yield and residual effect to potato and spring wheat yield was conducted in Tartu, Estonia on pseodopodzolic soil with low humus concentration (<2%). Compost was produced from source separated food and green waste, and category III animal by-products; and composted in aerated covered static piles for 6 weeks and after that matured in open windows for minimum six months. Compost was applied to soil with ploughing in autumn before spring barley growing season (in years 2012-2014). Compost was applied in three norms according to total N (200, 275 and 350 kg/ha). In addition there was unfertilized control plot and all experimental variants were in three replication with plot size 50 m2. First year effect of compost increased barley yield by 40-50%, first year residual effect resulted in increase of potato yield by 19-30% and second year residual effect to wheat yield was in range from 8 to 17%. First year residual effect to the potato yield was significant (F=8.9; p<0.001). All compost norms resulted significant yield increase compared to the unfertilized control plot. In the case lowest compost rate (200 kg N ha-1) yield increase was 19% (Figure 1). Second year residual effect of compost use to spring wheat grain yield was already smaller (8-17%) and statistically non-significant (F=3.2; p=0.07). Residual effect of compost is decreasing year-by-year as expected. In third growing season after application the effect is not significant but it still important to consider, especially if we take in account cumulative yield increase trough all crop rotation. Additionally changes in selected soil parameters (SOC %, pH, PK concentration) will be presented.

  15. The positive effect of phosphogypsum-supplemented composts on potato plant growth in the field and tuber yield.

    PubMed

    Kammoun, Mariem; Ghorbel, Imen; Charfeddine, Safa; Kamoun, Lotfi; Gargouri-Bouzid, Radhia; Nouri-Ellouz, Oumèma

    2017-09-15

    The production of phosphoric acid from phosphate rock leads to an industrial by-product called phosphogypsum (PG). One ton of phosphoric acid generates 5 tons of PG that is frequently stocked near the production units. Several attempts were made to test PG valorization via soil amendment because of its phosphate, sulphate and calcium content. In this study, the use of PG in composting was envisaged. Composts were produced by mixing olive oil wastes and spent coffee grounds. Two concentrations of PG, 10% (A 10 ) and 30% (A 30 ), were tested in composting substrate in addition to control compost without PG (A T ). After 8 months of fermentation, the resulting composts were used in field experiments using nine different treatments conducted to evaluate the potential use of these PG-containing composts in potato plant (cv. Spunta) cultivation. Plants were grown in the field and the different composts (A T , A 10 and A 30 ) were added as fertilizer and compared to commercial compost and cattle manure. During the culture period, a number of physiological (dry weight, chlorophyll content, tuber yield) and biochemical parameters (antioxidant activities, mineral content, starch and protein content) were followed. Similarly, chlorophyll content was measured in plants cultivated on commercial or PG supplemented composts. An increment of 55.17% in potato yield was recorded with the use of A 30 the compost. Collectively, these data reveal the positive impact of the addition of PG in composting which may be adopted as a strategy for PG valorization and its use for the production of high quality edible products. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Chestnut green waste composting for sustainable forest management: Microbiota dynamics and impact on plant disease control.

    PubMed

    Ventorino, Valeria; Parillo, Rita; Testa, Antonino; Viscardi, Sharon; Espresso, Francesco; Pepe, Olimpia

    2016-01-15

    Making compost from chestnut lignocellulosic waste is a possible sustainable management strategy for forests that employs a high-quality renewable organic resource. Characterization of the microbiota involved in composting is essential to better understand the entire process as well as the properties of the final product. Therefore, this study investigated the microbial communities involved in the composting of chestnut residues obtained from tree cleaning and pruning. The culture-independent approach taken highlighted the fact that the microbiota varied only slightly during the process, with the exception of those of the starting substrate and mature compost. The statistical analysis indicated that most of the bacterial and fungal species in the chestnut compost persisted during composting. The dominant microbial population detected during the process belonged to genera known to degrade recalcitrant lignocellulosic materials. Specifically, we identified fungal genera, such as Penicillium, Fusarium, Cladosporium, Aspergillus and Mucor, and prokaryotic species affiliated with Bacilli, Actinobacteria, Flavobacteria and γ-Proteobacteria. The suppressive properties of compost supplements for the biocontrol of Sclerotinia minor and Rhizoctonia solani were also investigated. Compared to pure substrate, the addition of compost to the peat-based growth substrates resulted in a significant reduction of disease in tomato plants of up to 70 % or 51 % in the presence of Sclerotinia minor or Rhizoctonia solani, respectively. The obtained results were related to the presence of putative bio-control agents and plant growth-promoting rhizobacteria belonging to the genera Azotobacter, Pseudomonas, Stenotrophomonas, Bacillus, Flavobacterium, Streptomyces and Actinomyces in the chestnut compost. The composting of chestnut waste may represent a sustainable agricultural practice for disposing of lignocellulosic waste by transforming it into green waste compost that can be used to improve the fitness of agricultural plants. Copyright © 2015 Elsevier Ltd. All rights reserved.

  17. Removal of tetracyclines, sulfonamides, and quinolones by industrial-scale composting and anaerobic digestion processes.

    PubMed

    Liu, Hang; Pu, Chengjun; Yu, Xiaolu; Sun, Ying; Chen, Junhao

    2018-02-15

    This study evaluated and compared the removal of antibiotics by industrial-scale composting and anaerobic digestion at different seasons. Twenty compounds belonged to three classes of widely used veterinary antibiotics (i.e., tetracyclines, sulfonamides, and quinolones) were investigated. Results show that of the three groups of antibiotics, tetracyclines were dominant in swine feces and poorly removed by anaerobic digestion with significant accumulation in biosolids, particularly in winter. Compared to that in winter, a much more effective removal (> 97%) by anaerobic digestion was observed for sulfonamides in summer. By contrast, quinolones were the least abundant antibiotics in swine feces and exhibited a higher removal by anaerobic digestion in winter than in summer. The overall removal of antibiotics by aerobic composting could be more than 90% in either winter or summer. Nevertheless, compost products from livestock farms in Beijing contained much higher antibiotics than commercial organic fertilizers. Thus, industrial composting standards should be strictly applied to livestock farms to further remove antibiotics and produce high quality organic fertilizer.

  18. Application of compost of two-phase olive mill waste on olive grove: effects on soil, olive fruit and olive oil quality.

    PubMed

    Fernández-Hernández, Antonia; Roig, Asunción; Serramiá, Nuria; Civantos, Concepción García-Ortiz; Sánchez-Monedero, Miguel A

    2014-07-01

    Composting is a method for preparing organic fertilizers that represents a suitable management option for the recycling of two-phase olive mill waste (TPOMW) in agriculture. Four different composts were prepared by mixing TPOMW with different agro-industrial by-products (olive pruning, sheep manure and horse manure), which were used either as bulking agents or as N sources. The mature composts were added during six consecutive years to a typical "Picual" olive tree grove in the Jaén province (Spain). The effects of compost addition on soil characteristics, crop yield and nutritional status and also the quality of the olive oil were evaluated at the end of the experiment and compared to a control treated only with mineral fertilization. The most important effects on soil characteristics included a significant increase in the availability of N, P, K and an increase of soil organic matter content. The application of TPOMW compost produced a significant increase in olive oil content in the fruit. The compost amended plots had a 15% higher olive oil content than those treatment with inorganic fertilization. These organics amendments maintained the composition and quality of the olive oil. Copyright © 2014 Elsevier Ltd. All rights reserved.

  19. Evaluation of maifanite and silage as amendments for green waste composting.

    PubMed

    Zhang, Lu; Sun, Xiangyang

    2018-04-23

    Composting is a popular method for recycling organic solid wastes including agricultural and forestry residues. However, traditional composting method is time consuming, generates foul smells, and produces an immature product. The effects of maifanite (MF; at 0%, 8.5%, and 13.5%) and/or silage (SG; at 0%, 25%, and 45%) as amendments on an innovative, two-stage method for composting green waste (GW) were investigated. The combined addition of MF and SG greatly improved composting conditions, reduced composting time, and enhanced compost quality in terms of composting temperature, bulk density, water-holding capacity, void ratio, pH, cation exchange capacity, ammonia nitrogen content, dissolved organic carbon content, crude fibre degradation, microbial numbers, enzyme activities, nutrient contents, and phytotoxicity. The two-stage composting of GW with 8.5% MF and 45% SG generated the highest quality and the most mature compost product and did so in only 21 days. With the optimized composting, the degradation rate of cellulose and hemicellulose reached 46.3 and 82.3%, respectively, and the germination index of Chinese cabbage and lucerne was 153 and 172%, respectively, which were all far higher than values obtained with the control. The combined effects of MF and SG on GW composting have not been previously explored, and this study therefore provided new and practical information. The comprehensive analyses of compost properties during and at the end of the process provided insight into underlying mechanisms. The optimized two-stage composting method may be a viable and sustainable alternative for GW management in that it converts the waste into a useful product. Copyright © 2018 Elsevier Ltd. All rights reserved.

  20. Carbon monoxide from composting due to thermal oxidation of biomass.

    PubMed

    Hellebrand, H J; Schade, G W

    2008-01-01

    Emissions of carbon monoxide (CO) were observed from decomposing organic wastes and litter under laboratory, pilot composting plant, and natural conditions. Field studies included air from inside a compost heap of about 200 m3, emissions from composting of livestock wastes at a biologically operating farm, and leaf litter pile air samples. The concentration of CO was up to 120 micromol mol(-1) in the compost piles of green waste, and up to 10 micromol mol(-1) in flux chambers above livestock waste windrow composts. The mean CO flux rates were approximately 20 mg CO m(-2) h(-1) for compost heaps of green waste, and varied from 30 to 100 mg CO m(-2) h(-1) for fresh dung windrows. Laboratory studies using a temperature and ventilation-controlled substrate container were performed to elucidate the origin of CO, and included hay samples of fixed moisture content at temperatures between 5 and 65 degrees C, including nonsterilized as well as sterilized samples. The concentration of CO was up to 160 micromol mol(-1) in these experiments, and Arrhenius-type plot analyses resulted in activation energies of 65 kJ mol(-1) for thermochemically produced CO from the nonsterilized compost substrate. Sterilized samples showed dramatically reduced CO2 but virtually unchanged CO emissions, albeit at a slightly lower activation energy, likely a result of the high-temperature sterilization. Though globally and regionally these CO emissions are only a minor source, thermochemically produced CO emissions might affect local air quality in and near composting facilities.

  1. The potential applications of using compost chars for removing the hydrophobic herbicide atrazine from solution.

    PubMed

    Tsui, Lo; Roy, William R

    2008-09-01

    One commercial compost sample was pyrolyzed to produce chars as a sorbent for removing the herbicide atrazine from solution. The sorption behavior of compost-based char was compared with that of an activated carbon derived from corn stillage. When compost was pyrolyzed, the char yield was greater than 45% when heated under air, and 52% when heated under N(2). In contrast, when the corn stillage was pyrolyzed under N(2), the yield was only 22%. The N(2)-BET surface area of corn stillage activated carbon was 439 m(2)/g, which was much greater than the maximum compost char surface area of 72 m(2)/g. However, the sorption affinity of the compost char for dissolved atrazine was comparable to that of the corn stillage activated carbon. This similarity could have resulted from the initial organic waste being subjected to a relatively long period of thermal processes during composting, and thus, the compost was more thermally stable when compared with the raw materials. In addition, microorganisms transformed the organic wastes into amorphous humic substances, and thus, it was likely that the microporisity was enhanced. Although this micropore structure could not be detected by the N(2)-BET method, it was apparent in the atrazine sorption experiment. Overall, the experimental results suggested that the compost sample in current study was a relatively stable material thermally for producing char, and that it has the potential as a feed stock for making high-quality activated carbon.

  2. Composting of food wastes: Status and challenges.

    PubMed

    Cerda, Alejandra; Artola, Adriana; Font, Xavier; Barrena, Raquel; Gea, Teresa; Sánchez, Antoni

    2018-01-01

    This review analyses the main challenges of the process of food waste composting and examines the crucial aspects related to the quality of the produced compost. Although recent advances have been made in crucial aspects of the process, such composting microbiology, improvements are needed in process monitoring. Therefore, specific problems related to food waste composting, such as the presence of impurities, are thoroughly analysed in this study. In addition, environmental impacts related to food waste composting, such as emissions of greenhouse gases and odours, are discussed. Finally, the use of food waste compost in soil bioremediation is discussed in detail. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Maturation of green waste compost as affected by inoculation with the white-rot fungi Trametes versicolor and Phanerochaete chrysosporium.

    PubMed

    Gong, Xiaoqiang; Li, Suyan; Sun, Xiangyang; Zhang, Lu; Zhang, Tao; Wei, Le

    2017-04-01

    Green waste was separately inoculated on day 0 and day 14 with either Trametes versicolor or Phanerochaete chrysosporium to determine their effects on composting time and compost quality. Inoculation with T. versicolor and P. chrysosporium caused more rapid and higher increases in compost temperatures, increased the duration of the thermophilic temperature stage, and reduced the maturity time. Inoculation with T. versicolor and P. chrysosporium greatly increased the quality of the final composts in terms of pH, electrical conductivity, organic matter concentration, C/N ratio, germination index, and nutrient content. Inoculation with T. versicolor and P. chrysosporium also significantly increased the degradation of lignin by 7.1% and 8.2%, respectively, and increased the degradation of cellulose by 10.6% and 13.6%, respectively.

  4. Effects of alkyl polyglycoside (APG) on composting of agricultural wastes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang Fabao; Gu Wenjie, E-mail: guwenjie1982@yahoo.cn; Xu Peizhi

    2011-06-15

    Composting is the biological degradation and transformation of organic materials under controlled conditions to promote aerobic decomposition. To find effective ways to accelerate composting and improve compost quality, numerous methods including additive addition, inoculation of microorganisms, and the use of biosurfactants have been explored. Studies have shown that biosurfactant addition provides more favorable conditions for microorganism growth, thereby accelerating the composting process. However, biosurfactants have limited applications because they are expensive and their use in composting and microbial fertilizers is prohibited. Meanwhile, alkyl polyglycoside (APG) is considered a 'green' surfactant. This study aims to determine whether APG addition into amore » compost reaction vessel during 28-day composting can enhance the organic matter degradation and composting process of dairy manure. Samples were periodically taken from different reactor depths at 0, 3, 5, 7, 14, 21, and 28 days. pH levels, electrical conductivity (EC), ammonium and nitrate nitrogen, seed germination indices, and microbial population were determined. Organic matter and total nitrogen were also measured. Compared with the untreated control, the sample with APG exhibited slightly increased microbial populations, such as bacteria, fungi, and actinomycetes. APG addition increased temperatures without substantially affecting compost pH and EC throughout the process. After 28 days, APG addition increased nitrate nitrogen concentrations, promoted matter degradation, and increased seed germination indices. The results of this study suggest that the addition of APG provides more favorable conditions for microorganism growth, slightly enhancing organic matter decomposition and accelerating the composting process, improving the compost quality to a certain extent.« less

  5. Effects of alkyl polyglycoside (APG) on composting of agricultural wastes.

    PubMed

    Zhang, Fabao; Gu, Wenjie; Xu, Peizhi; Tang, Shuanhu; Xie, Kaizhi; Huang, Xu; Huang, Qiaoyi

    2011-06-01

    Composting is the biological degradation and transformation of organic materials under controlled conditions to promote aerobic decomposition. To find effective ways to accelerate composting and improve compost quality, numerous methods including additive addition, inoculation of microorganisms, and the use of biosurfactants have been explored. Studies have shown that biosurfactant addition provides more favorable conditions for microorganism growth, thereby accelerating the composting process. However, biosurfactants have limited applications because they are expensive and their use in composting and microbial fertilizers is prohibited. Meanwhile, alkyl polyglycoside (APG) is considered a "green" surfactant. This study aims to determine whether APG addition into a compost reaction vessel during 28-day composting can enhance the organic matter degradation and composting process of dairy manure. Samples were periodically taken from different reactor depths at 0, 3, 5, 7, 14, 21, and 28 days. pH levels, electrical conductivity (EC), ammonium and nitrate nitrogen, seed germination indices, and microbial population were determined. Organic matter and total nitrogen were also measured. Compared with the untreated control, the sample with APG exhibited slightly increased microbial populations, such as bacteria, fungi, and actinomycetes. APG addition increased temperatures without substantially affecting compost pH and EC throughout the process. After 28 days, APG addition increased nitrate nitrogen concentrations, promoted matter degradation, and increased seed germination indices. The results of this study suggest that the addition of APG provides more favorable conditions for microorganism growth, slightly enhancing organic matter decomposition and accelerating the composting process, improving the compost quality to a certain extent. Copyright © 2011 Elsevier Ltd. All rights reserved.

  6. Preliminary evaluation of pathogenic bacteria loading on organic Municipal Solid Waste compost and vermicompost.

    PubMed

    Soobhany, Nuhaa

    2018-01-15

    The use of composts or vermicomposts derived from organic fraction of Municipal Solid Waste (OFMSW) brought about certain disagreement in terms of high level of bacterial pathogens, thereby surpassing the legal restrictions. This preliminary study was undertaken to compare the evolution of pathogenic bacteria on OFMSW compost against vermicompost (generated by Eudrilus eugeniae) with promises of achieving sanitation goals. Analysis to quality data showed that OFMSW vermicomposting caused a moderately higher reduction in total coliforms in contrast to composting. E. coli in OFMSW composts was found to be in the range of 4.72-4.96 log 10  CFU g -1 whilst on a clear contrary, E. coli was undetectable in the final vermicomposts (6.01-6.14 logs of reduction) which might be explained by the involvement of the digestive processes in worms' guts. Both OFMSW composts and vermicomposts generated Salmonella-free products which were acceptable for agricultural usage and soil improvement. In comparison to compost, the analysis of this research indicated that earthworm activity can effectively destroy bacterial pathogenic load in OFMSW vermicomposts. But still, this study necessitates extra research in order to comprehend the factors that direct pathogenic bacteria in vermicomposting and earthworm-free decomposition systems. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Housefly maggot-treated composting as sustainable option for pig manure management.

    PubMed

    Zhu, Feng-Xiang; Yao, Yan-Lai; Wang, Su-Juan; Du, Rong-Guang; Wang, Wei-Ping; Chen, Xiao-Yang; Hong, Chun-Lai; Qi, Bing; Xue, Zhi-Yong; Yang, Hong-Quan

    2015-01-01

    In traditional composting, large amounts of bulking agents must be added to reduce the moisture of pig manure, which increases the cost of composting and dilutes the N, P and K content in organic fertilizers. In this study, maggot treatment was used in composting instead of bulking agents. In experiment of selecting an optimal inoculum level for composting, the treatment of 0.5% maggot inoculum resulted in the maximum yield of late instar maggots, 11.6% (maggots weight/manure weight). The manure residue became noticeably granular by day 6 and its moisture content was below 60%, which was suitable for further composting without bulking agents. Moreover, in composting experiment with a natural compost without maggot inoculum and maggot-treated compost at 0.5% inoculum level, there were no significant differences in nutrient content between the two organic fertilizers from the two treatments (paired Student's t15=1.0032, P=0.3317). Therefore, maggot culturing did not affect the characteristics of the organic fertilizer. The content of TNPK (total nitrogen+total phosphorus+total potassium) in organic fertilizer from maggot treatment was 10.72% (dry weight), which was far more than that of organic fertilizer made by conventional composting with bulking agents (about 8.0%). Dried maggots as feed meet the national standard (GB/T19164-2003) for commercial fish meal in China, which contained 55.32 ± 1.09% protein; 1.34 ± 0.02% methionine; 4.15 ± 0.10% lysine. This study highlights housefly maggot-treated composting can be considered sustainable alternatives for pig manure management to achieve high-quality organic fertilizer and maggots as feed without bulking agents. Copyright © 2014 Elsevier Ltd. All rights reserved.

  8. Nitrification during extended co-composting of extreme mixtures of green waste and solid fraction of cattle slurry to obtain growing media.

    PubMed

    Cáceres, Rafaela; Coromina, Narcís; Malińska, Krystyna; Martínez-Farré, F Xavier; López, Marga; Soliva, Montserrat; Marfà, Oriol

    2016-12-01

    Next generation of waste management systems should apply product-oriented bioconversion processes that produce composts or biofertilisers of desired quality that can be sold in high priced markets such as horticulture. Natural acidification linked to nitrification can be promoted during composting. If nitrification is enhanced, suitable compost in terms of pH can be obtained for use in horticultural substrates. Green waste compost (GW) represents a potential suitable product for use in growing medium mixtures. However its low N provides very limited slow-release nitrogen fertilization for suitable plant growth; and GW should be composted with a complementary N-rich raw material such as the solid fraction of cattle slurry (SFCS). Therefore, it is important to determine how very different or extreme proportions of the two materials in the mixture can limit or otherwise affect the nitrification process. The objectives of this work were two-fold: (a) To assess the changes in chemical and physicochemical parameters during the prolonged composting of extreme mixtures of green waste (GW) and separated cattle slurry (SFCS) and the feasibility of using the composts as growing media. (b) To check for nitrification during composting in two different extreme mixtures of GW and SFCS and to describe the conditions under which this process can be maintained and its consequences. The physical and physicochemical properties of both composts obtained indicated that they were appropriate for use as ingredients in horticultural substrates. The nitrification process occurred in both mixtures in the medium-late thermophilic stage of the composting process. In particular, its feasibility has been demonstrated in the mixtures with a low N content. Nitrification led to the inversion of each mixture's initial pH. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. The potential of near infrared reflectance spectroscopy (NIRS) for the estimation of agroindustrial compost quality.

    PubMed

    Galvez-Sola, L; Moral, R; Perez-Murcia, M D; Perez-Espinosa, A; Bustamante, M A; Martinez-Sabater, E; Paredes, C

    2010-02-15

    Composting is an environmentally friendly alternative for the recycling of organic wastes and its use is increasing in recent years. An exhaustive monitoring of the composting process and of the final compost characteristics is necessary to certify that the values of compost characteristics are within the limits established by the legislation in order to obtain a safe and marketable product. The analysis of these parameters on each composting batch in the commercial composting plant is time-consuming and expensive. So, their estimation in the composting facilities based on the use of near infrared reflectance spectroscopy (NIRS) could be an interesting approach in order to monitor compost quality. In this study, more than 300 samples from 20 different composting procedures were used to calibrate and validate the NIRS estimation of compost properties (pH, electrical conductivity (EC), total organic matter (TOM), total organic carbon (TOC), total nitrogen (TN) and C/N ratio, macronutrient contents (N, P, K) and potentially pollutant element concentrations (Fe, Cu, Mn and Zn)). The composts used were elaborated using different organic wastes from agroindustrial activities (GS: grape stalk; EGM: exhausted grape marc; GM: grape marc; V: vinasse; CJW: citrus juice waste; Alpeorujo: olive-oil waste; AS: almond skin; EP: exhausted peat; TSW: tomato soup waste; SMS: spent mushroom substrate) co-composted with manures (CM: cattle manure; PM: poultry manure) or urban wastes (SS: sewage sludge) The estimation results showed that the NIRS technique needs to be fitted to each element and property, using specific spectrum transformations, in order to achieve an acceptable accuracy in the prediction. However, excellent prediction results were obtained for TOM and TOC, successful calibrations for pH, EC, Fe and Mn, and moderately successful estimations for TN, C/N ratio, P, K, Cu and Zn.

  10. Optimization of food waste compost with the use of biochar.

    PubMed

    Waqas, M; Nizami, A S; Aburiazaiza, A S; Barakat, M A; Ismail, I M I; Rashid, M I

    2018-06-15

    This paper aims to examine the influence of biochar produced from lawn waste in accelerating the degradation and mineralization rates of food waste compost. Biochar produced at two different temperatures (350 and 450 °C) was applied at the rates 10 and 15% (w/w) of the total waste to an in-vessel compost bioreactor for evaluating its effects on food waste compost. The quality of compost was assessed against stabilization indices such as moisture contents (MC), electrical conductivity (EC), organic matters (OM) degradation, change in total carbon (TC) and mineral nitrogen contents such as ammonium (NH 4 + ) and nitrate (NO 3 - ). The use of biochar significantly improved the composting process and physiochemical properties of the final compost. Results showed that in comparison to control trial, biochar amended compost mixtures rapidly achieved the thermophilic temperature, increased the OM degradation by 14.4-15.3%, concentration of NH 4 + by 37.8-45.6% and NO 3 - by 50-62%. The most prominent effects in term of achieving rapid thermophilic temperature and a higher concentration of NH 4 + and NO 3 - were observed at 15% (w/w) biochar. According to compost quality standard of United States (US), California, Germany, and Austria, the compost stability as a result of biochar addition was achieved in 50-60 days. Nonetheless, the biochar produced at 450 °C had similar effects as to biochar produced at 350 °C for most of the compost parameters. Therefore, it is recommended to produce biochar at 350 °C to reduce the energy requirements for resource recovery of biomass and should be added at a concentration of 15% (w/w) to the compost bioreactor for achieving a stable compost. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Effect of pH, temperature and moisture content during composting of rice straw burning at different temperature with food waste and effective microorganisms

    NASA Astrophysics Data System (ADS)

    Azura Zakarya, Irnis; Baya Khalib, Siti Noor; Ramzi, Norhasykin Mohd

    2018-03-01

    Rice straw is considered as one of the most important agricultural residues and represented as one of the major by-products from rice production process. Normally, rice straw that produced after harvesting season been directly burned on-farm. Conversion of rice straw into value added compost will improve the productivity of plant, reduction of pollution towards environment and reduction of local pollution due to open burning activity. The objective of this study was to evaluate the performance of composting rice straw ash (RSA) with food waste (FW) and effective microorganisms (EM) in term of the compost quality (pH, temperature, moisture content). RSA was prepared by burning the raw rice straw at three different temperature of 300°C, 400°C and 500°C for one hour. EM used during the composting process was prepared by mixing of brown sugar, `tempe' and water that can be used after one week of fermentation process. There are four treatments of RSA-compost; RSA (300°C), RSA (400°C), RSA (500°C) and control (raw rice straw) with the same amount of compost medium; 1kg black soil, 0.5kg RSA, 3L EM and 1kg FW. The composting process happens for 30 days. During the composting process, all the parameters of RSA-compost obtained in a range like; pH value 8-10, temperature 20-50°C and moisture content 40-60%. The result showed that all compost quality of rice straw ash compost obtained in an acceptable range for final compost to establish.

  12. [Effects of sludge compost used as lawn medium on lawn growth and soil and water environment].

    PubMed

    Jin, Shu-Quan; Zhou, Jin-Bo; Chen, Ruo-Xia; Lin, Bin; Wang, De-Yao

    2013-10-01

    To address effect of the sludge compost-containing medium on the growth of Manila lawn and environment quality, a pot experiment was conducted using six treatments based on contrasting sludge compost addition volume ratios in the soil system (i. e., 0% , 10% , 25% , 50% , 75% and 100%). The results indicated that the growth potential of Manila lawn was increased with increasing sludge compost addition volume ratio. The content of Hg in Manila plant was significantly positively correlated with that in the lawn medium. Although the contents of Cr, Cd and Hg in the lawn medium were synchronously increased with increasing sludge compost addition volume ratio in the soil system, their contents were all lower than the critical levels of third-class standard in the National Soil Environmental Quality Standard. The heavy metal and nitrate concentrations detected in percolating water were significantly positively correlated with those in the lawn medium, respectively. When the sludge compost addition volume ratio was more than 50% in this study, both heavy metal and nitrate concentrations in percolating water would exceed the maximum allowable levels of the National Groundwater Environment Quality Standard.

  13. Polemics on Ethical Aspects in the Compost Business.

    PubMed

    Maroušek, Josef; Hašková, Simona; Zeman, Robert; Žák, Jaroslav; Vaníčková, Radka; Maroušková, Anna; Váchal, Jan; Myšková, Kateřina

    2016-04-01

    This paper focuses on compost use in overpasses and underpasses for wild animals over roads and other similar linear structures. In this context, good quality of compost may result in faster and more resistant vegetation cover during the year. Inter alia, this can be interpreted also as reduction of damage and saving lives. There are millions of tones of plant residue produced every day worldwide. These represent prospective business for manufacturers of compost additives called "accelerators". The opinions of the sale representatives' with regards to other alternatives of biowaste utilization and their own products were reviewed. The robust analyzes of several "accelerated" composts revealed that the quality was generally low. Only two accelerated composts were somewhat similar in quality to the blank sample that was produced according to the traditional procedure. Overlaps between the interests of decision makers on future soil fertility were weighed against the preferences on short-term profit. Possible causes that allowed the boom of these underperforming products and the possible consequences are also discussed. Conclusions regarding the ethical concerns on how to run businesses with products whose profitability depends on weaknesses in the legal system and customer unawareness are to follow.

  14. Nitrogen losses and chemical parameters during co-composting of solid wastes and liquid pig manure.

    PubMed

    Vázquez, M A; de la Varga, D; Plana, R; Soto, M

    2017-07-04

    The aim of this research was to study nitrogen losses during the treatment of the liquid fraction (LF) of pig manure by co-composting and to establish the best conditions for compost production with higher nitrogen and low heavy metal contents. Windrows were constituted with the solid fraction (SF) of pig manure, different organic waste (SF of pig manure, sawdust and grape bagasse) as co-substrate and Populus spp. wood chips as bulking material and watered intensely with the LF. Results show that nitrogen losses ranged from 30% to 66% of initial nitrogen and were mainly governed by substrate to bulking mass ratio and liquid fraction to substrate (LF/S) ratio, and only secondarily by operational parameters. Nitrogen losses decreased from 55-65% at low LF/S ratios (1.7-1.9 m 3 /t total solids (TS)) to 30-39% at high LF/S ratios (4.4-4.7 m 3 /t TS). Therefore, integrating the LF in the composting process at high LF/S ratios favoured nitrogen recovery and conservation. Nitrogen in the fine fraction (ranging from 27% to 48% of initial nitrogen) was governed by operational parameters, namely pH and temperature. Final compost showed low content in most heavy metals, but Zn was higher than the limits for compost use in agriculture. Zn content in the obtained compost varied from 1863 to 3269 mg/kg dm, depending on several factors. The options for obtaining better quality composts from the LF of pig manure are selecting co-substrates with low heavy metal content and using them instead of the SF of pig manure.

  15. Potential of a gypsum-free composting process of wheat straw for mushroom production.

    PubMed

    Mouthier, Thibaut M B; Kilic, Baris; Vervoort, Pieter; Gruppen, Harry; Kabel, Mirjam A

    2017-01-01

    Wheat straw based composting generates a selective substrate for mushroom production. The first phase of this process requires 5 days, and a reduction in time is wished. Here, we aim at understanding the effect of gypsum on the duration of the first phase and the mechanism behind it. Hereto, the regular process with gypsum addition and the same process without gypsum were studied during a 5-day period. The compost quality was evaluated based on compost lignin composition analysed by py-GC/MS and its degradability by a commercial (hemi-)cellulolytic enzyme cocktail. The composting phase lead to the decrease of the pyrolysis products 4-vinylphenol and 4-vinylguaiacol that can be associated with p-coumarates and ferulates linking xylan and lignin. In the regular compost, the enzymatic conversion reached 32 and 39% for cellulose, and 23 and 32% for xylan after 3 and 5 days, respectively. In absence of gypsum similar values were reached after 2 and 4 days, respectively. Thus, our data show that in absence of gypsum the desired compost quality was reached 20% earlier compared to the control process.

  16. Potential of a gypsum-free composting process of wheat straw for mushroom production

    PubMed Central

    Mouthier, Thibaut M. B.; Kilic, Baris; Vervoort, Pieter; Gruppen, Harry

    2017-01-01

    Wheat straw based composting generates a selective substrate for mushroom production. The first phase of this process requires 5 days, and a reduction in time is wished. Here, we aim at understanding the effect of gypsum on the duration of the first phase and the mechanism behind it. Hereto, the regular process with gypsum addition and the same process without gypsum were studied during a 5-day period. The compost quality was evaluated based on compost lignin composition analysed by py-GC/MS and its degradability by a commercial (hemi-)cellulolytic enzyme cocktail. The composting phase lead to the decrease of the pyrolysis products 4-vinylphenol and 4-vinylguaiacol that can be associated with p-coumarates and ferulates linking xylan and lignin. In the regular compost, the enzymatic conversion reached 32 and 39% for cellulose, and 23 and 32% for xylan after 3 and 5 days, respectively. In absence of gypsum similar values were reached after 2 and 4 days, respectively. Thus, our data show that in absence of gypsum the desired compost quality was reached 20% earlier compared to the control process. PMID:28982119

  17. Can we build better compost? Use of waste drywall to enhance plant growth on reclamation sites.

    PubMed

    Naeth, M Anne; Wilkinson, Sarah R

    2013-11-15

    Compost is a readily available source of organic matter and nutrients and is produced large scale in many jurisdictions. Novel advancements in composting include addition of construction waste, such as drywall, to address its disposal while potentially improving compost quality for use in land reclamation. Varying compositions (15-30% by weight) of coarse and ground waste drywall were added to manure and biosolids during composting. Six composts were applied at four rates (0, 50, 100, 200 Mg ha(-1)) to three reclamation soils (agricultural, urban clean fill, oil sands tailings). Response to composts was assessed in the greenhouse with three plant species (Hordeum vulgare L. (barley), Agropyron trachycaulum (Link) Malte (slender wheat grass) and Festuca saximontana Rydb. (rocky mountain fescue). Drywall added to biosolids or manure during composting had no detrimental effects on vegetation; any negative effects of compost occurred with and without drywall. In agricultural soil and clean fill, biosolids composts with 15% coarse and 18% ground drywall improved native grass response, particularly biomass, relative to biosolids compost without drywall. Drywall manure composts reduced native grass response relative to manure compost without drywall. Only low quality tailings sand was improved by 30% coarse drywall. Compost rate significantly affected above and below ground biomass in agricultural soil and reduced performance of native species at highest rates, suggesting a threshold beyond which conditions will not be suitable for reclamation. Grinding drywall did not significantly improve plant performance and use of coarse drywall would eliminate the need for specialized equipment and resources. This initial research demonstrates that drywall composts are appropriate soil amendments for establishment of native and non native plant species on reclamation sites with consideration of substrate properties and plant species tolerances to dictate which additional feed stocks should be used. Copyright © 2013 Elsevier Ltd. All rights reserved.

  18. Pilot-scale passive bioreactors for the treatment of acid mine drainage: efficiency of mushroom compost vs. mixed substrates for metal removal.

    PubMed

    Song, Hocheol; Yim, Gil-Jae; Ji, Sang-Woo; Neculita, Carmen Mihaela; Hwang, Taewoon

    2012-11-30

    Pilot-scale field-testing of passive bioreactors was performed to evaluate the efficiency of a mixture of four substrates (cow manure compost, mushroom compost, sawdust, and rice straw) relative to mushroom compost alone, and of the effect of the Fe/Mn ratio, during the treatment of acid mine drainage (AMD) over a 174-day period. Three 141 L columns, filled with either mushroom compost or the four substrate mixture (in duplicate), were set-up and fed with AMD from a closed mine site, in South Korea, using a 4-day hydraulic retention time. In the former bioreactor, effluent deterioration was observed over 1-2 months, despite the good efficiency predicted by the physicochemical characterization of mushroom compost. Steady state effluent quality was then noted for around 100 days before worsening in AMD source water occurred in response to seasonal variations in precipitation. Such changes in AMD quality resulted in performance deterioration in all reactors followed by a slow recovery toward the end of testing. Both substrates (mushroom compost and mixtures) gave satisfactory performance in neutralizing pH (6.1-7.8). Moreover, the system was able to consistently reduce sulfate from day 49, after the initial leaching out from organic substrates. Metal removal efficiencies were on the order of Al (∼100%) > Fe (68-92%) > Mn (49-61%). Overall, the mixed substrates showed comparable performance to mushroom compost, while yielding better effluent quality upon start-up. The results also indicated mushroom compost could release significant amounts of Mn and sulfate during bioreactor operation. Copyright © 2012 Elsevier Ltd. All rights reserved.

  19. Biochar for composting improvement and contaminants reduction. A review.

    PubMed

    Godlewska, Paulina; Schmidt, Hans Peter; Ok, Yong Sik; Oleszczuk, Patryk

    2017-12-01

    Biochar is characterised by a large specific surface area, porosity, and a large amount of functional groups. All of those features cause that biochar can be a potentially good material in the optimisation of the process of composting and final compost quality. The objective of this study was to compile the current knowledge on the possibility of biochar application in the process of composting and on the effect of biochar on compost properties and on the content of contaminants in compost. The paper presents the effect of biochar on compost maturity indices, composting temperature and moisture, and also on the content and bioavailability of nutrients and of organic and inorganic contaminants. In the paper note is also taken of the effect of biochar added to composted material on plants, microorganisms and soil invertebrates. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Use of compost to restore a contaminated site in Southern Italy: preliminary study to assess compost efficiency in remediating a heavily polluted soil in Taranto city.

    NASA Astrophysics Data System (ADS)

    Ancona, Valeria; Campanale, Claudia; Calabrese, Angelantonio; Vito Felice, Uricchio; Simona, Regano

    2014-05-01

    Soil pollution is one of the most soil relevant threats recognized in the world. Contamination affects soil quality and soil capacity to react against several land degradation processes (erosion, organic depletion, desertification, etc.). The identification of opportune strategies to hinder pollution is a fundamental requirement to restore soil quality. In particular, large attentions have got the techniques, which promote the decontamination, and at the same time, improve fertility allowing a new use of a soil restored. In this work we present a preliminary study to assess the use of compost (an organic fertilizer produced through a process of transformation and controlled stabilization of selected organic waste at the source) in remediating a heavily polluted soil in southern Italy. The study site is located in Taranto city (Apulia Region) and is contaminated predominantly by heavy metals and lightly by organic toxic compounds such us polychlorinated biphenyls (PCBs). An exhaustive chemical characterization has been carried out on soil samples and then, a treatment with compost was applied on the study site. Successively, two data acquisition campaigns have been realized (after 4 and 7 months by compost treatment, respectively). Soil chemical analyses of texture, electrical conductivity, pH, organic carbon content, total nitrogen, available phosphorous, carbonate and water content have been carried out to investigate soil properties. In the polluted site chemical analyses of characterization showed low content of nutrients (nitrogen and phosphorous) and high level of carbonate. Heavy metals screenings, carried out through ICP-MS equipment, evidenced a massive contamination by Be, Se, Sn, Pb, Cr, Zn, while GC-MS investigations revealed a lower pollution by PCBs. The results of the monitoring campaigns showed a consistent reduction of the heavy metals concentrations: a higher decrease is observed after 7 months by compost treatment. At the same time, a considerable increase of organic carbon, nitrogen and phosphorus is also registered. The overall results suggest that the use of compost contributed to improve soil physico-chemical properties and promote a relevant decrease of pollution suggesting that a process of soil quality restoration is performing.

  1. Using cow dung and spent coffee grounds to enhance the two-stage co-composting of green waste.

    PubMed

    Zhang, Lu; Sun, Xiangyang

    2017-12-01

    The objective of this study was to determine the effects of cow dung (CD) (at 0%, 20%, and 35%) and/or spent coffee grounds (SCGs) (at 0%, 30%, and 45%) as amendments in the two-stage co-composting of green waste (GW); the percentages refer to grams of amendment per 100g of GW based on dry weights. The combined addition of CD and SCGs improved the conditions during co-composting and the quality of the compost product in terms of composting temperature; particle-size distribution; mechanical properties; nitrogen changes; low-molecular weight compounds; humic substances; the degradation of lignin, cellulose, and hemicellulose; enzyme activities; the contents of total Kjeldahl nitrogen, total phosphorus, and total potassium; and the toxicity to germinating seeds. The combined addition of 20% CD and 45% SCGs to GW resulted in the production of the highest quality compost product and did so in only 21days. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Co-composting of organic fraction of municipal solid waste mixed with different bulking waste: characterization of physicochemical parameters and microbial enzymatic dynamic.

    PubMed

    Awasthi, Mukesh Kumar; Pandey, Akhilesh Kumar; Bundela, Pushpendra Singh; Khan, Jamaluddin

    2015-04-01

    The effect of various bulking waste such as wood shaving, agricultural and yard trimming waste combined with organic fraction of municipal solid waste (OFMSW) composting was investigated through assessing their influence on microbial enzymatic activities and quality of finished compost. All three piles of OFMSW with different bulking waste were inoculated with microbial consortium. The results revealed that OFMSW combined with wood shaving and microbial consortium (Phanerochaete chrysosporium, Trichoderma viride and Pseudomonas aeruginosa) were helpful tool to facilitate the enzymatic activity and shortened composting period within 4 weeks. Maximum enzymatic activity were observed in pile 1 and 3 during the first 3 weeks, while in pile 2 relatively very low. But phosphatase activity was relatively higher in all piles until the end of the process. Maturity parameters of compost quality also favored the pile 1 as the best formulation for OFMSW composting. Copyright © 2015 Elsevier Ltd. All rights reserved.

  3. Meat waste as feedstock for home composting: Effects on the process and quality of compost.

    PubMed

    Storino, Francesco; Arizmendiarrieta, Joseba S; Irigoyen, Ignacio; Muro, Julio; Aparicio-Tejo, Pedro M

    2016-10-01

    Home composting is a powerful tool, which is spreading in different parts of the world, to reduce the generation of municipal waste. However, there is debate concerning the appropriateness, in terms of domestic hygiene and safety, of keeping a composter bin in the household deputed to kitchen waste of animal origin, such as meat or fish scraps and pet droppings. The purpose of our work was to study how the addition of meat scraps to household waste influences the composting process and the quality of the final compost obtained. We compared four raw material mixtures, characterized by a different combination of vegetable and meat waste and different ratios of woody bulking agent. Changes in temperature, mass and volume, phenotypic microbial diversity (by Biolog™) and organic matter humification were determined during the process. At the end of the experiment, the four composts were weighed and characterized by physicochemical analysis. In addition, the presence of viable weed seeds was investigated and a germination bioassay was carried out to determine the level of phytotoxicity. Finally, the levels of pathogens (Escherichia coli and Salmonella spp.) were also determined in the final compost. Here we show that the presence of meat waste as raw feedstock for composting in bins can improve the activity of the process, the physicochemical characteristics and maturity of the compost obtained, without significantly affecting its salinity, pH and phytotoxicity. Pathogen levels were low, showing that they can be controlled by an intensive management and proper handling of the composter bins. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. Reducing environmental risk of excessively fertilized soils and improving cucumber growth by Caragana microphylla-straw compost application in long-term continuous cropping systems.

    PubMed

    Tian, Yongqiang; Wang, Qing; Zhang, Weihua; Gao, Lihong

    2016-02-15

    Continuous cropping is a common agricultural practice in the word. In China, farmers often apply excessive fertilizers to fields in an attempt to maintain yields in continuous cropping systems. However, this practice often results in high nutrient concentrations in soils, nutrient pollution in leaching water and more crop disease. Here, we investigated 8 different soils from continuously cropped cucumbers in Northern China that grouped into those with extremely high nutrient levels (EHNL) and those with lower nutrient levels (LNL). All soils were treated with Caragana microphylla-straw (CMS) compost addition, and then were used to measure soil physiochemical and microbial properties, leaching water quality, plant root growth and cucumber fruit yield. In general, the EHNL-soil showed higher nitrate, phosphorus and potassium concentrations in the leaching water compared to the LNL-soil. However, the CMS compost application increased soil nutrient and water holding capacities, total microbial biomass (bacteria and fungi), root length, plant biomass and fruit yields, but decreased nutrient concentrations in the leaching water from the EHNL-soil. In addition, the CMS compost decreased the number of Fusarium oxysporum f. sp. cucumerinum in soils with very high concentration of mineral nitrogen. Our results infer that CMS compost application was an effective method for reducing environmental risk of excessively fertilized soils. Copyright © 2015 Elsevier B.V. All rights reserved.

  5. ASSESSMENT OF THE BACTERIOLOGICAL QUALITY OF COMPOST FROM A YARD WASTE PROCESSING FACILITY

    EPA Science Inventory

    Citizen concern over possible pathogenic microorganism contamination in compost and in a runoff collection pond prompted a U.S. Environmental Protection Agency (EPA) investigation. One out of eight samples collected from the distribution pile at a yard waste compost processing f...

  6. The potential applications of using compost chars for removing the hydrophobic herbicide atrazine from solution

    USGS Publications Warehouse

    Tsui, L.; Roy, W.R.

    2008-01-01

    One commercial compost sample was pyrolyzed to produce chars as a sorbent for removing the herbicide atrazine from solution. The sorption behavior of compost-based char was compared with that of an activated carbon derived from corn stillage. When compost was pyrolyzed, the char yield was greater than 45% when heated under air, and 52% when heated under N2. In contrast, when the corn stillage was pyrolyzed under N2, the yield was only 22%. The N2-BET surface area of corn stillage activated carbon was 439 m2/g, which was much greater than the maximum compost char surface area of 72 m2/g. However, the sorption affinity of the compost char for dissolved atrazine was comparable to that of the corn stillage activated carbon. This similarity could have resulted from the initial organic waste being subjected to a relatively long period of thermal processes during composting, and thus, the compost was more thermally stable when compared with the raw materials. In addition, microorganisms transformed the organic wastes into amorphous humic substances, and thus, it was likely that the microporisity was enhanced. Although this micropore structure could not be detected by the N2-BET method, it was apparent in the atrazine sorption experiment. Overall, the experimental results suggested that the compost sample in current study was a relatively stable material thermally for producing char, and that it has the potential as a feed stock for making high-quality activated carbon. ?? 2007 Elsevier Ltd. All rights reserved.

  7. Characterization of composting mixtures and compost of rabbit by-products to obtain a quality product and plant proposal for industrial production.

    PubMed

    Bianchi, Biagio; Papajova, Ingrid; Tamborrino, Rosanna; Ventrella, Domenico; Vitti, Carolina

    2015-01-01

    In this study we have observed the effects of using rabbit manure and slaughtering by-products in a composting process. Three piles of this material, 4700 kg each, with different amount and C/N ratio, have been investigated and experimental tests were carried out in an industrial horizontal axe reactor using a prototype of turning machine. The composting time lasted 85 days; 2 experimental cycles were conducted: one in Winter and one in Summer. In the Winter test, mesophilic reaction started only in the control mixture (animal manure + slaughtering by-products without straw). It is noteworthy that, the 3 investigated mixtures produced soil amendment by compost with good agronomical potential but with parameters close to the extreme limits of the law. In the Summer test, there was thermophilic fermentation in all mixtures and a better quality compost was obtained, meeting all the agronomic and legislative constraints. For each pile, we examined the progression of fermentation process and thus the plant limitations that did not allow a correct composting process. The results obtained in this study are useful for the development of appropriate mixtures, machines, and plants assuring continuance and reliability in the composting of the biomass coming from rabbit industry.

  8. Application of drum compost and vermicompost to improve soil health, growth, and yield parameters for tomato and cabbage plants.

    PubMed

    Goswami, Linee; Nath, Anil; Sutradhar, Sweety; Bhattacharya, Satya Sundar; Kalamdhad, Ajay; Vellingiri, Kowsalya; Kim, Ki-Hyun

    2017-09-15

    Utilization of different types of solid wastes through composting is important for environmental sustainability and restoring soil quality. Although drum composting is an efficient technology, the possibility of heavy metal contamination restricts its large-scale use. In this research, a field experiment was conducted to evaluate the impact of water hyacinth drum compost (DC) and traditional vermicompost (VC) on soil quality and crop growth in an agro-ecosystem cultivated intensively with tomato and cabbage as test crops. A substantial improvement in soil health was observed with respect to nutrient availability, physical stability, and microbial diversity due to the application of drum compost and traditional vermicompost. Moreover, soil organic carbon was enriched through increased humic and fulvic acid carbon. Interestingly, heavy metal contamination was less significant in vermicompost-treated soils than in those receiving the other treatments. The use of VC and DC in combination with recommended chemical fertilization effectively stimulated crop growth, yield, product quality, and storage longevity for both tomato and cabbage. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Impacts of soil conditioners and water table management on phosphorus loss in tile drainage from a clay loam soil.

    PubMed

    Zhang, T Q; Tan, C S; Zheng, Z M; Welacky, T W; Reynolds, W D

    2015-03-01

    Adoption of waste-derived soil conditioners and refined water management can improve soil physical quality and crop productivity of fine-textured soils. However, the impacts of these practices on water quality must be assessed to ensure environmental sustainability. We conducted a study to determine phosphorus (P) loss in tile drainage as affected by two types of soil conditioners (yard waste compost and swine manure compost) and water table management (free drainage and controlled drainage with subirrigation) in a clay loam soil under corn-soybean rotation in a 4-yr period from 1999 to 2003. Tile drainage flows were monitored and sampled on a year-round continuous basis using on-site auto-sampling systems. Water samples were analyzed for dissolved reactive P (DRP), particulate P (PP), and total P (TP). Substantially greater concentrations and losses of DRP, PP, and TP occurred with swine manure compost than with control and yard waste compost regardless of water table management. Compared with free drainage, controlled drainage with subirrigation was an effective way to reduce annual and cumulative losses of DRP, PP, and TP in tile drainage through reductions in flow volume and P concentration with control and yard waste compost but not with swine manure compost. Both DRP and TP concentrations in tile drainage were well above the water quality guideline for P, affirming that subsurface loss of P from fine-textured soils can be one critical source for freshwater eutrophication. Swine manure compost applied as a soil conditioner must be optimized by taking water quality impacts into consideration. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  10. Seed germination test for toxicity evaluation of compost: Its roles, problems and prospects.

    PubMed

    Luo, Yuan; Liang, Jie; Zeng, Guangming; Chen, Ming; Mo, Dan; Li, Guoxue; Zhang, Difang

    2018-01-01

    Compost is commonly used for the growth of plants and the remediation of environmental pollution. It is important to evaluate the quality of compost and seed germination test is a powerful tool to examine the toxicity of compost, which is the most important aspect of the quality. Now the test is widely adopted, but the main problem is that the test results vary with different methods and seed species, which limits the development and application of it. The standardization of methods and the modelization of seeds can contribute to solving the problem. Additionally, according to the probabilistic theory of seed germination, the error caused by the analysis and judgment methods of the test results can be reduced. Here, we reviewed the roles, problems and prospects of the seed germination test in the studies of compost. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Compost improves urban soil and water quality

    USDA-ARS?s Scientific Manuscript database

    Construction in urban zones compacts the soil, which hinders root growth and infiltration and may increase erosion, which may degrade water quality. The purpose of our study was to determine the whether planting prairie grasses and adding compost to urban soils can mitigate these concerns. We simula...

  12. Characterization of the biosolids composting process by hyperspectral analysis.

    PubMed

    Ilani, Talli; Herrmann, Ittai; Karnieli, Arnon; Arye, Gilboa

    2016-02-01

    Composted biosolids are widely used as a soil supplement to improve soil quality. However, the application of immature or unstable compost can cause the opposite effect. To date, compost maturation determination is time consuming and cannot be done at the composting site. Hyperspectral spectroscopy was suggested as a simple tool for assessing compost maturity and quality. Nevertheless, there is still a gap in knowledge regarding several compost maturation characteristics, such as dissolved organic carbon, NO3, and NH4 contents. In addition, this approach has not yet been tested on a sample at its natural water content. Therefore, in the current study, hyperspectral analysis was employed in order to characterize the biosolids composting process as a function of composting time. This goal was achieved by correlating the reflectance spectra in the range of 400-2400nm, using the partial least squares-regression (PLS-R) model, with the chemical properties of wet and oven-dried biosolid samples. The results showed that the proposed method can be used as a reliable means to evaluate compost maturity and stability. Specifically, the PLS-R model was found to be an adequate tool to evaluate the biosolids' total carbon and dissolved organic carbon, total nitrogen and dissolved nitrogen, and nitrate content, as well as the absorbance ratio of 254/365nm (E2/E3) and C/N ratios in the dry and wet samples. It failed, however, to predict the ammonium content in the dry samples since the ammonium evaporated during the drying process. It was found that in contrast to what is commonly assumed, the spectral analysis of the wet samples can also be successfully used to build a model for predicting the biosolids' compost maturity. Copyright © 2015 Elsevier Ltd. All rights reserved.

  13. Bioelectrochemically-assisted anaerobic composting process enhancing compost maturity of dewatered sludge with synchronous electricity generation.

    PubMed

    Yu, Hang; Jiang, Junqiu; Zhao, Qingliang; Wang, Kun; Zhang, Yunshu; Zheng, Zhen; Hao, Xiaodi

    2015-10-01

    Bioelectrochemically-assisted anaerobic composting process (AnCBE) with dewatered sludge as the anode fuel was constructed to accelerate composting of dewatered sludge, which could increase the quality of the compost and harvest electric energy in comparison with the traditional anaerobic composting (AnC). Results revealed that the AnCBE yielded a voltage of 0.60 ± 0.02 V, and total COD (TCOD) removal reached 19.8 ± 0.2% at the end of 35 d. The maximum power density was 5.6 W/m(3). At the end of composting, organic matter content (OM) reduction rate increased to 19.5 ± 0.2% in AnCBE and to 12.9 ± 0.1% in AnC. The fuzzy comprehensive assessment (FCA) result indicated that the membership degree of class I of AnCBE compost (0.64) was higher than that of AnC compost (0.44). It was demonstrated that electrogenesis in the AnCBE could improve the sludge stabilization degree, accelerate anaerobic composting process and enhance composting maturity with bioelectricity generation. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. Space agriculture for habitation on Mars with hyper-thermophilic aerobic composting bacteria

    NASA Astrophysics Data System (ADS)

    Space Agriculture Task Force; Ishikawa, Y.; Tomita-Yokotani, K.; Hashimoto, H.; Kitaya, Y.; Yamashita, M.; Nagatomo, M.; Oshima, T.; Wada, H.

    Manned Mars exploration, especially for extended periods of time, will require recycle of materials to support human life. Here, a conceptual design is developed for a Martian agricultural system driven by biologically regenerative functions. One of the core biotechnologies function is the use of hyper-thermophilic aerobic composting bacterial ecology. These thermophilic bacteria can play an important role in increasing the effectiveness of the processing of human metabolic waste and inedible biomass and of converting them to fertilizer for the cultivation of plants. This microbial technology has been already well established for the purpose of processing sewage and waste materials for small local communities in Japan. One of the characteristics of the technology is that the metabolic heat release that occurs during bacterial fermentation raises the processing temperature sufficiently high at 80 100 °C to support hyper-thermophilic bacteria. Such a hyper-thermophilic system is found to have great capability of decomposing wastes including even their normally recalcitrant components, in a reasonably short period of time and of providing a better quality of fertilizer as an end-product. High quality compost has been shown to be a key element in creating a healthy regenerative food production system. In ground-based studies, the soil microbial ecology after the addition of high quality compost was shown to improve plant growth and promote a healthy symbiosis of arbuscular mycorrhizal fungi. Another advantage of such high processing temperature is the ability to sterilize the pathogenic organisms through the fermentation process and thus to secure the hygienic safety of the system. Plant cultivation is one of the other major systems. It should fully utilize solar energy received on the Martian surface for supplying energy for photosynthesis. Subsurface water and atmospheric carbon dioxide mined on Mars should be also used in the plant cultivation system. Oxygen and food production for human thus rely on local Martian resources. A tree growing subsystem will also give an interesting feature to Martian agriculture. In addition to producing excess oxygen, trees’ rigid body will provide structural material, which can be used for habitat construction. The combination of hyper-thermophilic aerobic composting, plant cultivation, and tree growing with utilizing in-situ natural local resources available on Mars can provide important elements which can enable space agriculture on Mars.

  15. Intelligent composting assisted by a wireless sensing network.

    PubMed

    López, Marga; Martinez-Farre, Xavier; Casas, Oscar; Quilez, Marcos; Polo, Jose; Lopez, Oscar; Hornero, Gemma; Pinilla, Mirta R; Rovira, Carlos; Ramos, Pedro M; Borges, Beatriz; Marques, Hugo; Girão, Pedro Silva

    2014-04-01

    Monitoring of the moisture and temperature of composting process is a key factor to obtain a quality product beyond the quality of raw materials. Current methodologies for monitoring these two parameters are time consuming for workers, sometimes not sufficiently reliable to help decision-making and thus are ignored in some cases. This article describes an advance on monitoring of composting process through a Wireless Sensor Network (WSN) that allows measurement of temperature and moisture in real time in multiple points of the composting material, the Compo-ball system. To implement such measurement capabilities on-line, a WSN composed of multiple sensor nodes was designed and implemented to provide the staff with an efficient monitoring composting management tool. After framing the problem, the objectives and characteristics of the WSN are briefly discussed and a short description of the hardware and software of the network's components are presented. Presentation and discussion of practical issues and results obtained with the WSN during a demonstration stage that took place in several composting sites concludes the paper. Copyright © 2014 Elsevier Ltd. All rights reserved.

  16. Effect of the time of application of phosphorus fertilizer on yield and quality parameters of melon crop amended with winery waste compost.

    NASA Astrophysics Data System (ADS)

    Requejo Mariscal, María Isabel; Cartagena, María Carmen; Villena Gordo, Raquel; Arce Martínez, Augusto; Ribas Elcorobarrutia, Francisco; Jesús Cabello Cabello, María; Castellanos Serrano, María Teresa

    2016-04-01

    In Spain, drip irrigation systems are widely used for horticultural crop production. In drip irrigation systems, emitter clogging has been identified as one of the most important concerns. Clogging is closely related to the quality of the irrigation water and the structure of the emitter flow path, and occurs as a result of multiple physical, biological and chemical factors. So, the use of acid fertilizers (e.g. phosphoric acid) in these systems is common to avoid the emitter clogging. Moreover, in this country the use of exhausted grape marc compost as source of nutrients and organic matter has been identified as a good management option of soil fertility, especially in grape-growing areas with a large generation of wastes from the wine and distillery industries. The purpose of this work was to study the effect of the time of application of phosphorus fertilizer with fertirrigation in a melon crop amended with winery waste compost on yield and quality parameters. During two years, the melon crop was grown under field conditions and beside the control treatment, three doses of compost were applied: 6.7, 13.3 and 20.0 t ha-1. All the compost treatments received 120 kg ha-1 of phosphorus fertilizer (phosphoric acid) for the season varying the time of application: The first year phosphorus application started after male and female flowering, and the second year the application started before flowering. Yield and quality parameters were evaluated to assess the suitability of these practices. Acknowledgements: This project has been supported by INIA-RTA2010-00110-C03. Keywords: Phosphorus fertilizer, exhausted grape marc compost, melon crop, yield and quality parameters.

  17. Co-composting of invasive Acacia longifolia with pine bark for horticultural use.

    PubMed

    Brito, Luis Miguel; Mourão, Isabel; Coutinho, João; Smith, Stephen R

    2015-01-01

    The feasibility of commercial-scale co-composting of waste biomass from the control of invasive Acacia species with pine bark waste from the lumber industry, in a blend ratio of 60:40 (v:v), was investigated and compared with previous research on the composting of Acacia without additional feedstock, to determine the potential process and end-product quality benefits of co-composting with bark. Pile temperatures rose rapidly to >70 °C and were maintained at >60 °C for several months. Acacia and bark biomass contained a large fraction of mineralizable organic matter (OM) equivalent to approximately 600 g kg(-1) of initial OM. Bark was more recalcitrant to biodegradation compared with Acacia, which degraded at twice the rate of bark. Therefore, incorporating the bark increased the final amount of compost produced compared with composting Acacia residues without bark. The relatively high C/N ratio of the composting matrix (C/N=56) and NH3 volatilization explained the limited increases in NH4+-N content, whereas concentrations of conservative nutrient elements (e.g. P, K, Ca, Mg, Fe) increased in proportion to OM mineralization, enriching the compost as a nutrient source for horticultural use. Nitrogen concentrations also increased to a small extent, but were much more dynamic and losses, probably associated with N volatilization mechanisms, were difficult to actively control. The physicochemical characteristics of the stabilized end-product, such as pH, electrical conductivity and OM content, were improved with the addition of bark to Acacia biomass, and the final compost characteristics were suitable for use for soil improvement and also as horticultural substrate components.

  18. Evaluation of Solvita compost stability and maturity tests for assessment of quality of end-products from mixed latrine style compost toilets

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hill, Geoffrey B., E-mail: geoff.hill@geog.ubc.ca; Baldwin, Susan A.; Vinnerås, Bjorn

    2013-07-15

    Highlights: • Solvita® stability and maturity tests used on composting toilet end-product. • Solvita® ammonia better suited in evaluation of feedstock suitability for vermicomposting. • No clear value of Solvita® stability test due to prevalent inhibition of decomposition by ammonia. - Abstract: It is challenging and expensive to monitor and test decentralized composting toilet systems, yet critical to prevent the mismanagement of potentially harmful and pathogenic end-product. Recent studies indicate that mixed latrine composting toilets can be inhibited by high ammonia content, a product of urea hydrolysis. Urine-diverting vermicomposting toilets are better able to accomplish the goals of remote sitemore » human waste management by facilitating the consumption of fecal matter by earthworms, which are highly sensitive to ammonia. The reliability of Solvita® compost stability and maturity tests were evaluated as a means of determining feedstock suitability for vermicomposting (ammonia) and end-product stability/completeness (carbon dioxide). A significant linear regression between Solvita® ammonia and free ammonia gas was found. Solvita® ranking of maturity did not correspond to ranking assigned by ammonium:nitrate standards. Solvita® ammonia values 4 and 5 contained ammonia levels below earthworm toxicity limits in 80% and 100% of samples respectively indicative of their use in evaluating feedstock suitability for vermicomposting. Solvita® stability tests did not correlate with carbon dioxide evolution tests nor ranking of stability by the same test, presumably due to in situ inhibition of decomposition and microbial respiration by ammonia which were reported by the Solvita® CO{sub 2} test as having high stability values.« less

  19. [Effects of mushroom residue compost on growth and nutrient accumulation of Larix principis-rupprechtii containerized transplants].

    PubMed

    Teng, Fei; Liu, Yong; Lou, Jun Shan; Sun, Qiao Yu; Wan, Fang Fang; Yang, Chen; Zhang, Jin

    2016-12-01

    Excessive use of peat may cause some environmental problems. To alleviate the negative effect, an experiment was conducted with the mushroom residue compost to replace peat in Larix principis-rupprechtii containerized transplant production, and the proportion of mushroom residue compost was 0% (T 0 , control), 15% (T 1 ), 18.75% (T 2 ), 25% (T 3 ), 37.50% (T 4 ), 50% (T 5 ), 56.25% (T 6 ) and 60% (T 7 ), respectively. The physical and chemical features of the substrates and its effect on the vegetative growth and nutrient accumulation of L. principis-rupprechtii containerized transplants were studied. The results showed when the proportion of mushroom residue compost in the substrate accounted for 50% or less, there was no significant difference in the transplant height, diameter, and biomass compared with the control, and the nutrient concentration in T 2 , T 4 , T 5 treatments was significantly higher than in T 0 . The pH value was sub-acidic to neutral which was suitable to the transplant growth. When the compost proportion accounted for more than 50%, the pH value was altered to alkali and was not suitable to the transplant growth. When the proportion of mushroom residue compost accounted for 15%, the plant grew best, and the height, diameter, and total biomass got the highest. Therefore, using mushroom residue compost to replace peat in L. principis-rupprechtii containerized transplants cultivation was feasible and the maximum replacement ratio could reach 50%. The high quality transplants could be obtained when the compost replacement ratio was 15%.

  20. Distribution and availability of trace elements in municipal solid waste composts.

    PubMed

    Paradelo, Remigio; Villada, Antía; Devesa-Rey, Rosa; Moldes, Ana Belén; Domínguez, Marta; Patiño, Jacobo; Barral, María Teresa

    2011-01-01

    Trace element contamination is one of the main problems linked to the quality of compost, especially when it is produced from urban wastes, which can lead to high levels of some potentially toxic elements such as Cu, Pb or Zn. In this work, the distribution and bioavailability of five elements (Cu, Zn, Pb, Cr and Ni) were studied in five Spanish composts obtained from different feedstocks (municipal solid waste, garden trimmings, sewage sludge and mixed manure). The five composts showed high total concentrations of these elements, which in some cases limited their commercialization due to legal imperatives. First, a physical fractionation of the composts was performed, and the five elements were determined in each size fraction. Their availability was assessed by several methods of extraction (water, CaCl(2)-DTPA, the PBET extract, the TCLP extract, and sodium pyrophosphate), and their chemical distribution was assessed using the BCR sequential extraction procedure. The results showed that the finer fractions were enriched with the elements studied, and that Cu, Pb and Zn were the most potentially problematic ones, due to both their high total concentrations and availability. The partition into the BCR fractions was different for each element, but the differences between composts were scarce. Pb was evenly distributed among the four fractions defined in the BCR (soluble, oxidizable, reducible and residual); Cu was mainly found in the oxidizable fraction, linked to organic matter, and Zn was mainly associated to the reducible fraction (iron oxides), while Ni and Cr were mainly present almost exclusively in the residual fraction. It was not possible to establish a univocal relation between trace elements availability and their BCR fractionation. Given the differences existing for the availability and distribution of these elements, which not always were related to their total concentrations, we think that legal limits should consider availability, in order to achieve a more realistic assessment of the risks linked to compost use.

  1. Evaluation of the slurry management strategy and the integration of the composting technology in a pig farm - Agronomical and environmental implications.

    PubMed

    Sáez, José A; Clemente, Rafael; Bustamante, M Ángeles; Yañez, David; Bernal, M Pilar

    2017-05-01

    The changes in livestock production systems towards intensification frequently lead to an excess of manure generation with respect to the agricultural land available for its soil application. However, treatment technologies can help in the management of manures, especially in N-surplus areas. An integrated slurry treatment system based on solid-liquid separation, aerobic treatment of the liquid and composting the solid fraction was evaluated in a pig farm (sows and piglets) in the South of Spain. Solid fraction separation using a filter band connected to a screw press had low efficiency (38%), which was greatly improved incorporating a rotatory sieve (61%). The depuration system was very efficient for the liquid, with total removal of 84% total solids, 87% volatile solids, and 98% phosphorus. Two composting systems were tested through mechanical turning of: 1- a mixture of solid fraction stored for 1 month after solid-liquid separation and cereal straw; 2- recently-separated solid fraction mixed with cotton gin waste. System 2 was recommended for the farm, as it exhibited a fast temperature rise and a long thermophilic phase to ensure compost sanitisation, and high recovery of nutrients (TN 77%, P and K > 85%) and organic matter (45%). The composts obtained were mature, stable and showed a high degree of humification of their organic matter, absence of phytotoxicity and concentrations of nutrients similar to other composts from pig manure or separated slurry solids. However, the introduction of slurry from piglets into the solid-liquid separation system should be avoided in order to reduce the content of Zn in the compost, which lowers its quality. The slurry separation followed by composting of the solid fraction using a passive windrow system, and aeration of the liquid phase, was the most recommendable procedure for the reduction of GHG emissions on the farm. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Composting of empty fruit bunches in the tower composter - effect of air intake holes

    NASA Astrophysics Data System (ADS)

    Irvan; Husaini, T.; Trisakti, B.; Batubara, F.; Daimon, H.

    2018-02-01

    The process of composting empty fruit bunches (EFB) by mixing with activated liquid organic fertilizer (ALOF) is an alternative utilization of solid waste generated from palm oil mill. This study aims to find composting techniques of EFB and to obtain degradation data of composting EFB by varying the air intake holes to produce good quality compost. Composting process was carried out by tearing the EFB into four shreds, then put into the tower composter while adding ALOF until it reached the optimum moisture content of 55 -65%. During the composting process, we maintained moisture content at optimum conditions by adding ALOF. Variations of air intake holes area to the outer surface area of the composter are 0/44.314; 72.39/44.314 and 144.78/44.314 (cm2/cm2). Composting is carried out for forty days, however, based on the result, compost began to mature on the 10th day. The results revealed that there was an influence of air intake holes to the composting process. The best degradation of EFB was obtained on the variation of air intake holes 72.39/44.314 (cm2/cm2), pH 8.1, moisture content 79.14%, water holding capacity 60%, electrical conductivity 4.725 dS/m and C/N ratio 20.97.

  3. Effect of Turning Frequency on Composting of Empty Fruit Bunches Mixed with Activated Liquid Organic Fertilizer

    NASA Astrophysics Data System (ADS)

    Trisakti, B.; Lubis, J.; Husaini, T.; Irvan

    2017-03-01

    Composting of Empty Fruit Bunch (EFB) by mixing it with activated liquid organic fertilizer (ALOF) is an alternative way in the utilization of solid waste produced from the palm oil mill (POM). This research was to determine the effect of turning frequency on the rate of composting of EFB mixed with ALOF in a basket composter. The composting process was started with cutting the EFB into pieces with size 1-3 cm, inserting the EFB pieces into basket composter (33 cm W × 28 cm L × 40 cm H), and adding ALOF until moisture content (MC) in the range of 55-65%. During composting, the MC was maintained at 55-65% range by adding the ALOF. The turning frequency on each composter was varied i.e. once in every 1, 2, 3, 4, and 5 days. The parameters analysed during composting were temperature, pH, MC, compost weight, water holding capacity (WHC), CN ratio, and the quality of the final compost. Composting was carried out for 40 days and the best result obtained at turning frequency was 3 days. The best compost characteristic was pH 9.0; MC 57.24%; WHC 76%; CN ratio 12.15%; P 0.58%; and K 0. 95%.

  4. Struvite for composting of agricultural wastes with termite mound: Utilizing the unutilized.

    PubMed

    Karak, Tanmoy; Sonar, Indira; Nath, Jyoti Rani; Paul, Ranjit Kumar; Das, Sampa; Boruah, Romesh Kumar; Dutta, Amrit Kumar; Das, Kuntal

    2015-01-01

    Although, compost is the store house of different plant nutrients, there is a concern for low amount of major nutrients especially nitrogen content in prepared compost. The present study deals with preparation of compost by using agricultural wastes with struvite (MgNH4PO4·6H2O) along with termite mound. Among four composting mixtures, 50kg termite mound and 2.5kg struvite with crop residues (stover of ground nut: 361.65kg; soybean: 354.59kg; potato: 357.67kg and mustard: 373.19kg) and cow dung (84.90kg) formed a good quality compost within 70days of composting having nitrogen, phosphorus and potassium as 21.59, 3.98 and 34.6gkg(-1), respectively. Multivariate analysis of variance revealed significant differences among the composts. The four composts formed two (pit 1, pit 2 and pit 3, pit 4) different groups. Two principal components expressed more than 97% of the total variability. Hierarchical cluster analysis resulted two homogeneous groups of composts. Copyright © 2015 Elsevier Ltd. All rights reserved.

  5. Composting of bio-waste, aerobic and anaerobic sludges--effect of feedstock on the process and quality of compost.

    PubMed

    Himanen, Marina; Hänninen, Kari

    2011-02-01

    In-vessel composting of three stocks with originally different degree of organic matter degradation was conducted for: (1) kitchen source-separated bio-waste (BW), (2) aerobic (AS) as well as (3) anaerobic sludges (AnS) from municipal wastewater treatment plant. Composting experiment lasted over a year. The highest activity of the process was in the BW compost. It was implied by the highest temperature, CO(2) release, ammonification and nitrification, intensive accumulation and removal of low-weight carboxylic acids (water- and NaOH-extractable). Between the sludges higher mineralization and CO2 release was in AnS, while ammonification and nitrification were higher in AS compost; no significant difference between sludge composts was noticed for dynamics of pH, conductivity, concentrations of LWCA, and some nutrient compounds and heavy metals. Nitrogen content of the final compost increased in BW, but decreased in AS and AnS. Phytotoxicity of Lepidium sativum was eliminated faster in sludge composts compared to BW compost. Copyright © 2010 Elsevier Ltd. All rights reserved.

  6. Improving sustainability in the remediation of contaminated soils by the use of compost and energy valorization by Paulownia fortunei.

    PubMed

    Madejón, Paula; Domínguez, María Teresa; Díaz, Manuel Jesús; Madejón, Engracia

    2016-01-01

    The plantation of fast growing trees in contaminated sites, in combination with the use of organic wastes, could partially solve a dual environmental problem: the disposal of these wastes and the improvement of soil quality in these degraded soils. This study evaluated the effects of two compost on the quantity and quality of Paulownia fortunei biomass and on syngas production by biomass gasification, produced by plants growing on trace elements contaminated soils. Compost increased biomass production to values similar to those produced in non-contaminated soils, due to the improvement in plant nutritional status. Moreover, biomass quality for gasification was increased by compost addition. Trace element accumulation in the biomass was relatively low and not related to biomass production or the gas quality obtained through gasification. Thus, P. fortunei plantations could pose an opportunity to improve the economic balance of the revegetation of contaminated soils, given that other commercial uses such as food or fodder crop production is not recommended in these soils. Copyright © 2015 Elsevier B.V. All rights reserved.

  7. Estimating the spatial distribution of field-applied mushroom compost in the Brandywine-Christina River Basin using multispectral remote sensing

    NASA Astrophysics Data System (ADS)

    Moxey, Kelsey A.

    The world's greatest concentration of mushroom farms is settled within the Brandywine-Christina River Basin in Chester County in southeastern Pennsylvania. This industry produces a nutrient-rich byproduct known as spent mushroom compost, which has been traditionally applied to local farm fields as an organic fertilizer and soil amendment. While mushroom compost has beneficial properties, the possible over-application to farm fields could potentially degrade stream water quality. The goal of this study was to estimate the spatial extent and intensity of field-applied mushroom compost. We applied a remote sensing approach using Landsat multispectral imagery. We utilized the soil line technique, using the red and near-infrared bands, to estimate differences in soil wetness as a result of increased soil organic matter content from mushroom compost. We validated soil wetness estimates by examining the spectral response of references sites. We performed a second independent validation analysis using expert knowledge from agricultural extension agents. Our results showed that the soil line based wetness index worked well. The spectral validation illustrated that compost changes the spectral response of soil because of changes in wetness. The independent expert validation analysis produced a strong significant correlation between our remotely-sensed wetness estimates and the empirical ratings of compost application intensities. Overall, the methodology produced realistic spatial distributions of field-applied compost application intensities across the study area. These spatial distributions will be used for follow-up studies to assess the effect of spent mushroom compost on stream water quality.

  8. Composting rice straw with sewage sludge and compost effects on the soil-plant system.

    PubMed

    Roca-Pérez, L; Martínez, C; Marcilla, P; Boluda, R

    2009-05-01

    Composting organic residue is an interesting alternative to recycling waste as the compost obtained may be used as organic fertilizer. This study aims to assess the composting process of rice straw and sewage sludge on a pilot-scale, to evaluate both the quality of the composts obtained and the effects of applying such compost on soil properties and plant development in pot experiments. Two piles, with shredded and non-shredded rice straw, were composted as static piles with passive aeration. Throughout the composting process, a number of parameters were determined, e.g. colour, temperature, moisture, pH, electrical conductivity, organic matter, C/N ratio, humification index, cation exchange capacity, chemical oxygen demand, and germination index. Moreover, sandy and clayey soils were amended with different doses of mature compost and strewed with barley in pot experiments. The results show that compost made from shredded rice straw reached the temperatures required to maximise product sanitisation, and that the parameters indicating compost maturity were all positive; however, the humification index and NH(4) content were more selective. Therefore, using compost-amended soils at a dose of 34 Mg ha(-1) for sandy soil, and of 11 Mg ha(-1) for clayey soil improves soil properties and the growth of Hordeum vulgare plants. Under there conditions, the only limiting factor of agronomic compost utilisation was the increased soil salinity.

  9. On-farm production of arbuscular mycorrhizal funus inoculum in compost and vermiculite mixtures: results of on-farm demonstrations and impact of compost microbiological quality

    USDA-ARS?s Scientific Manuscript database

    The sustainability and profitability of many agricultural systems can be enhanced through the utilization of inoculum of arbuscular mycorrhizal fungi. Inocula are commercially available, but inoculum can also be produced on-farm in mixtures of compost and vermiculite with a nurse host plant. Demon...

  10. Accelerated In-vessel Composting for Household Waste

    NASA Astrophysics Data System (ADS)

    Bhave, Prashant P.; Joshi, Yadnyeshwar S.

    2017-12-01

    Composting at household level will serve as a viable solution in managing and treating the waste efficiently. The aim of study was to design and study household composting reactors which would treat the waste at source itself. Keeping this aim in mind, two complete mix type aerobic reactors were fabricated. A comparative study between manually operated and mechanically operated reactor was conducted which is the value addition aspect of present study as it gives an effective option of treatment saving the time and manpower. Reactors were loaded with raw vegetable waste and cooked food waste i.e. kitchen waste for a period of 30 days after which mulch was allowed to mature for 10 days. Mulch was analyzed for its C/N ratio, nitrate, phosphorous, potassium and other parameters to determine compost quality, every week during its period of operation. The results showed that compost obtained from both the reactors satisfied almost all compost quality criteria as per CPHEEO manual on municipal solid waste management and thus can be used as soil amendment to increase the fertility of soil.In terms of knowledge contribution, this study puts forth an effective way of decentralized treatment.

  11. Innovative biocatalytic production of soil substrate from green waste compost as a sustainable peat substitute.

    PubMed

    Kazamias, Georgios; Roulia, Maria; Kapsimali, Ioanna; Chassapis, Konstantinos

    2017-12-01

    In the present work, a new simple and quick eco-friendly method is discussed to handle effectively the green wastes and produce a sustainable peat substitute of high quality on the large scale. Principal physicochemical parameters, i.e., temperature, moisture, specific weight, pH, electrical conductivity and, also, microorganisms, organic matter, humic substances, total Kjeldahl nitrogen and total organic carbon, C/N ratio, ash, metal content and phytotoxicity, were monitored systematically. Humic substances content values were interrelated to both C/N ratio and pH values and, similarly, bulk density, TOC, TKN, C/N, GI, ash and organic matter were found interconnected to each other. A novel biocatalyst, extremely rich in soil microorganisms, prepared from compost extracts and peaty lignite, accelerated the biotransformation. Zeolite was also employed. The compost does not demonstrate any phytotoxicity throughout the entire biotransformation process and has increased humic substances content. Both humic substances content and germination index can be employed as maturation indices of the compost. Addition of compost, processed for 60 days only, in cultivations of grass plants led to a significant increase in the stem mass and root size, annotating the significant contribution of the compost to both growth and germination. The product obtained is comparable to peat humus, useful as peat substitute and can be classified as a first class soil conditioner suitable for organic farming. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. Composted versus raw olive mill waste as substrates for the production of medicinal mushrooms: an assessment of selected cultivation and quality parameters.

    PubMed

    Zervakis, Georgios I; Koutrotsios, Georgios; Katsaris, Panagiotis

    2013-01-01

    Two-phase olive mill waste (TPOMW, "alperujo") is a highly biotoxic sludge-like effluent of the olive-oil milling process with a huge seasonal production. One of the treatment approaches that has so far received little attention is the use of TPOMW as substrate for the cultivation of edible mushrooms. Fifteen fungal strains belonging to five species (Basidiomycota), that is, Agrocybe cylindracea, Pleurotus cystidiosus, P. eryngii, P. ostreatus, and P. pulmonarius, were evaluated for their efficacy to colonize media composed of TPOMW, which was used either raw or composted in mixtures with wheat straw in various ratios. Qualified strains exhibited high values of biological efficiency (e.g., 120-135% for Pleurotus spp. and 125% for A. cylindracea) and productivity in subsequent cultivation experiments on substrates supplemented with 20-40% composted TPOMW or 20% raw TPOMW. Only when supplementation exceeded 60% for raw TPOMW, a negative impact was noted on mushroom yields which could be attributed to the effluent's toxicity (otherwise alleviated in the respective composted TPOMW medium). Earliness and mushroom size as well as quality parameters such as total phenolic content and antioxidant activity did not demonstrate significant differences versus the control wheat-straw substrate. The substrates hemicellulose content was negatively correlated with mycelium growth rates and yields and positively with earliness; in addition, cellulose: lignin ratio presented a positive correlation with mycelium growth and mushroom weight for A. cylindracea and with earliness for all species examined. TPOMW-based media revealed a great potential for the substitution of traditional cultivation substrates by valorizing environmentally hazardous agricultural waste.

  13. Utilization of solar energy in sewage sludge composting: fertilizer effect and application.

    PubMed

    Chen, Yiqun; Yu, Fang; Liang, Shengwen; Wang, Zongping; Liu, Zizheng; Xiong, Ya

    2014-11-01

    Three reactors, ordinary, greenhouse, and solar, were constructed and tested to compare their impacts on the composting of municipal sewage sludge. Greenhouse and solar reactors were designed to evaluate the use of solar energy in sludge composting, including their effects on temperature and compost quality. After 40 days of composting, it was found that the solar reactor could provide more stable heat for the composting process. The average temperature of the solar reactor was higher than that of the other two systems, and only the solar reactor could maintain the temperature above 55°C for more than 3 days. Composting with the solar reactor resulted in 31.3% decrease in the total organic carbon, increased the germination index to 91%, decreased the total nitrogen loss, and produced a good effect on pot experiments. Copyright © 2014 Elsevier Ltd. All rights reserved.

  14. Performance of phosphogypsum and calcium magnesium phosphate fertilizer for nitrogen conservation in pig manure composting.

    PubMed

    Li, Yun; Luo, Wenhai; Li, Guoxue; Wang, Kun; Gong, Xiaoyan

    2018-02-01

    This study investigated the performance of phosphogypsum and calcium magnesium phosphate fertilizer for nitrogen conservation during pig manure composting with cornstalk as the bulking agent. Results show that phosphogypsum increased nitrous oxide (N 2 O) emission, but significantly reduced ammonia (NH 3 ) emission and thus enhanced the mineral and total nitrogen (TN) contents in compost. Although N 2 O emission could be reduced by adding calcium magnesium phosphate fertilizer, NH 3 emission was considerably increased, resulting in an increase in TN loss during composting. By blending these two additives, both NH 3 and N 2 O emissions could be mitigated, achieving effective nitrogen conservation in composting. More importantly, with the addition of 20% TN of the mixed composting materials, these two additives could synergistically improve the compost maturity and quality. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Waste utilization of red snapper (Lutjanus sp.) fish bone to improve phosphorus contents in compost

    NASA Astrophysics Data System (ADS)

    Ramadhani, S.; Iswanto, B.; Purwaningrum, P.

    2018-01-01

    The purpose of this research is to get the idea that bone waste will be the P content enhancer in compost so that the compost produced meets the standard P levels specified in SNI 19-7030-2004 which regulating compost quality standard. Nutrient levels were obtained in fish bone meal (FBM) are C (3.35%), N (0.48%), P (30.90%) and K (0.02%). Effects of fish bone meal to the rising levels of P in the compost has been known. P levels of compost B, C, D, and E increased at 428.57; 542.85; 657.14 and 914.28% against the compost A (blank). FBM ideal addition indicated in compost B, as much as 15 gr, with a P content of 0.37% and has been passed according standards (0.10% for P). C/N ratio decreased over the 21 days period of composting, with the greatest decline was compost E with a ratio of 16:1. Highest nitrogen (N) levels recorded respectively in compost B and C with value of 1.09% and the lowest of recorded N content was compost A, D and E (1.08%). N content in all samples of compost were eligible minimum N of 0.40%. Carbon (C) is the highest recorded in compost B; 20.20% and the lowest in the compost E; 17.34%. Highest and lowest C levels on the compost has met the minimum C of 9.80%. Composting is done in a bucket as an aerobic composter (with air holes), compost pile turnover for each sample is controlled as much as once/2 days. Mesophilic period (23-450C) occurs during the 21-day period of composting. Compost B has P content of 0.37%, so it has fulfilled the provisions of SNI 19-7030-2004 about the recommended compost standard.

  16. Performance of Elaeis Guineensis Leaves Compost in Filter Media for Stormwater Treament Through Column Study

    NASA Astrophysics Data System (ADS)

    Takaijudin, H.; Ghani, A. A.; Zakaria, N. A.; Tze, L. L.

    2016-07-01

    Compost based materials arv e widely used in filter media for improving soil capability and plant growth. The aim of this paper is to evaluate different types of compost materials used in engineered soil media through soil column investigation. Three (3) column, namely C1 (control), C2 and C3 had different types compost (10%) which were, commercial compost namely PEATGRO, Compost A and Compost B were prepared with 60% medium sand and 30% of topsoil. The diluted stormwater runoff was flushed to the columns and it was run for six (6) hour experiment. The influent and effluent samples were collected and tested for Water Quality Index (WQI) parameters. The results deduced that C3 with Elaeis Guineensis leaves compost (Compost B) achieved 90.45 (Class II) better than control condition which accomplished 84 (Class II) based on WQI Classification. C3 with Compost A (African Mahogany Leaves Compost) obtained only 59.39 (Class III). C3 with the composition of Compost B effectively removed most pollutants, including Chemical Oxygen Demand (COD, Ammoniacal Nitrogen (NH3-N), were reduced by 89±4% and 96.6±0.9%, respectively. The result concluded that Elaeis Guineensis leaves compost is recommended to be used as part of engineered soil media due to its capabilities in eliminating stormwater pollutants.

  17. TPK Sarimukti, Cipatat, West Bandung compost toxicity test using Allium test

    NASA Astrophysics Data System (ADS)

    Wardini, Trimurti Hesti; Notodarmojo, Peni Astrini

    2015-09-01

    TPK Sarimukti, Cipatat, West Bandung produced 2 kinds of compost from traditional market waste, liquid and solid compost. The aim of this research is to evaluate toxicity of compost produced in TPK Sarimukti using shallots (Allium cepa). Tests carried out by treated shallots with liquid compost (2,5%, 5%, 10% and 12,5% (w/v)) or solid compost (25%, 50%, 75% and 100% (w/v)) for 48 hours. Results showed reduced root growth rate and mitotic index (MI) in accordance with increased concentrations of compost. Sub lethal concentrations are liquid compost 5% and 10% and solid compost 75%. Lethal concentrations are liquid compost 12,5 % and solid compost 100%. Micronuclei (MN) increased with increase in liquid compost concentration. MN found at very high frequencies in highest solid compost concentration (100%), but very low at lower concentrations. Cells with binuclei and cell necrosis increased with increasing concentrations of given compost. Nuclear anomalies (NA) found in high frequency in 75% and 100% solid compost. Based on research, we can conclude that liquid compost is more toxic because it can reduce MI and root growth rate at lower concentrations than solid compost. Both types of compost have genotoxic properties because it can induce chromosome aberration (CA), MN, binuclei and NA formation.

  18. TPK Sarimukti, Cipatat, West Bandung compost toxicity test using Allium test

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wardini, Trimurti Hesti; Notodarmojo, Peni Astrini

    TPK Sarimukti, Cipatat, West Bandung produced 2 kinds of compost from traditional market waste, liquid and solid compost. The aim of this research is to evaluate toxicity of compost produced in TPK Sarimukti using shallots (Allium cepa). Tests carried out by treated shallots with liquid compost (2,5%, 5%, 10% and 12,5% (w/v)) or solid compost (25%, 50%, 75% and 100% (w/v)) for 48 hours. Results showed reduced root growth rate and mitotic index (MI) in accordance with increased concentrations of compost. Sub lethal concentrations are liquid compost 5% and 10% and solid compost 75%. Lethal concentrations are liquid compost 12,5more » % and solid compost 100%. Micronuclei (MN) increased with increase in liquid compost concentration. MN found at very high frequencies in highest solid compost concentration (100%), but very low at lower concentrations. Cells with binuclei and cell necrosis increased with increasing concentrations of given compost. Nuclear anomalies (NA) found in high frequency in 75% and 100% solid compost. Based on research, we can conclude that liquid compost is more toxic because it can reduce MI and root growth rate at lower concentrations than solid compost. Both types of compost have genotoxic properties because it can induce chromosome aberration (CA), MN, binuclei and NA formation.« less

  19. Utilization of solar energy in sewage sludge composting: Fertilizer effect and application

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Yiqun; Yu, Fang; Liang, Shengwen

    2014-11-15

    Highlights: • Solar energy technologies were utilized in aerobic sewage sludge composting. • Greenhouse and solar reactors were constructed to compare impacts on the composting. • Impatiens balsamina was planted in pot experiments to evaluate fertilizer effect. - Abstract: Three reactors, ordinary, greenhouse, and solar, were constructed and tested to compare their impacts on the composting of municipal sewage sludge. Greenhouse and solar reactors were designed to evaluate the use of solar energy in sludge composting, including their effects on temperature and compost quality. After 40 days of composting, it was found that the solar reactor could provide more stablemore » heat for the composting process. The average temperature of the solar reactor was higher than that of the other two systems, and only the solar reactor could maintain the temperature above 55 °C for more than 3 days. Composting with the solar reactor resulted in 31.3% decrease in the total organic carbon, increased the germination index to 91%, decreased the total nitrogen loss, and produced a good effect on pot experiments.« less

  20. [Profile distribution and pollution assessment of heavy metals in soils under livestock feces composts].

    PubMed

    Chao, Lei; Zhou, Qi-xing; Cui, Shuang; Chen, Su; Ren, Li-ping

    2007-06-01

    This paper studied the profile distribution of heavy metals in soils under different kind livestock feces composts. The results showed that in the process of livestock feces composting, the pH value and organic matter content of soil under feces compost increased significantly, and had a decreased distribution with soil depth. The contents of soil Zn and Cd also had an obvious increase, and decreased with increasing soil depth. Under the composts of chicken and pig feces, soil Cu content decreased with soil depth, while under cattle feces compost, it had little change. Soil Cd and Zn had a stronger mobility than soil Cu, and the Zn, Cd and Cu contents in some soil layers exceeded the first level of the environmental quality standard for soils in China. The geo-accumulation indices showed that only the 0-10 cm soil layer under chicken feces compost and the 0-40 cm soil layer under egg chicken feces compost were lightly polluted by Zn, while the soil profiles under other kinds of livestock feces compost were not polluted by Pb, Cu, Zn and Cd.

  1. Effect of the raw materials and mixing ratio of composted wastes on the dynamic of organic matter stabilization and nitrogen availability in composts of Sub-Saharan Africa.

    PubMed

    Kaboré, Théodore Wind-Tinbnoma; Houot, Sabine; Hien, Edmond; Zombré, Prosper; Hien, Victor; Masse, Dominique

    2010-02-01

    The effect of raw materials and their proportions in initial mixtures on organic matter (OM) stabilization and nitrogen (N) availability during pit composting in Sub-Saharan Africa was assessed using biochemical fractionation and laboratory incubations to characterize composts sampled throughout the composting process. Stabilization of OM occurred more rapidly in mixtures with slaughter-house wastes, it was progressive in mixture with household refuses while tree leaves compost remained unstable. Carbon mineralization from compost samples was positively correlated to water soluble and hemicellulose-like organic fractions. Mixtures containing large proportions of household refuses reached the highest stability and total N but available N remained weak. Slaughter-house wastes in the initial mixtures made possible to reach good OM stabilization and the largest N availability. The nature of initial mixing influenced composting parameters, OM stabilization and N availability. It is suggested mixing household refuses and slaughter-house wastes with tree leaves to reach better amending and fertilizer qualities of composts.

  2. Comparison of microbially enhanced compost extracts produced from composted cattle rumen content material and from commercially available inocula.

    PubMed

    Shrestha, Karuna; Adetutu, Eric M; Shrestha, Pramod; Walsh, Kerry B; Harrower, Keith M; Ball, Andrew S; Midmore, David J

    2011-09-01

    A comparative study was performed on compost extracts prepared from cattle rumen content composted for three and nine months, nine month old compost inoculated with a Nutri-Life 4/20™ inoculum, and two commercial preparations (LivingSoil™ and Nutri-Life 4/20™), all incubated for 48h. Nutri-Life 4/20™ had the highest concentrations of NO(3)(-)-N and K(+)-K, while rumen compost extract had higher humic and fulvic acids concentration. The bacterial and fungal community level functional diversity of three month old compost extract and of LivingSoil™, assessed with Biolog™, were higher than that of nine month old rumen compost extract, with or without Nutri-Life 4/20™ inoculum, or Nutri-Life 4/20™. No difference in fungal diversity was observed between treatments, as indicated by Denaturing Gradient Gel Electrophoresis (DGGE) analysis, however, bacterial diversity was higher in all compost extracts and LivingSoil™ compared to the Nutri-Life 4/20™. Criteria for judging the quality of a microbially enhanced extract are discussed. Copyright © 2011 Elsevier Ltd. All rights reserved.

  3. Utilization of high temperature compost in space agriculture: the model compost kills Escherichia coli

    NASA Astrophysics Data System (ADS)

    Oshima, Tairo; Moriya, Toshiyuki; Yoshii, Takahiro

    The author and his colleagues have proposed the use of high temperature composting in space inhabitation. Composting has many advantages over burning in organic waste treatments. Composting is self-heating processes and needs no extra fuel. Composting requires no sophis-ticated equipment such as an incinerator. Composting emits no hazardous gases such as NOx, SOx and dioxines which are often produced by burning. The final product can be used as fer-tilizer in space farm land; resources recycling society can be constructed in space stations and space cities. In addition to these advantages, composting and compost soil may contribute to the environmental cleanup. During composting processes, harmful compounds to agricultural plants and animals can be destroyed. Seeds of weeds can be killed by high heat. Likewise pathogenic microbes in the waste can be eliminated during fermentation inside the composts. Recently we measured the survivability of E. coli in compost. E. coli was used as the represen-tative of the Gram-negative bacteria. Since many pathogenic strains belong to Gram-negative bacteria and Gram-negative bacteria are more resistant to antibiotics than gram-positive bac-teria. When E. coli cells were mixed in the compost pile of which inside temperature reaches up to 75oC, they died within a short period as expected. However, E. coli DNA was detected even after a day in high temperature compost. RNA has a shorter life-span than DNA, but was detected after incubation in compost for several hours. In addition to sterilizing effects due to high temperature, we found our compost soil has E. coli killing activity. When mixed with the compost soil at room temperature, E. coli died gradually. Extract of the compost soil also killed E. coli at room temperature, but it took a few days to eliminate E. coli completely. During the killing process, total number of living bacteria did not change, indicating that the killing activity is limited to some specific microorganisms. These findings suggest that the compost can be used to eliminate some of deleterious microbes from the environment without damages to the beneficial microbes. We are planning to test the killing activity of the com-post soil against more dangerous microorganisms such as Salmonella species, especially those pathogenic to barn animals.

  4. Evaluation of Composting Implementation: A Literature Review

    DTIC Science & Technology

    1990-07-13

    toxic intermediates and reaction products ; and 3. the potential for additional contami-ation of groundwaters and soils . General conclusions from these... Soil . In: Compost: Production , Quality, and Use, Proceedings of a Symposium Organized by the Commission of the European Communities, M. DeBertoldi, M...Historically, composting has been used to accelerate the biodegradation of a variety of organic wastes from agricultural products (Fujio et al., 1986

  5. Utilization of different waste proteins to create a novel PGPR-containing bio-organic fertilizer

    PubMed Central

    Huang, Yan; Sun, Li; Zhao, Jianshu; Huang, Rong; Li, Rong; Shen, Qirong

    2015-01-01

    High-quality bio-organic fertilizers (BIOs) cannot be produced without the addition of some proteins, while many waste proteins are haphazardly disposed, causing serious environmental pollution. In this study, several waste proteins were used as additives to assist with the reproduction of the functional microbe (Bacillus amyloliquefaciens SQR9) inoculated into matured composts to produce BIOs. An optimized composition of solid-state fermentation (SSF) raw materials was predicted by response surface methodology and experimental validation. The results showed that 7.61% (w/w, DW, the same below) rapeseed meal, 8.85% expanded feather meal, 6.47% dewatered blue algal sludge and 77.07% chicken compost resulted in maximum biomass of strain SQR-9 and the maximum amount of lipopeptides 7 days after SSF. Spectroscopy experiments showed that the inner material structural changes in the novel SSF differed from the control and the novel BIO had higher dissolved organic matter. This study offers a high value-added utilization of waste proteins for producing economical but high-quality BIO. PMID:25586328

  6. Utilization of different waste proteins to create a novel PGPR-containing bio-organic fertilizer

    NASA Astrophysics Data System (ADS)

    Huang, Yan; Sun, Li; Zhao, Jianshu; Huang, Rong; Li, Rong; Shen, Qirong

    2015-01-01

    High-quality bio-organic fertilizers (BIOs) cannot be produced without the addition of some proteins, while many waste proteins are haphazardly disposed, causing serious environmental pollution. In this study, several waste proteins were used as additives to assist with the reproduction of the functional microbe (Bacillus amyloliquefaciens SQR9) inoculated into matured composts to produce BIOs. An optimized composition of solid-state fermentation (SSF) raw materials was predicted by response surface methodology and experimental validation. The results showed that 7.61% (w/w, DW, the same below) rapeseed meal, 8.85% expanded feather meal, 6.47% dewatered blue algal sludge and 77.07% chicken compost resulted in maximum biomass of strain SQR-9 and the maximum amount of lipopeptides 7 days after SSF. Spectroscopy experiments showed that the inner material structural changes in the novel SSF differed from the control and the novel BIO had higher dissolved organic matter. This study offers a high value-added utilization of waste proteins for producing economical but high-quality BIO.

  7. A Study Into the Effects of Various Compost-Potting Soil Mixes in An Effort to Heighten Bio-Productivity and Lower Farm Expenses

    NASA Astrophysics Data System (ADS)

    Valva, C.; Zhang, A.; Mahajan, S.; Ammini, K.; Ho, J.; Lo, D.

    2015-12-01

    The Stanford farm is a small, sustainably run farm that prioritizes producing high-quality crops in an environmentally sustainable way. This experiment focuses on the soil used to germinate and cultivate crops in a controlled greenhouse environment. It was conducted with the objective of determining which ratio of compost to potting mix is most favorable in terms of both cost and biological productivity. The five ratios of compost to potting mix were created as follows: (1) 100% compost; (2) 75% compost and 25% potting mix; (3) 50% compost and 50% potting mix; (4) 25% compost and 75% potting mix; and (5) 100% potting mix. Three different crops with distinct needs were used in the experiment: an Indonesian cultivar of Cosmos flowers (Cosmos sp.), a heritage American Corn cultivar (Zea mays), and Ojo de Cabra beans (Phaseolus vulgaris). Ten pots of the corn, ten pots of the beans, and ten pots of the cosmos flowers were planted in each of the soil ratios mentioned above. The pots were placed in the greenhouse and watered regularly and equally by the greenhouse watering system. The experiment is ongoing and is not yet completed. However, thus far the results indicate that 75% compost and 25% potting mix is the most favorable ratio; the corn, bean, and cosmos plants grown using this ratio not only had the highest germination rate (90% of corn seeds, 90% of bean seeds, and 100% of cosmos seeds) but also had the highest average upward growth. According to data taken August 3, 2015, the corn plants grown using the 75:25 compost to potting mix ratio were the tallest by an average of 10.67cm, the beans grown in this ratio were tallest by an average of 3.96cm, and the cosmos were tallest by an average of 0.14 cm. As compost is a cheaper alternative to potting mix, using a compost-based soil would save the farm money while also maximizing plant growth.

  8. Compost-amended biofiltration swale evaluation.

    DOT National Transportation Integrated Search

    2011-09-01

    From May 2009 through June 2010, Herrera Environmental Consultants conducted hydrologic : and water quality monitoring of a compost-amended biofiltration swale and a standard (control) : biofiltration swale in the median of State Route 518 for the Wa...

  9. COP-compost: a software to study the degradation of organic pollutants in composts.

    PubMed

    Zhang, Y; Lashermes, G; Houot, S; Zhu, Y-G; Barriuso, E; Garnier, P

    2014-02-01

    Composting has been demonstrated to be effective in degrading organic pollutants (OP) whose behaviour depends on the composting conditions, the microbial populations activated and interactions with organic matters. The fate of OP during composting involves complex mechanisms and models can be helpful tools for educational and scientific purposes, as well as for industrialists who want to optimise the composting process for OP elimination. A COP-Compost model, which couples an organic carbon (OC) module and an organic pollutant (OP) module and which simulates the changes of organic matter, organic pollutants and the microbial activities during the composting process, has been proposed and calibrated for a first set of OP in a previous study. The objectives of the present work were (1) to introduce the COP-Compost model from its convenient interface to a potential panel of users, (2) to show the variety of OP that could be simulated, including the possibility of choosing between degradation through co-metabolism or specific metabolism and (3) to show the effect of the initial characteristics of organic matter quality and its microbial biomass on the simulated results of the OP dynamic. In the model, we assumed that the pollutants can be adsorbed on organic matter according to the biochemical quality of the OC and that the microorganisms can degrade the pollutants at the same time as they degrade OC (by co-metabolism). A composting experiment describing two different (14)C-labelled organic pollutants, simazine and pyrene, were chosen from the literature because the four OP fractions simulated in the model were measured during the study (the mineralised, soluble, sorbed and non-extractable fractions). Except for the mineralised fraction of simazine, a good agreement was achieved between the simulated and experimental results describing the evolution of the different organic fractions. For simazine, a specific biomass had to be added. To assess the relative importance of organic matter dynamics on the organic pollutants' behaviour, a sensitivity analysis was conducted. The sensitivity analysis demonstrated that the parameters associated with organic matter dynamics and its initial microbial biomass greatly influenced the evolution of all the OP fractions, although the initial biochemical quality of the OC did not have a significant impact on the OP evolution.

  10. Collaboration of liquid bio-ameliorant and compost effect to crop yield and decreasing of inorganic fertilizer utilization for sustainable agriculture

    NASA Astrophysics Data System (ADS)

    Rasyid, B.

    2018-05-01

    Soil quality and plant productivity are main issue in agriculture production. The purpose of this research was to obtain sustainable crop management in effort to improve soil quality and increase maize production through collaboration of liquid bio-ameliorant and compost. Field experiment was carried out in two planting season with factorial experimental design replicated three times in 2m x 2m plots. Duncan multiple range test was used to analysis the effect of treatment on all parameters evaluated. The first planting season, treatments were arranged in three factors as: (1) planting space with two spaces, (2) three concentration of liquid bio-ameliorant, and (3) three level of urea fertilizer. The second planting season, treatments were arranged in two factors as: (1) liquid bio-ameliorant (LBA) with four concentrations and (2) compost with four levels. In the first season, result showed in soil quality parameters such as microbial density and soil chemical properties increased approximately 28%. The highest yield of 9.00 ton ha-1 was found in application 300 ml l-1 LBA + urea 240 kg ha-1. In the second season, collaboration treatment of 250 ml l-1 LBA + 10 ton ha-1 compost had the highest yield by 10.47 ton ha-1. This study confirmed that collaboration of liquid bio-ameliorant and compost could be used as fertilizer complement and reducing inorganic fertilizer utilization to sustain crop production and soil quality.

  11. [Co-composting high moisture vegetable waste and flower waste in a sequential fed operation].

    PubMed

    Zhang, Xiangfeng; Wang, Hongtao; Nie, Yongfeng

    2003-11-01

    Co-composting of high moisture vegetable wastes (celery and cabbage) and flower wastes (carnation) were studied in a sequential fed bed. The preliminary materials of composting were celery and carnation wastes. The sequential fed materials of composting were cabbage wastes and were fed every 4 days. Moisture content of mixture materials was between 60% and 70%. Composting was done in an aerobic static bed of composting based temperature feedback and control via aeration rate regulation. Aeration was ended when temperature of the pile was about 40 degrees C. Changes of composting of temperature, aeration rate, water content, organic matter, ash, pH, volume, NH4(+)-N, and NO3(-)-N were studied. Results show that co-composting of high moisture vegetable wastes and flower wastes, in a sequential fed aerobic static bed based temperature feedback and control via aeration rate regulation, can stabilize organic matter and removal water rapidly. The sequential fed operation are effective to overcome the difficult which traditional composting cannot applied successfully where high moisture vegetable wastes in more excess of flower wastes, such as Dianchi coastal.

  12. Methodological interference of biochar in the determination of extracellular enzyme activities in composting samples

    NASA Astrophysics Data System (ADS)

    Jindo, K.; Matsumoto, K.; García Izquierdo, C.; Sonoki, T.; Sanchez-Monedero, M. A.

    2014-07-01

    Biochar application has received increasing attention as a means to trap recalcitrant carbon and enhance soil fertility. Hydrolytic enzymatic assays, such as β-glucosidase and phosphatase activities, are used for the assessment of soil quality and composting process, which are based on use of p-nitrophenol (PNP) derivatives as substrate. However, sorption capacity of biochar can interfere with colorimetric determination of the hydrolysed PNP, either by the sorption of the substrate or the reaction product of hydrolysis into biochar surface. The aim of the present work is to study the biochar sorption capacity for PNP in biochar-blended composting mixtures in order to assess its impact on the estimation of the colorimetric-based enzymatic assays. A retention test was conducted by adding a solution of known amounts of PNP in universal buffer solution (pH = 5, 6.5 and 11, corresponding to the β-glucosidase, acid and alkaline phosphatase activity assays, respectively), in samples taken at the initial stage and after maturation stage from four different composting piles (two manure composting piles; PM: poultry manure, CM: cow manure and two other similar piles containing 10% of additional biochar (PM + B, CM + B)). The results show that biochar-blended composts (PM + B, CM + B) generally exhibited low enzymatic activities, compared to manure compost without biochar (PM, CM). In terms of the difference between the initial and maturation stage of composting process, the PNP retention in biochar was shown higher at maturation stage, caused most probably by an enlarged proportion of biochar inside compost mixture after the selective degradation of easily decomposable organic matter. TThe retention of PNP on biochar was influenced by pH dependency of sorption capacity of biochar and/or PNP solubility, since PNP was more efficiently retained by biochar at low pH values (5 and 6.5) than at high pH values (11).

  13. Methodological interference of biochar in the determination of extracellular enzyme activities in composting samples

    NASA Astrophysics Data System (ADS)

    Jindo, K.; Matsumoto, K.; García Izquierdo, C.; Sonoki, T.; Sanchez-Monedero, M. A.

    2014-03-01

    Biochar application has received increasing attention as a means to trap recalcitrant carbon and enhance soil fertility. Hydrolytic enzymatic assays, such as β-glucosidase and phosphatase activities, are used for the assessment of soil quality and composting process, which are based on use of p-nitrophenol (PNP) derivatives as substrate. However, sorption capacity of biochar can interfere colorimetric determination of the hydrolysed PNP, either by the sorption of the substrate or the reaction-product of hydrolysis into biochar surface. The aim of the present work is to study the biochar sorption capacity for PNP in biochar-blended composting mixtures in order to assess its impact on the estimation of the colorimetric-based enzymatic assays. A retention test was conducted by adding a solution of known amounts of PNP in universal buffer solution (pH = 5, 6.5 and 11, corresponding to the β-glucosidase, acid and alkaline phosphatase activity assays, respectively), in samples taken at the initial stage and after maturation stage from 4 different composting piles (two manure composting piles (PM: poultry manure, CM: cow manure) and two other similar piles containing 10% of additional biochar (PM + B, CM + B)). The results show that biochar blended composts (PM + B, CM + B) generally exhibited low enzymatic activities, compared to manure compost without biochar (PM, CM). In terms of the difference between the initial and maturation stage of composting process, the PNP retention in biochar was shown more clearly at maturation stage, caused by an enlarged proportion of biochar inside compost mixture after the selective degradation of easily decomposable organic matter. The retention of PNP was more pronounced at low pH (5 and 6.5) than at high pH (11), 3 reflecting on pH dependency of sorption 49 capacity of biochar and/or PNP 50 solubility.

  14. Evaluation of medical stone amendment for the reduction of nitrogen loss and bioavailability of heavy metals during pig manure composting.

    PubMed

    Wang, Quan; Wang, Zhen; Awasthi, Mukesh Kumar; Jiang, Yahui; Li, Ronghua; Ren, Xiuna; Zhao, Junchao; Shen, Feng; Wang, Meijing; Zhang, Zengqiang

    2016-11-01

    The purpose of this research was to evaluate the effect of medical stone (MS) on nitrogen conservation and improving the compost quality during the pig manure (PM) composting. Five treatments were designed with different concentrations of MS0%, 2.5%, 5%, 7.5% and 10% (on dry weight of pig manure basis) mixed with initial feed stock and then composted for 60days. The results showed that MS amendment obviously (p<0.05) promoted the organic waste degradation and prolonged the thermophilic phase as well as enhanced the immobilization of heavy metals Cu and Zn. With increasing the amount of MS, the NH3 loss and N2O emission were significantly reduced by 27.9-48.8% and by 46.6-85.3%, respectively. Meanwhile, the MS amendment could reduce the NO2(-)-N formation and increase the NO3(-)-N content. Finally our results suggested that 10%MS addition could significantly reduce the nitrogen conservation as well as improve the quality of compost. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. Bacterial and fungal communities and contribution of physicochemical factors during cattle farm waste composting.

    PubMed

    Huhe; Jiang, Chao; Wu, Yanpei; Cheng, Yunxiang

    2017-12-01

    During composting, the composition of microbial communities is subject to constant change owing to interactions with fluctuating physicochemical parameters. This study explored the changes in bacterial and fungal communities during cattle farm waste composting and aimed to identify and prioritize the contributing physicochemical factors. Microbial community compositions were determined by high-throughput sequencing. While the predominant phyla in the bacterial and fungal communities were largely consistent during the composting, differences in relative abundances were observed. Bacterial and fungal community diversity and relative abundance varied significantly, and inversely, over time. Relationships between physicochemical factors and microbial community compositions were evaluated by redundancy analysis. The variation in bacterial community composition was significantly related to water-soluble organic carbon (WSOC), and pile temperature and moisture (p < .05), while the largest portions of variation in fungal community composition were explained by pile temperature, WSOC, and C/N (p < .05). These findings indicated that those parameters are the most likely ones to influence, or be influenced by the bacterial and fungal communities. Variation partitioning analyses indicated that WSOC and pile temperature had predominant effects on bacterial and fungal community composition, respectively. Our findings will be useful for improving the quality of cattle farm waste composts. © 2017 The Authors. MicrobiologyOpen published by John Wiley & Sons Ltd.

  16. Inoculation of Scytalidium thermophilum in Button Mushroom Compost and Its Effect on Yield.

    PubMed

    Straatsma, G; Olijnsma, T W; Gerrits, J P; Amsing, J G; Op Den Camp, H J; Van Griensven, L J

    1994-09-01

    Scytalidium thermophilum isolates in culture, as well as the endogenous strain(s) in mushroom compost, were inactivated at 70 degrees C. This temperature was used to pasteurize composts for experiments. Of nine thermophilic fungal species, only S. thermophilum and Myriococcum thermophilum grew well on pasteurized compost in test tubes. The effect of both species on the crop yield of Agaricus bisporus mushrooms was studied. In solid-state fermentation rooms called tunnels, compost was pasteurized and inoculated. After incubation, the inoculated organisms were reisolated and counted, showing their successful colonization. The yield of mushrooms on inoculated composts was almost twice that on the pasteurized control. This result demonstrates the effectiveness of S. thermophilum in compost preparation. Inoculation is not necessary for traditional compost preparation. Naturally occurring strains of S. thermophilum, present in ingredients, readily colonize compost during preparation. Inoculation may be vital if compost is pretreated at a high temperature in tunnels. This finding is of relevance for the environmentally controlled production of high-yielding compost.

  17. Inoculation of Scytalidium thermophilum in Button Mushroom Compost and Its Effect on Yield

    PubMed Central

    Straatsma, Gerben; Olijnsma, Tineke W.; Gerrits, Jan P. G.; Amsing, Jos G. M.; Op Den Camp, Huub J. M.; Van Griensven, Leo J. L. D.

    1994-01-01

    Scytalidium thermophilum isolates in culture, as well as the endogenous strain(s) in mushroom compost, were inactivated at 70°C. This temperature was used to pasteurize composts for experiments. Of nine thermophilic fungal species, only S. thermophilum and Myriococcum thermophilum grew well on pasteurized compost in test tubes. The effect of both species on the crop yield of Agaricus bisporus mushrooms was studied. In solid-state fermentation rooms called tunnels, compost was pasteurized and inoculated. After incubation, the inoculated organisms were reisolated and counted, showing their successful colonization. The yield of mushrooms on inoculated composts was almost twice that on the pasteurized control. This result demonstrates the effectiveness of S. thermophilum in compost preparation. Inoculation is not necessary for traditional compost preparation. Naturally occurring strains of S. thermophilum, present in ingredients, readily colonize compost during preparation. Inoculation may be vital if compost is pretreated at a high temperature in tunnels. This finding is of relevance for the environmentally controlled production of high-yielding compost. PMID:16349366

  18. Composting of waste algae: a review.

    PubMed

    Han, Wei; Clarke, William; Pratt, Steven

    2014-07-01

    Although composting has been successfully used at pilot scale to manage waste algae removed from eutrophied water environments and the compost product applied as a fertiliser, clear guidelines are not available for full scale algae composting. The review reports on the application of composting to stabilize waste algae, which to date has mainly been macro-algae, and identifies the peculiarities of algae as a composting feedstock, these being: relatively low carbon to nitrogen (C/N) ratio, which can result in nitrogen loss as NH3 and even N2O; high moisture content and low porosity, which together make aeration challenging; potentially high salinity, which can have adverse consequence for composting; and potentially have high metals and toxin content, which can affect application of the product as a fertiliser. To overcome the challenges that these peculiarities impose co-compost materials can be employed. Copyright © 2014 Elsevier Ltd. All rights reserved.

  19. Assessment of bacterial diversity during composting of agricultural byproducts

    PubMed Central

    2013-01-01

    Background Composting is microbial decomposition of biodegradable materials and it is governed by physicochemical, physiological and microbiological factors. The importance of microbial communities (bacteria, actinomycetes and fungi) during composting is well established. However, the microbial diversity during composting may vary with the variety of composting materials and nutrient supplements. Therefore, it is necessary to study the diversity of microorganisms during composting of different agricultural byproducts like wheat bran, rice bran, rice husk, along with grass clippings and bulking agents. Here it has been attempted to assess the diversity of culturable bacteria during composting of agricultural byproducts. Results The culturable bacterial diversity was assessed during the process by isolating the most prominent bacteria. Bacterial population was found to be maximum during the mesophilic phase, but decreased during the thermophilic phase and declined further in the cooling and maturation phase of composting. The bacterial population ranged from 105 to 109 cfu g-1 compost. The predominant bacteria were characterized biochemically, followed by 16S rRNA gene sequencing. The isolated strains, both Gram-positive and Gram-negative groups belonged to the order Burkholderiales, Enterobacteriales, Actinobacteriales and Bacillales, which includes genera e.g. Staphylococcus, Serratia, Klebsiella, Enterobacter, Terribacillus, Lysinibacillus Kocuria, Microbacterium, Acidovorax and Comamonas. Genera like Kocuria, Microbacterium, Acidovorax, Comamonas and some new species of Bacillus were also identified for the first time from the compost made from agricultural byproducts. Conclusion The use of appropriate nitrogen amendments and bulking agents in composting resulted in good quality compost. The culture based strategy enabled us to isolate some novel bacterial isolates like Kocuria, Microbacterium, Acidovorax and Comamonas first time from agro-byproducts compost. These bacteria can be used as potential compost inoculants for accelerating composting process. PMID:23651653

  20. Bacterial community succession during pig manure and wheat straw aerobic composting covered with a semi-permeable membrane under slight positive pressure.

    PubMed

    Ma, Shuangshuang; Fang, Chen; Sun, Xiaoxi; Han, Lujia; He, Xueqin; Huang, Guangqun

    2018-07-01

    Bacteria play an important role in organic matter degradation and maturity during aerobic composting. This study analyzed composting with or without a membrane cover in laboratory-scale aerobic composting reactor systems. 16S rRNA gene analysis was used to study the bacterial community succession during composting. The richness of the bacterial community decreased and the diversity increased after covering with a semi-permeable membrane and applying a slight positive pressure. Principal components analysis based on operational taxonomic units could distinguish the main composting phases. Linear Discriminant Analysis Effect Size analysis indicated that covering with a semi-permeable membrane reduced the relative abundance of anaerobic Clostridiales and pathogenic Pseudomonas and increased the abundance of Cellvibrionales. In membrane-covered aerobic composting systems, the relative abundance of some bacteria could be affected, especially anaerobic bacteria. Covering could effectively promote fermentation, reduce emissions and ensure organic fertilizer quality. Copyright © 2018 Elsevier Ltd. All rights reserved.

  1. Effect of biochar amendment on compost organic matter composition following aerobic composting of manure.

    PubMed

    Hagemann, Nikolas; Subdiaga, Edisson; Orsetti, Silvia; de la Rosa, José María; Knicker, Heike; Schmidt, Hans-Peter; Kappler, Andreas; Behrens, Sebastian

    2018-02-01

    Biochar, a material defined as charred organic matter applied in agriculture, is suggested as a beneficial additive and bulking agent in composting. Biochar addition to the composting feedstock was shown to reduce greenhouse gas emissions and nutrient leaching during the composting process, and to result in a fertilizer and plant growth medium that is superior to non-amended composts. However, the impact of biochar on the quality and carbon speciation of the organic matter in bulk compost has so far not been the focus of systematic analyses, although these parameters are key to determine the long-term stability and carbon sequestration potential of biochar-amended composts in soil. In this study, we used different spectroscopic techniques to compare the organic carbon speciation of manure compost amended with three different biochars. A non-biochar-amended compost served as control. Based on Fourier-transformed infrared (FTIR) and 13 C nuclear magnetic resonance (NMR) spectroscopy we did not observe any differences in carbon speciation of the bulk compost independent of biochar type, despite a change in the FTIR absorbance ratio 2925cm -1 /1034cm -1 , that is suggested as an indicator for compost maturity. Specific UV absorbance (SUVA) and emission-excitation matrixes (EEM) revealed minor differences in the extractable carbon fractions, which only accounted for ~2-3% of total organic carbon. Increased total organic carbon content of biochar-amended composts was only due to the addition of biochar-C and not enhanced preservation of compost feedstock-C. Our results suggest that biochars do not alter the carbon speciation in compost organic matter under conditions optimized for aerobic decomposition of compost feedstock. Considering the effects of biochar on compost nutrient retention, mitigation of greenhouse gas emissions and carbon sequestration, biochar addition during aerobic composting of manure might be an attractive strategy to produce a sustainable, slow release fertilizer. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. A Combination of Biochar–Mineral Complexes and Compost Improves Soil Bacterial Processes, Soil Quality, and Plant Properties

    PubMed Central

    Ye, Jun; Zhang, Rui; Nielsen, Shaun; Joseph, Stephen D.; Huang, Danfeng; Thomas, Torsten

    2016-01-01

    Organic farming avoids the use of synthetic fertilizers and promises food production with minimal environmental impact, however this farming practice does not often result in the same productivity as conventional farming. In recent years, biochar has received increasing attention as an agricultural amendment and by coating it with minerals to form biochar–mineral complex (BMC) carbon retention and nutrient availability can be improved. However, little is known about the potential of BMC in improving organic farming. We therefore investigated here how soil, bacterial and plant properties respond to a combined treatment of BMC and an organic fertilizer, i.e., a compost based on poultry manure. In a pakchoi pot trial, BMC and compost showed synergistic effects on soil properties, and specifically by increasing nitrate content. Soil nitrate has been previously observed to increase leaf size and we correspondingly saw an increase in the surface area of pakchoi leaves under the combined treatment of BMC and composted chicken manure. The increase in soil nitrate was also correlated with an enrichment of bacterial nitrifiers due to BMC. Additionally, we observed that the bacteria present in the compost treatment had a high turnover, which likely facilitated organic matter degradation and a reduction of potential pathogens derived from the manure. Overall our results demonstrate that a combination of BMC and compost can stimulate microbial process in organic farming that result in better vegetable production and improved soil properties for sustainable farming. PMID:27092104

  3. A Combination of Biochar-Mineral Complexes and Compost Improves Soil Bacterial Processes, Soil Quality, and Plant Properties.

    PubMed

    Ye, Jun; Zhang, Rui; Nielsen, Shaun; Joseph, Stephen D; Huang, Danfeng; Thomas, Torsten

    2016-01-01

    Organic farming avoids the use of synthetic fertilizers and promises food production with minimal environmental impact, however this farming practice does not often result in the same productivity as conventional farming. In recent years, biochar has received increasing attention as an agricultural amendment and by coating it with minerals to form biochar-mineral complex (BMC) carbon retention and nutrient availability can be improved. However, little is known about the potential of BMC in improving organic farming. We therefore investigated here how soil, bacterial and plant properties respond to a combined treatment of BMC and an organic fertilizer, i.e., a compost based on poultry manure. In a pakchoi pot trial, BMC and compost showed synergistic effects on soil properties, and specifically by increasing nitrate content. Soil nitrate has been previously observed to increase leaf size and we correspondingly saw an increase in the surface area of pakchoi leaves under the combined treatment of BMC and composted chicken manure. The increase in soil nitrate was also correlated with an enrichment of bacterial nitrifiers due to BMC. Additionally, we observed that the bacteria present in the compost treatment had a high turnover, which likely facilitated organic matter degradation and a reduction of potential pathogens derived from the manure. Overall our results demonstrate that a combination of BMC and compost can stimulate microbial process in organic farming that result in better vegetable production and improved soil properties for sustainable farming.

  4. Influence of in-house composting of reused litter on litter quality, ammonia volatilisation and incidence of broiler foot pad dermatitis.

    PubMed

    Martins, R S; Hötzel, M J; Poletto, R

    2013-01-01

    1. The objectives of this study were to evaluate the residual effects of two windrow composting methods for reused litter on its quality (pH, moisture, ammonia), ammonia (NH3) volatilisation and the prevalence (scores 0-4) of foot pad dermatitis (FPD) and hock burn (HB) on d 1, 7, 14 and 21 of age in broilers. Litter was allowed to compost for 8 d within a 14-d interval between flocks. 2. The composting methods studied were with or without a PVC plastic sheet. The same procedures were applied for three consecutive flocks, with litter initially having been used for 12 flocks. Data were analysed with a mixed model of repeated measures of day, with main effects and interactions of day, composting method, litter age (block) and house nested within method. 3. At d 1, litter NH3 and NH3 volatilisation were higher in the covered litter method. Litter moisture increased to 45.3% as broilers aged. The incidence of FPD also increased with age. No signs of HB were found in any bird throughout the trials. 4. There was no effect of litter composting methods on the prevalence of FPD or body weight at any age. 5. Litter moisture should be controlled to avoid NH3 volatilisation reaching critical levels. Windrow composting of litter with a PVC plastic sheet may not be required when considering the broiler housing environment.

  5. Strike It Rich with Classroom Compost.

    ERIC Educational Resources Information Center

    Jones, Linda L. Cronin

    1992-01-01

    Discusses composting of organic materials as an alternative to landfills. Lists uses of composts and describes details of a simple composting activity for high school students. Includes an information sheet for students and a student data sheet. Suggests other composting activities. (PR)

  6. Composted versus Raw Olive Mill Waste as Substrates for the Production of Medicinal Mushrooms: An Assessment of Selected Cultivation and Quality Parameters

    PubMed Central

    Zervakis, Georgios I.; Koutrotsios, Georgios; Katsaris, Panagiotis

    2013-01-01

    Two-phase olive mill waste (TPOMW, “alperujo”) is a highly biotoxic sludge-like effluent of the olive-oil milling process with a huge seasonal production. One of the treatment approaches that has so far received little attention is the use of TPOMW as substrate for the cultivation of edible mushrooms. Fifteen fungal strains belonging to five species (Basidiomycota), that is, Agrocybe cylindracea, Pleurotus cystidiosus, P. eryngii, P. ostreatus, and P. pulmonarius, were evaluated for their efficacy to colonize media composed of TPOMW, which was used either raw or composted in mixtures with wheat straw in various ratios. Qualified strains exhibited high values of biological efficiency (e.g., 120–135% for Pleurotus spp. and 125% for A. cylindracea) and productivity in subsequent cultivation experiments on substrates supplemented with 20–40% composted TPOMW or 20% raw TPOMW. Only when supplementation exceeded 60% for raw TPOMW, a negative impact was noted on mushroom yields which could be attributed to the effluent's toxicity (otherwise alleviated in the respective composted TPOMW medium). Earliness and mushroom size as well as quality parameters such as total phenolic content and antioxidant activity did not demonstrate significant differences versus the control wheat-straw substrate. The substrates hemicellulose content was negatively correlated with mycelium growth rates and yields and positively with earliness; in addition, cellulose: lignin ratio presented a positive correlation with mycelium growth and mushroom weight for A. cylindracea and with earliness for all species examined. TPOMW-based media revealed a great potential for the substitution of traditional cultivation substrates by valorizing environmentally hazardous agricultural waste. PMID:24027758

  7. Improved method for recovery of organic solids from diluted swine manure in 3rd generation treatment system

    USDA-ARS?s Scientific Manuscript database

    Solid-liquid separation of the raw manure increases the capacity of decision making and opportunities for treatment. The high-rate separation up-front using flocculants allows recovery of most of the organic compounds, which can be used for manufacture of high-quality compost materials. However, t...

  8. Effects of pH and microbial composition on odour in food waste composting

    PubMed Central

    Sundberg, Cecilia; Yu, Dan; Franke-Whittle, Ingrid; Kauppi, Sari; Smårs, Sven; Insam, Heribert; Romantschuk, Martin; Jönsson, Håkan

    2013-01-01

    A major problem for composting plants is odour emission. Slow decomposition during prolonged low-pH conditions is a frequent process problem in food waste composting. The aim was to investigate correlations between low pH, odour and microbial composition during food waste composting. Samples from laboratory composting experiments and two large scale composting plants were analysed for odour by olfactometry, as well as physico-chemical and microbial composition. There was large variation in odour, and samples clustered in two groups, one with low odour and high pH (above 6.5), the other with high odour and low pH (below 6.0). The low-odour samples were significantly drier, had lower nitrate and TVOC concentrations and no detectable organic acids. Samples of both groups were dominated by Bacillales or Actinobacteria, organisms which are often indicative of well-functioning composting processes, but the high-odour group DNA sequences were similar to those of anaerobic or facultatively anaerobic species, not to typical thermophilic composting species. High-odour samples also contained Lactobacteria and Clostridia, known to produce odorous substances. A proposed odour reduction strategy is to rapidly overcome the low pH phase, through high initial aeration rates and the use of additives such as recycled compost. PMID:23122203

  9. Composting Phragmites australis Cav. plant material and compost effects on soil and tomato (Lycopersicon esculentum Mill.) growth.

    PubMed

    Toumpeli, Anna; Pavlatou-Ve, Athina K; Kostopoulou, Sofia K; Mamolos, Andreas P; Siomos, Anastasios S; Kalburtji, Kiriaki L

    2013-10-15

    Composting organic residues is a friendly to the environment alternative to producing fertilizer. This research was carried out to study the process of composting Phragmites australis Cav. plant material alone or with animal manure on a pilot-scale, to evaluate firstly the quality of the composts produced and secondly, using a pot experiment, the effects of their application on soil physicochemical characteristics and tomato plants development. For the compost production a randomized complete block design was used with five treatments (five compost types) and four replications. For the pot experiment, a completely randomized design was used with 17 treatments (plain soil, soil with synthetic fertilizer and the application of five compost types, at three rates each) and five replications. Compost N increased with composting time, while C/N ratio decreased significantly and by the end it ranged from 43.3 for CM to 22.6 for CY. Compost pH became almost neutral, ranging from 6.73 for CY to 7.21 for CM3Y3AM4 by the end. Compost combinations CY7AM3 and CM7AM3 had a more positive influence on the soil physicochemical characteristics than the others. Soil N, P, Ca and Mg concentrations and the reduction of clay dispersion were the highest when CM7AM3 compost was added. The macro-aggregate stability was the highest for CY7AM3, which also sustained plant growth. The latter compost combination improved most of the soil physicochemical characteristics and plant growth especially, when the application rate was 4% (w/w), which equals to 156 Mg ha(-1). Copyright © 2013 Elsevier Ltd. All rights reserved.

  10. Development of functional composts using spent coffee grounds, poultry manure and biochar through microbial bioaugmentation.

    PubMed

    Emmanuel, S Aalfin; Yoo, Jangyeon; Kim, Eok-Jo; Chang, Jae-Soo; Park, Young-In; Koh, Sung-Cheol

    2017-11-02

    Spent coffee grounds (SCG), poultry manure, and agricultural waste-derived biochar were used to manufacture functional composts through microbial bioaugmentation. The highest yield of tomato stalk-based biochar (40.7%) was obtained at 450°C with a surface area of 2.35 m 2 g -1 . Four pilot-scale composting reactors were established to perform composting for 45 days. The ratios of NH 4 + -N/NO 3 - -N, which served as an indicator of compost maturity, indicate rapid, and successful composting via microbial bioaugmentation and biochar amendment. Moreover, germination indices for radish also increased by 14-34% through augmentation and biochar amendment. Microbial diversity was also enhanced in the augmented and biochar-amended composts by 7.1-8.9%, where two species of Sphingobacteriaceae were dominant (29-43%). The scavenging activities of 2,2-diphenyl-1-picrylhydrazyl (DPPH) were enhanced by 14.1% and 8.6% in the fruits of pepper plants grown in the presence of the TR-2 (augmentation applied only) and TR-3 (both augmentation and biochar amendment applied) composts, respectively. Total phenolic content was also enhanced by 68% in the fruits of the crops grown in TR-3. Moreover, the other compost, TR-L (augmentation applied only), boosted DPPH scavenging activity by 111% in leeks compared with commercial organic fertilizer, while TR-3 increased the phenolic content by 44.8%. Composting facilitated by microbial augmentation and biochar amendment shortened the composting time and enhanced the quality of the functional compost. These results indicate that functional compost has great potential to compete with commercially available organic fertilizers and that the novel composting technology could significantly contribute to the eco-friendly recycling of organic wastes such as spent coffee grounds, poultry manure, and agricultural wastes.

  11. Evaluation of compost blankets for erosion control from disturbed lands.

    PubMed

    Bhattarai, Rabin; Kalita, Prasanta K; Yatsu, Shotaro; Howard, Heidi R; Svendsen, Niels G

    2011-03-01

    Soil erosion due to water and wind results in the loss of valuable top soil and causes land degradation and environmental quality problems. Site specific best management practices (BMP) are needed to curb erosion and sediment control and in turn, increase productivity of lands and sustain environmental quality. The aim of this study was to investigate the effectiveness of three different types of biodegradable erosion control blankets- fine compost, mulch, and 50-50 mixture of compost and mulch, for soil erosion control under field and laboratory-scale experiments. Quantitative analysis was conducted by comparing the sediment load in the runoff collected from sloped and tilled plots in the field and in the laboratory with the erosion control blankets. The field plots had an average slope of 3.5% and experiments were conducted under natural rainfall conditions, while the laboratory experiments were conducted at 4, 8 and 16% slopes under simulated rainfall conditions. Results obtained from the field experiments indicated that the 50-50 mixture of compost and mulch provides the best erosion control measures as compared to using either the compost or the mulch blanket alone. Laboratory results under simulated rains indicated that both mulch cover and the 50-50 mixture of mulch and compost cover provided better erosion control measures compared to using the compost alone. Although these results indicate that the 50-50 mixtures and the mulch in laboratory experiments are the best measures among the three erosion control blankets, all three types of blankets provide very effective erosion control measures from bare-soil surface. Results of this study can be used in controlling erosion and sediment from disturbed lands with compost mulch application. Testing different mixture ratios and types of mulch and composts, and their efficiencies in retaining various soil nutrients may provide more quantitative data for developing erosion control plans. Copyright © 2010 Elsevier Ltd. All rights reserved.

  12. Characterization of a soil amendment derived from co-composting of agricultural wastes and biochar

    NASA Astrophysics Data System (ADS)

    Curaqueo, Gustavo; Ángel Sánchez-Monedero, Miguel; Meier, Sebastián; Medina, Jorge; Panichini, Marcelo; Borie, Fernando; Navia, Rodrigo

    2016-04-01

    The aim of this study was to characterize a compost blend prepared from sheep manure and oat straw in a co-composting process enriched with oat husk biochar (BC). For this, a co-composting trial was carried out in rotatories bins of 200 L capacity. Three mixtures (piles) were assayed: BC0: sheep manure (SM) 65% w/w with 35% w/w oat straw (OS) and no biochar; BC5: SM 62.5% w/w, 32.5% of OS and 5% of BC and BC10: SM 60% w/w, 30% of OS and 10% of BC. The piles were turned 3 times per week in the first week, and then once a week until the end of the composting process (140 days). The temperature and humidity of the piles were monitored continually and the humidity was maintained in a range from 55% to 65%. The maturity of final compost was evaluated by FTIR and Solvita Test analysis. At the same time a chemical characterization including macro and micro nutrient for each compost was performed and the compost phytotoxic effect was evaluated by a germination test using aqueous extract over lettuce, radish and wheat seeds. FTIR analysis showed bands attributed to aromatic C=C, C=O stretching of amide groups, quinone C=O and/or C=O of H-bonded conjugated ketones (1640 cm-1) which are typical in biological stabilized composts and compost with high concentration of highly aromatic materials such as biochar, which seems to become relatively more intense specially in BC10 treatment. Both composts were characterized by a Solvita maturity index of 7, reflecting an adequate degree of maturation. The CO2 emission was lower in the piles enriched with BC compared to control treatment without BC. In the same way, NH3 index was 5 for all the treatments indicating a null NH3 emission. In this respect, a decrease in the N-NH4 content was related with the use of BC which indicate that BC could reduce N-losses during composting favoring nitrification process. Chemical characterization showed pH values higher than 8 for all piles and EC ranged from 8.6 to 14.7 dS cm-1. The Total N and P contents increased in BC10 treatment, while the K contents were similar in all treatments as well as C/N ratio (around 15). The organic matter content was BC10>BC5>BC0 and the dissolved organic C content was lower than 8.3 g kg-1 for all piles confirming the maturity of compost. The germination test showed a non-toxic effect of all amendments in the species assayed obtaining a germination index between 55% and 80.7% indicating maturity of the amendments evaluated. Our results indicated that the combined use of agricultural wastes and biochar by mean of a co-composting process is a suitable option for generating good quality amendments for improving soil condition and optimizing nutrient cycling at farm scale. Financial support for this research was provided by the National Commission for Scientific and Technological Research through FONDECYT 11140508 Project

  13. Diversity of Cellulolytic Microbes and the Biodegradation of Municipal Solid Waste by a Potential Strain

    PubMed Central

    Gautam, S. P.; Bundela, P. S.; Pandey, A. K.; Jamaluddin; Awasthi, M. K.; Sarsaiya, S.

    2012-01-01

    Municipal solid waste contains high amounts of cellulose, which is an ideal organic waste for the growth of most of microorganism as well as composting by potential microbes. In the present study, Congo red test was performed for screening of microorganism, and, after selecting a potential strains, it was further used for biodegradation of organic municipal solid waste. Forty nine out of the 250 different microbes tested (165 belong to fungi and 85 to bacteria) produced cellulase enzyme and among these Trichoderma viride was found to be a potential strain in the secondary screening. During the biodegradation of organic waste, after 60 days, the average weight losses were 20.10% in the plates and 33.35% in the piles. There was an increase in pH until 20 days. pH however, stabilized after 30 days in the piles. Temperature also stabilized as the composting process progressed in the piles. The high temperature continued until 30 days of decomposition, after which the temperature dropped to 40°C and below during the maturation. Good quality compost was obtained in 60 days. PMID:22518141

  14. Organic production systems in northern highbush blueberry: I. Impact of planting method, cultivar, fertilizer, and mulch on yield and fruit quality from planting through maturity

    USDA-ARS?s Scientific Manuscript database

    A long-term trial was established to identify organic production systems for maximum yield and quality in highbush blueberry. Treatments included raised beds or flat ground; granular feather meal or fish solubles at low and high rates; sawdust, yard debris compost topped with sawdust, or weed mat; a...

  15. High-rate composting of barley dregs with sewage sludge in a pilot scale bioreactor.

    PubMed

    Lu, Li-An; Kumar, Mathava; Tsai, Jen-Chieh; Lin, Jih-Gaw

    2008-05-01

    The feasibility of high-rate composting of barley dregs and sewage sludge was examined using a pilot scale bioreactor. A central composite design (CCD) was used to optimize the mix ratio of barley dregs/sewage sludge and moisture content. The performance of the bioreactor was monitored as a function of carbon decomposition rate (CDR) and total volatile solids (TVS) loss rate. The optimum range of mix ratio and moisture content was found to be 35-40% and 55-60%, respectively. High CO2 evolution rate (CER) and TVS loss rate were observed after 3 days of the composting and the compost was matured/stable after 7 days. Cardinal temperature model with inflection (CTMI) was used to analyze the compost stability with respect to CER as a parameter of composting efficiency. After examining the phytotoxicity, the compost can be promoted for land application.

  16. Effects of moisture content and initial pH in composting process on heavy metal removal characteristics of grass clipping compost used for stormwater filtration.

    PubMed

    Khan, Eakalak; Khaodhir, Sutha; Ruangrote, Darin

    2009-10-01

    Heavy metals are common contaminants in stormwater runoff. One of the devices that can be used to effectively and economically remove heavy metals from runoff is a yard waste compost stormwater filter. The primary goal of composting is to reduce waste volume rather than to produce stormwater filter media. Moisture content (MC) and initial pH, the two important parameters in composting, were studied for their effects on yard waste volume reduction and heavy metal adsorption performances of the compost. The main objective of this investigation was to examine whether the conditions that provided high yard waste volume reduction would also result in compost with good heavy metal removal performances. Manila grass was composted at different initial pHs (5-9) and MCs (30-70%) and the composts were used to adsorb cadmium, copper, lead and zinc from water. Results indicated that MC is more critical than initial pH for both volume reduction and production of compost with high metal adsorption performances. The most optimal conditions for the two attributes were not exactly the same but lower MCs of 30-40% and pH 7 or higher tended to satisfy both high volume reduction and effective metal adsorption.

  17. Composting in small laboratory pilots: performance and reproducibility.

    PubMed

    Lashermes, G; Barriuso, E; Le Villio-Poitrenaud, M; Houot, S

    2012-02-01

    Small-scale reactors (<10 l) have been employed in composting research, but few attempts have assessed the performance of composting considering the transformations of organic matter. Moreover, composting at small scales is often performed by imposing a fixed temperature, thus creating artificial conditions, and the reproducibility of composting has rarely been reported. The objectives of this study are to design an innovative small-scale composting device safeguarding self-heating to drive the composting process and to assess the performance and reproducibility of composting in small-scale pilots. The experimental setup included six 4-l reactors used for composting a mixture of sewage sludge and green wastes. The performance of the process was assessed by monitoring the temperature, O(2) consumption and CO(2) emissions, and characterising the biochemical evolution of organic matter. A good reproducibility was found for the six replicates with coefficients of variation for all parameters generally lower than 19%. An intense self-heating ensured the existence of a spontaneous thermophilic phase in all reactors. The average loss of total organic matter (TOM) was 46% of the initial content. Compared to the initial mixture, the hot water soluble fraction decreased by 62%, the hemicellulose-like fraction by 68%, the cellulose-like fraction by 50% and the lignin-like fractions by 12% in the final compost. The TOM losses, compost stabilisation and evolution of the biochemical fractions were similar to observed in large reactors or on-site experiments, excluding the lignin degradation, which was less important than in full-scale systems. The reproducibility of the process and the quality of the final compost make it possible to propose the use of this experimental device for research requiring a mass reduction of the initial composted waste mixtures. Copyright © 2011 Elsevier Ltd. All rights reserved.

  18. Feasibility of co-composting of sewage sludge, spent mushroom substrate and wheat straw.

    PubMed

    Meng, Liqiang; Li, Weiguang; Zhang, Shumei; Wu, Chuandong; Lv, Longyi

    2017-02-01

    In this study, the lab-scale co-composting of sewage sludge (SS) with mushroom substrate (SMS) and wheat straw (WS) conducted for 20days was evaluated. The addition of SMS evidently increased CO 2 production and dehydrogenase activity. The combined addition of SMS and WS significantly improved the compost quality in terms of temperature, organic matter degradation and germination index, especially, reduced 21.9% of NH 3 emission. That's because SMS and WS possessed the complementarity of free air space and contained plenty of degradable carbon source. The SMS could create a comfortable environment for the nitrifying bacteria and improve nitrification. The carbohydrates from combined addition of SMS and WS could be utilized by thermophilic microorganisms, stimulate ammonia assimilation and reduce NH 3 emission. These results suggested that adding SMS and WS could not only improve the degradation of organic matter and the quality of compost product, but also stimulate ammonia assimilation and reduce ammonia emission. Copyright © 2016. Published by Elsevier Ltd.

  19. Improving sewage sludge composting by addition of spent mushroom substrate and sucrose.

    PubMed

    Meng, Liqiang; Zhang, Shumei; Gong, Hainan; Zhang, Xiancheng; Wu, Chuandong; Li, Weiguang

    2018-04-01

    The effects of spent mushroom substrate (SMS) and sucrose (S) amendment on emissions of nitrogenous gas (mainly NH 3 and N 2 O) and end products quality of sewage sludge (SS) composting were evaluated. Five treatments were composted for 20 days in laboratory-scale using SS with different dosages of SMS and S, without additive amended treatment used as control. The results indicated that SMS amendments especially combination with S promoted dehydrogenase activity, CO 2 production, organic matter degradation and humification in the composting, and maturity indices of composting also showed that the 30%SMS+2%S treatment could be much more appropriate to improve the composting process, such as total Kjeldahl nitrogen, nitrification index, humic acids/fulvic acids ratio and germination index, while the emissions of NH 3 and N 2 O were reduced by 34.1% and 86.2%, respectively. These results shown that the moderate addition of SMS and S could improve the compost maturity and reduce nitrogenous gas emission. Copyright © 2018 Elsevier Ltd. All rights reserved.

  20. Evaluation of pilot-scale in-vessel composting for Hanwoo manure management.

    PubMed

    Jeong, Kwang-Hwa; Kim, Jung Kon; Ravindran, Balsubramani; Lee, Dong Jun; Wong, Jonathan Woon-Chung; Selvam, Ammaiyappan; Karthikeyan, Obuli P; Kwag, Jung-Hoon

    2017-12-01

    The study investigated the effect of in-vessel composting process on Hanwoo manure in two different South Korea regions (Pyeongchang and Goechang) with sawdust using vertical cylindrical in-vessel bioreactor for 42days. The stability and quality of Hanwoo manure in both regions were improved and confirmed through the positive changes in physico-chemical and phytotoxic properties using different commercial seed crops. The pH and electrical conductivity (EC, ds/m) of composted manure in both regions were slightly increased. At the same time, carbon:nitrogen (C:N) ratio and ammonium nitrogen:nitrate nitrogen (NH 4 + -N:NO 3 - -N) ratio decreased to 13.4-16.1 and 0.36-0.37, respectively. The germination index (GI, %) index was recorded in the range of 67.6-120.9%, which was greater than 50%, indicating phytotoxin-free compost. Although, composted manure values in Goechang region were better in significant parameters, overall results confirmed that the composting process could lead to complete maturation of the composted product in both regions. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Quantifying the capacity of compost buffers for treating agricultural runoff

    NASA Astrophysics Data System (ADS)

    Naranjo, S. A.; Beighley, R. E.; Buyuksonmez, F.

    2007-12-01

    Agricultural operations, specifically, avocado and commercial nurseries require frequent and significant fertilizing and irrigating which tends to result in excessive nutrient leaching and off-site runoff. The increased runoff contains high concentrations of nutrients which negatively impacts stream water quality. Researcher has demonstrated that best management practices such as compost buffers can be effective for reducing nutrient and sediment concentrations in agricultural runoff. The objective of this research is to evaluate both the hydraulic capacity and the nutrient removal efficiency of: (a) compost buffers and (b) buffers utilizing a combination of vegetation and compost. A series of experiments will be performed in the environmental hydraulics laboratory at San Diego State University. A tilting flume 12-m long, 27-cm wide and 25-cm deep will be used. Discharge is propelled by an axial flow pump powered by a variable speed motor with a maximum capacity of 30 liters per second. The experiments are designed to measure the ratio compost mass per flow rate per linear width. Two different discharges will be measured: (a) treatment discharge (maximum flow rate such that the buffer decreases the incoming nitrogen and phosphorus concentrations below a maximum allowable limit) and (b) breaking discharge (maximum flow rate the buffer can tolerate without structural failure). Experimental results are presented for the hydraulic analysis, and preliminary results are presented for the removal of nitrogen and phosphorus from runoff. The results from this project will be used to develop guidelines for installing compost buffers along the perimeters of nursery sites and avocado groves in southern California.

  2. A next generation sequencing approach with a suitable bioinformatics workflow to study fungal diversity in bioaerosols released from two different types of composting plants.

    PubMed

    Mbareche, Hamza; Veillette, Marc; Bonifait, Laetitia; Dubuis, Marie-Eve; Benard, Yves; Marchand, Geneviève; Bilodeau, Guillaume J; Duchaine, Caroline

    2017-12-01

    Composting is used all over the world to transform different types of organic matter through the actions of complex microbial communities. Moving and handling composting material may lead to the emission of high concentrations of bioaerosols. High exposure levels are associated with adverse health effects among compost industry workers. Fungal spores are suspected to play a role in many respiratory illnesses. There is a paucity of information related to the detailed fungal diversity in compost as well as in the aerosols emitted through composting activities. The aim of this study was to analyze the fungal diversity of both organic matter and aerosols present in facilities that process domestic compost and facilities that process pig carcasses. This was accomplished using a next generation sequencing approach that targets the ITS1 genomic region. Multivariate analyses revealed differences in the fungal community present in samples coming from compost treating both raw materials. Furthermore, results show that the compost type affects the fungal diversity of aerosols emitted. Although 8 classes were evenly distributed in all samples, Eurotiomycetes were more dominant in carcass compost while Sordariomycetes were dominant in domestic compost. A large diversity profile was observed in bioaerosols from both compost types showing the presence of a number of pathogenic fungi newly identified in bioaerosols emitted from composting plants. Members of the family Herpotrichiellaceae and Gymnoascaceae which have been shown to cause human diseases were detected in compost and air samples. Moreover, some fungi were identified in higher proportion in air compared to compost. This is the first study to identify a high level of fungal diversity in bioaerosols present in composting plants suggesting a potential exposure risk for workers. This study suggests the need for creating guidelines that address human exposure to bioaerosols. The implementation of technical and organizational measure should be a top priority. However, skin and respiratory protection for compost workers could be used to reduce the exposure as a second resort. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Composting of cow dung and crop residues using termite mounds as bulking agent.

    PubMed

    Karak, Tanmoy; Sonar, Indira; Paul, Ranjit K; Das, Sampa; Boruah, R K; Dutta, Amrit K; Das, Dilip K

    2014-10-01

    The present study reports the suitability of termite mounds as a bulking agent for composting with crop residues and cow dung in pit method. Use of 50 kg termite mound with the crop residues (stover of ground nut: 361.65 kg; soybean: 354.59 kg; potato: 357.67 kg and mustard: 373.19 kg) and cow dung (84.90 kg) formed a good quality compost within 70 days of composting having nitrogen, phosphorus and potassium as 20.19, 3.78 and 32.77 g kg(-1) respectively with a bulk density of 0.85 g cm(-3). Other physico-chemical and germination parameters of the compost were within Indian standard, which had been confirmed by the application of multivariate analysis of variance and multivariate contrast analysis. Principal component analysis was applied in order to gain insight into the characteristic variables. Four composting treatments formed two different groups when hierarchical cluster analysis was applied. Copyright © 2014 Elsevier Ltd. All rights reserved.

  4. Treatment of smuggled cigarette tobacco by composting process in facultative reactors.

    PubMed

    Zittel, Rosimara; Pinto da Silva, Cleber; Domingues, Cinthia Eloise; de Oliveira Stremel, Tatiana Roselena; de Almeida, Thiago Eduardo; Vieira Damiani, Gislaine; Xavier de Campos, Sandro

    2018-01-01

    This paper presents a study on the degradation of smuggled cigarette tobacco combined with domestic organic waste and sawdust or wood chips, using facultative reactor. Four reactors with different amounts of residue were assembled. For the study of the quality of the compost obtained, physicochemical, phytotoxicity and microbiological analyses were carried out. The mixture with wood chips presented the best temperature conditions and pH variation optimizing the degradation. The final germination index (GI) values of all treatments were above the recommended GI value (50%) and the final C/N ratio between 8 and 13 indicated a mature compost. The concentration of metals under study was below the limit allowed for the commercialization. The composting carried out in all facultative reactors provided ideal conditions for the total sterilization of the final compost. Therefore, the treatment of smuggled cigarettes through facultative reactors was efficient to produce stable and mature compost. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Immobilization of copper by biochar in Cu-enriched agricultural soils depends on interactions with soil organic carbon

    NASA Astrophysics Data System (ADS)

    Mlinkov, Slađana; Zehetner, Franz; Rosner, Franz; Dersch, Georg; Soja, Gerhard

    2017-04-01

    The appearance of downy mildew (Plasmopara viticola) in European vineyards of the 19th century was the starting point for the search of effective fungicides to avoid severe yield losses. Copper has been found as an important ingredient for several fungicides that have been used in agriculture and horticulture. For organic viticulture, several diseases can only be antagonized with Cu-containing fungicides as the application of organic fungicides is not permitted. This long-lasting dependence on Cu-fungicides has led to a gradual Cu enrichment of vineyard soils in traditional wine-growing areas, locally exceeding 300 mg/kg. Although these concentrations do not affect the vines or wine quality, they may impair soil microbiological functions in the top soil layer or the root growth of green cover plants. Therefore, measures are demanded that reduce the bioavailability of copper, thereby reducing the ecotoxicological effects. The use of biochar and compost as soil amendment has been suggested as a strategy to immobilize Cu and reduce the exchangeable fractions. In our study we have tested the hypothesis that biochar immobilizes the bioavailability of Cu for soil cover crops and reduces soil pore water concentrations. This study had the objective to test the interactions of compost and biochar with respect to Cu immobilization in vineyard soils. A Cu-enriched vineyard soil (250 mg Cu kg-1) was analyzed both in greenhouse and field experiments. In both experiments, soil with or without biochar and/or compost and mixtures of the two components were used. In the greenhouse experiments, was used as test plant Lolium multiflorum for Cu uptake; in the field, Lolium perenne and Trifolium repens were analyzed. Greenhouse experiment: Soil pore water concentrations showed clearer differences in Cu concentration than Lolium multiflorum shoots. Compost increased dissolved organic carbon (DOC) and Cu in soil pore water and biochar reduced it significantly. The mixtures of compost and biochar produced intermediate results. Field experiment: Cu concentrations in the roots of soil cover crops were higher than above-ground parts. Biochar as soil additive (4 kg m-2) and a biochar-compost mixture at a high application rate (10 kg m-2) reduced the Cu uptake into the roots. Compost without biochar or the mixture at a lower dose (4 kg m-2) either had no or even a mobilizing effect on Cu. Apparently the effects of compost and biochar are opposite. Biochar is only able to exert an immobilizing effect if soil organic carbon content is not too high; otherwise only very high biochar addition rates can counteract the effect of compost. .

  6. Changes in antibiotic concentrations and antibiotic resistome during commercial composting of animal manures.

    PubMed

    Xie, Wan-Ying; Yang, Xin-Ping; Li, Qian; Wu, Long-Hua; Shen, Qi-Rong; Zhao, Fang-Jie

    2016-12-01

    The over-use of antibiotics in animal husbandry in China and the concomitant enhanced selection of antibiotic resistance genes (ARGs) in animal manures are of serious concern. Thermophilic composting is an effective way of reducing hazards in organic wastes. However, its effectiveness in antibiotic degradation and ARG reduction in commercial operations remains unclear. In the present study, we determined the concentrations of 15 common veterinary antibiotics and the abundances of 213 ARGs and 10 marker genes for mobile genetic elements (MGEs) in commercial composts made from cattle, poultry and swine manures in Eastern China. High concentrations of fluoroquinolones were found in the poultry and swine composts, suggesting insufficient removal of these antibiotics by commercial thermophilic composting. Total ARGs in the cattle and poultry manures were as high as 1.9 and 5.5 copies per bacterial cell, respectively. After thermophilic composting, the ARG abundance in the mature compost decreased to 9.6% and 31.7% of that in the cattle and poultry manure, respectively. However, some ARGs (e.g. aadA, aadA2, qacEΔ1, tetL) and MGE marker genes (e.g. cintI-1, intI-1 and tnpA-04) were persistent with high abundance in the composts. The antibiotics that were detected at high levels in the composts (e.g. norfloxacin and ofloxacin) might have posed a selection pressure on ARGs. MGE marker genes were found to correlate closely with ARGs at the levels of individual gene, resistance class and total abundance, suggesting that MGEs and ARGs are closely associated in their persistence in the composts under antibiotic selection. Our research shows potential disseminations of antibiotics and ARGs via compost utilization. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. Evaluation of the quality and quantity of compost and leachate from household waterless toilets in France.

    PubMed

    Nasri, Behzad; Brun, Florent; Fouché, Olivier

    2017-11-05

    One of the most undesired wastes is the human excreta due to the socio-environmental pressure. Otherwise, the nutriments contained in human excreta could be used as fertilizers to enrich the soil. Familial waterless litter composting toilets (FWLCT) are an alternative for locations where a centralized sewerage network cannot be provided or where there is a lack of standard urban infrastructure including roads, electricity, and water supply. The scientific researches on the composting techniques, the methods of control of the composting processors, and the rate of produced leachate are very limited. In this research, the composting systems included a feces and urine collection device. In each passage, the litter (carbonaceous material) is added to the excreta. Regularly, the buckets were emptied into a composting device located outside the house to which an additional portion of carbonaceous materials can be added. Monitoring was carried out on five rural and one urban familial composting areas in France for 1.5 years. The physiochemical and microbiological properties of the compost and leachate have been monitored and measured in compliance with the protocols. The results show that one of the main problems of this system of human excreta treatment is that the composting process does not achieve a significant rise in temperature and does not allow reaching the optimum temperatures (> 50 °C). Otherwise, from an agronomic point of view, the obtained compost is not rich enough in nutriments to be a good compost as soil fertilizer. But it can be used as a soil conditioner. The average leachate flux from the composters is 1.79 L/day. Because of the very short stay time in the piles, the leachate is contaminated by harmful bacteria and should be treated by another sanitation system.

  8. Impact of Grassed Waterways and Compost Filter Socks on the Quality of Surface Runoff from Corn Fields

    USDA-ARS?s Scientific Manuscript database

    Surface runoff from cropland frequently has high concentrations of nutrients and herbicides, particularly in the first few events after application. Grassed waterways can control erosion while transmitting this runoff offsite, but are generally ineffective in removing dissolved agrochemicals. In thi...

  9. Dynamics of copper and tetracyclines during composting of water hyacinth biomass amended with peat or pig manure.

    PubMed

    Lu, Xin; Liu, Lizhu; Fan, Ruqin; Luo, Jia; Yan, Shaohua; Rengel, Zed; Zhang, Zhenhua

    2017-10-01

    Composting is one of the post-treatment methods for phytoremediation plants. Due to a high potential of water hyacinth to accumulate pollutants, the physicochemical parameters, microbial activity as well as fates of copper (Cu) and tetracyclines (TCs) were investigated for the different amended water hyacinth biomass harvested from intensive livestock and poultry wastewater, including unamended water hyacinth (W), water hyacinth amended with peat (WP), and water hyacinth amended with pig manure (WPM) during the composting process. Pig manure application accelerated the composting process as evidenced by an increase of temperature, electrical conductivity (EC), NH 4 -N, as well as functional diversity of microbial communities compared to W and WP treatments. Composting process was slowed down by high Cu, but not by TCs. The addition of peat significantly increased the residual fraction of Cu, while pig manure addition increased available Cu concentration in the final compost. Cu could be effectively transformed into low available (oxidizable) and residual fractions after fermentation. In contrast, less than 0.5% of initial concentrations of TCs were determined at the end of 60-day composting for all treatments in the final composts. The dissipation of TCs was accelerated by the high Cu concentration during composting. Therefore, composting is an effective method for the post-treatment and resource utilization of phytoremediation plants containing Cu and/or TCs.

  10. Composted manure application promotes long-term invasion of semi-arid rangeland by Bromus tectorum

    USDA-ARS?s Scientific Manuscript database

    Composted organic matter derived from sewage treatment facilities or livestock manure from feedlots is often applied to rangelands of western North America to increase soil fertility, forage production, forage quality, and soil carbon (C) storage. This practice can have a number of undesirable side ...

  11. Managing soil nutrients with compost in organic farms of East Georgia

    NASA Astrophysics Data System (ADS)

    Ghambashidze, Giorgi

    2013-04-01

    Soil Fertility management in organic farming relies on a long-term integrated approach rather than the more short-term very targeted solutions common in conventional agriculture. Increasing soil organic matter content through the addition of organic amendments has proven to be a valuable practice for maintaining or restoring soil quality. Organic agriculture relies greatly on building soil organic matter with compost typically replacing inorganic fertilizers and animal manure as the fertility source of choice. In Georgia, more and more attention is paid to the development of organic farming, occupying less than 1% of total agricultural land of the country. Due to increased interest towards organic production the question about soil amendments is arising with special focus on organic fertilizers as basic nutrient supply sources under organic management practice. In the frame of current research two different types of compost was prepared and their nutritional value was studied. The one was prepared from organic fraction municipal solid waste and another one using fruit processing residues. In addition to main nutritional properties both composts were tested on heavy metals content, as one of the main quality parameter. The results have shown that concentration of main nutrient is higher in municipal solid waste compost, but it contains also more heavy metals, which is not allowed in organic farming system. Fruit processing residue compost also has lower pH value and is lower in total salt content being is more acceptable for soil in lowlands of East Georgia, mainly characterised by alkaline reaction. .

  12. Organic fertilization for soil improvement in a vegetable cropping system

    NASA Astrophysics Data System (ADS)

    Verhaeghe, Micheline; De Rocker, Erwin; De Reycke, Luc

    2016-04-01

    Vegetable Research Centre East-Flanders Karreweg 6, 9770 Kruishoutem, Belgium A long term trial for soil improvement by organic fertilization was carried out in Kruishoutem from 2001 till 2010 in a vegetable rotation (carrots - leek - lettuce (2/year) - cauliflower (2/year) - leek - carrots - lettuce (2/year) - cauliflower (2/year) - leek and spinach). The trial compared yearly applications of 30 m²/ha of three types of compost (green compost, vfg-compost and spent mushroom compost) with an untreated object which did not receive any organic fertilization during the trial timescale. The organic fertilization was applied shortly before the cropping season. Looking at the soil quality, effects of organic fertilization manifest rather slow. The first four years after the beginning of the trial, no increase in carbon content of the soil is detectable yet. Although, mineralization of the soil has increased. The effect on the mineralization is mainly visible in crops with a lower N uptake (e.g. carrots) leading to a higher nitrate residue after harvest. Effects on soil structure and compaction occur rather slowly although, during the first two cropping seasons compost applications increase the water retention capacity of the soil. Compost increases the pH of the soil from the first year on till the end of the trial in 2010. Thus, organic fertilization impedes acidification in light sandy soils. Also soil fertility benefits from compost by an increase in K-, Ca- and Mg- content in the soil from the second year on. After 10 years of organic fertilization, yield and quality of spinach were increased significantly (p<0.05) compared to the untreated object. Also leek (2002 and 2009) and lettuce (2003 and 2007) benefit from organic fertilization.

  13. Product quality and microbial dynamics during vermicomposting and maturation of compost from pig manure.

    PubMed

    Villar, Iria; Alves, David; Mato, Salustiano

    2017-11-01

    This research evaluates, through microbial dynamics, the use of earthworms Eisenia andrei for maturation of pre-composted pig manure in comparison with maturation under static conditions and with vermicomposting of fresh pig manure. Therefore, two substrates were used (fresh and pre-composted pig manure) and four treatments were developed: fresh manure vermicomposting, control of fresh manure without earthworms, pre-composting followed by vermicomposting and static maturation of pre-composted manure. In order to determine the microbial dynamics, the enzymatic activities and profiles of phospholipid fatty acids (PLFAs) were evaluated over a 112-days period. Physicochemical and biological parameters of the obtained products were also analyzed. The presence of earthworms significantly reduced (p<0.05) microbial biomass and all the microbial groups (Gram+bacteria, Gram-bacteria, and fungi) in both substrates. The enzymatic activities (cellulase, β-glucosidase and acid phosphatase) behaved in a significantly distinctive manner (p<0.05) depending on the treatment. Microbial communities had significant correlations (p<0.05) with hydrolytic activities during static maturation of pre-composted manure. This indicates a direct effect of microbiota evolution on the degradative processes; however, complex earthworm-microbiota interactions were established in the presence of E. andrei. After earthworms' removal from vermicompost of fresh substrate at 70day, an increase in Gram + (4.4 times), Gram - (3.8 times) and fungi (2.8 times) were observed and, although the vermicompost achieved quality values, it is necessary to optimize the vermicompost aging phase period to improve the stability. Static maturation presented stability on microbial dynamics that indicated a slow degradation of organic compounds so that, maturation of pre-composted manure through vermicomposting is better option. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Aerobic composting of digested residue eluted from dry methane fermentation to develop a zero-emission process.

    PubMed

    Huang, Yu-Lian; Sun, Zhao-Yong; Zhong, Xiao-Zhong; Wang, Ting-Ting; Tan, Li; Tang, Yue-Qin; Kida, Kenji

    2017-03-01

    Digested residue remained at the end of a process for the production of fuel ethanol and methane from kitchen garbage. To develop a zero-emission process, the compostability of the digested residue was assessed to obtain an added-value fertilizer. Composting of the digested residue by adding matured compost and a bulking agent was performed using a lab-scale composting reactor. The composting process showed that volatile total solid (VTS) degradation mainly occurred during the first 13days, and the highest VTS degradation efficiency was about 27% at the end. The raw material was not suitable as a fertilizer due to its high NH 4 + and volatile fatty acids (VFAs) concentration. However, the composting process produced remarkable results; the physicochemical properties indicated that highly matured compost was obtained within 62days of the composting process, and the final N concentration, NO 3 - concentration, and the germination index (GI) at the end of the composting process was 16.4gkg -1 -TS, 9.7gkg -1 -TS, and 151%, respectively. Real-time quantitative PCR (qPCR) analysis of ammonia oxidizers indicated that the occurrence of nitrification during the composting of digested residue was attributed to the activity of ammonia-oxidizing bacteria (AOB). Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Compost quality and its function as a soil conditioner of recultivation layers - a critical review

    NASA Astrophysics Data System (ADS)

    Beck-Broichsitter, Steffen; Fleige, Heiner; Horn, Rainer

    2018-01-01

    During a period of 4 years, soil chemical and physical properties of the temporary capping system in Rastorf (Northern Germany) were estimated, whereby compost was partly used as soil improver in the upper recultivation layer. The air capacity and the available water capacity of soil samples were first determined in 2013 (without compost), and then in 2015 (with compost) under laboratory conditions. Herein, the addition of compost had a positive effect on: the air capacity up to 13.4 cm3 cm-3; and the available water capacity up to 20.1 cm3 cm-3 in 2015, in the recultivation layer (0-20 cm). However, taking into account the in situ results of the tensiometer and frequency domain reflectometry measurements, the addition of compost had a negative effect. The soil-compost mixture led to restricted remoistening even after a normal summer drying period in autumn and induced more negative matric potentials in the recultivation layer. In summary, the soil-improving effect of the compost addition, in conjunction with an increased water storage capacity, is undeniable and was demonstrated in a combined field and laboratory study. Therefore, intensive hydrophobicity can inhibit the homogeneous remoistening of the soil, resulting in a decreased hydraulic effectiveness of the sealing system.

  16. Humus and energy balances and greenhouse gas emissions with compost fertilization in organic farming compared with mineral fertilization

    NASA Astrophysics Data System (ADS)

    Erhart, Eva; Schmid, Harald; Hülsbergen, Kurt-Jürgen; Hartl, Wilfried

    2015-04-01

    Humus and energy balances and greenhouse gas emissions with compost fertilization in organic farming compared with mineral fertilization E. Erhart, H. Schmid, K.-J. Hülsbergen, W. Hartl The positive effects of compost fertilization on soil humus with their associated benefits for soil quality are well-established. The aim of the present study was to assess the effect of compost fertilization on humus and energy balances and greenhouse gas emissions and to compare the results of the humus balances with the changes in soil organic carbon contents measured in the soil of the experimental field. In order to assess the effects of compost use in organic farming as compared to conventional farming practice using mineral fertilizers, the field experiment with compost fertilization 'STIKO' was set up in 1992 near Vienna, Austria, on a Molli-gleyic Fluvisol. It included three treatments with compost fertilization (C1, C2 and C3 with 8, 14 and 20 t ha-1 y-1 f. m. on average of 14 years), three treatments with mineral nitrogen fertilization (N1, N2 and N3 with 29, 46 and 63 kg N ha-1 y 1 on average) and an unfertilized control (0) in six replications in a latin rectangle design. In the field trial, biowaste compost from the composting plant of the City of Vienna was used. Data from the field experiment (from 14 experimental years) were fed into the model software REPRO to calculate humus and energy balances and greenhouse gas emissions. The model software REPRO (REPROduction of soil fertility) couples the balancing of C, N and energy fluxes. For the determination of the net greenhouse effect, REPRO performs calculations of C sequestration in the soil, CO2 emissions from the use of fossil energy and N2O emissions from the soil. Humus balances showed that compost fertilization at a rate of 8 t ha-1 y-1 (C1) resulted in a positive humus balance of +115 kg C ha-1 y-1. With 14 and 20 t ha-1 y-1 compost (C2 and C3), respectively, humus accumulated at rates of 558 and 1021 kg C ha-1 y-1. With mineral fertilization at rates of 29 - 63 kg N ha-1 y-1 (N1 - N3), balances were moderately negative ( 169 to -227 kg C ha-1 y-1), while a clear humus deficit of 457 kg C ha-1 y-1 showed in the unfertilized control. Compared with measured soil organic carbon data REPRO predicted soil organic carbon contents fairly well with the exception of the treatments with high compost rates. Here REPRO clearly overestimated soil organic carbon contents for this site. Energy efficiency, as described by the output/input ratio, was highest in the control, followed by C1. Mineral fertilization treatment N3 was most energy intensive. The greenhouse gas balance indicated net carbon sequestration already with medium compost rates (C2), and net carbon sequestration of 1700 kg CO2-eq ha-1 y-1 in C3. Mineral fertilization yielded net greenhouse gas emissions of around 2000 kg CO2-eq ha-1 y 1. The highest greenhouse gas emissions had the unfertilized control due to the degradation of soil organic matter and lowest organic matter input. These findings underline that compost fertilization holds a high potential for carbon sequestration and for the reduction of greenhouse gas emissions.

  17. Effect of commercial mineral-based additives on composting and compost quality.

    PubMed

    Himanen, M; Hänninen, K

    2009-08-01

    The effectiveness of two commercial additives meant to improve the composting process was studied in a laboratory-scale experiment. Improver A (sulphates and oxides of iron, magnesium, manganese, and zinc mixed with clay) and B (mixture of calcium hydroxide, peroxide, and oxide) were added to source-separated biowaste:peat mixture (1:1, v/v) in proportions recommended by the producers. The composting process (T, emissions of CO(2), NH(3), and CH(4)) and the quality of the compost (pH, conductivity, C/N ratio, water-soluble NH(4)-N and NO(3)-N, water- and NaOH-soluble low-weight carboxylic acids, nutrients, heavy metals and phytotoxicity to Lepidium sarivum) were monitored during one year. Compared with the control, the addition of improver B increased pH by two units, led to an earlier elimination of water-soluble ammonia, an increase in nitrates, a 10-fold increase in concentrations of acetic acid, and shortened phytotoxicity period by half; as negative aspect it led to volatilization of ammonia. The addition of improver A led to a longer thermophilic stage by one week and lower concentrations of low-weight carboxylic acids (both water- and NaOH-extractable) with formic and acetic of similar amounts, however, most of the aspects claimed by the improver's producer were not confirmed in this trial.

  18. Stabilization of carbon in composts and biochars in relation to carbon sequestration and soil fertility.

    PubMed

    Bolan, N S; Kunhikrishnan, A; Choppala, G K; Thangarajan, R; Chung, J W

    2012-05-01

    There have been increasing interests in the conversion of organic residues into biochars in order to reduce the rate of decomposition, thereby enhancing carbon (C) sequestration in soils. However energy is required to initiate the pyrolysis process during biochar production which can also lead to the release of greenhouse gasses. Alternative methods can be used to stabilize C in composts and other organic residues without impacting their quality. The objectives of this study include: (i) to compare the rate of decomposition among various organic amendments and (ii) to examine the effect of clay materials on the stabilization of C in organic amendments. The decomposition of a number of organic amendments (composts and biochars) was examined by monitoring the release of carbon-dioxide using respiration experiments. The results indicated that the rate of decomposition as measured by half life (t(1/2)) varied between the organic amendments and was higher in sandy soil than in clay soil. The half life value ranged from 139 days in the sandy soil and 187 days in the clay soil for poultry manure compost to 9989 days for green waste biochar. Addition of clay materials to compost decreased the rate of decomposition, thereby increasing the stabilization of C. The half life value for poultry manure compost increased from 139 days to 620, 806 and 474 days with the addition of goethite, gibbsite and allophane, respectively. The increase in the stabilization of C with the addition of clay materials may be attributed to the immobilization of C, thereby preventing it from microbial decomposition. Stabilization of C in compost using clay materials did not impact negatively the value of composts in improving soil quality as measured by potentially mineralizable nitrogen and microbial biomass carbon in soil. Copyright © 2012 Elsevier B.V. All rights reserved.

  19. Coffee husk composting: An investigation of the process using molecular and non-molecular tools

    PubMed Central

    Shemekite, Fekadu; Gómez-Brandón, María; Franke-Whittle, Ingrid H.; Praehauser, Barbara; Insam, Heribert; Assefa, Fassil

    2014-01-01

    Various parameters were measured during a 90-day composting process of coffee husk with cow dung (Pile 1), with fruit/vegetable wastes (Pile 2) and coffee husk alone (Pile 3). Samples were collected on days 0, 32 and 90 for chemical and microbiological analyses. C/N ratios of Piles 1 and 2 decreased significantly over the 90 days. The highest bacterial counts at the start of the process and highest actinobacterial counts at the end of the process (Piles 1 and 2) indicated microbial succession with concomitant production of compost relevant enzymes. Denaturing gradient gel electrophoresis of rDNA and COMPOCHIP microarray analysis indicated distinctive community shifts during the composting process, with day 0 samples clustering separately from the 32 and 90-day samples. This study, using a multi-parameter approach, has revealed differences in quality and species diversity of the three composts. PMID:24369846

  20. Microbiological indicators for assessing ecosystem soil quality and changes in it at degraded sites treated with compost

    NASA Astrophysics Data System (ADS)

    Ancona, Valeria; Barra Caracciolo, Anna; Grenni, Paola; Di Lenola, Martina; Calabrese, Angelantonio; Campanale, Claudia; Felice Uricchio, Vito

    2014-05-01

    Soil quality is defined as the capacity of a soil to function as a vital system, within natural or managed ecosystem boundaries, sustain plant and animal health and productivity, maintain or enhance air and water environment quality and support human health and habitation. Soil organisms are extremely diverse and contribute to a wide range of ecosystem services that are essential to the sustainable functioning of natural and managed ecosystems. In particular, microbial communities provide several ecosystem services, which ensure soil quality and fertility. In fact, they adapt promptly to environmental changes by varying their activity and by increasing the reproduction of populations that have favourable skills. The structure (e.g. cell abundance) and functioning (e.g. viability and activity) of natural microbial communities and changes in them under different environmental conditions can be considered useful indicators of soil quality state. In this work we studied the quality state of three different soils, located in Taranto Province (Southern Italy), affected by land degradation processes, such as organic matter depletion, desertification and contamination (PCB and metals). Moreover, compost, produced from selected organic waste, was added to the soils studied in order to improve their quality state. Soil samples were collected before and after compost addition and both microbial and chemical analyses were performed in order to evaluate the soil quality state at each site at different times. For this purpose, the microbiological indicators evaluated were bacterial abundance (DAPI counts), cell viability (Live/Dead method), dehydrogenase activity (DHA) and soil respiration. At the same time, the main physico-chemical soil characteristics (organic carbon, available phosphorous, total nitrogen, carbonate and water content, texture and pH) were also measured. Moreover, in the contaminated soil samples PCB and inorganic (e.g. Pb, Se, Sn, Zn) contaminants were analysed respectively by GC-MS and ICP-MS. The overall results showed that the bacterial structure and functioning were affected in different ways by the organic carbon availability and quality, and contaminant occurrence (organic or inorganic compounds). The compost treatment contributed to improve soil fertility and to increase cell number and activity after 7 months in the two low organic carbon content soils. At the polluted site a general increase in bacterial activity after compost addition was also observed and this might be related to a decrease in inorganic and organic contamination levels.

  1. Effect of inoculation with white-rot fungi and fungal consortium on the composting efficiency of municipal solid waste.

    PubMed

    Voběrková, Stanislava; Vaverková, Magdalena D; Burešová, Alena; Adamcová, Dana; Vršanská, Martina; Kynický, Jindřich; Brtnický, Martin; Adam, Vojtěch

    2017-03-01

    An investigation was carried out on the effect of inoculation methods on the compost of an organic fraction of municipal solid waste. Three types of white-rot fungi (Phanerochaete chrysosporium, Trametes versicolor and Fomes fomentarius), and a consortium of these fungi, were used. The study assessed their influence on microbial enzymatic activities and the quality of the finished compost. It was found that the addition of white-rot fungi to municipal solid waste (after 37days of composting) could be a useful strategy for enhancing the properties of the final compost product. In comparison with the control sample (compost without inoculation), it accelerates degradation of solid waste as indicated by changes in C/N, electrical conductivity and pH. However, the effectiveness of waste degradation and compost maturation depends on the type of microorganism used for inoculation. The presence of inoculants, such as Trametes versicolor and Fomes fomentarius, led to a higher degrading ratio and a better degree of maturity. This resulted in an increase of enzymatic activities (especially dehydrogenase and protease) and a germination index in comparison with inoculation using Phanerochaete chrysosporium or a consortium of fungi. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. Volatile organic compound emissions from green waste composting: Characterization and ozone formation

    NASA Astrophysics Data System (ADS)

    Kumar, Anuj; Alaimo, Christopher P.; Horowitz, Robert; Mitloehner, Frank M.; Kleeman, Michael J.; Green, Peter G.

    2011-04-01

    Composting of green waste separated from the disposed solid waste stream reduces biodegradable inputs into landfills, and contributes valuable soil amendments to agriculture. Agencies in regions with severe air quality challenges, such as California's San Joaquin Valley (SJV), have raised concerns about gases emitted during the composting process, which are suspected to contribute to persistent high levels of ground-level ozone formation. The goal of the current study is to thoroughly characterize volatile organic compound (VOC) emissions from green waste compost piles of different ages (fresh tipped piles, 3-6 day old windrows, and 2-3 week old windrows). Multiple sampling and analytical approaches were applied to ensure the detection of most gaseous organic components emitted. More than 100 VOCs were detected and quantified in this study, including aliphatic alkanes, alkenes, aromatic hydrocarbons, biogenic organics, aldehydes, ketones, alcohols, furans, acids, esters, ether, halogenated hydrocarbons and dimethyl disulfide (DMDS). Alcohols were found to be the dominating VOC in the emissions from a compost pile regardless of age, with fluxes ranging from 2.6 to 13.0 mg m -2 min -1 with the highest emissions coming from the younger composting windrows (3-6 days). Average VOC emissions other than alcohols were determined to be 2.3 mg m -2 min -1 from younger windows, which was roughly two times higher than either the fresh tipping pile (1.2 mg m -2 min -1) or the older windrows (1.4 mg m -2 min -1). It was also observed that the older windrows emit a slightly larger proportion of more reactive compounds. Approximately 90% of the total VOCs were found to have maximum incremental reactivity of less than 2. Net ozone formation potential of the emissions was also assessed.

  3. Effect of two different composts on soil quality and on the growth of various plant species in a polymetallic acidic mine soil.

    PubMed

    Rossini-Oliva, S; Mingorance, M D; Peña, A

    2017-02-01

    The effect of the addition (0-10%) of two types of sewage sludge composts (composted sewage sludge [CS] and sewage sludge co-composted with olive prune wastes [CSO]) on a polymetallic acidic soil from the Riotinto mining area was evaluated by i) a soil incubation experiment and ii) a greenhouse pot experiment using tomato (Solanum lycopersicum Mill.), ryegrass (Lolium perenne L.) and ahipa (Pachyrhizus ahipa (Wedd.) Parodi). Compost addition improved the soil organic carbon content, increased the pH and the electrical conductivity and enhanced enzyme activities and soil respiration, more for CSO than for CS. Plant growth was generally enhanced after compost addition, but not proportionally to the dose. Foliar concentrations of some hazardous elements (As, Cr, Fe) in tomato growing in non-amended soil were above the thresholds, questioning the adequacy of using this plant species. However, leaf concentrations of essential and potentially toxic elements (Fe, As, Cr and Pb) in tomato and/or ryegrass were reduced after the amendment with both composts, generally more for CSO than for CS. Conversely, foliar concentrations in ahipa, a plant species which is able to grow without the need of compost addition, were safe except for As and were only slightly affected by compost addition. This plant species would be a suitable candidate due to its low requirements and due to the limited element translocation to the leaves. Concerning the composts, amelioration of plant and soil properties was better accomplished when using CSO, a compost of sewage sludge and plant remains, than when using CS, which only contained the sludge. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. Assessing the use of composts from multiple sources based on the characteristics of carbon mineralization in soil.

    PubMed

    Zhang, Xu; Zhao, Yue; Zhu, Longji; Cui, Hongyang; Jia, Liming; Xie, Xinyu; Li, Jiming; Wei, Zimin

    2017-12-01

    In order to improve soil quality, reduce wastes and mitigate climate change, it is necessary to understand the balance between soil organic carbon (SOC) accumulation and depletion under different organic waste compost amended soils. The effects of proportion (5%, 15%, 30%), compost type (sewage sludge (SS), tomato stem waste (TSW), municipal solid waste (MSW), kitchen waste (KW), cabbage waste (CW), peat (P), chicken manure (CM), dairy cattle manure (DCM)) and the black soil (CK). Their initial biochemical composition (carbon, nitrogen, C:N ratio) on carbon (C) mineralization in soil amended compost have been investigated. The CO 2 -C production of different treatments were measured to indicate the levels of carbon (C) mineralization during 50d of laboratory incubation. And the one order E model (M1E) was used to quantify C mineralization kinetics. The results demonstrated that the respiration and C mineralization of soil were promoted by amending composts. The C mineralization ability increased when the percentage of compost added to the soil also increased and affected by compost type in the order CM>KW, CW>SS, DCM, TSW>MSW, P>CK at the same amended level. Based on the values of C 0 and k 1 from M1E model, a management method in agronomic application of compost products to the precise fertilization was proposed. The SS, DCM and TSW composts were more suitable in supplying fertilizer to the plant. Otherwise, The P and MSW composts can serve the purpose of long-term nutrient retention, whereas the CW and KW composts could be used as soil remediation agent. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Beneficial effect of mixture of additives amendment on enzymatic activities, organic matter degradation and humification during biosolids co-composting.

    PubMed

    Awasthi, Mukesh Kumar; Wang, Quan; Chen, Hongyu; Awasthi, Sanjeev Kumar; Wang, Meijing; Ren, Xiuna; Zhao, Junchao; Zhang, Zengqiang

    2018-01-01

    The objective of this study was to identify the effect of mixture of additives to improve the enzymatic activities, organic matter humification and diminished the bioavailability of heavy metals (HMs) during biosolids co-composting. In this study, zeolite (Z) (10%, 15% and 30%) with 1%lime (L) (dry weight basis of biosolids) was blended into the mixture of biosolids and wheat straw, respectively. The without any amendment and 1%lime applied treatments were run for comparison (Control). The Z+L addition resulted rapid organic matter degradation and humification with maximum enzymatic activities. In addition, higher dosage of Z+1%L amendment reduced the bioavailability of HMs (Cu and Zn) and improved the end product quality as compared to control and 1%L applied treatments. However, the 30%Z+1%L applied treatment showed maximum humification and low bioavailability of HMs but considering the economic feasibility and compost quality results, the treatment with 10%Z+1%L is recommended for biosolids co-composting. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Chemical properties and hydrolytic enzyme activities for the characterisation of two-phase olive mill wastes composting.

    PubMed

    Cayuela, M L; Mondini, C; Sánchez-Monedero, M A; Roig, A

    2008-07-01

    Two-phase olive mill waste (TPOMW) is a semisolid sludge generated during the extraction of olive oil by the two-phase centrifugation system. Among all the available disposal options, composting is gaining interest as a sustainable strategy to recycle TPOMW for agricultural purposes. The quality of compost for agronomical use depends on the degree of organic matter stabilization, but despite several studies on the topic, there is not a single method available which alone can give a certain indication of compost stability. In addition, information on the biological and biochemical properties, including the enzymatic activity (EA) of compost, is rare. The aim of this work was to investigate the suitability of some enzymatic activities (beta-glucosidase, arylsulphatase, acid-phosphatase, alkaline-phosphatase, urease and fluorescein diacetate hydrolysis (FDA)) as parameters to evaluate organic matter stability during the composting of TPOMW. These enzymatic indices were also compared to conventional stability indices. For this purpose two composting piles were prepared by mixing TPOMW with sheep manure and grape stalks in different proportions, with forced aeration and occasional turnings. The composting of TPOMW followed the common pattern reported previously for this kind of material with a reduction of 40-50% of organic matter, a gradual increase in pH, disappearance of phytotoxicity and formation of humic-like C. All EA increased during composting except acid-phosphatase. Significant correlations were found between EA and some important conventional stability indices indicating that EA can be a simple and reliable tool to determine the degree of stability of TPOMW composts.

  7. Seafood-Processing Sludge Composting: Changes to Microbial Communities and Physico-Chemical Parameters of Static Treatment versus for Turning during the Maturation Stage

    PubMed Central

    Alves, David; Mato, Salustiano

    2016-01-01

    In general, in composting facilities the active, or intensive, stage of the process is done separately from the maturation stage, using a specific technology and time. The pre-composted material to be matured can contain enough biodegradable substrates to cause microbial proliferation, which in turn can cause temperatures to increase. Therefore, not controlling the maturation period during waste management at an industrial level can result in undesired outcomes. The main hypothesis of this study is that controlling the maturation stage through turning provides one with an optimized process when compared to the static approach. The waste used was sludge from a seafood-processing plant, mixed with shredded wood (1:2, v/v). The composting system consists of an intensive stage in a 600L static reactor, followed by maturation in triplicate in 200L boxes for 112 days. Two tests were carried out with the same process in reactor and different treatments in boxes: static maturation and turning during maturation when the temperature went above 55°C. PLFAs, organic matter, pH, electrical conductivity, forms of nitrogen and carbon, hydrolytic enzymes and respiratory activity were periodically measured. Turning significantly increased the duration of the thermophilic phase and consequently increased the organic-matter degradation. PCA differentiated significantly the two treatments in function of tracking parameters, especially pH, total carbon, forms of nitrogen and C/N ratio. So, stability and maturity optimum values for compost were achieved in less time with turnings. Whereas turning resulted in microbial-group stabilization and a low mono/sat ratio, static treatment produced greater variability in microbial groups and a high mono/sat ratio, the presence of more degradable substrates causes changes in microbial communities and their study during maturation gives an approach of the state of organic-matter degradation. Obtaining quality compost and optimizing the composting process requires using turning as a control mechanism during maturation. PMID:28002444

  8. Influence of compost covers on the efficiency of biowaste composting process.

    PubMed

    Marešová, Karolina; Kollárová, Mária

    2010-12-01

    The temperature of matured compost is an indicator of feedstock quality and also a good feedback informing about the suitability of an applied technological procedure. Two independent experiments using the technology of windrow composting at open area were conducted with the final goal to evaluate the effect of compost pile covering (in comparison with uncovered piles) on the course of composting process - behaviour of temperature over time and oxygen content. Two types of sheets were used - Top Tex permeable sheet and impermeable polyethylene sheet. The experiment I (summer months) aimed at comparison of efficiency between the Top Tex sheet cover and the uncovered compost piles, while experiment II (autumn months) compared treatments using the Top Tex sheet and polyethylene sheet by contrast. Within the experiment I the composts consisted of cattle slurry and fresh grass matter at a ratio of 1:1, in case of experiment II consisted of pig/cattle manure, fresh grass matter and chipped material at a ratio of about 1:2:1. The obtained data showed no significant differences among the cover treatments according to ANOVA. The only exception was oxygen content in pile 4 (experiment II) under Top Tex sheet, where a markedly higher oxygen content than under polyethylene sheet was measured during the whole composting period. It was the only case where statistical analysis proved a significant difference; the p-value was 0.0002. Copyright © 2010. Published by Elsevier Ltd.

  9. Effects of nitro-treatment on Salmonella, E. coli and nitrogen metabolism during composting of poultry litter

    USDA-ARS?s Scientific Manuscript database

    Poultry litter contains appreciable amounts of uric acid which makes it a good crude protein supplement for ruminants whose gut microbes transform the nitrogen in uric acid into high quality microbial protein. However, poultry litter must be treated to kill bacterial pathogens before feeding. Pres...

  10. Influence of zeolite and lime as additives on greenhouse gas emissions and maturity evolution during sewage sludge composting.

    PubMed

    Awasthi, Mukesh Kumar; Wang, Quan; Huang, Hui; Ren, Xiuna; Lahori, Altaf Hussain; Mahar, Amanullah; Ali, Amjad; Shen, Feng; Li, Ronghua; Zhang, Zengqiang

    2016-09-01

    This study aimed to evaluate the role of different amount of zeolite with low dosage of lime amendment on the greenhouse gas (GHGs) emission and maturity during the dewatered fresh sewage sludge (DFSS) composting. The evolution of CO2, CH4, NH3 and N2O and maturity indexes were monitored in five composting mixtures prepared from DFSS mixed with wheat straw, while 10%, 15% and 30% zeolite+1% lime were supplemented (dry weight basis of DFSS) into the composting mass and compared with treatment only 1% lime amended and control without any amendment. The results showed that addition of higher dosage of zeolite+1% lime drastically reduce the GHGs emissions and NH3 loss. Comparison of GHGs emissions and compost quality showed that zeolite amended treatments were superior than control and 1% lime amended treatments. Therefore, DFSS composting with 30% zeolite+1% lime as consortium of additives were found to emit very less amount of GHGs and gave the highest maturity than other treatments. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. The impact of silver nanoparticles on the co-composting of sewage sludge and agricultural waste: Evolutions of organic matter and nitrogen.

    PubMed

    Zhang, Lihua; Zeng, Guangming; Dong, Haoran; Chen, Yaoning; Zhang, Jiachao; Yan, Ming; Zhu, Yuan; Yuan, Yujie; Xie, Yankai; Huang, Zhenzhen

    2017-04-01

    This study evaluated the influence of silver nanoparticles (AgNPs) on evolutions of organic matter and nitrogen during co-composting of sewage sludge and agricultural waste. Two co-composting piles were conducted, one was treated without AgNPs (pile 1) and the other with AgNPs (pile 2). Results showed that the AgNPs affected the quality of final composts. Less organic matter (OM) losses were determined in pile 2 (57.96%) than pile 1 (61.66%). 27.22% and 30.1% of the initial total organic matter (TOC) was decomposed in pile 1 and pile 2, respectively. The final water soluble carbon (WSC) concentration in pile 2 was 23559.27mg/kg DW compost which was significantly lower than pile 1 (25642.75mg/kg DW compost). Changes of different forms of nitrogen in the two piles showed that AgNPs could reduce the losses of TN but increase the losses of mineral N. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Physico-chemical and biological characteristics of compost from decentralised composting programmes.

    PubMed

    Vázquez, M A; Sen, R; Soto, M

    2015-12-01

    Composts that originated from small-scale composting programmes including home, community and canteen waste composters were studied. Heavy metals concentration indicated compliance with current regulations for conventional and organic agriculture. Compost from canteen waste showed high organic matter content (74% VS), while community (44 ± 20% VS) and home composts (31 ± 16% VS) had moderate levels. N content increased from home compost (1.3 ± 0.9% dm) to community (2.0 ± 0.9%) and canteen compost (2.5-3.0%) while P content ranged from 0.4% to 0.6% dm. C/N, absorbance E4/E6 and N-NH4(+)/N-NO3(-) ratios as well as respiration index indicated well-stabilized final products. Culturable bacterial and fungal cfu linkage to composting dynamics were identified and higher diversity of invertebrates was found in the smaller scale static systems. With similar process evolution indicators to industrial systems, overall results support the sustainability of these small-scale, self-managed composting systems. Copyright © 2015 Elsevier Ltd. All rights reserved.

  13. Evaluation of aerobic co-composting of penicillin fermentation fungi residue with pig manure on penicillin degradation, microbial population dynamics and composting maturity.

    PubMed

    Zhang, Zhenhua; Zhao, Juan; Yu, Cigang; Dong, Shanshan; Zhang, Dini; Yu, Ran; Wang, Changyong; Liu, Yan

    2015-12-01

    Improper treatment of penicillin fermentation fungi residue (PFFR), one of the by-products of penicillin production process, may result in environmental pollution due to the high concentration of penicillin. Aerobic co-composting of PFFR with pig manure was determined to degrade penicillin in PFFR. Results showed that co-composting of PFFR with pig manure can significantly reduce the concentration of penicillin in PFFR, make the PFFR-compost safer as organic fertilizer for soil application. More than 99% of penicillin in PFFR were removed after 7-day composting. PFFR did not affect the composting process and even promote the activity of the microorganisms in the compost. Quantitative PCR (qPCR) indicated that the bacteria and actinomycetes number in the AC samples were 40-80% higher than that in the pig-manure compost (CK) samples in the same composting phases. This research indicated that the aerobic co-composting was a feasible PFFR treatment method. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. The structural and functional contributions of β-glucosidase-producing microbial communities to cellulose degradation in composting.

    PubMed

    Zang, Xiangyun; Liu, Meiting; Fan, Yihong; Xu, Jie; Xu, Xiuhong; Li, Hongtao

    2018-01-01

    Compost habitats sustain a vast ensemble of microbes that engender the degradation of cellulose, which is an important part of global carbon cycle. β-Glucosidase is the rate-limiting enzyme of degradation of cellulose. Thus, analysis of regulation of β-glucosidase gene expression in composting is beneficial to a better understanding of cellulose degradation mechanism. Genetic diversity and expression of β-glucosidase-producing microbial communities, and relationships of cellulose degradation, metabolic products and the relative enzyme activity during natural composting and inoculated composting were evaluated. Compared with natural composting, adding inoculation agent effectively improved the degradation of cellulose, and maintained high level of the carboxymethyl cellulose (CMCase) and β-glucosidase activities in thermophilic phase. Gene expression analysis showed that glycoside hydrolase family 1 (GH1) family of β-glucosidase genes contributed more to β-glucosidase activity in the later thermophilic phase in inoculated compost. In the cooling phase of natural compost, glycoside hydrolase family 3 (GH3) family of β-glucosidase genes contributed more to β-glucosidase activity. Intracellular β-glucosidase activity played a crucial role in the regulation of β-glucosidase gene expression, and upregulation or downregulation was also determined by extracellular concentration of glucose. At sufficiently high glucose concentrations, the functional microbial community in compost was altered, which may contribute to maintaining β-glucosidase activity despite the high glucose content. This research provides an ecological functional map of microorganisms involved in carbon metabolism in cattle manure-rice straw composting. The performance of the functional microbial groups in the two composting treatments is different, which is related to the cellulase activity and cellulose degradation, respectively.

  15. The nitrogen efficiency of MSW composts as measured by triticale uptake in a 3-year field experiment

    NASA Astrophysics Data System (ADS)

    Weber, Jerzy; Licznar, Michal; Bekier, Jakub; Drozd, Jerzy; Jamroz, Elzbieta; Kocowicz, Andrzej; Parylak, Danuta; Kordas, Leszek; Licznar, Stanislawa

    2010-05-01

    This paper presents results of three year field experiment, where two different composts produced from municipal solid wastes were applied to sandy soil. The experiment was established on soil developed from loam sand, according to U.S.D.A. textural classes (81% of sand, 12% of silt, and 7% of clay), of a slightly acidic reaction (pH KCl 6.05 - 6.44). The plough layer (0 - 25 cm) contained about 5.0 g/kg of organic carbon. Both composts were alkaline in reaction and contained high amounts of plant available forms of phosphorus, potassium and magnesium. Composts were used non-recurrently in rates of 18, 36, and 72 t/ha, calculated on dry matter basis. Control objects (0 and NPK) were plots without fertilization, as well as plots fertilized each year with mineral forms of NPK. Field experiment was conducted in 15 m2 plots, using five replications in a randomized block design. Spring triticale (x Triticosecale Wittm.) cultivated in a 3-year monoculture was used as the experiment plant. Soil samples were collected each year after harvesting. Changes in triticale yield were considered in relation to soil properties and nitrogen content in triticale straw and grain. Application of composts caused beneficial changes in soil fertility, connected mainly with an increase of soil organic matter and content of available forms of P, K, and Mg. These effects were observed throughout three years of the experiment. However, significantly higher values of organic carbon - as compared to control (0 and NPK) - were observed only in plots with medium and highest compost doses. This effect was very clear in the first year, while significant differences in soil carbon content were still observed in next two years. The yield of triticale straw and grain depended significantly on fertilization with composts, but beneficial effect of compost was observed only in the first year. Yield similar to NPK control was found only on plots where the highest dose of compost was applied. Next two years, all compost amended plots indicated distinctly lower yield than that on NPK control. Decrease of yield was accompanied by decreased level of nitrogen in triticale straw and grain, although soil of compost amended and NPK fertilized plots indicated the same level of total nitrogen. In the third year dramatic decrease of soil total nitrogen was observed in (0) control, as result of exhausting available nitrogen, while soil amended with composts still contained nitrogen present in non-mineralized organic matter. The yield of triticale grown on soil amended with compost produced from municipal solid wastes was limited by not sufficient amount of plant available nitrogen. Nitrogen efficiency measured as amount of N taken up by triticale grain and straw - after depriving N uptake by triticale grown on control (0) - was very low, around 3 % in the first year and around 1% in the third year. Application of MSW composts is a good alternative for mineral fertilization, however supplementary fertilization with mineral nitrogen is necessary, depending on compost dose and quality.

  16. Extended abstract on the potential for Phytophthora ramorum to infest finished compost

    Treesearch

    Steven Swain; Matteo Garbelotto

    2006-01-01

    The survival rate of Phytophthora ramorum was assessed when introduced at high rates into composts of varying provenance and curing time, produced by both "turned windrow" and "forced air static pile" techniques. Survival in some compost media was high and statistically indistinguishable from positive controls (P

  17. Food waste composting: its use as a peat replacement.

    PubMed

    Farrell, M; Jones, D L

    2010-01-01

    We successfully co-composted catering waste with green waste and shredded paper to yield two high-nitrogen composts for use in horticulture. Sunflowers (Helianthus annuus L.) were grown in various mixtures of the compost and a commercially available peat-based compost to assess the efficacy of catering waste-based composts for peat replacement. Height, head diameter, seed mass and above-ground biomass were measured, with all mixtures giving a significant increase in yield or size over the commercially available peat-free control compost. We conclude that differences in physical structure governed sunflower growth over substrate chemistry, and none of the compost mixtures were nutrient deficient. We recommend that catering waste co-compost can be substituted to at least 75% within Sphagnum-based traditional growing media, providing a viable replacement for a large proportion of peat used as a growth medium in the horticulture industry. Our catering waste compost yielded similar seed head, seed mass and above-ground biomass values to 100% peat-based compost in all food waste compost blends tested in this study. 2010 Elsevier Ltd. All rights reserved.

  18. In-Vessel Composting of Simulated Long-Term Missions Space-Related Solid Wastes

    NASA Technical Reports Server (NTRS)

    Rodriguez-Carias, Abner A.; Sager, John; Krumins, Valdis; Strayer, Richard; Hummerick, Mary; Roberts, Michael S.

    2002-01-01

    Reduction and stabilization of solid wastes generated during space missions is a major concern for the Advanced Life Support - Resource Recovery program at the NASA, Kennedy Space Center. Solid wastes provide substrates for pathogen proliferation, produce strong odor, and increase storage requirements during space missions. A five periods experiment was conducted to evaluate the Space Operation Bioconverter (SOB), an in vessel composting system, as a biological processing technology to reduce and stabilize simulated long-term missions space related solid-wastes (SRSW). For all periods, SRSW were sorted into components with fast (FBD) and slow (SBD) biodegradability. Uneaten food and plastic were used as a major FBD and SBD components, respectively. Compost temperature (C), CO2 production (%), mass reduction (%), and final pH were utilized as criteria to determine compost quality. In period 1, SOB was loaded with a 55% FBD: 45% SBD mixture and was allowed to compost for 7 days. An eleven day second composting period was conducted loading the SOB with 45% pre-composted SRSW and 55% FBD. Period 3 and 4 evaluated the use of styrofoam as a bulking agent and the substitution of regular by degradable plastic on the composting characteristics of SRSW, respectively. The use of ceramic as a bulking agent and the relationship between initial FBD mass and heat production was investigated in period 5. Composting SRSW resulted in an acidic fermentation with a minor increase in compost temperature, low CO2 production, and slightly mass reduction. Addition of styrofoam as a bulking agent and substitution of regular by biodegradable plastic improved the composting characteristics of SRSW, as evidenced by higher pH, CO2 production, compost temperature and mass reduction. Ceramic as a bulking agent and increase the initial FBD mass (4.4 kg) did not improve the composting process. In summary, the SOB is a potential biological technology for reduction and stabilization of mission space-related solid wastes. However, the success of the composting process may depend of the physical characteristics (particle size, porosity, structure, texture) of the SBD components which would require pre-processing of solid wastes before placing them in the SOB.

  19. Substitution of peat, fertiliser and manure by compost in hobby gardening: user surveys and case studies.

    PubMed

    Andersen, Jacob K; Christensen, Thomas H; Scheutz, Charlotte

    2010-12-01

    Four user surveys were performed at recycle centres (RCs) in the Municipalities of Aarhus and Copenhagen, Denmark, to get general information on compost use and to examine the substitution of peat, fertiliser and manure by compost in hobby gardening. The average driving distance between the users' households and the RCs was found to be 4.3 km and the average amount of compost picked up was estimated at 800 kg per compost user per year. The application layer of the compost varied (between 1 and 50 cm) depending on the type of use. The estimated substitution (given as a fraction of the compost users that substitute peat, fertiliser and manure with compost) was 22% for peat, 12% for fertiliser and 7% for manure (41% in total) from the survey in Aarhus (n=74). The estimate from the survey in Copenhagen (n=1832) was 19% for peat, 24% for fertiliser and 15% for manure (58% in total). This is the first time, to the authors' knowledge, that the substitution of peat, fertiliser and manure with compost has been assessed for application in hobby gardening. Six case studies were performed as home visits in addition to the Aarhus surveys. From the user surveys and the case studies it was obvious that the total substitution of peat, fertiliser and manure was not 100%, as is often assumed when assigning environmental credits to compost. It was more likely around 50% and thus there is great potential for improvement. It was indicated that compost was used for a lot of purposes in hobby gardening. Apart from substitution of peat, fertiliser and manure, compost was used to improve soil quality and as a filling material (as a substitute for soil). Benefits from these types of application are, however, difficult to assess and thereby quantify. Copyright © 2010 Elsevier Ltd. All rights reserved.

  20. Impact of compost, vermicompost and biochar on soil fertility, maize yield and soil erosion in Northern Vietnam: a three year mesocosm experiment.

    PubMed

    Doan, Thuy Thu; Henry-des-Tureaux, Thierry; Rumpel, Cornelia; Janeau, Jean-Louis; Jouquet, Pascal

    2015-05-01

    Compost, vermicompost and biochar amendments are thought to improve soil quality and plant yield. However, little is known about their long-term impact on crop yield and the environment in tropical agro-ecosystems. In this study we investigated the effect of organic amendments (buffalo manure, compost and vermicompost) and biochar (applied alone or with vermicompost) on plant yield, soil fertility, soil erosion and water dynamics in a degraded Acrisol in Vietnam. Maize growth and yield, as well as weed growth, were examined for three years in terrestrial mesocosms under natural rainfall. Maize yield and growth showed high inter-annual variability depending on the organic amendment. Vermicompost improved maize growth and yield but its effect was rather small and was only significant when water availability was limited (year 2). This suggests that vermicompost could be a promising substrate for improving the resistance of agrosystems to water stress. When the vermicompost-biochar mixture was applied, further growth and yield improvements were recorded in some cases. When applied alone, biochar had a positive influence on maize yield and growth, thus confirming its interest for improving long-term soil productivity. All organic amendments reduced water runoff, soil detachment and NH₄(+) and NO₃(-) transfer to water. These effects were more significant with vermicompost than with buffalo manure and compost, highlighting that the beneficial influence of vermicompost is not limited to its influence on plant yield. In addition, this study showed for the first time that the combination of vermicompost and biochar may not only improve plant productivity but also reduce the negative impact of agriculture on water quality. Copyright © 2015 Elsevier B.V. All rights reserved.

  1. Environmental impacts of in-house windrow composting of broiler litter prior to land application in subtropical/semi-arid conditions

    USDA-ARS?s Scientific Manuscript database

    Land application to crop and pasture land is a common and effective method of utilizing the resource value of poultry litter. In-house windrow composting of litter is an emerging management practice with the potential to mitigate water quality and nuisance odor concerns associated with land applica...

  2. Synchrony of net nitrogen mineralization and maize nitrogen uptake following applications of composted and fresh swine manure in the Midwest U.S.

    USDA-ARS?s Scientific Manuscript database

    Understanding how the quality of organic soil amendments affects the synchrony of nitrogen (N) mineralization and plant N uptake is critical for optimal agronomic N management and environmental protection. Composting solid livestock manures prior to soil application has been promoted to increase N s...

  3. Physicochemical profile of microbial-assisted composting on empty fruit bunches of oil palm trees.

    PubMed

    Lim, Li Yee; Bong, Cassendra Phun Chien; Chua, Lee Suan; Lee, Chew Tin

    2015-12-01

    This study was carried out to investigate the physicochemical properties of compost from oil palm empty fruit bunches (EFB) inoculated with effective microorganisms (EM∙1™). The duration of microbial-assisted composting was shorter (∼7 days) than control samples (2 months) in a laboratory scale (2 kg) experiment. The temperature profile of EFB compost fluctuated between 26 and 52 °C without the presence of consistent thermophilic phase. The pH of compost changed from weak acidic (pH ∼5) to mild alkaline (pH ∼8) because of the formation of nitrogenous ions such as ammonium (NH4 (+)), nitrite (NO2 (-)), and nitrate (NO3 (-)) from organic substances during mineralization. The pH of the microbial-treated compost was less than 8.5 which is important to prevent the loss of nitrogen as ammonia gas in a strong alkaline condition. Similarly, carbon mineralization could be determined by measuring CO2 emission. The microbial-treated compost could maintain longer period (∼13 days) of high CO2 emission resulted from high microbial activity and reached the threshold value (120 mg CO2-C kg(-1) day(-1)) for compost maturity earlier (7 days). Microbial-treated compost slightly improved the content of minerals such as Mg, K, Ca, and B, as well as key metabolite, 5-aminolevulinic acid for plant growth at the maturity stage of compost. Graphical Abstract Microbial-assisted composting on empty fruit bunches.

  4. Suppressive composts: microbial ecology links between abiotic environments and healthy plants.

    PubMed

    Hadar, Yitzhak; Papadopoulou, Kalliope K

    2012-01-01

    Suppressive compost provides an environment in which plant disease development is reduced, even in the presence of a pathogen and a susceptible host. Despite the numerous positive reports, its practical application is still limited. The main reason for this is the lack of reliable prediction and quality control tools for evaluation of the level and specificity of the suppression effect. Plant disease suppression is the direct result of the activity of consortia of antagonistic microorganisms that naturally recolonize the compost during the cooling phase of the process. Thus, it is imperative to increase the level of understanding of compost microbial ecology and population dynamics. This may lead to the development of an ecological theory for complex ecosystems as well as favor the establishment of hypothesis-driven studies.

  5. Mitigation of Water Stress on Apple Trees under Rotational Irrigation Conditions by Increasing the Application Rate of Organic Fertilizers to Sandy Soils

    NASA Astrophysics Data System (ADS)

    Hamed, Lamy Mamdoh Mohamed; Ramadan Eid, Abdelraouf; Mohsmed Rabie Abdellatif Abdelaziz, Adel; Fathy Abdelsalam Essa, El-Sayed

    2016-04-01

    Egypt, as part of Mediterranean regions, is characterized by irregular and low rainfall amount which varies between (30-150 mm.year-1), and characterized also by high temperature which increase the rate of evapotranspiration from the cultivated soil. On the other hand, New reclaimed soils are mostly occupies around 84 % of total area of Egypt, which is mainly sandy soils. These soils generally characterized by low water capacity holding, soil organic matter, and weak in nutrients retention. Under these conditions which have a great influence on crop production, there is a great needing to increase the crop water use efficiency and increasing of nutrient retention in sandy soils. In this context, two field experiments were carried out on sand soil located in north Cairo-Egypt at the experimental farm of National Research Center, El-NUBARIA, (latitude 30° 30' N, and longitude 30° 19' E). The effect of compost rates on soil hydraulic characteristics, fruit yields, quality traits, and water use efficiency and productivity of apple tree (Apple Anna Cultivar), was studied under deficit irrigation conditions. Four rates of compost [I1: control, I2: 12 ton.ha-1., I3: 24 ton.ha-1., I4: 36 ton.ha-1. and I5:48 ton.ha-1.] were applied under irrigation frequencies of (IF1 :once per week; IF2 :twice per week, IF3 :three times per week). The obtained results indicated that by increasing the application rate of compost, the available water capacity and saturated water content of sandy soil have been enhanced. In the same time, the fruit yield, quality traits and water productivity were increased by increasing the application rate of compost. It is worthy to mention that the I5IF3 treatment gave the highest values of fruit yield, quality traits and water productivity, whereas I1IF1 treatment gave the lowest values of all the above mentioned variables. As result, for apple cultivation in El-NUBARIA region, the recommended rate of compost is 48 ton.ha-1 and irrigation frequency must be three times per week (IF3) under drip irrigation system to mitigate the negative effect of water stress on apple trees.

  6. Humic acid batteries derived from vermicomposts at different C/N ratios

    NASA Astrophysics Data System (ADS)

    Shamsuddin, R. M.; Borhan, A.; Lim, W. K.

    2017-06-01

    Humic acid is a known fertilizer derived from decomposed organic matters. Organic wastes are normally landfilled for disposal which had contributed negatively to the environment. From waste-to-wealth perspective, such wastes are potential precursors for compost fertilizers. When worms are added into a composting process, the process is termed as vermicomposting. In this work, humic acid from vermicompost derived from campus green wastes was developed into a battery. This adds value proposition to compost instead of being traditionally used solely as soil improver. This research work aimed to study the correlation between electrical potential generated by humic acid at different Carbon to Nitrogen (C/N) ratios of vermicompost at 20, 25, 30 and 35. The temperature and pH profiles of composting revealed that the compost was ready after 55 days. The humic acid was extracted from compost via alkaline extraction followed by precipitation in a strong acid. The extracted humic acid together with other additives were packed into a compartment and termed as vermibattery. Another set of battery running only on the additives was also prepared as a control. The net voltage produced by a single vermibattery cell with Zn and PbO electrodes was in the range of 0.31 to 0.44 V with compost at C/N ratio of 30 gave the highest voltage. The battery can be connected in series to increase the voltage generation. Quality assessment on the compost revealed that the final carbon content is between 16 to 23 wt%, nitrogen content of 0.4 to 0.5 wt%, humic acid yield of 0.7 to 1.5 wt% and final compost mass reduction of 10 to 35 wt%. Composting campus green wastes carries multi-fold benefits of reducing labour requirement, generating fertilizer for campus greenery and green battery construction.

  7. Sewage sludge, compost and other representative organic wastes as agricultural soil amendments: Benefits versus limiting factors.

    PubMed

    Alvarenga, Paula; Mourinha, Clarisse; Farto, Márcia; Santos, Teresa; Palma, Patrícia; Sengo, Joana; Morais, Marie-Christine; Cunha-Queda, Cristina

    2015-06-01

    Nine different samples of sewage sludges, composts and other representative organic wastes, with potential interest to be used as agricultural soil amendments, were characterized: municipal sewage sludge (SS1 and SS2), agro industrial sludge (AIS), municipal slaughterhouse sludge (MSS), mixed municipal solid waste compost (MMSWC), agricultural wastes compost (AWC), compost produced from agricultural wastes and sewage sludge (AWSSC), pig slurry digestate (PSD) and paper mill wastes (PMW). The characterization was made considering their: (i) physicochemical parameters, (ii) total and bioavailable heavy metals (Cd, Cr, Cu, Ni, Pb, Zn and Hg), (iii) organic contaminants, (iv) pathogenic microorganisms and (v) stability and phytotoxicity indicators. All the sludges, municipal or other, comply with the requirements of the legislation regarding the possibility of their application to agricultural soil (with the exception of SS2, due to its pathogenic microorganisms content), with a content of organic matter and nutrients that make them interesting to be applied to soil. The composts presented, in general, some constraints regarding their application to soil, and their impairment was due to the existence of heavy metal concentrations exceeding the proposed limit of the draft European legislation. As a consequence, with the exception of AWSSC, most compost samples were not able to meet these quality criteria, which are more conservative for compost than for sewage sludge. From the results, the composting of sewage sludge is recommended as a way to turn a less stabilized waste into a material that is no longer classified as a waste and, judging by the results of this work, with lower heavy metal content than the other composted materials, and without sanitation problems. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. The distinctive microbial community improves composting efficiency in a full-scale hyperthermophilic composting plant.

    PubMed

    Yu, Zhen; Tang, Jia; Liao, Hanpeng; Liu, Xiaoming; Zhou, Puxiong; Chen, Zhi; Rensing, Christopher; Zhou, Shungui

    2018-06-07

    The application of conventional thermophilic composting (TC) is limited by poor efficiency. Newly-developed hyperthermophilic composting (HTC) is expected to overcome this shortcoming. However, the characterization of microbial communities associated with HTC remains unclear. Here, we compared the performance of HTC and TC in a full-scale sludge composting plant, and found that HTC running at the hyperthermophilic and thermophilic phases for 21 days, led to higher composting efficiency and techno-economic advantages over TC. Results of high-throughput sequencing showed drastic changes in the microbial community during HTC. Thermaceae (35.5-41.7%) was the predominant family in the hyperthermophilic phase, while the thermophilic phase was dominated by both Thermaceae (28.0-53.3%) and Thermoactinomycetaceae (29.9-36.1%). The change of microbial community could be the cause of continuous high temperature in HTC, and thus improve composting efficiency by accelerating the maturation process. This work has provided theoretical and practical guidance for managing sewage sludge by HTC. Copyright © 2018 Elsevier Ltd. All rights reserved.

  9. Compost Grown Agaricus bisporus Lacks the Ability to Degrade and Consume Highly Substituted Xylan Fragments

    PubMed Central

    de Vries, Ronald P.; Gruppen, Harry; Kabel, Mirjam A.

    2015-01-01

    The fungus Agaricus bisporus is commercially grown for the production of edible mushrooms. This cultivation occurs on compost, but not all of this substrate is consumed by the fungus. To determine why certain fractions remain unused, carbohydrate degrading enzymes, water-extracted from mushroom-grown compost at different stages of mycelium growth and fruiting body formation, were analyzed for their ability to degrade a range of polysaccharides. Mainly endo-xylanase, endo-glucanase, β-xylosidase and β-glucanase activities were determined in the compost extracts obtained during mushroom growth. Interestingly, arabinofuranosidase activity able to remove arabinosyl residues from doubly substituted xylose residues and α-glucuronidase activity were not detected in the compost enzyme extracts. This correlates with the observed accumulation of arabinosyl and glucuronic acid substituents on the xylan backbone in the compost towards the end of the cultivation. Hence, it was concluded that compost grown A. bisporus lacks the ability to degrade and consume highly substituted xylan fragments. PMID:26237450

  10. Coffee husk composting: an investigation of the process using molecular and non-molecular tools.

    PubMed

    Shemekite, Fekadu; Gómez-Brandón, María; Franke-Whittle, Ingrid H; Praehauser, Barbara; Insam, Heribert; Assefa, Fassil

    2014-03-01

    Various parameters were measured during a 90-day composting process of coffee husk with cow dung (Pile 1), with fruit/vegetable wastes (Pile 2) and coffee husk alone (Pile 3). Samples were collected on days 0, 32 and 90 for chemical and microbiological analyses. C/N ratios of Piles 1 and 2 decreased significantly over the 90 days. The highest bacterial counts at the start of the process and highest actinobacterial counts at the end of the process (Piles 1 and 2) indicated microbial succession with concomitant production of compost relevant enzymes. Denaturing gradient gel electrophoresis of rDNA and COMPOCHIP microarray analysis indicated distinctive community shifts during the composting process, with day 0 samples clustering separately from the 32 and 90-day samples. This study, using a multi-parameter approach, has revealed differences in quality and species diversity of the three composts. Copyright © 2013 The Authors. Published by Elsevier Ltd.. All rights reserved.

  11. Adding worms during composting of organic waste with red mud and fly ash reduces CO2 emissions and increases plant available nutrient contents.

    PubMed

    Barthod, J; Rumpel, C; Calabi-Floody, M; Mora, M-L; Bolan, N S; Dignac, M-F

    2018-09-15

    Alkaline industrial wastes such as red mud and fly ash are produced in large quantities. They may be recycled as bulking agent during composting and vermicomposting, converting organic waste into soil amendments or plant growth media. The aim of this study was to assess the microbial parameters, greenhouse gas emissions and nutrient availability during composting and vermicomposting of household waste with red mud and fly ash 15% (dry weight). CO 2 , CH 4 and N 2 O emissions were monitored during 6 months in controlled laboratory conditions and microbial biomass and phospholipid acids, N and P availability were analysed in the end-products. Higher CO 2 emissions were observed during vermicomposting compared to composting. These emissions were decreased by red mud addition, while fly ash had no effect. Nitrate (NO 3 -N) content of the end-products were more affected by worms than by alkaline materials, while higher ammonium (NH 4 -N) contents were recorded for composts than vermicomposts. Red mud vermicompost showed higher soluble P proportion than red mud compost, suggesting that worm presence can counterbalance P adsorption to the inorganic matrix. Final composts produced with red mud showed no harmful heavy metal concentrations. Adding worms during composting thus improved the product nutrient availability and did not increase metal toxicity. From a practical point of view, this study suggests that for carbon stabilisation and end-product quality, the addition of red mud during composting should be accompanied by worm addition to counterbalance negative effects on nutrient availability. Copyright © 2018. Published by Elsevier Ltd.

  12. Composting in small laboratory pilots: Performance and reproducibility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lashermes, G.; Barriuso, E.; Le Villio-Poitrenaud, M.

    2012-02-15

    Highlights: Black-Right-Pointing-Pointer We design an innovative small-scale composting device including six 4-l reactors. Black-Right-Pointing-Pointer We investigate the performance and reproducibility of composting on a small scale. Black-Right-Pointing-Pointer Thermophilic conditions are established by self-heating in all replicates. Black-Right-Pointing-Pointer Biochemical transformations, organic matter losses and stabilisation are realistic. Black-Right-Pointing-Pointer The organic matter evolution exhibits good reproducibility for all six replicates. - Abstract: Small-scale reactors (<10 l) have been employed in composting research, but few attempts have assessed the performance of composting considering the transformations of organic matter. Moreover, composting at small scales is often performed by imposing a fixed temperature, thus creatingmore » artificial conditions, and the reproducibility of composting has rarely been reported. The objectives of this study are to design an innovative small-scale composting device safeguarding self-heating to drive the composting process and to assess the performance and reproducibility of composting in small-scale pilots. The experimental setup included six 4-l reactors used for composting a mixture of sewage sludge and green wastes. The performance of the process was assessed by monitoring the temperature, O{sub 2} consumption and CO{sub 2} emissions, and characterising the biochemical evolution of organic matter. A good reproducibility was found for the six replicates with coefficients of variation for all parameters generally lower than 19%. An intense self-heating ensured the existence of a spontaneous thermophilic phase in all reactors. The average loss of total organic matter (TOM) was 46% of the initial content. Compared to the initial mixture, the hot water soluble fraction decreased by 62%, the hemicellulose-like fraction by 68%, the cellulose-like fraction by 50% and the lignin-like fractions by 12% in the final compost. The TOM losses, compost stabilisation and evolution of the biochemical fractions were similar to observed in large reactors or on-site experiments, excluding the lignin degradation, which was less important than in full-scale systems. The reproducibility of the process and the quality of the final compost make it possible to propose the use of this experimental device for research requiring a mass reduction of the initial composted waste mixtures.« less

  13. Fungal and bacterial successions in the process of co-composting of organic wastes as revealed by 454 pyrosequencing.

    PubMed

    Galitskaya, Polina; Biktasheva, Liliya; Saveliev, Anatoly; Grigoryeva, Tatiana; Boulygina, Eugenia; Selivanovskaya, Svetlana

    2017-01-01

    Composting is viewed as one of the primary methods to treat organic wastes. Co-composting may improve the efficiency of this treatment by establishing the most suitable conditions for decomposers than those present in the individual wastes. Given that bacteria and fungi are the driving agents of composting, information about the composition of their communities and dynamics during composting may improve reproducibility, performance and quality of the final compost as well as help to evaluate the potential human health risk and the choice of the most appropriate application procedure. In this study, the co-composting of mixtures containing two similar components (organic fraction of municipal solid waste and sawdust polluted by oil) and one discriminate component (sewage sludges of different origin) were investigated. Bacterial and fungal community successions in the two mixtures were analyzed during the composting process by determining the change in their structural dynamics using qPCR and 454 pyrosequencing methods in a lab experiment for a period of 270 days. During the initial composting stage, the number of 16S bacterial copies was (3.0±0.2) x 106 and (0.4±0.0) x 107 g-1, and the Rhodospiralles and Lactobacialles orders dominated. Fungal communities had (2.9±0.0) x105 and (6.1±0.2) x105 ITS copies g-1, and the Saccharomycetales order dominated. At the end of the thermophilic stage on the 30th day of composting, bacterial and fungal communities underwent significant changes: dominants changed and their relative abundance decreased. Typical compost residents included Flavobacteriales, Chitinophagaceae and Bacterioidetes for bacteria and Microascaceae, Dothideomycetes, Eurotiomycetes, Sordariomycetes, and Agaricomycetes for fungi. During the later composting stages, the dominating taxa of both bacterial and fungal communities remained, while their relative abundance decreased. In accordance with the change in the dominating OTUs, it was concluded that the dynamics of the bacterial and fungal communities were not similar. Analysis by non-metric multidimensional scaling (NMDS) revealed that the bacterial communities of the two composts became progressively more similar; a similar trend was followed by the fungal community.

  14. Fungal and bacterial successions in the process of co-composting of organic wastes as revealed by 454 pyrosequencing

    PubMed Central

    Galitskaya, Polina; Saveliev, Anatoly; Grigoryeva, Tatiana; Boulygina, Eugenia; Selivanovskaya, Svetlana

    2017-01-01

    Composting is viewed as one of the primary methods to treat organic wastes. Co-composting may improve the efficiency of this treatment by establishing the most suitable conditions for decomposers than those present in the individual wastes. Given that bacteria and fungi are the driving agents of composting, information about the composition of their communities and dynamics during composting may improve reproducibility, performance and quality of the final compost as well as help to evaluate the potential human health risk and the choice of the most appropriate application procedure. In this study, the co-composting of mixtures containing two similar components (organic fraction of municipal solid waste and sawdust polluted by oil) and one discriminate component (sewage sludges of different origin) were investigated. Bacterial and fungal community successions in the two mixtures were analyzed during the composting process by determining the change in their structural dynamics using qPCR and 454 pyrosequencing methods in a lab experiment for a period of 270 days. During the initial composting stage, the number of 16S bacterial copies was (3.0±0.2) x 106 and (0.4±0.0) x 107 g-1, and the Rhodospiralles and Lactobacialles orders dominated. Fungal communities had (2.9±0.0) x105 and (6.1±0.2) x105 ITS copies g-1, and the Saccharomycetales order dominated. At the end of the thermophilic stage on the 30th day of composting, bacterial and fungal communities underwent significant changes: dominants changed and their relative abundance decreased. Typical compost residents included Flavobacteriales, Chitinophagaceae and Bacterioidetes for bacteria and Microascaceae, Dothideomycetes, Eurotiomycetes, Sordariomycetes, and Agaricomycetes for fungi. During the later composting stages, the dominating taxa of both bacterial and fungal communities remained, while their relative abundance decreased. In accordance with the change in the dominating OTUs, it was concluded that the dynamics of the bacterial and fungal communities were not similar. Analysis by non-metric multidimensional scaling (NMDS) revealed that the bacterial communities of the two composts became progressively more similar; a similar trend was followed by the fungal community. PMID:29059245

  15. Benefits of biochar, compost and biochar-compost for soil quality, maize yield and greenhouse gas emissions in a tropical agricultural soil.

    PubMed

    Agegnehu, Getachew; Bass, Adrian M; Nelson, Paul N; Bird, Michael I

    2016-02-01

    Soil quality decline represents a significant constraint on the productivity and sustainability of agriculture in the tropics. In this study, the influence of biochar, compost and mixtures of the two on soil fertility, maize yield and greenhouse gas (GHG) emissions was investigated in a tropical Ferralsol. The treatments were: 1) control with business as usual fertilizer (F); 2) 10 t ha(-1) biochar (B)+F; 3) 25 t ha(-1) compost (Com)+F; 4) 2.5 t ha(-1) B+25 t ha(-1) Com mixed on site+F; and 5) 25 t ha(-1) co-composted biochar-compost (COMBI)+F. Total aboveground biomass and maize yield were significantly improved relative to the control for all organic amendments, with increases in grain yield between 10 and 29%. Some plant parameters such as leaf chlorophyll were significantly increased by the organic treatments. Significant differences were observed among treatments for the δ(15)N and δ(13)C contents of kernels. Soil physicochemical properties including soil water content (SWC), total soil organic carbon (SOC), total nitrogen (N), available phosphorus (P), nitrate-nitrogen (NO3(-)N), ammonium-nitrogen (NH4(+)-N), exchangeable cations and cation exchange capacity (CEC) were significantly increased by the organic amendments. Maize grain yield was correlated positively with total biomass, leaf chlorophyll, foliar N and P content, SOC and SWC. Emissions of CO2 and N2O were higher from the organic-amended soils than from the fertilizer-only control. However, N2O emissions generally decreased over time for all treatments and emission from the biochar was lower compared to other treatments. Our study concludes that the biochar and biochar-compost-based soil management approaches can improve SOC, soil nutrient status and SWC, and maize yield and may help mitigate greenhouse gas emissions in certain systems. Copyright © 2015. Published by Elsevier B.V.

  16. Stability and maturity of biowaste composts derived by small municipalities: Correlation among physical, chemical and biological indices.

    PubMed

    Oviedo-Ocaña, E R; Torres-Lozada, P; Marmolejo-Rebellon, L F; Hoyos, L V; Gonzales, S; Barrena, R; Komilis, D; Sanchez, A

    2015-10-01

    Stability and maturity are important criteria to guarantee the quality of a compost that is applied to agriculture or used as amendment in degraded soils. Although different techniques exist to evaluate stability and maturity, the application of laboratory tests in municipalities in developing countries can be limited due to cost and application complexities. In the composting facilities of such places, some classical low cost on-site tests to monitor the composting process are usually implemented; however, such tests do not necessarily clearly identify conditions of stability and maturity. In this article, we have applied and compared results of stability and maturity tests that can be easily employed on site (i.e. temperature, pH, moisture, electrical conductivity [EC], odor and color), and of tests that require more complex laboratory techniques (volatile solids, C/N ratio, self-heating, respirometric index, germination index [GI]). The evaluation of the above was performed in the field scale using 2 piles of biowaste applied compost. The monitoring period was from day 70 to day 190 of the process. Results showed that the low-cost tests traditionally employed to monitor the composting process on-site, such as temperature, color and moisture, do not provide consistent determinations with the more complex laboratory tests used to assess stability (e.g. respiration index, self-heating, volatile solids). In the case of maturity tests (GI, pH, EC), both the on-site tests (pH, EC) and the laboratory test (GI) provided consistent results. Although, stability was indicated for most of the samples, the maturity tests indicated that products were consistently immature. Thus, a stable product is not necessarily mature. Conclusively, the decision on the quality of the compost in the installations located in developing countries requires the simultaneous use of a combination of tests that are performed both in the laboratory and on-site. Copyright © 2015 Elsevier Ltd. All rights reserved.

  17. Phenolics, flavonoids, antioxidant activity and cyanogenic glycosides of organic and mineral-base fertilized cassava tubers.

    PubMed

    Omar, Nur Faezah; Hassan, Siti Aishah; Yusoff, Umi Kalsom; Abdullah, Nur Ashikin Psyquay; Wahab, Puteri Edaroyati Megat; Sinniah, Umarani

    2012-02-27

    A field study was conducted to determine the effect of organic and mineral-based fertilizers on phytochemical contents in the tubers of two cassava varieties. Treatments were arranged in a split plot design with three replicates. The main plot was fertilizer source (vermicompost, empty fruit bunch compost and inorganic fertilizer) and sub-plot was cassava variety (Medan and Sri Pontian). The amount of fertilizer applied was based on 180 kg K(2)O ha-1. The tubers were harvested and analyzed for total flavonoids, total phenolics, antioxidant activity and cyanogenic glucoside content. Total phenolic and flavonoid compounds were determined using the Folin-Ciocalteu assay and aluminium chloride colorimetric method, respectively. Different sources of fertilizer, varieties and their interactions were found to have a significant effect on phytochemical content. The phenolic and flavonoid content were significantly higher (p < 0.01) in the vermicompost treatment compared to mineral fertilizer and EFB compost. The total flavonoids and phenolics content of vermicompost treated plants were 39% and 38% higher, respectively, than those chemically fertilized. The antioxidant activity determined using the DPPH and FRAP assays were high with application of organic fertilizer. Cyanogenic glycoside levels were decreased with the application of organic fertilizer. Among the two types of compost, vermicompost resulted in higher nutritional value of cassava tubers. Medan variety with application of vermicompost showed the most promising nutritional quality. Since the nutritional quality of cassava can be improved by organic fertilization, organic fertilizer should be used in place of chemical fertilizer for environmentally sustainable production of better quality cassava.

  18. High-nitrogen compost as a medium for organic container-grown crops.

    PubMed

    Raviv, Michael; Oka, Yuji; Katan, Jaacov; Hadar, Yitzhak; Yogev, Anat; Medina, Shlomit; Krasnovsky, Arkady; Ziadna, Hammam

    2005-03-01

    Compost was tested as a medium for organic container-grown crops. Nitrogen (N) loss during composting of separated cow manure (SCM) was minimized using high C/N (wheat straw, WS; grape marc, GM) or a slightly acidic (orange peels, OP) additives. N conservation values in the resultant composts were 82%, 95% and 98% for GM-SCM, OP-SCM and WS-SCM, respectively. Physical characteristics of the composts were compatible with use as growing media. The nutritional contribution of the composts was assessed using cherry tomato (Lycopersicon esculantum Mill.) and by means of incubation experiments. Media were either unfertilized or fertilized with guano (sea-bird manure). Plant responses suggest that N availability is the main variable affecting growth. Unfertilized OP-SCM and WS-SCM supplied the N needed for at least 4 months of plant growth. Root-galling index (GI) of tomato roots and number of eggs of the nematode Meloidogyne javanica were reduced by the composts, with the highest reduction obtained by OP-SCM and WS-SCM, at 50% concentrations. These composts, but not peat, reduced the incidence of crown and root-rot disease in tomato as well as the population size of the causal pathogen, Fusarium oxysporum f. sp. radicis-lycopersici.

  19. Comparison of five agro-industrial waste-based composts as growing media for lettuce: Effect on yield, phenolic compounds and vitamin C.

    PubMed

    Santos, Francielly T; Goufo, Piebiep; Santos, Cátia; Botelho, Donzilia; Fonseca, João; Queirós, Aurea; Costa, Mônica S S M; Trindade, Henrique

    2016-10-15

    Overall phenolic content in plants is on average higher in organic farming, including when renewable resources such as composts are used as soil amendments. In most cases, however, the composting process needs to be optimized to reach the desired outcome. Using composts obtained from chestnut, red and white grapes, olive and broccoli wastes, the relative antioxidative abilities of lettuces cultivated in greenhouse were examined. Results clearly coupled high phenolic levels with high yield in lettuce grown on the chestnut-based compost. A huge accumulation of phenolics was observed with the white grape-based compost, but this coincided with low yield. Three compounds were identified as discriminating factors between treated samples, namely quercetin 3-O-glucoside, luteolin 7-O-glucoside, and cyanidin 3-O-(6″-malonyl)-β-d-glucoside; these are also some of the compounds receiving health claims on lettuce consumption. On a negative note, all composts led to decreased vitamin C levels. Collectively, the data suggest that compost amendments can help add value to lettuce by increasing its antioxidant activity as compared to other organic resources. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. [Analysis on the impact of composting with different proportions of corn stalks and pig manure on humic acid fractions and IR spectral feature].

    PubMed

    Sun, Xiang-Ping; Li, Guo-Xue; Xiao, Ai-Ping; Shi, Hong; Wang, Yi-Ming; Li, Yang-Yang

    2014-09-01

    Using pig manure and corn straw as raw materials for high-temperature composting, setting three different treat- ments: C/N 15, C/N 25, and C/N 35. Composting period is 120 days, which contains 30 days for ventilation cycle by forced continuous ventilation. Sampled on 0, 22, 30, 60, 90, 120th days, they were analyzed by elemental analysis and IR spectroscopy to study effect of different lignin content on compost humic acid (HA) composition and molecular structure. The results showed that the change in composting humic acid C focused on the first 30 days, while after composting, the O/C of compost HA increased, H/C decreased, and N content increased. Low C/N (15) and higher C/N ratio (35) had higher degree of oxidation than the C/N 25 in compost HA. FTIR indicated that the infrared spectrum shapes with different lignin content treatment are similar during the composting process, but the peak intensity is obviously different. Research results proved that the composting stage is more conducive to enhanced aromatic in compost HA. After composting, C/N 15 had less polysaccharide and fat ingredients and more aromatic structural components in compost HA, compared with C/N 25 and 35. In addition, compost HA of C/N 15 had higher degree of humification and its structure was more stable.

  1. An evaluation of aerobic and anaerobic composting of banana peels treated with different inoculums for soil nutrient replenishment.

    PubMed

    Kalemelawa, Frank; Nishihara, Eiji; Endo, Tsuneyoshi; Ahmad, Zahoor; Yeasmin, Rumana; Tenywa, Moses M; Yamamoto, Sadahiro

    2012-12-01

    This study sought to evaluate the efficacy of aerobic and anaerobic composting of inoculated banana peels, and assess the agronomic value of banana peel-based compost. Changes in the chemical composition under aerobic and anaerobic conditions were examined for four formulations of banana peel-based wastes over a period of 12 weeks. The formulations i.e. plain banana peel (B), and a mixture with either cow dung (BC), poultry litter (BP) or earthworm (BE) were separately composted under aerobic and anaerobic conditions under laboratory conditions. Inoculation with either cow dung or poultry litter significantly facilitated mineralization in the order: BP>BC>B. The rate of decomposition was significantly faster under aerobic than in anaerobic composting conditions. The final composts contained high K (>100 g kg(-1)) and TN (>2%), indicating high potential as a source of K and N fertilizer. Copyright © 2012 Elsevier Ltd. All rights reserved.

  2. Comparative Analysis of the Possibility to Use Urban Organic Waste for Compost or Biogas Productions. Application to Rosario City, Argentina

    NASA Astrophysics Data System (ADS)

    Piacentini, Rubén D.; Vega, Marcelo

    2017-10-01

    The city waste is one of the main urban problems to be solved, since they generate large impacts on the environment, like use of land, contamination of the soil, water and air, and human diseases, among others. In Rosario city, placed in the Argentina Humid Pampa and having about 1 million inhabitants, the Municipality is developing different strategies in order to reduce the waste impact (295 000 Tons in 2016). One of the most important actions was the construction of the Bella Vista compost plant in 2012 (within the largest in South America). In the present work we analysed the possibility to use urban organic waste (that for Rosario city represents about 58% of the total waste in the last years) for: a) compost production and b) biogas production, with compost as a by-product. We determined the produced compost and biogas and the corresponding greenhouse gases (GHG) emissions, considering three possible scenarios: A reference scenario (Sr ) where 24 100 Tons of urban solid waste per year is transported from the city houses and buildings to a transfer landfill and then to the a final disposal landfill; a scenario number one (S1 ) in which the same fraction of waste is transported to the Compost plant and transformed to compost and a scenario number two (S2 ) where the same quantity of waste is used for the production of biogas (and compost). Applying the IPCC 2006 Model, we compare the results of the annual GHG emissions, in order to select the best alternative: to expand the Compost plant or to build a Biogas (plus compost) plant. We also discussed the extension of the present analysis to the situation in which all the capability of the Compost plant (25% of the 2016 waste production of the city) is used and the impact these plants are having for a better quality of life of persons involved in the informal waste activity.

  3. Multivariate relationships between microbial communities and environmental variables during co-composting of sewage sludge and agricultural waste in the presence of PVP-AgNPs.

    PubMed

    Zhang, Lihua; Zhang, Jiachao; Zeng, Guangming; Dong, Haoran; Chen, Yaoning; Huang, Chao; Zhu, Yuan; Xu, Rui; Cheng, Yujun; Hou, Kunjie; Cao, Weicheng; Fang, Wei

    2018-08-01

    This study evaluated the contributions of environmental variables to the variations in bacterial 16S rDNA, nitrifying and denitrifying genes abundances during composting in the presence of polyvinylpyrrolidone coated silver nanoparticles (PVP-AgNPs). Manual forward selection in redundancy analysis (RDA) indicated that the variation in 16S rDNA was significantly explained by NO 3 - -N, while nitrifying genes were significantly related with pH, and denitrifying genes were driven by NO 3 - -N and TN. Partial RDA further revealed that NO 3 - -N solely explained 28.8% of the variation in 16S rDNA abundance, and pH accounted for 61.8% of the variation in nitrifying genes. NO 3 - -N and TN accounted for 34.2% and 9.2% of denitrifying genes variation, respectively. The RDA triplots showed that different genes shared different relationships with environmental parameters. Based on these findings, a composting with high efficiency and quality may be conducted in the future work by adjusting the significant environmental variables. Copyright © 2018 Elsevier Ltd. All rights reserved.

  4. Comparison of NOx Removal Efficiencies in Compost Based Biofilters Using Four Different Compost Sources

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lacey, Jeffrey Alan; Lee, Brady Douglas; Apel, William Arnold

    2001-06-01

    In 1998, 3.6 trillion kilowatt-hours of electricity were generated in the United States. Over half of this was from coal-fired power plants, resulting in more than 8.3 million tons of nitrogen oxide (NOx) compounds being released into the environment. Over 95% of the NOx compounds produced during coal combustion are in the form of nitric oxide (NO). NOx emission regulations are becoming increasingly stringent, leading to the need for new, cost effective NOx treatment technologies. Biofiltration is such a technology. NO removal efficiencies were compared in compost based biofilters using four different composts. In previous experiments, removal efficiencies were typicallymore » highest at the beginning of the experiment, and decreased as the experiments proceeded. This work tested different types of compost in an effort to find a compost that could maintain NO removal efficiencies comparable to those seen early in the previous experiments. One of the composts was wood based with manure, two were wood based with high nitrogen content sludge, and one was dairy compost. The wood based with manure and one of the wood based with sludge composts were taken directly from an active compost pile while the other two composts were received in retail packaging which had been out of active piles for an indeterminate amount of time. A high temperature (55-60°C) off-gas stream was treated in biofilters operated under denitrifying conditions. Biofilters were operated at an empty bed residence time of 13 seconds with target inlet NO concentrations of 500 ppmv. Lactate was the carbon and energy source. Compost was sampled at 10-day intervals to determine aerobic and anaerobic microbial densities. Compost was mixed at a 1:1 ratio with lava rock and calcite was added at 100g/kg of compost. In each compost tested, the highest removal efficiencies occurred within the first 10 days of the experiment. The wood based with manure peaked at day 3 (77.14%), the dairy compost at day 1 (80.74%), the active wood based with sludge at day 5 (68.15%) and the inactive wood based with sludge at day 9 (63.64%, this compost was frozen when received). These levels gradually decreased throughout the remainder of the experiment until they fell between 40% and 60%. Decreasing removal efficiency was characteristic of all the composts tested, regardless of their makeup or activity state prior to testing. Although microbial densities and composition between composts may have differed, there was little change in densities within each experiment.« less

  5. Optimization of animal manure vermicomposting based on biomass production of earthworms and higher plants.

    PubMed

    Borges, Yan V; Alves, Luciano; Bianchi, Ivan; Espíndola, Jonas C; Oliveira, Juahil M De; Radetski, Claudemir M; Somensi, Cleder A

    2017-11-02

    The goal of this study was to optimize the mixture of swine manure (SM) and cattle manure (CM) used in the vermicomposting process, seeking to increase the manure biodegradation rate and enhance the biomass production of both earthworms and higher plants. To achieve this goal, physico-chemical parameters were determined to assess the final compost quality after 50 days of vermicomposting. The different manure ratios used to produce the composts (C) were as follows (SM:CM, % m/m basis): C1 100:0, C2 (75:25), C3 (50:50), C4 (25:75), and C5 (0:100). In addition, the earthworm biomass and the phytoproductivity of lettuce (Lactuca sativa L.) plants grown in mixtures (1:1) of natural soil and the most viable vermicomposts were investigated. The C1 and C2 compost compositions were associated with high earthworm mortality rates. The C3 compost provided the highest mineral concentrations and C5 showed the highest lettuce yield (wet biomass). The results verify that stabilized cattle manure is an excellent substrate for the vermicomposting process and that fresh swine manure must be mixed with pre-stabilized cattle manure to ensure an optimized vermicomposting process, which must be controlled in terms of temperature and ammonia levels. It is concluded that small livestock farmers could add value to swine manure by applying the vermicomposting process, without the need for high investments and with a minimal requirement for management of the biodegradation process. These are important technical aspects to be considered when circular economy principles are applied to small farms.

  6. Aerobic biodegradation kinetics of solid organic wastes on earth and for applications in space

    NASA Astrophysics Data System (ADS)

    Ramirez Perez, Javier Christian

    Aerobic biodegradation plays an important role in recycling organic matter and nutrients on earth. It is also a candidate technology for waste processing and resource recovery in Advanced Life Support (ALS) systems, such as a proposed planetary base on Mars. Important questions are how long should wastes be treated, and what is the quality (stability/maturity) of the product. To address these questions two aerobic composting systems were evaluated. One treated (252 days) horse manure and cranberry fruit in duplicate open windrows (HCC) as a reference earth application. The other was a pilot-scale (330 L) enclosed, in-vessel system treating (162 days) inedible biomass collected from plant growth systems at NASA, amended with food and human wastes simulant for potential space application (ALSC). Samples were taken from both systems over time and product quality assessed with a range of physical, chemical, biological, toxicological, respirometry and plant growth analyses that were developed and standardized. Because plant growth analyses take so long, a hypothesis was that some parameters could be used to predict compost quality and suitability for growing plants. Maximum temperatures in the thermophilic range were maintained for both systems (HCC > 60°C for >129 days, ALSC > 55°C for >40 days. Fecal streptococci were reduced by 4.8 log-units for HCC and 7.8 for ALSC. Volume/mass reductions achieved were 63%/62% for HCC and 79%/67% for ALSC. Phytotoxicity tests performed on aqueous extracts to recover plant nutrients found decreasing sensitivity: arabidopsis > lettuce > tomato > wheat > cucumber, corresponding with seed size and food reserve capacity. The germination index (GI) of HCC increased over composting time indicating decreasing phytotoxicity. However, GIs for ALSC leachate decreased or fluctuated over composting time. Selected samples of HCC at 31, 157 and 252 days alone and combined with promix (1:1), and of ALSC at 7, 14, 21, 28, 40 and 84 days, or fresh (FL) or dried and leached (DL), alone and combined with promix or "Martian" regolith simulant (1:1) were assessed as plant growth media. For HCC, plants were tallest and heaviest HCC-252 > HCC-157 > HCC-31 days for HCC and FL-ALSC:promix > DL-ALSC > ALSC:regolith > ALSC:promix > ALSC. Whereas phytotoxicity decreased for HCC over composting time, for ALSC it increased. A hypothesis that increasingly high free ammonia concentration in ALSC may have been the cause of toxicity was confirmed on promix adjusted to different NH4+-N concentrations and pHs. Very good, consistent correlations for selected HCC parameters with plant growth were found. However, poor and inconsistent correlations were found for ALSC due to ammonia toxicity. Maximum oxygen uptake rate (new parameter) and GI are recommended as the best indicators of compost stability/maturity and suitability for plant growth.

  7. Wastewater Biosolid Composting Optimization Based on UV-VNIR Spectroscopy Monitoring

    PubMed Central

    Temporal-Lara, Beatriz; Melendez-Pastor, Ignacio; Gómez, Ignacio; Navarro-Pedreño, Jose

    2016-01-01

    Conventional wastewater treatment generates large amounts of organic matter–rich sludge that requires adequate treatment to avoid public health and environmental problems. The mixture of wastewater sludge and some bulking agents produces a biosolid to be composted at adequate composting facilities. The composting process is chemically and microbiologically complex and requires an adequate aeration of the biosolid (e.g., with a turner machine) for proper maturation of the compost. Adequate (near) real-time monitoring of the compost maturity process is highly difficult and the operation of composting facilities is not as automatized as other industrial processes. Spectroscopic analysis of compost samples has been successfully employed for compost maturity assessment but the preparation of the solid compost samples is difficult and time-consuming. This manuscript presents a methodology based on a combination of a less time-consuming compost sample preparation and ultraviolet, visible and short-wave near-infrared spectroscopy. Spectroscopic measurements were performed with liquid compost extract instead of solid compost samples. Partial least square (PLS) models were developed to quantify chemical fractions commonly employed for compost maturity assessment. Effective regression models were obtained for total organic matter (residual predictive deviation—RPD = 2.68), humification ratio (RPD = 2.23), total exchangeable carbon (RPD = 2.07) and total organic carbon (RPD = 1.66) with a modular and cost-effective visible and near infrared (VNIR) spectroradiometer. This combination of a less time-consuming compost sample preparation with a versatile sensor system provides an easy-to-implement, efficient and cost-effective protocol for compost maturity assessment and near-real-time monitoring. PMID:27854280

  8. Wastewater Biosolid Composting Optimization Based on UV-VNIR Spectroscopy Monitoring.

    PubMed

    Temporal-Lara, Beatriz; Melendez-Pastor, Ignacio; Gómez, Ignacio; Navarro-Pedreño, Jose

    2016-11-15

    Conventional wastewater treatment generates large amounts of organic matter-rich sludge that requires adequate treatment to avoid public health and environmental problems. The mixture of wastewater sludge and some bulking agents produces a biosolid to be composted at adequate composting facilities. The composting process is chemically and microbiologically complex and requires an adequate aeration of the biosolid (e.g., with a turner machine) for proper maturation of the compost. Adequate (near) real-time monitoring of the compost maturity process is highly difficult and the operation of composting facilities is not as automatized as other industrial processes. Spectroscopic analysis of compost samples has been successfully employed for compost maturity assessment but the preparation of the solid compost samples is difficult and time-consuming. This manuscript presents a methodology based on a combination of a less time-consuming compost sample preparation and ultraviolet, visible and short-wave near-infrared spectroscopy. Spectroscopic measurements were performed with liquid compost extract instead of solid compost samples. Partial least square (PLS) models were developed to quantify chemical fractions commonly employed for compost maturity assessment. Effective regression models were obtained for total organic matter (residual predictive deviation-RPD = 2.68), humification ratio (RPD = 2.23), total exchangeable carbon (RPD = 2.07) and total organic carbon (RPD = 1.66) with a modular and cost-effective visible and near infrared (VNIR) spectroradiometer. This combination of a less time-consuming compost sample preparation with a versatile sensor system provides an easy-to-implement, efficient and cost-effective protocol for compost maturity assessment and near-real-time monitoring.

  9. Role of psychrotrophic bacteria in organic domestic waste composting in cold regions of China.

    PubMed

    Hou, Ning; Wen, Luming; Cao, Huiming; Liu, Keran; An, Xuejiao; Li, Dapeng; Wang, Hailan; Du, Xiaopeng; Li, Chunyan

    2017-07-01

    To study the influence of psychrotrophic bacteria on organic domestic waste (ODW) composting in cold regions, twelve new efficient psychrotrophic composting strains were isolated. Together with the published representative composting strains, a phylogenetic tree was constructed showing that although the strains belong to the same phylum, the genera were markedly different. The twelve strains were inoculated into the ODW in the composting reactor at 13°C. After treatment, the indices of temperature, moisture content, pH, electrical conductivity, C/N, ammonium nitrogen, and nitrate nitrogen indicated that the compost had reached maturity. The thermophilic phase was reached at 17d, and composting was completed at 42d, a markedly shorter composting time than that in previous studies. High-throughput sequencing indicated that the inoculative strains became the dominant community during the mesophilic phase and that they enhanced the stability of the microbial community structure. Thus, psychrotrophic bacteria played a key role in low-temperature composting. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Compost Addition Enhanced Hyphal Growth and Sporulation of Arbuscular Mycorrhizal Fungi without Affecting Their Community Composition in the Soil

    PubMed Central

    Yang, Wei; Gu, Siyu; Xin, Ying; Bello, Ayodeji; Sun, Wenpeng; Xu, Xiuhong

    2018-01-01

    Arbuscular mycorrhizal (AM) fungi form symbiotic associations with most crop plant species in agricultural ecosystems, and are conspicuously influenced by various agricultural practices. To understand the impact of compost addition on AM fungi, we examined effect of four compost rates (0, 11.25, 22.5, and 45 Mg/ha) on the abundance and community composition of AM fungi in seedling, flowering, and mature stage of soybean in a 1-year compost addition experiment system in Northeast China. Soybean [Glycine max (L.) Merrill] was used as test plant. Moderate (22.5 Mg/ha) and high (45 Mg/ha) levels of compost addition significantly increased AM root colonization and extraradical hyphal (ERH) density compared with control, whereas low (11.5 Mg/ha) level of compost addition did not cause significant increase in AM root colonization and ERH density. AM fungal spore density was significantly enhanced by all the compost rates compared with control. The temporal variations analysis revealed that, AM root colonization in seedling stage was significantly lower than in flowering and mature stage. Although AM fungal operational taxonomic unit richness and community composition was unaffected by compost addition, some abundant AM fungal species showed significantly different response to compost addition. In mature stage, Rhizophagus fasciculatum showed increasing trend along with compost addition gradient, whereas the opposite was observed with Paraglomus sp. In addition, AM fungal community composition exhibited significant temporal variation during growing season. Further analysis indicated that the temporal variation in AM fungal community only occurred in control treatment, but not in low, moderate, and high level of compost addition treatments. Our findings highlighted the significant effects of compost addition on AM growth and sporulation, and emphasized that growth stage is a stronger determinant than 1-year compost addition in shaping AM fungal community in black soil of Northeast China. PMID:29467752

  11. Compost Addition Enhanced Hyphal Growth and Sporulation of Arbuscular Mycorrhizal Fungi without Affecting Their Community Composition in the Soil.

    PubMed

    Yang, Wei; Gu, Siyu; Xin, Ying; Bello, Ayodeji; Sun, Wenpeng; Xu, Xiuhong

    2018-01-01

    Arbuscular mycorrhizal (AM) fungi form symbiotic associations with most crop plant species in agricultural ecosystems, and are conspicuously influenced by various agricultural practices. To understand the impact of compost addition on AM fungi, we examined effect of four compost rates (0, 11.25, 22.5, and 45 Mg/ha) on the abundance and community composition of AM fungi in seedling, flowering, and mature stage of soybean in a 1-year compost addition experiment system in Northeast China. Soybean [ Glycine max (L.) Merrill] was used as test plant. Moderate (22.5 Mg/ha) and high (45 Mg/ha) levels of compost addition significantly increased AM root colonization and extraradical hyphal (ERH) density compared with control, whereas low (11.5 Mg/ha) level of compost addition did not cause significant increase in AM root colonization and ERH density. AM fungal spore density was significantly enhanced by all the compost rates compared with control. The temporal variations analysis revealed that, AM root colonization in seedling stage was significantly lower than in flowering and mature stage. Although AM fungal operational taxonomic unit richness and community composition was unaffected by compost addition, some abundant AM fungal species showed significantly different response to compost addition. In mature stage, Rhizophagus fasciculatum showed increasing trend along with compost addition gradient, whereas the opposite was observed with Paraglomus sp. In addition, AM fungal community composition exhibited significant temporal variation during growing season. Further analysis indicated that the temporal variation in AM fungal community only occurred in control treatment, but not in low, moderate, and high level of compost addition treatments. Our findings highlighted the significant effects of compost addition on AM growth and sporulation, and emphasized that growth stage is a stronger determinant than 1-year compost addition in shaping AM fungal community in black soil of Northeast China.

  12. Nitrogen availability in composted poultry litter using natural amendments.

    PubMed

    Turan, N Gamze

    2009-02-01

    Poultry litter compost is used as fertilizer on agricultural land because of its high nutrient content. A major limitation of land application of poultry litter compost is the loss of nitrogen via NH3 volatilization. The present work was conducted to monitor nitrogen availability during composting of poultry litter with natural zeolite, expanded perlite, pumice and expanded vermiculite. Poultry litter was composted for 100 days using five in-vessel composting simulators with a volumetric ratio of natural materials:poultry litter of 1:10. It was found that natural materials significantly reduced NH3 volatilization. At the end of the process, the control treatment without any natural materials had the lowest rate of total N: 72% of the initial total N was lost from the compost made with no amendment, while 53, 42, 26 and 16% of initial total N was lost from compost containing expandable perlite, expandable vermiculite, pumice and natural zeolite, respectively.

  13. [Application of microbial fuel cell (MFC) in solid waste composting].

    PubMed

    Cui, Jinxin; Wang, Xin; Tang, Jingchun

    2012-03-01

    Microbial fuel cell (MFC) is a new technology that can recover energy from biomass with simultaneous waste treatment. This technique has been developed fast in recent years in combining with environmental techniques such as wastewater treatment, degradation of toxic pollutants and desalination. With the increase of solid waste, applying MFC in composting is promising due to its property of waste disposal with simultaneous energy generation. In this paper, the microbial community of MFCs during composting was summarized. Four major influencing factors including electrodes, separators, oxygen supplement and configurations on the performance of composting MFCs were discussed. The characteristics of composting MFC as a new technique for reducing solid waste were as follows: high microbial biomass resulted in the high current density; adaptable to different environmental conditions; self-adjustable temperature with high energy efficiency; the transportation of proton from anode to cathode were limited by different solid substrates.

  14. Growth and reproductive potential of Eisenia foetida (Sav) on various zoo animal dungs after two methods of pre-composting followed by vermicomposting.

    PubMed

    Pérez-Godínez, Edmundo Arturo; Lagunes-Zarate, Jorge; Corona-Hernández, Juan; Barajas-Aceves, Martha

    2017-06-01

    Disposal of animal manure without treatment can be harmful to the environment. In this study, samples of four zoo animal dungs and one horse dung were pre-composted in two ways: (a) traditional composting and (b) bokashi pre-composting for 1month, followed by vermicomposting for 3months. The permanence (PEf) and reproductive potential (RP) of Eisenia foetida as well as the quality of vermicompost were evaluated. The PEf values and RP index of E. foetida were higher for samples pre-composted using the traditional composting method (98.7-88% and 31.85-16.27%, respectively) followed by vermicomposting (92.7-72.7% and 22.96-13.51%, respectively), when compared with those for bokashi pre-composted samples followed by vermicomposting, except for the horse dung sample (100% for both the parameters). The values of electrical conductivity (EC), cation exchange capacity (CEC), organic C, total N, available P, C/N ratio, and pH showed that both treatments achieved the norms of vermicompost (<4mScm -1 , 40cmolkg -1 , 20-50%, 1-4%, ≤20, 5.5-8.5, respectively). However, the maturity indices of vermicompost, namely, organic matter loss, N loss, and CEC/organic carbon (OC) ratio indicated that bokashi pre-composting followed by vermicomposting produced the highest values (98.7-70.7%, 97.67-96.65%, and 2.7-1.97%, respectively), when compared with the other method adapted in this study. Nevertheless, further studies with plants for plant growth evaluation are needed to assess the benefits and limitations of these two pre-composting methods prior to vermicomposting. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Investigation of biomethylation of arsenic and tellurium during composting.

    PubMed

    Diaz-Bone, Roland A; Raabe, Maren; Awissus, Simone; Keuter, Bianca; Menzel, Bernd; Küppers, Klaus; Widmann, Renatus; Hirner, Alfred V

    2011-05-30

    Though the process of composting features a high microbiological activity, its potential to methylate metals and metalloids has been little investigated so far in spite of the high impact of this process on metal(loid) toxicity and mobility. Here, we studied the biotransformation of arsenic, tellurium, antimony, tin and germanium during composting. Time resolved investigation revealed a highly dynamic process during self-heated composting with markedly differing time patterns for arsenic and tellurium species. Extraordinary high concentrations of up to 150 mg kg(-1) methylated arsenic species as well as conversion rates up to 50% for arsenic and 5% for tellurium were observed. In contrast, little to no conversion was observed for antimony, tin and germanium. In addition to experiments with metal(loid) salts, composting of arsenic hyperaccumulating ferns Pteris vittata and P. cretica grown on As-amended soils was studied. Arsenic accumulated in the fronds was efficiently methylated resulting in up to 8 mg kg(-1) methylated arsenic species. Overall, these studies indicate that metal(loid)s can undergo intensive biomethylation during composting. Due to the high mobility of methylated species this process needs to be considered in organic waste treatment of metal(loid) contaminated waste materials. Copyright © 2010 Elsevier B.V. All rights reserved.

  16. The use of sustainable 'biochar compost' for remediation of contaminated land

    NASA Astrophysics Data System (ADS)

    Ryan, Aoife; Street-Perrott, Alayne; Eastwood, Daniel; Brackenbury, Sion

    2014-05-01

    South Wales (UK) has a long industrial history which, since the collapse of the coal-mining industry, has left a large number of contaminated former colliery sites. Bio-remediation of these areas by re-vegetation with native grasses aims to prevent erosion and leaching of pollutants into drainage waters. However, acid pH, low organic-matter content and unsuitable soil structure have limited the success of re-vegetation and prompted research into the development of artificial soils. This study aims to assess the value of creating an artificial soil cover by adding "biochar compost" to the top 10cm of a large volume of contaminated colliery spoil (high in As and Cu) to be moved during construction of a flood-alleviation barrage in Cwm Dulais (Swansea). It is proposed to use biochar, manufactured from chipped biomass sourced from a local stand of invasive Rhododendron ponticum using a BiGchar 1000 fast pyrolysis-gasification unit, in combination with locally produced BSI PAS100-certified Pteridium aquilinum (bracken) compost, to remediate a large area (2.3ha) of landscaped colliery waste and re-establish a cover of native grasses suitable for sheep grazing. Pot and field trials are being used to determine the most appropriate biochar:compost mix. In a 90-day outdoor pot trial, a commercial acid-grassland seed mix was grown in screened (< 20mm) colliery spoil, to which 25%v/v bracken compost (with/without composted manure) was added as a source of organic matter. This application rate of compost (equivalent to 250m3ha-1) was based on a successful coal-tip remediation trial at Ffos-y-Frân (Jarvis & Walton, WRAP Report, 2011). Varying application rates of biochar (0%, 2%, 5%, 10% or 20%v/v) were employed. Additional benefits of adding mycorrhizal inoculant or Trifolium repens (white clover) seed were also tested. Six-fold replication was used, with appropriate controls. The performance of each treatment was assessed from its maximum sward height and final above-ground dry phytomass. To evaluate the quality of the resulting grassland for sheep grazing, grass samples are being analysed for nutrients, heavy metals and metalloids by elemental analysis (EA) and X-ray fluorescence spectroscopy (XRF). These results will be compared with grass samples collected from Cwm Dulais. Initial findings suggest that addition of biochar compost improved grass growth compared with unamended colliery spoil.

  17. Changes in Bacterial and Fungal Communities across Compost Recipes, Preparation Methods, and Composting Times

    PubMed Central

    Neher, Deborah A.; Weicht, Thomas R.; Bates, Scott T.; Leff, Jonathan W.; Fierer, Noah

    2013-01-01

    Compost production is a critical component of organic waste handling, and compost applications to soil are increasingly important to crop production. However, we know surprisingly little about the microbial communities involved in the composting process and the factors shaping compost microbial dynamics. Here, we used high-throughput sequencing approaches to assess the diversity and composition of both bacterial and fungal communities in compost produced at a commercial-scale. Bacterial and fungal communities responded to both compost recipe and composting method. Specifically, bacterial communities in manure and hay recipes contained greater relative abundances of Firmicutes than hardwood recipes with hay recipes containing relatively more Actinobacteria and Gemmatimonadetes. In contrast, hardwood recipes contained a large relative abundance of Acidobacteria and Chloroflexi. Fungal communities of compost from a mixture of dairy manure and silage-based bedding were distinguished by a greater relative abundance of Pezizomycetes and Microascales. Hay recipes uniquely contained abundant Epicoccum, Thermomyces, Eurotium, Arthrobotrys, and Myriococcum. Hardwood recipes contained relatively abundant Sordariomycetes. Holding recipe constant, there were significantly different bacterial and fungal communities when the composting process was managed by windrow, aerated static pile, or vermicompost. Temporal dynamics of the composting process followed known patterns of degradative succession in herbivore manure. The initial community was dominated by Phycomycetes, followed by Ascomycota and finally Basidiomycota. Zygomycota were associated more with manure-silage and hay than hardwood composts. Most commercial composters focus on the thermophilic phase as an economic means to insure sanitation of compost from pathogens. However, the community succeeding the thermophilic phase begs further investigation to determine how the microbial dynamics observed here can be best managed to generate compost with the desired properties. PMID:24278144

  18. Changes in bacterial and fungal communities across compost recipes, preparation methods, and composting times.

    PubMed

    Neher, Deborah A; Weicht, Thomas R; Bates, Scott T; Leff, Jonathan W; Fierer, Noah

    2013-01-01

    Compost production is a critical component of organic waste handling, and compost applications to soil are increasingly important to crop production. However, we know surprisingly little about the microbial communities involved in the composting process and the factors shaping compost microbial dynamics. Here, we used high-throughput sequencing approaches to assess the diversity and composition of both bacterial and fungal communities in compost produced at a commercial-scale. Bacterial and fungal communities responded to both compost recipe and composting method. Specifically, bacterial communities in manure and hay recipes contained greater relative abundances of Firmicutes than hardwood recipes with hay recipes containing relatively more Actinobacteria and Gemmatimonadetes. In contrast, hardwood recipes contained a large relative abundance of Acidobacteria and Chloroflexi. Fungal communities of compost from a mixture of dairy manure and silage-based bedding were distinguished by a greater relative abundance of Pezizomycetes and Microascales. Hay recipes uniquely contained abundant Epicoccum, Thermomyces, Eurotium, Arthrobotrys, and Myriococcum. Hardwood recipes contained relatively abundant Sordariomycetes. Holding recipe constant, there were significantly different bacterial and fungal communities when the composting process was managed by windrow, aerated static pile, or vermicompost. Temporal dynamics of the composting process followed known patterns of degradative succession in herbivore manure. The initial community was dominated by Phycomycetes, followed by Ascomycota and finally Basidiomycota. Zygomycota were associated more with manure-silage and hay than hardwood composts. Most commercial composters focus on the thermophilic phase as an economic means to insure sanitation of compost from pathogens. However, the community succeeding the thermophilic phase begs further investigation to determine how the microbial dynamics observed here can be best managed to generate compost with the desired properties.

  19. Temperature control strategy to enhance the activity of yeast inoculated into compost raw material for accelerated composting.

    PubMed

    Nakasaki, Kiyohiko; Hirai, Hidehira

    2017-07-01

    The effects of inoculating the mesophilic yeast Pichia kudriavzevii RB1, which is able to degrade organic acids, on organic matter degradation in composting were elucidated. When model food waste with high carbohydrate content (C/N=22.3) was used, fluctuation in the inoculated yeast cell density was observed, as well as fluctuation in the composting temperature until day 5 when the temperature rose to 60°C, which is lethal for the yeast. After the decrease in yeast, acetic acid accumulated to levels as high as 20mg/g-ds in the composting material and vigorous organic matter degradation was inhibited. However, by maintaining the temperature at 40°C for 2days during the heating phase in the early stage of composting, both the organic acids originally contained in the raw material and acetic acid produced during the heating phase were degraded by the yeast. The concentration of acetic acid was kept at a relatively low level (10.1mg/g-ds at the highest), thereby promoting the degradation of organic matter by other microorganisms and accelerating the composting process. These results indicate that temperature control enhances the effects of microbial inoculation into composts. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Anaerobically digested food waste in compost for Agaricus bisporus and Agaricus subrufescens and its effect on mushroom productivity.

    PubMed

    Stoknes, Ketil; Beyer, David M; Norgaard, Erik

    2013-07-01

    Source-separated food waste is increasingly being treated by means of hygienisation followed by anaerobic digestion. The fibrous digester residue (digestate) is a potential mushroom substrate, while heat from the biogas can provide steam for the cultivation process. Using bag experiments the present study explored digestate as a full substitute for chicken manure conventionally used in mushroom composts. After mixing, a rapid temperature development in the compost was stimulated by a small amount of chicken manure, as aerobic microbial seeding. Mechanical elimination of lumps was essential for full mycelial colonisation. Three straw digestate composts had Agaricus bisporus mushroom yields above 370 g kg⁻¹ substrate. The optimal compost water content was 600 g kg⁻¹ at inoculation, and high digestate content (up to 500 g kg⁻¹ by dry weight) did not affect yield for this species. High yields of A. subrufescens (200 g kg⁻¹) were related to drier composts of lower digestate content (more straw) and lower pH values at inoculation. Digestate successfully substituted chicken manure in straw composts without affecting mushroom yields for both species. There were no clear differences between straw digestate and control composts in terms of mushroom dry matter, size, nitrogen or ash content. © 2012 Society of Chemical Industry.

  1. Characterization of isolated fractions of dissolved organic matter derived from municipal solid waste compost.

    PubMed

    Yu, Minda; He, Xiaosong; Liu, Jiaomei; Wang, Yuefeng; Xi, Beidou; Li, Dan; Zhang, Hui; Yang, Chao

    2018-04-14

    Understanding the heterogeneous evolution characteristics of dissolved organic matter fractions derived from compost is crucial to exploring the composting biodegradation process and the possible applications of compost products. Herein, two-dimensional correlation spectroscopy integrated with reversed-phase high performance liquid chromatography and size exclusion chromatography were utilized to obtain the molecular weight (MW) and polarity evolution characteristics of humic acid (HA), fulvic acid (FA), and the hydrophilic (HyI) fractions during composting. The high-MW humic substances and building blocks in the HA fraction degraded faster during composting than polymers, proteins, and organic colloids. Similarly, the low MW acid FA factions transformed faster than the low weight neutral fractions, followed by building blocks, and finally polymers, proteins, and organic colloids. The evolutions of HyI fractions during composting occurred first for building blocks, followed by low MW acids, and finally low weight neutrals. With the progress of composting, the hydrophobic properties of the HA and FA fractions were enhanced. The degradation/humification process of the hydrophilic and transphilic components was faster than that of the hydrophobic component. Compared with the FA and HyI fractions, the HA fraction exhibited a higher MW and increased hydrophobicity. Copyright © 2018 Elsevier B.V. All rights reserved.

  2. Quality of trace element contaminated soils amended with compost under fast growing tree Paulownia fortunei plantation.

    PubMed

    Madejón, P; Xiong, J; Cabrera, F; Madejón, E

    2014-11-01

    The use of fast growing trees could be an alternative in trace element contaminated soils to stabilize these elements and improve soil quality. In this study we investigate the effect of Paulownia fortunei growth on trace element contaminated soils amended with two organic composts under semi-field conditions for a period of 18 months. The experiment was carried out in containers filled with tree different soils, two contaminated soils (neutral AZ and acid V) and a non contaminated soil, NC. Three treatments per soil were established: two organic amendments (alperujo compost, AC, and biosolid compost, BC) and a control without amendment addition. We study parameters related with fertility and contamination in soils and plants. Paulownia growth and amendments increased pH in acid soils whereas no effect of these factors was observed in neutral soils. The plant and the amendments also increased organic matter and consequently, soil fertility. Positive results were also found in soils that were only affected by plant growth (without amendment). A general improvement of "soil biochemical quality" was detected over time and treatments, confirming the positive effect of amendments plus paulownia. Even in contaminated soils, except for Cu and Zn, trace element concentrations in leaves were in the normal range for plants. Results of this mid-term study showed that Paulownia fortunei is a promising species for phytoremediation of trace element polluted soils. Copyright © 2014 Elsevier Ltd. All rights reserved.

  3. [Production of a compost accelerator inoculant].

    PubMed

    Medina Lara, M Socorro; Quintero Lizaola, Roberto; Espinosa Victoria, David; Alarcón, Alejandro; Etchevers Barra, Jorge D; Trinidad Santos, Antonio; Conde Martínez, F Víctor

    2017-10-26

    Composting was performed using a mixture of ovine manure and straw. Inoculum was extracted at five different phases of the composting process (18, 23, 28, 33 and 38 days after the start of the composting process) and its effect on reducing biotransformation time was evaluated in the composted ovine manure. The samples were preserved in a deep freezer, then lyophilized to obtain the inoculum, 50g of which was added to each treatment in the second experimental phase. Six treatments were established; C=straw (P)+ovine manure (E), T1=P+ E+inoculum 18 days after the start of the composting process (I18), T2=P+E+I23, T3=P+E+I28, T4=P+E+I33, T5=P+E+I38, with three replications. Treatments were placed in a controlled-environment chamber at 45% relative humidity and 30°C along with flasks containing 50g of material to measure daily production, CO 2 accumulation, temperature, pH, electric conductivity (dS/m), organic matter (%), total nitrogen (%), total carbon (%), C: N ratio, particle size (Tp) and bulk density (g/l). CO 2 production (mg) showed a significant difference (p ≤.05) of treatments T2 and T5 with respect to the others, which demonstrated that the inoculum of these treatments accelerated the dynamics of microorganisms and the composting process. The quality and maturity of the compost are guaranteed as the amount of CO 2 decreases. Copyright © 2017 Asociación Argentina de Microbiología. Publicado por Elsevier España, S.L.U. All rights reserved.

  4. Advantages and risks of using steel slag in preparing composts from raw organic waste.

    PubMed

    Tu, Xuefei; Aneksampant, Apichaya; Kobayashi, Shizusa; Tanaka, Atsushi; Nishimoto, Ryo; Fukushima, Masami

    2017-01-02

    It had been reported that iron and manganese oxides in steel slag enhanced the production of humic acid (HA) from low-molecular-weight compounds, such as phenolic acids, amino acids, and saccharides. In the present study, this function of steel slag was applied to the composting of raw organic wastes (ROWs). The degree of humification of HAs is an important factor in evaluating compost quality. Thus, HAs were extracted from the prepared composts and the humification parameters were determined, in terms of elemental compositions, acidic functional group contents, molecular weights, spectroscopic parameters from UV-vis absorption and 13 C NMR spectra. The timing for adding steel slag affected the degree of humification of HAs in the composts. The weight average molecular weight of a HA when slag was added initially (29 kDa) was significantly higher than when slag was added after elevating the temperature of the compost pile (17-18 kDa). These results show that ROWs are decomposed to low-molecular-weight compounds after the pile temperature is elevated and the presence of slag enhances the polycondensation of these compounds to produce HAs with a higher degree of humification. Because the slag used in the present study contained several-tens ng g -1 to several μg g -1 of toxic elements (B, Cu, Cr, and Zn), leaching tests for these elements from the prepared composts were carried out. Levels for leaching boron from composts prepared by adding slag (0.2-0.4 mg L -1 ) were obviously higher than the corresponding levels without slag (0.05 mg L -1 ).

  5. Agronomic effect of empty fruit bunches compost, anorganic fertilizer and endophytic microbes in oil palm main nursery used Ganoderma endemic soil

    NASA Astrophysics Data System (ADS)

    Hanum, H.; Lisnawita; Tantawi, A. R.

    2018-02-01

    Using of Ganoderma endemic soil in oil palm main nursery is not recomended because produce bad quality seedling. The application of organic and anorganic fertilizer and endophytic microbes are the alternative for solving the problem. The objective of this research is to evaluate the effect of empty fruit bunches compost, anorganic fertilizer and endophytic microbes on growth of oil palm seedling in main nursery. This research used factorial randomized block design. The first factor was combination of empty fruit bunches compost and anorganic fertilizer, The second factor was endophytic microbes consisting of Trichoderma and Aspergillus. The results showed that interaction effect of the both treatment factor used increased growth of seedling in third and fourth month after application. The best growth of seedling was on the treatment of empty fruit bunches compost combined with anorganic fertilizer 150% recommended dosage and Trichoderma viride.

  6. Comparison of biochar, zeolite and their mixture amendment for aiding organic matter transformation and nitrogen conservation during pig manure composting.

    PubMed

    Wang, Quan; Awasthi, Mukesh Kumar; Ren, Xiuna; Zhao, Junchao; Li, Ronghua; Wang, Zhen; Chen, Hongyu; Wang, Meijing; Zhang, Zengqiang

    2017-12-01

    The aim of this work was to compare the impact of biochar, zeolite and their mixture on nitrogen conservation and organic matter transformation during pig manure (PM) composting. Four treatments were set-up from PM mixed with wheat straw and then applied 10% biochar (B), 10% zeolite (Z) and 10% biochar+10% zeolite (B+Z) into composting mixtures (dry weight basis), while treatment without additives applied used as control. Results indicated that adding B, Z and B+Z could obviously (p<0.05) improve the organic matter degradation and decrease the nitrogen loss. And combined addition of B and Z further promoted the organic matter humification and reduced the heavy metals mobility. Meanwhile the highest mitigation of ammonia (63.40%) and nitrogen dioxide (78.13%) emissions was observed in B+Z added treatment. Comparison of organic matter transformation, nitrogen conservation and compost quality indicated that the combined use of biochar and zeolite could be more useful for PM composting. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Biochar accelerates organic matter degradation and enhances N mineralisation during composting of poultry manure without a relevant impact on gas emissions.

    PubMed

    Sánchez-García, M; Alburquerque, J A; Sánchez-Monedero, M A; Roig, A; Cayuela, M L

    2015-09-01

    A composting study was performed to assess the impact of biochar addition to a mixture of poultry manure and barley straw. Two treatments: control (78% poultry manure + 22% barley straw, dry weight) and the same mixture amended with biochar (3% dry weight), were composted in duplicated windrows during 19 weeks. Typical monitoring parameters and gaseous emissions (CO2, CO, CH4, N2O and H2S) were evaluated during the process as well as the agronomical quality of the end-products. Biochar accelerated organic matter degradation and ammonium formation during the thermophilic phase and enhanced nitrification during the maturation phase. Our results suggest that biochar, as composting additive, improved the physical properties of the mixture by preventing the formation of clumps larger than 70 mm. It favoured microbiological activity without a relevant impact on N losses and gaseous emissions. It was estimated that biochar addition at 3% could reduce the composting time by 20%. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. Influence of aeration on volatile sulfur compounds (VSCs) and NH3 emissions during aerobic composting of kitchen waste.

    PubMed

    Zhang, Hongyu; Li, Guoxue; Gu, Jun; Wang, Guiqin; Li, Yangyang; Zhang, Difang

    2016-12-01

    This study investigates the influence of aeration on volatile sulfur compounds (VSCs) and ammonia (NH 3 ) emissions during kitchen waste composting. Aerobic composting of kitchen waste and cornstalks was conducted at a ratio of 85:15 (wet weight basis) in 60L reactors for 30days. The gas emissions were analyzed with force aeration at rates of 0.1 (A1), 0.2 (A2) and 0.3 (A3) L (kgDMmin) -1 , respectively. Results showed that VSCs emission at the low aeration rate (A1) was more significant than that at other two rates (i.e., A2 and A3 treatment), where no considerable emission difference was observed. On the other hand, NH 3 emission reduced as the aeration rate decreased. It is noteworthy that the aeration rate did not significantly affect the compost quality. These results suggest that the aeration rate of 0.2L (kgDMmin) -1 may be applied to control VSCs and NH 3 emissions during kitchen waste composting. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. Effect of addition of organic waste on reduction of Escherichia coli during cattle feces composting under high-moisture condition.

    PubMed

    Hanajima, Dai; Kuroda, Kazutaka; Fukumoto, Yasuyuki; Haga, Kiyonori

    2006-09-01

    To ensure Escherichia coli reduction during cattle feces composting, co-composting with a variety of organic wastes was examined. A mixture of dairy cattle feces and shredded rice straw (control) was blended with organic wastes (tofu residue, rice bran, rapeseed meal, dried chicken feces, raw chicken feces, or garbage), and composted using a bench-scale composter under the high-moisture condition (78%). The addition of organic waste except chicken feces brought about maximum temperatures of more than 55 degrees C and significantly reduced the number of E. coli from 10(6) to below 10(2)CFU/g-wet after seven days composting, while in the control treatment, E. coli survived at the same level as that of raw feces. Enhancements of the thermophilic phase and E. coli reduction were related to the initial amount of easily digestible carbon in mass determined as BOD. BOD value more than 166.2 mg O2/DMg brought about significant E. coli reduction.

  10. Heterogeneity of zeolite combined with biochar properties as a function of sewage sludge composting and production of nutrient-rich compost.

    PubMed

    Kumar Awasthi, Mukesh; Wang, Meijing; Pandey, Ashok; Chen, Hongyu; Kumar Awasthi, Sanjeev; Wang, Quan; Ren, Xiuna; Hussain Lahori, Altaf; Li, Dong-Sheng; Li, Ronghua; Zhang, Zengqiang

    2017-10-01

    In the present study, biochar combined with a higher dosage of zeolite (Z) and biochar (B) alone were applied as additives for dewatered fresh sewage sludge (DFSS) composting using 130-L working volume lab-scale reactors. We first observed that the addition of a mixture of B and Z to DFSS equivalent to 12%B+10% (Z-1), 15% (Z-2) and 30% (Z-3) zeolite (dry weight basis) worked synergistically as an amendment and increased the composting efficiency compared with a treatment of 12%B alone amended and a control without any amendment. In a composting reactor, the addition of B+Z may serve as a novel approach for improving DFSS composting and the quality of the end product in terms of the temperature, water-holding capacity, CO 2 emissions, electrical conductivity, water-soluble and total macro-nutrient content and phytotoxicity. The results indicated that during the thermophilic phase, dissolved organic carbon, NH 4 + -N and NO 3 - -N increased drastically in all biochar amended treatments, whereas considerably low water-soluble nutrients were observed in the control treatment throughout and at the end of the composting. Furthermore, the maturity parameters and dissolved organic carbon (DOC) indicated that compost with 12%B+15%Z became more mature and humified within 35days of DFSS composting, with the maturity parameters, such as CO 2 evolution and the concentration of NH 4 + -N in the compost, being within the permissible limits of organic farming in contrast to the control. Furthermore, at the end of composting, the addition of higher dosage of biochar (12%) alone and 12% B+Z lowered the pH by 7.15 to 7.86 and the electrical conductivity by 2.65 to 2.95mScm -1 as compared to the control, while increased the concentrations of water-soluble nutrients (gkg -1 ) including available phosphorus, sodium and potassium. In addition, greenhouse experiments demonstrated that the treatment of 150kgha -1 biochar combined with zeolite and that of 12%B alone improved the yield of Chinese cabbage (Brassica rapa chinensis L.). The highest dry weight biomass (1.41±0.12g/pot) was obtained with 12%B+15%Z amended compost. Therefore, 12%B+15%Z can be potentially applied as an amendment to improve DFSS composting. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Comparison of bacterial community structure and dynamics during the thermophilic composting of different types of solid wastes: anaerobic digestion residue, pig manure and chicken manure

    PubMed Central

    Song, Caihong; Li, Mingxiao; Jia, Xuan; Wei, Zimin; Zhao, Yue; Xi, Beidou; Zhu, Chaowei; Liu, Dongming

    2014-01-01

    This study investigated the impact of composting substrate types on the bacterial community structure and dynamics during composting processes. To this end, pig manure (PM), chicken manure (CM), a mixture of PM and CM (PM + CM), and a mixture of PM, CM and anaerobic digestion residue (ADR) (PM + CM + ADR) were selected for thermophilic composting. The bacterial community structure and dynamics during the composting process were detected and analysed by polymerase chain reaction–denaturing gradient gel electrophoresis (DGGE) coupled with a statistic analysis. The physical-chemical analyses indicated that compared to single-material composting (PM, CM), co-composting (PM + CM, PM + CM + ADR) could promote the degradation of organic matter and strengthen the ability of conserving nitrogen. A DGGE profile and statistical analysis demonstrated that co-composting, especially PM + CM + ADR, could improve the bacterial community structure and functional diversity, even in the thermophilic stage. Therefore, co-composting could weaken the screening effect of high temperature on bacterial communities. Dominant sequencing analyses indicated a dramatic shift in the dominant bacterial communities from single-material composting to co-composting. Notably, compared with PM, PM + CM increased the quantity of xylan-degrading bacteria and reduced the quantity of human pathogens. PMID:24963997

  12. Fatty Acid Methyl Ester (FAME) Succession in Different Substrates as Affected by the Co-Application of Three Pesticides.

    PubMed

    Cardinali, Alessandra; Pizzeghello, Diego; Zanin, Giuseppe

    2015-01-01

    In intensive agriculture areas the use of pesticides can alter soil properties and microbial community structure with the risk of reducing soil quality. In this study the fatty acid methyl esters (FAMEs) evolution has been studied in a factorial lab experiment combining five substrates (a soil, two aged composts and their mixtures) treated with a co-application of three pesticides (azoxystrobin, chlorotoluron and epoxiconazole), with two extraction methods, and two incubation times (0 and 58 days). FAMEs extraction followed the microbial identification system (MIDI) and ester-linked method (EL). The pesticides showed high persistence, as revealed by half-life (t1/2) values ranging from 168 to 298 days, which confirms their recalcitrance to degradation. However, t1/2 values were affected by substrate and compost age down to 8 days for chlorotoluron in S and up to 453 days for epoxiconazole in 12M. Fifty-six FAMEs were detected. Analysis of variance (ANOVA) showed that the EL method detected a higher number of FAMEs and unique FAMEs than the MIDI one, whereas principal component analysis (PCA) highlighted that the monosaturated 18:1ω9c and cyclopropane 19:0ω10c/19ω6 were the most significant FAMEs grouping by extraction method. The cyclopropyl to monoenoic acids ratio evidenced higher stress conditions when pesticides were applied to compost and compost+soil than solely soil, as well as with final time. Overall, FAMEs profiles showed the importance of the extraction method for both substrate and incubation time, the t1/2 values highlighted the effectiveness of solely soil and the less mature compost in reducing the persistence of pesticides.

  13. Fatty Acid Methyl Ester (FAME) Succession in Different Substrates as Affected by the Co-Application of Three Pesticides

    PubMed Central

    Cardinali, Alessandra; Pizzeghello, Diego; Zanin, Giuseppe

    2015-01-01

    Introduction In intensive agriculture areas the use of pesticides can alter soil properties and microbial community structure with the risk of reducing soil quality. Materials and Methods In this study the fatty acid methyl esters (FAMEs) evolution has been studied in a factorial lab experiment combining five substrates (a soil, two aged composts and their mixtures) treated with a co-application of three pesticides (azoxystrobin, chlorotoluron and epoxiconazole), with two extraction methods, and two incubation times (0 and 58 days). FAMEs extraction followed the microbial identification system (MIDI) and ester-linked method (EL). Results and Discussion The pesticides showed high persistence, as revealed by half-life (t1/2) values ranging from 168 to 298 days, which confirms their recalcitrance to degradation. However, t1/2 values were affected by substrate and compost age down to 8 days for chlorotoluron in S and up to 453 days for epoxiconazole in 12M. Fifty-six FAMEs were detected. Analysis of variance (ANOVA) showed that the EL method detected a higher number of FAMEs and unique FAMEs than the MIDI one, whereas principal component analysis (PCA) highlighted that the monosaturated 18:1ω9c and cyclopropane 19:0ω10c/19ω6 were the most significant FAMEs grouping by extraction method. The cyclopropyl to monoenoic acids ratio evidenced higher stress conditions when pesticides were applied to compost and compost+soil than solely soil, as well as with final time. Conclusion Overall, FAMEs profiles showed the importance of the extraction method for both substrate and incubation time, the t1/2 values highlighted the effectiveness of solely soil and the less mature compost in reducing the persistence of pesticides. PMID:26694029

  14. Chinese medicinal herbal residues as a bulking agent for food waste composting.

    PubMed

    Zhou, Ying; Selvam, Ammaiyappan; Wong, Jonathan W C

    2018-02-01

    This study aimed to co-compost Chinese medicinal herbal residues (CMHRs) as the bulking agent with food waste (FW) to develop a high value antipathogenic compost. The FW, sawdust (SD) and CMHRs were mixed at three different mixing ratios, 5:5:1, 2:2:1 and 1:1:1 on dry weight basis. Lime at 2.25% was added to the composting mix to buffer the pH during the composting. A control without lime addition was also included. The mixtures were composted in 20-L in-vessel composters for 56 days. A maximum of 67.2% organic decomposition was achieved with 1:1:1 mixing ratio within 8 weeks. The seed germination index was 157.2% in 1:1:1 mixing ratio, while other ratios showed <130.0% and the treatment without lime showed 40.3%. Therefore use of CMHRs as the bulking agent to compost food waste at the dry weight ratio of 1:1:1 (FW: SD: CMHRs) was recommended for FW-CMHRs composting. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Feasibility of medical stone amendment for sewage sludge co-composting and production of nutrient-rich compost.

    PubMed

    Awasthi, Mukesh Kumar; Wang, Quan; Awasthi, Sanjeev Kumar; Li, Ronghua; Zhao, Junchao; Ren, Xiuna; Wang, Meijing; Chen, Hongyu; Zhang, Zengqiang

    2018-06-15

    The feasibility of medical stone (MS) amendment as an innovative additive for dewatered fresh sewage sludge (DFSS) co-composting was assessed using a 130-L vessel-scale composter. To verify successful composting, five treatments were designed with four different dosages (2, 4, 6, and 10) % of MS with a 1:1 mixture (dry weight) of DFSS + wheat straw (WS). The WS was used as a bulking agent. A control without any amendment treatment was carried out for the purpose of comparison. For DFSS co-composting, the amendment with MS improved the mineralization efficiency and compost quality in terms of CO 2 emissions, dehydrogenase enzyme (DE), electrical conductivity (EC), water-solubility, and total nutrients transformation. The DTPA-extractable Cu and Zn were also estimated to confirm the immobilization ability of the applied MS. Seed germination and plant growth tests were conducted to ensure the compost stability and phytotoxicity for Chinese cabbage (Brassica rapa chinensis L.) growth and biomass, as well as chlorophyll content. The results showed that during the bio-oxidative phase, DOC, DON, AP, NH 4 + -N, and NO 3 - -N increased drastically in all the MS-blended treatments, except the application of 2% MS and the control treatment; significantly lower water-soluble nutrients were observed in the 2% MS and control treatments. A novel additive with 6-10% MS dosages considerably enhanced the organic matter conversion in the stable end-product (compost) and reduced the maturity period by two weeks compared to the 2% MS and control treatments. Consequently, the maturity parameters (e.g., EC, SGI, NH 4 + -N, DOC, and DON) confirmed that compost with 6-10% MS became more stable and mature within four weeks of DFSS co-composting. At the end of composting, significantly higher DTPA-extractable Cu and Zn contents were observed in the control treatment, and subsequently, in the very low application (10%) of MS. Higher MS dosage lowered the pH and EC to within the permissible limit compared to the control, while increased concentrations of water-soluble nutrients diminished the DTPA-extractable Cu and Zn contents. In addition, plant growth experiments demonstrated that the addition of compost with 150 kg ha -1 TKN improved the Chinese cabbage biomass and chlorophyll level. The highest dry weight biomass (2.78 ± 0.02 g/pot) was obtained with 6% MS-blended compost while the maximum chlorophyll content was found with application of 4% MS compost (41.84 SPAD-unit) for Chinese cabbage. Therefore, 6-10% MS can be recommended to improve DFSS composting and to reduce the period to maturity by two weeks when considering its composting effect on Chinese cabbage growth, biomass yield, and chlorophyll level. However, amendment with 6% MS is a more economically feasible approach for DFSS co-composting. Copyright © 2018 Elsevier Ltd. All rights reserved.

  16. Significant plant growth stimulation by composted as opposed to untreated Biochar

    NASA Astrophysics Data System (ADS)

    Kammann, Claudia; Messerschmidt, Nicole; Müller, Christoph; Steffens, Diedrich; Schmidt, Hans-Peter; Koyro, Hans-Werner

    2013-04-01

    The application of production-fresh, untreated biochar does not always result in yield improvements, in particular in temperate or boreal soils. Therefore the use of biochar for soil C sequestration, although desirable from a global change mitigation point of view, may never be implemented without proven and economically feasible pathways for biochar effects in agriculture. To investigate earlier reports of the beneficial effects of composting biochar (e.g. Fischer & Glaser, 2012) we conducted a fully replicated (n=3, +/- biochar) large-scale composting study at the Delinat Institute in Arbaz, Switzerland. The materials were manures (bovine, horse and chicken), straw, stone meal and composting was performed with our without +20 vol.% of a woody biochar (German Charcoal GmbH). Interestingly, the rotting temperature was significantly higher in the biochar-compost while C and N were retained to a certain extent. To investigate the effect of composting ("ageing") on biochar effects, a completely randomized full-factorial pot study was carried out in the greenhouse using the pseudo-cereal Chenopodium quinoa. The three factors used in the study were (I) type of biochar addition ("aged", "fresh", or zero BC), (II) addition of compost and (III) low and high application rates of a full NPK-fertilizer (equivalent to 28 and 140 kg N ha-1, NPK + micronutrients) in several doses. The growth medium was a poor loamy sand. Biochars and compost were all added at a rate of 2% (w/w) to the soil. From the start there was a considerable difference between the growth of Quinoa with the fresh compared to the aged biochar. The fresh biochar produced the well-known reduction in plant growth compared to the unamended control. This reduction was alleviated to a certain extent by the addition of either compost and/or increased fertilization. In contrast the co-composted biochar always resulted in a highly significant stimulation of the Quinoa yield (roots, shoots, inflorescences). This stimulation was most pronounced when the growth conditions were the most unfavorable (no compost addition + low fertilization: aged BC 305% versus fresh BC 61% of zero-BC). The stimulation was least pronounced in the treatment where the growth conditions were most favorable (compost addition + high fertilization). However, despite the higher fertility and higher nitrate values the mixtures with the composted biochar did not show higher N2O emissions. Reasons for the strong significant change in plant growth promotion, i.e. changes on the biochar surfaces that occur during the composting, will be discussed. Fischer D, Glaser B (2012) Synergisms between compost and biochar for sustainable soil amelioration. In: Management of Organic Waste. (eds Sunil K, Bharti A), ISBN 978-953-307-925-7, Chapter 10, pp. 167-198.

  17. Total organic carbon and humus fractions in restored soils from limestone quarries in semiarid climate, SE Spain

    NASA Astrophysics Data System (ADS)

    Luna Ramos, Lourdes; Miralles Mellado, Isabel; Ángel Domene Ruiz, Miguel; Solé Benet, Albert

    2016-04-01

    Mining activities generate erosion and loss of plant cover and soil organic matter (SOM), especially in arid and semiarid Mediterranean regions. A precondition for ecosystem restoration in such highly disturbed areas is the development of functional soils with sufficient organic matter. But the SOM quality is also important to long-term C stabilization. The resistance to biodegradation of recalcitrant organic matter fractions has been reported to depend on some intrinsic structural factors of humic acid substances and formation of amorphous organo-mineral recalcitrant complexes. In an experimental soil restoration in limestone quarries in the Sierra de Gádor (Almería), SE Spain, several combinations of organic amendments (sewage sludge and compost from domestic organic waste) and mulches (gravel and woodchip) were added in experimental plots using a factorial design. In each plot, 75 native plants (Anthyllis cytisoides, A. terniflora and Macrochloa tenacissima) were planted and five years after the start of the experiment total organic carbon (TOC), physico-chemical soil properties and organic C fractions (particulate organic matter, H3PO4-fulvic fraction, fulvic acids (FA), humic acids (HA) and humin) were analyzed. We observed significant differences between treatments related to the TOC content and the HA/FA ratio. Compost amendments increased the TOC, HA content and HA/FA ratio, even higher than in natural undisturbed soils, indicating an effective clay humus-complex pointing to progressively increasing organic matter quality. Soils with sewage sludge showed the lowest TOC and HA/FA ratio and accumulated a lower HA proportion indicating poorer organic matter quality and comparatively lower resilience than in natural soils and soils amended with compost.

  18. Effects of organic fertilisation on sweet orange bearing trees

    NASA Astrophysics Data System (ADS)

    Roccuzzo, Giancarlo; Torrisi, Biagio; Canali, Stefano; Intrigliolo, Francesco

    2010-05-01

    In a study realised over a five year period (2001-2006) on orange bearing trees [Citrus sinensis (L.) Osbeck] cv. ‘Valencia late', grafted on sour orange (C. aurantium L.), four fertiliser treatments were applied: citrus by-products compost (CB), poultry manure (PM), livestock waste compost (LW) and mineral fertiliser (MF), as control. The trees, with the exception of MF treatment, were organically grown since 1994 in the experimental farm of CRA-ACM in Lentini, Sicily, and received the same N input every year. The research objectives were to evaluate the effect of long term repeated organic fertilisers application on i) soil fertility; ii) citrus bearing trees nutritional status by means of leaf analysis and iii) yield and fruit quality, determining parameters currently utilized to evaluate sweet orange production either for fresh consumption and processing. The CB treatment showed significantly higher values of Corg in soil than MF treatment (about 30%). Corg in PM and LW treatments was higher than MF treatment (13% and 20%, respectively), but these differences were not statistically significant either from the control treatment nor from the soil fertilised with CB. Similar trend was showed by the humic and fulvic C being the values of the CB treatment significantly higher than the control. PM and LW treatments had intermediate values, without statistical significance. The long term addition to soil of a quality compost (CB) with high C/N ratio increased the level of nutrients wich usually show low availability for citrus plants (P, Fe, Zn, Mn), as demonstrated by leaf analysis. No significant difference was noticed as far as yield was concerned, whereas CB treatment enhanced some fruit quality parameters.

  19. Changes of parameters during composting of bio-waste collected over four seasons.

    PubMed

    Hanc, Ales; Ochecova, Pavla; Vasak, Filip

    2017-07-01

    This study investigated the evolution of several main parameters during the composting of separately collected household bio-waste originating from urban settlements (U-bio-waste) and family houses (F-bio-waste) from four climate seasons. When comparing both types of composts, U-bio-waste compost contained a higher amount of nutrients, however F-bio-waste compost was characterized by greater yield, greater availability of phosphorus and magnesium, and faster stability. In terms of seasons, compost from bio-waste collected in spring contained the highest amount of nutrients, reflecting the high content of nutrients in plant feedstock. Dissolved organic carbon and pH in U- and F-bio-waste compost, respectively, frequently showed close relationships with other parameters. The seasonal variations of most of the parameters in the composts were found to be lower compared to the variations observed in the feedstocks. The greatest seasonal variation was found in nitrate nitrogen, which is the reason for the more frequent analysis of this parameter.

  20. The contribution of water soluble and water insoluble organic fractions to oxygen uptake rate during high rate composting.

    PubMed

    Giuliana, D'Imporzano; Fabrizio, Adani

    2007-02-01

    This study aims to establish the contribution of the water soluble and water insoluble organic fractions to total oxygen uptake rate during high rate composting process of a mixture of organic fraction of municipal solid waste and lignocellulosic material. This mixture was composted using a 20 l self-heating pilot scale composter for 250 h. The composter was fully equipped to record both the biomass-temperature and oxygen uptake rate. Representative compost samples were taken at 0, 70, 100, 110, 160, and 250 h from starting time. Compost samples were fractionated in water soluble and water insoluble fractions. The water soluble fraction was then fractionated in hydrophilic, hydrophobic, and neutral hydrophobic fractions. Each fraction was then studied using quantitative (total organic carbon) and qualitative analysis (diffuse reflectance infrared spectroscopy and biodegradability test). Oxygen uptake rates were high during the initial stages of the process due to rapid degradation of the soluble degradable organic fraction (hydrophilic plus hydrophobic fractions). Once this fraction was depleted, polymer hydrolysis accounted for most of the oxygen uptake rate. Finally, oxygen uptake rate could be modeled using a two term kinetic. The first term provides the oxygen uptake rate resulting from the microbial growth kinetic type on easily available, no-limiting substrate (soluble fraction), while the second term considers the oxygen uptake rate caused by the degradation of substrate produced by polymer hydrolysis.

  1. From phytoaccumulation to post-harvest use of water fern for landfill management.

    PubMed

    Song, Uhram; Kim, Dae Won; Waldman, Bruce; Lee, Eun Ju

    2016-11-01

    We examined the potential of Azolla japonica as a remediating plant for leachate channels and post-accumulation use as fertilizer for landfill slope. The harvested biomass of Azolla after one month grown in leachate was 254% that of the initial biomass and the predicted annual harvestable biomass of Azolla using a growth model was 32 times that of the initial biomass. Na, Fe, Mn, Mg, and P were accumulated in Azolla at very high concentrations. Such rapid increase of biomass and high accumulation rates suggest that this plant could be an excellent remediating plant. The post-harvest use of Azolla as compost was studied for the management and use of phytoaccumulating Azolla. Metal contents of Azolla compost were below permissible limits for co-composting material. Nitrogen, organic matter, P, and Mg content of the Azolla compost improved the soil condition of the landfill and enhanced ecophysiological responses of the plants. The application of Azolla compost can improve management of sanitary landfills, including the restoration of vegetation. Considering its ease of harvesting, high accumulation rates, harvestable biomass and suitability for composting, Azolla can provide a suitable solution for sustainable management of leachate channels and landfill slopes. Copyright © 2016. Published by Elsevier Ltd.

  2. Application of compost for effective bioremediation of organic contaminants and pollutants in soil.

    PubMed

    Kästner, Matthias; Miltner, Anja

    2016-04-01

    Soils contaminated with hazardous chemicals worldwide are awaiting remediation activities; bioremediation is often considered as a cost-effective remediation approach. Potential bioapproaches are biostimulation, e.g. by addition of nutrients, fertiliser and organic substrates, and bioaugmentation by addition of compound-degrading microbes or of organic amendments containing active microorganisms, e.g. activated sludge or compost. In most contaminated soils, the abundance of the intrinsic metabolic potential is too low to be improved by biostimulation alone, since the physical and chemical conditions in these soils are not conducive to biodegradation. In the last few decades, compost or farmyard manure addition as well as composting with various organic supplements have been found to be very efficient for soil bioremediation. In the present minireview, we provide an overview of the composting and compost addition approaches as 'stimulants' of natural attenuation. Laboratory degradation experiments are often biased either by not considering the abiotic factors or by focusing solely on the elimination of the chemicals without taking the biotic factors and processes into account. Therefore, we first systemise the concepts of composting and compost addition, then summarise the relevant physical, chemical and biotic factors and mechanisms for improved contaminant degradation triggered by compost addition. These factors and mechanisms are of particular interest, since they are more relevant and easier to determine than the composition of the degrading community, which is also addressed in this review. Due to the mostly empirical knowledge and the nonstandardised biowaste or compost materials, the field use of these approaches is highly challenging, but also promising. Based on the huge metabolic diversity of microorganisms developing during the composting processes, a highly complex metabolic diversity is established as a 'metabolic memory' within developing and mature compost materials. Compost addition can thus be considered as a 'super-bioaugmentation' with a complex natural mixture of degrading microorganisms, combined with a 'biostimulation' by nutrient containing readily to hardly degradable organic substrates. It also improves the abiotic soil conditions, thus enhancing microbial activity in general. Finally, this minireview also aims at guiding potential users towards full exploitation of the potentials of this approach.

  3. Evaluation of pre-crops and organic fertilization program on the subsequent crop under Mediterranean conditions: case of South of Italy

    NASA Astrophysics Data System (ADS)

    Chami, Ziad Al; Hmid, Amine; Baysal, Damla; Amer, Nasser; Bitar, Lina Al; Aksoy, Uygun

    2013-04-01

    Organic farming systems rely on soil fertility management to enhance the soil chemical properties for the optimization of crop production and increase food quality. Soil fertility-building crops have been reported as a way to reduce inputs of fertilizers, improve soil fertility and increase the subsequent crop yield. A four-year rotation programme was launched by the Mediterranean Agronomic Institute of Bari that aims at identifying the most suitable fertilization strategy in organic farming for Mediterranean countries under the prevailing conditions. The present study was conducted in southern Italy and it consists in evaluating the effects of pre-crops (faba bean, vetch and broccoli) in comparison to a fallow test on the subsequent crop (zucchini, tomato, lettuce and radish) in four consecutive years. Vetch and faba bean were able to satisfy the nutrient requirement of the main crop without any compost application; while commercial compost was applied to broccoli and fallow treatments prior to transplanting the main crop. The main soil chemical parameters: organic carbon, total nitrogen, available phosphorus, and exchangeable potassium were improved over four years experiment. The trend was consistent; all main chemical parameters displayed a significant increase in all treatments, while no significant differences were obtained between treatments. Based on the results obtained in the first two years, the effect of different pre-crops and fertilizers on zucchini and organic tomato qualitative and quantitative parameters were not significant. While the results obtained in the third and forth years showed that pre-crops and fertilizers had significant effects on lettuce and radish yield and quality. Low nitrate contents were found in fallow and broccoli treatments (70 to 80% lower) in comparison to Vetch and Faba bean treatments and the ascorbic acid contents were (20 to 40% higher) after broccoli and fallow treatments. The low nitrate content in broccoli and fallow treatment can be due to the compost application rich in humified organic matter. Humified organic matter breaks down very slowly in the soil releasing gradually nutrients. Whereas, the high amount of fresh organic matter incorporated with vetch and faba bean may break down quickly in comparison to compost, releasing a flush of nutrients for plant growth. Additionally, nutrient accumulation such as nitrate can lead in a decrease in the vitamin C content. These suggest that the pre-crops, especially vetch and faba bean, can improve main crop yields; while compost improves the quality parameters.

  4. The relative isotopic abundance (δ13C, δ15N) during composting of agricultural wastes in relation to compost quality and feedstock.

    PubMed

    Inácio, Caio T; Magalhães, Alberto M T; Souza, Paulo O; Chalk, Phillip M; Urquiaga, Segundo

    2018-05-01

    Variations in the relative isotopic abundance of C and N (δ 13 C and δ 15 N) were measured during the composting of different agricultural wastes using bench-scale bioreactors. Different mixtures of agricultural wastes (horse bedding manure + legume residues; dairy manure + jatropha mill cake; dairy manure + sugarcane residues; dairy manure alone) were used for aerobic-thermophilic composting. No significant differences were found between the δ 13 C values of the feedstock and the final compost, except for dairy manure + sugarcane residues (from initial ratio of -13.6 ± 0.2 ‰ to final ratio of -14.4 ± 0.2 ‰). δ 15 N values increased significantly in composts of horse bedding manure + legumes residues (from initial ratio of +5.9 ± 0.1 ‰ to final ratio of +8.2 ± 0.5 ‰) and dairy manure + jatropha mill cake (from initial ratio of +9.5 ± 0.2 ‰ to final ratio of +12.8 ± 0.7 ‰) and was related to the total N loss (mass balance). δ 13 C can be used to differentiate composts from different feedstock (e.g. C 3 or C 4 sources). The quantitative relationship between N loss and δ 15 N variation should be determined.

  5. Biochar to reduce ammonia emissions in gaseous and liquid phase during composting of poultry manure with wheat straw.

    PubMed

    Janczak, Damian; Malińska, Krystyna; Czekała, Wojciech; Cáceres, Rafaela; Lewicki, Andrzej; Dach, Jacek

    2017-08-01

    Composting of poultry manure which is high in N and dense in structure can cause several problems including significant N losses in the form of NH 3 through volatilization. Biochar due to its recalcitrance and sorption properties can be used in composting as a bulking agent and/or amendment. The addition of a bulking agent to high moisture raw materials can assure optimal moisture content and enough air-filled porosity but not necessarily the C/N ratio. Therefore, amendment of low C/N composting mixtures with biochar at low rates can have a positive effect on composting dynamics. This work aimed at evaluating the effect of selected doses of wood derived biochar amendment (0%, 5% and 10%, wet weight) to poultry manure (P) mixed with wheat straw (S) (in the ratio of 1:0.4 on wet weight) on the total ammonia emissions (including gaseous emissions of ammonia and liquid emissions of ammonium in the collected condensate and leachate) during composting. The process was performed in 165L laboratory scale composting reactors for 42days. The addition of 5% and 10% of biochar reduced gaseous ammonia emission by 30% and 44%, respectively. According to the obtained results, the measure of emission through the condensate would be necessary to assess the impact of the total ammonia emission during the composting process. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. The potential impact on the biodegradation of organic pollutants from composting technology for soil remediation.

    PubMed

    Ren, Xiaoya; Zeng, Guangming; Tang, Lin; Wang, Jingjing; Wan, Jia; Wang, Jiajia; Deng, Yaocheng; Liu, Yani; Peng, Bo

    2018-02-01

    Large numbers of organic pollutants (OPs), such as polycyclic aromatic hydrocarbons, pesticides and petroleum, are discharged into soil, posing a huge threat to natural environment. Traditional chemical and physical remediation technologies are either incompetent or expensive, and may cause secondary pollution. The technology of soil composting or use of compost as soil amendment can utilize quantities of active microbes to degrade OPs with the help of available nutrients in the compost matrix. It is highly cost-effective for soil remediation. On the one hand, compost incorporated into contaminated soil is capable of increasing the organic matter content, which improves the soil environment and stimulates the metabolically activity of microbial community. On the other hand, the organic matter in composts would increase the adsorption of OPs and affect their bioavailability, leading to decreased fraction available for microorganism-mediated degradation. Some advanced instrumental analytical approaches developed in recent years may be adopted to expound this process. Therefore, the study on bioavailability of OPs in soil is extremely important for the application of composting technology. This work will discuss the changes of physical and chemical properties of contaminated soils and the bioavailability of OPs by the adsorption of composting matrix. The characteristics of OPs, types and compositions of compost amendments, soil/compost ratio and compost distribution influence the bioavailability of OPs. In addition, the impact of composting factors (composting temperature, co-substrates and exogenous microorganisms) on the removal and bioavailability of OPs is also studied. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Effects of age of cattle, turning technology and compost environment on disappearance of bone from mortality compost.

    PubMed

    Stanford, K; Hao, X; Xu, S; McAllister, T A; Larney, F; Leonard, J J

    2009-10-01

    As residual bones in mortality compost negatively impact subsequent tillage, two studies were performed. For the first study, windrows of mature cattle or calves were placed on a base of barley straw and covered with beef manure. Windrows were divided into two sections and turned at 3-month intervals. Approximately 5000 kg of finished compost per windrow was passed through a 6mm trommel screen, with bones collected and weighed. Bone weight was 0.66% of mature cattle compost and 0.38% of calf compost on a dry matter basis, but did not differ after adjustment for weights of compost ingredients. In a subsequent study, four windrows were constructed containing mortalities, straw and beef manure (STATC) or straw, manure and slaughter waste (STATW). Also, straw, beef manure and slaughter waste was added to an 850 L rolling drum composter (DRUMW). Fresh bovine long-bones from calves were collected, weighed and embedded in the compost. Bones were retrieved and weighed when windrows were turned, or with DRUMW, after 8 weeks. Temperatures achieved followed the order STATW>STATC>DRUMW (p<0.05). Rate of bone disappearance followed a pattern identical to temperature, with the weight of bones in STATW declining by 53.7% during 7 weeks of composting. For STATC, temperatures were uniform over three composting periods, but bone disappearance was improved (p<0.05) when compost dry matter was lower (46%), as compared to 58%. Using a ratio of five parts manure to one part mortalities, results of this study demonstrated that residual bone was <1% of cured cattle compost and may be reduced by maintaining a high compost temperature and moisture content.

  8. Aerobic composting reduces antibiotic resistance genes in cattle manure and the resistome dissemination in agricultural soils.

    PubMed

    Gou, Min; Hu, Hang-Wei; Zhang, Yu-Jing; Wang, Jun-Tao; Hayden, Helen; Tang, Yue-Qin; He, Ji-Zheng

    2018-01-15

    Composting has been suggested as a potential strategy to eliminate antibiotic residues and pathogens in livestock manure before its application as an organic fertilizer in agro-ecosystems. However, the impacts of composting on antibiotic resistance genes (ARGs) in livestock manure and their temporal succession following the application of compost to land are not well understood. We examined how aerobic composting affected the resistome profiles of cattle manure, and by constructing laboratory microcosms we compared the effects of manure and compost application to agricultural soils on the temporal succession of a wide spectrum of ARGs. The high-throughput quantitative PCR array detected a total of 144 ARGs across all the soil, manure and compost samples, with Macrolide-Lincosamide-Streptogramin B, aminoglycoside, multidrug, tetracycline, and β-lactam resistance as the most dominant types. Composting significantly reduced the diversity and relative abundance of ARGs and mobile genetic elements (MGEs) in the cattle manure. In the 120-day microcosm incubation, the diversity and abundance of ARGs in manure-treated soils were significantly higher than those in compost-treated soils at the beginning of the experiment. The level of antibiotic resistance rapidly declined over time in all manure- and compost-treated soils, coupled with similar temporal patterns of manure- and compost-derived bacterial communities as revealed by SourceTracker analysis. The network analysis revealed more intensive interactions/associations among ARGs and MGEs in manure-treated soils than in compost-treated soils, suggesting that mobility potential of ARGs was lower in soils amended with compost. Our results provide evidence that aerobic composting of cattle manure may be an effective approach to mitigate the risk of antibiotic resistance propagation associated with land application of organic wastes. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Decline in extractable antibiotics in manure-based composts during composting.

    PubMed

    Kim, K-R; Owens, G; Ok, Y S; Park, W-K; Lee, D B; Kwon, S-I

    2012-01-01

    A wide variety of antibiotics have been detected in natural water samples and this is of potential concern because of the adverse environmental effects of such antibiotic residues. One of the main sources of antibiotics effluence to the surrounding environment is livestock manures which often contain elevated concentrations of veterinary antibiotics (VAs) which survive digestion in the animal stomach following application in animal husbandry practices. In Korea, livestock manures are normally used for compost production indicating that there is potential for antibiotic release to the environment through compost application to agricultural lands. Therefore, reduction of the amount of VAs in composts is crucial. The purpose of this study was to understand the influence of the composting process and the components of the compost on the levels of three common classes of antibiotics (tetracyclines, sulfonamides, and macrolides). Composted materials at different stages of composting were collected from compost manufacturing plants and the variation in antibiotic concentrations was determined. Three different antibiotics, chlortetracycline (CTC), sulfamethazine (SMZ), and tylosin (TYL) at three different concentrations (2, 10, and 20mgkg(-1)) were also applied to a mixture of pig manure and sawdust and the mixtures incubated using a laboratory scale composting apparatus to monitor the changes in antibiotic concentrations during composting together with the physicochemical properties of the composts. During composting, in both field and lab-scale investigations, the concentrations of all three different antibiotics declined below the relevant Korean guideline values (0.8mgkg(-1) for tetracyclines, 0.2mgkg(-1) for sulfonamides and 1.0mgkg(-1) for macrolides). The decline of tetracycline and sulfonamide concentrations was highly dependent on the presence of sawdust while there was no influence of sawdust on TYL decline. Copyright © 2011 Elsevier Ltd. All rights reserved.

  10. Comparison of bacterial community structure and dynamics during the thermophilic composting of different types of solid wastes: anaerobic digestion residue, pig manure and chicken manure.

    PubMed

    Song, Caihong; Li, Mingxiao; Jia, Xuan; Wei, Zimin; Zhao, Yue; Xi, Beidou; Zhu, Chaowei; Liu, Dongming

    2014-09-01

    This study investigated the impact of composting substrate types on the bacterial community structure and dynamics during composting processes. To this end, pig manure (PM), chicken manure (CM), a mixture of PM and CM (PM + CM), and a mixture of PM, CM and anaerobic digestion residue (ADR) (PM + CM + ADR) were selected for thermophilic composting. The bacterial community structure and dynamics during the composting process were detected and analysed by polymerase chain reaction-denaturing gradient gel electrophoresis (DGGE) coupled with a statistic analysis. The physical-chemical analyses indicated that compared to single-material composting (PM, CM), co-composting (PM + CM, PM + CM + ADR) could promote the degradation of organic matter and strengthen the ability of conserving nitrogen. A DGGE profile and statistical analysis demonstrated that co-composting, especially PM + CM + ADR, could improve the bacterial community structure and functional diversity, even in the thermophilic stage. Therefore, co-composting could weaken the screening effect of high temperature on bacterial communities. Dominant sequencing analyses indicated a dramatic shift in the dominant bacterial communities from single-material composting to co-composting. Notably, compared with PM, PM + CM increased the quantity of xylan-degrading bacteria and reduced the quantity of human pathogens. © 2014 The Authors. Microbial Biotechnology published by John Wiley & Sons Ltd and Society for Applied Microbiology.

  11. Chemical, Thermal and Spectroscopic Methods to Assess Biodegradation of Winery-Distillery Wastes during Composting.

    PubMed

    Torres-Climent, A; Gomis, P; Martín-Mata, J; Bustamante, M A; Marhuenda-Egea, F C; Pérez-Murcia, M D; Pérez-Espinosa, A; Paredes, C; Moral, R

    2015-01-01

    The objective of this work was to study the co-composting process of wastes from the winery and distillery industry with animal manures, using the classical chemical methods traditionally used in composting studies together with advanced instrumental methods (thermal analysis, FT-IR and CPMAS 13C NMR techniques), to evaluate the development of the process and the quality of the end-products obtained. For this, three piles were elaborated by the turning composting system, using as raw materials winery-distillery wastes (grape marc and exhausted grape marc) and animal manures (cattle manure and poultry manure). The classical analytical methods showed a suitable development of the process in all the piles, but these techniques were ineffective to study the humification process during the composting of this type of materials. However, their combination with the advanced instrumental techniques clearly provided more information regarding the turnover of the organic matter pools during the composting process of these materials. Thermal analysis allowed to estimate the degradability of the remaining material and to assess qualitatively the rate of OM stabilization and recalcitrant C in the compost samples, based on the energy required to achieve the same mass losses. FT-IR spectra mainly showed variations between piles and time of sampling in the bands associated to complex organic compounds (mainly at 1420 and 1540 cm-1) and to nitrate and inorganic components (at 875 and 1384 cm-1, respectively), indicating composted material stability and maturity; while CPMAS 13C NMR provided semi-quantitatively partition of C compounds and structures during the process, being especially interesting their variation to evaluate the biotransformation of each C pool, especially in the comparison of recalcitrant C vs labile C pools, such as Alkyl /O-Alkyl ratio.

  12. Chemical, Thermal and Spectroscopic Methods to Assess Biodegradation of Winery-Distillery Wastes during Composting

    PubMed Central

    Torres-Climent, A.; Gomis, P.; Martín-Mata, J.; Bustamante, M. A.; Marhuenda-Egea, F. C.; Pérez-Murcia, M. D.; Pérez-Espinosa, A.; Paredes, C.; Moral, R.

    2015-01-01

    The objective of this work was to study the co-composting process of wastes from the winery and distillery industry with animal manures, using the classical chemical methods traditionally used in composting studies together with advanced instrumental methods (thermal analysis, FT-IR and CPMAS 13C NMR techniques), to evaluate the development of the process and the quality of the end-products obtained. For this, three piles were elaborated by the turning composting system, using as raw materials winery-distillery wastes (grape marc and exhausted grape marc) and animal manures (cattle manure and poultry manure). The classical analytical methods showed a suitable development of the process in all the piles, but these techniques were ineffective to study the humification process during the composting of this type of materials. However, their combination with the advanced instrumental techniques clearly provided more information regarding the turnover of the organic matter pools during the composting process of these materials. Thermal analysis allowed to estimate the degradability of the remaining material and to assess qualitatively the rate of OM stabilization and recalcitrant C in the compost samples, based on the energy required to achieve the same mass losses. FT-IR spectra mainly showed variations between piles and time of sampling in the bands associated to complex organic compounds (mainly at 1420 and 1540 cm-1) and to nitrate and inorganic components (at 875 and 1384 cm-1, respectively), indicating composted material stability and maturity; while CPMAS 13C NMR provided semi-quantitatively partition of C compounds and structures during the process, being especially interesting their variation to evaluate the biotransformation of each C pool, especially in the comparison of recalcitrant C vs labile C pools, such as Alkyl /O-Alkyl ratio. PMID:26418458

  13. An Exploration into the Bacterial Community under Different Pasteurization Conditions during Substrate Preparation (Composting-Phase II) for Agaricus bisporus Cultivation.

    PubMed

    Vieira, Fabricio Rocha; Pecchia, John Andrew

    2018-02-01

    Substrate preparation (i.e., composting) for Agaricus bisporus cultivation is the most critical point of mushroom production. Among many factors involved in the composting process, the microbial ecology of the system is the underlying drive of composting and can be influenced by composting management techniques. Pasteurization temperature at the beginning of phase II, in theory, may influence the bacterial community and subsequently the "selectivity" and nutrition of the final substrate. Therefore, this hypothesis was tested by simulation in bioreactors under different pasteurization conditions (57 °C/6 h, 60 °C/2 h, and 68 °C/2 h), simulating conditions adopted by many producers. Bacterial diversity, based on 16S ribosomal RNA obtained by high-throughput sequencing and classified in operational taxonomic units (OTUs), was greater than previously reported using culture-dependent methods. Alpha diversity estimators show a lower diversity of OTUs under a high-temperature pasteurization condition. Bacillales order shows a relatively higher OTU abundance under a high-pasteurization temperature, which also was related to high ammonia emission measurements. On the other hand, beta diversity analysis showed no significantly changes in the bacterial community structure under different conditions. Agaricus bisporus mycelium growth during a standard spawn run period was significantly slower in the compost pasteurized at high temperature. Since the bacterial community structure was not greatly affected by different pasteurization conditions but by-products left (e.g., ammonia) at the end of compost conditioning varied, further studies need to be conducted to determine the functional role of the microbial communities found during substrate preparation for Agaricus bisporus cultivation.

  14. Changes in cadmium mobility during composting and after soil application

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hanc, Ales; Tlustos, Pavel; Szakova, Jirina

    2009-08-15

    The effect of twelve weeks of composting on the mobility and bioavailability of cadmium in six composts containing sewage sludge, wood chips and grass was studied, along with the cadmium immobilization capacity of compost. Two different soils were used and Cd accumulation measured in above-ground oat biomass (Avena sativa L.). Increasing pH appears to be an important cause of the observed decreases in available cadmium through the composting process. A pot experiment was performed with two different amounts of compost (9.6 and 28.8 g per kg of soil) added into Fluvisol with total Cd 0.255 mg kg{sup -1}, and contaminatedmore » Cambisol with total Cd 6.16 mg kg{sup -1}. Decrease of extractable Cd (0.01 mol l{sup -1} CaCl{sub 2}) was found in both soils after compost application. The higher amount of compost immobilized an exchangeable portion of Cd (0.11 mol l{sup -1} CH{sub 3}COOH extractable) in contaminated Cambisol unlike in light Fluvisol. The addition of a low amount of compost decreased the content of Cd in associated above-ground oat biomass grown in both soils, while a high amount of compost decreased the Cd content in oats only in the Cambisol.« less

  15. [Degradation of oxytetracycline in chicken feces aerobic-composting and its effects on their related parameters].

    PubMed

    Wang, Gui-Zhen; Li, Zhao-Jun; Zhang, Shu-Qing; Ma, Xiao-Tong; Liang, Yong-Chao

    2013-02-01

    In order to illustrate the degradation of tetracyclines (TCs) and their influences on process parameters during the period of chicken feces aerobic-composting, the degradation of oxytetracycline (OTC), a kind of TCs and its effects on parameters during the period of chick feces aerobic-composting including temperature, pH, and germination index were investigated using the method of aerobic-composting. The contents of OTC decreased gradually with composting time. The degradation rate was high before 10 d, and then decreased gradually. The differences in OTC degradation among the OTC treatments were also found. The degradation rate of OTC was higher at the level of 25 mg.kg-1, than that of other levels. The degradation curve of OTC could be described by the first-order kinetic model, and the correlation coefficients ranged from 0. 911 1 to 0. 9913. The impacts of OTC on chick feces composting were found. OTC could decrease the rising rate of composting temperature and make the high temperature (> or =50 degrees C) period shorter than that of the control. The values of pH, TN, WSC, and the content of NH: -N of composting were 4.58%, 12.62%, 49.06%, and 35.30% higher than those of the control. The impacts of OTC on maturity of chicken feces composting was not found when the OTC addition contents were lower than 50 mg.kg-1. However, the strong impacts of OTC on maturity of chicken feces composting were found when the OTC addition contents were higher than 50 mg.kg-1. The rates of NH+4 -N to NO-3 -N, and GI were much higher than 0. 5 and lower than 80% , respectively. Theses results suggest that OTC have strong impacts on chicken feces composting when the contents of TOC was higher than 50 mg.kg-1, although OTC have the short half-life period ranged from 1.79-4.88 d.

  16. Date palm and the activated sludge co-composting actinobacteria sanitization potential.

    PubMed

    El Fels, Loubna; Hafidi, Mohamed; Ouhdouch, Yedir

    2016-01-01

    The objective of this study was to find a connection between the development of the compost actinobacteria and the potential involvement of antagonistic thermophilic actinomycetes in compost sanitization as high temperature additional role. An abundance of actinobacteria and coliforms during the activated sludge and date palm co-composting is determined. Hundred actinomycete isolates were isolated from the sample collected at different composting times. To evaluate the antagonistic effects of the different recovered actinomycete isolates, several wastewater-linked microorganisms known as human and plant potential pathogens were used. The results showed that 12 isolates have an in vitro inhibitory effect on at least 9 of the indicator microorganisms while only 4 active strains inhibit all these pathogens. The antimicrobial activities of sterilized composting time extracts are also investigated.

  17. Effects of Manure Compost Application on Soil Microbial Community Diversity and Soil Microenvironments in a Temperate Cropland in China

    PubMed Central

    Zhen, Zhen; Liu, Haitao; Wang, Na; Guo, Liyue; Meng, Jie; Ding, Na; Wu, Guanglei; Jiang, Gaoming

    2014-01-01

    The long-term application of excessive chemical fertilizers has resulted in the degeneration of soil quality parameters such as soil microbial biomass, communities, and nutrient content, which in turn affects crop health, productivity, and soil sustainable productivity. The objective of this study was to develop a rapid and efficient solution for rehabilitating degraded cropland soils by precisely quantifying soil quality parameters through the application of manure compost and bacteria fertilizers or its combination during maize growth. We investigated dynamic impacts on soil microbial count, biomass, basal respiration, community structure diversity, and enzyme activity using six different treatments [no fertilizer (CK), N fertilizer (N), N fertilizer + bacterial fertilizer (NB), manure compost (M), manure compost + bacterial fertilizer (MB), and bacterial fertilizer (B)] in the plowed layer (0–20 cm) of potted soil during various maize growth stages in a temperate cropland of eastern China. Denaturing gradient electrophoresis (DGGE) fingerprinting analysis showed that the structure and composition of bacterial and fungi communities in the six fertilizer treatments varied at different levels. The Shannon index of bacterial and fungi communities displayed the highest value in the MB treatments and the lowest in the N treatment at the maize mature stage. Changes in soil microorganism community structure and diversity after different fertilizer treatments resulted in different microbial properties. Adding manure compost significantly increased the amount of cultivable microorganisms and microbial biomass, thus enhancing soil respiration and enzyme activities (p<0.01), whereas N treatment showed the opposite results (p<0.01). However, B and NB treatments minimally increased the amount of cultivable microorganisms and microbial biomass, with no obvious influence on community structure and soil enzymes. Our findings indicate that the application of manure compost plus bacterial fertilizers can immediately improve the microbial community structure and diversity of degraded cropland soils. PMID:25302996

  18. Biohydrogen and biomethane production sustained by untreated matrices and alternative application of compost waste.

    PubMed

    Arizzi, Mariaconcetta; Morra, Simone; Pugliese, Massimo; Gullino, Maria Lodovica; Gilardi, Gianfranco; Valetti, Francesca

    2016-10-01

    Biohydrogen and biomethane production offers many advantages for environmental protection over the fossil fuels or the existing physical-chemical methods for hydrogen and methane synthesis. The aim of this study is focused on the exploitation of several samples from the composting process: (1) a mixture of waste vegetable materials ("Mix"); (2) an unmatured compost sample (ACV15); and (3) three types of green compost with different properties and soil improver quality (ACV1, ACV2 and ACV3). These samples were tested for biohydrogen and biomethane production, thus obtaining second generation biofuels and resulting in a novel possibility to manage renewable waste biomasses. The ability of these substrates as original feed during dark fermentation was assayed anaerobically in batch, in glass bottles, in order to determine the optimal operating conditions for hydrogen and/or methane production using "Mix" or ACV1, ACV2 or ACV3 green compost and a limited amount of water. Hydrogen could be produced with a fast kinetic in the range 0.02-2.45mLH2g(-1)VS, while methane was produced with a slower kinetic in the range 0.5-8mLCH4g(-1)VS. It was observed that the composition of each sample influenced significantly the gas production. It was also observed that the addition of different water amounts play a crucial role in the development of hydrogen or methane. This parameter can be used to push towards the alternative production of one or another gas. Hydrogen and methane production was detected spontaneously from these matrices, without additional sources of nutrients or any pre-treatment, suggesting that they can be used as an additional inoculum or feed into single or two-stage plants. This might allow the use of compost with low quality as soil improver for alternative and further applications. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. Rapid production of organic fertilizer by dynamic high-temperature aerobic fermentation (DHAF) of food waste.

    PubMed

    Jiang, Yang; Ju, Meiting; Li, Weizun; Ren, Qingbin; Liu, Le; Chen, Yu; Yang, Qian; Hou, Qidong; Liu, Yiliang

    2015-12-01

    Keep composting matrix in continuous collision and friction under a relatively high-temperature can significantly accelerate the progress of composting. A bioreactor was designed according to the novel process. Using this technology, organic fertilizer could be produced within 96h. The electric conductivity (EC) and pH value reached to a stable value of 2.35mS/cm and 7.7 after 96h of fermentation. The total carbon/total nitrogen (TC/TN) and dissolved carbon/dissolved nitrogen (DC/DN) ratio was decrease from 27.3 and 36.2 to 17.4 and 7.6 respectively. In contrast, it needed 24days to achieve the similar result in traditional static composting (TSC). Compost particles with different size were analyzed to explore the rapid degradation mechanism of food waste. The evidence of anaerobic fermentation was firstly discovered in aerobic composting. Copyright © 2015 Elsevier Ltd. All rights reserved.

  20. Cynara cardunculus suitability as energetic crop in the south east of Spain using compost as amendment

    NASA Astrophysics Data System (ADS)

    Lag, A.; Gómez, I.; Navarro, J.; Córdoba, P.; Bartual, J.

    2009-04-01

    Global warming demands urgent actions to reduce problems derivated from it. In this sense, fossil fuels should be replaced gradually with renewable energy sources, like energetic crops, to decrease or at least maintain CO2 levels in the atmosphere. For example, net carbon emissions from generation of a unit of bioenergy are 10 to 20 times lower than emissions from fossil fuel based generation. Compared with fossil fuels, the use of lignocellulosic feedstocks has greenhouse gas reduction potential and highly positive net energy returns because of low input demand and high yields per unit land area. In addition, conversion of degradated agricultural soils to perennial crops can improve soil quality by increasing C sequestration due to their perenniality, high biomass production, and deep root systems. For all these reasons, the aim of this study is to ascertain Cynara cardunculus sp suitability as energetic crop in the south-east of Spain, using compost as organic amendment. Five compost treatments were applied to the soil: 0 (D1), 20 (D2), 40 (D3), 60 (D4) and 80 (D5) t of compost/ha. The experiment lasted 5 months, sampling 3 times (January; April and June). Twelve Cynara Cardunculus plants were placed in each plot (4x7 m); half of them were collected at the end of the experiment. Treated sewage water was used to irrigate the crop. Organic carbon in soil and above ground biomass were studied. Dry weight yield production was between 494 (D4) to 740 kg/ha (D3). Considering that 45 to 50 % of plant dry weight matter could be assumed as carbon, carbon sequestration range from 0.8 to 1.2 t of CO2/ha for a short period of 5 months. Soil Organic carbon levels, at the end of the experiment, increased in each compost treatment compared with control value as follow: 16% (D2); 33% (D3); 43% (D4) and 73% (D5). The results show that Cynara cardunculus sp could be used as energetic crop in the south east of Spain, as it was suggested by the European Environmental Agency. However, further studies are needed with longer test time to set production potential of biomass, organic matter evolution and nature, carbon sequestration balance and compost influence in these properties. Acknowledgements: The author gratefully acknowledges the Spanish Ministry of Innovation and Science for a research fellowship (AP2007-01641); the "Estación Agraria Experimental de Elche" and "Instituto Valenciano de Investigaciones Agrarias" for their collaboration.

  1. High-Iron Biosolids Compost-Induced Changes in Lead and Arsenic Speciation and Bioaccessibility in Co-contaminated Soils

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brown, Sally L; Clausen, Ingrid; Chappell, Mark A

    2012-10-23

    The safety of urban farming has been questioned due to the potential for contamination in urban soils. A laboratory incubation, a field trial, and a second laboratory incubation were conducted to test the ability of high-Fe biosolids–based composts to reduce the bioaccessibility of soil Pb and As in situ. Lead and As bioaccessibility were evaluated using an in vitro assay. Changes in Pb, As, and Fe speciation were determined on select samples after the second laboratory incubation using μ–X-ray fluorescence mapping followed by μ–X-ray absorption near-edge structure (XANES). A compost with Fe added to wastewater treatment residuals (Fe WTR compost)more » added to soils at 100 g kg -1 decreased Pb bioaccessibility in both laboratory incubations. Mixed results were observed for As. Composts tested in the field trial (Fe added as Fe powder or FeCl 2) did not reduce bioaccessible Pb, and limited reductions were observed in bioaccessible As. These composts had no effect on Pb bioaccessibility during the second laboratory incubation. Bulk XANES showed association of Pb with sulfates and carbonates in the control soil. μ-XANES for three points in the Fe WTR amended soil showed Pb present as Fe-sorbed Pb (88 and 100% of two points) and pyromorphite (12 and 53% of two points). Bulk XANES of the Fe WTR compost showed 97% of total Fe present as Fe 3+. The results of this study indicate that addition of high-Fe biosolids compost is an effective means to reduce Pb accessibility only for certain types of Fe-rich materials.« less

  2. Benefits to decomposition rates when using digestate as compost co-feedstock: Part I - Focus on physicochemical parameters.

    PubMed

    Arab, Golnaz; McCartney, Daryl

    2017-10-01

    Anaerobic digestion (AD) has gained a significant role in municipal solid waste management, but managing a high volume of digestate is one of the challenges with AD technology. One option is to mix digestate with fresh and/or stabilized organic waste and then feed to the composting process. In this study, the effect of co-composting anaerobic digestate (in different quantities) on a composting process was investigated. The digestate was prepared in a pilot-scale 500L high solids dry anaerobic digester and composting was completed in eight 25L reactors with different ratios of digestate to fresh feedstock from the organic fraction of municipal solid waste (OFMSW). The digestate constituted 0, 10, 20, 30, 40, 50, 75, or 100% (wet mass) of the feedstock. The co-composting experiment was conducted in two phases: active aeration and curing. Monitored parameters included: process temperature, aeration rate, oxygen concentration of the outlet gas, mass changes, total solids, organic matter, pH, and electrical conductivity. In addition, respirometry, C:N ratio, ammonium to nitrate ratio, and Solvita® tests were used to quantify stability and maturity end points. The results showed that the addition of digestate to the OFMSW increased composting reaction rates in all cases, with peak performance occurring within the ratio of 20-40% of digestate addition on a wet weight basis. Reactor performance may have been influenced by the high total ammonia nitrogen (TAN) levels in the digestate. Composting rates increased as TAN levels increased up to 5000 TAN mgkg -1 DM; however, TAN may have become inhibitory at higher levels. Crown Copyright © 2017. Published by Elsevier Ltd. All rights reserved.

  3. Evaluation of humic substances during co-composting of sewage sludge and corn stalk under different aeration rates.

    PubMed

    Li, Shuyan; Li, Danyang; Li, Jijin; Li, Guoxue; Zhang, Bangxi

    2017-12-01

    Sewage sludge and corn stalk were co-composted under different aeration rates 0.12 (AR0.12), 0.24 (AR0.24), 0.36 (AR0.36)L·kg -1 DMmin -1 , respectively. Transformation of humic substance was evaluated by a series of chemical and spectroscopic methods to reveal compost humification. Results showed that aeration rate could significantly affect compost stability and humification process. Humic acid contents in AR0.24 were significantly higher than those in the other two treatments. The final humic acid/fulvic acid ratios in AR0.12, AR0.24 and AR0.36 treatment were 1.0, 1.9 and 0.8, respectively, corresponding to the final E 4 /E 6 of 4.7, 3.2 and 5.5. Moreover, compost in AR0.24 treatment had a high stability degree due to the low C/N atom ratio and high C/H atom ratio. However, it is noteworthy that composting could not significantly affect the structure of HA in a 35-day period. These results indicate that composting with the aeration rate of 0.24L·kg -1 DMmin -1 could accelerated the humification process. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Co-composting of two-phase olive-mill pomace and poultry manure with tomato harvest stalks.

    PubMed

    Sülük, Kemal; Tosun, İsmail; Ekinci, Kamil

    2017-04-01

    In this study, two-phase olive-mill pomace with poultry manure and chopped tomato harvest stalks were composted at different initial carbon/nitrogen (C/N) ratios with fixed free air space of 35%. Composting experiment was carried out in the 15 aerobic reactors made of stainless steel and was monitored for 28 days. During the composting process, temperature, moisture content, organic matter (OM), pH, electrical conductivity, oxygen and carbon dioxide concentrations, total carbon, total nitrogen, ammonium nitrogen ([Formula: see text]), nitrate nitrogen ([Formula: see text]), and total phosphorus were monitored. Compost mass and volume changes were determined at the beginning, during remixings, and at the end of composting. While the stabilization period took less time for the mixtures containing a high amount of poultry manure, the mixtures having the high portion of two-phase olive-mill pomace took a longer time due to the structure of olive stone and its lignin content. Dry matter loss (range: 18.1-34.0%.) in the mixtures increased with an increase in the share of poultry manure and tomato stalks in the initial mixture. OM loss (range: 21.7-46.1%) for tomato stalks (measured separately) during composting increased due to an increase in the ratio of poultry manure in the initial mixtures.

  5. Pyrosequencing reveals bacterial community differences in composting and vermicomposting on the stabilization of mixed sewage sludge and cattle dung.

    PubMed

    Lv, Baoyi; Xing, Meiyan; Yang, Jian; Zhang, Liangbo

    2015-12-01

    This study aimed to compare the microbial community structures and compositions in composting and vermicomposting processes. We applied 454 high-throughput pyrosequencing to analyze the 16S rRNA gene of bacteria obtained from bio-stabilization of sewage sludge and cattle dung. Results demonstrated that vermicomposting process presented higher operational taxonomic units and bacterial diversity than the composting. Analysis using weighted UniFrac indicated that composting exhibited higher effects on shaping microbial community structure than the vermicomposting. The succession of dominant bacteria was also detected during composting. Firmicutes was the dominant bacteria in the thermophilic phase of composting and shifted to Actinomycetes in the maturing stage. By contrast, Proteobacteria accounted for the highest proportions in the whole process of the vermicomposting. Furthermore, vermicomposting contained more uncultured and unidentified bacteria at the taxonomy level of genus than the composting. In summary, the bacterial community during composting significantly differed from that during vermicomposting. These two techniques played different roles in changing the diversity and composition of microbial communities.

  6. A multivariate approach to the study of the composting process by means of analytical electrofocusing.

    PubMed

    Grigatti, Marco; Cavani, Luciano; Ciavatta, Claudio

    2007-01-01

    Three blends formed by: agro-industrial waste, wastewater sewage sludge, and their mixture, blended with tree pruning as bulking agent, were composted over a 3-month period. During the composting process the blends were monitored for the main physical and chemical characteristics. Electrofocusing (EF) was carried out on the extracted organic matter. The EF profiles were analyzed by principal component analysis (PCA) in order to assess the suitability of EF to evaluate the stabilisation level during the composting process. Throughout the process, the blends showed a general shifting of focused bands, from low to high pH, even though the compost origin affected the EF profiles. If the EF profile is analyzed by dividing it into pH regions, the interpretation of the results can be affected by the origin of compost. A good clustering of compost samples depending on the process time was obtained by analyzing the whole profile by PCA. Analysis of EF results with PCA represents a useful analytical technique to study the evolution and the stabilisation of composted organic matter.

  7. Survival of pathogenic bacteria in compost with special reference to Escherichia coli.

    PubMed

    Gong, Chun-ming; Koichi, Inoue; Shunji, Inanaga; Takashi, Someya

    2005-01-01

    Application of compost in agricultural practice could potentially cause contamination of foodstuffs with pathogenic bacteria such as Escherichia coli O157:H7 (E. Coli O157). We investigated pathogenic bacteria in compost collected from the compost facilities, and evaluated the survival of E. coli K12 and O157 in laboratory experiments. Out of 19 compost product samples, coliform bacteria and salmonella were detected in 7 and 3 samples respectively. The number of coliform bacteria was 1.8 x 10(2) to 2.5 x 10(6) CFU/g dw and that of salmonella was 4.2 x 10(1) to 6.0 x 10(3) CFU/g dw. Moreover, coliform bacteria, fecal coliform, E. coli and salmonella were detected during composting at 54 degrees C to 67 degrees C. The results indicated that moisture content was a very important factor to the heat sensitivity of pathogenic bacteria in compost, E. coil in compost of high moisture content was more sensitive than that in compost of low moisture content, cells harvested in logarithmic phase was more sensitive than these in stationary phase, and E. coli K12 was more sensitive than E. coli O157. Based on the D values, the lethal time of E. coli K12 and O157 from l0(8) to 10(0) CFU/g dw were 16.3 and 28.8 min, respectively, at 60 degrees C in compost with 40% moisture content. However, some E. coil cells survived in composting process at 54 degrees C to 67 degrees C. Water potential (low moisture content) and physiological aspects of bacteria (stationary phase) could explain only in part of the prolonged survival of E. coil in compost, and there should be some other factors that are conducive to bacterial survival in compost.

  8. The effects of compost prepared from waste material of banana plants on the nutrient contents of banana leaves.

    PubMed

    Doran, Ilhan; Sen, Bahtiyar; Kaya, Zülküf

    2003-10-01

    In this study, the possible utilization of removed shoots and plant parts of banana as compost after fruit harvest were investigated. Three doses (15-30-45 kg plan(-1)) of the compost prepared from the clone of Dwarf Cavendish banana were compared with Farmyard manure (50 kg plant(-1), Mineral fertilizers (180 g N + 150 g P + 335 g K plant(-1)) and Farmyard manure + Mineral fertilizers (25 kg FM + 180 g N + 150 g P + 335 g K plant(-1)) which determined positive effects on the nutrient contents of banana leaves. The banana plants were grown under a heated glasshouse and in a soil with physical and chemical properties suitable for banana growing. The contents of N, P, K and Mg in compost and in farmyard manure were found to be similar. Nitrogen, phosphorus and potassium contents of leaves in all applications except control, and Ca, Mg, Fe, Zn, Mn, Cu contents in all applications were determined between optimum levels of reference values. There were positive correlations among some nutrient contents of leaves, growth, yield and fruit quality characteristics. Farmyard manure, Farmyard manure + Mineral fertilizers and 45 kg plant(-1) of compost increased the nutrient contents of banana leaves. According to obtained results, 45 kg plant(-1) of compost was determined more suitable in terms of economical production and organic farming than the other fertiliser types.

  9. Effects of wood vinegar on properties and mechanism of heavy metal competitive adsorption on secondary fermentation based composts.

    PubMed

    Liu, Ling; Guo, Xiaoping; Wang, Shuqi; Li, Lei; Zeng, Yang; Liu, Guanhong

    2018-04-15

    In this study, secondary municipal solid waste composts (SC) and wood vinegar treated secondary compost (WV-SC) was prepared to investigate the capability for single-heavy metals and multi-metal systems adsorption. The adsorption sequence of WV-SC for the maximum single metals sorption capacities was Cd (42.7mgg -1 ) > Cu (38.6mgg -1 ) > Zn (34.9mgg -1 ) > Ni (28.7mgg -1 ) and showed higher than that of SC adsorption isotherm. In binary/quaternary-metal systems, Ni adsorption showed a stronger inhibitory effect compared with Zn, Cd and Cu on both SC and WV-SC. According to Freundlich and Langmuir adsorption isotherm models, as well as desorption behaviors and speciation analysis of heavy metals, competitive adsorption behaviors were differed from single-metal adsorption. Especially, the three-dimensional simulation of competitive adsorption indicated that the Ni was easily exchanged and desorbed. The amount of exchangeable heavy metal fraction were in the lowest level for the metal-loaded adsorbents, composting treated by wood vinegar improved the adsorbed metals converted to the residue fraction. This was an essential start in estimating the multiple heavy metal adsorption behaviors of secondary composts, the results proved that wood vinegar was an effective additive to improve the composts quality and decrease the metal toxicity. Copyright © 2017 Elsevier Inc. All rights reserved.

  10. Production of well-matured compost from night-soil sludge by an extremely short period of thermophilic composting.

    PubMed

    Nakasaki, Kiyohiko; Ohtaki, Akihito; Takemoto, Minoru; Fujiwara, Shunrokuro

    2011-03-01

    The effect of various operational conditions on the decomposition of organic material during the composting of night-soil treatment sludge was quantitatively examined. The optimum composting conditions were found to be a temperature of ca. 60°C and an initial pH value of 8. Rapid decomposition of organic matter ceased by the sixth day of composting under these optimum conditions, and the final value of the cumulative emission of carbon (E(C)), which represents the degree of organic matter decomposition, was less than 40%, indicating that the sludge contained only a small amount of easily degradable organic material. A plant growth assay using Komatsuna (Brassica campestris L. var. rapiferafroug) in a 1/5000a standard cultivation pot was then conducted for the compost at various degrees of organic matter decomposition: the raw composting material, the final compost obtained on day 6, and the 2 intermediate compost products (i.e., E(C)=10% and 20%). It was found that the larger the E(C), the greater the yield of Komatsuna growth. It was also found that 6 days of composting is sufficient to promote Komatsuna growth at the standard loading level, which is equivalent to a 1.5 g N/pot, since the promotion effect was as high as that obtained using chemical fertilizer. It can therefore be concluded that well-matured compost could be obtained in a short period of time (i.e., as early as 6 days), when night-soil sludge is composted under optimum conditions. Copyright © 2010 Elsevier Ltd. All rights reserved.

  11. Compost maturity and nitrogen availability by co-composting of paddy husk and chicken manure amended with clinoptilolite zeolite.

    PubMed

    Latifah, Omar; Ahmed, Osumanu Haruna; Susilawati, Kassim; Majid, Nik Muhamad

    2015-04-01

    The availability of paddy husk from rice processing plants remains high owing to increase in the worldwide rice consumption. Increasing demand for chicken products leads to poultry wastes production. Co-composting of the aforementioned wastes could solve the indiscriminate disposal of these wastes. Thus, co-composting of paddy husk and chicken slurry with clinoptilolite zeolite and urea as additive was carried out. Clinoptilolite zeolite was used to enhance ammonium and nitrate retention in the compost. Temperature of the compost was monitored three times daily for 55 days. Cation exchange capacity, organic matter, ash, humic acids, pH, total C, N, C/N ratio; total P, exchangeable Ca, Mg, K, NH4+, NO3-, and heavy metals contents were determined using standard procedures. pH, total N, humic acids, ash, NH4+, NO3-, P, Ca, Mg, and K contents increased but the salinity, heavy metals contents, and microbial population were low after the co-composting process. Zea mays L. (test crop) seed germination rate in distilled water and the compost were not significantly different. Growth of Spinach oleracea (test crop) on a peat-based growing medium and the compost was also not significantly different. These findings were possible because the clinoptilolite zeolite used in co-composting reduced accumulation of heavy metals that may have damage effects on the test crops. Mature compost with good agronomic properties can be produced by co-composting chicken slurry and paddy husk using clinoptilolite zeolite and urea as additives. © The Author(s) 2015.

  12. Feasibility of composting combinations of sewage sludge, olive mill waste and winery waste in a rotary drum reactor.

    PubMed

    Fernández, Francisco J; Sánchez-Arias, Virginia; Rodríguez, Lourdes; Villaseñor, José

    2010-10-01

    Representative samples of the following biowastes typically generated in Castilla La Mancha (Spain) were composted using a pilot-scale closed rotary drum composting reactor provided with adequate control systems: waste from the olive oil industry (olive mill waste; OMW), winery-distillery waste containing basically grape stalk and exhausted grape marc (WDW), and domestic sewage sludge. Composting these biowastes was only successful when using a bulking agent or if sufficient porosity was supported. OMW waste composting was not possible, probably because of its negligible porosity, which likely caused anaerobic conditions. WDW was successfully composted using a mixture of solid wastes generated from the same winery. SS was also successfully composted, although its higher heavy metal content was a limitation. Co-composting was an adequate strategy because the improved mixture characteristics helped to maintain optimal operating conditions. By co-composting, the duration of the thermophilic period increased, the final maturity level improved and OMW was successfully composted. Using the proposed reactor, composting could be accelerated compared to classical outdoor techniques, enabling easy control of the process. Moisture could be easily controlled by wet air feeding and leachate recirculation. Inline outlet gas analysis helped to control aerobic conditions without excessive aeration. The temperature reached high values in a few days, and sufficient thermal requirements for pathogen removal were met. The correct combination of biowastes along with appropriate reactor design would allow composting as a management option for such abundant biowastes in this part of Spain. (c) 2010 Elsevier Ltd. All rights reserved.

  13. Isolation of Thermus strains from hot composts (60 to 80 degrees C).

    PubMed Central

    Beffa, T; Blanc, M; Lyon, P F; Vogt, G; Marchiani, M; Fischer, J L; Aragno, M

    1996-01-01

    High numbers (10(7) to 10(10) cells per g [dry weight]) of heterotrophic, gram-negative, rod-shaped, non-sporeforming, aerobic, thermophilic bacteria related to the genus Thermus were isolated from thermogenic composts at temperatures between 65 and 82 degrees C. These bacteria were present in different types of wastes (garden and kitchen wastes and sewage sludge) and in all the industrial composting systems studied (open-air windows, boxes with automated turning and aeration, and closed bioreactors with aeration). Isolates grew fast on a rich complex medium at temperatures between 40 and 80 degrees C, with optimum growth between 65 and 75 degrees C. Nutritional characteristics, total protein profiles, DNA-DNA hybridization (except strain JT4), and restriction fragment length polymorphism profiles of the DNAs coding for the 16S rRNAs (16S rDNAs) showed that Thermus strains isolated from hot composts were closely related to Thermus thermophilus HB8. These newly isolated T. thermophilus strains have probably adapted to the conditions in the hot-compost ecosystem. Heterotrophic, ovalspore-forming, thermophilic bacilli were also isolated from hot composts, but none of the isolates was able to grow at temperatures above 70 degrees C. This is the first report of hot composts as habitats for a high number of thermophilic bacteria related to the genus Thermus. Our study suggests that Thermus strains play an important role in organic-matter degradation during the thermogenic phase (65 to 80 degrees C) of the composting process. PMID:8633870

  14. Anaerobic digestion of municipal solid waste: Technical developments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rivard, C.J.

    1996-01-01

    The anaerobic biogasification of organic wastes generates two useful products: a medium-Btu fuel gas and a compost-quality organic residue. Although commercial-scale digestion systems are used to treat municipal sewage wastes, the disposal of solid organic wastes, including municipal solid wastes (MSW), requires a more cost-efficient process. Modern biogasification systems employ high-rate, high-solids fermentation methods to improve process efficiency and reduce capital costs. The design criteria and development stages are discussed. These systems are also compared with conventional low-solids fermentation technology.

  15. Rapid and automated enumeration of viable bacteria in compost using a micro-colony auto counting system.

    PubMed

    Wang, Xiaodan; Yamaguchi, Nobuyasu; Someya, Takashi; Nasu, Masao

    2007-10-01

    The micro-colony method was used to enumerate viable bacteria in composts. Cells were vacuum-filtered onto polycarbonate filters and incubated for 18 h on LB medium at 37 degrees C. Bacteria on the filters were stained with SYBR Green II, and enumerated using a newly developed micro-colony auto counting system which can automatically count micro-colonies on half the area of the filter within 90 s. A large number of bacteria in samples retained physiological activity and formed micro-colonies within 18 h, whereas most could not form large colonies on conventional media within 1 week. The results showed that this convenient technique can enumerate viable bacteria in compost rapidly for its efficient quality control.

  16. Changes in heavy metal mobility and availability from contaminated wetland soil remediated with combined biochar-compost.

    PubMed

    Liang, Jie; Yang, Zhaoxue; Tang, Lin; Zeng, Guangming; Yu, Man; Li, Xiaodong; Wu, Haipeng; Qian, Yingying; Li, Xuemei; Luo, Yuan

    2017-08-01

    The combination of biochar and compost has been proven to be effective in heavy metals contaminated wetland soil restoration. However, the influence of different proportions between biochar and compost on immobilization of heavy metals in soil has been less studied up to date. Therefore, we investigated the effect of different ratios of biochar-compost mixtures on availability and speciation distribution of heavy metals (Cd, Zn and Cu) in wetland soil. The results showed that applying all amendment combinations into wetland soil increased gradually the total organic carbon (TOC) and water-extract organic carbon (WEOC) as the compost percentage rose in biochar-composts. The higher pH was obtained in a certain biochar addition (20% and 40%) in combinations due to efficient interaction of biochar with compost. All amendments could significantly decrease availability of Cd and Zn mainly from pH change, but increase available Cu concentration as the result of increased water-extract organic carbon and high total Cu content in compost. Moreover, amendments can decrease easily exchangeable fraction and increase reducible of Cd and Zn greatly with increase of compost content in combinations, while amendments containing compost promote transformation of Cu from Fe/Mn oxide and residual fractions to organic bindings. These results demonstrate that different ratios of biochar and compost have a significant effect on availability and speciation of heavy metals in multi-metal-contaminated wetland soil. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Application of aerobic composting system for space agriculture

    NASA Astrophysics Data System (ADS)

    Oshima, Tairo; Yoshii, Takahiro; Moriya, Toshiyuki; Yamashita, Masamichi

    Composting is a classical technique to decompose organic wastes such as animal bodies, straw, paper, raw sludge, and so on. Compared with burning of wastes, the composting method has many advantages. It is an inexpensive and safer method because of its self-heating without spending extra energy resources. It does not emit toxic pollutants such as dioxin, NOx , and SOx . The composting products can be used as organic fertilizers for agricultural production. Composting is a promising way for digesting organic wastes safely on spaceships or manned exploration on extraterrestrial planets. We have developed a small scale high-temperature composter in order to examine its feasobility to operate food waste disposing facility and fertilizer production in space. This composter has a heated reaction vessel containing compost soil (seed bacteria) provided by a compost factory. To determine the optimal condition for its operation, we analyzed the effect of temperature on metabolic activity (CO2 production rate), and water content. The dynamics of microbial community was studied by polymerase chain reaction - denaturing gradient gel electrophoresis (PCR-DGGE). Water content was maintained to a range between 27% and 40% by continuously adding water. The highest CO2 emission was observed at around 70° C. PCR-DGGE analysis shows that the bacterial community of the compost soil is dramatically changed by changing reaction temperature. We will discuss the application of the composter in space in order to establish the closed recycling loop of bio-elements in space agriculture.

  18. Effects of bedding type on compost quality of equine stall waste: implications for small horse farms.

    PubMed

    Komar, S; Miskewitz, R; Westendorf, M; Williams, C A

    2012-03-01

    Our objective in this study is to compare 4 of the most common bedding materials used by equine operations on the chemical and physical characteristics of composted equine stall waste. Twelve Standardbred horses were adapted to the barn and surrounding environment for 2 wk before the start of the study. Groups of 3 horses were bedded on 1 of 4 different bedding types (wood shavings, pelletized wood materials, long straw, and pelletized straw) for 16 h per day for 18 d. Stalls were cleaned by trained staff daily, and all contents removed were weighed and stored separately by bedding material on a level covered concrete pad for the duration of the study. Compost piles were constructed using 3 replicate piles of each bedding type in a randomized complete block design. Each pile was equipped with a temperature sensor and data logger. Water was added and piles were turned weekly throughout the 100-d compost process. Initial and final samples were taken, dried, and analyzed for DM mass, OM, inorganic nitrogen (nitrate-N and ammonium-N), electrical conductivity, and soluble (plant-available) nutrients. Data were analyzed using the GLM procedure, and means were separated using Fischer's protected LSD test (P < 0.05). No significant temperature differences were observed among the bedding materials. The composting process resulted in significant reductions (P < 0.05) in DM mass for each of the 4 bedding materials. The composting process resulted in significant reductions (P < 0.05) in OM and C:N ratio for all 4 bedding materials. The composted long straw material had greater concentrations of total Kjeldahl nitrogen (P < 0.05), nitrate-N (P < 0.05), and ammonium-N (P < 0.05) than the composted wood shavings. This study demonstrated that incorporating a simple aerobic composting system may greatly reduce the overall volume of manure and yield a material that is beneficial for land application in pasture-based systems. The straw-based materials may be better suited for composting and subsequent land application; however, factors such as suitability of the bedding material for equine use, material cost, labor, and availability must be considered when selecting a bedding material.

  19. Three-year study of fast-growing trees in degraded soils amended with composts: Effects on soil fertility and productivity.

    PubMed

    Madejón, Paula; Alaejos, Joaquin; García-Álbala, José; Fernández, Manuel; Madejón, Engracia

    2016-03-15

    Currently, worries about the effects of intensive plantations on long-term nutrient supply and a loss of productivity have risen. In this study two composts were added to degraded soils where this type of intensive crops were growing, to avoid the soil fertility decrease and try to increase biomass production. For the experiment, two degraded soils in terms of low organic carbon content and low pH were selected in South-West Spain: La Rábida (RA) and Villablanca (VI) sites. Both study sites were divided into 24 plots. In RA, half of the plots were planted with Populus x canadensis "I-214"; the other half was planted with Eucalyptus globulus. At the VI site, half of the plots were planted with Paulownia fortunei, and the other plots were planted with Eucalyptus globulus. For each tree and site, three treatments were established (two organic composts and a control without compost), with four replications per treatment. The organic amendments were "alperujo" compost, AC, a solid by-product from the extraction of olive oil, and BC, biosolid compost. During the three years of experimentation, samples of soils and plants were analyzed for studying chemical and biochemical properties of soil, plant growth and plant nutritional status and biomass production. The composts increased total organic carbon, water-soluble carbon, nutrients and pH of soil only in the most acidic soil. Soil biochemical quality was calculated with the geometric mean of the enzymatic activities (Dehydrogenase, β-glucosidase, Phosphatase and Urease activities) determined in soils. The results showed a beneficial improvement in comparison with soils without compost. However, the best results were found in the growth and biomass production of the studied trees, especially in Eucalyptus. Nutritional levels of leaves of the trees were, in general, in the normal established range for each species, although no clear effect of the composts was observed. The results of this study justify the addition of compost to guarantee good biomass production and maintain or improve soil management in degraded soils, especially in acid soils. Copyright © 2015 Elsevier Ltd. All rights reserved.

  20. Dissolved organic matter dynamic and resident microbiota evolution in soil amended with fresh and composted olive mill wastes

    NASA Astrophysics Data System (ADS)

    Gigliotti, Giovanni; Massaccesi, Luisa; Federici, Ermanno; Fidati, Laura; Nasini, Luigi; Proietti, Primo

    2013-04-01

    The disposal of olive mill wastes represents a problem of environmental relevance particularly in the Mediterranean countries where olive oil is mostly produced. Among the several valorisation and recycling methods proposed, interesting for its operational simplicity and convenience is land spreading, either directly or after composting. However, the agriculture use of the water-saturated husk produced by the new two-phase oil extraction systems may be hampered by its consistency and its high content of phenolic compounds, which may finally lead to phytotoxicity. Humid husk may indeed modify the dynamic of soil organic matter (SOM) and the structure and function of microbial communities. On the other hand, organic amendments are known to positively affect SOM fractions, particularly by increasing the concentration and quality of dissolved organic matter (DOM), which may eventually lead to an increase in microbial activity. The aim of this work was to investigate, during a 90-day field trial, the modifications in soil DOM composition and the effects on the soil microbiota induced by a humid husk, obtained from a new generation two-phase oil extraction plant, spread in an olive orchard either as a fresh amendment or after a composting process. With respect to the control, the soil amended with either fresh or composted husk showed an increase in water extractable organic carbon (WEOC). Interestingly, while during the first 30 days the soil amended with the composted husk showed a WEOC content higher than the one amended with the fresh husk, after that time only in the latter the WEOC remained significantly higher than in the control. The total content of phenolic compounds showed a similar trend, with the only difference that their concentration in the soil amended with both treatments remained higher than the control for the entire trial. Similarly, both treatments induced an increase in soil reducing sugars, with an higher effect observed in the soil amended with the composted husk. FT-IR spectra and SUVA254 data confirmed the changes in DOM composition caused by the amendments. Denaturing gradient gel electrophoresis (DGGE) analyses of 16S and 18S rRNA genes was used to characterize the microbiota in both amendments and soils. Interestingly, the DGGE profiles changed after composting the humid husk, indicating how the organic matter transformations occurring during this process profoundly altered the microbial communities of the OMW. Soil bacterial communities were very complex and presented a high species richness throughout the entire trial. In particular, the fresh and the composted husk appeared to have only a slight effect on the bacterial community structure. This effect was observed only during the first 60 days, while after 90 days no differences with the control plot were present. On the contrary, the fungal communities presented a lower biodiversity and more variable DGGE profiles than the bacterial communities. Both treatments clearly altered the structure of the soil fungal community throughout the entire trial. Interestingly, the fungal communities profiles were different when the fresh or the composted husk was used, with the former showing more profound and stable effects.

  1. Spent mushroom substrate biochar as a potential amendment in pig manure and rice straw composting processes.

    PubMed

    Chang, Ken-Lin; Chen, Xi-Mei; Sun, Jian; Liu, Jing-Yong; Sun, Shui-Yu; Yang, Zuo-Yi; Wang, Yin

    2017-07-01

    Spent mushroom substrate (SMS) is a bulky waste byproduct of commercial mushroom production, which can cause serious environmental problems and, therefore, poses a significant barrier to future expansion of the mushroom industry. In the present study, we explored the use of SMS as a biochar to improve the quality of bio-fertilizer. Specifically, we performed a series of experiments using composting reactors to investigate the effects of SMS biochar on the physio-chemical properties of bio-fertilizer. Biochar was derived from dry SMS pyrolysed at 500°C and mixed with pig manure and rice straw. Results from this study demonstrate that the addition of biochar significantly reduced electrical conductivity and loss of organic matter in compost material. Nutrient analysis revealed that the SMS-derived biochar is rich in fertilizer nutrients such as P, K, Na, and N. All of these findings suggest that SMS biochar could be an excellent medium for compost.

  2. Composting of high moisture content swine manure with corncob in a pilot-scale aerated static bin system.

    PubMed

    Zhu, Nengwu

    2006-10-01

    Pilot composting experiments of swine manure with corncob were conducted to evaluate the performance of the aerated static bin composting system. Effects of temperature control (60 and 70 degrees C) and moisture content (70% and 80%) were monitored on the composting by measuring physical and chemical indexes. The results showed that (1) the composting system could destroy pathogens, converted nitrogen from unstable ammonia to stable organic forms, and reduced the volume of waste; (2) significant difference of NH(4)(+)-N (P(12) = 0.074), and (NO(3)(-) + NO(2)(-))-N (P(12) = 0.085) was found between the temperature control treatments; (3) anaerobic reaction in the treatment with 80% moisture content resulted in significant difference of pH (P(23) = 0.006), total organic matter (P(23) = 0.003), and germination index (P(23) = 0.040) between 70% and 80%. Therefore, the optimum initial moisture content was less than 80% with the composting of swine manure and corncob by using the composting system.

  3. Characterisation of source-separated household waste intended for composting

    PubMed Central

    Sundberg, Cecilia; Franke-Whittle, Ingrid H.; Kauppi, Sari; Yu, Dan; Romantschuk, Martin; Insam, Heribert; Jönsson, Håkan

    2011-01-01

    Large-scale composting of source-separated household waste has expanded in recent years in the Nordic countries. One problem can be low pH at the start of the process. Incoming biowaste at four composting plants was characterised chemically, physically and microbiologically. The pH of food waste ranged from 4.7 to 6.1 and organic acid concentration from 24 to 81 mmol kg−1. The bacterial diversity in the waste samples was high, with all samples dominated by Gammaproteobacteria, particularly Pseudomonas and Enterobacteria (Escherichia coli, Klebsiella, Enterobacter). Lactic acid bacteria were also numerically important and are known to negatively affect the composting process because the lactic acid they produce lowers the pH, inhibiting other bacteria. The bacterial groups needed for efficient composting, i.e. Bacillales and Actinobacteria, were present in appreciable amounts. The results indicated that start-up problems in the composting process can be prevented by recycling bulk material and compost. PMID:21075618

  4. Characterisation of source-separated household waste intended for composting.

    PubMed

    Sundberg, Cecilia; Franke-Whittle, Ingrid H; Kauppi, Sari; Yu, Dan; Romantschuk, Martin; Insam, Heribert; Jönsson, Håkan

    2011-02-01

    Large-scale composting of source-separated household waste has expanded in recent years in the Nordic countries. One problem can be low pH at the start of the process. Incoming biowaste at four composting plants was characterised chemically, physically and microbiologically. The pH of food waste ranged from 4.7 to 6.1 and organic acid concentration from 24 to 81 mmol kg(-1). The bacterial diversity in the waste samples was high, with all samples dominated by Gammaproteobacteria, particularly Pseudomonas and Enterobacteria (Escherichia coli, Klebsiella, Enterobacter). Lactic acid bacteria were also numerically important and are known to negatively affect the composting process because the lactic acid they produce lowers the pH, inhibiting other bacteria. The bacterial groups needed for efficient composting, i.e. Bacillales and Actinobacteria, were present in appreciable amounts. The results indicated that start-up problems in the composting process can be prevented by recycling bulk material and compost. Copyright © 2010 Elsevier Ltd. All rights reserved.

  5. Numerical simulation of organic waste aerobic biodegradation: a new way to correlate respiration kinetics and organic matter fractionation.

    PubMed

    Denes, Jeremy; Tremier, Anne; Menasseri-Aubry, Safya; Walter, Christian; Gratteau, Laurette; Barrington, Suzelle

    2015-02-01

    Composting wastes permits the reuse of organic matter (OM) as agricultural amendments. The fate of OM during composting and the subsequent degradation of composts in soils largely depend on waste OM quality. The proposed study aimed at developing a model to predict the evolution in organic matter quality during the aerobic degradation of organic waste, based on the quantification of the various OM fractions contained in the wastes. The model was calibrated from data gathered during the monitoring of four organic wastes (two non-treated wastes and their digestates) exposed to respirometric tests. The model was successfully fitted for all four wastes and permitted to predict respiration kinetics, expressed as CO2 production rates, and the evolution of OM fractions. The calibrated model demonstrated that hydrolysis rates of OM fractions were similar for all four wastes whereas the parameters related to microbial activity (eg. growth and death rates) were specific to each substrate. These later parameters have been estimated by calibration on respirometric data, thus demonstrating that coupling analyses of OM fractions in initial wastes and respirometric tests permit the simulation of the biodegradation of various type of waste. The biodegradation model presented in this paper could thereafter be integrated in a composting model by implementing mass and heat balance equations. Copyright © 2014 Elsevier Ltd. All rights reserved.

  6. High-rate composting-vermicomposting of water hyacinth (Eichhornia crassipes, Mart. Solms).

    PubMed

    Gajalakshmi, S; Ramasamy, E V; Abbasi, S A

    2002-07-01

    In an attempt to develop a system with which the aquatic weed water hyacinth (Eichhornia crassipes, Mart. Solms) can be economically processed to generate vermicompost in large quantities, the weed was first composted by a 'high-rate' method and then subjected to vermicomposting in reactors operating at much larger densities of earthworm than recommended hitherto: 50, 62.5, 75, 87.5, 100, 112.5, 125, 137.5, and 150 adults of Eudrilus eugeniae Kinberg per litre of digester volume. The composting step was accomplished in 20 days and the composted weed was found to be vermicomposted three times as rapidly as uncomposted water hyacinth [Bioresource Technology 76 (2001) 177]. The studies substantiated the feasibility of high-rate composting-vermicomposting systems, as all reactors yielded consistent vermicast output during seven months of operation. There was no earthworm mortality during the first four months in spite of the high animal densities in the reactors. In the subsequent three months a total of 79 worms died out of 1650, representing less than 1.6% mortality per month. The results also indicated that an increase in the surface-to-volume ratio of the reactors might further improve their efficiency.

  7. Heavy Metals in Water Percolating Through Soil Fertilized with Biodegradable Waste Materials.

    PubMed

    Wierzbowska, Jadwiga; Sienkiewicz, Stanisław; Krzebietke, Sławomir; Bowszys, Teresa

    The influence of manure and composts on the leaching of heavy metals from soil was evaluated in a model lysimeter experiment under controlled conditions. Soil samples were collected from experimental fields, from 0- to 90-cm layers retaining the layout of the soil profile layers, after the second crop rotation cycle with the following plant species: potatoes, spring barley, winter rapeseed, and winter wheat. During the field experiment, 20 t DM/ha of manure, municipal sewage sludge composted with straw (SSCS), composted sewage sludge (SSC), dried granular sewage sludge (DGSS), "Dano" compost made from non-segregated municipal waste (CMMW), and compost made from municipal green waste (CUGW) was applied, i.e., 10 t DM/ha per crop rotation cycle. The concentrations (μg/dm 3 ) of heavy metals in the leachate were as follows: Cd (3.6-11.5) < Mn (4.8-15.4) < Cu (13.4-35.5) < Zn (27.5-48.0) < Cr (36.7-96.5) < Ni (24.4-165.8) < Pb (113.8-187.7). Soil fertilization with organic waste materials did not contaminate the percolating water with manganese or zinc, whereas the concentrations of the other metals increased to the levels characteristic of unsatisfactory water quality and poor water quality classes. The copper and nickel content of percolating water depended on the concentration of those metals introduced into the soil with organic waste materials. The concentrations of Cd in the leachate increased, whereas the concentrations of Cu and Ni decreased with increasing organic C content of organic fertilizers. The widening of the C/N ratio contributed to Mn leaching. The concentrations of Pb, Cr, and Mn in the percolating water were positively correlated with the organic C content of soil.

  8. Effect of biosolid waste compost on soil respiration in salt-affected soils

    NASA Astrophysics Data System (ADS)

    Raya, Silvia; Gómez, Ignacio; García, Fuensanta; Navarro, José; Jordán, Manuel Miguel; Belén Almendro, María; Martín Soriano, José

    2013-04-01

    A great part of mediterranean soils are affected by salinization. This is an important problem in semiarid areas increased by the use of low quality waters, the induced salinization due to high phreatic levels and adverse climatology. Salinization affects 25% of irrigated agriculture, producing important losses on the crops. In this situation, the application of organic matter to the soil is one of the possible solutions to improve their quality. The main objective of this research was to asses the relation between the salinity level (electrical conductivity, EC) in the soil and the response of microbial activity (soil respiration rate) after compost addition. The study was conducted for a year. Soil samples were collected near to an agricultural area in Crevillente and Elche, "El Hondo" Natural Park (Comunidad de Regantes from San Felipe Neri). The experiment was developed to determine and quantify the soil respiration rate in 8 different soils differing in salinity. The assay was done in close pots -in greenhouse conditions- containing soil mixed with different doses of sewage sludge compost (2, 4 and 6%) besides the control. They were maintained at 60% of water holding capacity (WHC). Soil samples were analyzed every four months for a year. The equipment used to estimate the soil respiration was a Bac-Trac and CO2 emitted by the soil biota was measured and quantified by electrical impedance changes. It was observed that the respiration rate increases as the proportion of compost added to each sample increases as well. The EC was incremented in each sampling period from the beginning of the experiment, probably due to the fact that soils were in pots and lixiviation was prevented, so the salts couldńt be lost from soil. Over time the compost has been degraded and, it was more susceptible to be mineralized. Salts were accumulated in the soil. Also it was observed a decrease of microbial activity with the increase of salinity in the soil. Keywords: soil respiration, compost, electrical conductivity, salinization, Bac-Trac References: Abdelbasset Lakhdar, Mokded Rabhi, Tahar Ghnaya, Francesco Montemurro, Naceur Jedidi , Chedly Abdelly. Effectiveness of compost use in salt-affected soil. Journal of Hazardous Materials 171 (2009) pp 29-37. M. Tejada, C. Garcia, J.L. Gonzalez , M.T. Hernandez . Use of organic amendment as a strategy for saline soil remediation:Influence on the physical, chemical and biological properties of soil. Soil Biology & Biochemistry 38 (2006) pp 1413-1421. I. Gomez; J.M. Disla Soriano; J. Navarro-Pedreño; F. García-Orenes; M.B. Almendro-Candel; M.M. Jordan. Quantification of soil respiration in different saline soil of Alicante (Spain). EGU General Assembly (2012). Viena. Ed. Geophysycal Research Abstracts. Vol 14 EGU2012-2399,(2012). (Acknowledgements: This work was supported by the Spanish MICINN. Project Ref.: CGL2009-11194)

  9. Characterization of Bacterial Community Dynamics during the Decomposition of Pig Carcasses in Simulated Soil Burial and Composting Systems.

    PubMed

    Ki, Bo-Min; Kim, Yu Mi; Jeon, Jun Min; Ryu, Hee Wook; Cho, Kyung-Suk

    2017-12-28

    Soil burial is the most widely used disposal method for infected pig carcasses, but composting has gained attention as an alternative disposal method because pig carcasses can be decomposed rapidly and safely by composting. To understand the pig carcass decomposition process in soil burial and by composting, pilot-scale test systems that simulated soil burial and composting were designed and constructed in the field. The envelope material samples were collected using special sampling devices without disturbance, and bacterial community dynamics were analyzed by high-throughput pyrosequencing for 340 days. Based on the odor gas intensity profiles, it was estimated that the active and advanced decay stages were reached earlier by composting than by soil burial. The dominant bacterial communities in the soil were aerobic and/or facultatively anaerobic gram-negative bacteria such as Pseudomonas, Gelidibacter, Mucilaginibacter , and Brevundimonas . However, the dominant bacteria in the composting system were anaerobic, thermophilic, endospore-forming, and/or halophilic gram-positive bacteria such as Pelotomaculum, Lentibacillus, Clostridium , and Caldicoprobacter . Different dominant bacteria played important roles in the decomposition of pig carcasses in the soil and compost. This study provides useful comparative date for the degradation of pig carcasses in the soil burial and composting systems.

  10. Changes in physical properties of sandy soil after long-term compost treatment

    NASA Astrophysics Data System (ADS)

    Aranyos, József Tibor; Tomócsik, Attila; Makádi, Marianna; Mészáros, József; Blaskó, Lajos

    2016-07-01

    Studying the long-term effect of composted sewage sludge application on chemical, physical and biological properties of soil, an experiment was established in 2003 at the Research Institute of Nyíregyháza in Hungary. The applied compost was prepared from sewage sludge (40%), straw (25%), bentonite (5%) and rhyolite (30%). The compost was ploughed into the 0-25 cm soil layer every 3rd year in the following amounts: 0, 9, 18 and 27 Mg ha-1 of dry matter. As expected, the compost application improved the structure of sandy soil, which is related with an increase in the organic matter content of soil. The infiltration into soil was improved significantly, reducing the water erosion under simulated high intensity rainfall. The soil compaction level was reduced in the first year after compost re-treatment. In accordance with the decrease in bulk density, the air permeability of soil increased tendentially. However, in the second year the positive effects of compost application were observed only in the plots treated with the highest compost dose because of quick degradation of the organic matter. According to the results, the sewage sludge compost seems to be an effective soil improving material for acidic sandy soils, but the beneficial effect of application lasts only for two years.

  11. Using Biochar composts for improving sandy vineyard soils while reducing the risk of

    NASA Astrophysics Data System (ADS)

    Kammann, Claudia; Mengel, Jonathan; Mohr, Julia; Muskat, Stefan; Schmidt, Hans-Peter; Löhnertz, Otmar

    2016-04-01

    In recent years, biochar has increasingly been discussed as an option for sustainable environmentalmanagement, combining C sequestration with the aim of soil fertility improvement. Biochar has shownpositive effects in viticulture before (Genesio et al. 2015) which were largely attributed to improved water supply to the plants. However, in fertile temperate soils, the use of pure, untreated biochar does not guarantee economic benefits on the farm level (Ruysschaert et al., 2016). Hence, recent approaches started introducing biochar in management of nutrient-rich agricultural waste, e.g. in compost production (Kammann et al. 2015). Compost is frequently used in German vineyards for humus buildup and as a slow-release organic fertilizer. This, and increasingly mild, precipitation-rich winters, promoting mineralization, increase the risk of unwanted nitrate leaching losses into surface and ground waters during winter. To investigate if biochar pure, or biochar-compost mixtures and -products may have the potential to reduce nitrate leaching, we set up the following experiment: Either 30 or 60 t ha-1 of the following additives were mixed into the top 30 cm of sandy soil in large (120 L) containers, and planted with oneRiesling grapevine (Clone 198-30 GM) per container: Control (no addition), pure woody biochar, pure compost, biochar-compost (produced from the same organic feedstock than the compost, with 20 vol. - % of a woody biochar added), and pure compost plus pure biochar (same mixing ratio as in the former product). Once monthly, containers were exposed to simulated heavy rainfall that caused drainage. Leachates were collected from an outlet at the bottom of the containers, and analyzed for nutrients. The nutrient-rich additives containing compost all improved grape biomass and yield, most markedly pure compost and biochar-compost; same amendments were not significantly different. However,while the addition of the lower amount (30 t ha-1) of compost reduced nitrate leaching compared to the control (where nearly all mineral N was lost), the larger application amount in pure compost caused rising nitrate loss rates, likely due to compost mineralization. Interestingly, this was not the case when biochar was included, either co-composted or mixed into the substrates afterwards. However, after three years, the biochar-compost treatment still showed the highest grape yield of all treatments, while the treatment with biochar mixed in after compost production did not have the same effect. The results suggest that biochar-composts, for example produced from vine making residue and greenwaste, may reduce the risk of nitrate leaching while increasing the soil organic content more permanently than other amendments. Genesio, L., Miglietta, F., Baronti, S., Vaccari, F.P., 2015. Biochar increases vineyard Productivity without affecting grape quality: Results from a four years field experiment in Tuscany. Agriculture, Ecosystems & Environment 201, 20-25. Kammann, C.I., Schmidt, H.-P., Messerschmidt, N., Linsel, S., Steffens, D., Müller, C., Koyro, H.-W., Conte, P., Joseph, S., 2015. Plant growth improvement mediated by nitrate capture in cocomposted biochar. Scientific Reports 5, doi: 10.1038/srep11080. Ruysschaert, G., Nelissen, V., Postma, R., Bruun, E., O'Toole, A., Hammond, J., Rödger, J.-M.,Hylander, L., Kihlberg, T., Zwart, K., Hauggaard-Nielsen, H., Shackley, S., 2016. Field applications of pure biochar in the North Sea region and across Europe, in: Shackley, S.,Ruysschaert, G., Zwart, K., Glaser, B. (Eds.), Biochar in European Soils and Agriculture - Science and Practice. Routhledge, Oxon, UK and New York, USA.

  12. Microbial degradation and humification of the lawn care pesticide 2,4-dichlorophenoxyacetic acid during the composting of yard trimmings.

    PubMed Central

    Michel, F C; Reddy, C A; Forney, L J

    1995-01-01

    The fate of the widely used lawn care herbicide 2,4-dichlorophenoxyacetic acid (2,4-D) during the composting of yard trimmings consisting of primarily leaves and grass is an important unexplored question. In this study, we determined the extent of 2,4-D mineralization, incorporation into humic matter, volatilization, and sorption during the composting of yard trimmings. Yard trimmings (2:1 [wt/wt] leaves-grass) were amended with 14C-ring-labeled 2,4-D (17 mg/kg of dry weight) and composted in a temperature-controlled laboratory scale compost system. During composting, thermophilic microbes were numerically dominant, reaching a maximum of 2 x 10(11)/g. At the end of composting, 46% of the organic matter (OM) present in the yard trimmings was lost and the compost was stable, with an oxygen uptake rate of 0.09 mg of O2 per g of OM per h, and was well humified (humification index, 0.39). Mineralization of the OM temporally paralleled mineralization of 2,4-D. In the final compost, 47% of the added 2,4-D carbon was mineralized, about 23% was complexed with high-molecular-weight humic acids, and about 20% was not extractable (humin fraction). Less than 1% of the added 14C was present in water expressed from the finished compost, suggesting a low potential for leaching of 2,4-D. Very little volatilization of 2,4-D occurred during composting. It is of interest that our results indicate active mineralization of 2,4-D at composting temperatures of 60 degrees C because microbial 2,4-D degradation at thermophilic temperatures has not been previously documented. PMID:7618868

  13. Nitrous oxide flux from landfill leachate-sawdust nitrogenous compost.

    PubMed

    Hui, C H; So, M K; Lee, C M; Chan, G Y S

    2003-09-01

    Composted nitrogenous waste has the potential to produce excessive amounts of nitrous oxide (N2O), a potent greenhouse gas that also contributes to stratospheric ozone depletion. In this laboratory study, sawdust was irrigated with varying amounts of landfill leachate with high NH4+-N content (3950 mg l(-1)). Physicochemical properties, including the amount of N2O produced, were monitored during the composting process over 28 days. A rapid decline in NH4+-N in the first 4 days and increasing NO3--N for 11 days was followed by lower but stabilized levels of available-N, even with repeated leachate irrigation. Less than 0.03% of the leachate-applied N was lost as N2O. Higher leachate applications as much as tripled N2O production, but this represented a lesser proportion overall of the total nitrogen. Addition of glucose to the composting process had no significant effect on N2O production. The derived sawdust-leachate compost supported healthy growth of Sesbania rostrata. It is concluded that compost can be produced from sawdust irrigated with landfill leachate without substantial emission of N2O, although excessive flux of N2O remains about high application rates over longer time periods.

  14. Environmental impact of leachate characteristics on water quality.

    PubMed

    Cumar, Sampath Kumar Mandyam; Nagaraja, Balasubramanya

    2011-07-01

    Improper urbanization and industrialization are causing a critical stress on groundwater quality in urban areas of the developing countries. The present study under investigation describes the pollution caused by leachate from a waste management site in southwestern Bangalore city causing pollution of the surface water and groundwater reserves. The characterization of 20 groundwater samples and Haralukunte lake sample indicated high pollution of these water reserves by leachate entry into the groundwater and surface water sources. The study area focuses around the solid waste management site, carrying out bio-composting and vermi-composting of municipal solid waste. Further investigations on the severe health problems faced by the public in the study area has revealed a clear pointer towards the usage of polluted water for rearing live-stock, farming, and domestic activities. The characterization of the leachate with high values of BOD at 1,450 mg/l, TDS at 17,200 mg/l, nitrates at 240 mg/l, and MPN at 545/100 ml indicates a clear nuisance potential, which has been substantiated by the characterization of lake water sample with chlorides at 3,400 mg/l, TDS at 8,020 mg/l, and lead and cadmium at 0.18 and 0.08 mg/l, respectively. Analysis of groundwater samples shows alarming physicochemical values closer to the waste disposal site and relatively reduced values away from the source of the waste management site. Bureau of Indian Standards have been adapted as the benchmark for the analysis and validation of observed water quality criteria.

  15. The effects of recycling loops in food waste management in Japan: based on the environmental and economic evaluation of food recycling.

    PubMed

    Takata, Miki; Fukushima, Kazuyo; Kino-Kimata, Noriko; Nagao, Norio; Niwa, Chiaki; Toda, Tatsuki

    2012-08-15

    In Japan, a revised Food Recycling Law went into effect in 2007 to promote a "recycling loop" that requires food industries to purchase farm products that are grown using food waste-derived compost/animal feed. To realize and expand food recycling, it is necessary to evaluate how the recycling facilities work in the recycling loop. The purpose of this study is to assess the environmental and economic efficiency of the food recycling facilities that are involved in the recycling loop, which are also known as looped facilities. The global warming potential and running cost of five looped facilities were evaluated by LCA (life cycle assessment) and LCC (life cycle cost) approaches: machine integrated compost, windrow compost, liquid feed, dry feed, and bio-gasification. The LCA results showed low total GHG (greenhouse gas) emissions of -126 and -49 kg-CO(2)/t-waste, respectively, for dry feed and bio-gasification facilities, due to a high substitution effect. The LCC study showed a low running cost for composting facilities of -15,648 and -18,955 yen/t-waste, respectively, due to high revenue from the food waste collection. It was found that the mandatory reporting of food waste emitters to the government increased collection fees; however, the collection fee in animal feed facilities was relatively low because food waste was collected at a low price or nutritious food waste was purchased to produce quality feed. In the characterisation survey of various treatment methods, the composting facilities showed a relatively low environmental impact and a high economic efficiency. Animal feed facilities had a wide distribution of the total GHG emissions, depending on both the energy usage during the drying process and the substitution effect, which were related to the water content of the food waste and the number of recycled products. In comparison with incineration, the majority of the food recycling facilities showed low GHG emissions and economic effectiveness. This paper also reported on the effects of recycling loops by comparing looped and non-looped animal feed facilities, and confirmed that the looped facilities were economically effective, due to an increased amount of food waste collection. Copyright © 2012 Elsevier B.V. All rights reserved.

  16. Changes induced by Trichoderma harzianum in suppressive compost controlling Fusarium wilt.

    PubMed

    Blaya, Josefa; López-Mondéjar, Rubén; Lloret, Eva; Pascual, Jose Antonio; Ros, Margarita

    2013-09-01

    The addition of species of Trichoderma to compost is a widespread technique used to control different plant diseases. The biological control activity of these species is mainly attributable to a combination of several mechanisms of action, which may affect the microbiota involved in the suppressiveness of compost. This study was therefore performed to determine the effect of inoculation of Trichoderma harzianum (T. harzianum) on compost, focusing on bacterial community structure (16S rRNA) and chitinase gene diversity. In addition, the ability of vineyard pruning waste compost, amended (GCTh) or not (GC) with T. harzianum, to suppress Fusarium wilt was evaluated. The addition of T. harzianum resulted in a high relative abundance of certain chitinolytic bacteria as well as in remarkable protection against Fusarium oxysporum comparable to that induced by compost GC. Moreover, variations in the abiotic characteristics of the media, such as pH, C, N and iron levels, were observed. Despite the lower diversity of chitinolytic bacteria found in GCTh, the high relative abundance of Streptomyces spp. may be involved in the suppressiveness of this growing media. The higher degree of compost suppressiveness achieved after the addition of T. harzianum may be due not only to its biocontrol ability, but also to changes promoted in both abiotic and biotic characteristics of the growing media. Copyright © 2013 Elsevier Inc. All rights reserved.

  17. Vermicompost Improves Tomato Yield and Quality and the Biochemical Properties of Soils with Different Tomato Planting History in a Greenhouse Study

    PubMed Central

    Wang, Xin-Xin; Zhao, Fengyan; Zhang, Guoxian; Zhang, Yongyong; Yang, Lijuan

    2017-01-01

    A greenhouse pot test was conducted to study the impacts of replacing mineral fertilizer with organic fertilizers for one full growing period on soil fertility, tomato yield and quality using soils with different tomato planting history. Four types of fertilization regimes were compared: (1) conventional fertilizer with urea, (2) chicken manure compost, (3) vermicompost, and (4) no fertilizer. The effects on plant growth, yield and fruit quality and soil properties (including microbial biomass carbon and nitrogen, NH4+-N, NO3--N, soil water-soluble organic carbon, soil pH and electrical conductivity) were investigated in samples collected from the experimental soils at different tomato growth stages. The main results showed that: (1) vermicompost and chicken manure compost more effectively promoted plant growth, including stem diameter and plant height compared with other fertilizer treatments, in all three types of soil; (2) vermicompost improved fruit quality in each type of soil, and increased the sugar/acid ratio, and decreased nitrate concentration in fresh fruit compared with the CK treatment; (3) vermicompost led to greater improvements in fruit yield (74%), vitamin C (47%), and soluble sugar (71%) in soils with no tomato planting history compared with those in soils with long tomato planting history; and (4) vermicompost led to greater improvements in soil quality than chicken manure compost, including higher pH (averaged 7.37 vs. averaged 7.23) and lower soil electrical conductivity (averaged 204.1 vs. averaged 234.6 μS/cm) at the end of experiment in each type of soil. We conclude that vermicompost can be recommended as a fertilizer to improve tomato fruit quality and yield and soil quality, particularly for soils with no tomato planting history. PMID:29209343

  18. Vermicompost Improves Tomato Yield and Quality and the Biochemical Properties of Soils with Different Tomato Planting History in a Greenhouse Study.

    PubMed

    Wang, Xin-Xin; Zhao, Fengyan; Zhang, Guoxian; Zhang, Yongyong; Yang, Lijuan

    2017-01-01

    A greenhouse pot test was conducted to study the impacts of replacing mineral fertilizer with organic fertilizers for one full growing period on soil fertility, tomato yield and quality using soils with different tomato planting history. Four types of fertilization regimes were compared: (1) conventional fertilizer with urea, (2) chicken manure compost, (3) vermicompost, and (4) no fertilizer. The effects on plant growth, yield and fruit quality and soil properties (including microbial biomass carbon and nitrogen, [Formula: see text]-N, [Formula: see text]-N, soil water-soluble organic carbon, soil pH and electrical conductivity) were investigated in samples collected from the experimental soils at different tomato growth stages. The main results showed that: (1) vermicompost and chicken manure compost more effectively promoted plant growth, including stem diameter and plant height compared with other fertilizer treatments, in all three types of soil; (2) vermicompost improved fruit quality in each type of soil, and increased the sugar/acid ratio, and decreased nitrate concentration in fresh fruit compared with the CK treatment; (3) vermicompost led to greater improvements in fruit yield (74%), vitamin C (47%), and soluble sugar (71%) in soils with no tomato planting history compared with those in soils with long tomato planting history; and (4) vermicompost led to greater improvements in soil quality than chicken manure compost, including higher pH (averaged 7.37 vs. averaged 7.23) and lower soil electrical conductivity (averaged 204.1 vs. averaged 234.6 μS/cm) at the end of experiment in each type of soil. We conclude that vermicompost can be recommended as a fertilizer to improve tomato fruit quality and yield and soil quality, particularly for soils with no tomato planting history.

  19. Composting of a solid olive-mill by-product ("alperujo") and the potential of the resulting compost for cultivating pepper under commercial conditions.

    PubMed

    Alburquerque, J A; Gonzálvez, J; García, D; Cegarra, J

    2006-01-01

    A pollutant solid material called "alperujo" (AL), which is the main by-product from the Spanish olive oil industry, was composted with a cotton waste as bulking agent, and the compost obtained (ALC) was compared with a cattle manure (CM) and a sewage sludge compost (SSC) for use as organic amendment on a calcareous soil. The experiment was conducted with a commercial pepper crop in a greenhouse using fertigation. Composting AL involved a relatively low level of organic matter biodegradation, an increase in pH and clear decreases in the C/N and the fat, water-soluble organic carbon and phenol contents. The resulting compost, which was rich in organic matter and free of phytotoxicity, had a high potassium and organic nitrogen content but was low in phosphorus and micronutrients. The marketable yields of pepper obtained with all three organic amendments were similar, thus confirming the composting performance of the raw AL. When CM and SSC were used for soil amendment, the soil organic matter content was significantly reduced after cultivation, while it remained almost unchanged in the ALC-amended plots.

  20. Installation-restoration program environmental technology development. Task Order 12. Field demonstration - composting of propellant-contaminated sediments at the Badger Army Ammunition Plant (BAAP). Final report, Jul 87-Mar 89

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Williams, R.T.; Ziegenfuss, P.S.; Marks, P.J.

    1989-03-01

    A field-scale demonstration of composting propellants-contaminated sediment was conducted at the Badger Army Ammunition Plant (BAAP). Composting, as used at BAAP, is a treatment process in which organic-chemical contaminated soils or sediments are mixed with organic materials such as manure to enhance the role of microbial metabolism in degrading and stabilizing soil/sediment contaminants. Sediments contaminated with the propellant nitrocellulose (NC) were mixed with manure, alfalfa, livestock feed, and wood chips and composted in four static piles. Negative pressure aeration was used to maintain aerobiosis and remove excess heat. Experimental variables investigated during the study were temperature (mesophilic, 35 C vs.more » thermophilic, 55 C), sediment loading (19 to 32 weight percent), and NC loading. Small aliquots of compost (approximately 400 cu cm) were spiked with pure NC, placed in porous nylon bags and buried in compost piles. These bagged compost samples were used to determine if high levels of NC could be successfully composted. Thermophilic temperatures resulted in the highest percent reduction in NC concentration.« less

  1. Competing factors of compost concentration and proximity to root affect the distribution of streptomycetes.

    PubMed

    Inbar, Ehud; Green, Stefan J; Hadar, Yitzhak; Minz, Dror

    2005-07-01

    Streptomycetes are important members of soil microbial communities and are particularly active in the degradation of recalcitrant macromolecules and have been implicated in biological control of plant disease. Using a streptomycetes-specific polymerase chain reaction (PCR)-denaturing gradient gel electrophoresis (PCR-DGGE) methodology coupled with band excision and sequence analysis, we examined the effect of grape marc compost amendment to soil on cucumber plant-associated streptomycetes community composition. We observed that both compost amendment and proximity to the root surface influenced the streptomycetes community composition. A strong root selection for a soil-derived Streptomycete, most closely related to Streptomyces thermotolerans, S. iakyrus, and S. thermocarboxydus, was independent of compost amendment rate. However, while the impact of compost amendment was mitigated with increasing proximity to the root, high levels of compost amendment resulted in the detection of compost-derived species on the root surface. Conversely, in rhizosphere and non-rhizosphere soils, the community composition of streptomycetes was affected strongly even by modest compost amendment. The application of a streptomycetes-specific PCR primer set combined with DGGE analysis provided a rapid means of examining the distribution and ecology of streptomycetes in soils and plant-associated environments.

  2. Effects of the feeding ratio of food waste on fed-batch aerobic composting and its microbial community.

    PubMed

    Wang, Xiaojun; Pan, Songqing; Zhang, Zhaoji; Lin, Xiangyu; Zhang, Yuzhen; Chen, Shaohua

    2017-01-01

    To determine the suitable feeding ratio for fed-batch aerobic composting, four fermenters were operated by adding 0%, 5%, 10% or 15% of food waste every day. The results showed that the 5% and 10% treatments were able to maintain continuous thermophilic conditions, while the 15% treatment performed badly in regard to composting temperature, which was probably due to the negative effects of excessive moisture on microbial activity. As composting proceeded, both the 5% and the 10% treatments reached maturity and achieved weight losses of approximately 65%. High-throughput sequencing results indicated that Firmicutes, Proteobacteria, Bacteroidetes and Actinobacteria were the dominant phyla of the community structure. The communities sampled at the thermophilic phases had high similarity and relatively low diversity, while species diversity increased in the maturity phase. This study was devoted to optimizing the fed-batch composting process and assessing bacterial communities, both of which were supplied as a reference for practical application. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. [Fungal community structure in phase II composting of Volvariella volvacea].

    PubMed

    Chen, Changqing; Li, Tong; Jiang, Yun; Li, Yu

    2014-12-04

    To understand the fungal community succession during the phase II of Volvariella volvacea compost and clarify the predominant fungi in different fermentation stages, to monitor the dynamic compost at the molecular level accurately and quickly, and reveal the mechanism. The 18S rDNA-denaturing gradient gel electrophoresis (DGGE) and sequencing methods were used to analyze the fungal community structure during the course of compost. The DGGE profile shows that there were differences in the diversity of fungal community with the fermentation progress. The diversity was higher in the stages of high temperature. And the dynamic changes of predominant community and relative intensity was observed. Among the 20 predominant clone strains, 9 were unknown eukaryote and fungi, the others were Eurotiales, Aspergillus sp., Melanocarpus albomyces, Colletotrichum sp., Rhizomucor sp., Verticillium sp., Penicillium commune, Microascus trigonosporus and Trichosporon lactis. The 14 clone strains were detected in the stages of high and durative temperature. The fungal community structure and predominant community have taken dynamic succession during the phase II of Volvariella volvacea compost.

  4. Composting projects under the Clean Development Mechanism: Sustainable contribution to mitigate climate change

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rogger, Cyrill; Beaurain, Francois; Schmidt, Tobias S., E-mail: tobiasschmidt@ethz.ch

    2011-01-15

    The Clean Development Mechanism (CDM) of the Kyoto Protocol aims to reduce greenhouse gas emissions in developing countries and at the same time to assist these countries in sustainable development. While composting as a suitable mitigation option in the waste sector can clearly contribute to the former goal there are indications that high rents can also be achieved regarding the latter. In this article composting is compared with other CDM project types inside and outside the waste sector with regards to both project numbers and contribution to sustainable development. It is found that, despite the high number of waste projects,more » composting is underrepresented and a major reason for this fact is identified. Based on a multi-criteria analysis it is shown that composting has a higher potential for contribution to sustainable development than most other best in class projects. As these contributions can only be assured if certain requirements are followed, eight key obligations are presented.« less

  5. Effects of oxytetracycline on the abundance and community structure of nitrogen-fixing bacteria during cattle manure composting.

    PubMed

    Sun, Jiajun; Qian, Xun; Gu, Jie; Wang, Xiaojuan; Gao, Hua

    2016-09-01

    The effects of oxytetracycline (OTC) on nitrogen-fixing bacterial communities were investigated during cattle manure composting. The abundance and community structure of nitrogen-fixing bacteria were determined by qPCR and denaturing gradient gel electrophoresis (DGGE), respectively. The matrix was spiked with OTC at four levels: no OTC, 10mg/kg dry weight (DW) OTC (L), 60mg/kg DW OTC (M), and 200mg/kg DW OTC (H). The high temperature period of composting was shorter with M and H, and the decline in temperature during the cooling stage was accelerated by OTC. OTC had a concentration-dependent inhibitory effect on the nitrogenase activity during early composting, and the nifH gene abundance declined significantly during the later composting stage. The DGGE profile and statistical analysis showed that OTC changed the nitrogen-fixing bacterial community succession and reduced the community richness and dominance. The nitrogen-fixing bacterial community structure was affected greatly by the high level of OTC. Copyright © 2016. Published by Elsevier Ltd.

  6. Enhanced Growth and Activities of the Dominant Functional Microbiota of Chicken Manure Composts in the Presence of Maize Straw.

    PubMed

    Zhang, Lili; Li, Lijuan; Pan, Xiaoguang; Shi, Zelu; Feng, Xihong; Gong, Bin; Li, Jian; Wang, Lushan

    2018-01-01

    As a consequence of intensive feeding, the bulk deposition of livestock manure causes severe environmental problems. Composting is a promising method for waste disposal, and the fermentation process is driven by microbial communities. However, chicken manure contains diverse gut microbes, mainly species derived from Proteobacteria , which may include pathogens that threaten human health. To evaluate composting as a harmless treatment of livestock manure, the dynamics of the microbiota in two chicken manure composts were studied, and the influences of adding maize straw on the compost microbiota were compared. The results revealed that microbes from Firmicutes including Bacillus and Lentibacillus are the most dominant degraders with a strong amino acid metabolism, and they secrete a diverse array of proteases as revealed in metaproteomics data. The addition of maize straw to the chicken manure compost accelerated species succession at the initial stage, and stimulated carbohydrate metabolism in the dominant microbiota. Besides, under the resulting high temperature (>70°C) conditions, the relative abundance of Proteobacteria was reduced by 78% in composts containing maize straw by day 4, which was faster than in compost without added maize straw, in which the abundance was reduced by 66%. Adding maize straw to chicken manure composts can therefore increase the fermentation temperature and inhibit the growth of Proteobacteria . In general, these findings provide increased insight into the dynamic changes among the dominant functional microbiota in chicken manure composts, and may contribute to the optimization of livestock manure composting on an industrial scale.

  7. Influence assessment of a lab-scale ripening process on the quality of mechanically-biologically treated MSW for possible recovery.

    PubMed

    Di Lonardo, Maria Chiara; Binner, Erwin; Lombardi, Francesco

    2015-09-01

    In this study, the influence of an additional ripening process on the quality of mechanically-biologically treated MSW was evaluated in the prospective of recovering the end material, rather than landfilling. The biostabilised waste (BSW) coming from one of the MBT plants of Rome was therefore subjected to a ripening process in slightly aerated lab test cells. An in-depth investigation on the biological reactivity was performed by means of different types of tests (aerobic and anaerobic biological tests, as well as FT-IR spectroscopy method). A physical-chemical characterisation of waste samples progressively taken during the ripening phase was carried out, as well. In addition, the ripened BSW quality was assessed by comparing the characteristics of a compost sampled at the composting plant of Rome which treat source segregated organic wastes. Results showed that the additional ripening process allowed to obtain a better quality of the biostabilised waste, by achieving a much higher biological stability compared to BSW as-received and similar to that of the tested compost. An important finding was the lower heavy metals (Co, Cr, Cu, Ni, Pb and Zn) release in water phase at the end of the ripening compared to the as-received BSW, showing that metals were mainly bound to solid organic matter. As a result, the ripened waste, though not usable in agriculture as found for the compost sample, proved anyhow to be potentially suitable for land reclamation purposes, such as in landfills as cover material or mixed with degraded and contaminated soil for organic matter and nutrients supply and for metals recovery, respectively. In conclusion the study highlights the need to extend and optimise the biological treatment in the MBT facilities and opens the possibility to recover the output waste instead of landfilling. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. Loading and removal of PAHs, fragrance compounds, triclosan and toxicity by composting process from sewage sludge.

    PubMed

    Ozaki, Noriatsu; Nakazato, Akihiro; Nakashima, Kazuki; Kindaichi, Tomonori; Ohashi, Akiyoshi

    2017-12-15

    Although the production of compost from sewage sludge is well established in developed countries, the use of sludge-based compost may represent a source of pollutants. The present study assessed the levels of potentially harmful compounds in compost as well as their rates of decrease during composting. The concentrations of 16 polycyclic aromatic hydrocarbons (PAHs), three fragrance compounds (OTNE, HHCB and AHTN) and triclosan were determined in the initial sewage sludge and in compost over the span of 1year. Simultaneously, the toxicity to luminescent bacteria (Aliivibrio fischeri) and aryl hydrocarbon receptor reactivity of organic solvent extracts of sludge and compost samples were assessed. Higher PAH, fragrance compounds, and triclosan concentrations were found in sewage sludge from urban areas compared with rural regions, and the urban sludge was also more toxic than the rural sludge. The high pollutant concentrations in urban sludge raised the concentrations of these compounds in the raw materials for composting and in the resulting composts. The organic matter was decomposed by 65% during the composting process, and the measured toxic substances were decreased by a similar amount, with the exception of triclosan, which decreased by only 35%. The toxicity to A. fischeri decreased to a greater extent (90%) than did the organic matter, while the aryl hydrocarbon receptor reactivity decreased by only 35%. This lower decrease coincided with that of the aryl hydrocarbon receptor-reactive PAHs (37%). Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Windrow co-composting of natural casings waste with sheep manure and dead leaves

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Makan, Abdelhadi, E-mail: abdelhadi.makan@gmail.com

    Highlights: • Waste management opportunities in small and medium companies were highlighted. • Pilot scale program for windrow co-composting of natural casings was investigated. • Compost preparation, characterization and application phases were discussed. • Natural casings co-composting has proved more viable and cost effective solution. - Abstract: After studying the waste management opportunities in small and medium companies of natural casings, composting has proved more viable and cost effective solution for the valorization of these types of waste, but its feasibility depends on the final product value. This paper investigated a pilot scale program for the windrow co-composting of naturalmore » casings waste with sheep manure and dead leaves incorporation. Processing, characterization and application of the final compost were described and the final compost was analyzed for pathogens, metals, nutrients, maturity, and agronomic parameters. The results showed that all test result levels were below the limits specified in the EPA regulations published in Title 40, Section 503, of the Code of Federal Regulations (40 CFR 503). Moreover, the agronomic value tests which include nutrients, organic matter, pH, electrical conductivity, etc. showed that the compost had high organic-matter content and low salt content, all of which indicate good compost characteristics. The ratio of nitrogen (N), phosphorus (P), and potassium (K), or NPK ratio, was measured at 1.6–0.9–0.7. Reported units are consistent with those found on fertilizer formulations.« less

  10. Occupational hygiene in a Finnish drum composting plant.

    PubMed

    Tolvanen, Outi; Nykänen, Jenni; Nivukoski, Ulla; Himanen, Marina; Veijanen, Anja; Hänninen, Kari

    2005-01-01

    Bioaerosols (microbes, dust and endotoxins) and volatile organic compounds (VOCs) were determined in the working air of a drum composting plant treating source-separated catering waste. Different composting activities at the Oulu drum composting plant take place in their own units separated by modular design and constructions. Important implication of this is that the control room is a relatively clean working environment and the risk of exposure to harmful factors is low. However, the number of viable airborne microbes was high both in the biowaste receiving hall and in the drum composting hall. The concentration (geometric average) of total microbes was 21.8 million pcs/m3 in the biowaste receiving hall, 13.9 million pcs/m3 in the drum composting hall, and just 1.4 million pcs/m3 in the control room. Endotoxin concentrations were high in the biowaste receiving hall and in the drum composting hall. The average (arithmetic) endotoxin concentration was over the threshold value of 200 EU/m3 in both measurement locations. In all working areas, the average (arithmetic) dust concentrations were in a low range of 0.6-0.7 mg/m3, being below the Finnish threshold value of 5 mg/m3. In the receiving hall and drum composting hall, the concentrations of airborne microbes and endotoxins may rise to levels hazardous to health during prolonged exposure. It is advisable to use a respirator mask (class P3) in these areas. Detected volatile organic compounds were typical compounds of composting plants: carboxylic acids and their esters, alcohols, ketones, aldehydes, and terpenes. Concentrations of VOCs were much lower than the Finnish threshold limit values (Finnish TLVs), many of the quantified compounds exceeded their threshold odour concentrations (TOCs). Primary health effects due VOCs were not presumable at these concentrations but unpleasant odours may cause secondary symptoms such as nausea and hypersensitivity reactions. This situation is typical of composting plants where the workers are exposed to dozens of VOCs simultaneously. The odour units (OU/m3) were measured using olfactometer. The numbers were 23,000 OU/m3 at the output end of the composting drum and 6300 OU/m3 in the exhaust pipe. Inside the composting hall, the number of odour units was 500 and 560 OU/m3.

  11. Techno-economic evaluation of a tandem dry batch, garage-style digestion-compost process for remote work camp environments.

    PubMed

    Hayes, Alexander C; Enongene Ekwe, S; Mervin, Steve; Jenson, Earl

    2016-12-01

    The extraction of natural resources often involves housing workers in remote work camps far from population centres. These camps are prevalent in northern Alberta where they house approximately 40,000 workers involved in oil sands processing. The central, full-service cafeterias at these camps produce a significant quantity of food and cardboard waste. Due to their remote nature, these camps face high waste disposal costs associated with trucking waste long distances to the landfill. In this study, we investigated the techno-economic feasibility of on-site treatment of food and cardboard waste in a tandem dry batch, garage-style anaerobic digestion-compost process in which the waste material is converted into renewable energy used to heat the camp water supply and a nutrient-rich soil amendment for local land reclamation projects. Dry batch digestion and windrow composting pilot trials were performed on a simulated work camp waste in order to assess technical performance. The quality of the final compost was found to meet regulatory standards. A complete mass balance was then developed for a facility treating 3000 tonnes food waste and 435 tonnes waste cardboard annually. An economic assessment of such a facility was performed and, depending on the level of capital support and recognition of carbon credits for landfill methane mitigation, would require waste disposal costs to be between $115 and $195 CAD per tonne to meet financial criteria for project selection in Alberta's oil and gas industry. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. Nutrient loads of small-scale swine manure composting to groundwater and its prevention by covering: a case study.

    PubMed

    Cheng, Jianbo; Qiao, Junjing; Chen, Yucheng; Yang, Zhimin

    2015-10-01

    Small-scale composting is applied to recycle manure and biomass around the globe. Piles frequently site outside near field where bio-waste comes or compost goes within developing rural regions. However, little equipment or policy besides cover of common materials addressed concerns about its exposure to rainfall and subsequent leachate towards groundwater. In addition, little is known about its nutrient load to groundwater and covers' effect on nutrient unloading. Differently covered swine manure piles were composted outdoors with exposure to rain, then columns consisted of resultant compost of varying maturing age and soil were leached by simulated rainfall. Leachate TN, NH4 (+)-N, NO3 (-)-N, TP, and DP were modeled by regression analysis, and further, integral of quadratic curve or nutrient load index (NLI) was designated as proxy for nutrient load. Log response ratio was employed to qualify covers' effect on nutrient unloading. This case raised higher concern about leachate NH4 (+)-N than NO3 (-)-N for former's lower category in groundwater quality standard. The integrated NLIs or general nutrient load for six intervals, averagely divided from composting day of 60-120, decreased by 31, 37, 45, 56, and 73 % consecutively. Covers could unload nutrient to underground and function better to prevent P than N from leaching. Capabilities of piles covered by rice straw (CR) and soil (CS) to unload respectively are 77 and 72 % of by film (CF).

  13. Vermi composting--organic waste management and disposal.

    PubMed

    Kumar, J Sudhir; Subbaiah, K Venkata; Rao, P V V Prasada

    2012-01-01

    Solid waste is an unwanted byproduct of modern civilization. Landfills are the most common means of solid waste disposal. But the increasing amount of solid waste is rapidly filling existing landfills, and new sites are difficult to establish. Alternatives to landfills include the use of source reduction, recycling, composting and incineration, as well as use of landfills. Incineration is most economical if it includes energy recovery from the waste. Energy can be recovered directly from waste by incineration or the waste can be processed to produce storable refuse derived fuel (RDF). Information on the composition of solid wastes is important in evaluating alternative equipment needs, systems, management programs and plans. Pulverization of municipal solid waste is done and the pulverized solid waste is dressed to form a bed and the bed is fed by earthworms which convert the bed into vermi compost. The obtained vermi compost is sent to Ministry of Environment & Forests (MoEF) recognized lab for estimating the major nutrients, i.e. Potassium (K), Phosphorous (P), Nitrogen (N) and Micro-nutrient values. It is estimated that 59 - 65 tons of wet waste can be collected in a town per day and if this wet waste is converted to quality compost, around 12.30 tons of vermi compost can be generated. If a Municipal Corporation manages this wet waste an income of over (see text symbol) for 0.8 9 crore per anum can be earned which is a considerable amount for providing of better services to public.

  14. Membrane bioreactor technology: A novel approach to the treatment of compost leachate

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brown, Kayleigh; Ghoshdastidar, Avik J.; Hanmore, Jillian

    Highlights: • First membrane bioreactor treatment method for compost leachate. • No chemical additive or UV radiation source in this new biological method. • Removal rates of more than 99% for organics and ammonium were achieved. • Heavy metals were reduced by at least 82.7% except copper. - Abstract: Compost leachate forms during the composting process of organic material. It is rich in oxidizable organics, ammonia and metals, which pose a risk to the environment if released without proper treatment. An innovative method based on the membrane bioreactor (MBR) technology was developed to treat compost leachate over 39 days. Watermore » quality parameters, such as pH, dissolved oxygen, ammonia, nitrate, nitrite and chemical oxygen demand (COD) were measured daily. Concentrations of caffeine and metals were measured over the course of the experiment using gas chromatography – mass spectrometry (GC/MS) and inductively coupled plasma – mass spectrometry (ICP–MS) respectively. A decrease of more than 99% was achieved for a COD of 116 g/L in the initial leachate. Ammonia was decreased from 2720 mg/L to 0.046 mg/L, while the nitrate concentration in the effluent rose to 710 mg/L. The bacteria in the MBR system adjusted to the presence of the leachate, and increased 4 orders of magnitude. Heavy metals were removed by at least 82.7% except copper. These successful results demonstrated the membrane bioreactor technology is feasible, efficient method for the treatment of compost leachate.« less

  15. Dioxins and dioxin-like compounds in composts and digestates from European countries as determined by the in vitro bioassay and chemical analysis.

    PubMed

    Beníšek, Martin; Kukučka, Petr; Mariani, Giulio; Suurkuusk, Gert; Gawlik, Bernd M; Locoro, Giovanni; Giesy, John P; Bláha, Luděk

    2015-03-01

    Aerobic composting and anaerobic digestion plays an important role in reduction of organic waste by transforming the waste into humus, which is an excellent soil conditioner. However, applications of chemical-contaminated composts on soils may have unwanted consequences such as accumulation of persistent compounds and their transfer into food chains. The present study investigated burden of composts and digestates collected in 16 European countries (88 samples) by the compounds causing dioxin-like effects as determined by use of an in vitro transactivation assay to quantify total concentrations of aryl hydrocarbon receptor-(AhR) mediated potency. Measured concentrations of 2,3,7,8-Tetrachlorodibeno-p-dioxin (2,3,7,8-TCDD) equivalents (TEQbio) were compared to concentrations of polycyclic aromatic hydrocarbons (PAHs) and selected chlorinated compounds, including polychlorinated dibenzo-p-dioxins/furans (PCDD/Fs), co-planar polychlorinated biphenyls (PCBs), indicator PCB congeners and organochlorine pesticides (OCPs). Median concentrations of TEQbio (dioxin-like compounds) determined by the in vitro assay in crude extracts of various types of composts ranged from 0.05 to 1.2 with a maximum 8.22μg (TEQbio)kg(-1) dry mass. Potencies were mostly associated with less persistent compounds such as PAHs because treatment with sulfuric acid removed bioactivity from most samples. The pan-European investigation of contamination by organic contaminants showed generally good quality of the composts, the majority of which were in compliance with conservative limits applied in some countries. Results demonstrate performance and added value of rapid, inexpensive, effect-based monitoring, and points out the need to derive corresponding effect-based trigger values for the risk assessment of complex contaminated matrices such as composts. Copyright © 2014 Elsevier Ltd. All rights reserved.

  16. Turned windrow composting of cow manure as appropriate technology for zero discharge of mulberry pulp wastewater.

    PubMed

    Jolanun, Banjarata; Kaewkam, Chompoonuch; Bauoon, Orapin; Chiemchaisri, Chart

    2014-08-01

    Turned windrow composting was investigated as appropriate technology for recycling the wastewater (excluding black liquor) from mulberry pulp and paper handicrafts. Two exterior turned windrows (1.5 m width x 1.5 m height x 2.0 m length) with dry leaves/cow manure/sawdust wet weight ratios of 60:40:0 (Pile A) and 55:40:5 (Pile B) were used for the investigation. Changes in the physical and chemical properties of the compost were examined and a phytotoxicity analysis was performed. A soil incubation test and an informal focus group discussion were also conducted. The results revealed that while both piles met the regulatory processing requirements for further reduced pathogens (>or= 55 degrees C for 15 days or longer), the operation without sawdust (Pile A) not only significantly enhanced the thermophilic temperature regime (P < 0.05) but also yielded the highest amount (1.4 m3 ton-1 pile) of wastewater elimination during the first 2 months of composting. It was found that the constant rates of degradation were 0.006 day- 1 (Pile A) and 0.003 day-1 (Pile B), and no pronounced statistically significant difference in N losses was found (P > 0.05). The germination index of two plant species in both piles varied between 126% and 230% throughout the experiment, and no pronounced differences (P > 0.05) among the samples were found. Addition of the compost significantly improved soil organic matter and pH (7-8), as well as reduced the loss of NO3-N. Local discussion groups were initiated to evaluate the cost-benefits, the potential of wastewater removal, the cooperation of community users and supporters, the compost quality and the potential compost market.

  17. Continuous monitoring of odours from a composting plant using electronic noses.

    PubMed

    Sironi, Selena; Capelli, Laura; Céntola, Paolo; Del Rosso, Renato; Il Grande, Massimiliano

    2007-01-01

    The odour impact of a composting plant situated in an urbanized area was evaluated by continuously monitoring the ambient air close to the plant during a period of about 4 days using two electronic noses. One electronic nose was installed in a nearby house, and the other one inside the perimeter of the composting plant in order to compare the response of both instruments. The results of the monitoring are represented by tables that report the olfactory class and the odour concentration value attributed to the analyzed air for each of the 370 measurements carried out during the monitoring period. The electronic nose installed at the house detected the presence of odours coming from the composting plant for about 7.8% of the monitoring total duration. Of the odour detections, 86% (25 of 29 measurements) were classified as belonging to the olfactory class corresponding to the open air storage of the waste screening overflows heaps, which was therefore identified to be the major odour source of the monitored composting plant. In correspondence of the measurements during which the electronic nose inside the house detected the presence of odours from the composting plant, the olfactory classes recognized by both instruments coincide. Moreover, the electronic nose at the house detected the presence of odours from the composting plant at issue in correspondence of each odour perception of the house occupants. The results of the study show the possibility of using an electronic nose for environmental odours monitoring, which enables the classification of the quality of the air and to quantify the olfactory nuisance from an industrial source in terms of duration and odour concentration.

  18. Turning schedules influence final composition of composted swine manure

    USDA-ARS?s Scientific Manuscript database

    Liquid swine (Sus scrofa domesticus) manure is a high-moisture, low-nutrient product that limits economical transport to areas in proximity of its source, possibly contributing to localized high soil nutrient levels. Composting swine manure converts liquid slurries to solids at lower moisture conten...

  19. Pathway and mechanism of nitrogen transformation during composting: Functional enzymes and genes under different concentrations of PVP-AgNPs.

    PubMed

    Zeng, Guangming; Zhang, Lihua; Dong, Haoran; Chen, Yaoning; Zhang, Jiachao; Zhu, Yuan; Yuan, Yujie; Xie, Yankai; Fang, Wei

    2018-04-01

    Polyvinylpyrrolidone coated silver nanoparticles (PVP-AgNPs) were applied at different concentrations to reduce total nitrogen (TN) losses and the mechanisms of nitrogen bio-transformation were investigated in terms of the nitrogen functional enzymes and genes. Results showed that mineral N in pile 3 which was treated with AgNPs at a concentration of 10 mg/kg compost was the highest (6.58 g/kg dry weight (DW) compost) and the TN loss (47.07%) was the lowest at the end of composting. Correlation analysis indicated that TN loss was significantly correlated with amoA abundance. High throughput sequencing showed that the dominant family of ammonia-oxidizing bacteria (AOB) was Nitrosomonadaceae, and the number of Operational Taxonomic Units (OTUs) reduced after the beginning of composting when compared with day 1. In summary, treatment with AgNPs at a concentration of 10 mg/kg compost was considerable to reduce TN losses and reserve more mineral N during composting. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Process Improvements: Aerobic Food Waste Composting at ISF Academy

    NASA Astrophysics Data System (ADS)

    Lau, Y. K.

    2015-12-01

    ISF Academy, a school with 1500 students in Hong Kong, installed an aerobic food waste composting system in November of 2013. The system has been operational for over seven months; we will be making improvements to the system to ensure the continued operational viability and quality of the compost. As a school we are committed to reducing our carbon footprint and the amount of waste we send to the local landfill. Over an academic year we produce approximately 27 metric tons of food waste. Our system processes the food waste to compost in 14 days and the compost is used by our primary school students in a organic farming project.There are two areas of improvement: a) if the composting system becomes anaerobic, there is an odor problem that is noticed by the school community; we will be testing the use of a bio-filter to eliminate the odor problem and, b) we will be working with an equipment vendor from Australia to install an improved grease trap system. The grease and oil that is collected will be sold to a local company here in Hong Kong that processes used cooking oil for making biofuels. This system will include a two stage filtration system and a heated vessel for separating the oil from the waste water.The third project will be to evaluate biodegradable cutlery for the compositing in the system. Currently, we use a significant quantity of non-biodegradable cutlery that is then thrown away after one use. Several local HK companies are selling biodegradable cutlery, but we need to evaluate the different products to determine which ones will work with our composting system. The food waste composting project at ISF Academy demonstrates the commitment of the school community to a greener environment for HK, the above listed projects will improve the operation of the system.

  1. [Apply fourier transform infrared spectra coupled with two-dimensional correlation analysis to study the evolution of humic acids during composting].

    PubMed

    Bu, Gui-jun; Yu, Jing; Di, Hui-hui; Luo, Shi-jia; Zhou, Da-zhai; Xiao, Qiang

    2015-02-01

    The composition and structure of humic acids formed during composting play an important influence on the quality and mature of compost. In order to explore the composition and evolution mechanism, municipal solid wastes were collected to compost and humic and fulvic acids were obtained from these composted municipal solid wastes. Furthermore, fourier transform infrared spectra and two-dimensional correlation analysis were applied to study the composition and transformation of humic and fulvic acids during composting. The results from fourier transform infrared spectra showed that, the composition of humic acids was complex, and several absorbance peaks were observed at 2917-2924, 2844-2852, 2549, 1662, 1622, 1566, 1454, 1398, 1351, 990-1063, 839 and 711 cm(-1). Compared to humic acids, the composition of fulvci acids was simple, and only three peaks were detected at 1725, 1637 and 990 cm(-1). The appearance of these peaks showed that both humic and fulvic acids comprised the benzene originated from lignin and the polysaccharide. In addition, humic acids comprised a large number of aliphatic and protein which were hardly detected in fulvic acids. Aliphatic, polysaccharide, protein and lignin all were degraded during composting, however, the order of degradation was different between humic and fulvci acids. The result from two-dimensional correlation analysis showed that, organic compounds in humic acids were degraded in the following sequence: aliphatic> protein> polysaccharide and lignin, while that in fulvic acids was as following: protein> polysaccharide and aliphatic. A large number of carboxyl, alcohols and ethers were formed during the degradation process, and the carboxyl was transformed into carbonates. It can be concluded that, fourier transform infrared spectra coupled with two-dimensional correlation analysis not only can analyze the function group composition of humic substances, but also can characterize effectively the degradation sequence of these groups and identified the formation mechanism and dynamics of humic substances during composting.

  2. Co-composting of hair waste from the tanning industry with de-inking and municipal wastewater sludges.

    PubMed

    Barrena, Raquel; Pagans, Estel la; Artola, Adriana; Vázquez, Felícitas; Sánchez, Antoni

    2007-06-01

    Production of waste hair in the leather manufacturing industry is increasing every year due to the adoption of hair-save unhairing techniques, leaving the tanners with the problem of coping with yet another solid by-product. Numerous potential strategies for hair utilisation have been proposed. However, the use of hair waste as agricultural fertiliser is one of its most promising applications due to the high nitrogen content of hair. Agricultural value of hair can be increased by composting. This paper deals with the composting of hair from the unhairing of bovine hide. Results indicated that hair cannot be either composted on its own or co-composted with de-inking sludge, a chemical complementary co-substrate. However, good results were obtained when co-composted with raw sludge from a municipal wastewater treatment plant at hair:raw sludge weight ratios 1:1, 1:2 and, 1:4 in lab scale and pilot plant scale composters. In all cases, a more stable product was achieved at the end of the process. Composting in the pilot plant composter was effectively monitored using Static Respiration Indices determined at process temperature at sampling (SRI(T)) and at 37 degrees C (SRI(37)). Notably, SRI(T) values were more sensitive to changes in the biological activity. In contrast, Respiratory Quotient (RQ) values were not adequate to follow the development of the process.

  3. The feasibility of applying immature yard-waste compost to remove nitrate from agricultural drainage effluents: A preliminary assessment

    USGS Publications Warehouse

    Tsui, L.; Krapac, I.G.; Roy, W.R.

    2007-01-01

    Nitrate is a major agricultural pollutant found in drainage waters. Immature yard-waste compost was selected as a filter media to study its feasibility for removing nitrate from drainage water. Different operation parameters were tested to examine the denitrification efficiency, including the amounts of compost packed in columns, the flow rate, and the compost storage periods. The experimental results suggested that hydraulic retention time was the major factor to determine the extent of nitrate removal, although the amount of compost packed could also contribute to the nitrate removal efficiency. The effluent nitrate concentration increased as the flow rate decreased, and the compost column reduced nitrate concentrations from 20 mg/L to less than 5 mg/L within 1.5 h. The solution pH increased at the onset of experiment because of denitrification, but stabilized at a pH of about 7.8, suggesting that the compost had a buffering capacity to maintain a suitable pH for denitrification. Storing compost under air-dried conditions may diminish the extent nitrate removed initially, but the effects were not apparent after longer applications. It appeared that immature yard-waste compost may be a suitable material to remove nitrate from tile drainage water because of its relatively large organic carbon content, high microbial activity, and buffering capacity. ?? 2006 Elsevier B.V. All rights reserved.

  4. Degradation of Degradable Starch-Polyethylene Plastics in a Compost Environment †

    PubMed Central

    Johnson, Kenneth E.; Pometto, Anthony L.; Nikolov, Zivko L.

    1993-01-01

    The degradation performance of 11 types of commercially produced degradable starch-polyethylene plastic compost bags was evaluated in municipal yard waste compost sites at Iowa State University (Ames) and in Carroll, Dubuque, and Grinnell, Iowa. Masterbatches for plastic production were provided by Archer Daniels Midland Co. (Decatur, Ill.), St. Lawrence Starch Co. Ltd. (Mississauga, Ontario, Canada), and Fully Compounded Plastics (Decatur, Ill.). Bags differed in starch content (5 to 9%) and prooxidant additives (transition metals and a type of unsaturated vegetable oil). Chemical and photodegradation properties of each material were evaluated. Materials from St. Lawrence Starch Co. Ltd. and Fully Compounded Plastics photodegraded faster than did materials from Archer Daniels Midland Co., whereas all materials containing transition metals demonstrated rapid thermal oxidative degradation in 70°C-oven (dry) and high-temperature, high-humidity (steam chamber) treatments. Each compost site was seeded with test strips (200 to 800 of each type) taped together, which were recovered periodically over an 8- to 12-month period. At each sampling date, the compost row temperature was measured (65 to 95°C), the location of the recovered test strip was recorded (interior or exterior), and at least four strips were recovered for evaluation. Degradation was followed by measuring the change in polyethylene molecular weight distribution via high-temperature gel permeation chromatography. Our initial 8-month study indicated that materials recovered from the interior of the compost row demonstrated very little degradation, whereas materials recovered from the exterior degraded well. In the second-year study, however, degradation was observed in several plastic materials recovered from the interior of the compost row by month 5 at the Carroll site and almost every material by month 12 at the Grinnell site. The plastic bags collected from each community followed a similar degradation pattern. To our knowledge, this is the first scientific study demonstrating significant polyethylene degradation by these materials in a compost environment. PMID:16348914

  5. Degradation of degradable starch-polyethylene plastics in a compost environment.

    PubMed

    Johnson, K E; Pometto, A L; Nikolov, Z L

    1993-04-01

    The degradation performance of 11 types of commercially produced degradable starch-polyethylene plastic compost bags was evaluated in municipal yard waste compost sites at Iowa State University (Ames) and in Carroll, Dubuque, and Grinnell, Iowa. Masterbatches for plastic production were provided by Archer Daniels Midland Co. (Decatur, Ill.), St. Lawrence Starch Co. Ltd. (Mississauga, Ontario, Canada), and Fully Compounded Plastics (Decatur, Ill.). Bags differed in starch content (5 to 9%) and prooxidant additives (transition metals and a type of unsaturated vegetable oil). Chemical and photodegradation properties of each material were evaluated. Materials from St. Lawrence Starch Co. Ltd. and Fully Compounded Plastics photodegraded faster than did materials from Archer Daniels Midland Co., whereas all materials containing transition metals demonstrated rapid thermal oxidative degradation in 70 degrees C-oven (dry) and high-temperature, high-humidity (steam chamber) treatments. Each compost site was seeded with test strips (200 to 800 of each type) taped together, which were recovered periodically over an 8- to 12-month period. At each sampling date, the compost row temperature was measured (65 to 95 degrees C), the location of the recovered test strip was recorded (interior or exterior), and at least four strips were recovered for evaluation. Degradation was followed by measuring the change in polyethylene molecular weight distribution via high-temperature gel permeation chromatography. Our initial 8-month study indicated that materials recovered from the interior of the compost row demonstrated very little degradation, whereas materials recovered from the exterior degraded well. In the second-year study, however, degradation was observed in several plastic materials recovered from the interior of the compost row by month 5 at the Carroll site and almost every material by month 12 at the Grinnell site. The plastic bags collected from each community followed a similar degradation pattern. To our knowledge, this is the first scientific study demonstrating significant polyethylene degradation by these materials in a compost environment.

  6. Inside the small-scale composting of kitchen and garden wastes: Thermal performance and stratification effect in vertical compost bins.

    PubMed

    Arrigoni, Juan Pablo; Paladino, Gabriela; Garibaldi, Lucas Alejandro; Laos, Francisca

    2018-06-01

    Decentralized composting has been proposed as a best available practice, with a highly positive impact on municipal solid wastes management plans. However, in cold climates, decentralized small-scale composting performance to reach thermophilic temperatures (required for the product sanitization) could be poor, due to a lack of critical mass to retain heat. In addition, in these systems the composting process is usually disturbed when new portions of fresh organic waste are combined with previous batches. This causes modifications in the well-known composting evolution pattern. The objective of this work was to improve the understanding of these technical aspects through a real-scale decentralized composting experience carried out under cold climate conditions, in order to assess sanitization performance and to study the effects of fresh feedstock additions in the process evolution. Kitchen and garden organic wastes were composted in 500 L-static compost bins (without turning) for 244 days under cold climate conditions (Bariloche, NW Patagonia, Argentina), using pine wood shavings in a ratio of 1.5:1 v: v (waste: bulking agent). Temperature profile, stability indicators (microbial activity, carbon and nitrogen contents and ratio) and other variables (pH and electrical conductivity), were monitored throughout the experience. Our results indicate that small-scale composting (average generation rate of 7 kg d -1 ) is viable under cold weather conditions, since thermophilic sanitization temperatures (> 55 °C) were maintained for 3 consecutive days in most of the composting mass, according to available USEPA regulations commonly used as a reference for pathogens control in sewage sludge. On the other hand, stability indicators showed a differentiated organic matter degradation process along the compost bins height. Particularly, in the bottommost composting mix layer the process took a longer period to achieve compost stability than the upper layers, suggesting that differential organic matter transformation appears not to be necessarily associated to the order of the waste batches incorporation in a time line, as it could be expected. These findings suggest the need to discuss new ways of studying the composting process in small-scale compost bins as well as their commercial design. Copyright © 2018 Elsevier Ltd. All rights reserved.

  7. Great Lakes: Great Gardening.

    ERIC Educational Resources Information Center

    New York Sea Grant Inst., Albany, NY.

    This folder contains 12 fact sheets designed to improve the quality of gardens near the Great Lakes. The titles are: (1) "Your Garden and the Great Lakes"; (2) "Organic Gardening"; (3) "Fruit and Vegetable Gardening"; (4) "Composting Yard Wastes"; (5) "Herbicides and Water Quality"; (6)…

  8. Unique hyper-thermal composting process in Kagoshima City forms distinct bacterial community structures.

    PubMed

    Tashiro, Yukihiro; Tabata, Hanae; Itahara, Asuka; Shimizu, Natsuki; Tashiro, Kosuke; Sakai, Kenji

    2016-11-01

    A unique compost, Satsuma soil, is produced from three types of wastewater sludge using hyper-thermal processes at temperatures much higher than that of general thermophilic processes in Kagoshima City, Japan. We analyzed the bacterial community structures of this hyper-thermal compost sample and other sludges and composts by a high-throughput barcoded pyrosequencing method targeting the 16S rRNA gene. In total, 621,076 reads were derived from 17 samples and filtered. Artificial sequences were deleted and the reads were clustered based on the operational taxonomic units (OTUs) at 97% similarity. Phylum-level analysis of the hyper-thermal compost revealed drastic changes of the sludge structures (each relative abundance) from Firmicutes (average 47.8%), Proteobacteria (average 22.3%), and Bacteroidetes (average 10.1%) to two main phyla including Firmicutes (73.6%) and Actinobacteria (25.0%) with less Proteobacteria (∼0.3%) and Bacteroidetes (∼0.1%). Furthermore, we determined the predominant species (each relative abundance) of the hyper-thermal compost including Firmicutes related to Staphylococcus cohnii (13.8%), Jeotgalicoccus coquinae (8.01%), and Staphylococcus lentus (5.96%), and Actinobacteria related to Corynebacterium stationis (6.41%), and found that these species were not predominant in wastewater sludge. In contrast, we did not observe any common structures among eight other composts produced, using the hyper-thermal composts as the inoculums, under thermophilic conditions from different materials. Principle coordinate analysis of the hyper-thermal compost indicated a large difference in bacterial community structures from material sludge and other composts. These results suggested that a distinct bacterial community structure was formed by hyper-thermal composting. Copyright © 2016 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  9. The influence of organic substances type on the properties of mineral-organic fertilizers

    NASA Astrophysics Data System (ADS)

    Huculak-Mä Czka, Marta; Hoffmann, Krystyna; Hoffmann, Józef

    2010-05-01

    In presented research the lignite coal, peat, poultry droppings and their composts were suggested as a components of mineral-organic fertilizers. Fertility of soil is conditioned by an ability to supply plants with water and nutrients essential to their growth and development. The soil is described as tri-phase system consisting of solid, liquid and gas phase. In solid phase the soil minerals and organic matter can be distinguished. The content of micro-organisms contained in the soil i.e. microfauna and microflora is indispensable for high soil fertility. Nutrients should occur in the forms available for plants in order to obtain high yields of the high quality crops. Organic fertilizing has versatile activity. Increasing contents of humus, providing mineral nutrients included in organic substance and the improvement in physical properties of the soil belong to its main purposes. Due to applying organic fertilizers heavy soils is getting loosen and in consequence become more airy what probably influences stimulation of soil micro-organisms activity. An aqueous as well as sorption capacity of light soils is also increasing, buffer range and the stabilization of the proper level of pH value of the soil, plants are provided with basic macro and micronutrients. Conventional organic fertilizers applied in an arable farms are manure, dung, green manures and composts of different kind. Within compost group the following types can be distinguished: compost from farming, urban wastes, shredded straw, poultry droppings, industrial wastes, bark of coniferous tree etc. Properly developed fertilizer formulas should contain in their composition both mineral as well as organic elements. Such fertilizer should fit its composition to the soil and plant requirements. It should contain organic substance being characterized by a high aqueous and cations sorption capacity, substance undergoing the fast mineralization with the large calcium content. Inorganic substances e.g. bentonites which are used for suspension fertilizers manufacturing meet these requirements as well. In the presented studies lignite coal was applied as a component of mineral-organic preparations. The advantages of lignite coal are positive influence on the soil heat balance and reduction of the temperature fluctuations influence as well as humic acids contents that are extracted during its decomposition improving the soil structure and enrichment with humus substances. The lignite coal used in examinations contained 50 - 60 wt. % of Corg, about 45 cmol/kg Ca, 18.5 cmol/kg Mg and P, K, N in the ppm amount. Unfortunately the fertilizer components included in the lignite coal are rather unavailable for plants. It seems, that progress of lignite coal mineralization and humification can be expressed in the increasing content of humus substances. Humus acids are of great importance for plants on account of their solubility. During examination on the selection of fertilizer components a Corg content was analyzed as a parameter determining the quality of mineral-organic preparations. As the analytical technique for Corg determination particularly a Tiurin method was applied. Apart from lignite coal and peat as the source of organic substance the poultry droppings and compost on their basis were analyzed. Poultry droppings depending on bird species as well as feeding and breeding method are characterized by variable composition. A high pH values and a large content of nitrogen are their distinctive features, sometimes too high on account of plant nutritional requirements, and toxic as well as limiting cropping. Taking environmental protection requirements into consideration as well as on account of proper plants nutrition an appropriate preparation of mineral-organic fertilizer is recommended what can be obtained by applying lignite coal and poultry droppings as components of fertilizer using appropriate proportion. Adapting composted poultry droppings is more beneficial, but requires extra financial outlays. Results obtained from examinations of organic substance and the investigations on the influence of components on plants germination allow for developing valid formulas for mineral-organic fertilizers.

  10. Utilization of household organic compost in zinc adsorption system

    NASA Astrophysics Data System (ADS)

    Cundari, Lia; Isvaringga, Nyiayu Dita; Arinda, Yesica Maharani

    2017-11-01

    Zinc (Zn) is one of the heavy metals which is polluted to the environment in an amount greater than 15 mg/L [1]. Zinc contamination caused by the disposal of industrial waste such as batteries, electroplating, paint and other industries. One of the Zinc recovery technique that is relatively inexpensive, simple, high effectiveness and efficiency, and can be regenerated is adsorption using compost. This study has been carried out the preparation of compost from organic household waste and cow manure and its application to Zinc recovery. In this research, the raw material of compost is varied. There is an organic household waste (A1) and a mixture of organic household waste and cow manure with ratio 7:6 (A2). Decomposition of A1 and A2 with addition Effective Microorganism (EM4) requires 21 days, with 3 times inversion. Zinc adsorption is done by using a compost variation of 0.5 g, 1 g, and 2 g in every 100 and 200 mg/L Zn concentration solution. The batch process is applied to analyze the capacity of adsorption. Determination of capacity of adsorption based on the Langmuir, Freundlich, and Temkin isotherm model. Direct observation and spectrophotometry are applied in research methodology. The results show that compost A1 and A2 have fulfilled Indonesian Standart of compost and have the ability to reduce Zinc concentration to 94-96%. It indicates highly recommended biosorbent that can be applied to Zinc adsorption.

  11. Co-composting as an oxygen stabilization of an organic fraction of municipal solid waste and industrial sewage sludge.

    PubMed

    Milczarek, M; Neczaj, E; Parkitna, K

    2013-01-01

    The purpose of this work is to study the characteristics of the co-composting of municipal solid waste (MSW), sewage sludge, grass and sawdust. Differing proportions of biodegradable waste were investigated through changes of temperature, oxygen consumption, organic matters, moisture content, carbon, nitrogen, C/N ratio as well as heavy metals and pathogen microorganisms content. The present study has shown that addition of MSW above 10% had a negative impact on the composting process. The initial C/N of the mixtures with a higher MSW content was below 18. Lower losses of organic matter occurred during composting for the mixture with the highest addition of MSW. Although studies have shown that composting is a good method for the disposal of organic waste additional research is required in order to optimize the organic and nitrogen compounds degradation during the co-composting process. In conclusion, a 1:4:4:1 mixture of MSW:sewage sludge:grass:sawdust is recommended because it can achieve high temperature as well as the highest organic matter degradation and highest N content in the final composting product. The concentration of heavy and light metals in all composts was within the limits of regulation of the Polish Minister of Agriculture and Rural Development.

  12. The impact of using mature compost on nitrous oxide emission and the denitrifier community in the cattle manure composting process.

    PubMed

    Maeda, Koki; Morioka, Riki; Hanajima, Dai; Osada, Takashi

    2010-01-01

    The diversity and dynamics of the denitrifying genes (nirS, nirK, and nosZ) encoding nitrite reductase and nitrous oxide (N(2)O) reductase in the dairy cattle manure composting process were investigated. A mixture of dried grass with a cattle manure compost pile and a mature compost-added pile were used, and denaturing gradient gel electrophoresis was used for denitrifier community analysis. The diversity of nirK and nosZ genes significantly changed in the initial stage of composting. These variations might have been induced by the high temperature. The diversity of nirK was constant after the initial variation. On the other hand, the diversity of nosZ changed in the latter half of the process, a change which might have been induced by the accumulation of nitrate and nitrite. The nirS gene fragments could not be detected. The use of mature compost that contains nitrate and nitrite promoted the N(2)O emission and significantly affected the variation of nosZ diversity in the initial stage of composting, but did not affect the variation of nirK diversity. Many Pseudomonas-like nirK and nosZ gene fragments were detected in the stage in which N(2)O was actively emitted.

  13. Evaluation of laboratory-scale in-vessel co-composting of tobacco and apple waste.

    PubMed

    Kopčić, Nina; Vuković Domanovac, Marija; Kučić, Dajana; Briški, Felicita

    2014-02-01

    Efficient composting process requires set of adequate parameters among which physical-chemical properties of the composting substrate play the key-role. Combining different types of biodegradable solid waste it is possible to obtain a substrate eligible to microorganisms in the composting process. In this work the composting of apple and tobacco solid waste mixture (1:7, dry weight) was explored. The aim of the work was to investigate an efficiency of biodegradation of the given mixture and to characterize incurred raw compost. Composting was conducted in 24 L thermally insulated column reactor at airflow rate of 1.1 L min(-1). During 22 days several parameters were closely monitored: temperature and mass of the substrate, volatile solids content, C/N ratio and pH-value of the mixture and oxygen consumption. The composting of the apple and tobacco waste resulted with high degradation of the volatile solids (53.1%). During the experiment 1.76 kg of oxygen was consumed and the C/N ratio of the product was 11.6. The obtained temperature curve was almost a "mirror image" of the oxygen concentration curve while the peak values of the temperature were occurred 9.5h after the peak oxygen consumption. Copyright © 2013 Elsevier Ltd. All rights reserved.

  14. Improving ammonium and nitrate release from urea using clinoptilolite zeolite and compost produced from agricultural wastes.

    PubMed

    Omar, Latifah; Ahmed, Osumanu Haruna; Ab Majid, Nik Muhamad

    2015-01-01

    Improper use of urea may cause environmental pollution through NH3 volatilization and NO3 (-) leaching from urea. Clinoptilolite zeolite and compost could be used to control N loss from urea by controlling NH4 (+) and NO3 (-) release from urea. Soil incubation and leaching experiments were conducted to determine the effects of clinoptilolite zeolite and compost on controlling NH4 (+) and NO3 (-) losses from urea. Bekenu Series soil (Typic Paleudults) was incubated for 30, 60, and 90 days. A soil leaching experiment was conducted for 30 days. Urea amended with clinoptilolite zeolite and compost significantly reduced NH4 (+) and NO3 (-) release from urea (soil incubation study) compared with urea alone, thus reducing leaching of these ions. Ammonium and NO3 (-) leaching losses during the 30 days of the leaching experiment were highest in urea alone compared with urea with clinoptilolite zeolite and compost treatments. At 30 days of the leaching experiment, NH4 (+) retention in soil with urea amended with clinoptilolite zeolite and compost was better than that with urea alone. These observations were because of the high pH, CEC, and other chemical properties of clinoptilolite zeolite and compost. Urea can be amended with clinoptilolite zeolite and compost to improve NH4 (+) and NO3 (-) release from urea.

  15. Recycling of wastes from fish beneficiation by composting: chemical characteristics of the compost and efficiency of their humic acids in stimulating the growth of lettuce.

    PubMed

    Busato, Jader Galba; de Carvalho, Caroline Moreira; Zandonadi, Daniel Basilio; Sodré, Fernando Fabriz; Mol, Alan Ribeiro; de Oliveira, Aline Lima; Navarro, Rodrigo Diana

    2017-11-23

    Waste from the beneficiation of fish was composted with crushed grass aiming to characterize their chemical composition and investigate the possibility of the use of the final compost as source of humic acids (HA) able to stimulate the growth of lettuce. Compost presented pH value, C/N ratio, and electrical conductivity that allow its use as an organic fertilizer. The element content was present in the following order of abundance in the compost: P > Ca > N > Mg > K > Fe > Zn > Mn > Mo > Cu, and the humus composition was similar to that observed in others kind of organic residues composted. The high content of oxygen pointed out a high level of oxidation of HA, in line with the predominance of phenolic acidity in the functional groups. The 13 C-NMR spectra showed marked resonances due to the presence of lipids and other materials resistant to degradation as methoxy substituent and N-alkyl groups. A concentration of 20 mg L -1 HA increased significantly both dry and wet root matter in lettuce but the CO 2 assimilation, stomatal conductance, and number of lateral roots of the plants were not affected. However, increases of 64% in the water-use efficiency was observed due to the HA addition, probably related to the root morphology alteration which resulted in 1.6-fold increase of lateral root average length and due to the higher H + extrusion activity. Reuse of residues from the fish beneficiation activity by composting may represent a safe tool to increase the value of recycled organic residues and generate HA with potential use as plant growth stimulants.

  16. Thermophile-fermented compost as a fish feed additive modulates lipid peroxidation and free amino acid contents in the muscle of the carp, Cyprinus carpio.

    PubMed

    Tanaka, Ryusuke; Miyamoto, Hirokuni; Inoue, Shin-Ichi; Shigeta, Kazuhiro; Kondo, Masakazu; Ito, Toshiyuki; Kodama, Hiroaki; Miyamoto, Hisashi; Matsushita, Teruo

    2016-05-01

    Recently, a compost fermented with marine animals with thermophilic Bacillaceae in a clean and exclusive process at high temperature was reported as a possible feed additive to improve the healthy balance in sea fish and mammals (i.e., pigs and rodents). Here, the effects of the oral administration of the compost on the muscle and internal organs of carp (Cyprinus carpio) as a freshwater fish model were investigated. The fatty acid composition was different in the muscle of the carp fed with or without the compost extract, but there was little difference in the hepatopancreas. The accumulation of triacylglycerols, cholesterol, lipid peroxide and hydroxyl lipids decreased in the muscle after the oral administration of the compost extract in the carps over 12 weeks, but the accumulation did not always decrease in the hepatopancreas. In contrast, free-radical-scavenging activities and the concentrations of free amino acids in the muscle did not always increase and was dependent on the dose of the compost at 12 weeks. The scavenging activities and part of free amino acid levels in the muscle of the carp were improved at 24 weeks after a high dose of compost exposure, and then the survival rates of the carp were maintained. Thus, the oral administration of thermophile-fermented compost can prevent peroxidation and increase the content of free amino acids in the muscle of the freshwater fish, depending on the dose and term of the administration, and may be associated with the viability of the fish. Copyright © 2015 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  17. Mineralization dynamics in soil fertilized with seaweed-fish waste compost.

    PubMed

    Illera-Vives, Marta; López-Fabal, Adolfo; López-Mosquera, M Elvira; Ribeiro, Henrique M

    2015-12-01

    Seaweed and fish waste can be composted together to obtain fertilizer with high organic matter and nutrient contents. The nutrients, however, are mostly in organic form and must be mineralized to make them available to plants. The objective of this work was to establish a usage guideline for the compost by studying its mineralization dynamics. Also, the release of inorganic N and C from soil fertilized with the compost was monitored and modelled. C and N were released throughout the assay, to an extent significantly dependent on fertilizer rate. Mineralization of both elements fitted a first-order exponential model, and each fertilizer rate required using a specific fitting model. An increased rate favoured mineralization (especially of carbon). After 90 days, 2.3% of C and 7.7% of N were mineralized (and 23.3% of total nitrogen made plant available) with the higher rate. C mineralization was slow because organic matter in the compost was very stable. On the other hand, the relatively high initial content in mineral N of the compost increased gradually by the effect of mineralization. The amount of N available would suffice to meet the requirements of moderately demanding crops at the lower fertilizer rate, and even those of more demanding crops at the higher rate. © 2015 Society of Chemical Industry.

  18. Composting of Sewage Sludge Using Recycled Matured Compost as a Single Bulking Agent

    NASA Astrophysics Data System (ADS)

    Zhang, Xiangyang; Ren, Jian; Niu, Huasi; Wu, Xingwu

    2010-11-01

    Pretreatment (bulking agent choice and mixing) is an essential phase of dewatered raw sludge (RS) composting affecting its industrialization significantly. In this paper recycled compost (RC) was chosen as a single bulking agent in the composting experiment instead of other agents such as sawdust, rice straw, MSW, and the mixing machine was developed for mixing of SS and RC. According to the mixing experiment, SS and RC can be mixed uniformly and formed into small particles of 10˜15 mm in diameter, which improved the availability of oxygen during composting. The effect of different volumetric ratios of RS to RC, 1:1 (Exp.1), 1:2 (Exp.2) and 1:4 (Exp.3), on the performance of composting was investigated in detail. Temperature, oxygen consumption rate, organic matter, C/N ratio and moisture content were monitored in each experiment. In despite of low initial C/N of the mixture, intensive fermentation happened in all the experiments. Exp.1 and Exp.2 achieved stability and sanitization, but Exp 1 took more days to accomplish the fermentation. Exp 3 maintained thermophilic temperatures for a shortest time and did not satisfy the necessary sanitation requirements because more RC was recycled. In all experiments, the moisture content of their final composts were too high to be used as bulking agents before extra moisture was reduced. RS: RC = 1:2 (v/v) was the optimum and advisable proportion for the industrialization of sewage sludge composting of, the composting period was about 10 days, and the aeration rate 0.05 m3/(m3ṡmin) was appropriate in this study.

  19. Role of Ca-bentonite to improve the humification, enzymatic activities, nutrient transformation and end product quality during sewage sludge composting.

    PubMed

    Awasthi, Mukesh Kumar; Awasthi, Sanjeev Kumar; Wang, Quan; Awasthi, Mrigendra Kumar; Zhao, Junchao; Chen, Hongyu; Ren, Xiuna; Wang, Meijing; Zhang, Zengqiang

    2018-04-10

    This study was aimed to examine the response of Ca-bentonite (CB) amendment to improve the sewage sludge (SS) composting along with wheat straw (WS) as bulking agent. Five treatments (SS + WS) were mixed with or without blending of discrepant concentration of CB (2%, 4%, 6%, and 10%), respectively, and without CB added treatment applied as the control. The results showed that compared to control and 2%CB blended treatments, while the 6-10%CB -amended treatment indicated maximum enzymatic activities with the composting progress and highest organic matter degradation and loss. The amendment of 6-10%CB increased the humic acid, HA/FA ratio, DON, NH 4 + -N, NO 3 and DOC but reduced the fulvic acids content and the maturity period by 2 weeks as compared to control. In addition, maturity parameters also confirmed that the highest seed germination was observed with the 10%CB applied compost followed by 6%CB, 4%CB and 2%CB applied treatments, respectively. Copyright © 2018 Elsevier Ltd. All rights reserved.

  20. Composted Poultry Litter as an Amendment for Substrates with High Wood Content

    USDA-ARS?s Scientific Manuscript database

    Whole Tree (WT) and Clean Chip Residual (CCR) are potential new nursery substrates that are by-products of the forestry industry containing high wood content. Initial immobilization of nitrogen is one limitation of these new substrates, however the addition of composted poultry litter (CPL) to subs...

  1. Changes in structure and function of fungal community in cow manure composting.

    PubMed

    Wang, Ke; Yin, Xiangbo; Mao, Hailong; Chu, Chu; Tian, Yu

    2018-05-01

    In this study, dynamic changes in fungal communities, trophic modes and effect factors in 60 days composting of cow manure were analyzed by using high throughput sequencing, FUNGuild and Biolog FF MicroPlate, respectively. Orpinomyces (relative abundance >10.85%) predominated in feedstock, and Mycothermus became the dominating genus (relative abundance >75%) during the active phase. Aerobic composting treatment had a significant effect on fungal trophic modes with pathogenic fungi fading away and wood saprotrophs increasing over composting time. Fungal communities had the higher carbon sources utilization capabilities at the thermophilic phase and mature phase than those in the other periods. Oxidation reduction potential (ORP) significantly increased from -180 to 180 mV during the treatment. Redundancy analysis showed that the succession of fungal community during composting had a significant association with ORP (p < .05). This indicated that aerobic composting treatment not only influenced fungal community structure, but also changed fungal trophic modes and metabolic characteristics. Copyright © 2018 Elsevier Ltd. All rights reserved.

  2. Effect of gamma irradiation on hyperthermal composting microorganisms for feasible application in space

    NASA Astrophysics Data System (ADS)

    Yoon, Minchul; Choi, Jong-il; Yamashita, Masamichi

    2013-05-01

    The composting system is the most efficient method for processing organic waste in space; however, the composting activity of microorganisms can be altered by cosmic rays. In this study, the effect of ionizing irradiation on composting bacteria was investigated. Sequence analyses of amplified 16S rRNA, 18S rRNA, and amoA genes were used to identify hyperthermal composting microorganisms. The viability of microorganisms in compost soil after gamma irradiation was directly determined using LIVE/DEAD BacLight viability kit. The dominant bacterial genera were Weissella cibaria and Leuconostoc sp., and the fungal genera were Metschnikowia bicuspidata and Pichia guilliermondii. Gamma irradiation up to a dose of 10 kGy did not significantly alter the microbial population. Furthermore, amylase and cellulase activities were maintained after high-dose gamma irradiation. Our results show that hyperthermal microorganisms can be used to recycle agricultural and fermented material in space stations and other human-inhabiting facilities on the Moon, Mars, and other planets.

  3. Rapid and Accurate Evaluation of the Quality of Commercial Organic Fertilizers Using Near Infrared Spectroscopy

    PubMed Central

    Wang, Chang; Huang, Chichao; Qian, Jian; Xiao, Jian; Li, Huan; Wen, Yongli; He, Xinhua; Ran, Wei; Shen, Qirong; Yu, Guanghui

    2014-01-01

    The composting industry has been growing rapidly in China because of a boom in the animal industry. Therefore, a rapid and accurate assessment of the quality of commercial organic fertilizers is of the utmost importance. In this study, a novel technique that combines near infrared (NIR) spectroscopy with partial least squares (PLS) analysis is developed for rapidly and accurately assessing commercial organic fertilizers quality. A total of 104 commercial organic fertilizers were collected from full-scale compost factories in Jiangsu Province, east China. In general, the NIR-PLS technique showed accurate predictions of the total organic matter, water soluble organic nitrogen, pH, and germination index; less accurate results of the moisture, total nitrogen, and electrical conductivity; and the least accurate results for water soluble organic carbon. Our results suggested the combined NIR-PLS technique could be applied as a valuable tool to rapidly and accurately assess the quality of commercial organic fertilizers. PMID:24586313

  4. Rapid and accurate evaluation of the quality of commercial organic fertilizers using near infrared spectroscopy.

    PubMed

    Wang, Chang; Huang, Chichao; Qian, Jian; Xiao, Jian; Li, Huan; Wen, Yongli; He, Xinhua; Ran, Wei; Shen, Qirong; Yu, Guanghui

    2014-01-01

    The composting industry has been growing rapidly in China because of a boom in the animal industry. Therefore, a rapid and accurate assessment of the quality of commercial organic fertilizers is of the utmost importance. In this study, a novel technique that combines near infrared (NIR) spectroscopy with partial least squares (PLS) analysis is developed for rapidly and accurately assessing commercial organic fertilizers quality. A total of 104 commercial organic fertilizers were collected from full-scale compost factories in Jiangsu Province, east China. In general, the NIR-PLS technique showed accurate predictions of the total organic matter, water soluble organic nitrogen, pH, and germination index; less accurate results of the moisture, total nitrogen, and electrical conductivity; and the least accurate results for water soluble organic carbon. Our results suggested the combined NIR-PLS technique could be applied as a valuable tool to rapidly and accurately assess the quality of commercial organic fertilizers.

  5. The Utilization of Banana Peel in the Fermentation Liquid in Food Waste Composting

    NASA Astrophysics Data System (ADS)

    Kadir, A. A.; Rahman, N. A.; Azhari, N. W.

    2016-07-01

    Municipal solid waste in Malaysia contains a high amount of organic matters, particularly food waste. Food waste represents almost 60% from the total municipal solid waste disposed in the landfill. Food waste can be converted into useful materials such as compost. However, source separation of food waste for recycling is not commonly practiced in Malaysia due to various constraints. These constraints include low awareness among the waste generators and low demand of the products produced from the food waste such as composts. Composting is one of the alternatives that can be used in food waste disposal from Makanan Ringan Mas. The aim of the study is to convert food waste generated from Makanan Ringan Mas which is a medium sale industry located at Parit Kuari Darat, Batu Pahat by using composting method. The parameters which include temperature, pH value, NPK (Nitrogen, Phosphorus, Potassium) values has been examined. Banana peel is being used as the fermentation liquid whilst soil and coconut husk were used as the composting medium. Based on the results during the composting process, most of the pH value in each reactor is above 5 and approximately at neutral. This shown that the microbial respiration in the well controlled composting reactor was inhibited and had approached the mature phase. On the other hand, during the period of composting, the overall temperature range from 25 °C to 47 °C which shown the active phase for composting will occoured. As for NPK content Nitrogen value range is 35325 mg/L to 78775 mg/L, Phosphorus, 195.83 mg/L to 471 mg/L and potassium is 422.3 mg/L to 2046 mg/L which is sufficient to use for agricultural purpose. The comparison was made with available organic compost in the market and only showed slightly difference. Nevertheless, in comparison with common fertilizer, the NPK value of organic compost are considerably very low.

  6. Residues and potential ecological risks of veterinary antibiotics in manures and composts associated with protected vegetable farming.

    PubMed

    Zhang, Haibo; Luo, Yongming; Wu, Longhua; Huang, Yujuan; Christie, Peter

    2015-04-01

    Veterinary antibiotics (VAs) are emerging contaminants and enter into soil principally by agricultural application of organic fertilizer. A total of 33 solid animal manures and 17 compost samples from protected vegetable farms in nine areas of China were analyzed for the antibiotic classes of tetracyclines, fluoroquinolones, sulfonamides, and macrolides (17 substances in total). Oxytetracycline was found as a dominant compound in the samples, and its highest concentration reached 416.8 mg kg(-1) in a chicken manure sample from Shouguang, Shandong Province. Among the samples, animal manures (especially pig manure) contained higher VA residues than composts. However, fluoroquinolones exhibited higher persistence in the compost samples than other antibiotic classes. This is particularly the case in the rice husk compost, which contained the highest level of ofloxacin and ciprofloxacin (1334.5 and 1717.4 μg kg(-1) on average, respectively). The veterinary antibiotic profile in the risk husk compost had a good relationship with that in the corresponding manures. The refined commercial compost had the lowest VA residues among the compost samples in general. This implied that composting process might be important to reduce the antibiotic residue. High residue of antibiotics in soil was assumed to be a hazard to ecosystem. This is especially noticeable under current application rates (150 t ha(-1) a(-1)) in protected vegetable farming because over half of the samples exhibited a risk quotient (RQ) >1 for one or more antibiotics.

  7. Bacterial community structure transformed after thermophilically composting human waste in Haiti

    PubMed Central

    Kramer, Sasha; Roy, Monika; Reid, Francine C.; Dubinsky, Eric A.

    2017-01-01

    Recycling human waste for beneficial use has been practiced for millennia. Aerobic (thermophilic) composting of sewage sludge has been shown to reduce populations of opportunistically pathogenic bacteria and to inactivate both Ascaris eggs and culturable Escherichia coli in raw waste, but there is still a question about the fate of most fecal bacteria when raw material is composted directly. This study undertook a comprehensive microbial community analysis of composting material at various stages collected over 6 months at two composting facilities in Haiti. The fecal microbiota signal was monitored using a high-density DNA microarray (PhyloChip). Thermophilic composting altered the bacterial community structure of the starting material. Typical fecal bacteria classified in the following groups were present in at least half the starting material samples, yet were reduced below detection in finished compost: Prevotella and Erysipelotrichaceae (100% reduction of initial presence), Ruminococcaceae (98–99%), Lachnospiraceae (83–94%, primarily unclassified taxa remained), Escherichia and Shigella (100%). Opportunistic pathogens were reduced below the level of detection in the final product with the exception of Clostridium tetani, which could have survived in a spore state or been reintroduced late in the outdoor maturation process. Conversely, thermotolerant or thermophilic Actinomycetes and Firmicutes (e.g., Thermobifida, Bacillus, Geobacillus) typically found in compost increased substantially during the thermophilic stage. This community DNA-based assessment of the fate of human fecal microbiota during thermophilic composting will help optimize this process as a sanitation solution in areas where infrastructure and resources are limited. PMID:28570610

  8. Respirometric screening of several types of manure and mixtures intended for composting.

    PubMed

    Barrena, Raquel; Turet, Josep; Busquets, Anna; Farrés, Moisès; Font, Xavier; Sánchez, Antoni

    2011-01-01

    The viability of mixtures from manure and agricultural wastes as composting sources were systematically studied using a physicochemical and biological characterization. The combination of different parameters such as C:N ratio, free air space (FAS) and moisture content can help in the formulation of the mixtures. Nevertheless, the composting process may be challenging, particularly at industrial scales. The results of this study suggest that if the respirometric potential is known, it is possible to predict the behaviour of a full scale composting process. Respiration indices can be used as a tool for determining the suitability of composting as applied to manure and complementary wastes. Accordingly, manure and agricultural wastes with a high potential for composting and some proposed mixtures have been characterized in terms of respiration activity. Specifically, the potential of samples to be composted has been determined by means of the oxygen uptake rate (OUR) and the dynamic respirometric index (DRI). During this study, four of these mixtures were composted at full scale in a system consisting of a confined pile with forced aeration. The biological activity was monitored by means of the oxygen uptake rate inside the material (OURinsitu). This new parameter represents the real activity of the process. The comparison between the potential respirometric activities at laboratory scale with the in situ respirometric activity observed at full scale may be a useful tool in the design and optimization of composting systems for manure and other organic agricultural wastes. Copyright © 2010 Elsevier Ltd. All rights reserved.

  9. Heavy metal content (Cd, Ni, Cr and Pb) in soil amendment with a low polluted biosolid

    NASA Astrophysics Data System (ADS)

    Gomez Lucas, Ignacio; Lag Brotons, Alfonso; Navarro-Pedreño, Jose; Belén Almendro-Candel, Maria; Jordán, Manuel M.; Bech, Jaume; Roca, Nuria

    2016-04-01

    The progressively higher water quality standards in Europe has led to the generation of large quantities of sewage sludge derived from wastewater treatment (Fytili and Zabaniotou 2008). Composting is an effective method to minimize these risks, as pathogens are biodegraded and heavy metals are stabilized as a result of organic matter transformations (Barker and Bryson 2002; Noble and Roberts 2004). Most of the studies about sewage sludge pollution are centred in medium and high polluted wastes. However, the aim of this study was to assess the effects on soil heavy metal content of a low polluted sewage sludge compost in order to identify an optimal application rate based in heavy metal concentration under a period of cultivation of a Mediterranean horticultural plant (Cynara carducnculus). The experiment was done between January to June: rainfall was 71 mm, the volume of water supplied every week was 10.5 mm, mean air temperatures was 14.2, 20.4 (maximum), and 9.2◦C (minimum). The soil was a clay-loam anthrosol (WRB 2006). The experimental plot (60 m2) was divided into five subplots with five treatments corresponding to 0, 2, 4, 6, and 8 kg compost/m2. Three top-soil (first 20 cm) samples from each treatment were taken (January, April and June) and these parameters were analysed: pH, electrical conductivity, organic matter and total content of heavy metals (microwave acid digestion followed by AAS-spectrometry determination). The results show that sewage sludge compost treatments increase the organic matter content and salinity (electrical conductivity of the soils) and diminish the pH. Cd and Ni total content in top-soil was affected and both slightly reduce their concentration. Pb and Cr show minor changes. In general, the application of this low polluted compost may affect the mobility of Cd and Ni due to the pH modification and the water added by irrigation along time but Pb and Cr remain their content in the top-soil. References Barker, A.V., and G.M. Bryson. 2002. "Bioremediation of Heavy Metals and Organic Toxicants by Composting." The Scientific World Journal 2: 407-420. Fytili, D., and A. Zabaniotou. 2008. "Utilization of Sewage Sludge in EU Application of Old and New Methods - A Review." Renewable and Sustainable Energy Reviews 12: 116-140. Noble, R., and S.J. Roberts. 2004. "Eradication of Plant Pathogens and Nematodes during composting: A Review." Plant Patology 53: 548-568.

  10. Role of biochar as an additive in organic waste composting.

    PubMed

    Sanchez-Monedero, M A; Cayuela, M L; Roig, A; Jindo, K; Mondini, C; Bolan, N

    2018-01-01

    The use of biochar in organic waste composting has attracted interest in the last decade due to the environmental and agronomical benefits obtained during the process. Biochar presents favourable physicochemical properties, such as large porosity, surface area and high cation exchange capacity, enabling interaction with major nutrient cycles and favouring microbial growth in the composting pile. The enhanced environmental conditions can promote a change in the microbial communities that can affect important microbially mediated biogeochemical cycles: organic matter degradation and humification, nitrification, denitrification and methanogenesis. The main benefits of the use of biochar in composting are reviewed in this article, with special attention to those related to the process performance, compost microbiology, organic matter degradation and humification, reduction of N losses and greenhouse gas emissions and fate of heavy metals. Crown Copyright © 2017. Published by Elsevier Ltd. All rights reserved.

  11. Fate of pharmaceuticals and pesticides in fly larvae composting.

    PubMed

    Lalander, C; Senecal, J; Gros Calvo, M; Ahrens, L; Josefsson, S; Wiberg, K; Vinnerås, B

    2016-09-15

    A novel and efficient organic waste management strategy currently gaining great attention is fly larvae composting. High resource recovery efficiency can be achieved in this closed-looped system, but pharmaceuticals and pesticides in waste could potentially accumulate in every loop of the treatment system and spread to the environment. This study evaluated the fate of three pharmaceuticals (carbamazepine, roxithromycin, trimethoprim) and two pesticides (azoxystrobin, propiconazole) in a fly larvae composting system and in a control treatment with no larvae. It was found that the half-life of all five substances was shorter in the fly larvae compost (<10% of control) and no bioaccumulation was detected in the larvae. Fly larvae composting could thus impede the spread of pharmaceuticals and pesticides into the environment. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.

  12. Plant growth-promoting bacteria for phytostabilization of mine tailings.

    PubMed

    Grandlic, Christopher J; Mendez, Monica O; Chorover, Jon; Machado, Blenda; Maier, Raina M

    2008-03-15

    Eolian dispersion of mine tailings in arid and semiarid environments is an emerging global issue for which economical remediation alternatives are needed. Phytostabilization, the revegetation of these sites with native plants, is one such alternative. Revegetation often requires the addition of bulky amendments such as compost which greatly increases cost. We report the use of plant growth-promoting bacteria (PGPB) to enhance the revegetation of mine tailings and minimize the need for compost amendment. Twenty promising PGPB isolates were used as seed inoculants in a series of greenhouse studies to examine revegetation of an extremely acidic, high metal contenttailings sample previously shown to require 15% compost amendment for normal plant growth. Several isolates significantly enhanced growth of two native species, quailbush and buffalo grass, in tailings. In this study, PGPB/compost outcomes were plant specific; for quailbush, PGPB were most effective in combination with 10% compost addition while for buffalo grass, PGPB enhanced growth in the complete absence of compost. Results indicate that selected PGPB can improve plant establishment and reduce the need for compost amendment. Further, PGPB activities necessary for aiding plant growth in mine tailings likely include tolerance to acidic pH and metals.

  13. Plant Growth-Promoting Bacteria for Phytostabilization of Mine Tailings

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Grandlic, C.J.; Mendez, M.O.; Chorover, J.

    2009-05-19

    Eolian dispersion of mine tailings in arid and semiarid environments is an emerging global issue for which economical remediation alternatives are needed. Phytostabilization, the revegetation of these sites with native plants, is one such alternative. Revegetation often requires the addition of bulky amendments such as compost which greatly increases cost. We report the use of plant growth-promoting bacteria (PGPB) to enhance the revegetation of mine tailings and minimize the need for compost amendment. Twenty promising PGPB isolates were used as seed inoculants in a series of greenhouse studies to examine revegetation of an extremely acidic, high metal content tailings samplemore » previously shown to require 15% compost amendment for normal plant growth. Several isolates significantly enhanced growth of two native species, quailbush and buffalo grass, in tailings. In this study, PGPB/compost outcomes were plant specific; for quailbush, PGPB were most effective in combination with 10% compost addition while for buffalo grass, PGPB enhanced growth in the complete absence of compost. Results indicate that selected PGPB can improve plant establishment and reduce the need for compost amendment. Further, PGPB activities necessary for aiding plant growth in mine tailings likely include tolerance to acidic pH and metals.« less

  14. Windrow co-composting of natural casings waste with sheep manure and dead leaves.

    PubMed

    Makan, Abdelhadi

    2015-08-01

    After studying the waste management opportunities in small and medium companies of natural casings, composting has proved more viable and cost effective solution for the valorization of these types of waste, but its feasibility depends on the final product value. This paper investigated a pilot scale program for the windrow co-composting of natural casings waste with sheep manure and dead leaves incorporation. Processing, characterization and application of the final compost were described and the final compost was analyzed for pathogens, metals, nutrients, maturity, and agronomic parameters. The results showed that all test result levels were below the limits specified in the EPA regulations published in Title 40, Section 503, of the Code of Federal Regulations (40 CFR 503). Moreover, the agronomic value tests which include nutrients, organic matter, pH, electrical conductivity, etc. showed that the compost had high organic-matter content and low salt content, all of which indicate good compost characteristics. The ratio of nitrogen (N), phosphorus (P), and potassium (K), or NPK ratio, was measured at 1.6-0.9-0.7. Reported units are consistent with those found on fertilizer formulations. Copyright © 2015 Elsevier Ltd. All rights reserved.

  15. Behaviors of heavy metals (Cd, Cu, Ni, Pb and Zn) in soil amended with composts.

    PubMed

    Gusiatin, Zygmunt Mariusz; Kulikowska, Dorota

    2016-09-01

    This study investigated how amendment with sewage sludge compost of different maturation times (3, 6, 12 months) affected metal (Cd, Cu, Ni, Pb, Zn) bioavailability, fractionation and redistribution in highly contaminated sandy clay soil. Metal transformations during long-term soil stabilization (35 months) were determined. In the contaminated soil, Cd, Ni and Zn were predominately in the exchangeable and reducible fractions, Pb in the reducible fraction and Cu in the reducible, exchangeable and oxidizable fractions. All composts decreased the bioavailability of Cd, Ni and Zn for up to 24 months, which indicates that cyclic amendment with compost is necessary. The bioavailability of Pb and Cu was not affected by compost amendment. Based on the reduced partition index (IR), metal stability in amended soil after 35 months of stabilization was in the following order: Cu > Ni = Pb > Zn > Cd. All composts were more effective in decreasing Cd, Ni and Zn bioavailability than in redistributing the metals, and increasing Cu redistribution more than that of Pb. Thus, sewage sludge compost of as little as 3 months maturation can be used for cyclic amendment of multi-metal-contaminated soil.

  16. Highly organic natural media as permeable reactive barriers: TCE partitioning and anaerobic degradation profile in eucalyptus mulch and compost.

    PubMed

    Öztürk, Zuhal; Tansel, Berrin; Katsenovich, Yelena; Sukop, Michael; Laha, Shonali

    2012-10-01

    Batch and column experiments were conducted with eucalyptus mulch and commercial compost to evaluate suitability of highly organic natural media to support anaerobic decomposition of trichloroethylene (TCE) in groundwater. Experimental data for TCE and its dechlorination byproducts were analyzed with Hydrus-1D model to estimate the partitioning and kinetic parameters for the sequential dechlorination reactions during TCE decomposition. The highly organic natural media allowed development of a bioactive zone capable of decomposing TCE under anaerobic conditions. The first order TCE biodecomposition reaction rates were 0.23 and 1.2d(-1) in eucalyptus mulch and compost media, respectively. The retardation factors in the eucalyptus mulch and compost columns for TCE were 35 and 301, respectively. The results showed that natural organic soil amendments can effectively support the anaerobic bioactive zone for remediation of TCE contaminated groundwater. The natural organic media are effective environmentally sustainable materials for use in permeable reactive barriers. Copyright © 2012 Elsevier Ltd. All rights reserved.

  17. Effects of Quality Composts and Other Organic Amendments and Their Humic and Fulvic Acid fractions on the Germination of Slickspot Peppergrass (Lepidium Papilliferum) and Switchgrass in Various Experimental Conditions

    DTIC Science & Technology

    2012-01-01

    Figure 2. Effect of compost HAs at different concentrations on the number of germinated seeds of Shawnee switchgrass expressed as percentages of...and C/P20%) on the early growth of these switchgrass species. 2. Experimental 2.1. Germination N. 60 seeds of each switchgrass species were...the germination process. In this experiment, n. 60 seeds of each switchgrass species were previously soaked in distilled water for 12 h, successively

  18. Manipulation of the rhizosphere microbial community through application of a new bio-organic fertilizer improves watermelon quality and health

    PubMed Central

    Huang, Jing; Chen, Zhe; Nie, Yuanjun; Wang, Changbiao

    2018-01-01

    Bio-organic fertilizers (BOFs) combine functional microbes with a suitable substrate and have been shown to effectively suppress soil-borne diseases and promote plant growth. Here, we developed a novel bio-organic fertilizer (BOF) by fermentation of a cow plus chicken manure (M) compost using Fen-liquor Daqu (FLD) as a fermentation starter and compared the compositions of bacterial and fungal communities in the rhizosphere soil of watermelon plants after treatment with different fertilizers. Further, we aimed to explore the mechanisms underlying plant-promoting and disease (Fusarium wilt)-suppressing activities of each rhizosphere microbial community. The microbial communities of soil amended with cow plus chicken manure compost (S+M), soil amended with the BOF (S+BOF), and untreated control soil (S) without plants were analyzed through sequence analysis using the Illumina MiSeq platform. The results showed that a new microbial community was formed in the manure compost after fermentation by the Daqu. Application of the BOF to the soil induced remarkable changes in the rhizosphere microbial communities, with increased bacterial diversity and decreased fungal diversity. Most importantly, S+BOF showed the lowest abundance of Fusarium. Moreover, watermelon quality was higher (P < 0.05) in the S+BOF than in the S+M treatment. Thus, application of the BOF favorably altered the composition of the rhizosphere microbial community, suppressing Fusarium wilt disease and promoting plant quality. PMID:29451918

  19. Manipulation of the rhizosphere microbial community through application of a new bio-organic fertilizer improves watermelon quality and health.

    PubMed

    Zhao, Jia; Liu, Jiang; Liang, Hong; Huang, Jing; Chen, Zhe; Nie, Yuanjun; Wang, Changbiao; Wang, Yuguo

    2018-01-01

    Bio-organic fertilizers (BOFs) combine functional microbes with a suitable substrate and have been shown to effectively suppress soil-borne diseases and promote plant growth. Here, we developed a novel bio-organic fertilizer (BOF) by fermentation of a cow plus chicken manure (M) compost using Fen-liquor Daqu (FLD) as a fermentation starter and compared the compositions of bacterial and fungal communities in the rhizosphere soil of watermelon plants after treatment with different fertilizers. Further, we aimed to explore the mechanisms underlying plant-promoting and disease (Fusarium wilt)-suppressing activities of each rhizosphere microbial community. The microbial communities of soil amended with cow plus chicken manure compost (S+M), soil amended with the BOF (S+BOF), and untreated control soil (S) without plants were analyzed through sequence analysis using the Illumina MiSeq platform. The results showed that a new microbial community was formed in the manure compost after fermentation by the Daqu. Application of the BOF to the soil induced remarkable changes in the rhizosphere microbial communities, with increased bacterial diversity and decreased fungal diversity. Most importantly, S+BOF showed the lowest abundance of Fusarium. Moreover, watermelon quality was higher (P < 0.05) in the S+BOF than in the S+M treatment. Thus, application of the BOF favorably altered the composition of the rhizosphere microbial community, suppressing Fusarium wilt disease and promoting plant quality.

  20. High-Iron Biosolids Compost-Induced Changes in Lead and Arsenic Speciation and Bioaccessibility in Co-contaminated Soils

    EPA Science Inventory

    The safety of urban farming has been questioned due to the potential for contamination in urban soils. A laboratory incubation, a field trial, and a second laboratory incubation were conducted to test the ability of high-Fe biosolids–based composts to reduce the bioaccessibil...

  1. Effect of turning frequency and season on composting materials from swine high-rise facilities

    USDA-ARS?s Scientific Manuscript database

    Composting of swine manure has several advantages, liquid slurries are converted to solid, the total volume of material is reduced and the stabilized product is more easily transported off-site. Despite this, swine waste is generally stored, treated and applied in its liquid form. The high-rise fini...

  2. Co-composting of spent coffee ground with olive mill wastewater sludge and poultry manure and effect of Trametes versicolor inoculation on the compost maturity.

    PubMed

    Hachicha, Ridha; Rekik, Olfa; Hachicha, Salma; Ferchichi, Mounir; Woodward, Steve; Moncef, Nasri; Cegarra, Juan; Mechichi, Tahar

    2012-07-01

    The co-composting of spent coffee grounds, olive mill wastewater sludge and poultry manure was investigated on a semi-industrial scale. In order to reduce the toxicity of the phenolic fraction and to improve the degree of composting humification, composts were inoculated with the white-rot fungus Trametes versicolor in the early stages of the maturation phase. During composting, a range of physico-chemical parameters (temperature and both organic matter and C/N reduction), total organic carbon, total nitrogen, elemental composition, lignin degradation and spectroscopic characteristics of the humic acids (HAs) were determined; impacts of the composting process on germination index of Hordeum vulgare and Lactuca sativa were assessed. The coffee waste proved to be a highly compostable feedstock, resulting in mature final compost with a germination index of 120% in less than 5 months composting. In addition, inoculation with T. versicolor led to a greater degree of aromatization of HA than in the control pile. Moreover, in the inoculated mixture, lignin degradation was three times greater and HA increased by 30% (P<0.05), compared to the control pile. In the T. versicolor inoculated mixture, the averages of C and N were significantly enhanced in the HA molecules (P<0.05), by 26% and 22%, respectively. This improvement in the degree of humification was confirmed by the ratio of optical densities of HA solutions at 465 and 665 nm which was lower for HA from the treated mixture (4.5) than that from the control pile (5.4). Copyright © 2012 Elsevier Ltd. All rights reserved.

  3. Workers' exposure to bioaerosols from three different types of composting facilities.

    PubMed

    Bonifait, Laetitia; Marchand, Geneviève; Veillette, Marc; M'Bareche, Hamza; Dubuis, Marie-Eve; Pépin, Carole; Cloutier, Yves; Bernard, Yves; Duchaine, Caroline

    2017-10-01

    Composting is a natural dynamic biological process used to valorise putrescible organic matter. The composting process can involve vigorous movements of waste material piles, which release high concentrations of bioaerosols into the surrounding environment. There is a lack of knowledge concerning the dispersal of airborne microorganisms emitted by composting plants (CP) as well as the potential occupational exposure of composting workers. The aim of this study was to investigate the workers exposure to bioaerosols during working activities in three different types of composting facilities (domestic, manure, carcass) using two different quantification methods (cultivation and qPCR) for bacteria and moulds concentrations. As expected, even if there are differences between all CP frameworks, independently of the type of the raw compost used, the production of bioaerosols increases significantly during handling activities. Important concentrations of mesophilic moulds and mesophilic bacteria were noted in the working areas with a respective maximal concentration of 2.3 × 10 5 CFU/m 3 and 1.6 × 10 5 CFU/m 3 . A. fumigatus and thermophilic Actinomycetes were also detected in all working areas for the 3 CP. This study emphases the risks for workers to being in contact with aerosolized pathogens such as Mycobacterium and Legionella and more specifically, L. pneumophila. The presence of high concentration of these bacteria in CP suggests a potential occupational health risk. This study may lead to recommendations for the creation of limits for occupational exposure. There is a need for identifying the standards exposure limits to bioaerosols in CP and efficient recommendation for a better protection of workers' health.

  4. Bacterial population dynamics in recycled mushroom compost leachate.

    PubMed

    Safianowicz, Katarzyna; Bell, Tina L; Kertesz, Michael A

    2018-06-01

    Mushrooms are an important food crop throughout the world. The most important edible mushroom is the button mushroom (Agaricus bisporus), which comprises about 30% of the global mushroom market. This species is cultivated commercially on a selective compost that is produced predominantly from wheat straw/stable bedding and chicken manure, at a moisture content of around 70% (w/w) and temperatures of up to 80 °C. Large volumes of water are required to achieve this moisture content, and many producers therefore collect leachate from the composting windrows and bunkers (known in the industry as "goody water") and reuse it to wet the raw ingredients. This has the benefit of recycling and saving water and has the potential to enrich beneficial microorganisms that stimulate composting, but also the risk of enhancing pathogen populations that could reduce productivity. Here, we show by 16S rRNA gene sequencing that mushroom compost leachate contains a high diversity of unknown microbes, with most of the species found affiliated with the phyla Firmicutes and Proteobacteria. However, by far the most abundant species was the thermophile Thermus thermophilus, which made up approximately 50% of the bacterial population present. Although the leachate was routinely collected and stored in an aerated central storage tank, many of the bacterial species found in leachate were facultative anaerobes. However, there was no evidence for sulfide production, and no sulfate-reducing bacterial species were detected. Because T. thermophilus is important in the high temperature phase of composting, the use of recycled leachate as an inoculum for the raw materials is likely to be beneficial for the composting process.

  5. Comparison of the composting process using ear corn residue and three other conventional bulking agents during cow manure composting under high-moisture conditions.

    PubMed

    Hanajima, Dai

    2014-10-01

    To elucidate the characteristics of ear corn residue as a bulking agent, the composting process using this residue was compared with processes using three other conventional materials such as sawdust, wheat straw and rice husk, employing a bench-scale composting reactor. As evaluated via biochemical oxygen demand (BOD), ear corn residue contains 3.3 and 2.0 times more easily digestible materials than sawdust and rice husk, respectively. In addition, mixing ear corn residue with manure resulted in reduced bulk density, which was the same as that of wheat straw and was 0.58 and 0.67 times lower than that of sawdust and a rice husk mixture, respectively. To evaluate temperature generation during the composting process, the maximum temperature and area under the temperature curve (AUCTEMP) were compared among the mixed composts of four bulking agents. Maximum temperature (54.3°C) as well as AUCTEMP (7310°C●h) of ear corn residue were significantly higher than those of sawdust and rice husk (P<0.05), and they are similar to that of wheat straw mixed compost. Along with the value of AUCTEMP, the highest organic matter losses of 31.1% were observed in ear corn residue mixed compost, followed by wheat straw, saw dust and rice husk. © 2014 Japanese Society of Animal Science.

  6. Co-composting of livestock manure with rice straw: characterization and establishment of maturity evaluation system.

    PubMed

    Qian, Xiaoyong; Shen, Genxiang; Wang, Zhenqi; Guo, Chunxia; Liu, Yangqing; Lei, Zhongfang; Zhang, Zhenya

    2014-02-01

    Composting is considered to be a primary treatment method for livestock manure and rice straw, and high degree of maturity is a prerequisite for safe land application of the composting products. In this study pilot-scale experiments were carried out to characterize the co-composting process of livestock manure with rice straw, as well as to establish a maturity evaluation index system for the composts obtained. Two pilot composting piles with different feedstocks were conducted for 3 months: (1) swine manure and rice straw (SM-RS); and (2) dairy manure and rice straw (DM-RS). During the composting process, parameters including temperature, moisture, pH, total organic carbon (TOC), organic matter (OM), different forms of nitrogen (total, ammonia and nitrate), and humification index (humic acid and fulvic acid) were monitored in addition to germination index (GI), plant growth index (PGI) and Solvita maturity index. OM loss followed the first-order kinetic model in both piles, and a slightly faster OM mineralization was achieved in the SM-RS pile. Also, the SM-RS pile exhibited slightly better performance than the DM-RS according to the evolutions of temperature, OM degradation, GI and PGI. The C/N ratio, GI and PGI could be included in the maturity evaluation index system in which GI>120% and PGI>1.00 signal mature co-composts. Copyright © 2013 Elsevier Ltd. All rights reserved.

  7. Improving Ammonium and Nitrate Release from Urea Using Clinoptilolite Zeolite and Compost Produced from Agricultural Wastes

    PubMed Central

    Omar, Latifah; Ahmed, Osumanu Haruna; Majid, Nik Muhamad Ab.

    2015-01-01

    Improper use of urea may cause environmental pollution through NH3 volatilization and NO3 − leaching from urea. Clinoptilolite zeolite and compost could be used to control N loss from urea by controlling NH4 + and NO3 − release from urea. Soil incubation and leaching experiments were conducted to determine the effects of clinoptilolite zeolite and compost on controlling NH4 + and NO3 − losses from urea. Bekenu Series soil (Typic Paleudults) was incubated for 30, 60, and 90 days. A soil leaching experiment was conducted for 30 days. Urea amended with clinoptilolite zeolite and compost significantly reduced NH4 + and NO3 − release from urea (soil incubation study) compared with urea alone, thus reducing leaching of these ions. Ammonium and NO3 − leaching losses during the 30 days of the leaching experiment were highest in urea alone compared with urea with clinoptilolite zeolite and compost treatments. At 30 days of the leaching experiment, NH4 + retention in soil with urea amended with clinoptilolite zeolite and compost was better than that with urea alone. These observations were because of the high pH, CEC, and other chemical properties of clinoptilolite zeolite and compost. Urea can be amended with clinoptilolite zeolite and compost to improve NH4 + and NO3 − release from urea. PMID:25793220

  8. Effective pine bark composting with the Dome Aeration Technology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Trois, Cristina; Polster, Andreas

    2007-07-01

    In South Africa garden refuse is primarily disposed of in domestic landfills. Due to the large quantities generated, any form of treatment would be beneficial for volume reduction, waste stabilization and resource recovery. Dome Aeration Technology (DAT) is an advanced process for aerobic biological degradation of garden refuse and general waste [Paar, S., Brummack, J., Gemende, B., 1999a. Advantages of dome aeration in mechanical-biological waste treatment. In: Proceedings of the 7th International Waste Management and Landfill Symposium, Cagliari, 4-8 October 1999; Paar, S., Brummack, J., Gemende, B., 1999b. Mechanical-biological waste stabilization by the dome aeration method. Environment Protection Engineering 25more » (3/99). Mollekopf, N., Brummack, J., Paar, S., Vorster, K., 2002. Use of the Dome Aeration Technology for biochemical stabilization of waste prior to landfilling. In: Proceedings of the Wastecon 2002, Waste Congress and Exhibition, Durban, South Africa.]. It is a non-reactor open windrow composting process, with the main advantage being that the input material needs no periodic turning. A rotting time of only 3-4 months indicates the high efficiency. Additionally, the low capital/operational costs, low energy inputs and limited plant requirements provide potential for use in aerobic refuse stabilization. The innovation in the DAT process is the passive aeration achieved by thermally driven advection through open windrows caused by temperature differences between the degrading material and the outside environment. This paper investigates the application of Dome Aeration Technology to pine bark composting as part of an integrated waste management strategy. A full-scale field experiment was performed at the Bisasar Road Landfill Site in Durban to assess the influence of climate, waste composition and operational conditions on the process. A test windrow was constructed and measurements of temperature and airflow through the material were taken. The process monitoring revealed that prevailing climatic conditions in a subtropical location do not affect the high efficiency of this technology. However, the composition of the input material can be detrimental for production of high quality compost because of a lack of nitrate.« less

  9. Improved sample treatment for the determination of 17 strong sorbed quinolone antibiotics from compost by ultra high performance liquid chromatography tandem mass spectrometry.

    PubMed

    Dorival-García, N; Labajo-Recio, C; Zafra-Gómez, A; Juárez-Jiménez, B; Vílchez, J L

    2015-06-01

    The use of compost from sewage sludge for agricultural application is nowadays increasing, since composting is recognized as one of the most important recycling options for this material, being a source of nutrients for plants but also of contamination by persistent pollutants. In the present work, a multi-residue analytical method for the determination of 17 quinolone antibiotic residues in compost using multivariate optimization strategies and ultra high performance liquid chromatography-tandem mass spectrometry has been developed. It is based on the use of microwave-assisted extraction at drastic conditions with ACN:m-phosphoric acid (1% w/v) for 5 min at 120°C, in order to achieve a quantitative extraction of the compounds (>76% of extraction recovery). Extracts were cleaned-up by salt-assisted liquid-liquid extraction (SALLE) with NaCl at pH 1.5 (with HClO4) and then using a dispersive sorbent (PSA). After LC separation, the MS conditions, in positive electrospray ionization mode (ESI), were individually optimized for each analyte to obtain maximum sensitivity in the selected reaction monitoring mode (SRM). The analytes were separated in less than 7 min. Cincophen was used as surrogate standard. The limits of detection ranged from 0.2 to 0.5 ng g(-1), and the limits of the quantification from 0.5 to 1.5 ng g(-1), while intra- and inter-day variability (% RSD) was under 7% in all cases. A recovery assay was performed with spiked samples. Recoveries ranging from 95.3% to 106.2% were obtained. Cleanup procedure reduced significantly matrix effects, which constitutes an important achievement, considering the important drawbacks of matrix components in quality and validation parameters. This method was applied to several commercial compost samples. Only 6 of the studied antibiotics were not detected in any of the samples. The antibiotics with the highest concentrations were ciprofloxacin (836 ng g(-1)), ofloxacin (719 ng g(-1)), and enrofloxacin (674 ng g(-1)), which were also the only ones found in all the analyzed samples. The results showed that this method could also be potentially adapted for the analysis of other strong sorbed basic pharmaceuticals in solid environmental matrices. Copyright © 2015 Elsevier B.V. All rights reserved.

  10. The effects of composting on the nutritional composition of fibrous bio-regenerative life support systems (BLSS) plant waste residues and its impact on the growth of Nile tilapia ( Oreochromis niloticus)

    NASA Astrophysics Data System (ADS)

    Gonzales, John M.; Lowry, Brett A.; Brown, Paul B.; Beyl, Caula A.; Nyochemberg, Leopold

    2009-04-01

    Utilization of bio-regenerative life support systems (BLSS) plant waste residues as a nutritional source by Nile tilapia ( Oreochromis niloticus) has proven problematic as a result of high concentrations of fibrous compounds in the plant waste residues. Nutritional improvement of plant waste residues by composting with the oyster mushroom ( Pleurotus ostreatus), and the effects on growth and nutrient utilization of Nile tilapia fed such residues were evaluated. Five Nile tilapia (mean weight = 70.9 ± 3.1 g) were stocked in triplicate aquaria and fed one of two experimental diets, cowpea (CP) and composted cowpea (CCP), twice daily for a period of 8 weeks. Composting of cowpea residue resulted in reduced concentrations of nitrogen-free extract, hemi-cellulose and trypsin inhibitor activity, though trypsin inhibitor activity remained high. Composting did not reduce crude fiber, lignin, or cellulose concentrations in the diet. No significant differences ( P < 0.05) were observed in weight gain, specific growth rate, survival rate, daily consumption, and food conversion ratio between tilapia fed CP and CCP. These results suggest that P. ostreatus is not a suitable candidate for culture in conjunction with the culture of Nile tilapia. Additional work is needed to determine what, if any, benefit can be obtained from incorporating composted residue as feed for Nile tilapia.

  11. Critical evaluation of municipal solid waste composting and potential compost markets.

    PubMed

    Farrell, M; Jones, D L

    2009-10-01

    Mechanical biological treatment (MBT) of mixed waste streams is becoming increasingly popular as a method for treating municipal solid waste (MSW). Whilst this process can separate many recyclates from mixed waste, the resultant organic residue can contain high levels of heavy metals and physical and biological contaminants. This review assesses the potential end uses and sustainable markets for this organic residue. Critical evaluation reveals that the best option for using this organic resource is in land remediation and restoration schemes. For example, application of MSW-derived composts at acidic heavy metal contaminated sites has ameliorated soil pollution with minimal risk. We conclude that although MSW-derived composts are of low value, they still represent a valuable resource particularly for use in post-industrial environments. A holistic view should be taken when regulating the use of such composts, taking into account the specific situation of application and the environmental pitfalls of alternative disposal routes.

  12. Physico-chemical analysis of tannery solid waste and structural characterization of its isolated humic acids after composting.

    PubMed

    Amir, Soumia; Benlboukht, Fatima; Cancian, Nadia; Winterton, Peter; Hafidi, Mohamed

    2008-12-30

    In Marrakech, solid by-products from tanneries are highly polluting, generating large amounts of nitrogenous and organic matter. In the present study composting is tested as a cost-effective method for waste management to overcome many of the environmental hazards and produce a stable, rich material for soil fertilization. Two composting trials were conducted after neutralization by ammonia or lime. The aim of the neutralization was to avoid the antimicrobial effects of the acidity in the tannery waste, thus ensuring correct composting. Different techniques such as elemental analysis and 13C NMR spectroscopy were applied to analyse humic acids isolated from raw and composted materials, and to monitor the process of tannery waste composting, and the stability and maturity of the final product according to the means of neutralization. Comparison of data showed similar behaviour in both trials, but the composting process appeared to be more complete following neutralization with lime. The C, H and N content decreased, while the O increased. The FTIR and 13C NMR spectra show the decrease of aliphatic compounds demonstrated by the reduction of absorbance around 2922cm(-1) and of the resonance in the C-alkyl area around 0-55ppm. The humic acids newly formed during composting were richer in the O-N alkyl and oxidized aromatic structures that increased almost twofold on composting after neutralization with lime. The first principal component axis PC1 (54%) separated C-aliphatic, C-carboxylic and other less stable and less polycondensed compounds such as polyphenols from the more polycondensed O-N alkyl and oxidized C-aromatic compounds.

  13. Effects of biosolids and compost amendment on chemistry of soils contaminated with copper from mining activities.

    PubMed

    Sidhu, Virinder; Sarkar, Dibyendu; Datta, Rupali

    2016-03-01

    Several million metric tons of mining wastes, called stamp sands, were generated in the Upper Peninsula of Michigan during extensive copper (Cu) mining activities in the past. These materials, containing large amounts of Cu, were discharged into various offshoots of Lake Superior. Due to evidences of Cu toxicity on aquatic organisms, in due course, the materials were dredged and dumped on lake shores, thus converting these areas into vast, fallow lands. Erosion of these Cu-contaminated stamp sands back to the lakes is severely affecting aquatic life. A lack of uniform vegetation cover on stamp sands is facilitating this erosion. Understanding the fact that unless the stamp sands are fertilized to the point of sustaining vegetation growth, the problem with erosion and water quality degradation will continue, amending the stamp sands with locally available biosolids and composts, was considered. The purpose of the reported study was to assess potential effects of such organic fertilizer amendments on soil quality. As the first step of a combined laboratory and greenhouse study, a 2-month-long incubation experiment was performed to investigate the effects of biosolids and compost addition on the soil nutrient profile of stamp sands and organic matter content. Results showed that both biosolids and compost amendments resulted in significant increase in nitrogen and phosphorus concentrations and organic matter contents of stamp sands. Sequential extraction data demonstrated that Cu was mostly present as bound forms in stamp sands, and there was no significant increase in the plant available fraction of Cu because of fertilizer application.

  14. Anaerobic Digestion in a Flooded Densified Leachbed

    NASA Technical Reports Server (NTRS)

    Chynoweth, David P.; Teixeira, Arthur A.; Owens, John M.; Haley, Patrick J.

    2009-01-01

    A document discusses the adaptation of a patented biomass-digesting process, denoted sequential batch anaerobic composting (SEBAC), to recycling of wastes aboard a spacecraft. In SEBAC, high-solids-content biomass wastes are converted into methane, carbon dioxide, and compost.

  15. ANIMAL WASTE COMPOSTING WITH CARBONACEOUS MATERIAL

    EPA Science Inventory

    High rate thermophilic composting of animal wastes with added carbonaceous waste materials followed by land application has considerable potential as a means of treatment and useful final disposal of these wastes. The process described in this report utilizes a mechanically mixed...

  16. Effects of mixing and covering with mature compost on gaseous emissions during composting.

    PubMed

    Luo, Wen Hai; Yuan, Jing; Luo, Yi Ming; Li, Guo Xue; Nghiem, Long D; Price, William E

    2014-12-01

    This study investigated effects of mature compost on gaseous emissions during composting using pig manure amended with corn stalks. Apart from a control treatment, three treatments were conducted with the addition of 5% (wet weight of raw materials) of mature compost: (a) mixing raw materials with mature compost at the beginning of composting; (b) covering raw materials with mature compost throughout the experimental period; and (c) covering raw materials with mature compost at the start of composting, but incorporating it into composting pile on day 6 of composting. Mature compost used for the last treatment was inoculated with 2% (wet weight) of raw materials of strain M5 (a methanotrophic bacterium) solution. During 30-d of composting, three treatments with the addition of mature compost could reduce CH4 emission by 53-64% and N2O emission by 43-71%. However, covering with mature compost throughout the experimental period increased cumulative NH3 emission by 61%, although it could reduce 34% NH3 emission in the first 3d. Inoculating strain M5 in mature compost covered on the top of composting pile within first 6d enhanced CH4 oxidation, but simultaneously increased N2O emission. In addition, mixing with mature compost could improve compost maturity. Given the operational convenience in practice, covering with mature compost and then incorporating it into composting pile is a suitable approach to mitigate gaseous emissions during composting. Copyright © 2014. Published by Elsevier Ltd.

  17. Production of nitrate-rich compost from the solid fraction of dairy manure by a lab-scale composting system.

    PubMed

    Sun, Zhao-Yong; Zhang, Jing; Zhong, Xiao-Zhong; Tan, Li; Tang, Yue-Qin; Kida, Kenji

    2016-05-01

    In the present study, we developed an efficient composting process for the solid fraction of dairy manure (SFDM) using lab-scale systems. We first evaluated the factors affecting the SFDM composting process using different thermophilic phase durations (TPD, 6 or 3days) and aeration rates (AR, 0.4 or 0.2 lmin(-1)kg(-1)-total solid (TS)). Results indicated that a similar volatile total solid (VTS) degradation efficiency (approximately 60%) was achieved with a TPD of 6 or 3days and an AR of 0.4 l min(-1) kg(-1)-TS (hereafter called higher AR), and a TPD of 3days resulted in less N loss caused by ammonia stripping. N loss was least when AR was decreased to 0.2 l min(-1) kg(-1)-TS (hereafter called lower AR) during the SFDM composting process. However, moisture content (MC) in the composting pile increased at the lower AR because of water production by VTS degradation and less water volatilization. Reduced oxygen availability caused by excess water led to lower VTS degradation efficiency and inhibition of nitrification. Adding sawdust to adjust the C/N ratio and decrease the MC improved nitrification during the composing processes; however, the addition of increasing amounts of sawdust decreased NO3(-) concentration in matured compost. When an improved composting reactor with a condensate removal and collection system was used for the SFDM composting process, the MC of the composting pile was significantly reduced, and nitrification was detected 10-14days earlier. This was attributed to the activity of ammonia-oxidizing bacteria (AOB). Highly matured compost could be generated within 40-50days. The VTS degradation efficiency reached 62.0% and the final N content, NO3(-) concentration, and germination index (GI) at the end of the composting process were 3.3%, 15.5×10(3)mg kg(-1)-TS, and 112.1%, respectively. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. Reclamation of a burned forest soil with municipal waste compost: macronutrient dynamic and improved vegetation cover recovery.

    PubMed

    Guerrero, C; Gómez, I; Moral, R; Mataix-Solera, J; Mataix-Beneyto, J; Hernández, T

    2001-02-01

    The reclamation of burned soils in Mediterranean environments is of paramount importance in order to increase the levels of soil protection and minimise erosion and soil loss. The changes produced in the content of total organic carbon (TOC), N (Kjeldahl) and available P, K, Ca and Mg by the addition of different doses of a municipal solid waste compost to a burned soil were evaluated during one year. The effect of organic amendment on the improvement in the vegetation cover after one year was also evaluated. The organic amendment, particularly at a high dose, increased the TOC and N-Kjeldahl content of the soil in a closely related way. The levels of available K in soil were also enhanced by the organic amendment. Although the effects on all three parameters tended to decrease with time, their values in the amended soils were higher than in the control soil, which clearly indicates the improvement in the chemical quality of the soil brought about by the organic amendment. The available P content did not seem to be influenced by organic treatment, while available Mg levels were higher than in the control during the first 4 months following organic amendment. The application of compost to the burned soil improved its fertility and favoured rapid vegetal recovery, thus minimising the risk of soil erosion.

  19. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Korcak, R.F.

    Open pollinated York Imperial apple (Malus domestica Borkh.) seeds were germinated and grown for a period of 7 months in: (1) sand with complete nutrient solutions added; (2) limed and unlimed soil, (3) limed and unlimed soil amended with two different sewage sludges at rates of 25, 50 or 100 dry kg ha/sup -1/. A third composted, lime stabilized sludge was added either sieved or non-sieved at the same rates. The sludge materials used were: (1) a high metal, composted sludge from Baltimore, MD (BALT); (2) a high Cd sewage sludge (CITY) and (3) a low metal, composted sewage sludgemore » from Washington, D.C. (DC). Germination was unaffected by treatments. After 7 months, the best growth was obtained from the sand plus nutrient solution media. Two of the three sludge materials increased seedling growth over that of the soil, either limed or unlimed. The BALT compost treated soils produced the lowest growth, particularly when unlimed. Elevated tissue metal levels indicated that Mn, Zn, Cu and Ni were the probable causes of reduced growth noted from the BALT compost treatment. The use of soil with or without low metal sludges as media for early apple seedling growth when compared to standard sand culture is not recommended.« less

  20. Composting plant leachate treatment by a pilot-scale, three-stage, horizontal flow constructed wetland in central Iran.

    PubMed

    Bakhshoodeh, Reza; Alavi, Nadali; Paydary, Pooya

    2017-10-01

    Handling and treatment of composting leachate is difficult and poses major burdens on composting facilities. The main goal of this study was to evaluate usage of a three-stage, constructed wetland to treat leachate produced in Isfahan composting facility. A pilot-scale, three-stage, subsurface, horizontal flow constructed wetland, planted with vetiver with a flow rate of 24 L/day and a 15-day hydraulic retention time, was used. Removal of organic matter, ammonia, nitrate, total nitrogen, suspended solids, and several heavy metals from Isfahan composting facility leachate was monitored over a 3-month period. Constructed wetland system was capable of efficiently removing BOD 5 (87.3%), COD (74.5%), ammonia (91.5%), nitrate (87.9%), total nitrogen (87.8%), total suspended solids (85.5%), and heavy metals (ranging from 70 to 90%) from the composting leachate. High contaminant removal efficiencies were achieved, but effluent still failed to meet Iranian standards for treated wastewater. This study shows that although a three-stage horizontal flow constructed wetland planted with vetiver cannot be used alone to treat Isfahan composting facility leachate, but it has the potential to be used as a leachate pre-treatment step, along with another complementary method.

  1. Enhancing Nitrogen Availability, Ammonium Adsorption-Desorption, and Soil pH Buffering Capacity using Composted Paddy Husk

    NASA Astrophysics Data System (ADS)

    Latifah, O.; Ahmed, O. H.; Abdul Majid, N. M.

    2017-12-01

    Form of nitrogen present in soils is one of the factors that affect nitrogen loss. Nitrate is mobile in soils because it does not absorb on soil colloids, thus, causing it to be leached by rainfall to deeper soil layers or into the ground water. On the other hand, temporary retention and timely release of ammonium in soils regulate nitrogen availability for crops. In this study, composted paddy husk was used in studies of soil leaching, buffering capacity, and ammonium adsorption and desorption to determine the: (i) availability of exchangeable ammonium, available nitrate, and total nitrogen in an acid soil after leaching the soil for 30 days, (ii) soil buffering capacity, and (iii) ability of the composted paddy husk to adsorb and desorb ammonium from urea. Leaching of ammonium and nitrate were lower in all treatments with urea and composted paddy husk compared with urea alone. Higher retention of soil exchangeable ammonium, available nitrate, and total nitrogen of the soils with composted paddy husk were due to the high buffering capacity and cation exchange capacity of the amendment to adsorb ammonium thus, improving nitrogen availability through temporary retention on the exchange sites of the humic acids of the composted paddy husk. Nitrogen availability can be enhanced if urea is amended with composted paddy husk.

  2. Temperature and deactivation of microbial faecal indicators during small scale co-composting of faecal matter.

    PubMed

    Germer, Jörn; Boh, Michael Yongha; Schoeffler, Marie; Amoah, Philip

    2010-02-01

    Small scale co-composting of faecal matter from dry toilet systems with shredded plant material and food waste was investigated in respect to heat development and deactivation of faecal indicators under tropical semiarid conditions. Open (uncovered) co-composting of faecal matter with shredded plant material alone did not generate temperatures high enough (<55 degrees C) to reduce the indicators sufficiently. The addition of food waste and confinement in chambers, built of concrete bricks and wooden boards, improved the composting process significantly. Under these conditions peak temperatures of up to 70 degrees C were achieved and temperatures above 55 degrees C were maintained over 2 weeks. This temperature and time is sufficient to comply with international composting regulations. The reduction of Escherichia coli, Enterococcus faecalis and Salmonella senftenberg in test containment systems placed in the core of the compost piles was very efficient, exceeding 5log10-units in all cases, but recolonisation from the cooler outer layers appeared to interfere with the sanitisation efficiency of the substrate itself. The addition of a stabilisation period by extending the composting process to over 4 months ensured that the load of E. coli was reduced to less than 10(3)cfu(-g) and salmonella were undetectable.

  3. Compared Biochar and Compost effects on plant growth and soil factors as reported for three consequent greenhouse trial setups

    NASA Astrophysics Data System (ADS)

    Schulz, H. S.; Glaser, B. G.

    2012-04-01

    Since ten years there is a major increase in research concerning biochar applications to soils trying to mimic effects known from Terra Preta do Indio (Glaser 2002). We conducted a preliminary study in which we analyzed the synergistic effects of biochar in combination with conventional and with organic fertilizers, whereas our latter experiments use biochar which was blended with fresh organic material and underwent the whole composting procedure leading to the first known composted biochars. Our first pot experiment (with two consequent growth periods without additional fertilization) helped to distinguish the effects from conventional and organic fertilizers in combination with biochar, where biochar revealed abilities for stabilizing carbon content (Total Organic and Black Carbon) and reducing nitrification. Plant weights were highest with pure compost, but biochar combined with compost (50:50) showed a sustained progression comparing second growth period's results. Those outcomes let us focus on biochar-compost-mixes. Our second greenhouse experiment concentrated on the question of the minimal biochar content to enhance plant growth and soil properties and was performed on a very poor sandy and on a richer loamy soil with rising concentrations between 0% and 1% biochar per compost. We could not find significant differences between the pure compost and the biochar amended pots. For our third experiment we tried to elevate the biochar share as high as possible and tested treatments with up to 200 Mg ha-1(eq.) in steps with up to 50% biochar content, again in poor sandy and richer loamy soil pots. The measured seed weight of applied Avena sativa L. plants showed very different results on sandy soil compared to the loamy soil. Whereas compost on loam showed a seed weight 2 times higher than on pure loam control and seed weights 1.6 times higher compared to compost with highest biochar amounts, on sand the pure compost was even slightly less productive than pure sand control (factor: 0.8) and the highest biochar applications yielded 13.8 times the seed harvest of the sand compost (10.4 times sand control). We will try to present possible explanations for those results based on TOC, TN, pH, NO3, NH4 and electrical conductivity data. - Bridle, T.R., Pritchard, D., 2004. Energy and nutrient recovery from sewage sludge via pyrolysis. Water Science and Technology 50, 169-175. - Glaser, B.; Lehmann, J.; Zech, W. (2002): Ameliorating physical and chemical properties of highly weathered soils in the tropics with charcoal - a review. Biology and Fertility of Soils, 35, 219-230. - Lehmann, J. and Joseph, S. (eds.) (2010): Biochar for environmental management. Science and technology. Earthscan. London.

  4. Relationship between the nutrition status and sensory characteristics of melon fertilized with wine-distillery waste compost

    NASA Astrophysics Data System (ADS)

    Requejo, María Isabel; Sánchez-Palomo, Eva; González, Miguel Angel; Castellanos, Maria Teresa; Villena, Raquel; Cartagena, Maria Carmen; Ribas, Francisco

    2015-04-01

    The interest in developing sustainable agriculture is becoming more important day by day. A large quantity of wastes from the wine and distillery industry are produced and constitute a serious problem not only environmental but also economic. The use of exhausted grape marc compost as organic amendment is a management option of the fertility of soils. On the other hand, consumers are increasingly concerned about the type, quality and origin of food production. Flavor and aroma are most often the true indicators of shelf-life from the consumer's point of view. The aim of this study was to relate the nutritional status of melon fertilized with exhausted grape marc compost with the sensory profile of fresh-cut fruits. A field experiment was established with three doses of compost (1, 2 and 3 kg per linear meter) and a control. Melons were harvested at maturity and the sensory evaluation was carried out by an expert panel of melon tasters to describe odour, flavour and texture. Nitrogen, phosphorus and potassium concentration was determined in the fruits to calculate nutrient absorption. Acknowledgements: This project has been supported by INIA-RTA2010-00110-C03-01

  5. [Assessing environmental and economical benefits of integrated sewage treatment systems].

    PubMed

    Li, Jin-rong; Zhang, Xiao-hong; Zhang, Hang-bin; Pan, Heng-yu; Liu, Qiang

    2015-08-01

    Sewage treatment, treated water treatment and sludge treatment are three basic units of an integrated sewage treatment system. This work assessed the influence of reusing or discharge of treated water and sludge landfill or compost on the sustainability of an integrated sewage treatment system using emergy analysis and newly proposed emergy indicators. This system's value included its environmental benefits and the products. Environmental benefits were the differences of the environmental service values before and after sewage treatment. Due to unavailability of data of the exchanged substance and energy in the internal system, products' values were attained by newly proposed substitution values. The results showed that the combination of sewage treatment, treated water reuse and sludge landfill had the strongest competitiveness, while the combination of sewage treatment, treated water reuse and earthworm compost was the most sustainable. Moreover, treated water reuse and earthworm compost were helpful for improving the sustainability of the integrated sewage treatment system. The quality of treated water and local conditions should be also considered when implementing the treated water reuse or discharge. The resources efficiency of earthworm compost unit needed to be further improved. Improved emergy indices were more suitable for integrated sewage treatment systems.

  6. Field approach to mining-dump revegetation by application of sewage sludge co-compost and a commercial biofertilizer.

    PubMed

    Sevilla-Perea, A; Mingorance, M D

    2015-08-01

    An approach was devised for revegetation of a mining dump soil, sited in a semiarid region, with basic pH as well as Fe and Mn enrichment. A field experiment was conducted involving the use of co-compost (a mixture of urban sewage sludge and plant remains) along with a commercial biofertilizer (a gel suspension which contains arbuscular mycorrhizal fungus) to reinforce the benefits of the former. Four treatments were studied: unamended soil; application of conditioners separately and in combination. Pistachio, caper, rosemary, thyme and juniper were planted. We evaluated the effects of the treatments using soil quality (physicochemical properties, total content of hazardous elements, nutrient availability, microbial biomass and enzyme activities) and plant establishment indicators (survival, growth, vigor, nutrient content in leaves, nutrient balances and mycorrhizal root colonization). Thyme and juniper did not show a suitable survival rate (<50%) whereas 70-100% of the pistachio, rosemary and caper survived for at least 27 months. In unamended soil, plant growth was severely hampered by P, N, K and Zn deficiencies as well as Fe and Mn excess. Overall, the treatments affected the soil and plant indicators as follows: biofertilizer + co-compost > co-compost > biofertilizer > unamended. The application of co-compost was therefore essential with regard to improving soil fertility; furthermore, it increased leaf N and P content, whereas leaf Fe and Mn concentrations showed a decrease. The combined treatment, however, provided the best results. The positive interaction between the two soil conditioners might be related to the capacity of the biofertilizer to increase nutrient uptake from the composted residue, and to protect plants against Fe and Mn toxicity. Copyright © 2015 Elsevier Ltd. All rights reserved.

  7. Effects of lime and compost on earthworm (Eisenia fetida) reproduction in copper and arsenic contaminated soils from the Puchuncaví Valley, Chile.

    PubMed

    Neaman, Alexander; Huerta, Soledad; Sauvé, Sébastien

    2012-06-01

    The Puchuncaví Valley in central Chile has been exposed to atmospheric depositions from a copper smelter. Nowadays, soils in the surrounding area are acidic and contaminated with Cu and As. The objective of this study was to determine the effectiveness of lime and compost for in situ immobilization of trace elements in the soils of the Puchuncaví Valley by using earthworms as bioindicators of toxicity. The lime and compost treatments significantly increased soil pH and decreased the soluble and exchangeable Zn, exchangeable Cu, and free Cu(2+) activity. However, the compost treatment increased soluble Cu, and soluble and exchangeable As. Lime application had no effect on earthworm reproduction in comparison with the unamended control, whereas the application of compost increased cocoon and juvenile production. There was a spatial variability of soil properties within treatments in the field plots. This allowed the identification of which soil properties were actually having an impact on earthworm reproduction. For both cocoon and juvenile production, soil organic matter (SOM) was a positive factor, i.e., more SOM increased cocoon or juvenile production. The toxicity (negative) factor was total soil As. However, total Cu and total As were well correlated (R(2)=0.80, p<0.001), hence some of the trends could have been masked. In summary, compost treatment was effective in improving the quality of soils of Puchuncaví Valley, increasing earthworm reproduction. Future Chilean legislation on maximum permissible concentrations of trace elements in soils should consider SOM content due to its effect on trace element solubility and bioavailability. Copyright © 2012 Elsevier Inc. All rights reserved.

  8. The UV-visible absorption and fluorescence spectroscopy indicators for monitoring the evolution of green waste composts.

    NASA Astrophysics Data System (ADS)

    Mounier, Stéphane; Abaker, Madi; Domeizel, Mariane; Rapetti, Nicola

    2014-05-01

    The maturity process of compost goes through several phases that have to be monitored in order to optimize the production process which in turn assure a good quality product and less time consumption. In order to estimate rapidly the phase where the compost is present and to measure the cellulose, the ratio C:N and the Stability Index Organic Matter (ISMO) a crucial parameter that needs to be monitored and controlled is the temperature. However, the temperature is not really a good indicator for the maturity of the compost because it is not constant and it depends on the mixing and environmental processes. The final measurements are performed at the end of the production process after certain time period that is subjectively determined by the producer. The work presented here is based on the optical properties of the organic matter that are observed each month for a period of six months. The organic matter of 5 composts was extracted by water and analyzed by UV-VIS spectroscopic technique [1] and 3D fluorescence emission technique [2]. The usual indexes were calculated (E2/E3, E4/E6, EBZ/EET, SUVA254), but also the PARAFAC decomposition of the 3D fluorescence response by Milori [3] and the Hx indexes [4]. The comparison of these results and the cellulose composition with the corresponding ISMO index indicates that the maturity process occurs more rapidly then the expectation of the producers. Further, the combination of the indicators gives useful information about different processes that take place during the maturity of the compost such as aromatization, the condensation and the stabilization of the parameters.

  9. Rhizosphere Microbiome Recruited from a Suppressive Compost Improves Plant Fitness and Increases Protection against Vascular Wilt Pathogens of Tomato

    PubMed Central

    Antoniou, Anastasis; Tsolakidou, Maria-Dimitra; Stringlis, Ioannis A.; Pantelides, Iakovos S.

    2017-01-01

    Suppressive composts represent a sustainable approach to combat soilborne plant pathogens and an alternative to the ineffective chemical fungicides used against those. Nevertheless, suppressiveness to plant pathogens and reliability of composts are often inconsistent with unpredictable effects. While suppressiveness is usually attributed to the compost’s microorganisms, the mechanisms governing microbial recruitment by the roots and the composition of selected microbial communities are not fully elucidated. Herein, the purpose of the study was to evaluate the impact of a compost on tomato plant growth and its suppressiveness against Fusarium oxysporum f. sp. lycopersici (Foxl) and Verticillium dahliae (Vd). First, growth parameters of tomato plants grown in sterile peat-based substrates including 20 and 30% sterile compost (80P/20C-ST and 70P/30C-ST) or non-sterile compost (80P/20C and 70P/30C) were evaluated in a growth room experiment. Plant height, total leaf surface, and fresh and dry weight of plants grown in the non-sterile compost mixes were increased compared to the plants grown in the sterile compost substrates, indicating the plant growth promoting activity of the compost’s microorganisms. Subsequently, compost’s suppressiveness against Foxl and Vd was evaluated with pathogenicity experiments on tomato plants grown in 70P/30C-ST and 70P/30C substrates. Disease intensity was significantly less in plants grown in the non-sterile compost than in those grown in the sterile compost substrate; AUDPC was 2.3- and 1.4-fold less for Foxl and Vd, respectively. Moreover, fungal quantification in planta demonstrated reduced colonization in plants grown in the non-sterile mixture. To further investigate these findings, we characterized the culturable microbiome attracted by the roots compared to the unplanted compost. Bacteria and fungi isolated from unplanted compost and the rhizosphere of plants were sequence-identified. Community-level analysis revealed differential microbial communities between the compost and the rhizosphere, suggesting a clear effect of the plant in the microbiome assembly. Proteobacteria and Actinobacteria were highly enriched in the rhizosphere whereas Firmicutes were strongly represented in both compartments with Bacillus being the most abundant species. Our results shed light on the composition of a microbial consortium that could protect plants against the wilt pathogens of tomato and improve plant overall health. PMID:29238353

  10. Composting-Like Conditions Are More Efficient for Enrichment and Diversity of Organisms Containing Cellulase-Encoding Genes than Submerged Cultures

    PubMed Central

    Fayolle-Guichard, Françoise; Lombard, Vincent; Hébert, Agnès; Coutinho, Pedro M.; Groppi, Alexis; Barre, Aurélien; Henrissat, Bernard

    2016-01-01

    Cost-effective biofuel production from lignocellulosic biomass depends on efficient degradation of the plant cell wall. One of the major obstacles for the development of a cost-efficient process is the lack of resistance of currently used fungal enzymes to harsh conditions such as high temperature. Adapted, thermophilic microbial communities provide a huge reservoir of potentially interesting lignocellulose-degrading enzymes for improvement of the cellulose hydrolysis step. In order to identify such enzymes, a leaf and wood chip compost was enriched on a mixture of thermo-chemically pretreated wheat straw, poplar and Miscanthus under thermophile conditions, but in two different set-ups. Unexpectedly, metagenome sequencing revealed that incubation of the lignocellulosic substrate with compost as inoculum in a suspension culture resulted in an impoverishment of putative cellulase- and hemicellulase-encoding genes. However, mimicking composting conditions without liquid phase yielded a high number and diversity of glycoside hydrolase genes and an enrichment of genes encoding cellulose binding domains. These identified genes were most closely related to species from Actinobacteria, which seem to constitute important players of lignocellulose degradation under the applied conditions. The study highlights that subtle changes in an enrichment set-up can have an important impact on composition and functions of the microcosm. Composting-like conditions were found to be the most successful method for enrichment in species with high biomass degrading capacity. PMID:27936240

  11. Succession and diversity of microorganisms and their association with physicochemical properties during green waste thermophilic composting.

    PubMed

    Liu, Ling; Wang, Shuqi; Guo, Xiaoping; Zhao, Tingning; Zhang, Bolin

    2018-03-01

    A comprehensive characterization of the bacterial diversity associated to thermophilic stages of green waste composting was achieved. In this study, eight different treatments (T1-T8) and three replicated lab-scale green waste composting were carried out to compare the effect of the cellulase (i.e. 0, 2%), microbial inoculum (i.e. 0, 2 and 4%) and particle size (i.e. 2 and 5 mm) on bacterial community structure. Physicochemical properties and bacterial communities of T1-T8 composts were observed, and the bacterial structure and diversity were examined by high-throughput sequencing via a MiSeq platform. The results showed that the most abundant phyla among the treatments were the Firmicutes, Chloroflexi and Proteobacteria. The shannon index and non-metric multidimensional scaling (NMDS) showed higher bacterial abundance and diversity at the metaphase of composting. Comparing with 5-mm treatments, particle size of 2-mm had a richer diversity of bacterial communities. The addition of cellulase and a microbial inoculum could promote the fermentation temperature, reduce the compost pH and C/N ratio and result in higher GI index. The humic substance (HS) and humic acid (HA) contents for 2-mm particle size treatments were higher than those of 5-mm treatments. Canonical correspondence analysis suggested that differences in bacterial abundance and diversity significantly correlated with HA, E 4 /E 6 and temperature, and the relationship between bacterial diversity and environmental parameters was affected by composting stages. Based on these results, the application of cellulase to promote green waste composting was feasible, and particle size was identified as a potential control of composting physicochemical properties and bacterial diversity. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Bioremediation of industrially contaminated soil using compost and plant technology.

    PubMed

    Taiwo, A M; Gbadebo, A M; Oyedepo, J A; Ojekunle, Z O; Alo, O M; Oyeniran, A A; Onalaja, O J; Ogunjimi, D; Taiwo, O T

    2016-03-05

    Compost technology can be utilized for bioremediation of contaminated soil using the active microorganisms present in the matrix of contaminants. This study examined bioremediation of industrially polluted soil using the compost and plant technology. Soil samples were collected at the vicinity of three industrial locations in Ogun State and a goldmine site in Iperindo, Osun State in March, 2014. The compost used was made from cow dung, water hyacinth and sawdust for a period of twelve weeks. The matured compost was mixed with contaminated soil samples in a five-ratio pot experimental design. The compost and contaminated soil samples were analyzed using the standard procedures for pH, electrical conductivity (EC), organic carbon (OC), total nitrogen (TN), phosphorus, exchangeable cations (Na, K, Ca and Mg) and heavy metals (Fe, Mn, Cu, Zn and Cr). Kenaf (Hibiscus cannabinus) seeds were also planted for co-remediation of metals. The growth parameters of Kenaf plants were observed weekly for a period of one month. Results showed that during the one-month remediation experiment, treatments with 'compost-only' removed 49 ± 8% Mn, 32 ± 7% Fe, 29 ± 11% Zn, 27 ± 6% Cu and 11 ± 5% Cr from the contaminated soil. On the other hand, treatments with 'compost+plant' remediated 71 ± 8% Mn, 63 ± 3% Fe, 59 ± 11% Zn, 40 ± 6% Cu and 5 ± 4% Cr. Enrichment factor (EF) of metals in the compost was low while that of Cu (EF=7.3) and Zn (EF=8.6) were high in the contaminated soils. Bioaccumulation factor (BF) revealed low metal uptake by Kenaf plant. The growth parameters of Kenaf plant showed steady increments from week 1 to week 4 of planting. Copyright © 2015 Elsevier B.V. All rights reserved.

  13. Leachability and phytoavailability of nitrogen, phosphorus, and potassium from different bio-composts under chloride- and sulfate-dominated irrigation water.

    PubMed

    Ahmad, Zahoor; Yamamoto, Sadahiro; Honna, Toshimasa

    2008-01-01

    Concerns over increased phosphorus (P) application with nitrogen (N)-based compost application have shifted the trend to P-based composed application, but focusing on one or two nutritional elements does not serve the goals of sustainable agriculture. The need to understand the nutrient release and uptake from different composts has been further aggravated by the use of saline irrigation water in the recent scenario of fresh water shortage. Therefore, we evaluated the leachability and phytoavailability of P, N, and K from a sandy loam soil amended with animal, poultry, and sludge composts when applied on a total P-equivalent basis (200 kg ha(-1)) under Cl(-) (NaCl)- and SO4(2-) (Na2SO4)-dominated irrigation water. Our results showed that the concentration of dissolved reactive P (DRP) was higher in leachates under SO(4)(2-) than Cl(-) treatments. Compost amendments differed for DRP leaching in the following pattern: sludge > animal > poultry > control. Maize (Zea mays L.) growth and P uptake were severely suppressed under Cl(-) irrigation compared with SO4(2-) and non-saline treatments. All composts were applied on a total P-equivalent basis, but maximum plant (shoot + root) P uptake was observed under sludge compost amendment (73.4 mg DW(-1)), followed by poultry (39.3 mg DW(-1)), animal (15.0 mg DW(-1)), and control (1.2 mg DW(-1)) treatment. Results of this study reveal that irrigation water dominated by SO4(2-) has greater ability to replace/leach P, other anions (NO3(-)), and cations (K+). Variability in P release from different bio-composts applied on a total P-equivalent basis suggested that P availability is highly dependent on compost source.

  14. Effects of organic carbon sequestration strategies on soil enzymatic activities

    NASA Astrophysics Data System (ADS)

    Puglisi, E.; Suciu, N.; Botteri, L.; Ferrari, T.; Coppolecchia, D.; Trevisan, M.; Piccolo, A.

    2009-04-01

    Greenhouse gases emissions can be counterbalanced with proper agronomical strategies aimed at sequestering carbon in soils. These strategies must be tested not only for their ability in reducing carbon dioxide emissions, but also for their impact on soil quality: enzymatic activities are related to main soil ecological quality, and can be used as early and sensitive indicators of alteration events. Three different strategies for soil carbon sequestration were studied: minimum tillage, protection of biodegradable organic fraction by compost amendment and oxidative polimerization of soil organic matter catalyzed by biometic porfirins. All strategies were compared with a traditional agricultural management based on tillage and mineral fertilization. Experiments were carried out in three Italian soils from different pedo-climatic regions located respectively in Piacenza, Turin and Naples and cultivated with maize or wheat. Soil samples were taken for three consecutive years after harvest and analyzed for their content in phosphates, ß-glucosidase, urease and invertase. An alteration index based on these enzymatic activities levels was applied as well. The biomimetic porfirin application didn't cause changes in enzymatic activities compared to the control at any treatment or location. Enzymatic activities were generally higher in the minimum tillage and compost treatment, while differences between location and date of samplings were limited. Application of the soil alteration index based on enzymatic activities showed that soils treated with compost or subjected to minimum tillage generally have a higher biological quality. The work confirms the environmental sustainability of the carbon sequestering agronomical practices studied.

  15. Building a strategy for soil protection at local and regional scale--the case of agricultural wastes landspreading.

    PubMed

    Doula, M K; Sarris, A; Hliaoutakis, A; Kydonakis, A; Papadopoulos, N S; Argyriou, L

    2016-03-01

    Agricultural wastes (AW) are produced in huge quantities worldwide and may cause detrimental effects on environmental quality, affecting soil, water, and air quality. Given the growing soil degradation worldwide, the need for more food of good quality and therefore the intensified agriculture, it is important to develop recycling plans even for those types of treated AW (e.g., composts) that are not considered hazardous. Two strategic approaches for safe and sustainable landspreading of organic wastes are proposed, depending on wastes properties and hazard potential, i.e., an approach appropriate for traditionally used wastes (manures and composts) and another approach for wastes that are potentially hazardous or hazardous and should only be reused under specific restrictions. Both approaches foresee concrete steps, require close cooperation between farmers and local/regional authorities, and are appropriate to ensure environmental sustainability at AW recycling or disposal areas. Desktop and web application tools are also presented that are anticipated to assist authorities in implementing their monitoring strategies.

  16. Composting swine manure from high rise finishing facilities

    USDA-ARS?s Scientific Manuscript database

    Over the last twenty years there have been considerable increases in the incidence of human infections with bacteria that are resistant to commonly used antibiotics. This has precipitated concerns about the use of antibiotics in livestock production. Composting of swine manure has several advantages...

  17. Effect of covering composting piles with mature compost on ammonia emission and microbial community structure of composting process.

    PubMed

    Maeda, Koki; Morioka, Riki; Osada, Takashi

    2009-01-01

    To control ammonia (NH(3)) volatilization from the dairy cattle (Bos taurus) manure composting process, a compost pile was covered with mature compost and the gas emissions evaluated using the dynamic chamber system. The peak of NH(3) volatilization observed immediately after piling up of the compost was reduced from 196 to 62 mg/m(3) by covering the compost pile with mature compost. The accumulation of NH(4)-N to the covered mature compost was also observed. Covering and mixing the compost with mature compost had no effect on the microbial community structure. However, over time the microbial community structure changed because of a decrease in easily degradable organic compounds in the compost piles. The availability of volatile fatty acids (VFA) was considered to be important for microbial community structure in the compost. After the VFA had disappeared, the NO(3)-N concentration increased and the cellulose degrading bacteria such as Cytophaga increased in number.

  18. Testing amendments for remediation of military range contaminated soil.

    PubMed

    Siebielec, Grzegorz; Chaney, Rufus L

    2012-10-15

    Military range soils are often strongly contaminated with metals. Information on the effectiveness of remediation of these soils is scarce. We tested the effectiveness of compost and mineral treatments for remediation and revegetation of military range soil collected in Aberdeen, MD. The soil was barren due to zinc (Zn) phytotoxicity while lead (Pb) posed a substantial risk to soil biota, wildlife and humans through various pathways. Seven treatments were tested: untreated control, agricultural NPK fertilization, high phosphate fertilization plus agricultural rates of NK, CaCO(3), "Orgro" biosolid compost, "Orgro" + CaCO(3), "Orgro" + CaCO(3) + Mn sulfate. All compost treatments alleviated Zn phytotoxicity to tall fescue; however compost combined with liming reduced plant Zn content up to 158-162 mg kg(-1). Compost added with lime reduced Pb in-vitro bioaccessibility from 32.5 to 20.4% of total Pb and was the most effective among the tested treatments. The study revealed the effectiveness of biosolids compost and lime mixture in the rapid stabilization of metals and revegetation of military range contaminated soils. The persistence of the remediation needs to be, however, confirmed in the long-term field study. Copyright © 2012 Elsevier Ltd. All rights reserved.

  19. Artificial neural networks for modeling ammonia emissions released from sewage sludge composting

    NASA Astrophysics Data System (ADS)

    Boniecki, P.; Dach, J.; Pilarski, K.; Piekarska-Boniecka, H.

    2012-09-01

    The project was designed to develop, test and validate an original Neural Model describing ammonia emissions generated in composting sewage sludge. The composting mix was to include the addition of such selected structural ingredients as cereal straw, sawdust and tree bark. All created neural models contain 7 input variables (chemical and physical parameters of composting) and 1 output (ammonia emission). The α data file was subdivided into three subfiles: the learning file (ZU) containing 330 cases, the validation file (ZW) containing 110 cases and the test file (ZT) containing 110 cases. The standard deviation ratios (for all 4 created networks) ranged from 0.193 to 0.218. For all of the selected models, the correlation coefficient reached the high values of 0.972-0.981. The results show that he predictive neural model describing ammonia emissions from composted sewage sludge is well suited for assessing such emissions. The sensitivity analysis of the model for the input of variables of the process in question has shown that the key parameters describing ammonia emissions released in composting sewage sludge are pH and the carbon to nitrogen ratio (C:N).

  20. Metagenomic Analysis of a Tropical Composting Operation at the São Paulo Zoo Park Reveals Diversity of Biomass Degradation Functions and Organisms

    PubMed Central

    Pascon, Renata C.; de Oliveira, Julio Cezar Franco; Digiampietri, Luciano A.; Barbosa, Deibs; Peixoto, Bruno Malveira; Vallim, Marcelo A.; Viana-Niero, Cristina; Ostroski, Eric H.; Telles, Guilherme P.; Dias, Zanoni; da Cruz, João Batista; Juliano, Luiz; Verjovski-Almeida, Sergio; da Silva, Aline Maria; Setubal, João Carlos

    2013-01-01

    Composting operations are a rich source for prospection of biomass degradation enzymes. We have analyzed the microbiomes of two composting samples collected in a facility inside the São Paulo Zoo Park, in Brazil. All organic waste produced in the park is processed in this facility, at a rate of four tons/day. Total DNA was extracted and sequenced with Roche/454 technology, generating about 3 million reads per sample. To our knowledge this work is the first report of a composting whole-microbial community using high-throughput sequencing and analysis. The phylogenetic profiles of the two microbiomes analyzed are quite different, with a clear dominance of members of the Lactobacillus genus in one of them. We found a general agreement of the distribution of functional categories in the Zoo compost metagenomes compared with seven selected public metagenomes of biomass deconstruction environments, indicating the potential for different bacterial communities to provide alternative mechanisms for the same functional purposes. Our results indicate that biomass degradation in this composting process, including deconstruction of recalcitrant lignocellulose, is fully performed by bacterial enzymes, most likely by members of the Clostridiales and Actinomycetales orders. PMID:23637931

  1. Optimum moisture levels for biodegradation of mortality composting envelope materials.

    PubMed

    Ahn, H K; Richard, T L; Glanville, T D

    2008-01-01

    Moisture affects the physical and biological properties of compost and other solid-state fermentation matrices. Aerobic microbial systems experience different respiration rates (oxygen uptake and CO2 evolution) as a function of moisture content and material type. In this study the microbial respiration rates of 12 mortality composting envelope materials were measured by a pressure sensor method at six different moisture levels. A wide range of respiration (1.6-94.2mg O2/g VS-day) rates were observed for different materials, with alfalfa hay, silage, oat straw, and turkey litter having the highest values. These four envelope materials may be particularly suitable for improving internal temperature and pathogen destruction rates for disease-related mortality composting. Optimum moisture content was determined based on measurements across a range that spans the maximum respiration rate. The optimum moisture content of each material was observed near water holding capacity, which ranged from near 60% to over 80% on a wet basis for all materials except a highly stabilized soil compost blend (optimum around 25% w.b.). The implications of the results for moisture management and process control strategies during mortality composting are discussed.

  2. GHG emissions during the high-rate production of compost using standard and advanced aeration strategies.

    PubMed

    Puyuelo, B; Gea, T; Sánchez, A

    2014-08-01

    In this study, we have evaluated different strategies for the optimization of the aeration during the active thermophilic stage of the composting process of source-selected Organic Fraction of Municipal Solid Waste (or biowaste) using reactors at bench scale (50L). These strategies include: typical cyclic aeration, oxygen feedback controller and a new self-developed controller based on the on-line maximization of the oxygen uptake rate (OUR) during the process. Results highlight differences found in the emission of most representative greenhouse gases (GHG) emitted from composting (methane and nitrous oxide) as well as in gases typically related to composting odor problems (ammonia as typical example). Specifically, the cyclic controller presents emissions that can double that of OUR controller, whereas oxygen feedback controller shows a better performance with respect to the cyclic controller. A new parameter, the respiration index efficiency, is presented to quantitatively evaluate the GHG emissions and, in consequence, the main negative environmental impact of the composting process. Other aspects such as the stability of the compost produced and the consumption of resources are also evaluated for each controller. Copyright © 2014 Elsevier Ltd. All rights reserved.

  3. Soil-atmosphere fluxes of the greenhouse gases N2O, CO2 and CH4 from a long term compost experiment in Austria.

    NASA Astrophysics Data System (ADS)

    Spann, Caroline; Spiegel, Heide; Kitzler, Barbara

    2016-04-01

    The application of composts as fertilizers is becoming increasingly important to achieve a closed-loop economy. However, greenhouse gas (GHG) emissions, especially N2O, from agricultural fields may increase as well. In this study different compost types and N amounts were investigated, especially in terms of their GHG fluxes. We used the closed chamber method to estimate GHG flux rates over one vegetation period from an agricultural soil fertilized with different compost types. The study was conducted on a long term compost experiment site near Linz (Austria) with a crop rotation. The soil is a loamy silt and in 2015 maize was planted. Six different compost treatments were investigated. Organic waste compost (OWC) and farmyard manure compost (FMC) was applied with nitrogen concentrations of 175 (OWC1, FYC1) and 525 kg N ha-1 (OWC3, FYC3). Two compost treatments were fertilized additionally with 80 kg N ha.1 mineral fertilizer (OWC2, FYC2). One treatment (TN) was fertilized only with mineral fertilizer (120 kg N ha-1) and one treatment was not fertilized at all (C). Additionally to the GHG flux rates, ammonium and nitrate content, microbial biomass C and N and different enzyme activities were analysed in the top soil. Nitrous oxide (N2O) was emitted over the entire vegetation period with highest fluxes from April until June, until the plants have been established sufficiently. Overall, at the FMC treatments (FYC2, FYC3) highest fluxes were measured. Compared to FMC, lower N2O emissions were measured from the OWC treatments. The combination of compost and mineral N fertilization resulted in the highest N2O emissions, especially after precipitation events. The treatments OWC1 and FYC1 were not different from the control. Methane (CH4) was mainly taken up at all treatments, but uptake rates were lower at the high N input sites (OWC3, FYC3) with no differences between the compost types. No significant differences were found in the soil respiration rates.

  4. Role of biochar on composting of organic wastes and remediation of contaminated soils-a review.

    PubMed

    Wu, Shaohua; He, Huijun; Inthapanya, Xayanto; Yang, Chunping; Lu, Li; Zeng, Guangming; Han, Zhenfeng

    2017-07-01

    Biochar is produced by pyrolysis of biomass residues under limited oxygen conditions. In recent years, biochar as an amendment has received increasing attention on composting and soil remediation, due to its unique properties such as chemical recalcitrance, high porosity and sorption capacity, and large surface area. This paper provides an overview on the impact of biochar on the chemical characteristics (greenhouse gas emissions, nitrogen loss, decomposition and humification of organic matter) and microbial community structure during composting of organic wastes. This review also discusses the use of biochar for remediation of soils contaminated with organic pollutants and heavy metals as well as related mechanisms. Besides its aging, the effects of biochar on the environment fate and efficacy of pesticides deserve special attention. Moreover, the combined application of biochar and compost affects synergistically on soil remediation and plant growth. Future research needs are identified to ensure a wide application of biochar in composting and soil remediation. Graphical abstract ᅟ.

  5. Evaluation of thermophilic fungal consortium for paddy straw composting.

    PubMed

    Kumar, Adesh; Gaind, Sunita; Nain, Lata

    2008-06-01

    Out of 10 thermophilic fungi isolated from wheat straw, farm yard manure, and soil, only three showed highest cellobiase, carboxymethyl cellulase, xylanase, and FPase activities. They were identified as Aspergillus nidulans (Th(4)), Scytalidium thermophilum (Th(5)), and Humicola sp. (Th(10)). A fungal consortium of these three fungi was used to compost a mixture (1:1) of silica rich paddy straw and lignin rich soybean trash. The composting of paddy straw for 3 months, during summer period in North India, resulted in a product with C:N ratio 9.5:1, available phosphorus 0.042% and fungal biomass 6.512 mg of N-acetyl glucosamine/100 mg of compost. However, a C:N ratio of 10.2:1 and highest humus content of 3.3% was achieved with 1:1 mixture of paddy straw and soybean trash. The fungal consortium was effective in converting high silica paddy straw into nutritionally rich compost thereby leading to economical and environment friendly disposal of this crop residue.

  6. Arsenic Methylation and its Relationship to Abundance and Diversity of arsM Genes in Composting Manure

    NASA Astrophysics Data System (ADS)

    Zhai, Weiwei; Wong, Mabel T.; Luo, Fei; Hashmi, Muhammad Z.; Liu, Xingmei; Edwards, Elizabeth A.; Tang, Xianjin; Xu, Jianming

    2017-03-01

    Although methylation is regarded as one of the main detoxification pathways for arsenic (As), current knowledge about this process during manure composting remains limited. In this study, two pilot-scale compost piles were established to treat manure contaminated with As. An overall accumulation of methylated As occurred during 60 day-composting time. The concentration of monomethylarsonic acid (MMA) increased from 6 to 190 μg kg-1 within 15 days and decreased to 35 μg kg-1 at the end of the maturing phase; while the concentration of dimethylarsinic acid (DMA) continuously increased from 33 to 595 μg kg-1 over the composting time. The arsM gene copies increased gradually from 0.08 × 109 to 6.82 × 109 copies g-1 dry mass over time and correlated positively to the concentrations of methylated As. 16S rRNA gene sequencing and arsM clone library analysis confirmed the high abundance and diversity of arsM genes. Many of these genes were related to those from known As-methylating microbes, including Streptomyces sp., Amycolatopsis mediterranei and Sphaerobacter thermophiles. These results demonstrated that As methylation during manure composting is significant and, for the first time, established a linkage between As biomethylation and the abundance and diversity of the arsM functional genes in composting manure.

  7. Arsenic Methylation and its Relationship to Abundance and Diversity of arsM Genes in Composting Manure

    PubMed Central

    Zhai, Weiwei; Wong, Mabel T.; Luo, Fei; Hashmi, Muhammad Z.; Liu, Xingmei; Edwards, Elizabeth A.; Tang, Xianjin; Xu, Jianming

    2017-01-01

    Although methylation is regarded as one of the main detoxification pathways for arsenic (As), current knowledge about this process during manure composting remains limited. In this study, two pilot-scale compost piles were established to treat manure contaminated with As. An overall accumulation of methylated As occurred during 60 day-composting time. The concentration of monomethylarsonic acid (MMA) increased from 6 to 190 μg kg−1 within 15 days and decreased to 35 μg kg−1 at the end of the maturing phase; while the concentration of dimethylarsinic acid (DMA) continuously increased from 33 to 595 μg kg−1 over the composting time. The arsM gene copies increased gradually from 0.08 × 109 to 6.82 × 109 copies g−1 dry mass over time and correlated positively to the concentrations of methylated As. 16S rRNA gene sequencing and arsM clone library analysis confirmed the high abundance and diversity of arsM genes. Many of these genes were related to those from known As-methylating microbes, including Streptomyces sp., Amycolatopsis mediterranei and Sphaerobacter thermophiles. These results demonstrated that As methylation during manure composting is significant and, for the first time, established a linkage between As biomethylation and the abundance and diversity of the arsM functional genes in composting manure. PMID:28266584

  8. Effects of adsorptive properties of biofilter packing materials on toluene removal.

    PubMed

    Oh, Dong Ik; Song, Jihyeon; Hwang, Sun Jin; Kim, Jae Young

    2009-10-15

    Various adsorptive materials, including granular activated carbon (GAC) and ground tire rubber (GTR), were mixed with compost in biofilters used for treating gaseous toluene, and the effects of the mixtures on the stability of biofilter performance were investigated. A transient loading test demonstrated that a sudden increase in inlet toluene loading was effectively attenuated in the compost/GAC biofilter, which was the most significant advantage of adding adsorptive materials to the biofilter packing media. Under steady conditions with inlet toluene loading rates of 18.8 and 37.5 g/m(3)/h, both the compost and the compost/GAC biofilters achieved overall toluene removal efficiencies greater than 99%. In the compost/GAC mixture, however, biodegradation activity declined as the GAC mass fraction increased. Because of the low water-holding capacity of GTR, the compost/ground tire mixture did not show a significant improvement in toluene removal efficiency throughout the entire operational period. Furthermore, nitrogen limitations affected system performance in all the biofilters, but an external nitrogen supply resulted in the recovery of the toluene removal efficiency only in the compost biofilter during the test periods. Consequently, the introduction of excessive adsorptive materials was unfavorable for long-term performance, suggesting that the mass ratio of the adsorptive materials in such mixtures should be carefully selected to achieve high and steady biofilter performance.

  9. The ecological and physiological responses of the microbial community from a semiarid soil to hydrocarbon contamination and its bioremediation using compost amendment.

    PubMed

    Bastida, F; Jehmlich, N; Lima, K; Morris, B E L; Richnow, H H; Hernández, T; von Bergen, M; García, C

    2016-03-01

    The linkage between phylogenetic and functional processes may provide profound insights into the effects of hydrocarbon contamination and biodegradation processes in high-diversity environments. Here, the impacts of petroleum contamination and the bioremediation potential of compost amendment, as enhancer of the microbial activity in semiarid soils, were evaluated in a model experiment. The analysis of phospholipid fatty-acids (PLFAs) and metaproteomics allowed the study of biomass, phylogenetic and physiological responses of the microbial community in polluted semiarid soils. Petroleum pollution induced an increase of proteobacterial proteins during the contamination, while the relative abundance of Rhizobiales lowered in comparison to the non-contaminated soil. Despite only 0.55% of the metaproteome of the compost-treated soil was involved in biodegradation processes, the addition of compost promoted the removal of polycyclic aromatic hydrocarbons (PAHs) and alkanes up to 88% after 50 days. However, natural biodegradation of hydrocarbons was not significant in soils without compost. Compost-assisted bioremediation was mainly driven by Sphingomonadales and uncultured bacteria that showed an increased abundance of catabolic enzymes such as catechol 2,3-dioxygenases, cis-dihydrodiol dehydrogenase and 2-hydroxymuconic semialdehyde. For the first time, metaproteomics revealed the functional and phylogenetic relationships of petroleum contamination in soil and the microbial key players involved in the compost-assisted bioremediation. Copyright © 2015 Elsevier B.V. All rights reserved.

  10. The effect of urban waste compost applied in a vineyard, olive grove and orange grove on soil proprieties in Mediterranean environment

    NASA Astrophysics Data System (ADS)

    Novara, Agata; Gristina, Luciano; Bono, Giuseppe; Guaitoli, Fabio; Pasciuta, Giuseppe; Santoro, Antonino

    2013-04-01

    The application to soil of compost produced from urban wastes not only could improve the soil properties but also could be a solution for disposal of large quantities of different refuses. Knowledge on compost characteristic, soil properties as well as on mineral crop nutrition are important to proper management of fertilization with compost and to understanding the impact on C and N dynamics in field. We present the results of soil physical and chemical changes after the application of urban waste compost in three different orchards (vineyard, olive grove, and orange grove) in Mediterranean environment (Sicily). The compost was applied on November 2010 and samples were collected 1 month after application for two years. Soil pH, carbon content, weight of soil aggregate fractions, nitrate content were examined during the trial, comparing with adjacent no fertilized plot. The application of compost caused a decrease in soil organic carbon stock of 14% and 28% after two years in vineyard and orange grove, respectively, while a significant increase under olive grove was registered. Nitrate monitoring showed for all crops high content of Nitrate for most of the year that involved SOC stock depletion. This was not observed in olive grove, where soil received further C input thanks to soil management with cover crop. In two years of observations there were no significant change in soil physic properties.

  11. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kopčić, Nina, E-mail: nkopcic@fkit.hr; Vuković Domanovac, Marija; Kučić, Dajana

    Highlights: • Apple and tobacco waste mixture was efficiently composted during 22 days. • Physical–chemical and microbiological properties of the mixture were suitable the process. • Evaluation of selected mathematical model showed good prediction of the temperature. • The temperature curve was a “mirror image” of the oxygen concentration curve. • The peak values of the temperature were occurred 9.5 h after the peak oxygen consumption. - Abstract: Efficient composting process requires set of adequate parameters among which physical–chemical properties of the composting substrate play the key-role. Combining different types of biodegradable solid waste it is possible to obtain amore » substrate eligible to microorganisms in the composting process. In this work the composting of apple and tobacco solid waste mixture (1:7, dry weight) was explored. The aim of the work was to investigate an efficiency of biodegradation of the given mixture and to characterize incurred raw compost. Composting was conducted in 24 L thermally insulated column reactor at airflow rate of 1.1 L min{sup −1}. During 22 days several parameters were closely monitored: temperature and mass of the substrate, volatile solids content, C/N ratio and pH-value of the mixture and oxygen consumption. The composting of the apple and tobacco waste resulted with high degradation of the volatile solids (53.1%). During the experiment 1.76 kg of oxygen was consumed and the C/N ratio of the product was 11.6. The obtained temperature curve was almost a “mirror image” of the oxygen concentration curve while the peak values of the temperature were occurred 9.5 h after the peak oxygen consumption.« less

  12. COMPOST-FREE BIOREACTOR TREATMENT OF ACID ROCK DRAINAGE - TECHNOLOGY CAPSULE

    EPA Science Inventory

    As part of the Superfund Innovative Technology Evaluation (SITE) program, an evaluation of the compost-free bioreactor treatment of acid rock drainage (ARD) from the Aspen Seep was conducted at the Leviathan Mine Superfund site located in a remote, high altitude area of Alpine Co...

  13. Temporal change in molecular weight distribution of hot-water extractable organic nitrogen from cattle manure compost buried in soil using high-performance size exclusion chromatography with chemiluminescent nitrogen detection

    NASA Astrophysics Data System (ADS)

    Moriizumi, M.; Mutsunaga, T.

    2012-04-01

    The application of compost can improve the fertility of the agricultural soils. The compost organic nitrogen is absorbed by plants after degradation and mineralization. To investigate the degradation process of compost organic nitrogen in soil, we conducted soil burial test of compost and observed the molecular weight distribution of hot-water extractable organic nitrogen from the compost. The cattle manure compost (1g) was mixed with soil (25g), put into glass fiber-filter paper bag and buried in 15 cm under surface of the ground for 6 months. The soils used were Andosol, Gray Lowland soil, and Yellow soil without organic matter application for 25 years in Tsukuba, Japan. Organic matter was extracted from the buried sample with 80° C of water for 16 hours. The molecular weight distribution of the hot-water extractable organic matter (HWEOM) was measured by high-performance size exclusion chromatography and chemiluminescent nitrogen detection (HPSEC/CLND). In this system, N-containing compound eluted from a SEC column was introduced into a furnace at 1050° C, and N in the compound was oxidized to nitric oxide and then detected using a chemiluminescent reaction with ozone. The N chromatogram showed that N in the HWEOM from the soil with compost had various molecular weights ranging from 0.1 to 100 kDa. A void peak (>100 kDa), a broad peak around 30 kDa, and several sharp peaks less than 30 kDa were observed in the chromatogram. The broad peak (~ 30kDa) was likely to be derived from the compost, because it was not observed in the chromatogram of HWEOM from soil alone. The N intensities of all peaks decreased with burial time, especially, the broad peak (~30 kDa) intensity rapidly decreased by 10 - 50 % in only first 2 months. The decreasing rates of the broad peak were higher than that of the sharp peaks, indicating that the organic nitrogen with a larger molecular weight decomposed faster. The broad peak (~ 30 kDa) had visible (420nm) absorption and less fulvic acid like florescence (Ex340nm, Em440 nm). The several sharp peaks had small visible absorption and intense florescence. Further studies are needed to assign the chemical forms for each peak.

  14. The physiology of Agaricus bisporus in semi-commercial compost cultivation appears to be highly conserved among unrelated isolates.

    PubMed

    Pontes, María Victoria Aguilar; Patyshakuliyeva, Aleksandrina; Post, Harm; Jurak, Edita; Hildén, Kristiina; Altelaar, Maarten; Heck, Albert; Kabel, Mirjam A; de Vries, Ronald P; Mäkelä, Miia R

    2018-03-01

    The white button mushroom Agaricus bisporus is one of the most widely produced edible fungus with a great economical value. Its commercial cultivation process is often performed on wheat straw and animal manure based compost that mainly contains lignocellulosic material as a source of carbon and nutrients for the mushroom production. As a large portion of compost carbohydrates are left unused in the current mushroom cultivation process, the aim of this work was to study wild-type A. bisporus strains for their potential to convert the components that are poorly utilized by the commercial strain A15. We therefore focused our analysis on the stages where the fungus is producing fruiting bodies. Growth profiling was used to identify A. bisporus strains with different abilities to use plant biomass derived polysaccharides, as well as to transport and metabolize the corresponding monomeric sugars. Six wild-type isolates with diverse growth profiles were compared for mushroom production to A15 strain in semi-commercial cultivation conditions. Transcriptome and proteome analyses of the three most interesting wild-type strains and A15 indicated that the unrelated A. bisporus strains degrade and convert plant biomass polymers in a highly similar manner. This was also supported by the chemical content of the compost during the mushroom production process. Our study therefore reveals a highly conserved physiology for unrelated strains of this species during growth in compost. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  15. COMPOST-FREE BIOLOGICAL TREATMENT OF ACID ROCK DRAINAGE, TECHNICAL EVALUATION BULLETIN

    EPA Science Inventory

    As part of the Superfund Innovative Technology Evaluation (SITE) program, an evaluation of the compost-free bioreactor treatment of acid rock drainage (ARD) from the Aspen Seep was conducted at the Leviathan Mine Superfund site located in a remote, high altitude area of Alpine Co...

  16. Assessment of nutrients, bacteria, and gaseous emissions in swine mortality composts of sawdust, broiler litter, and swine lagoon effluent

    USDA-ARS?s Scientific Manuscript database

    Disposition of mortalities challenges confined animal feeding operations (CAFOs), especially large sow (farrowing) farms, which experience mortalities daily. Regulations preclude incineration and high costs make rendering impractical. Swine CAFOs in the Mid-South US practice mortality composting w...

  17. Earth Patrol.

    ERIC Educational Resources Information Center

    Menoche, Terri; And Others

    This guide contains a series of lessons for elementary school students covering environmental issues including waste reduction and recycling, decomposition and composting, landfills, natural resources, energy sources and conservation, and water quality. The lessons include an objective, background information, method, and activities for…

  18. Effect of organic amendments on quality indexes in an italian agricultural soil

    NASA Astrophysics Data System (ADS)

    Scotti, R.; Rao, M. A.; D'Ascoli, R.; Scelza, R.; Marzaioli, R.; Rutigliano, F. A.; Gianfreda, L.

    2009-04-01

    Intensive agricultural practices can determine a decline in soil fertility which represents the main constraint to agricultural productivity. In particular, the progressive reduction in soil organic matter, without an adequate restoration, may threaten soil fertility and agriculture sustainability. Some soil management practices can improve soil quality by adding organic amendments as alternative to the sole use of mineral fertilizers for increasing plant quality and growth. A large number of soil properties can be used to define changes in soil quality. In particular, although more emphasis has been given in literature to physical and chemical properties, biological properties, strictly linked to soil fertility, can be valid even more sensitive indicators. Among these, soil enzyme activities and microbial biomass may provide an "early warning" of soil quality and health changes. The aim of this work was to study the effect of preventive sterilization treatment and organic fertilization on enzymatic activities (dehydrogenase, arylsulphatase, beta-glucosidase, phosphatase, urease) and microbial biomass C in an agricultural soil under crop rotation. The study was carried out on an agricultural soil sited in Campania region (South Italy). At the beginning of experiment sterilizing treatments to control soilborne pathogens and weeds were performed by solarization and calcium cyanamide addition to soil. Organic fertilization was carried out by adding compost from vegetable residues, ricin seed exhaust (Rigen) and straw, singly or in association. Three samplings were performed at three different stages of crop rotation: I) September 2005, immediately after the treatments; II) December 2005, after a lettuce cycle; III) January 2007, after peppers and lettuce cycles. The soil sampling followed a W scheme, with five sub-samples for each plot. Soils were sieved at 2 mm mesh and air dried to determine physical and chemical properties; in addition a suitable amount of soils was stored at 4 °C for biological analyses. On soil samples, organic C, dehydrogenase phosphatase, beta-glucosidase and urease activities as well as microbial biomass C and fungal mycelium were assayed. Results showed that sterilization treatments (solarization+calcium cyanamide) depressed almost all the enzymatic activities studied. By contrast their values were enhanced by the addition of compost combined with Rigen and/or straw. During the time the dehydrogenase activity strongly fell whereas slightly decreases occurred for the activity of phosphatase, beta-glucosidase and urease. Accordingly, a decrease in organic C content was measured. Conversely, arylsulphatase showed an activity increase at the second and third sampling. Microbial biomass C was improved by compost or compost + Rigen addition, in accordance with organic C trend. Normalizing the microbial biomass to the organic C content (microbial quotient) only in one plot a higher and significant value was obtained. Conversely the fungal growth was not influenced by amendment practices, rather in the time it was significantly depressed. Data showed an ameliorant effect of organic amendments, especially when compost was combined with other ones, on chemical, biological and biochemical properties of studied soils. Further investigations related also to crop production should however be carried out to achieve a clearer and comprehensive picture of the relationships between soil quality and soil management practices.

  19. Fate of naturally occurring Escherichia coli O157:H7 and other zoonotic pathogens during minimally managed bovine feedlot manure composting processes.

    PubMed

    Berry, Elaine D; Millner, Patricia D; Wells, James E; Kalchayanand, Norasak; Guerini, Michael N

    2013-08-01

    Reducing Escherichia coli O157:H7 in livestock manures before application to cropland is critical for reducing the risk of foodborne illness associated with produce. Our objective was to determine the fate of naturally occurring E. coli O157:H7 and other pathogens during minimally managed on-farm bovine manure composting processes. Feedlot pen samples were screened to identify E. coli O157:H7-positive manure. Using this manure, four piles of each of three different composting formats were constructed in each of two replicate trials. Composting formats were (i) turned piles of manure plus hay and straw, (ii) static stockpiles of manure, and (iii) static piles of covered manure plus hay and straw. Temperatures in the tops, toes, and centers of the conical piles (ca. 6.0 m(3) each) were monitored. Compost piles that were turned every 2 weeks achieved higher temperatures for longer periods in the tops and centers than did piles that were left static. E. coli O157:H7 was not recovered from top samples of turned piles of manure plus hay and straw at day 28 and beyond, but top samples from static piles were positive for the pathogen up to day 42 (static manure stockpiles) and day 56 (static covered piles of manure plus hay and straw). Salmonella, Campylobacter spp., and Listeria monocytogenes were not found in top or toe samples at the end of the composting period, but E. coli O157:H7 and Listeria spp. were recovered from toe samples at day 84. Our findings indicate that some minimally managed composting processes can reduce E. coli O157:H7 and other pathogens in bovine manure but may be affected by season and/or initial levels of indigenous thermophilic bacteria. Our results also highlight the importance of adequate C:N formulation of initial mixtures for the production of high temperatures and rapid composting, and the need for periodic turning of the piles to increase the likelihood that all parts of the mass are subjected to high temperatures.

  20. Developing a Planting Medium from Solid Waste Compost and Construction and Demolition Rubble for Use in Quarry Rehabilitation

    NASA Astrophysics Data System (ADS)

    Assaf, E. A.

    2015-12-01

    The combination of construction, demolition and excavation (CDE) waste along with the increase in solid waste generation has put a major stress on Lebanon and on the management of its solid waste. Compounding this problem are the issues of quarries closure and rehabilitation and a decrease in forest and vegetative cover. This research aims to provide an integrated solution to the stated problem by developing a "soil mix" derived from a mélange of the organic matter of the solid waste (compost), the CDE waste, and soil. Excavation and construction debris were ground to several sizes and mixed with compost and soil at different ratios. Replicates of these mixes and a set of control (regular soil) were used. In this mix, native and indicator plants are planted (in pots). The plant species used are Mathiolla crassifolia and Zea mays (Corn). Results have shown successful growth of both corn and Mathiolla seedlings in the mixes with higher amounts of construction rubble and compost i.e. Rubble: Soil: Compost Ratio of 2:1:1 and 1:0:1. However treatments with no compost and with less quantities of rubble demonstrated the inability of the soil used to sustain plant growth alone (1:1:1 and 1:1:0). Last but not least, the control consisting of soil only ended up being the weakest mix with yellow corn leaves and small Mathiolla seedlings fifty days after planting and fertilizing. Additionally, soil analysis, rubble and compost analysis were conducted. The samples were tested for heavy metals, nutrient availability and values of pH and EC. No contamination has been reported and an abundance of macronutrients and micronutrients was documented for the soil and compost. High alkalinity is due to the presence of concrete and the high percentage of Calcium Carbonate in Lebanese soils. Accordingly, the most adequate mixes for planting are treatments A (2:1:1) and B (1:0:1) and they should be pursued for a pilot scale study to test their potential use in quarry rehabilitation and eventually urban agriculture.

  1. Current-use and organochlorine pesticides and polychlorinated biphenyls in the biodegradable fraction of source separated household waste, compost, and anaerobic digest.

    PubMed

    Hellström, Anna; Nilsson, Marie-Louise; Kylin, Henrik

    2011-01-01

    Several current-use (≤ 80 ng g⁻¹ dry weight) and organochlorine pesticides (≤ 15 ng g⁻¹ dry weight) and polychlorinated biphenyls (≤ 18 ng g⁻¹ dry weight) were found in the biodegradable fraction of source separated household waste, compost, and/or anaerobic digestate. The degradation rates of individual compounds differ depending on the treatment. Dieldrin and pentachloroaniline, e.g., degrade more rapidly than the waste is mineralized and accumulates in the products after all treatments. Many organochlorines degrade at the same rate as the waste and have the same concentrations in the waste and products. Chlorpyrifos degrades slower than the waste and accumulates in all products and ethion during anaerobic digestion. The polychlorinated biphenyls and some pesticides show different degradations rates relative the waste during different processes. Understanding the degradation of the contaminants under different conditions is necessary to develop quality criteria for the use of compost and digest.

  2. Long-term climate change mitigation potential with organic matter management on grasslands.

    PubMed

    Ryals, Rebecca; Hartman, Melannie D; Parton, William J; DeLonge, Marcia S; Silver, Whendee L

    2015-03-01

    Compost amendments to grasslands have been proposed as a strategy to mitigate climate change through carbon (C) sequestration, yet little research exists exploring the net mitigation potential or the long-term impacts of this strategy. We used field data and the DAYCENT biogeochemical model to investigate the climate change mitigation potential of compost amendments to grasslands in California, USA. The model was used to test ecosystem C and greenhouse gas responses to a range of compost qualities (carbon to nitrogen [C:N] ratios of 11.1, 20, or 30) and application rates (single addition of 14 Mg C/ha or 10 annual additions of 1.4 Mg C · ha(-1) · yr(-1)). The model was parameterized using site-specific weather, vegetation, and edaphic characteristics and was validated by comparing simulated soil C, nitrous oxide (N2O), methane (CH4), and carbon dioxide (CO2) fluxes, and net primary production (NPP) with three years of field data. All compost amendment scenarios led to net greenhouse gas sinks that persisted for several decades. Rates of climate change mitigation potential ranged from 130 ± 3 g to 158 ± 8 g CO2-eq · m(-2) ·yr(-1) (where "eq" stands for "equivalents") when assessed over a 10-year time period and 63 ± 2 g to 84 ± 10 g CO2- eq · m(-2) · yr(-1) over a 30-year time period. Both C storage and greenhouse gas emissions increased rapidly following amendments. Compost amendments with lower C:N led to higher C sequestration rates over time. However, these soils also experienced greater N20 fluxes. Multiple smaller compost additions resulted in similar cumulative C sequestration rates, albeit with a time lag, and lower cumulative N2O emissions. These results identify a trade-off between maximizing C sequestration and minimizing N2O emissions following amendments, and suggest that compost additions to grassland soils can have a long-term impact on C and greenhouse gas dynamics that contributes to climate change mitigation.

  3. A new strategy for co-composting dairy manure with rice straw: Addition of different inocula at three stages of composting.

    PubMed

    Zhou, Cheng; Liu, Zhang; Huang, Zhao-Lin; Dong, Ming; Yu, Xiao-Long; Ning, Ping

    2015-06-01

    In considering the impact of inoculation time and the characteristics of composting material and inoculants on the usefulness of inoculation, a new composting strategy has been proposed and studied, in which three inocula were inoculated at three stages of composting process respectively: inoculum A (Thermoactinomyces sp. GF1 and GF2) was inoculated before fermentation to increase or maintain high temperature of pile, inoculum B (Coprinus cinerea and Coprinus comatus) was inoculated after thermophilic phase to promote degradation of lignin, and inoculum C (Trichoderma harzianum and Rhizopus oryzae) was inoculated after 30-day fermentation to promote degradation of cellulose. The results showed that the inoculations could significantly enhance the temperature of pile and the degradation of lignocelluloses. When inocula A, B, and C were inoculated into pile, temperature increased from 25°C to 65°C, from 33°C to 39°C and from 33°C to 38°C respectively and 35% lignin and 43% cellulose had been degraded in inoculated pile compared to the degradation of 15% lignin and 25% cellulose in control pile. As a result, the C/N ratio dropped more rapidly degraded in the inoculated pile (reached 20 after 33-day fermentation) than that in the control pile (reached 21.7 after 45-day fermentation). In addition, the volume loss in inoculated pile (76.5%) was higher than that in control pile (53.2%). The study, therefore, indicated that inoculating proper microorganisms at appropriate time improved the composting process and our new composting strategy would be propitious to the co-composting dairy manure with rice straw. Copyright © 2015 Elsevier Ltd. All rights reserved.

  4. Effect of Pesticide Inoculation, Duration of Composting, and Degradation Time on the Content of Compost Fatty Acids, Quantified Using Two Methods ▿ †

    PubMed Central

    Cardinali, Alessandra; Otto, Stefan; Vischetti, Costantino; Brown, Colin; Zanin, Giuseppe

    2010-01-01

    Compost biobeds can promote biodegradation of pesticides. The microbial community structure changes during the composting process, and simple methods can potentially be used to follow these changes. In this study the microbial identification (MIDI) and ester-linked (EL) procedures were used to determine the composition of fatty acid methyl esters (FAMEs) in composts aged 3 and 12 months, inoculated with 3 recalcitrant pesticides (azoxystrobin, chlorotoluron, and epoxyconazole and a coapplication of all three) after 0, 56, and 125 days of degradation. Pesticide persistence was high, and after 125 days the residue was 22 to 70% of the applied amount depending mostly on the composting age. Seventy-one FAMEs belonging to nine groups were detected. The EL method provided three times as many detections as did the MIDI method and was more sensitive for all FAME groups except alcohol. Thirty-six and five FAMEs were unique to the EL and MIDI methods, respectively. The extraction method was of importance. The EL method provided a higher number of detections for 57 FAMEs, and the MIDI method provided a higher number for 9 FAMEs, while the two methods were equal for 5 FAMEs; thus, the EL method provided a more uniform overall FAME profile. Effects of the other factors were not always clear. Inoculation with pesticide did not influence the FAME profile with the MIDI method, while it influenced cyclopropane and monounsaturated content with the EL method. Composting age and degradation time had an effect on some groups of FAMEs, and this effect was greater with the EL method. The use of some FAMEs as biomarkers to follow microbial community succession was likely influenced by the type of compost and other factors. PMID:20693445

  5. Assessing biochar and compost from the organic fraction of municipal solid waste on nutrient availability and plant growth of lettuce

    NASA Astrophysics Data System (ADS)

    Regkouzas, Panagiotis; Manolikaki, Ioanna; Diamadopoulos, Evan

    2017-04-01

    Biochars have a high variability in chemical composition, which is determined by types of feedstock and pyrolysis conditions. Inorganic compounds, such as N, P, K and Ca, retained in biochar could be released and become available to plants. The aim of this study was to understand the effect of biochar and compost addition, derived from the organic fraction of municipal solid wastes at two different pyrolysis temperatures 3000C (BC300) and 6000C (BC600), on phosphorus availability and plant growth of lettuce (Lactuca sativa L.) grown in an alkaline loam soil. This type of soil is widely available in Greece, leading us to investigate ways to increase its fertility. A 39 d growth period of lettuce was studied in a greenhouse in triplicate. Treatments comprised of control soils (no addition of biochar or compost), soils treated only with compost (5%) or biochar (5%), and combinations of biochar (5%) plus compost (5%). No fertilization was added to any of the treatments. One biomass cut was obtained. Plant shoot yield and height were determined along with elemental concentration (N, P, K, Ca, Mg, Mn, Fe, Zn, Cu) and uptake of shoots. Results showed that BC300 combined with compost significantly increased P uptake of lettuce. On the other hand, BC600 plus compost, along with the two biochar-only treatments, significantly decreased Ca and Mg uptake of lettuce. N, K, Fe, Zn, Mn and Cu uptakes were not affected by the application of biochar, compost or the combined treatments. Despite the significant increase of P uptake, plant height and shoot yield were not significantly influenced by any of the treatments.

  6. A Novel Environmental Azole Resistance Mutation in Aspergillus fumigatus and a Possible Role of Sexual Reproduction in Its Emergence

    PubMed Central

    Snelders, Eveline; Zwaan, Bas J.; Schoustra, Sijmen E.; van Dijk, Karin; Hagen, Ferry; van der Beek, Martha T.; Kampinga, Greetje A.; Zoll, Jan; Melchers, Willem J. G.; Verweij, Paul E.; Debets, Alfons J. M.

    2017-01-01

    ABSTRACT This study investigated the dynamics of Aspergillus fumigatus azole-resistant phenotypes in two compost heaps with contrasting azole exposures: azole free and azole exposed. After heat shock, to which sexual but not asexual spores are highly resistant, the azole-free compost yielded 98% (49/50) wild-type and 2% (1/50) azole-resistant isolates, whereas the azole-containing compost yielded 9% (4/45) wild-type and 91% (41/45) resistant isolates. From the latter compost, 80% (36/45) of the isolates contained the TR46/Y121F/T289A genotype, 2% (1/45) harbored the TR46/Y121F/M172I/T289A/G448S genotype, and 9% (4/45) had a novel pan-triazole-resistant mutation (TR463/Y121F/M172I/T289A/G448S) with a triple 46-bp promoter repeat. Subsequent screening of a representative set of clinical A. fumigatus isolates showed that the novel TR463 mutant was already present in samples from three Dutch medical centers collected since 2012. Furthermore, a second new resistance mutation was found in this set that harbored four TR46 repeats. Importantly, in the laboratory, we recovered the TR463 mutation from a sexual cross between two TR46 isolates from the same azole-containing compost, possibly through unequal crossing over between the double tandem repeats (TRs) during meiosis. This possible role of sexual reproduction in the emergence of the mutation was further implicated by the high level of genetic diversity of STR genotypes in the azole-containing compost. Our study confirms that azole resistance mutations continue to emerge in the environment and indicates compost containing azole residues as a possible hot spot. Better insight into the biology of environmental resistance selection is needed to retain the azole class for use in food production and treatment of Aspergillus diseases. PMID:28655821

  7. Microbial community structure and dynamics in thermophilic composting viewed through metagenomics and metatranscriptomics

    PubMed Central

    Antunes, Luciana Principal; Martins, Layla Farage; Pereira, Roberta Verciano; Thomas, Andrew Maltez; Barbosa, Deibs; Lemos, Leandro Nascimento; Silva, Gianluca Major Machado; Moura, Livia Maria Silva; Epamino, George Willian Condomitti; Digiampietri, Luciano Antonio; Lombardi, Karen Cristina; Ramos, Patricia Locosque; Quaggio, Ronaldo Bento; de Oliveira, Julio Cezar Franco; Pascon, Renata Castiglioni; Cruz, João Batista da; da Silva, Aline Maria; Setubal, João Carlos

    2016-01-01

    Composting is a promising source of new organisms and thermostable enzymes that may be helpful in environmental management and industrial processes. Here we present results of metagenomic- and metatranscriptomic-based analyses of a large composting operation in the São Paulo Zoo Park. This composting exhibits a sustained thermophilic profile (50 °C to 75 °C), which seems to preclude fungal activity. The main novelty of our study is the combination of time-series sampling with shotgun DNA, 16S rRNA gene amplicon, and metatranscriptome high-throughput sequencing, enabling an unprecedented detailed view of microbial community structure, dynamics, and function in this ecosystem. The time-series data showed that the turning procedure has a strong impact on the compost microbiota, restoring to a certain extent the population profile seen at the beginning of the process; and that lignocellulosic biomass deconstruction occurs synergistically and sequentially, with hemicellulose being degraded preferentially to cellulose and lignin. Moreover, our sequencing data allowed near-complete genome reconstruction of five bacterial species previously found in biomass-degrading environments and of a novel biodegrading bacterial species, likely a new genus in the order Bacillales. The data and analyses provided are a rich source for additional investigations of thermophilic composting microbiology. PMID:27941956

  8. Using composting for control seed germination of invasive plant (water hyacinth) in Extremadura (Spain)

    NASA Astrophysics Data System (ADS)

    Labrador, Juana; Gordillo, Judit; Ruiz, Trinidad; Albano, Eva; Moreno, Marta M.

    2016-04-01

    The biotransformation of the invasive water hyacinth (Eichhornia crassipes) by composting has been showed as a viable alternative to offset the economic cost of eliminating an invasive plant giving a value to the by-product; however, as result of the propagative plant capacity, it was necessary to check if the composting process could eliminate the germination seed rate. Despite the high temperatures and the biochemical biotransformation processes of the composting components, in the case of seed water hyacinth, with a recovery rate of 100%, damage was observed in some parts of the seed anatomy such as in the outer teguments; however, other parts of the seed coat and the endosperm maintained their integrity. A microscopic analysis revealed that the embryo was noticeable and this was supported by the rate of seed germination observed (3.5 ± 0.96%). The results indicate that the use of water hyacinth for compost production is not completely safe from an environmental perspective. Keywords: Eichhornia crassipes, water hyacinth, invasive plant, seed anatomy, seed germination rate, compost. References: Ruiz T., Martín de Rodrigo E., Lorenzo G., Albano E., Morán R., Sánchez J.M. 2008. The Water Hyacinth, Eichhornia crassipes: an invasive plant in the Guadiana River Basin (Spain). Aquatic Invasions Volume 3, Issue 1:42-53.

  9. Microbial community structure and dynamics in thermophilic composting viewed through metagenomics and metatranscriptomics.

    PubMed

    Antunes, Luciana Principal; Martins, Layla Farage; Pereira, Roberta Verciano; Thomas, Andrew Maltez; Barbosa, Deibs; Lemos, Leandro Nascimento; Silva, Gianluca Major Machado; Moura, Livia Maria Silva; Epamino, George Willian Condomitti; Digiampietri, Luciano Antonio; Lombardi, Karen Cristina; Ramos, Patricia Locosque; Quaggio, Ronaldo Bento; de Oliveira, Julio Cezar Franco; Pascon, Renata Castiglioni; Cruz, João Batista da; da Silva, Aline Maria; Setubal, João Carlos

    2016-12-12

    Composting is a promising source of new organisms and thermostable enzymes that may be helpful in environmental management and industrial processes. Here we present results of metagenomic- and metatranscriptomic-based analyses of a large composting operation in the São Paulo Zoo Park. This composting exhibits a sustained thermophilic profile (50 °C to 75 °C), which seems to preclude fungal activity. The main novelty of our study is the combination of time-series sampling with shotgun DNA, 16S rRNA gene amplicon, and metatranscriptome high-throughput sequencing, enabling an unprecedented detailed view of microbial community structure, dynamics, and function in this ecosystem. The time-series data showed that the turning procedure has a strong impact on the compost microbiota, restoring to a certain extent the population profile seen at the beginning of the process; and that lignocellulosic biomass deconstruction occurs synergistically and sequentially, with hemicellulose being degraded preferentially to cellulose and lignin. Moreover, our sequencing data allowed near-complete genome reconstruction of five bacterial species previously found in biomass-degrading environments and of a novel biodegrading bacterial species, likely a new genus in the order Bacillales. The data and analyses provided are a rich source for additional investigations of thermophilic composting microbiology.

  10. Effects of air flow directions on composting process temperature profile

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kulcu, Recep; Yaldiz, Osman

    2008-07-01

    In this study, chicken manure mixed with carnation wastes was composted by using three different air flow directions: R1-sucking (downward), R2-blowing (upward) and R3-mixed. The aim was to find out the most appropriate air flow direction type for composting to provide more homogenous temperature distribution in the reactors. The efficiency of each aeration method was evaluated by monitoring the evolution of parameters such as temperature, moisture content, CO{sub 2} and O{sub 2} ratio in the material and dry material losses. Aeration of the reactors was managed by radial fans. The results showed that R3 resulted in a more homogenous temperaturemore » distribution and high dry material loss throughout the composting process. The most heterogeneous temperature distribution and the lowest dry material loss were obtained in R2.« less

  11. Production of biochar out of organic urban waste to amend salt affected soils in the basin of Mexico

    NASA Astrophysics Data System (ADS)

    Chavez Garcia, Elizabeth; Siebe, Christina

    2016-04-01

    Biochar is widely recognized as an efficient tool for carbon sequestration and soil fertility. The understanding of its chemical and physical properties, strongly related to the biomass and production conditions, is central to identify the most suitable application of biochar. On the other hand, salt affected soils reduce the value and productivity of extensive areas worldwide. One feasible option to recover them is to add organic amendments, which improve water holding capacity and increase sorption sites for cations as sodium. The former lake Texcoco in the basin of Mexico has been a key area for the control of surface run-off and air quality of Mexico City. However, the high concentrations of soluble salts in their soils do not allow the development of a vegetation cover that protects the soil from wind erosion, being the latter the main cause of poor air quality in the metropolitan area during the dry season. On the other hand, the population of the city produces daily 2000 t of organic urban wastes, which are currently composted. Thus, we tested if either compost or biochar made out of urban organic waste can improve the salt affected soils of former lake Texcoco to grow grass and avoid wind erosion. We examined the physico-chemical properties of biochar produced from urban organic waste under pyrolysis conditions. We also set up a field experiment to evaluate the addition of these amendments into the saline soils of Texcoco. Our preliminary analyses show biochar yield was ca. 40%, it was mainly alkaline (pH: 8-10), with a moderate salt content (electrical conductivity: 0.5-3 mS/cm). We show also results of the initial phase of the field experiment in which we monitor the electrical conductivity, pH, water content, water tension and soil GHG fluxes on small plots amended with either biochar or compost in three different doses.

  12. Composting and compost utilization: accounting of greenhouse gases and global warming contributions.

    PubMed

    Boldrin, Alessio; Andersen, Jacob K; Møller, Jacob; Christensen, Thomas H; Favoino, Enzo

    2009-11-01

    Greenhouse gas (GHG) emissions related to composting of organic waste and the use of compost were assessed from a waste management perspective. The GHG accounting for composting includes use of electricity and fuels, emissions of methane and nitrous oxide from the composting process, and savings obtained by the use of the compost. The GHG account depends on waste type and composition (kitchen organics, garden waste), technology type (open systems, closed systems, home composting), the efficiency of off-gas cleaning at enclosed composting systems, and the use of the compost. The latter is an important issue and is related to the long-term binding of carbon in the soil, to related effects in terms of soil improvement and to what the compost substitutes; this could be fertilizer and peat for soil improvement or for growth media production. The overall global warming factor (GWF) for composting therefore varies between significant savings (-900 kg CO(2)-equivalents tonne(-1) wet waste (ww)) and a net load (300 kg CO(2)-equivalents tonne( -1) ww). The major savings are obtained by use of compost as a substitute for peat in the production of growth media. However, it may be difficult for a specific composting plant to document how the compost is used and what it actually substitutes for. Two cases representing various technologies were assessed showing how GHG accounting can be done when specific information and data are available.

  13. COMPOST-FREE BIOREACTOR TREATMENT OF ACID ROCK DRAINAGE LEVIATHAN MINE, CALIFORNIA INNOVATIVE TECHNOLOGY EVALUATION REPORT

    EPA Science Inventory

    As part of the Superfund Innovative Technology Evaluation (SITE) program, an evaluation of the compost-free bioreactor treatment of acid rock drainage (ARD) from the Aspen Seep was conducted at the Leviathan Mine Superfund site located in a remote, high altitude area of Alpine Co...

  14. Bioremediation of oil-contaminated soil using Candida catenulata and food waste.

    PubMed

    Joo, Hung-Soo; Ndegwa, Pius M; Shoda, Makoto; Phae, Chae-Gun

    2008-12-01

    Even though petroleum-degrading microorganisms are widely distributed in soil and water, they may not be present in sufficient numbers to achieve contaminant remediation. In such cases, it may be useful to inoculate the polluted area with highly effective petroleum-degrading microbial strains to augment the exiting ones. In order to identify a microbial strain for bioaugmentation of oil-contaminated soil, we isolated a microbial strain with high emulsification and petroleum hydrocarbon degradation efficiency of diesel fuel in culture. The efficacy of the isolated microbial strain, identified as Candida catenulata CM1, was further evaluated during composting of a mixture containing 23% food waste and 77% diesel-contaminated soil including 2% (w/w) diesel. After 13 days of composting, 84% of the initial petroleum hydrocarbon was degraded in composting mixes containing a powdered form of CM1 (CM1-solid), compared with 48% of removal ratio in control reactor without inoculum. This finding suggests that CM1 is a viable microbial strain for bioremediation of oil-contaminated soil with food waste through composting processes.

  15. Influence of inorganic and organic amendments in the soil properties and the growth and survival of Olea Europaea var. Sylvestris in the semiarid Mediterranean area

    NASA Astrophysics Data System (ADS)

    Ortega, Raúl; Miralles, Isabel; Anguita-Maeso, Manuel; Domene, Miguel; Soriano, Miguel

    2017-04-01

    Selecting the most appropriate types of plants adapted to the harsh climatic conditions of restoring drylands is essential to success in landscape restoration. Besides improving soil quality is a key factor to consider when designing the restoration procedures. The use of organic and inorganic amendments can help with this task. On this study, we evaluated the influence of different mineral (clays) and organic (compost and poultry) amendments on the properties of a bare soil and how this influenced on the growth and survival of the Olea europaea var. sylvestrys, a perennial bush plant adapted to the Mediterranean semi-arid zone. Tests were designed and carried out in a greenhouse at the "Experimental Station of Cajamar foundation "Las Palmerillas" in El Ejido (Almería, Spain). Plants were grown in 250L pots and their substrate was bare soil and mineral and/or organic amendments. The experimental design consisted of three replicas for five treatments: 1. compost, 2. "ZeoPro", a cliptonolite commercial clay, 3. mordenite clay from local quarries plus compost, 4. cliptonolite clay from Turkey plus compost, 5. cliptonolite from Turquey plus poultry; with four levels each one: 5%, 10%, 20%, 30% volume of amendment. Including three control samples without amendment total plants accounted for 63. Climatic sensors inside and outside the greenhouse permitted to establish the same meteorological conditions for the plants and only emergency watering was supplied when necessary for the survival of the plants when arid conditions were extreme. The physico-chemical soil properties of each treatment and level were analyzed before planting and the biovolume and the survival rates of the plants were measured regularly along eleven months. Statistically the best treatment for the growing of the plants was number 3 (mordenite and compost) with no deaths recorded. According to the growing rates the best level was soil with 20% of amendment. Besides we analyzed the evolution of the plants along the seasons of the year and we found this plant especially showed good growth rates during the spring. In conclusion we found in the semi-arid Mediterranean area soils with best quality for restoration with Olea Europaea var. Sylvestris can be obtained adding combined organic (compost) and inorganic (local mordenite clay) amendments in a fifth of soil proportion. (*) Financial support by Marie Curie Intra-European Fellowship (FP7-577 PEOPLE-2013-IEF, Proposal n° 623393) and (**) by the Ministerio de Economía y Competitividad (MINECO) cofinanced with FEDER funds (project CGL2015-71709-R) is acknowledged.

  16. Soil physical and hydrological properties as affected by long-term addition of various organic amendments

    NASA Astrophysics Data System (ADS)

    Eden, Marie; Völkel, Jörg; Mercier, Vincent; Labat, Christophe; Houot, Sabine

    2014-05-01

    The use of organic residues as soil amendments in agriculture not only reduces the amount of waste needing to be disposed of; it may also lead to improvements in soil properties, including physical and hydrological ones. The present study examines a long-term experiment called "Qualiagro", run jointly by INRA and Veolia Environment in Feucherolles, France (near Paris). It was initiated in 1998 on a loess-derived silt loam (787 g/kg silt, 152 g/kg clay) and includes ten treatments: four types of organic amendments and a control (CNT) each at two levels of mineral nitrogen (N) addition: minimal (Nmin) and optimal (Nopt). The amendments include three types of compost and farmyard manure (FYM), which were applied every other year at a rate of ca. 4 t carbon ha-1. The composts include municipal solid waste compost (MSW), co-compost of green wastes and sewage sludge (GWS), and biowaste compost (BIO). The plots are arranged in a randomized block design and have a size of 450 m²; each treatment is replicated four times (total of 40 plots). Ca. 15 years after the start of the experiment soil organic carbon (OC) had continuously increased in the amended plots, while it remained stable or decreased in the control plots. This compost- or manure-induced increase in OC plays a key role, affecting numerous dependant soil properties like bulk density, porosity and water retention. The water holding capacity (WHC) of a soil is of particular interest to farmers in terms of water supply for plants, but also indicates soil quality and functionality. Addition of OC may affect WHC in different ways: carbon-induced aggregation may increase larger-pore volume and hence WHC at the wet end while increased surface areas may lead to an increased retention of water at the dry end. Consequently it is difficult to predict (e.g. with pedotransfer functions) the impact on the amount of water available for plants (PAW), which was experimentally determined for the soils, along with the entire range of the water retention curve. The impact of organic amendments on water retained at field capacity (FC) and wilting point (WP) as well as the retention curve in general differed compared to CNT but also depends on the definition of FC (the associated matric potential). Overall, within the first 15 years of the experiment, the organic treatments affected and generally improved various soil properties relevant in terms of quality, functionality and productivity. Acknowledgment: This work was granted by ADEME within the Pro-Extern project.

  17. Effect of pig manure on the chemical composition and microbial diversity during co-composting with spent mushroom substrate and rice husks.

    PubMed

    Meng, Xingyao; Liu, Bin; Xi, Chen; Luo, Xiaosha; Yuan, Xufeng; Wang, Xiaofen; Zhu, Wanbin; Wang, Hongliang; Cui, Zongjun

    2018-03-01

    In this study, the impact of pig manure on the maturity of compost consisting of spent mushroom substrate and rice husks was accessed. The results showed that the addition of pig manure (SMS-PM) reached 50°C 5days earlier and lasted 15days longer than without pig manure (SMS). Furthermore, the addition of pig manure improved nutrition and germination index. High-throughput 16S rRNA pyrosequencing was used to evaluate the bacterial and fungal composition during the composting process of SMS-PM compared to SMS alone. The SMS treatment showed a relatively higher abundance of carbon-degrading microbes (Bacillaceae and Thermomyces) and plant pathogenic fungi (Sordariomycetes_unclassified) at the end of the compost. In contrast, the SMS-PM showed an increased bacterial diversity with anti-pathogen (Pseudomonas). The results indicated that the addition of pig manure improved the decomposition of refractory carbon from the spent mushroom substrate and promoted the maturity and nutritional content of the compost product. Copyright © 2017. Published by Elsevier Ltd.

  18. Effects of superabsorbent polymers on the abundances of antibiotic resistance genes, mobile genetic elements, and the bacterial community during swine manure composting.

    PubMed

    Guo, Aiyun; Gu, Jie; Wang, Xiaojuan; Zhang, Ranran; Yin, Yanan; Sun, Wei; Tuo, Xiaxia; Zhang, Li

    2017-11-01

    Superabsorbent polymers (SAPs) are considered suitable amendments for reducing the selection pressure due to heavy metals and the abundances of antibiotic resistance genes (ARGs) during composting. In this study, three SAP (sodium polyacrylate) levels (0, 5, and 15mgkg -1 of compost) were applied and their effects on the abundances of ARGs, mobile genetic elements (MGEs), and the bacterial community were investigated. After composting, the abundances of ARGs and MGEs decreased to different extent, where the removal efficiencies for tetW, dfrA7, ermX, aac(6')-ib-cr and MGEs exceeded 90%. The high SAP concentration significantly reduced the abundances of ARGs and MGEs, and changed the microbial community. Redundancy analysis indicated that the moisture content mainly explained the changes in ARGs and MGEs. Network analysis determined the potential hosts of ARGs and MGEs, and their co-occurrence. The results suggested that applying 15mgkg -1 SAP is appropriate for reducing ARGs in compost. Copyright © 2017. Published by Elsevier Ltd.

  19. Pre-treatment of domestic wastewater with pre-composting tanks: evaluation of existing systems.

    PubMed

    Gajurel, D R; Benn, O; Li, Z; Behrendt, J; Otterpohl, R

    2003-01-01

    A relatively new technology called pre-composting tank or Rottebehaelter, retaining solid material and draining water to a certain extent, has been found to be an interesting component of decentralised systems to replace the usual septic tank. Results of the investigation revealed that solid material which has been retained in the pre-composting tanks still contained a high percentage of water. However, there was no odour problem at and near the tanks. The pre-composted materials have to be further composted together with household and garden wastes for a year prior to their use as soil conditioner. The filtrate is further treated in a constructed wetland. One of the major advantages of this system compared to other systems, such as septic tanks, is that it does not deprive agriculture of the valuable nutrients and soil conditioner from human excreta and does not require an expensive tanker truck. It can be the most appropriate system for application in regions where there is a demand for local reuse of the end product. It has to be stated that maintenance is a crucial factor.

  20. Microstructural and associated chemical changes during the composting of a high temperature biochar: Mechanisms for nitrate, phosphate and other nutrient retention and release.

    PubMed

    Joseph, Stephen; Kammann, Claudia I; Shepherd, Jessica G; Conte, Pellegrino; Schmidt, Hans-Peter; Hagemann, Nikolas; Rich, Anne M; Marjo, Christopher E; Allen, Jessica; Munroe, Paul; Mitchell, David R G; Donne, Scott; Spokas, Kurt; Graber, Ellen R

    2018-03-15

    Recent studies have demonstrated the importance of the nutrient status of biochar and soils prior to its inclusion in particular agricultural systems. Pre-treatment of nutrient-reactive biochar, where nutrients are loaded into pores and onto surfaces, gives improved yield outcomes compared to untreated biochar. In this study we have used a wide selection of spectroscopic and microscopic techniques to investigate the mechanisms of nutrient retention in a high temperature wood biochar, which had negative effects on Chenopodium quinoa above ground biomass yield when applied to the system without prior nutrient loading, but positive effects when applied after composting. We have compared non-composted biochar (BC) with composted biochar (BCC) to elucidate the differences which may have led to these results. The results of our investigation provide evidence for a complex series of reactions during composting, where dissolved nutrients are first taken up into biochar pores along a concentration gradient and through capillary action, followed by surface sorption and retention processes which block biochar pores and result in deposition of a nutrient-rich organomineral (plaque) layer. The lack of such pretreatment in the BC samples would render it reactive towards nutrients in a soil-fertilizer system, making it a competitor for, rather than provider of, nutrients for plant growth. Copyright © 2017 Elsevier B.V. All rights reserved.

Top