Sample records for high quality rendering

  1. High-quality slab-based intermixing method for fusion rendering of multiple medical objects.

    PubMed

    Kim, Dong-Joon; Kim, Bohyoung; Lee, Jeongjin; Shin, Juneseuk; Kim, Kyoung Won; Shin, Yeong-Gil

    2016-01-01

    The visualization of multiple 3D objects has been increasingly required for recent applications in medical fields. Due to the heterogeneity in data representation or data configuration, it is difficult to efficiently render multiple medical objects in high quality. In this paper, we present a novel intermixing scheme for fusion rendering of multiple medical objects while preserving the real-time performance. First, we present an in-slab visibility interpolation method for the representation of subdivided slabs. Second, we introduce virtual zSlab, which extends an infinitely thin boundary (such as polygonal objects) into a slab with a finite thickness. Finally, based on virtual zSlab and in-slab visibility interpolation, we propose a slab-based visibility intermixing method with the newly proposed rendering pipeline. Experimental results demonstrate that the proposed method delivers more effective multiple-object renderings in terms of rendering quality, compared to conventional approaches. And proposed intermixing scheme provides high-quality intermixing results for the visualization of intersecting and overlapping surfaces by resolving aliasing and z-fighting problems. Moreover, two case studies are presented that apply the proposed method to the real clinical applications. These case studies manifest that the proposed method has the outstanding advantages of the rendering independency and reusability. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  2. Development of an algorithm for improving quality and information processing capacity of MathSpeak synthetic speech renderings.

    PubMed

    Isaacson, M D; Srinivasan, S; Lloyd, L L

    2010-01-01

    MathSpeak is a set of rules for non speaking of mathematical expressions. These rules have been incorporated into a computerised module that translates printed mathematics into the non-ambiguous MathSpeak form for synthetic speech rendering. Differences between individual utterances produced with the translator module are difficult to discern because of insufficient pausing between utterances; hence, the purpose of this study was to develop an algorithm for improving the synthetic speech rendering of MathSpeak. To improve synthetic speech renderings, an algorithm for inserting pauses was developed based upon recordings of middle and high school math teachers speaking mathematic expressions. Efficacy testing of this algorithm was conducted with college students without disabilities and high school/college students with visual impairments. Parameters measured included reception accuracy, short-term memory retention, MathSpeak processing capacity and various rankings concerning the quality of synthetic speech renderings. All parameters measured showed statistically significant improvements when the algorithm was used. The algorithm improves the quality and information processing capacity of synthetic speech renderings of MathSpeak. This increases the capacity of individuals with print disabilities to perform mathematical activities and to successfully fulfill science, technology, engineering and mathematics academic and career objectives.

  3. The Brazilian Air Force Uniform Distribution Process: Using Lean Thinking, Statistical Process Control and Theory of Constraints to Address Improvement Opportunities

    DTIC Science & Technology

    2015-03-26

    universal definition” (Evans & Lindsay, 1996). Heizer and Render (2010) argue that several definitions of this term are user-based, meaning, that quality...for example, really good ice cream has high butterfat levels.” ( Heizer & Render , 2010). Garvin, in his Competing in Eight Dimensions of Quality...Montgomery, 2005). As for definition purposes, the concept adopted by this research was provided by Heizer and Render (2010), for whom Statistical Process

  4. Quality improving techniques for free-viewpoint DIBR

    NASA Astrophysics Data System (ADS)

    Do, Luat; Zinger, Sveta; de With, Peter H. N.

    2010-02-01

    Interactive free-viewpoint selection applied to a 3D multi-view signal is a possible attractive feature of the rapidly developing 3D TV media. This paper explores a new rendering algorithm that computes a free-viewpoint based on depth image warping between two reference views from existing cameras. We have developed three quality enhancing techniques that specifically aim at solving the major artifacts. First, resampling artifacts are filled in by a combination of median filtering and inverse warping. Second, contour artifacts are processed while omitting warping of edges at high discontinuities. Third, we employ a depth signal for more accurate disocclusion inpainting. We obtain an average PSNR gain of 3 dB and 4.5 dB for the 'Breakdancers' and 'Ballet' sequences, respectively, compared to recently published results. While experimenting with synthetic data, we observe that the rendering quality is highly dependent on the complexity of the scene. Moreover, experiments are performed using compressed video from surrounding cameras. The overall system quality is dominated by the rendering quality and not by coding.

  5. Framework for cognitive analysis of dynamic perfusion computed tomography with visualization of large volumetric data

    NASA Astrophysics Data System (ADS)

    Hachaj, Tomasz; Ogiela, Marek R.

    2012-10-01

    The proposed framework for cognitive analysis of perfusion computed tomography images is a fusion of image processing, pattern recognition, and image analysis procedures. The output data of the algorithm consists of: regions of perfusion abnormalities, anatomy atlas description of brain tissues, measures of perfusion parameters, and prognosis for infracted tissues. That information is superimposed onto volumetric computed tomography data and displayed to radiologists. Our rendering algorithm enables rendering large volumes on off-the-shelf hardware. This portability of rendering solution is very important because our framework can be run without using expensive dedicated hardware. The other important factors are theoretically unlimited size of rendered volume and possibility of trading of image quality for rendering speed. Such rendered, high quality visualizations may be further used for intelligent brain perfusion abnormality identification, and computer aided-diagnosis of selected types of pathologies.

  6. Efficient high-quality volume rendering of SPH data.

    PubMed

    Fraedrich, Roland; Auer, Stefan; Westermann, Rüdiger

    2010-01-01

    High quality volume rendering of SPH data requires a complex order-dependent resampling of particle quantities along the view rays. In this paper we present an efficient approach to perform this task using a novel view-space discretization of the simulation domain. Our method draws upon recent work on GPU-based particle voxelization for the efficient resampling of particles into uniform grids. We propose a new technique that leverages a perspective grid to adaptively discretize the view-volume, giving rise to a continuous level-of-detail sampling structure and reducing memory requirements compared to a uniform grid. In combination with a level-of-detail representation of the particle set, the perspective grid allows effectively reducing the amount of primitives to be processed at run-time. We demonstrate the quality and performance of our method for the rendering of fluid and gas dynamics SPH simulations consisting of many millions of particles.

  7. Immersive Molecular Visualization with Omnidirectional Stereoscopic Ray Tracing and Remote Rendering

    PubMed Central

    Stone, John E.; Sherman, William R.; Schulten, Klaus

    2016-01-01

    Immersive molecular visualization provides the viewer with intuitive perception of complex structures and spatial relationships that are of critical interest to structural biologists. The recent availability of commodity head mounted displays (HMDs) provides a compelling opportunity for widespread adoption of immersive visualization by molecular scientists, but HMDs pose additional challenges due to the need for low-latency, high-frame-rate rendering. State-of-the-art molecular dynamics simulations produce terabytes of data that can be impractical to transfer from remote supercomputers, necessitating routine use of remote visualization. Hardware-accelerated video encoding has profoundly increased frame rates and image resolution for remote visualization, however round-trip network latencies would cause simulator sickness when using HMDs. We present a novel two-phase rendering approach that overcomes network latencies with the combination of omnidirectional stereoscopic progressive ray tracing and high performance rasterization, and its implementation within VMD, a widely used molecular visualization and analysis tool. The new rendering approach enables immersive molecular visualization with rendering techniques such as shadows, ambient occlusion lighting, depth-of-field, and high quality transparency, that are particularly helpful for the study of large biomolecular complexes. We describe ray tracing algorithms that are used to optimize interactivity and quality, and we report key performance metrics of the system. The new techniques can also benefit many other application domains. PMID:27747138

  8. Super-high color rendering properties of color temperature tunable white LEDs based on high quality InP/ZnS quantum dots via myristic acid passivation and Ag doping

    NASA Astrophysics Data System (ADS)

    Yang, Wu; Zhang, Wanlu; Zhang, Guilin; Zhu, Jiatao; He, Guoxing; Guo, Ruiqian

    2018-07-01

    We reported two types of tunable white LEDs (WLEDs) based on high quality the single emissive InP/ZnS quantum dots (QDs) and the dual emissive Ag:InP/ZnS QDs via myristic acid (MA) passivation and Ag doping. The WLEDs with three color InP/ZnS QDs could realize color rendering indices (CRIs) of 97-98, color quality scales (CQSs) of 94-98, and limited luminous efficacies (LLEs) of 238-246 lm/W at correlated color temperatures (CCTs) of 2700 K to 6500 K, and the WLEDs with dual emissive Ag:InP/ZnS and red emissive InP/ZnS QDs could realize CRIs of 90-93, CQSs of 90-93, and LLEs of 223-242 lm/W at CCTs of 2700 K to 4000 K. Finally, their luminous efficacies were estimated.

  9. Three-dimensional volume rendering of the ankle based on magnetic resonance images enables the generation of images comparable to real anatomy.

    PubMed

    Anastasi, Giuseppe; Cutroneo, Giuseppina; Bruschetta, Daniele; Trimarchi, Fabio; Ielitro, Giuseppe; Cammaroto, Simona; Duca, Antonio; Bramanti, Placido; Favaloro, Angelo; Vaccarino, Gianluigi; Milardi, Demetrio

    2009-11-01

    We have applied high-quality medical imaging techniques to study the structure of the human ankle. Direct volume rendering, using specific algorithms, transforms conventional two-dimensional (2D) magnetic resonance image (MRI) series into 3D volume datasets. This tool allows high-definition visualization of single or multiple structures for diagnostic, research, and teaching purposes. No other image reformatting technique so accurately highlights each anatomic relationship and preserves soft tissue definition. Here, we used this method to study the structure of the human ankle to analyze tendon-bone-muscle relationships. We compared ankle MRI and computerized tomography (CT) images from 17 healthy volunteers, aged 18-30 years (mean 23 years). An additional subject had a partial rupture of the Achilles tendon. The MRI images demonstrated superiority in overall quality of detail compared to the CT images. The MRI series accurately rendered soft tissue and bone in simultaneous image acquisition, whereas CT required several window-reformatting algorithms, with loss of image data quality. We obtained high-quality digital images of the human ankle that were sufficiently accurate for surgical and clinical intervention planning, as well as for teaching human anatomy. Our approach demonstrates that complex anatomical structures such as the ankle, which is rich in articular facets and ligaments, can be easily studied non-invasively using MRI data.

  10. Three-dimensional volume rendering of the ankle based on magnetic resonance images enables the generation of images comparable to real anatomy

    PubMed Central

    Anastasi, Giuseppe; Cutroneo, Giuseppina; Bruschetta, Daniele; Trimarchi, Fabio; Ielitro, Giuseppe; Cammaroto, Simona; Duca, Antonio; Bramanti, Placido; Favaloro, Angelo; Vaccarino, Gianluigi; Milardi, Demetrio

    2009-01-01

    We have applied high-quality medical imaging techniques to study the structure of the human ankle. Direct volume rendering, using specific algorithms, transforms conventional two-dimensional (2D) magnetic resonance image (MRI) series into 3D volume datasets. This tool allows high-definition visualization of single or multiple structures for diagnostic, research, and teaching purposes. No other image reformatting technique so accurately highlights each anatomic relationship and preserves soft tissue definition. Here, we used this method to study the structure of the human ankle to analyze tendon–bone–muscle relationships. We compared ankle MRI and computerized tomography (CT) images from 17 healthy volunteers, aged 18–30 years (mean 23 years). An additional subject had a partial rupture of the Achilles tendon. The MRI images demonstrated superiority in overall quality of detail compared to the CT images. The MRI series accurately rendered soft tissue and bone in simultaneous image acquisition, whereas CT required several window-reformatting algorithms, with loss of image data quality. We obtained high-quality digital images of the human ankle that were sufficiently accurate for surgical and clinical intervention planning, as well as for teaching human anatomy. Our approach demonstrates that complex anatomical structures such as the ankle, which is rich in articular facets and ligaments, can be easily studied non-invasively using MRI data. PMID:19678857

  11. A data distributed parallel algorithm for ray-traced volume rendering

    NASA Technical Reports Server (NTRS)

    Ma, Kwan-Liu; Painter, James S.; Hansen, Charles D.; Krogh, Michael F.

    1993-01-01

    This paper presents a divide-and-conquer ray-traced volume rendering algorithm and a parallel image compositing method, along with their implementation and performance on the Connection Machine CM-5, and networked workstations. This algorithm distributes both the data and the computations to individual processing units to achieve fast, high-quality rendering of high-resolution data. The volume data, once distributed, is left intact. The processing nodes perform local ray tracing of their subvolume concurrently. No communication between processing units is needed during this locally ray-tracing process. A subimage is generated by each processing unit and the final image is obtained by compositing subimages in the proper order, which can be determined a priori. Test results on both the CM-5 and a group of networked workstations demonstrate the practicality of our rendering algorithm and compositing method.

  12. Combined approach of shell and shear-warp rendering for efficient volume visualization

    NASA Astrophysics Data System (ADS)

    Falcao, Alexandre X.; Rocha, Leonardo M.; Udupa, Jayaram K.

    2003-05-01

    In Medical Imaging, shell rendering (SR) and shear-warp rendering (SWR) are two ultra-fast and effective methods for volume visualization. We have previously shown that, typically, SWR can be on the average 1.38 times faster than SR, but it requires from 2 to 8 times more memory space than SR. In this paper, we propose an extension of the compact shell data structure utilized in SR to allow shear-warp factorization of the viewing matrix in order to obtain speed up gains for SR, without paying the high storage price of SWR. The new approach is called shear-warp shell rendering (SWSR). The paper describes the methods, points out their major differences in the computational aspects, and presents a comparative analysis of them in terms of speed, storage, and image quality. The experiments involve hard and fuzzy boundaries of 10 different objects of various sizes, shapes, and topologies, rendered on a 1GHz Pentium-III PC with 512MB RAM, utilizing surface and volume rendering strategies. The results indicate that SWSR offers the best speed and storage characteristics compromise among these methods. We also show that SWSR improves the rendition quality over SR, and provides renditions similar to those produced by SWR.

  13. Scalable Multi-Platform Distribution of Spatial 3d Contents

    NASA Astrophysics Data System (ADS)

    Klimke, J.; Hagedorn, B.; Döllner, J.

    2013-09-01

    Virtual 3D city models provide powerful user interfaces for communication of 2D and 3D geoinformation. Providing high quality visualization of massive 3D geoinformation in a scalable, fast, and cost efficient manner is still a challenging task. Especially for mobile and web-based system environments, software and hardware configurations of target systems differ significantly. This makes it hard to provide fast, visually appealing renderings of 3D data throughout a variety of platforms and devices. Current mobile or web-based solutions for 3D visualization usually require raw 3D scene data such as triangle meshes together with textures delivered from server to client, what makes them strongly limited in terms of size and complexity of the models they can handle. In this paper, we introduce a new approach for provisioning of massive, virtual 3D city models on different platforms namely web browsers, smartphones or tablets, by means of an interactive map assembled from artificial oblique image tiles. The key concept is to synthesize such images of a virtual 3D city model by a 3D rendering service in a preprocessing step. This service encapsulates model handling and 3D rendering techniques for high quality visualization of massive 3D models. By generating image tiles using this service, the 3D rendering process is shifted from the client side, which provides major advantages: (a) The complexity of the 3D city model data is decoupled from data transfer complexity (b) the implementation of client applications is simplified significantly as 3D rendering is encapsulated on server side (c) 3D city models can be easily deployed for and used by a large number of concurrent users, leading to a high degree of scalability of the overall approach. All core 3D rendering techniques are performed on a dedicated 3D rendering server, and thin-client applications can be compactly implemented for various devices and platforms.

  14. Foundations for Measuring Volume Rendering Quality

    NASA Technical Reports Server (NTRS)

    Williams, Peter L.; Uselton, Samuel P.; Chancellor, Marisa K. (Technical Monitor)

    1997-01-01

    The goal of this paper is to provide a foundation for objectively comparing volume rendered images. The key elements of the foundation are: (1) a rigorous specification of all the parameters that need to be specified to define the conditions under which a volume rendered image is generated; (2) a methodology for difference classification, including a suite of functions or metrics to quantify and classify the difference between two volume rendered images that will support an analysis of the relative importance of particular differences. The results of this method can be used to study the changes caused by modifying particular parameter values, to compare and quantify changes between images of similar data sets rendered in the same way, and even to detect errors in the design, implementation or modification of a volume rendering system. If one has a benchmark image, for example one created by a high accuracy volume rendering system, the method can be used to evaluate the accuracy of a given image.

  15. High-quality genome of the peach scab pathogen, Venturia carpophila

    USDA-ARS?s Scientific Manuscript database

    Venturia carpophila causes peach scab, a disease that renders peach (Prunus persica) fruit unmarketable. We report a high-quality draft genome (36.9 Mb) of V. carpophila from an isolate collected from a peach tree in central Georgia. The genome was sequenced by MiSeq using an Illumina paired-end lib...

  16. View compensated compression of volume rendered images for remote visualization.

    PubMed

    Lalgudi, Hariharan G; Marcellin, Michael W; Bilgin, Ali; Oh, Han; Nadar, Mariappan S

    2009-07-01

    Remote visualization of volumetric images has gained importance over the past few years in medical and industrial applications. Volume visualization is a computationally intensive process, often requiring hardware acceleration to achieve a real time viewing experience. One remote visualization model that can accomplish this would transmit rendered images from a server, based on viewpoint requests from a client. For constrained server-client bandwidth, an efficient compression scheme is vital for transmitting high quality rendered images. In this paper, we present a new view compensation scheme that utilizes the geometric relationship between viewpoints to exploit the correlation between successive rendered images. The proposed method obviates motion estimation between rendered images, enabling significant reduction to the complexity of a compressor. Additionally, the view compensation scheme, in conjunction with JPEG2000 performs better than AVC, the state of the art video compression standard.

  17. Real-time photorealistic stereoscopic rendering of fire

    NASA Astrophysics Data System (ADS)

    Rose, Benjamin M.; McAllister, David F.

    2007-02-01

    We propose a method for real-time photorealistic stereo rendering of the natural phenomenon of fire. Applications include the use of virtual reality in fire fighting, military training, and entertainment. Rendering fire in real-time presents a challenge because of the transparency and non-static fluid-like behavior of fire. It is well known that, in general, methods that are effective for monoscopic rendering are not necessarily easily extended to stereo rendering because monoscopic methods often do not provide the depth information necessary to produce the parallax required for binocular disparity in stereoscopic rendering. We investigate the existing techniques used for monoscopic rendering of fire and discuss their suitability for extension to real-time stereo rendering. Methods include the use of precomputed textures, dynamic generation of textures, and rendering models resulting from the approximation of solutions of fluid dynamics equations through the use of ray-tracing algorithms. We have found that in order to attain real-time frame rates, our method based on billboarding is effective. Slicing is used to simulate depth. Texture mapping or 2D images are mapped onto polygons and alpha blending is used to treat transparency. We can use video recordings or prerendered high-quality images of fire as textures to attain photorealistic stereo.

  18. [MODERN INSTRUMENTS FOR EAR, NOSE AND THROAT RENDERING AND EVALUATION IN RESEARCHES ON RUSSIAN SEGMENT OF THE INTERNATIONAL SPACE STATION].

    PubMed

    Popova, I I; Orlov, O I; Matsnev, E I; Revyakin, Yu G

    2016-01-01

    The paper reports the results of testing some diagnostic video systems enabling digital rendering of TNT teeth and jaws. The authors substantiate the criteria of choosing and integration of imaging systems in future on Russian segment of the International space station kit LOR developed for examination and download of high-quality images of cosmonauts' TNT, parodentium and teeth.

  19. Realtime Compositing of Procedural Facade Textures on the Gpu

    NASA Astrophysics Data System (ADS)

    Krecklau, L.; Kobbelt, L.

    2011-09-01

    The real time rendering of complex virtual city models has become more important in the last few years for many practical applications like realistic navigation or urban planning. For maximum rendering performance, the complexity of the geometry or textures can be reduced by decreasing the resolution until the data set can fully reside on the memory of the graphics card. This typically results in a low quality of the virtual city model. Alternatively, a streaming algorithm can load the high quality data set from the hard drive. However, this approach requires a large amount of persistent storage providing several gigabytes of static data. We present a system that uses a texture atlas containing atomic tiles like windows, doors or wall patterns, and that combines those elements on-the-fly directly on the graphics card. The presented approach benefits from a sophisticated randomization approach that produces lots of different facades while the grammar description itself remains small. By using a ray casting apporach, we are able to trace through transparent windows revealing procedurally generated rooms which further contributes to the realism of the rendering. The presented method enables real time rendering of city models with a high level of detail for facades while still relying on a small memory footprint.

  20. Real-time volume rendering of digital medical images on an iOS device

    NASA Astrophysics Data System (ADS)

    Noon, Christian; Holub, Joseph; Winer, Eliot

    2013-03-01

    Performing high quality 3D visualizations on mobile devices, while tantalizingly close in many areas, is still a quite difficult task. This is especially true for 3D volume rendering of digital medical images. Allowing this would empower medical personnel a powerful tool to diagnose and treat patients and train the next generation of physicians. This research focuses on performing real time volume rendering of digital medical images on iOS devices using custom developed GPU shaders for orthogonal texture slicing. An interactive volume renderer was designed and developed with several new features including dynamic modification of render resolutions, an incremental render loop, a shader-based clipping algorithm to support OpenGL ES 2.0, and an internal backface culling algorithm for properly sorting rendered geometry with alpha blending. The application was developed using several application programming interfaces (APIs) such as OpenSceneGraph (OSG) as the primary graphics renderer coupled with iOS Cocoa Touch for user interaction, and DCMTK for DICOM I/O. The developed application rendered volume datasets over 450 slices up to 50-60 frames per second, depending on the specific model of the iOS device. All rendering is done locally on the device so no Internet connection is required.

  1. PMG: online generation of high-quality molecular pictures and storyboarded animations

    PubMed Central

    Autin, Ludovic; Tufféry, Pierre

    2007-01-01

    The Protein Movie Generator (PMG) is an online service able to generate high-quality pictures and animations for which one can then define simple storyboards. The PMG can therefore efficiently illustrate concepts such as molecular motion or formation/dissociation of complexes. Emphasis is put on the simplicity of animation generation. Rendering is achieved using Dino coupled to POV-Ray. In order to produce highly informative images, the PMG includes capabilities of using different molecular representations at the same time to highlight particular molecular features. Moreover, sophisticated rendering concepts including scene definition, as well as modeling light and materials are available. The PMG accepts Protein Data Bank (PDB) files as input, which may include series of models or molecular dynamics trajectories and produces images or movies under various formats. PMG can be accessed at http://bioserv.rpbs.jussieu.fr/PMG.html. PMID:17478496

  2. Synthesized view comparison method for no-reference 3D image quality assessment

    NASA Astrophysics Data System (ADS)

    Luo, Fangzhou; Lin, Chaoyi; Gu, Xiaodong; Ma, Xiaojun

    2018-04-01

    We develop a no-reference image quality assessment metric to evaluate the quality of synthesized view rendered from the Multi-view Video plus Depth (MVD) format. Our metric is named Synthesized View Comparison (SVC), which is designed for real-time quality monitoring at the receiver side in a 3D-TV system. The metric utilizes the virtual views in the middle which are warped from left and right views by Depth-image-based rendering algorithm (DIBR), and compares the difference between the virtual views rendered from different cameras by Structural SIMilarity (SSIM), a popular 2D full-reference image quality assessment metric. The experimental results indicate that our no-reference quality assessment metric for the synthesized images has competitive prediction performance compared with some classic full-reference image quality assessment metrics.

  3. Quantum rendering

    NASA Astrophysics Data System (ADS)

    Lanzagorta, Marco O.; Gomez, Richard B.; Uhlmann, Jeffrey K.

    2003-08-01

    In recent years, computer graphics has emerged as a critical component of the scientific and engineering process, and it is recognized as an important computer science research area. Computer graphics are extensively used for a variety of aerospace and defense training systems and by Hollywood's special effects companies. All these applications require the computer graphics systems to produce high quality renderings of extremely large data sets in short periods of time. Much research has been done in "classical computing" toward the development of efficient methods and techniques to reduce the rendering time required for large datasets. Quantum Computing's unique algorithmic features offer the possibility of speeding up some of the known rendering algorithms currently used in computer graphics. In this paper we discuss possible implementations of quantum rendering algorithms. In particular, we concentrate on the implementation of Grover's quantum search algorithm for Z-buffering, ray-tracing, radiosity, and scene management techniques. We also compare the theoretical performance between the classical and quantum versions of the algorithms.

  4. Whole high-quality light environment for humans and plants

    NASA Astrophysics Data System (ADS)

    Sharakshane, Anton

    2017-11-01

    Plants sharing a single light environment on a spaceship with a human being and bearing a decorative function should look as natural and attractive as possible. And consequently they can be illuminated only with white light with a high color rendering index. Can lighting optimized for a human eye be effective and appropriate for plants? Spectrum-based effects have been compared under artificial lighting of plants by high-pressure sodium lamps and general-purpose white LEDs. It has been shown that for the survey sample phytochrome photo-equilibria does not depend significantly on the parameters of white LED light, while the share of phytoactive blue light grows significantly as the color temperature increases. It has been revealed that yield photon flux is proportional to luminous efficacy and increases as the color temperature decreases, general color rendering index Ra and the special color rendering index R14 (green leaf) increase. General-purpose white LED lamps with a color temperature of 2700 K, Ra > 90 and luminous efficacy of 100 lm/W are as efficient as the best high-pressure sodium lamps, and at a higher luminous efficacy their yield photon flux per joule is even bigger in proportion. Here we show that demand for high color rendering white LED light is not contradictory to the agro-technical objectives.

  5. Light quality and efficiency of consumer grade solid state lighting products

    NASA Astrophysics Data System (ADS)

    Dam-Hansen, Carsten; Corell, Dennis Dan; Thorseth, Anders; Poulsen, Peter Behrensdorff

    2013-03-01

    The rapid development in flux and efficiency of Light Emitting Diodes (LED) has resulted in a flooding of the lighting market with Solid State Lighting (SSL) products. Many traditional light sources can advantageously be replaced by SSL products. There are, however, large variations in the quality of these products, and some are not better than the ones they are supposed to replace. A lack of quality demands and standards makes it difficult for consumers to get an overview of the SSL products. Here the results of a two year study investigating SSL products on the Danish market are presented. Focus has been on SSL products for replacement of incandescent lamps and halogen spotlights. The warm white light and good color rendering properties of these traditional light sources are a must for lighting in Denmark and the Nordic countries. 266 SSL replacement lamps have been tested for efficiency and light quality with respect to correlated color temperature and color rendering properties. This shows a trade-off between high color rendering warm white light and energy efficiency. The lumen and color maintenance over time has been investigated and results for products running over 11000 h will be presented. A new internet based SSL product selection tool will be shown. Here the products can be compared on efficiency, light quality parameters, thus providing a better basis for the selection of SSL products for consumers.

  6. Extending the Pedagogy of Mobility

    ERIC Educational Resources Information Center

    Hedberg, John G.

    2014-01-01

    Direct student experience of the real organism, object, place or environment is recognised by teachers as having powerful potential for high-quality learning. Mobile technologies offer a way for students to capture their authentic learning experiences, but rendering this rich experience into explicit and highly situated learning contexts for…

  7. High-performance GPU-based rendering for real-time, rigid 2D/3D-image registration and motion prediction in radiation oncology.

    PubMed

    Spoerk, Jakob; Gendrin, Christelle; Weber, Christoph; Figl, Michael; Pawiro, Supriyanto Ardjo; Furtado, Hugo; Fabri, Daniella; Bloch, Christoph; Bergmann, Helmar; Gröller, Eduard; Birkfellner, Wolfgang

    2012-02-01

    A common problem in image-guided radiation therapy (IGRT) of lung cancer as well as other malignant diseases is the compensation of periodic and aperiodic motion during dose delivery. Modern systems for image-guided radiation oncology allow for the acquisition of cone-beam computed tomography data in the treatment room as well as the acquisition of planar radiographs during the treatment. A mid-term research goal is the compensation of tumor target volume motion by 2D/3D Registration. In 2D/3D registration, spatial information on organ location is derived by an iterative comparison of perspective volume renderings, so-called digitally rendered radiographs (DRR) from computed tomography volume data, and planar reference x-rays. Currently, this rendering process is very time consuming, and real-time registration, which should at least provide data on organ position in less than a second, has not come into existence. We present two GPU-based rendering algorithms which generate a DRR of 512×512 pixels size from a CT dataset of 53 MB size at a pace of almost 100 Hz. This rendering rate is feasible by applying a number of algorithmic simplifications which range from alternative volume-driven rendering approaches - namely so-called wobbled splatting - to sub-sampling of the DRR-image by means of specialized raycasting techniques. Furthermore, general purpose graphics processing unit (GPGPU) programming paradigms were consequently utilized. Rendering quality and performance as well as the influence on the quality and performance of the overall registration process were measured and analyzed in detail. The results show that both methods are competitive and pave the way for fast motion compensation by rigid and possibly even non-rigid 2D/3D registration and, beyond that, adaptive filtering of motion models in IGRT. Copyright © 2011. Published by Elsevier GmbH.

  8. High-performance GPU-based rendering for real-time, rigid 2D/3D-image registration and motion prediction in radiation oncology

    PubMed Central

    Spoerk, Jakob; Gendrin, Christelle; Weber, Christoph; Figl, Michael; Pawiro, Supriyanto Ardjo; Furtado, Hugo; Fabri, Daniella; Bloch, Christoph; Bergmann, Helmar; Gröller, Eduard; Birkfellner, Wolfgang

    2012-01-01

    A common problem in image-guided radiation therapy (IGRT) of lung cancer as well as other malignant diseases is the compensation of periodic and aperiodic motion during dose delivery. Modern systems for image-guided radiation oncology allow for the acquisition of cone-beam computed tomography data in the treatment room as well as the acquisition of planar radiographs during the treatment. A mid-term research goal is the compensation of tumor target volume motion by 2D/3D registration. In 2D/3D registration, spatial information on organ location is derived by an iterative comparison of perspective volume renderings, so-called digitally rendered radiographs (DRR) from computed tomography volume data, and planar reference x-rays. Currently, this rendering process is very time consuming, and real-time registration, which should at least provide data on organ position in less than a second, has not come into existence. We present two GPU-based rendering algorithms which generate a DRR of 512 × 512 pixels size from a CT dataset of 53 MB size at a pace of almost 100 Hz. This rendering rate is feasible by applying a number of algorithmic simplifications which range from alternative volume-driven rendering approaches – namely so-called wobbled splatting – to sub-sampling of the DRR-image by means of specialized raycasting techniques. Furthermore, general purpose graphics processing unit (GPGPU) programming paradigms were consequently utilized. Rendering quality and performance as well as the influence on the quality and performance of the overall registration process were measured and analyzed in detail. The results show that both methods are competitive and pave the way for fast motion compensation by rigid and possibly even non-rigid 2D/3D registration and, beyond that, adaptive filtering of motion models in IGRT. PMID:21782399

  9. RenderMan design principles

    NASA Technical Reports Server (NTRS)

    Apodaca, Tony; Porter, Tom

    1989-01-01

    The two worlds of interactive graphics and realistic graphics have remained separate. Fast graphics hardware runs simple algorithms and generates simple looking images. Photorealistic image synthesis software runs slowly on large expensive computers. The time has come for these two branches of computer graphics to merge. The speed and expense of graphics hardware is no longer the barrier to the wide acceptance of photorealism. There is every reason to believe that high quality image synthesis will become a standard capability of every graphics machine, from superworkstation to personal computer. The significant barrier has been the lack of a common language, an agreed-upon set of terms and conditions, for 3-D modeling systems to talk to 3-D rendering systems for computing an accurate rendition of that scene. Pixar has introduced RenderMan to serve as that common language. RenderMan, specifically the extensibility it offers in shading calculations, is discussed.

  10. Whole high-quality light environment for humans and plants.

    PubMed

    Sharakshane, Anton

    2017-11-01

    Plants sharing a single light environment on a spaceship with a human being and bearing a decorative function should look as natural and attractive as possible. And consequently they can be illuminated only with white light with a high color rendering index. Can lighting optimized for a human eye be effective and appropriate for plants? Spectrum-based effects have been compared under artificial lighting of plants by high-pressure sodium lamps and general-purpose white LEDs. It has been shown that for the survey sample phytochrome photo-equilibria does not depend significantly on the parameters of white LED light, while the share of phytoactive blue light grows significantly as the color temperature increases. It has been revealed that yield photon flux is proportional to luminous efficacy and increases as the color temperature decreases, general color rendering index R a and the special color rendering index R 14 (green leaf) increase. General-purpose white LED lamps with a color temperature of 2700 K, R a  > 90 and luminous efficacy of 100 lm/W are as efficient as the best high-pressure sodium lamps, and at a higher luminous efficacy their yield photon flux per joule is even bigger in proportion. Here we show that demand for high color rendering white LED light is not contradictory to the agro-technical objectives. Copyright © 2017. Published by Elsevier Ltd.

  11. Construction and Evaluation of an Ultra Low Latency Frameless Renderer for VR.

    PubMed

    Friston, Sebastian; Steed, Anthony; Tilbury, Simon; Gaydadjiev, Georgi

    2016-04-01

    Latency - the delay between a user's action and the response to this action - is known to be detrimental to virtual reality. Latency is typically considered to be a discrete value characterising a delay, constant in time and space - but this characterisation is incomplete. Latency changes across the display during scan-out, and how it does so is dependent on the rendering approach used. In this study, we present an ultra-low latency real-time ray-casting renderer for virtual reality, implemented on an FPGA. Our renderer has a latency of ~1 ms from 'tracker to pixel'. Its frameless nature means that the region of the display with the lowest latency immediately follows the scan-beam. This is in contrast to frame-based systems such as those using typical GPUs, for which the latency increases as scan-out proceeds. Using a series of high and low speed videos of our system in use, we confirm its latency of ~1 ms. We examine how the renderer performs when driving a traditional sequential scan-out display on a readily available HMO, the Oculus Rift OK2. We contrast this with an equivalent apparatus built using a GPU. Using captured human head motion and a set of image quality measures, we assess the ability of these systems to faithfully recreate the stimuli of an ideal virtual reality system - one with a zero latency tracker, renderer and display running at 1 kHz. Finally, we examine the results of these quality measures, and how each rendering approach is affected by velocity of movement and display persistence. We find that our system, with a lower average latency, can more faithfully draw what the ideal virtual reality system would. Further, we find that with low display persistence, the sensitivity to velocity of both systems is lowered, but that it is much lower for ours.

  12. Elasticity-based three dimensional ultrasound real-time volume rendering

    NASA Astrophysics Data System (ADS)

    Boctor, Emad M.; Matinfar, Mohammad; Ahmad, Omar; Rivaz, Hassan; Choti, Michael; Taylor, Russell H.

    2009-02-01

    Volumetric ultrasound imaging has not gained wide recognition, despite the availability of real-time 3D ultrasound scanners and the anticipated potential of 3D ultrasound imaging in diagnostic and interventional radiology. Their use, however, has been hindered by the lack of real-time visualization methods that are capable of producing high quality 3D rendering of the target/surface of interest. Volume rendering is a known visualization method, which can display clear surfaces out of the acquired volumetric data, and has an increasing number of applications utilizing CT and MRI data. The key element of any volume rendering pipeline is the ability to classify the target/surface of interest by setting an appropriate opacity function. Practical and successful real-time 3D ultrasound volume rendering can be achieved in Obstetrics and Angio applications where setting these opacity functions can be done rapidly, and reliably. Unfortunately, 3D ultrasound volume rendering of soft tissues is a challenging task due to the presence of significant amount of noise and speckle. Recently, several research groups have shown the feasibility of producing 3D elasticity volume from two consecutive 3D ultrasound scans. This report describes a novel volume rendering pipeline utilizing elasticity information. The basic idea is to compute B-mode voxel opacity from the rapidly calculated strain values, which can also be mixed with conventional gradient based opacity function. We have implemented the volume renderer using GPU unit, which gives an update rate of 40 volume/sec.

  13. 7 CFR 54.15 - Advance information concerning service rendered.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 3 2010-01-01 2010-01-01 false Advance information concerning service rendered. 54.15... Service § 54.15 Advance information concerning service rendered. Upon request of any applicant, all or any... concerning the determination of class, grade, other quality, or compliance of products for such applicant may...

  14. Astronomy Data Visualization with Blender

    NASA Astrophysics Data System (ADS)

    Kent, Brian R.

    2015-08-01

    We present innovative methods and techniques for using Blender, a 3D software package, in the visualization of astronomical data. N-body simulations, data cubes, galaxy and stellar catalogs, and planetary surface maps can be rendered in high quality videos for exploratory data analysis. Blender's API is Python based, making it advantageous for use in astronomy with flexible libraries like astroPy. Examples will be exhibited that showcase the features of the software in astronomical visualization paradigms. 2D and 3D voxel texture applications, animations, camera movement, and composite renders are introduced to the astronomer's toolkit and how they mesh with different forms of data.

  15. Physiology and quality of fresh-cut produce in CA/MA storage

    USDA-ARS?s Scientific Manuscript database

    Fresh-cut fruits and vegetables have exposed injured tissues due to the mechanical processes of peeling, slicing and/or cutting. Such processing consequently renders the produce highly susceptible to physiological breakdown and microbial spoilage. Product deterioration is usually accompanied with ph...

  16. High-efficiency photorealistic computer-generated holograms based on the backward ray-tracing technique

    NASA Astrophysics Data System (ADS)

    Wang, Yuan; Chen, Zhidong; Sang, Xinzhu; Li, Hui; Zhao, Linmin

    2018-03-01

    Holographic displays can provide the complete optical wave field of a three-dimensional (3D) scene, including the depth perception. However, it often takes a long computation time to produce traditional computer-generated holograms (CGHs) without more complex and photorealistic rendering. The backward ray-tracing technique is able to render photorealistic high-quality images, which noticeably reduce the computation time achieved from the high-degree parallelism. Here, a high-efficiency photorealistic computer-generated hologram method is presented based on the ray-tracing technique. Rays are parallelly launched and traced under different illuminations and circumstances. Experimental results demonstrate the effectiveness of the proposed method. Compared with the traditional point cloud CGH, the computation time is decreased to 24 s to reconstruct a 3D object of 100 ×100 rays with continuous depth change.

  17. Context-dependent JPEG backward-compatible high-dynamic range image compression

    NASA Astrophysics Data System (ADS)

    Korshunov, Pavel; Ebrahimi, Touradj

    2013-10-01

    High-dynamic range (HDR) imaging is expected, together with ultrahigh definition and high-frame rate video, to become a technology that may change photo, TV, and film industries. Many cameras and displays capable of capturing and rendering both HDR images and video are already available in the market. The popularity and full-public adoption of HDR content is, however, hindered by the lack of standards in evaluation of quality, file formats, and compression, as well as large legacy base of low-dynamic range (LDR) displays that are unable to render HDR. To facilitate the wide spread of HDR usage, the backward compatibility of HDR with commonly used legacy technologies for storage, rendering, and compression of video and images are necessary. Although many tone-mapping algorithms are developed for generating viewable LDR content from HDR, there is no consensus of which algorithm to use and under which conditions. We, via a series of subjective evaluations, demonstrate the dependency of the perceptual quality of the tone-mapped LDR images on the context: environmental factors, display parameters, and image content itself. Based on the results of subjective tests, it proposes to extend JPEG file format, the most popular image format, in a backward compatible manner to deal with HDR images also. An architecture to achieve such backward compatibility with JPEG is proposed. A simple implementation of lossy compression demonstrates the efficiency of the proposed architecture compared with the state-of-the-art HDR image compression.

  18. Multi-scale Material Appearance

    NASA Astrophysics Data System (ADS)

    Wu, Hongzhi

    Modeling and rendering the appearance of materials is important for a diverse range of applications of computer graphics - from automobile design to movies and cultural heritage. The appearance of materials varies considerably at different scales, posing significant challenges due to the sheer complexity of the data, as well the need to maintain inter-scale consistency constraints. This thesis presents a series of studies around the modeling, rendering and editing of multi-scale material appearance. To efficiently render material appearance at multiple scales, we develop an object-space precomputed adaptive sampling method, which precomputes a hierarchy of view-independent points that preserve multi-level appearance. To support bi-scale material appearance design, we propose a novel reflectance filtering algorithm, which rapidly computes the large-scale appearance from small-scale details, by exploiting the low-rank structures of Bidirectional Visible Normal Distribution Functions and pre-rotated Bidirectional Reflectance Distribution Functions in the matrix formulation of the rendering algorithm. This approach can guide the physical realization of appearance, as well as the modeling of real-world materials using very sparse measurements. Finally, we present a bi-scale-inspired high-quality general representation for material appearance described by Bidirectional Texture Functions. Our representation is at once compact, easily editable, and amenable to efficient rendering.

  19. Venturia carpophila draft genome sequence

    USDA-ARS?s Scientific Manuscript database

    Venturia carpophila causes peach scab, a disease that renders peach fruit unmarketable. We report a high-quality draft genome sequence (36.9 Mb) of V. carpophila from an isolate collected from a peach tree in central Georgia in the United States. The genome sequence described will be a useful resour...

  20. Screen-Space Normal Distribution Function Caching for Consistent Multi-Resolution Rendering of Large Particle Data.

    PubMed

    Ibrahim, Mohamed; Wickenhauser, Patrick; Rautek, Peter; Reina, Guido; Hadwiger, Markus

    2018-01-01

    Molecular dynamics (MD) simulations are crucial to investigating important processes in physics and thermodynamics. The simulated atoms are usually visualized as hard spheres with Phong shading, where individual particles and their local density can be perceived well in close-up views. However, for large-scale simulations with 10 million particles or more, the visualization of large fields-of-view usually suffers from strong aliasing artifacts, because the mismatch between data size and output resolution leads to severe under-sampling of the geometry. Excessive super-sampling can alleviate this problem, but is prohibitively expensive. This paper presents a novel visualization method for large-scale particle data that addresses aliasing while enabling interactive high-quality rendering. We introduce the novel concept of screen-space normal distribution functions (S-NDFs) for particle data. S-NDFs represent the distribution of surface normals that map to a given pixel in screen space, which enables high-quality re-lighting without re-rendering particles. In order to facilitate interactive zooming, we cache S-NDFs in a screen-space mipmap (S-MIP). Together, these two concepts enable interactive, scale-consistent re-lighting and shading changes, as well as zooming, without having to re-sample the particle data. We show how our method facilitates the interactive exploration of real-world large-scale MD simulation data in different scenarios.

  1. Scientific Visualization and Simulation for Multi-dimensional Marine Environment Data

    NASA Astrophysics Data System (ADS)

    Su, T.; Liu, H.; Wang, W.; Song, Z.; Jia, Z.

    2017-12-01

    As higher attention on the ocean and rapid development of marine detection, there are increasingly demands for realistic simulation and interactive visualization of marine environment in real time. Based on advanced technology such as GPU rendering, CUDA parallel computing and rapid grid oriented strategy, a series of efficient and high-quality visualization methods, which can deal with large-scale and multi-dimensional marine data in different environmental circumstances, has been proposed in this paper. Firstly, a high-quality seawater simulation is realized by FFT algorithm, bump mapping and texture animation technology. Secondly, large-scale multi-dimensional marine hydrological environmental data is virtualized by 3d interactive technologies and volume rendering techniques. Thirdly, seabed terrain data is simulated with improved Delaunay algorithm, surface reconstruction algorithm, dynamic LOD algorithm and GPU programming techniques. Fourthly, seamless modelling in real time for both ocean and land based on digital globe is achieved by the WebGL technique to meet the requirement of web-based application. The experiments suggest that these methods can not only have a satisfying marine environment simulation effect, but also meet the rendering requirements of global multi-dimension marine data. Additionally, a simulation system for underwater oil spill is established by OSG 3D-rendering engine. It is integrated with the marine visualization method mentioned above, which shows movement processes, physical parameters, current velocity and direction for different types of deep water oil spill particle (oil spill particles, hydrates particles, gas particles, etc.) dynamically and simultaneously in multi-dimension. With such application, valuable reference and decision-making information can be provided for understanding the progress of oil spill in deep water, which is helpful for ocean disaster forecasting, warning and emergency response.

  2. Matching rendered and real world images by digital image processing

    NASA Astrophysics Data System (ADS)

    Mitjà, Carles; Bover, Toni; Bigas, Miquel; Escofet, Jaume

    2010-05-01

    Recent advances in computer-generated images (CGI) have been used in commercial and industrial photography providing a broad scope in product advertising. Mixing real world images with those rendered from virtual space software shows a more or less visible mismatching between corresponding image quality performance. Rendered images are produced by software which quality performance is only limited by the resolution output. Real world images are taken with cameras with some amount of image degradation factors as lens residual aberrations, diffraction, sensor low pass anti aliasing filters, color pattern demosaicing, etc. The effect of all those image quality degradation factors can be characterized by the system Point Spread Function (PSF). Because the image is the convolution of the object by the system PSF, its characterization shows the amount of image degradation added to any taken picture. This work explores the use of image processing to degrade the rendered images following the parameters indicated by the real system PSF, attempting to match both virtual and real world image qualities. The system MTF is determined by the slanted edge method both in laboratory conditions and in the real picture environment in order to compare the influence of the working conditions on the device performance; an approximation to the system PSF is derived from the two measurements. The rendered images are filtered through a Gaussian filter obtained from the taking system PSF. Results with and without filtering are shown and compared measuring the contrast achieved in different final image regions.

  3. Interactive Molecular Graphics for Augmented Reality Using HoloLens.

    PubMed

    Müller, Christoph; Krone, Michael; Huber, Markus; Biener, Verena; Herr, Dominik; Koch, Steffen; Reina, Guido; Weiskopf, Daniel; Ertl, Thomas

    2018-06-13

    Immersive technologies like stereo rendering, virtual reality, or augmented reality (AR) are often used in the field of molecular visualisation. Modern, comparably lightweight and affordable AR headsets like Microsoft's HoloLens open up new possibilities for immersive analytics in molecular visualisation. A crucial factor for a comprehensive analysis of molecular data in AR is the rendering speed. HoloLens, however, has limited hardware capabilities due to requirements like battery life, fanless cooling and weight. Consequently, insights from best practises for powerful desktop hardware may not be transferable. Therefore, we evaluate the capabilities of the HoloLens hardware for modern, GPU-enabled, high-quality rendering methods for the space-filling model commonly used in molecular visualisation. We also assess the scalability for large molecular data sets. Based on the results, we discuss ideas and possibilities for immersive molecular analytics. Besides more obvious benefits like the stereoscopic rendering offered by the device, this specifically includes natural user interfaces that use physical navigation instead of the traditional virtual one. Furthermore, we consider different scenarios for such an immersive system, ranging from educational use to collaborative scenarios.

  4. The Role of Rendering in the Competence Project in Measurement Science for Optical Reflection and Scattering

    PubMed Central

    Westlund, Harold B.; Meyer, Gary W.; Hunt, Fern Y.

    2002-01-01

    Computer rendering is used to simulate the appearance of lighted objects for applications in architectural design, for animation and simulation in the entertainment industry, and for display and design in the automobile industry. Rapid advances in computer graphics technology suggest that in the near future it will be possible to produce photorealistic images of coated surfaces from scattering data. This could enable the identification of important parameters in the coatings manufacturing process that lead to desirable appearance, and to the design of virtual surfaces by visualizing prospective coating formulations once their optical properties are known. Here we report the results of our work to produce visually and radiometrically accurate renderings of selected appearance attributes of sample coated surfaces. It required changes in the rendering programs, which in general are not designed to accept high quality optical and material measurements, and changes in the optical measurement protocols. An outcome of this research is that some current ASTM standards can be replaced or enhanced by computer based standards of appearance. PMID:27446729

  5. Natural Environment Illumination: Coherent Interactive Augmented Reality for Mobile and Non-Mobile Devices.

    PubMed

    Rohmer, Kai; Jendersie, Johannes; Grosch, Thorsten

    2017-11-01

    Augmented Reality offers many applications today, especially on mobile devices. Due to the lack of mobile hardware for illumination measurements, photorealistic rendering with consistent appearance of virtual objects is still an area of active research. In this paper, we present a full two-stage pipeline for environment acquisition and augmentation of live camera images using a mobile device with a depth sensor. We show how to directly work on a recorded 3D point cloud of the real environment containing high dynamic range color values. For unknown and automatically changing camera settings, a color compensation method is introduced. Based on this, we show photorealistic augmentations using variants of differential light simulation techniques. The presented methods are tailored for mobile devices and run at interactive frame rates. However, our methods are scalable to trade performance for quality and can produce quality renderings on desktop hardware.

  6. Ink Wash Painting Style Rendering With Physically-based Ink Dispersion Model

    NASA Astrophysics Data System (ADS)

    Wang, Yifan; Li, Weiran; Zhu, Qing

    2018-04-01

    This paper presents a real-time rendering method based on the GPU programmable pipeline for rendering the 3D scene in ink wash painting style. The method is divided into main three parts: First, render the ink properties of 3D model by calculating its vertex curvature. Then, cached the ink properties to a paper structure and using an ink dispersion model which is defined by referencing the theory of porous media to simulate the dispersion of ink. Finally, convert the ink properties to the pixel color information and render it to the screen. This method has a better performance than previous methods in visual quality.

  7. ProteinShader: illustrative rendering of macromolecules

    PubMed Central

    Weber, Joseph R

    2009-01-01

    Background Cartoon-style illustrative renderings of proteins can help clarify structural features that are obscured by space filling or balls and sticks style models, and recent advances in programmable graphics cards offer many new opportunities for improving illustrative renderings. Results The ProteinShader program, a new tool for macromolecular visualization, uses information from Protein Data Bank files to produce illustrative renderings of proteins that approximate what an artist might create by hand using pen and ink. A combination of Hermite and spherical linear interpolation is used to draw smooth, gradually rotating three-dimensional tubes and ribbons with a repeating pattern of texture coordinates, which allows the application of texture mapping, real-time halftoning, and smooth edge lines. This free platform-independent open-source program is written primarily in Java, but also makes extensive use of the OpenGL Shading Language to modify the graphics pipeline. Conclusion By programming to the graphics processor unit, ProteinShader is able to produce high quality images and illustrative rendering effects in real-time. The main feature that distinguishes ProteinShader from other free molecular visualization tools is its use of texture mapping techniques that allow two-dimensional images to be mapped onto the curved three-dimensional surfaces of ribbons and tubes with minimum distortion of the images. PMID:19331660

  8. OLED-based physiologically-friendly very low-color temperature illumination for night

    NASA Astrophysics Data System (ADS)

    Jou, Jwo-Huei; Shen, Shih-Ming; Tang, Ming-Chun; Chen, Pin-Chu; Chen, Szu-Hao; Wang, Yi-Shan; Chen, Chien-Chih; Wang, Ching-Chun; Hsieh, Chun-Yu; Lin, Chin-Chiao; Chen, Chien-Tien

    2012-09-01

    Numerous medical research studies reveal intense white or blue light to drastically suppress at night the secretion of melatonin (MLT), a protective oncostatic hormone. Lighting devices with lower color-temperature (CT) possess lesser MLT suppression effect based on the same luminance, explaining why physicians have long been calling for the development of lighting sources with low CT or free from blue emission for use at night to safeguard human health. We will demonstrate in the presentation the fabrication of OLED devices with very-low CT, especially those with CT much lower than that of incandescent bulbs (2500K) or even candles (2000K). Without any light extraction method, OLEDs with an around 1800K CT are easily obtainable with an efficacy of 30 lm/W at 1,000 nits. To also ensure high color-rendering to provide visual comfort, low CT OLEDs composing long wavelength dominant 5-spectrum emission have been fabricated. While keeping the color-rendering index as high as 85 and CT as low as 2100K, the resulting efficacy can also be much greater than that of incandescent bulbs (15 lm/W), proving these low CT OLED devices to be also capable of being energy-saving and high quality. The color-temperature can be further decreased to 1700K or lower upon removing the undesired short wavelength emission but on the cost of losing some color rendering index. It is hoped that the devised energy-saving, high quality low CT OLED could properly echo the call for a physiologically-friendly illumination for night, and more attention could be drawn to the development of MLT suppression-less non-white light.

  9. Archeological Testing Fort Hood: 1994-1995. Volume 2

    DTIC Science & Technology

    1996-10-01

    Type 3 sediment appears to be dry present, both as discrete lenses which are usually decomposition, which renders it a loose, grayish readily...degrading the quality of the shelters, rendering them increasingly attractive for resource. habitation. However, as noted previously (Abbott 1994; Abbott...651 characteristic renders them subject to additional federal laws (e.g., NAGPRA), it increases the urgency to implement management policies that will

  10. Draft genome sequence of Venturia carpophila, the causal agent of peach scab

    USDA-ARS?s Scientific Manuscript database

    Venturia carpophila causes peach scab, a disease that renders peach fruit unmarketable. We report a high-quality draft genome sequence (36.9 Mb) of V. carpophila from an isolate collected from a peach tree in central Georgia in the United States. The genome sequence described will be a useful resour...

  11. Texturing of continuous LOD meshes with the hierarchical texture atlas

    NASA Astrophysics Data System (ADS)

    Birkholz, Hermann

    2006-02-01

    For the rendering of detailed virtual environments, trade-offs have to be made between image quality and rendering time. An immersive experience of virtual reality always demands high frame-rates with the best reachable image qual-ity. Continuous Level of Detail (cLoD) triangle-meshes provide an continuous spectrum of detail for a triangle mesh that can be used to create view-dependent approximations of the environment in real-time. This enables the rendering with a constant number of triangles and thus with constant frame-rates. Normally the construction of such cLoD mesh representations leads to the loss of all texture information of the original mesh. To overcome this problem, a parameter domain can be created, in order to map the surface properties (colour, texture, normal) to it. This parameter domain can be used to map the surface properties back to arbitrary approximations of the original mesh. The parameter domain is often a simplified version of the mesh to be parameterised. This limits the reachable simplification to the domain mesh which has to map the surface of the original mesh with the least possible stretch. In this paper, a hierarchical domain mesh is presented, that scales between very coarse domain meshes and good property-mapping.

  12. A JPEG backward-compatible HDR image compression

    NASA Astrophysics Data System (ADS)

    Korshunov, Pavel; Ebrahimi, Touradj

    2012-10-01

    High Dynamic Range (HDR) imaging is expected to become one of the technologies that could shape next generation of consumer digital photography. Manufacturers are rolling out cameras and displays capable of capturing and rendering HDR images. The popularity and full public adoption of HDR content is however hindered by the lack of standards in evaluation of quality, file formats, and compression, as well as large legacy base of Low Dynamic Range (LDR) displays that are unable to render HDR. To facilitate wide spread of HDR usage, the backward compatibility of HDR technology with commonly used legacy image storage, rendering, and compression is necessary. Although many tone-mapping algorithms were developed for generating viewable LDR images from HDR content, there is no consensus on which algorithm to use and under which conditions. This paper, via a series of subjective evaluations, demonstrates the dependency of perceived quality of the tone-mapped LDR images on environmental parameters and image content. Based on the results of subjective tests, it proposes to extend JPEG file format, as the most popular image format, in a backward compatible manner to also deal with HDR pictures. To this end, the paper provides an architecture to achieve such backward compatibility with JPEG and demonstrates efficiency of a simple implementation of this framework when compared to the state of the art HDR image compression.

  13. A new approach to subjectively assess quality of plenoptic content

    NASA Astrophysics Data System (ADS)

    Viola, Irene; Řeřábek, Martin; Ebrahimi, Touradj

    2016-09-01

    Plenoptic content is becoming increasingly popular thanks to the availability of acquisition and display devices. Thanks to image-based rendering techniques, a plenoptic content can be rendered in real time in an interactive manner allowing virtual navigation through the captured scenes. This way of content consumption enables new experiences, and therefore introduces several challenges in terms of plenoptic data processing, transmission and consequently visual quality evaluation. In this paper, we propose a new methodology to subjectively assess the visual quality of plenoptic content. We also introduce a prototype software to perform subjective quality assessment according to the proposed methodology. The proposed methodology is further applied to assess the visual quality of a light field compression algorithm. Results show that this methodology can be successfully used to assess the visual quality of plenoptic content.

  14. Low-cost real-time 3D PC distributed-interactive-simulation (DIS) application for C4I

    NASA Astrophysics Data System (ADS)

    Gonthier, David L.; Veron, Harry

    1998-04-01

    A 3D Distributed Interactive Simulation (DIS) application was developed and demonstrated in a PC environment. The application is capable of running in the stealth mode or as a player which includes battlefield simulations, such as ModSAF. PCs can be clustered together, but not necessarily collocated, to run a simulation or training exercise on their own. A 3D perspective view of the battlefield is displayed that includes terrain, trees, buildings and other objects supported by the DIS application. Screen update rates of 15 to 20 frames per second have been achieved with fully lit and textured scenes thus providing high quality and fast graphics. A complete PC system can be configured for under $2,500. The software runs under Windows95 and WindowsNT. It is written in C++ and uses a commercial API called RenderWare for 3D rendering. The software uses Microsoft Foundation classes and Microsoft DirectPlay for joystick input. The RenderWare libraries enhance the performance through optimization for MMX and the Pentium Pro processor. The RenderWare and the Righteous 3D graphics board from Orchid Technologies with an advertised rendering rate of up to 2 million texture mapped triangles per second. A low-cost PC DIS simulator that can partake in a real-time collaborative simulation with other platforms is thus achieved.

  15. Draft Environmental Impact Report/Environmental Impact Statement, Bel Marin Keys Unit 5.

    DTIC Science & Technology

    1982-09-01

    generation render it a major indirect source of emissions. The 1979 Bay Area Air Quality Plan contains actions and policies designed to result in the...Base would render not only the immediate environs unacceptable in terms of housing but large portions of Novato as well. The Noise Element of the...of toxic or other deleterious effects on aquatic biota, wildlife or waterfowl, or which render any of these unfit for human consumption either at

  16. Comparison of three-dimensional visualization techniques for depicting the scala vestibuli and scala tympani of the cochlea by using high-resolution MR imaging.

    PubMed

    Hans, P; Grant, A J; Laitt, R D; Ramsden, R T; Kassner, A; Jackson, A

    1999-08-01

    Cochlear implantation requires introduction of a stimulating electrode array into the scala vestibuli or scala tympani. Although these structures can be separately identified on many high-resolution scans, it is often difficult to ascertain whether these channels are patent throughout their length. The aim of this study was to determine whether an optimized combination of an imaging protocol and a visualization technique allows routine 3D rendering of the scala vestibuli and scala tympani. A submillimeter T2 fast spin-echo imaging sequence was designed to optimize the performance of 3D visualization methods. The spatial resolution was determined experimentally using primary images and 3D surface and volume renderings from eight healthy subjects. These data were used to develop the imaging sequence and to compare the quality and signal-to-noise dependency of four data visualization algorithms: maximum intensity projection, ray casting with transparent voxels, ray casting with opaque voxels, and isosurface rendering. The ability of these methods to produce 3D renderings of the scala tympani and scala vestibuli was also examined. The imaging technique was used in five patients with sensorineural deafness. Visualization techniques produced optimal results in combination with an isotropic volume imaging sequence. Clinicians preferred the isosurface-rendered images to other 3D visualizations. Both isosurface and ray casting displayed the scala vestibuli and scala tympani throughout their length. Abnormalities were shown in three patients, and in one of these, a focal occlusion of the scala tympani was confirmed at surgery. Three-dimensional images of the scala vestibuli and scala tympani can be routinely produced. The combination of an MR sequence optimized for use with isosurface rendering or ray-casting algorithms can produce 3D images with greater spatial resolution and anatomic detail than has been possible previously.

  17. Deoxyribonucleic acid (DNA)-based optical materials

    NASA Astrophysics Data System (ADS)

    Grote, James G.; Heckman, Emily M.; Hagen, Joshua A.; Yaney, Perry P.; Subramanyam, Guru; Clarson, Stephen J.; Diggs, Darnell E.; Nelson, Robert L.; Zetts, John S.; Hopkins, F. Kenneth; Ogata, Naoya

    2004-12-01

    Optical materials for waveguiding applications must possess the desired optical and electromagnetic properties for optimal device performance. Purified deoxyribonucleic acid (DNA), derived from salmon sperm, has been investigated for use as an optical waveguide material. In this paper we present the materials processing and optical and electromagnetic characterization of this purified DNA to render a high quality, low loss optical waveguide material.

  18. Design and Implementation of High-Performance GIS Dynamic Objects Rendering Engine

    NASA Astrophysics Data System (ADS)

    Zhong, Y.; Wang, S.; Li, R.; Yun, W.; Song, G.

    2017-12-01

    Spatio-temporal dynamic visualization is more vivid than static visualization. It important to use dynamic visualization techniques to reveal the variation process and trend vividly and comprehensively for the geographical phenomenon. To deal with challenges caused by dynamic visualization of both 2D and 3D spatial dynamic targets, especially for different spatial data types require high-performance GIS dynamic objects rendering engine. The main approach for improving the rendering engine with vast dynamic targets relies on key technologies of high-performance GIS, including memory computing, parallel computing, GPU computing and high-performance algorisms. In this study, high-performance GIS dynamic objects rendering engine is designed and implemented for solving the problem based on hybrid accelerative techniques. The high-performance GIS rendering engine contains GPU computing, OpenGL technology, and high-performance algorism with the advantage of 64-bit memory computing. It processes 2D, 3D dynamic target data efficiently and runs smoothly with vast dynamic target data. The prototype system of high-performance GIS dynamic objects rendering engine is developed based SuperMap GIS iObjects. The experiments are designed for large-scale spatial data visualization, the results showed that the high-performance GIS dynamic objects rendering engine have the advantage of high performance. Rendering two-dimensional and three-dimensional dynamic objects achieve 20 times faster on GPU than on CPU.

  19. A new framework for interactive quality assessment with application to light field coding

    NASA Astrophysics Data System (ADS)

    Viola, Irene; Ebrahimi, Touradj

    2017-09-01

    In recent years, light field has experienced a surge of popularity, mainly due to the recent advances in acquisition and rendering technologies that have made it more accessible to the public. Thanks to image-based rendering techniques, light field contents can be rendered in real time on common 2D screens, allowing virtual navigation through the captured scenes in an interactive fashion. However, this richer representation of the scene poses the problem of reliable quality assessments for light field contents. In particular, while subjective methodologies that enable interaction have already been proposed, no work has been done on assessing how users interact with light field contents. In this paper, we propose a new framework to subjectively assess the quality of light field contents in an interactive manner and simultaneously track users behaviour. The framework is successfully used to perform subjective assessment of two coding solutions. Moreover, statistical analysis performed on the results shows interesting correlation between subjective scores and average interaction time.

  20. A Comparative Study between U.S. and Brazilian Acquisition Regulations and Practices

    DTIC Science & Technology

    2011-03-01

    to describe continuous improvements efforts ( Render and Heizer , 2008). Caddick and Dale (1998) on their paper ‘The impact of quality management on...2002). Outsourcing in Edinburgh and the Lothians. European Journal of Purchasing and Supply Chain Management 8 (2) 83-95. Render , Barry; Heizer , Jay

  1. See-Through Imaging of Laser-Scanned 3d Cultural Heritage Objects Based on Stochastic Rendering of Large-Scale Point Clouds

    NASA Astrophysics Data System (ADS)

    Tanaka, S.; Hasegawa, K.; Okamoto, N.; Umegaki, R.; Wang, S.; Uemura, M.; Okamoto, A.; Koyamada, K.

    2016-06-01

    We propose a method for the precise 3D see-through imaging, or transparent visualization, of the large-scale and complex point clouds acquired via the laser scanning of 3D cultural heritage objects. Our method is based on a stochastic algorithm and directly uses the 3D points, which are acquired using a laser scanner, as the rendering primitives. This method achieves the correct depth feel without requiring depth sorting of the rendering primitives along the line of sight. Eliminating this need allows us to avoid long computation times when creating natural and precise 3D see-through views of laser-scanned cultural heritage objects. The opacity of each laser-scanned object is also flexibly controllable. For a laser-scanned point cloud consisting of more than 107 or 108 3D points, the pre-processing requires only a few minutes, and the rendering can be executed at interactive frame rates. Our method enables the creation of cumulative 3D see-through images of time-series laser-scanned data. It also offers the possibility of fused visualization for observing a laser-scanned object behind a transparent high-quality photographic image placed in the 3D scene. We demonstrate the effectiveness of our method by applying it to festival floats of high cultural value. These festival floats have complex outer and inner 3D structures and are suitable for see-through imaging.

  2. Surgical operation using lighting goggle composed of white LED arrays

    NASA Astrophysics Data System (ADS)

    Shimada, Junichi; Kawakami, Yoichi; Fujita, Shigeo

    2001-12-01

    Everywhere in the world, the highest quality and quantity of lighting is required during the surgical operations. However, the surgical approach has had many types and various angles, common ceiling surgical halogen lighting system cannot provide an adequate amount of beams because the surgeons' heads hinder the illuminations from reaching the operation field. Here, we newly design surgical lighting system composed of white LEDs equipped on both sides of goggles, which controls the lighting beams to the gazing point. With this system, it is just needed for surgeons to wear light plastic goggles with high quality LEDs made by Nichia. In fact, we have succeeded in the first internal shunt operation in the left forearm using the surgical LED lighting system on 11th Sept 2000. The electrical power for the system was supplied from lithium-ion battery for 2 hours. Since the white LEDs used were composed of InGaN-blue-emitters and YAG-yellow-phosphors, the color rendering property was not sufficient in the reddish colors. Therefore, in the next approach, it is very important to develop the spectral distribution of white LED to render inherent color of raw flesh such as skin, blood, fat tissue and internal organs. To improve the color rendering in red colors, some adjustments should be given in the fluorescents layers. Design of goggle is also very important for cutting into the real practical market of white LEDs.

  3. High-power arrays of quantum cascade laser master-oscillator power-amplifiers.

    PubMed

    Rauter, Patrick; Menzel, Stefan; Goyal, Anish K; Wang, Christine A; Sanchez, Antonio; Turner, George; Capasso, Federico

    2013-02-25

    We report on multi-wavelength arrays of master-oscillator power-amplifier quantum cascade lasers operating at wavelengths between 9.2 and 9.8 μm. All elements of the high-performance array feature longitudinal (spectral) as well as transverse single-mode emission at peak powers between 2.7 and 10 W at room temperature. The performance of two arrays that are based on different seed-section designs is thoroughly studied and compared. High output power and excellent beam quality render the arrays highly suitable for stand-off spectroscopy applications.

  4. A two-metric proposal to specify the color-rendering properties of light sources for retail lighting

    NASA Astrophysics Data System (ADS)

    Freyssinier, Jean Paul; Rea, Mark

    2010-08-01

    Lighting plays an important role in supporting retail operations, from attracting customers, to enabling the evaluation of merchandise, to facilitating the completion of the sale. Lighting also contributes to the identity, comfort, and visual quality of a retail store. With the increasing availability and quality of white LEDs, retail lighting specifiers are now considering LED lighting in stores. The color rendering of light sources is a key factor in supporting retail lighting goals and thus influences a light source's acceptance by users and specifiers. However, there is limited information on what consumers' color preferences are, and metrics used to describe the color properties of light sources often are equivocal and fail to predict preference. The color rendering of light sources is described in the industry solely by the color rendering index (CRI), which is only indirectly related to human perception. CRI is intended to characterize the appearance of objects illuminated by the source and is increasingly being challenged because new sources are being developed with increasingly exotic spectral power distributions. This paper discusses how CRI might be augmented to better use it in support of the design objectives for retail merchandising. The proposed guidelines include the use of gamut area index as a complementary metric to CRI for assuring good color rendering.

  5. High-quality and interactive animations of 3D time-varying vector fields.

    PubMed

    Helgeland, Anders; Elboth, Thomas

    2006-01-01

    In this paper, we present an interactive texture-based method for visualizing three-dimensional unsteady vector fields. The visualization method uses a sparse and global representation of the flow, such that it does not suffer from the same perceptual issues as is the case for visualizing dense representations. The animation is made by injecting a collection of particles evenly distributed throughout the physical domain. These particles are then tracked along their path lines. At each time step, these particles are used as seed points to generate field lines using any vector field such as the velocity field or vorticity field. In this way, the animation shows the advection of particles while each frame in the animation shows the instantaneous vector field. In order to maintain a coherent particle density and to avoid clustering as time passes, we have developed a novel particle advection strategy which produces approximately evenly-spaced field lines at each time step. To improve rendering performance, we decouple the rendering stage from the preceding stages of the visualization method. This allows interactive exploration of multiple fields simultaneously, which sets the stage for a more complete analysis of the flow field. The final display is rendered using texture-based direct volume rendering.

  6. The impact of epilepsy surgery on quality of life in children.

    PubMed

    Sabaz, M; Lawson, J A; Cairns, D R; Duchowny, M S; Resnick, T J; Dean, P M; Bleasel, A F; Bye, A M E

    2006-02-28

    To determine if epilepsy surgery is effective in improving the quality of life (QOL) of children with intractable seizures using the Quality of Life in Childhood Epilepsy Questionnaire (QOLCE). The authors conducted a prospective study of the families of 35 children with intractable epilepsy who underwent epilepsy surgery. Parents completed the QOLCE preoperatively and again 6 to 18 months after surgery. At both assessment dates parents indicated the severity of their child's seizures during the past 6 months and the frequency of their child's seizures during the past 4 weeks on Likert-type scales. Children were split into two groups according to surgery outcome: seizure free vs persistent seizures. Statistical analyses were conducted to determine if children rendered seizure free showed a greater improvement in QOL compared to those with persistent seizures postoperatively. Greater improvement in QOL was documented for children rendered seizure free vs children with persistent seizures. This was significant for the overall QOLCE QOL score and subscales assessing cognitive, social, emotional, behavioral, and physical domains of life. Epilepsy surgery improves the quality of life of children rendered seizure free. Families can be counseled preoperatively of the potential benefits of surgery beyond seizure reduction.

  7. Transform coding for hardware-accelerated volume rendering.

    PubMed

    Fout, Nathaniel; Ma, Kwan-Liu

    2007-01-01

    Hardware-accelerated volume rendering using the GPU is now the standard approach for real-time volume rendering, although limited graphics memory can present a problem when rendering large volume data sets. Volumetric compression in which the decompression is coupled to rendering has been shown to be an effective solution to this problem; however, most existing techniques were developed in the context of software volume rendering, and all but the simplest approaches are prohibitive in a real-time hardware-accelerated volume rendering context. In this paper we present a novel block-based transform coding scheme designed specifically with real-time volume rendering in mind, such that the decompression is fast without sacrificing compression quality. This is made possible by consolidating the inverse transform with dequantization in such a way as to allow most of the reprojection to be precomputed. Furthermore, we take advantage of the freedom afforded by off-line compression in order to optimize the encoding as much as possible while hiding this complexity from the decoder. In this context we develop a new block classification scheme which allows us to preserve perceptually important features in the compression. The result of this work is an asymmetric transform coding scheme that allows very large volumes to be compressed and then decompressed in real-time while rendering on the GPU.

  8. Real-time reconstruction of three-dimensional brain surface MR image using new volume-surface rendering technique

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Watanabe, T.; Momose, T.; Oku, S.

    It is essential to obtain realistic brain surface images, in which sulci and gyri are easily recognized, when examining the correlation between functional (PET or SPECT) and anatomical (MRI) brain studies. The volume rendering technique (VRT) is commonly employed to make three-dimensional (3D) brain surface images. This technique, however, takes considerable time to make only one 3D image. Therefore it has not been practical to make the brain surface images in arbitrary directions on a real-time basis using ordinary work stations or personal computers. The surface rendering technique (SRT), on the other hand, is much less computationally demanding, but themore » quality of resulting images is not satisfactory for our purpose. A new computer algorithm has been developed to make 3D brain surface MR images very quickly using a volume-surface rendering technique (VSRT), in which the quality of resulting images is comparable to that of VRT and computation time to SRT. In VSRT the process of volume rendering is done only once to the direction of the normal vector of each surface point, rather than each time a new view point is determined as in VRT. Subsequent reconstruction of the 3D image uses a similar algorithm to that of SRT. Thus we can obtain brain surface MR images of sufficient quality viewed from any direction on a real-time basis using an easily available personal computer (Macintosh Quadra 800). The calculation time to make a 3D image is less than 1 sec. in VSRT, while that is more than 15 sec. in the conventional VRT. The difference of resulting image quality between VSRT and VRT is almost imperceptible. In conclusion, our new technique for real-time reconstruction of 3D brain surface MR image is very useful and practical in the functional and anatomical correlation study.« less

  9. Screen Space Ambient Occlusion Based Multiple Importance Sampling for Real-Time Rendering

    NASA Astrophysics Data System (ADS)

    Zerari, Abd El Mouméne; Babahenini, Mohamed Chaouki

    2018-03-01

    We propose a new approximation technique for accelerating the Global Illumination algorithm for real-time rendering. The proposed approach is based on the Screen-Space Ambient Occlusion (SSAO) method, which approximates the global illumination for large, fully dynamic scenes at interactive frame rates. Current algorithms that are based on the SSAO method suffer from difficulties due to the large number of samples that are required. In this paper, we propose an improvement to the SSAO technique by integrating it with a Multiple Importance Sampling technique that combines a stratified sampling method with an importance sampling method, with the objective of reducing the number of samples. Experimental evaluation demonstrates that our technique can produce high-quality images in real time and is significantly faster than traditional techniques.

  10. 3D Printout Models vs. 3D-Rendered Images: Which Is Better for Preoperative Planning?

    PubMed

    Zheng, Yi-xiong; Yu, Di-fei; Zhao, Jian-gang; Wu, Yu-lian; Zheng, Bin

    2016-01-01

    Correct interpretation of a patient's anatomy and changes that occurs secondary to a disease process are crucial in the preoperative process to ensure optimal surgical treatment. In this study, we presented 3 different pancreatic cancer cases to surgical residents in the form of 3D-rendered images and 3D-printed models to investigate which modality resulted in the most appropriate preoperative plan. We selected 3 cases that would require significantly different preoperative plans based on key features identifiable in the preoperative computed tomography imaging. 3D volume rendering and 3D printing were performed respectively to create 2 different training ways. A total of 30, year 1 surgical residents were randomly divided into 2 groups. Besides traditional 2D computed tomography images, residents in group A (n = 15) reviewed 3D computer models, whereas in group B, residents (n = 15) reviewed 3D-printed models. Both groups subsequently completed an examination, designed in-house, to assess the appropriateness of their preoperative plan and provide a numerical score of the quality of the surgical plan. Residents in group B showed significantly higher quality of the surgical plan scores compared with residents in group A (76.4 ± 10.5 vs. 66.5 ± 11.2, p = 0.018). This difference was due in large part to a significant difference in knowledge of key surgical steps (22.1 ± 2.9 vs. 17.4 ± 4.2, p = 0.004) between each group. All participants reported a high level of satisfaction with the exercise. Results from this study support our hypothesis that 3D-printed models improve the quality of surgical trainee's preoperative plans. Copyright © 2016 Association of Program Directors in Surgery. Published by Elsevier Inc. All rights reserved.

  11. High resolution renderings and interactive visualization of the 2006 Huntington Beach experiment

    NASA Astrophysics Data System (ADS)

    Im, T.; Nayak, A.; Keen, C.; Samilo, D.; Matthews, J.

    2006-12-01

    The Visualization Center at the Scripps Institution of Oceanography investigates innovative ways to represent graphically interactive 3D virtual landscapes and to produce high resolution, high quality renderings of Earth sciences data and the sensors and instruments used to collect the data . Among the Visualization Center's most recent work is the visualization of the Huntington Beach experiment, a study launched in July 2006 by the Southern California Ocean Observing System (http://www.sccoos.org/) to record and synthesize data of the Huntington Beach coastal region. Researchers and students at the Visualization Center created visual presentations that combine bathymetric data provided by SCCOOS with USGS aerial photography and with 3D polygonal models of sensors created in Maya into an interactive 3D scene using the Fledermaus suite of visualization tools (http://www.ivs3d.com). In addition, the Visualization Center has produced high definition (HD) animations of SCCOOS sensor instruments (e.g. REMUS, drifters, spray glider, nearshore mooring, OCSD/USGS mooring and CDIP mooring) using the Maya modeling and animation software and rendered over multiple nodes of the OptIPuter Visualization Cluster at Scripps. These visualizations are aimed at providing researchers with a broader context of sensor locations relative to geologic characteristics, to promote their use as an educational resource for informal education settings and increasing public awareness, and also as an aid for researchers' proposals and presentations. These visualizations are available for download on the Visualization Center website at http://siovizcenter.ucsd.edu/sccoos/hb2006.php.

  12. Tangible display systems: direct interfaces for computer-based studies of surface appearance

    NASA Astrophysics Data System (ADS)

    Darling, Benjamin A.; Ferwerda, James A.

    2010-02-01

    When evaluating the surface appearance of real objects, observers engage in complex behaviors involving active manipulation and dynamic viewpoint changes that allow them to observe the changing patterns of surface reflections. We are developing a class of tangible display systems to provide these natural modes of interaction in computer-based studies of material perception. A first-generation tangible display was created from an off-the-shelf laptop computer containing an accelerometer and webcam as standard components. Using these devices, custom software estimated the orientation of the display and the user's viewing position. This information was integrated with a 3D rendering module so that rotating the display or moving in front of the screen would produce realistic changes in the appearance of virtual objects. In this paper, we consider the design of a second-generation system to improve the fidelity of the virtual surfaces rendered to the screen. With a high-quality display screen and enhanced tracking and rendering capabilities, a secondgeneration system will be better able to support a range of appearance perception applications.

  13. High dynamic range subjective testing

    NASA Astrophysics Data System (ADS)

    Allan, Brahim; Nilsson, Mike

    2016-09-01

    This paper describes of a set of subjective tests that the authors have carried out to assess the end user perception of video encoded with High Dynamic Range technology when viewed in a typical home environment. Viewers scored individual single clips of content, presented in High Definition (HD) and Ultra High Definition (UHD), in Standard Dynamic Range (SDR), and in High Dynamic Range (HDR) using both the Perceptual Quantizer (PQ) and Hybrid Log Gamma (HLG) transfer characteristics, and presented in SDR as the backwards compatible rendering of the HLG representation. The quality of SDR HD was improved by approximately equal amounts by either increasing the dynamic range or increasing the resolution to UHD. A further smaller increase in quality was observed in the Mean Opinion Scores of the viewers by increasing both the dynamic range and the resolution, but this was not quite statistically significant.

  14. METRO-APEX Volume 15.1: Industrialist's Manual No. 5, Caesar's Rendering Plant. Revised.

    ERIC Educational Resources Information Center

    University of Southern California, Los Angeles. COMEX Research Project.

    The Industrialist's Manual No. 5 (Caesar's Rendering Plant) is one of a set of twenty-one manuals used in METRO-APEX 1974, a computerized college and professional level, computer-supported, role-play, simulation exercise of a community with "normal" problems. Stress is placed on environmental quality considerations. APEX 1974 is an…

  15. Standardized volume-rendering of contrast-enhanced renal magnetic resonance angiography.

    PubMed

    Smedby, O; Oberg, R; Asberg, B; Stenström, H; Eriksson, P

    2005-08-01

    To propose a technique for standardizing volume-rendering technique (VRT) protocols and to compare this with maximum intensity projection (MIP) in regard to image quality and diagnostic confidence in stenosis diagnosis with magnetic resonance angiography (MRA). Twenty patients were examined with MRA under suspicion of renal artery stenosis. Using the histogram function in the volume-rendering software, the 95th and 99th percentiles of the 3D data set were identified and used to define the VRT transfer function. Two radiologists assessed the stenosis pathology and image quality from rotational sequences of MIP and VRT images. Good overall agreement (mean kappa=0.72) was found between MIP and VRT diagnoses. The agreement between MIP and VRT was considerably better than that between observers (mean kappa=0.43). One of the observers judged VRT images as having higher image quality than MIP images. Presenting renal MRA images with VRT gave results in good agreement with MIP. With VRT protocols defined from the histogram of the image, the lack of an absolute gray scale in MRI need not be a major problem.

  16. Atomically Thin Hexagonal Boron Nitride Nanofilm for Cu Protection: The Importance of Film Perfection.

    PubMed

    Khan, Majharul Haque; Jamali, Sina S; Lyalin, Andrey; Molino, Paul J; Jiang, Lei; Liu, Hua Kun; Taketsugu, Tetsuya; Huang, Zhenguo

    2017-01-01

    Outstanding protection of Cu by high-quality boron nitride nanofilm (BNNF) 1-2 atomic layers thick in salt water is observed, while defective BNNF accelerates the reaction of Cu toward water. The chemical stability, insulating nature, and impermeability of ions through the BN hexagons render BNNF a great choice for atomic-scale protection. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. A Novel Approach to Visualizing Dark Matter Simulations.

    PubMed

    Kaehler, R; Hahn, O; Abel, T

    2012-12-01

    In the last decades cosmological N-body dark matter simulations have enabled ab initio studies of the formation of structure in the Universe. Gravity amplified small density fluctuations generated shortly after the Big Bang, leading to the formation of galaxies in the cosmic web. These calculations have led to a growing demand for methods to analyze time-dependent particle based simulations. Rendering methods for such N-body simulation data usually employ some kind of splatting approach via point based rendering primitives and approximate the spatial distributions of physical quantities using kernel interpolation techniques, common in SPH (Smoothed Particle Hydrodynamics)-codes. This paper proposes three GPU-assisted rendering approaches, based on a new, more accurate method to compute the physical densities of dark matter simulation data. It uses full phase-space information to generate a tetrahedral tessellation of the computational domain, with mesh vertices defined by the simulation's dark matter particle positions. Over time the mesh is deformed by gravitational forces, causing the tetrahedral cells to warp and overlap. The new methods are well suited to visualize the cosmic web. In particular they preserve caustics, regions of high density that emerge, when several streams of dark matter particles share the same location in space, indicating the formation of structures like sheets, filaments and halos. We demonstrate the superior image quality of the new approaches in a comparison with three standard rendering techniques for N-body simulation data.

  18. MTO-like reference mask modeling for advanced inverse lithography technology patterns

    NASA Astrophysics Data System (ADS)

    Park, Jongju; Moon, Jongin; Son, Suein; Chung, Donghoon; Kim, Byung-Gook; Jeon, Chan-Uk; LoPresti, Patrick; Xue, Shan; Wang, Sonny; Broadbent, Bill; Kim, Soonho; Hur, Jiuk; Choo, Min

    2017-07-01

    Advanced Inverse Lithography Technology (ILT) can result in mask post-OPC databases with very small address units, all-angle figures, and very high vertex counts. This creates mask inspection issues for existing mask inspection database rendering. These issues include: large data volumes, low transfer rate, long data preparation times, slow inspection throughput, and marginal rendering accuracy leading to high false detections. This paper demonstrates the application of a new rendering method including a new OASIS-like mask inspection format, new high-speed rendering algorithms, and related hardware to meet the inspection challenges posed by Advanced ILT masks.

  19. 30 CFR 75.321 - Air quality.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Air quality. 75.321 Section 75.321 Mineral... SAFETY STANDARDS-UNDERGROUND COAL MINES Ventilation § 75.321 Air quality. (a)(1) The air in areas where... air current in these areas shall be sufficient to dilute, render harmless, and carry away flammable...

  20. 30 CFR 75.321 - Air quality.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Air quality. 75.321 Section 75.321 Mineral... SAFETY STANDARDS-UNDERGROUND COAL MINES Ventilation § 75.321 Air quality. (a)(1) The air in areas where... air current in these areas shall be sufficient to dilute, render harmless, and carry away flammable...

  1. 30 CFR 75.321 - Air quality.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Air quality. 75.321 Section 75.321 Mineral... SAFETY STANDARDS-UNDERGROUND COAL MINES Ventilation § 75.321 Air quality. (a)(1) The air in areas where... air current in these areas shall be sufficient to dilute, render harmless, and carry away flammable...

  2. 30 CFR 75.321 - Air quality.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Air quality. 75.321 Section 75.321 Mineral... SAFETY STANDARDS-UNDERGROUND COAL MINES Ventilation § 75.321 Air quality. (a)(1) The air in areas where... air current in these areas shall be sufficient to dilute, render harmless, and carry away flammable...

  3. 30 CFR 75.321 - Air quality.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Air quality. 75.321 Section 75.321 Mineral... SAFETY STANDARDS-UNDERGROUND COAL MINES Ventilation § 75.321 Air quality. (a)(1) The air in areas where... air current in these areas shall be sufficient to dilute, render harmless, and carry away flammable...

  4. Molray--a web interface between O and the POV-Ray ray tracer.

    PubMed

    Harris, M; Jones, T A

    2001-08-01

    A publicly available web-based interface is presented for producing high-quality ray-traced images and movies from the molecular-modelling program O [Jones et al. (1991), Acta Cryst. A47, 110-119]. The interface allows the user to select O-plot files and set parameters to create standard input files for the popular ray-tracing renderer POV-Ray, which can then produce publication-quality still images or simple movies. To ensure ease of use, we have made this service available to the O user community via the World Wide Web. The public Molray server is available at http://xray.bmc.uu.se/molray.

  5. Complex adaptation-based LDR image rendering for 3D image reconstruction

    NASA Astrophysics Data System (ADS)

    Lee, Sung-Hak; Kwon, Hyuk-Ju; Sohng, Kyu-Ik

    2014-07-01

    A low-dynamic tone-compression technique is developed for realistic image rendering that can make three-dimensional (3D) images similar to realistic scenes by overcoming brightness dimming in the 3D display mode. The 3D surround provides varying conditions for image quality, illuminant adaptation, contrast, gamma, color, sharpness, and so on. In general, gain/offset adjustment, gamma compensation, and histogram equalization have performed well in contrast compression; however, as a result of signal saturation and clipping effects, image details are removed and information is lost on bright and dark areas. Thus, an enhanced image mapping technique is proposed based on space-varying image compression. The performance of contrast compression is enhanced with complex adaptation in a 3D viewing surround combining global and local adaptation. Evaluating local image rendering in view of tone and color expression, noise reduction, and edge compensation confirms that the proposed 3D image-mapping model can compensate for the loss of image quality in the 3D mode.

  6. Subjective quality of video sequences rendered on LCD with local backlight dimming at different lighting conditions

    NASA Astrophysics Data System (ADS)

    Mantel, Claire; Korhonen, Jari; Pedersen, Jesper M.; Bech, Søren; Andersen, Jakob Dahl; Forchhammer, Søren

    2015-01-01

    This paper focuses on the influence of ambient light on the perceived quality of videos displayed on Liquid Crystal Display (LCD) with local backlight dimming. A subjective test assessing the quality of videos with two backlight dimming methods and three lighting conditions, i.e. no light, low light level (5 lux) and higher light level (60 lux) was organized to collect subjective data. Results show that participants prefer the method exploiting local dimming possibilities to the conventional full backlight but that this preference varies depending on the ambient light level. The clear preference for one method at the low light conditions decreases at the high ambient light, confirming that the ambient light significantly attenuates the perception of the leakage defect (light leaking through dark pixels). Results are also highly dependent on the content of the sequence, which can modulate the effect of the ambient light from having an important influence on the quality grades to no influence at all.

  7. Accurate chromatic control and color rendering optimization in LED lighting systems using junction temperature feedback

    NASA Astrophysics Data System (ADS)

    Sisto, Marco Michele; Gauvin, Jonny

    2014-09-01

    Accurate color control of LED lighting systems is a challenging task: noticeable chromaticity shifts are commonly observed in mixed-color and phosphor converted LEDs due to intensity dimming. Furthermore, the emitted color varies with the LED temperature. We present a novel color control method for tri-chromatic and tetra-chromatic LEDs, which enable to set and maintain the LED emission at a target color, or combination of correlated color temperature (CCT) and intensity. The LED color point is maintained over variations in the LED junctions' temperatures and intensity dimming levels. The method does not require color feedback sensors, so to minimize system complexity and cost, but relies on estimation of the LED junctions' temperatures from the junction voltages. If operated with tetra-chromatic LEDs, the method allows meeting an additional optimization criterion: for example, the maximization of a color rendering metric like the Color Rendering Index (CRI) or the Color Quality Scale (CQS), thus providing a high quality and clarity of colors on the surface illuminated by the LED. We demonstrate the control of a RGBW LED at target D65 white point with CIELAB color difference metric triangle;a,bE < 1 for simultaneous variations of flux from approximately 30 lm to 100 lm and LED heat sink temperature from 25°C to 58°C. In the same conditions, we demonstrate a CCT error <1%. Furthermore, the method allows varying the LED CCT from 5500K to 8000K while maintaining luminance within 1% of target. Further work is ongoing to evaluate the stability of the method over LED aging.

  8. Semiannual Report, April 1, 1989 through September 30, 1989 (Institute for Computer Applications in Science and Engineering)

    DTIC Science & Technology

    1990-02-01

    noise. Tobias B. Orloff Work began on developing a high quality rendering algorithm based on the radiosity method. The algorithm is similar to...previous progressive radiosity algorithms except for the following improvements: 1. At each iteration vertex radiosities are computed using a modified scan...line approach, thus eliminating the quadratic cost associated with a ray tracing computation of vortex radiosities . 2. At each iteration the scene is

  9. Medical lighting composed of LED arrays for surgical operation

    NASA Astrophysics Data System (ADS)

    Shimada, Junichi; Kawakami, Yoichi; Fujita, Shigeo

    2001-05-01

    Everywhere in the world, the highest quality and quantity of lighting is required during the surgical operations. However, the surgical approach has had many types and various angles, common ceiling surgical halogen lighting system cannot provide an adequate amount of beams because the surgeons' heads hinder the illuminations from reaching the operation field. Here, we newly design surgical lighting system composed of white LEDs equipped on both sides of goggles, which controls the lighting beams to the gazing point. With this system, it is just needed for surgeons to wear light plastic goggles with high quality LEDs made by Nichia. In fact, we have succeeded in the first internal shunt operation in the left forearm using the surgical LED lighting system on 11th Sept 2000. The electrical power for the system was supplied from lithium-ion battery for 2 hours. Since the white LEDs used were composed of InGaN- blue-emitters and YAG-yellow-phosphors, the color rendering property was not sufficient in the reddish colors. Therefore, in the next approach, it is very important to develop the spectral distribution of white LED to render inherent color of raw flesh such as skin, blood, fat tissue and internal organs.

  10. A Physics-Based Vibrotactile Feedback Library for Collision Events.

    PubMed

    Park, Gunhyuk; Choi, Seungmoon

    2017-01-01

    We present PhysVib: a software solution on the mobile platform extending an open-source physics engine in a multi-rate rendering architecture for automatic vibrotactile feedback upon collision events. PhysVib runs concurrently with a physics engine at a low update rate and generates vibrotactile feedback commands at a high update rate based on the simulation results of the physics engine using an exponentially-decaying sinusoidal model. We demonstrate through a user study that this vibration model is more appropriate to our purpose in terms of perceptual quality than more complex models based on sound synthesis. We also evaluated the perceptual performance of PhysVib by comparing eight vibrotactile rendering methods. Experimental results suggested that PhysVib enables more realistic vibrotactile feedback than the other methods as to perceived similarity to the visual events. PhysVib is an effective solution for providing physically plausible vibrotactile responses while reducing application development time to great extent.

  11. Video coding for 3D-HEVC based on saliency information

    NASA Astrophysics Data System (ADS)

    Yu, Fang; An, Ping; Yang, Chao; You, Zhixiang; Shen, Liquan

    2016-11-01

    As an extension of High Efficiency Video Coding ( HEVC), 3D-HEVC has been widely researched under the impetus of the new generation coding standard in recent years. Compared with H.264/AVC, its compression efficiency is doubled while keeping the same video quality. However, its higher encoding complexity and longer encoding time are not negligible. To reduce the computational complexity and guarantee the subjective quality of virtual views, this paper presents a novel video coding method for 3D-HEVC based on the saliency informat ion which is an important part of Human Visual System (HVS). First of all, the relationship between the current coding unit and its adjacent units is used to adjust the maximum depth of each largest coding unit (LCU) and determine the SKIP mode reasonably. Then, according to the saliency informat ion of each frame image, the texture and its corresponding depth map will be divided into three regions, that is, salient area, middle area and non-salient area. Afterwards, d ifferent quantization parameters will be assigned to different regions to conduct low complexity coding. Finally, the compressed video will generate new view point videos through the renderer tool. As shown in our experiments, the proposed method saves more bit rate than other approaches and achieves up to highest 38% encoding time reduction without subjective quality loss in compression or rendering.

  12. 21 CFR 106.1 - Status and applicability of the quality control procedures regulation.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... AND HUMAN SERVICES (CONTINUED) FOOD FOR HUMAN CONSUMPTION INFANT FORMULA QUALITY CONTROL PROCEDURES... infant formula meets the safety, quality, and nutrient requirements of section 412 of the act and the..., processing, and packaging of an infant formula shall render such formula adulterated under section 412(a)(1...

  13. 21 CFR 106.1 - Status and applicability of the quality control procedures regulation.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... AND HUMAN SERVICES (CONTINUED) FOOD FOR HUMAN CONSUMPTION INFANT FORMULA QUALITY CONTROL PROCEDURES... infant formula meets the safety, quality, and nutrient requirements of section 412 of the act and the..., processing, and packaging of an infant formula shall render such formula adulterated under section 412(a)(1...

  14. Virtual dissection of Thoropa miliaris tadpole using phase-contrast synchrotron microtomography

    NASA Astrophysics Data System (ADS)

    Fidalgo, G.; Colaço, M. V.; Nogueira, L. P.; Braz, D.; Silva, H. R.; Colaço, G.; Barroso, R. C.

    2018-05-01

    In this work, in-line phase-contrast synchrotron microtomography was used in order to study the external and internal morphology of Thoropa miliaris tadpoles. Whole-specimens of T. miliaris in larval stages of development 28, 37 and 42, collected in the municipality of Mangaratiba (Rio de Janeiro, Brazil) were used for the study. The samples were scanned in microtomography beamline (IMX) at the Brazilian Synchrotron Light Laboratory (LNLS). The phase-contrast technique allowed us to obtain high quality images which made possible the structures segmentation on the rendered volume by the Avizo graphic image editing software. The combination of high quality images and segmentation process provides adequate visualization of different organs and soft (liver, notochord, brain, crystalline, cartilages) and hard (elements of the bone skeleton) tissues.

  15. Establishment of a rapid, inexpensive protocol for extraction of high quality RNA from small amounts of strawberry plant tissues and other recalcitrant fruit crops.

    PubMed

    Christou, Anastasis; Georgiadou, Egli C; Filippou, Panagiota; Manganaris, George A; Fotopoulos, Vasileios

    2014-03-01

    Strawberry plant tissues and particularly fruit material are rich in polysaccharides and polyphenolic compounds, thus rendering the isolation of nucleic acids a difficult task. This work describes the successful modification of a total RNA extraction protocol, which enables the isolation of high quantity and quality of total RNA from small amounts of strawberry leaf, root and fruit tissues. Reverse-transcription polymerase chain reaction (RT-PCR) amplification of GAPDH housekeeping gene from isolated RNA further supports the proposed protocol efficiency and its use for downstream molecular applications. This novel procedure was also successfully followed using other fruit tissues, such as olive and kiwifruit. In addition, optional treatment with RNase A following initial nucleic acid extraction can provide sufficient quality and quality of genomic DNA for subsequent PCR analyses, as evidenced from PCR amplification of housekeeping genes using extracted genomic DNA as template. Overall, this optimized protocol allows easy, rapid and economic isolation of high quality RNA from small amounts of an important fruit crop, such as strawberry, with extended applicability to other recalcitrant fruit crops. Copyright © 2013 Elsevier B.V. All rights reserved.

  16. Multi-Depth-Map Raytracing for Efficient Large-Scene Reconstruction.

    PubMed

    Arikan, Murat; Preiner, Reinhold; Wimmer, Michael

    2016-02-01

    With the enormous advances of the acquisition technology over the last years, fast processing and high-quality visualization of large point clouds have gained increasing attention. Commonly, a mesh surface is reconstructed from the point cloud and a high-resolution texture is generated over the mesh from the images taken at the site to represent surface materials. However, this global reconstruction and texturing approach becomes impractical with increasing data sizes. Recently, due to its potential for scalability and extensibility, a method for texturing a set of depth maps in a preprocessing and stitching them at runtime has been proposed to represent large scenes. However, the rendering performance of this method is strongly dependent on the number of depth maps and their resolution. Moreover, for the proposed scene representation, every single depth map has to be textured by the images, which in practice heavily increases processing costs. In this paper, we present a novel method to break these dependencies by introducing an efficient raytracing of multiple depth maps. In a preprocessing phase, we first generate high-resolution textured depth maps by rendering the input points from image cameras and then perform a graph-cut based optimization to assign a small subset of these points to the images. At runtime, we use the resulting point-to-image assignments (1) to identify for each view ray which depth map contains the closest ray-surface intersection and (2) to efficiently compute this intersection point. The resulting algorithm accelerates both the texturing and the rendering of the depth maps by an order of magnitude.

  17. GPU-based multi-volume ray casting within VTK for medical applications.

    PubMed

    Bozorgi, Mohammadmehdi; Lindseth, Frank

    2015-03-01

    Multi-volume visualization is important for displaying relevant information in multimodal or multitemporal medical imaging studies. The main objective with the current study was to develop an efficient GPU-based multi-volume ray caster (MVRC) and validate the proposed visualization system in the context of image-guided surgical navigation. Ray casting can produce high-quality 2D images from 3D volume data but the method is computationally demanding, especially when multiple volumes are involved, so a parallel GPU version has been implemented. In the proposed MVRC, imaginary rays are sent through the volumes (one ray for each pixel in the view), and at equal and short intervals along the rays, samples are collected from each volume. Samples from all the volumes are composited using front to back α-blending. Since all the rays can be processed simultaneously, the MVRC was implemented in parallel on the GPU to achieve acceptable interactive frame rates. The method is fully integrated within the visualization toolkit (VTK) pipeline with the ability to apply different operations (e.g., transformations, clipping, and cropping) on each volume separately. The implemented method is cross-platform (Windows, Linux and Mac OSX) and runs on different graphics card (NVidia and AMD). The speed of the MVRC was tested with one to five volumes of varying sizes: 128(3), 256(3), and 512(3). A Tesla C2070 GPU was used, and the output image size was 600 × 600 pixels. The original VTK single-volume ray caster and the MVRC were compared when rendering only one volume. The multi-volume rendering system achieved an interactive frame rate (> 15 fps) when rendering five small volumes (128 (3) voxels), four medium-sized volumes (256(3) voxels), and two large volumes (512(3) voxels). When rendering single volumes, the frame rate of the MVRC was comparable to the original VTK ray caster for small and medium-sized datasets but was approximately 3 frames per second slower for large datasets. The MVRC was successfully integrated in an existing surgical navigation system and was shown to be clinically useful during an ultrasound-guided neurosurgical tumor resection. A GPU-based MVRC for VTK is a useful tool in medical visualization. The proposed multi-volume GPU-based ray caster for VTK provided high-quality images at reasonable frame rates. The MVRC was effective when used in a neurosurgical navigation application.

  18. Equal Opportunity in Farm Programs: An Appraisal of Services Rendered by Agencies of the United States Department of Agriculture. A Report of the United States Commission on Civil Rights, 1965.

    ERIC Educational Resources Information Center

    Commission on Civil Rights, Washington, DC.

    Focusing on the extent and quality of services rendered to Negro rural families by the agencies of the Department of Agriculture, this study was conducted in counties where Negroes formed a significant portion of the varying potential clientele of the agencies. Research techniques used in the study included conferences and interviews with program…

  19. Users’ guide to the surgical literature: how to perform a high-quality literature search

    PubMed Central

    Waltho, Daniel; Kaur, Manraj Nirmal; Haynes, R. Brian; Farrokhyar, Forough; Thoma, Achilleas

    2015-01-01

    Summary The article “Users’ guide to the surgical literature: how to perform a literature search” was published in 2003, but the continuing technological developments in databases and search filters have rendered that guide out of date. The present guide fills an existing gap in this area; it provides the reader with strategies for developing a searchable clinical question, creating an efficient search strategy, accessing appropriate databases, and skillfully retrieving the best evidence to address the research question. PMID:26384150

  20. Ray Casting of Large Multi-Resolution Volume Datasets

    NASA Astrophysics Data System (ADS)

    Lux, C.; Fröhlich, B.

    2009-04-01

    High quality volume visualization through ray casting on graphics processing units (GPU) has become an important approach for many application domains. We present a GPU-based, multi-resolution ray casting technique for the interactive visualization of massive volume data sets commonly found in the oil and gas industry. Large volume data sets are represented as a multi-resolution hierarchy based on an octree data structure. The original volume data is decomposed into small bricks of a fixed size acting as the leaf nodes of the octree. These nodes are the highest resolution of the volume. Coarser resolutions are represented through inner nodes of the hierarchy which are generated by down sampling eight neighboring nodes on a finer level. Due to limited memory resources of current desktop workstations and graphics hardware only a limited working set of bricks can be locally maintained for a frame to be displayed. This working set is chosen to represent the whole volume at different local resolution levels depending on the current viewer position, transfer function and distinct areas of interest. During runtime the working set of bricks is maintained in CPU- and GPU memory and is adaptively updated by asynchronously fetching data from external sources like hard drives or a network. The CPU memory hereby acts as a secondary level cache for these sources from which the GPU representation is updated. Our volume ray casting algorithm is based on a 3D texture-atlas in GPU memory. This texture-atlas contains the complete working set of bricks of the current multi-resolution representation of the volume. This enables the volume ray casting algorithm to access the whole working set of bricks through only a single 3D texture. For traversing rays through the volume, information about the locations and resolution levels of visited bricks are required for correct compositing computations. We encode this information into a small 3D index texture which represents the current octree subdivision on its finest level and spatially organizes the bricked data. This approach allows us to render a bricked multi-resolution volume data set utilizing only a single rendering pass with no loss of compositing precision. In contrast most state-of-the art volume rendering systems handle the bricked data as individual 3D textures, which are rendered one at a time while the results are composited into a lower precision frame buffer. Furthermore, our method enables us to integrate advanced volume rendering techniques like empty-space skipping, adaptive sampling and preintegrated transfer functions in a very straightforward manner with virtually no extra costs. Our interactive volume ray tracing implementation allows high quality visualizations of massive volume data sets of tens of Gigabytes in size on standard desktop workstations.

  1. Optimization Model for Web Based Multimodal Interactive Simulations.

    PubMed

    Halic, Tansel; Ahn, Woojin; De, Suvranu

    2015-07-15

    This paper presents a technique for optimizing the performance of web based multimodal interactive simulations. For such applications where visual quality and the performance of simulations directly influence user experience, overloading of hardware resources may result in unsatisfactory reduction in the quality of the simulation and user satisfaction. However, optimization of simulation performance on individual hardware platforms is not practical. Hence, we present a mixed integer programming model to optimize the performance of graphical rendering and simulation performance while satisfying application specific constraints. Our approach includes three distinct phases: identification, optimization and update . In the identification phase, the computing and rendering capabilities of the client device are evaluated using an exploratory proxy code. This data is utilized in conjunction with user specified design requirements in the optimization phase to ensure best possible computational resource allocation. The optimum solution is used for rendering (e.g. texture size, canvas resolution) and simulation parameters (e.g. simulation domain) in the update phase. Test results are presented on multiple hardware platforms with diverse computing and graphics capabilities to demonstrate the effectiveness of our approach.

  2. Optimization Model for Web Based Multimodal Interactive Simulations

    PubMed Central

    Halic, Tansel; Ahn, Woojin; De, Suvranu

    2015-01-01

    This paper presents a technique for optimizing the performance of web based multimodal interactive simulations. For such applications where visual quality and the performance of simulations directly influence user experience, overloading of hardware resources may result in unsatisfactory reduction in the quality of the simulation and user satisfaction. However, optimization of simulation performance on individual hardware platforms is not practical. Hence, we present a mixed integer programming model to optimize the performance of graphical rendering and simulation performance while satisfying application specific constraints. Our approach includes three distinct phases: identification, optimization and update. In the identification phase, the computing and rendering capabilities of the client device are evaluated using an exploratory proxy code. This data is utilized in conjunction with user specified design requirements in the optimization phase to ensure best possible computational resource allocation. The optimum solution is used for rendering (e.g. texture size, canvas resolution) and simulation parameters (e.g. simulation domain) in the update phase. Test results are presented on multiple hardware platforms with diverse computing and graphics capabilities to demonstrate the effectiveness of our approach. PMID:26085713

  3. Boll sampling protocols and their impact on measurements of cotton fiber quality

    USDA-ARS?s Scientific Manuscript database

    Within plant fiber variability has long contributed to product inconsistency in the cotton industry. Fiber quality uniformity is a primary plant breeding objective related to cotton commodity economic value. The physiological impact of source and sink relationships renders stress on the upper bran...

  4. 15 CFR 995.25 - Quality management system.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... management system are those defined in this part. The quality management system must ensure that the... type approved conversion software is maintained by a third party, CEVAD shall ensure that no changes made to the conversion software render the type approval of the conversion software invalid, and shall...

  5. 15 CFR 995.25 - Quality management system.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... management system are those defined in this part. The quality management system must ensure that the... type approved conversion software is maintained by a third party, CEVAD shall ensure that no changes made to the conversion software render the type approval of the conversion software invalid, and shall...

  6. 15 CFR 995.25 - Quality management system.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... management system are those defined in this part. The quality management system must ensure that the... type approved conversion software is maintained by a third party, CEVAD shall ensure that no changes made to the conversion software render the type approval of the conversion software invalid, and shall...

  7. 15 CFR 995.25 - Quality management system.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... management system are those defined in this part. The quality management system must ensure that the... type approved conversion software is maintained by a third party, CEVAD shall ensure that no changes made to the conversion software render the type approval of the conversion software invalid, and shall...

  8. The Border Star 85 Survey: Toward an Archeology of Landscapes

    DTIC Science & Technology

    1988-12-12

    historic properties on that highly active military tire TRU method as implemented) were inadequate for installation. rendering determinations of National...Dofia Ana phase settlement, such required only minimal reporting sufficient to render Na- that one could speculate as to how and why variation among...this dependent upon precipitation. In normal or high rainfall sort are complicated, however, by factors that render them years there would be many

  9. Real-time rendering for multiview autostereoscopic displays

    NASA Astrophysics Data System (ADS)

    Berretty, R.-P. M.; Peters, F. J.; Volleberg, G. T. G.

    2006-02-01

    In video systems, the introduction of 3D video might be the next revolution after the introduction of color. Nowadays multiview autostereoscopic displays are in development. Such displays offer various views at the same time and the image content observed by the viewer depends upon his position with respect to the screen. His left eye receives a signal that is different from what his right eye gets; this gives, provided the signals have been properly processed, the impression of depth. The various views produced on the display differ with respect to their associated camera positions. A possible video format that is suited for rendering from different camera positions is the usual 2D format enriched with a depth related channel, e.g. for each pixel in the video not only its color is given, but also e.g. its distance to a camera. In this paper we provide a theoretical framework for the parallactic transformations which relates captured and observed depths to screen and image disparities. Moreover we present an efficient real time rendering algorithm that uses forward mapping to reduce aliasing artefacts and that deals properly with occlusions. For improved perceived resolution, we take the relative position of the color subpixels and the optics of the lenticular screen into account. Sophisticated filtering techniques results in high quality images.

  10. Direct Volume Rendering with Shading via Three-Dimensional Textures

    NASA Technical Reports Server (NTRS)

    VanGelder, Allen; Kim, Kwansik

    1996-01-01

    A new and easy-to-implement method for direct volume rendering that uses 3D texture maps for acceleration, and incorporates directional lighting, is described. The implementation, called Voltx, produces high-quality images at nearly interactive speeds on workstations with hardware support for three-dimensional texture maps. Previously reported methods did not incorporate a light model, and did not address issues of multiple texture maps for large volumes. Our research shows that these extensions impact performance by about a factor of ten. Voltx supports orthographic, perspective, and stereo views. This paper describes the theory and implementation of this technique, and compares it to the shear-warp factorization approach. A rectilinear data set is converted into a three-dimensional texture map containing color and opacity information. Quantized normal vectors and a lookup table provide efficiency. A new tesselation of the sphere is described, which serves as the basis for normal-vector quantization. A new gradient-based shading criterion is described, in which the gradient magnitude is interpreted in the context of the field-data value and the material classification parameters, and not in isolation. In the rendering phase, the texture map is applied to a stack of parallel planes, which effectively cut the texture into many slabs. The slabs are composited to form an image.

  11. Multi-viewpoint Image Array Virtual Viewpoint Rapid Generation Algorithm Based on Image Layering

    NASA Astrophysics Data System (ADS)

    Jiang, Lu; Piao, Yan

    2018-04-01

    The use of multi-view image array combined with virtual viewpoint generation technology to record 3D scene information in large scenes has become one of the key technologies for the development of integrated imaging. This paper presents a virtual viewpoint rendering method based on image layering algorithm. Firstly, the depth information of reference viewpoint image is quickly obtained. During this process, SAD is chosen as the similarity measure function. Then layer the reference image and calculate the parallax based on the depth information. Through the relative distance between the virtual viewpoint and the reference viewpoint, the image layers are weighted and panned. Finally the virtual viewpoint image is rendered layer by layer according to the distance between the image layers and the viewer. This method avoids the disadvantages of the algorithm DIBR, such as high-precision requirements of depth map and complex mapping operations. Experiments show that, this algorithm can achieve the synthesis of virtual viewpoints in any position within 2×2 viewpoints range, and the rendering speed is also very impressive. The average result proved that this method can get satisfactory image quality. The average SSIM value of the results relative to real viewpoint images can reaches 0.9525, the PSNR value can reaches 38.353 and the image histogram similarity can reaches 93.77%.

  12. A GPU-based mipmapping method for water surface visualization

    NASA Astrophysics Data System (ADS)

    Li, Hua; Quan, Wei; Xu, Chao; Wu, Yan

    2018-03-01

    Visualization of water surface is a hot topic in computer graphics. In this paper, we presented a fast method to generate wide range of water surface with good image quality both near and far from the viewpoint. This method utilized uniform mesh and Fractal Perlin noise to model water surface. Mipmapping technology was enforced to the surface textures, which adjust the resolution with respect to the distance from the viewpoint and reduce the computing cost. Lighting effect was computed based on shadow mapping technology, Snell's law and Fresnel term. The render pipeline utilizes a CPU-GPU shared memory structure, which improves the rendering efficiency. Experiment results show that our approach visualizes water surface with good image quality at real-time frame rates performance.

  13. Convolutional Sparse Coding for RGB+NIR Imaging.

    PubMed

    Hu, Xuemei; Heide, Felix; Dai, Qionghai; Wetzstein, Gordon

    2018-04-01

    Emerging sensor designs increasingly rely on novel color filter arrays (CFAs) to sample the incident spectrum in unconventional ways. In particular, capturing a near-infrared (NIR) channel along with conventional RGB color is an exciting new imaging modality. RGB+NIR sensing has broad applications in computational photography, such as low-light denoising, it has applications in computer vision, such as facial recognition and tracking, and it paves the way toward low-cost single-sensor RGB and depth imaging using structured illumination. However, cost-effective commercial CFAs suffer from severe spectral cross talk. This cross talk represents a major challenge in high-quality RGB+NIR imaging, rendering existing spatially multiplexed sensor designs impractical. In this work, we introduce a new approach to RGB+NIR image reconstruction using learned convolutional sparse priors. We demonstrate high-quality color and NIR imaging for challenging scenes, even including high-frequency structured NIR illumination. The effectiveness of the proposed method is validated on a large data set of experimental captures, and simulated benchmark results which demonstrate that this work achieves unprecedented reconstruction quality.

  14. Ultrafast Self-Crystallization of High-External-Quantum-Efficient Fluoride Phosphors for Warm White Light-Emitting Diodes.

    PubMed

    Zhou, Wenli; Fang, Mu-Huai; Lian, Shixun; Liu, Ru-Shi

    2018-05-30

    In this study, we used HF (as good solvent) to dissolve K 2 GeF 6 and K 2 MnF 6 and added ethanol (as poor solvent) to cause ultrafast self-crystallization of K 2 GeF 6 :Mn 4+ crystals, which had an unprecedentedly high external quantum efficiency that reached 73%. By using the red phosphor, we achieved a high-quality warm white light-emitting diode with color-rendering index of R a = 94, R9 = 95, luminous efficacy of 150 lm W -1 , and correlated color temperature at 3652 K. Furthermore, the good-poor solvent strategy can be used to fast synthesize other fluorides.

  15. Desorption of biocides from renders modified with acrylate and silicone.

    PubMed

    Styszko, Katarzyna; Bollmann, Ulla E; Wangler, Timothy P; Bester, Kai

    2014-01-01

    Biocides are used in the building industry to prevent algal, bacterial and fungal growth on polymericrenders and thus to protect buildings. However, these biocides are leached into the environment. To better understand this leaching, the sorption/desorption of biocides in polymeric renders was assessed. In this study the desorption constants of cybutryn, carbendazim, iodocarb, isoproturon, diuron, dichloro-N-octylisothiazolinone and tebuconazole towards acrylate and silicone based renders were assessed at different pH values. At pH 9.5 (porewater) the constants for an acrylate based render varied between 8 (isoproturon) and 9634 (iodocarb) and 3750 (dichloro-N-octylisothiazolinone), respectively. The values changed drastically with pH value. The results for the silicone based renders were in a similar range and usually the compounds with high sorption constants for one polymer also had high values for the other polymer. Comparison of the octanol water partitioning constants (Kow) with the render/water partitioning constants (Kd) revealed similarities, but no strong correlation. Adding higher amounts of polymer to the render material changed the equilibria for dichloro-N-octylisothiazolinone, tebuconazole, cybutryn, carbendazim but not for isoproturon and diuron. Copyright © 2013 Elsevier Ltd. All rights reserved.

  16. Effect of Reduced Tube Voltage on Diagnostic Accuracy of CT Colonography.

    PubMed

    Futamata, Yoshihiro; Koide, Tomoaki; Ihara, Riku

    2017-01-01

    The normal tube voltage in computed tomography colonography (CTC) is 120 kV. Some reports indicate that the use of a low tube voltage (lower than 120 kV) technique plays a significant role in reduction of radiation dose. However, to determine whether a lower tube voltage can reduce radiation dose without compromising diagnostic accuracy, an evaluation of images that are obtained while maintaining the volume CT dose index (CTDI vol ) is required. This study investigated the effect of reduced tube voltage in CTC, without modifying radiation dose (i.e. constant CTDI vol ), on image quality. Evaluation of image quality involved the shape of the noise power spectrum, surface profiling with volume rendering (VR), and receiver operating characteristic (ROC) analysis. The shape of the noise power spectrum obtained with a tube voltage of 80 kV and 100 kV was not similar to the one produced with a tube voltage of 120 kV. Moreover, a higher standard deviation was observed on volume-rendered images that were generated using the reduced tube voltages. In addition, ROC analysis revealed a statistically significant drop in diagnostic accuracy with reduced tube voltage, revealing that the modification of tube voltage affects volume-rendered images. The results of this study suggest that reduction of tube voltage in CTC, so as to reduce radiation dose, affects image quality and diagnostic accuracy.

  17. Repercussion of geometric and dynamic constraints on the 3D rendering quality in structurally adaptive multi-view shooting systems

    NASA Astrophysics Data System (ADS)

    Ali-Bey, Mohamed; Moughamir, Saïd; Manamanni, Noureddine

    2011-12-01

    in this paper a simulator of a multi-view shooting system with parallel optical axes and structurally variable configuration is proposed. The considered system is dedicated to the production of 3D contents for auto-stereoscopic visualization. The global shooting/viewing geometrical process, which is the kernel of this shooting system, is detailed and the different viewing, transformation and capture parameters are then defined. An appropriate perspective projection model is afterward derived to work out a simulator. At first, this latter is used to validate the global geometrical process in the case of a static configuration. Next, the simulator is used to show the limitations of a static configuration of this shooting system type by considering the case of dynamic scenes and then a dynamic scheme is achieved to allow a correct capture of this kind of scenes. After that, the effect of the different geometrical capture parameters on the 3D rendering quality and the necessity or not of their adaptation is studied. Finally, some dynamic effects and their repercussions on the 3D rendering quality of dynamic scenes are analyzed using error images and some image quantization tools. Simulation and experimental results are presented throughout this paper to illustrate the different studied points. Some conclusions and perspectives end the paper. [Figure not available: see fulltext.

  18. Space-time light field rendering.

    PubMed

    Wang, Huamin; Sun, Mingxuan; Yang, Ruigang

    2007-01-01

    In this paper, we propose a novel framework called space-time light field rendering, which allows continuous exploration of a dynamic scene in both space and time. Compared to existing light field capture/rendering systems, it offers the capability of using unsynchronized video inputs and the added freedom of controlling the visualization in the temporal domain, such as smooth slow motion and temporal integration. In order to synthesize novel views from any viewpoint at any time instant, we develop a two-stage rendering algorithm. We first interpolate in the temporal domain to generate globally synchronized images using a robust spatial-temporal image registration algorithm followed by edge-preserving image morphing. We then interpolate these software-synchronized images in the spatial domain to synthesize the final view. In addition, we introduce a very accurate and robust algorithm to estimate subframe temporal offsets among input video sequences. Experimental results from unsynchronized videos with or without time stamps show that our approach is capable of maintaining photorealistic quality from a variety of real scenes.

  19. An experiment on the color rendering of different light sources

    NASA Astrophysics Data System (ADS)

    Fumagalli, Simonetta; Bonanomi, Cristian; Rizzi, Alessandro

    2013-02-01

    The color rendering index (CRI) of a light source attempts to measure how much the color appearance of objects is preserved when they are illuminated by the given light source. This problem is of great importance for various industrial and scientific fields, such as lighting architecture, design, ergonomics, etc. Usually a light source is specified through the Correlated Color Temperature or CCT. However two (or more) light sources with the same CCT but different spectral power distribution can exist. Therefore color samples viewed under two light sources with equal CCTs can appear different. Hence, the need for a method to assess the quality of a given illuminant in relation to color. Recently CRI has had a renewed interest because of the new LED-based lighting systems. They usually have a color rendering index rather low, but good preservation of color appearance and a pleasant visual appearance (visual appeal). Various attempts to develop a new color rendering index have been done so far, but still research is working for a better one. This article describes an experiment performed by human observers concerning the appearance preservation of color under some light sources, comparing it with a range of available color rendering indices.

  20. Painting with polygons: a procedural watercolor engine.

    PubMed

    DiVerdi, Stephen; Krishnaswamy, Aravind; Měch, Radomír; Ito, Daichi

    2013-05-01

    Existing natural media painting simulations have produced high-quality results, but have required powerful compute hardware and have been limited to screen resolutions. Digital artists would like to be able to use watercolor-like painting tools, but at print resolutions and on lower end hardware such as laptops or even slates. We present a procedural algorithm for generating watercolor-like dynamic paint behaviors in a lightweight manner. Our goal is not to exactly duplicate watercolor painting, but to create a range of dynamic behaviors that allow users to achieve a similar style of process and result, while at the same time having a unique character of its own. Our stroke representation is vector based, allowing for rendering at arbitrary resolutions, and our procedural pigment advection algorithm is fast enough to support painting on slate devices. We demonstrate our technique in a commercially available slate application used by professional artists. Finally, we present a detailed analysis of the different vector-rendering technologies available.

  1. [Computer-assisted operational planning for pediatric abdominal surgery. 3D-visualized MRI with volume rendering].

    PubMed

    Günther, P; Tröger, J; Holland-Cunz, S; Waag, K L; Schenk, J P

    2006-08-01

    Exact surgical planning is necessary for complex operations of pathological changes in anatomical structures of the pediatric abdomen. 3D visualization and computer-assisted operational planning based on CT data are being increasingly used for difficult operations in adults. To minimize radiation exposure and for better soft tissue contrast, sonography and MRI are the preferred diagnostic methods in pediatric patients. Because of manifold difficulties 3D visualization of these MRI data has not been realized so far, even though the field of embryonal malformations and tumors could benefit from this.A newly developed and modified raycasting-based powerful 3D volume rendering software (VG Studio Max 1.2) for the planning of pediatric abdominal surgery is presented. With the help of specifically developed algorithms, a useful surgical planning system is demonstrated. Thanks to the easy handling and high-quality visualization with enormous gain of information, the presented system is now an established part of routine surgical planning.

  2. The Planck's character and temperature of visible radiation of a pulse-periodic discharge in cesium vapor

    NASA Astrophysics Data System (ADS)

    Baksht, F. G.; Lapshin, V. F.

    2016-02-01

    The radiation spectrum of pulse-periodic discharge in cesium vapor has been simulated in the framework of a two-temperature multifluid radiative gasdynamic model. It is established that, at a broad range of vapor pressures, the discharge spectrum exhibits a Planck character in a significant part of the visible spectral interval, which accounts for the high quality of color rendering in the discharge radiation. The relation between color temperature T c and electron temperature T 0 on the discharge axis is determined by radial optical thickness τ R of the plasma column: T c ≈ T 0 at τ R ≈ 1, T c < T 0 at τ R < 1, and T c > T 0 at τ R > 1. As the vapor pressure increases from 83 to 1087 Torr, color rendering index Ra of the discharge radiation changes from 95 to 98 and the color temperature grows from 3600 to 5200 K.

  3. An Automated Blur Detection Method for Histological Whole Slide Imaging

    PubMed Central

    Moles Lopez, Xavier; D'Andrea, Etienne; Barbot, Paul; Bridoux, Anne-Sophie; Rorive, Sandrine; Salmon, Isabelle; Debeir, Olivier; Decaestecker, Christine

    2013-01-01

    Whole slide scanners are novel devices that enable high-resolution imaging of an entire histological slide. Furthermore, the imaging is achieved in only a few minutes, which enables image rendering of large-scale studies involving multiple immunohistochemistry biomarkers. Although whole slide imaging has improved considerably, locally poor focusing causes blurred regions of the image. These artifacts may strongly affect the quality of subsequent analyses, making a slide review process mandatory. This tedious and time-consuming task requires the scanner operator to carefully assess the virtual slide and to manually select new focus points. We propose a statistical learning method that provides early image quality feedback and automatically identifies regions of the image that require additional focus points. PMID:24349343

  4. A 3D ultrasound scanner: real time filtering and rendering algorithms.

    PubMed

    Cifarelli, D; Ruggiero, C; Brusacà, M; Mazzarella, M

    1997-01-01

    The work described here has been carried out within a collaborative project between DIST and ESAOTE BIOMEDICA aiming to set up a new ultrasonic scanner performing 3D reconstruction. A system is being set up to process and display 3D ultrasonic data in a fast, economical and user friendly way to help the physician during diagnosis. A comparison is presented among several algorithms for digital filtering, data segmentation and rendering for real time, PC based, three-dimensional reconstruction from B-mode ultrasonic biomedical images. Several algorithms for digital filtering have been compared as relates to processing time and to final image quality. Three-dimensional data segmentation techniques and rendering has been carried out with special reference to user friendly features for foreseeable applications and reconstruction speed.

  5. TransCut: interactive rendering of translucent cutouts.

    PubMed

    Li, Dongping; Sun, Xin; Ren, Zhong; Lin, Stephen; Tong, Yiying; Guo, Baining; Zhou, Kun

    2013-03-01

    We present TransCut, a technique for interactive rendering of translucent objects undergoing fracturing and cutting operations. As the object is fractured or cut open, the user can directly examine and intuitively understand the complex translucent interior, as well as edit material properties through painting on cross sections and recombining the broken pieces—all with immediate and realistic visual feedback. This new mode of interaction with translucent volumes is made possible with two technical contributions. The first is a novel solver for the diffusion equation (DE) over a tetrahedral mesh that produces high-quality results comparable to the state-of-art finite element method (FEM) of Arbree et al. but at substantially higher speeds. This accuracy and efficiency is obtained by computing the discrete divergences of the diffusion equation and constructing the DE matrix using analytic formulas derived for linear finite elements. The second contribution is a multiresolution algorithm to significantly accelerate our DE solver while adapting to the frequent changes in topological structure of dynamic objects. The entire multiresolution DE solver is highly parallel and easily implemented on the GPU. We believe TransCut provides a novel visual effect for heterogeneous translucent objects undergoing fracturing and cutting operations.

  6. Through the Patients’ Eyes: The Experience of End-Stage Renal Disease Patients Concerning the Provided Nursing Care

    PubMed Central

    Stavropoulou, Areti; Grammatikopoulou, Maria G.; Rovithis, Michail; Kyriakidi, Konstantina; Pylarinou, Andriani; Markaki, Anastasia G.

    2017-01-01

    Chronic kidney disease is a condition that affects both the physical and mental abilities of patients. Nursing care is of pivotal importance, in particular when end-stage renal disease (ESRD) patients are concerned, since the quality of the provided care may severely influence the patient’s quality of life. This is why it is important to explore patient experiences concerning the rendered care. However, limited up-to-date studies have addressed this issue. The aim of the present study was to stress the experiences of ESRD patients concerning the provided nursing care in the hemodialysis unit at the University Hospital in Heraklion, Crete. A qualitative methodological approach was used, based on the principles of phenomenological epistemology. Semi-structured interviews were conducted, and open-ended questions were applied to record how patients experienced the rendered care during dialysis. The recorded data were analyzed via qualitative content analysis, which revealed three main themes: ‘Physical Care’, ‘Psychological Support’ and ‘Education’. Patients’ views were conceptualized into sub-themes within each main theme. The interviews revealed the varied and distinct views of ESRD patients, indicating that the rendered care should be individualized. PMID:28754014

  7. High light-quality OLEDs with a wet-processed single emissive layer.

    PubMed

    Singh, Meenu; Jou, Jwo-Huei; Sahoo, Snehasis; S S, Sujith; He, Zhe-Kai; Krucaite, Gintare; Grigalevicius, Saulius; Wang, Ching-Wu

    2018-05-08

    High light-quality and low color temperature are crucial to justify a comfortable healthy illumination. Wet-process enables electronic devices cost-effective fabrication feasibility. We present herein low color temperature, blue-emission hazards free organic light emitting diodes (OLEDs) with very-high light-quality indices, that with a single emissive layer spin-coated with multiple blackbody-radiation complementary dyes, namely deep-red, yellow, green and sky-blue. Specifically, an OLED with a 1,854 K color temperature showed a color rendering index (CRI) of 90 and a spectrum resemblance index (SRI) of 88, whose melatonin suppression sensitivity is only 3% relative to a reference blue light of 480 nm. Its maximum retina permissible exposure limit is 3,454 seconds at 100 lx, 11, 10 and 6 times longer and safer than the counterparts of compact fluorescent lamp (5,920 K), light emitting diode (5,500 K) and OLED (5,000 K). By incorporating a co-host, tris(4-carbazoyl-9-ylphenyl)amine (TCTA), the resulting OLED showed a current efficiency of 24.9 cd/A and an external quantum efficiency of 24.5% at 100 cd/m 2 . It exhibited ultra-high light quality with a CRI of 93 and an SRI of 92. These prove blue-hazard free, high quality and healthy OLED to be fabrication feasible via the easy-to-apply wet-processed single emissive layer with multiple emitters.

  8. Aggregate resource availability in the conterminous United States, including suggestions for addressing shortages, quality, and environmental concerns

    USGS Publications Warehouse

    Langer, William H.

    2011-01-01

    Although potential sources of aggregate are widespread throughout the United States, many sources may not meet certain physical property requirements, such as soundness, hardness, strength, porosity, and specific gravity, or they may contain contaminants or deleterious materials that render them unusable. Encroachment by conflicting land uses, permitting considerations, environmental issues, and societal pressures can prevent or limit development of otherwise suitable aggregate. The use of sustainable aggregate resource management can help ensure an economically viable supply of aggregate. Sustainable aggregate resource management techniques that have successfully been used include (1) protecting potential resources from encroachment; (2) using marginal-quality local aggregate for applications that do not demand a high-quality resource; (3) using substitute materials such as clinker, scoria, and recycled asphalt and concrete; and (4) using rail and water to transport aggregates from remote sources.

  9. An HTML5-Based Pure Website Solution for Rapidly Viewing and Processing Large-Scale 3D Medical Volume Reconstruction on Mobile Internet

    PubMed Central

    Chen, Xin; Zhang, Ye; Zhang, Jingna; Li, Ying; Mo, Xuemei; Chen, Wei

    2017-01-01

    This study aimed to propose a pure web-based solution to serve users to access large-scale 3D medical volume anywhere with good user experience and complete details. A novel solution of the Master-Slave interaction mode was proposed, which absorbed advantages of remote volume rendering and surface rendering. On server side, we designed a message-responding mechanism to listen to interactive requests from clients (Slave model) and to guide Master volume rendering. On client side, we used HTML5 to normalize user-interactive behaviors on Slave model and enhance the accuracy of behavior request and user-friendly experience. The results showed that more than four independent tasks (each with a data size of 249.4 MB) could be simultaneously carried out with a 100-KBps client bandwidth (extreme test); the first loading time was <12 s, and the response time of each behavior request for final high quality image remained at approximately 1 s, while the peak value of bandwidth was <50-KBps. Meanwhile, the FPS value for each client was ≥40. This solution could serve the users by rapidly accessing the application via one URL hyperlink without special software and hardware requirement in a diversified network environment and could be easily integrated into other telemedical systems seamlessly. PMID:28638406

  10. An HTML5-Based Pure Website Solution for Rapidly Viewing and Processing Large-Scale 3D Medical Volume Reconstruction on Mobile Internet.

    PubMed

    Qiao, Liang; Chen, Xin; Zhang, Ye; Zhang, Jingna; Wu, Yi; Li, Ying; Mo, Xuemei; Chen, Wei; Xie, Bing; Qiu, Mingguo

    2017-01-01

    This study aimed to propose a pure web-based solution to serve users to access large-scale 3D medical volume anywhere with good user experience and complete details. A novel solution of the Master-Slave interaction mode was proposed, which absorbed advantages of remote volume rendering and surface rendering. On server side, we designed a message-responding mechanism to listen to interactive requests from clients ( Slave model) and to guide Master volume rendering. On client side, we used HTML5 to normalize user-interactive behaviors on Slave model and enhance the accuracy of behavior request and user-friendly experience. The results showed that more than four independent tasks (each with a data size of 249.4 MB) could be simultaneously carried out with a 100-KBps client bandwidth (extreme test); the first loading time was <12 s, and the response time of each behavior request for final high quality image remained at approximately 1 s, while the peak value of bandwidth was <50-KBps. Meanwhile, the FPS value for each client was ≥40. This solution could serve the users by rapidly accessing the application via one URL hyperlink without special software and hardware requirement in a diversified network environment and could be easily integrated into other telemedical systems seamlessly.

  11. Distributed volume rendering and stereoscopic display for radiotherapy treatment planning

    NASA Astrophysics Data System (ADS)

    Hancock, David J.

    The thesis describes attempts to use direct volume rendering techniques to produce visualisations useful in the preparation of radiotherapy treatment plans. The selected algorithms allow the generation of data-rich images which can be used to assist the radiologist in comprehending complicated three-dimensional phenomena. The treatment plans are formulated using a three dimensional model which combines patient data acquired from CT scanning and the results of a simulation of the radiation delivery. Multiple intersecting beams with shaped profiles are used and the region of intersection is designed to closely match the position and shape of the targeted tumour region. The proposed treatment must be evaluated as to how well the target region is enveloped by the high dose occurring where the beams intersect, and also as to whether the treatment is likely to expose non-tumour regions to unacceptably high levels of radiation. Conventionally the plans are reviewed by examining CT images overlaid with contours indicating dose levels. Volume visualisation offers a possible saving in time by presenting the data in three dimensional form thereby removing the need to examine a set of slices. The most difficult aspect is to depict unambiguously the relationships between the different data. For example, if a particular beam configuration results in unintended irradiation of a sensitive organ, then it is essential to ensure that this is clearly displayed, and that the 3D relationships between the beams and other data can be readily perceived in order to decide how to correct the problem. The user interface has been designed to present a unified view of the different techniques available for identifying features of interest within the data. The system differs from those previously reported in that complex visualisations can be constructed incrementally, and several different combinations of features can be viewed simultaneously. To maximise the quantity of relevant data presented in a single view, large regions of the data are rendered very transparently. This is done to ensure that interesting features buried deep within the data are visible from any viewpoint. Rendering images with high degrees of transparency raises a number of problems, primarily the drop in quality of depth cues in the image, but also the increase in computational requirements over surface-based visualisations. One solution to the increase in image generation times is the use of parallel architectures, which are an attractive platform for large visualisation tasks such as this. A parallel implementation of the direct volume rendering algorithm is described and its performance is evaluated. Several issues must be addressed in implementing an interactive rendering system in a distributed computing environment: principally overcoming the latency and limited bandwidth of the typical network connection. This thesis reports a pipelining strategy developed to improve the level of interactivity in such situations. Stereoscopic image presentation offers a method to offset the reduction in clarity of the depth information in the transparent images. The results of an investigation into the effectiveness of stereoscopic display as an aid to perception in highly transparent images are presented. Subjects were shown scenes of a synthetic test data set in which conventional depth cues were very limited. The experiments were designed to discover what effect stereoscopic viewing of the transparent, volume rendered images had on user's depth perception.

  12. 3D printing functional materials and devices (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    McAlpine, Michael C.

    2017-05-01

    The development of methods for interfacing high performance functional devices with biology could impact regenerative medicine, smart prosthetics, and human-machine interfaces. Indeed, the ability to three-dimensionally interweave biological and functional materials could enable the creation of devices possessing unique geometries, properties, and functionalities. Yet, most high quality functional materials are two dimensional, hard and brittle, and require high crystallization temperatures for maximal performance. These properties render the corresponding devices incompatible with biology, which is three-dimensional, soft, stretchable, and temperature sensitive. We overcome these dichotomies by: 1) using 3D printing and scanning for customized, interwoven, anatomically accurate device architectures; 2) employing nanotechnology as an enabling route for overcoming mechanical discrepancies while retaining high performance; and 3) 3D printing a range of soft and nanoscale materials to enable the integration of a diverse palette of high quality functional nanomaterials with biology. 3D printing is a multi-scale platform, allowing for the incorporation of functional nanoscale inks, the printing of microscale features, and ultimately the creation of macroscale devices. This three-dimensional blending of functional materials and `living' platforms may enable next-generation 3D printed devices.

  13. Assessing the Performance of LED-Based Flashlights Available in the Kenyan Off-Grid Lighting Market

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tracy, Jennifer; Jacobson, Arne; Mills, Evan

    Low cost rechargeable flashlights that use LED technology are increasingly available in African markets. While LED technology holds promise to provide affordable, high quality lighting services, the widespread dissemination of low quality products may make it difficult to realize this potential. This study includes performance results for three brands of commonly available LED flashlights that were purchased in Kenya in 2009. The performance of the flashlights was evaluated by testing five units for each of the three brands. The tests included measurements of battery capacity, time required to charge the battery, maximum illuminance at one meter, operation time and lux-hoursmore » from a fully charged battery, light distribution, and color rendering. All flashlights tested performed well below the manufacturers? rated specifications; the measured battery capacity was 30-50percent lower than the rated capacity and the time required to fully charge the battery was 6-25percent greater than the rated time requirement. Our analysis further shows that within each brand there is considerable variability in each performance indicator. The five samples within a single brand varied from each other by as much as 22percent for battery capacity measurements, 3.6percent for the number of hours required for a full charge, 23percent for maximum initial lux, 38percent for run time, 11percent for light distribution and by as much as 200percent for color rendering. Results obtained are useful for creating a framework for quality assurance of off-grid LED products and will be valuable for informing consumers, distributors and product manufacturers about product performance.« less

  14. Wireless live streaming video of laparoscopic surgery: a bandwidth analysis for handheld computers.

    PubMed

    Gandsas, Alex; McIntire, Katherine; George, Ivan M; Witzke, Wayne; Hoskins, James D; Park, Adrian

    2002-01-01

    Over the last six years, streaming media has emerged as a powerful tool for delivering multimedia content over networks. Concurrently, wireless technology has evolved, freeing users from desktop boundaries and wired infrastructures. At the University of Kentucky Medical Center, we have integrated these technologies to develop a system that can wirelessly transmit live surgery from the operating room to a handheld computer. This study establishes the feasibility of using our system to view surgeries and describes the effect of bandwidth on image quality. A live laparoscopic ventral hernia repair was transmitted to a single handheld computer using five encoding speeds at a constant frame rate, and the quality of the resulting streaming images was evaluated. No video images were rendered when video data were encoded at 28.8 kilobytes per second (Kbps), the slowest encoding bitrate studied. The highest quality images were rendered at encoding speeds greater than or equal to 150 Kbps. Of note, a 15 second transmission delay was experienced using all four encoding schemes that rendered video images. We believe that the wireless transmission of streaming video to handheld computers has tremendous potential to enhance surgical education. For medical students and residents, the ability to view live surgeries, lectures, courses and seminars on handheld computers means a larger number of learning opportunities. In addition, we envision that wireless enabled devices may be used to telemonitor surgical procedures. However, bandwidth availability and streaming delay are major issues that must be addressed before wireless telementoring becomes a reality.

  15. Characteristic analysis and simulation for polysilicon comb micro-accelerometer

    NASA Astrophysics Data System (ADS)

    Liu, Fengli; Hao, Yongping

    2008-10-01

    High force update rate is a key factor for achieving high performance haptic rendering, which imposes a stringent real time requirement upon the execution environment of the haptic system. This requirement confines the haptic system to simplified environment for reducing the computation cost of haptic rendering algorithms. In this paper, we present a novel "hyper-threading" architecture consisting of several threads for haptic rendering. The high force update rate is achieved with relatively large computation time interval for each haptic loop. The proposed method was testified and proved to be effective with experiments on virtual wall prototype haptic system via Delta Haptic Device.

  16. Rapid Decimation for Direct Volume Rendering

    NASA Technical Reports Server (NTRS)

    Gibbs, Jonathan; VanGelder, Allen; Verma, Vivek; Wilhelms, Jane

    1997-01-01

    An approach for eliminating unnecessary portions of a volume when producing a direct volume rendering is described. This reduction in volume size sacrifices some image quality in the interest of rendering speed. Since volume visualization is often used as an exploratory visualization technique, it is important to reduce rendering times, so the user can effectively explore the volume. The methods presented can speed up rendering by factors of 2 to 3 with minor image degradation. A family of decimation algorithms to reduce the number of primitives in the volume without altering the volume's grid in any way is introduced. This allows the decimation to be computed rapidly, making it easier to change decimation levels on the fly. Further, because very little extra space is required, this method is suitable for the very large volumes that are becoming common. The method is also grid-independent, so it is suitable for multiple overlapping curvilinear and unstructured, as well as regular, grids. The decimation process can proceed automatically, or can be guided by the user so that important regions of the volume are decimated less than unimportant regions. A formal error measure is described based on a three-dimensional analog of the Radon transform. Decimation methods are evaluated based on this metric and on direct comparison with reference images.

  17. Fast mapping algorithm of lighting spectrum and GPS coordinates for a large area

    NASA Astrophysics Data System (ADS)

    Lin, Chih-Wei; Hsu, Ke-Fang; Hwang, Jung-Min

    2016-09-01

    In this study, we propose a fast rebuild technology for evaluating light quality in large areas. Outdoor light quality, which is measured by illuminance uniformity and the color rendering index, is difficult to conform after improvement. We develop an algorithm for a lighting quality mapping system and coordinates using a micro spectrometer and GPS tracker integrated with a quadcopter or unmanned aerial vehicle. After cruising at a constant altitude, lighting quality data is transmitted and immediately mapped to evaluate the light quality in a large area.

  18. Determination of diffusion coefficients of biocides on their passage through organic resin-based renders.

    PubMed

    Styszko, Katarzyna; Kupiec, Krzysztof

    2016-10-01

    In this study the diffusion coefficients of isoproturon, diuron and cybutryn in acrylate and silicone resin-based renders were determined. The diffusion coefficients were determined using measuring concentrations of biocides in the liquid phase after being in contact with renders for specific time intervals. The mathematical solution of the transient diffusion equation for an infinite plate contacted on one side with a limited volume of water was used to calculate the diffusion coefficient. The diffusion coefficients through the acrylate render were 8.10·10(-9) m(2) s(-1) for isoproturon, 1.96·10(-9) m(2) s(-1) for diuron and 1.53·10(-9) m(2) s(-1) for cybutryn. The results for the silicone render were lower by one order of magnitude. The compounds with a high diffusion coefficient for one polymer had likewise high values for the other polymer. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. LS-SNP/PDB: annotated non-synonymous SNPs mapped to Protein Data Bank structures.

    PubMed

    Ryan, Michael; Diekhans, Mark; Lien, Stephanie; Liu, Yun; Karchin, Rachel

    2009-06-01

    LS-SNP/PDB is a new WWW resource for genome-wide annotation of human non-synonymous (amino acid changing) SNPs. It serves high-quality protein graphics rendered with UCSF Chimera molecular visualization software. The system is kept up-to-date by an automated, high-throughput build pipeline that systematically maps human nsSNPs onto Protein Data Bank structures and annotates several biologically relevant features. LS-SNP/PDB is available at (http://ls-snp.icm.jhu.edu/ls-snp-pdb) and via links from protein data bank (PDB) biology and chemistry tabs, UCSC Genome Browser Gene Details and SNP Details pages and PharmGKB Gene Variants Downloads/Cross-References pages.

  20. Method to optimize patch size based on spatial frequency response in image rendering of the light field

    NASA Astrophysics Data System (ADS)

    Zhang, Wei; Wang, Yanan; Zhu, Zhenhao; Su, Jinhui

    2018-05-01

    A focused plenoptic camera can effectively transform angular and spatial information to yield a refocused rendered image with high resolution. However, choosing a proper patch size poses a significant problem for the image-rendering algorithm. By using a spatial frequency response measurement, a method to obtain a suitable patch size is presented. By evaluating the spatial frequency response curves, the optimized patch size can be obtained quickly and easily. Moreover, the range of depth over which images can be rendered without artifacts can be estimated. Experiments show that the results of the image rendered based on frequency response measurement are in accordance with the theoretical calculation, which indicates that this is an effective way to determine the patch size. This study may provide support to light-field image rendering.

  1. Distributed rendering for multiview parallax displays

    NASA Astrophysics Data System (ADS)

    Annen, T.; Matusik, W.; Pfister, H.; Seidel, H.-P.; Zwicker, M.

    2006-02-01

    3D display technology holds great promise for the future of television, virtual reality, entertainment, and visualization. Multiview parallax displays deliver stereoscopic views without glasses to arbitrary positions within the viewing zone. These systems must include a high-performance and scalable 3D rendering subsystem in order to generate multiple views at real-time frame rates. This paper describes a distributed rendering system for large-scale multiview parallax displays built with a network of PCs, commodity graphics accelerators, multiple projectors, and multiview screens. The main challenge is to render various perspective views of the scene and assign rendering tasks effectively. In this paper we investigate two different approaches: Optical multiplexing for lenticular screens and software multiplexing for parallax-barrier displays. We describe the construction of large-scale multi-projector 3D display systems using lenticular and parallax-barrier technology. We have developed different distributed rendering algorithms using the Chromium stream-processing framework and evaluate the trade-offs and performance bottlenecks. Our results show that Chromium is well suited for interactive rendering on multiview parallax displays.

  2. Live small-animal X-ray lung velocimetry and lung micro-tomography at the Australian Synchrotron Imaging and Medical Beamline.

    PubMed

    Murrie, Rhiannon P; Morgan, Kaye S; Maksimenko, Anton; Fouras, Andreas; Paganin, David M; Hall, Chris; Siu, Karen K W; Parsons, David W; Donnelley, Martin

    2015-07-01

    The high flux and coherence produced at long synchrotron beamlines makes them well suited to performing phase-contrast X-ray imaging of the airways and lungs of live small animals. Here, findings of the first live-animal imaging on the Imaging and Medical Beamline (IMBL) at the Australian Synchrotron are reported, demonstrating the feasibility of performing dynamic lung motion measurement and high-resolution micro-tomography. Live anaesthetized mice were imaged using 30 keV monochromatic X-rays at a range of sample-to-detector propagation distances. A frame rate of 100 frames s(-1) allowed lung motion to be determined using X-ray velocimetry. A separate group of humanely killed mice and rats were imaged by computed tomography at high resolution. Images were reconstructed and rendered to demonstrate the capacity for detailed, user-directed display of relevant respiratory anatomy. The ability to perform X-ray velocimetry on live mice at the IMBL was successfully demonstrated. High-quality renderings of the head and lungs visualized both large structures and fine details of the nasal and respiratory anatomy. The effect of sample-to-detector propagation distance on contrast and resolution was also investigated, demonstrating that soft tissue contrast increases, and resolution decreases, with increasing propagation distance. This new capability to perform live-animal imaging and high-resolution micro-tomography at the IMBL enhances the capability for investigation of respiratory diseases and the acceleration of treatment development in Australia.

  3. Model-Based Referenceless Quality Metric of 3D Synthesized Images Using Local Image Description.

    PubMed

    Gu, Ke; Jakhetiya, Vinit; Qiao, Jun-Fei; Li, Xiaoli; Lin, Weisi; Thalmann, Daniel

    2017-07-28

    New challenges have been brought out along with the emerging of 3D-related technologies such as virtual reality (VR), augmented reality (AR), and mixed reality (MR). Free viewpoint video (FVV), due to its applications in remote surveillance, remote education, etc, based on the flexible selection of direction and viewpoint, has been perceived as the development direction of next-generation video technologies and has drawn a wide range of researchers' attention. Since FVV images are synthesized via a depth image-based rendering (DIBR) procedure in the "blind" environment (without reference images), a reliable real-time blind quality evaluation and monitoring system is urgently required. But existing assessment metrics do not render human judgments faithfully mainly because geometric distortions are generated by DIBR. To this end, this paper proposes a novel referenceless quality metric of DIBR-synthesized images using the autoregression (AR)-based local image description. It was found that, after the AR prediction, the reconstructed error between a DIBR-synthesized image and its AR-predicted image can accurately capture the geometry distortion. The visual saliency is then leveraged to modify the proposed blind quality metric to a sizable margin. Experiments validate the superiority of our no-reference quality method as compared with prevailing full-, reduced- and no-reference models.

  4. Windows Program For Driving The TDU-850 Printer

    NASA Technical Reports Server (NTRS)

    Parrish, Brett T.

    1995-01-01

    Program provides WYSIWYG compatibility between video display and printout. PDW is Microsoft Windows printer-driver computer program for use with Raytheon TDU-850 printer. Provides previously unavailable linkage between printer and IBM PC-compatible computers running Microsoft Windows. Enhances capabilities of Raytheon TDU-850 hardcopier by emulating all textual and graphical features normally supported by laser/ink-jet printers and makes printer compatible with any Microsoft Windows application. Also provides capabilities not found in laser/ink-jet printer drivers by providing certain Windows applications with ability to render high quality, true gray-scale photographic hardcopy on TDU-850. Written in C language.

  5. Processing study of injection molding of silicon nitride for engine applications

    NASA Technical Reports Server (NTRS)

    Rorabaugh, M. E.; Yeh, H. C.

    1985-01-01

    The high hardness of silicon nitride, which is currently under consideration as a structural material for such hot engine components as turbine blades, renders machining of the material prohibitively costly; the near net shape forming technique of injection molding is accordingly favored as a means for component fabrication. Attention is presently given to the relationships between injection molding processing parameters and the resulting microstructural and mechanical properties of the resulting engine parts. An experimental program has been conducted under NASA sponsorship which tests the quality of injection molded bars of silicon nitride at various stages of processing.

  6. Colour computer-generated holography for point clouds utilizing the Phong illumination model.

    PubMed

    Symeonidou, Athanasia; Blinder, David; Schelkens, Peter

    2018-04-16

    A technique integrating the bidirectional reflectance distribution function (BRDF) is proposed to generate realistic high-quality colour computer-generated holograms (CGHs). We build on prior work, namely a fast computer-generated holography method for point clouds that handles occlusions. We extend the method by integrating the Phong illumination model so that the properties of the objects' surfaces are taken into account to achieve natural light phenomena such as reflections and shadows. Our experiments show that rendering holograms with the proposed algorithm provides realistic looking objects without any noteworthy increase to the computational cost.

  7. Processing-in-Memory Enabled Graphics Processors for 3D Rendering

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xie, Chenhao; Song, Shuaiwen; Wang, Jing

    2017-02-06

    The performance of 3D rendering of Graphics Processing Unit that convents 3D vector stream into 2D frame with 3D image effects significantly impact users’ gaming experience on modern computer systems. Due to the high texture throughput in 3D rendering, main memory bandwidth becomes a critical obstacle for improving the overall rendering performance. 3D stacked memory systems such as Hybrid Memory Cube (HMC) provide opportunities to significantly overcome the memory wall by directly connecting logic controllers to DRAM dies. Based on the observation that texel fetches significantly impact off-chip memory traffic, we propose two architectural designs to enable Processing-In-Memory based GPUmore » for efficient 3D rendering.« less

  8. A unified framework for building high performance DVEs

    NASA Astrophysics Data System (ADS)

    Lei, Kaibin; Ma, Zhixia; Xiong, Hua

    2011-10-01

    A unified framework for integrating PC cluster based parallel rendering with distributed virtual environments (DVEs) is presented in this paper. While various scene graphs have been proposed in DVEs, it is difficult to enable collaboration of different scene graphs. This paper proposes a technique for non-distributed scene graphs with the capability of object and event distribution. With the increase of graphics data, DVEs require more powerful rendering ability. But general scene graphs are inefficient in parallel rendering. The paper also proposes a technique to connect a DVE and a PC cluster based parallel rendering environment. A distributed multi-player video game is developed to show the interaction of different scene graphs and the parallel rendering performance on a large tiled display wall.

  9. 16 CFR 1610.39 - Shipments under section 11(c) of the Act.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... duly authorized agent so as to render them not so highly flammable under the provisions of section 4 of.... 1610.39 Section 1610.39 Commercial Practices CONSUMER PRODUCT SAFETY COMMISSION FLAMMABLE FABRICS ACT... processing to render them not so highly flammable as to be dangerous when worn by individuals, shall contain...

  10. 16 CFR 1610.39 - Shipments under section 11(c) of the Act.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... duly authorized agent so as to render them not so highly flammable under the provisions of section 4 of.... 1610.39 Section 1610.39 Commercial Practices CONSUMER PRODUCT SAFETY COMMISSION FLAMMABLE FABRICS ACT... processing to render them not so highly flammable as to be dangerous when worn by individuals, shall contain...

  11. 16 CFR 1610.39 - Shipments under section 11(c) of the Act.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... duly authorized agent so as to render them not so highly flammable under the provisions of section 4 of.... 1610.39 Section 1610.39 Commercial Practices CONSUMER PRODUCT SAFETY COMMISSION FLAMMABLE FABRICS ACT... processing to render them not so highly flammable as to be dangerous when worn by individuals, shall contain...

  12. 16 CFR 1610.39 - Shipments under section 11(c) of the Act.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... duly authorized agent so as to render them not so highly flammable under the provisions of section 4 of.... 1610.39 Section 1610.39 Commercial Practices CONSUMER PRODUCT SAFETY COMMISSION FLAMMABLE FABRICS ACT... processing to render them not so highly flammable as to be dangerous when worn by individuals, shall contain...

  13. HVS: an image-based approach for constructing virtual environments

    NASA Astrophysics Data System (ADS)

    Zhang, Maojun; Zhong, Li; Sun, Lifeng; Li, Yunhao

    1998-09-01

    Virtual Reality Systems can construct virtual environment which provide an interactive walkthrough experience. Traditionally, walkthrough is performed by modeling and rendering 3D computer graphics in real-time. Despite the rapid advance of computer graphics technique, the rendering engine usually places a limit on scene complexity and rendering quality. This paper presents a approach which uses the real-world image or synthesized image to comprise a virtual environment. The real-world image or synthesized image can be recorded by camera, or synthesized by off-line multispectral image processing for Landsat TM (Thematic Mapper) Imagery and SPOT HRV imagery. They are digitally warped on-the-fly to simulate walking forward/backward, to left/right and 360-degree watching around. We have developed a system HVS (Hyper Video System) based on these principles. HVS improves upon QuickTime VR and Surround Video in the walking forward/backward.

  14. A Parallel Rendering Algorithm for MIMD Architectures

    NASA Technical Reports Server (NTRS)

    Crockett, Thomas W.; Orloff, Tobias

    1991-01-01

    Applications such as animation and scientific visualization demand high performance rendering of complex three dimensional scenes. To deliver the necessary rendering rates, highly parallel hardware architectures are required. The challenge is then to design algorithms and software which effectively use the hardware parallelism. A rendering algorithm targeted to distributed memory MIMD architectures is described. For maximum performance, the algorithm exploits both object-level and pixel-level parallelism. The behavior of the algorithm is examined both analytically and experimentally. Its performance for large numbers of processors is found to be limited primarily by communication overheads. An experimental implementation for the Intel iPSC/860 shows increasing performance from 1 to 128 processors across a wide range of scene complexities. It is shown that minimal modifications to the algorithm will adapt it for use on shared memory architectures as well.

  15. Three-dimensional structure of the curved mixing layer using image reconstruction and volume rendering

    NASA Astrophysics Data System (ADS)

    Karasso, P. S.; Mungal, M. G.

    1991-05-01

    This study investigates the structure and mixing of the two-dimensional turbulent mixing layer when subjected to longitudinal streamwise curvature. The straight layer is now well known to be dominated by the primary Kelvin-Helmholtz (KH) instability as well as the secondary Taylor-Goertler (TG) instability. For equal density fluids, placing the high-speed fluid on the inside of a streamwise bend causes the TG instability to be enhanced (unstable case), while placing the low-speed fluid on the inside of the same bend leads to the suppression of the TG instability (stable case). The location of the mixing transition is correspondingly altered. Our goal is to study the changes to the mixing field and growth rate resulting from the competition between instabilities. Our studies are performed in a newly constructed blow-down water facility capable of high Reynolds numbers and excellent optical access. Maximum flow speeds are 2 and 0.25 m/sec for the high- and low-speed sides, respectively, leading to maximum Reynolds numbers of 80 000 based on velocity difference and the width of the layer. We are able to dye one stream with a fluorescent dye, thus providing several planar views of the flow under laser sheet illumination. These views are superior to conventional approaches as they are free of wall effects and are not spatially integrating. However, our most useful diagnostic of the structure of the flow is the ability to record high-speed images of the end view of the flow that are then reconstructed by computer using the volume rendering technique of Jiménez et al.1 This approach is especially useful as it allows us to compare the structural changes to the flow resulting from the competition between the KH and TG instabilities. Another advantage is the fact that several hundred frames, covering many characteristic times, are incorporated into the rendered image and thus capture considerably more flow physics than do still images. We currently have our rendering techniques fully operational,2 and are presently acquiring high quality high-speed movies of the various flow cases. Our findings to date, based on planar time-averaged and instantaneous views, show the following: (1) a 50% increase in growth rate from the stable to the unstable case resulting from mild curvature; (2) an enhancement of the TG vortices in the unstable case, but without major disruption of the KH instability which remains relatively intact; and (3) the occurrence of the KH instability at angles tilted with respect to the splitter plate tip, in agreement with the predictions of linear stability theory. This final observation has not been reported to date, primarily because sheet techniques have not been used at Reynolds numbers as high as the present study. The presentation will provide detailed views of the changes between the stable, straight, and unstable cases using our volume rendering approach, and will provide statistical measures such as changes to vortex spacing and size, to quantify such changes.

  16. Autostereoscopic image creation by hyperview matrix controlled single pixel rendering

    NASA Astrophysics Data System (ADS)

    Grasnick, Armin

    2017-06-01

    Just as the increasing awareness level of the stereoscopic cinema, so the perception of limitations while watching movies with 3D glasses has been emerged as well. It is not only that the additional glasses are uncomfortable and annoying; there are some tangible arguments for avoiding 3D glasses. These "stereoscopic deficits" are caused by the 3D glasses itself. In contrast to natural viewing with naked eyes, the artificial 3D viewing with 3D glasses introduces specific "unnatural" side effects. The most of the moviegoers has experienced unspecific discomfort in 3D cinema, which they may have associated with insufficient image quality. Obviously, quality problems with 3D glasses can be solved by technical improvement. But this simple answer can -and already has- mislead some decision makers to relax on the existing 3D glasses solution. It needs to be underlined, that there are inherent difficulties with the glasses, which can never be solved with modest advancement; as the 3D glasses initiate them. To overcome the limitations of stereoscopy in display applications, several technologies has been proposed to create a 3D impression without the need of 3D glasses, known as autostereoscopy. But even todays autostereoscopic displays cannot solve all viewing problems and still show limitations. A hyperview display could be a suitable candidate, if it would be possible to create an affordable device and generate the necessary content in an acceptable time frame. All autostereoscopic displays, based on the idea of lightfield, integral photography or super-multiview could be unified within the concept of hyperview. It is essential for functionality that every of these display technologies uses numerous of different perspective images to create the 3D impression. Such a calculation of a very high number of views will require much more computing time as for the formation of a simple stereoscopic image pair. The hyperview concept allows to describe the screen image of any 3D technology just with a simple equation. This formula can be utilized to create a specific hyperview matrix for a certain 3D display - independent of the technology used. A hyperview matrix may contain the references to loads of images and act as an instruction for a subsequent rendering process of particular pixels. Naturally, a single pixel will deliver an image with no resolution and does not provide any idea of the rendered scene. However, by implementing the method of pixel recycling, a 3D image can be perceived, even if all source images are different. It will be proven that several millions of perspectives can be rendered with the support of GPU rendering and benefit from the hyperview matrix. In result, a conventional autostereoscopic display, which is designed to represent only a few perspectives can be used to show a hyperview image by using a suitable hyperview matrix. It will be shown that a millions-of-views-hyperview-image can be presented on a conventional autostereoscopic display. For such an hyperview image it is required that all pixels of the displays are allocated by different source images. Controlled by the hyperview matrix, an adapted renderer can render a full hyperview image in real-time.

  17. UAS Photogrammetry for Rapid Response Characterization of Subaerial Coastal Change

    NASA Astrophysics Data System (ADS)

    Do, C.; Anarde, K.; Figlus, J.; Prouse, W.; Bedient, P. B.

    2016-12-01

    Unmanned aerial systems (UASs) provide an exciting new platform for rapid response measurement of subaerial coastal change. Here we validate the use of a coupled hobbyist UAS and optical photogrammetry framework for high-resolution mapping of portions of a low-lying barrier island along the Texas Gulf Coast. A DJI Phantom 3 Professional was used to capture 2D nadir images of the foreshore and back-beach environments containing both vegetated and non-vegetated features. The images were georeferenced using ground-truth markers surveyed via real-time kinematic (RTK) GPS and were then imported into Agisoft Photoscan, a photo-processing software, to generate 3D point clouds and digital elevation maps (DEMs). The georeferenced elevation models were then compared to RTK measurements to evaluate accuracy and precision. Thus far, DEMs derived from UAS photogrammetry show centimeter resolution for renderings of non-vegetated landforms. High-resolution renderings of vegetated and back-barrier regions have proven more difficult due to interstitial wetlands (surface reflectance) and uneven terrain for GPS backpack surveys. In addition to producing high-quality models, UAS photogrammetry has demonstrated to be more time-efficient than traditional mapping methods, making it advantageous for rapid response deployments. This study is part of a larger effort to relate field measurements of storm hydrodynamics to subaerial evidence of geomorphic change to better understand barrier island response to extreme storms.

  18. PLANETarium Pilot: visualizing PLANET Earth inside-out on the planetarium's full-dome

    NASA Astrophysics Data System (ADS)

    Ballmer, Maxim; Wiethoff, Tobias

    2016-04-01

    In the past decade, projection systems in most planetariums, traditional sites of outreach and education, have advanced from interfaces that can display the motion of stars as moving beam spots to systems that are able to visualize multicolor, high-resolution, immersive full-dome videos or images. These extraordinary capabilities are ideally suited for visualization of global processes occurring on the surface and within the interior of the Earth, a spherical body just as the full dome. So far, however, our community has largely ignored this wonderful interface for outreach and education, and any previous geo-shows have mostly been limited to cartoon-style animations. Thus, we here propose a framework to convey recent scientific results on the origin and evolution of our PLANET to the >100 million per-year worldwide audience of planetariums, making the traditionally astronomy-focussed interface a true PLANETarium. In order to do this most efficiently, we intend to show "inside-out" visualizations of scientific datasets and models, as if the audience was positioned in the Earth's core. Such visualizations are expected to be renderable to the dome with little or no effort. For example, showing global geophysical datasets (e.g., gravity, air temperature), or horizontal slices of seismic-tomography images and spherical computer models requires no rendering at all. Rendering of 3D Cartesian datasets or models may further be achieved using standard techiques. Here, we show several example pilot animations. These animations rendered for the full dome are projected back to 2D for visualization on the flatscreen. Present-day science visualizations are typically as intuitive as cartoon-style animations, yet more appealing visually, and clearly with a higher level of detail. In addition to e.g. climate change and natural hazards, themes for any future geo-shows may include the coupled evolution of the Earth's interior and life, from the accretion of our planet to the evolution of mantle convection as well as the sustainment of a magnetic field and habitable conditions. We believe that high-quality tax-funded science visualizations should not exclusively be used for communication among scientists, but also recycled to raise the public's awareness and appreciation of the Geosciences.

  19. PLANETarium Pilot: visualizing PLANET Earth inside-out on the planetarium's full-dome

    NASA Astrophysics Data System (ADS)

    Ballmer, M. D.; Wiethoff, T.

    2014-12-01

    In the past decade, projection systems in most planetariums, traditional sites of outreach and education, have advanced from interfaces that can display the motion of stars as moving beam spots to systems that are able to visualize multicolor, high-resolution, immersive full-dome videos or images. These extraordinary capabilities are ideally suited for visualization of global processes occurring on the surface and within the interior of the Earth, a spherical body just as the full dome. So far, however, our community has largely ignored this wonderful interface for outreach and education, and any previous geo-shows have mostly been limited to cartoon-style animations. Thus, we here propose a framework to convey recent scientific results on the origin and evolution of our PLANET to the >100 million per-year worldwide audience of planetariums, making the traditionally astronomy-focussed interface a true PLANETarium. In order to do this most efficiently, we intend to show „inside-out" visualizations of scientific datasets and models, as if the audience was positioned in the Earth's inner core. Such visualizations are expected to be renderable to the dome with little or no effort. For example, showing global geophysical datasets (e.g., gravity, air temperature), or horizontal slices of seismic-tomography images and spherical computer models requires no rendering at all. Rendering of 3D Cartesian datasets or models may further be achieved using standard techiques. Here, we show several example pilot animations. These animations rendered for the full dome are projected back to 2D for visualization on a flatscreen. Present-day science visualizations are typically as intuitive as cartoon-style animations, yet more appealing visually, and clearly with a higher level of detail. In addition to e.g. climate change and natural hazards, themes for any future geo-shows may include the coupled evolution of the Earth's interior and life, from the accretion of our planet to the evolution of mantle convection as well as the sustainment of a magnetic field and habitable conditions. We believe that high-quality tax-funded science visualizations should not exclusively be used for communication among scientists, but also recycled to raise the public's awareness and appreciation of the geosciences.

  20. IceT users' guide and reference.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moreland, Kenneth D.

    2011-01-01

    The Image Composition Engine for Tiles (IceT) is a high-performance sort-last parallel rendering library. In addition to providing accelerated rendering for a standard display, IceT provides the unique ability to generate images for tiled displays. The overall resolution of the display may be several times larger than any viewport that may be rendered by a single machine. This document is an overview of the user interface to IceT.

  1. Increasing the effective absorption of Eu3+-doped luminescent materials towards practical light emitting diodes for illumination applications

    NASA Astrophysics Data System (ADS)

    van de Haar, Marie Anne; Werner, Jan; Kratz, Nadja; Hilgerink, Tom; Tachikirt, Mohamed; Honold, Jürgen; Krames, Michael R.

    2018-03-01

    White light emitting diodes (LEDs) composed of a blue LED and a green/yellow downconverter material (phosphor) can be very efficient, but the color is often not considered very pleasant. Although the color rendering can be improved by adding a second, red-emitting phosphor, this generally results in significantly reduced efficacy of the device due to the broad emission of available conventional red-emitting phosphors. Trivalent europium is well-known for its characteristic narrow-band emission in the red region, with little radiation outside the eye sensitivity area, making it an ideal candidate for enabling high color quality as well as a high lumen equivalent of radiation from a spectrum point of view. However, a thorough study of the practical potential and challenges of Eu3+ as a red emitter for white LEDs has remained elusive so far due to the low excitation probability in the blue spectral range which is often even considered a fundamental limitation. Here, we show that the absorption in the blue region can be brought into an interesting regime for white LEDs and show that it is possible to increase both the color rendering and efficacy simultaneously using Eu3+ as a red emitter, compared to warm white LEDs comprising conventional materials.

  2. Anisotropic scene geometry resampling with occlusion filling for 3DTV applications

    NASA Astrophysics Data System (ADS)

    Kim, Jangheon; Sikora, Thomas

    2006-02-01

    Image and video-based rendering technologies are receiving growing attention due to their photo-realistic rendering capability in free-viewpoint. However, two major limitations are ghosting and blurring due to their sampling-based mechanism. The scene geometry which supports to select accurate sampling positions is proposed using global method (i.e. approximate depth plane) and local method (i.e. disparity estimation). This paper focuses on the local method since it can yield more accurate rendering quality without large number of cameras. The local scene geometry has two difficulties which are the geometrical density and the uncovered area including hidden information. They are the serious drawback to reconstruct an arbitrary viewpoint without aliasing artifacts. To solve the problems, we propose anisotropic diffusive resampling method based on tensor theory. Isotropic low-pass filtering accomplishes anti-aliasing in scene geometry and anisotropic diffusion prevents filtering from blurring the visual structures. Apertures in coarse samples are estimated following diffusion on the pre-filtered space, the nonlinear weighting of gradient directions suppresses the amount of diffusion. Aliasing artifacts from low density are efficiently removed by isotropic filtering and the edge blurring can be solved by the anisotropic method at one process. Due to difference size of sampling gap, the resampling condition is defined considering causality between filter-scale and edge. Using partial differential equation (PDE) employing Gaussian scale-space, we iteratively achieve the coarse-to-fine resampling. In a large scale, apertures and uncovered holes can be overcoming because only strong and meaningful boundaries are selected on the resolution. The coarse-level resampling with a large scale is iteratively refined to get detail scene structure. Simulation results show the marked improvements of rendering quality.

  3. 16 CFR § 1610.39 - Shipments under section 11(c) of the Act.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... finished by the undersigned or by a duly authorized agent so as to render them not so highly flammable...§ 1610.39 Section § 1610.39 Commercial Practices CONSUMER PRODUCT SAFETY COMMISSION FLAMMABLE FABRICS... finishing or processing to render them not so highly flammable as to be dangerous when worn by individuals...

  4. 16 CFR 1611.39 - Shipments under section 11(c) of the act.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... undersigned or by a duly authorized agent so as to render them not so highly flammable under the provisions of.... 1611.39 Section 1611.39 Commercial Practices CONSUMER PRODUCT SAFETY COMMISSION FLAMMABLE FABRICS ACT... processing to render them not so highly flammable as to be dangerous when worn by individuals, shall contain...

  5. 16 CFR 1611.39 - Shipments under section 11(c) of the act.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... undersigned or by a duly authorized agent so as to render them not so highly flammable under the provisions of.... 1611.39 Section 1611.39 Commercial Practices CONSUMER PRODUCT SAFETY COMMISSION FLAMMABLE FABRICS ACT... processing to render them not so highly flammable as to be dangerous when worn by individuals, shall contain...

  6. 16 CFR 1611.39 - Shipments under section 11(c) of the act.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... undersigned or by a duly authorized agent so as to render them not so highly flammable under the provisions of.... 1611.39 Section 1611.39 Commercial Practices CONSUMER PRODUCT SAFETY COMMISSION FLAMMABLE FABRICS ACT... processing to render them not so highly flammable as to be dangerous when worn by individuals, shall contain...

  7. Successive and large-scale synthesis of InP/ZnS quantum dots in a hybrid reactor and their application to white LEDs

    NASA Astrophysics Data System (ADS)

    Kim, Kyungnam; Jeong, Sohee; Woo, Ju Yeon; Han, Chang-Soo

    2012-02-01

    We report successive and large-scale synthesis of InP/ZnS core/shell nanocrystal quantum dots (QDs) using a customized hybrid flow reactor, which is based on serial combination of a batch-type mixer and a flow-type furnace. InP cores and InP/ZnS core/shell QDs were successively synthesized in the hybrid reactor in a simple one-step process. In this reactor, the flow rate of the solutions was typically 1 ml min-1, 100 times larger than that of conventional microfluidic reactors. In order to synthesize high-quality InP/ZnS QDs, we controlled both the flow rate and the crystal growth temperature. Finally, we obtained high-quality InP/ZnS QDs in colors from bluish green to red, and we demonstrated that these core/shell QDs could be incorporated into white-light-emitting diode (LED) devices to improve color rendering performance.

  8. Successive and large-scale synthesis of InP/ZnS quantum dots in a hybrid reactor and their application to white LEDs.

    PubMed

    Kim, Kyungnam; Jeong, Sohee; Woo, Ju Yeon; Han, Chang-Soo

    2012-02-17

    We report successive and large-scale synthesis of InP/ZnS core/shell nanocrystal quantum dots (QDs) using a customized hybrid flow reactor, which is based on serial combination of a batch-type mixer and a flow-type furnace. InP cores and InP/ZnS core/shell QDs were successively synthesized in the hybrid reactor in a simple one-step process. In this reactor, the flow rate of the solutions was typically 1 ml min(-1), 100 times larger than that of conventional microfluidic reactors. In order to synthesize high-quality InP/ZnS QDs, we controlled both the flow rate and the crystal growth temperature. Finally, we obtained high-quality InP/ZnS QDs in colors from bluish green to red, and we demonstrated that these core/shell QDs could be incorporated into white-light-emitting diode (LED) devices to improve color rendering performance.

  9. White Electroluminescence Using ZnO Nanotubes/GaN Heterostructure Light-Emitting Diode

    PubMed Central

    2010-01-01

    We report the fabrication of heterostructure white light–emitting diode (LED) comprised of n-ZnO nanotubes (NTs) aqueous chemically synthesized on p-GaN substrate. Room temperature electroluminescence (EL) of the LED demonstrates strong broadband white emission spectrum consisting of predominating peak centred at 560 nm and relatively weak violet–blue emission peak at 450 nm under forward bias. The broadband EL emission covering the whole visible spectrum has been attributed to the large surface area and high surface states of ZnO NTs produced during the etching process. In addition, comparison of the EL emission colour quality shows that ZnO nanotubes have much better quality than that of the ZnO nanorods. The colour-rendering index of the white light obtained from the nanotubes was 87, while the nanorods-based LED emit yellowish colour. PMID:20672120

  10. Fast Time-Varying Volume Rendering Using Time-Space Partition (TSP) Tree

    NASA Technical Reports Server (NTRS)

    Shen, Han-Wei; Chiang, Ling-Jen; Ma, Kwan-Liu

    1999-01-01

    We present a new, algorithm for rapid rendering of time-varying volumes. A new hierarchical data structure that is capable of capturing both the temporal and the spatial coherence is proposed. Conventional hierarchical data structures such as octrees are effective in characterizing the homogeneity of the field values existing in the spatial domain. However, when treating time merely as another dimension for a time-varying field, difficulties frequently arise due to the discrepancy between the field's spatial and temporal resolutions. In addition, treating spatial and temporal dimensions equally often prevents the possibility of detecting the coherence that is unique in the temporal domain. Using the proposed data structure, our algorithm can meet the following goals. First, both spatial and temporal coherence are identified and exploited for accelerating the rendering process. Second, our algorithm allows the user to supply the desired error tolerances at run time for the purpose of image-quality/rendering-speed trade-off. Third, the amount of data that are required to be loaded into main memory is reduced, and thus the I/O overhead is minimized. This low I/O overhead makes our algorithm suitable for out-of-core applications.

  11. Soft bilateral filtering volumetric shadows using cube shadow maps

    PubMed Central

    Ali, Hatam H.; Sunar, Mohd Shahrizal; Kolivand, Hoshang

    2017-01-01

    Volumetric shadows often increase the realism of rendered scenes in computer graphics. Typical volumetric shadows techniques do not provide a smooth transition effect in real-time with conservation on crispness of boundaries. This research presents a new technique for generating high quality volumetric shadows by sampling and interpolation. Contrary to conventional ray marching method, which requires extensive time, this proposed technique adopts downsampling in calculating ray marching. Furthermore, light scattering is computed in High Dynamic Range buffer to generate tone mapping. The bilateral interpolation is used along a view rays to smooth transition of volumetric shadows with respect to preserving-edges. In addition, this technique applied a cube shadow map to create multiple shadows. The contribution of this technique isreducing the number of sample points in evaluating light scattering and then introducing bilateral interpolation to improve volumetric shadows. This contribution is done by removing the inherent deficiencies significantly in shadow maps. This technique allows obtaining soft marvelous volumetric shadows, having a good performance and high quality, which show its potential for interactive applications. PMID:28632740

  12. Quantum ergonomics: shifting the paradigm of the systems agenda.

    PubMed

    Walker, Guy H; Salmon, Paul M; Bedinger, Melissa; Stanton, Neville A

    2017-02-01

    A paradigm is an accepted world view. If we do not continually question our paradigm then wider trends and movements will overtake the discipline leaving it ill adapted to future challenges. This Special Issue is an opportunity to keep systems thinking at the forefront of ergonomics theory and practice. Systems thinking prompts us to ask whether ergonomics, as a discipline, has been too timid? Too preoccupied with the resolution of immediate problems with industrial-age methods when, approaching fast, are developments which could render these operating assumptions an irrelevance. Practical case studies are presented to show how abstract systems problems can be tackled head-on to deliver highly innovative and cost-effective insights. The strategic direction of the discipline foregrounds high-quality systems problems. These are something the discipline is well able to respond to provided that the appropriate operating paradigms are selected. Practitioner Summary: High-quality systems problems are the future of the discipline. How do we convert obtuse sounding systems concepts into practical interventions? In this paper, the essence of systems thinking is distilled and practical case studies used to demonstrate the benefits of this new paradigm.

  13. Large-Scale Point-Cloud Visualization through Localized Textured Surface Reconstruction.

    PubMed

    Arikan, Murat; Preiner, Reinhold; Scheiblauer, Claus; Jeschke, Stefan; Wimmer, Michael

    2014-09-01

    In this paper, we introduce a novel scene representation for the visualization of large-scale point clouds accompanied by a set of high-resolution photographs. Many real-world applications deal with very densely sampled point-cloud data, which are augmented with photographs that often reveal lighting variations and inaccuracies in registration. Consequently, the high-quality representation of the captured data, i.e., both point clouds and photographs together, is a challenging and time-consuming task. We propose a two-phase approach, in which the first (preprocessing) phase generates multiple overlapping surface patches and handles the problem of seamless texture generation locally for each patch. The second phase stitches these patches at render-time to produce a high-quality visualization of the data. As a result of the proposed localization of the global texturing problem, our algorithm is more than an order of magnitude faster than equivalent mesh-based texturing techniques. Furthermore, since our preprocessing phase requires only a minor fraction of the whole data set at once, we provide maximum flexibility when dealing with growing data sets.

  14. Tension Headache

    MedlinePlus

    ... headaches are so common, their effect on job productivity and overall quality of life is considerable, particularly if they're chronic. The frequent pain may render you unable to attend activities. You might need to stay home from work, or if you do go to your job, ...

  15. Legalized abortion: a public health success story.

    PubMed

    Kelly, M

    1999-06-01

    60% of more than 2000 women surveyed by the Picker Institute who underwent induced abortion procedures rated the quality of their care as excellent. Another third reported their care as being either very good or good. The survey also found that the quality of abortion care is comparable to other outpatient surgery. However, the high quality of care women receive from abortion providers is lost in the hostile anti-abortion climate created by threatening protesters outside of clinics and the murder of 7 clinic workers and physicians who performed abortions. Abortion opponents fail to acknowledge that legal abortion is a medical procedure which protects women's health and saves their lives. Before abortion was legalized in the US, countless women were either rendered unable to reproduce or died from abortion-related complications. Efforts to outlaw abortion persist despite it being widely recognized by medical experts as one of the most safe medical procedures currently performed in the US. When state legislatures target abortion providers with unduly strict regulations, abortion becomes prohibitively expensive and difficult to obtain.

  16. Use of ultrasounds in the food industry-Methods and effects on quality, safety, and organoleptic characteristics of foods: A review.

    PubMed

    Arvanitoyannis, Ioannis S; Kotsanopoulos, Konstantinos V; Savva, Amalia G

    2017-01-02

    The use of ultrasounds has recently gained significant interest in the food industry mainly due to the new trends of consumers toward functional foods. Offering several advantages, this form of energy can be applied for the improvement of qualitative characteristics of high-quality foods as well as for assuring safety of a vast variety of foodstuffs, and at the same time minimizing any negative effects of the sensory characteristics of foods. Furthermore, the non-destructive nature of this technology offers several opportunities for the compositional analysis of foods. However, further research is required for the improvement of related techniques and the reduction of application costs in order to render this technology efficient for industrial use. This review paper covers the main applications of ultrasounds as well as several advantages of the use of the technology in combination with conventional techniques. The effects of ultrasounds on the characteristics, microbial safety, and quality of several foods are also detailed.

  17. Hierarchical and Parallelizable Direct Volume Rendering for Irregular and Multiple Grids

    NASA Technical Reports Server (NTRS)

    Wilhelms, Jane; VanGelder, Allen; Tarantino, Paul; Gibbs, Jonathan

    1996-01-01

    A general volume rendering technique is described that efficiently produces images of excellent quality from data defined over irregular grids having a wide variety of formats. Rendering is done in software, eliminating the need for special graphics hardware, as well as any artifacts associated with graphics hardware. Images of volumes with about one million cells can be produced in one to several minutes on a workstation with a 150 MHz processor. A significant advantage of this method for applications such as computational fluid dynamics is that it can process multiple intersecting grids. Such grids present problems for most current volume rendering techniques. Also, the wide range of cell sizes (by a factor of 10,000 or more), which is typical of such applications, does not present difficulties, as it does for many techniques. A spatial hierarchical organization makes it possible to access data from a restricted region efficiently. The tree has greater depth in regions of greater detail, determined by the number of cells in the region. It also makes it possible to render useful 'preview' images very quickly (about one second for one-million-cell grids) by displaying each region associated with a tree node as one cell. Previews show enough detail to navigate effectively in very large data sets. The algorithmic techniques include use of a kappa-d tree, with prefix-order partitioning of triangles, to reduce the number of primitives that must be processed for one rendering, coarse-grain parallelism for a shared-memory MIMD architecture, a new perspective transformation that achieves greater numerical accuracy, and a scanline algorithm with depth sorting and a new clipping technique.

  18. ADMINISTRATIVE CLIMATE.

    ERIC Educational Resources Information Center

    BRUCE, ROBERT L.; CARTER, G.L., JR.

    IN THE COOPERATIVE EXTENSION SERVICE, STYLES OF LEADERSHIP PROFOUNDLY AFFECT THE QUALITY OF THE SERVICE RENDERED. ACCORDINGLY, MAJOR INFLUENCES ON ADMINISTRATIVE CLIMATE AND EMPLOYEE PRODUCTIVITY ARE EXAMINED IN ESSAYS ON (1) SOURCES OF JOB SATISFACTION AND DISSATISFACTION, (2) MOTIVATIONAL THEORIES BASED ON JOB-RELATED SATISFACTIONS AND NEEDS,…

  19. 47 CFR 22.1005 - Priority of service.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) COMMON CARRIER SERVICES PUBLIC MOBILE SERVICES... central stations. However, they may also be used to render private leased line communication service, provided that such usage does not reduce or impair the extent or quality of communication service which...

  20. A service protocol for post-processing of medical images on the mobile device

    NASA Astrophysics Data System (ADS)

    He, Longjun; Ming, Xing; Xu, Lang; Liu, Qian

    2014-03-01

    With computing capability and display size growing, the mobile device has been used as a tool to help clinicians view patient information and medical images anywhere and anytime. It is uneasy and time-consuming for transferring medical images with large data size from picture archiving and communication system to mobile client, since the wireless network is unstable and limited by bandwidth. Besides, limited by computing capability, memory and power endurance, it is hard to provide a satisfactory quality of experience for radiologists to handle some complex post-processing of medical images on the mobile device, such as real-time direct interactive three-dimensional visualization. In this work, remote rendering technology is employed to implement the post-processing of medical images instead of local rendering, and a service protocol is developed to standardize the communication between the render server and mobile client. In order to make mobile devices with different platforms be able to access post-processing of medical images, the Extensible Markup Language is taken to describe this protocol, which contains four main parts: user authentication, medical image query/ retrieval, 2D post-processing (e.g. window leveling, pixel values obtained) and 3D post-processing (e.g. maximum intensity projection, multi-planar reconstruction, curved planar reformation and direct volume rendering). And then an instance is implemented to verify the protocol. This instance can support the mobile device access post-processing of medical image services on the render server via a client application or on the web page.

  1. The correlation between radiative surface defect states and high color rendering index from ZnO nanotubes

    PubMed Central

    2011-01-01

    Combined surface, structural and opto-electrical investigations are drawn from the chemically fashioned ZnO nanotubes and its heterostructure with p-GaN film. A strong correlation has been found between the formation of radiative surface defect states in the nanotubes and the pure cool white light possessing averaged eight color rendering index value of 96 with appropriate color temperature. Highly important deep-red color index value has been realized > 95 which has the capability to render and reproduce natural and vivid colors accurately. Diverse types of deep defect states and their relative contribution to the corresponding wavelengths in the broad emission band is suggested. PMID:21878100

  2. Investigation of pharmaceuticals in processed animal by-products by liquid chromatography coupled to high-resolution mass spectrometry.

    PubMed

    Nácher-Mestre, Jaime; Ibáñez, María; Serrano, Roque; Boix, Clara; Bijlsma, Lubertus; Lunestad, Bjørn Tore; Hannisdal, Rita; Alm, Martin; Hernández, Félix; Berntssen, Marc H G

    2016-07-01

    There is an on-going trend for developing more sustainable salmon feed in which traditionally applied marine feed ingredients are replaced with alternatives. Processed animal products (PAPs) have been re-authorized as novel high quality protein ingredients in 2013. These PAPs may harbor undesirable substances such as pharmaceuticals and metabolites which are not previously associated with salmon farming, but might cause a potential risk for feed and food safety. To control these contaminants, an analytical strategy based on a generic extraction followed by ultra-high performance liquid chromatography coupled to high resolution mass spectrometry (UHPLC-HRMS) using quadrupole time-of-flight mass analyzer (QTOF MS) was applied for wide scope screening. Quality control samples, consisting of PAP commodities spiked at 0.02, 0.1 and 0.2 mg/kg with 150 analytes, were injected in every sample batch to verify the overall method performance. The methodology was applied to 19 commercially available PAP samples from six different types of matrices from the EU animal rendering industry. This strategy allows assessing possible emergent risk exposition of the salmon farming industry to 1005 undesirables, including pharmaceuticals, several dyes and relevant metabolites. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. Flexible photonic crystal membranes with nanoparticle high refractive index layers.

    PubMed

    Karrock, Torben; Paulsen, Moritz; Gerken, Martina

    2017-01-01

    Flexible photonic crystal slabs with an area of 2 cm 2 are fabricated by nanoimprint replication of a 400 nm period linear grating nanostructure into a ≈60 µm thick polydimethylsiloxane membrane and subsequent spin coating of a high refractive index titanium dioxide nanoparticle layer. Samples are prepared with different nanoparticle concentrations. Guided-mode resonances with a quality factor of Q ≈ 40 are observed. The highly flexible nature of the membranes allows for stretching of up to 20% elongation. Resonance peak positions for unstretched samples vary from 555 to 630 nm depending on the particle concentration. Stretching results in a resonance shift for these peaks of up to ≈80 nm, i.e., 3.9 nm per % strain. The color impression of the samples observed with crossed-polarization filters changes from the green to the red regime. The high tunability renders these membranes promising for both tunable optical devices as well as visualization devices.

  4. Dual emissive manganese and copper Co-doped Zn-In-S quantum dots as a single color-converter for high color rendering white-light-emitting diodes.

    PubMed

    Yuan, Xi; Ma, Ruixin; Zhang, Wenjin; Hua, Jie; Meng, Xiangdong; Zhong, Xinhua; Zhang, Jiahua; Zhao, Jialong; Li, Haibo

    2015-04-29

    Novel white light emitting diodes (LEDs) with environmentally friendly dual emissive quantum dots (QDs) as single color-converters are one of the most promising high-quality solid-state lighting sources for meeting the growing global demand for resource sustainability. A facile method was developed for the synthesis of the bright green-red-emitting Mn and Cu codoped Zn-In-S QDs with an absorption bangdgap of 2.56 eV (485 nm), a large Stokes shift of 150 nm, and high emission quantum yield up to 75%, which were suitable for warm white LEDs based on blue GaN chips. The wide photoluminescence (PL) spectra composed of Cu-related green and Mn-related red emissions in the codoped QDs could be controlled by varying the doping concentrations of Mn and Cu ions. The energy transfer processes in Mn and Cu codoped QDs were proposed on the basis of the changes in PL intensity and lifetime measured by means of steady-state and time-resolved PL spectra. By integrating these bicolor QDs with commercial GaN-based blue LEDs, the as-fabricated tricolor white LEDs showed bright natural white light with a color rendering index of 95, luminous efficacy of 73.2 lm/W, and color temperature of 5092 K. These results indicated that (Mn,Cu):Zn-In-S/ZnS QDs could be used as a single color-converting material for the next generation of solid-state lighting.

  5. An applied hydropedological perspective on the rendering of ecosystem services from urban soils

    EPA Science Inventory

    Ecosystem services are benefits to human populations derived from natural capitals like soil. When a soil is urbanized during infrastructure and superstructure development, the related processes modulate the state and quality of natural resources, along with the form and function...

  6. The effects of honey compared to silver sulfadiazine for the treatment of burns: A systematic review of randomized controlled trials.

    PubMed

    Aziz, Zoriah; Abdul Rasool Hassan, Bassam

    2017-02-01

    Evidence from animal studies and trials suggests that honey may accelerate wound healing. The objective of this review was to assess the effects of honey compared with silver dressings on the healing of burn wounds. Relevant databases for randomized controlled trials (RCTs) of honey compared with silver sulfadiazine (SSD) were searched. The quality of the selected trials was assessed using the Cochrane Risk of Bias Assessment Tool. The primary endpoints considered were wound healing time and the number of infected wounds rendered sterile. Nine RCTs met the inclusion criteria. Based on moderate quality evidence there was a statistically significant difference between the two groups, favoring honey in healing time (MD -5.76days, 95% CI -8.14 to -3.39) and the proportions of infected wounds rendered sterile (RR 2.59; 95% CI 1.58-2.88). The available evidence suggests that honey dressings promote better wound healing than silver sulfadiazine for burns. Copyright © 2016 Elsevier Ltd and ISBI. All rights reserved.

  7. How Many Bits Are Enough?

    NASA Technical Reports Server (NTRS)

    Larimer, James; Gille, Jennifer; Luszcz, Jeff; Hindson, William S. (Technical Monitor)

    1997-01-01

    Carlson and Cohen suggest that 'the perfect image is one that looks like a piece of the world viewed through a picture frame.' They propose that the metric for the perfect image be the discriminability of the reconstructed image from the ideal image the reconstruction is meant to represent. If these two images, the ideal and the reconstruction are noticeably different, then the reconstruction is less than perfect. If they cannot be discriminated then the reconstructed image is perfect. This definition has the advantage that it can be used to define 'good enough' image quality. An image that fully satisfies a task's image quality requirements for example text legibility, is selected to be the standard. Rendered images are then compared to the standard. Rendered images that are indiscriminable from the standard are good enough. Test patterns and test image sets serve as standards for many tasks and are commonplace to the image communications and display industries, so this is not a new nor novel idea.

  8. Radiometric spectral and band rendering of targets using anisotropic BRDFs and measured backgrounds

    NASA Astrophysics Data System (ADS)

    Hilgers, John W.; Hoffman, Jeffrey A.; Reynolds, William R.; Jafolla, James C.

    2000-07-01

    Achievement of ultra-high fidelity signature modeling of targets requires a significant level of complexity for all of the components required in the rendering process. Specifically, the reflectance of the surface must be described using the bi-directional distribution function (BRDF). In addition, the spatial representation of the background must be high fidelity. A methodology and corresponding model for spectral and band rendering of targets using both isotropic and anisotropic BRDFs is presented. In addition, a set of tools will be described for generating theoretical anisotropic BRDFs and for reducing data required for a description of an anisotropic BRDF by 5 orders of magnitude. This methodology is hybrid using a spectrally measured panoramic of the background mapped to a large hemisphere. Both radiosity and ray-tracing approaches are incorporated simultaneously for a robust solution. In the thermal domain the spectral emission is also included in the solution. Rendering examples using several BRDFs will be presented.

  9. Sperm nuclear protamines: A checkpoint to control sperm chromatin quality.

    PubMed

    Steger, Klaus; Balhorn, Rod

    2018-05-23

    Protamines are nuclear proteins which are specifically expressed in haploid male germ cells. Their replacement of histones and binding to DNA is followed by chromatin hypercondensation that protects DNA from negative influences by environmental factors. Mammalian sperm contain two types of protamines: PRM1 and PRM2. While the proportion of the two protamines is highly variable between different species, abnormal ratios within a species are known to be associated with male subfertility. Therefore, it is more than likely that correct protamine expression represents a kind of chromatin checkpoint during sperm development rendering protamines as suitable biomarkers for the estimation of sperm quality. This review presents an overview of our current knowledge on protamines comparing gene and protein structures between different mammalian species with particular consideration given to man, mouse and stallion. At last, recent insights into the possible role of inherited sperm histones for early embryo development are provided. © 2018 Blackwell Verlag GmbH.

  10. Toward a 3D video format for auto-stereoscopic displays

    NASA Astrophysics Data System (ADS)

    Vetro, Anthony; Yea, Sehoon; Smolic, Aljoscha

    2008-08-01

    There has been increased momentum recently in the production of 3D content for cinema applications; for the most part, this has been limited to stereo content. There are also a variety of display technologies on the market that support 3DTV, each offering a different viewing experience and having different input requirements. More specifically, stereoscopic displays support stereo content and require glasses, while auto-stereoscopic displays avoid the need for glasses by rendering view-dependent stereo pairs for a multitude of viewing angles. To realize high quality auto-stereoscopic displays, multiple views of the video must either be provided as input to the display, or these views must be created locally at the display. The former approach has difficulties in that the production environment is typically limited to stereo, and transmission bandwidth for a large number of views is not likely to be available. This paper discusses an emerging 3D data format that enables the latter approach to be realized. A new framework for efficiently representing a 3D scene and enabling the reconstruction of an arbitrarily large number of views prior to rendering is introduced. Several design challenges are also highlighted through experimental results.

  11. Accelerating the Original Profile Kernel.

    PubMed

    Hamp, Tobias; Goldberg, Tatyana; Rost, Burkhard

    2013-01-01

    One of the most accurate multi-class protein classification systems continues to be the profile-based SVM kernel introduced by the Leslie group. Unfortunately, its CPU requirements render it too slow for practical applications of large-scale classification tasks. Here, we introduce several software improvements that enable significant acceleration. Using various non-redundant data sets, we demonstrate that our new implementation reaches a maximal speed-up as high as 14-fold for calculating the same kernel matrix. Some predictions are over 200 times faster and render the kernel as possibly the top contender in a low ratio of speed/performance. Additionally, we explain how to parallelize various computations and provide an integrative program that reduces creating a production-quality classifier to a single program call. The new implementation is available as a Debian package under a free academic license and does not depend on commercial software. For non-Debian based distributions, the source package ships with a traditional Makefile-based installer. Download and installation instructions can be found at https://rostlab.org/owiki/index.php/Fast_Profile_Kernel. Bugs and other issues may be reported at https://rostlab.org/bugzilla3/enter_bug.cgi?product=fastprofkernel.

  12. Architecture for high performance stereoscopic game rendering on Android

    NASA Astrophysics Data System (ADS)

    Flack, Julien; Sanderson, Hugh; Shetty, Sampath

    2014-03-01

    Stereoscopic gaming is a popular source of content for consumer 3D display systems. There has been a significant shift in the gaming industry towards casual games for mobile devices running on the Android™ Operating System and driven by ARM™ and other low power processors. Such systems are now being integrated directly into the next generation of 3D TVs potentially removing the requirement for an external games console. Although native stereo support has been integrated into some high profile titles on established platforms like Windows PC and PS3 there is a lack of GPU independent 3D support for the emerging Android platform. We describe a framework for enabling stereoscopic 3D gaming on Android for applications on mobile devices, set top boxes and TVs. A core component of the architecture is a 3D game driver, which is integrated into the Android OpenGL™ ES graphics stack to convert existing 2D graphics applications into stereoscopic 3D in real-time. The architecture includes a method of analyzing 2D games and using rule based Artificial Intelligence (AI) to position separate objects in 3D space. We describe an innovative stereo 3D rendering technique to separate the views in the depth domain and render directly into the display buffer. The advantages of the stereo renderer are demonstrated by characterizing the performance in comparison to more traditional render techniques, including depth based image rendering, both in terms of frame rates and impact on battery consumption.

  13. Corridor One:An Integrated Distance Visualization Enuronments for SSI+ASCI Applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Christopher R. Johnson, Charles D. Hansen

    2001-10-29

    The goal of Corridor One: An Integrated Distance Visualization Environment for ASCI and SSI Application was to combine the forces of six leading edge laboratories working in the areas of visualization and distributed computing and high performance networking (Argonne National Laboratory, Lawrence Berkeley National Laboratory, Los Alamos National Laboratory, University of Illinois, University of Utah and Princeton University) to develop and deploy the most advanced integrated distance visualization environment for large-scale scientific visualization and demonstrate it on applications relevant to the DOE SSI and ASCI programs. The Corridor One team brought world class expertise in parallel rendering, deep image basedmore » rendering, immersive environment technology, large-format multi-projector wall based displays, volume and surface visualization algorithms, collaboration tools and streaming media technology, network protocols for image transmission, high-performance networking, quality of service technology and distributed computing middleware. Our strategy was to build on the very successful teams that produced the I-WAY, ''Computational Grids'' and CAVE technology and to add these to the teams that have developed the fastest parallel visualizations systems and the most widely used networking infrastructure for multicast and distributed media. Unfortunately, just as we were getting going on the Corridor One project, DOE cut the program after the first year. As such, our final report consists of our progress during year one of the grant.« less

  14. The Visualization Toolkit (VTK): Rewriting the rendering code for modern graphics cards

    NASA Astrophysics Data System (ADS)

    Hanwell, Marcus D.; Martin, Kenneth M.; Chaudhary, Aashish; Avila, Lisa S.

    2015-09-01

    The Visualization Toolkit (VTK) is an open source, permissively licensed, cross-platform toolkit for scientific data processing, visualization, and data analysis. It is over two decades old, originally developed for a very different graphics card architecture. Modern graphics cards feature fully programmable, highly parallelized architectures with large core counts. VTK's rendering code was rewritten to take advantage of modern graphics cards, maintaining most of the toolkit's programming interfaces. This offers the opportunity to compare the performance of old and new rendering code on the same systems/cards. Significant improvements in rendering speeds and memory footprints mean that scientific data can be visualized in greater detail than ever before. The widespread use of VTK means that these improvements will reap significant benefits.

  15. Techniques for efficient, real-time, 3D visualization of multi-modality cardiac data using consumer graphics hardware.

    PubMed

    Levin, David; Aladl, Usaf; Germano, Guido; Slomka, Piotr

    2005-09-01

    We exploit consumer graphics hardware to perform real-time processing and visualization of high-resolution, 4D cardiac data. We have implemented real-time, realistic volume rendering, interactive 4D motion segmentation of cardiac data, visualization of multi-modality cardiac data and 3D display of multiple series cardiac MRI. We show that an ATI Radeon 9700 Pro can render a 512x512x128 cardiac Computed Tomography (CT) study at 0.9 to 60 frames per second (fps) depending on rendering parameters and that 4D motion based segmentation can be performed in real-time. We conclude that real-time rendering and processing of cardiac data can be implemented on consumer graphics cards.

  16. Cesium lead halide perovskite quantum dot-based warm white light-emitting diodes with high color rendering index

    NASA Astrophysics Data System (ADS)

    Bi, Ke; Wang, Dan; Wang, Peng; Duan, Bin; Zhang, Tieqiang; Wang, Yinghui; Zhang, Hanzhuang; Zhang, Yu

    2017-05-01

    White light-emitting diodes (WLEDs) were fabricated by employing a combination of a commercial yellow emission Ce3+-doped Y3Al5O12 (YAG:Ce)-based phosphor and all-inorganic perovskite quantum dots pumped with blue LED chip. Perovskite quantum dot solution was used as the color conversion layer with liquid-type structure. Red-emitting materials based on cesium lead halide (CsPb(X)3) perovskite quantum dots were introduced to generate WLEDs with high efficacy and high color rendering index through compensating the red emission of the YAG:Ce phosphor-based commercialized WLEDs. The experimental results suggested that the luminous efficiency and color rendering index of the as-prepared WLED device could reach up to 84.7 lm/W and 89, respectively. The characteristics of those devices including correlated color temperature (CCT), color rendering index (CRI), and color coordinates were observed under different forward currents. The as-fabricated warm WLEDs showed excellent color stability against the increasing current, while the color coordinates shifted slightly from (0.3837, 0.3635) at 20 mA to (0.3772, 0.3592) at 120 mA and color temperature tuned from 3803 to 3953 K.

  17. Evaluating Approaches to Rendering Braille Text on a High-Density Pin Display.

    PubMed

    Morash, Valerie S; Russomanno, Alexander; Gillespie, R Brent; OModhrain, Sile

    2017-10-13

    Refreshable displays for tactile graphics are typically composed of pins that have smaller diameters and spacing than standard braille dots. We investigated configurations of high-density pins to form braille text on such displays using non-refreshable stimuli produced with a 3D printer. Normal dot braille (diameter 1.5 mm) was compared to high-density dot braille (diameter 0.75 mm) wherein each normal dot was rendered by high-density simulated pins alone or in a cluster of pins configured in a diamond, X, or square; and to "blobs" that could result from covering normal braille and high-density multi-pin configurations with a thin membrane. Twelve blind participants read MNREAD sentences displayed in these conditions. For high-density simulated pins, single pins were as quickly and easily read as normal braille, but diamond, X, and square multi-pin configurations were slower and/or harder to read than normal braille. We therefore conclude that as long as center-to-center dot spacing and dot placement is maintained, the dot diameter may be open to variability for rendering braille on a high density tactile display.

  18. Long-term thermophilic mono-digestion of rendering wastes and co-digestion with potato pulp.

    PubMed

    Bayr, S; Ojanperä, M; Kaparaju, P; Rintala, J

    2014-10-01

    In this study, mono-digestion of rendering wastes and co-digestion of rendering wastes with potato pulp were studied for the first time in continuous stirred tank reactor (CSTR) experiments at 55°C. Rendering wastes have high protein and lipid contents and are considered good substrates for methane production. However, accumulation of digestion intermediate products viz., volatile fatty acids (VFAs), long chain fatty acids (LCFAs) and ammonia nitrogen (NH4-N and/or free NH3) can cause process imbalance during the digestion. Mono-digestion of rendering wastes at an organic loading rate (OLR) of 1.5 kg volatile solids (VS)/m(3)d and hydraulic retention time (HRT) of 50 d was unstable and resulted in methane yields of 450 dm(3)/kg VS(fed). On the other hand, co-digestion of rendering wastes with potato pulp (60% wet weight, WW) at the same OLR and HRT improved the process stability and increased methane yields (500-680 dm(3)/kg VS(fed)). Thus, it can be concluded that co-digestion of rendering wastes with potato pulp could improve the process stability and methane yields from these difficult to treat industrial waste materials. Copyright © 2014 Elsevier Ltd. All rights reserved.

  19. Interactive distributed hardware-accelerated LOD-sprite terrain rendering with stable frame rates

    NASA Astrophysics Data System (ADS)

    Swan, J. E., II; Arango, Jesus; Nakshatrala, Bala K.

    2002-03-01

    A stable frame rate is important for interactive rendering systems. Image-based modeling and rendering (IBMR) techniques, which model parts of the scene with image sprites, are a promising technique for interactive systems because they allow the sprite to be manipulated instead of the underlying scene geometry. However, with IBMR techniques a frequent problem is an unstable frame rate, because generating an image sprite (with 3D rendering) is time-consuming relative to manipulating the sprite (with 2D image resampling). This paper describes one solution to this problem, by distributing an IBMR technique into a collection of cooperating threads and executable programs across two computers. The particular IBMR technique distributed here is the LOD-Sprite algorithm. This technique uses a multiple level-of-detail (LOD) scene representation. It first renders a keyframe from a high-LOD representation, and then caches the frame as an image sprite. It renders subsequent spriteframes by texture-mapping the cached image sprite into a lower-LOD representation. We describe a distributed architecture and implementation of LOD-Sprite, in the context of terrain rendering, which takes advantage of graphics hardware. We present timing results which indicate we have achieved a stable frame rate. In addition to LOD-Sprite, our distribution method holds promise for other IBMR techniques.

  20. High-fidelity real-time maritime scene rendering

    NASA Astrophysics Data System (ADS)

    Shyu, Hawjye; Taczak, Thomas M.; Cox, Kevin; Gover, Robert; Maraviglia, Carlos; Cahill, Colin

    2011-06-01

    The ability to simulate authentic engagements using real-world hardware is an increasingly important tool. For rendering maritime environments, scene generators must be capable of rendering radiometrically accurate scenes with correct temporal and spatial characteristics. When the simulation is used as input to real-world hardware or human observers, the scene generator must operate in real-time. This paper introduces a novel, real-time scene generation capability for rendering radiometrically accurate scenes of backgrounds and targets in maritime environments. The new model is an optimized and parallelized version of the US Navy CRUISE_Missiles rendering engine. It was designed to accept environmental descriptions and engagement geometry data from external sources, render a scene, transform the radiometric scene using the electro-optical response functions of a sensor under test, and output the resulting signal to real-world hardware. This paper reviews components of the scene rendering algorithm, and details the modifications required to run this code in real-time. A description of the simulation architecture and interfaces to external hardware and models is presented. Performance assessments of the frame rate and radiometric accuracy of the new code are summarized. This work was completed in FY10 under Office of Secretary of Defense (OSD) Central Test and Evaluation Investment Program (CTEIP) funding and will undergo a validation process in FY11.

  1. Identification of Vibrotactile Patterns Encoding Obstacle Distance Information.

    PubMed

    Kim, Yeongmi; Harders, Matthias; Gassert, Roger

    2015-01-01

    Delivering distance information of nearby obstacles from sensors embedded in a white cane-in addition to the intrinsic mechanical feedback from the cane-can aid the visually impaired in ambulating independently. Haptics is a common modality for conveying such information to cane users, typically in the form of vibrotactile signals. In this context, we investigated the effect of tactile rendering methods, tactile feedback configurations and directions of tactile flow on the identification of obstacle distance. Three tactile rendering methods with temporal variation only, spatio-temporal variation and spatial/temporal/intensity variation were investigated for two vibration feedback configurations. Results showed a significant interaction between tactile rendering method and feedback configuration. Spatio-temporal variation generally resulted in high correct identification rates for both feedback configurations. In the case of the four-finger vibration, tactile rendering with spatial/temporal/intensity variation also resulted in high distance identification rate. Further, participants expressed their preference for the four-finger vibration over the single-finger vibration in a survey. Both preferred rendering methods with spatio-temporal variation and spatial/temporal/intensity variation for the four-finger vibration could convey obstacle distance information with low workload. Overall, the presented findings provide valuable insights and guidance for the design of haptic displays for electronic travel aids for the visually impaired.

  2. Detection of compression vessels in trigeminal neuralgia by surface-rendering three-dimensional reconstruction of 1.5- and 3.0-T magnetic resonance imaging.

    PubMed

    Shimizu, Masahiro; Imai, Hideaki; Kagoshima, Kaiei; Umezawa, Eriko; Shimizu, Tsuneo; Yoshimoto, Yuhei

    2013-01-01

    Surface-rendered three-dimensional (3D) 1.5-T magnetic resonance (MR) imaging is useful for presurgical simulation of microvascular decompression. This study compared the sensitivity and specificity of 1.5- and 3.0-T surface-rendered 3D MR imaging for preoperative identification of the compression vessels of trigeminal neuralgia. One hundred consecutive patients underwent microvascular decompression for trigeminal neuralgia. Forty and 60 patients were evaluated by 1.5- and 3.0-T MR imaging, respectively. Three-dimensional MR images were constructed on the basis of MR imaging, angiography, and venography data and evaluated to determine the compression vessel before surgery. MR imaging findings were compared with the microsurgical findings to compare the sensitivity and specificity of 1.5- and 3.0-T MR imaging. The agreement between MR imaging and surgical findings depended on the compression vessels. For superior cerebellar artery, 1.5- and 3.0-T MR imaging had 84.4% and 82.7% sensitivity and 100% and 100% specificity, respectively. For anterior inferior cerebellar artery, 1.5- and 3.0-T MR imaging had 33.3% and 50% sensitivity and 92.9% and 95% specificity, respectively. For the petrosal vein, 1.5- and 3.0-T MR imaging had 75% and 64.3% sensitivity and 79.2% and 78.1% specificity, respectively. Complete pain relief was obtained in 36 of 40 and 55 of 60 patients undergoing 1.5- and 3.0-T MR imaging, respectively. The present study showed that both 1.5- and 3.0-T MR imaging provided high sensitivity and specificity for preoperative assessment of the compression vessels of trigeminal neuralgia. Preoperative 3D imaging provided very high quality presurgical simulation, resulting in excellent clinical outcomes. Copyright © 2013 Elsevier Inc. All rights reserved.

  3. Sketchy Rendering for Information Visualization.

    PubMed

    Wood, J; Isenberg, P; Isenberg, T; Dykes, J; Boukhelifa, N; Slingsby, A

    2012-12-01

    We present and evaluate a framework for constructing sketchy style information visualizations that mimic data graphics drawn by hand. We provide an alternative renderer for the Processing graphics environment that redefines core drawing primitives including line, polygon and ellipse rendering. These primitives allow higher-level graphical features such as bar charts, line charts, treemaps and node-link diagrams to be drawn in a sketchy style with a specified degree of sketchiness. The framework is designed to be easily integrated into existing visualization implementations with minimal programming modification or design effort. We show examples of use for statistical graphics, conveying spatial imprecision and for enhancing aesthetic and narrative qualities of visualization. We evaluate user perception of sketchiness of areal features through a series of stimulus-response tests in order to assess users' ability to place sketchiness on a ratio scale, and to estimate area. Results suggest relative area judgment is compromised by sketchy rendering and that its influence is dependent on the shape being rendered. They show that degree of sketchiness may be judged on an ordinal scale but that its judgement varies strongly between individuals. We evaluate higher-level impacts of sketchiness through user testing of scenarios that encourage user engagement with data visualization and willingness to critique visualization design. Results suggest that where a visualization is clearly sketchy, engagement may be increased and that attitudes to participating in visualization annotation are more positive. The results of our work have implications for effective information visualization design that go beyond the traditional role of sketching as a tool for prototyping or its use for an indication of general uncertainty.

  4. Nonlinear Detection, Estimation, and Control for Free-Space Optical Communication

    DTIC Science & Technology

    2008-08-17

    original message. The promising features of this communication scheme such as high-bandwidth, power efficiency, and security, render it a viable means...bandwidth, power efficiency, and security, render it a viable means for high data rate point-to-point communication. In this dissertation, we adopt a...Department of Electrical and Computer Engineering In free-space optical communication, the intensity of a laser beam is modulated by a message, the beam

  5. Openwebglobe 2: Visualization of Complex 3D-GEODATA in the (mobile) Webbrowser

    NASA Astrophysics Data System (ADS)

    Christen, M.

    2016-06-01

    Providing worldwide high resolution data for virtual globes consists of compute and storage intense tasks for processing data. Furthermore, rendering complex 3D-Geodata, such as 3D-City models with an extremely high polygon count and a vast amount of textures at interactive framerates is still a very challenging task, especially on mobile devices. This paper presents an approach for processing, caching and serving massive geospatial data in a cloud-based environment for large scale, out-of-core, highly scalable 3D scene rendering on a web based virtual globe. Cloud computing is used for processing large amounts of geospatial data and also for providing 2D and 3D map data to a large amount of (mobile) web clients. In this paper the approach for processing, rendering and caching very large datasets in the currently developed virtual globe "OpenWebGlobe 2" is shown, which displays 3D-Geodata on nearly every device.

  6. [INVITED] Surface plasmon cavities on optical fiber end-facets for biomolecule and ultrasound detection

    NASA Astrophysics Data System (ADS)

    Yang, Tian; He, Xiaolong; Zhou, Xin; Lei, Zeyu; Wang, Yalin; Yang, Jie; Cai, De; Chen, Sung-Liang; Wang, Xueding

    2018-05-01

    Integrating surface plasmon resonance (SPR) devices upon single-mode fiber (SMF) end facets renders label-free sensing systems that have a simple dip-and-read configuration, a small form factor, high compatibility with fiber-optic techniques, and invasive testing capability. Such devices are not only low cost replacement of current equipments in centralized laboratories, but also highly desirable for opening paths to new applications of label-free optical sensing technologies, such as point-of-care immunological tests and intravascular ultrasound imaging. In this paper, we explain the requirements and challenges for such devices from the perspectives of biomolecule and ultrasound detection applications. In such a context, we review our recent work on SMF end-facet SPR cavities. This include a glue-and-strip fabrication method to transfer a nano-patterned thin gold film to the SMF end-facet with high yield, high quality and high alignment precision, the designs of distributed Bragg reflector (DBR) and distributed feedback (DFB) SPR cavities that couple efficiently with the SMF guided mode and reach quality factors of over 100, and the preliminary results for biomolecule interaction sensing and ultrasound detection. The particular advantages and potential values of these devices have been discussed, in terms of sensitivity, data reliability, reproducibility, bandwidth, etc.

  7. k(+)-buffer: An Efficient, Memory-Friendly and Dynamic k-buffer Framework.

    PubMed

    Vasilakis, Andreas-Alexandros; Papaioannou, Georgios; Fudos, Ioannis

    2015-06-01

    Depth-sorted fragment determination is fundamental for a host of image-based techniques which simulates complex rendering effects. It is also a challenging task in terms of time and space required when rasterizing scenes with high depth complexity. When low graphics memory requirements are of utmost importance, k-buffer can objectively be considered as the most preferred framework which advantageously ensures the correct depth order on a subset of all generated fragments. Although various alternatives have been introduced to partially or completely alleviate the noticeable quality artifacts produced by the initial k-buffer algorithm in the expense of memory increase or performance downgrade, appropriate tools to automatically and dynamically compute the most suitable value of k are still missing. To this end, we introduce k(+)-buffer, a fast framework that accurately simulates the behavior of k-buffer in a single rendering pass. Two memory-bounded data structures: (i) the max-array and (ii) the max-heap are developed on the GPU to concurrently maintain the k-foremost fragments per pixel by exploring pixel synchronization and fragment culling. Memory-friendly strategies are further introduced to dynamically (a) lessen the wasteful memory allocation of individual pixels with low depth complexity frequencies, (b) minimize the allocated size of k-buffer according to different application goals and hardware limitations via a straightforward depth histogram analysis and (c) manage local GPU cache with a fixed-memory depth-sorting mechanism. Finally, an extensive experimental evaluation is provided demonstrating the advantages of our work over all prior k-buffer variants in terms of memory usage, performance cost and image quality.

  8. School Climate and Restructuring for Low-Achieving Students.

    ERIC Educational Resources Information Center

    Smey-Richman, Barbara

    Although analogous and vague definitions of school climate may help in determining whether low-achieving students are experiencing a more positive or negative school climate, more clarity is needed to render the climate construct more observable, measurable, and malleable. Tagiuri conceptualizes climate as the total environmental quality within an…

  9. 78 FR 70014 - Submission for OMB Review; Comment Request

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-11-22

    ... submit to the Office of Management and Budget (OMB) for clearance the following proposal for collection... quantity and of comparable quality so as to render the control ineffective. Affected Public: Businesses and... by fax to (202) 395-5167. Dated: November 18, 2013. Gwellnar Banks, Management Analyst, Office of the...

  10. 77 FR 35809 - Revision of Fee Schedules; Fee Recovery for Fiscal Year 2012

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-06-15

    ..., 1974, the U.S. Supreme Court rendered major decisions in two cases, National Cable Television...- submission audit has been useful in improving the quality of applications which helps to expedite reviews... and to support nuclear technology programs at minority- serving institutions. Response. The purposes...

  11. Vermicomposting of food waste: assessing the stability and maturity

    PubMed Central

    2012-01-01

    The vermicompost using earthworms (Eisenia Fetida) was produced from food waste and chemical parameters (EC, pH, carbon to nitrogen contents (C/N)) and germination bioassay was examined in order to assess the stability and maturity indicators during the vermicomposting process. The seed used in the germination bioassay was cress. The ranges of EC, pH, C/N and germination index were 7.5-4.9 mS/cm, 5.6-7.53, 30.13-14.32% and 12.8-58.4%, respectively. The germination index (GI) value revealed that vermicompost rendered as moderate phytotoxic to cress seed. Pearson correlation coefficient was used to evaluate the relationship between the parameters. High statistically significant correlation coefficient was calculated between the GI value and EC in the vermicompost at the 99% confidence level. The C/N value showed that the vermicompost was stable. As a result of these observations, stability test alone, was not able to ensure high vermicompost quality. Therefore, it appears that determining vermicompost quality requires a simultaneous use of maturity and stability tests. PMID:23369642

  12. Highly efficient all-nitride phosphor-converted white light emitting diode

    NASA Astrophysics Data System (ADS)

    Mueller-Mach, Regina; Mueller, Gerd; Krames, Michael R.; Höppe, Henning A.; Stadler, Florian; Schnick, Wolfgang; Juestel, Thomas; Schmidt, Peter

    2005-07-01

    The development and demonstration of a highly efficient warm-white all-nitride phosphor-converted light emitting diode (pc-LED) is presented utilizing a GaN based quantum well blue LED and two novel nitrogen containing luminescent materials, both of which are doped with Eu2+. For color conversion of the primary blue the nitridosilicates M2Si5N8 (orange-red) and MSi2O2N2 (yellow-green), with M = alkaline earth, were employed, thus achieving a high luminous efficiency (25 lumen/W at 1 W input), excellent color quality (correlated color temperature CCT = 3200 K, general color rendering index Ra > 90) and the highest proven color stability of any pc-LED obtained so far. Thus, these novel all-nitride LEDs are superior to both incandescent and fluorescent lamps and may therefore become the next generation of general lighting sources.

  13. Hybrid 3D reconstruction and image-based rendering techniques for reality modeling

    NASA Astrophysics Data System (ADS)

    Sequeira, Vitor; Wolfart, Erik; Bovisio, Emanuele; Biotti, Ester; Goncalves, Joao G. M.

    2000-12-01

    This paper presents a component approach that combines in a seamless way the strong features of laser range acquisition with the visual quality of purely photographic approaches. The relevant components of the system are: (i) Panoramic images for distant background scenery where parallax is insignificant; (ii) Photogrammetry for background buildings and (iii) High detailed laser based models for the primary environment, structure of exteriors of buildings and interiors of rooms. These techniques have a wide range of applications in visualization, virtual reality, cost effective as-built analysis of architectural and industrial environments, building facilities management, real-estate, E-commerce, remote inspection of hazardous environments, TV production and many others.

  14. High-quality remote interactive imaging in the operating theatre

    NASA Astrophysics Data System (ADS)

    Grimstead, Ian J.; Avis, Nick J.; Evans, Peter L.; Bocca, Alan

    2009-02-01

    We present a high-quality display system that enables the remote access within an operating theatre of high-end medical imaging and surgical planning software. Currently, surgeons often use printouts from such software for reference during surgery; our system enables surgeons to access and review patient data in a sterile environment, viewing real-time renderings of MRI & CT data as required. Once calibrated, our system displays shades of grey in Operating Room lighting conditions (removing any gamma correction artefacts). Our system does not require any expensive display hardware, is unobtrusive to the remote workstation and works with any application without requiring additional software licenses. To extend the native 256 levels of grey supported by a standard LCD monitor, we have used the concept of "PseudoGrey" where slightly off-white shades of grey are used to extend the intensity range from 256 to 1,785 shades of grey. Remote access is facilitated by a customized version of UltraVNC, which corrects remote shades of grey for display in the Operating Room. The system is successfully deployed at Morriston Hospital, Swansea, UK, and is in daily use during Maxillofacial surgery. More formal user trials and quantitative assessments are being planned for the future.

  15. Interactive dual-volume rendering visualization with real-time fusion and transfer function enhancement

    NASA Astrophysics Data System (ADS)

    Macready, Hugh; Kim, Jinman; Feng, David; Cai, Weidong

    2006-03-01

    Dual-modality imaging scanners combining functional PET and anatomical CT constitute a challenge in volumetric visualization that can be limited by the high computational demand and expense. This study aims at providing physicians with multi-dimensional visualization tools, in order to navigate and manipulate the data running on a consumer PC. We have maximized the utilization of pixel-shader architecture of the low-cost graphic hardware and the texture-based volume rendering to provide visualization tools with high degree of interactivity. All the software was developed using OpenGL and Silicon Graphics Inc. Volumizer, tested on a Pentium mobile CPU on a PC notebook with 64M graphic memory. We render the individual modalities separately, and performing real-time per-voxel fusion. We designed a novel "alpha-spike" transfer function to interactively identify structure of interest from volume rendering of PET/CT. This works by assigning a non-linear opacity to the voxels, thus, allowing the physician to selectively eliminate or reveal information from the PET/CT volumes. As the PET and CT are rendered independently, manipulations can be applied to individual volumes, for instance, the application of transfer function to CT to reveal the lung boundary while adjusting the fusion ration between the CT and PET to enhance the contrast of a tumour region, with the resultant manipulated data sets fused together in real-time as the adjustments are made. In addition to conventional navigation and manipulation tools, such as scaling, LUT, volume slicing, and others, our strategy permits efficient visualization of PET/CT volume rendering which can potentially aid in interpretation and diagnosis.

  16. Fast software-based volume rendering using multimedia instructions on PC platforms and its application to virtual endoscopy

    NASA Astrophysics Data System (ADS)

    Mori, Kensaku; Suenaga, Yasuhito; Toriwaki, Jun-ichiro

    2003-05-01

    This paper describes a software-based fast volume rendering (VolR) method on a PC platform by using multimedia instructions, such as SIMD instructions, which are currently available in PCs' CPUs. This method achieves fast rendering speed through highly optimizing software rather than an improved rendering algorithm. In volume rendering using a ray casting method, the system requires fast execution of the following processes: (a) interpolation of voxel or color values at sample points, (b) computation of normal vectors (gray-level gradient vectors), (c) calculation of shaded values obtained by dot-products of normal vectors and light source direction vectors, (d) memory access to a huge area, and (e) efficient ray skipping at translucent regions. The proposed software implements these fundamental processes in volume rending by using special instruction sets for multimedia processing. The proposed software can generate virtual endoscopic images of a 3-D volume of 512x512x489 voxel size by volume rendering with perspective projection, specular reflection, and on-the-fly normal vector computation on a conventional PC without any special hardware at thirteen frames per second. Semi-translucent display is also possible.

  17. Amine-derived synthetic approach to color-tunable InP/ZnS quantum dots with high fluorescent qualities

    NASA Astrophysics Data System (ADS)

    Song, Woo-Seuk; Lee, Hye-Seung; Lee, Ju Chul; Jang, Dong Seon; Choi, Yoonyoung; Choi, Moongoo; Yang, Heesun

    2013-06-01

    High-quality, Cd-free InP quantum dots (QDs) have been conventionally synthesized by exclusively selecting tris(trimethylsilyl)phosphine (P(TMS)3) as a phosphorus (P) precursor, which is problematic from the standpoint of green and economic chemistry. Thus, other synthetic chemistries adopting alternative P sources to P(TMS)3 have been introduced, however, they could not guarantee the production of satisfactorily fluorescence-efficient, color-pure InP QDs. In this study, the unprecedented controlled synthesis of a series of band-gap-tuned InP QDs is demonstrated through a hot-injection of a far safer and cheaper tris(dimethylamino)phosphine in the presence of a key coordinating solvent of oleylamine that enables successful QD nucleation/growth. Effects of the co-existence of Zn additive, the core growth temperature, and the amount of P source injected on the growth behaviors of InP QD are investigated. After ZnS overcoating by a successive injection of 1-dodecanethiol only, high-fluorescence-quality, green-to-red color emission-tunable core/shell QDs of InP/ZnS are obtained. The fluorescent characteristics of different color-emitting QDs desirably exhibit little fluctuations in quantum yield and emission bandwidth, specifically ranging 51-53 % and 60-64 nm, respectively. Lastly, the utility of the introduction of a secondary shelling process in rendering the QDs are more bright, photostable is also proved.

  18. Automatic Perceptual Color Map Generation for Realistic Volume Visualization

    PubMed Central

    Silverstein, Jonathan C.; Parsad, Nigel M.; Tsirline, Victor

    2008-01-01

    Advances in computed tomography imaging technology and inexpensive high performance computer graphics hardware are making high-resolution, full color (24-bit) volume visualizations commonplace. However, many of the color maps used in volume rendering provide questionable value in knowledge representation and are non-perceptual thus biasing data analysis or even obscuring information. These drawbacks, coupled with our need for realistic anatomical volume rendering for teaching and surgical planning, has motivated us to explore the auto-generation of color maps that combine natural colorization with the perceptual discriminating capacity of grayscale. As evidenced by the examples shown that have been created by the algorithm described, the merging of perceptually accurate and realistically colorized virtual anatomy appears to insightfully interpret and impartially enhance volume rendered patient data. PMID:18430609

  19. Nurse occupational burnout and patient-rated quality of care: The boundary conditions of emotional intelligence and demographic profiles.

    PubMed

    Chao, Minston; Shih, Chih-Ting; Hsu, Shu-Fen

    2016-01-01

    Most previous studies on the relationship between occupational burnout and the quality of care among nurses have used self-reported data on the quality of care from nurses, thus rendering evaluating the relationship between burnout and the quality of care difficult. Hospitals increasingly hire contract nurses and high turnover rates remain a concern. Little is known about whether nurses' emotional intelligence and demographic factors such as contract status, tenure, and marital status affect the quality of care when burnout occurs. This study investigated the relationship between burnout and patient-rated quality of care and investigated the moderating role of emotional intelligence and demographic variables. Hierarchical moderated regression was used to analyze 98 sets of paired data obtained from nurses and their patients at a teaching hospital in northern Taiwan. The results suggest that occupational burnout has a less unfavorable effect on the quality of care from permanent, married, and senior nurses. Nursing management should pay particular attention to retaining permanent, married, and senior nurses. To ensure a sustainable nursing workforce in the future, newly graduated registered nurses should have access to permanent positions and opportunities for long-term professional development. In addition, married nurses should be provided with flexible work-family arrangements to ensure their satisfaction in the nursing profession. © 2015 Japan Academy of Nursing Science.

  20. Adaptive color demosaicing and false color removal

    NASA Astrophysics Data System (ADS)

    Guarnera, Mirko; Messina, Giuseppe; Tomaselli, Valeria

    2010-04-01

    Color interpolation solutions drastically influence the quality of the whole image generation pipeline, so they must guarantee the rendering of high quality pictures by avoiding typical artifacts such as blurring, zipper effects, and false colors. Moreover, demosaicing should avoid emphasizing typical artifacts of real sensors data, such as noise and green imbalance effect, which would be further accentuated by the subsequent steps of the processing pipeline. We propose a new adaptive algorithm that decides the interpolation technique to apply to each pixel, according to its neighborhood analysis. Edges are effectively interpolated through a directional filtering approach that interpolates the missing colors, selecting the suitable filter depending on edge orientation. Regions close to edges are interpolated through a simpler demosaicing approach. Thus flat regions are identified and low-pass filtered to eliminate some residual noise and to minimize the annoying green imbalance effect. Finally, an effective false color removal algorithm is used as a postprocessing step to eliminate residual color errors. The experimental results show how sharp edges are preserved, whereas undesired zipper effects are reduced, improving the edge resolution itself and obtaining superior image quality.

  1. RenderView: physics-based multi- and hyperspectral rendering using measured background panoramics

    NASA Astrophysics Data System (ADS)

    Talcott, Denise M.; Brown, Wade W.; Thomas, David J.

    2003-09-01

    As part of the survivability engineering process it is necessary to accurately model and visualize the vehicle signatures in multi- or hyperspectral bands of interest. The signature at a given wavelength is a function of the surface optical properties, reflection of the background and, in the thermal region, the emission of thermal radiation. Currently, it is difficult to obtain and utilize background models that are of sufficient fidelity when compared with the vehicle models. In addition, the background models create an additional layer of uncertainty in estimating the vehicles signature. Therefore, to meet exacting rendering requirements we have developed RenderView, which incorporates the full bidirectional reflectance distribution function (BRDF). Instead of using a modeled background we have incorporated a measured calibrated background panoramic image to provide the high fidelity background interaction. Uncertainty in the background signature is reduced to the error in the measurement which is considerably smaller than the uncertainty inherent in a modeled background. RenderView utilizes a number of different descriptions of the BRDF, including the Sandford-Robertson. In addition, it provides complete conservation of energy with off axis sampling. A description of RenderView will be presented along with a methodology developed for collecting background panoramics. Examples of the RenderView output and the background panoramics will be presented along with our approach to handling the solar irradiance problem.

  2. Exposure Render: An Interactive Photo-Realistic Volume Rendering Framework

    PubMed Central

    Kroes, Thomas; Post, Frits H.; Botha, Charl P.

    2012-01-01

    The field of volume visualization has undergone rapid development during the past years, both due to advances in suitable computing hardware and due to the increasing availability of large volume datasets. Recent work has focused on increasing the visual realism in Direct Volume Rendering (DVR) by integrating a number of visually plausible but often effect-specific rendering techniques, for instance modeling of light occlusion and depth of field. Besides yielding more attractive renderings, especially the more realistic lighting has a positive effect on perceptual tasks. Although these new rendering techniques yield impressive results, they exhibit limitations in terms of their exibility and their performance. Monte Carlo ray tracing (MCRT), coupled with physically based light transport, is the de-facto standard for synthesizing highly realistic images in the graphics domain, although usually not from volumetric data. Due to the stochastic sampling of MCRT algorithms, numerous effects can be achieved in a relatively straight-forward fashion. For this reason, we have developed a practical framework that applies MCRT techniques also to direct volume rendering (DVR). With this work, we demonstrate that a host of realistic effects, including physically based lighting, can be simulated in a generic and flexible fashion, leading to interactive DVR with improved realism. In the hope that this improved approach to DVR will see more use in practice, we have made available our framework under a permissive open source license. PMID:22768292

  3. Fast Physically Correct Refocusing for Sparse Light Fields Using Block-Based Multi-Rate View Interpolation.

    PubMed

    Huang, Chao-Tsung; Wang, Yu-Wen; Huang, Li-Ren; Chin, Jui; Chen, Liang-Gee

    2017-02-01

    Digital refocusing has a tradeoff between complexity and quality when using sparsely sampled light fields for low-storage applications. In this paper, we propose a fast physically correct refocusing algorithm to address this issue in a twofold way. First, view interpolation is adopted to provide photorealistic quality at infocus-defocus hybrid boundaries. Regarding its conventional high complexity, we devised a fast line-scan method specifically for refocusing, and its 1D kernel can be 30× faster than the benchmark View Synthesis Reference Software (VSRS)-1D-Fast. Second, we propose a block-based multi-rate processing flow for accelerating purely infocused or defocused regions, and a further 3- 34× speedup can be achieved for high-resolution images. All candidate blocks of variable sizes can interpolate different numbers of rendered views and perform refocusing in different subsampled layers. To avoid visible aliasing and block artifacts, we determine these parameters and the simulated aperture filter through a localized filter response analysis using defocus blur statistics. The final quadtree block partitions are then optimized in terms of computation time. Extensive experimental results are provided to show superior refocusing quality and fast computation speed. In particular, the run time is comparable with the conventional single-image blurring, which causes serious boundary artifacts.

  4. Effects of sample treatments on genome recovery via single-cell genomics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Clingenpeel, Scott; Schwientek, Patrick; Hugenholtz, Philip

    2014-06-13

    It is known that single-cell genomics is a powerful tool for accessing genetic information from uncultivated microorganisms. Methods of handling samples before single-cell genomic amplification may affect the quality of the genomes obtained. Using three bacterial strains we demonstrate that, compared to cryopreservation, lower-quality single-cell genomes are recovered when the sample is preserved in ethanol or if the sample undergoes fluorescence in situ hybridization, while sample preservation in paraformaldehyde renders it completely unsuitable for sequencing.

  5. [Errors in medical care rendered by military treatment and prevention institutions (according to the data of forensic medical expertise].

    PubMed

    Kolkutin, V V; Fetisov, V A

    2003-12-01

    The authors discuss one of the important aspects of military medicolegal laboratory activities connected with the quality control of medical care rendered in the military treatment-and-prophylactic institutions in the nineties of the XX century. The example of medical care defects (MCD) permitted to reveal their nature, causes and sites of origin at pre-hospital (PHS) and hospital (HS) stages. Despite some decrease in the total number of MCD revealed HS defects prevail (more than 75%); the organizational defects at PHS and diagnostic defects at HS are predominant. The main MCD causes are inadequate qualification of medical workers, defects in organization of treatment-and-diagnostic process and inadequate examination of patients.

  6. MovieMaker: a web server for rapid rendering of protein motions and interactions

    PubMed Central

    Maiti, Rajarshi; Van Domselaar, Gary H.; Wishart, David S.

    2005-01-01

    MovieMaker is a web server that allows short (∼10 s), downloadable movies of protein motions to be generated. It accepts PDB files or PDB accession numbers as input and automatically calculates, renders and merges the necessary image files to create colourful animations covering a wide range of protein motions and other dynamic processes. Users have the option of animating (i) simple rotation, (ii) morphing between two end-state conformers, (iii) short-scale, picosecond vibrations, (iv) ligand docking, (v) protein oligomerization, (vi) mid-scale nanosecond (ensemble) motions and (vii) protein folding/unfolding. MovieMaker does not perform molecular dynamics calculations. Instead it is an animation tool that uses a sophisticated superpositioning algorithm in conjunction with Cartesian coordinate interpolation to rapidly and automatically calculate the intermediate structures needed for many of its animations. Users have extensive control over the rendering style, structure colour, animation quality, background and other image features. MovieMaker is intended to be a general-purpose server that allows both experts and non-experts to easily generate useful, informative protein animations for educational and illustrative purposes. MovieMaker is accessible at . PMID:15980488

  7. Rapid anatomical brain imaging using spiral acquisition and an expanded signal model.

    PubMed

    Kasper, Lars; Engel, Maria; Barmet, Christoph; Haeberlin, Maximilian; Wilm, Bertram J; Dietrich, Benjamin E; Schmid, Thomas; Gross, Simon; Brunner, David O; Stephan, Klaas E; Pruessmann, Klaas P

    2018-03-01

    We report the deployment of spiral acquisition for high-resolution structural imaging at 7T. Long spiral readouts are rendered manageable by an expanded signal model including static off-resonance and B 0 dynamics along with k-space trajectories and coil sensitivity maps. Image reconstruction is accomplished by inversion of the signal model using an extension of the iterative non-Cartesian SENSE algorithm. Spiral readouts up to 25 ms are shown to permit whole-brain 2D imaging at 0.5 mm in-plane resolution in less than a minute. A range of options is explored, including proton-density and T 2 * contrast, acceleration by parallel imaging, different readout orientations, and the extraction of phase images. Results are shown to exhibit competitive image quality along with high geometric consistency. Copyright © 2017 Elsevier Inc. All rights reserved.

  8. Microwave Ablation (MWA) for the Treatment of a Solitary, Chemorefractory Testicular Cancer Liver Metastasis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Violari, Elena G., E-mail: eviolari@live.com; Petre, Elena N., E-mail: petree@mskcc.org; Feldman, Darren R., E-mail: feldmand@mskcc.org

    2015-04-15

    We present a case of a patient with stage IIIC metastatic seminoma with a persistent chemorefractory liver lesion. The patient was deemed a poor surgical candidate due to the tumor’s aggressive biology with numerous other liver lesions treated with chemotherapy and a relatively high probability for additional recurrences. Further chemotherapy with curative intent was not a feasible option due to the fact that the patient had already received second-line high-dose chemotherapy and four cycles of third-line treatment complicated by renal failure, refractory thrombocytopenia, and debilitating neuropathy. After initial failure of laser, microwave ablation of the chemorefractory liver metastasis resulted inmore » prolonged local tumor control and rendered the patient disease-free for more than 35 months, allowing him to regain an improved quality of life.« less

  9. A transparent look at the measurement and application of colour rendering in the use of LED light sources

    NASA Astrophysics Data System (ADS)

    Leuschner, F. W.; Van Der Westhuyzen, J. G. J.

    2014-06-01

    The technology for the measurement of colour rendering and colour quality is not new, but many parameters related to this issue are currently changing. A number of standard methods were developed and are used by different specialty areas of the lighting industry. CIE 13.3 has been the accepted standard implemented by many users and used for many years. Light-emitting Diode (LED) technology moves at a rapid pace and, as this lighting source finds wider acceptance, it appears that traditional colour-rendering measurement methods produce inconsistent results. Practical application of various types of LEDs yielded results that challenged conventional thinking regarding colour measurement of light sources. Recent studies have shown that the anatomy and physiology of the human eye is more complex than formerly accepted. Therefore, the development of updated measurement methodology also forces a fresh look at functioning and colour perception of the human eye, especially with regard to LEDs. This paper includes a short description of the history and need for the measurement of colour rendering. Some of the traditional measurement methods are presented and inadequacies are discussed. The latest discoveries regarding the functioning of the human eye and the perception of colour, especially when LEDs are used as light sources, are discussed. The unique properties of LEDs when used in practical applications such as luminaires are highlighted.

  10. Development of a reliable experimental set-up for Dover sole larvae Solea solea L. and exploring the possibility of implementing this housing system in a gnotobiotic model.

    PubMed

    De Swaef, Evelien; Demeestere, Kristof; Boon, Nico; Van den Broeck, Wim; Haesebrouck, Freddy; Decostere, Annemie

    2017-12-01

    Due to the increasing importance of the aquaculture sector, diversification in the number of cultured species imposes itself. Dover sole Solea solea L. is put forward as an important new aquaculture candidate due to its high market value and high flesh quality. However, as for many other fish species, sole production is hampered by amongst others high susceptibility to diseases and larval mortality, rendering the need for more research in this area. In this respect, in first instance, a housing system for Dover sole larvae was pinpointed by keeping the animals individually in 24-well plates for 26days with good survival rates and initiating metamorphosis. This ensures a standardised and reliable experimental set-up in which the possible death of one larva has no effect on the other larvae, rendering experiments adopting such a system more reproducible. In addition to proving valuable in many other applications, this multi well system constitutes a firm basis to enable the gnotobiotic rearing of larvae, which hitherto is non-existing for Dover sole. In this respect, secondly, a large number of disinfection protocols were tested, making use of widely employed disinfectants as hydrogen peroxide, glutaraldehyde and/or ozone whether or not combined with a mixture of antimicrobial agents for 24h. Although none of the tested protocols was sufficient to reproducibly generate a gnotobiotic model, the combination of glutaraldehyde and hydrogen peroxide resulted in hatchable, bacteria-free eggs in some cases. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Bio-inspired color image enhancement

    NASA Astrophysics Data System (ADS)

    Meylan, Laurence; Susstrunk, Sabine

    2004-06-01

    Capturing and rendering an image that fulfills the observer's expectations is a difficult task. This is due to the fact that the signal reaching the eye is processed by a complex mechanism before forming a percept, whereas a capturing device only retains the physical value of light intensities. It is especially difficult to render complex scenes with highly varying luminances. For example, a picture taken inside a room where objects are visible through the windows will not be rendered correctly by a global technique. Either details in the dim room will be hidden in shadow or the objects viewed through the window will be too bright. The image has to be treated locally to resemble more closely to what the observer remembers. The purpose of this work is to develop a technique for rendering images based on human local adaptation. We take inspiration from a model of color vision called Retinex. This model determines the perceived color given spatial relationships of the captured signals. Retinex has been used as a computational model for image rendering. In this article, we propose a new solution inspired by Retinex that is based on a single filter applied to the luminance channel. All parameters are image-dependent so that the process requires no parameter tuning. That makes the method more flexible than other existing ones. The presented results show that our method suitably enhances high dynamic range images.

  12. Evaluation of haptic interfaces for simulation of drill vibration in virtual temporal bone surgery.

    PubMed

    Ghasemloonia, Ahmad; Baxandall, Shalese; Zareinia, Kourosh; Lui, Justin T; Dort, Joseph C; Sutherland, Garnette R; Chan, Sonny

    2016-11-01

    Surgical training is evolving from an observership model towards a new paradigm that includes virtual-reality (VR) simulation. In otolaryngology, temporal bone dissection has become intimately linked with VR simulation as the complexity of anatomy demands a high level of surgeon aptitude and confidence. While an adequate 3D visualization of the surgical site is available in current simulators, the force feedback rendered during haptic interaction does not convey vibrations. This lack of vibration rendering limits the simulation fidelity of a surgical drill such as that used in temporal bone dissection. In order to develop an immersive simulation platform capable of haptic force and vibration feedback, the efficacy of hand controllers for rendering vibration in different drilling circumstances needs to be investigated. In this study, the vibration rendering ability of four different haptic hand controllers were analyzed and compared to find the best commercial haptic hand controller. A test-rig was developed to record vibrations encountered during temporal bone dissection and a software was written to render the recorded signals without adding hardware to the system. An accelerometer mounted on the end-effector of each device recorded the rendered vibration signals. The newly recorded vibration signal was compared with the input signal in both time and frequency domains by coherence and cross correlation analyses to quantitatively measure the fidelity of these devices in terms of rendering vibrotactile drilling feedback in different drilling conditions. This method can be used to assess the vibration rendering ability in VR simulation systems and selection of ideal haptic devices. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. Application of Virtual and Augmented reality to geoscientific teaching and research.

    NASA Astrophysics Data System (ADS)

    Hodgetts, David

    2017-04-01

    The geological sciences are the ideal candidate for the application of Virtual Reality (VR) and Augmented Reality (AR). Digital data collection techniques such as laser scanning, digital photogrammetry and the increasing use of Unmanned Aerial Vehicles (UAV) or Small Unmanned Aircraft (SUA) technology allow us to collect large datasets efficiently and evermore affordably. This linked with the recent resurgence in VR and AR technologies make these 3D digital datasets even more valuable. These advances in VR and AR have been further supported by rapid improvements in graphics card technologies, and by development of high performance software applications to support them. Visualising data in VR is more complex than normal 3D rendering, consideration needs to be given to latency, frame-rate and the comfort of the viewer to enable reasonably long immersion time. Each frame has to be rendered from 2 viewpoints (one for each eye) requiring twice the rendering than for normal monoscopic views. Any unnatural effects (e.g. incorrect lighting) can lead to an uncomfortable VR experience so these have to be minimised. With large digital outcrop datasets comprising 10's-100's of millions of triangles this is challenging but achievable. Apart from the obvious "wow factor" of VR there are some serious applications. It is often the case that users of digital outcrop data do not appreciate the size of features they are dealing with. This is not the case when using correctly scaled VR, and a true sense of scale can be achieved. In addition VR provides an excellent way of performing quality control on 3D models and interpretations and errors are much more easily visible. VR models can then be used to create content that can then be used in AR applications closing the loop and taking interpretations back into the field.

  14. Quantitative analysis of the breath-holding half-Fourier acquisition single-shot turbo spin-echo technique in abdominal MRI

    NASA Astrophysics Data System (ADS)

    Dong, Kyung-Rae; Goo, Eun-Hoe; Lee, Jae-Seung; Chung, Woon-Kwan

    2013-01-01

    A consecutive series of 50 patients (28 males and 22 females) who underwent hepatic magnetic resonance imaging (MRI) from August to December 2011 were enrolled in this study. The appropriate parameters for abdominal MRI scans were determined by comparing the images (TE = 90 and 128 msec) produced using the half-Fourier acquisition single-shot turbo spin-echo (HASTE) technique at different signal acquisition times. The patients consisted of 15 normal patients, 25 patients with a hepatoma and 10 patients with a hemangioma. The TE in a single patient was set to either 90 msec or 128 msec. This was followed by measurements using the four normal rendering methods of the biliary tract system and the background signal intensity using the maximal signal intensity techniques in the liver, spleen, pancreas, gallbladder, fat, muscles and hemangioma. The signal-to-noise and the contrast-to-noise ratios were obtained. The image quality was assessed subjectively, and the results were compared. The signal-to-noise and the contrast-to-noise ratios were significantly higher at TE = 128 msec than at TE = 90 when diseases of the liver, spleen, pancreas, gallbladder, and fat and muscles, hepatocellular carcinomas and hemangiomas, and rendering the hepatobiliary tract system based on the maximum signal intensity technique were involved (p < 0.05). In addition, the presence of artifacts, the image clarity and the overall image quality were excellent at TE = 128 msec (p < 0.05). In abdominal MRI, the breath-hold half-Fourier acquisition single-shot turbo spin-echo (HASTE) was found to be effective in illustrating the abdominal organs for TE = 128 msec. Overall, the image quality at TE = 128 msec was better than that at TE = 90 msec due to the improved signal-to-noise (SNR) and contrast-to-noise (CNR) ratios. Overall, the HASTE technique for abdominal MRI based on a high-magnetic field (3.0 T) at a TE of 128 msec can provide useful data.

  15. Simple single-emitting layer hybrid white organic light emitting with high color stability

    NASA Astrophysics Data System (ADS)

    Nguyen, C.; Lu, Z. H.

    2017-10-01

    Simultaneously achieving a high efficiency and color quality at luminance levels required for solid-state lighting has been difficult for white organic light emitting diodes (OLEDs). Single-emitting layer (SEL) white OLEDs, in particular, exhibit a significant tradeoff between efficiency and color stability. Furthermore, despite the simplicity of SEL white OLEDs being its main advantage, the reported device structures are often complicated by the use of multiple blocking layers. In this paper, we report a highly simplified three-layered white OLED that achieves a low turn-on voltage of 2.7 V, an external quantum efficiency of 18.9% and power efficiency of 30 lm/W at 1000 cd/cm2. This simple white OLED also shows good color quality with a color rendering index of 75, CIE coordinates (0.42, 0.46), and little color shifting at high luminance. The device consists of a SEL sandwiched between a hole transport layer and an electron transport layer. The SEL comprises a thermally activated delayer fluorescent molecule having dual functions as a blue emitter and as a host for other lower energy emitters. The improved color stability and efficiency in such a simple device structure is explained as due to the elimination of significant energy barriers at various organic-organic interfaces in the traditional devices having multiple blocking layers.

  16. 40 CFR 1068.101 - What general actions does this regulation prohibit?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ..., operating an engine without a supply of appropriate quality urea if the emissions control system relies on urea to reduce NOx emissions or the use of incorrect fuel or engine oil that renders the emissions... manufacturers of new engines, manufacturers of equipment containing these engines, and manufacturers of new...

  17. 40 CFR 1068.101 - What general actions does this regulation prohibit?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ..., operating an engine without a supply of appropriate quality urea if the emissions control system relies on urea to reduce NOx emissions or the use of incorrect fuel or engine oil that renders the emissions... manufacturers of new engines, manufacturers of equipment containing these engines, and manufacturers of new...

  18. 40 CFR 1068.101 - What general actions does this regulation prohibit?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ..., operating an engine without a supply of appropriate quality urea if the emissions control system relies on urea to reduce NOx emissions or the use of incorrect fuel or engine oil that renders the emissions... manufacturers of new engines, manufacturers of equipment containing these engines, and manufacturers of new...

  19. Observing the Interactive Qualities of L2 Instructional Practices in ESL and FSL Classrooms

    ERIC Educational Resources Information Center

    Zuniga, Michael; Simard, Daphnée

    2016-01-01

    Discourse features that promote the generation of interactionally modified input and output, such as negotiation for meaning, have been shown to significantly enhance second language acquisition. Research has also identified several characteristics of instructional practices that render them more or less propitious to the generation of these…

  20. Discovering the Quantity of Quality: Scoring "Regional Identity" for Quantitative Research

    ERIC Educational Resources Information Center

    Miller, Daniel A.

    2008-01-01

    The variationist paradigm in sociolinguistics is at a disadvantage when dealing with variables that are traditionally treated qualitatively, e.g., "identity". This study essays to level the accuracy and descriptive value of qualitative research in a quantitative setting by rendering such a variable quantitatively accessible. To this end,…

  1. Quality, efficiency, and cost of a physician-assistant-protocol system for managment of diabetes and hypertension.

    PubMed

    Komaroff, A L; Flatley, M; Browne, C; Sherman, H; Fineberg, S E; Knopp, R H

    1976-04-01

    Briefly trained physicians assistants using protocols (clinical algorithms) for diabetes, hypertension, and related chronic arteriosclerotic and hypertensive heart disease abstrated information from the medical record and obtained history and physical examination data on every patient-visit to a city hospital chronic disease clinic over a 18-month period. The care rendered by the protocol system was compared with care rendered by a "traditional" system in the same clinic in which physicians delegated few clinical tasks. Increased thoroughness in collecting clinical data in the protocol system led to an increase in the recognition of new pathology. Outcome criteria reflected equivalent quality of care in both groups. Efficiency time-motion studies demonstrated a 20 per cent saving in physician time with the protocol system. Coct estimates, based on the time spent with patients by various providers and on the laboratory-test-ordering patterns, demonstrated equivalent costs of the two systems, given optimal staffing patterns. Laboratory tests were a major element of the cost of patient care,and the clinical yield per unit cost of different tests varied widely.

  2. Flavor characteristics of seven grades of black tea produced in Turkey.

    PubMed

    Alasalvar, Cesarettin; Topal, Bahar; Serpen, Arda; Bahar, Banu; Pelvan, Ebru; Gökmen, Vural

    2012-06-27

    Seven grades of black tea [high-quality black tea (grades 1-3) and low-quality black tea (grades 4-7)], processed by ÇAYKUR Tea Processing Plant (Rize, Turkey), were compared for their differences in descriptive sensory analysis (DSA), aroma-active compounds (volatile compounds), and taste-active compounds (sugar, organic acid, and free amino acid compositions). Ten flavor attributes such as 'after taste', 'astringency', 'bitter', 'caramel-like', 'floral/sweet', 'green/grassy', 'hay-like', 'malty', 'roasty', and 'seaweed' were identified. Intensities for a number of flavor attributes ('after taste', 'caramel-like', 'malty', and 'seaweed') were not significantly different (p > 0.05) among seven grades of black tea. A total of 57 compounds in seven grades of black tea (14 aldehydes, eight alcohols, eight ketones, two esters, four aromatic hydrocarbons, five aliphatic hydrocarbons, nine terpenes, two pyrazines, one furan, two acids, and two miscellaneous compounds) were tentatively identified. Of these, aldeyhdes comprised more than 50% to the total volatile compounds identified. In general, high-grade quality tea had more volatiles than low-grade quality tea. With respect to taste-active compounds, five sugars, six organic acids, and 18 free amino acids were positively identified in seven grades of black tea, of which fructose, tannic acid, and theanine predominated, respectively. Some variations (p < 0.05), albeit to different extents, were observed among volatile compounds, sugars, organic acids, and free amino acids in seven grades of black tea. The present study suggests that a certain flavor attributes correlate well with taste- and aroma-active compounds. High- and low-quality black teas should not be distinguished solely on the basis of their DSA and taste- and aroma-active compounds. The combination of taste-active compounds together with aroma-active compounds renders combination effects that provide the characteristic flavor of each grade of black tea.

  3. The impact of DRGs on the cost and quality of health care in the United States.

    PubMed

    Davis, C; Rhodes, D J

    1988-01-01

    The prospective Payment System (PPS) represents a fundamental change in the way the United States government reimburses hospitals for medical services covered under Medicare, a federal health care insurance program for the elderly and disabled. PPS replaced the retrospective cost-based system of payment for Medicare services with a prospective payment system. Under PPS, a predetermined specific rate for each discharge dictates payment according to the diagnosis related group (DRG) in which the discharge is classified. The PPS was intended to create financial incentives that encourage hospitals to restrain the use of resources while providing high-quality inpatient care. Both objectives appear to have been met under PPS. Hospital utilization has declined, average length of stay has fallen, and the locus of care has shifted from the inpatient setting to less costly outpatient settings. The growth in inpatient hospital benefits has slowed and the impending insolvency of the Medicare trust fund has been forestalled. Studies have found no deterioration in the quality of care rendered to Medicare beneficiaries. Neither the mortality rate nor the rate of re-admission (presumably related to premature discharge) increased under PPS. Indeed, PPS appears to have enhanced the quality of inpatient care by discouraging unnecessary and potentially harmful procedures, and by encouraging the concentration of complex procedures in facilities in which the high frequency of these procedures promotes efficiency. Incentive-based reimbursement also appears to have contributed to the growth in alternative delivery systems, such as HMOs and PPOs, which contain costs by maintaining a high volume of a limited range of services. The success of the PPS/DRG system in controlling costs and promoting quality in this country suggests its application in other countries, either as a method of reimbursement or as a product line management tool.

  4. 2D photonic crystal layer assisted thiosilicate ceramic plate with red-emitting film for high quality w -LEDs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dai, Wubin; Lei, Yifeng; Zhou, Jia

    In this work, we have succeeded in obtaining high quality warm w-light-emitting-diodes (LEDs) by adopting hybrid two-dimensional (2D) structure of SiNx photonic crystal layer (PCL) assisted cyan-emitting ceramic-plate thiosilicate SrLa2Si2S8:Ce3+ with red-emitting film SrLiAl3N4:Eu2+ phosphor on a 430 nm blue LED chip at 350 mA. 2D SiNx PCL was capped with thiosilicate is because it can enhance the luminous efficacy and maintain the low correlated color temperature (CCT) and high color-rendering index (CRI). High luminous efficacy (82.3 lm/W), high special CRI (R9=75) as well as the low CCT (5431 K) of the optimal w-LED was obtained due to the assistancesmore » of 2D SiNx PCL and narrow-band red-emitting phosphor with the doping percentage at 10 wt%. The synthesis processes, structural analysis, optical properties and LED device performances were detailed investigated to find out the relationship between the optimum composition and good optical properties. Based on intriguing luminescence properties by the 2D SiNx PCL and red-emitting film phosphor introducing, we proclaim this method could also have high potential application in other phosphor-converted w-LEDs.« less

  5. The GlycanBuilder: a fast, intuitive and flexible software tool for building and displaying glycan structures.

    PubMed

    Ceroni, Alessio; Dell, Anne; Haslam, Stuart M

    2007-08-07

    Carbohydrates play a critical role in human diseases and their potential utility as biomarkers for pathological conditions is a major driver for characterization of the glycome. However, the additional complexity of glycans compared to proteins and nucleic acids has slowed the advancement of glycomics in comparison to genomics and proteomics. The branched nature of carbohydrates, the great diversity of their constituents and the numerous alternative symbolic notations, make the input and display of glycans not as straightforward as for example the amino-acid sequence of a protein. Every glycoinformatic tool providing a user interface would benefit from a fast, intuitive, appealing mechanism for input and output of glycan structures in a computer readable format. A software tool for building and displaying glycan structures using a chosen symbolic notation is described here. The "GlycanBuilder" uses an automatic rendering algorithm to draw the saccharide symbols and to place them on the drawing board. The information about the symbolic notation is derived from a configurable graphical model as a set of rules governing the aspect and placement of residues and linkages. The algorithm is able to represent a structure using only few traversals of the tree and is inherently fast. The tool uses an XML format for import and export of encoded structures. The rendering algorithm described here is able to produce high-quality representations of glycan structures in a chosen symbolic notation. The automated rendering process enables the "GlycanBuilder" to be used both as a user-independent component for displaying glycans and as an easy-to-use drawing tool. The "GlycanBuilder" can be integrated in web pages as a Java applet for the visual editing of glycans. The same component is available as a web service to render an encoded structure into a graphical format. Finally, the "GlycanBuilder" can be integrated into other applications to create intuitive and appealing user interfaces: an example is the "GlycoWorkbench", a software tool for assisted annotation of glycan mass spectra. The "GlycanBuilder" represent a flexible, reliable and efficient solution to the problem of input and output of glycan structures in any glycomic tool or database.

  6. An efficient depth map preprocessing method based on structure-aided domain transform smoothing for 3D view generation

    PubMed Central

    Ma, Liyan; Qiu, Bo; Cui, Mingyue; Ding, Jianwei

    2017-01-01

    Depth image-based rendering (DIBR), which is used to render virtual views with a color image and the corresponding depth map, is one of the key techniques in the 2D to 3D conversion process. Due to the absence of knowledge about the 3D structure of a scene and its corresponding texture, DIBR in the 2D to 3D conversion process, inevitably leads to holes in the resulting 3D image as a result of newly-exposed areas. In this paper, we proposed a structure-aided depth map preprocessing framework in the transformed domain, which is inspired by recently proposed domain transform for its low complexity and high efficiency. Firstly, our framework integrates hybrid constraints including scene structure, edge consistency and visual saliency information in the transformed domain to improve the performance of depth map preprocess in an implicit way. Then, adaptive smooth localization is cooperated and realized in the proposed framework to further reduce over-smoothness and enhance optimization in the non-hole regions. Different from the other similar methods, the proposed method can simultaneously achieve the effects of hole filling, edge correction and local smoothing for typical depth maps in a united framework. Thanks to these advantages, it can yield visually satisfactory results with less computational complexity for high quality 2D to 3D conversion. Numerical experimental results demonstrate the excellent performances of the proposed method. PMID:28407027

  7. Missing depth cues in virtual reality limit performance and quality of three dimensional reaching movements

    PubMed Central

    Mayo, Johnathan; Baur, Kilian; Wittmann, Frieder; Riener, Robert; Wolf, Peter

    2018-01-01

    Background Goal-directed reaching for real-world objects by humans is enabled through visual depth cues. In virtual environments, the number and quality of available visual depth cues is limited, which may affect reaching performance and quality of reaching movements. Methods We assessed three-dimensional reaching movements in five experimental groups each with ten healthy volunteers. Three groups used a two-dimensional computer screen and two groups used a head-mounted display. The first screen group received the typically recreated visual depth cues, such as aerial and linear perspective, occlusion, shadows, and texture gradients. The second screen group received an abstract minimal rendering lacking those. The third screen group received the cues of the first screen group and absolute depth cues enabled by retinal image size of a known object, which realized with visual renderings of the handheld device and a ghost handheld at the target location. The two head-mounted display groups received the same virtually recreated visual depth cues as the second or the third screen group respectively. Additionally, they could rely on stereopsis and motion parallax due to head-movements. Results and conclusion All groups using the screen performed significantly worse than both groups using the head-mounted display in terms of completion time normalized by the straight-line distance to the target. Both groups using the head-mounted display achieved the optimal minimum in number of speed peaks and in hand path ratio, indicating that our subjects performed natural movements when using a head-mounted display. Virtually recreated visual depth cues had a minor impact on reaching performance. Only the screen group with rendered handhelds could outperform the other screen groups. Thus, if reaching performance in virtual environments is in the main scope of a study, we suggest applying a head-mounted display. Otherwise, when two-dimensional screens are used, achievable performance is likely limited by the reduced depth perception and not just by subjects’ motor skills. PMID:29293512

  8. LED Light Characteristics for Surgical Shadowless Lamps and Surgical Loupes

    PubMed Central

    Kinugawa, Yoshitaka; Nobae, Yuichi; Suzuki, Toshihiro; Tanaka, Yoshiyuki; Toda, Ikuko; Tsubota, Kazuo

    2015-01-01

    Background: Blue light has more energy than longer wavelength light and can penetrate the eye to reach the retina. When surgeons use magnifying loupes under intensive surgical shadowless lamps for better view of the surgical field, the total luminance is about 200 times brighter than that of typical office lighting. In this study, the effects of 2 types of shadowless lamps were compared. Moreover, the effect of various eyeglasses, which support magnifying loupes, on both the light energy and color rendering was considered. Methods: The light intensity and color rendering were measured on 3 variables: light transmittance, light intensity, and color rendering. Results: Under shadowless lamps, the light energy increased with low-magnification loupes and decreased with high-magnification loupes. Filtering eyeglasses reduced the energy, especially in conditions where the low-magnification loupe was used. The best color-rendering index values were obtained with computer eyeglasses under conventional light-emitting diode shadowless lamps and with no glass and with lightly yellow-tinted lenses under less-blue light-emitting diode. Conclusions: Microsurgeons are exposed to strong lighting throughout their career, and proper color rendering must be considered for easier recognition. Light toxicity and loss of color rendering can be reduced with an appropriate combination of shadowless lamps and colored eyeglasses. PMID:26893987

  9. Direct Visuo-Haptic 4D Volume Rendering Using Respiratory Motion Models.

    PubMed

    Fortmeier, Dirk; Wilms, Matthias; Mastmeyer, Andre; Handels, Heinz

    2015-01-01

    This article presents methods for direct visuo-haptic 4D volume rendering of virtual patient models under respiratory motion. Breathing models are computed based on patient-specific 4D CT image data sequences. Virtual patient models are visualized in real-time by ray casting based rendering of a reference CT image warped by a time-variant displacement field, which is computed using the motion models at run-time. Furthermore, haptic interaction with the animated virtual patient models is provided by using the displacements computed at high rendering rates to translate the position of the haptic device into the space of the reference CT image. This concept is applied to virtual palpation and the haptic simulation of insertion of a virtual bendable needle. To this aim, different motion models that are applicable in real-time are presented and the methods are integrated into a needle puncture training simulation framework, which can be used for simulated biopsy or vessel puncture in the liver. To confirm real-time applicability, a performance analysis of the resulting framework is given. It is shown that the presented methods achieve mean update rates around 2,000 Hz for haptic simulation and interactive frame rates for volume rendering and thus are well suited for visuo-haptic rendering of virtual patients under respiratory motion.

  10. Achieving high CRI from warm to super white

    NASA Astrophysics Data System (ADS)

    Bailey, Edward; Tormey, Ellen S.

    2007-09-01

    Light sources which produce a high color rendering index (CRI) have many applications in the lighting industry today. High color rendering accents the rich color which abounds in nature, interior design, theatrical costumes and props, clothing and fabric, jewelry, and machine vision applications. Multi-wavelength LED sources can pump phosphors at multiple stokes shift emission regimes and when combined with selected direct emission sources can allow for greater flexibility in the production of warm-white and cool white light of specialty interest. Unique solutions to R8 and R14 CRI >95 at 2850K, 4750K, 5250K, and 6750K presented.

  11. Strange Bedfellows No More: How Integrated Stem-Cell Transplantation and Palliative Care Programs Can Together Improve End-of-Life Care.

    PubMed

    Levine, Deena R; Baker, Justin N; Wolfe, Joanne; Lehmann, Leslie E; Ullrich, Christina

    2017-09-01

    In the intense, cure-oriented setting of hematopoietic stem-cell transplantation (HSCT), delivery of high-quality palliative and end-of-life care is a unique challenge. Although HSCT affords patients a chance for cure, it carries a significant risk of morbidity and mortality. During HSCT, patients usually experience high symptom burden and a significant decrease in quality of life that can persist for long periods. When morbidity is high and the chance of cure remote, the tendency after HSCT is to continue intensive medical interventions with curative intent. The nature of the complications and overall condition of some patients may render survival an unrealistic goal and, as such, continuation of artificial life-sustaining measures in these patients may prolong suffering and preclude patient and family preparation for end of life. Palliative care focuses on the well-being of patients with life-threatening conditions and their families, irrespective of the goals of care or anticipated outcome. Although not inherently at odds with HSCT, palliative care historically has been rarely offered to HSCT recipients. Recent evidence suggests that HSCT recipients would benefit from collaborative efforts between HSCT and palliative care services, particularly when initiated early in the transplantation course. We review palliative and end-of-life care in HSCT and present models for integrating palliative care into HSCT care. With open communication, respect for roles, and a spirit of collaboration, HSCT and palliative care can effectively join forces to provide high-quality, multidisciplinary care for these highly vulnerable patients and their families.

  12. Lighting design for globally illuminated volume rendering.

    PubMed

    Zhang, Yubo; Ma, Kwan-Liu

    2013-12-01

    With the evolution of graphics hardware, high quality global illumination becomes available for real-time volume rendering. Compared to local illumination, global illumination can produce realistic shading effects which are closer to real world scenes, and has proven useful for enhancing volume data visualization to enable better depth and shape perception. However, setting up optimal lighting could be a nontrivial task for average users. There were lighting design works for volume visualization but they did not consider global light transportation. In this paper, we present a lighting design method for volume visualization employing global illumination. The resulting system takes into account view and transfer-function dependent content of the volume data to automatically generate an optimized three-point lighting environment. Our method fully exploits the back light which is not used by previous volume visualization systems. By also including global shadow and multiple scattering, our lighting system can effectively enhance the depth and shape perception of volumetric features of interest. In addition, we propose an automatic tone mapping operator which recovers visual details from overexposed areas while maintaining sufficient contrast in the dark areas. We show that our method is effective for visualizing volume datasets with complex structures. The structural information is more clearly and correctly presented under the automatically generated light sources.

  13. Average effect estimates remain similar as evidence evolves from single trials to high-quality bodies of evidence: a meta-epidemiologic study.

    PubMed

    Gartlehner, Gerald; Dobrescu, Andreea; Evans, Tammeka Swinson; Thaler, Kylie; Nussbaumer, Barbara; Sommer, Isolde; Lohr, Kathleen N

    2016-01-01

    The objective of our study was to use a diverse sample of medical interventions to assess empirically whether first trials rendered substantially different treatment effect estimates than reliable, high-quality bodies of evidence. We used a meta-epidemiologic study design using 100 randomly selected bodies of evidence from Cochrane reports that had been graded as high quality of evidence. To determine the concordance of effect estimates between first and subsequent trials, we applied both quantitative and qualitative approaches. For quantitative assessment, we used Lin's concordance correlation and calculated z-scores; to determine the magnitude of differences of treatment effects, we calculated standardized mean differences (SMDs) and ratios of relative risks. We determined qualitative concordance based on a two-tiered approach incorporating changes in statistical significance and magnitude of effect. First trials both overestimated and underestimated the true treatment effects in no discernible pattern. Nevertheless, depending on the definition of concordance, effect estimates of first trials were concordant with pooled subsequent studies in at least 33% but up to 50% of comparisons. The pooled magnitude of change as bodies of evidence advanced from single trials to high-quality bodies of evidence was 0.16 SMD [95% confidence interval (CI): 0.12, 0.21]. In 80% of comparisons, the difference in effect estimates was smaller than 0.5 SMDs. In first trials with large treatment effects (>0.5 SMD), however, estimates of effect substantially changed as new evidence accrued (mean change 0.68 SMD; 95% CI: 0.50, 0.86). Results of first trials often change, but the magnitude of change, on average, is small. Exceptions are first trials that present large treatment effects, which often dissipate as new evidence accrues. Copyright © 2016 Elsevier Inc. All rights reserved.

  14. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bayr, S., E-mail: suvi.bayr@jyu.fi; Ojanperä, M.; Kaparaju, P.

    Highlights: • Rendering wastes’ mono-digestion and co-digestion with potato pulp were studied. • CSTR process with OLR of 1.5 kg VS/m{sup 3} d, HRT of 50 d was unstable in mono-digestion. • Free NH{sub 3} inhibited mono-digestion of rendering wastes. • CSTR process with OLR of 1.5 kg VS/m{sup 3} d, HRT of 50 d was stable in co-digestion. • Co-digestion increased methane yield somewhat compared to mono-digestion. - Abstract: In this study, mono-digestion of rendering wastes and co-digestion of rendering wastes with potato pulp were studied for the first time in continuous stirred tank reactor (CSTR) experiments at 55more » °C. Rendering wastes have high protein and lipid contents and are considered good substrates for methane production. However, accumulation of digestion intermediate products viz., volatile fatty acids (VFAs), long chain fatty acids (LCFAs) and ammonia nitrogen (NH{sub 4}-N and/or free NH{sub 3}) can cause process imbalance during the digestion. Mono-digestion of rendering wastes at an organic loading rate (OLR) of 1.5 kg volatile solids (VS)/m{sup 3} d and hydraulic retention time (HRT) of 50 d was unstable and resulted in methane yields of 450 dm{sup 3}/kg VS{sub fed}. On the other hand, co-digestion of rendering wastes with potato pulp (60% wet weight, WW) at the same OLR and HRT improved the process stability and increased methane yields (500–680 dm{sup 3}/kg VS{sub fed}). Thus, it can be concluded that co-digestion of rendering wastes with potato pulp could improve the process stability and methane yields from these difficult to treat industrial waste materials.« less

  15. Water transfer properties and shrinkage in lime-based rendering mortars

    NASA Astrophysics Data System (ADS)

    Arizzi, A.; Cultrone, G.

    2012-04-01

    Rendering is the practice of covering a wall or a building façade with one or more layers of mortar, with the main aim to protect the masonry structure against weathering. The render applied must show high flexibility, good adhesion and compatibility with the support (i.e. stone, brick) and, overall, it should be characterised by low water absorption and high water vapour permeability. Water (in the solid, liquid and vapour state) is one of the main factors that drive construction materials to deterioration. Therefore, to evaluate the quality and durability of a rendering mortar, thus ensuring its protective function in the masonry structure, it is fundamental to assess the behaviour of this mortar towards water. Mortars were elaborated with a calcitic dry hydrated lime, a calcareous aggregate, a pozzolan, a lightweight aggregate, a water-retaining agent and a plasticiser. Four types of lime mortars were prepared, in which the binder-to-aggregate ratios were 1:3, 1:4, 1:6 and 1:9 by weight, whilst the pozzolan was kept at 10% of the lime (by mass) and the total admixtures proportion was less than 2% of the total mass. The influence of the characteristics of mortars pore system on the amount of water absorbed and the kinetics of absorption was investigated by means of: free water absorption and drying; capillary uptake; water permeability; water vapour permeability. Interesting deductions can be made from the values of water and water vapour permeability found for mortars: the former increases exponentially with the sand volume of the mortar, whilst the latter increases almost exponentially with the initial water content added to the mortar mixes during their elaboration. However, the relationship obtained between porosity of mortars and permeability values is not really clear. This finding suggests that the permeability of a material cannot be estimated on the basis of its porosity as it can be made for the capillary uptake and free water absorption. Another aspect to be considered in the evaluation of the decay caused by water is the high shrinkage suffered by renders when they are applied on an extended surface (i.e. a wall), especially when they are aerial lime-based mortars. The shrinkage causes the formation of fissures that become an easy way for water to entry and diffuse through the mortar pore system. This factor is rarely taken into consideration during the hydric assays performed in the laboratory, since mortar samples of 4x4x16 or 4x4x4 cm in size do not undergo to such degree of shrinkage. For this reason, we have also studied the shrinkage of these mortars and considered it in the final assessment of mortars hydric properties. The shrinkage was evaluated according to a non-standardized method, by means of a shrinkage-measuring device that measures the mortar dimensional variations over time. This measurement has shown that the highest the lime content the biggest the mortar shrinkage and, consequently, the strongest the decay due to water.

  16. Using FastX on the Peregrine System | High-Performance Computing | NREL

    Science.gov Websites

    with full 3D hardware acceleration. The traditional method of displaying graphics applications to a remote X server (indirect rendering) supports 3D hardware acceleration, but this approach causes all of the OpenGL commands and 3D data to be sent over the network to be rendered on the client machine. With

  17. Modeling a color-rendering operator for high dynamic range images using a cone-response function

    NASA Astrophysics Data System (ADS)

    Choi, Ho-Hyoung; Kim, Gi-Seok; Yun, Byoung-Ju

    2015-09-01

    Tone-mapping operators are the typical algorithms designed to produce visibility and the overall impression of brightness, contrast, and color of high dynamic range (HDR) images on low dynamic range (LDR) display devices. Although several new tone-mapping operators have been proposed in recent years, the results of these operators have not matched those of the psychophysical experiments based on the human visual system. A color-rendering model that is a combination of tone-mapping and cone-response functions using an XYZ tristimulus color space is presented. In the proposed method, the tone-mapping operator produces visibility and the overall impression of brightness, contrast, and color in HDR images when mapped onto relatively LDR devices. The tone-mapping resultant image is obtained using chromatic and achromatic colors to avoid well-known color distortions shown in the conventional methods. The resulting image is then processed with a cone-response function wherein emphasis is placed on human visual perception (HVP). The proposed method covers the mismatch between the actual scene and the rendered image based on HVP. The experimental results show that the proposed method yields an improved color-rendering performance compared to conventional methods.

  18. High Performance GPU-Based Fourier Volume Rendering.

    PubMed

    Abdellah, Marwan; Eldeib, Ayman; Sharawi, Amr

    2015-01-01

    Fourier volume rendering (FVR) is a significant visualization technique that has been used widely in digital radiography. As a result of its (N (2)log⁡N) time complexity, it provides a faster alternative to spatial domain volume rendering algorithms that are (N (3)) computationally complex. Relying on the Fourier projection-slice theorem, this technique operates on the spectral representation of a 3D volume instead of processing its spatial representation to generate attenuation-only projections that look like X-ray radiographs. Due to the rapid evolution of its underlying architecture, the graphics processing unit (GPU) became an attractive competent platform that can deliver giant computational raw power compared to the central processing unit (CPU) on a per-dollar-basis. The introduction of the compute unified device architecture (CUDA) technology enables embarrassingly-parallel algorithms to run efficiently on CUDA-capable GPU architectures. In this work, a high performance GPU-accelerated implementation of the FVR pipeline on CUDA-enabled GPUs is presented. This proposed implementation can achieve a speed-up of 117x compared to a single-threaded hybrid implementation that uses the CPU and GPU together by taking advantage of executing the rendering pipeline entirely on recent GPU architectures.

  19. Evaluation of Orthopedic Metal Artifact Reduction Application in Three-Dimensional Computed Tomography Reconstruction of Spinal Instrumentation: A Single Saudi Center Experience.

    PubMed

    Ali, Amir Monir

    2018-01-01

    The aim of the study was to evaluate the commercially available orthopedic metal artifact reduction (OMAR) technique in postoperative three-dimensional computed tomography (3DCT) reconstruction studies after spinal instrumentation and to investigate its clinical application. One hundred and twenty (120) patients with spinal metallic implants were included in the study. All had 3DCT reconstruction examinations using the OMAR software after obtaining the informed consents and approval of the Institution Ethical Committee. The degree of the artifacts, the related muscular density, the clearness of intermuscular fat planes, and definition of the adjacent vertebrae were qualitatively evaluated. The diagnostic satisfaction and quality of the 3D reconstruction images were thoroughly assessed. The majority (96.7%) of 3DCT reconstruction images performed were considered satisfactory to excellent for diagnosis. Only 3.3% of the reconstructed images had rendered unacceptable diagnostic quality. OMAR can effectively reduce metallic artifacts in patients with spinal instrumentation with highly diagnostic 3DCT reconstruction images.

  20. Universal health insurance through incentives reform.

    PubMed

    Enthoven, A C; Kronick, R

    1991-05-15

    Roughly 35 million Americans have no health care coverage. Health care expenditures are out of control. The problems of access and cost are inextricably related. Important correctable causes include cost-unconscious demand, a system not organized for quality and economy, market failure, and public funds not distributed equitably or effectively to motivate widespread coverage. We propose Public Sponsor agencies to offer subsidized coverage to those otherwise uninsured, mandated employer-provided health insurance, premium contributions from all employers and employees, a limit on tax-free employer contributions to employee health insurance, and "managed competition". Our proposed new government revenues equal proposed new outlays. We believe our proposal will work because efficient managed care does exist and can provide satisfactory care for a cost far below that of the traditional fee-for-service third-party payment system. Presented with an opportunity to make an economically responsible choice, people choose value for money; the dynamic created by these individual choices will give providers strong incentives to render high-quality, economical care. We believe that providers will respond to these incentives.

  1. Considerations In The Design And Specifications Of An Automatic Inspection System

    NASA Astrophysics Data System (ADS)

    Lee, David T.

    1980-05-01

    Considerable activities have been centered around the automation of manufacturing quality control and inspection functions. Several reasons can be cited for this development. The continuous pressure of direct and indirect labor cost increase is only one of the obvious motivations. With the drive for electronics miniaturization come more and more complex processes where control parameters are critical and the yield is highly susceptible to inadequate process monitor and inspection. With multi-step, multi-layer process for substrate fabrication, process defects that are not detected and corrected at certain critical points may render the entire subassembly useless. As a process becomes more complex, the time required to test the product increases significantly in the total build cycle. The urgency to reduce test time brings more pressure to improve in-process control and inspection. The advances and improvements of components, assemblies and systems such as micro-processors, micro-computers, programmable controllers, and other intelligent devices, have made the automation of quality control much more cost effective and justifiable.

  2. Toward Large-Area Sub-Arcsecond X-Ray Telescopes

    NASA Technical Reports Server (NTRS)

    ODell, Stephen L.; Aldcroft, Thomas L.; Allured, Ryan; Atkins, Carolyn; Burrows, David N.; Cao, Jian; Chalifoux, Brandon D.; Chan, Kai-Wing; Cotroneo, Vincenzo; Elsner, Ronald F.; hide

    2014-01-01

    The future of x-ray astronomy depends upon development of x-ray telescopes with larger aperture areas (approx. = 3 square meters) and fine angular resolution (approx. = 1 inch). Combined with the special requirements of nested grazing-incidence optics, the mass and envelope constraints of space-borne telescopes render such advances technologically and programmatically challenging. Achieving this goal will require precision fabrication, alignment, mounting, and assembly of large areas (approx. = 600 square meters) of lightweight (approx. = 1 kilogram/square meter areal density) high-quality mirrors at an acceptable cost (approx. = 1 million dollars/square meter of mirror surface area). This paper reviews relevant technological and programmatic issues, as well as possible approaches for addressing these issues-including active (in-space adjustable) alignment and figure correction.

  3. Toward Large-Area Sub-Arcsecond X-Ray Telescopes

    NASA Technical Reports Server (NTRS)

    O'Dell, Stephen L.; Aldcroft, Thomas L.; Allured, Ryan; Atkins, Carolyn; Burrows, David N.; Cao, Jian; Chalifoux, Brandon D.; Chan, Kai-Wing; Cotroneo, Vincenzo; Elsner, Ronald F.; hide

    2014-01-01

    The future of x-ray astronomy depends upon development of x-ray telescopes with larger aperture areas (>1 sq m) and finer angular resolution(<1).Combined with the special requirements of nested grazing incidence optics, the mass and envelope constraints of spaceborne telescopes render such advances technologically challenging. Achieving this goal will require precision fabrication, alignment, mounting, and assembly of large areas (>100 sq m) of lightweight (1 kg/sq m areal density) high quality mirrors-possibly entailing active (in-space adjustable) alignment and figure correction. This paper discusses relevant programmatic and technological issues and summarizes progress toward large area sub-arcsecond x-ray telescopes. Key words: X-ray telescopes, x-ray optics, active optics, electroactive devices, silicon mirrors, differential deposition, ion implantation.

  4. Sparse representation of Gravitational Sound

    NASA Astrophysics Data System (ADS)

    Rebollo-Neira, Laura; Plastino, A.

    2018-03-01

    Gravitational Sound clips produced by the Laser Interferometer Gravitational-Wave Observatory (LIGO) and the Massachusetts Institute of Technology (MIT) are considered within the particular context of data reduction. We advance a procedure to this effect and show that these types of signals can be approximated with high quality using significantly fewer elementary components than those required within the standard orthogonal basis framework. Furthermore, a local measure sparsity is shown to render meaningful information about the variation of a signal along time, by generating a set of local sparsity values which is much smaller than the dimension of the signal. This point is further illustrated by recourse to a more complex signal, generated by Milde Science Communication to divulge Gravitational Sound in the form of a ring tone.

  5. Waste stream recycling: Its effect on water quality

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cornwell, D.A.; Lee, R.G.

    1994-11-01

    Waste streams recycled to the influent of a water treatment plant typically contain contaminants at concentrations that are of concern. These contaminants may include giardia and Cryptosporidium, trihalomethanes, manganese, and assimilable organic carbon. This research shows that proper management--treatment, equalization, and monitoring--of the waste streams can render them suitable for recycling in many situations.

  6. Science or Snake Oil? Teaching Critical Evaluation of "Research" Reports on the Internet

    ERIC Educational Resources Information Center

    Connor-Greene, Patricia A.; Greene, Dan J.

    2002-01-01

    The proliferation of information on the Internet introduces new challenges for educators. Although the Internet can provide quick and easy access to a wealth of information, it has virtually no quality control. Consequently, the Internet has rendered faculty more essential than ever as teachers of the analytic and evaluative skills students need…

  7. Teacher Education and Social Ethics

    ERIC Educational Resources Information Center

    Ayeni, M. A.; Adeleye, J. O.

    2014-01-01

    It poses no difficulty to argue that the success of any nation depends to a large extent on the quality of her teachers. This is because the outcome of teaching, which is learning, manifests in all services rendered by the individual in all sectors of life. If the products of the school system do not learn well both academically and morally, they…

  8. Structural control of InP/ZnS core/shell quantum dots enables high-quality white LEDs.

    PubMed

    Kumar, Baskaran Ganesh; Sadeghi, Sadra; Melikov, Rustamzhon; Aria, Mohammad Mohammadi; Jalali, Houman Bahmani; Ow-Yang, Cleva W; Nizamoglu, Sedat

    2018-08-24

    Herein, we demonstrate that the structural and optical control of InP-based quantum dots (QDs) can lead to high-performance light-emitting diodes (LEDs). Zinc sulphide (ZnS) shells passivate the InP QD core and increase the quantum yield in green-emitting QDs by 13-fold and red-emitting QDs by 8-fold. The optimised QDs are integrated in the liquid state to eliminate aggregation-induced emission quenching and we fabricated white LEDs with a warm, neutral and cool-white appearance by the down-conversion mechanism. The QD-functionalized white LEDs achieve luminous efficiency (LE) up to 14.7 lm W -1 and colour-rendering index up to 80. The structural and optical control of InP/ZnS core/shell QDs enable 23-fold enhancement in LE of white LEDs compared to ones containing only QDs of InP core.

  9. Supercontinuum as a light source for miniaturized endoscopes.

    PubMed

    Lu, M K; Lin, H Y; Hsieh, C C; Kao, F J

    2016-09-01

    In this work, we have successfully implemented supercontinuum based illumination through single fiber coupling. The integration of a single fiber illumination with a miniature CMOS sensor forms a very slim and powerful camera module for endoscopic imaging. A set of tests and in vivo animal experiments are conducted accordingly to characterize the corresponding illuminance, spectral profile, intensity distribution, and image quality. The key illumination parameters of the supercontinuum, including color rendering index (CRI: 72%~97%) and correlated color temperature (CCT: 3,100K~5,200K), are modified with external filters and compared with those from a LED light source (CRI~76% & CCT~6,500K). The very high spatial coherence of the supercontinuum allows high luminosity conduction through a single multimode fiber (core size~400μm), whose distal end tip is attached with a diffussion tip to broaden the solid angle of illumination (from less than 10° to more than 80°).

  10. Impact of a in situ laboratory on physician expectancy.

    PubMed

    Brulé, Romain; Sarazin, Marianne; Tayeb, Nicole; Roubille, Martine; Szymanowicz, Anton

    2018-01-01

    Biological examinations are essential for clinicians' medical care. The aim of this study is to assess clinicians' expectations in healthcare facilities and their perception of medical biology in different types of organization. We performed a prospective transversal study by electronic questionnaire conducted among 242 practitioners in four healthcare facilities. The aspects explored were as follows: quality, reliability, rendering time of examination results and biology platform support. Analyses were conducted after rectification of the sample by weight. Sixty one clinicians responded (25.2% [19.7-30.7]). The rendering time of examination is the main criterion mentioned with a requirement of less than one hour in case of emergency (81.5% [71.8-91.2] of the answers) to less than 72 hours for specialized examinations (81.5% [71.8-91.2] of the answers). Better collaboration with biologists is expected by clinicians (54.7% [50.9-58.5]). Satisfaction with the biology platform support and rendering time of emergency cases results was significantly (p <0.005) lower in facilities without an on-site laboratory. In conclusion, although medical biology performance is generally satisfactory within medical facilities, it remains nonetheless affected when the laboratory is not on site. The rendering time of examination, depending on the biology platform support functions and the proximity of the laboratory, remains the main criterion. Clinician-biologist collaboration, which increases of the medico-economic efficiency of patient's healthcare, appears as an essential criterion in a structural conception of medical biology.

  11. Compact quasi-monoenergetic photon sources from laser-plasma accelerators for nuclear detection and characterization

    NASA Astrophysics Data System (ADS)

    Geddes, Cameron G. R.; Rykovanov, Sergey; Matlis, Nicholas H.; Steinke, Sven; Vay, Jean-Luc; Esarey, Eric H.; Ludewigt, Bernhard; Nakamura, Kei; Quiter, Brian J.; Schroeder, Carl B.; Toth, Csaba; Leemans, Wim P.

    2015-05-01

    Near-monoenergetic photon sources at MeV energies offer improved sensitivity at greatly reduced dose for active interrogation, and new capabilities in treaty verification, nondestructive assay of spent nuclear fuel and emergency response. Thomson (also referred to as Compton) scattering sources are an established method to produce appropriate photon beams. Applications are however restricted by the size of the required high-energy electron linac, scattering (photon production) system, and shielding for disposal of the high energy electron beam. Laser-plasma accelerators (LPAs) produce GeV electron beams in centimeters, using the plasma wave driven by the radiation pressure of an intense laser. Recent LPA experiments are presented which have greatly improved beam quality and efficiency, rendering them appropriate for compact high-quality photon sources based on Thomson scattering. Designs for MeV photon sources utilizing the unique properties of LPAs are presented. It is shown that control of the scattering laser, including plasma guiding, can increase photon production efficiency. This reduces scattering laser size and/or electron beam current requirements to scale compatible with the LPA. Lastly, the plasma structure can decelerate the electron beam after photon production, reducing the size of shielding required for beam disposal. Together, these techniques provide a path to a compact photon source system.

  12. Improvements in High Resolution Laryngeal Magnetic Resonance Imaging for Preoperative Transoral Laser Microsurgery and Radiotherapy Considerations in Early Lesions

    PubMed Central

    Ruytenberg, Thomas; Verbist, Berit M.; Vonk-Van Oosten, Jordi; Astreinidou, Eleftheria; Sjögren, Elisabeth V.; Webb, Andrew G.

    2018-01-01

    As the benefits, limitations, and contraindications of transoral laser microsurgery (TLM) in glottic carcinoma treatments become better defined, pretreatment imaging has become more important to assess the case-specific suitability of TLM and to predict functional outcomes both for treatment consideration and patient counseling. Magnetic resonance imaging (MRI) is the preferred modality to image such laryngeal tumors, even though imaging the larynx using MRI can be difficult. The first challenge is that there are no commercial radiofrequency (RF) coils that are specifically designed for imaging the larynx, and performance in terms of coverage and signal-to-noise ratio is compromised using general-purpose RF coils. Second, motion in the neck region induced by breathing, swallowing, and vessel pulsation can induce severe image artifacts, sometimes rendering the images unusable. In this paper, we design a dedicated RF coil array, which allows high quality high-resolution imaging of the larynx. In addition, we show that introducing respiratory-triggered acquisition improves the diagnostic quality of the images by minimizing breathing and swallowing artifacts. Together, these developments enable robust, essentially artifact-free images of the full larynx with an isotropic resolution of 1 mm to be acquired within a few minutes. PMID:29928638

  13. Slide-free histology via MUSE: UV surface excitation microscopy for imaging unsectioned tissue (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Levenson, Richard M.; Harmany, Zachary; Demos, Stavros G.; Fereidouni, Farzad

    2016-03-01

    Widely used methods for preparing and viewing tissue specimens at microscopic resolution have not changed for over a century. They provide high-quality images but can involve time-frames of hours or even weeks, depending on logistics. There is increasing interest in slide-free methods for rapid tissue analysis that can both decrease turn-around times and reduce costs. One new approach is MUSE (microscopy with UV surface excitation), which exploits the shallow penetration of UV light to excite fluorescent signals from only the most superficial tissue elements. The method is non-destructive, and eliminates requirement for conventional histology processing, formalin fixation, paraffin embedding, or thin sectioning. It requires no lasers, confocal, multiphoton or optical coherence tomography optics. MUSE generates diagnostic-quality histological images that can be rendered to resemble conventional hematoxylin- and eosin-stained samples, with enhanced topographical information, from fresh or fixed, but unsectioned tissue, rapidly, with high resolution, simply and inexpensively. We anticipate that there could be widespread adoption in research facilities, hospital-based and stand-alone clinical settings, in local or regional pathology labs, as well as in low-resource environments.

  14. Visualizing dynamic geosciences phenomena using an octree-based view-dependent LOD strategy within virtual globes

    NASA Astrophysics Data System (ADS)

    Li, Jing; Wu, Huayi; Yang, Chaowei; Wong, David W.; Xie, Jibo

    2011-09-01

    Geoscientists build dynamic models to simulate various natural phenomena for a better understanding of our planet. Interactive visualizations of these geoscience models and their outputs through virtual globes on the Internet can help the public understand the dynamic phenomena related to the Earth more intuitively. However, challenges arise when the volume of four-dimensional data (4D), 3D in space plus time, is huge for rendering. Datasets loaded from geographically distributed data servers require synchronization between ingesting and rendering data. Also the visualization capability of display clients varies significantly in such an online visualization environment; some may not have high-end graphic cards. To enhance the efficiency of visualizing dynamic volumetric data in virtual globes, this paper proposes a systematic framework, in which an octree-based multiresolution data structure is implemented to organize time series 3D geospatial data to be used in virtual globe environments. This framework includes a view-dependent continuous level of detail (LOD) strategy formulated as a synchronized part of the virtual globe rendering process. Through the octree-based data retrieval process, the LOD strategy enables the rendering of the 4D simulation at a consistent and acceptable frame rate. To demonstrate the capabilities of this framework, data of a simulated dust storm event are rendered in World Wind, an open source virtual globe. The rendering performances with and without the octree-based LOD strategy are compared. The experimental results show that using the proposed data structure and processing strategy significantly enhances the visualization performance when rendering dynamic geospatial phenomena in virtual globes.

  15. White polymeric light-emitting diodes with high color rendering index

    NASA Astrophysics Data System (ADS)

    Niu, Xiaodi; Ma, Liang; Yao, Bing; Ding, Junqiao; Tu, Guoli; Xie, Zhiyuan; Wang, Lixiang

    2006-11-01

    The efficient white polymeric light-emitting diodes based on a white emissive polymer doped with a red phosphorescent dopant were fabricated by spin-coating method. The emission spectrum of the device is broadened to cover the full visible region by doping the red phosphorescent dye and thereby realizes white emission with high color-rendering index (CRI). By controlling the contents of the doped electron-transporting 2-(4-biphenylyl)-5-(4-tert-butylphenyl)-1,3,4-oxadiazole and the red phosphorescent dopant, a luminous efficiency as high as 5.3cd/A and a power efficiency of 3lm/W were obtained with a CRI of 92.

  16. Application of Oversampling to obtain the MTF of Digital Radiology Equipment.

    NASA Astrophysics Data System (ADS)

    Narváez, M.; Graffigna, J. P.; Gómez, M. E.; Romo, R.

    2016-04-01

    Within the objectives of theproject Medical Image Processing for QualityAssessment ofX Ray Imaging, the present research work is aimed at developinga phantomX ray image and itsassociated processing algorithms in order to evaluatethe image quality rendered by digital X ray equipment. These tools are used to measure various image parameters, among which spatial resolution shows afundamental property that can be characterized by the Modulation Transfer Function (MTF)of an imaging system [1]. After performing a thorough literature surveyon imaging quality control in digital X film in Argentine and international publications, it was decided to adopt for this work the Norm IEC 62220 1:2003 that recommends using an image edge as a testingmethod. In order to obtain the characterizing MTF, a protocol was designedfor unifying the conditions under which the images are acquired for later evaluation. The protocol implied acquiring a radiography image by means of a specific referential technique, i.e. referred either to voltage, current, time, distance focus plate (/film?) distance, or other referential parameter, and to interpret the image through a system of computed radiology or direct digital radiology. The contribution of the work stems from the fact that, even though the traditional way of evaluating an X film image quality has relied mostly on subjective methods, this work presents an objective evaluative toolfor the images obtained with a givenequipment, followed by a contrastive analysis with the renderings from other X filmimaging sets.Once the images were obtained, specific calculations were carried out. Though there exist some methods based on the subjective evaluation of the quality of image, this work offers an objective evaluation of the equipment under study. Finally, we present the results obtained on different equipment.

  17. MovieMaker: a web server for rapid rendering of protein motions and interactions.

    PubMed

    Maiti, Rajarshi; Van Domselaar, Gary H; Wishart, David S

    2005-07-01

    MovieMaker is a web server that allows short ( approximately 10 s), downloadable movies of protein motions to be generated. It accepts PDB files or PDB accession numbers as input and automatically calculates, renders and merges the necessary image files to create colourful animations covering a wide range of protein motions and other dynamic processes. Users have the option of animating (i) simple rotation, (ii) morphing between two end-state conformers, (iii) short-scale, picosecond vibrations, (iv) ligand docking, (v) protein oligomerization, (vi) mid-scale nanosecond (ensemble) motions and (vii) protein folding/unfolding. MovieMaker does not perform molecular dynamics calculations. Instead it is an animation tool that uses a sophisticated superpositioning algorithm in conjunction with Cartesian coordinate interpolation to rapidly and automatically calculate the intermediate structures needed for many of its animations. Users have extensive control over the rendering style, structure colour, animation quality, background and other image features. MovieMaker is intended to be a general-purpose server that allows both experts and non-experts to easily generate useful, informative protein animations for educational and illustrative purposes. MovieMaker is accessible at http://wishart.biology.ualberta.ca/moviemaker.

  18. Reproductive effects on fecal nitrogen as an index of diet quality: an experimental assessment

    USGS Publications Warehouse

    Monteith, Kyle B.; Monteith, Kevin L.; Bowyer, R. Terry; Leslie,, David M.; Jenks, Jonathan A.

    2014-01-01

    Concentration of fecal nitrogen has been used widely as an indicator of dietary quality for free-ranging ruminants. Differences in digestive function between species of dimorphic ungulates render interspecific comparisons of fecal nitrogen unreliable; however, whether intraspecific sexual differences in digestive function also bias this nutritional index is unknown. Our objective was to compare sex-specific variation in concentration of fecal nitrogen using male, nonlactating female, and lactating female white-tailed deer (Odocoileus virginianus) on high- and low-quality diets. During weekly trials over spring and summer (2008-2009), we monitored intake rates, collected feces twice daily, and used micro-Kjeldahl procedures to determine percent fecal nitrogen. We also determined nitrogen content of feces following a neutral detergent fiber (NDF) rinse during pre-, peak, and postlactation. Fecal nitrogen reflected general differences in dietary quality between diets; however, fecal nitrogen of lactating females in both dietary groups was lower than for males or nonlactating females throughout lactation. Nitrogen concentration following an NDF rinse also was lower for lactating females during peak lactation. We hypothesize that the remodeling of the digestive tract and increased rumination by lactating females may enhance their ability to extract nitrogen from their forage. These adjustments may expand the foraging options of lactating females by increasing their ability to process low-quality foods, but also affects the interpretation of fecal nitrogen during the season of lactation.

  19. GPU acceleration for digitally reconstructed radiographs using bindless texture objects and CUDA/OpenGL interoperability.

    PubMed

    Abdellah, Marwan; Eldeib, Ayman; Owis, Mohamed I

    2015-01-01

    This paper features an advanced implementation of the X-ray rendering algorithm that harnesses the giant computing power of the current commodity graphics processors to accelerate the generation of high resolution digitally reconstructed radiographs (DRRs). The presented pipeline exploits the latest features of NVIDIA Graphics Processing Unit (GPU) architectures, mainly bindless texture objects and dynamic parallelism. The rendering throughput is substantially improved by exploiting the interoperability mechanisms between CUDA and OpenGL. The benchmarks of our optimized rendering pipeline reflect its capability of generating DRRs with resolutions of 2048(2) and 4096(2) at interactive and semi interactive frame-rates using an NVIDIA GeForce 970 GTX device.

  20. Modeling, Monitoring and Fault Diagnosis of Spacecraft Air Contaminants

    NASA Technical Reports Server (NTRS)

    Ramirez, W. Fred; Skliar, Mikhail; Narayan, Anand; Morgenthaler, George W.; Smith, Gerald J.

    1996-01-01

    Progress and results in the development of an integrated air quality modeling, monitoring, fault detection, and isolation system are presented. The focus was on development of distributed models of the air contaminants transport, the study of air quality monitoring techniques based on the model of transport process and on-line contaminant concentration measurements, and sensor placement. Different approaches to the modeling of spacecraft air contamination are discussed, and a three-dimensional distributed parameter air contaminant dispersion model applicable to both laminar and turbulent transport is proposed. A two-dimensional approximation of a full scale transport model is also proposed based on the spatial averaging of the three dimensional model over the least important space coordinate. A computer implementation of the transport model is considered and a detailed development of two- and three-dimensional models illustrated by contaminant transport simulation results is presented. The use of a well established Kalman filtering approach is suggested as a method for generating on-line contaminant concentration estimates based on both real time measurements and the model of contaminant transport process. It is shown that high computational requirements of the traditional Kalman filter can render difficult its real-time implementation for high-dimensional transport model and a novel implicit Kalman filtering algorithm is proposed which is shown to lead to an order of magnitude faster computer implementation in the case of air quality monitoring.

  1. Color rendering indices in global illumination methods

    NASA Astrophysics Data System (ADS)

    Geisler-Moroder, David; Dür, Arne

    2009-02-01

    Human perception of material colors depends heavily on the nature of the light sources used for illumination. One and the same object can cause highly different color impressions when lit by a vapor lamp or by daylight, respectively. Based on state-of-the-art colorimetric methods we present a modern approach for calculating color rendering indices (CRI), which were defined by the International Commission on Illumination (CIE) to characterize color reproduction properties of illuminants. We update the standard CIE method in three main points: firstly, we use the CIELAB color space, secondly, we apply a Bradford transformation for chromatic adaptation, and finally, we evaluate color differences using the CIEDE2000 total color difference formula. Moreover, within a real-world scene, light incident on a measurement surface is composed of a direct and an indirect part. Neumann and Schanda1 have shown for the cube model that interreflections can influence the CRI of an illuminant. We analyze how color rendering indices vary in a real-world scene with mixed direct and indirect illumination and recommend the usage of a spectral rendering engine instead of an RGB based renderer for reasons of accuracy of CRI calculations.

  2. What you can't feel won't hurt you: Evaluating haptic hardware using a haptic contrast sensitivity function.

    PubMed

    Salisbury, C M; Gillespie, R B; Tan, H Z; Barbagli, F; Salisbury, J K

    2011-01-01

    In this paper, we extend the concept of the contrast sensitivity function - used to evaluate video projectors - to the evaluation of haptic devices. We propose using human observers to determine if vibrations rendered using a given haptic device are accompanied by artifacts detectable to humans. This determination produces a performance measure that carries particular relevance to applications involving texture rendering. For cases in which a device produces detectable artifacts, we have developed a protocol that localizes deficiencies in device design and/or hardware implementation. In this paper, we present results from human vibration detection experiments carried out using three commercial haptic devices and one high performance voice coil motor. We found that all three commercial devices produced perceptible artifacts when rendering vibrations near human detection thresholds. Our protocol allowed us to pinpoint the deficiencies, however, and we were able to show that minor modifications to the haptic hardware were sufficient to make these devices well suited for rendering vibrations, and by extension, the vibratory components of textures. We generalize our findings to provide quantitative design guidelines that ensure the ability of haptic devices to proficiently render the vibratory components of textures.

  3. Leveraging Disturbance Observer Based Torque Control for Improved Impedance Rendering with Series Elastic Actuators

    NASA Technical Reports Server (NTRS)

    Mehling, Joshua S.; Holley, James; O'Malley, Marcia K.

    2015-01-01

    The fidelity with which series elastic actuators (SEAs) render desired impedances is important. Numerous approaches to SEA impedance control have been developed under the premise that high-precision actuator torque control is a prerequisite. Indeed, the design of an inner torque compensator has a significant impact on actuator impedance rendering. The disturbance observer (DOB) based torque control implemented in NASA's Valkyrie robot is considered here and a mathematical model of this torque control, cascaded with an outer impedance compensator, is constructed. While previous work has examined the impact a disturbance observer has on torque control performance, little has been done regarding DOBs and impedance rendering accuracy. Both simulation and a series of experiments are used to demonstrate the significant improvements possible in an SEA's ability to render desired dynamic behaviors when utilizing a DOB. Actuator transparency at low impedances is improved, closed loop hysteresis is reduced, and the actuator's dynamic response to both commands and interaction torques more faithfully matches that of the desired model. All of this is achieved by leveraging DOB based control rather than increasing compensator gains, thus making improved SEA impedance control easier to achieve in practice.

  4. A self-assembly aptasensor based on thick-shell quantum dots for sensing of ochratoxin A

    NASA Astrophysics Data System (ADS)

    Chu, Xianfeng; Dou, Xiaowen; Liang, Ruizheng; Li, Menghua; Kong, Weijun; Yang, Xihui; Luo, Jiaoyang; Yang, Meihua; Zhao, Ming

    2016-02-01

    A novel self-assembling aptasensor was fabricated by precisely attaching three phosphorothioate-modified capture aptamers onto a single thick-shell quantum dot in a controllable manner for monitoring of ochratoxin A (OTA), a poisonous contaminant widespread in foodstuffs. Herein, CdSe/CdS QDs coated in ten layer CdS shells were synthesized using a continual precursor injection method. Analysis of the prepared CdSe/CdS QDs showed a zinc-blende structure, high photoluminescence quantum yields (>80%), and a photoemission peak with a narrow full-width at half-maximum (about 29 nm), all qualities that render them as a superior choice for optical applications. By adjusting the number of phosphorothioate bases in the anchor domain, the tunable-valency aptasensor was able to self-assemble. In the sensing strategy, the thick-shell quantum dot was provided as an acceptor while OTA itself was used as a donor. In the presence of OTA, the capture aptamers drive the aptasensor function into a measurable signal through a fluorescence resonance energy transfer (FRET) system. The newly developed aptasensor had a detection limit as low as 0.5 ng mL-1, with a linear concentration in the range of 1 to 30 ng mL-1, and therefore meets the requirements for rapid, effective, and anti-interference sensors for real-world applications. Moreover, the high quality thick-shell QDs provide an ideal alternative for highly sensitive imaging and intensive illumination in the fields of biotechnology and bioengineering.A novel self-assembling aptasensor was fabricated by precisely attaching three phosphorothioate-modified capture aptamers onto a single thick-shell quantum dot in a controllable manner for monitoring of ochratoxin A (OTA), a poisonous contaminant widespread in foodstuffs. Herein, CdSe/CdS QDs coated in ten layer CdS shells were synthesized using a continual precursor injection method. Analysis of the prepared CdSe/CdS QDs showed a zinc-blende structure, high photoluminescence quantum yields (>80%), and a photoemission peak with a narrow full-width at half-maximum (about 29 nm), all qualities that render them as a superior choice for optical applications. By adjusting the number of phosphorothioate bases in the anchor domain, the tunable-valency aptasensor was able to self-assemble. In the sensing strategy, the thick-shell quantum dot was provided as an acceptor while OTA itself was used as a donor. In the presence of OTA, the capture aptamers drive the aptasensor function into a measurable signal through a fluorescence resonance energy transfer (FRET) system. The newly developed aptasensor had a detection limit as low as 0.5 ng mL-1, with a linear concentration in the range of 1 to 30 ng mL-1, and therefore meets the requirements for rapid, effective, and anti-interference sensors for real-world applications. Moreover, the high quality thick-shell QDs provide an ideal alternative for highly sensitive imaging and intensive illumination in the fields of biotechnology and bioengineering. Electronic supplementary information (ESI) available: Table S1. See DOI: 10.1039/c5nr08284f

  5. SVGenes: a library for rendering genomic features in scalable vector graphic format.

    PubMed

    Etherington, Graham J; MacLean, Daniel

    2013-08-01

    Drawing genomic features in attractive and informative ways is a key task in visualization of genomics data. Scalable Vector Graphics (SVG) format is a modern and flexible open standard that provides advanced features including modular graphic design, advanced web interactivity and animation within a suitable client. SVGs do not suffer from loss of image quality on re-scaling and provide the ability to edit individual elements of a graphic on the whole object level independent of the whole image. These features make SVG a potentially useful format for the preparation of publication quality figures including genomic objects such as genes or sequencing coverage and for web applications that require rich user-interaction with the graphical elements. SVGenes is a Ruby-language library that uses SVG primitives to render typical genomic glyphs through a simple and flexible Ruby interface. The library implements a simple Page object that spaces and contains horizontal Track objects that in turn style, colour and positions features within them. Tracks are the level at which visual information is supplied providing the full styling capability of the SVG standard. Genomic entities like genes, transcripts and histograms are modelled in Glyph objects that are attached to a track and take advantage of SVG primitives to render the genomic features in a track as any of a selection of defined glyphs. The feature model within SVGenes is simple but flexible and not dependent on particular existing gene feature formats meaning graphics for any existing datasets can easily be created without need for conversion. The library is provided as a Ruby Gem from https://rubygems.org/gems/bio-svgenes under the MIT license, and open source code is available at https://github.com/danmaclean/bioruby-svgenes also under the MIT License. dan.maclean@tsl.ac.uk.

  6. a Cache Design Method for Spatial Information Visualization in 3d Real-Time Rendering Engine

    NASA Astrophysics Data System (ADS)

    Dai, X.; Xiong, H.; Zheng, X.

    2012-07-01

    A well-designed cache system has positive impacts on the 3D real-time rendering engine. As the amount of visualization data getting larger, the effects become more obvious. They are the base of the 3D real-time rendering engine to smoothly browsing through the data, which is out of the core memory, or from the internet. In this article, a new kind of caches which are based on multi threads and large file are introduced. The memory cache consists of three parts, the rendering cache, the pre-rendering cache and the elimination cache. The rendering cache stores the data that is rendering in the engine; the data that is dispatched according to the position of the view point in the horizontal and vertical directions is stored in the pre-rendering cache; the data that is eliminated from the previous cache is stored in the eliminate cache and is going to write to the disk cache. Multi large files are used in the disk cache. When a disk cache file size reaches the limit length(128M is the top in the experiment), no item will be eliminated from the file, but a new large cache file will be created. If the large file number is greater than the maximum number that is pre-set, the earliest file will be deleted from the disk. In this way, only one file is opened for writing and reading, and the rest are read-only so the disk cache can be used in a high asynchronous way. The size of the large file is limited in order to map to the core memory to save loading time. Multi-thread is used to update the cache data. The threads are used to load data to the rendering cache as soon as possible for rendering, to load data to the pre-rendering cache for rendering next few frames, and to load data to the elimination cache which is not necessary for the moment. In our experiment, two threads are designed. The first thread is to organize the memory cache according to the view point, and created two threads: the adding list and the deleting list, the adding list index the data that should be loaded to the pre-rendering cache immediately, the deleting list index the data that is no longer visible in the rendering scene and should be moved to the eliminate cache; the other thread is to move the data in the memory and disk cache according to the adding and the deleting list, and create the download requests when the data is indexed in the adding but cannot be found either in memory cache or disk cache, eliminate cache data is moved to the disk cache when the adding list and deleting are empty. The cache designed as described above in our experiment shows reliable and efficient, and the data loading time and files I/O time decreased sharply, especially when the rendering data getting larger.

  7. The Hermeneutical Function of the Family in Right Understanding of Catholic Social Teaching and Its Use for Catholic University Education

    ERIC Educational Resources Information Center

    Anderson, Justin

    2016-01-01

    In this paper, I argue that a "de facto" politicizing approach to the principles of Catholic Social Teaching miscasts several qualities of that body of teaching, leading to several negative prejudices. As a remedy to this politicization, I propose a "familial hermeneutical" approach that renders the principles of Catholic…

  8. Sleep disorders and the dental patient: an overview.

    PubMed

    Lavigne, G J; Goulet, J P; Zuconni, M; Morrison, F; Lobbezoo, F

    1999-09-01

    This article is intended to briefly describe common sleep disorders of interest to the dental profession and to render general management guidelines. Topics include sleep-related bruxism, xerostomia, hypersalivation, gastroesophageal reflux, apnea, and the effect of orofacial pain on sleep quality. The term sleep-related is used instead of the term nocturnal because some of the activities described can occur with daytime sleep.

  9. Potential Cost Savings of Contrast-Enhanced Digital Mammography.

    PubMed

    Patel, Bhavika K; Gray, Richard J; Pockaj, Barbara A

    2017-06-01

    The purpose of this article is to discuss whether the sensitivity and specificity of contrast-enhanced digital mammography (CEDM) render it a viable diagnostic alternative to breast MRI. That CEDM couples low-energy images (comparable to the diagnostic quality of standard mammography) and subtracted contrast-enhanced mammograms make it a cost-effective modality and a realistic substitute for the more costly breast MRI.

  10. [Self-medication: a qualitative approach of its motivations].

    PubMed

    Naves, Janeth de Oliveira Silva; Castro, Lia Lusitana Cardozo de; Carvalho, Christine Maria Soares de; Merchán-Hamann, Edgar

    2010-06-01

    A qualitative research was realized to verify the occurrence and motivations for self-medication and the quality of the information rendered by pharmacies. We conducted 3 focus groups with 25 patients of a reference public health service for STD treatment in Brasília, Brazil. We used the critical discourse analysis to interpret the data obtained during interviews. The analysis revealed that self-medication was a common practice among participants, motivated mainly by discontentment with the long waiting period and the quality of the public health services. Other motivations included: previous experience with medications, advice from friends and family members and the search for an anonymous service provided at pharmacies due to embarrassment and inadequate care environment at health care services. Care provided at pharmacies was also considered unsatisfactory. Viewed essentially as a commercial establishment, pharmacies have become, yet, an easy accessible alternative. Most of participants perceived the pharmacists as ordinary employees seeking only to increase profits. The results suggest a need to improve access to health care services, as well as to render it more humane. Community pharmacies should to be turned into health establishments to participate in health education and orientation for rational drugs use.

  11. High color rendering index WLED based on YAG:Ce phosphor and CdS/ZnS core/shell quantum dots

    NASA Astrophysics Data System (ADS)

    Shen, Changyu; Li, Ke

    2009-08-01

    White LED combining of blue chip and YAG:Ce phosphor suffers from a red spectral deficiency, resulting in a relatively low value of color rendering index (CRI). In our study, for an effort to improve color rendering properties of YAG:Ce phosphor-based white LEDs, highly luminescent red-orange emitting CdS/ZnS QDs were blended with YAG:Ce phosphors. Core/shell CdS/ZnS quantum dots with the emission wavelength of 618nm, was synthesized by thermal deposition using cadmium oxide and selenium as precursors in a hot lauric acid and hexadecylamine trioctylphosphine oxide hybrid. YAG:Ce phosphor was synthesized by high-temperature solid state reaction at 900-1200°C in a slightly reducing atmosphere for 4 hours. Blends of phosphors and QDs exhibited the prominent spectral evolution with an increasing content of QDs. A hybrid white LED, which combines a blue LED with the blend of YAG phosphor and QDs with a weight ratio of 1.5:1,was demonstrated with an improved CRI value of 86.

  12. Advanced optical 3D scanners using DMD technology

    NASA Astrophysics Data System (ADS)

    Muenstermann, P.; Godding, R.; Hermstein, M.

    2017-02-01

    Optical 3D measurement techniques are state-of-the-art for highly precise, non-contact surface scanners - not only in industrial development, but also in near-production and even in-line configurations. The need for automated systems with very high accuracy and clear implementation of national precision standards is growing extremely due to expanding international quality guidelines, increasing production transparency and new concepts related to the demands of the fourth industrial revolution. The presentation gives an overview about the present technical concepts for optical 3D scanners and their benefit for customers and various different applications - not only in quality control, but also in design centers or in medical applications. The advantages of DMD-based systems will be discussed and compared to other approaches. Looking at today's 3D scanner market, there is a confusing amount of solutions varying from lowprice solutions to high end systems. Many of them are linked to a very special target group or to special applications. The article will clarify the differences of the approaches and will discuss some key features which are necessary to render optical measurement systems suitable for industrial environments. The paper will be completed by examples for DMDbased systems, e. g. RGB true-color systems with very high accuracy like the StereoScan neo of AICON 3D Systems. Typical applications and the benefits for customers using such systems are described.

  13. Seeded growth of boron arsenide single crystals with high thermal conductivity

    NASA Astrophysics Data System (ADS)

    Tian, Fei; Song, Bai; Lv, Bing; Sun, Jingying; Huyan, Shuyuan; Wu, Qi; Mao, Jun; Ni, Yizhou; Ding, Zhiwei; Huberman, Samuel; Liu, Te-Huan; Chen, Gang; Chen, Shuo; Chu, Ching-Wu; Ren, Zhifeng

    2018-01-01

    Materials with high thermal conductivities are crucial to effectively cooling high-power-density electronic and optoelectronic devices. Recently, zinc-blende boron arsenide (BAs) has been predicted to have a very high thermal conductivity of over 2000 W m-1 K-1 at room temperature by first-principles calculations, rendering it a close competitor for diamond which holds the highest thermal conductivity among bulk materials. Experimental demonstration, however, has proved extremely challenging, especially in the preparation of large high quality single crystals. Although BAs crystals have been previously grown by chemical vapor transport (CVT), the growth process relies on spontaneous nucleation and results in small crystals with multiple grains and various defects. Here, we report a controllable CVT synthesis of large single BAs crystals (400-600 μm) by using carefully selected tiny BAs single crystals as seeds. We have obtained BAs single crystals with a thermal conductivity of 351 ± 21 W m-1 K-1 at room temperature, which is almost twice as conductive as previously reported BAs crystals. Further improvement along this direction is very likely.

  14. The precarious couple effect: verbally inhibited men + critical, disinhibited women = bad chemistry.

    PubMed

    Swann, William B; Rentfrow, Peter J; Gosling, Samuel D

    2003-12-01

    When critical, verbally disinhibited women are paired with verbally inhibited men, relationship quality suffers, rendering the relationship precarious. This effect theoretically emerges when (a). verbally disinhibited women pair with relatively inhibited men (man-more-inhibited couples) and (b). the disinhibition of women in man-more-inhibited couples amplifies women's criticalness and alienates men. Three studies (Ns=437, 300, and 564) provided evidence that relationship quality suffered in man-more-inhibited couples; a 4th study (N=168) showed that the criticalness of women in man-more-inhibited couples did indeed undermine relationship quality. Implications for understanding the impact of gender expectations on relationships and for integrating behavioral and personological approaches to close relationships are discussed.

  15. Spatial 3D infrastructure: display-independent software framework, high-speed rendering electronics, and several new displays

    NASA Astrophysics Data System (ADS)

    Chun, Won-Suk; Napoli, Joshua; Cossairt, Oliver S.; Dorval, Rick K.; Hall, Deirdre M.; Purtell, Thomas J., II; Schooler, James F.; Banker, Yigal; Favalora, Gregg E.

    2005-03-01

    We present a software and hardware foundation to enable the rapid adoption of 3-D displays. Different 3-D displays - such as multiplanar, multiview, and electroholographic displays - naturally require different rendering methods. The adoption of these displays in the marketplace will be accelerated by a common software framework. The authors designed the SpatialGL API, a new rendering framework that unifies these display methods under one interface. SpatialGL enables complementary visualization assets to coexist through a uniform infrastructure. Also, SpatialGL supports legacy interfaces such as the OpenGL API. The authors" first implementation of SpatialGL uses multiview and multislice rendering algorithms to exploit the performance of modern graphics processing units (GPUs) to enable real-time visualization of 3-D graphics from medical imaging, oil & gas exploration, and homeland security. At the time of writing, SpatialGL runs on COTS workstations (both Windows and Linux) and on Actuality"s high-performance embedded computational engine that couples an NVIDIA GeForce 6800 Ultra GPU, an AMD Athlon 64 processor, and a proprietary, high-speed, programmable volumetric frame buffer that interfaces to a 1024 x 768 x 3 digital projector. Progress is illustrated using an off-the-shelf multiview display, Actuality"s multiplanar Perspecta Spatial 3D System, and an experimental multiview display. The experimental display is a quasi-holographic view-sequential system that generates aerial imagery measuring 30 mm x 25 mm x 25 mm, providing 198 horizontal views.

  16. A laparoscopy-based method for BRDF estimation from in vivo human liver.

    PubMed

    Nunes, A L P; Maciel, A; Cavazzola, L T; Walter, M

    2017-01-01

    While improved visual realism is known to enhance training effectiveness in virtual surgery simulators, the advances on realistic rendering for these simulators is slower than similar simulations for man-made scenes. One of the main reasons for this is that in vivo data is hard to gather and process. In this paper, we propose the analysis of videolaparoscopy data to compute the Bidirectional Reflectance Distribution Function (BRDF) of living organs as an input to physically based rendering algorithms. From the interplay between light and organic matter recorded in video images, we propose the definition of a process capable of establishing the BRDF for inside-the-body organic surfaces. We present a case study around the liver with patient-specific rendering under global illumination. Results show that despite the limited range of motion allowed within the body, the computed BRDF presents a high-coverage of the sampled regions and produces plausible renderings. Copyright © 2016 Elsevier B.V. All rights reserved.

  17. Crystal growth in a microgravity environment

    NASA Technical Reports Server (NTRS)

    Kroes, Roger L. (Inventor); Reiss, Donald A. (Inventor); Lehoczky, Sandor L. (Inventor)

    1992-01-01

    Gravitational phenomena, including convection, sedimentation, and interactions of materials with their containers all affect the crystal growth process. If they are not taken into consideration they can have adverse effects on the quantity and quality of crystals produced. As a practical matter, convection, and sedimentation can be completely eliminated only under conditions of low gravity attained during orbital flight. There is, then, an advantage to effecting crystallization in space. In the absence of convection in a microgravity environment cooling proceeds by thermal diffusion from the walls to the center of the solution chamber. This renders control of nucleation difficult. Accordingly, there is a need for a new improved nucleation process in space. Crystals are nucleated by creating a small localized region of high relative supersaturation in a host solution at a lower degree of supersaturation.

  18. Assessment of mesh simplification algorithm quality

    NASA Astrophysics Data System (ADS)

    Roy, Michael; Nicolier, Frederic; Foufou, S.; Truchetet, Frederic; Koschan, Andreas; Abidi, Mongi A.

    2002-03-01

    Traditionally, medical geneticists have employed visual inspection (anthroposcopy) to clinically evaluate dysmorphology. In the last 20 years, there has been an increasing trend towards quantitative assessment to render diagnosis of anomalies more objective and reliable. These methods have focused on direct anthropometry, using a combination of classical physical anthropology tools and new instruments tailor-made to describe craniofacial morphometry. These methods are painstaking and require that the patient remain still for extended periods of time. Most recently, semiautomated techniques (e.g., structured light scanning) have been developed to capture the geometry of the face in a matter of seconds. In this paper, we establish that direct anthropometry and structured light scanning yield reliable measurements, with remarkably high levels of inter-rater and intra-rater reliability, as well as validity (contrasting the two methods).

  19. A novel framework for assessing metadata quality in epidemiological and public health research settings

    PubMed Central

    McMahon, Christiana; Denaxas, Spiros

    2016-01-01

    Metadata are critical in epidemiological and public health research. However, a lack of biomedical metadata quality frameworks and limited awareness of the implications of poor quality metadata renders data analyses problematic. In this study, we created and evaluated a novel framework to assess metadata quality of epidemiological and public health research datasets. We performed a literature review and surveyed stakeholders to enhance our understanding of biomedical metadata quality assessment. The review identified 11 studies and nine quality dimensions; none of which were specifically aimed at biomedical metadata. 96 individuals completed the survey; of those who submitted data, most only assessed metadata quality sometimes, and eight did not at all. Our framework has four sections: a) general information; b) tools and technologies; c) usability; and d) management and curation. We evaluated the framework using three test cases and sought expert feedback. The framework can assess biomedical metadata quality systematically and robustly. PMID:27570670

  20. A novel framework for assessing metadata quality in epidemiological and public health research settings.

    PubMed

    McMahon, Christiana; Denaxas, Spiros

    2016-01-01

    Metadata are critical in epidemiological and public health research. However, a lack of biomedical metadata quality frameworks and limited awareness of the implications of poor quality metadata renders data analyses problematic. In this study, we created and evaluated a novel framework to assess metadata quality of epidemiological and public health research datasets. We performed a literature review and surveyed stakeholders to enhance our understanding of biomedical metadata quality assessment. The review identified 11 studies and nine quality dimensions; none of which were specifically aimed at biomedical metadata. 96 individuals completed the survey; of those who submitted data, most only assessed metadata quality sometimes, and eight did not at all. Our framework has four sections: a) general information; b) tools and technologies; c) usability; and d) management and curation. We evaluated the framework using three test cases and sought expert feedback. The framework can assess biomedical metadata quality systematically and robustly.

  1. Wheat-based foods and non celiac gluten/wheat sensitivity: Is drastic processing the main key issue?

    PubMed

    Fardet, Anthony

    2015-12-01

    While gluten and wheat must be absolutely avoided in coeliac disease and allergy, respectively, nutritional recommendations are largely more confused about non-coeliac wheat/gluten sensitivity (NCWGS). Today, some even recommend avoiding all cereal-based foods. In this paper, the increased NCWGS prevalence is hypothesized to parallel the use of more and more drastic processes applied to the original wheat grain. First, a parallel between gluten-related disorders and wheat processing and consumption evolution is briefly proposed. Notably, increased use of exogenous vital gluten is considered. Drastic processing in wheat technology are mainly grain fractionation and refining followed by recombination and salt, sugars and fats addition, being able to render ultra-processed cereal-based foods more prone to trigger chronic low-grade inflammation. Concerning bread, intensive kneading and the choice of wheat varieties with high baking quality may have rendered gluten less digestible, moving digestion from pancreatic to intestinal proteases. The hypothesis of a gluten resistant fraction reaching colon and interacting with microflora is also considered in relation with increased inflammation. Besides, wheat flour refining removes fiber co-passenger which have potential anti-inflammatory property able to protect digestive epithelium. Finally, some research tracks are proposed, notably the comparison of NCWGS prevalence in populations consuming ultra-versus minimally-processed cereal-based foods. Copyright © 2015 Elsevier Ltd. All rights reserved.

  2. Query-Driven Visualization and Analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ruebel, Oliver; Bethel, E. Wes; Prabhat, Mr.

    2012-11-01

    This report focuses on an approach to high performance visualization and analysis, termed query-driven visualization and analysis (QDV). QDV aims to reduce the amount of data that needs to be processed by the visualization, analysis, and rendering pipelines. The goal of the data reduction process is to separate out data that is "scientifically interesting'' and to focus visualization, analysis, and rendering on that interesting subset. The premise is that for any given visualization or analysis task, the data subset of interest is much smaller than the larger, complete data set. This strategy---extracting smaller data subsets of interest and focusing ofmore » the visualization processing on these subsets---is complementary to the approach of increasing the capacity of the visualization, analysis, and rendering pipelines through parallelism. This report discusses the fundamental concepts in QDV, their relationship to different stages in the visualization and analysis pipelines, and presents QDV's application to problems in diverse areas, ranging from forensic cybersecurity to high energy physics.« less

  3. 3D conditional generative adversarial networks for high-quality PET image estimation at low dose.

    PubMed

    Wang, Yan; Yu, Biting; Wang, Lei; Zu, Chen; Lalush, David S; Lin, Weili; Wu, Xi; Zhou, Jiliu; Shen, Dinggang; Zhou, Luping

    2018-07-01

    Positron emission tomography (PET) is a widely used imaging modality, providing insight into both the biochemical and physiological processes of human body. Usually, a full dose radioactive tracer is required to obtain high-quality PET images for clinical needs. This inevitably raises concerns about potential health hazards. On the other hand, dose reduction may cause the increased noise in the reconstructed PET images, which impacts the image quality to a certain extent. In this paper, in order to reduce the radiation exposure while maintaining the high quality of PET images, we propose a novel method based on 3D conditional generative adversarial networks (3D c-GANs) to estimate the high-quality full-dose PET images from low-dose ones. Generative adversarial networks (GANs) include a generator network and a discriminator network which are trained simultaneously with the goal of one beating the other. Similar to GANs, in the proposed 3D c-GANs, we condition the model on an input low-dose PET image and generate a corresponding output full-dose PET image. Specifically, to render the same underlying information between the low-dose and full-dose PET images, a 3D U-net-like deep architecture which can combine hierarchical features by using skip connection is designed as the generator network to synthesize the full-dose image. In order to guarantee the synthesized PET image to be close to the real one, we take into account of the estimation error loss in addition to the discriminator feedback to train the generator network. Furthermore, a concatenated 3D c-GANs based progressive refinement scheme is also proposed to further improve the quality of estimated images. Validation was done on a real human brain dataset including both the normal subjects and the subjects diagnosed as mild cognitive impairment (MCI). Experimental results show that our proposed 3D c-GANs method outperforms the benchmark methods and achieves much better performance than the state-of-the-art methods in both qualitative and quantitative measures. Copyright © 2018 Elsevier Inc. All rights reserved.

  4. Toward an Ontological Approach in Goal-Oriented Language Courseware Design and Its Implications for Technology-Independent Content Structuring

    ERIC Educational Resources Information Center

    Colpaert, Jozef

    2006-01-01

    The term "design" is being understood more and more as a methodological process, together with its acceptance as the result of such a process. As a process, it is a stage in the courseware engineering life cycle which primarily focuses on rendering the development process more effective and on enhancing the qualities of the finished system,…

  5. Developing 21st Century Senior Leaders

    DTIC Science & Technology

    2010-03-01

    idealistic and supernatural qualities that render them capable of leading organizations in the face of uncontrollable operational forces. But, senior...we must change if we are to develop better senior leaders.45 In the Armed Forces Journal article calling to keep the service colleges open, the...SS .., http://ss-peiper.narod.ru/ articles /Beginning_of_the_end-The_Leadership_of_SS-Obersturmbahnfuhrer_Jochen_ Peiper.pdf (accessed March 29

  6. Translations on Environmental Quality, Number 180

    DTIC Science & Technology

    1978-09-29

    Where no processing indicator is given, the infor- Sfii nation was summarized or extracted . ill Unfamiliar names rendered phonetically or...Regulations on Discharge of Palm Oil Effluent in Effect (Anne Koh; BUSINESS TIMES, 1 Jul 78) .... 1 NEW ZEALAND Car Pollution Soars in Christchurch (THE...Out of Istanbul (Alp Orcun; GUNAYDIN, 8 Jul 78) 49 Briefs Marmaris Forest Fire Damage 51 - c - MALAYSIA REGULATIONS ON DISCHARGE OF PALM OIL

  7. Forecasting Nutrition Research in 2020

    DTIC Science & Technology

    2014-01-01

    one of the hottest topics in 2020. A better understanding of en- ergy balance and energy flux will likely...reduce their quality of life. Reductions in dosing and/or duration of medical treatment can render the therapy less effec- tive than intended, and it...maintain a course of health promotion. In the past, pedometers worn on the belt gave feedback regarding physical activity (e.g., the common goal

  8. Transgenic Arabidopsis Gene Expression System

    NASA Technical Reports Server (NTRS)

    Ferl, Robert; Paul, Anna-Lisa

    2009-01-01

    The Transgenic Arabidopsis Gene Expression System (TAGES) investigation is one in a pair of investigations that use the Advanced Biological Research System (ABRS) facility. TAGES uses Arabidopsis thaliana, thale cress, with sensor promoter-reporter gene constructs that render the plants as biomonitors (an organism used to determine the quality of the surrounding environment) of their environment using real-time nondestructive Green Fluorescent Protein (GFP) imagery and traditional postflight analyses.

  9. [Virtual endoscopy with a volumetric reconstruction technic: the technical aspects].

    PubMed

    Pavone, P; Laghi, A; Panebianco, V; Catalano, C; Giura, R; Passariello, R

    1998-06-01

    We analyze the peculiar technical features of virtual endoscopy obtained with volume rendering. Our preliminary experience is based on virtual endoscopy images from volumetric data acquired with spiral CT (Siemens, Somatom Plus 4) using acquisition protocols standardized for different anatomic areas. Images are reformatted at the CT console, to obtain 1 mm thick contiguous slices, and transferred in DICOM format to an O2 workstation (Silicon Graphics, Mountain View CA, USA) with processor speed of 180 Mhz, 256 Mbyte RAM memory and 4.1 Gbyte hard disk. The software is Vitrea 1.0 (Vital Images, Fairfield, Iowa), running on a Unix platform. Image output is obtained through the Ethernet network to a Macintosh computer and a thermic printer (Kodak 8600 XLS). Diagnostic quality images were obtained in all the cases. Fly-through in the airways allowed correct evaluation of the main bronchi and of the origin of segmentary bronchi. In the vascular district, both carotid strictures and abdominal aortic aneurysms were depicted, with the same accuracy as with conventional reconstruction techniques. In the colon studies, polypoid lesions were correctly depicted in all the cases, with good correlation with endoscopic and double-contrast barium enema findings. In a case of lipoma of the ascending colon, virtual endoscopy allowed to study the colon both cranially and caudally to the lesion. The simultaneous evaluation of axial CT images permitted to characterize the lesion correctly on the basis of its density values. The peculiar feature of volume rendering is the use of the whole information inside the imaging volume to reconstruct three-dimensional images; no threshold values are used and no data are lost as opposite to conventional image reconstruction techniques. The different anatomic structures are visualized modifying the reciprocal opacities, showing the structures of no interest as translucent. The modulation of different opacities is obtained modifying the shape of the opacity curve, either using pre-set curves or in a completely independent way. Other technical features of volume rendering are the perspective evaluation of the objects, color and lighting. In conclusion, volume rendering is a promising technique to elaborate three-dimensional images, offering very realistic endoscopic views. At present, the main limitation is represented by the need of powerful and high-cost workstations.

  10. RenderToolbox3: MATLAB tools that facilitate physically based stimulus rendering for vision research.

    PubMed

    Heasly, Benjamin S; Cottaris, Nicolas P; Lichtman, Daniel P; Xiao, Bei; Brainard, David H

    2014-02-07

    RenderToolbox3 provides MATLAB utilities and prescribes a workflow that should be useful to researchers who want to employ graphics in the study of vision and perhaps in other endeavors as well. In particular, RenderToolbox3 facilitates rendering scene families in which various scene attributes and renderer behaviors are manipulated parametrically, enables spectral specification of object reflectance and illuminant spectra, enables the use of physically based material specifications, helps validate renderer output, and converts renderer output to physical units of radiance. This paper describes the design and functionality of the toolbox and discusses several examples that demonstrate its use. We have designed RenderToolbox3 to be portable across computer hardware and operating systems and to be free and open source (except for MATLAB itself). RenderToolbox3 is available at https://github.com/DavidBrainard/RenderToolbox3.

  11. Color-rendering indices in global illumination methods

    NASA Astrophysics Data System (ADS)

    Geisler-Moroder, David; Dür, Arne

    2009-10-01

    Human perception of material colors depends heavily on the nature of the light sources that are used for illumination. One and the same object can cause highly different color impressions when lit by a vapor lamp or by daylight, respectively. On the basis of state-of-the-art colorimetric methods, we present a modern approach for the calculation of color-rendering indices (CRI), which were defined by the International Commission on Illumination (CIE) to characterize color reproduction properties of illuminants. We update the standard CIE method in three main points: first, we use the CIELAB color space; second, we apply a linearized Bradford transformation for chromatic adaptation; and finally, we evaluate color differences using the CIEDE2000 total color difference formula. Moreover, within a real-world scene, light incident on a measurement surface is composed of a direct and an indirect part. Neumann and Schanda [Proc. CGIV'06 Conf., Leeds, UK, pp. 283-286 (2006)] have shown for the cube model that diffuse interreflections can influence the CRI of a light source. We analyze how color-rendering indices vary in a real-world scene with mixed direct and indirect illumination and recommend the usage of a spectral rendering engine instead of an RGB-based renderer for reasons of accuracy of CRI calculations.

  12. A Novel Conductive Mesoporous Layer with a Dynamic Two-Step Deposition Strategy Boosts Efficiency of Perovskite Solar Cells to 20.

    PubMed

    Sun, Haoxuan; Deng, Kaimo; Zhu, Yayun; Liao, Min; Xiong, Jie; Li, Yanrong; Li, Liang

    2018-05-22

    Lead halide perovskite solar cells (PSCs) with the high power conversion efficiency (PCE) typically use mesoporous metal oxide nanoparticles as the scaffold and electron-transport layers. However, the traditional mesoporous layer suffers from low electron conductivity and severe carrier recombination. Here, antimony-doped tin oxide nanorod arrays are proposed as novel transparent conductive mesoporous layers in PSCs. Such a mesoporous layer improves the electron transport as well as light utilization. To resolve the common problem of uneven growth of perovskite on rough surface, the dynamic two-step spin coating strategy is proposed to prepare highly smooth, dense, and crystallized perovskite films with micrometer-scale grains, largely reducing the carrier recombination ratio. The conductive mesoporous layer and high-quality perovskite film eventually render the PSC with a remarkable PCE of 20.1% with excellent reproducibility. These findings provide a new avenue to further design high-efficiency PSCs from the aspect of carrier transport and recombination. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Research and Development for Off-Road Fuel Cell Applications U.S. Department of Energy Grant DE-FG36-04GO14303 - Final Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hicks, Michael; Erickson, Paul; Lawrence, Richard

    Off-road concerns are related to the effects of shock and vibration and air quality on fuel cell power requirements. Mechanical stresses on differing material makeup and mass distribution within the system may render some components susceptible to impulse trauma while others may show adverse effects from harmonic disturbances or broad band mechanical agitation. One of the recognized challenges in fuel cell systems air purification is in providing a highly efficient particulate and chemical filter with minimal pressure drop. PEM integrators do not want additional parasitic loads added to the system as compensation for a highly efficient yet highly restrictive filter.more » Additionally, there is challenge in integrating multiple functions into a single air intake module tasked with effectively filtering high dust loads, diesel soot, pesticides, ammonias, and other anticipated off-road contaminants. This project has investigated both off-road associated issues cumulating in the prototype build and testing of two light duty off-road vehicles with integrated fuel cell power plant systems.« less

  14. Development of high protein, high fiber smoothie as a grab-and-go breakfast option using response surface methodology.

    PubMed

    Mehta, Dipakkumar; Kumar, M H Sathish; Sabikhi, Latha

    2017-11-01

    The current work aimed to formulate smoothie by optimizing varying levels of soy protein isolate (1.5-2.5% w/w), sucralose (150-190 ppm) and pectin (0.3-0.5% w/w) along with milk, legume (chickpea), vegetable (carrot), fruit (mango), honey and trisodium citrate by response surface methodology on the basis of sensory (color and appearance, flavor, consistency, sweetness and overall acceptability) and physical (expressible serum and viscosity) responses. Soy protein isolate and pectin levels influenced color and appearance, flavor, consistency and overall acceptability significantly. Soy protein isolate and pectin showed a positive correlation with viscosity of smoothie with reduced expressible serum. Smoothie was optimized with 1.8% (w/w) soy protein isolate, 166.8 ppm sucralose, and 0.5% (w/w) pectin with acceptable quality. One serving (325 ml) of optimized smoothie provides approximately 23% protein, 27% dietary fiber of the recommended daily values and provides approximately 74 kcal per 100 ml of smoothie, which renders smoothie as a high protein, high fiber, grab-and-go breakfast option.

  15. Development of the Kisiizi hospital health insurance scheme: lessons learned and implications for universal health coverage.

    PubMed

    Baine, Sebastian Olikira; Kakama, Alex; Mugume, Moses

    2018-06-15

    Kisiizi Hospital Health Insurance scheme started in 1996 to; improve access to health services, and provide a stable source of funding and reduce bad debts to Kisiizi hospital. Objectives of this study were; to describe Kisiizi Hospital Health Insurance scheme and to document lessons learned and implications for universal health coverage. This was a descriptive cross-sectional study. Data from different sources were triangulated and thematically analysed. Most households (96%) were organized in Engozi societies (e-Societies), met monthly, and made financial contributions. Cultural solidarity in e-Societies provided a platform for the Kisiizi hospital health insurance scheme establishment, operation and made it compulsory for members. e-Societies disciplinary measures and fear of high out-of-pocket payment for health care enforced enrolment, retention and increased membership. Community sensitisation and community participation in setting premiums and co-payments provided for better understanding of health insurance and rendered them acceptable, affordable and equitable. Membership increased from 330 in 1996 to 38,400 families in 2017. Kisiizi hospital health insurance scheme covered only health services obtained from Kisiizi hospital. Kisiizi hospital health insurance scheme offered no exemption, credit and referral facilities. e-Societies sometimes paid premiums for members from savings and offered them loans to. Kisiizi hospital provided good quality health services, which were easily accessed by insured members. Kisiizi hospital got a stable source of funding and reduced debt burden. Kisiizi hospital health insurance scheme improved access to health services, provided a stable source of funding and reduced bad debts to the hospital. Internal and external factors to e-Society enforced enrolment and retention of members in Kisiizi hospital health insurance scheme. Good quality health services at Kisiizi hospital demonstrated value for money and offered incentives for enrolment and retention, and coverage expansion. Community sensitization and participation in setting premiums and co-payments rendered Kisiizi hospital health insurance scheme acceptable, affordable and catered for equity. Insured members enjoyed benefits; protection against catastrophic health spending, impoverishment, and easy access to quality health care.

  16. Wafer bonding process for building MEMS devices

    NASA Astrophysics Data System (ADS)

    Pabo, Eric F.; Meiler, Josef; Matthias, Thorsten

    2014-06-01

    The technology for the measurement of colour rendering and colour quality is not new, but many parameters related to this issue are currently changing. A number of standard methods were developed and are used by different specialty areas of the lighting industry. CIE 13.3 has been the accepted standard implemented by many users and used for many years. Light-emitting Diode (LED) technology moves at a rapid pace and, as this lighting source finds wider acceptance, it appears that traditional colour-rendering measurement methods produce inconsistent results. Practical application of various types of LEDs yielded results that challenged conventional thinking regarding colour measurement of light sources. Recent studies have shown that the anatomy and physiology of the human eye is more complex than formerly accepted. Therefore, the development of updated measurement methodology also forces a fresh look at functioning and colour perception of the human eye, especially with regard to LEDs. This paper includes a short description of the history and need for the measurement of colour rendering. Some of the traditional measurement methods are presented and inadequacies are discussed. The latest discoveries regarding the functioning of the human eye and the perception of colour, especially when LEDs are used as light sources, are discussed. The unique properties of LEDs when used in practical applications such as luminaires are highlighted.

  17. Measuring Air Quality in a Construction Site Biotope Using the AQM-65 Analyser

    NASA Astrophysics Data System (ADS)

    Ioana-Alina, Creţan; Nicoleta, Nemeș

    2017-10-01

    Activities related to the execution of construction works often exert pressure on the quality of environmental factors in adjacent habitat. In various stages of realization of the works if is the opening of the building site and access roads, borrow pits and the storage, or the construction itself, all the related activities will cause harm in various degrees of vegetation on the construction site and its surroundings. Large areas are rendered non-productive and, although they should be restored for use in the same place or elsewhere, sometimes they can lose their natural habitat baseline. The paper is presenting a case study of air quality monitoring using the AQM 65 analyser for a construction site located near Timisoara locality, Timis County, Romania.

  18. 3D surface rendered MR images of the brain and its vasculature.

    PubMed

    Cline, H E; Lorensen, W E; Souza, S P; Jolesz, F A; Kikinis, R; Gerig, G; Kennedy, T E

    1991-01-01

    Both time-of-flight and phase contrast magnetic resonance angiography images are combined with stationary tissue images to provide data depicting two contrast relationships yielding intrinsic discrimination of brain matter and flowing blood. A computer analysis is based on nearest neighbor segmentation and the connection between anatomical structures to partition the images into different tissue categories: from which, high resolution brain parenchymal and vascular surfaces are constructed and rendered in juxtaposition, aiding in surgical planning.

  19. Development and Validation of a Kit to Measure Drink Antioxidant Capacity Using a Novel Colorimeter.

    PubMed

    Priftis, Alexandros; Stagos, Dimitrios; Tzioumakis, Nikolaos; Konstantinopoulos, Konstantinos; Patouna, Anastasia; Papadopoulos, Georgios E; Tsatsakis, Aristides; Kouretas, Dimitrios

    2016-08-30

    Measuring the antioxidant capacity of foods is essential, as a means of quality control to ensure that the final product reaching the consumer will be of high standards. Despite the already existing assays with which the antioxidant activity is estimated, new, faster and low cost methods are always sought. Therefore, we have developed a novel colorimeter and combined it with a slightly modified DPPH assay, thus creating a kit that can assess the antioxidant capacity of liquids (e.g., different types of coffee, beer, wine, juices) in a quite fast and low cost manner. The accuracy of the colorimeter was ensured by comparing it to a fully validated Hitachi U-1900 spectrophotometer, and a coefficient was calculated to eliminate the observed differences. In addition, a new, user friendly software was developed, in order to render the procedure as easy as possible, while allowing a central monitoring of the obtained results. Overall, a novel kit was developed, with which the antioxidant activity of liquids can be measured, firstly to ensure their quality and secondly to assess the amount of antioxidants consumed with the respective food.

  20. Engineering of biotin-prototrophy in Pichia pastoris for robust production processes.

    PubMed

    Gasser, Brigitte; Dragosits, Martin; Mattanovich, Diethard

    2010-11-01

    Biotin plays an essential role as cofactor for biotin-dependent carboxylases involved in essential metabolic pathways. The cultivation of Pichia pastoris, a methylotrophic yeast that is successfully used as host for the production of recombinant proteins, requires addition of high dosage of biotin. As biotin is the only non-salt media component used during P. pastoris fermentation (apart from the carbon source), nonconformities during protein production processes are usually attributed to poor quality of the added biotin. In order to avoid dismissed production runs due to biotin quality issues, we engineered the biotin-requiring yeast P. pastoris to become a biotin-prototrophic yeast. Integration of four genes involved in the biotin biosynthesis from brewing yeast into the P. pastoris genome rendered P. pastoris biotin-prototrophic. The engineered strain has successfully been used as production host for both intracellular and secreted heterologous proteins in fed-batch processes, employing mineral media without vitamins. Another field of application for these truly prototrophic hosts is the production of biochemicals and small metabolites, where defined mineral media leads to easier purification procedures. Copyright © 2010 Elsevier Inc. All rights reserved.

  1. Image formation simulation for computer-aided inspection planning of machine vision systems

    NASA Astrophysics Data System (ADS)

    Irgenfried, Stephan; Bergmann, Stephan; Mohammadikaji, Mahsa; Beyerer, Jürgen; Dachsbacher, Carsten; Wörn, Heinz

    2017-06-01

    In this work, a simulation toolset for Computer Aided Inspection Planning (CAIP) of systems for automated optical inspection (AOI) is presented along with a versatile two-robot-setup for verification of simulation and system planning results. The toolset helps to narrow down the large design space of optical inspection systems in interaction with a system expert. The image formation taking place in optical inspection systems is simulated using GPU-based real time graphics and high quality off-line-rendering. The simulation pipeline allows a stepwise optimization of the system, from fast evaluation of surface patch visibility based on real time graphics up to evaluation of image processing results based on off-line global illumination calculation. A focus of this work is on the dependency of simulation quality on measuring, modeling and parameterizing the optical surface properties of the object to be inspected. The applicability to real world problems is demonstrated by taking the example of planning a 3D laser scanner application. Qualitative and quantitative comparison results of synthetic and real images are presented.

  2. View planetary differentiation process through high-resolution 3D imaging

    NASA Astrophysics Data System (ADS)

    Fei, Y.

    2011-12-01

    Core-mantle separation is one of the most important processes in planetary evolution, defining the structure and chemical distribution in the planets. Iron-dominated core materials could migrate through silicate mantle to the core by efficient liquid-liquid separation and/or by percolation of liquid metal through solid silicate matrix. We can experimentally simulate these processes to examine the efficiency and time of core formation and its geochemical signatures. The quantitative measure of the efficiency of percolation is usually the dihedral angle, related to the interfacial energies of the liquid and solid phases. To determine the true dihedral angle at high pressure and temperatures, it is necessary to measure the relative frequency distributions of apparent dihedral angles between the quenched liquid metal and silicate grains for each experiment. Here I present a new imaging technique to visualize the distribution of liquid metal in silicate matrix in 3D by combination of focus ion beam (FIB) milling and high-resolution SEM image. The 3D volume rendering provides precise determination of the dihedral angle and quantitative measure of volume fraction and connectivity. I have conducted a series of experiments using mixtures of San Carlos olivine and Fe-S (10wt%S) metal with different metal-silicate ratios, up to 25 GPa and at temperatures above 1800C. High-quality 3D volume renderings were reconstructed from FIB serial sectioning and imaging with 10-nm slice thickness and 14-nm image resolution for each quenched sample. The unprecedented spatial resolution at nano scale allows detailed examination of textural features and precise determination of the dihedral angle as a function of pressure, temperature and composition. The 3D reconstruction also allows direct assessment of connectivity in multi-phase matrix, providing a new way to investigate the efficiency of metal percolation in a real silicate mantle.

  3. High-power graphic computers for visual simulation: a real-time--rendering revolution

    NASA Technical Reports Server (NTRS)

    Kaiser, M. K.

    1996-01-01

    Advances in high-end graphics computers in the past decade have made it possible to render visual scenes of incredible complexity and realism in real time. These new capabilities make it possible to manipulate and investigate the interactions of observers with their visual world in ways once only dreamed of. This paper reviews how these developments have affected two preexisting domains of behavioral research (flight simulation and motion perception) and have created a new domain (virtual environment research) which provides tools and challenges for the perceptual psychologist. Finally, the current limitations of these technologies are considered, with an eye toward how perceptual psychologist might shape future developments.

  4. Semiconductive 3-D haloplumbate framework hybrids with high color rendering index white-light emission.

    PubMed

    Wang, Guan-E; Xu, Gang; Wang, Ming-Sheng; Cai, Li-Zhen; Li, Wen-Hua; Guo, Guo-Cong

    2015-12-01

    Single-component white light materials may create great opportunities for novel conventional lighting applications and display systems; however, their reported color rendering index (CRI) values, one of the key parameters for lighting, are less than 90, which does not satisfy the demand of color-critical upmarket applications, such as photography, cinematography, and art galleries. In this work, two semiconductive chloroplumbate (chloride anion of lead(ii)) hybrids, obtained using a new inorganic-organic hybrid strategy, show unprecedented 3-D inorganic framework structures and white-light-emitting properties with high CRI values around 90, one of which shows the highest value to date.

  5. T1 weighted fat/water separated PROPELLER acquired with dual bandwidths.

    PubMed

    Rydén, Henric; Berglund, Johan; Norbeck, Ola; Avventi, Enrico; Skare, Stefan

    2018-04-24

    To describe a fat/water separated dual receiver bandwidth (rBW) spin echo PROPELLER sequence that eliminates the dead time associated with single rBW sequences. A nonuniform noise whitening by regularization of the fat/water inverse problem is proposed, to enable dual rBW reconstructions. Bipolar, flyback, and dual spin echo sequences were developed. All sequences acquire two echoes with different rBW without dead time. Chemical shift displacement was corrected by performing the fat/water separation in k-space, prior to gridding. The proposed sequences were compared to fat saturation, and single rBW sequences, in terms of SNR and CNR efficiency, using clinically relevant acquisition parameters. The impact of motion was investigated. Chemical shift correction greatly improved the image quality, especially at high resolution acquired with low rBW, and also improved motion estimates. SNR efficiency of the dual spin echo sequence was up to 20% higher than the single rBW acquisition, while CNR efficiency was 50% higher for the bipolar acquisition. Noise whitening was deemed necessary for all dual rBW acquisitions, rendering high image quality with strong and homogenous fat suppression. Dual rBW sequences eliminate the dead time present in single rBW sequences, which improves SNR efficiency. In combination with the proposed regularization, this enables highly efficient T1-weighted PROPELLER images without chemical shift displacement. © 2018 International Society for Magnetic Resonance in Medicine.

  6. Changes in water quality in the Owabi water treatment plant in Ghana

    NASA Astrophysics Data System (ADS)

    Akoto, Osei; Gyamfi, Opoku; Darko, Godfred; Barnes, Victor Rex

    2017-03-01

    The study was conducted on the status of the quality of water from the Owabi water treatment plant that supplies drinking water to Kumasi, a major city in Ghana, to ascertain the change in quality of water from source to point-of-use. Physico-chemical, bacteriological water quality parameters and trace metal concentration of water samples from five different treatment points from the Owabi water treatment plant were investigated. The raw water was moderately hard with high turbidity and colour that exceeds the WHO guideline limits. Nutrient concentrations were of the following order: NH3 < NO2 - < NO3 - < PO4 3- < SO4 2- and were all below WHO permissible level for drinking water in all the samples at different stages of treatment. Trace metal concentrations of the reservoir were all below WHO limit except chromium (0.06 mg/L) and copper (0.24 mg/L). The bacteriological study showed that the raw water had total coliform (1,766 cfu/100 mL) and faecal coliform (257 cfu/100 mL) that exceeded the WHO standard limits, rendering it unsafe for domestic purposes without treatment. Colour showed strong positive correlation with turbidity ( r = 0.730), TSS ( r ≥ 0.922) and alkalinity (0.564) significant at p < 0.01. The quality of the treated water indicates that colour, turbidity, Cr and Cu levels reduced and fall within the WHO permissible limit for drinking water. Treatment process at the water treatment plant is adjudged to be good.

  7. Modelling Extortion Racket Systems: Preliminary Results

    NASA Astrophysics Data System (ADS)

    Nardin, Luis G.; Andrighetto, Giulia; Székely, Áron; Conte, Rosaria

    Mafias are highly powerful and deeply entrenched organised criminal groups that cause both economic and social damage. Overcoming, or at least limiting, their harmful effects is a societally beneficial objective, which renders its dynamics understanding an objective of both scientific and political interests. We propose an agent-based simulation model aimed at understanding how independent and combined effects of legal and social norm-based processes help to counter mafias. Our results show that legal processes are effective in directly countering mafias by reducing their activities and changing the behaviour of the rest of population, yet they are not able to change people's mind-set that renders the change fragile. When combined with social norm-based processes, however, people's mind-set shifts towards a culture of legality rendering the observed behaviour resilient to change.

  8. New impressive capabilities of SE-workbench for EO/IR real-time rendering of animated scenarios including flares

    NASA Astrophysics Data System (ADS)

    Le Goff, Alain; Cathala, Thierry; Latger, Jean

    2015-10-01

    To provide technical assessments of EO/IR flares and self-protection systems for aircraft, DGA Information superiority resorts to synthetic image generation to model the operational battlefield of an aircraft, as viewed by EO/IR threats. For this purpose, it completed the SE-Workbench suite from OKTAL-SE with functionalities to predict a realistic aircraft IR signature and is yet integrating the real-time EO/IR rendering engine of SE-Workbench called SE-FAST-IR. This engine is a set of physics-based software and libraries that allows preparing and visualizing a 3D scene for the EO/IR domain. It takes advantage of recent advances in GPU computing techniques. The recent past evolutions that have been performed concern mainly the realistic and physical rendering of reflections, the rendering of both radiative and thermal shadows, the use of procedural techniques for the managing and the rendering of very large terrains, the implementation of Image- Based Rendering for dynamic interpolation of plume static signatures and lastly for aircraft the dynamic interpolation of thermal states. The next step is the representation of the spectral, directional, spatial and temporal signature of flares by Lacroix Defense using OKTAL-SE technology. This representation is prepared from experimental data acquired during windblast tests and high speed track tests. It is based on particle system mechanisms to model the different components of a flare. The validation of a flare model will comprise a simulation of real trials and a comparison of simulation outputs to experimental results concerning the flare signature and above all the behavior of the stimulated threat.

  9. Health and well-being benefits of spending time in forests: systematic review.

    PubMed

    Oh, Byeongsang; Lee, Kyung Ju; Zaslawski, Chris; Yeung, Albert; Rosenthal, David; Larkey, Linda; Back, Michael

    2017-10-18

    Numerous studies have reported that spending time in nature is associated with the improvement of various health outcomes and well-being. This review evaluated the physical and psychological benefits of a specific type of exposure to nature, forest therapy. A literature search was carried out using MEDLINE, PubMed, ScienceDirect, EMBASE, and ProQuest databases and manual searches from inception up to December 2016. Key words: "Forest" or "Shinrin -Yoku" or "Forest bath" AND "Health" or "Wellbeing". The methodological quality of each randomized controlled trials (RCTs) was assessed according to the Cochrane risk of bias (ROB) tool. Six RCTs met the inclusion criteria. Participants' ages ranged from 20 to 79 years. Sample size ranged from 18 to 99. Populations studied varied from young healthy university students to elderly people with chronic disease. Studies reported the positive impact of forest therapy on hypertension (n = 2), cardiac and pulmonary function (n = 1), immune function (n = 2), inflammation (n = 3), oxidative stress (n = 1), stress (n = 1), stress hormone (n = 1), anxiety (n = 1), depression (n = 2), and emotional response (n = 3). The quality of all studies included in this review had a high ROB. Forest therapy may play an important role in health promotion and disease prevention. However, the lack of high-quality studies limits the strength of results, rendering the evidence insufficient to establish clinical practice guidelines for its use. More robust RCTs are warranted.

  10. Current external beam radiation therapy quality assurance guidance: does it meet the challenges of emerging image-guided technologies?

    PubMed

    Palta, Jatinder R; Liu, Chihray; Li, Jonathan G

    2008-01-01

    The traditional prescriptive quality assurance (QA) programs that attempt to ensure the safety and reliability of traditional external beam radiation therapy are limited in their applicability to such advanced radiation therapy techniques as three-dimensional conformal radiation therapy, intensity-modulated radiation therapy, inverse treatment planning, stereotactic radiosurgery/radiotherapy, and image-guided radiation therapy. The conventional QA paradigm, illustrated by the American Association of Physicists in Medicine Radiation Therapy Committee Task Group 40 (TG-40) report, consists of developing a consensus menu of tests and device performance specifications from a generic process model that is assumed to apply to all clinical applications of the device. The complexity, variation in practice patterns, and level of automation of high-technology radiotherapy renders this "one-size-fits-all" prescriptive QA paradigm ineffective or cost prohibitive if the high-probability error pathways of all possible clinical applications of the device are to be covered. The current approaches to developing comprehensive prescriptive QA protocols can be prohibitively time consuming and cost ineffective and may sometimes fail to adequately safeguard patients. It therefore is important to evaluate more formal error mitigation and process analysis methods of industrial engineering to more optimally focus available QA resources on process components that have a significant likelihood of compromising patient safety or treatment outcomes.

  11. A Theory of Special Operations: The Origin, Qualities, and Use of SOF

    DTIC Science & Technology

    2007-10-01

    because rough men stand ready in the night to visit violence on those who would do us harm. — George Orwell Special Operations Forces (SOF) are small...induced by the gunpowder revolution and the industrial revolution , did not render all previous understandings of war irrelevant. They revolutionized ...for Counter-Terrorism Studies, The Fletcher School, Tufts University and JSOU Senior Fellow George Emile Irani Ph.D., International Relations

  12. Analytical Chemistry Division annual progress report for period ending December 31, 1985

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shultz, W.D.

    1986-05-01

    Progress reports are presented for the four major sections of the division: analytical spectroscopy, radioactive materials laboratories, inorganic chemistry, and organic chemistry. A brief discussion of the division's role in the Laboratory's Environmental Restoration and Facilities Upgrade is given. Information about quality assurance and safety programs is presented, along with a tabulation of analyses rendered. Publications, oral presentations, professional activities, educational programs, and seminars are cited.

  13. Controversy in Purchasing Prescription Drugs Online in China.

    PubMed

    Yuan, Peng; Qi, Lin; Wang, Long

    2016-08-01

    China's government is considering legalization of online prescription drugs to increase the pharmaceutical market and enhance access to necessary medicines. However, challenges such as a shortage of licensed pharmacists and drug quality issues have raised concerns and delayed consensus on the proposal. China's government must address the most pressing issues so it can render a decision on online prescription sales. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. Work Values and Service-Oriented Organizational Citizenship Behaviors: The Mediation of Psychological Contract and Professional Commitment: A Case of Students in Taiwan Police College

    ERIC Educational Resources Information Center

    Chen, Chun-hsi Vivian; Kao, Rui Hsin

    2012-01-01

    Public security, traffic management and service for the people are the three major functions of policing. To assure the quality of police service, which is contingent on the people who render the service, has become the core of policing. This study aims to investigate the relationship between work values and service-oriented organizational…

  15. A medical application integrating remote 3D visualization tools to access picture archiving and communication system on mobile devices.

    PubMed

    He, Longjun; Ming, Xing; Liu, Qian

    2014-04-01

    With computing capability and display size growing, the mobile device has been used as a tool to help clinicians view patient information and medical images anywhere and anytime. However, for direct interactive 3D visualization, which plays an important role in radiological diagnosis, the mobile device cannot provide a satisfactory quality of experience for radiologists. This paper developed a medical system that can get medical images from the picture archiving and communication system on the mobile device over the wireless network. In the proposed application, the mobile device got patient information and medical images through a proxy server connecting to the PACS server. Meanwhile, the proxy server integrated a range of 3D visualization techniques, including maximum intensity projection, multi-planar reconstruction and direct volume rendering, to providing shape, brightness, depth and location information generated from the original sectional images for radiologists. Furthermore, an algorithm that changes remote render parameters automatically to adapt to the network status was employed to improve the quality of experience. Finally, performance issues regarding the remote 3D visualization of the medical images over the wireless network of the proposed application were also discussed. The results demonstrated that this proposed medical application could provide a smooth interactive experience in the WLAN and 3G networks.

  16. The ultrahigh precision form measurement of small, steep-sided aspheric moulds, incorporating novel hardware and software developments; Technical Digest

    NASA Astrophysics Data System (ADS)

    Mills, M. W.; Hutchinson, Matthew J.

    2005-05-01

    A variety of consumer applications, eg cellphone camera lenses, optical storage devices, digital cameras, etc, are driving the demand for small, high aspheric departure rotationally-symmetric moulded optics, manufactured both in polymer and glass materials. The mould tools for such components are manufactured by ultra-high precision techniques such as single point diamond turning and ultra-precision grinding, and must be accurate to <1/10μm levels for form, and exhibit nanometric surface finish quality. The aspheric forms of such components' optical surfaces exhibit high departure from best-fit sphere towards their outer edge, which renders this outer region especially critical for optical performance. The high slope of these components at the clear aperture has caused some restrictions on the use of profilometry in the measurement of form across their full diameter. Taylor Hobson designs and manufactures a range of ultra-precision profilometers for use in such industries as aspheric optics fabrication. In order to address the issues described, a new measurement system, Taylor Hobson Form Talysurf PGI 1250, has been developed, which contains new Aspheric Data Fusion Software, as well as Asphero-Diffractive Analysis Software, allowing the entire diametric profile to be analysed to the desired level of accuracy. This development removes the previous limitation of maximum slope for this type of measurement, thus enabling better quality control of high slope, high aspheric departure optics. Measurement data from the Form Talysurf PGI 1250 can be fed back directly to the machine tool, in order to optimize the form of the optical mould.

  17. The ultrahigh precision form measurement of small, steep-sided aspheric moulds, incorporating novel hardware and software developments; Technical Digest

    NASA Astrophysics Data System (ADS)

    Mills, M. W.; Hutchinson, Matthew J.

    2005-05-01

    A variety of consumer applications, eg cellphone camera lenses, optical storage devices, digital cameras, etc, are driving the demand for small, high aspheric departure rotationally-symmetric moulded optics, manufactured both in polymer and glass materials. The mould tools for such components are manufactured by ultra-high precision techniques such as single point diamond turning and ultra-precision grinding, and must be accurate to <1/10μm levels for form, and exhibit nanometric surface finish quality. The aspheric forms of such components" optical surfaces exhibit high departure from best-fit sphere towards their outer edge, which renders this outer region especially critical for optical performance. The high slope of these components at the clear aperture has caused some restrictions on the use of profilometry in the measurement of form across their full diameter. Taylor Hobson designs and manufactures a range of ultra-precision profilometers for use in such industries as aspheric optics fabrication. In order to address the issues described, a new measurement system, Taylor Hobson Form Talysurf PGI 1250, has been developed, which contains new Aspheric Data Fusion Software, as well as Asphero-Diffractive Analysis Software, allowing the entire diametric profile to be analysed to the desired level of accuracy. This development removes the previous limitation of maximum slope for this type of measurement, thus enabling better quality control of high slope, high aspheric departure optics. Measurement data from the Form Talysurf PGI 1250 can be fed back directly to the machine tool, in order to optimize the form of the optical mould.

  18. Hoarseness.

    PubMed

    Sulica, Lucian

    2011-06-01

    Hoarseness is the colloquial expression for dysphonia ; these terms are often used interchangeably in medicine to refer to altered voice quality. Hoarseness may be both a symptom and a sign of dysfunction of the phonatory apparatus. It is never a diagnosis, despite having a corresponding International Classification of Diseases code and sometimes serving as such for purposes of administrative convenience. The same anatomical and physiological features that make the vocal folds uniquely suited for the high-speed vibration necessary for sound production render them exquisitely sensitive to a wide range of abnormalities. The breadth of pathologic conditions that can cause hoarseness makes a unified overview a challenge; hoarseness is simply not a homogeneous category after the initial laryngoscopy. Moreover, the available literature predominantly focuses on specific diagnoses rather than on hoarseness as a whole, so scant published data exist to support an evidence-based approach. Nevertheless, certain unifying principles exist.

  19. Dendritic Spines and Development: Towards a Unifying Model of Spinogenesis—A Present Day Review of Cajal's Histological Slides and Drawings

    PubMed Central

    García-López, Pablo; García-Marín, Virginia; Freire, Miguel

    2010-01-01

    Dendritic spines receive the majority of excitatory connections in the central nervous system, and, thus, they are key structures in the regulation of neural activity. Hence, the cellular and molecular mechanisms underlying their generation and plasticity, both during development and in adulthood, are a matter of fundamental and practical interest. Indeed, a better understanding of these mechanisms should provide clues to the development of novel clinical therapies. Here, we present original results obtained from high-quality images of Cajal's histological preparations, stored at the Cajal Museum (Instituto Cajal, CSIC), obtained using extended focus imaging, three-dimensional reconstruction, and rendering. Based on the data available in the literature regarding the formation of dendritic spines during development and our results, we propose a unifying model for dendritic spine development. PMID:21584262

  20. Image thumbnails that represent blur and noise.

    PubMed

    Samadani, Ramin; Mauer, Timothy A; Berfanger, David M; Clark, James H

    2010-02-01

    The information about the blur and noise of an original image is lost when a standard image thumbnail is generated by filtering and subsampling. Image browsing becomes difficult since the standard thumbnails do not distinguish between high-quality and low-quality originals. In this paper, an efficient algorithm with a blur-generating component and a noise-generating component preserves the local blur and the noise of the originals. The local blur is rapidly estimated using a scale-space expansion of the standard thumbnail and subsequently used to apply a space-varying blur to the thumbnail. The noise is estimated and rendered by using multirate signal transformations that allow most of the processing to occur at the lower spatial sampling rate of the thumbnail. The new thumbnails provide a quick, natural way for users to identify images of good quality. A subjective evaluation shows the new thumbnails are more representative of their originals for blurry images. The noise generating component improves the results for noisy images, but degrades the results for textured images. The blur generating component of the new thumbnails may always be used to advantage. The decision to use the noise generating component of the new thumbnails should be based on testing with the particular image mix expected for the application.

  1. Multiobjective generalized extremal optimization algorithm for simulation of daylight illuminants

    NASA Astrophysics Data System (ADS)

    Kumar, Srividya Ravindra; Kurian, Ciji Pearl; Gomes-Borges, Marcos Eduardo

    2017-10-01

    Daylight illuminants are widely used as references for color quality testing and optical vision testing applications. Presently used daylight simulators make use of fluorescent bulbs that are not tunable and occupy more space inside the quality testing chambers. By designing a spectrally tunable LED light source with an optimal number of LEDs, cost, space, and energy can be saved. This paper describes an application of the generalized extremal optimization (GEO) algorithm for selection of the appropriate quantity and quality of LEDs that compose the light source. The multiobjective approach of this algorithm tries to get the best spectral simulation with minimum fitness error toward the target spectrum, correlated color temperature (CCT) the same as the target spectrum, high color rendering index (CRI), and luminous flux as required for testing applications. GEO is a global search algorithm based on phenomena of natural evolution and is especially designed to be used in complex optimization problems. Several simulations have been conducted to validate the performance of the algorithm. The methodology applied to model the LEDs, together with the theoretical basis for CCT and CRI calculation, is presented in this paper. A comparative result analysis of M-GEO evolutionary algorithm with the Levenberg-Marquardt conventional deterministic algorithm is also presented.

  2. Environmental Impact Statement/Environmental Impact Report for the Disposal and Reuse of Mare Island Naval Shipyard Vallejo, California. Volume 1.

    DTIC Science & Technology

    1998-04-01

    Valley (Kroeber & Heizer 1970). In 1972, the Bureau of Indian Affairs listed only 11 individuals claiming Patwin ancestry in the entire territory...facility from the dredge disposal area to the upland open space scenic resource area would render this facility visible from viewpoints with . high...take. The COE probably would not issue a permit unless the USFWS rendered a "non-jeopardy" Biological Opinion, which would incorporate mitigations for

  3. Scalable algorithms for 3D extended MHD.

    NASA Astrophysics Data System (ADS)

    Chacon, Luis

    2007-11-01

    In the modeling of plasmas with extended MHD (XMHD), the challenge is to resolve long time scales while rendering the whole simulation manageable. In XMHD, this is particularly difficult because fast (dispersive) waves are supported, resulting in a very stiff set of PDEs. In explicit schemes, such stiffness results in stringent numerical stability time-step constraints, rendering them inefficient and algorithmically unscalable. In implicit schemes, it yields very ill-conditioned algebraic systems, which are difficult to invert. In this talk, we present recent theoretical and computational progress that demonstrate a scalable 3D XMHD solver (i.e., CPU ˜N, with N the number of degrees of freedom). The approach is based on Newton-Krylov methods, which are preconditioned for efficiency. The preconditioning stage admits suitable approximations without compromising the quality of the overall solution. In this work, we employ optimal (CPU ˜N) multilevel methods on a parabolized XMHD formulation, which renders the whole algorithm scalable. The (crucial) parabolization step is required to render XMHD multilevel-friendly. Algebraically, the parabolization step can be interpreted as a Schur factorization of the Jacobian matrix, thereby providing a solid foundation for the current (and future extensions of the) approach. We will build towards 3D extended MHDootnotetextL. Chac'on, Comput. Phys. Comm., 163 (3), 143-171 (2004)^,ootnotetextL. Chac'on et al., 33rd EPS Conf. Plasma Physics, Rome, Italy, 2006 by discussing earlier algorithmic breakthroughs in 2D reduced MHDootnotetextL. Chac'on et al., J. Comput. Phys. 178 (1), 15- 36 (2002) and 2D Hall MHD.ootnotetextL. Chac'on et al., J. Comput. Phys., 188 (2), 573-592 (2003)

  4. Organic light-emitting diodes for lighting: High color quality by controlling energy transfer processes in host-guest-systems

    NASA Astrophysics Data System (ADS)

    Weichsel, Caroline; Reineke, Sebastian; Furno, Mauro; Lüssem, Björn; Leo, Karl

    2012-02-01

    Exciton generation and transfer processes in a multilayer organic light-emitting diode (OLED) are studied in order to realize OLEDs with warm white color coordinates and high color-rendering index (CRI). We investigate a host-guest-system containing four phosphorescent emitters and two matrix materials with different transport properties. We show, by time-resolved spectroscopy, that an energy back-transfer from the blue emitter to the matrix materials occurs, which can be used to transport excitons to the other emitter molecules. Furthermore, we investigate the excitonic and electronic transfer processes by designing suitable emission layer stacks. As a result, we obtain an OLED with Commission Internationale de lÉclairage (CIE) coordinates of (0.444;0.409), a CRI of 82, and a spectrum independent of the applied current. The OLED shows an external quantum efficiency of 10% and a luminous efficacy of 17.4 lm/W at 1000 cd/m2.

  5. Feasibility model of a high reliability five-year tape transport, volume 2

    NASA Technical Reports Server (NTRS)

    Eshleman, R. L.; Meyers, A. P.; Davidson, W. A.; Gortowski, R. C.; Anderson, M. E.

    1973-01-01

    Analysis of the design features of the modularized tape transport renders a life expectancy in excess of five years. Tests performed on the tape transport were directed toward determining its performance capability. These tests revealed that the tape jitter and skew are in the range achieved by high quality digital tape transports. Guidance of the tape in the lateral sense by the use of the two hybrid crowned rollers proved to be excellent. Tracking was maintained within less than one thousandth inch (approximately 2 micrometers). The guidance capability demonstrated makes possible the achievement of the performance objective of 7.2 x 10 to the 9th power storage capability employing 1500 ft. of one inch wide tape with a packing density of 5,000 bits per inch per track on 80 tracks. Also, the machine showed excellent characteristics operating over a wide range of tape speeds. The basic design concept lends itself to growth and adaptation to a wide range of recorder requirements.

  6. A New Thermal Treatment Process of Low Value Volcanic Glass towards the Production of Expanded Material and its Use on CNTs’ Synthesis as Substrate Material

    NASA Astrophysics Data System (ADS)

    Angelopoulos, Panagiotis M.; Samouhos, Michail; Taxiarchou, Maria; Tsakiridis, P.; Haggman, John; Joyce, Paul

    2018-05-01

    Pitchstone is a naturally occurring volcanic glass that contains considerable amount of chemically bound water (> 6 % wt). Due to its high water content, its direct thermal processing in conventional expansion furnaces towards the production of lightweight material, similar to expanded perlite, is practically impossible. In the current research paper a sophisticated 2 stage process is presented that consists of a partial dehydration and an expansion stage towards the production of high quality expanded material. After proper treatment, low-value volcanic glass is transformed to frothy, lightweight material of closed external surface and apparent density of 52 kg·m-3 that can be used in various branches of the industry. The material produced is used as substrate for the development of multiwall CNTs through CVD method. Dense multiwall CNT clusters were identified on expanded pitchstone surface, thus rendering the material suitable for such application.

  7. A virtual reality system for the training of volunteers involved in health emergency situations.

    PubMed

    De Leo, Gianluca; Ponder, Michal; Molet, Tom; Fato, Marco; Thalmann, Daniel; Magnenat-Thalmann, Nadia; Bermano, Francesco; Beltrame, Francesco

    2003-06-01

    In order to guarantee an effective and punctual medical intervention to injured people involved in health emergency situations, where usually both professional and non-professional health operators are involved, a fast and accurate treatment has to be carried out. In case of catastrophic or very critical situations, non-professional operators who did not receive proper training (volunteers are among them) could be affected by psychological inhibitions. Their performances could slow down in such way that would affect the quality of the treatment and increase both direct and indirect costs. Our virtual reality system that is currently in use at the health care emergency center of San Martino Hospital in Genoa, Italy, has been designed and developed to check health emergency operators' capabilities to adopt correct decision-making procedures, to make optimal use of new technological equipment and to overcome psychological barriers. Our system is composed of (1) a high-end simulation PC, whose main functions are execution of the main software module, rendering of 3D scenes in stereo mode, rendering of sound, and control of data transmission from/to VR devices; (2) a low-end control PC, which controls the VR simulation running on the simulation PC, manages medical emergency simulation scenarios, introduces unexpected events to the simulation and controls the simulation difficulty level; (3) a magnetic-based motion tracking device used for head and hand tracking; (4) a wireless pair of shutter glasses together with a cathode ray tube wall projector; and (5) a high-end surround sound system. The expected benefits have been verified through the design and implementation of controlled clinical trials.

  8. A client–server framework for 3D remote visualization of radiotherapy treatment space

    PubMed Central

    Santhanam, Anand P.; Min, Yugang; Dou, Tai H.; Kupelian, Patrick; Low, Daniel A.

    2013-01-01

    Radiotherapy is safely employed for treating wide variety of cancers. The radiotherapy workflow includes a precise positioning of the patient in the intended treatment position. While trained radiation therapists conduct patient positioning, consultation is occasionally required from other experts, including the radiation oncologist, dosimetrist, or medical physicist. In many circumstances, including rural clinics and developing countries, this expertise is not immediately available, so the patient positioning concerns of the treating therapists may not get addressed. In this paper, we present a framework to enable remotely located experts to virtually collaborate and be present inside the 3D treatment room when necessary. A multi-3D camera framework was used for acquiring the 3D treatment space. A client–server framework enabled the acquired 3D treatment room to be visualized in real-time. The computational tasks that would normally occur on the client side were offloaded to the server side to enable hardware flexibility on the client side. On the server side, a client specific real-time stereo rendering of the 3D treatment room was employed using a scalable multi graphics processing units (GPU) system. The rendered 3D images were then encoded using a GPU-based H.264 encoding for streaming. Results showed that for a stereo image size of 1280 × 960 pixels, experts with high-speed gigabit Ethernet connectivity were able to visualize the treatment space at approximately 81 frames per second. For experts remotely located and using a 100 Mbps network, the treatment space visualization occurred at 8–40 frames per second depending upon the network bandwidth. This work demonstrated the feasibility of remote real-time stereoscopic patient setup visualization, enabling expansion of high quality radiation therapy into challenging environments. PMID:23440605

  9. [Big data in imaging].

    PubMed

    Sewerin, Philipp; Ostendorf, Benedikt; Hueber, Axel J; Kleyer, Arnd

    2018-04-01

    Until now, most major medical advancements have been achieved through hypothesis-driven research within the scope of clinical trials. However, due to a multitude of variables, only a certain number of research questions could be addressed during a single study, thus rendering these studies expensive and time consuming. Big data acquisition enables a new data-based approach in which large volumes of data can be used to investigate all variables, thus opening new horizons. Due to universal digitalization of the data as well as ever-improving hard- and software solutions, imaging would appear to be predestined for such analyses. Several small studies have already demonstrated that automated analysis algorithms and artificial intelligence can identify pathologies with high precision. Such automated systems would also seem well suited for rheumatology imaging, since a method for individualized risk stratification has long been sought for these patients. However, despite all the promising options, the heterogeneity of the data and highly complex regulations covering data protection in Germany would still render a big data solution for imaging difficult today. Overcoming these boundaries is challenging, but the enormous potential advances in clinical management and science render pursuit of this goal worthwhile.

  10. A Parallel Pipelined Renderer for the Time-Varying Volume Data

    NASA Technical Reports Server (NTRS)

    Chiueh, Tzi-Cker; Ma, Kwan-Liu

    1997-01-01

    This paper presents a strategy for efficiently rendering time-varying volume data sets on a distributed-memory parallel computer. Time-varying volume data take large storage space and visualizing them requires reading large files continuously or periodically throughout the course of the visualization process. Instead of using all the processors to collectively render one volume at a time, a pipelined rendering process is formed by partitioning processors into groups to render multiple volumes concurrently. In this way, the overall rendering time may be greatly reduced because the pipelined rendering tasks are overlapped with the I/O required to load each volume into a group of processors; moreover, parallelization overhead may be reduced as a result of partitioning the processors. We modify an existing parallel volume renderer to exploit various levels of rendering parallelism and to study how the partitioning of processors may lead to optimal rendering performance. Two factors which are important to the overall execution time are re-source utilization efficiency and pipeline startup latency. The optimal partitioning configuration is the one that balances these two factors. Tests on Intel Paragon computers show that in general optimal partitionings do exist for a given rendering task and result in 40-50% saving in overall rendering time.

  11. Lighting theory and luminous characteristics of white light-emitting diodes

    NASA Astrophysics Data System (ADS)

    Uchida, Yuji; Taguchi, Tsunemasa

    2005-12-01

    A near-ultraviolet (UV)-based white light-emitting diode (LED) lighting system linked with a semiconductor InGaN LED and compound phosphors for general lighting applications is proposed. We have developed for the first time a novel type of high-color rendering index (Ra) white LED light source, which is composed of near-UV LED and multiphosphor materials showing orange (O), yellow (Y), green (G), and blue (B) emissions. The white LED shows the superior characteristics of luminous efficacy and high Ra to be about 40 lm/W and 93, respectively. Luminous and chromaticity characteristics, and their spectral distribution of the present white LED can be evaluated using the multipoint LED light source theory. It is revealed that the OYGB white LED can provide better irradiance properties than that of conventional white LEDs. Near-UV white LED technologies, in conjunction with phosphor blends, can offer superior color uniformity, high Ra, and excellent light quality. Consequently we are carrying out a "white LEDs for medical applications" program in the second phase of this national project from 2004 to 2009.

  12. Preparation of balanced trichromatic white phosphors for solid-state white lighting.

    PubMed

    Al-Waisawy, Sara; George, Anthony F; Jadwisienczak, Wojciech M; Rahman, Faiz

    2017-08-01

    High quality white light-emitting diodes (LEDs) employ multi-component phosphor mixtures to generate light of a high color rendering index (CRI). The number of distinct components in a typical phosphor mix usually ranges from two to four. Here we describe a systematic experimental technique for starting with phosphors of known chromatic properties and arriving at their respective proportions for creating a blended phosphor to produce light of the desired chromaticity. This method is applicable to both LED pumped and laser diode (LD) pumped white light sources. In this approach, the radiometric power in the down-converted luminescence of each phosphor is determined and that information is used to estimate the CIE chromaticity coordinate of light generated from the mixed phosphor. A suitable method for mixing multi-component phosphors is also described. This paper also examines the effect of light scattering particles in phosphors and their use for altering the spectral characteristics of LD- and LED-generated light. This is the only approach available for making high efficiency phosphor-converted single-color LEDs that emit light of wide spectral width. Copyright © 2016 John Wiley & Sons, Ltd.

  13. Experimental and rendering-based investigation of laser radar cross sections of small unmanned aerial vehicles

    NASA Astrophysics Data System (ADS)

    Laurenzis, Martin; Bacher, Emmanuel; Christnacher, Frank

    2017-12-01

    Laser imaging systems are prominent candidates for detection and tracking of small unmanned aerial vehicles (UAVs) in current and future security scenarios. Laser reflection characteristics for laser imaging (e.g., laser gated viewing) of small UAVs are investigated to determine their laser radar cross section (LRCS) by analyzing the intensity distribution of laser reflection in high resolution images. For the first time, LRCSs are determined in a combined experimental and computational approaches by high resolution laser gated viewing and three-dimensional rendering. An optimized simple surface model is calculated taking into account diffuse and specular reflectance properties based on the Oren-Nayar and the Cook-Torrance reflectance models, respectively.

  14. Nutritional and functional characteristics of seven grades of black tea produced in Turkey.

    PubMed

    Serpen, Arda; Pelvan, Ebru; Alasalvar, Cesarettin; Mogol, Burçe Ataç; Yavuz, Havvana Tuba; Gökmen, Vural; Özcan, Nihat; Özçelik, Beraat

    2012-08-08

    Seven grades of black tea [high-quality black tea (grades 1-3) and low-quality black tea (grades 4-7)], processed by ÇAYKUR Tea Processing Plant (Rize, Turkey), were examined for their proximate composition, dietary fiber, minerals, and water-soluble vitamins as well as total phenolic content, various antioxidant assays, phenolics (flavanols, alkoloids, condensed phenolics, and phenolic acids), chlorophylls, and carotenoids. Some variations, albeit to different extents, were observed (p < 0.05) among these parameters in seven grades of black tea. With respect to proximate composition, dietary fiber was the predominant compound (ranging from 49.68 to 54.31 g/100 g), followed by protein, carbohydrate, and, to a lesser extent, ash, moisture, and fat. Thirteen minerals, four water-soluble vitamins, six flavanols, two alkoloids, three condensed phenolics, one phenolic acid, two chlorophylls, and two carotenoids were identified in the seven grades of black tea. Total phenol content ranged from 7.52 to 8.29 g of gallic acid equivalents (GAE)/100 g, being lowest in grade 6 and highest in grade 1. With regard to antioxidant activities, a large variation in oxygen radical absorbance capacity (ORAC) values was observed among all grades of black tea (ranging from 777 μmol of trolox equivalents (TE)/g in grade 7 to 1210 μmol of TE/g in grade 3). The present work suggests that high- and low-quality black teas should not be distinguished on the basis of their nutritional and functional characteristics. The combination of nutritional compounds together with functional characteristics renders combination effects that provide the characteristic quality of each grade of black tea.

  15. Standard Free Droplet Digital Polymerase Chain Reaction as a New Tool for the Quality Control of High-Capacity Adenoviral Vectors in Small-Scale Preparations

    PubMed Central

    Boehme, Philip; Stellberger, Thorsten; Solanki, Manish; Zhang, Wenli; Schulz, Eric; Bergmann, Thorsten; Liu, Jing; Doerner, Johannes; Baiker, Armin E.

    2015-01-01

    Abstract High-capacity adenoviral vectors (HCAdVs) are promising tools for gene therapy as well as for genetic engineering. However, one limitation of the HCAdV vector system is the complex, time-consuming, and labor-intensive production process and the following quality control procedure. Since HCAdVs are deleted for all viral coding sequences, a helper virus (HV) is needed in the production process to provide the sequences for all viral proteins in trans. For the purification procedure of HCAdV, cesium chloride density gradient centrifugation is usually performed followed by buffer exchange using dialysis or comparable methods. However, performing these steps is technically difficult, potentially error-prone, and not scalable. Here, we establish a new protocol for small-scale production of HCAdV based on commercially available adenovirus purification systems and a standard method for the quality control of final HCAdV preparations. For titration of final vector preparations, we established a droplet digital polymerase chain reaction (ddPCR) that uses a standard free-end-point PCR in small droplets of defined volume. By using different probes, this method is capable of detecting and quantifying HCAdV and HV in one reaction independent of reference material, rendering this method attractive for accurately comparing viral titers between different laboratories. In summary, we demonstrate that it is possible to produce HCAdV in a small scale of sufficient quality and quantity to perform experiments in cell culture, and we established a reliable protocol for vector titration based on ddPCR. Our method significantly reduces time and required equipment to perform HCAdV production. In the future the ddPCR technology could be advantageous for titration of other viral vectors commonly used in gene therapy. PMID:25640117

  16. What Should Leaders Do When Inefficiency Is Perceived as a Cost of Inclusivity in Strategic Planning Processes in Health Care?

    PubMed

    Kochar, Aveena; Chisty, Alia

    2017-11-01

    During the development of new health care policies, quality improvement teams can face the challenge of weighing differing opinions within the group that can hinder progress. It is essential in such cases to refer to the four keys principles of quality improvement (QI) as a guide to enhance group cooperation and promote development of the mutual objective. Co-production is a model that emphasizes the participation of the patient-a service receiver-in the production of services being rendered by the health care professional. By putting into practice the QI principles and using the model of co-production, quality improvement teams can improve efficiency of health systems and clinical outcomes. © 2017 American Medical Association. All Rights Reserved.

  17. Flies and their bacterial loads in greyhound dog kennels in Kansas.

    PubMed

    Urban, J E; Broce, A

    1998-03-01

    Breeders of greyhound dogs traditionally feed racing animals and nursing bitches raw meat, and that meat generally is obtained frozen from commercial renderers. Previous studies have shown that the rendered meat is frequently contaminated with enteric bacteria, including Salmonella spp., and that during thawing the rendered meat is exposed to filth flies common in dog kennels. Nursing greyhound pups tend to experience a high morbidity and mortality from intestinal infections, and we attempted to determine in this study whether enterics could be spread to pups through contaminated flies. At intervals during 1995 and 1996, flies were trapped or were net-collected from 10 dog breeding kennels in the region around Abilene, KS. Trapped flies were identified and counted to determine population numbers, and netted flies were cultured in tetrathionate broth and streaked to medium selecting for Salmonella sp. and other lactose-negative Gram (-) bacteria. The relative numbers of different fly species varied with the sampling method, but traps and sweep nets produced similar proportions of the different fly species. Blow flies were twice as likely to be contaminated with enteric bacteria as any other fly. The most common enteric bacteria found were Proteus spp., followed by Providencia spp., Pseudomonas spp., and Salmonella spp. The incidence of Salmonella and Proteus spp. seemed to correlate more with accessibility of flies to dog excrement than to rendered meat. The apparent high incidence of enteric contamination of filth flies clearly implicates them as vectors of enteric diseases in kennels.

  18. Solid models for CT/MR image display: accuracy and utility in surgical planning

    NASA Astrophysics Data System (ADS)

    Mankovich, Nicholas J.; Yue, Alvin; Ammirati, Mario; Kioumehr, Farhad; Turner, Scott

    1991-05-01

    Medical imaging can now take wider advantage of Computer-Aided-Manufacturing through rapid prototyping technologies (RPT) such as stereolithography, laser sintering, and laminated object manufacturing to directly produce solid models of patient anatomy from processed CT and MR images. While conventional surgical planning relies on consultation with the radiologist combined with direct reading and measurement of CT and MR studies, 3-D surface and volumetric display workstations are providing a more easily interpretable view of patient anatomy. RPT can provide the surgeon with a life size model of patient anatomy constructed layer by layer with full internal detail. Although this life-size anatomic model is more easily understandable by the surgeon, its accuracy and true surgical utility remain untested. We have developed a prototype image processing and model fabrication system based on stereolithography, which provides the neurosurgeon with models of the skull base. Parallel comparison of the model with the original thresholded CT data and with a CRT displayed surface rendering showed that both have an accuracy of 99.6 percent. Because of the ease of exact voxel localization on the model, its precision was high with the standard deviation of measurement of 0.71 percent. The measurements on the surface rendered display proved more difficult to exactly locate and yielded a standard deviation of 2.37 percent. This paper presents our accuracy study and discussed ways of assessing the quality of neurosurgical plans when 3-D models a made available as planning tools.

  19. PLANETarium - Visualizing Earth Sciences in the Planetarium

    NASA Astrophysics Data System (ADS)

    Ballmer, M. D.; Wiethoff, T.; Kraupe, T. W.

    2013-12-01

    In the past decade, projection systems in most planetariums, traditional sites of outreach and public education, have advanced from instruments that can visualize the motion of stars as beam spots moving over spherical projection areas to systems that are able to display multicolor, high-resolution, immersive full-dome videos or images. These extraordinary capabilities are ideally suited for visualization of global processes occurring on the surface and within the interior of the Earth, a spherical body just as the full dome. So far, however, our community has largely ignored this wonderful interface for outreach and education. A few documentaries on e.g. climate change or volcanic eruptions have been brought to planetariums, but are taking little advantage of the true potential of the medium, as mostly based on standard two-dimensional videos and cartoon-style animations. Along these lines, we here propose a framework to convey recent scientific results on the origin and evolution of our PLANET to the >100,000,000 per-year worldwide audience of planetariums, making the traditionally astronomy-focussed interface a true PLANETarium. In order to do this most efficiently, we intend to directly show visualizations of scientific datasets or models, originally designed for basic research. Such visualizations in solid-Earth, as well as athmospheric and ocean sciences, are expected to be renderable to the dome with little or no effort. For example, showing global geophysical datasets (e.g., surface temperature, gravity, magnetic field), or horizontal slices of seismic-tomography images and of spherical computer simulations (e.g., climate evolution, mantle flow or ocean currents) requires almost no rendering at all. Three-dimensional Cartesian datasets or models can be rendered using standard methods. With the appropriate audio support, present-day science visualizations are typically as intuitive as cartoon-style animations, yet more appealing visually, and clearly more informative as revealing the complexity and beauty of our planet. In addition to e.g. climate change and natural hazards, themes of interest may include the coupled evolution of the Earth's interior and life, from the accretion of our planet to the generation and sustainment of the magnetic field as well as of habitable conditions in the atmosphere and oceans. We believe that high-quality tax-funded science visualizations should not exclusively be used to facilitate communication amoung scientists, but also be directly recycled to raise the public's awareness and appreciation of geosciences.

  20. Evaluation of pH monitoring as a method of processor control.

    PubMed

    Stears, J G; Gray, J E; Winkler, N T

    1979-01-01

    Sensitometry and pH values of the developer solution were compared in controlled over-replenishment, developer depletion, fixer contamination experiments, and on a daily quality control basis. The purpose of these comparisons was to evaluate the potential of pH monitoring as a method of processor control, or a supplement to sensitometry as a method of quality control. Reasonable correlation was found between pH values and film density in two of the three experiments but little or no correlation was found in the third experiment and on a day-to-day basis. The conclusion drawn from these comparisons is that pH monitoring has several limitations which render it unsuitable as a method of daily processor quality control as either a primary or supplementary technique. Sensitometry takes into account all the variables encountered in film processing and is the clear method of choice for processor quality control.

  1. Optimization of light quality from color mixing light-emitting diode systems for general lighting

    NASA Astrophysics Data System (ADS)

    Thorseth, Anders

    2012-03-01

    Given the problem of metamerisms inherent in color mixing in light-emitting diode (LED) systems with more than three distinct colors, a method for optimizing the spectral output of multicolor LED system with regards to standardized light quality parameters has been developed. The composite spectral power distribution from the LEDs are simulated using spectral radiometric measurements of single commercially available LEDs for varying input power, to account for the efficiency droop and other non-linear effects in electrical power vs. light output. The method uses electrical input powers as input parameters in a randomized steepest decent optimization. The resulting spectral power distributions are evaluated with regard to the light quality using the standard characteristics: CIE color rendering index, correlated color temperature and chromaticity distance. The results indicate Pareto optimal boundaries for each system, mapping the capabilities of the simulated lighting systems with regard to the light quality characteristics.

  2. Validating continuous digital light processing (cDLP) additive manufacturing accuracy and tissue engineering utility of a dye-initiator package.

    PubMed

    Wallace, Jonathan; Wang, Martha O; Thompson, Paul; Busso, Mallory; Belle, Vaijayantee; Mammoser, Nicole; Kim, Kyobum; Fisher, John P; Siblani, Ali; Xu, Yueshuo; Welter, Jean F; Lennon, Donald P; Sun, Jiayang; Caplan, Arnold I; Dean, David

    2014-03-01

    This study tested the accuracy of tissue engineering scaffold rendering via the continuous digital light processing (cDLP) light-based additive manufacturing technology. High accuracy (i.e., <50 µm) allows the designed performance of features relevant to three scale spaces: cell-scaffold, scaffold-tissue, and tissue-organ interactions. The biodegradable polymer poly (propylene fumarate) was used to render highly accurate scaffolds through the use of a dye-initiator package, TiO2 and bis (2,4,6-trimethylbenzoyl)phenylphosphine oxide. This dye-initiator package facilitates high accuracy in the Z dimension. Linear, round, and right-angle features were measured to gauge accuracy. Most features showed accuracies between 5.4-15% of the design. However, one feature, an 800 µm diameter circular pore, exhibited a 35.7% average reduction of patency. Light scattered in the x, y directions by the dye may have reduced this feature's accuracy. Our new fine-grained understanding of accuracy could be used to make further improvements by including corrections in the scaffold design software. Successful cell attachment occurred with both canine and human mesenchymal stem cells (MSCs). Highly accurate cDLP scaffold rendering is critical to the design of scaffolds that both guide bone regeneration and that fully resorb. Scaffold resorption must occur for regenerated bone to be remodeled and, thereby, achieve optimal strength.

  3. The effect of visual and interaction fidelity on spatial cognition in immersive virtual environments.

    PubMed

    Mania, Katerina; Wooldridge, Dave; Coxon, Matthew; Robinson, Andrew

    2006-01-01

    Accuracy of memory performance per se is an imperfect reflection of the cognitive activity (awareness states) that underlies performance in memory tasks. The aim of this research is to investigate the effect of varied visual and interaction fidelity of immersive virtual environments on memory awareness states. A between groups experiment was carried out to explore the effect of rendering quality on location-based recognition memory for objects and associated states of awareness. The experimental space, consisting of two interconnected rooms, was rendered either flat-shaded or using radiosity rendering. The computer graphics simulations were displayed on a stereo head-tracked Head Mounted Display. Participants completed a recognition memory task after exposure to the experimental space and reported one of four states of awareness following object recognition. These reflected the level of visual mental imagery involved during retrieval, the familiarity of the recollection, and also included guesses. Experimental results revealed variations in the distribution of participants' awareness states across conditions while memory performance failed to reveal any. Interestingly, results revealed a higher proportion of recollections associated with mental imagery in the flat-shaded condition. These findings comply with similar effects revealed in two earlier studies summarized here, which demonstrated that the less "naturalistic" interaction interface or interface of low interaction fidelity provoked a higher proportion of recognitions based on visual mental images.

  4. Large-area (over 50 cm × 50 cm) freestanding films of colloidal InP/ZnS quantum dots.

    PubMed

    Mutlugun, Evren; Hernandez-Martinez, Pedro Ludwig; Eroglu, Cuneyt; Coskun, Yasemin; Erdem, Talha; Sharma, Vijay K; Unal, Emre; Panda, Subhendu K; Hickey, Stephen G; Gaponik, Nikolai; Eychmüller, Alexander; Demir, Hilmi Volkan

    2012-08-08

    We propose and demonstrate the fabrication of flexible, freestanding films of InP/ZnS quantum dots (QDs) using fatty acid ligands across very large areas (greater than 50 cm × 50 cm), which have been developed for remote phosphor applications in solid-state lighting. Embedded in a poly(methyl methacrylate) matrix, although the formation of stand-alone films using other QDs commonly capped with trioctylphosphine oxide (TOPO) and oleic acid is not efficient, employing myristic acid as ligand in the synthesis of these QDs, which imparts a strongly hydrophobic character to the thin film, enables film formation and ease of removal even on surprisingly large areas, thereby avoiding the need for ligand exchange. When pumped by a blue LED, these Cd-free QD films allow for high color rendering, warm white light generation with a color rendering index of 89.30 and a correlated color temperature of 2298 K. In the composite film, the temperature-dependent emission kinetics and energy transfer dynamics among different-sized InP/ZnS QDs are investigated and a model is proposed. High levels of energy transfer efficiency (up to 80%) and strong donor lifetime modification (from 18 to 4 ns) are achieved. The suppression of the nonradiative channels is observed when the hybrid film is cooled to cryogenic temperatures. The lifetime changes of the donor and acceptor InP/ZnS QDs in the film as a result of the energy transfer are explained well by our theoretical model based on the exciton-exciton interactions among the dots and are in excellent agreement with the experimental results. The understanding of these excitonic interactions is essential to facilitate improvements in the fabrication of photometrically high quality nanophosphors. The ability to make such large-area, flexible, freestanding Cd-free QD films pave the way for environmentally friendly phosphor applications including flexible, surface-emitting light engines.

  5. Color design model of high color rendering index white-light LED module.

    PubMed

    Ying, Shang-Ping; Fu, Han-Kuei; Hsieh, Hsin-Hsin; Hsieh, Kun-Yang

    2017-05-10

    The traditional white-light light-emitting diode (LED) is packaged with a single chip and a single phosphor but has a poor color rendering index (CRI). The next-generation package comprises two chips and a single phosphor, has a high CRI, and retains high luminous efficacy. This study employs two chips and two phosphors to improve the diode's color tunability with various proportions of two phosphors and various densities of phosphor in the silicone used. A color design model is established for color fine-tuning of the white-light LED module. The maximum difference between the measured and color-design-model simulated CIE 1931 color coordinates is approximately 0.0063 around a correlated color temperature (CCT) of 2500 K. This study provides a rapid method to obtain the color fine-tuning of a white-light LED module with a high CRI and luminous efficacy.

  6. Color analysis and image rendering of woodblock prints with oil-based ink

    NASA Astrophysics Data System (ADS)

    Horiuchi, Takahiko; Tanimoto, Tetsushi; Tominaga, Shoji

    2012-01-01

    This paper proposes a method for analyzing the color characteristics of woodblock prints having oil-based ink and rendering realistic images based on camera data. The analysis results of woodblock prints show some characteristic features in comparison with oil paintings: 1) A woodblock print can be divided into several cluster areas, each with similar surface spectral reflectance; and 2) strong specular reflection from the influence of overlapping paints arises only in specific cluster areas. By considering these properties, we develop an effective rendering algorithm by modifying our previous algorithm for oil paintings. A set of surface spectral reflectances of a woodblock print is represented by using only a small number of average surface spectral reflectances and the registered scaling coefficients, whereas the previous algorithm for oil paintings required surface spectral reflectances of high dimension at all pixels. In the rendering process, in order to reproduce the strong specular reflection in specific cluster areas, we use two sets of parameters in the Torrance-Sparrow model for cluster areas with or without strong specular reflection. An experiment on a woodblock printing with oil-based ink was performed to demonstrate the feasibility of the proposed method.

  7. 6-DoF Haptic Rendering Using Continuous Collision Detection between Points and Signed Distance Fields.

    PubMed

    Hongyi Xu; Barbic, Jernej

    2017-01-01

    We present an algorithm for fast continuous collision detection between points and signed distance fields, and demonstrate how to robustly use it for 6-DoF haptic rendering of contact between objects with complex geometry. Continuous collision detection is often needed in computer animation, haptics, and virtual reality applications, but has so far only been investigated for polygon (triangular) geometry representations. We demonstrate how to robustly and continuously detect intersections between points and level sets of the signed distance field. We suggest using an octree subdivision of the distance field for fast traversal of distance field cells. We also give a method to resolve continuous collisions between point clouds organized into a tree hierarchy and a signed distance field, enabling rendering of contact between rigid objects with complex geometry. We investigate and compare two 6-DoF haptic rendering methods now applicable to point-versus-distance field contact for the first time: continuous integration of penalty forces, and a constraint-based method. An experimental comparison to discrete collision detection demonstrates that the continuous method is more robust and can correctly resolve collisions even under high velocities and during complex contact.

  8. SEPARATION OF URANIUM HEXAFLUORIDE FROM ORGANIC FLUORO COMPOUNDS

    DOEpatents

    Libby, W.F.

    1958-10-01

    A method is presented for removing perfiuoroorganic compounds such as C/ sub 7/F/sub 16/ from UF/sub 6/. The physical and chemical properties of the perfluoro compounds are such as to render their removal from UF/sub 6/ difficulty by conventional techniques. The mixture containing UF/sub 6/ and the perfluoro compounds is pyrolyzed in an inert container at high temperature and pressure. The properties of the products obtained by pyrolysis differ from the properties of UF/sub 6/ to a sufficient degree to render their separation possible by ordinary methods.

  9. Multilayer coatings on glass for painting protection and optimized color rendering

    NASA Astrophysics Data System (ADS)

    Piegari, Angela; Polato, Pietro

    2002-06-01

    Optical coatings offer a solution to the problem of damage to paintings, caused by ultraviolet and infrared radiation, by cutting radiation wavelengths outside the visible range. Simultaneously, these coatings can enhance an observer's viewing of the paintings by reducing the reflections from ordinary glass panes. All these functions should be performed by the same coating. The design of such a coating, as well as the evaluation of existing products, requires the definition of an appropriate merit function in which coating absorption, high transparency, and color rendering are combined.

  10. Portability and Cross-Platform Performance of an MPI-Based Parallel Polygon Renderer

    NASA Technical Reports Server (NTRS)

    Crockett, Thomas W.

    1999-01-01

    Visualizing the results of computations performed on large-scale parallel computers is a challenging problem, due to the size of the datasets involved. One approach is to perform the visualization and graphics operations in place, exploiting the available parallelism to obtain the necessary rendering performance. Over the past several years, we have been developing algorithms and software to support visualization applications on NASA's parallel supercomputers. Our results have been incorporated into a parallel polygon rendering system called PGL. PGL was initially developed on tightly-coupled distributed-memory message-passing systems, including Intel's iPSC/860 and Paragon, and IBM's SP2. Over the past year, we have ported it to a variety of additional platforms, including the HP Exemplar, SGI Origin2OOO, Cray T3E, and clusters of Sun workstations. In implementing PGL, we have had two primary goals: cross-platform portability and high performance. Portability is important because (1) our manpower resources are limited, making it difficult to develop and maintain multiple versions of the code, and (2) NASA's complement of parallel computing platforms is diverse and subject to frequent change. Performance is important in delivering adequate rendering rates for complex scenes and ensuring that parallel computing resources are used effectively. Unfortunately, these two goals are often at odds. In this paper we report on our experiences with portability and performance of the PGL polygon renderer across a range of parallel computing platforms.

  11. Validation of the Five-Phase Method for Simulating Complex Fenestration Systems with Radiance against Field Measurements

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Geisler-Moroder, David; Lee, Eleanor S.; Ward, Gregory J.

    2016-08-29

    The Five-Phase Method (5-pm) for simulating complex fenestration systems with Radiance is validated against field measurements. The capability of the method to predict workplane illuminances, vertical sensor illuminances, and glare indices derived from captured and rendered high dynamic range (HDR) images is investigated. To be able to accurately represent the direct sun part of the daylight not only in sensor point simulations, but also in renderings of interior scenes, the 5-pm calculation procedure was extended. The validation shows that the 5-pm is superior to the Three-Phase Method for predicting horizontal and vertical illuminance sensor values as well as glare indicesmore » derived from rendered images. Even with input data from global and diffuse horizontal irradiance measurements only, daylight glare probability (DGP) values can be predicted within 10% error of measured values for most situations.« less

  12. Methane potential of sterilized solid slaughterhouse wastes.

    PubMed

    Pitk, Peep; Kaparaju, Prasad; Vilu, Raivo

    2012-07-01

    The aim of the current study was to determine chemical composition and methane potential of Category 2 and 3 solid slaughterhouse wastes rendering products (SSHWRP) viz. melt, decanter sludge, meat and bone meal (MBM), technical fat and flotation sludge from wastewater treatment. Chemical analyses showed that SSHWRP were high in protein and lipids with total solids (TS) content of 96-99%. Methane yields of the SSHWRP were between 390 and 978 m(3) CH(4)/t volatile solids (VS)(added). Based on batch experiments, anaerobic digestion of SSHWRP from the dry rendering process could recover 4.6 times more primary energy than the energy required for the rendering process. Estonia has technological capacity to sterilize all the produced Category 2 and 3 solid slaughterhouse wastes (SSHW) and if separated from Category 1 animal by-products (ABP), it could be further utilized as energy rich input material for anaerobic digestion. Copyright © 2012 Elsevier Ltd. All rights reserved.

  13. A review of haptic simulator for oral and maxillofacial surgery based on virtual reality.

    PubMed

    Chen, Xiaojun; Hu, Junlei

    2018-06-01

    Traditional medical training in oral and maxillofacial surgery (OMFS) may be limited by its low efficiency and high price due to the shortage of cadaver resources. With the combination of visual rendering and feedback force, surgery simulators become increasingly popular in hospitals and medical schools as an alternative to the traditional training. Areas covered: The major goal of this review is to provide a comprehensive reference source of current and future developments of haptic OMFS simulators based on virtual reality (VR) for relevant researchers. Expert commentary: Visual rendering, haptic rendering, tissue deformation, and evaluation are key components of haptic surgery simulator based on VR. Compared with traditional medical training, virtual and tactical fusion of virtual environment in surgery simulator enables considerably vivid sensation, and the operators have more opportunities to practice surgical skills and receive objective evaluation as reference.

  14. Gas barrier properties of bio-inspired Laponite-LC polymer hybrid films.

    PubMed

    Tritschler, Ulrich; Zlotnikov, Igor; Fratzl, Peter; Schlaad, Helmut; Grüner, Simon; Cölfen, Helmut

    2016-05-26

    Bio-inspired Laponite (clay)-liquid crystal (LC) polymer composite materials with high clay fractions (>80%) and a high level of orientation of the clay platelets, i.e. with structural features similar to the ones found in natural nacre, have been shown to exhibit a promising behavior in the context of reduced oxygen transmission. Key characteristics of these bio-inspired composite materials are their high inorganic content, high level of exfoliation and orientation of the clay platelets, and the use of a LC polymer forming the organic matrix in between the Laponite particles. Each single feature may be beneficial to increase the materials gas barrier property rendering this composite a promising system with advantageous barrier capacities. In this detailed study, Laponite/LC polymer composite coatings with different clay loadings were investigated regarding their oxygen transmission rate. The obtained gas barrier performance was linked to the quality, respective Laponite content and the underlying composite micro- and nanostructure of the coatings. Most efficient oxygen barrier properties were observed for composite coatings with 83% Laponite loading that exhibit a structure similar to sheet-like nacre. Further on, advantageous mechanical properties of these Laponite/LC polymer composites reported previously give rise to a multifunctional composite system.

  15. Commercial products to preserve specimens for tuberculosis diagnosis: a systematic review.

    PubMed

    Reeve, B W P; McFall, S M; Song, R; Warren, R; Steingart, K R; Theron, G

    2018-07-01

    Eliminating tuberculosis in high-burden settings requires improved diagnostic capacity. Important tests such as Xpert® MTB/RIF and culture are often performed at centralised laboratories that are geographically distant from the point of specimen collection. Preserving specimen integrity during transportation, which could affect test performance, is challenging. To conduct a systematic review of commercial products for specimen preservation for a World Health Organization technical consultation. Databases were searched up to January 2018. Methodological quality was assessed using Quality Assessment of Technical Studies, a new technical study quality-appraisal tool, and Quality Assessment of Diagnostic Accuracy Studies-2. Studies were analysed descriptively in terms of the different products, study designs and diagnostic strategies used. Four products were identified from 16 studies: PrimeStore-Molecular-Transport-Medium (PS-MTM), FTA card, GENO•CARD (all for nucleic acid amplification tests [NAATs]) and OMNIgene•SPUTUM (OMS; culture, NAATs). PS-MTM, but not FTA card or GENO•CARD, rendered Mycobacterium tuberculosis non-culturable. OMS reduced Löwenstein-Jensen but not MGIT™ 960™ contamination, led to delayed MGIT time-to-positivity, resulted in Xpert performance similar to cold chain-transported untreated specimens, and obviated the need for N-acetyl-L-cysteine-sodium hydroxide decontamination. Data from paucibacillary specimens were limited. Evidence that a cold chain improves culture was mixed and absent for Xpert. The effect of the product alone could be discerned in only four studies. Limited evidence suggests that transport products result in test performance comparable to that seen in cold chain-transported specimens.

  16. Al nanogrid electrode for ultraviolet detectors.

    PubMed

    Ding, G; Deng, J; Zhou, L; Gan, Q; Hwang, J C M; Dierolf, V; Bartoli, F J; Mazuir, C; Schoenfeld, W V

    2011-09-15

    Optical properties of Al nanogrids of different pitches and gaps were investigated both theoretically and experimentally. Three-dimensional finite-difference time-domain simulation predicted that surface plasmons at the air/Al interface would enhance ultraviolet transmission through the subwavelength gaps of the nanogrid, making it an effective electrode on GaN-based photodetectors to compensate for the lack of transparent electrode and high p-type doping. The predicted transmission enhancement was verified by confocal scanning optical microscopy performed at 365 nm. The quality of the nanogrids fabricated by electron-beam lithography was verified by near-field scanning optical microscopy and scanning electron microscopy. Based on the results, the pitch and gap of the nanogrids can be optimized for the best trade-off between electrical conductivity and optical transmission at different wavelengths. Based on different cutoff wavelengths, the nanogrids can also double as a filter to render photodetectors solar-blind.

  17. Positron Annihilation Studies of High-Tc Superconductors

    NASA Astrophysics Data System (ADS)

    Peter, M.; Manuel, A. A.

    1989-01-01

    First we present the principles involved in the study of the two-photon momentum distribution: The method requires deconvolution of the positron wavefunction and the estimation of matrix elements effects. Single crystal samples must be of sufficient quality to avoid positron trapping (tested by positron lifetime measurements). In ordinary metals (alkalis, transition- and rare earth metals and compounds) two-photon momentum distribution studies have given results in close agreement with relevant band structure calculations. Discrepancies have been successfully described as enhancement effects due to correlations. In the superconducting oxides, measurements are more difficult because there are fewer conduction electrons and more trapping. Correlation effects of a different nature are expected to be important and might render the band picture inappropriate. Two-photon momentum distribution measurements have now been made by several groups, but have been interpreted in different ways. We relate the current state of affairs, and our present interpretation, to the latest available results.

  18. Forensic document analysis using scanning microscopy

    NASA Astrophysics Data System (ADS)

    Shaffer, Douglas K.

    2009-05-01

    The authentication and identification of the source of a printed document(s) can be important in forensic investigations involving a wide range of fraudulent materials, including counterfeit currency, travel and identity documents, business and personal checks, money orders, prescription labels, travelers checks, medical records, financial documents and threatening correspondence. The physical and chemical characterization of document materials - including paper, writing inks and printed media - is becoming increasingly relevant for law enforcement agencies, with the availability of a wide variety of sophisticated commercial printers and copiers which are capable of producing fraudulent documents of extremely high print quality, rendering these difficult to distinguish from genuine documents. This paper describes various applications and analytical methodologies using scanning electron miscoscopy/energy dispersive (x-ray) spectroscopy (SEM/EDS) and related technologies for the characterization of fraudulent documents, and illustrates how their morphological and chemical profiles can be compared to (1) authenticate and (2) link forensic documents with a common source(s) in their production history.

  19. A simple procedure to analyze positions of interest in infectious cell cultures by correlative light and electron microscopy.

    PubMed

    Madela, Kazimierz; Banhart, Sebastian; Zimmermann, Anja; Piesker, Janett; Bannert, Norbert; Laue, Michael

    2014-01-01

    Plastic cell culture dishes that contain a thin bottom of highest optical quality including an imprinted finder grid (μ-Dish Grid-500) are optimally suited for routine correlative light and electron microscopy using chemical fixation. Such dishes allow high-resolution fluorescence and bright-field imaging using fixed and living cells and are compatible with standard protocols for scanning and transmission electron microscopy. Ease of use during cell culture and imaging, as well as a tight cover render the dishes particularly suitable for working with infectious organisms up to the highest biosafety level. Detailed protocols are provided and demonstrated by showing two examples: monitoring the production of virus-like particles of the Human Endogenous Retrovirus HERV-K(HML-2) by HeLa cells and investigation of Rab11-positive membrane-compartments of HeLa cells after infection with Chlamydia trachomatis. © 2014 Elsevier Inc. All rights reserved.

  20. A Case-Based Study with Radiologists Performing Diagnosis Tasks in Virtual Reality.

    PubMed

    Venson, José Eduardo; Albiero Berni, Jean Carlo; Edmilson da Silva Maia, Carlos; Marques da Silva, Ana Maria; Cordeiro d'Ornellas, Marcos; Maciel, Anderson

    2017-01-01

    In radiology diagnosis, medical images are most often visualized slice by slice. At the same time, the visualization based on 3D volumetric rendering of the data is considered useful and has increased its field of application. In this work, we present a case-based study with 16 medical specialists to assess the diagnostic effectiveness of a Virtual Reality interface in fracture identification over 3D volumetric reconstructions. We developed a VR volume viewer compatible with both the Oculus Rift and handheld-based head mounted displays (HMDs). We then performed user experiments to validate the approach in a diagnosis environment. In addition, we assessed the subjects' perception of the 3D reconstruction quality, ease of interaction and ergonomics, and also the users opinion on how VR applications can be useful in healthcare. Among other results, we have found a high level of effectiveness of the VR interface in identifying superficial fractures on head CTs.

  1. Parallel rendering

    NASA Technical Reports Server (NTRS)

    Crockett, Thomas W.

    1995-01-01

    This article provides a broad introduction to the subject of parallel rendering, encompassing both hardware and software systems. The focus is on the underlying concepts and the issues which arise in the design of parallel rendering algorithms and systems. We examine the different types of parallelism and how they can be applied in rendering applications. Concepts from parallel computing, such as data decomposition, task granularity, scalability, and load balancing, are considered in relation to the rendering problem. We also explore concepts from computer graphics, such as coherence and projection, which have a significant impact on the structure of parallel rendering algorithms. Our survey covers a number of practical considerations as well, including the choice of architectural platform, communication and memory requirements, and the problem of image assembly and display. We illustrate the discussion with numerous examples from the parallel rendering literature, representing most of the principal rendering methods currently used in computer graphics.

  2. Integrative workflows for metagenomic analysis

    PubMed Central

    Ladoukakis, Efthymios; Kolisis, Fragiskos N.; Chatziioannou, Aristotelis A.

    2014-01-01

    The rapid evolution of all sequencing technologies, described by the term Next Generation Sequencing (NGS), have revolutionized metagenomic analysis. They constitute a combination of high-throughput analytical protocols, coupled to delicate measuring techniques, in order to potentially discover, properly assemble and map allelic sequences to the correct genomes, achieving particularly high yields for only a fraction of the cost of traditional processes (i.e., Sanger). From a bioinformatic perspective, this boils down to many GB of data being generated from each single sequencing experiment, rendering the management or even the storage, critical bottlenecks with respect to the overall analytical endeavor. The enormous complexity is even more aggravated by the versatility of the processing steps available, represented by the numerous bioinformatic tools that are essential, for each analytical task, in order to fully unveil the genetic content of a metagenomic dataset. These disparate tasks range from simple, nonetheless non-trivial, quality control of raw data to exceptionally complex protein annotation procedures, requesting a high level of expertise for their proper application or the neat implementation of the whole workflow. Furthermore, a bioinformatic analysis of such scale, requires grand computational resources, imposing as the sole realistic solution, the utilization of cloud computing infrastructures. In this review article we discuss different, integrative, bioinformatic solutions available, which address the aforementioned issues, by performing a critical assessment of the available automated pipelines for data management, quality control, and annotation of metagenomic data, embracing various, major sequencing technologies and applications. PMID:25478562

  3. Red carbon dots-based phosphors for white light-emitting diodes with color rendering index of 92.

    PubMed

    Zhai, Yuechen; Wang, Yi; Li, Di; Zhou, Ding; Jing, Pengtao; Shen, Dezhen; Qu, Songnan

    2018-05-29

    Exploration of solid-state efficient red emissive carbon dots (CDs) phosphors is strongly desired for the development of high performance CDs-based white light-emitting diodes (WLEDs). In this work, enhanced red emissive CDs-based phosphors with photoluminescence quantum yields (PLQYs) of 25% were prepared by embedding red emissive CDs (PLQYs of 23%) into polyvinyl pyrrolidone (PVP). Because of the protection of PVP, the phosphors could preserve strong luminescence under long-term UV excitation or being mixed with conventional packaging materials. By applying the red emissive phosphors as the color conversion layer, WLEDs with high color rendering index of 92 and color coordinate of (0.33, 0.33) are fabricated. Copyright © 2018 Elsevier Inc. All rights reserved.

  4. GAS PHOTOTUBE CIRCUIT

    DOEpatents

    Richardson, J.H.

    1958-03-01

    This patent pertains to electronic circuits for measuring the intensity of light and is especially concerned with measurement between preset light thresholds. Such a circuit has application in connection with devices for reading-out information stored on punch cards or tapes where the cards and tapes are translucent. By the novel arrangement of this invention thc sensitivity of a gas phototube is maintained at a low value when the light intensity is below a first threshold level. If the light level rises above the first threshold level, the tube is rendered highly sensitive and an output signal will vary in proportion to the light intensity change. When the light level decreases below a second threshold level, the gas phototube is automatically rendered highly insensitive. Each of these threshold points is adjustable.

  5. Real-time dynamic display of registered 4D cardiac MR and ultrasound images using a GPU

    NASA Astrophysics Data System (ADS)

    Zhang, Q.; Huang, X.; Eagleson, R.; Guiraudon, G.; Peters, T. M.

    2007-03-01

    In minimally invasive image-guided surgical interventions, different imaging modalities, such as magnetic resonance imaging (MRI), computed tomography (CT), and real-time three-dimensional (3D) ultrasound (US), can provide complementary, multi-spectral image information. Multimodality dynamic image registration is a well-established approach that permits real-time diagnostic information to be enhanced by placing lower-quality real-time images within a high quality anatomical context. For the guidance of cardiac procedures, it would be valuable to register dynamic MRI or CT with intraoperative US. However, in practice, either the high computational cost prohibits such real-time visualization of volumetric multimodal images in a real-world medical environment, or else the resulting image quality is not satisfactory for accurate guidance during the intervention. Modern graphics processing units (GPUs) provide the programmability, parallelism and increased computational precision to begin to address this problem. In this work, we first outline our research on dynamic 3D cardiac MR and US image acquisition, real-time dual-modality registration and US tracking. Then we describe image processing and optimization techniques for 4D (3D + time) cardiac image real-time rendering. We also present our multimodality 4D medical image visualization engine, which directly runs on a GPU in real-time by exploiting the advantages of the graphics hardware. In addition, techniques such as multiple transfer functions for different imaging modalities, dynamic texture binding, advanced texture sampling and multimodality image compositing are employed to facilitate the real-time display and manipulation of the registered dual-modality dynamic 3D MR and US cardiac datasets.

  6. Realistic soft tissue deformation strategies for real time surgery simulation.

    PubMed

    Shen, Yunhe; Zhou, Xiangmin; Zhang, Nan; Tamma, Kumar; Sweet, Robert

    2008-01-01

    A volume-preserving deformation method (VPDM) is developed in complement with the mass-spring method (MSM) to improve the deformation quality of the MSM to model soft tissue in surgical simulation. This method can also be implemented as a stand-alone model. The proposed VPDM satisfies the Newton's laws of motion by obtaining the resultant vectors form an equilibrium condition. The proposed method has been tested in virtual surgery systems with haptic rendering demands.

  7. Development of Site-Specific Water Quality Criteria for the Arpa Harbor Wastewater Treatment Plant in Tipalao Bay, Guam

    DTIC Science & Technology

    2016-07-01

    multiplied by the WER, also expressed as DM, which is multiplied by a mixing zone; the product of these three values then are divided by the chemical...involves corrections, additions , and deletions to the national toxicity data set, rendering it more representative of species occurring at a specific...scientific evidence to indicate clear adverse linkages between aluminum and adverse effects to marine organisms. In addition , USEPA has

  8. Real-time interactive virtual tour on the World Wide Web (WWW)

    NASA Astrophysics Data System (ADS)

    Yoon, Sanghyuk; Chen, Hai-jung; Hsu, Tom; Yoon, Ilmi

    2003-12-01

    Web-based Virtual Tour has become a desirable and demanded application, yet challenging due to the nature of web application's running environment such as limited bandwidth and no guarantee of high computation power on the client side. Image-based rendering approach has attractive advantages over traditional 3D rendering approach in such Web Applications. Traditional approach, such as VRML, requires labor-intensive 3D modeling process, high bandwidth and computation power especially for photo-realistic virtual scenes. QuickTime VR and IPIX as examples of image-based approach, use panoramic photos and the virtual scenes that can be generated from photos directly skipping the modeling process. But, these image-based approaches may require special cameras or effort to take panoramic views and provide only one fixed-point look-around and zooming in-out rather than 'walk around', that is a very important feature to provide immersive experience to virtual tourists. The Web-based Virtual Tour using Tour into the Picture employs pseudo 3D geometry with image-based rendering approach to provide viewers with immersive experience of walking around the virtual space with several snap shots of conventional photos.

  9. Virus inactivation by nucleic acid extraction reagents.

    PubMed

    Blow, Jamie A; Dohm, David J; Negley, Diane L; Mores, Christopher N

    2004-08-01

    Many assume that common methods to extract viral nucleic acids are able to render a sample non-infectious. It may be that inactivation of infectious virus is incomplete during viral nucleic acid extraction methods. Accordingly, two common viral nucleic acid extraction techniques were evaluated for the ability to inactivate high viral titer specimens. In particular, the potential for TRIzol LS Reagent (Invitrogen Corp., Carlsbad, CA) and AVL Buffer (Qiagen, Valencia, CA) were examined to render suspensions of alphaviruses, flaviviruses, filoviruses and a bunyavirus non-infectious to tissue culture assay. The dilution series for both extraction reagents consistently caused cell death through a 100-fold dilution. Except for the DEN subtype 4 positive control, all viruses had titers of at least 10(6)pfu/ml. No plaques were detected in any extraction reagent plus virus combination in this study, therefore, the extraction reagents appeared to inactivate completely each of the high-titer viruses used in this study. These results support the reliance upon either TRIzol LS Reagent or AVL Buffer to render clinical or environmental samples non-infectious, which has implications for the handling and processing of samples under austere field conditions and low level containment.

  10. Ventromedial prefrontal cortex supports affective future simulation by integrating distributed knowledge

    PubMed Central

    Benoit, Roland G.; Szpunar, Karl K.; Schacter, Daniel L.

    2014-01-01

    Although the future often seems intangible, we can make it more concrete by imagining prospective events. Here, using functional MRI, we demonstrate a mechanism by which the ventromedial prefrontal cortex supports such episodic simulations, and thereby contributes to affective foresight: This region supports processes that (i) integrate knowledge related to the elements that constitute an episode and (ii) represent the episode’s emergent affective quality. The ventromedial prefrontal cortex achieves such integration via interactions with distributed cortical regions that process the individual elements. Its activation then signals the affective quality of the ensuing episode, which goes beyond the combined affective quality of its constituting elements. The integrative process further augments long-term retention of the episode, making it available at later time points. This mechanism thus renders the future tangible, providing a basis for farsighted behavior. PMID:25368170

  11. Ventromedial prefrontal cortex supports affective future simulation by integrating distributed knowledge.

    PubMed

    Benoit, Roland G; Szpunar, Karl K; Schacter, Daniel L

    2014-11-18

    Although the future often seems intangible, we can make it more concrete by imagining prospective events. Here, using functional MRI, we demonstrate a mechanism by which the ventromedial prefrontal cortex supports such episodic simulations, and thereby contributes to affective foresight: This region supports processes that (i) integrate knowledge related to the elements that constitute an episode and (ii) represent the episode's emergent affective quality. The ventromedial prefrontal cortex achieves such integration via interactions with distributed cortical regions that process the individual elements. Its activation then signals the affective quality of the ensuing episode, which goes beyond the combined affective quality of its constituting elements. The integrative process further augments long-term retention of the episode, making it available at later time points. This mechanism thus renders the future tangible, providing a basis for farsighted behavior.

  12. Use of edible films and coatings to extend the shelf life of food products.

    PubMed

    Maftoonazad, Neda; Badii, Fojan

    2009-06-01

    The increased consumer demand for high quality, extended shelf life, ready to eat foods has initiated the development of several innovative techniques to keep their natural and fresh appearance as long as possible and at the same time render them safe. Packaging has been an important element in these preservation concepts for providing the appropriate (mechanical and functional) protection to the commodity. Since synthetic packaging materials contribute to the environmental pollution, edible coatings and packages have been proposed to replace or complement conventional packaging. Biodegradable and edible films and coatings are made from naturally occurring polymers and functional ingredients, and formed on the surface of food products. Edible films and coating have long been known to protect perishable food products from deterioration and reduce quality loss. These films should have acceptable sensory characteristics, appropriate barrier properties (CO(2), O(2), water, oil), microbial, biochemical and physicochemical stability, they should be safe, and be produced by simple technology in low cost. Also they can act as effective carrier for antioxidant, flavor, color, nutritional or anti-microbial additives. Patents on edible films and food products are also discussed in this article.

  13. Development and validation of a short version of the Partnership Self-Assessment Tool (PSAT) among professionals in Dutch disease-management partnerships.

    PubMed

    Cramm, Jane M; Strating, Mathilde Mh; Nieboer, Anna P

    2011-06-30

    The extent to which partnership synergy is created within quality improvement programmes in the Netherlands is unknown. In this article, we describe the psychometric testing of the Partnership Self-Assessment Tool (PSAT) among professionals in twenty-two disease-management partnerships participating in quality improvement projects focused on chronic care in the Netherlands. Our objectives are to validate the PSAT in the Netherlands and to reduce the number of items of the original PSAT while maintaining validity and reliability. The Dutch version of the PSAT was tested in twenty-two disease-management partnerships with 218 professionals. We tested the instrument by means of structural equation modelling, and examined its validity and reliability. After eliminating 14 items, the confirmatory factor analyses revealed good indices of fit with the resulting 15-item PSAT-Short version (PSAT-S). Internal consistency as represented by Cronbach's alpha ranged from acceptable (0.75) for the 'efficiency' subscale to excellent for the 'leadership' subscale (0.87). Convergent validity was provided with high correlations of the partnership dimensions and partnership synergy (ranged from 0.512 to 0.609) and high correlations with chronic illness care (ranged from 0.447 to 0.329). The psychometric properties and convergent validity of the PSAT-S were satisfactory rendering it a valid and reliable instrument for assessing partnership synergy and its dimensions of partnership functioning.

  14. Room temperature linelists for CO2 asymmetric isotopologues with ab initio computed intensities

    NASA Astrophysics Data System (ADS)

    Zak, Emil J.; Tennyson, Jonathan; Polyansky, Oleg L.; Lodi, Lorenzo; Zobov, Nikolay F.; Tashkun, Sergei A.; Perevalov, Valery I.

    2017-12-01

    The present paper reports room temperature line lists for six asymmetric isotopologues of carbon dioxide: 16O12C18O (628), 16O12C17O (627), 16O13C18O (638),16O13C17O (637), 17O12C18O (728) and 17O13C18O (738), covering the range 0-8000 cm-1. Variational rotation-vibration wavefunctions and energy levels are computed using the DVR3D software suite and a high quality semi-empirical potential energy surface (PES), followed by computation of intensities using an ab initio dipole moment surface (DMS). A theoretical procedure for quantifying sensitivity of line intensities to minor distortions of the PES/DMS renders our theoretical model as critically evaluated. Several recent high quality measurements and theoretical approaches are discussed to provide a benchmark of our results against the most accurate available data. Indeed, the thesis of transferability of accuracy among different isotopologues with the use of mass-independent PES is supported by several examples. Thereby, we conclude that the majority of line intensities for strong bands are predicted with sub-percent accuracy. Accurate line positions are generated using an effective Hamiltonian, constructed from the latest experiments. This study completes the list of relevant isotopologues of carbon dioxide; these line lists are available to remote sensing studies and inclusion in databases.

  15. Individual versus group decision making: Jurors’ reliance on central and peripheral information to evaluate expert testimony

    PubMed Central

    Bottoms, Bette L.; Peter-Hagene, Liana C.

    2017-01-01

    To investigate dual-process persuasion theories in the context of group decision making, we studied low and high need-for-cognition (NFC) participants within a mock trial study. Participants considered plaintiff and defense expert scientific testimony that varied in argument strength. All participants heard a cross-examination of the experts focusing on peripheral information (e.g., credentials) about the expert, but half were randomly assigned to also hear central information highlighting flaws in the expert’s message (e.g., quality of the research presented by the expert). Participants rendered pre- and post-group-deliberation verdicts, which were considered “scientifically accurate” if the verdicts reflected the strong (versus weak) expert message, and “scientifically inaccurate” if they reflected the weak (versus strong) expert message. For individual participants, we replicated studies testing classic persuasion theories: Factors promoting reliance on central information (i.e., central cross-examination, high NFC) improved verdict accuracy because they sensitized individual participants to the quality discrepancy between the experts’ messages. Interestingly, however, at the group level, the more that scientifically accurate mock jurors discussed peripheral (versus central) information about the experts, the more likely their group was to reach the scientifically accurate verdict. When participants were arguing for the scientifically accurate verdict consistent with the strong expert message, peripheral comments increased their persuasiveness, which made the group more likely to reach the more scientifically accurate verdict. PMID:28931011

  16. Individual versus group decision making: Jurors' reliance on central and peripheral information to evaluate expert testimony.

    PubMed

    Salerno, Jessica M; Bottoms, Bette L; Peter-Hagene, Liana C

    2017-01-01

    To investigate dual-process persuasion theories in the context of group decision making, we studied low and high need-for-cognition (NFC) participants within a mock trial study. Participants considered plaintiff and defense expert scientific testimony that varied in argument strength. All participants heard a cross-examination of the experts focusing on peripheral information (e.g., credentials) about the expert, but half were randomly assigned to also hear central information highlighting flaws in the expert's message (e.g., quality of the research presented by the expert). Participants rendered pre- and post-group-deliberation verdicts, which were considered "scientifically accurate" if the verdicts reflected the strong (versus weak) expert message, and "scientifically inaccurate" if they reflected the weak (versus strong) expert message. For individual participants, we replicated studies testing classic persuasion theories: Factors promoting reliance on central information (i.e., central cross-examination, high NFC) improved verdict accuracy because they sensitized individual participants to the quality discrepancy between the experts' messages. Interestingly, however, at the group level, the more that scientifically accurate mock jurors discussed peripheral (versus central) information about the experts, the more likely their group was to reach the scientifically accurate verdict. When participants were arguing for the scientifically accurate verdict consistent with the strong expert message, peripheral comments increased their persuasiveness, which made the group more likely to reach the more scientifically accurate verdict.

  17. Memory colours and colour quality evaluation of conventional and solid-state lamps.

    PubMed

    Smet, Kevin A G; Ryckaert, Wouter R; Pointer, Michael R; Deconinck, Geert; Hanselaer, Peter

    2010-12-06

    A colour quality metric based on memory colours is presented. The basic idea is simple. The colour quality of a test source is evaluated as the degree of similarity between the colour appearance of a set of familiar objects and their memory colours. The closer the match, the better the colour quality. This similarity was quantified using a set of similarity distributions obtained by Smet et al. in a previous study. The metric was validated by calculating the Pearson and Spearman correlation coefficients between the metric predictions and the visual appreciation results obtained in a validation experiment conducted by the authors as well those obtained in two independent studies. The metric was found to correlate well with the visual appreciation of the lighting quality of the sources used in the three experiments. Its performance was also compared with that of the CIE colour rendering index and the NIST colour quality scale. For all three experiments, the metric was found to be significantly better at predicting the correct visual rank order of the light sources (p < 0.1).

  18. Hybrid rendering of the chest and virtual bronchoscopy [corrected].

    PubMed

    Seemann, M D; Seemann, O; Luboldt, W; Gebicke, K; Prime, G; Claussen, C D

    2000-10-30

    Thin-section spiral computed tomography was used to acquire the volume data sets of the thorax. The tracheobronchial system and pathological changes of the chest were visualized using a color-coded surface rendering method. The structures of interest were then superimposed on a volume rendering of the other thoracic structures, thus producing a hybrid rendering. The hybrid rendering technique exploit the advantages of both rendering methods and enable virtual bronchoscopic examinations using different representation models. Virtual bronchoscopic examinations with a transparent color-coded shaded-surface model enables the simultaneous visualization of both the airways and the adjacent structures behind of the tracheobronchial wall and therefore, offers a practical alternative to fiberoptic bronchoscopy. Hybrid rendering and virtual endoscopy obviate the need for time consuming detailed analysis and presentation of axial source images.

  19. Recycling slaughterhouse waste into fertilizer: how do pyrolysis temperature and biomass additions affect phosphorus availability and chemistry?

    PubMed

    Zwetsloot, Marie J; Lehmann, Johannes; Solomon, Dawit

    2015-01-01

    Pyrolysis of slaughterhouse waste could promote more sustainable phosphorus (P) usage through the development of alternative P fertilizers. This study investigated how pyrolysis temperature (220, 350, 550 and 750 °C), rendering before pyrolysis, and wood or corn biomass additions affect P chemistry in bone char, plant availability, and its potential as P fertilizer. Linear combination fitting of synchrotron-based X-ray absorption near edge structure spectra demonstrated that higher pyrolysis temperatures decreased the fit with organic P references, but increased the fit with a hydroxyapatite (HA) reference, used as an indicator of high calcium phosphate (CaP) crystallinity. The fit to the HA reference increased from 0% to 69% in bone with meat residue and from 20% to 95% in rendered bone. Biomass additions to the bone with meat residue reduced the fit to the HA reference by 83% for wood and 95% for corn, and additions to rendered bone by 37% for wood. No detectable aromatic P forms were generated by pyrolysis. High CaP crystallinity was correlated with low water-extractable P, but high formic acid-extractable P indicative of high plant availability. Bone char supplied available P which was only 24% lower than Triple Superphosphate fertilizer and two- to five-fold higher than rock phosphate. Pyrolysis temperature and biomass additions can be used to design P fertilizer characteristics of bone char through changing CaP crystallinity that optimize P availability to plants. © 2014 Society of Chemical Industry.

  20. Influence of 1-MCP on texture, related enzymes, quality and their relative gene expression in 'Amrapali' mango (Mangifera indica L.) fruits.

    PubMed

    Reddy, S V R; Sharma, R R; Barthakur, S

    2017-11-01

    The mango fruits remain biologically active even after harvest as they continue respiration, transpiration and other bio-chemical processes. Being highly perishable, the fruit quality deteriorates fast under ambient conditions (30 ± 5 °C and 50 ± 5% RH), rendering them unmarketable within 5-6 days. In order to extend the shelf-life of 'Amrapali' mango fruits, we have treated them with three different concentrations (500, 750 and 1000 ppb) of 1-Methylcyclopropene (1-MCP) @ 20 °C and stored at ambient conditions. Among all the treatments, 1000 ppb was found to be an effective in extending shelf-life till twelfth day with minimum physiological loss in weight (19.24%), maximum firmness (10.43 N), highest retention of quality parameters such as soluble solid concentrates (27.88 °B), ascorbic acid (28.49 mg 100 g -1 FW) and total antioxidant activity (675.41 µmol Trolox g -1 FW) compared to untreated mango fruits (21.79%, 5.45 N, 23.17 °B, 19.55 mg 100 g -1 FW and 265.41 µmol Trolox g -1 FW, respectively). Gene expression studies have revealed that the texture related gene expansin was significantly repressed till fifth day of storage with increasing concentrations of 1-MCP.

  1. Psychological predictors of prognosis in chronic heart failure.

    PubMed

    Pelle, Aline J M; Gidron, Yori Y; Szabó, Balázs M; Denollet, Johan

    2008-05-01

    Chronic heart failure (CHF) is an increasingly prevalent condition with high mortality and morbidity rates. This review examines the role of depression, anxiety, and social support on prognosis in CHF. Prospective studies that examined mortality as an outcome, and assessed depression, anxiety, or social support as associates were included. Methodological qualities were evaluated. In total, 25 studies were identified. Concerning depression, 6 of 15 studies of inpatients, 10 of 11 studies of outpatients, and 1 study of a mixed sample found associations between depression and prognosis, with greater associations rendered by depressive symptomatology in outpatients. Anxiety was not associated with prognosis in one inpatient study and one outpatient study. There was a univariable trend in one outpatient study for anxiety to be associated with prognosis. In two of six studies of inpatients and in two of four studies of outpatients, social support was associated with prognosis. On the basis of methodological quality, studies on depression showed mixed results, no conclusions could be drawn for anxiety because this association was not investigated soundly, and the quality of the social network was not associated with outcome. Evidence suggests that depressive symptoms and social support might be associated with prognosis in CHF outpatients, independently of biomedical risk factors. With respect to anxiety, no conclusions can be drawn. Future studies are warranted to disentangle associations with psychological factors.

  2. Polyhydroxyalkanoates production with Ralstonia eutropha from low quality waste animal fats.

    PubMed

    Riedel, Sebastian L; Jahns, Stefan; Koenig, Steven; Bock, Martina C E; Brigham, Christopher J; Bader, Johannes; Stahl, Ulf

    2015-11-20

    Polyhydroxyalkanoates (PHAs) are biodegradable and biocompatible polyesters considered as alternatives to petroleum-based plastics. Ralstonia eutropha is a model organism for PHA production. Utilizing industrially rendered waste animal fats as inexpensive carbon feedstocks for PHA production is demonstrated here. An emulsification strategy, without any mechanical or chemical pre-treatment, was developed to increase the bioavailability of solid, poorly-consumable fats. Wild type R. eutropha strain H16 produced 79-82% (w/w) polyhydroxybutyrate (PHB) per cell dry weight (CDW) when cultivated on various fats. A productivity of 0.3g PHB/(L × h) with a total PHB production of 24 g/L was achieved using tallow as carbon source. Using a recombinant strain of R. eutropha that produces poly(hydroxybutyrate-co-hydroxyhexanoate) [P(HB-co-HHx)], 49-72% (w/w) of PHA per CDW with a HHx content of 16-27 mol% were produced in shaking flask experiments. The recombinant strain was grown on waste animal fat of the lowest quality available at lab fermenter scale, resulting in 45 g/L CDW with 60% (w/w) PHA per CDW and a productivity of 0.4 g PHA/(L × h). The final HHx content of the polymer was 19 mol%. The use of low quality waste animal fats as an inexpensive carbon feedstock exhibits a high potential to accelerate the commercialization of PHAs. Copyright © 2015 Elsevier B.V. All rights reserved.

  3. An Analysis of Scalable GPU-Based Ray-Guided Volume Rendering

    PubMed Central

    Fogal, Thomas; Schiewe, Alexander; Krüger, Jens

    2014-01-01

    Volume rendering continues to be a critical method for analyzing large-scale scalar fields, in disciplines as diverse as biomedical engineering and computational fluid dynamics. Commodity desktop hardware has struggled to keep pace with data size increases, challenging modern visualization software to deliver responsive interactions for O(N3) algorithms such as volume rendering. We target the data type common in these domains: regularly-structured data. In this work, we demonstrate that the major limitation of most volume rendering approaches is their inability to switch the data sampling rate (and thus data size) quickly. Using a volume renderer inspired by recent work, we demonstrate that the actual amount of visualizable data for a scene is typically bound considerably lower than the memory available on a commodity GPU. Our instrumented renderer is used to investigate design decisions typically swept under the rug in volume rendering literature. The renderer is freely available, with binaries for all major platforms as well as full source code, to encourage reproduction and comparison with future research. PMID:25506079

  4. Real-time synthetic vision cockpit display for general aviation

    NASA Astrophysics Data System (ADS)

    Hansen, Andrew J.; Smith, W. Garth; Rybacki, Richard M.

    1999-07-01

    Low cost, high performance graphics solutions based on PC hardware platforms are now capable of rendering synthetic vision of a pilot's out-the-window view during all phases of flight. When coupled to a GPS navigation payload the virtual image can be fully correlated to the physical world. In particular, differential GPS services such as the Wide Area Augmentation System WAAS will provide all aviation users with highly accurate 3D navigation. As well, short baseline GPS attitude systems are becoming a viable and inexpensive solution. A glass cockpit display rendering geographically specific imagery draped terrain in real-time can be coupled with high accuracy (7m 95% positioning, sub degree pointing), high integrity (99.99999% position error bound) differential GPS navigation/attitude solutions to provide both situational awareness and 3D guidance to (auto) pilots throughout en route, terminal area, and precision approach phases of flight. This paper describes the technical issues addressed when coupling GPS and glass cockpit displays including the navigation/display interface, real-time 60 Hz rendering of terrain with multiple levels of detail under demand paging, and construction of verified terrain databases draped with geographically specific satellite imagery. Further, on-board recordings of the navigation solution and the cockpit display provide a replay facility for post-flight simulation based on live landings as well as synchronized multiple display channels with different views from the same flight. PC-based solutions which integrate GPS navigation and attitude determination with 3D visualization provide the aviation community, and general aviation in particular, with low cost high performance guidance and situational awareness in all phases of flight.

  5. Cryo-imaging of fluorescently labeled single cells in a mouse

    NASA Astrophysics Data System (ADS)

    Steyer, Grant J.; Roy, Debashish; Salvado, Olivier; Stone, Meredith E.; Wilson, David L.

    2009-02-01

    We developed a cryo-imaging system to provide single-cell detection of fluorescently labeled cells in mouse, with particular applicability to stem cells and metastatic cancer. The Case cryoimaging system consists of a fluorescence microscope, robotic imaging positioner, customized cryostat, PC-based control system, and visualization/analysis software. The system alternates between sectioning (10-40 μm) and imaging, collecting color brightfield and fluorescent blockface image volumes >60GB. In mouse experiments, we imaged quantum-dot labeled stem cells, GFP-labeled cancer and stem cells, and cell-size fluorescent microspheres. To remove subsurface fluorescence, we used a simplified model of light-tissue interaction whereby the next image was scaled, blurred, and subtracted from the current image. We estimated scaling and blurring parameters by minimizing entropy of subtracted images. Tissue specific attenuation parameters were found [uT : heart (267 +/- 47.6 μm), liver (218 +/- 27.1 μm), brain (161 +/- 27.4 μm)] to be within the range of estimates in the literature. "Next image" processing removed subsurface fluorescence equally well across multiple tissues (brain, kidney, liver, adipose tissue, etc.), and analysis of 200 microsphere images in the brain gave 97+/-2% reduction of subsurface fluorescence. Fluorescent signals were determined to arise from single cells based upon geometric and integrated intensity measurements. Next image processing greatly improved axial resolution, enabled high quality 3D volume renderings, and improved enumeration of single cells with connected component analysis by up to 24%. Analysis of image volumes identified metastatic cancer sites, found homing of stem cells to injury sites, and showed microsphere distribution correlated with blood flow patterns. We developed and evaluated cryo-imaging to provide single-cell detection of fluorescently labeled cells in mouse. Our cryo-imaging system provides extreme (>60GB), micron-scale, fluorescence, and bright field image data. Here we describe our image preprocessing, analysis, and visualization techniques. Processing improves axial resolution, reduces subsurface fluorescence by 97%, and enables single cell detection and counting. High quality 3D volume renderings enable us to evaluate cell distribution patterns. Applications include the myriad of biomedical experiments using fluorescent reporter gene and exogenous fluorophore labeling of cells in applications such as stem cell regenerative medicine, cancer, tissue engineering, etc.

  6. Resolution-independent surface rendering using programmable graphics hardware

    DOEpatents

    Loop, Charles T.; Blinn, James Frederick

    2008-12-16

    Surfaces defined by a Bezier tetrahedron, and in particular quadric surfaces, are rendered on programmable graphics hardware. Pixels are rendered through triangular sides of the tetrahedra and locations on the shapes, as well as surface normals for lighting evaluations, are computed using pixel shader computations. Additionally, vertex shaders are used to aid interpolation over a small number of values as input to the pixel shaders. Through this, rendering of the surfaces is performed independently of viewing resolution, allowing for advanced level-of-detail management. By individually rendering tetrahedrally-defined surfaces which together form complex shapes, the complex shapes can be rendered in their entirety.

  7. Three-dimensional spiral CT during arterial portography: comparison of three rendering techniques.

    PubMed

    Heath, D G; Soyer, P A; Kuszyk, B S; Bliss, D F; Calhoun, P S; Bluemke, D A; Choti, M A; Fishman, E K

    1995-07-01

    The three most common techniques for three-dimensional reconstruction are surface rendering, maximum-intensity projection (MIP), and volume rendering. Surface-rendering algorithms model objects as collections of geometric primitives that are displayed with surface shading. The MIP algorithm renders an image by selecting the voxel with the maximum intensity signal along a line extended from the viewer's eye through the data volume. Volume-rendering algorithms sum the weighted contributions of all voxels along the line. Each technique has advantages and shortcomings that must be considered during selection of one for a specific clinical problem and during interpretation of the resulting images. With surface rendering, sharp-edged, clear three-dimensional reconstruction can be completed on modest computer systems; however, overlapping structures cannot be visualized and artifacts are a problem. MIP is computationally a fast technique, but it does not allow depiction of overlapping structures, and its images are three-dimensionally ambiguous unless depth cues are provided. Both surface rendering and MIP use less than 10% of the image data. In contrast, volume rendering uses nearly all of the data, allows demonstration of overlapping structures, and engenders few artifacts, but it requires substantially more computer power than the other techniques.

  8. Approaching the exa-scale: a real-world evaluation of rendering extremely large data sets

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Patchett, John M; Ahrens, James P; Lo, Li - Ta

    2010-10-15

    Extremely large scale analysis is becoming increasingly important as supercomputers and their simulations move from petascale to exascale. The lack of dedicated hardware acceleration for rendering on today's supercomputing platforms motivates our detailed evaluation of the possibility of interactive rendering on the supercomputer. In order to facilitate our understanding of rendering on the supercomputing platform, we focus on scalability of rendering algorithms and architecture envisioned for exascale datasets. To understand tradeoffs for dealing with extremely large datasets, we compare three different rendering algorithms for large polygonal data: software based ray tracing, software based rasterization and hardware accelerated rasterization. We presentmore » a case study of strong and weak scaling of rendering extremely large data on both GPU and CPU based parallel supercomputers using Para View, a parallel visualization tool. Wc use three different data sets: two synthetic and one from a scientific application. At an extreme scale, algorithmic rendering choices make a difference and should be considered while approaching exascale computing, visualization, and analysis. We find software based ray-tracing offers a viable approach for scalable rendering of the projected future massive data sizes.« less

  9. LibIsopach

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brunhart-Lupo, Nicholas

    2016-12-06

    LibIsopach is a toolkit for high performance distributed immersive visualization, leveraging modern OpenGL. It features a multi-process scenegraph, explicit instance rendering, mesh generation, and three-dimensional user interaction event processing.

  10. Dimmable sunlight-like organic light emitting diodes with ultra-high color rendering index

    NASA Astrophysics Data System (ADS)

    Wu, Jin-Han; Chi, Chien-An; Chiang, Chang-Lin; Chen, Guan-Yu; Lin, Yi-Ping; Chen, Cheng-Chang; Ho, Shu-Yi; Chen, Shih-Pu; Li, Jung-Yu

    2016-05-01

    We propose novel dimmable sunlight-like white organic light-emitting diodes that were fabricated using three luminophores to form an emitting spectrum similar to black body radiation at 2250 K with ultra-high color rendering index (CRI) value of 91, which nearly remained the constant at various luminance values ranging from 100 to more than 2500 cd/m2 at Commission Internationale de l'Eclairage chromaticity coordinates of (0.51, 0.41). Introducing charge modification layers suppressed the energy transfer between the emitting material layers and increased the probability of carrier recombination. Moreover, we reveal that covering long-wavelength ranges played a vital role in achieving high CRI values; the CRI values of a spectrum artificially shifted toward a long-wavelength direction (from 610 to 620 nm) remained constant, whereas those of a spectrum shifted toward a short-wavelength direction (from 610 to 600 nm) dropped to 79.

  11. Tile-based Level of Detail for the Parallel Age

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Niski, K; Cohen, J D

    Today's PCs incorporate multiple CPUs and GPUs and are easily arranged in clusters for high-performance, interactive graphics. We present an approach based on hierarchical, screen-space tiles to parallelizing rendering with level of detail. Adapt tiles, render tiles, and machine tiles are associated with CPUs, GPUs, and PCs, respectively, to efficiently parallelize the workload with good resource utilization. Adaptive tile sizes provide load balancing while our level of detail system allows total and independent management of the load on CPUs and GPUs. We demonstrate our approach on parallel configurations consisting of both single PCs and a cluster of PCs.

  12. Efficient Encoding and Rendering of Time-Varying Volume Data

    NASA Technical Reports Server (NTRS)

    Ma, Kwan-Liu; Smith, Diann; Shih, Ming-Yun; Shen, Han-Wei

    1998-01-01

    Visualization of time-varying volumetric data sets, which may be obtained from numerical simulations or sensing instruments, provides scientists insights into the detailed dynamics of the phenomenon under study. This paper describes a coherent solution based on quantization, coupled with octree and difference encoding for visualizing time-varying volumetric data. Quantization is used to attain voxel-level compression and may have a significant influence on the performance of the subsequent encoding and visualization steps. Octree encoding is used for spatial domain compression, and difference encoding for temporal domain compression. In essence, neighboring voxels may be fused into macro voxels if they have similar values, and subtrees at consecutive time steps may be merged if they are identical. The software rendering process is tailored according to the tree structures and the volume visualization process. With the tree representation, selective rendering may be performed very efficiently. Additionally, the I/O costs are reduced. With these combined savings, a higher level of user interactivity is achieved. We have studied a variety of time-varying volume datasets, performed encoding based on data statistics, and optimized the rendering calculations wherever possible. Preliminary tests on workstations have shown in many cases tremendous reduction by as high as 90% in both storage space and inter-frame delay.

  13. First responder and physician liability during an emergency.

    PubMed

    Eddy, Amanda

    2013-01-01

    First responders, especially emergency medical technicians and paramedics, along with physicians, will be expected to render care during a mass casualty event. It is highly likely that these medical first responders and physicians will be rendering care in suboptimal conditions due to the mass casualty event. Furthermore, these individuals are expected to shift their focus from individually based care to community- or population-based care when assisting disaster response. As a result, patients may feel they have not received adequate care and may seek to hold the medical first responder or physician liable, even if they did everything they could given the emergency circumstances. Therefore, it is important to protect medical first responders and physicians rendering care during a mass casualty event so that their efforts are not unnecessarily impeded by concerns about civil liability. In this article, the author looks at the standard of care for medical first responders and physicians and describes the current framework of laws limiting liability for these persons during an emergency. The author concludes that the standard of care and current laws fail to offer adequate liability protection for medical first responders and physicians, especially those in the private sector, and recommends that states adopt clear laws offering liability protection for all medical first responders and physicians who render assistance during a mass casualty event.

  14. Medical Applications of White LEDs for Surgical Operation

    NASA Astrophysics Data System (ADS)

    Shimada, Junichi; Kawakami, Yoichi

    Everywhere in the world, the highest quality and quantity of lighting is required during the surgical operations. However, the surgical approach has had many types and various angles, common ceiling surgical halogen lighting system cannot provide an adequate amount of beams because the surgeons' heads hinder the illuminations from reaching the operation field. The evolution of solid-state-lighting is currently going to be developed due to the progress of white light emitting diodes (LEDs). We proposed and developed the new lighting equipment that is a surgical lighting goggle composed of InGaN-YAG (yttrium aluminum garnet):Ce3+-based white LEDs. Here, we newly design surgical lighting system composed of white LEDs equipped on both sides of goggles. In fact, we have succeeded in the first internal shunt operation in the left forearm using the surgical LED lighting system on 11th Sept 2000. Since the white LEDs used were composed of InGaN-blue-emitters and YAG-yellow-phosphors, the color rendering property was not sufficient in the reddish colors. After our first challenge for medical application of white LEDs, we have been trying to improve the luminance power of white LED, the color rendering in red colors and the spectral distribution of white LED to render inherent color of raw flesh such as skin, blood, fat tissue and internal organs. We have produced new concepts for LED lighting sources and new several generations of LED lighting goggles.

  15. Application of bacteriophages specific to hydrogen sulfide-producing bacteria in raw poultry by-products.

    PubMed

    Gong, Chao; Liu, Xiaohua; Jiang, Xiuping

    2014-03-01

    Hydrogen sulfide-producing bacteria (SPB) can spoil raw animal materials and release harmful hydrogen sulfide (H2S) gas. The objective of this study was to apply a SPB-specific bacteriophage cocktail to control H2S production by SPB in different raw poultry by-products in the laboratory (20, 30, and 37°C) and greenhouse (average temperature 29 to 31°C, humidity 34.8 to 59.8%, and light intensity 604.8 Wm(2)) by simulating transportation and a rendering facility. The amount of H2S production was determined using either test strips impregnated with lead acetate or a H2S monitor. In the laboratory, phage treatment applied to fresh chicken meat inoculated with SPB, spoiled chicken meat, chicken guts, and chicken feathers reduced H2S production by approximately 25 to 69% at temperatures from 20 to 37°C. In the greenhouse, phage treatment achieved approximately a 30 to 85% reduction of H2S yield in chicken offal and feathers. Among all phage treatments, multiplicity of infection (MOI) of 100 exhibited the highest inhibitory activities against SPB on H2S production. Several factors such as initial SPB level, temperature, and MOI affect lytic activities of bacteriophages. Our study demonstrated that the phage cocktail is effective to reduce the production of H2S by SPB significantly in raw animal materials. This biological control method can control SPB in raw poultry by-products at ambient temperatures, leading to a safer working environment and high quality product with less nutrient degradation for the rendering industry.

  16. Caught in a 'spiral'. Barriers to healthy eating and dietary health promotion needs from the perspective of unemployed young people and their service providers.

    PubMed

    Davison, Jenny; Share, Michelle; Hennessy, Marita; Knox, Barbara Stewart

    2015-02-01

    The number of young people in Europe who are not in education, employment or training (NEET) is increasing. Given that young people from disadvantaged backgrounds tend to have diets of poor nutritional quality, this exploratory study sought to understand barriers and facilitators to healthy eating and dietary health promotion needs of unemployed young people aged 16-20 years. Three focus group discussions were held with young people (n = 14). Six individual interviews and one paired interview with service providers (n = 7). Data were recorded, transcribed verbatim and thematically content analysed. Themes were then fitted to social cognitive theory (SCT). Despite understanding of the principles of healthy eating, a 'spiral' of interrelated social, economic and associated psychological problems was perceived to render food and health of little value and low priority for the young people. The story related by the young people and corroborated by the service providers was of a lack of personal and vicarious experience with food. The proliferation and proximity of fast food outlets and the high perceived cost of 'healthy' compared to 'junk' food rendered the young people low in self-efficacy and perceived control to make healthier food choices. Agency was instead expressed through consumption of junk food and drugs. Both the young people and service providers agreed that for dietary health promotion efforts to succeed, social problems needed to be addressed and agency encouraged through (individual and collective) active engagement of the young people themselves. Copyright © 2014 Elsevier Ltd. All rights reserved.

  17. Homogenization of sample absorption for the imaging of large and dense fossils with synchrotron microtomography.

    PubMed

    Sanchez, Sophie; Fernandez, Vincent; Pierce, Stephanie E; Tafforeau, Paul

    2013-09-01

    Propagation phase-contrast synchrotron radiation microtomography (PPC-SRμCT) has proved to be very successful for examining fossils. Because fossils range widely in taphonomic preservation, size, shape and density, X-ray computed tomography protocols are constantly being developed and refined. Here we present a 1-h procedure that combines a filtered high-energy polychromatic beam with long-distance PPC-SRμCT (sample to detector: 4-16 m) and an attenuation protocol normalizing the absorption profile (tested on 13-cm-thick and 5.242 g cm(-3) locally dense samples but applicable to 20-cm-thick samples). This approach provides high-quality imaging results, which show marked improvement relative to results from images obtained without the attenuation protocol in apparent transmission, contrast and signal-to-noise ratio. The attenuation protocol involves immersing samples in a tube filled with aluminum or glass balls in association with a U-shaped aluminum profiler. This technique therefore provides access to a larger dynamic range of the detector used for tomographic reconstruction. This protocol homogenizes beam-hardening artifacts, thereby rendering it effective for use with conventional μCT scanners.

  18. Bleached and unbleached MFC nanobarriers: properties and hydrophobisation with hexamethyldisilazane

    NASA Astrophysics Data System (ADS)

    Chinga-Carrasco, Gary; Kuznetsova, Nina; Garaeva, Milyausha; Leirset, Ingebjørg; Galiullina, Guzaliya; Kostochko, Anatoly; Syverud, Kristin

    2012-12-01

    This study explores the production and surface modification of microfibrillated cellulose (MFC), based on unbleached and bleached Pinus radiata pulp fibres. Unbleached Pinus radiata pulp fibres tend to fibrillate easier by homogenisation without pre-treatment, compared to the corresponding bleached MFC. The resulting unbleached MFC films have higher barrier against oxygen, lower water wettability and higher tensile strength than the corresponding bleached MFC qualities. In addition, it is demonstrated that carboxymethylation can also be applied for production of highly fibrillated unbleached MFC. The nanofibril size distribution of the carboxymethylated MFC is narrow with diameters less than 20 nm, as quantified on high-resolution field-emission scanning electron microscopy images. The carboxymetylation had a larger fibrillation effect on the bleached pulp fibres than on the unbleached one. Importantly, the suitability of hexamethyldisilazane (HMDS) as a new alternative for rendering MFC films hydrophobic was demonstrated. The HMDS-modified films made of carboxymethylated MFC had oxygen permeability levels better than 0.06 mL mm m-2 day-1 atm-1, which is a good property for some packaging applications.

  19. a Low-Cost and Lightweight 3d Interactive Real Estate-Purposed Indoor Virtual Reality Application

    NASA Astrophysics Data System (ADS)

    Ozacar, K.; Ortakci, Y.; Kahraman, I.; Durgut, R.; Karas, I. R.

    2017-11-01

    Interactive 3D architectural indoor design have been more popular after it benefited from Virtual Reality (VR) technologies. VR brings computer-generated 3D content to real life scale and enable users to observe immersive indoor environments so that users can directly modify it. This opportunity enables buyers to purchase a property off-the-plan cheaper through virtual models. Instead of showing property through 2D plan or renders, this visualized interior architecture of an on-sale unbuilt property is demonstrated beforehand so that the investors have an impression as if they were in the physical building. However, current applications either use highly resource consuming software, or are non-interactive, or requires specialist to create such environments. In this study, we have created a real-estate purposed low-cost high quality fully interactive VR application that provides a realistic interior architecture of the property by using free and lightweight software: Sweet Home 3D and Unity. A preliminary study showed that participants generally liked proposed real estate-purposed VR application, and it satisfied the expectation of the property buyers.

  20. Crystal Growth of the S =1/2 Antiferromagnet K2PbCu(NO2)6 Elpasolite

    NASA Astrophysics Data System (ADS)

    Dong, Lianyang; Besara, Tiglet; Siegrist, Theo

    The elpasolite K2PbCu(NO2)6is known for its two structural transitions at 281 K and 273 K. Single crystals of K2PbCu(NO2)6 have been grown in aqueous solution, but the rapid nucleation rate and convective transport renders it difficult to obtain large high quality single crystals. We developed a gel method to grow K2PbCu(NO2)6 Elpasolite with sizes up to 5x5x5 mm3, suitable for neutron diffraction measurements. Susceptibility measurements clearly show that the Jahn-Teller distortions at 286K and 273K with associated orbital ordering produce a linear chain Heisenberg antiferromagnetic system. The intrachain interaction strength has been derived from a Bonner-Fisher analysis that yielded a value of 5.4K. This work was supported by the National Science Foundation, under award DMR-1534818. A portion of this work has been performed at the National High Magnetic Field Laboratory, which is supported by the National Science Foundation Cooperative Agreement.

  1. Building Virtual Mars

    NASA Astrophysics Data System (ADS)

    Abercrombie, S. P.; Menzies, A.; Goddard, C.

    2017-12-01

    Virtual and augmented reality enable scientists to visualize environments that are very difficult, or even impossible to visit, such as the surface of Mars. A useful immersive visualization begins with a high quality reconstruction of the environment under study. This presentation will discuss a photogrammetry pipeline developed at the Jet Propulsion Laboratory to reconstruct 3D models of the surface of Mars using stereo images sent back to Earth by the Curiosity Mars rover. The resulting models are used to support a virtual reality tool (OnSight) that allows scientists and engineers to visualize the surface of Mars as if they were standing on the red planet. Images of Mars present challenges to existing scene reconstruction solutions. Surface images of Mars are sparse with minimal overlap, and are often taken from extremely different viewpoints. In addition, the specialized cameras used by Mars rovers are significantly different than consumer cameras, and GPS localization data is not available on Mars. This presentation will discuss scene reconstruction with an emphasis on coping with limited input data, and on creating models suitable for rendering in virtual reality at high frame rate.

  2. On-the-fly form generation and on-line metadata configuration--a clinical data management Web infrastructure in Java.

    PubMed

    Beck, Peter; Truskaller, Thomas; Rakovac, Ivo; Cadonna, Bruno; Pieber, Thomas R

    2006-01-01

    In this paper we describe the approach to build a web-based clinical data management infrastructure on top of an entity-attribute-value (EAV) database which provides for flexible definition and extension of clinical data sets as well as efficient data handling and high performance query execution. A "mixed" EAV implementation provides a flexible and configurable data repository and at the same time utilizes the performance advantages of conventional database tables for rarely changing data structures. A dynamically configurable data dictionary contains further information for data validation. The online user interface can also be assembled dynamically. A data transfer object which encapsulates data together with all required metadata is populated by the backend and directly used to dynamically render frontend forms and handle incoming data. The "mixed" EAV model enables flexible definition and modification of clinical data sets while reducing performance drawbacks of pure EAV implementations to a minimum. The system currently is in use in an electronic patient record with focus on flexibility and a quality management application (www.healthgate.at) with high performance requirements.

  3. Super-resolved refocusing with a plenoptic camera

    NASA Astrophysics Data System (ADS)

    Zhou, Zhiliang; Yuan, Yan; Bin, Xiangli; Qian, Lulu

    2011-03-01

    This paper presents an approach to enhance the resolution of refocused images by super resolution methods. In plenoptic imaging, we demonstrate that the raw sensor image can be divided to a number of low-resolution angular images with sub-pixel shifts between each other. The sub-pixel shift, which defines the super-resolving ability, is mathematically derived by considering the plenoptic camera as equivalent camera arrays. We implement simulation to demonstrate the imaging process of a plenoptic camera. A high-resolution image is then reconstructed using maximum a posteriori (MAP) super resolution algorithms. Without other degradation effects in simulation, the super resolved image achieves a resolution as high as predicted by the proposed model. We also build an experimental setup to acquire light fields. With traditional refocusing methods, the image is rendered at a rather low resolution. In contrast, we implement the super-resolved refocusing methods and recover an image with more spatial details. To evaluate the performance of the proposed method, we finally compare the reconstructed images using image quality metrics like peak signal to noise ratio (PSNR).

  4. Real time ray tracing based on shader

    NASA Astrophysics Data System (ADS)

    Gui, JiangHeng; Li, Min

    2017-07-01

    Ray tracing is a rendering algorithm for generating an image through tracing lights into an image plane, it can simulate complicate optical phenomenon like refraction, depth of field and motion blur. Compared with rasterization, ray tracing can achieve more realistic rendering result, however with greater computational cost, simple scene rendering can consume tons of time. With the GPU's performance improvement and the advent of programmable rendering pipeline, complicated algorithm can also be implemented directly on shader. So, this paper proposes a new method that implement ray tracing directly on fragment shader, mainly include: surface intersection, importance sampling and progressive rendering. With the help of GPU's powerful throughput capability, it can implement real time rendering of simple scene.

  5. HDlive rendering images of the fetal stomach: a preliminary report.

    PubMed

    Inubashiri, Eisuke; Abe, Kiyotaka; Watanabe, Yukio; Akutagawa, Noriyuki; Kuroki, Katumaru; Sugawara, Masaki; Maeda, Nobuhiko; Minami, Kunihiro; Nomura, Yasuhiro

    2015-01-01

    This study aimed to show reconstruction of the fetal stomach using the HDlive rendering mode in ultrasound. Seventeen healthy singleton fetuses at 18-34 weeks' gestational age were observed using the HDlive rendering mode of ultrasound in utero. In all of the fetuses, we identified specific spatial structures, including macroscopic anatomical features (e.g., the pyrous, cardia, fundus, and great curvature) of the fetal stomach, using the HDlive rendering mode. In particular, HDlive rendering images showed remarkably fine details that appeared as if they were being viewed under an endoscope, with visible rugal folds after 27 weeks' gestational age. Our study suggests that the HDlive rendering mode can be used as an additional method for evaluating the fetal stomach. The HDlive rendering mode shows detailed 3D structural images and anatomically realistic images of the fetal stomach. This technique may be effective in prenatal diagnosis for examining detailed information of fetal organs.

  6. Enhancement method for rendered images of home decoration based on SLIC superpixels

    NASA Astrophysics Data System (ADS)

    Dai, Yutong; Jiang, Xiaotong

    2018-04-01

    Rendering technology has been widely used in the home decoration industry in recent years for images of home decoration design. However, due to the fact that rendered images of home decoration design rely heavily on the parameters of renderer and the lights of scenes, most rendered images in this industry require further optimization afterwards. To reduce workload and enhance rendered images automatically, an algorithm utilizing neural networks is proposed in this manuscript. In addition, considering few extreme conditions such as strong sunlight and lights, SLIC superpixels based segmentation is used to choose out these bright areas of an image and enhance them independently. Finally, these chosen areas are merged with the entire image. Experimental results show that the proposed method effectively enhances the rendered images when compared with some existing algorithms. Besides, the proposed strategy is proven to be adaptable especially to those images with obvious bright parts.

  7. 31 CFR 515.548 - Services rendered by Cuba to United States aircraft.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 31 Money and Finance:Treasury 3 2013-07-01 2013-07-01 false Services rendered by Cuba to United... REGULATIONS Licenses, Authorizations, and Statements of Licensing Policy § 515.548 Services rendered by Cuba to United States aircraft. Payment to Cuba of charges for services rendered by Cuba in connection...

  8. 31 CFR 515.548 - Services rendered by Cuba to United States aircraft.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 31 Money and Finance:Treasury 3 2014-07-01 2014-07-01 false Services rendered by Cuba to United... REGULATIONS Licenses, Authorizations, and Statements of Licensing Policy § 515.548 Services rendered by Cuba to United States aircraft. Payment to Cuba of charges for services rendered by Cuba in connection...

  9. 9 CFR 314.5 - Inedible rendered fats prepared at official establishments.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 9 Animals and Animal Products 2 2013-01-01 2013-01-01 false Inedible rendered fats prepared at... PRODUCTS AT OFFICIAL ESTABLISHMENTS § 314.5 Inedible rendered fats prepared at official establishments. Except as provided in § 325.11(b) of this subchapter, rendered animal fat derived from condemned or other...

  10. 9 CFR 319.703 - Rendered animal fat or mixture thereof.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 9 Animals and Animal Products 2 2012-01-01 2012-01-01 false Rendered animal fat or mixture thereof... INSPECTION AND CERTIFICATION DEFINITIONS AND STANDARDS OF IDENTITY OR COMPOSITION Fats, Oils, Shortenings § 319.703 Rendered animal fat or mixture thereof. “Rendered Animal Fat,” or any mixture of fats...

  11. 9 CFR 314.5 - Inedible rendered fats prepared at official establishments.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 9 Animals and Animal Products 2 2012-01-01 2012-01-01 false Inedible rendered fats prepared at... PRODUCTS AT OFFICIAL ESTABLISHMENTS § 314.5 Inedible rendered fats prepared at official establishments. Except as provided in § 325.11(b) of this subchapter, rendered animal fat derived from condemned or other...

  12. 9 CFR 314.5 - Inedible rendered fats prepared at official establishments.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 9 Animals and Animal Products 2 2011-01-01 2011-01-01 false Inedible rendered fats prepared at... PRODUCTS AT OFFICIAL ESTABLISHMENTS § 314.5 Inedible rendered fats prepared at official establishments. Except as provided in § 325.11(b) of this subchapter, rendered animal fat derived from condemned or other...

  13. 9 CFR 319.703 - Rendered animal fat or mixture thereof.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 9 Animals and Animal Products 2 2013-01-01 2013-01-01 false Rendered animal fat or mixture thereof... INSPECTION AND CERTIFICATION DEFINITIONS AND STANDARDS OF IDENTITY OR COMPOSITION Fats, Oils, Shortenings § 319.703 Rendered animal fat or mixture thereof. “Rendered Animal Fat,” or any mixture of fats...

  14. 9 CFR 314.5 - Inedible rendered fats prepared at official establishments.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 9 Animals and Animal Products 2 2014-01-01 2014-01-01 false Inedible rendered fats prepared at... PRODUCTS AT OFFICIAL ESTABLISHMENTS § 314.5 Inedible rendered fats prepared at official establishments. Except as provided in § 325.11(b) of this subchapter, rendered animal fat derived from condemned or other...

  15. 9 CFR 319.703 - Rendered animal fat or mixture thereof.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 9 Animals and Animal Products 2 2014-01-01 2014-01-01 false Rendered animal fat or mixture thereof... INSPECTION AND CERTIFICATION DEFINITIONS AND STANDARDS OF IDENTITY OR COMPOSITION Fats, Oils, Shortenings § 319.703 Rendered animal fat or mixture thereof. “Rendered Animal Fat,” or any mixture of fats...

  16. Estimating differential expression from multiple indicators

    PubMed Central

    Ilmjärv, Sten; Hundahl, Christian Ansgar; Reimets, Riin; Niitsoo, Margus; Kolde, Raivo; Vilo, Jaak; Vasar, Eero; Luuk, Hendrik

    2014-01-01

    Regardless of the advent of high-throughput sequencing, microarrays remain central in current biomedical research. Conventional microarray analysis pipelines apply data reduction before the estimation of differential expression, which is likely to render the estimates susceptible to noise from signal summarization and reduce statistical power. We present a probe-level framework, which capitalizes on the high number of concurrent measurements to provide more robust differential expression estimates. The framework naturally extends to various experimental designs and target categories (e.g. transcripts, genes, genomic regions) as well as small sample sizes. Benchmarking in relation to popular microarray and RNA-sequencing data-analysis pipelines indicated high and stable performance on the Microarray Quality Control dataset and in a cell-culture model of hypoxia. Experimental-data-exhibiting long-range epigenetic silencing of gene expression was used to demonstrate the efficacy of detecting differential expression of genomic regions, a level of analysis not embraced by conventional workflows. Finally, we designed and conducted an experiment to identify hypothermia-responsive genes in terms of monotonic time-response. As a novel insight, hypothermia-dependent up-regulation of multiple genes of two major antioxidant pathways was identified and verified by quantitative real-time PCR. PMID:24586062

  17. Approaches to creating and controlling motion in MRI.

    PubMed

    Fischer, Gregory S; Cole, Gregory; Su, Hao

    2011-01-01

    Magnetic Resonance Imaging (MRI) can provide three dimensional (3D) imaging with excellent resolution and sensitivity making it ideal for guiding and monitoring interventions. The development of MRI-compatible interventional devices is complicated by factors including: the high magnetic field strength, the requirement that such devices should not degrade image quality, and the confined physical space of the scanner bore. Numerous MRI guided actuated devices have been developed or are currently being developed utilizing piezoelectric actuators as their primary means of mechanical energy generation to enable better interventional procedure performance. While piezoelectric actuators are highly desirable for MRI guided actuation for their precision, high holding force, and non-magnetic operation they are often found to cause image degradation on a large enough to scale to render live imaging unusable. This paper describes a newly developed piezoelectric actuator driver and control system designed to drive a variety of both harmonic and non-harmonic motors that has been demonstrated to be capable of operating both harmonic and non-harmonic piezoelectric actuators with less than 5% SNR loss under closed loop control. The proposed system device allows for a single controller to control any supported actuator and feedback sensor without any physical hardware changes.

  18. A summer blender camp: modeling, rendering, and animation for high school students.

    PubMed

    Bailey, Mike; Law, Cathy

    2014-01-01

    At Camp Blender, high-school students of varying backgrounds learned how to use the Blender software package to create computer graphics content. In a postclass survey, most of them indicated that the camp affected how they thought about their career path.

  19. [Quality assurance versus regulation--the perspective of a lawyer].

    PubMed

    Meister, Jörg

    2003-11-01

    In February 2003, the German Federal Ministry of Health presented a concept for establishing a German National Institute for Clinical Excellence. In sharp contrast to this concept, a closer look at other medical quality assurance activities in Germany shows that there is no area of responsibility in the German health care system where such an institution might prove useful. In Germany, the institutions of self-administration were the first to organise and promote medical quality assurance activities. The German Hospital Federation, the Association of Sickness Funds for salaried employees, the Association of Private Health Insurers, the professional organisations of German physicians and other organisations of self-administration entered into contracts pertaining to a medical quality partnership in order to create maximal benefit for all patients, i.e. to exactly address the patients' needs and treat their diseases with the best possible outcome. Such a framework of self-administration renders redundant the requirement for a German National Institute for Clinical Excellence.

  20. Quality of herbal medicines: challenges and solutions.

    PubMed

    Zhang, Junhua; Wider, Barbara; Shang, Hongcai; Li, Xuemei; Ernst, Edzard

    2012-01-01

    The popularity of herbal medicines has risen worldwide. This increase in usage renders safety issues important. Many adverse events of herbal medicines can be attributed to the poor quality of the raw materials or the finished products. Different types of herbal medicines are associated with different problems. Quality issues of herbal medicines can be classified into two categories: external and internal. In this review, external issues including contamination (e.g. toxic metals, pesticides residues and microbes), adulteration and misidentification are detailed. Complexity and non-uniformity of the ingredients in herbal medicines are the internal issues affecting the quality of herbal medicines. Solutions to the raised problems are discussed. The rigorous implementation of Good Agricultural and Collection Practices (GACP) and Good Manufacturing Practices (GMP) would undoubtedly reduce the risk of external issues. Through the use of modern analytical methods and pharmaceutical techniques, previously unsolved internal issues have become solvable. Standard herbal products can be manufactured from the standard herbal extracts. Copyright © 2011 Elsevier Ltd. All rights reserved.

  1. Energy-saving quality road lighting with colloidal quantum dot nanophosphors

    NASA Astrophysics Data System (ADS)

    Erdem, Talha; Kelestemur, Yusuf; Soran-Erdem, Zeliha; Ji, Yun; Demir, Hilmi Volkan

    2014-12-01

    Here the first photometric study of road-lighting white light-emitting diodes (WLEDs) integrated with semiconductor colloidal quantum dots (QDs) is reported enabling higher luminance than conventional light sources, specifically in mesopic vision regimes essential to street lighting. Investigating over 100 million designs uncovers that quality road-lighting QD-WLEDs, with a color quality scale and color rendering index ≥85, enables 13-35% higher mesopic luminance than the sources commonly used in street lighting. Furthermore, these QD-WLEDs were shown to be electrically more efficient than conventional sources with power conversion efficiencies ≥16-29%. Considering this fact, an experimental proof-of-concept QD-WLED was demonstrated, which is the first account of QD based color conversion custom designed for street lighting applications. The obtained white LED achieved the targeted mesopic luminance levels in accordance with the road lighting standards of the USA and the UK. These results indicate that road-lighting QD-WLEDs are strongly promising for energy-saving quality road lighting.

  2. Realistic Real-Time Outdoor Rendering in Augmented Reality

    PubMed Central

    Kolivand, Hoshang; Sunar, Mohd Shahrizal

    2014-01-01

    Realistic rendering techniques of outdoor Augmented Reality (AR) has been an attractive topic since the last two decades considering the sizeable amount of publications in computer graphics. Realistic virtual objects in outdoor rendering AR systems require sophisticated effects such as: shadows, daylight and interactions between sky colours and virtual as well as real objects. A few realistic rendering techniques have been designed to overcome this obstacle, most of which are related to non real-time rendering. However, the problem still remains, especially in outdoor rendering. This paper proposed a much newer, unique technique to achieve realistic real-time outdoor rendering, while taking into account the interaction between sky colours and objects in AR systems with respect to shadows in any specific location, date and time. This approach involves three main phases, which cover different outdoor AR rendering requirements. Firstly, sky colour was generated with respect to the position of the sun. Second step involves the shadow generation algorithm, Z-Partitioning: Gaussian and Fog Shadow Maps (Z-GaF Shadow Maps). Lastly, a technique to integrate sky colours and shadows through its effects on virtual objects in the AR system, is introduced. The experimental results reveal that the proposed technique has significantly improved the realism of real-time outdoor AR rendering, thus solving the problem of realistic AR systems. PMID:25268480

  3. Realistic real-time outdoor rendering in augmented reality.

    PubMed

    Kolivand, Hoshang; Sunar, Mohd Shahrizal

    2014-01-01

    Realistic rendering techniques of outdoor Augmented Reality (AR) has been an attractive topic since the last two decades considering the sizeable amount of publications in computer graphics. Realistic virtual objects in outdoor rendering AR systems require sophisticated effects such as: shadows, daylight and interactions between sky colours and virtual as well as real objects. A few realistic rendering techniques have been designed to overcome this obstacle, most of which are related to non real-time rendering. However, the problem still remains, especially in outdoor rendering. This paper proposed a much newer, unique technique to achieve realistic real-time outdoor rendering, while taking into account the interaction between sky colours and objects in AR systems with respect to shadows in any specific location, date and time. This approach involves three main phases, which cover different outdoor AR rendering requirements. Firstly, sky colour was generated with respect to the position of the sun. Second step involves the shadow generation algorithm, Z-Partitioning: Gaussian and Fog Shadow Maps (Z-GaF Shadow Maps). Lastly, a technique to integrate sky colours and shadows through its effects on virtual objects in the AR system, is introduced. The experimental results reveal that the proposed technique has significantly improved the realism of real-time outdoor AR rendering, thus solving the problem of realistic AR systems.

  4. Transcriptional Changes during Naturally Acquired Zika Virus Infection Render Dendritic Cells Highly Conducive to Viral Replication.

    PubMed

    Sun, Xiaoming; Hua, Stephane; Chen, Hsiao-Rong; Ouyang, Zhengyu; Einkauf, Kevin; Tse, Samantha; Ard, Kevin; Ciaranello, Andrea; Yawetz, Sigal; Sax, Paul; Rosenberg, Eric S; Lichterfeld, Mathias; Yu, Xu G

    2017-12-19

    Although dendritic cells are among the human cell population best equipped for cell-intrinsic antiviral immune defense, they seem highly susceptible to infection with the Zika virus (ZIKV). Using highly purified myeloid dendritic cells isolated from individuals with naturally acquired acute infection, we here show that ZIKV induces profound perturbations of transcriptional signatures relative to healthy donors. Interestingly, we noted a remarkable downregulation of antiviral interferon-stimulated genes and innate immune sensors, suggesting that ZIKV can actively suppress interferon-dependent immune responses. In contrast, several host factors known to support ZIKV infection were strongly upregulated during natural ZIKV infection; these transcripts included AXL, the main entry receptor for ZIKV; SOCS3, a negative regulator of ISG expression; and IDO-1, a recognized inducer of regulatory T cell responses. Thus, during in vivo infection, ZIKV can transform the transcriptome of dendritic cells in favor of the virus to render these cells highly conducive to ZIKV infection. Published by Elsevier Inc.

  5. High-Efficiency and High-Color-Rendering-Index Semitransparent Polymer Solar Cells Induced by Photonic Crystals and Surface Plasmon Resonance.

    PubMed

    Shen, Ping; Wang, Guoxin; Kang, Bonan; Guo, Wenbin; Shen, Liang

    2018-02-21

    Semitransparent polymer solar cells (ST-PSCs) show attractive potential in power-generating windows or building-integrated photovoltaics. However, the development of ST-PSCs is lagging behind opaque PSCs because of the contradiction between device efficiency and transmission. Herein, Ag/Au alloy nanoparticles and photonic crystals (PCs) were simultaneously introduced into ST-PSCs, acting compatibly as localized surface plasmon resonances and distributed Bragg reflectors to enhance light absorption and transmission. As a result, ST-PSCs based on a hybrid PTB7-Th:PC 71 BM active layer contribute an efficiency as high as 7.13 ± 0.15% and an average visible transmission beyond 20%, which are superior to most of the reported results. Furthermore, PCs can partly compensate valley range of transmission by balancing reflection and transmission regions, yielding a high color rendering index of 95. We believe that the idea of two light management methods compatibly enhancing the performance of ST-PSCs can offer a promising path to develop photovoltaic applications.

  6. [Between the public and the private. New incentives in health care].

    PubMed

    Abel-Smith, B

    1992-01-01

    This paper discusses some of the proposals regarding the improvement of the efficiency in the delivery of health care services. Several countries have implemented different strategies based on the experience of the Health Maintenance Organizations, which have used the market to stimulate competition between providers and insurance companies. One of the proposals includes the creation of agencies that would compete in quality and in price. Another one implies the creation of a National Health Service capable of hiring public or private services from local agencies. The ideal strategy would enable a consumer to choose between insurance companies and public and private providers, and would hopefully create cost conditions reasonably correlated with the efficiency and quality of the rendered services.

  7. Comprehensive genomic studies: emerging regulatory, strategic, and quality assurance challenges for biorepositories.

    PubMed

    McDonald, Sandra A; Mardis, Elaine R; Ota, David; Watson, Mark A; Pfeifer, John D; Green, Jonathan M

    2012-07-01

    As part of the molecular revolution sweeping medicine, comprehensive genomic studies are adding powerful dimensions to medical research. However, their power exposes new regulatory, strategic, and quality assurance challenges for biorepositories. A key issue is that unlike other research techniques commonly applied to banked specimens, nucleic acid sequencing, if sufficiently extensive, yields data that could identify a patient. This evolving paradigm renders the concepts of anonymized and anonymous specimens increasingly outdated. The challenges for biorepositories in this new era include refined consent processes and wording, selection and use of legacy specimens, quality assurance procedures, institutional documentation, data sharing, and interaction with institutional review boards. Given current trends, biorepositories should consider these issues now, even if they are not currently experiencing sample requests for genomic analysis. We summarize our current experiences and best practices at Washington University Medical School, St Louis, MO, our perceptions of emerging trends, and recommendations.

  8. A modeling analysis program for the JPL Table Mountain Io sodium cloud data

    NASA Technical Reports Server (NTRS)

    Smyth, W. H.; Goldberg, B. A.

    1986-01-01

    Progress and achievements in the second year are discussed in three main areas: (1) data quality review of the 1981 Region B/C images; (2) data processing activities; and (3) modeling activities. The data quality review revealed that almost all 1981 Region B/C images are of sufficient quality to be valuable in the analyses of the JPL data set. In the second area, the major milestone reached was the successful development and application of complex image-processing software required to render the original image data suitable for modeling analysis studies. In the third area, the lifetime description of sodium atoms in the planet magnetosphere was improved in the model to include the offset dipole nature of the magnetic field as well as an east-west electric field. These improvements are important in properly representing the basic morphology as well as the east-west asymmetries of the sodium cloud.

  9. Comprehensive Genomic Studies: Emerging Regulatory, Strategic, and Quality Assurance Challenges for Biorepositories

    PubMed Central

    McDonald, Sandra A.; Mardis, Elaine R.; Ota, David; Watson, Mark A.; Pfeifer, John D.; Green, Jonathan M.

    2012-01-01

    As part of the molecular revolution sweeping medicine, comprehensive genomic studies are adding powerful dimensions to medical research. However, their power exposes new regulatory, strategic, and quality assurance challenges for biorepositories. A key issue is that unlike other research techniques commonly applied to banked specimens, nucleic acid sequencing, if sufficiently extensive, yields data that could identify a patient. This evolving paradigm renders the concepts of anonymized and anonymous specimens increasingly outdated. The challenges for biorepositories in this new era include refined consent processes and wording, selection and use of legacy specimens, quality assurance procedures, institutional documentation, data sharing, and interaction with institutional review boards. Given current trends, biorepositories should consider these issues now, even if they are not currently experiencing sample requests for genomic analysis. We summarize our current experiences and best practices at Washington University Medical School, St Louis, MO, our perceptions of emerging trends, and recommendations. PMID:22706855

  10. An augmented reality tool for learning spatial anatomy on mobile devices.

    PubMed

    Jain, Nishant; Youngblood, Patricia; Hasel, Matthew; Srivastava, Sakti

    2017-09-01

    Augmented Realty (AR) offers a novel method of blending virtual and real anatomy for intuitive spatial learning. Our first aim in the study was to create a prototype AR tool for mobile devices. Our second aim was to complete a technical evaluation of our prototype AR tool focused on measuring the system's ability to accurately render digital content in the real world. We imported Computed Tomography (CT) data derived virtual surface models into a 3D Unity engine environment and implemented an AR algorithm to display these on mobile devices. We investigated the accuracy of the virtual renderings by comparing a physical cube with an identical virtual cube for dimensional accuracy. Our comparative study confirms that our AR tool renders 3D virtual objects with a high level of accuracy as evidenced by the degree of similarity between measurements of the dimensions of a virtual object (a cube) and the corresponding physical object. We developed an inexpensive and user-friendly prototype AR tool for mobile devices that creates highly accurate renderings. This prototype demonstrates an intuitive, portable, and integrated interface for spatial interaction with virtual anatomical specimens. Integrating this AR tool with a library of CT derived surface models provides a platform for spatial learning in the anatomy curriculum. The segmentation methodology implemented to optimize human CT data for mobile viewing can be extended to include anatomical variations and pathologies. The ability of this inexpensive educational platform to deliver a library of interactive, 3D models to students worldwide demonstrates its utility as a supplemental teaching tool that could greatly benefit anatomical instruction. Clin. Anat. 30:736-741, 2017. © 2017Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  11. Efficient Stochastic Rendering of Static and Animated Volumes Using Visibility Sweeps.

    PubMed

    von Radziewsky, Philipp; Kroes, Thomas; Eisemann, Martin; Eisemann, Elmar

    2017-09-01

    Stochastically solving the rendering integral (particularly visibility) is the de-facto standard for physically-based light transport but it is computationally expensive, especially when displaying heterogeneous volumetric data. In this work, we present efficient techniques to speed-up the rendering process via a novel visibility-estimation method in concert with an unbiased importance sampling (involving environmental lighting and visibility inside the volume), filtering, and update techniques for both static and animated scenes. Our major contributions include a progressive estimate of partial occlusions based on a fast sweeping-plane algorithm. These occlusions are stored in an octahedral representation, which can be conveniently transformed into a quadtree-based hierarchy suited for a joint importance sampling. Further, we propose sweep-space filtering, which suppresses the occurrence of fireflies and investigate different update schemes for animated scenes. Our technique is unbiased, requires little precomputation, is highly parallelizable, and is applicable to a various volume data sets, dynamic transfer functions, animated volumes and changing environmental lighting.

  12. An improved method of continuous LOD based on fractal theory in terrain rendering

    NASA Astrophysics Data System (ADS)

    Lin, Lan; Li, Lijun

    2007-11-01

    With the improvement of computer graphic hardware capability, the algorithm of 3D terrain rendering is going into the hot topic of real-time visualization. In order to solve conflict between the rendering speed and reality of rendering, this paper gives an improved method of terrain rendering which improves the traditional continuous level of detail technique based on fractal theory. This method proposes that the program needn't to operate the memory repeatedly to obtain different resolution terrain model, instead, obtains the fractal characteristic parameters of different region according to the movement of the viewpoint. Experimental results show that the method guarantees the authenticity of landscape, and increases the real-time 3D terrain rendering speed.

  13. At-line validation of a process analytical technology approach for quality control of melamine-urea-formaldehyde resin in composite wood-panel production using near infrared spectroscopy.

    PubMed

    Meder, Roger; Stahl, Wolfgang; Warburton, Paul; Woolley, Sam; Earnshaw, Scott; Haselhofer, Klaus; van Langenberg, Ken; Ebdon, Nick; Mulder, Roger

    2017-01-01

    The reactivity of melamine-urea-formaldehyde resins is of key importance in the manufacture of engineered wood products such as medium density fibreboard (MDF) and other wood composite products. Often the MDF manufacturing plant has little available information on the resin reactivity other than details of the resin specification at the time of batch manufacture, which often occurs off-site at a third-party resin plant. Often too, fresh resin on delivery at the MDF plant is mixed with variable volume of aged resin in storage tanks, thereby rendering any specification of the fresh resin batch obsolete. It is therefore highly desirable to develop a real-time, at-line or on-line, process analytical technology to monitor the quality of the resin prior to MDF panel manufacture. Near infrared (NIR) spectroscopy has been calibrated against standard quality methods and against 13 C nuclear magnetic resonance (NMR) measures of molecular composition in order to provide at-line process analytical technology (PAT), to monitor the resin quality, particularly the formaldehyde content of the resin. At-line determination of formaldehyde content in the resin was made possible using a six-factor calibration with an R 2 (cal) value of 0.973, and R 2 (CV) value of 0.929 and a root-mean-square error of cross-validation of 0.01. This calibration was then used to generate control charts of formaldehyde content at regular four-hourly periods during MDF panel manufacture in a commercial MDF manufacturing plant.

  14. Automatic transfer function generation for volume rendering of high-resolution x-ray 3D digital mammography images

    NASA Astrophysics Data System (ADS)

    Alyassin, Abdal M.

    2002-05-01

    3D Digital mammography (3DDM) is a new technology that provides high resolution X-ray breast tomographic data. Like any other tomographic medical imaging modalities, viewing a stack of tomographic images may require time especially if the images are of large matrix size. In addition, it may cause difficulty to conceptually construct 3D breast structures. Therefore, there is a need to readily visualize the data in 3D. However, one of the issues that hinder the usage of volume rendering (VR) is finding an automatic way to generate transfer functions that efficiently map the important diagnostic information in the data. We have developed a method that randomly samples the volume. Based on the mean and the standard deviation of these samples, the technique determines the lower limit and upper limit of a piecewise linear ramp transfer function. We have volume rendered several 3DDM data using this technique and compared visually the outcome with the result from a conventional automatic technique. The transfer function generated through the proposed technique provided superior VR images over the conventional technique. Furthermore, the improvement in the reproducibility of the transfer function correlated with the number of samples taken from the volume at the expense of the processing time.

  15. FACILITIES EVALUATION OF HIGH EFFICIENCY BOILER DESTRUCTION PCB WASTE

    EPA Science Inventory

    The report gives results of an evaluation of destruction in two different high-efficiency boilers (as an alternative to landfill disposal) of waste (a rendering plant byproduct, yellow grease) found to be contaminated by PCBs from a transformer leak. (The PCB content--under 500 p...

  16. Solar thermal drum drying performance of prune and tomato pomaces

    USDA-ARS?s Scientific Manuscript database

    Fruit and vegetable pomaces are co-products of the food processing industry; they are underutilized in part because their high water activity (aw) renders them unstable. Drum drying is one method that can dry/stabilize pomaces, but current drum drying methods utilize conventional, high-environmental...

  17. Effect of ultra-superheated steam on aflatoxin reduction and roasted peanut properties.

    PubMed

    Pukkasorn, Parawee; Ratphitagsanti, Wannasawat; Haruthaitanasan, Vichai

    2018-06-01

    Aflatoxins are carcinogenic toxins produced by Aspergillus flavus and Aspergillus parasiticus that are found naturally in peanut. It requires extremely high temperatures to eliminate aflatoxins from the nuts. The aims of this study were to investigate the effect of ultra-superheated steam (USS) on the reduction of aflatoxin B 1 (AFB 1 ) accompanying the roasting process and to determine roasted peanut qualities that affected consumer acceptance. Whole peanut kernels were intentionally contaminated by AFB 1 standard solution at the level of 50 ± 10 µg kg -1 before subjecting to USS treatment at 300-400 °C between 10 and 80 s. The high temperature of USS could significantly decrease AFB 1 level to 9.83 ± 3.51, 15.33 ± 2.23 and 8.95 ± 2.32 µg kg -1 when 300 °C for 80 s, 350 °C for 40 s and 400 °C for 40 s were employed, respectively. AFB 1 was reduced as much as 83.86 ± 2.66% when 400 °C for 40 s was applied. The moisture content of treated peanuts was decreased to less than 3% and browning index was developed from 30.96 ± 1.59 to 95.76 ± 7.23. Higher roasting degree was obtained according to the increase in browning index. Oil quality showed that peroxide values and acid values were greatly below the allowance level. USS could effectively decrease AFB 1 and render expectable roasting qualities of peanut. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  18. Gastric bypass is a cost-saving procedure: results from a comprehensive Markov model.

    PubMed

    Faria, Gil R; Preto, John R; Costa-Maia, José

    2013-04-01

    Obesity is a growing public health problem in industrialized countries and is directly and indirectly responsible for almost 10% of all health expenditures. Bariatric surgery is the best available treatment, however, associated with important economical expenditures. So, cost-effectiveness analysis of the available surgical options is paramount. We developed a Markov model for three different strategies: best medical management, gastric band, and gastric bypass. The Markov model was constructed to allow for the evaluation of the impact of several obesity-related comorbidities. The results were derived for a representative population of morbidly obese patients, and subgroup analyses were performed for patients without comorbidities, patients with diabetes mellitus, different age, and body mass index (BMI) groups. Cost-effectiveness analysis was performed accounting for lifetime costs and from a societal perspective. Gastric bypass is a dominant strategy, rendering a significant decrease in lifetime costs and increase in quality-adjusted life years (QALYs). Comparing with the best medical management, in the global population of patients with a BMI of > 35 kg/m2, gastric bypass renders 1.9 extra QALYs and saves on average 13,244€ per patient. Younger patients, patients with a BMI between 40 and 50 kg/m2, and patients without obesity-related diseases are the ones with a bigger benefit in terms of cost effectiveness. Gastric bypass surgery increases quality-adjusted survival and saves resources to health systems. As such, it can be an important process to control the ever-increasing health expenditure.

  19. Multicolor white light-emitting diodes for illumination applications

    NASA Astrophysics Data System (ADS)

    Chi, Solomon W. S.; Chen, Tzer-Perng; Tu, Chuan-Cheng; Chang, Chih-Sung; Tsai, Tzong-Liang; Hsieh, Mario C. C.

    2004-01-01

    Semiconductor light emitting diode (LED) has become a promising device for general-purpose illumination applications. LED has the features of excellent durability, long operation life, low power consumption, no mercury containing and potentially high efficiency. Several white LED technologies appear capable of meeting the technical requirements of illumination. In this paper we present a new multi-color white (MCW) LED as a high luminous efficacy, high color rendering index and low cost white illuminator. The device consists of two LED chips, one is AlInGaN LED for emitting shorter visible spectra, another is AlInGaP LED for emitting longer visible spectra. At least one chip in the MCW-LED has two or more transition energy levels used for emitting two or more colored lights. The multiple colored lights generated from the MCW-LED can be mixed into a full-spectral white light. Besides, there is no phosphors conversion layer used in the MCW-LED structure. Therefore, its color rendering property and illumination efficiency are excellent. The Correlated Color Temperature (CCT) of the MCW-LED may range from 2,500 K to over 10,000 K. The theoretical General Color Rendering Index (Ra) could be as high as 94, which is close to the incandescent and halogen sources, while the Ra of binary complementary white (BCW) LED is about 30 ~ 45. Moreover, compared to the expensive ternary RGB (Red AlInGaP + Green AlInGaN + Blue AlInGaN) white LED sources, the MCW-LED uses only one AlInGaN chip in combination with one cheap AlInGaP chip, to form a low cost, high luminous performance white light source. The MCW-LED is an ideal light source for general-purpose illumination applications.

  20. Single-layer HDR video coding with SDR backward compatibility

    NASA Astrophysics Data System (ADS)

    Lasserre, S.; François, E.; Le Léannec, F.; Touzé, D.

    2016-09-01

    The migration from High Definition (HD) TV to Ultra High Definition (UHD) is already underway. In addition to an increase of picture spatial resolution, UHD will bring more color and higher contrast by introducing Wide Color Gamut (WCG) and High Dynamic Range (HDR) video. As both Standard Dynamic Range (SDR) and HDR devices will coexist in the ecosystem, the transition from Standard Dynamic Range (SDR) to HDR will require distribution solutions supporting some level of backward compatibility. This paper presents a new HDR content distribution scheme, named SL-HDR1, using a single layer codec design and providing SDR compatibility. The solution is based on a pre-encoding HDR-to-SDR conversion, generating a backward compatible SDR video, with side dynamic metadata. The resulting SDR video is then compressed, distributed and decoded using standard-compliant decoders (e.g. HEVC Main 10 compliant). The decoded SDR video can be directly rendered on SDR displays without adaptation. Dynamic metadata of limited size are generated by the pre-processing and used to reconstruct the HDR signal from the decoded SDR video, using a post-processing that is the functional inverse of the pre-processing. Both HDR quality and artistic intent are preserved. Pre- and post-processing are applied independently per picture, do not involve any inter-pixel dependency, and are codec agnostic. Compression performance, and SDR quality are shown to be solidly improved compared to the non-backward and backward-compatible approaches, respectively using the Perceptual Quantization (PQ) and Hybrid Log Gamma (HLG) Opto-Electronic Transfer Functions (OETF).

  1. Segment scheduling method for reducing 360° video streaming latency

    NASA Astrophysics Data System (ADS)

    Gudumasu, Srinivas; Asbun, Eduardo; He, Yong; Ye, Yan

    2017-09-01

    360° video is an emerging new format in the media industry enabled by the growing availability of virtual reality devices. It provides the viewer a new sense of presence and immersion. Compared to conventional rectilinear video (2D or 3D), 360° video poses a new and difficult set of engineering challenges on video processing and delivery. Enabling comfortable and immersive user experience requires very high video quality and very low latency, while the large video file size poses a challenge to delivering 360° video in a quality manner at scale. Conventionally, 360° video represented in equirectangular or other projection formats can be encoded as a single standards-compliant bitstream using existing video codecs such as H.264/AVC or H.265/HEVC. Such method usually needs very high bandwidth to provide an immersive user experience. While at the client side, much of such high bandwidth and the computational power used to decode the video are wasted because the user only watches a small portion (i.e., viewport) of the entire picture. Viewport dependent 360°video processing and delivery approaches spend more bandwidth on the viewport than on non-viewports and are therefore able to reduce the overall transmission bandwidth. This paper proposes a dual buffer segment scheduling algorithm for viewport adaptive streaming methods to reduce latency when switching between high quality viewports in 360° video streaming. The approach decouples the scheduling of viewport segments and non-viewport segments to ensure the viewport segment requested matches the latest user head orientation. A base layer buffer stores all lower quality segments, and a viewport buffer stores high quality viewport segments corresponding to the most recent viewer's head orientation. The scheduling scheme determines viewport requesting time based on the buffer status and the head orientation. This paper also discusses how to deploy the proposed scheduling design for various viewport adaptive video streaming methods. The proposed dual buffer segment scheduling method is implemented in an end-to-end tile based 360° viewports adaptive video streaming platform, where the entire 360° video is divided into a number of tiles, and each tile is independently encoded into multiple quality level representations. The client requests different quality level representations of each tile based on the viewer's head orientation and the available bandwidth, and then composes all tiles together for rendering. The simulation results verify that the proposed dual buffer segment scheduling algorithm reduces the viewport switch latency, and utilizes available bandwidth more efficiently. As a result, a more consistent immersive 360° video viewing experience can be presented to the user.

  2. a Quadtree Organization Construction and Scheduling Method for Urban 3d Model Based on Weight

    NASA Astrophysics Data System (ADS)

    Yao, C.; Peng, G.; Song, Y.; Duan, M.

    2017-09-01

    The increasement of Urban 3D model precision and data quantity puts forward higher requirements for real-time rendering of digital city model. Improving the organization, management and scheduling of 3D model data in 3D digital city can improve the rendering effect and efficiency. This paper takes the complexity of urban models into account, proposes a Quadtree construction and scheduling rendering method for Urban 3D model based on weight. Divide Urban 3D model into different rendering weights according to certain rules, perform Quadtree construction and schedule rendering according to different rendering weights. Also proposed an algorithm for extracting bounding box extraction based on model drawing primitives to generate LOD model automatically. Using the algorithm proposed in this paper, developed a 3D urban planning&management software, the practice has showed the algorithm is efficient and feasible, the render frame rate of big scene and small scene are both stable at around 25 frames.

  3. Parallel Rendering of Large Time-Varying Volume Data

    NASA Technical Reports Server (NTRS)

    Garbutt, Alexander E.

    2005-01-01

    Interactive visualization of large time-varying 3D volume datasets has been and still is a great challenge to the modem computational world. It stretches the limits of the memory capacity, the disk space, the network bandwidth and the CPU speed of a conventional computer. In this SURF project, we propose to develop a parallel volume rendering program on SGI's Prism, a cluster computer equipped with state-of-the-art graphic hardware. The proposed program combines both parallel computing and hardware rendering in order to achieve an interactive rendering rate. We use 3D texture mapping and a hardware shader to implement 3D volume rendering on each workstation. We use SGI's VisServer to enable remote rendering using Prism's graphic hardware. And last, we will integrate this new program with ParVox, a parallel distributed visualization system developed at JPL. At the end of the project, we Will demonstrate remote interactive visualization using this new hardware volume renderer on JPL's Prism System using a time-varying dataset from selected JPL applications.

  4. Whole-body CT in polytrauma patients: The effect of arm position on abdominal image quality when using a human phantom

    NASA Astrophysics Data System (ADS)

    Jeon, Pil-Hyun; Kim, Hee-Joung; Lee, Chang-Lae; Kim, Dae-Hong; Lee, Won-Hyung; Jeon, Sung-Su

    2012-06-01

    For a considerable number of emergency computed tomography (CT) scans, patients are unable to position their arms above their head due to traumatic injuries. The arms-down position has been shown to reduce image quality with beam-hardening artifacts in the dorsal regions of the liver, spleen, and kidneys, rendering these images non-diagnostic. The purpose of this study was to evaluate the effect of arm position on the image quality in patients undergoing whole-body CT. We acquired CT scans with various acquisition parameters at voltages of 80, 120, and 140 kVp and an increasing tube current from 200 to 400 mAs in 50 mAs increments. The image noise and the contrast assessment were considered for quantitative analyses of the CT images. The image noise (IN), the contrast-to-noise ratio (CNR), the signal-to-noise ratio (SNR), and the coefficient of variation (COV) were evaluated. Quantitative analyses of the experiments were performed with CT scans representative of five different arm positions. Results of the CT scans acquired at 120 kVp and 250 mAs showed high image quality in patients with both arms raised above the head (SNR: 12.4, CNR: 10.9, and COV: 8.1) and both arms flexed at the elbows on the chest (SNR: 11.5, CNR: 10.2, and COV: 8.8) while the image quality significantly decreased with both arms in the down position (SNR: 9.1, CNR: 7.6, and COV: 11). Both arms raised, one arm raised, and both arms flexed improved the image quality compared to arms in the down position by reducing beam-hardening and streak artifacts caused by the arms being at the side of body. This study provides optimal methods for achieving higher image quality and lower noise in abdominal CT for trauma patients.

  5. Application of bacteriophages to reduce biofilms formed by hydrogen sulfide producing bacteria on surfaces in a rendering plant.

    PubMed

    Gong, Chao; Jiang, Xiuping

    2015-08-01

    Hydrogen sulfide producing bacteria (SPB) in raw animal by-products are likely to grow and form biofilms in the rendering processing environments, resulting in the release of harmful hydrogen sulfide (H2S) gas. The objective of this study was to reduce SPB biofilms formed on different surfaces typically found in rendering plants by applying a bacteriophage cocktail. Using a 96-well microplate method, we determined that 3 SPB strains of Citrobacter freundii and Hafnia alvei are strong biofilm formers. Application of 9 bacteriophages (10(7) PFU/mL) from families of Siphoviridae and Myoviridae resulted in a 33%-70% reduction of biofilm formation by each SPB strain. On stainless steel and plastic templates, phage treatment (10(8) PFU/mL) reduced the attached cells of a mixed SPB culture (no biofilm) by 2.3 and 2.7 log CFU/cm(2) within 6 h at 30 °C, respectively, as compared with 2 and 1.5 log CFU/cm(2) reductions of SPB biofilms within 6 h at 30 °C. Phage treatment was also applied to indigenous SPB biofilms formed on the environmental surface, stainless steel, high-density polyethylene plastic, and rubber templates in a rendering plant. With phage treatment (10(9) PFU/mL), SPB biofilms were reduced by 0.7-1.4, 0.3-0.6, and 0.2-0.6 log CFU/cm(2) in spring, summer, and fall trials, respectively. Our study demonstrated that bacteriophages could effectively reduce the selected SPB strains either attached to or in formed biofilms on various surfaces and could to some extent reduce the indigenous SPB biofilms on the surfaces in the rendering environment.

  6. Method and system for rendering and interacting with an adaptable computing environment

    DOEpatents

    Osbourn, Gordon Cecil [Albuquerque, NM; Bouchard, Ann Marie [Albuquerque, NM

    2012-06-12

    An adaptable computing environment is implemented with software entities termed "s-machines", which self-assemble into hierarchical data structures capable of rendering and interacting with the computing environment. A hierarchical data structure includes a first hierarchical s-machine bound to a second hierarchical s-machine. The first hierarchical s-machine is associated with a first layer of a rendering region on a display screen and the second hierarchical s-machine is associated with a second layer of the rendering region overlaying at least a portion of the first layer. A screen element s-machine is linked to the first hierarchical s-machine. The screen element s-machine manages data associated with a screen element rendered to the display screen within the rendering region at the first layer.

  7. Europa Lander Mission Concept (Artist Rendering)

    NASA Image and Video Library

    2017-02-08

    This artist's rendering illustrates a conceptual design for a potential future mission to land a robotic probe on the surface of Jupiter's moon Europa. The lander is shown with a sampling arm extended, having previously excavated a small area on the surface. The circular dish on top is a dual-purpose high-gain antenna and camera mast, with stereo imaging cameras mounted on the back of the antenna. Three vertical shapes located around the top center of the lander are attachment points for cables that would lower the rover from a sky crane, which is envisioned as the landing system for this mission concept. http://photojournal.jpl.nasa.gov/catalog/PIA21048

  8. Data Cube Visualization with Blender

    NASA Astrophysics Data System (ADS)

    Kent, Brian R.; Gárate, Matías

    2017-06-01

    With the increasing data acquisition rates from observational and computational astrophysics, new tools are needed to study and visualize data. We present a methodology for rendering 3D data cubes using the open-source 3D software Blender. By importing processed observations and numerical simulations through the Voxel Data format, we are able use the Blender interface and Python API to create high-resolution animated visualizations. We review the methods for data import, animation, and camera movement, and present examples of this methodology. The 3D rendering of data cubes gives scientists the ability to create appealing displays that can be used for both scientific presentations as well as public outreach.

  9. High temperature solid electrolyte fuel cell with ceramic electrodes

    DOEpatents

    Marchant, David D.; Bates, J. Lambert

    1984-01-01

    A solid oxide electrolyte fuel cell is described having a central electrolyte comprised of a HfO.sub.2 or ZrO.sub.2 ceramic stabilized and rendered ionically conductive by the addition of Ca, Mg, Y, La, Nd, Sm, Gd, Dy Er, or Yb. The electrolyte is sandwiched between porous electrodes of a HfO.sub.2 or ZrO.sub.2 ceramic stabilized by the addition of a rare earth and rendered electronically conductive by the addition of In.sub.2 O.sub.3. Alternatively, the anode electrode may be made of a metal such as Co, Ni, Ir Pt, or Pd.

  10. High temperature solid electrolyte fuel cell with ceramic electrodes

    DOEpatents

    Bates, J.L.; Marchant, D.D.

    A solid oxide electrolyte fuel cell is described having a central electrolyte comprised of a HfO/sub 2/ or ZrO/sub 2/ ceramic stabilized and rendered ionically conductive by the addition of Ca, Mg, Y, La, Nd, Sm, Gd, Dy Er, or Yb. The electrolyte is sandwiched between porous electrodes of a HfO/sub 2/ or ZrO/sub 2/ ceramic stabilized by the addition of a rare earth and rendered electronically conductive by the addition of In/sub 2/O/sub 3/. Alternatively, the anode electrode may be made of a metal such as Co, Ni, Ir Pt, or Pd.

  11. Accessing Developmental Information of Fossil Hominin Teeth Using New Synchrotron Microtomography-Based Visualization Techniques of Dental Surfaces and Interfaces

    PubMed Central

    Le Cabec, Adeline; Tang, Nancy; Tafforeau, Paul

    2015-01-01

    Quantification of dental long-period growth lines (Retzius lines in enamel and Andresen lines in dentine) and matching of stress patterns (internal accentuated lines and hypoplasias) are used in determining crown formation time and age at death in juvenile fossil hominins. They yield the chronology employed for inferences of life history. Synchrotron virtual histology has been demonstrated as a non-destructive alternative to conventional invasive approaches. Nevertheless, fossil teeth are sometimes poorly preserved or physically inaccessible, preventing observation of the external expression of incremental lines (perikymata and periradicular bands). Here we present a new approach combining synchrotron virtual histology and high quality three-dimensional rendering of dental surfaces and internal interfaces. We illustrate this approach with seventeen permanent fossil hominin teeth. The outer enamel surface and enamel-dentine junction (EDJ) were segmented by capturing the phase contrast fringes at the structural interfaces. Three-dimensional models were rendered with Phong’s algorithm, and a combination of directional colored lights to enhance surface topography and the pattern of subtle variations in tissue density. The process reveals perikymata and linear enamel hypoplasias on the entire crown surface, including unerupted teeth. Using this method, highly detailed stress patterns at the EDJ allow precise matching of teeth within an individual’s dentition when virtual histology is not sufficient. We highlight that taphonomical altered enamel can in particular cases yield artificial subdivisions of perikymata when imaged using X-ray microtomography with insufficient resolution. This may complicate assessments of developmental time, although this can be circumvented by a careful analysis of external and internal structures in parallel. We further present new crown formation times for two unerupted canines from South African Australopiths, which were found to form over a rather surprisingly long time (> 4.5 years). This approach provides tools for maximizing the recovery of developmental information in teeth, especially in the most difficult cases. PMID:25901602

  12. Accessing developmental information of fossil hominin teeth using new synchrotron microtomography-based visualization techniques of dental surfaces and interfaces.

    PubMed

    Le Cabec, Adeline; Tang, Nancy; Tafforeau, Paul

    2015-01-01

    Quantification of dental long-period growth lines (Retzius lines in enamel and Andresen lines in dentine) and matching of stress patterns (internal accentuated lines and hypoplasias) are used in determining crown formation time and age at death in juvenile fossil hominins. They yield the chronology employed for inferences of life history. Synchrotron virtual histology has been demonstrated as a non-destructive alternative to conventional invasive approaches. Nevertheless, fossil teeth are sometimes poorly preserved or physically inaccessible, preventing observation of the external expression of incremental lines (perikymata and periradicular bands). Here we present a new approach combining synchrotron virtual histology and high quality three-dimensional rendering of dental surfaces and internal interfaces. We illustrate this approach with seventeen permanent fossil hominin teeth. The outer enamel surface and enamel-dentine junction (EDJ) were segmented by capturing the phase contrast fringes at the structural interfaces. Three-dimensional models were rendered with Phong's algorithm, and a combination of directional colored lights to enhance surface topography and the pattern of subtle variations in tissue density. The process reveals perikymata and linear enamel hypoplasias on the entire crown surface, including unerupted teeth. Using this method, highly detailed stress patterns at the EDJ allow precise matching of teeth within an individual's dentition when virtual histology is not sufficient. We highlight that taphonomical altered enamel can in particular cases yield artificial subdivisions of perikymata when imaged using X-ray microtomography with insufficient resolution. This may complicate assessments of developmental time, although this can be circumvented by a careful analysis of external and internal structures in parallel. We further present new crown formation times for two unerupted canines from South African Australopiths, which were found to form over a rather surprisingly long time (> 4.5 years). This approach provides tools for maximizing the recovery of developmental information in teeth, especially in the most difficult cases.

  13. Unique Color Converter Architecture Enabling Phosphor-in-Glass (PiG) Films Suitable for High-Power and High-Luminance Laser-Driven White Lighting.

    PubMed

    Zheng, Peng; Li, Shuxing; Wang, Le; Zhou, Tian-Liang; You, Shihai; Takeda, Takashi; Hirosaki, Naoto; Xie, Rong-Jun

    2018-05-02

    As a next-generation high-power lighting technology, laser lighting has attracted great attention in high-luminance applications. However, thermally robust and highly efficient color converters suitable for high-quality laser lighting are scarce. Despite its versatility, the phosphor-in-glass (PiG) has been seldom applied in laser lighting because of its low thermal conductivity. In this work, we develop a unique architecture in which a phosphor-in-glass (PiG) film was directly sintered on a high thermally conductive sapphire substrate coated by one-dimensional photonic crystals. The designed color converter with the composite architecture exhibits a high internal quantum efficiency close to that of the original phosphor powders and an excellent packaging efficiency up to 90%. Furthermore, the PiG film can even be survived under the 11.2 W mm -2 blue laser excitation. Combining blue laser diodes with the YAG-PiG-on-sapphire plate, a uniform white light with a high luminance of 845 Mcd m -2 (luminous flux: 1839 lm), luminous efficacy of 210 lm W -1 , and correlated color temperature of 6504 K was obtained. A high color rendering index of 74 was attained by adding a robust orange or red phosphor layer to the architecture. These outstanding properties meet the standards of vehicle regulations, enabling the PiG films with the composite architecture to be applied in automotive lighting or other high-power and high-luminance laser lighting.

  14. 3D Polyaniline Architecture by Concurrent Inorganic and Organic Acid Doping for Superior and Robust High Rate Supercapacitor Performance

    NASA Astrophysics Data System (ADS)

    Gawli, Yogesh; Banerjee, Abhik; Dhakras, Dipti; Deo, Meenal; Bulani, Dinesh; Wadgaonkar, Prakash; Shelke, Manjusha; Ogale, Satishchandra

    2016-02-01

    A good high rate supercapacitor performance requires a fine control of morphological (surface area and pore size distribution) and electrical properties of the electrode materials. Polyaniline (PANI) is an interesting material in supercapacitor context because it stores energy Faradaically. However in conventional inorganic (e.g. HCl) acid doping, the conductivity is high but the morphological features are undesirable. On the other hand, in weak organic acid (e.g. phytic acid) doping, interesting and desirable 3D connected morphological features are attained but the conductivity is poorer. Here the synergy of the positive quality factors of these two acid doping approaches is realized by concurrent and optimized strong-inorganic (HCl) and weak-organic (phytic) acid doping, resulting in a molecular composite material that renders impressive and robust supercapacitor performance. Thus, a nearly constant high specific capacitance of 350 F g-1 is realized for the optimised case of binary doping over the entire range of 1 A g-1 to 40 A g-1 with stability of 500 cycles at 40 A g-1. Frequency dependant conductivity measurements show that the optimized co-doped case is more metallic than separately doped materials. This transport property emanates from the unique 3D single molecular character of such system.

  15. 3D Polyaniline Architecture by Concurrent Inorganic and Organic Acid Doping for Superior and Robust High Rate Supercapacitor Performance.

    PubMed

    Gawli, Yogesh; Banerjee, Abhik; Dhakras, Dipti; Deo, Meenal; Bulani, Dinesh; Wadgaonkar, Prakash; Shelke, Manjusha; Ogale, Satishchandra

    2016-02-12

    A good high rate supercapacitor performance requires a fine control of morphological (surface area and pore size distribution) and electrical properties of the electrode materials. Polyaniline (PANI) is an interesting material in supercapacitor context because it stores energy Faradaically. However in conventional inorganic (e.g. HCl) acid doping, the conductivity is high but the morphological features are undesirable. On the other hand, in weak organic acid (e.g. phytic acid) doping, interesting and desirable 3D connected morphological features are attained but the conductivity is poorer. Here the synergy of the positive quality factors of these two acid doping approaches is realized by concurrent and optimized strong-inorganic (HCl) and weak-organic (phytic) acid doping, resulting in a molecular composite material that renders impressive and robust supercapacitor performance. Thus, a nearly constant high specific capacitance of 350 F g(-1) is realized for the optimised case of binary doping over the entire range of 1 A g(-1) to 40 A g(-1) with stability of 500 cycles at 40 A g(-1). Frequency dependant conductivity measurements show that the optimized co-doped case is more metallic than separately doped materials. This transport property emanates from the unique 3D single molecular character of such system.

  16. Research on Visualization of Ground Laser Radar Data Based on Osg

    NASA Astrophysics Data System (ADS)

    Huang, H.; Hu, C.; Zhang, F.; Xue, H.

    2018-04-01

    Three-dimensional (3D) laser scanning is a new advanced technology integrating light, machine, electricity, and computer technologies. It can conduct 3D scanning to the whole shape and form of space objects with high precision. With this technology, you can directly collect the point cloud data of a ground object and create the structure of it for rendering. People use excellent 3D rendering engine to optimize and display the 3D model in order to meet the higher requirements of real time realism rendering and the complexity of the scene. OpenSceneGraph (OSG) is an open source 3D graphics engine. Compared with the current mainstream 3D rendering engine, OSG is practical, economical, and easy to expand. Therefore, OSG is widely used in the fields of virtual simulation, virtual reality, science and engineering visualization. In this paper, a dynamic and interactive ground LiDAR data visualization platform is constructed based on the OSG and the cross-platform C++ application development framework Qt. In view of the point cloud data of .txt format and the triangulation network data file of .obj format, the functions of 3D laser point cloud and triangulation network data display are realized. It is proved by experiments that the platform is of strong practical value as it is easy to operate and provides good interaction.

  17. Objective assessment of MPEG-2 video quality

    NASA Astrophysics Data System (ADS)

    Gastaldo, Paolo; Zunino, Rodolfo; Rovetta, Stefano

    2002-07-01

    The increasing use of video compression standards in broadcasting television systems has required, in recent years, the development of video quality measurements that take into account artifacts specifically caused by digital compression techniques. In this paper we present a methodology for the objective quality assessment of MPEG video streams by using circular back-propagation feedforward neural networks. Mapping neural networks can render nonlinear relationships between objective features and subjective judgments, thus avoiding any simplifying assumption on the complexity of the model. The neural network processes an instantaneous set of input values, and yields an associated estimate of perceived quality. Therefore, the neural-network approach turns objective quality assessment into adaptive modeling of subjective perception. The objective features used for the estimate are chosen according to the assessed relevance to perceived quality and are continuously extracted in real time from compressed video streams. The overall system mimics perception but does not require any analytical model of the underlying physical phenomenon. The capability to process compressed video streams represents an important advantage over existing approaches, like avoiding the stream-decoding process greatly enhances real-time performance. Experimental results confirm that the system provides satisfactory, continuous-time approximations for actual scoring curves concerning real test videos.

  18. College quality and hourly wages: evidence from the self-revelation model, sibling models and instrumental variables.

    PubMed

    Borgen, Nicolai T

    2014-11-01

    This paper addresses the recent discussion on confounding in the returns to college quality literature using the Norwegian case. The main advantage of studying Norway is the quality of the data. Norwegian administrative data provide information on college applications, family relations and a rich set of control variables for all Norwegian citizens applying to college between 1997 and 2004 (N = 141,319) and their succeeding wages between 2003 and 2010 (676,079 person-year observations). With these data, this paper uses a subset of the models that have rendered mixed findings in the literature in order to investigate to what extent confounding biases the returns to college quality. I compare estimates obtained using standard regression models to estimates obtained using the self-revelation model of Dale and Krueger (2002), a sibling fixed effects model and the instrumental variable model used by Long (2008). Using these methods, I consistently find increasing returns to college quality over the course of students' work careers, with positive returns only later in students' work careers. I conclude that the standard regression estimate provides a reasonable estimate of the returns to college quality. Copyright © 2014 Elsevier Inc. All rights reserved.

  19. Detection of bovine central nervous system tissues in rendered animal by-products by one-step real-time reverse transcription PCR assay.

    PubMed

    Andrievskaia, Olga; Tangorra, Erin

    2014-12-01

    Contamination of rendered animal byproducts with central nervous system tissues (CNST) from animals with bovine spongiform encephalopathy is considered one of the vehicles of disease transmission. Removal from the animal feed chain of CNST originated from cattle of a specified age category, species-labeling of rendered meat products, and testing of rendered products for bovine CNST are tasks associated with the epidemiological control of bovine spongiform encephalopathy. A single-step TaqMan real-time reverse transcriptase (RRT) PCR assay was developed and evaluated for specific detection of bovine glial fibrillary acidic protein (GFAP) mRNA, a biomarker of bovine CNST, in rendered animal by-products. An internal amplification control, mammalian b -actin mRNA, was coamplified in the duplex RRT-PCR assay to monitor amplification efficiency, normalize amplification signals, and avoid false-negative results. The functionality of the GFAP mRNA RRT-PCR was assessed through analysis of laboratory-generated binary mixtures of bovine central nervous system (CNS) and muscle tissues treated under various thermal settings imitating industrial conditions. The assay was able to detect as low as 0.05 % (wt/wt) bovine brain tissue in binary mixtures heat treated at 110 to 130°C for 20 to 60 min. Further evaluation of the GFAP mRNA RRT-PCR assay involved samples of industrial rendered products of various species origin and composition obtained from commercial sources and rendering plants. Low amounts of bovine GFAP mRNA were detected in several bovine-rendered products, which was in agreement with declared species composition. An accurate estimation of CNS tissue content in industrial-rendered products was complicated due to a wide range of temperature and time settings in rendering protocols. Nevertheless, the GFAP mRNA RRT-PCR assay may be considered for bovine CNS tissue detection in rendered products in combination with other available tools (for example, animal age verification) in inspection programs.

  20. Simplification of Visual Rendering in Simulated Prosthetic Vision Facilitates Navigation.

    PubMed

    Vergnieux, Victor; Macé, Marc J-M; Jouffrais, Christophe

    2017-09-01

    Visual neuroprostheses are still limited and simulated prosthetic vision (SPV) is used to evaluate potential and forthcoming functionality of these implants. SPV has been used to evaluate the minimum requirement on visual neuroprosthetic characteristics to restore various functions such as reading, objects and face recognition, object grasping, etc. Some of these studies focused on obstacle avoidance but only a few investigated orientation or navigation abilities with prosthetic vision. The resolution of current arrays of electrodes is not sufficient to allow navigation tasks without additional processing of the visual input. In this study, we simulated a low resolution array (15 × 18 electrodes, similar to a forthcoming generation of arrays) and evaluated the navigation abilities restored when visual information was processed with various computer vision algorithms to enhance the visual rendering. Three main visual rendering strategies were compared to a control rendering in a wayfinding task within an unknown environment. The control rendering corresponded to a resizing of the original image onto the electrode array size, according to the average brightness of the pixels. In the first rendering strategy, vision distance was limited to 3, 6, or 9 m, respectively. In the second strategy, the rendering was not based on the brightness of the image pixels, but on the distance between the user and the elements in the field of view. In the last rendering strategy, only the edges of the environments were displayed, similar to a wireframe rendering. All the tested renderings, except the 3 m limitation of the viewing distance, improved navigation performance and decreased cognitive load. Interestingly, the distance-based and wireframe renderings also improved the cognitive mapping of the unknown environment. These results show that low resolution implants are usable for wayfinding if specific computer vision algorithms are used to select and display appropriate information regarding the environment. © 2017 International Center for Artificial Organs and Transplantation and Wiley Periodicals, Inc.

  1. Three-dimensional rendering of segmented object using matlab - biomed 2010.

    PubMed

    Anderson, Jeffrey R; Barrett, Steven F

    2010-01-01

    The three-dimensional rendering of microscopic objects is a difficult and challenging task that often requires specialized image processing techniques. Previous work has been described of a semi-automatic segmentation process of fluorescently stained neurons collected as a sequence of slice images with a confocal laser scanning microscope. Once properly segmented, each individual object can be rendered and studied as a three-dimensional virtual object. This paper describes the work associated with the design and development of Matlab files to create three-dimensional images from the segmented object data previously mentioned. Part of the motivation for this work is to integrate both the segmentation and rendering processes into one software application, providing a seamless transition from the segmentation tasks to the rendering and visualization tasks. Previously these tasks were accomplished on two different computer systems, windows and Linux. This transition basically limits the usefulness of the segmentation and rendering applications to those who have both computer systems readily available. The focus of this work is to create custom Matlab image processing algorithms for object rendering and visualization, and merge these capabilities to the Matlab files that were developed especially for the image segmentation task. The completed Matlab application will contain both the segmentation and rendering processes in a single graphical user interface, or GUI. This process for rendering three-dimensional images in Matlab requires that a sequence of two-dimensional binary images, representing a cross-sectional slice of the object, be reassembled in a 3D space, and covered with a surface. Additional segmented objects can be rendered in the same 3D space. The surface properties of each object can be varied by the user to aid in the study and analysis of the objects. This inter-active process becomes a powerful visual tool to study and understand microscopic objects.

  2. Blue light hazard optimization for white light-emitting diode sources with high luminous efficacy of radiation and high color rendering index

    NASA Astrophysics Data System (ADS)

    Zhang, Jingjing; Guo, Weihong; Xie, Bin; Yu, Xingjian; Luo, Xiaobing; Zhang, Tao; Yu, Zhihua; Wang, Hong; Jin, Xing

    2017-09-01

    Blue light hazard of white light-emitting diodes (LED) is a hidden risk for human's photobiological safety. Recent spectral optimization methods focus on maximizing luminous efficacy and improving color performances of LEDs, but few of them take blue hazard into account. Therefore, for healthy lighting, it's urgent to propose a spectral optimization method for white LED source to exhibit low blue light hazard, high luminous efficacy of radiation (LER) and high color performances. In this study, a genetic algorithm with penalty functions was proposed for realizing white spectra with low blue hazard, maximal LER and high color rendering index (CRI) values. By simulations, white spectra from LEDs with low blue hazard, high LER (≥297 lm/W) and high CRI (≥90) were achieved at different correlated color temperatures (CCTs) from 2013 K to 7845 K. Thus, the spectral optimization method can be used for guiding the fabrication of LED sources in line with photobiological safety. It is also found that the maximum permissible exposure duration of the optimized spectra increases by 14.9% than that of bichromatic phosphor-converted LEDs with equal CCT.

  3. Effects of Cervical High-Velocity Low-Amplitude Techniques on Range of Motion, Strength Performance, and Cardiovascular Outcomes: A Review.

    PubMed

    Galindez-Ibarbengoetxea, Xabier; Setuain, Igor; Andersen, Lars L; Ramírez-Velez, Robinson; González-Izal, Miriam; Jauregi, Andoni; Izquierdo, Mikel

    2017-09-01

    Cervical high-velocity low-amplitude (HVLA) manipulation technique is among the oldest and most frequently used chiropractic manual therapy, but the physiologic and biomechanics effects were not completely clear. This review aims to describe the effects of cervical HVLA manipulation techniques on range of motion, strength, and cardiovascular performance. A systematic search was conducted of the electronic databases from January 2000 to August 2016: PubMed (n = 131), ScienceDirect (n = 101), Scopus (n = 991), PEDro (n = 33), CINAHL (n = 884), and SciELO (n = 5). Two independent reviewers conducted the screening process to determine article eligibility. The intervention that included randomized controlled trials was thrust, or HVLA, manipulative therapy directed to the cervical spine. Methodological quality was assessed using the Cochrane risk-of-bias tool. The initial search rendered 2145 articles. After screening titles and abstracts, 11 articles remained for full-text review. The review shows that cervical HVLA manipulation treatment results in a large effect size (d > 0.80) on increasing cervical range of motion and mouth opening. In patients with lateral epicondylalgia, cervical HVLA manipulation resulted in increased pain-free handgrip strength, with large effect sizes (1.44 and 0.78, respectively). Finally, in subjects with hypertension the blood pressure seemed to decrease after cervical HVLA manipulation. Higher quality studies are needed to develop a stronger evidence-based foundation for HVLA manipulation techniques as a treatment for cervical conditions.

  4. Capturing chloroplast variation for molecular ecology studies: a simple next generation sequencing approach applied to a rainforest tree

    PubMed Central

    2013-01-01

    Background With high quantity and quality data production and low cost, next generation sequencing has the potential to provide new opportunities for plant phylogeographic studies on single and multiple species. Here we present an approach for in silicio chloroplast DNA assembly and single nucleotide polymorphism detection from short-read shotgun sequencing. The approach is simple and effective and can be implemented using standard bioinformatic tools. Results The chloroplast genome of Toona ciliata (Meliaceae), 159,514 base pairs long, was assembled from shotgun sequencing on the Illumina platform using de novo assembly of contigs. To evaluate its practicality, value and quality, we compared the short read assembly with an assembly completed using 454 data obtained after chloroplast DNA isolation. Sanger sequence verifications indicated that the Illumina dataset outperformed the longer read 454 data. Pooling of several individuals during preparation of the shotgun library enabled detection of informative chloroplast SNP markers. Following validation, we used the identified SNPs for a preliminary phylogeographic study of T. ciliata in Australia and to confirm low diversity across the distribution. Conclusions Our approach provides a simple method for construction of whole chloroplast genomes from shotgun sequencing of whole genomic DNA using short-read data and no available closely related reference genome (e.g. from the same species or genus). The high coverage of Illumina sequence data also renders this method appropriate for multiplexing and SNP discovery and therefore a useful approach for landscape level studies of evolutionary ecology. PMID:23497206

  5. Development and validation of a short version of the Partnership Self-Assessment Tool (PSAT) among professionals in Dutch disease-management partnerships

    PubMed Central

    2011-01-01

    Background The extent to which partnership synergy is created within quality improvement programmes in the Netherlands is unknown. In this article, we describe the psychometric testing of the Partnership Self-Assessment Tool (PSAT) among professionals in twenty-two disease-management partnerships participating in quality improvement projects focused on chronic care in the Netherlands. Our objectives are to validate the PSAT in the Netherlands and to reduce the number of items of the original PSAT while maintaining validity and reliability. Methods The Dutch version of the PSAT was tested in twenty-two disease-management partnerships with 218 professionals. We tested the instrument by means of structural equation modelling, and examined its validity and reliability. Results After eliminating 14 items, the confirmatory factor analyses revealed good indices of fit with the resulting 15-item PSAT-Short version (PSAT-S). Internal consistency as represented by Cronbach's alpha ranged from acceptable (0.75) for the 'efficiency' subscale to excellent for the 'leadership' subscale (0.87). Convergent validity was provided with high correlations of the partnership dimensions and partnership synergy (ranged from 0.512 to 0.609) and high correlations with chronic illness care (ranged from 0.447 to 0.329). Conclusion The psychometric properties and convergent validity of the PSAT-S were satisfactory rendering it a valid and reliable instrument for assessing partnership synergy and its dimensions of partnership functioning. PMID:21714931

  6. Visible Light Responsive Catalyst for Air Water Purification Project

    NASA Technical Reports Server (NTRS)

    Wheeler, Raymond M.

    2014-01-01

    Investigate and develop viable approaches to render the normally UV-activated TIO2 catalyst visible light responsive (VLR) and achieve high and sustaining catalytic activity under the visible region of the solar spectrum.

  7. Single-shot spiral imaging enabled by an expanded encoding model: Demonstration in diffusion MRI.

    PubMed

    Wilm, Bertram J; Barmet, Christoph; Gross, Simon; Kasper, Lars; Vannesjo, S Johanna; Haeberlin, Max; Dietrich, Benjamin E; Brunner, David O; Schmid, Thomas; Pruessmann, Klaas P

    2017-01-01

    The purpose of this work was to improve the quality of single-shot spiral MRI and demonstrate its application for diffusion-weighted imaging. Image formation is based on an expanded encoding model that accounts for dynamic magnetic fields up to third order in space, nonuniform static B 0 , and coil sensitivity encoding. The encoding model is determined by B 0 mapping, sensitivity mapping, and concurrent field monitoring. Reconstruction is performed by iterative inversion of the expanded signal equations. Diffusion-tensor imaging with single-shot spiral readouts is performed in a phantom and in vivo, using a clinical 3T instrument. Image quality is assessed in terms of artefact levels, image congruence, and the influence of the different encoding factors. Using the full encoding model, diffusion-weighted single-shot spiral imaging of high quality is accomplished both in vitro and in vivo. Accounting for actual field dynamics, including higher orders, is found to be critical to suppress blurring, aliasing, and distortion. Enhanced image congruence permitted data fusion and diffusion tensor analysis without coregistration. Use of an expanded signal model largely overcomes the traditional vulnerability of spiral imaging with long readouts. It renders single-shot spirals competitive with echo-planar readouts and thus deploys shorter echo times and superior readout efficiency for diffusion imaging and further prospective applications. Magn Reson Med 77:83-91, 2017. © 2016 International Society for Magnetic Resonance in Medicine. © 2016 International Society for Magnetic Resonance in Medicine.

  8. The development of vector based 2.5D print methods for a painting machine

    NASA Astrophysics Data System (ADS)

    Parraman, Carinna

    2013-02-01

    Through recent trends in the application of digitally printed decorative finishes to products, CAD, 3D additive layer manufacturing and research in material perception, [1, 2] there is a growing interest in the accurate rendering of materials and tangible displays. Although current advances in colour management and inkjet printing has meant that users can take for granted high-quality colour and resolution in their printed images, digital methods for transferring a photographic coloured image from screen to paper is constrained by pixel count, file size, colorimetric conversion between colour spaces and the gamut limits of input and output devices. This paper considers new approaches to applying alternative colour palettes by using a vector-based approach through the application of paint mixtures, towards what could be described as a 2.5D printing method. The objective is to not apply an image to a textured surface, but where texture and colour are integral to the mark, that like a brush, delineates the contours in the image. The paper describes the difference between the way inks and paints are mixed and applied. When transcribing the fluid appearance of a brush stroke, there is a difference between a halftone printed mark and a painted mark. The issue of surface quality is significant to subjective qualities when studying the appearance of ink or paint on paper. The paper provides examples of a range of vector marks that are then transcribed into brush stokes by the painting machine.

  9. Comorbidity of PTSD and depression in Korean War veterans: prevalence, predictors, and impairment.

    PubMed

    Ikin, Jillian F; Creamer, Mark C; Sim, Malcolm R; McKenzie, Dean P

    2010-09-01

    Rates of PTSD and depression are high in Korean War veterans. The prevalence and impact of the two disorders occurring comorbidly, however, has not been investigated. This paper aims to investigate the extent to which PTSD and depression co-occur in Australian veterans of the Korean War, the symptom severity characteristics of comorbidity, the impact on life satisfaction and quality, and the association with war-related predictors. Veterans (N=5352) completed self-report questionnaires including the Posttraumatic Stress Disorder Checklist, the Hospital Anxiety and Depression Scale, the Life Satisfaction Scale, the brief World Health Organisation Quality of Life questionnaire and the Combat Exposure Scale. Seventeen percent of veterans met criteria for comorbid PTSD and depression, 15% had PTSD without depression, and a further 6% had depression without PTSD. Compared with either disorder alone, comorbidity was associated with impaired life satisfaction, reduced quality of life, and greater symptom severity. Several war-related factors were associated with comorbidity and with PTSD alone, but not with depression alone. The reliance on self-reported measures and the necessity for retrospective assessment of some deployment-related factors renders some study data vulnerable to recall bias. Comorbid PTSD and depression, and PTSD alone, are prevalent among Korean War veterans, are both associated with war-related factors 50 years after the Korean War, and may represent a single traumatic stress construct. The results have important implications for understanding complex psychopathology following trauma. 2010 Elsevier B.V. All rights reserved.

  10. Beyond the Renderer: Software Architecture for Parallel Graphics and Visualization

    NASA Technical Reports Server (NTRS)

    Crockett, Thomas W.

    1996-01-01

    As numerous implementations have demonstrated, software-based parallel rendering is an effective way to obtain the needed computational power for a variety of challenging applications in computer graphics and scientific visualization. To fully realize their potential, however, parallel renderers need to be integrated into a complete environment for generating, manipulating, and delivering visual data. We examine the structure and components of such an environment, including the programming and user interfaces, rendering engines, and image delivery systems. We consider some of the constraints imposed by real-world applications and discuss the problems and issues involved in bringing parallel rendering out of the lab and into production.

  11. Fast algorithm for the rendering of three-dimensional surfaces

    NASA Astrophysics Data System (ADS)

    Pritt, Mark D.

    1994-02-01

    It is often desirable to draw a detailed and realistic representation of surface data on a computer graphics display. One such representation is a 3D shaded surface. Conventional techniques for rendering shaded surfaces are slow, however, and require substantial computational power. Furthermore, many techniques suffer from aliasing effects, which appear as jagged lines and edges. This paper describes an algorithm for the fast rendering of shaded surfaces without aliasing effects. It is much faster than conventional ray tracing and polygon-based rendering techniques and is suitable for interactive use. On an IBM RISC System/6000TM workstation it renders a 1000 X 1000 surface in about 7 seconds.

  12. Laser engineered net shaping of quasi-continuous network microstructural TiB reinforced titanium matrix bulk composites: Microstructure and wear performance

    NASA Astrophysics Data System (ADS)

    Hu, Yingbin; Ning, Fuda; Wang, Hui; Cong, Weilong; Zhao, Bo

    2018-02-01

    Titanium (Ti) and its alloys have been successfully applied to the aeronautical and biomedical industries. However, their poor tribological properties restrict their fields of applications under severe wear conditions. Facing to these challenges, this study investigated TiB reinforced Ti matrix composites (TiB-TMCs), fabricated by in-situ laser engineered net shaping (LENS) process, through analyzing parts quality, microstructure formation mechanisms, microstructure characterizations, and workpiece wear performance. At high B content areas (original B particle locations), reaction between Ti and B particles took place, generating flower-like microstructure. At low B content areas, eutectic TiB nanofibers contacted with each other with the formation of crosslinking microstructure. The crosslinking microstructural TiB aggregated and connected at the boundaries of Ti grains, forming a three-dimensional quasi-continuous network microstructure. The results show that compared with commercially pure Ti bulk parts, the TiB-TMCs exhibited superior wear performance (i.e. indentation wear resistance and friction wear resistance) due to the present of TiB reinforcement and the innovative microstructures formed inside TiB-TMCs. In addition, the qualities of the fabricated parts were improved with fewer interior defects by optimizing laser power, thus rendering better wear performance.

  13. Post photosynthetic carbon partitioning to sugar alcohols and consequences for plant growth.

    PubMed

    Dumschott, Kathryn; Richter, Andreas; Loescher, Wayne; Merchant, Andrew

    2017-12-01

    The occurrence of sugar alcohols is ubiquitous among plants. Physiochemical properties of sugar alcohols suggest numerous primary and secondary functions in plant tissues and are often well documented. In addition to functions arising from physiochemical properties, the synthesis of sugar alcohols may have significant influence over photosynthetic, respiratory, and developmental processes owing to their function as a large sink for photosynthates. Sink strength is demonstrated by the high concentrations of sugar alcohols found in plant tissues and their ability to be readily transported. The plant scale distribution and physiochemical function of these compounds renders them strong candidates for functioning as stress metabolites. Despite this, several aspects of sugar alcohol biosynthesis and function are poorly characterised namely: 1) the quantitative characterisation of carbon flux into the sugar alcohol pool; 2) the molecular control governing sugar alcohol biosynthesis on a quantitative basis; 3) the role of sugar alcohols in plant growth and ecology; and 4) consequences of sugar alcohol synthesis for yield production and yield quality. We highlight the need to adopt new approaches to investigating sugar alcohol biosynthesis using modern technologies in gene expression, metabolic flux analysis and agronomy. Combined, these approaches will elucidate the impact of sugar alcohol biosynthesis on growth, stress tolerance, yield and yield quality. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Fast maximum intensity projections of large medical data sets by exploiting hierarchical memory architectures.

    PubMed

    Kiefer, Gundolf; Lehmann, Helko; Weese, Jürgen

    2006-04-01

    Maximum intensity projections (MIPs) are an important visualization technique for angiographic data sets. Efficient data inspection requires frame rates of at least five frames per second at preserved image quality. Despite the advances in computer technology, this task remains a challenge. On the one hand, the sizes of computed tomography and magnetic resonance images are increasing rapidly. On the other hand, rendering algorithms do not automatically benefit from the advances in processor technology, especially for large data sets. This is due to the faster evolving processing power and the slower evolving memory access speed, which is bridged by hierarchical cache memory architectures. In this paper, we investigate memory access optimization methods and use them for generating MIPs on general-purpose central processing units (CPUs) and graphics processing units (GPUs), respectively. These methods can work on any level of the memory hierarchy, and we show that properly combined methods can optimize memory access on multiple levels of the hierarchy at the same time. We present performance measurements to compare different algorithm variants and illustrate the influence of the respective techniques. On current hardware, the efficient handling of the memory hierarchy for CPUs improves the rendering performance by a factor of 3 to 4. On GPUs, we observed that the effect is even larger, especially for large data sets. The methods can easily be adjusted to different hardware specifics, although their impact can vary considerably. They can also be used for other rendering techniques than MIPs, and their use for more general image processing task could be investigated in the future.

  15. Graphene Oxide Membranes with Heterogeneous Nanodomains for Efficient CO2 Separations.

    PubMed

    Wang, Shaofei; Xie, Yu; He, Guangwei; Xin, Qingping; Zhang, Jinhui; Yang, Leixin; Li, Yifan; Wu, Hong; Zhang, Yuzhong; Guiver, Michael D; Jiang, Zhongyi

    2017-11-06

    Achieving high membrane performance in terms of gas permeance and carbon dioxide selectivity is an important target in carbon capture. Aiming to manipulate the channel affinity towards CO 2 to implement efficient separations, gas separation membranes containing CO 2 -philic and non-CO 2 -philic nanodomains in the interlayer channels of graphene oxide (GO) were formed by intercalating poly(ethylene glycol) diamines (PEGDA). PEGDA reacts with epoxy groups on the GO surface, constructing CO 2 -philic nanodomains and rendering a high sorption capacity, whereas unreacted GO surfaces give non-CO 2 -philic nanodomains, rendering low-friction diffusion. Owing to the orderly stacking of nanochannels through cross-linking and the heterogeneous nanodomains with moderate CO 2 affinity, a GO-PEGDA500 membrane exhibits a high CO 2 permeance of 175.5 GPU and a CO 2 /CH 4 selectivity of 69.5, which is the highest performance reported for dry-state GO-stacking membranes. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Using VMD - An Introductory Tutorial

    PubMed Central

    Hsin, Jen; Arkhipov, Anton; Yin, Ying; Stone, John E.; Schulten, Klaus

    2010-01-01

    VMD (Visual Molecular Dynamics) is a molecular visualization and analysis program designed for biological systems such as proteins, nucleic acids, lipid bilayer assemblies, etc. This unit will serve as an introductory VMD tutorial. We will present several step-by-step examples of some of VMD’s most popular features, including visualizing molecules in three dimensions with different drawing and coloring methods, rendering publication-quality figures, animate and analyze the trajectory of a molecular dynamics simulation, scripting in the text-based Tcl/Tk interface, and analyzing both sequence and structure data for proteins. PMID:19085979

  17. Plane-Based Sampling for Ray Casting Algorithm in Sequential Medical Images

    PubMed Central

    Lin, Lili; Chen, Shengyong; Shao, Yan; Gu, Zichun

    2013-01-01

    This paper proposes a plane-based sampling method to improve the traditional Ray Casting Algorithm (RCA) for the fast reconstruction of a three-dimensional biomedical model from sequential images. In the novel method, the optical properties of all sampling points depend on the intersection points when a ray travels through an equidistant parallel plan cluster of the volume dataset. The results show that the method improves the rendering speed at over three times compared with the conventional algorithm and the image quality is well guaranteed. PMID:23424608

  18. Renewal of radiological equipment.

    PubMed

    2014-10-01

    In this century, medical imaging is at the heart of medical practice. Besides providing fast and accurate diagnosis, advances in radiology equipment offer new and previously non-existing options for treatment guidance with quite low morbidity, resulting in the improvement of health outcomes and quality of life for the patients. Although rapid technological development created new medical imaging modalities and methods, the same progress speed resulted in accelerated technical and functional obsolescence of the same medical imaging equipment, consequently creating a need for renewal. Older equipment has a high risk of failures and breakdowns, which might cause delays in diagnosis and treatment of the patient, and safety problems both for the patient and the medical staff. The European Society of Radiology is promoting the use of up-to-date equipment, especially in the context of the EuroSafe Imaging Campaign, as the use of up-to-date equipment will improve quality and safety in medical imaging. Every healthcare institution or authority should have a plan for medical imaging equipment upgrade or renewal. This plan should look forward a minimum of 5 years, with annual updates. Teaching points • Radiological equipment has a definite life cycle span, resulting in unavoidable breakdown and decrease or loss of image quality which renders equipment useless after a certain time period.• Equipment older than 10 years is no longer state-of-the art equipment and replacement is essential. Operating costs of older equipment will be high when compared with new equipment, and sometimes maintenance will be impossible if no spare parts are available.• Older equipment has a high risk of failure and breakdown, causing delays in diagnosis and treatment of the patient and safety problems both for the patient and the medical staff.• Every healthcare institution or authority should have a plan for medical imaging equipment upgrade or replacement. This plan should look forward a minimum of 5 years, with annual updating.

  19. LED Surgical Task Lighting Scoping Study: A Hospital Energy Alliance Project

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tuenge, Jason R.

    Tungsten-halogen (halogen) lamps have traditionally been used to light surgical tasks in hospitals, even though they are in many respects ill-suited to the application due to the large percentage of radiant energy outside the visible spectrum and issues with color rendering/quality. Light-emitting diode (LED) technology offers potential for adjustable color and improved color rendition/quality, while simultaneously reducing side-effects from non-visible radiant energy. It also has the potential for significant energy savings, although this is a fairly narrow application in the larger commercial building energy use sector. Based on analysis of available products and Hospital Energy Alliance member interest, it ismore » recommended that a product specification and field measurement procedure be developed for implementation in demonstration projects.« less

  20. A Review on Real-Time 3D Ultrasound Imaging Technology

    PubMed Central

    Zeng, Zhaozheng

    2017-01-01

    Real-time three-dimensional (3D) ultrasound (US) has attracted much more attention in medical researches because it provides interactive feedback to help clinicians acquire high-quality images as well as timely spatial information of the scanned area and hence is necessary in intraoperative ultrasound examinations. Plenty of publications have been declared to complete the real-time or near real-time visualization of 3D ultrasound using volumetric probes or the routinely used two-dimensional (2D) probes. So far, a review on how to design an interactive system with appropriate processing algorithms remains missing, resulting in the lack of systematic understanding of the relevant technology. In this article, previous and the latest work on designing a real-time or near real-time 3D ultrasound imaging system are reviewed. Specifically, the data acquisition techniques, reconstruction algorithms, volume rendering methods, and clinical applications are presented. Moreover, the advantages and disadvantages of state-of-the-art approaches are discussed in detail. PMID:28459067

Top